Optimization of combined electron and photon beams for breast cancer
NASA Astrophysics Data System (ADS)
Xiong, W.; Li, J.; Chen, L.; Price, R. A.; Freedman, G.; Ding, M.; Qin, L.; Yang, J.; Ma, C.-M.
2004-05-01
Recently, intensity-modulated radiation therapy and modulated electron radiotherapy have gathered a growing interest for the treatment of breast and head and neck tumours. In this work, we carried out a study to combine electron and photon beams to achieve differential dose distributions for multiple target volumes simultaneously. A Monte Carlo based treatment planning system was investigated, which consists of a set of software tools to perform accurate dose calculation, treatment optimization, leaf sequencing and plan analysis. We compared breast treatment plans generated using this home-grown optimization and dose calculation software for different treatment techniques. Five different planning techniques have been developed for this study based on a standard photon beam whole breast treatment and an electron beam tumour bed cone down. Technique 1 includes two 6 MV tangential wedged photon beams followed by an anterior boost electron field. Technique 2 includes two 6 MV tangential intensity-modulated photon beams and the same boost electron field. Technique 3 optimizes two intensity-modulated photon beams based on a boost electron field. Technique 4 optimizes two intensity-modulated photon beams and the weight of the boost electron field. Technique 5 combines two intensity-modulated photon beams with an intensity-modulated electron field. Our results show that technique 2 can reduce hot spots both in the breast and the tumour bed compared to technique 1 (dose inhomogeneity is reduced from 34% to 28% for the target). Techniques 3, 4 and 5 can deliver a more homogeneous dose distribution to the target (with dose inhomogeneities for the target of 22%, 20% and 9%, respectively). In many cases techniques 3, 4 and 5 can reduce the dose to the lung and heart. It is concluded that combined photon and electron beam therapy may be advantageous for treating breast cancer compared to conventional treatment techniques using tangential wedged photon beams followed by a boost electron field.
Leung, H W C; Chan, A L F; Chang, M B
2016-05-01
We examined the effects of intensity-modulated radiation therapy with dose-sparing and avoidance technique on a pediatric patient with localized intracranial germinoma. We also reviewed the literature regarding modern irradiation techniques in relation to late neurocognitive sequelae. A patient with a localized intracranial germinoma in the third ventricle anterior to the pineal gland received a dose-sparing intensity-modulated radiation therapy. The planning was compared to the radiation oncologist's guide of organs at risk and dose constraints for dosimetric analyses. The patient received radiation therapy alone. The total dose was 54Gy delivered in 2.0Gy fractions to the primary tumour and 37Gy in 1.4Gy fractions to whole ventricles using a dose-sculpting plan. Dosimetry analyses showed that dose-sparing intensity-modulated radiation therapy delivered reduced doses to the whole brain, temporal lobes, hippocampi, cochleae, and optic nerves. With a follow-up of 22 months, failure-free survival was 100% for the patient and no adverse events during radiation treatment process. Intensity-modulated radiation therapy with dose sparing and avoidance technique can spare the limbic circuit, central nervous system, and hippocampus for pineal germ cell tumours. This technique reduces the integral dose delivered to the uninvolved normal brain tissues and may reduce late neurocognitive sequelae caused by cranial radiotherapy. Copyright © 2016 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, X; Sun, T; Yin, Y
Purpose: To study the dosimetric impact of intensity-modulated radiotherapy (IMRT), hybrid intensity-modulated radiotherapy (h-IMRT) and volumetric modulated arc therapy(VMAT) for whole-brain radiotherapy (WBRT) with simultaneous integrated boost in patients with multiple brain metastases. Methods: Ten patients with multiple brain metastases were included in this analysis. The prescribed dose was 45 Gy to the whole brain (PTVWBRT) and 55 Gy to individual brain metastases (PTVboost) delivered simultaneously in 25 fractions. Three treatment techniques were designed: the 7 equal spaced fields IMRT plan, hybrid IMRT plan and VMAT with two 358°arcs. In hybrid IMRT plan, two fields(90°and 270°) were planned to themore » whole brain. This was used as a base dose plan. Then 5 fields IMRT plan was optimized based on the two fields plan. The dose distribution in the target, the dose to the organs at risk and total MU in three techniques were compared. Results: For the target dose, conformity and homogeneity in PTV, no statistically differences were observed in the three techniques. For the maximum dose in bilateral lens and the mean dose in bilateral eyes, IMRT and h-IMRT plans showed the highest and lowest value respectively. No statistically significant differences were observed in the dose of optic nerve and brainstem. For the monitor units, IMRT and VMAT plans showed the highest and lowest value respectively. Conclusion: For WBRT with simultaneous integrated boost in patients with multiple brain metastases, hybrid IMRT could reduce the doses to lens and eyes. It is feasible for patients with brain metastases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guy, Jean-Baptiste; Falk, Alexander T.; Auberdiac, Pierre
Introduction: For patients with cervical cancer, intensity-modulated radiation therapy (IMRT) improves target coverage and allows dose escalation while reducing the radiation dose to organs at risk (OARs). In this study, we compared dosimetric parameters among 3-dimensional conformal radiotherapy (3D-CRT), “step-and-shoot” IMRT, and volumetric intensity-modulated arc radiotherapy (VMAT) in a series of patients with cervical cancer receiving definitive radiotherapy. Computed tomography (CT) scans of 10 patients with histologically proven cervical cancer treated with definitive radiation therapy (RT) from December 2008 to March 2010 at our department were selected for this study. The gross tumor volume (GTV) and clinical target volume (CTV)more » were delineated following the guidelines of the Gyn IMRT consortium that included cervix, uterus, parametrial tissues, and the pelvic nodes including presacral. The median age was 57 years (range: 30 to 85 years). All 10 patients had squamous cell carcinoma with Federation of Gynecology and Obstetrics (FIGO) stage IB-IIIB. All patients were treated by VMAT. OAR doses were significantly reduced for plans with intensity-modulated technique compared with 3D-CRT except for the dose to the vagina. Between the 2 intensity-modulated techniques, significant difference was observed for the mean dose to the small intestine, to the benefit of VMAT (p < 0.001). There was no improvement in terms of OARs sparing for VMAT although there was a tendency for a slightly decreased average dose to the rectum: − 0.65 Gy but not significant (p = 0.07). The intensity modulation techniques have many advantages in terms of quality indexes, and particularly OAR sparing, compared with 3D-CRT. Following the ongoing technologic developments in modern radiotherapy, it is essential to evaluate the intensity-modulated techniques on prospective studies of a larger scale.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Anders T., E-mail: andehans@rm.dk; Lukacova, Slavka; Lassen-Ramshad, Yasmin
2015-01-01
When standard conformal x-ray technique for craniospinal irradiation is used, it is a challenge to achieve satisfactory dose coverage of the target including the area of the cribriform plate, while sparing organs at risk. We present a new intensity-modulated radiation therapy (IMRT), noncoplanar technique, for delivering irradiation to the cranial part and compare it with 3 other techniques and previously published results. A total of 13 patients who had previously received craniospinal irradiation with standard conformal x-ray technique were reviewed. New treatment plans were generated for each patient using the noncoplanar IMRT-based technique, a coplanar IMRT-based technique, and a coplanarmore » volumetric-modulated arch therapy (VMAT) technique. Dosimetry data for all patients were compared with the corresponding data from the conventional treatment plans. The new noncoplanar IMRT technique substantially reduced the mean dose to organs at risk compared with the standard radiation technique. The 2 other coplanar techniques also reduced the mean dose to some of the critical organs. However, this reduction was not as substantial as the reduction obtained by the noncoplanar technique. Furthermore, compared with the standard technique, the IMRT techniques reduced the total calculated radiation dose that was delivered to the normal tissue, whereas the VMAT technique increased this dose. Additionally, the coverage of the target was significantly improved by the noncoplanar IMRT technique. Compared with the standard technique, the coplanar IMRT and the VMAT technique did not improve the coverage of the target significantly. All the new planning techniques increased the number of monitor units (MU) used—the noncoplanar IMRT technique by 99%, the coplanar IMRT technique by 122%, and the VMAT technique by 26%—causing concern for leak radiation. The noncoplanar IMRT technique covered the target better and decreased doses to organs at risk compared with the other techniques. All the new techniques increased the number of MU compared with the standard technique.« less
Lee, E J; Lee, S K; Agid, R; Howard, P; Bae, J M; terBrugge, K
2009-10-01
The combined automatic tube current modulation (ATCM) technique adapts and modulates the x-ray tube current in the x-y-z axis according to the patient's individual anatomy. We compared image quality and radiation dose of the combined ATCM technique with those of a fixed tube current (FTC) technique in craniocervical CT angiography performed with a 64-section multidetector row CT (MDCT) system. A retrospective review of craniocervical CT angiograms (CTAs) by using combined ATCM (n = 25) and FTC techniques (n = 25) was performed. Other CTA parameters, such as kilovolt (peak), matrix size, FOV, section thickness, pitch, contrast agent, and contrast injection techniques, were held constant. We recorded objective image noise in the muscles at 2 anatomic levels: radiation exposure doses (CT dose index volume and dose-length product); and subjective image quality parameters, such as vascular delineation of various arterial vessels, visibility of small arterial detail, image artifacts, and certainty of diagnosis. The Mann-Whitney U test was used for statistical analysis. No significant difference was detected in subjective image quality parameters between the FTC and combined ATCM techniques. Most subjects in both study groups (49/50, 98%) had acceptable subjective artifacts. The objective image noise values at shoulder level did not show a significant difference, but the noise value at the upper neck was higher with the combined ATCM (P < .05) technique. Significant reduction in radiation dose (18% reduction) was noted with the combined ATCM technique (P < .05). The combined ATCM technique for craniocervical CTA performed at 64-section MDCT substantially reduced radiation exposure dose but maintained diagnostic image quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xin; Li, Guangjun; Zhang, Yingjie
2013-01-01
To compare the dosimetric differences between the single-arc volumetric-modulated arc therapy (sVMAT), 3-dimensional conformal radiotherapy (3D-CRT), and intensity-modulated radiotherapy (IMRT) techniques in treatment planning for gastric cancer as adjuvant radiotherapy. Twelve patients were retrospectively analyzed. In each patient's case, the parameters were compared based on the dose-volume histogram (DVH) of the sVMAT, 3D-CRT, and IMRT plans, respectively. Three techniques showed similar target dose coverage. The maximum and mean doses of the target were significantly higher in the sVMAT plans than that in 3D-CRT plans and in the 3D-CRT/IMRT plans, respectively, but these differences were clinically acceptable. The IMRT and sVMATmore » plans successfully achieved better target dose conformity, reduced the V{sub 20/30}, and mean dose of the left kidney, as well as the V{sub 20/30} of the liver, compared with the 3D-CRT plans. And the sVMAT technique reduced the V{sub 20} of the liver much significantly. Although the maximum dose of the spinal cord were much higher in the IMRT and sVMAT plans, respectively (mean 36.4 vs 39.5 and 40.6 Gy), these data were still under the constraints. Not much difference was found in the analysis of the parameters of the right kidney, intestine, and heart. The IMRT and sVMAT plans achieved similar dose distribution to the target, but superior to the 3D-CRT plans, in adjuvant radiotherapy for gastric cancer. The sVMAT technique improved the dose sparings of the left kidney and liver, compared with the 3D-CRT technique, but showed few dosimetric advantages over the IMRT technique. Studies are warranted to evaluate the clinical benefits of the VMAT treatment for patients with gastric cancer after surgery in the future.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heins, D; Zhang, R; Hogstrom, K
2016-06-15
Purpose: To determine if bolus electron conformal therapy (Bolus-ECT) combined with intensity modulated x-ray therapy (IMXT) and flattening filter free volumetric modulated arc therapy (FFF-VMAT (6x and 10x)) can maintain equal or better dose coverage than standard volumetric modulated arc therapy (Std-VMAT) while reducing doses to organs at risk (OARs). Methods: Bolus-ECT with IMXT, FFF-VMAT, and Std-VMAT treatment plans were produced for ten post-mastectomy radiotherapy (PMRT) patients previously treated at our clinic. The treatment plans were created on commercially available treatment planning system (TPS) and all completed treatment plans were reviewed and approved by a radiation oncologist. The plans weremore » evaluated based on planning target volume (PTV) coverage, tumor control probability (TCP), dose homogeneity index (DHI), conformity index (CI), and dose to organs at risk (OAR). Results: All techniques produced clinically acceptable PMRT plans. Overall, Bolus-ECT with IMXT exhibited higher maximum dose compared to all VMAT techniques. Bolus-ECT with IMXT and FFF-VMAT10x had slightly improved TCP over FFF-VMAT6x and Std-VMAT. However, all VMAT techniques showed improved CI and DHI over Bolus-ECT with IMXT. All techniques showed very similar mean lung dose. Bolus-ECT with IMXT exhibited a reduced mean heart dose over Std-VMAT. Both FFF-VMAT techniques had higher mean heart dose compared to Std-VMAT. In addition, Bolus-ECT with IMXT was able to reduce mean dose to the contralateral breast compared to Std-VMAT and both FFF-VMAT techniques had comparable but slightly reduced dose compared to Std-VMAT. Conclusion: This work has shown that Bolus-ECT with IMXT produces clinically acceptable plans while reducing OAR doses. Both FFF-VMAT techniques are comparable to Std-VMAT with slight improvements. Even though all VMAT techniques produce more homogenous and conformal dose distributions, Bolus-ECT with IMXT is a viable option for treating post-mastectomy patients possibly leading to reduced risks of normal tissue complications.« less
NASA Astrophysics Data System (ADS)
Lai, Lu-Han; Chuang, Keh-Shih; Lin, Hsin-Hon; Liu, Yi-Chi; Kuo, Chiung-Wen; Lin, Jao-Perng
2017-11-01
The in-vivo dose distributions of intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT), a newly developed technique, for head and neck cancer have been investigated for several years. The present study used a head-and-neck RANDO phantom to simulate the clinical conditions of nasopharyngeal carcinoma and compare the radiation doses between VMAT and IMRT. Three types of planning target volume (PTV) profiles were targeted by reducing the PTV surface margin by 0, 3, and 5 mm. An optically stimulated luminescence dosimeter was used to measure the surface doses. The results revealed that VMAT provided on average 16.8-13.8% lower surface doses within the PTV target areas than IMRT. When the PTV margin was reduced by 0 mm, the surface doses for IMRT reached their maximum value, accounting for 75.1% of its prescribed dose (Dp); however, the Dp value of VMAT was only 61.1%. When the PTV margin was reduced by 3 or 5 mm, the surface doses decreased considerably. The observed surface doses were insufficient when the tumours invaded the body surface; however, VMAT exerted larger skin-sparing effects than IMRT when the tumours away from the skin. These results suggest that the skin doses for these two techniques are insufficient for surface tumours. Notably, VMAT can provide lower skin doses for deep tumours.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yim, Jackie; Suttie, Clare; Bromley, Regina
We report on a retrospective dosimetric study, comparing 3D conformal radiotherapy (3DCRT) and hybrid intensity modulated radiotherapy (hIMRT). We evaluated plans based on their planning target volume coverage, dose homogeneity, dose to organs at risk (OARs) and exposure of normal tissue to radiation. The Homogeneity Index (HI) was used to assess the dose homogeneity in the target region, and we describe a new index, the normal tissue index (NTI), to assess the dose in the normal tissue inside the tangent treatment portal. Plans were generated for 25 early-stage breast cancer patients, using a hIMRT technique. These were compared with themore » 3DCRT plans of the treatment previously received by the patients. Plan quality was evaluated using the HI, NTI and dose to OARs. The hIMRT technique was significantly more homogenous than the 3DCRT technique, while maintaining target coverage. The hIMRT technique was also superior at minimising the amount of tissue receiving D{sub 105%} and above (P < 0.0001). The ipsilateral lung and contralateral breast maximum were significantly lower in the hIMRT plans (P < 0.05 and P < 0.005), but the 3DCRT technique achieved a lower mean heart dose in left-sided breast cancer patients (P < 0.05). Hybrid intensity modulated radiotherapy plans achieved improved dose homogeneity compared to the 3DCRT plans and superior outcome with regard to dose to normal tissues. We propose that the addition of both HI and NTI in evaluating the quality of intensity modulated radiotherapy (IMRT) breast plans provides clinically relevant comparators which more accurately reflect the new paradigm of treatment goals and outcomes in the era of breast IMRT.« less
In vivo dosimetry for total body irradiation: five‐year results and technique comparison
Warry, Alison J.; Eaton, David J.; Collis, Christopher H.; Rosenberg, Ivan
2014-01-01
The aim of this work is to establish if the new CT‐based total body irradiation (TBI) planning techniques used at University College London Hospital (UCLH) and Royal Free Hospital (RFH) are comparable to the previous technique at the Middlesex Hospital (MXH) by analyzing predicted and measured diode results. TBI aims to deliver a homogeneous dose to the entire body, typically using extended SSD fields with beam modulation to limit doses to organs at risk. In vivo dosimetry is used to verify the accuracy of delivered doses. In 2005, when the Middlesex Hospital was decommissioned and merged with UCLH, both UCLH and the RFH introduced updated CT‐planned TBI techniques, based on the old MXH technique. More CT slices and in vivo measurement points were used by both; UCLH introduced a beam modulation technique using MLC segments, while RFH updated to a combination of lead compensators and bolus. Semiconductor diodes were used to measure entrance and exit doses in several anatomical locations along the entire body. Diode results from both centers for over five years of treatments were analyzed and compared to the previous MXH technique for accuracy and precision of delivered doses. The most stable location was the field center with standard deviations of 4.1% (MXH), 3.7% (UCLH), and 1.7% (RFH). The least stable position was the ankles. Mean variation with fraction number was within 1.5% for all three techniques. In vivo dosimetry can be used to verify complex modulated CT‐planned TBI, and demonstrate improvements and limitations in techniques. The results show that the new UCLH technique is no worse than the previous MXH one and comparable to the current RFH technique. PACS numbers: 87.55.Qr, 87.56.N‐ PMID:25207423
In vivo dosimetry for total body irradiation: five-year results and technique comparison.
Patel, Reshma P; Warry, Alison J; Eaton, David J; Collis, Christopher H; Rosenberg, Ivan
2014-07-08
The aim of this work is to establish if the new CT-based total body irradiation (TBI) planning techniques used at University College London Hospital (UCLH) and Royal Free Hospital (RFH) are comparable to the previous technique at the Middlesex Hospital (MXH) by analyzing predicted and measured diode results. TBI aims to deliver a homogeneous dose to the entire body, typically using extended SSD fields with beam modulation to limit doses to organs at risk. In vivo dosimetry is used to verify the accuracy of delivered doses. In 2005, when the Middlesex Hospital was decommissioned and merged with UCLH, both UCLH and the RFH introduced updated CT-planned TBI techniques, based on the old MXH technique. More CT slices and in vivo measurement points were used by both; UCLH introduced a beam modulation technique using MLC segments, while RFH updated to a combination of lead compensators and bolus. Semiconductor diodes were used to measure entrance and exit doses in several anatomical locations along the entire body. Diode results from both centers for over five years of treatments were analyzed and compared to the previous MXH technique for accuracy and precision of delivered doses. The most stable location was the field center with standard deviations of 4.1% (MXH), 3.7% (UCLH), and 1.7% (RFH). The least stable position was the ankles. Mean variation with fraction number was within 1.5% for all three techniques. In vivo dosimetry can be used to verify complex modulated CT-planned TBI, and demonstrate improvements and limitations in techniques. The results show that the new UCLH technique is no worse than the previous MXH one and comparable to the current RFH technique.
NASA Astrophysics Data System (ADS)
Yoon, Jihyung; Heins, David; Zhao, Xiaodong; Sanders, Mary; Zhang, Rui
2017-12-01
More and more advanced radiotherapy techniques have been adopted for post-mastectomy radiotherapies (PMRT). Patient dose reconstruction is challenging for these advanced techniques because they increase the low out-of-field dose area while the accuracy of out-of-field dose calculations by current commercial treatment planning systems (TPSs) is poor. We aim to measure and model the out-of-field radiation doses from various advanced PMRT techniques. PMRT treatment plans for an anthropomorphic phantom were generated, including volumetric modulated arc therapy with standard and flattening-filter-free photon beams, mixed beam therapy, 4-field intensity modulated radiation therapy (IMRT), and tomotherapy. We measured doses in the phantom where the TPS calculated doses were lower than 5% of the prescription dose using thermoluminescent dosimeters (TLD). The TLD measurements were corrected by two additional energy correction factors, namely out-of-beam out-of-field (OBOF) correction factor K OBOF and in-beam out-of-field (IBOF) correction factor K IBOF, which were determined by separate measurements using an ion chamber and TLD. A simple analytical model was developed to predict out-of-field dose as a function of distance from the field edge for each PMRT technique. The root mean square discrepancies between measured and calculated out-of-field doses were within 0.66 cGy Gy-1 for all techniques. The IBOF doses were highly scattered and should be evaluated case by case. One can easily combine the measured out-of-field dose here with the in-field dose calculated by the local TPS to reconstruct organ doses for a specific PMRT patient if the same treatment apparatus and technique were used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Studenski, Matthew T., E-mail: matthew.studenski@jeffersonhospital.org; Shen, Xinglei; Yu, Yan
2013-04-01
Craniospinal irradiation (CSI) poses a challenging planning process because of the complex target volume. Traditional 3D conformal CSI does not spare any critical organs, resulting in toxicity in patients. Here the dosimetric advantages of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) are compared with classic conformal planning in adults for both cranial and spine fields to develop a clinically feasible technique that is both effective and efficient. Ten adult patients treated with CSI were retrospectively identified. For the cranial fields, 5-field IMRT and dual 356° VMAT arcs were compared with opposed lateral 3D conformal radiotherapy (3D-CRT) fields. Formore » the spine fields, traditional posterior-anterior (PA) PA fields were compared with isocentric 5-field IMRT plans and single 200° VMAT arcs. Two adult patients have been treated using this IMRT technique to date and extensive quality assurance, especially for the junction regions, was performed. For the cranial fields, the IMRT technique had the highest planned target volume (PTV) maximum and was the least efficient, whereas the VMAT technique provided the greatest parotid sparing with better efficiency. 3D-CRT provided the most efficient delivery but with the highest parotid dose. For the spine fields, VMAT provided the best PTV coverage but had the highest mean dose to all organs at risk (OAR). 3D-CRT had the highest PTV and OAR maximum doses but was the most efficient. IMRT provides the greatest OAR sparing but the longest delivery time. For those patients with unresectable disease that can benefit from a higher, definitive dose, 3D-CRT–opposed laterals are the most clinically feasible technique for cranial fields and for spine fields. Although inefficient, the IMRT technique is the most clinically feasible because of the increased mean OAR dose with the VMAT technique. Quality assurance of the beams, especially the junction regions, is essential.« less
Lin, Jang-Chun; Tsai, Jo-Ting; Chang, Chih-Chieh; Jen, Yee-Min; Li, Ming-Hsien; Liu, Wei-Hsiu
2015-05-01
The aim of this study was to compare treatment plans of volumetric modulated arc therapy (VMAT) with intensity-modulated radiotherapy (IMRT) for all esophageal cancer (EC) tumor locations.This retrospective study from July 2009 to June 2014 included 20 patients with EC who received definitive concurrent chemoradiotherapy with radiation doses >50.4 Gy. Version 9.2 of Pinnacle with SmartArc was used for treatment planning. Dosimetric quality was evaluated based on doses to several organs at risk, including the spinal cord, heart, and lung, over the same coverage of gross tumor volume.In upper thoracic EC, the IMRT treatment plan had a lower lung mean dose (P = 0.0126) and lung V5 (P = 0.0037) compared with VMAT; both techniques had similar coverage of the planning target volumes (PTVs) (P = 0.3575). In middle thoracic EC, a lower lung mean dose (P = 0.0010) and V5 (P = 0.0145), but higher lung V20 (P = 0.0034), spinal cord Dmax (P = 0.0262), and heart mean dose (P = 0.0054), were observed for IMRT compared with VMAT; IMRT provided better PTV coverage. Patients with lower thoracic ECs had a lower lung mean dose (P = 0.0469) and V5 (P = 0.0039), but higher spinal cord Dmax (P = 0.0301) and heart mean dose (P = 0.0020), with IMRT compared with VMAT. PTV coverage was similar (P = 0.0858) for the 2 techniques.IMRT provided a lower mean dose and lung V5 in upper thoracic EC compared with VMAT, but exhibited different advantages and disadvantages in patients with middle or lower thoracic ECs. Thus, choosing different techniques for different EC locations is warranted.
The treatment of extensive scalp lesions combining electrons with intensity-modulated photons.
Chan, Maria F; Song, Yulin; Burman, Chandra; Chui, Chen S; Schupak, Karen
2006-01-01
This study was to investigate the feasibility and potential benefits of combining electrons with intensity modulated photons (IMRT+e) for patients with extensive scalp lesions. A case of a patient with an extensive scalp lesion, in which the target volume covered the entire front half of the scalp, is presented. This approach incorporated the electron dose into the inverse treatment planning optimization. The resulting doses to the planning target volume (PTV) and relevant critical structures were compared. Thermoluminescent dosimeters (TLD), diodes, and GAFCHROMIC EBT films were used to verify the accuracy of the techniques. The IMRT+e plan produced a superior dose distribution to the patient as compared to the IMRT plan in terms of reduction of the dose to the brain with the same dose conformity and homogeneity in the target volumes. This study showed that IMRT+e is a viable treatment modality for extensive scalp lesions patients. It provides a feasible alternative to existing treatment techniques, resulting in improved homogeneity of dose to the PTV compared to conventional electron techniques and a decrease in dose to the brain compared to photon IMRT alone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Katrina, E-mail: Trinabena23@gmail.com; Lenards, Nishele; Holson, Janice
The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient's neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to themore » hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient's data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain.« less
Dosimetric changes with computed tomography automatic tube-current modulation techniques.
Spampinato, Sofia; Gueli, Anna Maria; Milone, Pietro; Raffaele, Luigi Angelo
2018-04-06
The study is aimed at a verification of dose changes for a computed tomography automatic tube-current modulation (ATCM) technique. For this purpose, anthropomorphic phantom and Gafchromic ® XR-QA2 films were used. Radiochromic films were cut according to the shape of two thorax regions. The ATCM algorithm is based on noise index (NI) and three exam protocols with different NI were chosen, of which one was a reference. Results were compared with dose values displayed by the console and with Poisson statistics. The information obtained with radiochromic films has been normalized with respect to the NI reference value to compare dose percentage variations. Results showed that, on average, the information reported by the CT console and calculated values coincide with measurements. The study allowed verification of the dose information reported by the CT console for an ATCM technique. Although this evaluation represents an estimate, the method can be a starting point for further studies.
Fahimian, Benjamin; Yu, Victoria; Horst, Kathleen; Xing, Lei; Hristov, Dimitre
2013-12-01
External beam radiation therapy (EBRT) provides a non-invasive treatment alternative for accelerated partial breast irradiation (APBI), however, limitations in achievable dose conformity of current EBRT techniques have been correlated to reported toxicity. To enhance the conformity of EBRT APBI, a technique for conventional LINACs is developed, which through combined motion of the couch, intensity modulated delivery, and a prone breast setup, enables wide-angular coronal arc irradiation of the ipsilateral breast without irradiating through the thorax and contralateral breast. A couch trajectory optimization technique was developed to determine the trajectories that concurrently avoid collision with the LINAC and maintain the target within the MLC apertures. Inverse treatment planning was performed along the derived trajectory. The technique was experimentally implemented by programming the Varian TrueBeam™ STx in Developer Mode. The dosimetric accuracy of the delivery was evaluated by ion chamber and film measurements in phantom. The resulting optimized trajectory was shown to be necessarily non-isocentric, and contain both translation and rotations of the couch. Film measurements resulted in 93% of the points in the measured two-dimensional dose maps passing the 3%/3mm Gamma criterion. Preliminary treatment plan comparison to 5-field 3D-conformal, IMRT, and VMAT demonstrated enhancement in conformity, and reduction of the normal tissue V50% and V100% parameters that have been correlated with EBRT toxicity. The feasibility of wide-angular intensity modulated partial breast irradiation using motion of the couch has been demonstrated experimentally on a standard LINAC for the first time. For patients eligible for a prone setup, the technique may enable improvement of dose conformity and associated dose-volume parameters correlated with toxicity. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasciuti, Katia, E-mail: k.pasciuti@virgilio.it; Kuthpady, Shrinivas; Anderson, Anne
To examine tumor's and organ's response when different radiotherapy plan techniques are used. Ten patients with confirmed bladder tumors were first treated using 3-dimensional conformal radiotherapy (3DCRT) and subsequently the original plans were re-optimized using the intensity-modulated radiation treatment (IMRT) and volumetric-modulated arc therapy (VMAT)-techniques. Targets coverage in terms of conformity and homogeneity index, TCP, and organs' dose limits, including integral dose analysis were evaluated. In addition, MUs and treatment delivery times were compared. Better minimum target coverage (1.3%) was observed in VMAT plans when compared to 3DCRT and IMRT ones confirmed by a statistically significant conformity index (CI) results.more » Large differences were observed among techniques in integral dose results of the femoral heads. Even if no statistically significant differences were reported in rectum and tissue, a large amount of energy deposition was observed in 3DCRT plans. In any case, VMAT plans provided better organs and tissue sparing confirmed also by the normal tissue complication probability (NTCP) analysis as well as a better tumor control probability (TCP) result. Our analysis showed better overall results in planning using VMAT techniques. Furthermore, a total time reduction in treatment observed among techniques including gantry and collimator rotation could encourage using the more recent one, reducing target movements and patient discomfort.« less
NASA Astrophysics Data System (ADS)
Nguyen, T. T. C.; Nguyen, B. T.; Mai, N. V.
2018-03-01
In this work, we made the comparison between IMRT plan and IMPT plan for a head and neck case. We used Prowess Panther to perform IMRT plan and LAP- CERR for IMPT plan. The result showed that IMPT plan had better coverage than IMRT plan. In the IMRT plan, normal structures received higher dose with higher volume. Especially, the maximum dose of spinal cord is 31.5 Gy (RBE) using IMRT technique compared to 13.5 Gy (RBE) using IMPT technique. These results showed that IMPT is beneficial for head and neck cancer compared to IMRT technique.
Mani, Karthick Raj; Upadhayay, Sagar; Das, K J Maria
2017-03-01
To Study the dosimetric advantage of the Jaw tracking technique in intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) for Head and Neck Cancers. We retrospectively selected 10 previously treated head and neck cancer patients stage (T1/T2, N1, M0) in this study. All the patients were planned for IMRT and VMAT with simultaneous integrated boost technique. IMRT and VMAT plans were performed with jaw tracking (JT) and with static jaw (SJ) technique by keeping the same constraints and priorities for a particular patient. Target conformity, dose to the critical structures and low dose volumes were recorded and analyzed for IMRT and VMAT plans with and without JT for all the patients. The conformity index average of all patients followed by standard deviation ([Formula: see text] ± [Formula: see text]) of the JT-IMRT, SJ-IMRT, JT-VMAT, and SJ-VMAT were 1.72 ± 0.56, 1.67 ± 0.57, 1.83 ± 0.65, and 1.85 ± 0.64, and homogeneity index were 0.059 ± 0.05, 0.064 ± 0.05, 0.064 ± 0.04, and 0.064 ± 0.05. JT-IMRT shows significant mean reduction in right parotid and left parotid shows of 7.64% (p < 0.001) and 7.45% (p < 0.001) compare to SJ-IMRT. JT-IMRT plans also shows considerable dose reduction to thyroid, inferior constrictors, spinal cord and brainstem compared to the SJ-IMRT plans. Significant dose reductions were observed for critical structure in the JT-IMRT compared to SJ-IMRT technique. In JT-VMAT plans dose reduction to the critical structure were not significant compared to the SJ-IMRT due to relatively lesser monitor units.
Lee, Katrina; Lenards, Nishele; Holson, Janice
2016-01-01
The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient׳s neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to the hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient׳s data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Toyota, Masahiko; Saigo, Yasumasa; Higuchi, Kenta; Fujimura, Takuya; Koriyama, Chihaya; Yoshiura, Takashi; Akiba, Suminori
2017-11-01
Intensity-modulated radiation therapy (IMRT) can deliver high and homogeneous doses to the target area while limiting doses to organs at risk. We used a pediatric phantom to simulate the treatment of a head and neck tumor in a child. The peripheral doses were examined for three different IMRT techniques [dynamic multileaf collimator (DMLC), segmental multileaf collimator (SMLC) and volumetric modulated arc therapy (VMAT)]. Peripheral doses were evaluated taking thyroid, breast, ovary and testis as the points of interest. Doses were determined using a radio-photoluminescence glass dosemeter, and the COMPASS system was used for three-dimensional dose evaluation. VMAT achieved the lowest peripheral doses because it had the highest monitor unit efficiency. However, doses in the vicinity of the irradiated field, i.e. the thyroid, could be relatively high, depending on the VMAT collimator angle. DMLC and SMLC had a large area of relatively high peripheral doses in the breast region. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Şahin, Serdar; Güneş Tanır, A; Meriç, Niyazi; Aydınkarahaliloğlu, Ercan
2015-09-01
The radiation dose delivered to the target by using different radiotherapy applications has been measured with the help of beryllium oxide (BeO) dosimeters to be placed inside the rando phantom. Three-Dimensional Conformal Radiotherapy (3DCRT), Intensity-Modulated Radiotherapy (IMRT) and Intensity-Modulated Arc Therapy (IMAT) have been used as radiotherapy application. Individual treatment plans have been made for the three radiotherapy applications of rando phantom. The section 4 on the phantom was selected as target and 200 cGy doses were delivered. After the dosimeters placed on section 4 (target) and the sections 2 and 6 (non-target) were irradiated, the result was read through the OSL technique on the Risø TL/OSL system. This procedure was repeated three times for each radiotherapy application. The doses delivered to the target and the non-target sections as a result of the 3DCRT, IMRT and IMAT plans were analyzed. The doses received by the target were measured as 204.71 cGy, 204.76 cGy and 205.65 cGy, respectively. The dose values obtained from treatment planning system (TPS) were compared to the dose values obtained using the OSL technique. It has been concluded that, the radiation dose can be measured with the OSL technique by using BeO dosimeters in medical practices. Copyright © 2015 Elsevier Ltd. All rights reserved.
Recent advances in radiation cancer therapy
NASA Astrophysics Data System (ADS)
Ma, C.-M. Charlie
2007-03-01
This paper presents the recent advances in radiation therapy techniques for the treatment of cancer. Significant improvement has been made in imaging techniques such as CT, MRI, MRS, PET, ultrasound, etc. that have brought marked advances in tumor target and critical structure delineation for treatment planning and patient setup and target localization for accurate dose delivery in radiation therapy of cancer. Recent developments of novel treatment modalities including intensity-modulated x-ray therapy (IMXT), energy- and intensity modulated electron therapy (MERT) and intensity modulated proton therapy (IMPT) together with the use of advanced image guidance have enabled precise dose delivery for dose escalation and hypofractionation studies that may result in better local control and quality of life. Particle acceleration using laser-induced plasmas has great potential for new cost-effective radiation sources that may have a great impact on the management of cancer using radiation therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penoncello, Gregory P.; Ding, George X., E-mail: george.ding@vanderbilt.edu
The purpose of this study was (1) to evaluate dose to skin between volumetric-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT) treatment techniques for target sites in the head and neck, pelvis, and brain and (2) to determine if the treatment dose and fractionation regimen affect the skin dose between traditional sequential boost and integrated boost regimens for patients with head and neck cancer. A total of 19 patients and 48 plans were evaluated. The Eclipse (v11) treatment planning system was used to plan therapy in 9 patients with head and neck cancer, 5 patients with prostate cancer, andmore » 5 patients with brain cancer with VMAT and static-field IMRT. The mean skin dose and the maximum dose to a contiguous volume of 2 cm{sup 3} for head and neck plans and brain plans and a contiguous volume of 5 cm{sup 3} for pelvis plans were compared for each treatment technique. Of the 9 patients with head and neck cancer, 3 underwent an integrated boost regimen. One integrated boost plan was replanned with IMRT and VMAT using a traditional boost regimen. For target sites located in the head and neck, VMAT reduced the mean dose and contiguous hot spot most noticeably in the shoulder region by 5.6% and 5.4%, respectively. When using an integrated boost regimen, the contiguous hot spot skin dose in the shoulder was larger on average than a traditional boost pattern by 26.5% and the mean skin dose was larger by 1.7%. VMAT techniques largely decrease the contiguous hot spot in the skin in the pelvis by an average of 36% compared with IMRT. For the same target coverage, VMAT can reduce the skin dose in all the regions of the body, but more noticeably in the shoulders in patients with head and neck and pelvis cancer. We also found that using integrated boost regimens in patients with head and neck cancer leads to higher shoulder skin doses compared with traditional boost regimens.« less
Uysal, Bora; Beyzadeoğlu, Murat; Sager, Ömer; Dinçoğlan, Ferrat; Demiral, Selçuk; Gamsız, Hakan; Sürenkök, Serdar; Oysul, Kaan
2013-01-01
Objective: The purpose of this dosimetric study is the targeted dose homogeneity and critical organ dose comparison of 7-field Intensity Modulated Radiotherapy (IMRT) and 3-D 4-field conformal radiotherapy. Study Design: Cross sectional study. Material and Methods: Twenty patients with low and moderate risk prostate cancer treated at Gülhane Military Medical School Radiation Oncology Department between January 2009 and December 2009 are included in this study. Two seperate dosimetric plans both for 7-field IMRT and 3D-CRT have been generated for each patient to comparatively evaluate the dosimetric status of both techniques and all the patients received 7-field IMRT. Results: Dose-comparative evaluation of two techniques revealed the superiority of IMRT technique with statistically significantly lower femoral head doses along with reduced critical organ dose-volume parameters of bladder V60 (the volume receiving 60 Gy) and rectal V40 (the volume receiving 40 Gy) and V60. Conclusion: It can be concluded that IMRT is an effective definitive management tool for prostate cancer with improved critical organ sparing and excellent dose homogenization in target organs of prostate and seminal vesicles. PMID:25207069
Ryska, Pavel; Kvasnicka, Tomas; Jandura, Jiri; Klzo, Ludovit; Grepl, Jakub; Zizka, Jan
2014-06-01
To compare the effective and eye lens radiation dose in helical MDCT brain examinations using automatic tube current modulation in conjunction with either standard filtered back projection (FBP) technique or iterative reconstruction in image space (IRIS). Of 400 adult brain MDCT examinations, 200 were performed using FBP and 200 using IRIS with the following parameters: tube voltage 120 kV, rotation period 1 second, pitch factor 0.55, automatic tube current modulation in both transverse and longitudinal planes with reference mAs 300 (FBP) and 200 (IRIS). Doses were calculated from CT dose index and dose length product values utilising ImPACT software; the organ dose to the lens was derived from the actual tube current-time product value applied to the lens. Image quality was assessed by two independent readers blinded to the type of image reconstruction technique. The average effective scan dose was 1.47±0.26 mSv (FBP) and 0.98±0.15 mSv (IRIS), respectively (33.3% decrease). The average organ dose to the eye lens decreased from 40.0±3.3 mGy (FBP) to 26.6±2.0 mGy (IRIS, 33.5% decrease). No significant change in diagnostic image quality was noted between IRIS and FBP scans (P=0.17). Iterative reconstruction of cerebral MDCT examinations enables reduction of both effective and organ eye lens dose by one third without signficant loss of image quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sivakumar, R; Janardhan, N; Bhavani, P
Purpose: To compare the plan quality and performance of Simultaneous Integrated Boost (SIB) Treatment plan between Seven field (7F) and Nine field(9F) Intensity Modulated Radiotherapies and Single Arc (SA) and Dual Arc (DA) Volumetric Modulated Arc Therapy( VMAT). Methods: Retrospective planning study of 16 patients treated in Elekta Synergy Platform (mlci2) by 9F-IMRT were replanned with 7F-IMRT, Single Arc VMAT and Dual Arc VMAT using CMS, Monaco Treatment Planning System (TPS) with Monte Carlo simulation. Target delineation done as per Radiation Therapy Oncology Protocols (RTOG 0225&0615). Dose Prescribed as 70Gy to Planning Target Volumes (PTV70) and 61Gy to PTV61 inmore » 33 fraction as a SIB technique. Conformity Index(CI), Homogeneity Index(HI) were used as analysis parameter for Target Volumes as well as Mean dose and Max dose for Organ at Risk(OAR,s).Treatment Delivery Time(min), Monitor unit per fraction (MU/fraction), Patient specific quality assurance were also analysed. Results: A Poor dose coverage and Conformity index (CI) was observed in PTV70 by 7F-IMRT among other techniques. SA-VMAT achieved poor dose coverage in PTV61. No statistical significance difference observed in OAR,s except Spinal cord (P= 0.03) and Right optic nerve (P=0.03). DA-VMAT achieved superior target coverage, higher CI (P =0.02) and Better HI (P=0.03) for PTV70 other techniques (7F-IMRT/9F-IMRT/SA-VMAT). A better dose spare for Parotid glands and spinal cord were seen in DA-VMAT. The average treatment delivery time were 5.82mins, 6.72mins, 3.24mins, 4.3mins for 7F-IMRT, 9F-IMRT, SA-VMAT and DA-VMAT respectively. Significance difference Observed in MU/fr (P <0.001) and Patient quality assurance pass rate were >95% (Gamma analysis (Γ3mm, 3%). Conclusion: DA-VAMT showed better target dose coverage and achieved better or equal performance in sparing OARs among other techniques. SA-VMAT offered least Treatment Time than other techniques but achieved poor target coverage. DA-VMAT offered shorter delivery time than 7F-IMRT and 9F-IMRT without compromising the plan quality.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, M; Lee, S; Suh, T
Purpose: This study investigates the effects of different kinds and designs of commercialized breast implants on the dose distributions in breast cancer radiotherapy under a variety of conditions. Methods: The dose for the clinical conventional tangential irradiation, Intensity Modulated Radiation Therapy (IMRT), volumetric modulated arc therapy (VMAT) breast plans was measured using radiochromic films and stimulated luminescence dosimeter (OSLD). The radiochromic film was used as an integrating dosimeter, while the OSLDs were used for real-time dosimetry to isolate the contribution of dose from individual segment. The films were placed at various slices in the Rando phantom and between the bodymore » and breast surface OSLDs were used to measure skin dose at 18 positions spaced on the two (right/left) breast. The implant breast was placed on the left side and the phantom breast was remained on the right side. Each treatment technique was performed on different size of the breasts and different shape of the breast implant. The PTV dose was prescribed 50.4 Gy and V47.88≥95%. Results: In different shapes of the breast implant, because of the shadow formed extensive around the breast implant, dose variation was relatively higher that of prescribed dose. As the PTV was delineated on the whole breast, maximum 5% dose error and average 3% difference was observed averagely. VMAT techniques largely decrease the contiguous hot spot in the skin by an average of 25% compared with IMRT. The both IMRT and VMAT techniques resulted in lower doses to normal critical structures than tangential plans for nearly all dose analyzation. Conclusion: Compared to the other technique, IMRT reduced radiation dose exposure to normal tissues and maintained reasonable target homogeneity and for the same target coverage, VMAT can reduce the skin dose in all the regions of the body.« less
Comparison between DCA - SSO - VDR and VMAT dose delivery techniques for 15 SRS/SRT patients
NASA Astrophysics Data System (ADS)
Tas, B.; Durmus, I. F.
2018-02-01
To evaluate dose delivery between Dynamic Conformal Arc (DCA) - Segment Shape Optimization (SSO) - Variation Dose Rate (VDR) and Volumetric Modulated Arc Therapy (VMAT) techniques for fifteen SRS patients using Versa HD® lineer accelerator. Fifteen SRS / SRT patient's optimum treatment planning were performed using Monaco5.11® treatment planning system (TPS) with 1 coplanar and 3 non-coplanar fields for VMAT technique, then the plans were reoptimized with the same optimization parameters for DCA - SSO - VDR technique. The advantage of DCA - SSO - VDR technique were determined less MUs and beam on time, also larger segments decrease dosimetric uncertainities of small fields quality assurance. The advantage of VMAT technique were determined a little better GI, CI, PCI, brain V12Gy and brain mean dose. The results show that the clinical objectives and plans for both techniques satisfied all organs at risks (OARs) dose constraints. Depends on the shape and localization of target, we could choose one of these techniques for linear accelerator based SRS / SRT treatment.
McQuaid, D; Dunlop, A; Nill, S; Franzese, C; Nutting, C M; Harrington, K J; Newbold, K L; Bhide, S A
2016-08-01
The aim of this study was to investigate potential advantages and disadvantages of three-dimensional conformal radiotherapy (3DCRT), multiple fixed-field intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) in terms of dose to the planning target volume (PTV), organs at risk (OARs) and normal tissue complication probability (NTCP) for delivering ipsilateral radiotherapy. 3DCRT, IMRT and VMAT were compared in patients with well-lateralised primary tonsillar cancers who underwent primary radical ipsilateral radiotherapy. The following parameters were compared: conformity index (CI); homogeneity index (HI); dose-volume histograms (DVHs) of PTVs and OARs; NTCP, risk of radiation-induced cancer and dose accumulation during treatment. IMRT and VMAT were superior to 3DCRT in terms of CI, HI and dose to the target volumes, as well as mandible and dose accumulation robustness. The techniques were equivalent in terms of dose and NTCP for the contralateral oral cavity, contralateral submandibular gland and mandible, when specific dose constraint objectives were used on the oral cavity volume. Although the volume of normal tissue exposed to low-dose radiation was significantly higher with IMRT and VMAT, the risk of radiation-induced secondary malignancy was dependant on the mathematical model used. This study demonstrates the superiority of IMRT/VMAT techniques over 3DCRT in terms of dose homogeneity, conformity and consistent dose delivery to the PTV throughout the course of treatment in patients with lateralised oropharyngeal cancers. Dosimetry and NTCP calculations show that these techniques are equivalent to 3DCRT with regard to the risk of acute mucositis when specific dose constraint objectives were used on the contralateral oral cavity OAR.
The rationale for intensity-modulated proton therapy in geometrically challenging cases
NASA Astrophysics Data System (ADS)
Safai, S.; Trofimov, A.; Adams, J. A.; Engelsman, M.; Bortfeld, T.
2013-09-01
Intensity-modulated proton therapy (IMPT) delivered with beam scanning is currently available at a limited number of proton centers. However, a simplified form of IMPT, the technique of field ‘patching’, has long been a standard practice in proton therapy centers. In field patching, different parts of the target volume are treated from different directions, i.e., a part of the tumor gets either full dose from a radiation field, or almost no dose. Thus, patching represents a form of binary intensity modulation. This study explores the limitations of the standard binary field patching technique, and evaluates possible dosimetric advantages of continuous dose modulations in IMPT. Specifics of the beam delivery technology, i.e., pencil beam scanning versus passive scattering and modulation, are not investigated. We have identified two geometries of target volumes and organs at risk (OAR) in which the use of field patching is severely challenged. We focused our investigations on two patient cases that exhibit these geometries: a paraspinal tumor case and a skull-base case. For those cases we performed treatment planning comparisons of three-dimensional conformal proton therapy (3DCPT) with field patching versus IMPT, using commercial and in-house software, respectively. We also analyzed the robustness of the resulting plans with respect to systematic setup errors of ±1 mm and range errors of ±2.5 mm. IMPT is able to better spare OAR while providing superior dose coverage for the challenging cases identified above. Both 3DCPT and IMPT are sensitive to setup errors and range uncertainties, with IMPT showing the largest effect. Nevertheless, when delivery uncertainties are taken into account IMPT plans remain superior regarding target coverage and OAR sparing. On the other hand, some clinical goals, such as the maximum dose to OAR, are more likely to be unmet with IMPT under large range errors. IMPT can potentially improve target coverage and OAR sparing in challenging cases, even when compared with the relatively complicated and time consuming field patching technique. While IMPT plans tend to be more sensitive to delivery uncertainties, their dosimetric advantage generally holds. Robust treatment planning techniques may further reduce the sensitivity of IMPT plans.
Optimization of Craniospinal Irradiation for Pediatric Medulloblastoma Using VMAT and IMRT.
Al-Wassia, Rolina K; Ghassal, Noor M; Naga, Adly; Awad, Nesreen A; Bahadur, Yasir A; Constantinescu, Camelia
2015-10-01
Intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) provide highly conformal target radiation doses, but also expose large volumes of healthy tissue to low-dose radiation. With improving survival, more children with medulloblastoma (MB) are at risk of late adverse effects of radiotherapy, including secondary cancers. We evaluated the characteristics of IMRT and VMAT craniospinal irradiation treatment plans in children with standard-risk MB to compare radiation dose delivery to target organs and organs at risk (OAR). Each of 10 children with standard-risk MB underwent both IMRT and VMAT treatment planning. Dose calculations used inverse planning optimization with a craniospinal dose of 23.4 Gy followed by a posterior fossa boost to 55.8 Gy. Clinical and planning target volumes were demarcated on axial computed tomography images. Dose distributions to target organs and OAR for each planning technique were measured and compared with published dose-volume toxicity data for pediatric patients. All patients completed treatment planning for both techniques. Analyses and comparisons of dose distributions and dose-volume histograms for the planned target volumes, and dose delivery to the OAR for each technique demonstrated the following: (1) VMAT had a modest, but significantly better, planning target volume-dose coverage and homogeneity compared with IMRT; (2) there were different OAR dose-sparing profiles for IMRT versus VMAT; and (3) neither IMRT nor VMAT demonstrated dose reductions to the published pediatric dose limits for the eyes, the lens, the cochlea, the pituitary, and the brain. The use of both IMRT and VMAT provides good target tissue coverage and sparing of the adjacent tissue for MB. Both techniques resulted in OAR dose delivery within published pediatric dose guidelines, except those mentioned above. Pediatric patients with standard-risk MB remain at risk for late endocrinologic, sensory (auditory and visual), and brain functional impairments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Damien C., E-mail: damien.weber@unige.ch; Zilli, Thomas; Vallee, Jean Paul
2012-11-01
Purpose: Rectal toxicity is a serious adverse effect in early-stage prostate cancer patients treated with curative radiation therapy (RT). Injecting a spacer between Denonvilliers' fascia increases the distance between the prostate and the anterior rectal wall and may thus decrease the rectal radiation-induced toxicity. We assessed the dosimetric impact of this spacer with advanced delivery RT techniques, including intensity modulated RT (IMRT), volumetric modulated arc therapy (VMAT), and intensity modulated proton beam RT (IMPT). Methods and Materials: Eight prostate cancer patients were simulated for RT with or without spacer. Plans were computed for IMRT, VMAT, and IMPT using the Eclipsemore » treatment planning system using both computed tomography spacer+ and spacer- data sets. Prostate {+-} seminal vesicle planning target volume [PTV] and organs at risk (OARs) dose-volume histograms were calculated. The results were analyzed using dose and volume metrics for comparative planning. Results: Regardless of the radiation technique, spacer injection decreased significantly the rectal dose in the 60- to 70-Gy range. Mean V{sub 70Gy} and V{sub 60Gy} with IMRT, VMAT, and IMPT planning were 5.3 {+-} 3.3%/13.9 {+-} 10.0%, 3.9 {+-} 3.2%/9.7 {+-} 5.7%, and 5.0 {+-} 3.5%/9.5 {+-} 4.7% after spacer injection. Before spacer administration, the corresponding values were 9.8 {+-} 5.4% (P=.012)/24.8 {+-} 7.8% (P=.012), 10.1 {+-} 3.0% (P=.002)/17.9 {+-} 3.9% (P=.003), and 9.7 {+-} 2.6% (P=.003)/14.7% {+-} 2.7% (P=.003). Importantly, spacer injection usually improved the PTV coverage for IMRT. With this technique, mean V{sub 70.2Gy} (P=.07) and V{sub 74.1Gy} (P=0.03) were 100 {+-} 0% to 99.8 {+-} 0.2% and 99.1 {+-} 1.2% to 95.8 {+-} 4.6% with and without Spacer, respectively. As a result of spacer injection, bladder doses were usually higher but not significantly so. Only IMPT managed to decrease the rectal dose after spacer injection for all dose levels, generally with no observed increase to the bladder dose. Conclusions: Regardless of the radiation technique, a substantial decrease of rectal dose was observed after spacer injection for curative RT to the prostate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, William; Filion, Edith; Roberge, David
2007-09-01
Purpose: To report the results of an analysis of dose received to tissues and organs outside the target volume, in the setting of spinal axis irradiation for the treatment of medulloblastoma, using three treatment techniques. Methods and Materials: Treatment plans (total dose, 23.4 Gy) for a standard two-dimensional (2D) technique, a three-dimensional (3D) technique using a 3D imaging-based target volume, and an intensity-modulated radiotherapy (IMRT) technique, were compared for 3 patients in terms of dose-volume statistics for target coverage, as well as organ at risk (OAR) and overall tissue sparing. Results: Planning target volume coverage and dose homogeneity was superiormore » for the IMRT plans for V{sub 95%} (IMRT, 100%; 3D, 96%; 2D, 98%) and V{sub 107%} (IMRT, 3%; 3D, 38%; 2D, 37%). In terms of OAR sparing, the IMRT plan was better for all organs and whole-body contour when comparing V{sub 10Gy}, V{sub 15Gy}, and V{sub 20Gy}. The 3D plan was superior for V{sub 5Gy} and below. For the heart and liver in particular, the IMRT plans provided considerable sparing in terms of V{sub 10Gy} and above. In terms of the integral dose, the IMRT plans were superior for liver (IMRT, 21.9 J; 3D, 28.6 J; 2D, 38.6 J) and heart (IMRT, 9 J; 3D, 14.1J; 2D, 19.4 J), the 3D plan for the body contour (IMRT, 349 J; 3D, 337 J; 2D, 555 J). Conclusions: Intensity-modulated radiotherapy is a valid treatment option for spinal axis irradiation. We have shown that IMRT results in sparing of organs at risk without a significant increase in integral dose.« less
NASA Astrophysics Data System (ADS)
Hälg, R. A.; Besserer, J.; Boschung, M.; Mayer, S.; Lomax, A. J.; Schneider, U.
2014-05-01
In radiation therapy, high energy photon and proton beams cause the production of secondary neutrons. This leads to an unwanted dose contribution, which can be considerable for tissues outside of the target volume regarding the long term health of cancer patients. Due to the high biological effectiveness of neutrons in regards to cancer induction, small neutron doses can be important. This study quantified the neutron doses for different radiation therapy modalities. Most of the reports in the literature used neutron dose measurements free in air or on the surface of phantoms to estimate the amount of neutron dose to the patient. In this study, dose measurements were performed in terms of neutron dose equivalent inside an anthropomorphic phantom. The neutron dose equivalent was determined using track etch detectors as a function of the distance to the isocenter, as well as for radiation sensitive organs. The dose distributions were compared with respect to treatment techniques (3D-conformal, volumetric modulated arc therapy and intensity-modulated radiation therapy for photons; spot scanning and passive scattering for protons), therapy machines (Varian, Elekta and Siemens linear accelerators) and radiation quality (photons and protons). The neutron dose equivalent varied between 0.002 and 3 mSv per treatment gray over all measurements. Only small differences were found when comparing treatment techniques, but substantial differences were observed between the linear accelerator models. The neutron dose equivalent for proton therapy was higher than for photons in general and in particular for double-scattered protons. The overall neutron dose equivalent measured in this study was an order of magnitude lower than the stray dose of a treatment using 6 MV photons, suggesting that the contribution of the secondary neutron dose equivalent to the integral dose of a radiotherapy patient is small.
Hälg, R A; Besserer, J; Boschung, M; Mayer, S; Lomax, A J; Schneider, U
2014-05-21
In radiation therapy, high energy photon and proton beams cause the production of secondary neutrons. This leads to an unwanted dose contribution, which can be considerable for tissues outside of the target volume regarding the long term health of cancer patients. Due to the high biological effectiveness of neutrons in regards to cancer induction, small neutron doses can be important. This study quantified the neutron doses for different radiation therapy modalities. Most of the reports in the literature used neutron dose measurements free in air or on the surface of phantoms to estimate the amount of neutron dose to the patient. In this study, dose measurements were performed in terms of neutron dose equivalent inside an anthropomorphic phantom. The neutron dose equivalent was determined using track etch detectors as a function of the distance to the isocenter, as well as for radiation sensitive organs. The dose distributions were compared with respect to treatment techniques (3D-conformal, volumetric modulated arc therapy and intensity-modulated radiation therapy for photons; spot scanning and passive scattering for protons), therapy machines (Varian, Elekta and Siemens linear accelerators) and radiation quality (photons and protons). The neutron dose equivalent varied between 0.002 and 3 mSv per treatment gray over all measurements. Only small differences were found when comparing treatment techniques, but substantial differences were observed between the linear accelerator models. The neutron dose equivalent for proton therapy was higher than for photons in general and in particular for double-scattered protons. The overall neutron dose equivalent measured in this study was an order of magnitude lower than the stray dose of a treatment using 6 MV photons, suggesting that the contribution of the secondary neutron dose equivalent to the integral dose of a radiotherapy patient is small.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J; Lu, B; Yan, G
Purpose: To identify the weakness of dose calculation algorithm in a treatment planning system for volumetric modulated arc therapy (VMAT) and sliding window (SW) techniques using a two-dimensional diode array. Methods: The VMAT quality assurance(QA) was implemented with a diode array using multiple partial arcs that divided from a VMAT plan; each partial arc has the same segments and the original monitor units. Arc angles were less than ± 30°. Multiple arcs delivered through consecutive and repetitive gantry operating clockwise and counterclockwise. The source-toaxis distance setup with the effective depths of 10 and 20 cm were used for a diodemore » array. To figure out dose errors caused in delivery of VMAT fields, the numerous fields having the same segments with the VMAT field irradiated using different delivery techniques of static and step-and-shoot. The dose distributions of the SW technique were evaluated by creating split fields having fine moving steps of multi-leaf collimator leaves. Calculated doses using the adaptive convolution algorithm were analyzed with measured ones with distance-to-agreement and dose difference of 3 mm and 3%.. Results: While the beam delivery through static and step-and-shoot techniques showed the passing rate of 97 ± 2%, partial arc delivery of the VMAT fields brought out passing rate of 85%. However, when leaf motion was restricted less than 4.6 mm/°, passing rate was improved up to 95 ± 2%. Similar passing rate were obtained for both 10 and 20 cm effective depth setup. The calculated doses using the SW technique showed the dose difference over 7% at the final arrival point of moving leaves. Conclusion: Error components in dynamic delivery of modulated beams were distinguished by using the suggested QA method. This partial arc method can be used for routine VMAT QA. Improved SW calculation algorithm is required to provide accurate estimated doses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goksel, E; Bilge, H; Yildiz, Yarar
2014-06-01
Purpose: Dosimetric feasibility of cranio-spinal irradiation with volumetric modulated arc therapy (VMAT-CSI) technique in terms of dose distribution accuracy was investigated using a humanlike phantom. Methods: The OARs and PTV volumes for the Rando phantom were generated on supine CT images. Eclipse (version 8.6) TPS with AAA algorithm was used to create the treatment plan with VMAT-CSI technique. RapidArc plan consisted of cranial, upper spinal (US) and lower spinal (LS) regions that were optimized in the same plan. US field was overlapped by 3cm with cranial and LS fields. Three partial arcs for cranium and 1 full arc for eachmore » US and LS region were used. The VMAT-CSI dose distribution inside the Rando phantom was measured with thermoluminescent detectors (TLD) and film dosimetry, and was compared to the calculated doses of field junctions, target and OARs. TLDs were placed at 24 positions throughout the phantom. The measured TLD doses were compared to the calculated point doses. Planar doses for field junctions were verified with Gafchromic films. Films were analyzed in PTW Verisoft application software using gamma analysis method with the 4 mm distance to agreement (DTA) and 4% dose agreement criteria. Results: TLD readings demonstrated accurate dose delivery, with a median dose difference of -0.3% (range: -8% and 12%) when compared with calculated doses for the areas inside the treatment portal. The maximum dose difference was 12% higher in testicals that are outside the treatment region and 8% lower in lungs where the heterogeinity was higher. All planar dose verifications for field junctions passed the gamma analysis and measured planar dose distributions demonstrated average 97% agreement with calculated doses. Conclusion: The dosimetric data verified with TLD and film dosimetry shows that VMAT-CSI technique provides accurate dose distribution and can be delivered safely.« less
Penoncello, Gregory P; Ding, George X
2016-01-01
The purpose of this study was (1) to evaluate dose to skin between volumetric-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT) treatment techniques for target sites in the head and neck, pelvis, and brain and (2) to determine if the treatment dose and fractionation regimen affect the skin dose between traditional sequential boost and integrated boost regimens for patients with head and neck cancer. A total of 19 patients and 48 plans were evaluated. The Eclipse (v11) treatment planning system was used to plan therapy in 9 patients with head and neck cancer, 5 patients with prostate cancer, and 5 patients with brain cancer with VMAT and static-field IMRT. The mean skin dose and the maximum dose to a contiguous volume of 2cm(3) for head and neck plans and brain plans and a contiguous volume of 5cm(3) for pelvis plans were compared for each treatment technique. Of the 9 patients with head and neck cancer, 3 underwent an integrated boost regimen. One integrated boost plan was replanned with IMRT and VMAT using a traditional boost regimen. For target sites located in the head and neck, VMAT reduced the mean dose and contiguous hot spot most noticeably in the shoulder region by 5.6% and 5.4%, respectively. When using an integrated boost regimen, the contiguous hot spot skin dose in the shoulder was larger on average than a traditional boost pattern by 26.5% and the mean skin dose was larger by 1.7%. VMAT techniques largely decrease the contiguous hot spot in the skin in the pelvis by an average of 36% compared with IMRT. For the same target coverage, VMAT can reduce the skin dose in all the regions of the body, but more noticeably in the shoulders in patients with head and neck and pelvis cancer. We also found that using integrated boost regimens in patients with head and neck cancer leads to higher shoulder skin doses compared with traditional boost regimens. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Treatment of extensive scalp lesions with segmental intensity-modulated photon therapy.
Bedford, James L; Childs, Peter J; Hansen, Vibeke Nordmark; Warrington, Alan P; Mendes, Ruheena L; Glees, John P
2005-08-01
To compare static electron therapy, electron arc therapy, and photon intensity-modulated radiation therapy (IMRT) for treatment of extensive scalp lesions and to examine the dosimetric accuracy of the techniques. A retrospective treatment-planning study was performed to evaluate the relative merits of static electron fields, arcing electron fields, and five-field photon IMRT. Thermoluminescent dosimeters (TLD) were used to verify the accuracy of the techniques. The required thickness of bolus was investigated, and an anthropomorphic phantom was also used to examine the effects of air gaps between the wax bolus used for the IMRT technique and the patient's scalp. Neither static nor arcing electron techniques were able to provide a reliable coverage of the planning target volume (PTV), owing to obliquity of the fields in relation to the scalp. The IMRT technique considerably improved PTV dose uniformity, though it irradiated a larger volume of brain. Either 0.5 cm or 1.0 cm of wax bolus was found to be suitable. Air gaps of up to 1 cm between the bolus and the patient's scalp were correctly handled by the treatment-planning system and had negligible influence on the dose to the scalp. Photon IMRT provides a feasible alternative to electron techniques for treatment of large scalp lesions, resulting in improved homogeneity of dose to the PTV but with a moderate increase in dose to the brain.
NASA Astrophysics Data System (ADS)
Jodda, Agata; Urbański, Bartosz; Piotrowski, Tomasz; Malicki, Julian
2016-03-01
Background: The paper shows the methodology of an in-phantom study of the protection level of the bone marrow in patients with cervical or endometrial cancer for three radiotherapy techniques: three-dimensional conformal radiotherapy, intensity modulated radiotherapy, and volumetric modulated arc therapy, preceded by the procedures of image guidance. Methods/Design: The dosimetric evaluation of the doses will be performed in an in-house multi-element anthropomorphic phantom of the female pelvic area created by three-dimensional printing technology. The volume and position of the structures will be regulated according to the guidelines from the Bayesian network. The input data for the learning procedure of the model will be obtained from the retrospective analysis of imaging data obtained for 96 patients with endometrial cancer or cervical cancer treated with radiotherapy in our centre in 2008-2013. Three anatomical representations of the phantom simulating three independent clinical cases will be chosen. Five alternative treatment plans (1 × three-dimensional conformal radiotherapy, 2 × intensity modulated radiotherapy and 2 × volumetric modulated arc therapy) will be created for each representation. To simulate image-guided radiotherapy, ten specific recombinations will be designated, for each anatomical representation separately, reflecting possible changes in the volume and position of the phantom components. Discussion: The comparative analysis of planned measurements will identify discrepancies between calculated doses and doses that were measured in the phantom. Finally, differences between the doses cumulated in the hip plates performed by different techniques simulating the gynaecological patients' irradiation of dose delivery will be established. The results of this study will form the basis of the prospective clinical trial that will be designed for the assessment of hematologic toxicity and its correlation with the doses cumulated in the hip plates, for gynaecologic patients undergoing radiation therapy.
Volumetric modulated arc radiotherapy for esophageal cancer.
Vivekanandan, Nagarajan; Sriram, Padmanaban; Kumar, S A Syam; Bhuvaneswari, Narayanan; Saranya, Kamalakannan
2012-01-01
A treatment planning study was performed to evaluate the performance of volumetric arc modulation with RapidArc (RA) against 3D conformal radiation therapy (3D-CRT) and conventional intensity-modulated radiation therapy (IMRT) techniques for esophageal cancer. Computed tomgraphy scans of 10 patients were included in the study. 3D-CRT, 4-field IMRT, and single-arc and double-arc RA plans were generated with the aim to spare organs at risk (OAR) and healthy tissue while enforcing highly conformal target coverage. The planning objective was to deliver 54 Gy to the planning target volume (PTV) in 30 fractions. Plans were evaluated based on target conformity and dose-volume histograms of organs at risk (lung, spinal cord, and heart). The monitor unit (MU) and treatment delivery time were also evaluated to measure the treatment efficiency. The IMRT plan improves target conformity and spares OAR when compared with 3D-CRT. Target conformity improved with RA plans compared with IMRT. The mean lung dose was similar in all techniques. However, RA plans showed a reduction in the volume of the lung irradiated at V(₂₀Gy) and V(₃₀Gy) dose levels (range, 4.62-17.98%) compared with IMRT plans. The mean dose and D(₃₅%) of heart for the RA plans were better than the IMRT by 0.5-5.8%. Mean V(₁₀Gy) and integral dose to healthy tissue were almost similar in all techniques. But RA plans resulted in a reduced low-level dose bath (15-20 Gy) in the range of 14-16% compared with IMRT plans. The average MU needed to deliver the prescribed dose by RA technique was reduced by 20-25% compared with IMRT technique. The preliminary study on RA for esophageal cancers showed improvements in sparing OAR and healthy tissue with reduced beam-on time, whereas only double-arc RA offered improved target coverage compared with IMRT and 3D-CRT plans. Copyright © 2012 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Njeh, Christopher F; Salmon, Howard W; Schiller, Claire
2017-01-01
Intensity-modulated radiation therapy (IMRT) delivery using "step-and-shoot" technique on Varian C-Series linear accelerator (linac) is influenced by the communication frequency between the multileaf collimator and linac controllers. Hence, the dose delivery accuracy is affected by the dose rate. Our aim was to quantify the impact of using two dose rates on plan quality assurance (QA). Twenty IMRT patients were selected for this study. The plan QA was measured at two different dose rates. A gamma analysis was performed, and the degree of plan modulation on the QA pass rate was also evaluated in terms of average monitor unit per segment (MU/segment) and the total number of segments. The mean percentage gamma pass rate of 94.9% and 93.5% for 300 MU/min and 600 MU/min dose rate, respectively, was observed. There was a significant ( P = 0.001) decrease in percentage gamma pass rate when the dose rate was increased from 300 MU/min to 600 MU/min. There was a weak, but significant association between the percentage pass rate at both dose rate and total number of segments. The total number of MU was significantly correlated to the total number of segments ( r = 0.59). We found a positive correlation between the percentage pass rate and mean MU/segment, r = 0.52 and r = 0.57 for 300 MU/min and 600 MU/min, respectively. IMRT delivery using step-and-shoot technique on Varian 2300CD is impacted by the dose rate and the total amount of segments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mell, Loren K.; Tiryaki, Hanifi; Ahn, Kang-Hyun
2008-08-01
Purpose: To compare bone marrow-sparing intensity-modulated pelvic radiotherapy (BMS-IMRT) with conventional (four-field box and anteroposterior-posteroanterior [AP-PA]) techniques in the treatment of cervical cancer. Methods and Materials: The data from 7 cervical cancer patients treated with concurrent chemotherapy and IMRT without BMS were analyzed and compared with data using four-field box and AP-PA techniques. All plans were normalized to cover the planning target volume with the 99% isodose line. The clinical target volume consisted of the pelvic and presacral lymph nodes, uterus and cervix, upper vagina, and parametrial tissue. Normal tissues included bowel, bladder, and pelvic bone marrow (PBM), which comprisedmore » the lumbosacral spine and ilium and the ischium, pubis, and proximal femora (lower pelvis bone marrow). Dose-volume histograms for the planning target volume and normal tissues were compared for BMS-IMRT vs. four-field box and AP-PA plans. Results: BMS-IMRT was superior to the four-field box technique in reducing the dose to the PBM, small bowel, rectum, and bladder. Compared with AP-PA plans, BMS-IMRT reduced the PBM volume receiving a dose >16.4 Gy. BMS-IMRT reduced the volume of ilium, lower pelvis bone marrow, and bowel receiving a dose >27.7, >18.7, and >21.1 Gy, respectively, but increased dose below these thresholds compared with the AP-PA plans. BMS-IMRT reduced the volume of lumbosacral spine bone marrow, rectum, small bowel, and bladder at all dose levels in all 7 patients. Conclusion: BMS-IMRT reduced irradiation of PBM compared with the four-field box technique. Compared with the AP-PA technique, BMS-IMRT reduced lumbosacral spine bone marrow irradiation and reduced the volume of PBM irradiated to high doses. Therefore BMS-IMRT might reduce acute hematologic toxicity compared with conventional techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenthal, David I., E-mail: dirosenthal@mdanderson.or; Fuller, Clifton D.; Barker, Jerry L.
2010-06-01
Purpose: To investigate the dosimetry and feasibility of carotid-sparing intensity-modulated radiotherapy (IMRT) for early glottic cancer and to report preliminary clinical experience. Methods and Materials: Digital Imaging and Communications in Medicine radiotherapy (DICOM-RT) datasets from 6 T1-2 conventionally treated glottic cancer patients were used to create both conventional IMRT plans. We developed a simplified IMRT planning algorithm with three fields and limited segments. Conventional and IMRT plans were compared using generalized equivalent uniform dose and dose-volume parameters for in-field carotid arteries, target volumes, and organs at risk. We have treated 11 patients with this simplified IMRT technique. Results: Intensity-modulated radiotherapymore » consistently reduced radiation dose to the carotid arteries (p < 0.05) while maintaining the clinical target volume coverage. With conventional planning, median carotid V35, V50, and V63 were 100%, 100%, and 69.0%, respectively. With IMRT planning these decreased to 2%, 0%, and 0%, respectively (p < 0.01). Radiation planning and treatment times were similar for conventional radiotherapy and IMRT. Treatment results have been excellent thus far. Conclusions: Intensity-modulated radiotherapy significantly reduced unnecessary radiation dose to the carotid arteries compared with conventional lateral fields while maintaining clinical target volume coverage. Further experience and longer follow-up will be required to demonstrate outcomes for cancer control and carotid artery effects.« less
Assessment of an organ-based tube current modulation in thoracic computed tomography.
Matsubara, Kosuke; Sugai, Mai; Toyoda, Asami; Koshida, Haruka; Sakuta, Keita; Takata, Tadanori; Koshida, Kichiro; Iida, Hiroji; Matsui, Osamu
2012-03-08
Recently, specific computed tomography (CT) scanners have been equipped with organ-based tube current modulation (TCM) technology. It is possible that organ-based TCM will replace the conventional dose-reduction technique of reducing the effective milliampere-second. The aim of this study was to determine if organ-based TCM could reduce radiation exposure to the breasts without compromising the image uniformity and beam hardening effect in thoracic CT examinations. Breast and skin radiation doses and the absorbed radiation dose distribution within a single section were measured with an anthropomorphic phantom and radiophotoluminescent glass dosimeters using four approaches to thoracic CT (reference, organ-based TCM, copper shielding, and the combination of the above two techniques, hereafter referred to as the combination technique). The CT value and noise level were measured using the same calibration phantom. Organ-based TCM and copper shielding reduced radiation doses to the breast by 23.7% and 21.8%, respectively. However, the CT value increased, especially in the anterior region, using copper shielding. In contrast, the CT value and noise level barely increased using organ-based TCM. The combination technique reduced the radiation dose to the breast by 38.2%, but greatly increased the absorbed radiation dose from the central to the posterior regions. Moreover, the CT value increased in the anterior region and the noise level increased by more than 10% in the entire region. Therefore, organ-based TCM can reduce radiation doses to breasts with only small increases in noise levels, making it preferable for specific groups of patients, such as children and young women.
NASA Astrophysics Data System (ADS)
Fu, Weihua; Dai, Jianrong; Hu, Yimin; Han, Dongsheng; Song, Yixin
2004-04-01
The treatment delivery time of intensity-modulated radiation therapy (IMRT) with a multileaf collimator (MLC) is generally longer than that of conventional radiotherapy. In theory, removing the flattening filter from the treatment head may reduce the beam-on time by enhancing the output dose rate, and then reduce the treatment delivery time. And in practice, there is a possibility of delivering the required fluence distribution by modulating the unflattened non-uniform fluence distribution. However, the reduction of beam-on time may be discounted by the increase of leaf-travel time and (or) verification-and-recording (V&R) time. Here we investigate the overall effect of flattening filter on the treatment delivery time of IMRT with MLCs implemented in the step and shoot method, as well as with compensators on six hybrid machines. We compared the treatment delivery time with/without flattening filter for ten nasopharynx cases and ten prostate cases by observing the variations of the ratio of the beam-on time, segment number, leaf-travel time and the treatment delivery time with dose rate, leaf speed and V&R time. The results show that, without the flattening filter, the beam-on time reduces for both static MLC and compensator-based techniques; the number of segments and the leaf-travel time increase slightly for the static MLC technique; the relative IMRT treatment delivery time decreases more with lower dose rate, higher leaf speed and shorter V&R overhead time. The absolute treatment delivery time reduction depends on the fraction dose. It is not clinically significant at a fraction dose of 2 Gy for the technique of removing the flattening filter, but becomes significant when the fraction dose is as high as that for radiosurgery.
Ko, Young Eun; Cho, Byungchul; Kim, Su Ssan; Song, Si Yeol; Choi, Eun Kyung; Ahn, Seung Do; Yi, Byongyong
2016-01-01
Purpose To develop a simplified volumetric modulated arc therapy (VMAT) technique for more accurate dose delivery in thoracic stereotactic body radiation therapy (SBRT). Methods and Materials For each of the 22 lung SBRT cases treated with respiratory-gated VMAT, a dose rate modulated arc therapy (DrMAT) plan was retrospectively generated. A dynamic conformal arc therapy plan with 33 adjoining coplanar arcs was designed and their beam weights were optimized by an inverse planning process. All sub-arc beams were converted into a series of control points with varying MLC segment and dose rates and merged into an arc beam for a DrMAT plan. The plan quality of original VMAT and DrMAT was compared in terms of target coverage, compactness of dose distribution, and dose sparing of organs at risk. To assess the delivery accuracy, the VMAT and DrMAT plans were delivered to a motion phantom programmed with the corresponding patients’ respiratory signal; results were compared using film dosimetry with gamma analysis. Results The plan quality of DrMAT was equivalent to that of VMAT in terms of target coverage, dose compactness, and dose sparing for the normal lung. In dose sparing for other critical organs, DrMAT was less effective than VMAT for the spinal cord, heart, and esophagus while being well within the limits specified by the Radiation Therapy Oncology Group. Delivery accuracy of DrMAT to a moving target was similar to that of VMAT using a gamma criterion of 2%/2mm but was significantly better using a 2%/1mm criterion, implying the superiority of DrMAT over VMAT in SBRT for thoracic/abdominal tumors with respiratory movement. Conclusion We developed a DrMAT technique for SBRT that produces plans of a quality similar to that achieved with VMAT but with better delivery accuracy. This technique is well-suited for small tumors with motion uncertainty. PMID:27333199
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakanaka, Katsuyuki; Mizowaki, Takashi, E-mail: mizo@kuhp.kyoto-u.ac.jp; Sato, Sayaka
This study evaluated the dosimetric difference between volumetric-modulated arc therapy (VMAT) and conventional fixed-field intensity-modulated radiotherapy (cIMRT) in whole-ventricular irradiation. Computed tomography simulation data for 13 patients were acquired to create plans for VMAT and cIMRT. In both plans, the same median dose (100% = 24 Gy) was prescribed to the planning target volume (PTV), which comprised a tumor bed and whole ventricles. During optimization, doses to the normal brain and body were reduced, provided that the dose constraints of the target coverage were satisfied. The dose-volume indices of the PTV, normal brain, and body as well as monitor unitsmore » were compared between the 2 techniques by using paired t-tests. The results showed no significant difference in the homogeneity index (0.064 vs 0.065; p = 0.824) of the PTV and conformation number (0.78 vs 0.77; p = 0.065) between the 2 techniques. In the normal brain and body, the dose-volume indices showed no significant difference between the 2 techniques, except for an increase in the volume receiving a low dose in VMAT; the absolute volume of the normal brain and body receiving 1 Gy of radiation significantly increased in VMAT by 1.6% and 8.3%, respectively, compared with that in cIMRT (1044 vs 1028 mL for the normal brain and 3079.2 vs 2823.3 mL for the body; p<0.001). The number of monitor units to deliver a 2.0-Gy fraction was significantly reduced in VMAT compared with that in cIMRT (354 vs 873, respectively; p<0.001). In conclusion, VMAT delivers IMRT to complex target volumes such as whole ventricles with fewer monitor units, while maintaining target coverage and conformal isodose distribution comparable to cIMRT; however, in addition to those characteristics, the fact that the volume of the normal brain and body receiving a low dose would increase in VMAT should be considered.« less
Fogliata, Antonella; Scorsetti, Marta; Navarria, Piera; Catalano, Maddalena; Clivio, Alessandro; Cozzi, Luca; Lobefalo, Francesca; Nicolini, Giorgia; Palumbo, Valentina; Pellegrini, Chiara; Reggiori, Giacomo; Roggio, Antonella; Vanetti, Eugenio; Alongi, Filippo; Pentimalli, Sara; Mancosu, Pietro
2013-04-01
To appraise the potential of volumetric modulated arc therapy (VMAT, RapidArc) and proton beams to simultaneously achieve target coverage and enhanced sparing of bone tissue in the treatment of soft-tissue sarcoma with adequate target coverage. Ten patients presenting with soft-tissue sarcoma of the leg were collected for the study. Dose was prescribed to 66.5 Gy in 25 fractions to the planning target volume (PTV) while significant maximum dose to the bone was constrained to 50 Gy. Plans were optimised according to the RapidArc technique with 6 MV photon beams or for intensity modulated protons. RapidArc photon plans were computed with: 1) AAA; 2) Acuros XB as dose to medium; and 3) Acuros XB as dose to water. All plans acceptably met the criteria of target coverage (V95% >90-95%) and bone sparing (D(1 cm3) <50 Gy). Significantly higher PTV dose homogeneity was found for proton plans. Near-to-maximum dose to bone was similar for RapidArc and protons, while volume receiving medium/low dose levels was minimised with protons. Similar results were obtained for the remaining normal tissue. Dose distributions calculated with the dose to water option resulted ~5% higher than corresponding ones computed as dose to medium. High plan quality was demonstrated for both VMAT and proton techniques when applied to soft-tissue sarcoma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kusters, Johannes M.A.M.; Louwe, Rob J.W.; Kollenburg, Peter G.M. van
2011-12-01
Purpose: To develop a treatment technique for craniospinal irradiation using intensity-modulated radiotherapy (IMRT) with improved dose homogeneity at the field junction(s), increased target volume conformity, and minimized dose to the organs at risk (OARs). Methods and Materials: Five patients with high-risk medulloblastoma underwent CT simulation in supine position. For each patient, an IMRT plan with daily intrafractionally modulated junction(s) was generated, as well as a treatment plan based on conventional three-dimensional planning (3DCRT). A dose of 39.6 Gy in 22 daily fractions of 1.8 Gy was prescribed. Dose-volume parameters for target volumes and OARs were compared for the two techniques.more » Results: The maximum dose with IMRT was <107% in all patients. V{sub <95} and V{sub >107} were <1 cm{sup 3} for IMRT compared with 3-9 cm{sup 3} for the craniospinal and 26-43 cm{sup 3} for the spinal-spinal junction with 3DCRT. These observations corresponded with a lower homogeneity index and a higher conformity index for the spinal planning target volume with IMRT. IMRT provided considerable sparing of acute and late reacting tissues. V{sub 75} for the esophagus, gastroesophageal junction, and intestine was 81%, 81%, and 22% with 3DCRT versus 5%, 0%, and 1% with IMRT, respectively. V{sub 75} for the heart and thyroid was 42% and 32% vs. 0% with IMRT. Conclusion: IMRT with daily intrafractionally modulated junction results in a superior target coverage and junction homogeneity compared with 3DCRT. A significant dose reduction can be obtained for acute as well as late-reacting tissues.« less
Lin, C-Y; Huang, W-Y; Jen, Y-M; Chen, C-M; Su, Y-F; Chao, H-L; Lin, C-S
2014-08-01
The aim of this study was to compare high-dose volumetric modulated arc therapy (VMAT) and fixed-field intensity-modulated radiotherapy (ff-IMRT) plans for the treatment of patients with middle-thoracic esophageal cancer. Eight patients with cT2-3N0M0 middle-thoracic esophageal cancer were enrolled. The treatment planning system was the version 9 of the Pinnacle(3) with SmartArc (Philips Healthcare, Fitchburg, WI, USA). VMAT and ff-IMRT treatment plans were generated for each case, and both techniques were used to deliver 50 Gy to the planning target volume (PTV(50)) and then provided a 16-Gy boost (PTV(66)). The VMAT plans provided superior PTV(66) coverage compared with the ff-IMRT plans (P = 0.034), whereas the ff-IMRT plans provided more appropriate dose homogeneity to the PTV(50) (P = 0.017). In the lung, the V(5) and V(10) were lower for the ff-IMRT plans than for the VMAT plans, whereas the V(20) was lower for the VMAT plans. The delivery time was significantly shorter for the VMAT plans than for the ff-IMRT plans (P = 0.012). In addition, the VMAT plans delivered fewer monitor units. The VMAT technique required a shorter planning time than the ff-IMRT technique (3.8 ± 0.8 hours vs. 5.4 ± 0.6 hours, P = 0.011). The major advantages of VMAT plans are higher efficiency and an approximately 50% reduction in delivery time compared with the ff-IMRT plans, with comparable plan quality. Further clinical investigations to evaluate the use of high-dose VMAT for the treatment of esophageal cancer are warranted. © 2013 Wiley Periodicals, Inc. and the International Society for Diseases of the Esophagus.
NASA Astrophysics Data System (ADS)
Krongkietlearts, K.; Tangboonduangjit, P.; Paisangittisakul, N.
2016-03-01
In order to improve the life's quality for a cancer patient, the radiation techniques are constantly evolving. Especially, the two modern techniques which are intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) are quite promising. They comprise of many small beam sizes (beamlets) with various intensities to achieve the intended radiation dose to the tumor and minimal dose to the nearby normal tissue. The study investigates whether the microDiamond detector (PTW manufacturer), a synthetic single crystal diamond detector, is suitable for small field output factor measurement. The results were compared with those measured by the stereotactic field detector (SFD) and the Monte Carlo simulation (EGSnrc/BEAMnrc/DOSXYZ). The calibration of Monte Carlo simulation was done using the percentage depth dose and dose profile measured by the photon field detector (PFD) of the 10×10 cm2 field size with 100 cm SSD. Comparison of the values obtained from the calculations and measurements are consistent, no more than 1% difference. The output factors obtained from the microDiamond detector have been compared with those of SFD and Monte Carlo simulation, the results demonstrate the percentage difference of less than 2%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, X; Tejani, M; Jiang, X
2016-06-15
Purpose: The purpose of this study is to investigate a volumetric modulated arc therapy (VMAT) treatment planning technique for supine craniospinal irradiation (CSI). Evaluate the suitability of VMAT for CSI with dosimetric measurements and compare it to 3D conformal planning using specific plan metrics such as dose conformity, homogeneity, and dose of organs at risk (OAR). Methods: Ten CSI patients treated with conventional 3D technique were re-planned with VMAT. The PTV was contoured to include the whole contents of the brain and spinal canal with a uniform margin of 5 mm. VMAT plans were generated with two partial arcs coveringmore » the brain, two partial arcs for the superior portion of the spinal cord and two partial arcs covering the remaining inferior portion of the spinal cord. Conformity index (CI), heterogeneity indexes (HI) and max and mean doses of OAR were compared to 3D plans. VMAT plans were delivered onto an anthropomorphic phantom loaded with Gafchromic films and OSLDs placed at specific positions to evaluate the plan dose at the junctions and as well as the plan dose distributions. Results: This VMAT technique was validated with a clinical study of 10 patients. The average CI was 1.03±0.02 for VMAT plans and 1.96±0.32 for conformal plans. And the average HI was 1.15±0.01 for VMAT plans and 1.51±0.21 for conformal plans. The mean and max doses to the all OARs for VMAT plans were significantly lower than conformal plans. The measured dose in phantom for VAMT plans was comparable to the calculated dose in Eclipse and the doses at junctions were verified. Conclusion: VMAT CSI was able to achieve better dose conformity and heterogeneity as well as significantly reducing the dose to Heart, esophagus and larynx. VMAT CSI appears to be a dosimterically advantageous, faster delivery, has better reproducibility CSI treatment.« less
Fluence field modulated CT on a clinical TomoTherapy radiation therapy machine
NASA Astrophysics Data System (ADS)
Szczykutowicz, Timothy P.; Hermus, James
2015-03-01
Purpose: The multi-leaf collimator (MLC) assembly present on TomoTherapy (Accuray, Madison WI) radiation therapy (RT) and mega voltage CT machines is well suited to perform fluence field modulated CT (FFMCT). In addition, there is a demand in the RT environment for FFMCT imaging techniques, specifically volume of interest (VOI) imaging. Methods: A clinical TomoTherapy machine was programmed to deliver 30% imaging dose outside predefined VOIs. Four different size ROIs were placed at varying distances from isocenter. Projections intersecting the VOI received "full dose" while those not intersecting the VOI received 30% of the dose (i.e. the incident fluence for non VOI projections was 30% of the incident fluence for projections intersecting the VOI). Additional scans without fluence field modulation were acquired at "full" and 30% dose. The noise (pixel standard deviation) was measured inside the VOI region and compared between the three scans. Results: The VOI-FFMCT technique produced an image noise 1.09, 1.05, 1.05, and 1.21 times higher than the "full dose" scan for ROI sizes of 10 cm, 13 cm, 10 cm, and 6 cm respectively within the VOI region. Conclusions: Noise levels can be almost unchanged within clinically relevant VOIs sizes for RT applications while the integral imaging dose to the patient can be decreased, and/or the image quality in RT can be dramatically increased with no change in dose relative to non-FFMCT RT imaging. The ability to shift dose away from regions unimportant for clinical evaluation in order to improve image quality or reduce imaging dose has been demonstrated. This paper demonstrates that FFMCT can be performed using the MLC on a clinical TomoTherapy machine for the first time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Mitsuhiro; Shibuya, Keiko, E-mail: kei@kuhp.kyoto-u.ac.jp; Nakamura, Akira
2012-04-01
Purpose: To investigate the interfractional dose variations for intensity-modulated radiotherapy (RT) combined with breath-hold (BH) at end-exhalation (EE) for pancreatic cancer. Methods and Materials: A total of 10 consecutive patients with pancreatic cancer were enrolled. Each patient was fixed in the supine position on an individualized vacuum pillow with both arms raised. Computed tomography (CT) scans were performed before RT, and three additional scans were performed during the course of chemoradiotherapy using a conventional RT technique. The CT data were acquired under EE-BH conditions (BH-CT) using a visual feedback technique. The intensity-modulated RT plan, which used five 15-MV coplanar ports,more » was designed on the initial BH-CT set with a prescription dose of 39 Gy at 2.6 Gy/fraction. After rigid image registration between the initial and subsequent BH-CT scans, the dose distributions were recalculated on the subsequent BH-CT images under the same conditions as in planning. Changes in the dose-volume metrics of the gross tumor volume (GTV), clinical target volume (CTV = GTV + 5 mm), stomach, and duodenum were evaluated. Results: For the GTV and clinical target volume (CTV), the 95th percentile of the interfractional variations in the maximal dose, mean dose, dose covering 95% volume of the region of structure, and percentage of the volume covered by the 90% isodose line were within {+-}3%. Although the volume covered by the 39 Gy isodose line for the stomach and duodenum did not exceed 0.1 mL at planning, the volume covered by the 39 Gy isodose line for these structures was up to 11.4 cm{sup 3} and 1.8 cm{sup 3}, respectively. Conclusions: Despite variations in the gastrointestinal state and abdominal wall position at EE, the GTV and CTV were mostly ensured at the planned dose, with the exception of 1 patient. Compared with the duodenum, large variations in the stomach volume receiving high-dose radiation were observed, which might be beyond the negligible range in achieving dose escalation with intensity-modulated RT combined with BH at EE.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kung, Shiris Wai Sum; Wu, Vincent Wing Cheung; Kam, Michael Koon Ming, E-mail: kamkm@yahoo.co
2011-01-01
Purpose: Locally recurrent nasopharyngeal carcinoma (NPC) patients can be salvaged by reirradiation with a substantial degree of radiation-related complications. Stereotactic radiotherapy (SRT) is widely used in this regard because of its rapid dose falloff and high geometric precision. The aim of this study was to examine whether the newly developed intensity-modulated stereotactic radiotherapy (IMSRT) has any dosimetric advantages over three other stereotactic techniques, including circular arc (CARC), static conformal beam (SmMLC), and dynamic conformal arc (mARC), in treating locally recurrent NPC. Methods and Materials: Computed tomography images of 32 patients with locally recurrent NPC, previously treated with SRT, were retrievedmore » from the stereotactic planning system for contouring and computing treatment plans. Treatment planning of each patient was performed for the four treatment techniques: CARC, SmMLC, mARC, and IMSRT. The conformity index (CI) and homogeneity index (HI) of the planning target volume (PTV) and doses to the organs at risk (OARs) and normal tissue were compared. Results: All four techniques delivered adequate doses to the PTV. IMSRT, SmMLC, and mARC delivered reasonably conformal and homogenous dose to the PTV (CI <1.47, HI <0.53), but not for CARC (p < 0.05). IMSRT presented with the smallest CI (1.37) and HI (0.40). Among the four techniques, IMSRT spared the greatest number of OARs, namely brainstem, temporal lobes, optic chiasm, and optic nerve, and had the smallest normal tissue volume in the low-dose region. Conclusion: Based on the dosimetric comparison, IMSRT was optimal for locally recurrent NPC by delivering a conformal and homogenous dose to the PTV while sparing OARs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acar, H; Cebe, M; Mabhouti, H
Purpose: Stereotactic body radiosurgery (SBRT) for spine metastases involves irradiation using a single high dose fraction. The purpose of this study was to investigate a Hybrid VMAT/IMRT technique which combines volumetric modulated arc therapy (VMAT) and intensity modulated radiation therapy (IMRT) for spine SBRT in terms of its dosimetric quality and treatment efficiency using Radiation Therapy Oncology Group (RTOG) 0631 guidelines. Methods: 7 fields IMRT, 2 full arcs VMAT and Hybrid VMAT/IMRT were created for ten previously treated patients. The Hybrid VMAT/IMRT technique consisted of 1 full VMAT arc and 5 IMRT fields. Hybrid VMAT/IMRT plans were compared with IMRTmore » and VMAT plans in terms of the dose distribution, spinal cord sparing, homogeneity, conformity and gradient indexies, monitor unit (MU) and beam on time (BOT). RTOG 0631 recommendations were applied for treatment planning. All plans were normalized and prescribed to deliver 18.0 Gy in a single fraction to 90% of the target volume. Results: The Hybrid VMAT/IMRT technique significantly improved target dose homogeneity and conformity compared with IMRT and VMAT techniques. Providing sharp dose gradient Hybrid VMAT/IMRT plans spare the spinal cord and healthy tissue more effectively. Although, both MU and BOT slightly increased in Hybrid VMAT/IMRT plans there is no statistically meaningful difference between VMAT and Hybrid VMAT/IMRT plans. Conclusion: In IMRT, a smaller volume of healthy tissue can be irradiated in the low dose region, VMAT plans provide better target volume coverage, favorable dose gradient, conformity and better OAR sparing and also they require a much smaller number of MUs and thus a shorter treatment time than IMRT plans. Hybrid plan offers a sinergy through combination of these two techniques with slightly increased number of MU and thus more treatment time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tobler, Matt; Watson, Gordon; Leavitt, Dennis
Radiotherapy plays a key role in the definitive or adjuvant management of patients with mesothelioma of the pleural surface. Many patients are referred for radiation with intact lung following biopsy or subtotal pleurectomy. Delivery of efficacious doses of radiation to the pleural lining while avoiding lung parenchyma toxicity has been a difficult technical challenge. Using opposed photon fields produce doses in lung that result in moderate-to-severe pulmonary toxicity in 100% of patients treated. Combined photon-electron beam treatment, at total doses of 4250 cGy to the pleural surface, results in two-thirds of the lung volume receiving over 2100 cGy. We havemore » developed a technique using intensity-modulated photon arc therapy (IMRT) that significantly improves the dose distribution to the pleural surface with concomitant decrease in dose to lung parenchyma compared to traditional techniques. IMRT treatment of the pleural lining consists of segments of photon arcs that can be intensity modulated with varying beam weights and multileaf positions to produce a more uniform distribution to the pleural surface, while at the same time reducing the overall dose to the lung itself. Computed tomography (CT) simulation is critical for precise identification of target volumes as well as critical normal structures (lung and heart). Rotational arc trajectories and individual leaf positions and weightings are then defined for each CT plane within the patient. This paper will describe the proposed rotational IMRT technique and, using simulated isodose distributions, show the improved potential for sparing of dose to the critical structures of the lung, heart, and spinal cord.« less
Guberina, Nika; Forsting, Michael; Ringelstein, Adrian
2017-06-15
To evaluate the dose-reduction potential with different lens protectors for patients undergoing cranial computed tomography (CT) scans. Eye lens dose was assessed in vitro (α-Al2O3:C thermoluminescence dosemeters) using an Alderson-Rando phantom® in cranial CT protocols at different CT scanners (SOMATOM-Definition-AS+®(CT1) and SOMATOM-Definition-Flash® (CT2)) using two different lens-protection systems (Somatex® (SOM) and Medical Imaging Systems® (MIS)). Summarised percentage of the transmitted photons: (1) CT1 (a) unenhanced CT (nCT) with gantry angulation: SOM = 103%, MIS = 111%; (2) CT2 (a) nCT without gantry angulation: SOM = 81%, MIS = 91%; (b) CT angiography (CTA) with automatic dose-modulation technique: SOM = 39%, MIS = 74%; (c) CTA without dose-modulation technique: SOM = 22%, MIS = 48%; (d) CT perfusion: SOM = 44%, MIS = 69%. SOM showed a higher dose-reduction potential than MIS maintaining equal image quality. Lens-protection systems are most effective in CTA protocols without dose-reduction techniques. Lens-protection systems lower the average eye lens dose during CT scans up to 1/3 (MIS) and 2/3 (SOM), respectively, if the eye lens is exposed to the direct beam of radiation. Considering both the CT protocol and the material of lens protectors, they seem to be mandatory for reducing the radiation exposure of the eye lens. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The influence of plan modulation on the interplay effect in VMAT liver SBRT treatments.
Hubley, Emily; Pierce, Greg
2017-08-01
Volumetric modulated arc therapy (VMAT) uses multileaf collimator (MLC) leaves, gantry speed, and dose rate to modulate beam fluence, producing the highly conformal doses required for liver radiotherapy. When targets that move with respiration are treated with a dynamic fluence, there exists the possibility for interplay between the target and leaf motions. This study employs a novel motion simulation technique to determine if VMAT liver SBRT plans with an increase in MLC leaf modulation are more susceptible to dosimetric differences in the GTV due to interplay effects. For ten liver SBRT patients, two VMAT plans with different amounts of MLC leaf modulation were created. Motion was simulated using a random starting point in the respiratory cycle for each fraction. To isolate the interplay effect, motion was also simulated using four specific starting points in the respiratory cycle. The dosimetric differences caused by different starting points were examined by subtracting resultant dose distributions from each other. When motion was simulated using random starting points for each fraction, or with specific starting points, there were significantly more dose differences in the GTV (maximum 100cGy) for more highly modulated plans, but the overall plan quality was not adversely affected. Plans with more MLC leaf modulation are more susceptible to interplay effects, but dose differences in the GTV are clinically negligible in magnitude. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ranallo, F; Szczykutowicz, T
2014-06-01
Purpose: To provide correct guidance in the proper selection of pitch and rotation time for optimal CT imaging with multi-slice scanners. Methods: There exists a widespread misconception concerning the role of pitch in patient dose with modern multi-slice scanners, particularly with the use of mA modulation techniques. We investigated the relationship of pitch and rotation time to image quality, dose, and scan duration, with CT scanners from different manufacturers in a way that clarifies this misconception. This source of this misconception may concern the role of pitch in single slice CT scanners. Results: We found that the image noise andmore » dose are generally independent of the selected effective mAs (mA*time/ pitch) with manual mA technique settings and are generally independent of the selected pitch and /or rotation time with automatic mA modulation techniques. However we did find that on certain scanners the use of a pitch just above 0.5 provided images of equal image noise at a lower dose compared to the use of a pitch just below 1.0. Conclusion: The misconception that the use of a lower pitch over-irradiates patients by wasting dose is clearly false. The use of a lower pitch provides images of equal or better image quality at the same patient dose, whether using manual mA or automatic mA modulation techniques. By decreasing the pitch and the rotation times by equal amounts, both helical and patient motion artifacts can be reduced without affecting the exam time. The use of lower helical pitch also allows better scanning of larger patients by allowing a greater scan effective mAs, if the exam time can be extended. The one caution with the use of low pitch is not related to patient dose, but to the length of the scan time if the rotation time is not set short enough. Partial Research funding from GE HealthCare.« less
Technique for comprehensive head and neck irradiation using 3-dimensional conformal proton therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, Mark W., E-mail: markmcdonaldmd@gmail.com; Indiana University Health Proton Therapy Center, Bloomington, IN; Walter, Alexander S.
2015-01-01
Owing to the technical and logistical complexities of matching photon and proton treatment modalities, we developed and implemented a technique of comprehensive head and neck radiation using 3-dimensional (3D) conformal proton therapy. A monoisocentric technique was used with a 30-cm snout. Cervical lymphatics were treated with 3 fields: a posterior-anterior field with a midline block and a right and a left posterior oblique field. The matchline of the 3 cervical nodal fields with the primary tumor site fields was staggered by 0.5 cm. Comparative intensity-modulated photon plans were later developed for 12 previously treated patients to provide equivalent target coverage,more » while matching or improving on the proton plans' sparing of organs at risk (OARs). Dosimetry to OARs was evaluated and compared by treatment modality. Comprehensive head and neck irradiation using proton therapy yielded treatment plans with significant dose avoidance of the oral cavity and midline neck structures. When compared with the generated intensity-modulated radiation therapy (IMRT) plans, the proton treatment plans yielded statistically significant reductions in the mean and integral radiation dose to the oral cavity, larynx, esophagus, and the maximally spared parotid gland. There was no significant difference in mean dose to the lesser-spared parotid gland by treatment modality or in mean or integral dose to the spared submandibular glands. A technique for cervical nodal irradiation using 3D conformal proton therapy with uniform scanning was developed and clinically implemented. Use of proton therapy for cervical nodal irradiation resulted in large volume of dose avoidance to the oral cavity and low dose exposure to midline structures of the larynx and the esophagus, with lower mean and integral dose to assessed OARs when compared with competing IMRT plans.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, J-Y; Huang, B-T; Zhang, J-Y
2015-06-15
Purpose: To compare volumetric modulated arc radiotherapy (VMAT) technique with fixed-gantry intensity-modulated radiotherapy (IMRT) technique for locally recurrent nasopharyngeal carcinoma. Methods: CT datasets of eleven nasopharyngeal-carcinoma patients were included. Dual-arc VMAT and seven-field IMRT plans were created for each case, and were then compared in terms of conformity index (CI), homogeneity index (HI) of the planning target volume (PTV), organ-at-risk (OAR) sparing, monitor unit (MU) and delivery time. Results: The D98% (near-minimal dose) of PTV in the VMAT plans was slightly lower than that of the IMRT plans (P < 0.05), while the CI was higher than that of themore » IMRT plans (P < 0.05). No significant difference was found in the HI between the two plans (P > 0.05). Compared with the IMRT plans, the VMAT plans demonstrated lower Dmean (mean dose) of the bilateral temporal lobes and the whole surrounding normal tissue (P < 0.05), but slightly higher Dmean of brainstem (P < 0.05). In terms of the other OARs, no significant differences were found (P > 0.05). The MUs of the VMAT plans (672 ± 112) was significantly lower than that of the IMRT plans (917 ± 206), by 25 ± 13% (P < 0.05). The average delivery time of the VMAT plans (2.3 ± 0.1 min) was less than that of the IMRT plans (5.1 ± 0.4 min), by 54 ± 3%. Conclusion: For locally recurrent nasopharyngeal carcinoma, the VMAT technique could achieve equivalent or superior dose distribution of the target and better protect the bilateral temporal lobes, compared with the IMRT technique. Moreover, it could reduce the MU and delivery time effectively.« less
[Brachytherapy for head and neck cancers].
Peiffert, D; Coche-Dequéant, B; Lapeyre, M; Renard, S
2018-05-29
The main indications of the brachytherapy of head and neck cancers are the limited tumours of the lip, the nose, the oral cavity and the oropharynx. Nasopharynx tumours are nowadays treated by intensity-modulated radiotherapy. This technique can be exclusive, associated with external radiotherapy or postoperative. It can also be a salvage treatment for the second primaries in previously irradiated areas. If the low dose rate brachytherapy rules remain the reference, the pulse dose rate technique allows the prescription of the dose rate and the optimisation of the dose distribution. Results of high dose rate brachytherapy are now published. This paper reports the recommendations of the Gec-ESTRO, published in 2017, and takes into account the data of the historical low dose rate series, and is upgraded with the pulsed-dose rate and high dose rate series. Copyright © 2018. Published by Elsevier SAS.
NASA Astrophysics Data System (ADS)
Yepes, Pablo P.; Eley, John G.; Liu, Amy; Mirkovic, Dragan; Randeniya, Sharmalee; Titt, Uwe; Mohan, Radhe
2016-04-01
Monte Carlo (MC) methods are acknowledged as the most accurate technique to calculate dose distributions. However, due its lengthy calculation times, they are difficult to utilize in the clinic or for large retrospective studies. Track-repeating algorithms, based on MC-generated particle track data in water, accelerate dose calculations substantially, while essentially preserving the accuracy of MC. In this study, we present the validation of an efficient dose calculation algorithm for intensity modulated proton therapy, the fast dose calculator (FDC), based on a track-repeating technique. We validated the FDC algorithm for 23 patients, which included 7 brain, 6 head-and-neck, 5 lung, 1 spine, 1 pelvis and 3 prostate cases. For validation, we compared FDC-generated dose distributions with those from a full-fledged Monte Carlo based on GEANT4 (G4). We compared dose-volume-histograms, 3D-gamma-indices and analyzed a series of dosimetric indices. More than 99% of the voxels in the voxelized phantoms describing the patients have a gamma-index smaller than unity for the 2%/2 mm criteria. In addition the difference relative to the prescribed dose between the dosimetric indices calculated with FDC and G4 is less than 1%. FDC reduces the calculation times from 5 ms per proton to around 5 μs.
Khan, Muhammad Isa; Jiang, Runqing; Kiciak, Alexander; ur Rehman, Jalil; Afzal, Muhammad; Chow, James C. L.
2016-01-01
This study reviewed prostate volumetric-modulated arc therapy (VMAT) plans with intensity-modulated radiotherapy (IMRT) plans after prostate IMRT technique was replaced by VMAT in an institution. Characterizations of dosimetry and radiobiological variation in prostate were determined based on treatment plans of 40 prostate IMRT patients (planning target volume = 77.8–335 cm3) and 50 VMAT patients (planning target volume = 120–351 cm3) treated before and after 2013, respectively. Both IMRT and VMAT plans used the same dose-volume criteria in the inverse planning optimization. Dose-volume histogram, mean doses of target and normal tissues (rectum, bladder and femoral heads), dose-volume points (D99% of planning target volume; D30%, D50%, V30 Gy and V35 Gy of rectum and bladder; D5%, V14 Gy, V22 Gy of femoral heads), conformity index (CI), homogeneity index (HI), gradient index (GI), prostate tumor control probability (TCP), and rectal normal tissue complication probability (NTCP) based on the Lyman-Burman-Kutcher algorithm were calculated for each IMRT and VMAT plan. From our results, VMAT plan was found better due to its higher (1.05%) CI, lower (0.83%) HI and (0.75%) GI than IMRT. Comparing doses in normal tissues between IMRT and VMAT, it was found that IMRT mostly delivered higher doses of about 1.05% to the normal tissues than VMAT. Prostate TCP and rectal NTCP were found increased (1%) for VMAT than IMRT. It is seen that VMAT technique can decrease the dose-volume evaluation criteria for the normal tissues. Based on our dosimetric and radiobiological results in treatment plans, it is concluded that our VMAT implementation could produce comparable or slightly better target coverage and normal tissue sparing with a faster treatment time in prostate radiotherapy. PMID:27651562
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muralidhar, K Raja; Pangam, S; Kolla, J
2015-06-15
Purpose: To develop a method for verification of dose distribution in a patient during treatment using multiple isocentric Intensity modulated and volumetric modulated arc therapy techniques with portal dosimetry. Methods: Varian True Beam accelerator, equipped with an aS1000 megavoltage electronic portal imaging device (EPID) has an integrated image mode for portal dosimetry (PD). The source-to-imager distance was taken at 150 cm to avoid collision to the table. Fourteen fractions were analyzed for this study. During shift in a single plan from one isocenter to another isocenter, EPID also shifted longitudinally for each field by taking the extent of divergence ofmore » beam into the consideration for EPID distance of 150cm. Patients were given treatment everyday with EPID placed in proper position for each field. Several parameters were obtained by comparing the dose distribution between fractions to fraction. The impact of the intra-fraction and inter-fraction of the patient in combination with isocenter shift of the beams were observed. Results: During treatment, measurements were performed by EPID and were evaluated by the gamma method. Analysis was done between fractions for multiple isocenter treatments. The pass rates of the gamma analysis with a criterion of 3% and 3 mm for the 14 fractions were over 97.8% with good consistency. Whereas maximum gamma exceeded the criteria in few fractions (in<1 cc vol). Average gamma was observed in the criteria of 0.5%. Maximum dose difference and average dose differences were less than 0.22 CU and 0.01 CU for maximum tolerance of 1.0 CU and 0.2 CU respectively. Conclusion: EPID with extended distance is ideal method to verify the multiple isocentric dose distribution in patient during treatment, especially cold and hot spots in junction dose. Verification of shifts as well as the dose differences between each fraction due to inter-fraction and intra-fraction of the patient can be derived.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng Yuanshui; Liu Yaxi; Zeidan, Omar
Purpose: Neutron exposure is of concern in proton therapy, and varies with beam delivery technique, nozzle design, and treatment conditions. Uniform scanning is an emerging treatment technique in proton therapy, but neutron exposure for this technique has not been fully studied. The purpose of this study is to investigate the neutron dose equivalent per therapeutic dose, H/D, under various treatment conditions for uniform scanning beams employed at our proton therapy center. Methods: Using a wide energy neutron dose equivalent detector (SWENDI-II, ThermoScientific, MA), the authors measured H/D at 50 cm lateral to the isocenter as a function of proton range,more » modulation width, beam scanning area, collimated field size, and snout position. They also studied the influence of other factors on neutron dose equivalent, such as aperture material, the presence of a compensator, and measurement locations. They measured H/D for various treatment sites using patient-specific treatment parameters. Finally, they compared H/D values for various beam delivery techniques at various facilities under similar conditions. Results: H/D increased rapidly with proton range and modulation width, varying from about 0.2 mSv/Gy for a 5 cm range and 2 cm modulation width beam to 2.7 mSv/Gy for a 30 cm range and 30 cm modulation width beam when 18 Multiplication-Sign 18 cm{sup 2} uniform scanning beams were used. H/D increased linearly with the beam scanning area, and decreased slowly with aperture size and snout retraction. The presence of a compensator reduced the H/D slightly compared with that without a compensator present. Aperture material and compensator material also have an influence on neutron dose equivalent, but the influence is relatively small. H/D varied from about 0.5 mSv/Gy for a brain tumor treatment to about 3.5 mSv/Gy for a pelvic case. Conclusions: This study presents H/D as a function of various treatment parameters for uniform scanning proton beams. For similar treatment conditions, the H/D value per uncollimated beam size for uniform scanning beams was slightly lower than that from a passive scattering beam and higher than that from a pencil beam scanning beam, within a factor of 2. Minimizing beam scanning area could effectively reduce neutron dose equivalent for uniform scanning beams, down to the level close to pencil beam scanning.« less
Radhakrishnan, Sivakumar; Chandrasekaran, Anuradha; Sarma, Yugandhar; Balakrishnan, Saranganathan; Nandigam, Janardhan
2017-01-01
Backround: Plan quality and performance of dual arc (DA) volumetric modulated arc therapy (VMAT), single arc (SA) VMAT and nine field (9F) intensity modulated radiotherapy were compared using a simultaneous integrated boost (SIB) technique. Methods: Twelve patients treated in Elekta Synergy Platform (mlci2) by 9F-IMRT were replanned with SA/DA-VMAT using a CMS Monaco Treatment Planning System (TPS) with Monte Carlo simulation. Target delineation was conducted as per Radiation Therapy Oncology Protocols (RTOG0225 and 0615). A 70Gy dose prescribed to PTV70 and 61Gy to PTV61 in 33 fractions was applied for the SIB technique. The conformity index (CI) and homogeneity index (HI) for targets and the mean dose and maximum dose for OAR’s, treatment delivery time (min), monitor units (MUs) per fraction, normal tissue integral dose and patient specific quality assurance were analysed. Results: Acceptable target coverage was achieved for PTV70 and PTV61 with all the planning techniques. No significant differences were observed except for D98 (PTV61), CI(PTV70) and HI(PTV61). Maximum dose (Dmax) to the spinal cord was lower in DA-VMAT than 9F-IMRT (p=0.002) and SA-VMAT (p=0.001). D50 (%) of parotid glands was better controlled by 9F-IMRT (p=0.001) and DA-VMAT (p=0.001) than SA-VMAT. A lower mean dose to the larynx was achieved with 9F-IMRT (P=0.001) and DA-VMAT (p=0.001) than with SA-VMAT. DA-VMAT achieved higher CI of PTV70 (P= 0.005) than SA-VMAT. For PTV61, DA-VMAT (P=0.001) and 9F-IMRT (P=0.001) achieved better HI than SA-VMAT. The average treatment delivery times were 7.67mins, 3.35 mins, 4.65 mins for 9F-IMRT, SA-VMAT and DA-VMAT, respectively. No significant difference were observed in MU/fr (p=0.9) and NTID (P=0.90) and the patient quality assurance pass rates were >95% (gamma analysis I3mm, 3%). Conclusion: DA-VMAT showed better conformity over target dose and spared the OARs better or equal to IMRT. SA-VMAT could not spare the OARs well. DA-VMAT offered shorter delivery time than IMRT without compromising the plan quality. PMID:28612593
Radhakrishnan, Sivakumar; Chandrasekaran, Anuradha; Sarma, Yugandhar; Balakrishnan, Saranganathan; Nandigam, Janardhan
2017-05-01
Backround: Plan quality and performance of dual arc (DA) volumetric modulated arc therapy (VMAT) , single arc (SA) VMAT and nine field (9F) intensity modulated radiotherapy were compared using a simultaneous integrated boost (SIB) technique. Methods: Twelve patients treated in Elekta Synergy Platform (mlci2) by 9F-IMRT were replanned with SA/DA-VMAT using a CMS Monaco Treatment Planning System (TPS) with Monte Carlo simulation. Target delineation was conducted as per Radiation Therapy Oncology Protocols (RTOG0225 and 0615). A 70Gy dose prescribed to PTV70 and 61Gy to PTV61 in 33 fractions was applied for the SIB technique. The conformity index (CI) and homogeneity index (HI) for targets and the mean dose and maximum dose for OAR’s, treatment delivery time (min), monitor units (MUs) per fraction, normal tissue integral dose and patient specific quality assurance were analysed. Results: Acceptable target coverage was achieved for PTV70 and PTV61 with all the planning techniques. No significant differences were observed except for D98 (PTV61), CI(PTV70) and HI(PTV61). Maximum dose (Dmax) to the spinal cord was lower in DA-VMAT than 9F-IMRT (p=0.002) and SA-VMAT (p=0.001). D50 (%) of parotid glands was better controlled by 9F-IMRT (p=0.001) and DA-VMAT (p=0.001) than SA-VMAT. A lower mean dose to the larynx was achieved with 9F-IMRT (P=0.001) and DA-VMAT (p=0.001) than with SA-VMAT. DA-VMAT achieved higher CI of PTV70 (P= 0.005) than SA-VMAT. For PTV61, DA-VMAT (P=0.001) and 9F-IMRT (P=0.001) achieved better HI than SA-VMAT. The average treatment delivery times were 7.67mins, 3.35 mins, 4.65 mins for 9F- IMRT, SA-VMAT and DA-VMAT, respectively. No significant difference were observed in MU/fr (p=0.9) and NTID (P=0.90) and the patient quality assurance pass rates were >95% (gamma analysis Ґ3mm, 3%). Conclusion: DA-VMAT showed better conformity over target dose and spared the OARs better or equal to IMRT. SA-VMAT could not spare the OARs well. DA-VMAT offered shorter delivery time than IMRT without compromising the plan quality. Creative Commons Attribution License
Film Dosimetry for Intensity Modulated Radiation Therapy
NASA Astrophysics Data System (ADS)
Benites-Rengifo, J.; Martínez-Dávalos, A.; Celis, M.; Lárraga, J.
2004-09-01
Intensity Modulated Radiation Therapy (IMRT) is an oncology treatment technique that employs non-uniform beam intensities to deliver highly conformal radiation to the targets while minimizing doses to normal tissues and critical organs. A key element for a successful clinical implementation of IMRT is establishing a dosimetric verification process that can ensure that delivered doses are consistent with calculated ones for each patient. To this end we are developing a fast quality control procedure, based on film dosimetry techniques, to be applied to the 6 MV Novalis linear accelerator for IMRT of the Instituto Nacional de Neurología y Neurocirugía (INNN) in Mexico City. The procedure includes measurements of individual fluence maps for a limited number of fields and dose distributions in 3D using extended dose-range radiographic film. However, the film response to radiation might depend on depth, energy and field size, and therefore compromise the accuracy of measurements. In this work we present a study of the dependence of Kodak EDR2 film's response on the depth, field size and energy, compared with those of Kodak XV2 film. The first aim is to devise a fast and accurate method to determine the calibration curve of film (optical density vs. doses) commonly called a sensitometric curve. This was accomplished by using three types of irradiation techniques: Step-and-shoot, dynamic and static fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, J; Braunstein, S; McDermott, M
Purpose: Sharp dose fall-off is the hallmark of brain radiosurgery to deliver a high dose of radiation to the target while minimizing dose to normal brain tissue. In this study, we developed a technique for the purpose of enhancing the peripheral dose gradient by magnifying the total number of beams focused toward each isocenter via patient head tilt and simultaneous beam intensity modulations. Methods: Computer scripting for the proposed beam number enhancement (BNE) technique was developed. The technique was tested and then implemented on a clinical treatment planning system for a dedicated brain radiosurgical system (GK Perfexion, Elekta Oncology). Tomore » study technical feasibility and dosimetric advantages of the technique, we compared treatment planning quality and delivery efficiency for 20 radiosurgical cases previously treated at our institution. These cases included relatively complex treatments such as acoustic schwannoma, meningioma, brain metastasis and mesial temporal lobe epilepsy. Results: The BNE treatment plans were found to produce nearly identical target volume coverage (absolute value < 0.5%, P > 0.2) and dose conformity (BNE CI= 1.41±0.15 versus 1.41±0.20, P>0.9) as the original treatment plans. The total beam-on time for theBNE treatment plans were comparable (within 1.0 min or 1.8%) with those of the original treatment plans for all the cases. However, BNE treatment plans significantly improved the mean gradient index (BNE GI = 2.9±0.3 versus original GI =3.0±0.3 p<0.0001) and low-level isodose volumes, e.g. 20-50% prescribed isodose volumes, by 2.0% to 5.0% (p<0.02). Furthermore, with 4 to 5-fold increase in the total number of beams, the GI decreased by as much as 20% or 0.5 in absolute values. Conclusion: BNE via head tilt and simultaneous beam intensity modulation is an effective and efficient technique that physically sharpens the peripheral dose gradient for brain radiosurgery.« less
A simplified technique for delivering total body irradiation (TBI) with improved dose homogeneity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao Rui; Bernard, Damian; Turian, Julius
2012-04-15
Purpose: Total body irradiation (TBI) with megavoltage photon beams has been accepted as an important component of management for a number of hematologic malignancies, generally as part of bone marrow conditioning regimens. The purpose of this paper is to present and discuss the authors' TBI technique, which both simplifies the treatment process and improves the treatment quality. Methods: An AP/PA TBI treatment technique to produce uniform dose distributions using sequential collimator reductions during each fraction was implemented, and a sample calculation worksheet is presented. Using this methodology, the dosimetric characteristics of both 6 and 18 MV photon beams, including lungmore » dose under cerrobend blocks was investigated. A method of estimating midplane lung doses based on measured entrance and exit doses was proposed, and the estimated results were compared with measurements. Results: Whole body midplane dose uniformity of {+-}10% was achieved with no more than two collimator-based beam modulations. The proposed model predicted midplane lung doses 5% to 10% higher than the measured doses for 6 and 18 MV beams. The estimated total midplane doses were within {+-}5% of the prescribed midplane dose on average except for the lungs where the doses were 6% to 10% lower than the prescribed dose on average. Conclusions: The proposed TBI technique can achieve dose uniformity within {+-}10%. This technique is easy to implement and does not require complicated dosimetry and/or compensators.« less
MO-E-18A-01: Imaging: Best Practices In Pediatric Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willis, C; Strauss, K; MacDougall, R
This imaging educational program will focus on solutions to common pediatric imaging challenges. The speakers will present collective knowledge on best practices in pediatric imaging from their experience at dedicated children's hospitals. Areas of focus will include general radiography, the use of manual and automatic dose management in computed tomography, and enterprise-wide radiation dose management in the pediatric practice. The educational program will begin with a discussion of the complexities of exposure factor control in pediatric projection radiography. Following this introduction will be two lectures addressing the challenges of computed tomography (CT) protocol optimization in the pediatric population. The firstmore » will address manual CT protocol design in order to establish a managed radiation dose for any pediatric exam on any CT scanner. The second CT lecture will focus on the intricacies of automatic dose modulation in pediatric imaging with an emphasis on getting reliable results in algorithmbased technique selection. The fourth and final lecture will address the key elements needed to developing a comprehensive radiation dose management program for the pediatric environment with particular attention paid to new regulations and obligations of practicing medical physicists. Learning Objectives: To understand how general radiographic techniques can be optimized using exposure indices in order to improve pediatric radiography. To learn how to establish diagnostic dose reference levels for pediatric patients as a function of the type of examination, patient size, and individual design characteristics of the CT scanner. To learn how to predict the patient's radiation dose prior to the exam and manually adjust technique factors if necessary to match the patient's dose to the department's established dose reference levels. To learn how to utilize manufacturer-provided automatic dose modulation technology to consistently achieve patient doses within the department's established size-based diagnostic reference range. To understand the key components of an enterprise-wide pediatric dose management program that integrates the expanding responsibilities of medial physicists in the new era of dose monitoring.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camingue, Pamela; Christian, Rochelle; Ng, Davin
The purpose of this study was to compare 4 different external beam radiation therapy treatment techniques for the treatment of T1-2, N0, M0 glottic cancers: traditional lateral beams with wedges (3D), 5-field intensity-modulated radiation therapy (IMRT), volumetric modulated arc therapy (VMAT), and proton therapy. Treatment plans in each technique were created for 10 patients using consistent planning parameters. The photon treatment plans were optimized using Philips Pinnacle{sub 3} v.9 and the IMRT and VMAT plans used the Direct Machine Parameter Optimization algorithm. The proton treatment plans were optimized using Varian Eclipse Proton v.8.9. The prescription used for each plan wasmore » 63 Gy in 28 fractions. The contours for spinal cord, right carotid artery, left carotid artery, and normal tissue were created with respect to the patient's bony anatomy so that proper comparisons of doses could be made with respect to volume. An example of the different isodose distributions will be shown. The data collection for comparison purposes includes: clinical treatment volume coverage, dose to spinal cord, dose to carotid arteries, and dose to normal tissue. Data comparisons will be displayed graphically showing the maximum, mean, median, and ranges of doses.« less
NASA Astrophysics Data System (ADS)
Schnell, Erich; Herman, Tania De La Fuente; Young, Julie; Hildebrand, Kim; Algan, Ozer; Syzek, Elizabeth; Herman, Terence; Ahmad, Salahuddin
2012-10-01
This study aims to evaluate treatment plans generated by Step-and-Shoot (SS), Sliding Window (SW) and Volumetric Modulated Arc Therapy (VMAT) in order to assess the differences in dose volume histograms of planning target volume (PTV) and organs at risk (OAR), conformity indices, radiobiological evaluations, and plan quality for prostate cancer cases. Six prostate cancer patients treated in our center were selected for this retrospective study. Treatment plans were generated with Eclipse version 8.9 using 10 MV photon beams. For VMAT, Varian Rapid Arc with 1 or 2 arcs, and for SS and SW IMRT, 7-9 fields were used. Each plan had three PTVs with prescription doses of 81, 59.4, and 45 Gy to prostate, to prostate and lymph nodes, and to pelvis, respectively. Doses to PTV and OAR and the conformal indices (COIN) were compared among three techniques. The equivalent uniform dose (EUD), tumor control probability (TCP) and normal tissue complication probability (NTCP) were calculated and compared. The mean doses to the PTV prostate on average were 83 Gy and the percent differences of mean dose among all techniques were below 0.28. For bladder and rectum, the percent differences of mean dose among all techniques were below 2.2. The COIN did not favour any particular delivery method over the other. The TCP was higher with SS and SW for four patients and higher with VMAT for two patients. The NTCP for the rectum was the lowest with VMAT in five out of the six patients. The results show similar target coverage in general.
Single-energy intensity modulated proton therapy
NASA Astrophysics Data System (ADS)
Farace, Paolo; Righetto, Roberto; Cianchetti, Marco
2015-09-01
In this note, an intensity modulated proton therapy (IMPT) technique, based on the use of high single-energy (SE-IMPT) pencil beams, is described. The method uses only the highest system energy (226 MeV) and only lateral penumbra to produce dose gradient, as in photon therapy. In the study, after a preliminary analysis of the width of proton pencil beam penumbras at different depths, SE-IMPT was compared with conventional IMPT in a phantom containing titanium inserts and in a patient, affected by a spinal chordoma with fixation rods. It was shown that SE-IMPT has the potential to produce a sharp dose gradient and that it is not affected by the uncertainties produced by metal implants crossed by the proton beams. Moreover, in the chordoma patient, target coverage and organ at risk sparing of the SE-IMPT plan resulted comparable to that of the less reliable conventional IMPT technique. Robustness analysis confirmed that SE-IMPT was not affected by range errors, which can drastically affect the IMPT plan. When accepting a low-dose spread as in modern photon techniques, SE-IMPT could be an option for the treatment of lesions (e.g. cervical bone tumours) where steep dose gradient could improve curability, and where range uncertainty, due for example to the presence of metal implants, hampers conventional IMPT.
Single-energy intensity modulated proton therapy.
Farace, Paolo; Righetto, Roberto; Cianchetti, Marco
2015-10-07
In this note, an intensity modulated proton therapy (IMPT) technique, based on the use of high single-energy (SE-IMPT) pencil beams, is described.The method uses only the highest system energy (226 MeV) and only lateral penumbra to produce dose gradient, as in photon therapy. In the study, after a preliminary analysis of the width of proton pencil beam penumbras at different depths, SE-IMPT was compared with conventional IMPT in a phantom containing titanium inserts and in a patient, affected by a spinal chordoma with fixation rods.It was shown that SE-IMPT has the potential to produce a sharp dose gradient and that it is not affected by the uncertainties produced by metal implants crossed by the proton beams. Moreover, in the chordoma patient, target coverage and organ at risk sparing of the SE-IMPT plan resulted comparable to that of the less reliable conventional IMPT technique. Robustness analysis confirmed that SE-IMPT was not affected by range errors, which can drastically affect the IMPT plan.When accepting a low-dose spread as in modern photon techniques, SE-IMPT could be an option for the treatment of lesions (e.g. cervical bone tumours) where steep dose gradient could improve curability, and where range uncertainty, due for example to the presence of metal implants, hampers conventional IMPT.
Comparison of anatomy-based, fluence-based and aperture-based treatment planning approaches for VMAT
NASA Astrophysics Data System (ADS)
Rao, Min; Cao, Daliang; Chen, Fan; Ye, Jinsong; Mehta, Vivek; Wong, Tony; Shepard, David
2010-11-01
Volumetric modulated arc therapy (VMAT) has the potential to reduce treatment times while producing comparable or improved dose distributions relative to fixed-field intensity-modulated radiation therapy. In order to take full advantage of the VMAT delivery technique, one must select a robust inverse planning tool. The purpose of this study was to evaluate the effectiveness and efficiency of VMAT planning techniques of three categories: anatomy-based, fluence-based and aperture-based inverse planning. We have compared these techniques in terms of the plan quality, planning efficiency and delivery efficiency. Fourteen patients were selected for this study including six head-and-neck (HN) cases, and two cases each of prostate, pancreas, lung and partial brain. For each case, three VMAT plans were created. The first VMAT plan was generated based on the anatomical geometry. In the Elekta ERGO++ treatment planning system (TPS), segments were generated based on the beam's eye view (BEV) of the target and the organs at risk. The segment shapes were then exported to Pinnacle3 TPS followed by segment weight optimization and final dose calculation. The second VMAT plan was generated by converting optimized fluence maps (calculated by the Pinnacle3 TPS) into deliverable arcs using an in-house arc sequencer. The third VMAT plan was generated using the Pinnacle3 SmartArc IMRT module which is an aperture-based optimization method. All VMAT plans were delivered using an Elekta Synergy linear accelerator and the plan comparisons were made in terms of plan quality and delivery efficiency. The results show that for cases of little or modest complexity such as prostate, pancreas, lung and brain, the anatomy-based approach provides similar target coverage and critical structure sparing, but less conformal dose distributions as compared to the other two approaches. For more complex HN cases, the anatomy-based approach is not able to provide clinically acceptable VMAT plans while highly conformal dose distributions were obtained using both aperture-based and fluence-based inverse planning techniques. The aperture-based approach provides improved dose conformity than the fluence-based technique in complex cases.
NASA Astrophysics Data System (ADS)
Salguero, Francisco Javier; Arráns, Rafael; Atriana Palma, Bianey; Leal, Antonio
2010-03-01
The purpose of this paper is to assess the feasibility of delivering intensity- and energy-modulated electron radiation treatment (MERT) by a photon multileaf collimator (xMLC) and to evaluate the improvements obtained in shallow head and neck (HN) tumors. Four HN patient cases covering different clinical situations were planned by MERT, which used an in-house treatment planning system that utilized Monte Carlo dose calculation. The cases included one oronasal, two parotid and one middle ear tumors. The resulting dose-volume histograms were compared with those obtained from conventional photon and electron treatment techniques in our clinic, which included IMRT, electron beam and mixed beams, most of them using fixed-thickness bolus. Experimental verification was performed with plane-parallel ionization chambers for absolute dose verification, and a PTW ionization chamber array and radiochromic film for relative dosimetry. A MC-based treatment planning system for target with compromised volumes in depth and laterally has been validated. A quality assurance protocol for individual MERT plans was launched. Relative MC dose distributions showed a high agreement with film measurements and absolute ion chamber dose measurements performed at a reference point agreed with MC calculations within 2% in all cases. Clinically acceptable PTV coverage and organ-at-risk sparing were achieved by using the proposed MERT approach. MERT treatment plans, based on delivery of intensity-modulated electron beam using the xMLC, for superficial head and neck tumors, demonstrated comparable or improved PTV dose homogeneity with significantly lower dose to normal tissues. The clinical implementation of this technique will be able to offer a viable alternative for the treatment of shallow head and neck tumors.
NASA Astrophysics Data System (ADS)
Angel, Erin; Yaghmai, Nazanin; Matilda Jude, Cecilia; DeMarco, John J.; Cagnon, Christopher H.; Goldin, Jonathan G.; Primak, Andrew N.; Stevens, Donna M.; Cody, Dianna D.; McCollough, Cynthia H.; McNitt-Gray, Michael F.
2009-02-01
Tube current modulation was designed to reduce radiation dose in CT imaging while maintaining overall image quality. This study aims to develop a method for evaluating the effects of tube current modulation (TCM) on organ dose in CT exams of actual patient anatomy. This method was validated by simulating a TCM and a fixed tube current chest CT exam on 30 voxelized patient models and estimating the radiation dose to each patient's glandular breast tissue. This new method for estimating organ dose was compared with other conventional estimates of dose reduction. Thirty detailed voxelized models of patient anatomy were created based on image data from female patients who had previously undergone clinically indicated CT scans including the chest area. As an indicator of patient size, the perimeter of the patient was measured on the image containing at least one nipple using a semi-automated technique. The breasts were contoured on each image set by a radiologist and glandular tissue was semi-automatically segmented from this region. Previously validated Monte Carlo models of two multidetector CT scanners were used, taking into account details about the source spectra, filtration, collimation and geometry of the scanner. TCM data were obtained from each patient's clinical scan and factored into the model to simulate the effects of TCM. For each patient model, two exams were simulated: a fixed tube current chest CT and a tube current modulated chest CT. X-ray photons were transported through the anatomy of the voxelized patient models, and radiation dose was tallied in the glandular breast tissue. The resulting doses from the tube current modulated simulations were compared to the results obtained from simulations performed using a fixed mA value. The average radiation dose to the glandular breast tissue from a fixed tube current scan across all patient models was 19 mGy. The average reduction in breast dose using the tube current modulated scan was 17%. Results were size dependent with smaller patients getting better dose reduction (up to 64% reduction) and larger patients getting a smaller reduction, and in some cases the dose actually increased when using tube current modulation (up to 41% increase). The results indicate that radiation dose to glandular breast tissue generally decreases with the use of tube current modulated CT acquisition, but that patient size (and in some cases patient positioning) may affect dose reduction.
CT breast dose reduction with the use of breast positioning and organ-based tube current modulation.
Fu, Wanyi; Tian, Xiaoyu; Sturgeon, Gregory M; Agasthya, Greeshma; Segars, William Paul; Goodsitt, Mitchell M; Kazerooni, Ella A; Samei, Ehsan
2017-02-01
This study aimed to investigate the breast dose reduction potential of a breast-positioning (BP) technique for thoracic CT examinations with organ-based tube current modulation (OTCM). This study included 13 female anthropomorphic computational phantoms (XCAT, age range: 27-65 y.o., weight range: 52-105.8 kg). Each phantom was modified to simulate three breast sizes in standard supine geometry. The modeled breasts were then morphed to emulate BP that constrained the majority of the breast tissue inside the 120° anterior tube current (mA) reduction zone. The OTCM mA value was modeled using a ray-tracing program, which reduced the mA to 20% in the anterior region with a corresponding increase to the posterior region. The organ doses were estimated by a validated Monte Carlo program for a typical clinical CT system (SOMATOM Definition Flash, Siemens Healthcare). The simulated organ doses and organ doses normalized by CTDI vol were used to compare three CT protocols: attenuation-based tube current modulation (ATCM), OTCM, and OTCM with BP (OTCM BP ). On average, compared to ATCM, OTCM reduced breast dose by 19.3 ± 4.5%, whereas OTCM BP reduced breast dose by 38.6 ± 8.1% (an additional 23.8 ± 9.4%). The dose saving of OTCM BP was more significant for larger breasts (on average 33, 38, and 44% reduction for 0.5, 1, and 2 kg breasts, respectively). Compared to ATCM, OTCM BP also reduced thymus and heart dose by 15.1 ± 7.4% and 15.9 ± 6.2% respectively. In thoracic CT examinations, OTCM with a breast-positioning technique can markedly reduce unnecessary exposure to radiosensitive organs in anterior chest wall, specifically breast tissue. The breast dose reduction is more notable for women with larger breasts. © 2016 American Association of Physicists in Medicine.
Assessment of an organ‐based tube current modulation in thoracic computed tomography
Sugai, Mai; Toyoda, Asami; Koshida, Haruka; Sakuta, Keita; Takata, Tadanori; Koshida, Kichiro; Iida, Hiroji; Matsui, Osamu
2012-01-01
Recently, specific computed tomography (CT) scanners have been equipped with organ‐based tube current modulation (TCM) technology. It is possible that organ‐based TCM will replace the conventional dose‐reduction technique of reducing the effective milliampere‐second. The aim of this study was to determine if organ‐based TCM could reduce radiation exposure to the breasts without compromising the image uniformity and beam hardening effect in thoracic CT examinations. Breast and skin radiation doses and the absorbed radiation dose distribution within a single section were measured with an anthropomorphic phantom and radiophotoluminescent glass dosimeters using four approaches to thoracic CT (reference, organ‐based TCM, copper shielding, and the combination of the above two techniques, hereafter referred to as the combination technique). The CT value and noise level were measured using the same calibration phantom. Organ‐based TCM and copper shielding reduced radiation doses to the breast by 23.7% and 21.8%, respectively. However, the CT value increased, especially in the anterior region, using copper shielding. In contrast, the CT value and noise level barely increased using organ‐based TCM. The combination technique reduced the radiation dose to the breast by 38.2%, but greatly increased the absorbed radiation dose from the central to the posterior regions. Moreover, the CT value increased in the anterior region and the noise level increased by more than 10% in the entire region. Therefore, organ‐based TCM can reduce radiation doses to breasts with only small increases in noise levels, making it preferable for specific groups of patients, such as children and young women. PACS numbers: 87.53.Bn; 87.57.Q‐; 87.57.qp PMID:22402390
MO-PIS-Exhibit Hall-01: Imaging: CT Dose Optimization Technologies I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denison, K; Smith, S
Partners in Solutions is an exciting new program in which AAPM partners with our vendors to present practical “hands-on” information about the equipment and software systems that we use in our clinics. The imaging topic this year is CT scanner dose optimization capabilities. Note that the sessions are being held in a special purpose room built on the Exhibit Hall Floor, to encourage further interaction with the vendors. Dose Optimization Capabilities of GE Computed Tomography Scanners Presentation Time: 11:15 – 11:45 AM GE Healthcare is dedicated to the delivery of high quality clinical images through the development of technologies, whichmore » optimize the application of ionizing radiation. In computed tomography, dose management solutions fall into four categories: employs projection data and statistical modeling to decrease noise in the reconstructed image - creating an opportunity for mA reduction in the acquisition of diagnostic images. Veo represents true Model Based Iterative Reconstruction (MBiR). Using high-level algorithms in tandem with advanced computing power, Veo enables lower pixel noise standard deviation and improved spatial resolution within a single image. Advanced Adaptive Image Filters allow for maintenance of spatial resolution while reducing image noise. Examples of adaptive image space filters include Neuro 3-D filters and Cardiac Noise Reduction Filters. AutomA adjusts mA along the z-axis and is the CT equivalent of auto exposure control in conventional x-ray systems. Dynamic Z-axis Tracking offers an additional opportunity for dose reduction in helical acquisitions while SmartTrack Z-axis Tracking serves to ensure beam, collimator and detector alignment during tube rotation. SmartmA provides angular mA modulation. ECG Helical Modulation reduces mA during the systolic phase of the heart cycle. SmartBeam optimization uses bowtie beam-shaping hardware and software to filter off-axis x-rays - minimizing dose and reducing x-ray scatter. The DICOM Radiation Dose Structured Report (RDSR) generates a dose report at the conclusion of every examination. Dose Check preemptively notifies CT operators when scan parameters exceed user-defined dose thresholds. DoseWatch is an information technology application providing vendor-agnostic dose tracking and analysis for CT (and all other diagnostic x-ray modalities) SnapShot Pulse improves coronary CTA dose management. VolumeShuttle uses two acquisitions to increase coverage, decrease dose, and conserve on contrast administration. Color-Coding for Kids applies the Broselow-Luten Pediatric System to facilitate pediatric emergency care and reduce medical errors. FeatherLight achieves dose optimization through pediatric procedure-based protocols. Adventure Series scanners provide a child-friendly imaging environment promoting patient cooperation with resultant reduction in retakes and patient motion. Philips CT Dose Optimization Tools and Advanced Reconstruction Presentation Time: 11:45 ‘ 12:15 PM The first part of the talk will cover “Dose Reduction and Dose Optimization Technologies” present in Philips CT Scanners. The main Technologies to be presented include: DoseRight and tube current modulation (DoseRight, Z-DOM, 3D-DOM, DoseRight Cardiac) Special acquisition modes Beam filtration and beam shapers Eclipse collimator and ClearRay collimator NanoPanel detector DoseRight will cover automatic tube current selection that automatically adjusts the dose for the individual patient. The presentation will explore the modulation techniques currently employed in Philips CT scanners and will include the algorithmic concepts as well as illustrative examples. Modulation and current selection technologies to be covered include the Automatic Current Selection component of DoseRight, ZDOM longitudinal dose modulation, 3D-DOM (combination of longitudinal and rotational dose modulation), Cardiac Dose right (an ECG based dose modulation scheme), and the DoseRight Index (DRI) IQ index. The special acquisition modes covers acquisition techniques such as prospective gating that is designed to reduce exposure to the patient through the Cardiac Step and Shoot scan mode. This mode can substitute the much higher dose retrospective scan modes for certain types of cardiac imaging. The beam filtration and beam shaper portion will discuss the variety of filtration and beam shaping configurations available on Philips scanners. This topic includes the x-ray beam characteristics, tube filtration as well as dose compensator characteristics. The Eclipse collimator, ClearRay collimator and the NanoPanel detector portion will discuss additional technologies specific to wide coverage CT that address some of the unique challenges encountered and techniques employed to optimize image quality and optimize dose utilization. The Eclipse collimator reduces extraneous exposure by actively blocking the radiation tails at either end of helical scans that do not contribute to the image generation. The ClearRay collimator and the NanoPanel detector optimize the quality of the signal that reaches the detectors by addressing the increased scattered radiation present in wide coverage and the NanoPanel detector adds superior electronic noise characteristics valuable when imaging at a low dose level. The second part of the talk will present “Advanced Reconstruction Technologies” currently available on Philips CT Scanners. The talk will cover filtered back projection (FBP), iDose4 and Iterative Model Reconstruction (IMR). Each reconstruction method will include a discussion of the algorithm as well as similarities and differences between the algorithms. Examples illustrating the merits of each algorithm will be presented, and techniques and metrics to characterize the performance of each type of algorithm will be presented. The Filtered Back projection portion will discuss and provide a brief summary of relevant standard image reconstruction techniques in common use, and discuss the common tradeoffs when using the FBP algorithm. The iDose4 portion will present the algorithms used for iDose4 as well the different levels. The meaning of different levels of iDose4 available will be presented and quantified. Guidelines for selection iDose4 parameters based on the imaging need will be explained. The different image quality goals available with iDose4 and specifically how iDose4 enables noise reduction, spatial resolution improvement or both will be explained. The approaches to leveraging the benefits of iDose4 such as improved spatial resolution, decreased noise, and artifact prevention will be described and quantified; and measurements and metrics behind the improvements will be presented. The image quality benefits in specific imaging situations as well as how to best combine the technology with other dose reduction strategies to ensure the best image quality at a given dose level will be presented. Insight into the IMR algorithm as well as contrast to the iDose4 techniques and performance characteristics will be discussed. Metrics and techniques for characterizing this class of algorithm and IQ performance will be presented. The image quality benefits and the dose reduction capabilities of IMR will be explored. Illustrative examples of the noise reduction, spatial resolution improvement, and low contrast detectability improvements of the reconstruction method will be presented: clinical cases and phantom measurements demonstrating the benefits of IMR in the areas of low dose imaging, spatial resolution and low contrast resolution are discussed and the technical details behind the measurements will be presented compared to both iDose4 and traditional filtered back projection (FBP)« less
Effect of topogram-tube angle combination on CT radiation dose reduction
NASA Astrophysics Data System (ADS)
Shim, J.; Yoon, M.
2017-09-01
This study assessed the ability of various types of topograms, when used with an automatic tube current modulation (ATCM) technique, to reduce radiation dose from computed tomography (CT) scans. Three types of topograms were used with the ATCM technique: (i) anteroposterior (AP) topograms alone, (ii) AP topograms followed by lateral topograms, and (iii) lateral topograms followed by AP topograms. Various regions (chest, abdomen and whole-body) of a humanoid phantom were scanned at several tube voltages (80, 100 and 120 kVp) with the selected topograms. Although the CT dose depended on the order of topograms, the CT dose with respect to patient positioning depended on the number of topograms performed. The magnitude of the difference in CT dose between number and order of topograms was greater for the scans of the abdomen than the chest. These results suggest that, for the Siemens SOMATOM Definition AS CT scanner, choosing the right combination of CT scan conditions with the ATCM technique can minimize radiation dose to a patient.
Applicator-guided volumetric-modulated arc therapy for low-risk endometrial cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cilla, Savino, E-mail: savinocilla@gmail.com; Macchia, Gabriella; Sabatino, Domenico
2013-04-01
The aim of this study was to report the feasibility of volumetric-modulated arc therapy (VMAT) in the postoperative irradiation of the vaginal vault. Moreover, the VMAT technique was compared with 3D conformal radiotherapy (3D-CRT) and fixed-field intensity-modulated radiotherapy (IMRT), in terms of target coverage and organs at risk sparing. The number of monitor units and the delivery time were analyzed to score the treatment efficiency. All plans were verified in a dedicated solid water phantom using a 2D array of ionization chambers. Twelve patients with endometrial carcinoma who underwent radical hystero-adenexectomy and fixed-field IMRT treatments were retrospectively included in thismore » analysis; for each patient, plans were compared in terms of dose-volume histograms, homogeneity index, and conformity indexes. All techniques met the prescription goal for planning target volume coverage, with VMAT showing the highest level of conformity at all dose levels. VMAT resulted in significant reduction of rectal and bladder volumes irradiated at all dose levels compared with 3D-CRT. No significant differences were found with respect to IMRT. Moreover, a significant improvement of the dose conformity was reached by VMAT technique not only at the 95% dose level (0.74 vs. 0.67 and 0.62) but also at 50% and 75% levels of dose prescription. In addition, VMAT plans showed a significant reduction of monitor units by nearly 28% with respect to IMRT, and reduced treatment time from 11 to <3 minutes for a single 6-Gy fraction. In conclusion, VMAT plans can be planned and carried out with high quality and efficiency for the irradiation of vaginal vault alone, providing similar or better sparing of organs at risk to fixed-field IMRT and resulting in the most efficient treatment option. VMAT is currently our standard approach for radiotherapy of low-risk endometrial cancer.« less
Eisbruch, A; Dawson, L A; Kim, H M; Bradford, C R; Terrell, J E; Chepeha, D B; Teknos, T N; Anzai, Y; Marsh, L H; Martel, M K; Ten Haken, R K; Wolf, G T; Ship, J A
1999-01-01
To develop techniques which facilitate sparing of the major salivary glands while adequately treating the targets in patients requiring comprehensive bilateral neck irradiation (RT). Conformal and static, multisegmental intensity modulated (IMRT) techniques have been developed. The salivary flow rates before and periodically after RT have been measured selectively from each major salivary gland and the residual flows correlated with glands' dose volume histograms. Subjective xerostomia questionnaires have been developed and validated. The pattern of local-regional recurrences has been examined using CT scans at the time of recurrence, transferring the recurrence volumes to the planning CT scans and regenerating the dose distributions at the recurrence sites. Target coverage and dose homogeneity in IMRT treatment plans were found to be significantly better than standard RT plans. Significant parotid gland sparing was achieved. The relationships among dose, irradiated volume and saliva flow rates from the parotid glands were characterized by dose and volume thresholds. A mean dose of 26 Gy was found to be the threshold for stimulated saliva. Subjective xerostomia was significantly reduced in patients irradiated with parotid sparing techniques, compared to patients with similar tumors treated with standard RT. The large majority of recurrences occurred inside high-risk targets. Tangible gains in salivary gland sparing and target coverage are being achieved and an improvement in some measures of quality of life is suggested by our findings. A mean parotid gland dose of < or = 26 Gy should be a planning objective if significant parotid function preservation is desired. The pattern of recurrence suggests that careful escalation of the dose to targets judged to be at highest risk may improve tumor control.
Comparing Treatment Plan in All Locations of Esophageal Cancer
Lin, Jang-Chun; Tsai, Jo-Ting; Chang, Chih-Chieh; Jen, Yee-Min; Li, Ming-Hsien; Liu, Wei-Hsiu
2015-01-01
Abstract The aim of this study was to compare treatment plans of volumetric modulated arc therapy (VMAT) with intensity-modulated radiotherapy (IMRT) for all esophageal cancer (EC) tumor locations. This retrospective study from July 2009 to June 2014 included 20 patients with EC who received definitive concurrent chemoradiotherapy with radiation doses >50.4 Gy. Version 9.2 of Pinnacle3 with SmartArc was used for treatment planning. Dosimetric quality was evaluated based on doses to several organs at risk, including the spinal cord, heart, and lung, over the same coverage of gross tumor volume. In upper thoracic EC, the IMRT treatment plan had a lower lung mean dose (P = 0.0126) and lung V5 (P = 0.0037) compared with VMAT; both techniques had similar coverage of the planning target volumes (PTVs) (P = 0.3575). In middle thoracic EC, a lower lung mean dose (P = 0.0010) and V5 (P = 0.0145), but higher lung V20 (P = 0.0034), spinal cord Dmax (P = 0.0262), and heart mean dose (P = 0.0054), were observed for IMRT compared with VMAT; IMRT provided better PTV coverage. Patients with lower thoracic ECs had a lower lung mean dose (P = 0.0469) and V5 (P = 0.0039), but higher spinal cord Dmax (P = 0.0301) and heart mean dose (P = 0.0020), with IMRT compared with VMAT. PTV coverage was similar (P = 0.0858) for the 2 techniques. IMRT provided a lower mean dose and lung V5 in upper thoracic EC compared with VMAT, but exhibited different advantages and disadvantages in patients with middle or lower thoracic ECs. Thus, choosing different techniques for different EC locations is warranted. PMID:25929910
Diwanji, Tejan P.; Mohindra, Pranshu; Vyfhuis, Melissa; Snider, James W.; Kalavagunta, Chaitanya; Mossahebi, Sina; Yu, Jen; Feigenberg, Steven
2017-01-01
The 21st century has seen several paradigm shifts in the treatment of non-small cell lung cancer (NSCLC) in early-stage inoperable disease, definitive locally advanced disease, and the postoperative setting. A key driver in improvement of local disease control has been the significant evolution of radiation therapy techniques in the last three decades, allowing for delivery of definitive radiation doses while limiting exposure of normal tissues. For patients with locally-advanced NSCLC, the advent of volumetric imaging techniques has allowed a shift from 2-dimensional approaches to 3-dimensional conformal radiation therapy (3DCRT). The next generation of 3DCRT, intensity-modulated radiation therapy and volumetric-modulated arc therapy (VMAT), have enabled even more conformal radiation delivery. Clinical evidence has shown that this can improve the quality of life for patients undergoing definitive management of lung cancer. In the early-stage setting, conventional fractionation led to poor outcomes. Evaluation of altered dose fractionation with the previously noted technology advances led to advent of stereotactic body radiation therapy (SBRT). This technique has dramatically improved local control and expanded treatment options for inoperable, early-stage patients. The recent development of proton therapy has opened new avenues for improving conformity and the therapeutic ratio. Evolution of newer proton therapy techniques, such as pencil-beam scanning (PBS), could improve tolerability and possibly allow reexamination of dose escalation. These new progresses, along with significant advances in systemic therapies, have improved survival for lung cancer patients across the spectrum of non-metastatic disease. They have also brought to light new challenges and avenues for further research and improvement. PMID:28529896
Troussier, I; Huguet, F; Servagi-Vernat, S; Benahim, C; Khalifa, J; Darmon, I; Ortholan, C; Krebs, L; Dejean, C; Fenoglietto, P; Vieillot, S; Bensadoun, R-J; Thariat, J
2015-04-01
The standard treatment of locally advanced (stage II and III) squamous cell carcinoma of the anal canal consists of concurrent chemoradiotherapy (two cycles of 5-fluoro-uracil, mitomycin C, on a 28-day cycle), with a dose of 45 Gy in 1.8 Gy per fraction in the prophylactic planning target volume and additional 14 to 20 Gy in the boost planning target volume (5 days per week) with a possibility of 15 days gap period between the two sequences. While conformal irradiation may only yield suboptimal tumor coverage using complex photon/electron field junctions (especially on nodal areas), intensity modulated radiation therapy techniques (segmented static, dynamic, volumetric modulated arc therapy and helical tomotherapy) allow better tumour coverage while sparing organs at risk from intermediate/high doses (small intestine, perineum/genitalia, bladder, pelvic bone, etc.). Such dosimetric advantages result in fewer severe acute toxicities and better potential to avoid a prolonged treatment break that increases risk of local failure. These techniques also allow a reduction in late gastrointestinal and skin toxicities of grade 3 or above, as well as better functional conservation of anorectal sphincter. The technical achievements (simulation, contouring, prescription dose, treatment planning, control quality) of volumetric modulated arctherapy are discussed. Copyright © 2015 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.
Surface dose measurement with Gafchromic EBT3 film for intensity modulated radiotherapy technique
NASA Astrophysics Data System (ADS)
Akbas, Ugur; Kesen, Nazmiye Donmez; Koksal, Canan; Okutan, Murat; Demir, Bayram; Becerir, Hatice Bilge
2017-09-01
Accurate dose measurement in the buildup region is extremely difficult. Studies have reported that treatment planning systems (TPS) cannot calculate surface dose accurately. The aim of the study was to compare the film measurements and TPS calculations for surface dose in head and neck cancer treatment using intensity modulated radiation therapy (IMRT). IMRT plans were generated for 5 head and neck cancer patients by using Varian Eclipse TPS. Quality assurance (QA) plans of these IMRT plans were created on rando phantoms for surface dose measurements. EBT3 films were cut in size of 2.5 x 2.5 cm2 and placed on the left side, right side and the center of larynx and then the films were irradiated with 6 MV photon beams. The measured doses were compared with TPS. The results of TPS calculations were found to be lower compared to the EBT3 film measurements at all selected points. The lack of surface dose calculation in TPS should be considered while evaluating the radiotherapy plans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simeonov, Y; Penchev, P; Ringbaek, T Printz
2016-06-15
Purpose: Active raster scanning in particle therapy results in highly conformal dose distributions. Treatment time, however, is relatively high due to the large number of different iso-energy layers used. By using only one energy and the so called 3D range-modulator irradiation times of a few seconds only can be achieved, thus making delivery of homogeneous dose to moving targets (e.g. lung cancer) more reliable. Methods: A 3D range-modulator consisting of many pins with base area of 2.25 mm2 and different lengths was developed and manufactured with rapid prototyping technique. The form of the 3D range-modulator was optimised for a sphericalmore » target volume with 5 cm diameter placed at 25 cm in a water phantom. Monte Carlo simulations using the FLUKA package were carried out to evaluate the modulating effect of the 3D range-modulator and simulate the resulting dose distribution. The fine and complicated contour form of the 3D range-modulator was taken into account by a specially programmed user routine. Additionally FLUKA was extended with the capability of intensity modulated scanning. To verify the simulation results dose measurements were carried out at the Heidelberg Ion Therapy Center (HIT) with a 400.41 MeV 12C beam. Results: The high resolution measurements show that the 3D range-modulator is capable of producing homogeneous 3D conformal dose distributions, simultaneously reducing significantly irradiation time. Measured dose is in very good agreement with the previously conducted FLUKA simulations, where slight differences were traced back to minor manufacturing deviations from the perfect optimised form. Conclusion: Combined with the advantages of very short treatment time the 3D range-modulator could be an alternative to treat small to medium sized tumours (e.g. lung metastasis) with the same conformity as full raster-scanning treatment. Further simulations and measurements of more complex cases will be conducted to investigate the full potential of the 3D range-modulator.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, X; Hrycushko, B; Lee, H
2014-06-01
Purpose: Traditional extended SSD total body irradiation (TBI) techniques can be problematic in terms of patient comfort and/or dose uniformity. This work aims to develop a comfortable TBI technique that achieves a uniform dose distribution to the total body while reducing the dose to organs at risk for complications. Methods: To maximize patient comfort, a lazy Susan-like couch top immobilization system which rotates about a pivot point was developed. During CT simulation, a patient is immobilized by a Vac-Lok bag within the body frame. The patient is scanned head-first and then feet-first following 180° rotation of the frame. The twomore » scans are imported into the Pinnacle treatment planning system and concatenated to give a full-body CT dataset. Treatment planning matches multiple isocenter volumetric modulated arc (VMAT) fields of the upper body and multiple isocenter parallel-opposed fields of the lower body. VMAT fields of the torso are optimized to satisfy lung dose constraints while achieving a therapeutic dose to the torso. The multiple isocenter VMAT fields are delivered with an indexed couch, followed by body frame rotation about the pivot point to treat the lower body isocenters. The treatment workflow was simulated with a Rando phantom, and the plan was mapped to a solid water slab phantom for point- and film-dose measurements at multiple locations. Results: The treatment plan of 12Gy over 8 fractions achieved 80.2% coverage of the total body volume within ±10% of the prescription dose. The mean lung dose was 8.1 Gy. All ion chamber measurements were within ±1.7% compared to the calculated point doses. All relative film dosimetry showed at least a 98.0% gamma passing rate using a 3mm/3% passing criteria. Conclusion: The proposed patient comfort-oriented TBI technique provides for a uniform dose distribution within the total body while reducing the dose to the lungs.« less
Clinical utility of RapidArc™ radiotherapy technology
Infusino, Erminia
2015-01-01
RapidArc™ is a radiation technique that delivers highly conformal dose distributions through the complete rotation (360°) and speed variation of the linear accelerator gantry. This technique, called volumetric modulated arc therapy (VMAT), compared with conventional radiotherapy techniques, can achieve high-target volume coverage and sparing damage to normal tissues. RapidArc delivers precise dose distribution and conformity similar to or greater than intensity-modulated radiation therapy in a short time, generally a few minutes, to which image-guided radiation therapy is added. RapidArc has become a currently used technology in many centers, which use RapidArc technology to treat a large number of patients. Large and small hospitals use it to treat the most challenging cases, but more and more frequently for the most common cancers. The clinical use of RapidArc and VMAT technology is constantly growing. At present, a limited number of clinical data are published, mostly concerning planning and feasibility studies. Clinical outcome data are increasing for a few tumor sites, even if only a little. The purpose of this work is to discuss the current status of VMAT techniques in clinical use through a review of the published data of planning systems and clinical outcomes in several tumor sites. The study consisted of a systematic review based on analysis of manuscripts retrieved from the PubMed, BioMed Central, and Scopus databases by searching for the keywords “RapidArc”, “Volumetric modulated arc radiotherapy”, and “Intensity-modulated radiotherapy”. PMID:26648755
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, B; Chung, H; Mutaf, Y
Purpose: To test a novel total body irradiation (TBI) system using conformal partial arc with patient lying on the stationary couch which is biologically equivalent to a moving couch TBI. This improves the scanning field TBI, which is previously presented. Methods: The Uniform MU Modulated arc Segments TBI or UMMS-TBI scans the treatment plane with a constant machine dose rate and a constant gantry rotation speed. A dynamic MLC pattern which moves while gantry rotates has been designed so that the treatment field moves same distance at the treatment plane per each gantry angle, while maintaining same treatment field sizemore » (34cm) at the plane. Dose across the plane varies due to the geometric differences including the distance from the source to a point of interest and the different attenuation from the slanted depth which changes the effective depth. Beam intensity is modulated to correct the dose variation across the plane by assigning the number of gantry angles inversely proportional to the uncorrected dose. Results: Measured dose and calculated dose matched within 1 % for central axis and 3% for off axis for various patient scenarios. Dose from different distance does not follow the inverse square relation as it is predicted from calculation. Dose uniformity better than 5% across 180 cm at 10cm depth is achieved by moving the gantry from −55 to +55 deg. Total treatment time for 2 Gy AP/PA fields is 40–50 minutes excluding patient set up time, at the machine dose rate of 200 MU/min. Conclusion: This novel technique, yet accurate but easy to implement enables TBI treatment in a small treatment room with less program development preparation than other techniques. The VMAT function of treatment delivery is not required to modulate beams. One delivery pattern can be used for different patients by changing the monitor units.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J; Chung, J
2015-06-15
Purpose: To verify delivered doses on the implanted cardiac pacemaker, predicted doses with and without dose reduction method were verified using the MOSFET detectors in terms of beam delivery and dose calculation techniques in intensity-modulated radiation therapy (IMRT). Methods: The pacemaker doses for a patient with a tongue cancer were predicted according to the beam delivery methods [step-and-shoot (SS) and sliding window (SW)], intensity levels for dose optimization, and dose calculation algorithms. Dosimetric effects on the pacemaker were calculated three dose engines: pencil-beam convolution (PBC), analytical anisotropic algorithm (AAA), and Acuros-XB. A lead shield of 2 mm thickness was designedmore » for minimizing irradiated doses to the pacemaker. Dose variations affected by the heterogeneous material properties of the pacemaker and effectiveness of the lead shield were predicted by the Acuros-XB. Dose prediction accuracy and the feasibility of the dose reduction strategy were verified based on the measured skin doses right above the pacemaker using mosfet detectors during the radiation treatment. Results: The Acuros-XB showed underestimated skin doses and overestimated doses by the lead-shield effect, even though the lower dose disagreement was observed. It led to improved dose prediction with higher intensity level of dose optimization in IMRT. The dedicated tertiary lead sheet effectively achieved reduction of pacemaker dose up to 60%. Conclusion: The current SS technique could deliver lower scattered doses than recommendation criteria, however, use of the lead sheet contributed to reduce scattered doses.Thin lead plate can be a useful tertiary shielder and it could not acuse malfunction or electrical damage of the implanted pacemaker in IMRT. It is required to estimate more accurate scattered doses of the patient with medical device to design proper dose reduction strategy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadley, Austin; Ding, George X., E-mail: george.ding@vanderbilt.edu
2014-01-01
Craniospinal irradiation (CSI) requires abutting fields at the cervical spine. Junction shifts are conventionally used to prevent setup error–induced overdosage/underdosage from occurring at the same location. This study compared the dosimetric differences at the cranial-spinal junction between a single-gradient junction technique and conventional multiple-junction shifts and evaluated the effect of setup errors on the dose distributions between both techniques for a treatment course and single fraction. Conventionally, 2 lateral brain fields and a posterior spine field(s) are used for CSI with weekly 1-cm junction shifts. We retrospectively replanned 4 CSI patients using a single-gradient junction between the lateral brain fieldsmore » and the posterior spine field. The fields were extended to allow a minimum 3-cm field overlap. The dose gradient at the junction was achieved using dose painting and intensity-modulated radiation therapy planning. The effect of positioning setup errors on the dose distributions for both techniques was simulated by applying shifts of ± 3 and 5 mm. The resulting cervical spine doses across the field junction for both techniques were calculated and compared. Dose profiles were obtained for both a single fraction and entire treatment course to include the effects of the conventional weekly junction shifts. Compared with the conventional technique, the gradient-dose technique resulted in higher dose uniformity and conformity to the target volumes, lower organ at risk (OAR) mean and maximum doses, and diminished hot spots from systematic positioning errors over the course of treatment. Single-fraction hot and cold spots were improved for the gradient-dose technique. The single-gradient junction technique provides improved conformity, dose uniformity, diminished hot spots, lower OAR mean and maximum dose, and one plan for the entire treatment course, which reduces the potential human error associated with conventional 4-shifted plans.« less
Abbas, Ahmar S; Moseley, Douglas; Kassam, Zahra; Kim, Sun Mo; Cho, Charles
2013-05-06
Recently, volumetric-modulated arc therapy (VMAT) has demonstrated the ability to deliver radiation dose precisely and accurately with a shorter delivery time compared to conventional intensity-modulated fixed-field treatment (IMRT). We applied the hypothesis of VMAT technique for the treatment of thoracic esophageal carcinoma to determine superior or equivalent conformal dose coverage for a large thoracic esophageal planning target volume (PTV) with superior or equivalent sparing of organs-at-risk (OARs) doses, and reduce delivery time and monitor units (MUs), in comparison with conventional fixed-field IMRT plans. We also analyzed and compared some other important metrics of treatment planning and treatment delivery for both IMRT and VMAT techniques. These metrics include: 1) the integral dose and the volume receiving intermediate dose levels between IMRT and VMATI plans; 2) the use of 4D CT to determine the internal motion margin; and 3) evaluating the dosimetry of every plan through patient-specific QA. These factors may impact the overall treatment plan quality and outcomes from the individual planning technique used. In this study, we also examined the significance of using two arcs vs. a single-arc VMAT technique for PTV coverage, OARs doses, monitor units and delivery time. Thirteen patients, stage T2-T3 N0-N1 (TNM AJCC 7th edn.), PTV volume median 395 cc (range 281-601 cc), median age 69 years (range 53 to 85), were treated from July 2010 to June 2011 with a four-field (n = 4) or five-field (n = 9) step-and-shoot IMRT technique using a 6 MV beam to a prescribed dose of 50 Gy in 20 to 25 F. These patients were retrospectively replanned using single arc (VMATI, 91 control points) and two arcs (VMATII, 182 control points). All treatment plans of the 13 study cases were evaluated using various dose-volume metrics. These included PTV D99, PTV D95, PTV V9547.5Gy(95%), PTV mean dose, Dmax, PTV dose conformity (Van't Riet conformation number (CN)), mean lung dose, lung V20 and V5, liver V30, and Dmax to the spinal canal prv3mm. Also examined were the total plan monitor units (MUs) and the beam delivery time. Equivalent target coverage was observed with both VMAT single and two-arc plans. The comparison of VMATI with fixed-field IMRT demonstrated equivalent target coverage; statistically no significant difference were found in PTV D99 (p = 0.47), PTV mean (p = 0.12), PTV D95 and PTV V9547.5Gy (95%) (p = 0.38). However, Dmax in VMATI plans was significantly lower compared to IMRT (p = 0.02). The Van't Riet dose conformation number (CN) was also statistically in favor of VMATI plans (p = 0.04). VMATI achieved lower lung V20 (p = 0.05), whereas lung V5 (p = 0.35) and mean lung dose (p = 0.62) were not significantly different. The other OARs, including spinal canal, liver, heart, and kidneys showed no statistically significant differences between the two techniques. Treatment time delivery for VMATI plans was reduced by up to 55% (p = 5.8E-10) and MUs reduced by up to 16% (p = 0.001). Integral dose was not statistically different between the two planning techniques (p = 0.99). There were no statistically significant differences found in dose distribution of the two VMAT techniques (VMATI vs. VMATII) Dose statistics for both VMAT techniques were: PTV D99 (p = 0.76), PTV D95 (p = 0.95), mean PTV dose (p = 0.78), conformation number (CN) (p = 0.26), and MUs (p = 0.1). However, the treatment delivery time for VMATII increased significantly by two-fold (p = 3.0E-11) compared to VMATI. VMAT-based treatment planning is safe and deliverable for patients with thoracic esophageal cancer with similar planning goals, when compared to standard IMRT. The key benefit for VMATI was the reduction in treatment delivery time and MUs, and improvement in dose conformality. In our study, we found no significant difference in VMATII over single-arc VMATI for PTV coverage or OARs doses. However, we observed significant increase in delivery time for VMATII compared to VMATI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pursley, Jennifer, E-mail: jpursley@mgh.harvard.edu; Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA; Damato, Antonio L.
The purpose of this study was to investigate class solutions using RapidArc volumetric-modulated arc therapy (VMAT) planning for ipsilateral and bilateral head and neck (H&N) irradiation, and to compare dosimetric results with intensity-modulated radiotherapy (IMRT) plans. A total of 14 patients who received ipsilateral and 10 patients who received bilateral head and neck irradiation were retrospectively replanned with several volumetric-modulated arc therapy techniques. For ipsilateral neck irradiation, the volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the contralateral parotid, two 260° or 270° arcs, and two 210° arcs. For bilateral neck irradiation, themore » volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the shoulders, and 3 arcs. All patients had a sliding-window-delivery intensity-modulated radiotherapy plan that was used as the benchmark for dosimetric comparison. For ipsilateral neck irradiation, a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid was dosimetrically comparable to intensity-modulated radiotherapy, with improved conformity (conformity index = 1.22 vs 1.36, p < 0.04) and lower contralateral parotid mean dose (5.6 vs 6.8 Gy, p < 0.03). For bilateral neck irradiation, 3-arc volumetric-modulated arc therapy techniques were dosimetrically comparable to intensity-modulated radiotherapy while also avoiding irradiation through the shoulders. All volumetric-modulated arc therapy techniques required fewer monitor units than sliding-window intensity-modulated radiotherapy to deliver treatment, with an average reduction of 35% for ipsilateral plans and 67% for bilateral plans. Thus, for ipsilateral head and neck irradiation a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid is recommended. For bilateral neck irradiation, 2- or 3-arc techniques are dosimetrically comparable to intensity-modulated radiotherapy, but more work is needed to determine the optimal approaches by disease site.« less
Pursley, Jennifer; Damato, Antonio L; Czerminska, Maria A; Margalit, Danielle N; Sher, David J; Tishler, Roy B
2017-01-01
The purpose of this study was to investigate class solutions using RapidArc volumetric-modulated arc therapy (VMAT) planning for ipsilateral and bilateral head and neck (H&N) irradiation, and to compare dosimetric results with intensity-modulated radiotherapy (IMRT) plans. A total of 14 patients who received ipsilateral and 10 patients who received bilateral head and neck irradiation were retrospectively replanned with several volumetric-modulated arc therapy techniques. For ipsilateral neck irradiation, the volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the contralateral parotid, two 260° or 270° arcs, and two 210° arcs. For bilateral neck irradiation, the volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the shoulders, and 3 arcs. All patients had a sliding-window-delivery intensity-modulated radiotherapy plan that was used as the benchmark for dosimetric comparison. For ipsilateral neck irradiation, a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid was dosimetrically comparable to intensity-modulated radiotherapy, with improved conformity (conformity index = 1.22 vs 1.36, p < 0.04) and lower contralateral parotid mean dose (5.6 vs 6.8Gy, p < 0.03). For bilateral neck irradiation, 3-arc volumetric-modulated arc therapy techniques were dosimetrically comparable to intensity-modulated radiotherapy while also avoiding irradiation through the shoulders. All volumetric-modulated arc therapy techniques required fewer monitor units than sliding-window intensity-modulated radiotherapy to deliver treatment, with an average reduction of 35% for ipsilateral plans and 67% for bilateral plans. Thus, for ipsilateral head and neck irradiation a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid is recommended. For bilateral neck irradiation, 2- or 3-arc techniques are dosimetrically comparable to intensity-modulated radiotherapy, but more work is needed to determine the optimal approaches by disease site. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Gandhi, Diksha; Crotty, Dominic J; Stevens, Grant M; Schmidt, Taly Gilat
2015-11-01
This technical note quantifies the dose and image quality performance of a clinically available organ-dose-based tube current modulation (ODM) technique, using experimental and simulation phantom studies. The investigated ODM implementation reduces the tube current for the anterior source positions, without increasing current for posterior positions, although such an approach was also evaluated for comparison. Axial CT scans at 120 kV were performed on head and chest phantoms on an ODM-equipped scanner (Optima CT660, GE Healthcare, Chalfont St. Giles, England). Dosimeters quantified dose to breast, lung, heart, spine, eye lens, and brain regions for ODM and 3D-modulation (SmartmA) settings. Monte Carlo simulations, validated with experimental data, were performed on 28 voxelized head phantoms and 10 chest phantoms to quantify organ dose and noise standard deviation. The dose and noise effects of increasing the posterior tube current were also investigated. ODM reduced the dose for all experimental dosimeters with respect to SmartmA, with average dose reductions across dosimeters of 31% (breast), 21% (lung), 24% (heart), 6% (spine), 19% (eye lens), and 11% (brain), with similar results for the simulation validation study. In the phantom library study, the average dose reduction across all phantoms was 34% (breast), 20% (lung), 8% (spine), 20% (eye lens), and 8% (brain). ODM increased the noise standard deviation in reconstructed images by 6%-20%, with generally greater noise increases in anterior regions. Increasing the posterior tube current provided similar dose reduction as ODM for breast and eye lens, increased dose to the spine, with noise effects ranging from 2% noise reduction to 16% noise increase. At noise equal to SmartmA, ODM increased the estimated effective dose by 4% and 8% for chest and head scans, respectively. Increasing the posterior tube current further increased the effective dose by 15% (chest) and 18% (head) relative to SmartmA. ODM reduced dose in all experimental and simulation studies over a range of phantoms, while increasing noise. The results suggest a net dose/noise benefit for breast and eye lens for all studied phantoms, negligible lung dose effects for two phantoms, increased lung dose and/or noise for eight phantoms, and increased dose and/or noise for brain and spine for all studied phantoms compared to the reference protocol.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Hui-Yu; Liao, Ying-Lan; Chang Gung University / Chang Gung Memorial Hospital, Taoyun, Taiwan
Purpose: The purpose of this study is to assess eye-lens dose for patients who underwent brain CT examinations using two dose reduction Methods: organ-based tube current modulation (OBTCM) and in-plane bismuth shielding method. Methods: This study received institutional review board approval; written informed consent to participate was obtained from all patients. Ninety patients who underwent the routine brain CT examination were randomly assigned to three groups, ie. routine, OBTCM, and bismuth shield. The OBTCM technique reduced the tube current when the X-ray tube rotates in front of patients’ eye-lens region. The patients in the bismuth shield group were covered one-plymore » bismuth shield in the eyes’ region. Eye-lens doses were measured using TLD-100H chips and the total effective doses were calculated using CT-Expo according to the CT scanning parameters. The surface doses for patients at off-center positions were assessed to evaluate the off-centering effect. Results: Phantom measurements indicates that OBTCM technique could reduced by 26% to 28% of the surface dose to the eye lens, and increased by 25% of the surface dose at the opposed incident direction at the angle of 180°. Patients’ eye-lens doses were reduced 16.9% and 30.5% dose of bismuth shield scan and OBTCM scan, respectively compared to the routine scan. The eye-lens doses were apparently increased when the table position was lower than isocenter. Conclusion: Reducing the dose to the radiosensitive organs, such as eye lens, during routine brain CT examinations could lower the radiation risks. The OBTCM technique and in-plane bismuth shielding could be used to reduce the eye-lens dose. The eye-lens dose could be effectively reduced using OBTCM scan without interfering the diagnostic image quality. Patient position relative the CT gantry also affects the dose level of the eye lens. This study was supported by the grants from the Ministry of Science and Technology of Taiwan (MOST103-2314-B-182-009-MY2), and Chang Gung Memorial Hospital (CMRPD1C0682)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chin, Erika; Otto, Karl; Hoppe, Richard
Purpose: To develop and test the feasibility of a table-top implementation for total body irradiation (TBI) via robotic couch motion and coordinated monitor unit modulation on a standard C-arm linac geometry. Methods: To allow for collision free delivery and to maximize the effective field size, the couch was rotated to 270° IEC and dropped to 150 cm from the vertical radiation source. The robotic delivery was programmed using the TrueBeam STx Developer Mode using custom XML scripting. To assess the dosimetry of a sliding 30×20 cm{sup 2} field, irradiation on a solid water phantom of varying thickness was analyzed usingmore » EDR2 radiographic film and OSLDs. Beam modulation was achieved by dividing the couch path into multiple segments of varying dose rates and couch speeds in order to deliver 120 cGy to the midline. Results: The programmed irradiation in conjunction with coordinated couch motion was successfully delivered on a TrueBeam linac. When no beam modulation was employed, the dose difference between two different phantom sections was 17.0%. With simple beam modulation via changing dose rates and couch speeds, the desired prescription dose can be achieved at the centre of each phantom section within 1.9%. However, dose deviation at the junction was 9.2% due to the nonphysical change in the phantom thickness. Conclusions: The feasibility of robotic table-top TBI on a C-arm linac geometry was experimentally demonstrated. To achieve a more uniform dose distribution, inverse-planning allowing for a combination of dose rate modulation, jaw tracking and MLC motion is under investigation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macchia, Gabriella, E-mail: gmacchia@rm.unicatt.i; Cilla, Savino M.P.; Ferrandina, Gabriella
2010-04-15
Purpose: To determine the maximum tolerated dose of short-course radiotherapy (intensity-modulated radiotherapy technique) to the upper two thirds of the vagina in endometrial cancers with low risk of local recurrence. Patients and Methods: A Phase I clinical trial was performed. Eligible patients had low-risk resected primary endometrial adenocarcinomas. Radiotherapy was delivered in 5 fractions over 1 week. The planning target volume was the clinical target volume plus 5 mm. The clinical target volume was defined as the upper two thirds of the vagina as evidenced at CT simulation by a vaginal radio-opaque device. The planning target volume was irradiated bymore » a seven-field intensity-modulated radiotherapy technique, planned by the Plato Sunrise inverse planning system. A first cohort of 6 patients received 25 Gy (5-Gy fractions), and a subsequent cohort received 30 Gy (6-Gy fractions). The Common Toxicity Criteria scale, version 3.0, was used to score toxicity. Results: Twelve patients with endometrial cancer were enrolled. Median age was 58 years (range, 49-74 years). Pathologic stage was IB (83.3%) and IC (16.7%). Median tumor size was 30 mm (range, 15-50 mm). All patients completed the prescribed radiotherapy. No patient experienced a dose-limiting toxicity at the first level, and the radiotherapy dose was escalated from 25 to 30 Gy. No patients at the second dose level experienced dose-limiting toxicity. The most common Grade 2 toxicity was gastrointestinal, which was tolerable and manageable. Conclusions: The maximum tolerated dose of short-course radiotherapy was 30 Gy at 6 Gy per fraction. On the basis of this result, we are conducting a Phase II study with radiotherapy delivered at 30 Gy.« less
Cardiac Side-effects From Breast Cancer Radiotherapy.
Taylor, C W; Kirby, A M
2015-11-01
Breast cancer radiotherapy reduces the risk of cancer recurrence and death. However, it usually involves some radiation exposure of the heart and analyses of randomised trials have shown that it can increase the risk of heart disease. Estimates of the absolute risks of radiation-related heart disease are needed to help oncologists plan each individual woman's treatment. The risk for an individual woman varies according to her estimated cardiac radiation dose and her background risk of ischaemic heart disease in the absence of radiotherapy. When it is known, this risk can then be compared with the absolute benefit of the radiotherapy. At present, many UK cancer centres are already giving radiotherapy with mean heart doses of less than 3 Gy and for most women the benefits of the radiotherapy will probably far outweigh the risks. Technical approaches to minimising heart dose in breast cancer radiotherapy include optimisation of beam angles, use of multileaf collimator shielding, intensity-modulated radiotherapy, treatment in a prone position, treatment in deep inspiration (including the use of breath-hold and gating techniques), proton therapy and partial breast irradiation. The multileaf collimator is suitable for many women with upper pole left breast cancers, but for women with central or lower pole cancers, breath-holding techniques are now recommended in national UK guidelines. Ongoing work aims to identify ways of irradiating pan-regional lymph nodes that are effective, involve minimal exposure of organs at risk and are feasible to plan, deliver and verify. These will probably include wide tangent-based field-in-field intensity-modulated radiotherapy or arc radiotherapy techniques in combination with deep inspiratory breath-hold, and proton beam irradiation for women who have a high predicted heart dose from intensity-modulated radiotherapy. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Matsushima, Luciana C; Veneziani, Glauco R; Sakuraba, Roberto K; Cruz, José C; Campos, Letícia L
2015-06-01
The principle of IMRT is to treat a patient from a number of different directions (or continuous arcs) with beams of nonuniform fluences, which have been optimized to deliver a high dose to the target volume and an acceptably low dose to the surrounding normal structures (Khan, 2010). This study intends to provide information to the physicist regarding the application of different dosimeters type, phantoms and analysis technique for Intensity Modulated Radiation Therapy (IMRT) dose distributions evaluation. The measures were performed using dosimeters of LiF:Mg,Ti and Al2O3:C evaluated by techniques of thermoluminescent (TL) and Optically Stimulated Luminescence (OSL). A polymethylmethacrylate (PMMA) phantom with five cavities, two principal target volumes considered like tumours to be treated and other three cavities to measure the scattered radiation dose was developed to carried out the measures. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dolera, Mario; Malfassi, Luca; Marcarini, Silvia; Mazza, Giovanni; Carrara, Nancy; Pavesi, Simone; Sala, Massimo; Finesso, Sara; Urso, Gaetano
2018-06-08
The aim of this prospective pilot study was to evaluate the feasibility and effectiveness of curative intent high dose hypofractionated frameless volumetric modulated arc radiotherapy for treatment of canine trigeminal peripheral nerve sheath tumors. Client-owned dogs with a presumptive imaging-based diagnosis of trigeminal peripheral nerve sheath tumor were recruited for the study during the period of February 2010 to December 2013. Seven dogs were enrolled and treated with high dose hypofractionated volumetric modulated arc radiotherapy delivered by a 6 MV linear accelerator equipped with a micro-multileaf beam collimator. The plans were computed using a Monte Carlo algorithm with a prescription dose of 37 Gy delivered in five fractions on alternate days. Overall survival was estimated using a Kaplan-Meier curve analysis. Magnetic resonance imaging (MRI) follow-up examinations revealed complete response in one dog, partial response in four dogs, and stable disease in two dogs. Median overall survival was 952 days with a 95% confidence interval of 543-1361 days. Volumetric modulated arc radiotherapy was demonstrated to be feasible and effective for trigeminal peripheral nerve sheath tumor treatment in this sample of dogs. The technique required few sedations and spared organs at risk. Even though larger studies are required, these preliminary results supported the use of high dose hypofractionated volumetric modulated arc radiotherapy as an alternative to other treatment modalities. © 2018 American College of Veterinary Radiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Yahya, Khalid; Schwartz, Matthew; Shenouda, George
2005-09-15
Energy modulated electron therapy (EMET) based on Monte Carlo dose calculation is a promising technique that enhances the treatment planning and delivery of superficially located tumors. This study investigated the application of EMET using a novel few-leaf electron collimator (FLEC) in head and neck and breast sites in comparison with three-dimensional conventional radiation therapy (3D-CRT) and intensity modulated radiation therapy (IMRT) techniques. Treatment planning was performed for two parotid cases and one breast case. Four plans were compared for each case: 3D-CRT, IMRT, 3D-CRT in conjunction with EMET (EMET-CRT), and IMRT in conjunction with EMET (EMET-IMRT), all of which weremore » performed and calculated with Monte Carlo techniques. For all patients, dose volume histograms (DVHs) were obtained for all organs of interest and the DVHs were used as a means of comparing the plans. Homogeneity and conformity of dose distributions were calculated, as well as a sparing index that compares the effect of the low isodose lines. In addition, the whole-body dose equivalent (WBDE) was estimated for each plan. Adding EMET delivered with the FLEC to 3D-CRT improves sparing of normal tissues. For the two head and neck cases, the mean dose to the contralateral parotid and brain stem was reduced relative to IMRT by 43% and 84%, and by 57% and 71%, respectively. Improved normal tissue sparing was quantified as an increase in sparing index of 47% and 30% for the head and neck and the breast cases, respectively. Adding EMET to either 3D-CRT or IMRT results in preservation of target conformity and dose homogeneity. When adding EMET to the treatment plan, the WBDE was reduced by between 6% and 19% for 3D-CRT and by between 21% and 33% for IMRT, while WBDE for EMET-CRT was reduced by up to 72% when compared with IMRT. FLEC offers a practical means of delivering modulated electron therapy. Although adding EMET delivered using the FLEC results in perturbation of target conformity when compared to IMRT, it significantly improves normal tissue sparing while offering enhanced target conformity to the 3D-CRT planning. The addition of EMET systematically leads to a reduction in WBDE especially when compared with IMRT.« less
Xu, J; Reh, D D; Carey, J P; Mahesh, M; Siewerdsen, J H
2012-08-01
As cone-beam CT (CBCT) systems dedicated to various imaging specialties proliferate, technical assessment grounded in imaging physics is important to ensuring that image quality and radiation dose are quantified, understood, and justified. This paper involves technical assessment of a new CBCT scanner (CS 9300, Carestream Health, Rochester, NY) dedicated to imaging of the ear and sinuses for applications in otolaryngology-head and neck surgery (OHNS). The results guided evaluation of technique protocols to minimize radiation dose in a manner sufficient for OHNS imaging tasks. The technical assessment focused on the imaging performance and radiation dose for each of seven technique protocols recommended by the manufacturer: three sinus protocols and four ear (temporal bone) protocols. Absolute dose was measured using techniques adapted from AAPM Task Group Report No. 111, involving three stacked 16 cm diameter acrylic cylinders (CTDI phantoms) and a 0.6 cm(3) Farmer ionization chamber to measure central and peripheral dose. The central dose (D(o)) was also measured as a function of longitudinal position (z) within and beyond the primary radiation field to assess, for example, out-of-field dose to the neck. Signal-difference-to-noise ratio (SDNR) and Hounsfield unit (HU) accuracy were assessed in a commercially available quality assurance phantom (CATPHAN module CTP404, The Phantom Laboratory, Greenwich, NY) and a custom phantom with soft-tissue-simulating plastic inserts (Gammex RMI, Madison, WI). Spatial resolution was assessed both qualitatively (a line-pair pattern, CATPHAN module CTP528) and quantitatively (modulation transfer function, MTF, measured with a wire phantom). Imaging performance pertinent to various OHNS imaging tasks was qualitatively assessed using an anthropomorphic phantom as evaluated by two experienced OHNS specialists. The technical assessment motivated a variety of modifications to the manufacturer-specified protocols to provide reduced radiation dose without compromising pertinent task-based imaging performance. The revised protocols yielded D(o) ranging 2.9-5.7 mGy, representing a ∼30% reduction in dose from the original technique chart. Out-of-field dose was ∼10% of D(o) at a distance of ∼8 cm from the field edge. Soft-tissue contrast resolution was fairly limited (water-brain SDNR ∼0.4-0.7) while high-contrast performance was reasonably good (SDNR ∼2-4 for a polystyrene insert in the CATPHAN). The scanner does not demonstrate (or claim to provide) accurate HU and exhibits a systematic error in CT number that could potentially be addressed by further calibration. The spatial resolution is ∼10-16 lp∕cm as assessed in a line-pair phantom, with MTF exceeding 10% out to ∼20 lp∕cm. Qualitative assessment by expert readers suggested limited soft-tissue visibility but excellent high-contrast (bone) visualization with isotropic spatial resolution suitable to a broad spectrum of pertinent sinus and temporal bone imaging tasks. The CBCT scanner provided spatial and contrast resolution suitable to visualization of high-contrast morphology in sinus, maxillofacial, and otologic imaging applications. Rigorous technical assessment guided revision of technique protocols to reduce radiation dose while maintaining image quality sufficient for pertinent imaging tasks. The scanner appears well suited to high-contrast sinus and temporal bone imaging at doses comparable to or less than that reported for conventional diagnostic CT of the head.
NASA Astrophysics Data System (ADS)
Wang, Lilie; Ding, George X.
2014-07-01
The out-of-field dose can be clinically important as it relates to the dose of the organ-at-risk, although the accuracy of its calculation in commercial radiotherapy treatment planning systems (TPSs) receives less attention. This study evaluates the uncertainties of out-of-field dose calculated with a model based dose calculation algorithm, anisotropic analytical algorithm (AAA), implemented in a commercial radiotherapy TPS, Varian Eclipse V10, by using Monte Carlo (MC) simulations, in which the entire accelerator head is modeled including the multi-leaf collimators. The MC calculated out-of-field doses were validated by experimental measurements. The dose calculations were performed in a water phantom as well as CT based patient geometries and both static and highly modulated intensity-modulated radiation therapy (IMRT) fields were evaluated. We compared the calculated out-of-field doses, defined as lower than 5% of the prescription dose, in four H&N cancer patients and two lung cancer patients treated with volumetric modulated arc therapy (VMAT) and IMRT techniques. The results show that the discrepancy of calculated out-of-field dose profiles between AAA and the MC depends on the depth and is generally less than 1% for in water phantom comparisons and in CT based patient dose calculations for static field and IMRT. In cases of VMAT plans, the difference between AAA and MC is <0.5%. The clinical impact resulting from the error on the calculated organ doses were analyzed by using dose-volume histograms. Although the AAA algorithm significantly underestimated the out-of-field doses, the clinical impact on the calculated organ doses in out-of-field regions may not be significant in practice due to very low out-of-field doses relative to the target dose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez-Parcerisa, D; Carabe-Fernandez, A
2014-06-01
Purpose. Intensity-modulated proton therapy is usually implemented with multi-field optimization of pencil-beam scanning (PBS) proton fields. However, at the view of the experience with photon-IMRT, proton facilities equipped with double-scattering (DS) delivery and multi-leaf collimation (MLC) could produce highly conformal dose distributions (and possibly eliminate the need for patient-specific compensators) with a clever use of their MLC field shaping, provided that an optimal inverse TPS is developed. Methods. A prototype TPS was developed in MATLAB. The dose calculation process was based on a fluence-dose algorithm on an adaptive divergent grid. A database of dose kernels was precalculated in order tomore » allow for fast variations of the field range and modulation during optimization. The inverse planning process was based on the adaptive simulated annealing approach, with direct aperture optimization of the MLC leaves. A dosimetry study was performed on a phantom formed by three concentrical semicylinders separated by 5 mm, of which the inner-most and outer-most were regarded as organs at risk (OARs), and the middle one as the PTV. We chose a concave target (which is not treatable with conventional DS fields) to show the potential of our technique. The optimizer was configured to minimize the mean dose to the OARs while keeping a good coverage of the target. Results. The plan produced by the prototype TPS achieved a conformity index of 1.34, with the mean doses to the OARs below 78% of the prescribed dose. This Result is hardly achievable with traditional conformal DS technique with compensators, and it compares to what can be obtained with PBS. Conclusion. It is certainly feasible to produce IMPT fields with MLC passive scattering fields. With a fully developed treatment planning system, the produced plans can be superior to traditional DS plans in terms of plan conformity and dose to organs at risk.« less
Sandrini, Emmily Santos; da Silva, Ademir Xavier; da Silva, Claudia Menezes
2018-05-25
The collimator in volumetric modulated arc therapy (VMAT) planning is rotated to minimize tongue-and-groove effect and interleaf leakage. The aim of this study was to evaluate the effect of collimator angle on the dosimetric results of VMAT plan for patients with lung cancer undergoing stereotactic body radiation therapy (SBRT) treatment. In the present investigation discrepancies between the calculated dose distributions with different collimators rotations have been studied. Six different collimators rotations (0, 10, 20, 30, 45 and 90 degrees), 6 MV x-ray non-flattened from a TrueBeam accelerator equipped with High-Definition 120MLC were used, as well as two planning technique: One full arc and two half arcs. For rotation between 10 and 45 degrees there were not found a significant variation meanwhile collimator rotation of 0 and 90° may impact on dose distribution resulting in unexpected dose variation. The homogeneity, conformity and gradient indexes as well as dose in organs at risk reached their best values with the half arcs technique and collimator angle between 20° and 45°. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seals, Kevin F., E-mail: KSeals@mednet.ucla.edu; Lee, Edward W., E-mail: EdwardLee@mednet.ucla.edu; Cagnon, Christopher H., E-mail: CCagnon@mednet.ucla.edu
Extensive research supports an association between radiation exposure and cataractogenesis. New data suggests that radiation-induced cataracts may form stochastically, without a threshold and at low radiation doses. We first review data linking cataractogenesis with interventional work. We then analyze the lens dose typical of various procedures, factors modulating dose, and predicted annual dosages. We conclude by critically evaluating the literature describing techniques for lens protection, finding that leaded eyeglasses may offer inadequate protection and exploring the available data on alternative strategies for cataract prevention.
Kumar, S.A. Syam; Holla, Raghavendra; Sukumar, Prabakar; Padmanaban, Sriram; Vivekanandan, Nagarajan
2012-01-01
Aim To compare and evaluate the performance of two different volumetric modulated arc therapy delivery techniques. Background Volumetric modulated arc therapy is a novel technique that has recently been made available for clinical use. Planning and dosimetric comparison study was done for Elekta VMAT and Varian RapidArc for different treatment sites. Materials and methods Ten patients were selected for the planning comparison study. This includes 2 head and neck, 2 oesophagus, 1 bladder, 3 cervix and 2 rectum cases. Total dose of 50 Gy was given for all the plans. All plans were done for RapidArc using Eclipse and for Elekta VMAT with Monaco treatment planning system. All plans were generated with 6 MV X-rays for both RapidArc and Elekta VMAT. Plans were evaluated based on the ability to meet the dose volume histogram, dose homogeneity index, radiation conformity index, estimated radiation delivery time, integral dose and monitor units needed to deliver the prescribed dose. Results RapidArc plans achieved the best conformity (CI95% = 1.08 ± 0.07) while Elekta VMAT plans were slightly inferior (CI95% = 1.10 ± 0.05). The in-homogeneity in the PTV was highest with Elekta VMAT with HI equal to 0.12 ± 0.02 Gy when compared to RapidArc with 0.08 ± 0.03. Significant changes were observed between the RapidArc and Elekta VMAT plans in terms of the healthy tissue mean dose and integral dose. Elekta VMAT plans show a reduction in the healthy tissue mean dose (6.92 ± 2.90) Gy when compared to RapidArc (7.83 ± 3.31) Gy. The integral dose is found to be inferior with Elekta VMAT (11.50 ± 6.49) × 104 Gy cm3 when compared to RapidArc (13.11 ± 7.52) × 104 Gy cm3. Both Varian RapidArc and Elekta VMAT respected the planning objective for all organs at risk. Gamma analysis result for the pre-treatment quality assurance shows good agreement between the planned and delivered fluence for 3 mm DTA, 3% DD for all the evaluated points inside the PTV, for both VMAT and RapidArc techniques. Conclusion The study concludes that a variable gantry speed with variable dose rate is important for efficient arc therapy delivery. RapidArc presents a slight improvement in the OAR sparing with better target coverage when compared to Elekta VMAT. Trivial differences were noted in all the plans for organ at risk but the two techniques provided satisfactory conformal avoidance and conformation. PMID:24416535
Incorporating uncertainty and motion in Intensity Modulated Radiation Therapy treatment planning
NASA Astrophysics Data System (ADS)
Martin, Benjamin Charles
In radiation therapy, one seeks to destroy a tumor while minimizing the damage to surrounding healthy tissue. Intensity Modulated Radiation Therapy (IMRT) uses overlapping beams of x-rays that add up to a high dose within the target and a lower dose in the surrounding healthy tissue. IMRT relies on optimization techniques to create high quality treatments. Unfortunately, the possible conformality is limited by the need to ensure coverage even if there is organ movement or deformation. Currently, margins are added around the tumor to ensure coverage based on an assumed motion range. This approach does not ensure high quality treatments. In the standard IMRT optimization problem, an objective function measures the deviation of the dose from the clinical goals. The optimization then finds the beamlet intensities that minimize the objective function. When modeling uncertainty, the dose delivered from a given set of beamlet intensities is a random variable. Thus the objective function is also a random variable. In our stochastic formulation we minimize the expected value of this objective function. We developed a problem formulation that is both flexible and fast enough for use on real clinical cases. While working on accelerating the stochastic optimization, we developed a technique of voxel sampling. Voxel sampling is a randomized algorithms approach to a steepest descent problem based on estimating the gradient by only calculating the dose to a fraction of the voxels within the patient. When combined with an automatic sampling rate adaptation technique, voxel sampling produced an order of magnitude speed up in IMRT optimization. We also develop extensions of our results to Intensity Modulated Proton Therapy (IMPT). Due to the physics of proton beams the stochastic formulation yields visibly different and better plans than normal optimization. The results of our research have been incorporated into a software package OPT4D, which is an IMRT and IMPT optimization tool that we developed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao Junsheng; Roeske, John C.; Chmura, Steve J.
2009-07-01
The standard treatment technique used for whole-breast irradiation can result in undesirable dose distributions in the treatment site, leading to skin reaction/fibrosis and pulmonary and cardiac toxicities. Hence, the technique has evolved from conventional wedged technique (CWT) to segment intensity-modulated radiation therapy (SIMRT) and beamlet IMRT (IMRT). However, these newer techniques feature more highly modulated dose distributions that may be affected by respiration. The purpose of this work was to conduct a simple study of the clinical impact of respiratory motion on breast radiotherapy dose distributions for the three treatment planning techniques. The ultimate goal was to determine which patientsmore » would benefit most from the use of motion management. Eight patients with early-stage breast cancer underwent a free-breathing (FB) computed tomography (CT) simulation, with medial and lateral markers placed on the skin. Two additional CT scans were obtained at the end of inspiration (EI) and the end of expiration (EE). The FB-CT scan was used to develop treatment plans using each technique. Each plan was then applied to EI and EE-CT scans. Compared with the FB CT scan, the medial markers moved up to 1.8 cm in the anterior-superior direction at the end of inspiration (EI-scan), and on average 8 mm. The CWT and SIMRT techniques were not 'sensitive' to respiratory motion, because the % clinical target volume (CTV) receiving 95% of the prescription dose (V{sub 95%}) remained constant for both techniques. For patients that had large respiratory motion indicated by marker movement >0.6 cm, differences in coverage of the CTV at the V100% between FB and EI for beamlet IMRT plans were on the order of >10% and up to 18%. A linear model was developed to relate the dosimetric coverage difference introduced by respiration with the motion information. With this model, the dosimetric coverage difference introduced by respiratory motion could be evaluated during patient CT simulation. An appropriate treatment method can be chosen after the simulation.« less
Influence of different treatment techniques on radiation dose to the LAD coronary artery
Nieder, Carsten; Schill, Sabine; Kneschaurek, Peter; Molls, Michael
2007-01-01
Background The purpose of this proof-of-principle study was to test the ability of an intensity-modulated radiotherapy (IMRT) technique to reduce the radiation dose to the heart plus the left ventricle and a coronary artery. Radiation-induced heart disease might be a serious complication in long-term cancer survivors. Methods Planning CT scans from 6 female patients were available. They were part of a previous study of mediastinal IMRT for target volumes used in lymphoma treatment that included 8 patients and represent all cases where the left anterior descending coronary artery (LAD) could be contoured. We compared 6 MV AP/PA opposed fields to a 3D conformal 4-field technique and an optimised 7-field step-and-shoot IMRT technique and evaluated DVH's for several structures. The planning system was BrainSCAN 5.21 (BrainLAB, Heimstetten, Germany). Results IMRT maintained target volume coverage but resulted in better dose reduction to the heart, left ventricle and LAD than the other techniques. Selective dose reduction could be accomplished, although not to the degree initially attempted. The median LAD dose was approximately 50% lower with IMRT. In 5 out of 6 patients, IMRT was the best technique with regard to heart sparing. Conclusion IMRT techniques are able to reduce the radiation dose to the heart. In addition to dose reduction to whole heart, individualised dose distributions can be created, which spare, e.g., one ventricle plus one of the coronary arteries. Certain patients with well-defined vessel pathology might profit from an approach of general heart sparing with further selective dose reduction, accounting for the individual aspects of pre-existing damage. PMID:17547777
Padole, Atul; Deedar Ali Khawaja, Ranish; Otrakji, Alexi; Zhang, Da; Liu, Bob; Xu, X George; Kalra, Mannudeep K
2016-05-01
The aim of this study was to compare the directly measured and the estimated computed tomography (CT) organ doses obtained from commercial radiation dose-tracking (RDT) software for CT performed with modulated tube current or automatic exposure control (AEC) technique and fixed tube current (mAs). With the institutional review board (IRB) approval, the ionization chambers were surgically implanted in a human cadaver (88 years old, male, 68 kg) in six locations such as liver, stomach, colon, left kidney, small intestine, and urinary bladder. The cadaver was scanned with routine abdomen pelvis protocol on a 128-slice, dual-source multidetector computed tomography (MDCT) scanner using both AEC and fixed mAs. The effective and quality reference mAs of 100, 200, and 300 were used for AEC and fixed mAs, respectively. Scanning was repeated three times for each setting, and measured and estimated organ doses (from RDT software) were recorded (N = 3*3*2 = 18). Mean CTDIvol for AEC and fixed mAs were 4, 8, 13 mGy and 7, 14, 21 mGy, respectively. The most estimated organ doses were significantly greater (P < 0.01) than the measured organ doses for both AEC and fixed mAs. At AEC, the mean estimated organ doses (for six organs) were 14.7 mGy compared to mean measured organ doses of 12.3 mGy. Similarly, at fixed mAs, the mean estimated organ doses (for six organs) were 24 mGy compared to measured organ doses of 22.3 mGy. The differences among the measured and estimated organ doses were higher for AEC technique compared to the fixed mAs for most organs (P < 0.01). The most CT organ doses estimated from RDT software are greater compared to directly measured organ doses, particularly when AEC technique is used for CT scanning. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Palmer, Antony L; Nash, David; Kearton, John R; Jafari, Shakardokht M; Muscat, Sarah
2017-12-01
External dosimetry audit is valuable for the assurance of radiotherapy quality. However, motion management has not been rigorously audited, despite its complexity and importance for accuracy. We describe the first end-to-end dosimetry audit for non-SABR (stereotactic ablative body radiotherapy) lung treatments, measuring dose accumulation in a moving target, and assessing adequacy of target dose coverage. A respiratory motion lung-phantom with custom-designed insert was used. Dose was measured with radiochromic film, employing triple-channel dosimetry and uncertainty reduction. The host's 4DCT scan, outlining and planning techniques were used. Measurements with the phantom static and then moving at treatment delivery separated inherent treatment uncertainties from motion effects. Calculated and measured dose distributions were compared by isodose overlay, gamma analysis, and we introduce the concept of 'dose plane histograms' for clinically relevant interpretation of film dosimetry. 12 radiotherapy centres and 19 plans were audited: conformal, IMRT (intensity modulated radiotherapy) and VMAT (volumetric modulated radiotherapy). Excellent agreement between planned and static-phantom results were seen (mean gamma pass 98.7% at 3% 2 mm). Dose blurring was evident in the moving-phantom measurements (mean gamma pass 88.2% at 3% 2 mm). Planning techniques for motion management were adequate to deliver the intended moving-target dose coverage. A novel, clinically-relevant, end-to-end dosimetry audit of motion management strategies in radiotherapy is reported. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, X. Sharon, E-mail: xqi@mednet.ucla.edu; Ruan, Dan; Lee, Steve P.
2015-03-15
Purpose: To develop a practical workflow for retrospectively analyzing target and normal tissue dose–volume endpoints for various intensity modulated radiation therapy (IMRT) delivery techniques; to develop technique-specific planning goals to improve plan consistency and quality when feasible. Methods and Materials: A total of 165 consecutive head-and-neck patients from our patient registry were selected and retrospectively analyzed. All IMRT plans were generated using the same dose–volume guidelines for TomoTherapy (Tomo, Accuray), TrueBeam (TB, Varian) using fixed-field IMRT (TB-IMRT) or RAPIDARC (TB-RAPIDARC), or Siemens Oncor (Siemens-IMRT, Siemens). A MATLAB-based dose–volume extraction and analysis tool was developed to export dosimetric endpoints for eachmore » patient. With a fair stratification of patient cohort, the variation of achieved dosimetric endpoints was analyzed among different treatment techniques. Upon identification of statistically significant variations, technique-specific planning goals were derived from dynamically accumulated institutional data. Results: Retrospective analysis showed that although all techniques yielded comparable target coverage, the doses to the critical structures differed. The maximum cord doses were 34.1 ± 2.6, 42.7 ± 2.1, 43.3 ± 2.0, and 45.1 ± 1.6 Gy for Tomo, TB-IMRT, TB-RAPIDARC, and Siemens-IMRT plans, respectively. Analyses of variance showed significant differences for the maximum cord doses but no significant differences for other selected structures among the investigated IMRT delivery techniques. Subsequently, a refined technique-specific dose–volume guideline for maximum cord dose was derived at a confidence level of 95%. The dosimetric plans that failed the refined technique-specific planning goals were reoptimized according to the refined constraints. We observed better cord sparing with minimal variations for the target coverage and other organ at risk sparing for the Tomo cases, and higher parotid doses for C-arm linear accelerator–based IMRT and RAPIDARC plans. Conclusion: Patient registry–based processes allowed easy and systematic dosimetric assessment of treatment plan quality and consistency. Our analysis revealed the dependence of certain dosimetric endpoints on the treatment techniques. Technique-specific refinement of planning goals may lead to improvement in plan consistency and plan quality.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Jia-Fu; Yeh, Dah-Cherng; Yeh, Hui-Ling, E-mail: hlyeh@vghtc.gov.tw
2015-10-01
To compare the dosimetric performance of 3 different treatment techniques: hybrid volumetric-modulated arc therapy (hybrid-VMAT), pure-VMAT, and fixed-field intensity-modulated radiation therapy (F-IMRT) for whole-breast irradiation of left-sided early breast cancer. The hybrid-VMAT treatment technique and 2 other treatment techniques—pure-VMAT and F-IMRT—were compared retrospectively in 10 patients with left-sided early breast cancer. The treatment plans of these patients were replanned using the same contours based on the original computed tomography (CT) data sets. Dosimetric parameters were calculated to evaluate plan quality. Total monitor units (MUs) and delivery time were also recorded and evaluated. The hybrid-VMAT plan generated the best results inmore » dose coverage of the target and the dose uniformity inside the target (p < 0.0001 for conformal index [CI]; p = 0.0002 for homogeneity index [HI] of planning target volume [PTV]{sub 50.4} {sub Gy} and p < 0.0001 for HI of PTV{sub 62} {sub Gy}). Volumes of ipsilateral lung irradiated to doses of 20 Gy (V{sub 20} {sub Gy}) and 5 Gy (V{sub 5} {sub Gy}) by the hybrid-VMAT plan were significantly less than those of the F-IMRT and the pure-VMAT plans. The volume of ipsilateral lung irradiated to a dose of 5 Gy was significantly less using the hybrid-VMAT plan than that using the F-IMRT or the pure-VMAT plan. The total mean MUs for the hybrid-VMAT plan were significantly less than those for the F-IMRT or the pure-VMAT plan. The mean machine delivery time was 3.23 ± 0.29 minutes for the hybrid-VMAT plans, which is longer than that for the pure-VMAT plans but shorter than that for the F-IMRT plans. The hybrid-VMAT plan is feasible for whole-breast irradiation of left-sided early breast cancer.« less
Design of a modulated orthovoltage stereotactic radiosurgery system.
Fagerstrom, Jessica M; Bender, Edward T; Lawless, Michael J; Culberson, Wesley S
2017-07-01
To achieve stereotactic radiosurgery (SRS) dose distributions with sharp gradients using orthovoltage energy fluence modulation with inverse planning optimization techniques. A pencil beam model was used to calculate dose distributions from an orthovoltage unit at 250 kVp. Kernels for the model were derived using Monte Carlo methods. A Genetic Algorithm search heuristic was used to optimize the spatial distribution of added tungsten filtration to achieve dose distributions with sharp dose gradients. Optimizations were performed for depths of 2.5, 5.0, and 7.5 cm, with cone sizes of 5, 6, 8, and 10 mm. In addition to the beam profiles, 4π isocentric irradiation geometries were modeled to examine dose at 0.07 mm depth, a representative skin depth, for the low energy beams. Profiles from 4π irradiations of a constant target volume, assuming maximally conformal coverage, were compared. Finally, dose deposition in bone compared to tissue in this energy range was examined. Based on the results of the optimization, circularly symmetric tungsten filters were designed to modulate the orthovoltage beam across the apertures of SRS cone collimators. For each depth and cone size combination examined, the beam flatness and 80-20% and 90-10% penumbrae were calculated for both standard, open cone-collimated beams as well as for optimized, filtered beams. For all configurations tested, the modulated beam profiles had decreased penumbra widths and flatness statistics at depth. Profiles for the optimized, filtered orthovoltage beams also offered decreases in these metrics compared to measured linear accelerator cone-based SRS profiles. The dose at 0.07 mm depth in the 4π isocentric irradiation geometries was higher for the modulated beams compared to unmodulated beams; however, the modulated dose at 0.07 mm depth remained <0.025% of the central, maximum dose. The 4π profiles irradiating a constant target volume showed improved statistics for the modulated, filtered distribution compared to the standard, open cone-collimated distribution. Simulations of tissue and bone confirmed previously published results that a higher energy beam (≥ 200 keV) would be preferable, but the 250 kVp beam was chosen for this work because it is available for future measurements. A methodology has been described that may be used to optimize the spatial distribution of added filtration material in an orthovoltage SRS beam to result in dose distributions with decreased flatness and penumbra statistics compared to standard open cones. This work provides the mathematical foundation for a novel, orthovoltage energy fluence-modulated SRS system. © 2017 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mestrovic, Ante; Clark, Brenda G.; Department of Medical Physics, British Columbia Cancer Agency, Vancouver, British Columbia
2005-11-01
Purpose: To develop a method of predicting the values of dose distribution parameters of different radiosurgery techniques for treatment of arteriovenous malformation (AVM) based on internal geometric parameters. Methods and Materials: For each of 18 previously treated AVM patients, four treatment plans were created: circular collimator arcs, dynamic conformal arcs, fixed conformal fields, and intensity-modulated radiosurgery. An algorithm was developed to characterize the target and critical structure shape complexity and the position of the critical structures with respect to the target. Multiple regression was employed to establish the correlation between the internal geometric parameters and the dose distribution for differentmore » treatment techniques. The results from the model were applied to predict the dosimetric outcomes of different radiosurgery techniques and select the optimal radiosurgery technique for a number of AVM patients. Results: Several internal geometric parameters showing statistically significant correlation (p < 0.05) with the treatment planning results for each technique were identified. The target volume and the average minimum distance between the target and the critical structures were the most effective predictors for normal tissue dose distribution. The structure overlap volume with the target and the mean distance between the target and the critical structure were the most effective predictors for critical structure dose distribution. The predicted values of dose distribution parameters of different radiosurgery techniques were in close agreement with the original data. Conclusions: A statistical model has been described that successfully predicts the values of dose distribution parameters of different radiosurgery techniques and may be used to predetermine the optimal technique on a patient-to-patient basis.« less
Computed tomography automatic exposure control techniques in 18F-FDG oncology PET-CT scanning.
Iball, Gareth R; Tout, Deborah
2014-04-01
Computed tomography (CT) automatic exposure control (AEC) systems are now used in all modern PET-CT scanners. A collaborative study was undertaken to compare AEC techniques of the three major PET-CT manufacturers for fluorine-18 fluorodeoxyglucose half-body oncology imaging. An audit of 70 patients was performed for half-body CT scans taken on a GE Discovery 690, Philips Gemini TF and Siemens Biograph mCT (all 64-slice CT). Patient demographic and dose information was recorded and image noise was calculated as the SD of Hounsfield units in the liver. A direct comparison of the AEC systems was made by scanning a Rando phantom on all three systems for a range of AEC settings. The variation in dose and image quality with patient weight was significantly different for all three systems, with the GE system showing the largest variation in dose with weight and Philips the least. Image noise varied with patient weight in Philips and Siemens systems but was constant for all weights in GE. The z-axis mA profiles from the Rando phantom demonstrate that these differences are caused by the nature of the tube current modulation techniques applied. The mA profiles varied considerably according to the AEC settings used. CT AEC techniques from the three manufacturers yield significantly different tube current modulation patterns and hence deliver different doses and levels of image quality across a range of patient weights. Users should be aware of how their system works and of steps that could be taken to optimize imaging protocols.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pacaci, P; Cebe, M; Mabhouti, H
Purpose: In this study, dosimetric comparison of field in field (FIF) and intensity modulated radiation therapy (IMRT) techniques used for treatment of whole breast radiotherapy (WBRT) were made. The dosimetric accuracy of treatment planning system (TPS) for Anisotropic Analytical Algorithm (AAA) and Acuros XB (AXB) algorithms in predicting PTV and OAR doses was also investigated. Methods: Two different treatment planning techniques of left-sided breast cancer were generated for rando phantom. FIF and IMRT plans were compared for doses in PTV and OAR volumes including ipsilateral lung, heart, left ascending coronary artery, contralateral lung and the contralateral breast. PTV and OARsmore » doses and homogeneity and conformality indexes were compared between two techniques. The accuracy of TPS dose calculation algorithms was tested by comparing PTV and OAR doses measured by thermoluminescent dosimetry with the dose calculated by the TPS using AAA and AXB for both techniques. Results: IMRT plans had better conformality and homogeneity indexes than FIF technique and it spared OARs better than FIF. While both algorithms overestimated PTV doses they underestimated all OAR doses. For IMRT plan, PTV doses, overestimation up to 2.5 % was seen with AAA algorithm but it decreased to 1.8 % when AXB algorithm was used. Based on the results of the anthropomorphic measurements for OAR doses, underestimation greater than 7 % is possible by the AAA. The results from the AXB are much better than the AAA algorithm. However, underestimations of 4.8 % were found in some of the points even for AXB. For FIF plan, similar trend was seen for PTV and OARs doses in both algorithm. Conclusion: When using the Eclipse TPS for breast cancer, AXB the should be used instead of the AAA algorithm, bearing in mind that the AXB may still underestimate all OAR doses.« less
Skin dose for head and neck cancer patients treated with intensity-modulated radiation therapy(IMRT)
NASA Astrophysics Data System (ADS)
Fu, Hsiao-Ju; Li, Chi-Wei; Tsai, Wei-Ta; Chang, Chih-Chia; Tsang, Yuk-Wah
2017-11-01
The reliability of thermoluminescent dosimeters (ultrathin TLD) and ISP Gafchromic EBT2 film to measure the surface dose in phantom and the skin dose in head-and-neck patients treated with intensity-modulated radiation therapy technique(IMRT) is the research focus. Seven-field treatment plans with prescribed dose of 180 cGy were performed on Eclipse treatment planning system which utilized pencil beam calculation algorithm(PBC). In calibration tests, the variance coefficient of the ultrathin TLDs were within 3%. The points on the calibration curve of the Gafchromic film was within 1% variation. Five measurements were taken on phantom using ultrathin TLD and EBT2 film respectively. The measured mean surface doses between ultrathin TLD or EBT2 film were within 5% deviation. Skin doses of 6 patients were measured for initial 5 fractions and the mean dose per-fraction was calculated. If the extrapolated doses for 30 fractions were below 4000 cGy, the skin reaction grading observed according to Radiation Therapy Oncology Group (RTOG) was either grade 1 or grade 2. If surface dose exceeded 5000 cGy in 32 fractions, then grade 3 skin reactions were observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, Jian-Jian; Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai
2014-07-01
The purpose is to dosimetrically compare the following 3 delivery techniques: 3-dimensional conformal radiation therapy (3D-CRT), intensity-modulated arc therapy (IMRT), and volumetric-modulated arc therapy (V-MAT) in the treatment of accelerated partial-breast irradiation (APBI). Overall, 16 patients with T1/2N0 breast cancer were treated with 3D-CRT (multiple, noncoplanar photon fields) on the RTOG 0413 partial-breast trial. These cases were subsequently replanned using static gantry IMRT and V-MAT technology to understand dosimetric differences among these 3 techniques. Several dosimetric parameters were used in plan quality evaluation, including dose conformity index (CI) and dose-volume histogram analysis of normal tissue coverage. Quality assurance studies includingmore » gamma analysis were performed to compare the measured and calculated dose distributions. The IMRT and V-MAT plans gave more conformal target dose distributions than the 3D-CRT plans (p < 0.05 in CI). The volume of ipsilateral breast receiving 5 and 10 Gy was significantly less using the V-MAT technique than with either 3D-CRT or IMRT (p < 0.05). The maximum lung dose and the ipsilateral lung volume receiving 10 (V{sub 10}) or 20 Gy (V{sub 20}) were significantly less with both V-MAT and IMRT (p < 0.05). The IMRT technique was superior to 3D-CRT and V-MAT of low dose distributions in ipsilateral lung (p < 0.05 in V{sub 5} and D{sub 5}). The total mean monitor units (MUs) for V-MAT (621.0 ± 111.9) were 12.2% less than those for 3D-CRT (707.3 ± 130.9) and 46.5% less than those for IMRT (1161.4 ± 315.6) (p < 0.05). The average machine delivery time was 1.5 ± 0.2 minutes for the V-MAT plans, 7.0 ± 1.6 minutes for the 3D-CRT plans, and 11.5 ± 1.9 minutes for the IMRT plans, demonstrating much less delivery time for V-MAT. Based on this preliminary study, V-MAT and IMRT techniques offer improved dose conformity as compared with 3D-CRT techniques without increasing dose to the ipsilateral lung. In terms of MU and delivery time, V-MAT is significantly more efficient for APBI than for conventional 3D-CRT and static-beam IMRT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, L; Eldib, A; Li, J
Purpose: Uneven nose surfaces and air cavities underneath and the use of bolus present complexity and dose uncertainty when using a single electron energy beam to plan treatments of nose skin with a pencil beam-based planning system. This work demonstrates more accurate dose calculation and more optimal planning using energy and intensity modulated electron radiotherapy (MERT) delivered with a pMLC. Methods: An in-house developed Monte Carlo (MC)-based dose calculation/optimization planning system was employed for treatment planning. Phase space data (6, 9, 12 and 15 MeV) were used as an input source for MC dose calculations for the linac. To reducemore » the scatter-caused penumbra, a short SSD (61 cm) was used. Our previous work demonstrates good agreement in percentage depth dose and off-axis dose between calculations and film measurement for various field sizes. A MERT plan was generated for treating the nose skin using a patient geometry and a dose volume histogram (DVH) was obtained. The work also shows the comparison of 2D dose distributions between a clinically used conventional single electron energy plan and the MERT plan. Results: The MERT plan resulted in improved target dose coverage as compared to the conventional plan, which demonstrated a target dose deficit at the field edge. The conventional plan showed higher dose normal tissue irradiation underneath the nose skin while the MERT plan resulted in improved conformity and thus reduces normal tissue dose. Conclusion: This preliminary work illustrates that MC-based MERT planning is a promising technique in treating nose skin, not only providing more accurate dose calculation, but also offering an improved target dose coverage and conformity. In addition, this technique may eliminate the necessity of bolus, which often produces dose delivery uncertainty due to the air gaps that may exist between the bolus and skin.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harpool, K; Schnell, E; Herman, T
Purpose: To determine from retrospective study the most appropriate technique for targeting small borderline operable pancreatic cancer surrounding blood vessels by evaluating the dosimetry and normal tissue sparing achievable using Volumetric Modulated Arc Therapy (VMAT) and Intensity Modulated Radiation Therapy (IMRT). Methods: Treatment plans from ten patients who have undergone treatment with a prescribed dose of 4950 cGy, at 275 cGy per fraction, were analyzed. All plans were replanned using Eclipse TPS (Varian Medical Systems, Palo Alto, CA) with complementary VMAT or IMRT techniques to obtain paired data sets for comparison. The coverage to at least 95% of the plannedmore » target volume (PTV) was normalized to receive 100% of the prescription dose. The normal tissue constraints followed the quantitative analysis of normal tissue effects in the clinic (QUANTEC) guidelines and the organs at risks (OARs) were liver, kidneys, spinal cord and bowel. The plan evaluation was based on conformity index (CI), homogeneity index (HI), uniformity index (UI), DVH parameters, and student’s-t statistics (2 tails). Results: The VMAT technique delivered less maximum dose to the right kidney, left kidney, total kidney, liver, spinal cord, and bowel by 9.3%, 5.9%, 6.7%, 3.9%, 15.1%, 3.9%, and 4.3%, respectively. The averaged V15 for the total kidney was 10.21% for IMRT and 7.29% for VMAT. The averaged V20 for the bowel was 19.89% for IMRT and 14.06% for VMAT. On average, the CI for IMRT was 1.20 and 1.16 for VMAT (p = 0.20). The HI was 0.08 for both techniques (p = 0.91) and UI was 1.05 and 1.06 for IMRT and VMAT respectively (p = 0.59). Conclusion: Both techniques achieve adequate PTV coverage. Although VMAT techniques show better normal tissue sparing from excessive dose, no significant differences were observed. Slight discrepancies may rise from different versions of calculation algorithms.« less
Improvement of sub-20nm pattern quality with dose modulation technique for NIL template production
NASA Astrophysics Data System (ADS)
Yagawa, Keisuke; Ugajin, Kunihiro; Suenaga, Machiko; Kanamitsu, Shingo; Motokawa, Takeharu; Hagihara, Kazuki; Arisawa, Yukiyasu; Kobayashi, Sachiko; Saito, Masato; Ito, Masamitsu
2016-04-01
Nanoimprint lithography (NIL) technology is in the spotlight as a next-generation semiconductor manufacturing technique for integrated circuits at 22 nm and beyond. NIL is the unmagnified lithography technique using template which is replicated from master templates. On the other hand, master templates are currently fabricated by electron-beam (EB) lithography[1]. In near future, finer patterns less than 15nm will be required on master template and EB data volume increases exponentially. So, we confront with a difficult challenge. A higher resolution EB mask writer and a high performance fabrication process will be required. In our previous study, we investigated a potential of photomask fabrication process for finer patterning and achieved 15.5nm line and space (L/S) pattern on template by using VSB (Variable Shaped Beam) type EB mask writer and chemically amplified resist. In contrast, we found that a contrast loss by backscattering decreases the performance of finer patterning. For semiconductor devices manufacturing, we must fabricate complicated patterns which includes high and low density simultaneously except for consecutive L/S pattern. Then it's quite important to develop a technique to make various size or coverage patterns all at once. In this study, a small feature pattern was experimentally formed on master template with dose modulation technique. This technique makes it possible to apply the appropriate exposure dose for each pattern size. As a result, we succeed to improve the performance of finer patterning in bright field area. These results show that the performance of current EB lithography process have a potential to fabricate NIL template.
Wang, Juanqi; Yang, Zhaozhi; Hu, Weigang; Chen, Zhi; Yu, Xiaoli; Guo, Xiaomao
2017-05-16
The purpose of this study is to evaluate the intensity modulated radiotherapy (IMRT) with the fixed collimator jaws technique (FJT) for the left breast and regional lymph node. The targeted breast tissue and the lymph nodes, and the normal tissues were contoured for 16 left-sided breast cancer patients previously treated with radiotherapy after lumpectomy. For each patient, treatment plans using different planning techniques, i.e., volumetric modulated arc therapy (VMAT), tangential IMRT (tangential-IMRT), and IMRT with FJT (FJT-IMRT) were developed for dosimetric comparisons. A dose of 50Gy was prescribed to the planning target volume. The dose-volume histograms were generated, and the paired t-test was used to analyze the dose differences. FJT-IMRT had similar mean heart volume receiving 30Gy (V30 Gy) with tangential-IMRT (1.5% and 1.6%, p = 0.41), but inferior to the VMAT (0.8%, p < 0.001). In the average heart mean dose comparison, FJT-IMRT had the lowest value, and it was 0.6Gy lower than that for the VMAT plans (p < 0.01). A significant dose increase in the contralateral breast and lung was observed in VMAT plans. Compared with tangential-IMRT and VMAT plans, FJT-IMRT reduced the mean dose of thyroid, humeral head and cervical esophageal by 47.6% (p < 0.01) and 45.7% (p < 0.01), 74.3% (p =< 0.01) and 73% (p =< 0.01), and 26.7% (p =< 0.01) and 29.2% (p =< 0.01). In conclusion, compared with tangential-IMRT and VMAT, FJT-IMRT plan has the lowest thyroid, humeral head and cervical esophageal mean dose and it can be a reasonable treatment option for a certain subgroup of patients, such as young left-breast cancer patients and/or patients with previous thyroid disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Yuchuan; Deng, Min; Zhou, Xiaojuan
To evaluate the lung sparing in intensity-modulated radiation therapy (IMRT) for patients with upper thoracic esophageal tumors extending inferiorly to the thorax by different beam arrangement. Overall, 15 patient cases with cancer of upper thoracic esophagus were selected for a retrospective treatment-planning study. Intensity-modulated radiation therapy plans using 4, 5, and 7 beams (4B, 5B, and 7B) were developed for each patient by direct machine parameter optimization (DMPO). All plans were evaluated with respect to dose volumes to irradiated targets and normal structures, with statistical comparisons made between 4B with 5B and 7B intensity-modulated radiation therapy plans. Differences among plansmore » were evaluated using a two-tailed Friedman test at a statistical significance of p < 0.05. The maximum dose, average dose, and the conformity index (CI) of planning target volume 1 (PTV1) were similar for 3 plans for each case. No significant difference of coverage for planning target volume 1 and maximum dose for spinal cords were observed among 3 plans in present study (p > 0.05). The average V{sub 5}, V{sub 13}, V{sub 20}, mean lung dose, and generalized equivalent uniform dose (gEUD) for the total lung were significantly lower in 4B-plans than those data in 5B-plans and 7B-plans (p < 0.01). Although the average V{sub 30} for the total lung were significantly higher in 4B-plans than those in 5B-plans and 7B-plans (p < 0.05). In addition, when comparing with the 4B-plans, the conformity/heterogeneity index of the 5B- and 7B-plans were significantly superior (p < 0.05). The 4B-intensity-modulated radiation therapy plan has advantage to address the specialized problem of lung sparing to low- and intermediate-dose exposure in the thorax when dealing with relative long tumors extended inferiorly to the thoracic esophagus for upper esophageal carcinoma with the cost for less conformity. Studies are needed to compare the superiority of volumetric modulated arc therapy with intensity-modulated radiation therapy technique.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, H; Zhao, L; Prabhu, K
2015-06-15
Purpose This study compares the dosimetric parameters in treatment of unresectable hepatocellular carcinoma between intensity modulated proton therapy (IMPT) and intensity modulated x-ray radiation therapy (IMRT). Methods and Materials: We studied four patients treated at our institution. All patients were simulated supine with 4D-CT using a GE light speed simulator with a maximum slice thickness of 3mm. The average CT and an internal target volume to account for respiration motion were used for planning. Both IMRT and IMPT plans were created using Elekta’s CMSXiO treatment planning system (TPS). The prescription dose was 58.05 CGE in 15 fractions. The IMRT plansmore » had five beams with combination of co-planar and non-co-planar. The IMPT plans had 2 to 3 beams. Dose comparison was performed based on the averaged results of the four patients. Results The mean dose and V95% to PTV were 58.24CGE, 98.57% for IMPT, versus 57.34CGE and 96.68% for IMRT, respectively. The V10, V20, V30 and mean dose of the normal liver for IMPT were 23.10%, 18.61%, 13.75% and 9.78 CGE; and 47.19%, 37.55%, 22.73% and 17.12CGE for IMRT. The spinal cord didn’t receive any dose in IMPT technique, but received a maximum of 18.77CGE for IMRT. The IMPT gave lower maximum dose to the stomach as compared to IMRT (19.26 vs 26.35CGE). V14 for left and right kidney was 0% and 2.32% for IMPT and 3.89% and 29.54% for IMRT. The mean dose, V35, V40 and V45 for small bowl were similar in both techniques, 0.74CGE, 6.27cc, 4.85cc and 3.53 cc for IMPT, 3.47CGE, 9.73cc, 7.61cc 5.35cc for IMRT. Conclusion Based on this study, IMPT plans gave less dose to the critical structures such as normal liver, kidney, stomach and spinal cord as compared to IMRT plans, potentially leading to less toxicity and providing better quality of life for patients.« less
NASA Astrophysics Data System (ADS)
Moshiri Sedeh, Nader
Intensity Modulated Radiation Therapy (IMRT) is a well-known type of external beam radiation therapy. The advancement in technology has had an inevitable influence in radiation oncology as well that has led to a newer and faster dose delivery technique called Volumetric Modulated Arc Therapy (VMAT). Since the presence of the VMAT modality in clinics in the late 2000, there have been many studies in order to compare the results of the VMAT modality with the current popular modality IMRT for various tumor sites in the body such as brain, prostate, head and neck, cervix and anal carcinoma. This is the first study to compare VMAT with IMRT for breast cancer. The results show that the RapidArc technique in Eclipse version 11 does not improve all aspects of the treatment plans for the breast cases automatically and easily, but it needs to be manipulated by extra techniques to create acceptable plans thus further research is needed.
Volumetric modulated arc therapy vs. IMRT for the treatment of distal esophageal cancer.
Van Benthuysen, Liam; Hales, Lee; Podgorsak, Matthew B
2011-01-01
Several studies have demonstrated that volumetric modulated arc therapy (VMAT) has the ability to reduce monitor units and treatment time when compared with intensity-modulated radiation therapy (IMRT). This study aims to demonstrate that VMAT is able to provide adequate organs at risk (OAR) sparing and planning target volume (PTV) coverage for adenocarcinoma of the distal esophagus while reducing monitor units and treatment time. Fourteen patients having been treated previously for esophageal cancer were planned using both VMAT and IMRT techniques. Dosimetric quality was evaluated based on doses to several OARs, as well as coverage of the PTV. Treatment times were assessed by recording the number of monitor units required for dose delivery. Body V(5) was also recorded to evaluate the increased volume of healthy tissue irradiated to low doses. Dosimetric differences in OAR sparing between VMAT and IMRT were comparable. PTV coverage was similar for the 2 techniques but it was found that IMRT was capable of delivering a slightly more homogenous dose distribution. Of the 14 patients, 12 were treated with a single arc and 2 were treated with a double arc. Single-arc plans reduced monitor units by 42% when compared with the IMRT plans. Double-arc plans reduced monitor units by 67% when compared with IMRT. The V(5) for the body was found to be 18% greater for VMAT than for IMRT. VMAT has the capability to decrease treatment times over IMRT while still providing similar OAR sparing and PTV coverage. Although there will be a smaller risk of patient movement during VMAT treatments, this advantage comes at the cost of delivering small doses to a greater volume of the patient. Copyright © 2011 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Trajectory optimization for dynamic couch rotation during volumetric modulated arc radiotherapy
NASA Astrophysics Data System (ADS)
Smyth, Gregory; Bamber, Jeffrey C.; Evans, Philip M.; Bedford, James L.
2013-11-01
Non-coplanar radiation beams are often used in three-dimensional conformal and intensity modulated radiotherapy to reduce dose to organs at risk (OAR) by geometric avoidance. In volumetric modulated arc radiotherapy (VMAT) non-coplanar geometries are generally achieved by applying patient couch rotations to single or multiple full or partial arcs. This paper presents a trajectory optimization method for a non-coplanar technique, dynamic couch rotation during VMAT (DCR-VMAT), which combines ray tracing with a graph search algorithm. Four clinical test cases (partial breast, brain, prostate only, and prostate and pelvic nodes) were used to evaluate the potential OAR sparing for trajectory-optimized DCR-VMAT plans, compared with standard coplanar VMAT. In each case, ray tracing was performed and a cost map reflecting the number of OAR voxels intersected for each potential source position was generated. The least-cost path through the cost map, corresponding to an optimal DCR-VMAT trajectory, was determined using Dijkstra’s algorithm. Results show that trajectory optimization can reduce dose to specified OARs for plans otherwise comparable to conventional coplanar VMAT techniques. For the partial breast case, the mean heart dose was reduced by 53%. In the brain case, the maximum lens doses were reduced by 61% (left) and 77% (right) and the globes by 37% (left) and 40% (right). Bowel mean dose was reduced by 15% in the prostate only case. For the prostate and pelvic nodes case, the bowel V50 Gy and V60 Gy were reduced by 9% and 45% respectively. Future work will involve further development of the algorithm and assessment of its performance over a larger number of cases in site-specific cohorts.
Quan, Kimmen; Xu, Karen M.; Lalonde, Ron; Horne, Zachary D.; Bernard, Mark E.; McCoy, Chuck; Clump, David A.; Burton, Steven A.; Heron, Dwight E.
2015-01-01
The aim of this study is to provide a practical approach to the planning technique and evaluation of plan quality for the multi-lesion, single-isocenter stereotactic ablative radiotherapy (SABR) of the lung. Eleven patients with two or more lung lesions underwent single-isocenter volumetric-modulated arc therapy (VMAT) radiosurgery or IMRS. All plans were normalized to the target maximum dose. For each plan, all targets were treated to the same dose. Plan conformity and dose gradient were maximized with dose-control tuning structures surrounding targets. For comparison, multi-isocenter plans were retrospectively created for four patients. Conformity index (CI), homogeneity index (HI), gradient index (GI), and gradient distance (GD) were calculated for each plan. V5, V10, and V20 of the lung and organs at risk (OARs) were collected. Treatment time and total monitor units (MUs) were also recorded. One patient had four lesions and the remainder had two lesions. Six patients received VMAT and five patients received intensity-modulated radiosurgery (IMRS). For those treated with VMAT, two patients received 3-arc VMAT and four received 2-arc VMAT. For those treated with IMRS, two patients were treated with 10 and 11 beams, respectively, and the rest received 12 beams. Prescription doses ranged from 30 to 54 Gy in three to five fractions. The median prescribed isodose line was 84% (range: 80–86%). The median maximum dose was 57.1 Gy (range: 35.7–65.1 Gy). The mean combined PTV was 49.57 cm3 (range: 14.90–87.38 cm3). For single-isocenter plans, the median CI was 1.15 (range: 0.97–1.53). The median HI was 1.19 (range: 1.16–1.28). The median GI was 4.60 (range: 4.16–7.37). The median maximum radiation dose (Dmax) to total lung was 55.6 Gy (range: 35.7–62.0 Gy). The median mean radiation dose to the lung (Dmean) was 4.2 Gy (range: 1.1–9.3 Gy). The median lung V5 was 18.7% (range: 3.8–41.3%). There was no significant difference in CI, HI, GI, GD, V5, V10, and V20 (lung, heart, trachea, esophagus, and spinal cord) between single-isocenter and multi-isocenter plans. This multi-lesion, single-isocenter lung SABR planning technique demonstrated excellent plan quality and clinical efficiency and is recommended for radiosurgical treatment of two or more lung targets for well-suited patients. PMID:26500888
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rupcich, Franco; Badal, Andreu; Kyprianou, Iacovos
Purpose: The purpose of this study was to develop a database for estimating organ dose in a voxelized patient model for coronary angiography and brain perfusion CT acquisitions with any spectra and angular tube current modulation setting. The database enables organ dose estimation for existing and novel acquisition techniques without requiring Monte Carlo simulations. Methods: The study simulated transport of monoenergetic photons between 5 and 150 keV for 1000 projections over 360 Degree-Sign through anthropomorphic voxelized female chest and head (0 Degree-Sign and 30 Degree-Sign tilt) phantoms and standard head and body CTDI dosimetry cylinders. The simulations resulted in tablesmore » of normalized dose deposition for several radiosensitive organs quantifying the organ dose per emitted photon for each incident photon energy and projection angle for coronary angiography and brain perfusion acquisitions. The values in a table can be multiplied by an incident spectrum and number of photons at each projection angle and then summed across all energies and angles to estimate total organ dose. Scanner-specific organ dose may be approximated by normalizing the database-estimated organ dose by the database-estimated CTDI{sub vol} and multiplying by a physical CTDI{sub vol} measurement. Two examples are provided demonstrating how to use the tables to estimate relative organ dose. In the first, the change in breast and lung dose during coronary angiography CT scans is calculated for reduced kVp, angular tube current modulation, and partial angle scanning protocols relative to a reference protocol. In the second example, the change in dose to the eye lens is calculated for a brain perfusion CT acquisition in which the gantry is tilted 30 Degree-Sign relative to a nontilted scan. Results: Our database provides tables of normalized dose deposition for several radiosensitive organs irradiated during coronary angiography and brain perfusion CT scans. Validation results indicate total organ doses calculated using our database are within 1% of those calculated using Monte Carlo simulations with the same geometry and scan parameters for all organs except red bone marrow (within 6%), and within 23% of published estimates for different voxelized phantoms. Results from the example of using the database to estimate organ dose for coronary angiography CT acquisitions show 2.1%, 1.1%, and -32% change in breast dose and 2.1%, -0.74%, and 4.7% change in lung dose for reduced kVp, tube current modulated, and partial angle protocols, respectively, relative to the reference protocol. Results show -19.2% difference in dose to eye lens for a tilted scan relative to a nontilted scan. The reported relative changes in organ doses are presented without quantification of image quality and are for the sole purpose of demonstrating the use of the proposed database. Conclusions: The proposed database and calculation method enable the estimation of organ dose for coronary angiography and brain perfusion CT scans utilizing any spectral shape and angular tube current modulation scheme by taking advantage of the precalculated Monte Carlo simulation results. The database can be used in conjunction with image quality studies to develop optimized acquisition techniques and may be particularly beneficial for optimizing dual kVp acquisitions for which numerous kV, mA, and filtration combinations may be investigated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gandhi, Diksha; Schmidt, Taly Gilat, E-mail: taly.gilat-schmidt@marquette.edu; Crotty, Dominic J.
Purpose: This technical note quantifies the dose and image quality performance of a clinically available organ-dose-based tube current modulation (ODM) technique, using experimental and simulation phantom studies. The investigated ODM implementation reduces the tube current for the anterior source positions, without increasing current for posterior positions, although such an approach was also evaluated for comparison. Methods: Axial CT scans at 120 kV were performed on head and chest phantoms on an ODM-equipped scanner (Optima CT660, GE Healthcare, Chalfont St. Giles, England). Dosimeters quantified dose to breast, lung, heart, spine, eye lens, and brain regions for ODM and 3D-modulation (SmartmA) settings.more » Monte Carlo simulations, validated with experimental data, were performed on 28 voxelized head phantoms and 10 chest phantoms to quantify organ dose and noise standard deviation. The dose and noise effects of increasing the posterior tube current were also investigated. Results: ODM reduced the dose for all experimental dosimeters with respect to SmartmA, with average dose reductions across dosimeters of 31% (breast), 21% (lung), 24% (heart), 6% (spine), 19% (eye lens), and 11% (brain), with similar results for the simulation validation study. In the phantom library study, the average dose reduction across all phantoms was 34% (breast), 20% (lung), 8% (spine), 20% (eye lens), and 8% (brain). ODM increased the noise standard deviation in reconstructed images by 6%–20%, with generally greater noise increases in anterior regions. Increasing the posterior tube current provided similar dose reduction as ODM for breast and eye lens, increased dose to the spine, with noise effects ranging from 2% noise reduction to 16% noise increase. At noise equal to SmartmA, ODM increased the estimated effective dose by 4% and 8% for chest and head scans, respectively. Increasing the posterior tube current further increased the effective dose by 15% (chest) and 18% (head) relative to SmartmA. Conclusions: ODM reduced dose in all experimental and simulation studies over a range of phantoms, while increasing noise. The results suggest a net dose/noise benefit for breast and eye lens for all studied phantoms, negligible lung dose effects for two phantoms, increased lung dose and/or noise for eight phantoms, and increased dose and/or noise for brain and spine for all studied phantoms compared to the reference protocol.« less
Contralateral Breast Dose After Whole-Breast Irradiation: An Analysis by Treatment Technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Terence M.; Moran, Jean M., E-mail: jmmoran@med.umich.edu; Hsu, Shu-Hui
2012-04-01
Purpose: To investigate the contralateral breast dose (CBD) across a continuum of breast-conservation therapy techniques. Methods and Materials: An anthropomorphic phantom was CT-simulated, and six treatment plans were generated: open tangents, tangents with an external wedge on the lateral beam, tangents with lateral and medial external wedges, a simple segment plan (three segments per tangent), a complex segmental intensity-modulated radiotherapy (IMRT) plan (five segments per tangent), and a beamlet IMRT plan (>100 segments). For all techniques, the breast on the phantom was irradiated to 5000 cGy. Contralateral breast dose was measured at a uniform depth at the center and eachmore » quadrant using thermoluminescent detectors. Results: Contralateral breast dose varied with position and was 50 {+-} 7.3 cGy in the inner half, 24 {+-} 4.1 cGy at the center, and 16 {+-} 2.2 cGy in the outer half for the open tangential plan. Compared with an average dose of 31 cGy across all points for the open field, the average doses were simple segment 32 cGy (range, 99-105% compared with open technique), complex segment 34 cGy (range, 103-117% compared with open technique), beamlet IMRT 34 cGy (range, 103-124% compared with open technique), lateral wedge only 46 cGy (range, 133-175% compared with open technique), and medial and lateral wedge 96 cGy (range, 282-370% compared with open technique). Conclusions: Single or dual wedge techniques resulted in the highest CBD increases compared with open tangents. To obtain the desired homogeneity to the treated breast while minimizing CBD, segmental and IMRT techniques should be encouraged over external physical compensators.« less
Didona, Annamaria; Lancellotta, Valentina; Zucchetti, Claudio; Panizza, Bianca Moira; Frattegiani, Alessandro; Iacco, Martina; Di Pilato, Anna Concetta; Saldi, Simonetta; Aristei, Cynthia
2018-01-01
Intensity-modulated radiotherapy (IMRT) improves dose distribution in head and neck (HN) radiation therapy. Volumetric-modulated arc therapy (VMAT), a new form of IMRT, delivers radiation in single or multiple arcs, varying dose rates (VDR-VMAT) and gantry speeds, has gained considerable attention. Constant dose rate VMAT (CDR-VMAT) associated with a fixed gantry speed does not require a dedicated linear accelerator like VDR-VMAT. The present study explored the feasibility, efficiency and delivery accuracy of CDR-VMAT, by comparing it with IMRT and VDR-VMAT in treatment planning for HN cancer. Step and shoot IMRT (SS-IMRT), CDR-VMAT and VDR-VMAT plans were created for 15 HN cancer patients and were generated by Pinnacle 3 TPS (v 9.8) using 6 MV photon energy. Three PTVs were defined to receive respectively prescribed doses of 66 Gy, 60 Gy and 54 Gy, in 30 fractions. Organs at risk (OARs) included the mandible, spinal cord, brain stem, parotids, salivary glands, esophagus, larynx and thyroid. SS-IMRT plans were based on 7 co-planar beams at fixed gantry angles. CDR-VMAT and VDR-VMAT plans, generated by the SmartArc module, used a 2-arc technique: one clockwise from 182° to 178° and the other one anti-clockwise from 178° to 182°. Comparison parameters included dose distribution to PTVs ( D mean , D 2% , D 50% , D 95% , D 98% and Homogeneity Index), maximum or mean doses to OARs, specific dose-volume data, the monitor units and treatment delivery times. Compared with SS-IMRT, CDR-VMAT significantly reduced the maximum doses to PTV1 and PTV2 and significantly improved all PTV3 parameters, except D 98% and D 95% . It significantly spared parotid and submandibular glands and was associated with a lower D mean to the larynx. Compared with VDR-VMAT, CDR-VMAT was linked to a significantly better D mean , to the PTV3 but results were worse for the parotids, left submandibular gland, esophagus and mandible. Furthermore, the D mean to the larynx was also worse. Compared with SS-IMRT and VDR-VMAT, CDR-VMAT was associated with higher average monitor unit values and significantly shorter average delivery times. CDR-VMAT appeared to be a valid option in Radiation Therapy Centers that lack a dedicated linear accelerator for volumetric arc therapy with variable dose-rates and gantry velocities, and are unwilling or unable to sanction major expenditure at present but want to adopt volumetric techniques.
Modeling the target dose fall-off in IMRT and VMAT planning techniques for cervical SBRT.
Brito Delgado, A; Cohen, D; Eng, T Y; Stanley, D N; Shi, Z; Charlton, M; Gutiérrez, A N
2018-01-01
There has been growing interest in the use of stereotactic body radiotherapy (SBRT) technique for the treatment of cervical cancer. The purpose of this study was to characterize dose distributions as well as model the target dose fall-off for intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) delivery techniques using 6 and 10 MV photon beam energies. Fifteen (n = 15) patients with non-bulky cervical tumors were planned in Pinnacle 3 with a Varian Novalis Tx (HD120 MLC) using 6 and 10 MV photons with the following techniques: (1) IMRT with 10 non-coplanar beams (2) dual, coplanar 358° VMAT arcs (4° spacing), and (3) triple, non-coplanar VMAT arcs. Treatment volumes and dose prescriptions were segmented according to University of Texas Southwestern (UTSW) Phase II study. All plans were normalized such that 98% of the planning target volume (PTV) received 28 Gy (4 fractions). For the PTV, the following metrics were evaluated: homogeneity index, conformity index, D 2cc , D mean , D max , and dose fall-off parameters. For the organs at risk (OARs), D 2cc , D 15cc , D 0.01cc , V 20 , V 40 , V 50 , V 60 , and V 80 were evaluated for the bladder, bowel, femoral heads, rectum, and sigmoid. Statistical differences were evaluated using a Friedman test with a significance level of 0.05. To model dose fall-off, expanding 2-mm-thick concentric rings were created around the PTV, and doses were recorded. Statistically significant differences (p < 0.05) were noted in the dose fall-off when using 10 MV and VMAT 3-arc , as compared with IMRT. VMAT 3-arc improved the bladder V 40 , V 50 , and V 60 , and the bowel V 20 and V 50 . All fitted regressions had an R 2 ≥ 0.98. For cervical SBRT plans, a VMAT 3-arc approach offers a steeper dose fall-off outside of the target volume. Faster dose fall-off was observed in smaller targets as opposed to medium and large targets, denoting that OAR sparing is dependent on target size. These improvements are further pronounced with the use of 10-MV photons. Published by Elsevier Inc.
Warren, Samantha; Partridge, Mike; Bolsi, Alessandra; Lomax, Anthony J; Hurt, Chris; Crosby, Thomas; Hawkins, Maria A
2016-05-01
Planning studies to compare x-ray and proton techniques and to select the most suitable technique for each patient have been hampered by the nonequivalence of several aspects of treatment planning and delivery. A fair comparison should compare similarly advanced delivery techniques from current clinical practice and also assess the robustness of each technique. The present study therefore compared volumetric modulated arc therapy (VMAT) and single-field optimization (SFO) spot scanning proton therapy plans created using a simultaneous integrated boost (SIB) for dose escalation in midesophageal cancer and analyzed the effect of setup and range uncertainties on these plans. For 21 patients, SIB plans with a physical dose prescription of 2 Gy or 2.5 Gy/fraction in 25 fractions to planning target volume (PTV)50Gy or PTV62.5Gy (primary tumor with 0.5 cm margins) were created and evaluated for robustness to random setup errors and proton range errors. Dose-volume metrics were compared for the optimal and uncertainty plans, with P<.05 (Wilcoxon) considered significant. SFO reduced the mean lung dose by 51.4% (range 35.1%-76.1%) and the mean heart dose by 40.9% (range 15.0%-57.4%) compared with VMAT. Proton plan robustness to a 3.5% range error was acceptable. For all patients, the clinical target volume D98 was 95.0% to 100.4% of the prescribed dose and gross tumor volume (GTV) D98 was 98.8% to 101%. Setup error robustness was patient anatomy dependent, and the potential minimum dose per fraction was always lower with SFO than with VMAT. The clinical target volume D98 was lower by 0.6% to 7.8% of the prescribed dose, and the GTV D98 was lower by 0.3% to 2.2% of the prescribed GTV dose. The SFO plans achieved significant sparing of normal tissue compared with the VMAT plans for midesophageal cancer. The target dose coverage in the SIB proton plans was less robust to random setup errors and might be unacceptable for certain patients. Robust optimization to ensure adequate target coverage of SIB proton plans might be beneficial. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sponseller, Patricia, E-mail: sponselp@uw.edu; Department of Radiation Oncology, University of Washington Medical Center, Seattle, WA; Paravathaneni, Upendra
2013-07-01
The purpose of this report is to communicate a technique to match an electron field to the dose distribution of an Intensity-Modulated Radiation Therapy (IMRT) plan. A patient with multiple areas of squamous cell carcinoma over the scalp was treated using 60 Gy in 2.0-Gy fractions to the entire scalp and first echelon nodes with multiple 6-MV photon fields. To deliver an adequate dose to the scalp, a custom 1.0-cm bolus helmet was fashioned using a solid piece of aquaplast. Along with the IMRT scalp treatment, a left zygoma area was treated with electrons matching the anterior border of themore » IMRT dose distribution. The border was matched by creating a left lateral field with the multileaf collimator shaped to the IMRT dose distribution. The result indicated an adequate dose to the skin match between the IMRT plan and the electron field. Results were confirmed using optically stimulated luminescence placed at the skin match area, so that the dose matched the prescription within 10%.« less
NASA Astrophysics Data System (ADS)
Peckerar, Martin C.; Marrian, Christie R.
1995-05-01
Standard matrix inversion methods of e-beam proximity correction are compared with a variety of pseudoinverse approaches based on gradient descent. It is shown that the gradient descent methods can be modified using 'regularizers' (terms added to the cost function minimized during gradient descent). This modification solves the 'negative dose' problem in a mathematically sound way. Different techniques are contrasted using a weighted error measure approach. It is shown that the regularization approach leads to the highest quality images. In some cases, ignoring negative doses yields results which are worse than employing an uncorrected dose file.
Applying the technique of volume-modulated arc radiotherapy to upper esophageal carcinoma.
Ma, Pan; Wang, Xiaozhen; Xu, Yingjie; Dai, Jianrong; Wang, Luhua
2014-05-08
This study aims to evaluate the possibility of using the technique of volume-modulated arc therapy (VMAT) to combine the advantages of simplified intensity-modulated radiation therapy (sIMRT) with that of regular intensity-modulated radiation therapy (IMRT) in upper esophageal cancer. Ten patients with upper esophageal carcinoma were randomly chosen in this retrospective study. sIMRT, IMRT, and VMAT plans were generated to deliver 60 Gy in 30 fractions to the planning target volume (PTV). For each patient, with the same clinical requirements (target dose prescription, and dose/dose-volume constraints to organs at risk (OARs)), three plans were designed for sIMRT (five equispaced coplanar beams), IMRT (seven equispaced coplanar beams), and VMAT (two complete arcs). Comparisons were performed for dosimetric parameters of PTV and of OARs (lungs, spinal cord PRV, heart and normal tissue (NT)). All the plans were delivered to a phantom to evaluate the treatment time. The Wilcoxon matched-pairs, signed-rank test was used for intragroup comparison. For all patients, compared to sIMRT plans, VMAT plans statistically provide: a) significant improvement in HI and CI for PTV; b) significant decrease in delivery time, lung V20, MLD, heart V30 and spinal cord PRV D1cc; c) significant increase in NT V5; and d) no significant reduction in lung V5, V10, and heart MD. For all patients, compared to IMRT plans, VMAT plans statistically provide: a) significant improvement in CI for PTV; b) significant decrease in delivery time, lung V20, MLD, NT and spinal cord PRV D1cc; c) significant increase in NT V5; and d) no significant reduction in HI for PTV, lung V5, V10, heart V30 and heart MD. For patients with upper esophageal carcinoma, using VMAT significantly reduces the delivery time and the dose to the lungs compared with IMRT, and consequently saves as much treatment time as sIMRT. Considering those significant advantages, compared to sIMRT and IMRT, VMAT is the first choice of radiotherapy techniques for upper esophageal carcinoma.
Kouno, Takuya; Kuga, Noriyuki; Enzaki, Masahiro; Yamashita, Yuuki; Kitazato, Yumiko; Shimotabira, Haruhiko; Jinnouchi, Takashi; Kusuhara, Kazuo; Kawamura, Shinji
2015-04-01
The aim of this study was to reduce the exposed dose of radiotherapy treatment planning computed tomography (CT) by using low tube voltage technique. We used tube voltages of 80 kV, 100 kV, and 120 kV, respectively. First, we evaluated exposure dose with CT dose index (CTDI) for each voltage. Second, we compared image quality indexes such as modulation transfer function (MTF), noise power spectrum (NPS), and contrast to noise ratio (CNR) of phantom images with each voltage. Third, CT to electron density tables were measured in three voltages and monitor unit value was calculated along with clinical cases. Finally, CT surface exposed dose of chest skin was measured by thermoluminescent dosimeter (TLD). In image evaluation MTF and NPS were approximately equal; CNR slightly decreased, 2.0% for 100 kV. We performed check radiation dose accuracy for each tube voltage with each model phantom. As a result, the difference of MU value was not accepted. Finally, compared with 120 kV, CTDIvol and TLD value showed markedly decreased radiation dose, 60% for 80 kV and 30% for 100 kV. Using a technique with low tube voltages, especially 100 kV, is useful in radiotherapy treatment planning to obtain 20% dose reduction without compromising 120 kV image quality.
Volumetric modulated arc therapy: a review of current literature and clinical use in practice
Teoh, M; Clark, C H; Wood, K; Whitaker, S; Nisbet, A
2011-01-01
Volumetric modulated arc therapy (VMAT) is a novel radiation technique, which can achieve highly conformal dose distributions with improved target volume coverage and sparing of normal tissues compared with conventional radiotherapy techniques. VMAT also has the potential to offer additional advantages, such as reduced treatment delivery time compared with conventional static field intensity modulated radiotherapy (IMRT). The clinical worldwide use of VMAT is increasing significantly. Currently the majority of published data on VMAT are limited to planning and feasibility studies, although there is emerging clinical outcome data in several tumour sites. This article aims to discuss the current use of VMAT techniques in practice and review the available data from planning and clinical outcome studies in various tumour sites including prostate, pelvis (lower gastrointestinal, gynaecological), head and neck, thoracic, central nervous system, breast and other tumour sites. PMID:22011829
Fakhrian, K; Oechsner, M; Kampfer, S; Schuster, T; Molls, M; Geinitz, H
2013-04-01
The goal of this work was to investigate the potential of advanced radiation techniques in dose escalation in the radiotherapy (RT) for the treatment of esophageal carcinoma. A total of 15 locally advanced esophageal cancer (LAEC) patients were selected for the present study. For all 15 patients, we created a 3D conformal RT plan (3D-45) with 45 Gy in fractions of 1.8 Gy to the planning target volume (PTV1), which we usually use to employ in the neoadjuvant treatment of LAEC. Additionally, a 3D boost (as in the primary RT of LAEC) was calculated with 9 Gy in fractions of 1.8 Gy to the boost volume (PTV2) (Dmean) to a total dose of 54 Gy (3D-54 Gy), which we routinely use for the definitive treatment of LAEC. Three plans with a simultaneous integrated boost (SIB) were then calculated for each patient: sliding window intensity-modulated radiotherapy (IMRT-SIB), volumetric modulated arc therapy (VMAT-SIB), and helical tomotherapy (HT-SIB). For the SIB plans, the requirement was that 95 % of the PTV1 receive ≥ 100 % of the prescription dose (45 Gy in fractions of 1.8 Gy, D95) and the PTV2 was dose escalated to 52.5 Gy in fractions of 2.1 Gy (D95). The median PTV2 dose for 3D-45, 3D-54, HT-SIB, VMAT-SIB, and IMRT-SIB was 45, 55, 54, 56, and 55 Gy, respectively. Therefore, the dose to PTV2 in the SIB plans was comparable to the 3D-54 plan. The lung dose in the SIB plans was in the range of the standard 3D-45, which is applied for neoadjuvant radiotherapy. The mean lung dose for the same plans was 13, 15, 12, 12, and 13 Gy, respectively. The V5 lung volumes were 71, 74, 79, 75, and 73 %, respectively. The V20 lung volumes were 20, 25, 16, 18, and 19 %, respectively. New treatment planning techniques enable higher doses to be delivered for neoadjuvant radiotherapy of LAEC without a significant increase in the delivered dose to the organs at risk. Clinical investigations are warranted to study the clinical safety and feasibility of applying higher doses through advanced techniques in the neoadjuvant treatment of LAEC.
Kobayashi, Masanao; Asada, Yasuki; Matsubara, Kosuke; Suzuki, Shouichi; Matsunaga, Yuta; Haba, Tomonobu; Kawaguchi, Ai; Daioku, Tomihiko; Toyama, Hiroshi; Kato, Ryoichi
2017-05-01
Adequate dose management during computed tomography is important. In the present study, the dosimetric application software ImPACT was added to a functional calculator of the size-specific dose estimate and was part of the scan settings for the auto exposure control (AEC) technique. This study aimed to assess the practicality and accuracy of the modified ImPACT software for dose estimation. We compared the conversion factors identified by the software with the values reported by the American Association of Physicists in Medicine Task Group 204, and we noted similar results. Moreover, doses were calculated with the AEC technique and a fixed-tube current of 200 mA for the chest-pelvis region. The modified ImPACT software could estimate each organ dose, which was based on the modulated tube current. The ability to perform beneficial modifications indicates the flexibility of the ImPACT software. The ImPACT software can be further modified for estimation of other doses. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Dosimetric comparison of photon and proton treatment techniques for chondrosarcoma of thoracic spine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Poonam, E-mail: yadav@humonc.wisc.edu; Department of Medical Physics, University of Wisconsin, Madison, WI; University of Wisconsin Riverview Cancer Center, Wisconsin Rapids, WI
2013-10-01
Chondrosarcomas are relatively radiotherapy resistant, and also delivering high radiation doses is not feasible owing to anatomic constraints. In this study, the feasibility of helical tomotherapy for treatment of chondrosarcoma of thoracic spine is explored and compared with other available photon and proton radiotherapy techniques in the clinical setting. A patient was treated for high-grade chondrosarcoma of the thoracic spine using tomotherapy. Retrospectively, the tomotherapy plan was compared with intensity-modulated radiation therapy, dynamic arc photon therapy, and proton therapy. Two primary comparisons were made: (1) comparison of normal tissue sparing with comparable target volume coverage (plan-1), and (2) comparison ofmore » target volume coverage with a constrained maximum dose to the cord center (plan-2). With constrained target volume coverage, proton plans were found to yield lower mean doses for all organs at risk (spinal cord, esophagus, heart, and both lungs). Tomotherapy planning resulted in the lowest mean dose to all organs at risk amongst photon-based methods. For cord dose constrained plans, the static-field intensity-modulated radiation therapy and dynamic arc plans resulted target underdosing in 20% and 12% of planning target volume2 volumes, respectively, whereas both proton and tomotherapy plans provided clinically acceptable target volume coverage with no portion of planning target volume2 receiving less than 90% of the prescribed dose. Tomotherapy plans are comparable to proton plans and produce superior results compared with other photon modalities. This feasibility study suggests that tomotherapy is an attractive alternative to proton radiotherapy for delivering high doses to lesions in the thoracic spine.« less
Influence of metallic dental implants and metal artefacts on dose calculation accuracy.
Maerz, Manuel; Koelbl, Oliver; Dobler, Barbara
2015-03-01
Metallic dental implants cause severe streaking artefacts in computed tomography (CT) data, which inhibit the correct representation of shape and density of the metal and the surrounding tissue. The aim of this study was to investigate the impact of dental implants on the accuracy of dose calculations in radiation therapy planning and the benefit of metal artefact reduction (MAR). A second aim was to determine the treatment technique which is less sensitive to the presence of metallic implants in terms of dose calculation accuracy. Phantoms consisting of homogeneous water equivalent material surrounding dental implants were designed. Artefact-containing CT data were corrected using the correct density information. Intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) plans were calculated on corrected and uncorrected CT data and compared to 2-dimensional dose measurements using GafChromic™ EBT2 films. For all plans the accuracy of dose calculations is significantly higher if performed on corrected CT data (p = 0.015). The agreement of calculated and measured dose distributions is significantly higher for VMAT than for IMRT plans for calculations on uncorrected CT data (p = 0.011) as well as on corrected CT data (p = 0.029). For IMRT and VMAT the application of metal artefact reduction significantly increases the agreement of dose calculations with film measurements. VMAT was found to provide the highest accuracy on corrected as well as on uncorrected CT data. VMAT is therefore preferable over IMRT for patients with metallic implants, if plan quality is comparable for the two techniques.
Nikupaavo, Ulla; Kaasalainen, Touko; Reijonen, Vappu; Ahonen, Sanna-Mari; Kortesniemi, Mika
2015-01-01
The purpose of this study was to study different optimization methods for reducing eye lens dose in head CT. Two anthropomorphic phantoms were scanned with a routine head CT protocol for evaluation of the brain that included bismuth shielding, gantry tilting, organ-based tube current modulation, or combinations of these techniques. Highsensitivity metal oxide semiconductor field effect transistor dosimeters were used to measure local equivalent doses in the head region. The relative changes in image noise and contrast were determined by ROI analysis. The mean absorbed lens doses varied from 4.9 to 19.7 mGy and from 10.8 to 16.9 mGy in the two phantoms. The most efficient method for reducing lens dose was gantry tilting, which left the lenses outside the primary radiation beam, resulting in an approximately 75% decrease in lens dose. Image noise decreased, especially in the anterior part of the brain. The use of organ-based tube current modulation resulted in an approximately 30% decrease in lens dose. However, image noise increased as much as 30% in the posterior and central parts of the brain. With bismuth shields, it was possible to reduce lens dose as much as 25%. Our results indicate that gantry tilt, when possible, is an effective method for reducing exposure of the eye lenses in CT of the brain without compromising image quality. Measurements in two different phantoms showed how patient geometry affects the optimization. When lenses can only partially be cropped outside the primary beam, organ-based tube current modulation or bismuth shields can be useful in lens dose reduction.
Moseley, Douglas; Kassam, Zahra; Kim, Sun Mo; Cho, Charles
2013-01-01
Recently, volumetric‐modulated arc therapy (VMAT) has demonstrated the ability to deliver radiation dose precisely and accurately with a shorter delivery time compared to conventional intensity‐modulated fixed‐field treatment (IMRT). We applied the hypothesis of VMAT technique for the treatment of thoracic esophageal carcinoma to determine superior or equivalent conformal dose coverage for a large thoracic esophageal planning target volume (PTV) with superior or equivalent sparing of organs‐at‐risk (OARs) doses, and reduce delivery time and monitor units (MUs), in comparison with conventional fixed‐field IMRT plans. We also analyzed and compared some other important metrics of treatment planning and treatment delivery for both IMRT and VMAT techniques. These metrics include: 1) the integral dose and the volume receiving intermediate dose levels between IMRT and VMATI plans; 2) the use of 4D CT to determine the internal motion margin; and 3) evaluating the dosimetry of every plan through patient‐specific QA. These factors may impact the overall treatment plan quality and outcomes from the individual planning technique used. In this study, we also examined the significance of using two arcs vs. a single‐arc VMAT technique for PTV coverage, OARs doses, monitor units and delivery time. Thirteen patients, stage T2‐T3 N0‐N1 (TNM AJCC 7th edn.), PTV volume median 395 cc (range 281–601 cc), median age 69 years (range 53 to 85), were treated from July 2010 to June 2011 with a four‐field (n=4) or five‐field (n=9) step‐and‐shoot IMRT technique using a 6 MV beam to a prescribed dose of 50 Gy in 20 to 25 F. These patients were retrospectively replanned using single arc (VMATI, 91 control points) and two arcs (VMATII, 182 control points). All treatment plans of the 13 study cases were evaluated using various dose‐volume metrics. These included PTV D99, PTV D95, PTV V9547.5Gy(95%), PTV mean dose, Dmax, PTV dose conformity (Van't Riet conformation number (CN)), mean lung dose, lung V20 and V5, liver V30, and Dmax to the spinal canal prv3mm. Also examined were the total plan monitor units (MUs) and the beam delivery time. Equivalent target coverage was observed with both VMAT single and two‐arc plans. The comparison of VMATI with fixed‐field IMRT demonstrated equivalent target coverage; statistically no significant difference were found in PTV D99 (p=0.47), PTV mean (p=0.12), PTV D95 and PTV V9547.5Gy (95%) (p=0.38). However, Dmax in VMATI plans was significantly lower compared to IMRT (p=0.02). The Van't Riet dose conformation number (CN) was also statistically in favor of VMATI plans (p=0.04). VMATI achieved lower lung V20 (p=0.05), whereas lung V5 (p=0.35) and mean lung dose (p=0.62) were not significantly different. The other OARs, including spinal canal, liver, heart, and kidneys showed no statistically significant differences between the two techniques. Treatment time delivery for VMATI plans was reduced by up to 55% (p=5.8E−10) and MUs reduced by up to 16% (p=0.001). Integral dose was not statistically different between the two planning techniques (p=0.99). There were no statistically significant differences found in dose distribution of the two VMAT techniques (VMATI vs. VMATII) Dose statistics for both VMAT techniques were: PTV D99 (p=0.76), PTV D95 (p=0.95), mean PTV dose (p=0.78), conformation number (CN) (p=0.26), and MUs (p=0.1). However, the treatment delivery time for VMATII increased significantly by two‐fold (p=3.0E−11) compared to VMATI. VMAT‐based treatment planning is safe and deliverable for patients with thoracic esophageal cancer with similar planning goals, when compared to standard IMRT. The key benefit for VMATI was the reduction in treatment delivery time and MUs, and improvement in dose conformality. In our study, we found no significant difference in VMATII over single‐arc VMATI for PTV coverage or OARs doses. However, we observed significant increase in delivery time for VMATII compared to VMATI. PACS number: 87.53.Kn, 87.55.‐x PMID:23652258
Surface buildup dose dependence on photon field delivery technique for IMRT
Yokoyama, Shigeru; Roberson, Peter L.; Litzenberg, Dale W.; Moran, Jean M.; Fraass, Benedick A.
2004-01-01
The more complex delivery techniques required for implementation of intensity‐modulated radiotherapy (IMRT) based on inverse planning optimization have changed the relationship between dose at depth and dose at buildup regions near the surface. Surface buildup dose is dependent on electron contamination primarily from the unblocked view of the flattening filter and secondarily from air and collimation systems. To evaluate the impact of beam segmentation on buildup dose, measurements were performed with 10×10 cm2 fields, which were delivered with 3 static 3.5×10 cm2 or 3×10 cm2 strips, 5 static 2×10 cm2 strips, 10 static 1×10 cm2 strips, and 1.1×10 cm2 dynamic delivery, compared with a 10×10 cm2 open field. Measurements were performed in water and Solid Water using parallel plate chambers, a stereotactic diode, and thermoluminescent dosimeters (TLDs) for a 6 MV X‐ray beam. Depth doses at 2 mm depth (relative to dose at 10 cm depth) were lower by 6%, 7%, 11%, and 10% for the above field delivery techniques, respectively, compared to the open field. These differences are most influenced by differences in multileaf collimator (MLC) transmission contributing to the useful beam. An example IMRT field was also studied to assess variations due to delivery technique (static vs. dynamic) and intensity level. Buildup dose is weakly dependent on the multileaf delivery technique for efficient IMRT fields. PACS numbers: 87.53.‐j, 87.53.Dq PMID:15738914
Favazza, Christopher P; Yu, Lifeng; Leng, Shuai; Kofler, James M; McCollough, Cynthia H
2015-01-01
To compare computed tomography dose and noise arising from use of an automatic exposure control (AEC) system designed to maintain constant image noise as patient size varies with clinically accepted technique charts and AEC systems designed to vary image noise. A model was developed to describe tube current modulation as a function of patient thickness. Relative dose and noise values were calculated as patient width varied for AEC settings designed to yield constant or variable noise levels and were compared to empirically derived values used by our clinical practice. Phantom experiments were performed in which tube current was measured as a function of thickness using a constant-noise-based AEC system and the results were compared with clinical technique charts. For 12-, 20-, 28-, 44-, and 50-cm patient widths, the requirement of constant noise across patient size yielded relative doses of 5%, 14%, 38%, 260%, and 549% and relative noises of 435%, 267%, 163%, 61%, and 42%, respectively, as compared with our clinically used technique chart settings at each respective width. Experimental measurements showed that a constant noise-based AEC system yielded 175% relative noise for a 30-cm phantom and 206% relative dose for a 40-cm phantom compared with our clinical technique chart. Automatic exposure control systems that prescribe constant noise as patient size varies can yield excessive noise in small patients and excessive dose in obese patients compared with clinically accepted technique charts. Use of noise-level technique charts and tube current limits can mitigate these effects.
MO-G-BRD-01: Point/Counterpoint Debate: Arc Based Techniques Will Make Conventional IMRT Obsolete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shepard, D; Popple, R; Balter, P
2014-06-15
A variety of intensity modulated radiation therapy (IMRT) delivery techniques have been developed that have provided clinicians with the ability to deliver highly conformal dose distributions. The delivery techniques include compensators, step-and-shoot IMRT, sliding window IMRT, volumetric modulated arc therapy (VMAT), and tomotherapy. A key development in the field of IMRT was the introduction of new planning algorithms and delivery control systems in 2007 that made it possible to coordinate the gantry rotation speed, dose rate, and multileaf collimator leaf positions during the delivery of arc therapy. With these developments, VMAT became a routine clinical tool. The use of VMATmore » has continued to grow in recent years and some would argue that this will soon make conventional IMRT obsolete, and this is the premise of this debate. To introduce the debate, David Shepard, Ph.D. will provide an overview of IMRT delivery techniques including historical context and how they are being used today. The debate will follow with Richard Popple, Ph.D. arguing FOR the Proposition and Peter Balter, Ph.D. arguing AGAINST it. Learning Objectives: Understand the different delivery techniques for IMRT. Understand the potential benefits of conventional IMRT. Understand the potential benefits of arc-based IMRT delivery.« less
Preliminary studies of PQS PET detector module for dose verification of carbon beam therapy
NASA Astrophysics Data System (ADS)
Kim, H.-I.; An, S. Jung; Lee, C. Y.; Jo, W. J.; Min, E.; Lee, K.; Kim, Y.; Joung, J.; Chung, Y. H.
2014-05-01
PET imaging can be used to verify dose distributions of therapeutic particle beams such as carbon ion beams. The purpose of this study was to develop a PET detector module which was designed for an in-beam PET scanner geometry integrated into a carbon beam therapy system, and to evaluate its feasibility as a monitoring system of patient dose distribution. A C-shaped PET geometry was proposed to avoid blockage of the carbon beam by the detector modules. The proposed PET system consisted of 14 detector modules forming a bore with 30.2 cm inner diameter for brain imaging. Each detector module is composed of a 9 × 9 array of 4.0 mm × 4.0 mm × 20.0 mm LYSO crystal module optically coupled with four 29 mm diameter PMTs using Photomultiplier-quadrant-sharing (PQS) technique. Because the crystal pixel was identified based upon the distribution of scintillation lights of four PMTs, the design of the reflector between crystal elements should be well optimized. The optical design of reflectors was optimized using DETECT2000, a Monte Carlo code for light photon transport. A laser-cut reflector set was developed using the Enhanced Specular Reflector (ESR, 3M Co.) mirror-film with a high reflectance of 98% and a thickness of 0.064 mm. All 81 crystal elements of detector module were identified. Our result demonstrates that the C-shaped PET system is under development and we present the first reconstructed image.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, J; Cheung, J; Held, M
2016-06-15
Purpose: To develop a clinical workflow for delivering a modulated-arc total body irradiation (TBI) with RayStation scripting. This technique uses arc fields with the patient lying at floor level on a padded table and is validated through measurements taken on a custom-made TBI phantom. Methods: Treatment planning was performed for a retrospective cohort of eight patients with a diverse range of heights and body types. Each was replanned using an open-field dual arc method, with the patient in supine and prone positions on the floor of the vault. All plans were optimized using Raystation Planning 4.7.2.5 (RaySearch Laboratories, Stockholm, Sweden),more » with 200 cGy prescribed to the 95% of the body contour − 5mm. This results in an open-field beam that sweeps craniocaudally across the length of the patient. The technique is validated with measurements at 10 cm intervals in a custom-milled, 5 cm thick acrylic phantom. A centrally located CC13 ion chamber and a Mobile MOSFET (Best Medical Canada, Ottawa, ON) detector array were used to measure dose. Supine and prone arcs for each patient were consecutively delivered, and the aggregate dose at each point was compared to the planned dose calculated in the phantom. Results: The ion chamber measurements differed from the planned dose by an average of .5%, with a standard deviation of 2.1%. All measured data for the MOSFETS were within 10% of the corresponding planned dose except for two outlying points. The standard deviation of dose differences across the entire cohort was 4.0%. Most significant discrepancies occurred either in inhomogeneous regions with large gradients, or at inferior points where beam angle was steepest. Conclusion: We have confirmed that the planned dose is well matched to our measurements within 10% for this method of planning and delivery. We are currently incorporating this technique into our clinical workflow. This work is supported by RaySearch.« less
Andrevska, Adriana; Knight, Kellie A; Sale, Charlotte A
2014-12-01
Radiotherapy management of patients with brain metastases most commonly involve a whole-brain radiation therapy (WBRT) regime, as well as newer techniques such as stereotactic radiosurgery (SRS) and intensity modulated radiotherapy (IMRT). The long treatment times incurred by these techniques indicates the need for a novel technique that has shorter treatment times, whilst still producing highly conformal treatment with the potential to deliver escalated doses to the target area. Volumetric modulated arc therapy (VMAT) is a dynamic, highly conformal technique that may deliver high doses of radiation through a single gantry arc and reduce overall treatment times. The aim of this systematic review is to determine the feasibility and benefits of VMAT treatment in regard to overall survival rates and local control in patients with brain metastases, in comparison with patients treated with WBRT, SRS and IMRT. A search of the literature identified 23 articles for the purpose of this review. Articles were included on the basis they were human-based studies, with sample sizes of more than five patients who were receiving treatment for 1-10 metastatic brain lesions. VMAT was found to be highly conformal, have a reduced treatment delivery time and incurred no significant toxicities in comparison with WBRT, SRS and IMRT. Compared to other treatment techniques, VMAT proved to have fewer toxicities than conventional WBRT, shorter treatment times than SRS and similar dose distributions to IMRT plans. Future prospective studies are needed to accurately assess the prognostic benefits of VMAT as well as the occurrence of late toxicities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rehman, Jalil ur, E-mail: jalil_khanphy@yahoo.com; Department of Radiation Physics, UT MD Anderson Cancer Center, Houston, TX; Tailor, Ramesh C.
2015-04-01
This study evaluated the secondary cancer risk from volumetric-modulated arc therapy (VMAT) for spine radiotherapy compared with intensity-modulated radiotherapy (IMRT) and 3-dimensional conformal radiotherapy (3DCRT). Computed tomography images of an Radiological Physics Center spine anthropomorphic phantom were exported to a treatment planning system (Pinnacle{sup 3}, version 9.4). Radiation treatment plans for spine were prepared using VMAT (dual-arc), 7-field IMRT (beam angles: 110°, 130°, 150°, 180°, 210°, 230°, and 250°), and 4-field 3DCRT technique. The mean and maximum doses, dose-volume histograms, and volumes receiving more than 2 and 4 Gy to organs at risk (OARs) were calculated and compared. The lifetimemore » risk for secondary cancers was estimated according to the National Cancer Registry Programme Report 116. VMAT delivered the lowest maximum dose to the esophagus (4.03 Gy), bone (8.11 Gy), heart (2.11 Gy), spinal cord (6.45 Gy), and whole lung (5.66 Gy) as compared with other techniques (IMRT and 3DCRT). The volumes of OAR (esophagus) receiving more than 4 Gy were 0% for VMAT, 27.06% for IMRT, and up to 32.35% for 3DCRT. The estimated risk for secondary cancer in the respective OAR is considerably lower in VMAT compared with other techniques. The results of maximum doses and volumes of OARs suggest that the risk of secondary cancer induction for the spine in VMAT is lower than IMRT and 3DCRT, whereas VMAT has the best target coverage compared with the other techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, T; Lin, X; Yin, Y
Purpose: To compare the dosimetric differences among fixed field intensity-modulated radiotherapy (IMRT) and double-arc volumetricmodulated arc therapy (VMAT) plans with simultaneous integrated boost in rectal cancer. Methods: Ten patients with rectal cancer previously treated with IMRT were included in this analysis. For each patient, two treatment techniques were designed for each patient: the fixed 7 fields IMRT and double-arc VMAT with RapidArc technique. The treatment plan was designed to deliver in one process with simultaneous integrated boost (SIB). The prescribed doses to the planning target volume of the subclinical disease (PTV1) and the gross disease (PTV2) were 45 Gy andmore » 55 Gy in 25 fractions, respectively. The dose distribution in the target, the dose to the organs at risk, total MU and the delivery time in two techniques were compared to explore the dosimetric differences. Results: For the target dose and homogeneity in PTV1 and PTV2, no statistically differences were observed in the two plans. VMAT plans showed a better conformity in PTV1. VMAT plans reduced the mean dose to bladder, small bowel, femur heads and iliac wings. For iliac wings, VMAT plans resulted in a statistically significant reduction in irradiated volume of 15 Gy, 20 Gy, 30 Gy but increased the 10 Gy irradiated volume. VMAT plans reduced the small bowel irradiated volume of 20 Gy and 30 Gy. Compared with IMRT plans, VMAT plans showed a significant reduction of monitor units by nearly 30% and reduced treatment time by an average of 70% Conclusion: Compared to IMRT plans, VMAT plans showed the similar target dose and reduced the dose of the organs at risk, especially for small bowel and iliac wings. For rectal cancer, VMAT with simultaneous integrated boost can be carried out with high quality and efficiency.« less
NASA Astrophysics Data System (ADS)
Brahme, Anders; Lind, Bengt K.
2002-04-01
Radiation therapy is today in a state of very rapid development with new intensity modulated treatment techniques continuously being developed. This has made intensity modulated electron and photon beams almost as powerful as conventional uniform beam proton therapy. To be able to cure also the most advanced hypoxic and radiation resistant tumors of complex local spread, intensity modulated light ion beams are really the ultimate tool and only slightly more expensive than proton therapy. The aim of the new center for ion therapy and tumor diagnostics in Stockholm is to develop radiobiologically optimized 3-dimensional pencil beam scanning techniques. Beside the "classical" approaches using low ionization density hydrogen ions (protons, but also deuterons and tritium nuclei) and high ionization density carbon ions, two new approaches will be developed. In the first one lithium or beryllium ions, that induce the least detrimental biological effect to normal tissues for a given biological effect in a small volume of the tumor, will be key particles. In the second approach, referred patients will be given a high-dose high-precision "boost" treatment with carbon or oxygen ions during one week preceding the final treatment with conventional radiations in the referring hospital. The rationale behind these approaches is to reduce the high ionization density dose to the normal tissue stroma inside the tumor and to ensure a microscopically uniform dose delivery. The principal idea of the center is to closely integrate ion therapy into the clinical routine and research of a large radiotherapy department. The light ion therapy center will therefore be combined with advanced tumor diagnostics including MR and PET-CT imaging to facilitate efficient high-precision high-dose boost treatment of remitted patients. The possibility to do 3D tumor diagnostics and 3D dose delivery verification with the same PET camera will be the ultimate step in high quality adaptive radiation therapy where alterations in the delivered dose can be corrected by subsequent treatments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, Samantha, E-mail: samantha.warren@oncology.ox.ac.uk; Partridge, Mike; Bolsi, Alessandra
Purpose: Planning studies to compare x-ray and proton techniques and to select the most suitable technique for each patient have been hampered by the nonequivalence of several aspects of treatment planning and delivery. A fair comparison should compare similarly advanced delivery techniques from current clinical practice and also assess the robustness of each technique. The present study therefore compared volumetric modulated arc therapy (VMAT) and single-field optimization (SFO) spot scanning proton therapy plans created using a simultaneous integrated boost (SIB) for dose escalation in midesophageal cancer and analyzed the effect of setup and range uncertainties on these plans. Methods andmore » Materials: For 21 patients, SIB plans with a physical dose prescription of 2 Gy or 2.5 Gy/fraction in 25 fractions to planning target volume (PTV){sub 50Gy} or PTV{sub 62.5Gy} (primary tumor with 0.5 cm margins) were created and evaluated for robustness to random setup errors and proton range errors. Dose–volume metrics were compared for the optimal and uncertainty plans, with P<.05 (Wilcoxon) considered significant. Results: SFO reduced the mean lung dose by 51.4% (range 35.1%-76.1%) and the mean heart dose by 40.9% (range 15.0%-57.4%) compared with VMAT. Proton plan robustness to a 3.5% range error was acceptable. For all patients, the clinical target volume D{sub 98} was 95.0% to 100.4% of the prescribed dose and gross tumor volume (GTV) D{sub 98} was 98.8% to 101%. Setup error robustness was patient anatomy dependent, and the potential minimum dose per fraction was always lower with SFO than with VMAT. The clinical target volume D{sub 98} was lower by 0.6% to 7.8% of the prescribed dose, and the GTV D{sub 98} was lower by 0.3% to 2.2% of the prescribed GTV dose. Conclusions: The SFO plans achieved significant sparing of normal tissue compared with the VMAT plans for midesophageal cancer. The target dose coverage in the SIB proton plans was less robust to random setup errors and might be unacceptable for certain patients. Robust optimization to ensure adequate target coverage of SIB proton plans might be beneficial.« less
Warren, Samantha; Partridge, Mike; Bolsi, Alessandra; Lomax, Anthony J.; Hurt, Chris; Crosby, Thomas; Hawkins, Maria A.
2016-01-01
Purpose Planning studies to compare x-ray and proton techniques and to select the most suitable technique for each patient have been hampered by the nonequivalence of several aspects of treatment planning and delivery. A fair comparison should compare similarly advanced delivery techniques from current clinical practice and also assess the robustness of each technique. The present study therefore compared volumetric modulated arc therapy (VMAT) and single-field optimization (SFO) spot scanning proton therapy plans created using a simultaneous integrated boost (SIB) for dose escalation in midesophageal cancer and analyzed the effect of setup and range uncertainties on these plans. Methods and Materials For 21 patients, SIB plans with a physical dose prescription of 2 Gy or 2.5 Gy/fraction in 25 fractions to planning target volume (PTV)50Gy or PTV62.5Gy (primary tumor with 0.5 cm margins) were created and evaluated for robustness to random setup errors and proton range errors. Dose–volume metrics were compared for the optimal and uncertainty plans, with P<.05 (Wilcoxon) considered significant. Results SFO reduced the mean lung dose by 51.4% (range 35.1%-76.1%) and the mean heart dose by 40.9% (range 15.0%-57.4%) compared with VMAT. Proton plan robustness to a 3.5% range error was acceptable. For all patients, the clinical target volume D98 was 95.0% to 100.4% of the prescribed dose and gross tumor volume (GTV) D98 was 98.8% to 101%. Setup error robustness was patient anatomy dependent, and the potential minimum dose per fraction was always lower with SFO than with VMAT. The clinical target volume D98 was lower by 0.6% to 7.8% of the prescribed dose, and the GTV D98 was lower by 0.3% to 2.2% of the prescribed GTV dose. Conclusions The SFO plans achieved significant sparing of normal tissue compared with the VMAT plans for midesophageal cancer. The target dose coverage in the SIB proton plans was less robust to random setup errors and might be unacceptable for certain patients. Robust optimization to ensure adequate target coverage of SIB proton plans might be beneficial. PMID:27084641
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krayenbuehl, Jerome Dipl.Phys. E.T.H.; Oertel, Susanne; Davis, J. Bernard
Purpose: The optimal technique for postoperative radiotherapy (RT) after extrapleural pleuropneumonectomy (EPP) of malignant pleural mesothelioma (MPM) remains debated. Methods and Materials: The data from 8 right-sided and 9 left-sided consecutive cases of MPM treated with RT after radical EPP were reviewed. Of the 17 patients, 8 had been treated with three-dimensional (3D) conformal RT (3D-CRT) and 9 with intensity-modulated RT (IMRT) with 6-MV photons. The clinical outcome and adverse events were assessed. For comparative planning, each case was replanned with 3D-CRT using photons and electrons or with IMRT. Homogeneity, doses to the organs at risk, and target volume coveragemore » were analyzed. Results: Both techniques yielded acceptable plans. The dose coverage and homogeneity of IMRT increased by 7.7% for the first planning target volume and 9.7% for the second planning target volume, ensuring {>=}95% of the prescribed dose compared with 3D-CRT (p < 0.01). Compared with 3D-CRT, IMRT increased the dose to the contralateral lung, with an increase in the mean lung dose of 7.8 Gy and an increase in the volume receiving 13 Gy and 20 Gy by 20.5% and 7.2%, respectively (p < 0.01). A negligible dose increase to the contralateral kidney and liver was observed. No differences were seen for the spinal cord and ipsilateral kidney. Two adverse events of clinical relevant lung toxicity were observed with IMRT. Conclusion: Intensity-modulated RT and 3D-CRT are both suitable for adjuvant RT. IMRT improves the planning target volume coverage but delivered greater doses to the organs at risk. Rigid dose constraints for the lung should be respected.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parhar, Preeti K.; Duckworth, Tamara; Shah, Parinda
2010-10-01
Purpose: To compare temporal lobe dose delivered by three pituitary macroadenoma irradiation techniques: three-field three-dimensional conformal radiotherapy (3D-CRT), three-field intensity-modulated radiotherapy (3F IMRT), and a proposed novel alternative of five-field IMRT (5F IMRT). Methods and Materials: Computed tomography-based external beam radiotherapy planning was performed for 15 pituitary macroadenoma patients treated at New York University between 2002 and 2007 using: 3D-CRT (two lateral, one midline superior anterior oblique [SAO] beams), 3F IMRT (same beam angles), and 5F IMRT (same beam angles with additional right SAO and left SAO beams). Prescription dose was 45 Gy. Target volumes were: gross tumor volume (GTV)more » = macroadenoma, clinical target volume (CTV) = GTV, and planning target volume = CTV + 0.5 cm. Structure contouring was performed by two radiation oncologists guided by an expert neuroradiologist. Results: Five-field IMRT yielded significantly decreased temporal lobe dose delivery compared with 3D-CRT and 3F IMRT. Temporal lobe sparing with 5F IMRT was most pronounced at intermediate doses: mean V25Gy (% of total temporal lobe volume receiving {>=}25 Gy) of 13% vs. 28% vs. 29% for right temporal lobe and 14% vs. 29% vs. 30% for left temporal lobe for 5F IMRT, 3D-CRT, and 3F IMRT, respectively (p < 10{sup -7} for 5F IMRT vs. 3D-CRT and 5F IMRT vs. 3F IMRT). Five-field IMRT plans did not compromise target coverage, exceed normal tissue dose constraints, or increase estimated brain integral dose. Conclusions: Five-field IMRT irradiation technique results in a statistically significant decrease in the dose to the temporal lobes and may thus help prevent neurocognitive sequelae in irradiated pituitary macroadenoma patients.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGeachy, P; Villarreal-Barajas, JE; Khan, R
2015-06-15
Purpose: The dosimetric outcome of optimized treatment plans obtained by modulating the photon beamlet energy and fluence on a small cohort of four Head and Neck (H and N) patients was investigated. This novel optimization technique is denoted XMRT for modulated photon radiotherapy. The dosimetric plans from XMRT for H and N treatment were compared to conventional, 6 MV intensity modulated radiotherapy (IMRT) optimization plans. Methods: An arrangement of two non-coplanar and five coplanar beams was used for all four H and N patients. Both XMRT and IMRT were subject to the same optimization algorithm, with XMRT optimization allowing bothmore » 6 and 18 MV beamlets while IMRT was restricted to 6 MV only. The optimization algorithm was based on a linear programming approach with partial-volume constraints implemented via the conditional value-at-risk method. H and N constraints were based off of those mentioned in the Radiation Therapy Oncology Group 1016 protocol. XMRT and IMRT solutions were assessed using metrics suggested by International Commission on Radiation Units and Measurements report 83. The Gurobi solver was used in conjunction with the CVX package to solve each optimization problem. Dose calculations and analysis were done in CERR using Monte Carlo dose calculation with VMC{sub ++}. Results: Both XMRT and IMRT solutions met all clinical criteria. Trade-offs were observed between improved dose uniformity to the primary target volume (PTV1) and increased dose to some of the surrounding healthy organs for XMRT compared to IMRT. On average, IMRT improved dose to the contralateral parotid gland and spinal cord while XMRT improved dose to the brainstem and mandible. Conclusion: Bi-energy XMRT optimization for H and N patients provides benefits in terms of improved dose uniformity to the primary target and reduced dose to some healthy structures, at the expense of increased dose to other healthy structures when compared with IMRT.« less
Mavroidis, Panayiotis; Katsilieri, Zaira; Kefala, Vasiliki; Milickovic, Natasa; Papanikolaou, Nikos; Karabis, Andreas; Zamboglou, Nikolaos; Baltas, Dimos
2010-09-01
One of the issues that a planner is often facing in HDR brachytherapy is the selective existence of high dose volumes around some few dominating dwell positions. If there is no information available about its necessity (e.g. location of a GTV), then it is reasonable to investigate whether this can be avoided. This effect can be eliminated by limiting the free modulation of the dwell times. HIPO, an inverse treatment plan optimization algorithm, offers this option. In treatment plan optimization there are various methods that try to regularize the variation of dose non-uniformity using purely dosimetric measures. However, although these methods can help in finding a good dose distribution they do not provide any information regarding the expected treatment outcome as described by radiobiology based indices. The quality of 12 clinical HDR brachytherapy implants for prostate utilizing HIPO and modulation restriction (MR) has been compared to alternative plans with HIPO and free modulation (without MR). All common dose-volume indices for the prostate and the organs at risk have been considered together with radiobiological measures. The clinical effectiveness of the different dose distributions was investigated by calculating the response probabilities of the tumors and organs-at-risk (OARs) involved in these prostate cancer cases. The radiobiological models used are the Poisson and the relative seriality models. Furthermore, the complication-free tumor control probability, P + and the biologically effective uniform dose ([Formula: see text]) were used for treatment plan evaluation and comparison. Our results demonstrate that HIPO with a modulation restriction value of 0.1-0.2 delivers high quality plans which are practically equivalent to those achieved with free modulation regarding the clinically used dosimetric indices. In the comparison, many of the dosimetric and radiobiological indices showed significantly different results. The modulation restricted clinical plans demonstrated a lower total dwell time by a mean of 1.4% that was proved to be statistically significant ( p = 0.002). The HIPO with MR treatment plans produced a higher P + by 0.5%, which stemmed from a better sparing of the OARs by 1.0%. Both the dosimetric and radiobiological comparison shows that the modulation restricted optimization gives on average similar results with the optimization without modulation restriction in the examined clinical cases. Concluding, based on our results, it appears that the applied dwell time regularization technique is expected to introduce a minor improvement in the effectiveness of the optimized HDR dose distributions.
Katsilieri, Zaira; Kefala, Vasiliki; Milickovic, Natasa; Papanikolaou, Nikos; Karabis, Andreas; Zamboglou, Nikolaos; Baltas, Dimos
2010-01-01
Purpose One of the issues that a planner is often facing in HDR brachytherapy is the selective existence of high dose volumes around some few dominating dwell positions. If there is no information available about its necessity (e.g. location of a GTV), then it is reasonable to investigate whether this can be avoided. This effect can be eliminated by limiting the free modulation of the dwell times. HIPO, an inverse treatment plan optimization algorithm, offers this option. In treatment plan optimization there are various methods that try to regularize the variation of dose non-uniformity using purely dosimetric measures. However, although these methods can help in finding a good dose distribution they do not provide any information regarding the expected treatment outcome as described by radiobiology based indices. Material and methods The quality of 12 clinical HDR brachytherapy implants for prostate utilizing HIPO and modulation restriction (MR) has been compared to alternative plans with HIPO and free modulation (without MR). All common dose-volume indices for the prostate and the organs at risk have been considered together with radiobiological measures. The clinical effectiveness of the different dose distributions was investigated by calculating the response probabilities of the tumors and organs-at-risk (OARs) involved in these prostate cancer cases. The radiobiological models used are the Poisson and the relative seriality models. Furthermore, the complication-free tumor control probability, P+ and the biologically effective uniform dose (D¯¯) were used for treatment plan evaluation and comparison. Results Our results demonstrate that HIPO with a modulation restriction value of 0.1-0.2 delivers high quality plans which are practically equivalent to those achieved with free modulation regarding the clinically used dosimetric indices. In the comparison, many of the dosimetric and radiobiological indices showed significantly different results. The modulation restricted clinical plans demonstrated a lower total dwell time by a mean of 1.4% that was proved to be statistically significant (p = 0.002). The HIPO with MR treatment plans produced a higher P+ by 0.5%, which stemmed from a better sparing of the OARs by 1.0%. Conclusions Both the dosimetric and radiobiological comparison shows that the modulation restricted optimization gives on average similar results with the optimization without modulation restriction in the examined clinical cases. Concluding, based on our results, it appears that the applied dwell time regularization technique is expected to introduce a minor improvement in the effectiveness of the optimized HDR dose distributions. PMID:27853473
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kairn, Tanya, E-mail: t.kairn@gmail.com; School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane; Papworth, Daniel
2016-10-01
Cancer often metastasizes to the vertebra, and such metastases can be treated successfully using simple, static posterior or opposed-pair radiation fields. However, in some cases, including when re-irradiation is required, spinal cord avoidance becomes necessary and more complex treatment plans must be used. This study evaluated 16 sample intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) treatment plans designed to treat 6 typical vertebral and paraspinal volumes using a standard prescription, with the aim of investigating the advantages and limitations of these treatment techniques and providing recommendations for their optimal use in vertebral treatments. Treatment plan quality and beammore » complexity metrics were evaluated using the Treatment And Dose Assessor (TADA) code. A portal-imaging–based quality assurance (QA) system was used to evaluate treatment delivery accuracy, and radiochromic film measurements were used to provide high-resolution verification of treatment plan dose accuracy, especially in the steep dose gradient regions between each vertebral target and spinal cord. All treatment modalities delivered approximately the same doses and the same levels of dose heterogeneity to each planning target volume (PTV), although the minimum PTV doses in the vertebral plans were substantially lower than the prescription, because of the requirement that the plans meet a strict constraint on the dose to the spinal cord and cord planning risk volume (PRV). All plans met required dose constraints on all organs at risk, and all measured PTV-cord dose gradients were steeper than planned. Beam complexity analysis suggested that the IMRT treatment plans were more deliverable (less complex, leading to greater QA success) than the VMAT treatment plans, although the IMRT plans also took more time to deliver. The accuracy and deliverability of VMAT treatment plans were found to be substantially increased by limiting the number of monitor units (MU) per beam at the optimization stage, and thereby limiting beam modulation complexity. The VMAT arcs that were optimized with MU limitation had higher QA pass rates as well as higher modulation complexity scores (less complexity), lower modulation indices (less modulation), lower MU per beam, larger beam segments, and fewer small apertures than the VMAT arcs that were optimized without MU limitation. It is recommended that VMAT treatments for vertebral volumes, where the PTV abuts or surrounds the spinal cord, should be optimized with MU limitation. IMRT treatments may be preferable to the VMAT treatments, for dosimetry and deliverability reasons, but may be inappropriate for some patients because of their increased treatment delivery time.« less
TU-EF-204-07: Add Tube Current Modulation to a Low Dose Simulation Tool for CT Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Y.; Department of Physics, University of Arizona, Tucson, AZ; Wen, G.
2015-06-15
Purpose: We extended the capabilities of a low dose simulation tool to model Tube-Current Modulation (TCM). TCM is widely used in clinical practice to reduce radiation dose in CT scans. We expect the tool to be valuable for various clinical applications (e.g., optimize protocols, compare reconstruction techniques and evaluate TCM methods). Methods: The tube current is input as a function of z location, instead of a fixed value. Starting from the line integrals of a scan, a new Poisson noise realization at a lower dose is generated for each view. To validate the new functionality, we compared simulated scans withmore » real scans in image space. Results: First we assessed noise in the difference between the low-dose simulations and the original high-dose scan. When the simulated tube current is a step function of z location, the noise at each segment matches the noise of 3 separate constant-tube-current-simulations. Secondly, with a phantom that forces TCM, we compared a low-dose simulation with an equivalent real low-dose scan. The mean CT number of the simulated scan and the real low-dose scan were 137.7±0.6 and 137.8±0.5 respectively. Furthermore, with 240 ROIs, the noise of the simulated scan and the real low-dose scan were 24.03±0.45 and 23.99±0.43 respectively, and they were not statistically different (2-sample t-test, p-value=0.28). The facts that the noise reflected the trend of the TCM curve, and that the absolute noise measurements were not statistically different validated the TCM function. Conclusion: We successfully added tube-current modulation functionality in an existing low dose simulation tool. We demonstrated that the noise reflected an input tube-current modulation curve. In addition, we verified that the noise and mean CT number of our simulation agreed with a real low dose scan. The authors are all employees of Philips. Yijun Ding is also supported by NIBIB P41EB002035 and NIBIB R01EB000803.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scorsetti, Marta; Bignardi, Mario; Clivio, Alessandro
Purpose: A planning study was performed to evaluate RapidArc (RA), a volumetric modulated arc technique, on malignant pleural mesothelioma. The benchmark was conventional fixed-field intensity-modulated radiotherapy (IMRT). Methods and materials: The computed tomography data sets of 6 patients were included. The plans for IMRT with nine fixed beams were compared against double-modulated arcs with a single isocenter. All plans were optimized for 15-MV photon beams. The dose prescription was 54 Gy to the planning target volume. The planning objectives for the planning target volume were a minimal dose of >95% and maximal dose of <107%. For the organs at risk,more » the parameters were as follows: contralateral lung, percentage of volume receiving 5 Gy (V{sub 5Gy}) <60%, V{sub 20Gy} < 10%, mean <10.0 Gy; liver, V{sub 30Gy} <33%, mean <31 Gy; heart, V{sub 45Gy} <30%, V{sub 50Gy} <20%, dose received by 1% of the volume (D{sub 1%}) <60 Gy; contralateral kidney, V{sub 15Gy} <20%; spine, D{sub 1%} <45 Gy; esophagus, V{sub 55Gy} <30%; and spleen, V{sub 40Gy} <50%. The monitor units (MUs) and delivery time were scored to measure the treatment efficiency. The pretreatment portal dosimetry scored delivery to the calculation agreement with the Gamma Agreement Index. Results: RA and IMRT provided equivalent coverage and homogeneity. Both techniques fulfilled objectives on organs at risk with a tendency of RA to improve sparing. The conformity index was 1.9 {+-} 0.1 for RA and IMRT. The number of MU/2Gy was 734 {+-} 82 for RA and 2,195 {+-} 317 for IMRT. The planning vs. delivery agreement revealed a Gamma Agreement Index for IMRT of 96.0% {+-} 2.6% and for RA of 95.7% {+-} 1.5%. The treatment time was 3.7 {+-} 0.3min for RA and 13.4 {+-} 0.1min for IMRT. Conclusion: RA demonstrated compared with conventional IMRT, similar target coverage and better dose sparing to the organs at risks. The number of MUs and the time required to deliver a 2-Gy fraction were much lower for RA, allowing the possibility to incorporate this technique in the treatment options for mesothelioma patients.« less
Chui, Chen-Shou; Yorke, Ellen; Hong, Linda
2003-07-01
Intensity-modulated radiation therapy can be conveniently delivered with a multileaf collimator. With this method, the entire field is not delivered at once, but rather it is composed of many subfields defined by the leaf positions as a function of beam on time. At any given instant, only these subfields are delivered. During treatment, if the organ moves, part of the volume may move in or out of these subfields. Due to this interplay between organ motion and leaf motion the delivered dose may be different from what was planned. In this work, we present a method that calculates the effects of organ motion on delivered dose. The direction of organ motion may be parallel or perpendicular to the leaf motion, and the effect can be calculated for a single fraction or for multiple fractions. Three breast patients and four lung patients were included in this study,with the amplitude of the organ motion varying from +/- 3.5 mm to +/- 10 mm, and the period varying from 4 to 8 seconds. Calculations were made for these patients with and without organ motion, and results were examined in terms of isodose distribution and dose volume histograms. Each calculation was repeated ten times in order to estimate the statistical uncertainties. For selected patients, calculations were also made with conventional treatment technique. The effects of organ motion on conventional techniques were compared relative to that on IMRT techniques. For breast treatment, the effect of organ motion primarily broadened the penumbra at the posterior field edge. The dose in the rest of the treatment volume was not significantly affected. For lung treatment, the effect also broadened the penumbra and degraded the coverage of the planning target volume (PTV). However, the coverage of the clinical target volume (CTV) was not much affected, provided the PTV margin was adequate. The same effects were observed for both IMRT and conventional treatment techniques. For the IMRT technique, the standard deviations of ten samples of a 30-fraction calculation were very small for all patients, implying that over a typical treatment course of 30 fractions, the delivered dose was very close to the expected value. Hence, under typical clinical conditions, the effect of organ motion on delivered dose can be calculated without considering the interplay between the organ motion and the leaf motion. It can be calculated as the weighted average of the dose distribution without organ motion with the distribution of organ motion. Since the effects of organ motion on dose were comparable for both IMRT and conventional techniques, the PTV margin should remain the same for both techniques.
Skin dose mapping for non-uniform x-ray fields using a backscatter point spread function
NASA Astrophysics Data System (ADS)
Vijayan, Sarath; Xiong, Zhenyu; Shankar, Alok; Rudin, Stephen; Bednarek, Daniel R.
2017-03-01
Beam shaping devices like ROI attenuators and compensation filters modulate the intensity distribution of the xray beam incident on the patient. This results in a spatial variation of skin dose due to the variation of primary radiation and also a variation in backscattered radiation from the patient. To determine the backscatter component, backscatter point spread functions (PSF) are generated using EGS Monte-Carlo software. For this study, PSF's were determined by simulating a 1 mm beam incident on the lateral surface of an anthropomorphic head phantom and a 20 cm thick PMMA block phantom. The backscatter PSF's for the head phantom and PMMA phantom are curve fit with a Lorentzian function after being normalized to the primary dose intensity (PSFn). PSFn is convolved with the primary dose distribution to generate the scatter dose distribution, which is added to the primary to obtain the total dose distribution. The backscatter convolution technique is incorporated in the dose tracking system (DTS), which tracks skin dose during fluoroscopic procedures and provides a color map of the dose distribution on a 3D patient graphic model. A convolution technique is developed for the backscatter dose determination for the nonuniformly spaced graphic-model surface vertices. A Gafchromic film validation was performed for shaped x-ray beams generated with an ROI attenuator and with two compensation filters inserted into the field. The total dose distribution calculated by the backscatter convolution technique closely agreed with that measured with the film.
Recent advances in intensity modulated radiotherapy and proton therapy for esophageal cancer.
Xi, Mian; Lin, Steven H
2017-07-01
Radiotherapy is an important component of the standard of care for esophageal cancer. In the past decades, significant improvements in the planning and delivery of radiation techniques have led to better dose conformity to the target volume and improved normal tissue sparing. Areas covered: This review focuses on the advances in radiotherapy techniques and summarizes the availably dosimetric and clinical outcomes of intensity-modulated radiation therapy (IMRT), volumetric modulated arc therapy, proton therapy, and four-dimensional radiotherapy for esophageal cancer, and discusses the challenges and future development of proton therapy. Expert commentary: Although three-dimensional conformal radiotherapy is the standard radiotherapy technique in esophageal cancer, the retrospectively comparative studies strongly suggest that the dosimetric advantage of IMRT over three-dimensional conformal radiotherapy can translate into improved clinical outcomes, despite the lack of prospective randomized evidence. As a novel form of conventional IMRT technique, volumetric modulated arc therapy can produce equivalent or superior dosimetric quality with significantly higher treatment efficiency in esophageal cancer. Compared with photon therapy, proton therapy has the potential to achieve further clinical improvement due to their physical properties; however, prospective clinical data, long-term results, and cost-effectiveness are needed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chow, J; Jiang, R; Kiciak, A
2016-06-15
Purpose: This study compared the rectal dose-volume consistency, equivalent uniform dose (EUD) and normal tissue complication probability (NTCP) in prostate intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT). Methods: For forty prostate IMRT and fifty VMAT patients treated using the same dose prescription (78 Gy/39 fraction) and dose-volume criteria in inverse planning optimization, the rectal EUD and NTCP were calculated for each patient. The rectal dose-volume consistency, showing the variability of dose-volume histogram (DVH) among patients, was defined and calculated based on the deviation between the mean and corresponding rectal DVH. Results: From both the prostate IMRT andmore » VMAT plans, the rectal EUD and NTCP were found decreasing with the rectal volume. The decrease rates for the IMRT plans (EUD = 0.47 × 10{sup −3} Gy cm{sup −3} and NTCP = 3.94 × 10{sup −2} % cm{sup −3}) were higher than those for the VMAT (EUD = 0.28 × 10{sup −3} Gy cm{sup −3} and NTCP = 2.61 × 10{sup −2} % cm{sup −3}). In addition, the dependences of the rectal EUD and NTCP on the dose-volume consistency were found very similar between the prostate IMRT and VMAT plans. This shows that both delivery techniques have similar variations of the rectal EUD and NTCP on the dose-volume consistency. Conclusion: Dependences of the dose-volume consistency on the rectal EUD and NTCP were compared between the prostate IMRT and VMAT plans. It is concluded that both rectal EUD and NTCP decreased with an increase of the rectal volume. The variation rates of the rectal EUD and NTCP on the rectal volume were higher for the IMRT plans than VMAT. However, variations of the rectal dose-volume consistency on the rectal EUD and NTCP were found not significant for both delivery techniques.« less
Convolution-based estimation of organ dose in tube current modulated CT
NASA Astrophysics Data System (ADS)
Tian, Xiaoyu; Segars, W. Paul; Dixon, Robert L.; Samei, Ehsan
2016-05-01
Estimating organ dose for clinical patients requires accurate modeling of the patient anatomy and the dose field of the CT exam. The modeling of patient anatomy can be achieved using a library of representative computational phantoms (Samei et al 2014 Pediatr. Radiol. 44 460-7). The modeling of the dose field can be challenging for CT exams performed with a tube current modulation (TCM) technique. The purpose of this work was to effectively model the dose field for TCM exams using a convolution-based method. A framework was further proposed for prospective and retrospective organ dose estimation in clinical practice. The study included 60 adult patients (age range: 18-70 years, weight range: 60-180 kg). Patient-specific computational phantoms were generated based on patient CT image datasets. A previously validated Monte Carlo simulation program was used to model a clinical CT scanner (SOMATOM Definition Flash, Siemens Healthcare, Forchheim, Germany). A practical strategy was developed to achieve real-time organ dose estimation for a given clinical patient. CTDIvol-normalized organ dose coefficients ({{h}\\text{Organ}} ) under constant tube current were estimated and modeled as a function of patient size. Each clinical patient in the library was optimally matched to another computational phantom to obtain a representation of organ location/distribution. The patient organ distribution was convolved with a dose distribution profile to generate {{≤ft(\\text{CTD}{{\\text{I}}\\text{vol}}\\right)}\\text{organ, \\text{convolution}}} values that quantified the regional dose field for each organ. The organ dose was estimated by multiplying {{≤ft(\\text{CTD}{{\\text{I}}\\text{vol}}\\right)}\\text{organ, \\text{convolution}}} with the organ dose coefficients ({{h}\\text{Organ}} ). To validate the accuracy of this dose estimation technique, the organ dose of the original clinical patient was estimated using Monte Carlo program with TCM profiles explicitly modeled. The discrepancy between the estimated organ dose and dose simulated using TCM Monte Carlo program was quantified. We further compared the convolution-based organ dose estimation method with two other strategies with different approaches of quantifying the irradiation field. The proposed convolution-based estimation method showed good accuracy with the organ dose simulated using the TCM Monte Carlo simulation. The average percentage error (normalized by CTDIvol) was generally within 10% across all organs and modulation profiles, except for organs located in the pelvic and shoulder regions. This study developed an improved method that accurately quantifies the irradiation field under TCM scans. The results suggested that organ dose could be estimated in real-time both prospectively (with the localizer information only) and retrospectively (with acquired CT data).
Radiation techniques for esophageal cancer.
Zhang, Minsi; Wu, Abraham J
2017-10-01
Radiotherapy plays a crucial role in the curative management of localized esophageal cancer, both as definitive and preoperative therapy. For definitive therapy, the standard radiation dose is 50.4 Gy in 28 fractions and should be delivered with concurrent chemotherapy. Chemoradiotherapy also has a wellestablished benefit in the preoperative setting, as established in the CROSS randomized trial. Radiation fields are typically generous, to account for subclinical extension of disease along the esophagus and to regional nodes. Three-dimensional conformal radiation is the current standard technique for esophageal cancer, though intensity-modulated radiation therapy is increasingly utilized and may improve the outcomes of esophageal radiotherapy by reducing radiation dose to critical normal tissues.
Use of tomotherapy in treatment of synchronous bilateral breast cancer: dosimetric comparison study
Wadasadawala, T; Sarin, R; Upreti, R R; Paul, S; Phurailatpam, R
2015-01-01
Objective: Synchronous malignancy in both breasts is a rare incidence. The present study aims at dosimetric comparison of conventional bitangential radiotherapy (RT) technique with conventional [field-in-field (FIF)] and rotational [Helical TomoTherapy® and TomoDirect™ (TD); Accuray Inc., Sunnyvale, CA] intensity-modulated RT for patients with synchronous bilateral breast cancer (SBBC). Methods: CT data sets of 10 patients with SBBC were selected for the present study. RT was planned for all patients on both sides to whole breast and/or chest wall using the above-mentioned techniques. Six females with breast conservation on at least one side also had a composite plan along with tumour bed (TB) boost using sequential electrons for bitangential and FIF techniques or sequential helical tomotherapy (HT) boost (for TD) or simultaneous integrated boost (SIB) for HT. Results: All techniques produced acceptable target coverage. The hotspot was significantly lower with FIF technique and HT but higher with TD. For the organs at risk doses, HT resulted in significant reduction of the higher dose volumes. Similarly, TD resulted in significant reduction of the mean dose to the heart and total lung by reducing the lower dose volumes. All techniques of delivering boost to the TB were comparable in terms of target coverage. HT-SIB markedly reduced mean doses to the total lung and heart by specifically lowering the higher dose volumes. Conclusion: This study demonstrates the cardiac and pulmonary sparing ability of tomotherapy in the setting of SBBC. Advances in knowledge: This is the first study demonstrating feasibility of treatment of SBBC using tomotherapy. PMID:25605345
Fu, Yuchuan; Deng, Min; Zhou, Xiaojuan; Lin, Qiang; Du, Bin; Tian, Xue; Xu, Yong; Wang, Jin; Lu, You; Gong, Youling
2017-01-01
To evaluate the lung sparing in intensity-modulated radiation therapy (IMRT) for patients with upper thoracic esophageal tumors extending inferiorly to the thorax by different beam arrangement. Overall, 15 patient cases with cancer of upper thoracic esophagus were selected for a retrospective treatment-planning study. Intensity-modulated radiation therapy plans using 4, 5, and 7 beams (4B, 5B, and 7B) were developed for each patient by direct machine parameter optimization (DMPO). All plans were evaluated with respect to dose volumes to irradiated targets and normal structures, with statistical comparisons made between 4B with 5B and 7B intensity-modulated radiation therapy plans. Differences among plans were evaluated using a two-tailed Friedman test at a statistical significance of p < 0.05. The maximum dose, average dose, and the conformity index (CI) of planning target volume 1 (PTV1) were similar for 3 plans for each case. No significant difference of coverage for planning target volume 1 and maximum dose for spinal cords were observed among 3 plans in present study (p > 0.05). The average V 5 , V 13 , V 20 , mean lung dose, and generalized equivalent uniform dose (gEUD) for the total lung were significantly lower in 4B-plans than those data in 5B-plans and 7B-plans (p < 0.01). Although the average V 30 for the total lung were significantly higher in 4B-plans than those in 5B-plans and 7B-plans (p < 0.05). In addition, when comparing with the 4B-plans, the conformity/heterogeneity index of the 5B- and 7B-plans were significantly superior (p < 0.05). The 4B-intensity-modulated radiation therapy plan has advantage to address the specialized problem of lung sparing to low- and intermediate-dose exposure in the thorax when dealing with relative long tumors extended inferiorly to the thoracic esophagus for upper esophageal carcinoma with the cost for less conformity. Studies are needed to compare the superiority of volumetric modulated arc therapy with intensity-modulated radiation therapy technique. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Elith, Craig A; Dempsey, Shane E; Warren-Forward, Helen M
2013-01-01
Introduction The primary aim of this study is to compare intensity modulated radiation therapy (IMRT) to volumetric modulated arc therapy (VMAT) for the radical treatment of prostate cancer using version 10.0 (v10.0) of Varian Medical Systems, RapidArc radiation oncology system. Particular focus was placed on plan quality and the implications on departmental resources. The secondary objective was to compare the results in v10.0 to the preceding version 8.6 (v8.6). Methods Twenty prostate cancer cases were retrospectively planned using v10.0 of Varian's Eclipse and RapidArc software. Three planning techniques were performed: a 5-field IMRT, VMAT using one arc (VMAT-1A), and VMAT with two arcs (VMAT-2A). Plan quality was assessed by examining homogeneity, conformity, the number of monitor units (MUs) utilized, and dose to the organs at risk (OAR). Resource implications were assessed by examining planning and treatment times. The results obtained using v10.0 were also compared to those previously reported by our group for v8.6. Results In v10.0, each technique was able to produce a dose distribution that achieved the departmental planning guidelines. The IMRT plans were produced faster than VMAT plans and displayed improved homogeneity. The VMAT plans provided better conformity to the target volume, improved dose to the OAR, and required fewer MUs. Treatments using VMAT-1A were significantly faster than both IMRT and VMAT-2A. Comparison between versions 8.6 and 10.0 revealed that in the newer version, VMAT planning was significantly faster and the quality of the VMAT dose distributions produced were of a better quality. Conclusion VMAT (v10.0) using one or two arcs provides an acceptable alternative to IMRT for the treatment of prostate cancer. VMAT-1A has the greatest impact on reducing treatment time. PMID:26229615
TU-H-BRC-05: Stereotactic Radiosurgery Optimized with Orthovoltage Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fagerstrom, J; Culberson, W; Bender, E
2016-06-15
Purpose: To achieve improved stereotactic radiosurgery (SRS) dose distributions using orthovoltage energy fluence modulation with inverse planning optimization techniques. Methods: A pencil beam model was used to calculate dose distributions from the institution’s orthovoltage unit at 250 kVp. Kernels for the model were derived using Monte Carlo methods as well as measurements with radiochromic film. The orthovoltage photon spectra, modulated by varying thicknesses of attenuating material, were approximated using open-source software. A genetic algorithm search heuristic routine was used to optimize added tungsten filtration thicknesses to approach rectangular function dose distributions at depth. Optimizations were performed for depths of 2.5,more » 5.0, and 7.5 cm, with cone sizes of 8, 10, and 12 mm. Results: Circularly-symmetric tungsten filters were designed based on the results of the optimization, to modulate the orthovoltage beam across the aperture of an SRS cone collimator. For each depth and cone size combination examined, the beam flatness and 80–20% and 90–10% penumbrae were calculated for both standard, open cone-collimated beams as well as for the optimized, filtered beams. For all configurations tested, the modulated beams were able to achieve improved penumbra widths and flatness statistics at depth, with flatness improving between 33 and 52%, and penumbrae improving between 18 and 25% for the modulated beams compared to the unmodulated beams. Conclusion: A methodology has been described that may be used to optimize the spatial distribution of added filtration material in an orthovoltage SRS beam to result in dose distributions at depth with improved flatness and penumbrae compared to standard open cones. This work provides the mathematical foundation for a novel, orthovoltage energy fluence-modulated SRS system.« less
Tan, Wenyong; Han, Guang; Wei, Shaozhong; Hu, Desheng
2014-08-01
During intensity-modulated radiotherapy, an organ is usually assumed to be functionally homogeneous and, generally, its anatomical and spatial heterogeneity with respect to radiation response are not taken into consideration. However, advances in imaging and radiation techniques as well as an improved understanding of the radiobiological response of organs have raised the possibility of sparing the critical functional structures within various organs at risk during intensity-modulated radiotherapy. Here, we discuss these structures, which include the critical brain structure, or neural nuclei, and the nerve fiber tracts in the CNS, head and neck structures related to radiation-induced salivary and swallowing dysfunction, and functional structures in the heart and lung. We suggest that these structures can be used as potential surrogate organs at risk in order to minimize their radiation dose and/or irradiated volume without compromising the dose coverage of the target volume during radiation treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jiahao, E-mail: mashenglin@medmail.com.cn; Li, Xiadong; Deng, Qinghua
2015-10-01
The purposes of this article were to compare the biophysical dosimetry for postmastectomy left-sided breast cancer using 4 different radiotherapy (RT) techniques. In total, 30 patients with left-sided breast cancer were randomly selected for this treatment planning study. They were planned using 4 RT techniques, including the following: (1) 3-dimensional conventional tangential fields (TFs), (2) tangential intensity-modulated therapy (T-IMRT), (3) 4 fields IMRT (4F-IMRT), and (4) single arc volumetric-modulated arc therapy (S-VMAT). The planning target volume (PTV) dose was prescribed 50 Gy, the comparison of target dose distribution, conformity index, homogeneity index, dose to organs at risk (OARs), tumor controlmore » probability (TCP), normal tissue complication probability (NTCP), and number of monitor units (MUs) between 4 plans were investigated for their biophysical dosimetric difference. The target conformity and homogeneity of S-VMAT were better than the other 3 kinds of plans, but increased the volume of OARs receiving low dose (V{sub 5}). TCP of PTV and NTCP of the left lung showed no statistically significant difference in 4 plans. 4F-IMRT plan was superior in terms of target coverage and protection of OARs and demonstrated significant advantages in decreasing the NTCP of heart by 0.07, 0.03, and 0.05 compared with TFs, T-IMRT, and S-VMAT plan. Compared with other 3 plans, TFs reduced the average number of MUs. Of the 4 techniques studied, this analysis supports 4F-IMRT as the most appropriate balance of target coverage and normal tissue sparing.« less
Bijl, Hendrik P.; Schilstra, Cornelis; Pijls-Johannesma, Madelon; Langendijk, Johannes A.
2011-01-01
Purpose. Clinical studies concerning head and neck cancer patients treated with protons reporting on radiation-induced side effects are scarce. Therefore, we reviewed the literature regarding the potential benefits of protons compared with the currently used photons in terms of lower doses to normal tissue and the potential for fewer subsequent radiation-induced side effects, with the main focus on in silico planning comparative (ISPC) studies. Materials and Methods. A literature search was performed by two independent researchers on ISPC studies that included proton-based and photon-based irradiation techniques. Results. Initially, 877 papers were retrieved and 14 relevant and eligible ISPC studies were identified and included in this review. Four studies included paranasal sinus cancer cases, three included nasopharyngeal cancer cases, and seven included oropharyngeal, hypopharyngeal, and/or laryngeal cancer cases. Seven studies compared the most sophisticated photon and proton techniques: intensity-modulated photon therapy versus intensity-modulated proton therapy (IMPT). Four studies compared different proton techniques. All studies showed that protons had a lower normal tissue dose, while keeping similar or better target coverage. Two studies found that these lower doses theoretically translated into a significantly lower incidence of salivary dysfunction. Conclusion. The results of ISPC studies indicate that protons have the potential for a significantly lower normal tissue dose, while keeping similar or better target coverage. Scanned IMPT probably offers the most advantage and will allow for a substantially lower probability of radiation-induced side effects. The results of these ISPC studies should be confirmed in properly designed clinical trials. PMID:21349950
NASA Astrophysics Data System (ADS)
Hoopes, P. Jack; Wagner, Robert J.; Song, Ailin; Osterberg, Bjorn; Gladstone, David J.; Bursey, Alicea A.; Fiering, Steven N.; Giustini, Andrew J.
2017-02-01
It is now known that many tumors develop molecular signals (immune checkpoint modulators) that inhibit an effective tumor immune response. New information also suggest that even well-known cancer treatment modalities such as radiation and hyperthermia generate potentially beneficial immune responses that have been blocked or mitigated by such immune checkpoints, or similar molecules. The cancer therapy challenge is to; a) identify these treatment-based immune signals (proteins, antigens, etc.); b) the treatment doses or regimens that produce them; and c) the mechanisms that block or have the potential to promote them. The goal of this preliminary study, using the B6 mouse - B16 tumor model, clinically relevant radiation doses and fractionation schemes (including those used clinically in hypofractionated radiation therapy), magnetic nanoparticle hyperthermia (mNPH) and sophisticated protein, immune and tumor growth analysis techniques and modulators, is to determine the effect of specific radiation or hyperthermia alone and combined on overall treatment efficacy and immunologic response mechanisms. Preliminary analysis suggests that radiation dose (10 Gy vs. 2 Gy) significantly alters the mechanism of cell death (apoptosis vs. mitosis vs. necrosis) and the resulting immunogenicity. Our hypothesis and data suggest this difference is protein/antigen and immune recognition-based. Similarly, our evidence suggest that radiation doses larger than the conventional 2 Gy dose and specific hyperthermia doses and techniques (including mNP hyperthermia treatment) can be immunologically different, and potentially superior to, the radiation and heat therapy regimens that are typically used in research and clinical practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fua, Tsien F.; Corry, June; Milner, Alvin D.
2007-03-15
Purpose: The aim of this study was to quantify the dose delivered to the pharyngo-esophageal axis using different intensity-modulated radiation therapy (IMRT) techniques for treatment of nasopharyngeal carcinoma and to correlate this with acute swallowing toxicity. Methods and Materials: The study population consisted of 28 patients treated with IMRT between February 2002 and August 2005: 20 with whole field IMRT (WF-IMRT) and 8 with IMRT fields junctioned with an anterior neck field with central shielding (j-IMRT). Dose to the pharyngo-esophageal axis was measured using dose-volume histograms. Acute swallowing toxicity was assessed by review of dysphagia grade during treatment and enteralmore » feeding requirements. Results: The mean pharyngo-esophageal dose was 55.2 Gy in the WF-IMRT group and 27.2 Gy in the j-IMRT group, p < 0.001. Ninety-five percent (19/20) of the WF-IMRT group developed Grade 3 dysphagia compared with 62.5% (5/8) of the j-IMRT group, p = 0.06. Feeding tube duration was a median of 38 days for the WF-IMRT group compared with 6 days for the j-IMRT group, p = 0.04. Conclusions: Clinical vigilance must be maintained when introducing new technology to ensure that unanticipated adverse effects do not result. Although newer planning systems can reduce the dose to the pharyngo-esophageal axis with WF-IMRT, the j-IMRT technique is preferred at least in patients with no gross disease in the lower neck.« less
Lawrence, Jessica A.; Forrest, Lisa J.; Turek, Michelle M.; Miller, Paul E.; Mackie, T. Rockwell; Jaradat, Hazim A.; Vail, David M.; Dubielzig, Richard R.; Chappell, Richard; Mehta, Minesh P.
2010-01-01
Intensity modulated radiation therapy (IMRT) allows optimization of radiation dose delivery to complex tumor volumes with rapid dose drop-off to surrounding normal tissues. A prospective study was performed to evaluate the concept of conformal avoidance using IMRT in canine sinonasal cancer. The potential of IMRT to improve clinical outcome with respect to acute and late ocular toxicity was evaluated. Thirty-one dogs with sinonasal cancer were treated definitively with IMRT using helical tomotherapy and/or dynamic multileaf collimator (DMLC) delivery. Ocular toxicity was evaluated prospectively and compared to a comparable group of historical controls treated with conventional two-dimensional radiotherapy (2D-RT) techniques. Treatment plans were devised for each dog using helical tomotherapy and DMLC that achieved the target dose to the planning treatment volume and limited critical normal tissues to the prescribed dose-volume constraints. Overall acute and late toxicities were limited and minor, detectable by an experienced observer. This was in contrast to the profound ocular morbidity observed in the historical control group treated with 2D-RT. Overall median survival for IMRT treated and 2D treated dogs was 420 days and 411 days, respectively. Compared with conventional techniques, IMRT reduced dose delivered to eyes and resulted in bilateral ocular sparing in the dogs reported herein. These data provide proof-of-principle that conformal avoidance radiotherapy can be delivered through high conformity IMRT, resulting in decreased normal tissue toxicity as compared to historical controls treated with 2D-RT. PMID:20973393
Weber, Damien C; Ares, Carmen; Lomax, Antony J; Kurtz, John M
2006-01-01
Postoperative radiation therapy substantially decreases local relapse and moderately reduces breast cancer mortality, but can be associated with increased late mortality due to cardiovascular morbidity and secondary malignancies. Sophistication of breast irradiation techniques, including conformal radiotherapy and intensity modulated radiation therapy, has been shown to markedly reduce cardiac and lung irradiation. The delivery of more conformal treatment can also be achieved with particle beam therapy using protons. Protons have superior dose distributional qualities compared to photons, as dose deposition occurs in a modulated narrow zone, called the Bragg peak. As a result, further dose optimization in breast cancer treatment can be reasonably expected with protons. In this review, we outline the potential indications and benefits of breast cancer radiotherapy with protons. Comparative planning studies and preliminary clinical data are detailed and future developments are considered. PMID:16857055
Horowitz, David P; Wang, Tony J C; Wuu, Cheng-Shie; Feng, Wenzheng; Drassinower, Daphnie; Lasala, Anita; Pieniazek, Radoslaw; Cheng, Simon; Connolly, Eileen P; Lassman, Andrew B
2014-11-01
We examined the fetal dose from irradiation of glioblastoma during pregnancy using intensity modulated radiation therapy (IMRT), and describe fetal dose minimization using mobile shielding devices. A case report is described of a pregnant woman with glioblastoma who was treated during the third trimester of gestation with 60 Gy of radiation delivered via a 6 MV photon IMRT plan. Fetal dose without shielding was estimated using an anthropomorphic phantom with ion chamber and diode measurements. Clinical fetal dose with shielding was determined with optically stimulated luminescent dosimeters and ion chamber. Clinical target volume (CTV) and planning target volume (PTV) coverage was 100 and 98 % receiving 95 % of the prescription dose, respectively. Normal tissue tolerances were kept below quantitative analysis of normal tissue effects in the clinic (QUANTEC) recommendations. Without shielding, anthropomorphic phantom measurements showed a cumulative fetal dose of 0.024 Gy. In vivo measurements with shielding in place demonstrated a cumulative fetal dose of 0.016 Gy. The fetal dose estimated without shielding was 0.04 % and with shielding was 0.026 % of the target dose. In vivo estimation of dose equivalent received by the fetus was 24.21 mSv. Using modern techniques, brain irradiation can be delivered to pregnant patients in the third trimester with very low measured doses to the fetus, without compromising target coverage or normal tissue dose constraints. Fetal dose can further be reduced with the use of shielding devices, in keeping with the principle of as low as reasonably achievable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boer, Johan de; Wolf, Anne Lisa; Szeto, Yenny Z.
2015-04-01
Purpose: Rotations of the prostate gland induce considerable geometric uncertainties in prostate cancer radiation therapy. Collimator and gantry angle adjustments can correct these rotations in intensity modulated radiation therapy. Modern volumetric modulated arc therapy (VMAT) treatments, however, include a wide range of beam orientations that differ in modulation, and corrections require dynamic collimator rotations. The aim of this study was to implement a rotation correction strategy for VMAT dose delivery and validate it for left-right prostate rotations. Methods and Materials: Clinical VMAT treatment plans of 5 prostate cancer patients were used. Simulated left-right prostate rotations between +15° and −15° weremore » corrected by collimator rotations. We compared corrected and uncorrected plans by dose volume histograms, minimum dose (D{sub min}) to the prostate, bladder surface receiving ≥78 Gy (S78) and rectum equivalent uniform dose (EUD; n=0.13). Each corrected plan was delivered to a phantom, and its deliverability was evaluated by γ-evaluation between planned and delivered dose, which was reconstructed from portal images acquired during delivery. Results: On average, clinical target volume minimum dose (D{sub min}) decreased up to 10% without corrections. Negative left-right rotations were corrected almost perfectly, whereas D{sub min} remained within 4% for positive rotations. Bladder S78 and rectum EUD of the corrected plans matched those of the original plans. The average pass rate for the corrected plans delivered to the phantom was 98.9% at 3% per 3 mm gamma criteria. The measured dose in the planning target volume approximated the original dose, rotated around the simulated left-right angle, well. Conclusions: It is feasible to dynamically adjust the collimator angle during VMAT treatment delivery to correct for prostate rotations. This technique can safely correct for left-right prostate rotations up to 15°.« less
TH-C-12A-04: Dosimetric Evaluation of a Modulated Arc Technique for Total Body Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsiamas, P; Czerminska, M; Makrigiorgos, G
2014-06-15
Purpose: A simplified Total Body Irradiation (TBI) was developed to work with minimal requirements in a compact linac room without custom motorized TBI couch. Results were compared to our existing fixed-gantry double 4 MV linac TBI system with prone patient and simultaneous AP/PA irradiation. Methods: Modulated arc irradiates patient positioned in prone/supine positions along the craniocaudal axis. A simplified inverse planning method developed to optimize dose rate as a function of gantry angle for various patient sizes without the need of graphical 3D treatment planning system. This method can be easily adapted and used with minimal resources. Fixed maximum fieldmore » size (40×40 cm2) is used to decrease radiation delivery time. Dose rate as a function of gantry angle is optimized to result in uniform dose inside rectangular phantoms of various sizes and a custom VMAT DICOM plans were generated using a DICOM editor tool. Monte Carlo simulations, film and ionization chamber dosimetry for various setups were used to derive and test an extended SSD beam model based on PDD/OAR profiles for Varian 6EX/ TX. Measurements were obtained using solid water phantoms. Dose rate modulation function was determined for various size patients (100cm − 200cm). Depending on the size of the patient arc range varied from 100° to 120°. Results: A PDD/OAR based beam model for modulated arc TBI therapy was developed. Lateral dose profiles produced were similar to profiles of our existing TBI facility. Calculated delivery time and full arc depended on the size of the patient (∼8min/ 100° − 10min/ 120°, 100 cGy). Dose heterogeneity varied by about ±5% − ±10% depending on the patient size and distance to the surface (buildup region). Conclusion: TBI using simplified modulated arc along craniocaudal axis of different size patients positioned on the floor can be achieved without graphical / inverse 3D planning.« less
Favazza, Christopher P.; Yu, Lifeng; Leng, Shuai; Kofler, James M.; McCollough, Cynthia H.
2015-01-01
Objective To compare computed tomography dose and noise arising from use of an automatic exposure control (AEC) system designed to maintain constant image noise as patient size varies with clinically accepted technique charts and AEC systems designed to vary image noise. Materials and Methods A model was developed to describe tube current modulation as a function of patient thickness. Relative dose and noise values were calculated as patient width varied for AEC settings designed to yield constant or variable noise levels and were compared to empirically derived values used by our clinical practice. Phantom experiments were performed in which tube current was measured as a function of thickness using a constant-noise-based AEC system and the results were compared with clinical technique charts. Results For 12-, 20-, 28-, 44-, and 50-cm patient widths, the requirement of constant noise across patient size yielded relative doses of 5%, 14%, 38%, 260%, and 549% and relative noises of 435%, 267%, 163%, 61%, and 42%, respectively, as compared with our clinically used technique chart settings at each respective width. Experimental measurements showed that a constant noise–based AEC system yielded 175% relative noise for a 30-cm phantom and 206% relative dose for a 40-cm phantom compared with our clinical technique chart. Conclusions Automatic exposure control systems that prescribe constant noise as patient size varies can yield excessive noise in small patients and excessive dose in obese patients compared with clinically accepted technique charts. Use of noise-level technique charts and tube current limits can mitigate these effects. PMID:25938214
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, L; Ballangrud, A; Mechalakos, J
Purpose: For left-sided PU patients requiring CW and nodal irradiation, sometimes partial wide tangents (PWT) are not feasible due to abnormal chest wall contour or heart position close to the anterior chest wall or unusual wide excision scar. We developed an energy modulated electron chest wall irradiation technique that will achieve heart sparing. Methods: Ten left-sided PU patients were selected for this dosimetry study. If PWT were used, the amount of the ipsilateral lung would be ranged 3.4 to 4.4 cm, and the amount of heart would be ranged 1.3 to 3.8 cm. We used electron paired fields that matchedmore » on the skin to achieve dose conformity to the chest wall. The enface electron fields were designed at extended SSD from a single isocenter and gantry angle with different energy beams using different cutout. Lower energy was used in the central chest wall part and higher energy was used in the periphery of the chest wall. Bolus was used for the electron fields to ensure adequate skin dose coverage. The electron fields were matched to the photon supra-clavicle field in the superior region. Daily field junctions were used to feather the match lines between all the fields. Target volumes and normal tissues were drawn according to institutional protocols. Prescription dose was 2Gy per fraction for a total 50Gy. Dose calculations were done with Eclipse EMC-11031 for Electron and AAA-11031 for photons. Results: Six patients were planned using 6/9MeV, three using 9/12MeV and one 6/12MeV. Target volumes achieved adequate coverage. For heart, V30Gy, V20Gy and Mean Dose were 0.6%±0.6%, 2.7%±1.7%, and 3.0Gy±0.8Gy respectively. For ipsilateral lung, V50Gy, V20Gy, V10Gy and V5Gy were 0.9%±1.1%, 34.3%±5.1%, 51.6%±6.3% and 64.1%±7.5% respectively. Conclusion: For left-sided PU patients with unusual anatomy, energy modulated electron CW irradiation technique can achieve heart sparing with acceptable lung dose.« less
Kaviarasu, Karunakaran; Nambi Raj, N Arunai; Hamid, Misba; Giri Babu, A Ananda; Sreenivas, Lingampally; Murthy, Kammari Krishna
2017-01-01
The purpose of this study is to verify the accuracy of the commissioning of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) based on the recommendation of the American Association of Physicists in Medicine Task Group 119 (TG-119). TG-119 proposes a set of clinical test cases to verify the accuracy of IMRT planning and delivery system. For these test cases, we generated two sets of treatment plans, the first plan using 7-9 IMRT fields and a second plan utilizing two-arc VMAT technique for both 6 MV and 15 MV photon beams. The template plans of TG-119 were optimized and calculated by Varian Eclipse Treatment Planning System (version 13.5). Dose prescription and planning objectives were set according to the TG-119 goals. The point dose (mean dose to the contoured chamber volume) at the specified positions/locations was measured using compact (CC-13) ion chamber. The composite planar dose was measured with IMatriXX Evaluation 2D array with OmniPro IMRT Software (version 1.7b). The per-field relative gamma was measured using electronic portal imaging device in a way similar to the routine pretreatment patient-specific quality assurance. Our planning results are compared with the TG-119 data. Point dose and fluence comparison data where within the acceptable confident limit. From the obtained data in this study, we conclude that the commissioning of IMRT and VMAT delivery were found within the limits of TG-119.
Kaviarasu, Karunakaran; Nambi Raj, N. Arunai; Hamid, Misba; Giri Babu, A. Ananda; Sreenivas, Lingampally; Murthy, Kammari Krishna
2017-01-01
Aim: The purpose of this study is to verify the accuracy of the commissioning of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) based on the recommendation of the American Association of Physicists in Medicine Task Group 119 (TG-119). Materials and Methods: TG-119 proposes a set of clinical test cases to verify the accuracy of IMRT planning and delivery system. For these test cases, we generated two sets of treatment plans, the first plan using 7–9 IMRT fields and a second plan utilizing two-arc VMAT technique for both 6 MV and 15 MV photon beams. The template plans of TG-119 were optimized and calculated by Varian Eclipse Treatment Planning System (version 13.5). Dose prescription and planning objectives were set according to the TG-119 goals. The point dose (mean dose to the contoured chamber volume) at the specified positions/locations was measured using compact (CC-13) ion chamber. The composite planar dose was measured with IMatriXX Evaluation 2D array with OmniPro IMRT Software (version 1.7b). The per-field relative gamma was measured using electronic portal imaging device in a way similar to the routine pretreatment patient-specific quality assurance. Results: Our planning results are compared with the TG-119 data. Point dose and fluence comparison data where within the acceptable confident limit. Conclusion: From the obtained data in this study, we conclude that the commissioning of IMRT and VMAT delivery were found within the limits of TG-119. PMID:29296041
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gondi, Vinai; Tolakanahalli, Ranjini; Mehta, Minesh P.
2010-11-15
Purpose: Sparing the hippocampus during cranial irradiation poses important technical challenges with respect to contouring and treatment planning. Herein we report our preliminary experience with whole-brain radiotherapy using hippocampal sparing for patients with brain metastases. Methods and Materials: Five anonymous patients previously treated with whole-brain radiotherapy with hippocampal sparing were reviewed. The hippocampus was contoured, and hippocampal avoidance regions were created using a 5-mm volumetric expansion around the hippocampus. Helical tomotherapy and linear accelerator (LINAC)-based intensity-modulated radiotherapy (IMRT) treatment plans were generated for a prescription dose of 30 Gy in 10 fractions. Results: On average, the hippocampal avoidance volume wasmore » 3.3 cm{sup 3}, occupying 2.1% of the whole-brain planned target volume. Helical tomotherapy spared the hippocampus, with a median dose of 5.5 Gy and maximum dose of 12.8 Gy. LINAC-based IMRT spared the hippocampus, with a median dose of 7.8 Gy and maximum dose of 15.3 Gy. On a per-fraction basis, mean dose to the hippocampus (normalized to 2-Gy fractions) was reduced by 87% to 0.49 Gy{sub 2} using helical tomotherapy and by 81% to 0.73 Gy{sub 2} using LINAC-based IMRT. Target coverage and homogeneity was acceptable with both IMRT modalities, with differences largely attributed to more rapid dose fall-off with helical tomotherapy. Conclusion: Modern IMRT techniques allow for sparing of the hippocampus with acceptable target coverage and homogeneity. Based on compelling preclinical evidence, a Phase II cooperative group trial has been developed to test the postulated neurocognitive benefit.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, B; Vancouver Cancer Centre, Vancouver, BC; Gete, E
2016-06-15
Purpose: This work investigates the dosimetric accuracy of a trajectory based delivery technique in which an optimized radiation beam is delivered along a Couch-Gantry trajectory that is formed by simultaneous rotation of the linac gantry and the treatment couch. Methods: Nine trajectory based cranial SRS treatment plans were created using in-house optimization software. The plans were calculated for delivery on the TrueBeam STx linac with 6MV photon beam. Dose optimization was performed along a user-defined trajectory using MLC modulation, dose rate modulation and jaw tracking. The pre-defined trajectory chosen for this study is formed by a couch rotation through itsmore » full range of 180 degrees while the gantry makes four partial arc sweeps which are 170 degrees each. For final dose calculation, the trajectory based plans were exported to the Varian Eclipse Treatment Planning System. The plans were calculated on a homogeneous cube phantom measuring 18.2×18.2×18.2 cm3 with the analytical anisotropic algorithm (AAA) using a 1mm3 calculation voxel. The plans were delivered on the TrueBeam linac via the developer’s mode. Point dose measurements were performed on 9 patients with the IBA CC01 mini-chamber with a sensitive volume of 0.01 cc. Gafchromic film measurements along the sagittal and coronal planes were performed on three of the 9 treatment plans. Point dose values were compared with ion chamber measurements. Gamma analysis comparing film measurement and AAA calculations was performed using FilmQA Pro. Results: The AAA calculations and measurements were in good agreement. The point dose difference between AAA and ion chamber measurements were within 2.2%. Gamma analysis test pass rates (2%, 2mm passing criteria) for the Gafchromic film measurements were >95%. Conclusion: We have successfully tested TrueBeam’s ability to deliver accurate trajectory based treatments involving simultaneous gantry and couch rotation with MLC and dose rate modulation along the trajectory.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maraldo, Maja V., E-mail: dra.maraldo@gmail.com; Dabaja, Bouthaina S.; Filippi, Andrea R.
Purpose: Early-stage Hodgkin lymphoma (HL) is a rare disease, and the location of lymphoma varies considerably between patients. Here, we evaluate the variability of radiation therapy (RT) plans among 5 International Lymphoma Radiation Oncology Group (ILROG) centers with regard to beam arrangements, planning parameters, and estimated doses to the critical organs at risk (OARs). Methods: Ten patients with stage I-II classic HL with masses of different sizes and locations were selected. On the basis of the clinical information, 5 ILROG centers were asked to create RT plans to a prescribed dose of 30.6 Gy. A postchemotherapy computed tomography scan with precontouredmore » clinical target volume (CTV) and OARs was provided for each patient. The treatment technique and planning methods were chosen according to each center's best practice in 2013. Results: Seven patients had mediastinal disease, 2 had axillary disease, and 1 had disease in the neck only. The median age at diagnosis was 34 years (range, 21-74 years), and 5 patients were male. Of the resulting 50 treatment plans, 15 were planned with volumetric modulated arc therapy (1-4 arcs), 16 with intensity modulated RT (3-9 fields), and 19 with 3-dimensional conformal RT (2-4 fields). The variations in CTV-to-planning target volume margins (5-15 mm), maximum tolerated dose (31.4-40 Gy), and plan conformity (conformity index 0-3.6) were significant. However, estimated doses to OARs were comparable between centers for each patient. Conclusions: RT planning for HL is challenging because of the heterogeneity in size and location of disease and, additionally, to the variation in choice of treatment techniques and field arrangements. Adopting ILROG guidelines and implementing universal dose objectives could further standardize treatment techniques and contribute to lowering the dose to the surrounding OARs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moran, M.S., E-mail: meena.moran@yale.ed; Yale New Haven Hospital, New Haven, Connecticut and William W. Backus Hospital, Norwich, Connecticut; Castrucci, W.A.
2010-03-15
Purpose: Low-lying pelvic malignancies often require simultaneous radiation to pelvis and inguinal nodes. We previously reported improved homogeneity with the modified segmental boost technique (MSBT) compared to that with traditional methods, using phantom models. Here we report our institutional clinical experience with MSBT. Methods and Materials: MSBT patients from May 2001 to March 2007 were evaluated. Parameters analyzed included isocenter/multileaf collimation shifts, time per fraction (four fields), monitor units (MU)/fraction, femoral doses, maximal dose relative to body mass index, and inguinal node depth. In addition, a dosimetric comparison of the MSBT versus intensity modulated radiation therapy (IMRT) was conducted. Results:more » Of the 37 MSBT patients identified, 32 were evaluable. Port film adjustments were required in 6% of films. Median values for each analyzed parameter were as follows: MU/fraction, 298 (range, 226-348); delivery time, 4 minutes; inguinal depth, 4.5 cm; volume receiving 45 Gy (V45), 7%; V27.5, 87%; body mass index, 25 (range, 16.0-33.8). Inguinal dose was 100% in all cases; in-field inhomogeneity ranged from 111% to 118%. IMRT resulted in significantly decreased dose to normal tissue but required more time for treatment planning and a higher number of MUs (1,184 vs. 313 MU). Conclusions: In our clinical experience, the mono-isocentric MSBT provides a high degree of accuracy, improved homogeneity compared with traditional techniques, ease of simulation, treatment planning, treatment delivery, and acceptable femoral doses for pelvic/inguinal radiation fields requiring 45 to 50.4 Gy. In addition, the MSBT delivers a relatively uniform dose distribution throughout the treatment volume, despite varying body habitus. Clinical scenarios for the use of MSBT vs. intensity-modulated radiation therapy are discussed. To our knowledge, this is the first study reporting the utility of MSBT in the clinical setting.« less
[Investigation of Elekta linac characteristics for VMAT].
Luo, Guangwen; Zhang, Kunyi
2012-01-01
The aim of this study is to investigate the characteristics of Elekta delivery system for volumetric modulated arc therapy (VMAT). Five VMAT plans were delivered in service mode and dose rates, and speed of gantry and MLC leaves were analyzed by log files. Results showed that dose rates varied between 6 dose rates. Gantry and MLC leaf speed dynamically varied during delivery. The technique of VMAT requires linac to dynamically control more parameters, and these key dynamic variables during VMAT delivery can be checked by log files. Quality assurance procedure should be carried out for VMAT related parameter.
Chi, Alexander; Ma, Pan; Fu, Guishan; Hobbs, Gerry; Welsh, James S.; Nguyen, Nam P.; Jang, Si Young; Dai, Jinrong; Jin, Jing; Komaki, Ritsuko
2013-01-01
Background Helical tomotherapy (HT) and volumetric modulated arc therapy (VMAT) are both advanced techniques of delivering intensity-modulated radiotherapy (IMRT). Here, we conduct a study to compare HT and partial-arc VMAT in their ability to spare organs at risk (OARs) when stereotactic ablative radiotherapy (SABR) is delivered to treat centrally located early stage non-small-cell lung cancer or lung metastases. Methods 12 patients with centrally located lung lesions were randomly chosen. HT, 2 & 8 arc (Smart Arc, Pinnacle v9.0) plans were generated to deliver 70 Gy in 10 fractions to the planning target volume (PTV). Target and OAR dose parameters were compared. Each technique’s ability to meet dose constraints was further investigated. Results HT and VMAT plans generated essentially equivalent PTV coverage and dose conformality indices, while a trend for improved dose homogeneity by increasing from 2 to 8 arcs was observed with VMAT. Increasing the number of arcs with VMAT also led to some improvement in OAR sparing. After normalizing to OAR dose constraints, HT was found to be superior to 2 or 8-arc VMAT for optimal OAR sparing (meeting all the dose constraints) (p = 0.0004). All dose constraints were met in HT plans. Increasing from 2 to 8 arcs could not help achieve optimal OAR sparing for 4 patients. 2/4 of them had 3 immediately adjacent structures. Conclusion HT appears to be superior to VMAT in OAR sparing mainly in cases which require conformal dose avoidance of multiple immediately adjacent OARs. For such cases, increasing the number of arcs in VMAT cannot significantly improve OAR sparing. PMID:23577071
Pancreatic cancer planning: Complex conformal vs modulated therapies.
Chapman, Katherine L; Witek, Matthew E; Chen, Hongyu; Showalter, Timothy N; Bar-Ad, Voichita; Harrison, Amy S
2016-01-01
To compare the roles of intensity-modulated radiation therapy (IMRT) and volumetric- modulated arc therapy (VMAT) therapy as compared to simple and complex 3-dimensional chemoradiotherpy (3DCRT) planning for resectable and borderline resectable pancreatic cancer. In all, 12 patients who received postoperative radiotherapy (8) or neoadjuvant concurrent chemoradiotherapy (4) were evaluated retrospectively. Radiotherapy planning was performed for 4 treatment techniques: simple 4-field box, complex 5-field 3DCRT, 5 to 6-field IMRT, and single-arc VMAT. All volumes were approved by a single observer in accordance with Radiation Therapy Oncology Group (RTOG) Pancreas Contouring Atlas. Plans included tumor/tumor bed and regional lymph nodes to 45Gy; with tumor/tumor bed boosted to 50.4Gy, at least 95% of planning target volume (PTV) received the prescription dose. Dose-volume histograms (DVH) for multiple end points, treatment planning, and delivery time were assessed. Complex 3DCRT, IMRT, and VMAT plans significantly (p < 0.05) decreased mean kidney dose, mean liver dose, liver (V30, V35), stomach (D10%), stomach (V45), mean right kidney dose, and right kidney (V15) as compared with the simple 4-field plans that are most commonly reported in the literature. IMRT plans resulted in decreased mean liver dose, liver (V35), and left kidney (V15, V18, V20). VMAT plans decreased small bowel (D10%, D15%), small bowel (V35, V45), stomach (D10%, D15%), stomach (V35, V45), mean liver dose, liver (V35), left kidney (V15, V18, V20), and right kidney (V18, V20). VMAT plans significantly decreased small bowel (D10%, D15%), left kidney (V20), and stomach (V45) as compared with IMRT plans. Treatment planning and delivery times were most efficient for simple 4-field box and VMAT. Excluding patient setup and imaging, average treatment delivery was within 10minutes for simple and complex 3DCRT, IMRT, and VMAT treatments. This article shows significant improvements in 3D plan performance with complex planning over the more frequently compared 3- or 4-field simple 3D planning techniques. VMAT plans continue to demonstrate potential for the most organ sparing. However, further studies are required to identify if dosimetric benefits associated with inverse optimized planning can be translated into clinical benefits and if these treatment techniques are value-added therapies for this group of patients with cancer. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haertl, Petra M., E-mail: petra.haertl@klinik.uni-regensburg.de; Pohl, Fabian; Weidner, Karin
2013-04-01
This case study presents a rare case of left-sided breast cancer in a patient with funnel chest, which is a technical challenge for radiation therapy planning. To identify the best treatment technique for this case, 3 techniques were compared: conventional tangential fields (3D conformal radiotherapy [3D-CRT]), intensity-modulated radiotherapy (IMRT), and volumetric-modulated arc therapy (VMAT). The plans were created for a SynergyS® (Elekta, Ltd, Crawley, UK) linear accelerator with a BeamModulator™ head and 6-MV photons. The planning system was Oncentra Masterplan® v3.3 SP1 (Nucletron BV, Veenendal, Netherlands). Calculations were performed with collapsed cone algorithm. Dose prescription was 50.4 Gy to themore » average of the planning target volume (PTV). PTV coverage and homogeneity was comparable for all techniques. VMAT allowed reducing dose to the ipsilateral organs at risk (OAR) and the contralateral breast compared with IMRT and 3D-CRT: The volume of the left lung receiving 20 Gy was 19.3% for VMAT, 26.1% for IMRT, and 32.4% for 3D-CRT. In the heart, a D{sub 15%} of 9.7 Gy could be achieved with VMAT compared with 14 Gy for IMRT and 46 Gy for 3D-CRT. In the contralateral breast, D{sub 15%} was 6.4 Gy for VMAT, 8.8 Gy for IMRT, and 10.2 Gy for 3D-CRT. In the contralateral lung, however, the lowest dose was achieved with 3D-CRT with D{sub 10%} of 1.7 Gy for 3D-CRT, and 6.7 Gy for both IMRT and VMAT. The lowest number of monitor units (MU) per 1.8-Gy fraction was required by 3D-CRT (192 MU) followed by VMAT (518 MU) and IMRT (727 MU). Treatment time was similar for 3D-CRT (3 min) and VMAT (4 min) but substantially increased for IMRT (13 min). VMAT is considered the best treatment option for the presented case of a patient with funnel chest. It allows reducing dose in most OAR without compromising target coverage, keeping delivery time well below 5 minutes.« less
Sripathi, Lalitha Kameshwari; Ahlawat, Parveen; Simson, David K; Khadanga, Chira Ranjan; Kamarsu, Lakshmipathi; Surana, Shital Kumar; Arasu, Kavi; Singh, Harpreet
2017-01-01
Different techniques of radiation therapy have been studied to reduce the cardiac dose in left breast cancer. In this prospective dosimetric study, the doses to heart as well as other organs at risk (OAR) were compared between free-breathing (FB) and deep inspiratory breath hold (DIBH) techniques in intensity modulated radiotherapy (IMRT) and opposed-tangent three-dimensional radiotherapy (3DCRT) plans. Fifteen patients with left-sided breast cancer underwent computed tomography simulation and images were obtained in both FB and DIBH. Radiotherapy plans were generated with 3DCRT and IMRT techniques in FB and DIBH images in each patient. Target coverage, conformity index, homogeneity index, and mean dose to heart (Heart D mean ), left lung, left anterior descending artery (LAD) and right breast were compared between the four plans using the Wilcoxon signed rank test. Target coverage was adequate with both 3DCRT and IMRT plans, but IMRT plans showed better conformity and homogeneity. A statistically significant dose reduction of all OARs was found with DIBH. 3DCRT DIBH decreased the Heart D mean by 53.5% (7.1 vs. 3.3 Gy) and mean dose to LAD by 28% compared to 3DCRT FB . IMRT further lowered mean LAD dose by 18%. Heart D mean was lower with 3DCRT DIBH over IMRT DIBH (3.3 vs. 10.2 Gy). Mean dose to the contralateral breast was also lower with 3DCRT over IMRT (0.32 vs. 3.35 Gy). Mean dose and the V 20 of ipsilateral lung were lower with 3DCRT DIBH over IMRT DIBH (13.78 vs. 18.9 Gy) and (25.16 vs. 32.95%), respectively. 3DCRT DIBH provided excellent dosimetric results in patients with left-sided breast cancer without the need for IMRT.
Sripathi, Lalitha Kameshwari; Ahlawat, Parveen; Simson, David K; Khadanga, Chira Ranjan; Kamarsu, Lakshmipathi; Surana, Shital Kumar; Arasu, Kavi; Singh, Harpreet
2017-01-01
Introduction: Different techniques of radiation therapy have been studied to reduce the cardiac dose in left breast cancer. Aim: In this prospective dosimetric study, the doses to heart as well as other organs at risk (OAR) were compared between free-breathing (FB) and deep inspiratory breath hold (DIBH) techniques in intensity modulated radiotherapy (IMRT) and opposed-tangent three-dimensional radiotherapy (3DCRT) plans. Materials and Methods: Fifteen patients with left-sided breast cancer underwent computed tomography simulation and images were obtained in both FB and DIBH. Radiotherapy plans were generated with 3DCRT and IMRT techniques in FB and DIBH images in each patient. Target coverage, conformity index, homogeneity index, and mean dose to heart (Heart Dmean), left lung, left anterior descending artery (LAD) and right breast were compared between the four plans using the Wilcoxon signed rank test. Results: Target coverage was adequate with both 3DCRT and IMRT plans, but IMRT plans showed better conformity and homogeneity. A statistically significant dose reduction of all OARs was found with DIBH. 3DCRTDIBH decreased the Heart Dmean by 53.5% (7.1 vs. 3.3 Gy) and mean dose to LAD by 28% compared to 3DCRTFB. IMRT further lowered mean LAD dose by 18%. Heart Dmean was lower with 3DCRTDIBH over IMRTDIBH (3.3 vs. 10.2 Gy). Mean dose to the contralateral breast was also lower with 3DCRT over IMRT (0.32 vs. 3.35 Gy). Mean dose and the V20 of ipsilateral lung were lower with 3DCRTDIBH over IMRTDIBH (13.78 vs. 18.9 Gy) and (25.16 vs. 32.95%), respectively. Conclusions: 3DCRTDIBH provided excellent dosimetric results in patients with left-sided breast cancer without the need for IMRT. PMID:28974856
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bosarge, Christina L., E-mail: cbosarge@umail.iu.edu; Ewing, Marvene M.; DesRosiers, Colleen M.
To demonstrate the dosimetric advantages and disadvantages of standard anteroposterior-posteroanterior (S-AP/PA{sub AAA}), inverse-planned AP/PA (IP-AP/PA) and volumetry-modulated arc (VMAT) radiotherapies in the treatment of children undergoing whole-lung irradiation. Each technique was evaluated by means of target coverage and normal tissue sparing, including data regarding low doses. A historical approach with and without tissue heterogeneity corrections is also demonstrated. Computed tomography (CT) scans of 10 children scanned from the neck to the reproductive organs were used. For each scan, 6 plans were created: (1) S-AP/PA{sub AAA} using the anisotropic analytical algorithm (AAA), (2) IP-AP/PA, (3) VMAT, (4) S-AP/PA{sub NONE} without heterogeneitymore » corrections, (5) S-AP/PA{sub PB} using the Pencil-Beam algorithm and enforcing monitor units from technique 4, and (6) S-AP/PA{sub AAA[FM]} using AAA and forcing fixed monitor units. The first 3 plans compare modern methods and were evaluated based on target coverage and normal tissue sparing. Body maximum and lower body doses (50% and 30%) were also analyzed. Plans 4 to 6 provide a historic view on the progression of heterogeneity algorithms and elucidate what was actually delivered in the past. Averages of each comparison parameter were calculated for all techniques. The S-AP/PA{sub AAA} technique resulted in superior target coverage but had the highest maximum dose to every normal tissue structure. The IP-AP/PA technique provided the lowest dose to the esophagus, stomach, and lower body doses. VMAT excelled at body maximum dose and maximum doses to the heart, spine, and spleen, but resulted in the highest dose in the 30% body range. It was, however, superior to the S-AP/PA{sub AAA} approach in the 50% range. Each approach has strengths and weaknesses thus associated. Techniques may be selected on a case-by-case basis and by physician preference of target coverage vs normal tissue sparing.« less
A simpler method for total scalp irradiation: the multijaw-size concave arc technique.
Inoue, Minoru; Konno, Masahiro; Ogawa, Hirofumi; Harada, Hideyuki; Asakura, Hirofumi; Fuji, Hiroshi; Murayama, Shigeyuki; Nishimura, Tetsuo
2014-07-08
The lateral electron-photon technique (LEPT) and intensity-modulated radiation therapy (IMRT) are commonly used for total scalp irradiation. However, the treatment planning and irradiation are laborious and time-consuming. We herein present the multijaw-size concave arc technique (MCAT) as a total scalp irradiation method that overcomes these problems. CT datasets for eight patients previously treated for angiosarcoma of the scalp were replanned using MCAT, LEPT, and IMRT. The MCAT was designed with a dynamic conformal arc for the total scalp, with a multileaf collimator to shield the brain. Two additional conformal arcs with a decreased upper-jaw position of the first dynamic conformal arc were used to reduce the cranial hotspots. The prescribed dose was 40 Gy (2 Gy/fraction) to 95% of the planning target volume (PTV, defined as the total scalp plus a 4 mm margin). MCAT was compared with LEPT and IMRT with respect to the PTV dose homogeneity (D5%-95%), underdosage (V < 90%), overdosage (V > 110%), doses to the brain, and the delivery time and monitor units (MUs) for single irradiation. We were able to formulate treatment plans for all three techniques that could deliver the prescription dose in all patients. MCAT was significantly superior to LEPT with respect to PTV dose homogeneity, overdosage, and underdosage, although MCAT was inferior to IMRT with respect to dose homogeneity and overdosage. The mean brain dose and high-dosage volume of all three techniques were low, but IMRT provided larger volume to the brain than did the other two techniques in the low dosage region. In MCAT, the mean delivery time could be reduced by approximately half or more, and the mean MUs could be reduced by at least 100 compared to the other two techniques. MCAT can achieve total scalp irradiation with substantially fewer MUs and a shorter delivery time than LEPT and IMRT.
A simpler method for total scalp irradiation: the multijaw‐size concave arc technique
Konno, Masahiro; Ogawa, Hirofumi; Harada, Hideyuki; Asakura, Hirofumi; Fuji, Hiroshi; Murayama, Shigeyuki; Nishimura, Tetsuo
2014-01-01
The lateral electron‐photon technique (LEPT) and intensity‐modulated radiation therapy (IMRT) are commonly used for total scalp irradiation. However, the treatment planning and irradiation are laborious and time‐consuming. We herein present the multijaw‐size concave arc technique (MCAT) as a total scalp irradiation method that overcomes these problems. CT datasets for eight patients previously treated for angiosarcoma of the scalp were replanned using MCAT, LEPT, and IMRT. The MCAT was designed with a dynamic conformal arc for the total scalp, with a multileaf collimator to shield the brain. Two additional conformal arcs with a decreased upper‐jaw position of the first dynamic conformal arc were used to reduce the cranial hotspots. The prescribed dose was 40 Gy (2 Gy/fraction) to 95% of the planning target volume (PTV, defined as the total scalp plus a 4 mm margin). MCAT was compared with LEPT and IMRT with respect to the PTV dose homogeneity (D5%–95%), underdosage (V < 90%), overdosage (V > 110%), doses to the brain, and the delivery time and monitor units (MUs) for single irradiation. We were able to formulate treatment plans for all three techniques that could deliver the prescription dose in all patients. MCAT was significantly superior to LEPT with respect to PTV dose homogeneity, overdosage, and underdosage, although MCAT was inferior to IMRT with respect to dose homogeneity and overdosage. The mean brain dose and high‐dosage volume of all three techniques were low, but IMRT provided larger volume to the brain than did the other two techniques in the low dosage region. In MCAT, the mean delivery time could be reduced by approximately half or more, and the mean MUs could be reduced by at least 100 compared to the other two techniques. MCAT can achieve total scalp irradiation with substantially fewer MUs and a shorter delivery time than LEPT and IMRT. PACS number: 87.55.D‐ PMID:25207405
Jiang, Runqing
2013-01-01
This study investigates the dosimetry and radiobiological model variation when a second photon arc was added to prostate volumetric‐modulated arc therapy (VMAT) using the single‐arc technique. Dosimetry and radiobiological model comparison between the single‐arc and double‐arc prostate VMAT plans were performed on five patients with prostate volumes ranging from 29−68.1 cm3. The prescription dose was 78 Gy/39 fractions and the photon beam energy was 6 MV. Dose‐volume histogram, mean and maximum dose of targets (planning and clinical target volume) and normal tissues (rectum, bladder and femoral heads), dose‐volume criteria in the treatment plan (D99% of PTV; D30%,D50%,V17Gy and V35Gy of rectum and bladder; D5% of femoral heads), and dose profiles along the vertical and horizontal axis crossing the isocenter were determined using the single‐arc and double‐arc VMAT technique. For comparison, the monitor unit based on the RapidArc delivery method, prostate tumor control probability (TCP), and rectal normal tissue complication probability (NTCP) based on the Lyman‐Burman‐Kutcher algorithm were calculated. It was found that though the double‐arc technique required almost double the treatment time than the single‐arc, the double‐arc plan provided a better rectal and bladder dose‐volume criteria by shifting the delivered dose in the patient from the anterior–posterior direction to the lateral. As the femoral head was less radiosensitive than the rectum and bladder, the double‐arc technique resulted in a prostate VMAT plan with better prostate coverage and rectal dose‐volume criteria compared to the single‐arc. The prostate TCP of the double‐arc plan was found slightly increased (0.16%) compared to the single‐arc. Therefore, when the rectal dose‐volume criteria are very difficult to achieve in a single‐arc prostate VMAT plan, it is worthwhile to consider the double‐arc technique. PACS number: 87.55.D‐, 87.55.dk, 87.55.K‐, 87.55.Qr
Sakka, Mazen; Kunzelmann, Leonie; Metzger, Martin; Grabenbauer, Gerhard G
2017-10-01
Given the reduction in death from breast cancer, as well as improvements in overall survival, adjuvant radiotherapy is considered the standard treatment for breast cancer. However, left-sided breast irradiation was associated with an increased rate of fatal cardiovascular events due to incidental irradiation of the heart. Recently, considerable efforts have been made to minimize cardiac toxicity of left-sided breast irradiation by new treatment methods such as deep-inspiration breath-hold (DIBH) and new radiation techniques, particularly intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT). The primary aim of this study was to evaluate the effect of DIBH irradiation on cardiac dose compared with free-breathing (FB) irradiation, while the secondary objective was to compare the advantages of IMRT versus VMAT plans in both the FB and the DIBH position for left-sided breast cancer. In all, 25 consecutive left-sided breast cancer patients underwent CT simulation in the FB and DIBH position. Five patients were excluded with no cardiac displacement following DIBH-CT simulation. The other 20 patients were irradiated in the DIBH position using respiratory gating. Four different treatment plans were generated for each patient, an IMRT and a VMAT plan in the DIBH and in the FB position, respectively. The following parameters were used for plan comparison: dose to the heart, left anterior descending coronary artery (mean dose, maximum dose, D25% and D45%), ipsilateral, contralateral lung (mean dose, D20%, D30%) and contralateral breast (mean dose). The percentage in dose reduction for organs at risk achieved by DIBH for both IMRT and VMAT plans was calculated and compared for each patient by each treatment plan. DIBH irradiation significantly reduced mean dose to the heart and left anterior descending coronary artery (LADCA) using both IMRT (heart -20%; p = 0.0002, LADCA -9%; p = 0.001) and VMAT (heart -23%; p = 0.00003, LADCA -16%; p = 0.01) techniques as compared with FB radiation. There were no significant changes in left lung dose by IMRT; however, with VMAT planning, mean dose to the left lung was reduced by -4% (p = 0.0004). In addition, DIBH significantly increased the mean dose to the contralateral breast with IMRT (+14%, p = 0.002) and significantly reduced the dose to the contralateral breast with VMAT planning (-9%, p = 0.003) compared with the FB position. Additionally, in comparison with VMAT, the IMRT technique reduced mean heart dose both in the FB and the DIBH-position by -30% (p = 0.0004) and -26% (p = 0.002), respectively. Furthermore, IMRT increased the mean dose to the left lung in both the FB and the DIBH position (+5%, p = 0.003, p = 0.006), respectively. There were no significant changes in dose to the right lung and contralateral breast either in the FB or DIBH position between IMRT and VMAT techniques. Left-sided breast irradiation is best performed in the DIBH position, since a considerable dose sparing to the heart and LADCA can be achieved by using either IMRT or VMAT techniques. A significant additional decrease in heart and LADCA dose by IMRT in both FB and DIBH irradiation was seen compared with VMAT.
NASA Astrophysics Data System (ADS)
De Saint-Hubert, Marijke; Verellen, Dirk; Poels, Kenneth; Crijns, Wouter; Magliona, Federica; Depuydt, Tom; Vanhavere, Filip; Struelens, Lara
2017-07-01
Medulloblastoma treatment involves irradiation of the entire central nervous system, i.e. craniospinal irradiation (CSI). This is associated with the significant exposure of large volumes of healthy tissue and there is growing concern regarding treatment-associated side effects. The current study compares out-of-field organ doses in children receiving CSI through 3D-conformal radiotherapy (3D-CRT), intensity modulated radiotherapy (IMRT), helical tomotherapy (HT) and an electron-based technique, and includes radiation doses resulting from imaging performed during treatment. An extensive phantom study is performed, using an anthropomorphic phantom corresponding to a five year old child, in which organ absorbed doses are measured using thermoluminescent detectors. Additionally, the study evaluates and explores tools for calculating out-of-field patient doses using the treatment planning system (TPS) and analytical models. In our study, 3D-CRT resulted in very high doses to a limited number of organs, while it was able to spare organs such as the lungs and breast when compared to IMRT and HT. Both IMRT and HT spread the dose over more organs and were able to spare the heart, thyroid, bladder, uterus and testes when compared to 3D-CRT. The electron-based technique considerably decreased the out-of-field doses in deep-seated organs but could not avoid nearby out-of-field organs such as the lungs, ribs, adrenals, kidneys and uterus. The daily imaging dose is small compared to the treatment dose burden. The TPS error for out-of-field doses was most pronounced for organs further away from the target; nevertheless, no systematic underestimation was observed for any of the studied TPS systems. Finally, analytical modeling was most optimal for 3D-CRT although the number of organs that could be modeled was limited. To conclude, none of the techniques studied was capable of sparing all organs from out-of-field doses. Nevertheless, the electron-based technique showed the most promise for out-of-field organ dose reduction during CSI when compared to photon techniques.
Weber, Damien C; Bogner, Joachim; Verwey, Jorn; Georg, Dietmar; Dieckmann, Karin; Escudé, Lluis; Caro, Monica; Pötter, Richard; Goitein, Gudrun; Lomax, Antony J; Miralbell, Raymond
2005-10-01
A comparative treatment planning study was undertaken between proton and photon therapy in uveal melanoma to assess the potential benefits and limitations of these treatment modalities. A fixed proton horizontal beam (OPTIS) and intensity-modulated spot-scanning proton therapy (IMPT), with multiple noncoplanar beam arrangements, was compared with linear accelerator-based stereotactic radiotherapy (SRT), using a static and a dynamic micromultileaf collimator and intensity-modulated RT (IMRS). A planning CT scan was performed on a brain metastasis patient, with a 3-mm acquisition slice spacing and the patient looking at a luminous spot with the eyes in three different positions (neutral and 25 degrees right and left). Four different gross tumor volumes were defined for each treatment technique. These target scenarios represented different locations (involving vs. not involving the macula and temporal vs. nasal) and volumes (10 x 6 mm vs. 16 x 10 mm) to challenge the proton and photon treatment techniques. The planning target volume was defined as the gross tumor volume plus 2 mm laterally and 3 mm craniocaudally for both modalities. A dose homogeneity of 95-99% of the planning target volume was used as the "goal" for all techniques. The dose constraint (maximum) for the organs at risk (OARs) for both the proton and the SRT photon plans was 27.5, 22.5, 20, and 9 CGE-Gy for the optic apparatus, retina, lacrimal gland, and lens, respectively. The dose to the planning target volume was 50 CGE-Gy in 10 CGE-Gy daily fractions. The plans for proton and photon therapy were computed using the Paul Scherrer Institute and BrainSCAN, version 5.2 (BrainLAB, Heimstetten, Germany) treatment planning systems, respectively. Tumor and OARs dose-volume histograms were calculated. The results were analyzed using the dose-volume histogram parameters, conformity index (CI(95%)), and inhomogeneity coefficient. Target coverage of all simulated uveal melanomas was equally conformal with the photon and proton modalities. The median CI(95%) value was 1.74, 1.86, and 1.83 for the static, dynamic, and IMSRT plans, respectively. With proton planning, the median CI(95%) was 1.88 for OPTIS and substantially improved with IMPT in some tumor cases (median CI(95%), 1.29). The tumor dose homogeneity in the proton plans was, however, always better than with SRT photon planning (median inhomogeneity coefficient 0.1 and 0.15 vs. 0.46, 0.41, and 0.23 for the OPTIS and IMPT vs. the static, dynamic, and IMSRT plans, respectively). Compared with the photon plans, the use of protons did not lead to a substantial reduction in the homolateral OAR total integral dose in the low- to high-dose level, except for the lacrimal gland. The median maximal dose and dose at the 10% volume with the static, dynamic, and IMSRT plans was 33-30.8, 31.8-28, and 35.8-49 Gy, respectively, for the lacrimal gland, a critical organ. For protons, only the OPTIS plans were better, with a median maximal dose and dose at the 10% volume using OPTIS and IMPT of 19.2 and 8.8 and 25.6 and 23.6 CGE, respectively. The contralateral OARs were completely spared with the proton plans, but the median dose delivered to these structures was 1.2 Gy (range, 0-6.3 Gy) with the SRT photon plans. These results suggest that the use of SRT photon techniques, compared with protons, can result in similar levels of dose conformation. IMPT did not increase the degree of conformality for this small tumor. Tumor dose inhomogeneity was, however, always increased with photon planning. Except for the lacrimal gland, the use of protons, with or without intensity modulation, did not increase homolateral OAR dose sparing. The dose to all the contralateral OARs was, however, completely eliminated with proton planning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGlade, J; Kassaee, A
2015-06-15
Purpose: To evaluate planning methods for anal canal cancer and compare the results of 9-field Intensity Modulated Radiotherapy (IMRT), Volumetric Modulated Arc Therapy (Varian, RapidArc), and Proton Pencil Beam Scanning (PBS). Methods: We generated plans with IMRT, RapidArc (RA) and PBS for twenty patients for both initial phase including nodes and cone down phase of treatment using Eclipe (Varian). We evaluated the advantage of each technique for each phase. RA plans used 2 to 4 arcs and various collimator orientations. PBS used two posterior oblique fields. We evaluated the plans comparing dose volume histogram (DVH), locations of hot spots, andmore » PTV dose conformity. Results: Due to complex shape of target, for RA plans, multiple arcs (>2) are required to achieve optimal PTV conformity. When the PTV exceeds 15 cm in the superior-inferior direction, limitations of deliverability start to dominate. The PTV should be divided into a superior and an inferior structure. The optimization is performed with fixed jaws for each structure and collimator set to 90 degrees for the inferior PTV. Proton PBS plans show little advantage in small bowel sparing when treating the nodes. However, PBS plan reduces volumetric dose to the bladder at the cost of higher doses to the perineal skin. IMRT plans provide good target conformity, but they generate hot spots outside of the target volume. Conclusion: When using one planning technique for entire course of treatment, Multiple arc (>2) RA plans are better as compared to IMRT and PBS plans. When combining techniques, RA for the initial phase in combination with PBS for the cone down phase results in the most optimal plans.« less
Investigation of Advanced Dose Verification Techniques for External Beam Radiation Treatment
NASA Astrophysics Data System (ADS)
Asuni, Ganiyu Adeniyi
Intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) have been introduced in radiation therapy to achieve highly conformal dose distributions around the tumour while minimizing dose to surrounding normal tissues. These techniques have increased the need for comprehensive quality assurance tests, to verify that customized patient treatment plans are accurately delivered during treatment. in vivo dose verification, performed during treatment delivery, confirms that the actual dose delivered is the same as the prescribed dose, helping to reduce treatment delivery errors. in vivo measurements may be accomplished using entrance or exit detectors. The objective of this project is to investigate a novel entrance detector designed for in vivo dose verification. This thesis is separated into three main investigations, focusing on a prototype entrance transmission detector (TRD) developed by IBA Dosimetry, Germany. First contaminant electrons generated by the TRD in a 6 MV photon beam were investigated using Monte Carlo (MC) simulation. This study demonstrates that modification of the contaminant electron model in the treatment planning system is required for accurate patient dose calculation in buildup regions when using the device. Second, the ability of the TRD to accurately measure dose from IMRT and VMAT was investigated by characterising the spatial resolution of the device. This was accomplished by measuring the point spread function with further validation provided by MC simulation. Comparisons of measured and calculated doses show that the spatial resolution of the TRD allows for measurement of clinical IMRT fields within acceptable tolerance. Finally, a new general research tool was developed to perform MC simulations for VMAT and IMRT treatments, simultaneously tracking dose deposition in both the patient CT geometry and an arbitrary planar detector system, generalized to handle either entrance or exit orientations. It was demonstrated that the tool accurately simulates dose to the patient CT and planar detector geometries. The tool has been made freely available to the medical physics research community to help advance the development of in vivo planar detectors. In conclusion, this thesis presents several investigations that improve the understanding of a novel entrance detector designed for patient in vivo dosimetry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiao, L; Deng, G; Xie, J
2015-06-15
Purpose: To compare the dosimetric characteristics of volumetric-modulated arc therapy (VMAT) and intensity-modulated radiotherapy (IMRT) techniques in treatment planning for left-sided breast cancer patients with modified radical mastectomy. Methods: Twenty-four left-sided breast cancer patients treated with modified radical mastectomy were selected in this study. The planning target volume (PTV) was generated by using 7-mm uniform expansion of the clinical target volume (CTV) in all direction except the skin surface. The organs at risk (OARs) included heart, left lung, right lung, and right breast. Dose volume histograms (DVHs) were utilized to evaluate the dose distribution in PTV and OARs. Results: Bothmore » VMAT and IMRT plans met the requirement of PTV coverage. VMAT was superior to IMRT in terms of conformity, with a statistically significant difference (p=0.024). Mean doses, V5 and V10 of heart and both lungs in VMAT plans were significantly decreased compared to IMRT plans (P<0.05), but in terms of heart volume irradiated by high doses (V30 and V45), no significant differences were observed (P>0.05). For right breast, VMAT showed the reduction of V5 in comparison with IMRT (P<0.05). Additionally, the mean number of monitor units (MU) and treatment time in VMAT (357.21, 3.62 min) were significantly less than those in IMRT (1132.85, 8.74 min). Conclusion: VMAT showed similar PTV coverage and significant advantage in OARs sparing compared with IMRT, especially in terms of decreased volumes irradiated by low doses, while significantly reducing the treatment time and MU number.« less
Kim, Eun Seok; Yeo, Seung-Gu
2014-06-01
Previous studies on advanced radiotherapy (RT) techniques for early stage glottic cancer have focused on sparing the carotid artery. However, the aim of the present study was to evaluate the dosimetric advantages of volumetric modulated arc therapy (VMAT) in terms of sparing the thyroid gland in early-stage glottic cancer patients. In total, 15 cT1N0M0 glottic cancer patients treated with definitive RT using VMAT were selected, and for dosimetric comparison, a conventional RT plan comprising opposed-lateral wedged fields was generated for each patient. The carotid artery, thyroid gland and spinal cord were considered organs at risk. The prescription dose was 63 Gy at 2.25 Gy per fraction. For the thyroid gland and carotid artery, all compared parameters were significantly lower with VMAT compared with conventional RT. For the thyroid gland, the median reduction rates of the mean dose (D mean ), the volume receiving ≥30% of the prescription dose (V 30 ) and the V 50 were 32.6, 40.9 and 46.0%, respectively. The D mean was 14.7±2.6 Gy when using VMAT compared with 22.2±3.9 Gy when using conventional RT. The differences between the techniques in terms of planning target volume coverage and dose homogeneity were not significant. When considering a recent normal tissue complication probability model, which indicated the mean thyroid gland dose as the most significant predictor of radiation-induced hypothyroidism, the dosimetric advantage shown in this study may be valuable in reducing hypothyroidism following RT for early stage glottic cancer patients.
Horsley, Patrick J; Aherne, Noel J; Edwards, Grace V; Benjamin, Linus C; Wilcox, Shea W; McLachlan, Craig S; Assareh, Hassan; Welshman, Richard; McKay, Michael J; Shakespeare, Thomas P
2015-03-01
Magnetic resonance imaging (MRI) scans are increasingly utilized for radiotherapy planning to contour the primary tumors of patients undergoing intensity-modulated radiation therapy (IMRT). These scans may also demonstrate cancer extent and may affect the treatment plan. We assessed the impact of planning MRI detection of extracapsular extension, seminal vesicle invasion, or adjacent organ invasion on the staging, target volume delineation, doses, and hormonal therapy of patients with prostate cancer undergoing IMRT. The records of 509 consecutive patients with planning MRI scans being treated with IMRT for prostate cancer between January 2010 and July 2012 were retrospectively reviewed. Tumor staging and treatment plans before and after MRI were compared. Of the 509 patients, 103 (20%) were upstaged and 44 (9%) were migrated to a higher risk category as a result of findings at MRI. In 94 of 509 patients (18%), the MRI findings altered management. Ninety-four of 509 patients (18%) had a change to their clinical target volume (CTV) or treatment technique, and in 41 of 509 patients (8%) the duration of hormone therapy was changed because of MRI findings. The use of radiotherapy planning MRI altered CTV design, dose and/or duration of androgen deprivation in 18% of patients in this large, single institution series of men planned for dose-escalated prostate IMRT. This has substantial implications for radiotherapy target volumes and doses, as well as duration of androgen deprivation. Further research is required to investigate whether newer MRI techniques can simultaneously fulfill staging and radiotherapy contouring roles. © 2014 Wiley Publishing Asia Pty Ltd.
Tiwari, Vivek; Pande, Subodh C.; Verma, Kamal; Goel, Sandeep
2015-01-01
Introduction: To analyze the pattern of brain metastasis (BM), and to use intensity modulated radiation therapy (IMRT) for target dose escalation in cases with ≤3 metastatic lesions (oligometastases). Materials and Methods: Thirty-two consecutive cases of BM treated during September 2009 to August 2012 were analyzed retrospectively. Results: The study comprised 13 males (40.62%) and 19 females (59.37%). Thirteen (40%) patients presented with disseminated intracranial metastases, while 19 (60%) had ≤3 foci. In 25 cases (78%), the primary was located either in the breast (14 cases) or lung (11 cases). The 13 patients with disseminated intracranial metastases received whole brain radiation therapy to a dose of 30 Gy/10-12 daily fractions (Group A) while the 19 cases with ≤3 lesions received an additional dose of 6-10 Gy to gross lesions using a simultaneous integrated boost (SIB) with IMRT thus receiving a total dose of 36-40 Gy/12-15 fractions (Group B). Overall survival (OS) for the breast primary was 6.3 and lung primary was 5.3 months, respectively. The mean OS for breast cases in Group B was higher (9.5 months) as compared to Group A cases (1.9 months) and was statistically significant (P = 0.0056). Similarly, primary lung cancer cases in Group B showed a mean OS of 8.75 months versus 2.6 months for Group A cases (P = 0.213). Conclusions: IMRT is a safe and effective technique in cases with oligometastases for dose escalation in the form of SIB. PMID:25839012
Prostate Cancer Radiation Therapy: What Do Clinicians Have to Know?
Van Limbergen, Evert J.; van Lin, Emile N.; van Roermund, Joep G. H.; Lambin, Philippe
2016-01-01
Radiotherapy (RT) for prostate cancer (PC) has steadily evolved over the last decades, with improving biochemical disease-free survival. Recently population based research also revealed an association between overall survival and doses ≥ 75.6 Gray (Gy) in men with intermediate- and high-risk PC. Examples of improved RT techniques are image-guided RT, intensity-modulated RT, volumetric modulated arc therapy, and stereotactic ablative body RT, which could facilitate further dose escalation. Brachytherapy is an internal form of RT that also developed substantially. New devices such as rectum spacers and balloons have been developed to spare rectal structures. Newer techniques like protons and carbon ions have the intrinsic characteristics maximising the dose on the tumour while minimising the effect on the surrounding healthy tissue, but clinical data are needed for confirmation in randomised phase III trials. Furthermore, it provides an overview of an important discussion issue in PC treatment between urologists and radiation oncologists: the comparison between radical prostatectomy and RT. Current literature reveals that all possible treatment modalities have the same cure rate, but a different toxicity pattern. We recommend proposing the possible different treatment modalities with their own advantages and side-effects to the individual patient. Clinicians and patients should make treatment decisions together (shared decision-making) while using patient decision aids. PMID:28116302
Initial characterization, dosimetric benchmark and performance validation of Dynamic Wave Arc.
Burghelea, Manuela; Verellen, Dirk; Poels, Kenneth; Hung, Cecilia; Nakamura, Mitsuhiro; Dhont, Jennifer; Gevaert, Thierry; Van den Begin, Robbe; Collen, Christine; Matsuo, Yukinori; Kishi, Takahiro; Simon, Viorica; Hiraoka, Masahiro; de Ridder, Mark
2016-04-29
Dynamic Wave Arc (DWA) is a clinical approach designed to maximize the versatility of Vero SBRT system by synchronizing the gantry-ring noncoplanar movement with D-MLC optimization. The purpose of this study was to verify the delivery accuracy of DWA approach and to evaluate the potential dosimetric benefits. DWA is an extended form of VMAT with a continuous varying ring position. The main difference in the optimization modules of VMAT and DWA is during the angular spacing, where the DWA algorithm does not consider the gantry spacing, but only the Euclidian norm of the ring and gantry angle. A preclinical version of RayStation v4.6 (RaySearch Laboratories, Sweden) was used to create patient specific wave arc trajectories for 31 patients with various anatomical tumor regions (prostate, oligometatstatic cases, centrally-located non-small cell lung cancer (NSCLC) and locally advanced pancreatic cancer-LAPC). DWA was benchmarked against the current clinical approaches and coplanar VMAT. Each plan was evaluated with regards to dose distribution, modulation complexity (MCS), monitor units and treatment time efficiency. The delivery accuracy was evaluated using a 2D diode array that takes in consideration the multi-dimensionality of DWA during dose reconstruction. In centrally-located NSCLC cases, DWA improved the low dose spillage with 20 %, while the target coverage was increased with 17 % compared to 3D CRT. The structures that significantly benefited from using DWA were proximal bronchus and esophagus, with the maximal dose being reduced by 17 % and 24 %, respectively. For prostate and LAPC, neither technique seemed clearly superior to the other; however, DWA reduced with more than 65 % of the delivery time over IMRT. A steeper dose gradient outside the target was observed for all treatment sites (p < 0.01) with DWA. Except the oligometastatic cases, where the DWA-MCSs indicate a higher modulation, both DWA and VMAT modalities provide plans of similar complexity. The average ɣ (3 % /3 mm) passing rate for DWA plans was 99.2 ± 1 % (range from 96.8 to 100 %). DWA proven to be a fully functional treatment technique, allowing additional flexibility in dose shaping, while preserving dosimetrically robust delivery and treatment times comparable with coplanar VMAT.
Variable beam dose rate and DMLC IMRT to moving body anatomy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papiez, Lech; Abolfath, Ramin M.
2008-11-15
Derivation of formulas relating leaf speeds and beam dose rates for delivering planned intensity profiles to static and moving targets in dynamic multileaf collimator (DMLC) intensity modulated radiation therapy (IMRT) is presented. The analysis of equations determining algorithms for DMLC IMRT delivery under a variable beam dose rate reveals a multitude of possible delivery strategies for a given intensity map and for any given target motion patterns. From among all equivalent delivery strategies for DMLC IMRT treatments specific subclasses of strategies can be selected to provide deliveries that are particularly suitable for clinical applications providing existing delivery devices are used.more » Special attention is devoted to the subclass of beam dose rate variable DMLC delivery strategies to moving body anatomy that generalize existing techniques of such deliveries in Varian DMLC irradiation methodology to static body anatomy. Few examples of deliveries from this subclass of DMLC IMRT irradiations are investigated to illustrate the principle and show practical benefits of proposed techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossi, Maddalena M.G.; Peulen, Heike M.U.; Belderbos, Josè S.A.
Purpose: Stereotactic body radiation therapy (SBRT) for early-stage inoperable non-small cell lung cancer (NSCLC) patients delivers high doses that require high-precision treatment. Typically, image guidance is used to minimize day-to-day target displacement, but intrafraction position variability is often not corrected. Currently, volumetric modulated arc therapy (VMAT) is replacing intensity modulated radiation therapy (IMRT) in many departments because of its shorter delivery time. This study aimed to evaluate whether intrafraction variation in VMAT patients is reduced in comparison with patients treated with IMRT. Methods and Materials: NSCLC patients (197 IMRT and 112 VMAT) treated with a frameless SBRT technique to amore » prescribed dose of 3 × 18 Gy were evaluated. Image guidance for both techniques was identical: pretreatment cone beam computed tomography (CBCT) (CBCT{sub precorr}) for setup correction followed immediately before treatment by postcorrection CBCT (CBCT{sub postcorr}) for verification. Then, after either a noncoplanar IMRT technique or a VMAT technique, a posttreatment (CBCT{sub postRT}) scan was acquired. The CBCT{sub postRT} and CBCT{sub postcorr} scans were then used to evaluate intrafraction motion. Treatment delivery times, systematic (Σ) and random (σ) intrafraction variations, and associated planning target volume (PTV) margins were calculated. Results: The median treatment delivery time was significantly reduced by 20 minutes (range, 32-12 minutes) using VMAT compared with noncoplanar IMRT. Intrafraction tumor motion was significantly larger for IMRT in all directions up to 0.5 mm systematic (Σ) and 0.7 mm random (σ). The required PTV margins for IMRT and VMAT differed by less than 0.3 mm. Conclusion: VMAT-based SBRT for NSCLC was associated with significantly shorter delivery times and correspondingly smaller intrafraction motion compared with noncoplanar IMRT. However, the impact on the required PTV margin was small.« less
Accelerated Partial Breast Irradiation: What is Dosimetric Effect of Advanced Technology Approaches?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moran, Jean M.; Ben-David, Merav A.; Marsh, Robin B.
2009-09-01
Purpose: The present treatment planning study compared whole breast radiotherapy (WBRT) to accelerated partial breast irradiation (APBI) for different external beam techniques and geometries (e.g., free breathing [FB] and deep inspiration breath hold [DIBH]). Methods and Materials: After approval by our institutional review board, a treatment planning study was performed of 10 patients with left-sided Stage 0-I breast cancer enrolled in a Phase I-II study of APBI using intensity-modulated radiotherapy (IMRT). After lumpectomy, patients underwent planning computed tomography scans during FB and using an active breathing control device at DIBH. For the FB geometry, standard WBRT and three-dimensional conformal radiotherapymore » (3D-CRT) APBI plans were created. For the DIBH geometry with active breathing control, WBRT, 3D-CRT, and IMRT APBI plans were created. Results: All APBI techniques had excellent planning target volume coverage. The maximal planning target volume dose was reduced from 116% of the prescription dose to 108% with the IMRT(DIBH) APBI plan. The maximal heart dose was >30 Gy for the WBRT techniques, 8.2 Gy for 3D-CRT(FB), and <5.0 Gy for 3D-CRT(DIBH) and IMRT(DIBH) techniques. The mean left anterior descending artery dose was significantly reduced from 11.4 Gy with WBRT(FB) to 4.2 with WBRT(DIBH) and <2.0 Gy with all APBI techniques. Conclusion: Although planning target volume coverage was acceptable with all techniques, the plans using the DIBH geometry resulted in a marked reduction in the normal tissue dose compared with WBRT planned in the absence of cardiac blocking. Additional study is needed to determine whether these techniques result in clinical benefits.« less
Compensators: An alternative IMRT delivery technique
Chang, Sha X.; Cullip, Timothy J.; Deschesne, Katharin M.; Miller, Elizabeth P.; Rosenman, Julian G.
2004-01-01
Seven years of experience in compensator intensity‐modulated radiotherapy (IMRT) clinical implementation are presented. An inverse planning dose optimization algorithm was used to generate intensity modulation maps, which were delivered via either the compensator or segmental multileaf collimator (MLC) IMRT techniques. The in‐house developed compensator‐IMRT technique is presented with the focus on several design issues. The dosimetry of the delivery techniques was analyzed for several clinical cases. The treatment time for both delivery techniques on Siemens accelerators was retrospectively analyzed based on the electronic treatment record in LANTIS for 95 patients. We found that the compensator technique consistently took noticeably less time for treatment of equal numbers of fields compared to the segmental technique. The typical time needed to fabricate a compensator was 13 min, 3 min of which was manual processing. More than 80% of the approximately 700 compensators evaluated had a maximum deviation of less than 5% from the calculation in intensity profile. Seventy‐two percent of the patient treatment dosimetry measurements for 340 patients have an error of no more than 5%. The pros and cons of different IMRT compensator materials are also discussed. Our experience shows that the compensator‐IMRT technique offers robustness, excellent intensity modulation resolution, high treatment delivery efficiency, simple fabrication and quality assurance (QA) procedures, and the flexibility to be used in any teletherapy unit. PACS numbers: 87.53Mr, 87.53Tf PMID:15753937
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, L; Fan, J; Eldib, A
Purpose: Treating nose skin with an electron beam is of a substantial challenge due to uneven nose surfaces and tissue heterogeneity, and consequently could have a great uncertainty of dose accuracy on the target. This work explored the method using Monte Carlo (MC)-based energy and intensity modulated electron radiotherapy (MERT), which would be delivered with a photon MLC in a standard medical linac (Artiste). Methods: The traditional treatment on the nose skin involves the usage of a bolus, often with a single energy electron beam. This work avoided using the bolus, and utilized mixed energies of electron beams. An in-housemore » developed Monte Carlo (MC)-based dose calculation/optimization planning system was employed for treatment planning. Phase space data (6, 9, 12 and 15 MeV) were used as an input source for MC dose calculations for the linac. To reduce the scatter-caused penumbra, a short SSD (61 cm) was used. A clinical case of the nose skin, which was previously treated with a single 9 MeV electron beam, was replanned with the MERT method. The resultant dose distributions were compared with the plan previously clinically used. The dose volume histogram of the MERT plan is calculated to examine the coverage of the planning target volume (PTV) and critical structure doses. Results: The target coverage and conformality in the MERT plan are improved as compared to the conventional plan. The MERT can provide more sufficient target coverage and less normal tissue dose underneath the nose skin. Conclusion: Compared to the conventional treatment technique, using MERT for the nose skin treatment has shown the dosimetric advantages in the PTV coverage and conformality. In addition, this technique eliminates the necessity of the cutout and bolus, which makes the treatment more efficient and accurate.« less
Planning hybrid intensity modulated radiation therapy for whole-breast irradiation.
Farace, Paolo; Zucca, Sergio; Solla, Ignazio; Fadda, Giuseppina; Durzu, Silvia; Porru, Sergio; Meleddu, Gianfranco; Deidda, Maria Assunta; Possanzini, Marco; Orrù, Sivia; Lay, Giancarlo
2012-09-01
To test tangential and not-tangential hybrid intensity modulated radiation therapy (IMRT) for whole-breast irradiation. Seventy-eight (36 right-, 42 left-) breast patients were randomly selected. Hybrid IMRT was performed by direct aperture optimization. A semiautomated method for planning hybrid IMRT was implemented using Pinnacle scripts. A plan optimization volume (POV), defined as the portion of the planning target volume covered by the open beams, was used as the target objective during inverse planning. Treatment goals were to prescribe a minimum dose of 47.5 Gy to greater than 90% of the POV and to minimize the POV and/or normal tissue receiving a dose greater than 107%. When treatment goals were not achieved by using a 4-field technique (2 conventional open plus 2 IMRT tangents), a 6-field technique was applied, adding 2 non tangential (anterior-oblique) IMRT beams. Using scripts, manual procedures were minimized (choice of optimal beam angle, setting monitor units for open tangentials, and POV definition). Treatment goals were achieved by using the 4-field technique in 61 of 78 (78%) patients. The 6-field technique was applied in the remaining 17 of 78 (22%) patients, allowing for significantly better achievement of goals, at the expense of an increase of low-dose (∼5 Gy) distribution in the contralateral tissue, heart, and lungs but with no significant increase of higher doses (∼20 Gy) in heart and lungs. The mean monitor unit contribution to IMRT beams was significantly greater (18.7% vs 9.9%) in the group of patients who required 6-field procedure. Because hybrid IMRT can be performed semiautomatically, it can be planned for a large number of patients with little impact on human or departmental resources, promoting it as the standard practice for whole-breast irradiation. Copyright © 2012 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGeachy, P.; Villarreal-Barajas, J. E.; Khan, R.
2014-08-15
We previously reported on a novel, modulated in both energy and intensity; photon radiotherapy (XMRT) optimization technique. The purpose of this investigation was to test this XMRT optimization against conventional intensity modulated radiotherapy (IMRT) optimization on four different organ test geometries. All geometries mimicked clinically relevant scenarios. Both IMRT and XMRT were based on a linear programming approach where the objective function was the mean dose to healthy organs and organ-specific linear dose-point constraints were used. For IMRT, the beam energy was fixed to 6 MV while XMRT optimized in terms of both 6 and 18 MV beams. All plansmore » consisted of a seven beam coplanar arrangement. All organ geometries were contoured on a 25cm diameter cylindrical water phantom in open source radiotherapy research software known as CERR. Solutions for both IMRT and XMRT were obtained for each geometry using a numerical solver Gurobi. Analyzing the quality of the solutions was done by comparing dose distributions and dose volume histograms calculated using CERR. For all four geometries, IMRT and XMRT solutions were comparable in terms of target coverage. For two of the geometries, IMRT provided an advantage in terms of reduced dose to the healthy structures. XMRT showed improved dose reduction to healthy organs for one geometry and a comparable dose distribution to IMRT for the remaining geometry. The inability to exploit the benefits of using multiple energies may be attributed to limited water phantom diameter and having the majority of the organs in close proximity to the transverse axis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J; Li, X; Ding, X
Purpose: We performed a retrospective dosimetric comparison study between the robustness optimized Intensity Modulated Proton Therapy (RO-IMPT), volumetric-modulated arc therapy (VMAT), and the non-coplanar 4? intensity modulated radiation therapy (IMRT). These methods represent the most advanced radiation treatment methods clinically available. We compare their dosimetric performance for head and neck cancer treatments with special focus on the OAR sparing near the tumor volumes. Methods: A total of 11 head and neck cases, which include 10 recurrent cases and one bilateral case, were selected for the study. Different dose levels were prescribed to tumor target depending on disease and location. Threemore » treatment plans were created on commercial TPS systems for a novel noncoplanar 4π method (20 beams), VMAT, and RO-IMPT technique (maximum 4 fields). The maximum patient positioning error was set to 3 mm and the maximum proton range uncertainty was set to 3% for the robustness optimization. Line dose profiles were investigated for OARs close to tumor volumes. Results: All three techniques achieved 98% coverage of the CTV target and most photon plans had less than 110% of the hot spots. The RO-IMPT plans show superior tumor dose homogeneity than 4? and VMAT plans. Although RO-IMPT has greater R50 dose spillage to the surrounding normal tissue than 4π and VMAT, the RO-IMPT plans demonstrate better or comparable OAR (parotid, mandible, carotid, oral cavity, pharynx, and etc.) sparing for structures closely abutting tumor targets. Conclusion: The RO-IMPT’s ability of OAR sparing is benchmarked against the C-arm linac based non-coplanar 4π technique and the standard VMAT method. RO-IMPT consistently shows better or comparable OAR sparing even for tissue structures closely abutting treatment target volume. RO-IMPT further reduces treatment uncertainty associated with proton therapy and delivers robust treatment plans to both unilateral and bilateral head and neck cancer patients with desirable treatment time.« less
Mendenhall, William M; Amdur, Robert J; Palta, Jatinder R
2006-06-10
The purpose of this article is to review the role of intensity-modulated radiotherapy (IMRT) in the standard management of patients with head and neck cancer through a critical review of the pertinent literature. IMRT may result in a dose distribution that is more conformal than that achieved with three-dimensional conformal radiotherapy (3D CRT), allowing dose reduction to normal structures and thus decreasing toxicity and possibly enhancing locoregional control through dose escalation. Disadvantages associated with IMRT include increased risk of a marginal miss, decreased dose homogeneity, increased total body dose, and increased labor and expense. Outcomes data after IMRT are limited, and follow-up is relatively short. Locoregional control rates appear to be comparable to those achieved with 3D CRT and, depending on the location and extent of the tumor, late toxicity may be lower. Despite limited data on clinical outcomes, IMRT has been widely adopted as a standard technique in routine practice and clinical trials. The use of IMRT involves a learning curve for the practitioner and will continue to evolve, requiring continuing education and monitoring of outcomes from routine practice. Additional standards pertaining to a variety of issues, including target definitions and dose specification, need to be developed. Phase III trials will better define the role of IMRT in coming years.
TH-AB-201-12: Using Machine Log-Files for Treatment Planning and Delivery QA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanhope, C; Liang, J; Drake, D
2016-06-15
Purpose: To determine the segment reduction and dose resolution necessary for machine log-files to effectively replace current phantom-based patient-specific quality assurance, while minimizing computational cost. Methods: Elekta’s Log File Convertor R3.2 records linac delivery parameters (dose rate, gantry angle, leaf position) every 40ms. Five VMAT plans [4 H&N, 1 Pulsed Brain] comprised of 2 arcs each were delivered on the ArcCHECK phantom. Log-files were reconstructed in Pinnacle on the phantom geometry using 1/2/3/4° control point spacing and 2/3/4mm dose grid resolution. Reconstruction effectiveness was quantified by comparing 2%/2mm gamma passing rates of the original and log-file plans. Modulation complexity scoresmore » (MCS) were calculated for each beam to correlate reconstruction accuracy and beam modulation. Percent error in absolute dose for each plan-pair combination (log-file vs. ArcCHECK, original vs. ArcCHECK, log-file vs. original) was calculated for each arc and every diode greater than 10% of the maximum measured dose (per beam). Comparing standard deviations of the three plan-pair distributions, relative noise of the ArcCHECK and log-file systems was elucidated. Results: The original plans exhibit a mean passing rate of 95.1±1.3%. The eight more modulated H&N arcs [MCS=0.088±0.014] and two less modulated brain arcs [MCS=0.291±0.004] yielded log-file pass rates most similar to the original plan when using 1°/2mm [0.05%±1.3% lower] and 2°/3mm [0.35±0.64% higher] log-file reconstructions respectively. Log-file and original plans displayed percent diode dose errors 4.29±6.27% and 3.61±6.57% higher than measurement. Excluding the phantom eliminates diode miscalibration and setup errors; log-file dose errors were 0.72±3.06% higher than the original plans – significantly less noisy. Conclusion: For log-file reconstructed VMAT arcs, 1° control point spacing and 2mm dose resolution is recommended, however, less modulated arcs may allow less stringent reconstructions. Following the aforementioned reconstruction recommendations, the log-file technique is capable of detecting delivery errors with equivalent accuracy and less noise than ArcCHECK QA. I am funded by an Elekta Research Grant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalapurakal, John A., E-mail: j-kalapurakal@northwestern.edu; Pokhrel, Damodar; Gopalakrishnan, Mahesh
Purpose: To demonstrate the dosimetric advantages of intensity modulated radiation therapy (IMRT) in children with Wilms tumor (WT) undergoing whole-liver (WL) RT. Methods and Materials: Computed tomography simulation scans of 10 children, either 3 (3D) or 4-dimensional (4D), were used for this study. The WL PTV was determined by the 3D or 4D liver volumes, with a margin of 1 cm. A total of 40 WL RT plans were performed: 10 each for left- and right-sided WT with IMRT and anteroposterior-posteroanterior (AP-PA) techniques. The radiation dose-volume coverage of the WL planning target volume (PTV), remaining kidney, and other organs weremore » analyzed and compared. Results: The 95% dose coverage to WL PTV for left and right WT were as follows: 97% ± 4% (IMRT), 83% ± 8% (AP-PA) (P<.01) and 99% ± 1% (IMRT), 94% ± 5% (AP-PA) (P<.01), respectively. When 3D WL PTV was used for RT planning, the AP-PA technique delivered 95% of dose to only 78% ± 13% and 88% ± 8% of 4D liver volume. For left WT, the right kidney V15 and V10 for IMRT were 29% ± 7% and 55% ± 8%, compared with 61% ± 29% (P<.01) and 78% ± 25% (P<.01) with AP-PA. For right WT, the left kidney V15 and V10 were 0 ± 0 and 2% ± 3% for IMRT, compared with 25% ± 19% (P<.01) and 40% ± 31% (P<.01) for AP-PA. Conclusions: The use of IMRT and 4D treatment planning resulted in the delivery of a higher RT dose to the liver compared with the standard AP-PA technique. Whole-liver IMRT also delivered a significantly lower dose to the remaining kidney.« less
Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham
2013-12-01
Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147-53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRT plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose-volume histogram (DVH) doses were consistently lower. The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques.
Radiation Therapy for Locally Advanced Esophageal Cancer.
Chun, Stephen G; Skinner, Heath D; Minsky, Bruce D
2017-04-01
The treatment of locally advanced esophageal cancer is controversial. For patients who are candidates for surgical resection, multiple prospective clinical trials have demonstrated the advantages of neoadjuvant chemoradiation. For patients who are medically inoperable, definitive chemoradiation is an alternative approach with survival rates comparable to trimodality therapy. Although trials of dose escalation are ongoing, the standard radiation dose remains 50.4 Gy. Modern radiotherapy techniques such as image-guided radiation therapy with motion management and intensity-modulated radiation therapy are strongly encouraged with a planning objective to maximize conformity to the intended target volume while reducing dose delivered to uninvolved normal tissues. Copyright © 2016 Elsevier Inc. All rights reserved.
Dosimetric evaluation of the interplay effect in respiratory-gated RapidArc radiation therapy.
Riley, Craig; Yang, Yong; Li, Tianfang; Zhang, Yongqian; Heron, Dwight E; Huq, M Saiful
2014-01-01
Volumetric modulated arc therapy (VMAT) with gating capability has had increasing adoption in many clinics in the United States. In this new technique, dose rate, gantry rotation speed, and the leaf motion speed of multileaf collimators (MLCs) are modulated dynamically during gated beam delivery to achieve highly conformal dose coverage of the target and normal tissue sparing. Compared with the traditional gated intensity-modulated radiation therapy technique, this complicated beam delivery technique may result in larger dose errors due to the intrafraction tumor motion. The purpose of this work is to evaluate the dosimetric influence of the interplay effect for the respiration-gated VMAT technique (RapidArc, Varian Medical Systems, Palo Alto, CA). Our work consisted of two parts: (1) Investigate the interplay effect for different target residual errors during gated RapidArc delivery using a one-dimensional moving phantom capable of producing stable sinusoidal movement; (2) Evaluate the dosimetric influence in ten clinical patients' treatment plans using a moving phantom driven with a patient-specific respiratory curve. For the first part of this study, four plans were created with a spherical target for varying residual motion of 0.25, 0.5, 0.75, and 1.0 cm. Appropriate gating windows were applied for each. The dosimetric effect was evaluated using EDR2 film by comparing the gated delivery with static delivery. For the second part of the project, ten gated lung stereotactic body radiotherapy cases were selected and reoptimized to be delivered by the gated RapidArc technique. These plans were delivered to a phantom, and again the gated treatments were compared to static deliveries by the same methods. For regular sinusoidal motion, the dose delivered to the target was not substantially affected by the gating windows when evaluated with the gamma statistics, suggesting the interplay effect has a small role in respiratory-gated RapidArc therapy. Varied results were seen when gated therapy was performed on the patient plans that could only be attributed to differences in patient respiratory patterns. Patients whose plans had the largest percentage of pixels failing the gamma statistics exhibited irregular breathing patterns including substantial interpatient variation in depth of respiration. The interplay effect has a limited impact on gated RapidArc therapy when evaluated with a linear phantom. Variations in patient breathing patterns, however, are of much greater clinical significance. Caution must be taken when evaluating patients' respiratory efforts for gated arc therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Kham, E-mail: khamdiep@gmail.com; UT MD Anderson Cancer Center, School of Health Professions—Unit 2, Houston, TX; Cummings, David
The purpose of this study was to evaluate the differences between volumetric modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT) in the treatment of nasal cavity carcinomas. The treatment of 10 patients, who had completed IMRT treatment for resected tumors of the nasal cavity, was replanned with the Philips Pinnacle{sup 3} Version 9 treatment-planning system. The IMRT plans used a 9-beam technique whereas the VMAT (known as SmartArc) plans used a 3-arc technique. Both types of plans were optimized using Philips Pinnacle{sup 3} Direct Machine Parameter Optimization algorithm. IMRT and VMAT plans' quality was compared by evaluating the maximum,more » minimum, and mean doses to the target volumes and organs at risk, monitor units (MUs), and the treatment delivery time. Our results indicate that VMAT is capable of greatly reducing treatment delivery time and MUs compared with IMRT. The reduction of treatment delivery time and MUs can decrease the effects of intrafractional uncertainties that can occur because of patient movement during treatment delivery. VMAT's plans further reduce doses to critical structures that are in close proximity to the target volume.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, J-Y; Huang, B-T; Zhang, W-Z
Purpose: To compare volumetric modulated arc radiotherapy (VMAT) technique with fixed-gantry intensity-modulated radiotherapy (IMRT) technique for locally advanced laryngeal carcinoma. Methods: CT datasets of eleven patients were included. Dual-arc VMAT and 7-field IMRT plans, which were created based on the Eclipse treatment planning system, were compared in terms of dose-volume parameters, conformity index (CI) and homogeneity index (HI) of planning target volume (PTV), as well as organ-at-risk (OAR) sparing, planning time, monitor units (MUs) and delivery time. Results: Compared with the IMRT plans, the VMAT plans provided lower D2% and better CI/HI for the high-risk PTV (PTV1), and provided bettermore » CI and comparable HI for the low-risk PTV (PTV2). Concerning the OAR sparing, the VMAT plans demonstrated significantly lower Dmax of the spinal cord (planning OAR volume, PRV) and brainstem (PRV), as well as lower Dmean and V30Gy of the right parotid. No significant differences were observed between the two plans concerning the doses delivered to the thyroid, carotid, oral cavity and left parotid. Moreover, the VMAT planning (147 ± 18 min) consumed 213% more time than the IMRT planning (48 ± 10 min). The MUs of the VMAT plans (556 ± 52) were 64% less than those of the IMRT plans (1684 ± 409), and the average delivery time (2.1 ± 0.1 min) was 66% less than that of the IMRT plans (6.3 ± 0.7 min). Conclusion: Compared with the IMRT technique, the VMAT technique can achieve superior target dose distribution and better sparing of the spinal cord, brainstem and right parotid, with less MUs and less delivery time. It is recommended for the radiotherapy of locally advanced laryngeal carcinoma.« less
Bolukbasi, Yasemin; Saglam, Yucel; Selek, Ugur; Topkan, Erkan; Kataria, Anglina; Unal, Zeynep; Alpan, Vildan
2014-01-01
To investigate the objective utility of our clinical routine of reproducible deep-inspiration breath-hold irradiation for left-sided breast cancer patients on reducing cardiac exposure. Free-breathing and reproducible deep-inspiration breath-hold scans were evaluated for our 10 consecutive left-sided breast cancer patients treated with reproducible deep-inspiration breath-hold. The study was based on the adjuvant dose of 50 Gy in 25 fractions of 2 Gy/fraction. Both inverse and forward intensity-modulated radiotherapy plans were generated for each computed tomography dataset. Reproducible deep-inspiration breath-hold plans with forward intensity-modulated radiotherapy significantly spared the heart and left anterior descending artery compared to generated free-breathing plans based on mean doses - free-breathing vs reproducible deep-inspiration breath-hold, left ventricle (296.1 vs 94.5 cGy, P = 0.005), right ventricle (158.3 vs 59.2 cGy, P = 0.005), left anterior descending artery (171.1 vs 78.1 cGy, P = 0.005), and whole heart (173.9 vs 66 cGy, P = 0.005), heart V20 (2.2% vs 0%, P = 0.007) and heart V10 (4.2% vs 0.3%, P = 0.007) - whereas they revealed no additional burden on the ipsilateral lung. Reproducible deep-inspiration breath-hold and free-breathing plans with inverse intensity-modulated radiotherapy provided similar organ at risk sparing by reducing the mean doses to the left ventricle, left anterior descending artery, heart, V10-V20 of the heart and right ventricle. However, forward intensity-modulated radiotherapy showed significant reduction in doses to the left ventricle, left anterior descending artery, heart, right ventricle, and contralateral breast (mean dose, 248.9 to 12.3 cGy, P = 0.005). The mean doses for free-breathing vs reproducible deep-inspiration breath-hold of the proximal left anterior descending artery were 1.78 vs 1.08 Gy and of the distal left anterior descending artery were 8.11 vs 3.89 Gy, whereas mean distances to the 50 Gy isodose line of the proximal left anterior descending artery were 6.6 vs 3.3 cm and of the distal left anterior descending artery were 7.4 vs 4.1 cm, with forward intensity-modulated radiotherapy. Overall reduction in mean doses to proximal and distal left anterior descending artery with deep-inspiration breath-hold irradiation was 39% (P = 0.02) and 52% (P = 0.002), respectively. We found a significant reduction of radiation exposure to the contralateral breast, left and right ventricles, as well as of proximal and especially distal left anterior descending artery with the deep-inspiration breath-hold technique with forward intensity-modulated radiotherapy planning.
Vaudaux, Catherine; Schneider, Uwe; Kaser-Hotz, Barbara
2007-01-01
We evaluated the impact of inverse planned intensity-modulated radiation therapy (IMRT) on the dose-volume histograms (DVHs) and on the normal tissue complication probabilities (NTCPs) of brain and eyes in dogs with nasal tumors. Nine dogs with large, caudally located nasal tumors were planned using conventional techniques and inverse planned IMRT for a total prescribed dose of 52.5 Gy in 3.5 Gy fractions. The equivalent uniform dose for brain and eyes was calculated to estimate the normal tissue complication probability (NTCP) of these organs. The NTCP values as well as the DVHs were used to compare the treatment plans. The dose distribution in IMRT plans was more conformal than in conventional plans. The average dose delivered to one-third of the brain was 10 Gy lower with the IMRT plan compared with conventional planning. The mean partial brain volume receiving 43.6 Gy or more was reduced by 25.6% with IMRT. As a consequence, the NTCPs were also significantly lower in the IMRT plans. The mean NTCP of brain was two times lower and at least one eye could be saved in all patients planed with IMRT. Another possibility with IMRT is dose escalation in the target to improve tumor control while keeping the NTCPs at the same level as for conventional planning. Veterinary
Feasibility of the partial-single arc technique in RapidArc planning for prostate cancer treatment
Rana, Suresh; Cheng, ChihYao
2013-01-01
The volumetric modulated arc therapy (VMAT) technique, in the form of RapidArc, is widely used to treat prostate cancer. The full-single arc (f-SA) technique in RapidArc planning for prostate cancer treatment provides efficient treatment, but it also delivers a higher radiation dose to the rectum. This study aimed to compare the dosimetric results from the new partial-single arc (p-SA) technique with those from the f-SA technique in RapidArc planning for prostate cancer treatment. In this study, 10 patients with low-risk prostate cancer were selected. For each patient, two sets of RapidArc plans (f-SA and p-SA) were created in the Eclipse treatment planning system. The f-SA plan was created using one full arc, and the p-SA plan was created using planning parameters identical to those of the f-SA plan but with anterior and posterior avoidance sectors. Various dosimetric parameters of the f-SA and p-SA plans were evaluated and compared for the same target coverage and identical plan optimization parameters. The f-SA and p-SA plans showed an average difference of ±1% for the doses to the planning target volume (PTV), and there were no clear differences in dose homogeneity or plan conformity. In comparison to the f-SA technique, the p-SA technique reduced the doses to the rectum by approximately 6.1% to 21.2%, to the bladder by approximately 10.3% to 29.5%, and to the penile bulb by approximately 2.2%. In contrast, the dose to the femoral heads, the integral dose, and the number of monitor units were higher in the p-SA plans by approximately 34.4%, 7.7%, and 9.2%, respectively. In conclusion, it is feasible to use the p-SA technique for RapidArc planning for prostate cancer treatment. For the same PTV coverage and identical plan optimization parameters, the p-SA technique is better in sparing the rectum and bladder without compromising plan conformity or target homogeneity when compared to the f-SA technique. PMID:23845140
Aitkenhead, A H; Rowbottom, C G; Mackay, R I
2013-10-07
We report on the design of Marvin, a Model Anatomy for Radiotherapy Verification and audit In the head and Neck and present results demonstrating its use in the development of the Elekta volumetric modulated arc therapy (VMAT) technique at the Christie, and in the audit of TomoTherapy and Varian RapidArc at other institutions. The geometry of Marvin was generated from CT datasets of eight male and female patients lying in the treatment position, with removable inhomogeneities modelling the sinuses and mandible. A modular system allows the phantom to be used with a range of detectors, with the locations of the modules being based on an analysis of a range of typical treatment plans (27 in total) which were mapped onto the phantom geometry. Results demonstrate the use of Gafchromic EBT2/EBT3 film for measurement of relative dose in a plane through the target and organs-at-risk, and the use of a small-volume ionization chamber for measurement of absolute dose in the target and spinal cord. Measurements made during the development of the head and neck VMAT protocol at the Christie quantified the improvement in plan delivery resulting from the installation of the Elekta Integrity upgrade (which permits an effectively continuously variable dose rate), with plans delivered before and after the upgrade having 88.5 ± 9.4% and 98.0 ± 2.2% respectively of points passing a gamma analysis (at 4%, 4 mm, global). Audits of TomoTherapy and Varian RapidArc neck techniques at other institutions showed a similar quality of plan delivery as for post-Integrity Elekta VMAT: film measurements for both techniques had >99% of points passing a gamma analysis at the clinical criteria of 4%, 4 mm, global, and >95% of points passing at tighter criteria of 3%, 3 mm, global; and absolute dose measurements in the PTV and spinal cord were within 1.5% and 3.5% of the planned doses respectively for both techniques. The results demonstrate that Marvin is an efficient and effective means of assessing the quality of delivery of complex radiotherapy in the head and neck, and is a useful tool to assist development and audit of these techniques.
Marvin: an anatomical phantom for dosimetric evaluation of complex radiotherapy of the head and neck
NASA Astrophysics Data System (ADS)
Aitkenhead, A. H.; Rowbottom, C. G.; Mackay, R. I.
2013-10-01
We report on the design of Marvin, a Model Anatomy for Radiotherapy Verification and audit In the head and Neck and present results demonstrating its use in the development of the Elekta volumetric modulated arc therapy (VMAT) technique at the Christie, and in the audit of TomoTherapy and Varian RapidArc at other institutions. The geometry of Marvin was generated from CT datasets of eight male and female patients lying in the treatment position, with removable inhomogeneities modelling the sinuses and mandible. A modular system allows the phantom to be used with a range of detectors, with the locations of the modules being based on an analysis of a range of typical treatment plans (27 in total) which were mapped onto the phantom geometry. Results demonstrate the use of Gafchromic EBT2/EBT3 film for measurement of relative dose in a plane through the target and organs-at-risk, and the use of a small-volume ionization chamber for measurement of absolute dose in the target and spinal cord. Measurements made during the development of the head and neck VMAT protocol at the Christie quantified the improvement in plan delivery resulting from the installation of the Elekta Integrity upgrade (which permits an effectively continuously variable dose rate), with plans delivered before and after the upgrade having 88.5 ± 9.4% and 98.0 ± 2.2% respectively of points passing a gamma analysis (at 4%, 4 mm, global). Audits of TomoTherapy and Varian RapidArc neck techniques at other institutions showed a similar quality of plan delivery as for post-Integrity Elekta VMAT: film measurements for both techniques had >99% of points passing a gamma analysis at the clinical criteria of 4%, 4 mm, global, and >95% of points passing at tighter criteria of 3%, 3 mm, global; and absolute dose measurements in the PTV and spinal cord were within 1.5% and 3.5% of the planned doses respectively for both techniques. The results demonstrate that Marvin is an efficient and effective means of assessing the quality of delivery of complex radiotherapy in the head and neck, and is a useful tool to assist development and audit of these techniques.
Corry, June; Hornby, Colin; Fisher, Richard; D'Costa, Ieta; Porceddu, Sandro; Rischin, Danny; Peters, Lester J
2004-06-01
The primary aim of the present study was to assess radiation dosimetry and subsequent clinical outcomes in patients with locally advanced nasopharyngeal cancer using a novel radiation technique termed the 'Boomerang'. Dosimetric comparisons were made with both conventional and intensity modulated radiation therapy (IMRT) techniques. This is a study of 22 patients treated with this technique from June 1995 to October 1998. The technique used entailed delivery of 36 Gy in 18 fractions via parallel opposed fields, then 24 Gy in 12 fractions via asymmetric rotating arc fields for a total of 60 Gy in 30 fractions. Patients also received induction and concurrent chemotherapy. The radiation dosimetry was excellent. Dose-volume histograms showed that with the arc fields, 90% of the planning target volume received 94% of the prescribed dose. Relative to other conventional radiation therapy off-cord techniques, the Boomerang technique results in a 27% greater proportion of the prescribed dose being received by 90% of the planning target volume. This translates into an overall 10% greater dose received for the same prescribed dose. At 3 years, the actuarial loco-regional control rate, the failure-free survival rate and the overall survival rate were 91, 75 and 91%, respectively. At 5 years, the actuarial loco-regional control rate, the failure-free survival rate and the overall survival rate were 74, 62 and 71%, respectively. The Boomerang technique provided excellent radiation dosimetry with correspondingly good loco-regional control rates (in conjunction with chemotherapy) and very acceptable acute and late toxicity profiles. Because treatment can be delivered with conventional standard treatment planning and delivery systems, it is a validated treatment option for centres that do not have the capability or capacity for IMRT. A derivative of the Boomerang technique, excluding the parallel opposed component, is now our standard for patients with locally advanced nasopharyngeal cancer when IMRT is not available.
Heat shock protein 47 expression in aged normal human fibroblasts: modulation by Salix alba extract.
Nizard, Carine; Noblesse, Emmanuelle; Boisdé, Cécille; Moreau, Marielle; Faussat, Anne-Marie; Schnebert, Sylvianne; Mahé, Christian
2004-06-01
Heat shock protein (HSP) 47 is a specific chaperone of procollagen. This heat shock protein is responsible for the correct three-dimensional organization of procollagen and its control-quality prior secretion. The aim of the study is to evaluate the level of HSP 47 in aged, photoaged, and senescent fibroblasts and its modulation by a plant extract (Salix alba). The level of HSP 47 and/or procollagen expression in fibroblasts was measured by real-time RT-PCR (mRNA transcripts) and by flow cytometry (immunochemistry technique for measurement of arbitrary fluorescence intensity). Immunochemistry techniques and confocal microscopy were used to visualize the cellular localization of HSP 47 and procollagen. These parameters were compared with different age donors, nonsenescent, and senescent fibroblasts. Fibroblasts were irradiated by a noncytotoxic dose of UVA (6 J/cm(2)), and HSP 47 level was evaluated. S. alba extract was tested for its capacity to modulate HSP 47 expression. Colocalization of HSP 47 and procollagen was shown by confocal microscopy, indicating that HSP 47 could play a role of procollagen molecular chaperone in the cellular model. It was also shown that the HSP 47 level is decreased in old-donor cells, senescent, and irradiated cells. This decrease can be modulated by a S. alba extract (polyphenols rich) in a dose-dependent manner. The evaluation of HSP 47 expression in the experimental conditions can lead to a new approach of aging and photoaging, pointing out the implication of this chaperone in these pathophysiologic phenomena. Modulation of HSP 47 expression by this family of molecules could be of cosmetic and/or dermatologic interest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, Robert L.; Boone, John M.
2013-11-15
Purpose: The scanner-reported CTDI{sub vol} for automatic tube current modulation (TCM) has a different physical meaning from the traditional CTDI{sub vol} at constant mA, resulting in the dichotomy “CTDI{sub vol} of the first and second kinds” for which a physical interpretation is sought in hopes of establishing some commonality between the two.Methods: Rigorous equations are derived to describe the accumulated dose distributions for TCM. A comparison with formulae for scanner-reported CTDI{sub vol} clearly identifies the source of their differences. Graphical dose simulations are also provided for a variety of TCM tube current distributions (including constant mA), all having the samemore » scanner-reported CTDI{sub vol}.Results: These convolution equations and simulations show that the local dose at z depends only weakly on the local tube current i(z) due to the strong influence of scatter from all other locations along z, and that the “local CTDI{sub vol}(z)” does not represent a local dose but rather only a relative i(z) ≡ mA(z). TCM is a shift-variant technique to which the CTDI-paradigm does not apply and its application to TCM leads to a CTDI{sub vol} of the second kind which lacks relevance.Conclusions: While the traditional CTDI{sub vol} at constant mA conveys useful information (the peak dose at the center of the scan length), CTDI{sub vol} of the second kind conveys no useful information about the associated TCM dose distribution it purportedly represents and its physical interpretation remains elusive. On the other hand, the total energy absorbed E (“integral dose”) as well as its surrogate DLP remain robust between variable i(z) TCM and constant current i{sub 0} techniques, both depending only on the total mAs = t{sub 0}=i{sub 0} t{sub 0} during the beam-on time t{sub 0}.« less
Universal field matching in craniospinal irradiation by a background-dose gradient-optimized method.
Traneus, Erik; Bizzocchi, Nicola; Fellin, Francesco; Rombi, Barbara; Farace, Paolo
2018-01-01
The gradient-optimized methods are overcoming the traditional feathering methods to plan field junctions in craniospinal irradiation. In this note, a new gradient-optimized technique, based on the use of a background dose, is described. Treatment planning was performed by RayStation (RaySearch Laboratories, Stockholm, Sweden) on the CT scans of a pediatric patient. Both proton (by pencil beam scanning) and photon (by volumetric modulated arc therapy) treatments were planned with three isocenters. An 'in silico' ideal background dose was created first to cover the upper-spinal target and to produce a perfect dose gradient along the upper and lower junction regions. Using it as background, the cranial and the lower-spinal beams were planned by inverse optimization to obtain dose coverage of their relevant targets and of the junction volumes. Finally, the upper-spinal beam was inversely planned after removal of the background dose and with the previously optimized beams switched on. In both proton and photon plans, the optimized cranial and the lower-spinal beams produced a perfect linear gradient in the junction regions, complementary to that produced by the optimized upper-spinal beam. The final dose distributions showed a homogeneous coverage of the targets. Our simple technique allowed to obtain high-quality gradients in the junction region. Such technique universally works for photons as well as protons and could be applicable to the TPSs that allow to manage a background dose. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Song, Yanbo; Zhang, Miao; Gan, Lu; Chen, Xiaopin; Zhang, Tao; Yue, Ning J; Goyal, Sharad; Haffty, Bruce; Ren, Guosheng
2016-05-31
Electronic tissue compensation (eComp) is an external beam planning technique allowing user to manually generate dynamic beam fluence to produce more uniform or modulated dose distribution. In this study, we compared the effectiveness between conventional three-dimensional conformal radiotherapy (3DCRT) and eComp for whole breast irradiation. 3DCRT and eComp planning techniques were used to generate treatment plans for 60 whole breast patients, respectively. The planning goal was to cover 95% of the planning target volume (PTV) with 95% of the prescription dose while minimizing doses to lung, heart, and skin. Comparing to 3DCRT plans, on the average, eComp treatment planning process was about 7 minutes longer, but resulted in lower lung V20Gy, lower mean skin dose, with similar heart dose. The benefits were more pronounced for larger breast patients. Statistical analyses were performed between critical organ doses and patient anatomic features, i.e., central lung distance (CLD), maximal heart distance (MHD), maximal heart length (MHL) and breast separation (BS) to explore any correlations and planning method selection. It was found that to keep the lung V20Gy lower than 20% and mean skin dose lower than 85% of the prescription dose, eComp was the preferred method for patients with more than 2.3 cm CLD or larger than 22.5 cm BS. The study results may be useful in providing a handy criterion in clinical practice allowing us to easily choose between different planning techniques to satisfy the planning goal with minimal increase in complexity and cost.
The Advantages of Collimator Optimization for Intensity Modulated Radiation Therapy
NASA Astrophysics Data System (ADS)
Doozan, Brian
The goal of this study was to improve dosimetry for pelvic, lung, head and neck, and other cancers sites with aspherical planning target volumes (PTV) using a new algorithm for collimator optimization for intensity modulated radiation therapy (IMRT) that minimizes the x-jaw gap (CAX) and the area of the jaws (CAA) for each treatment field. A retroactive study on the effects of collimator optimization of 20 patients was performed by comparing metric results for new collimator optimization techniques in Eclipse version 11.0. Keeping all other parameters equal, multiple plans are created using four collimator techniques: CA 0, all fields have collimators set to 0°, CAE, using the Eclipse collimator optimization, CAA, minimizing the area of the jaws around the PTV, and CAX, minimizing the x-jaw gap. The minimum area and the minimum x-jaw angles are found by evaluating each field beam's eye view of the PTV with ImageJ and finding the desired parameters with a custom script. The evaluation of the plans included the monitor units (MU), the maximum dose of the plan, the maximum dose to organs at risk (OAR), the conformity index (CI) and the number of fields that are calculated to split. Compared to the CA0 plans, the monitor units decreased on average by 6% for the CAX method with a p-value of 0.01 from an ANOVA test. The average maximum dose remained within 1.1% difference between all four methods with the lowest given by CAX. The maximum dose to the most at risk organ was best spared by the CAA method, which decreased by 0.62% compared to the CA0. Minimizing the x-jaws significantly reduced the number of split fields from 61 to 37. In every metric tested the CAX optimization produced comparable or superior results compared to the other three techniques. For aspherical PTVs, CAX on average reduced the number of split fields, lowered the maximum dose, minimized the dose to the surrounding OAR, and decreased the monitor units. This is achieved while maintaining the same control of the PTV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onal, Cem, E-mail: hcemonal@hotmail.com; Arslan, Gungor; Dolek, Yemliha
2016-01-01
The aim of this study is to evaluate the incidental testicular doses during prostate radiation therapy with intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc radiotherapy (VMAT) at different energies. Dosimetric data of 15 patients with intermediate-risk prostate cancer who were treated with radiotherapy were analyzed. The prescribed dose was 78 Gy in 39 fractions. Dosimetric analysis compared testicular doses generated by 7-field intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy with a single arc at 6, 10, and 15 MV energy levels. Testicular doses calculated from the treatment planning system and doses measured from the detectors were analyzed. Mean testicular doses from themore » intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy per fraction calculated in the treatment planning system were 16.3 ± 10.3 cGy vs 21.5 ± 11.2 cGy (p = 0.03) at 6 MV, 13.4 ± 10.4 cGy vs 17.8 ± 10.7 cGy (p = 0.04) at 10 MV, and 10.6 ± 8.5 cGy vs 14.5 ± 8.6 cGy (p = 0.03) at 15 MV, respectively. Mean scattered testicular doses in the phantom measurements were 99.5 ± 17.2 cGy, 118.7 ± 16.4 cGy, and 193.9 ± 14.5 cGy at 6, 10, and 15 MV, respectively, in the intensity-modulated radiotherapy plans. In the volumetric-modulated arc radiotherapy plans, corresponding testicular doses per course were 90.4 ± 16.3 cGy, 103.6 ± 16.4 cGy, and 139.3 ± 14.6 cGy at 6, 10, and 15 MV, respectively. In conclusions, this study was the first to measure the incidental testicular doses by intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy plans at different energy levels during prostate-only irradiation. Higher photon energy and volumetric-modulated arc radiotherapy plans resulted in higher incidental testicular doses compared with lower photon energy and intensity-modulated radiotherapy plans.« less
Pancreatic cancer planning: Complex conformal vs modulated therapies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, Katherine L.; Witek, Matthew E.; Chen, Hongyu
To compare the roles of intensity-modulated radiation therapy (IMRT) and volumetric- modulated arc therapy (VMAT) therapy as compared to simple and complex 3-dimensional chemoradiotherpy (3DCRT) planning for resectable and borderline resectable pancreatic cancer. In all, 12 patients who received postoperative radiotherapy (8) or neoadjuvant concurrent chemoradiotherapy (4) were evaluated retrospectively. Radiotherapy planning was performed for 4 treatment techniques: simple 4-field box, complex 5-field 3DCRT, 5 to 6-field IMRT, and single-arc VMAT. All volumes were approved by a single observer in accordance with Radiation Therapy Oncology Group (RTOG) Pancreas Contouring Atlas. Plans included tumor/tumor bed and regional lymph nodes to 45more » Gy; with tumor/tumor bed boosted to 50.4 Gy, at least 95% of planning target volume (PTV) received the prescription dose. Dose-volume histograms (DVH) for multiple end points, treatment planning, and delivery time were assessed. Complex 3DCRT, IMRT, and VMAT plans significantly (p < 0.05) decreased mean kidney dose, mean liver dose, liver (V{sub 30}, V{sub 35}), stomach (D{sub 10}%), stomach (V{sub 45}), mean right kidney dose, and right kidney (V{sub 15}) as compared with the simple 4-field plans that are most commonly reported in the literature. IMRT plans resulted in decreased mean liver dose, liver (V{sub 35}), and left kidney (V{sub 15}, V{sub 18}, V{sub 20}). VMAT plans decreased small bowel (D{sub 10}%, D{sub 15}%), small bowel (V{sub 35}, V{sub 45}), stomach (D{sub 10}%, D{sub 15}%), stomach (V{sub 35}, V{sub 45}), mean liver dose, liver (V{sub 35}), left kidney (V{sub 15}, V{sub 18}, V{sub 20}), and right kidney (V{sub 18}, V{sub 20}). VMAT plans significantly decreased small bowel (D{sub 10}%, D{sub 15}%), left kidney (V{sub 20}), and stomach (V{sub 45}) as compared with IMRT plans. Treatment planning and delivery times were most efficient for simple 4-field box and VMAT. Excluding patient setup and imaging, average treatment delivery was within 10 minutes for simple and complex 3DCRT, IMRT, and VMAT treatments. This article shows significant improvements in 3D plan performance with complex planning over the more frequently compared 3- or 4-field simple 3D planning techniques. VMAT plans continue to demonstrate potential for the most organ sparing. However, further studies are required to identify if dosimetric benefits associated with inverse optimized planning can be translated into clinical benefits and if these treatment techniques are value-added therapies for this group of patients with cancer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hubley, Emily; Pierce, Greg; Ploquin, Nicolas
Purpose: To develop and validate a computational method to simulate craniocaudal respiratory motion in a VMAT treatment plan. Methods: Three 4DCTs of the QUASAR respiratory motion phantom were acquired with a 2cm water-density spherical tumour embedded in cedar to simulate lung. The phantom was oscillating sinusoidally with an amplitude of 2cm and periods of 3, 4, and 5 seconds. An ITV was contoured and 5mm PTV margin was added. High and a low modulation factor VMAT plans were created for each scan. An in-house program was developed to simulate respiratory motion in the treatment plans by shifting the MLC leafmore » positions relative to the phantom. Each plan was delivered to the phantom and the dose was measured using Gafchromic film. The measured and calculated plans were compared using an absolute dose gamma analysis (3%/3mm). Results: The average gamma pass rate for the low modulation plan and high modulation plans were 91.1% and 51.4% respectively. The difference between the high and low modulation plans gamma pass rates is likely related to the different sampling frequency of the respiratory curve and the higher MLC leaf speeds in the high modulation plan. A high modulation plan has a slower gantry speed and therefore samples the breathing cycle at a coarser frequency leading to inaccuracies between the measured and planned doses. Conclusion: A simple program, including a novel method for increasing sampling frequency beyond the control point frequency, has been developed to simulate respiratory motion in VMAT plans by shifting the MLC leaf positions.« less
2010-03-01
is to develop a novel clinical useful delivered-dose verification protocol for modern prostate VMAT using Electronic Portal Imaging Device (EPID...technique. A number of important milestones have been accomplished, which include (i) calibrated CBCT HU vs. electron density curve; (ii...prostate VMAT using Electronic Portal Imaging Device (EPID) and onboard Cone beam Computed Tomography (CBCT). The specific aims of this project
SU-E-I-37: Eye Lens Dose Reduction From CT Scan Using Organ Based Tube Current Modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, H; Rensselaer Polytechnic Inst., Troy, NY; Liu, T
Purpose: To investigate the eye lens dose reduction by CT scan with organ based tube current modulation (OBTCM) using GPU Monte Carlo code ARCHER-CT. Methods: 36 X-ray sources and bowtie filters were placed around the patient head with the projection angle interval of 10° for one rotation of CT scan, each projection was simulated respectively. The voxel eye models with high resolution(0.1mm*0.1mm*0.1mm) were used in the simulation and different tube voltage including 80kVp, 100kVp, 120kVp and 140kVp were taken into consideration. Results: The radiation doses to the eye lens increased with the tube voltage raised from 80kVp to 140kVp, andmore » the dose results from 0° (AP) direction are much higher than those from 180° (PA) direction for all the 4 different tube voltage investigated. This 360° projection dose characteristic enables organ based TCM, which can reduce the eye lens dose by more than 55%. Conclusion: As the eye lens belongs to superficial tissues, its radiation dose to external exposure like CT is direction sensitive, and this characteristic feature makes organ based TCM to be an effective way to reduce the eye lens dose, so more clinical use of this technique were recommended. National Nature Science Foundation of China(No.11475047)« less
SU-E-T-113: Dose Distribution Using Respiratory Signals and Machine Parameters During Treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imae, T; Haga, A; Saotome, N
Purpose: Volumetric modulated arc therapy (VMAT) is a rotational intensity-modulated radiotherapy (IMRT) technique capable of acquiring projection images during treatment. Treatment plans for lung tumors using stereotactic body radiotherapy (SBRT) are calculated with planning computed tomography (CT) images only exhale phase. Purpose of this study is to evaluate dose distribution by reconstructing from only the data such as respiratory signals and machine parameters acquired during treatment. Methods: Phantom and three patients with lung tumor underwent CT scans for treatment planning. They were treated by VMAT while acquiring projection images to derive their respiratory signals and machine parameters including positions ofmore » multi leaf collimators, dose rates and integrated monitor units. The respiratory signals were divided into 4 and 10 phases and machine parameters were correlated with the divided respiratory signals based on the gantry angle. Dose distributions of each respiratory phase were calculated from plans which were reconstructed from the respiratory signals and the machine parameters during treatment. The doses at isocenter, maximum point and the centroid of target were evaluated. Results and Discussion: Dose distributions during treatment were calculated using the machine parameters and the respiratory signals detected from projection images. Maximum dose difference between plan and in treatment distribution was −1.8±0.4% at centroid of target and dose differences of evaluated points between 4 and 10 phases were no significant. Conclusion: The present method successfully evaluated dose distribution using respiratory signals and machine parameters during treatment. This method is feasible to verify the actual dose for moving target.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han Chunhui; Chen Yijen; Liu An
2007-04-01
This study evaluated the efficacy of using helical tomotherapy for conformal avoidance treatment of anal adenocarcinoma. We retrospectively generated step-and-shoot intensity-modulated radiotherapy (sIMRT) plans and helical tomotherapy plans for two anal cancer patients, one male and one female, who were treated by the sIMRT technique. Dose parameters for the planning target volume (PTV) and the organs-at-risk (OARs) were compared between the sIMRT and the helical tomotherapy plans. The helical tomotherapy plans showed better dose homogeneity in the PTV, better dose conformity around the PTV, and, therefore, better sparing of nearby OARs compared with the sIMRT plans. In-vivo skin dose measurementsmore » were performed during conformal avoidance helical tomotherapy treatment of an anal cancer patient to verify adequate delivery of skin dose and sparing of OARs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Uytven, Eric, E-mail: eric.vanuytven@cancercare.mb.ca; Van Beek, Timothy; McCowan, Peter M.
2015-12-15
Purpose: Radiation treatments are trending toward delivering higher doses per fraction under stereotactic radiosurgery and hypofractionated treatment regimens. There is a need for accurate 3D in vivo patient dose verification using electronic portal imaging device (EPID) measurements. This work presents a model-based technique to compute full three-dimensional patient dose reconstructed from on-treatment EPID portal images (i.e., transmission images). Methods: EPID dose is converted to incident fluence entering the patient using a series of steps which include converting measured EPID dose to fluence at the detector plane and then back-projecting the primary source component of the EPID fluence upstream of themore » patient. Incident fluence is then recombined with predicted extra-focal fluence and used to calculate 3D patient dose via a collapsed-cone convolution method. This method is implemented in an iterative manner, although in practice it provides accurate results in a single iteration. The robustness of the dose reconstruction technique is demonstrated with several simple slab phantom and nine anthropomorphic phantom cases. Prostate, head and neck, and lung treatments are all included as well as a range of delivery techniques including VMAT and dynamic intensity modulated radiation therapy (IMRT). Results: Results indicate that the patient dose reconstruction algorithm compares well with treatment planning system computed doses for controlled test situations. For simple phantom and square field tests, agreement was excellent with a 2%/2 mm 3D chi pass rate ≥98.9%. On anthropomorphic phantoms, the 2%/2 mm 3D chi pass rates ranged from 79.9% to 99.9% in the planning target volume (PTV) region and 96.5% to 100% in the low dose region (>20% of prescription, excluding PTV and skin build-up region). Conclusions: An algorithm to reconstruct delivered patient 3D doses from EPID exit dosimetry measurements was presented. The method was applied to phantom and patient data sets, as well as for dynamic IMRT and VMAT delivery techniques. Results indicate that the EPID dose reconstruction algorithm presented in this work is suitable for clinical implementation.« less
Multimodal analgesia and regional anaesthesia.
Tornero Tornero, C; Fernández Rodríguez, L E; Orduña Valls, J
Multimodal analgesia provides quality analgesia, with fewer side effects due to the use of combined analgesics or analgesic techniques. Regional anaesthesia plays a fundamental role in achieving this goal. The different techniques of regional anaesthesia that include both peripheral and central blocks in either a single dose or in continuous infusion help to modulate the nociceptive stimuli that access the central level. The emergence of the ultrasound as an effective system to perform regional anaesthesia techniques has allowed the development of new regional anaesthesia techniques that formerly could not be carried out since only neurostimulation or skin references were used. It is essential to take into account that even with effective blocking it is advisable to associate other drugs by other routes, in this way we will be able to reduce the required doses individually and attempt to achieve a synergistic, not purely additive, effect. Copyright © 2017 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.
Ranger, A; Dunlop, A; Hutchinson, K; Convery, H; Maclennan, M K; Chantler, H; Twyman, N; Rose, C; McQuaid, D; Amos, R A; Griffin, C; deSouza, N M; Donovan, E; Harris, E; Coles, C E; Kirby, A
2018-06-01
Radiotherapy target volumes in early breast cancer treatment increasingly include the internal mammary chain (IMC). In order to maximise survival benefits of IMC radiotherapy, doses to the heart and lung should be minimised. This dosimetry study compared the ability of three-dimensional conformal radiotherapy, arc therapy and proton beam therapy (PBT) techniques with and without breath-hold to achieve target volume constraints while minimising dose to organs at risk (OARs). In 14 patients' datasets, seven IMC radiotherapy techniques were compared: wide tangent (WT) three-dimensional conformal radiotherapy, volumetric-modulated arc therapy (VMAT) and PBT, each in voluntary deep inspiratory breath-hold (vDIBH) and free breathing (FB), and tomotherapy in FB only. Target volume coverage and OAR doses were measured for each technique. These were compared using a one-way ANOVA with all pairwise comparisons tested using Bonferroni's multiple comparisons test, with adjusted P-values ≤ 0.05 indicating statistical significance. One hundred per cent of WT(vDIBH), 43% of WT(FB), 100% of VMAT(vDIBH), 86% of VMAT(FB), 100% of tomotherapy FB and 100% of PBT plans in vDIBH and FB passed all mandatory constraints. However, coverage of the IMC with 90% of the prescribed dose was significantly better than all other techniques using VMAT(vDIBH), PBT(vDIBH) and PBT(FB) (mean IMC coverage ± 1 standard deviation = 96.0% ± 4.3, 99.8% ± 0.3 and 99.0% ± 0.2, respectively). The mean heart dose was significantly reduced in vDIBH compared with FB for both the WT (P < 0.0001) and VMAT (P < 0.0001) techniques. There was no advantage in target volume coverage or OAR doses for PBT(vDIBH) compared with PBT(FB). Simple WT radiotherapy delivered in vDIBH achieves satisfactory coverage of the IMC while meeting heart and lung dose constraints. However, where higher isodose coverage is required, VMAT(vDIBH) is the optimal photon technique. The lowest OAR doses are achieved by PBT, in which the use of vDIBH does not improve dose statistics. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.
Dosimetric comparison of four different external beams for breast irradiation
NASA Astrophysics Data System (ADS)
Lee, Yoon Hee; Chung, Weon Kuu; Kim, Dong Wook; Kwon, Oh Young
2017-02-01
An intensity-modulated radiation-therapy (IMRT)-based technique, blocked single iso-centric IMRT (IMRT), is compared to multi-center IMRT (MIRT) and other conventional techniques such as three dimensional conformal radiation therapy (3D-CRT) and volumetric modulated arc therapy (VMAT) for the treatment of breast cancer patients. Four different plans were devised and compared for 15 breast cancer patients, all of whom had early stage disease and had undergone breast conserving surgery. A total dose of 50.4 Gy in 28 fractions was prescribed as the planning target volume in all treatment plans. The doses to the ipsilateral lung, heart, and opposite breast were compared using a dose-volume histogram. The conformity index (CI), homogeneity index (HI), and coverage index (CoVI) were evaluated and compared among the four treatment techniques. The lifetime attributable risk (LAR) associated with each of the four techniques from age at exposure of 30 to 100 years was measured for the organs at risk. We found that MIRT had a better CoVI (1.02 ± 0.13 and 1.01 ± 0.04, respectively) and IMRT had a better CI (0.88 ± 0.04, and 0.87 ± 0.02, respectively) compared to the other three modalities. All four techniques had similar HIs. Moreover, we found that IMRT and MIRT were less likely to cause radiation induced-pneumonitis, 3D-CRT had the lowest LAR, IMRT and MIRT had similar LARs and VMAT had the highest LAR. In study we found that compared to the VMAT, MIRT and IMRT provided adequate the planning target volume (PTV) coverage and reduced the risk of secondary cancers in most of the organs at risk (OARs), while 3D-CRT had the lowest secondary-cancer risks. Therefore, 3D-CRT is still a reasonable choice for whole breast RT except for patients with complex PTV shapes, in which cases IMRT and MIRT may provide better target coverage.
Ivancev-Tumbas, Ivana; Hobby, Ralph; Küchle, Benjamin; Panglisch, Stefan; Gimbel, Rolf
2008-09-01
Ultrafiltration is classified as a low-pressure membrane technology which effectively removes particulate matter and microorganisms and to a certain extent dissolved organic matter (15-25%) and colour. The technology has been optimized and is becoming competitive compared to conventional processes for larger scale plant capacities. In combination with activated carbon it is an effective barrier regarding the removal of synthetic organic chemicals. Growing interest in ultrafiltration raises the question of better usage of the adsorption capacity of powdered activated carbon (PAC) used in combination with this low-pressure membrane technique. This paper presents a pilot plant study of different PAC dosing procedures within a combined hybrid membrane IN/OUT process for removal of p-nitrophenol (PNP) from water (c(0)=1mg/L) under real case conditions (e.g. usage of the same module for the whole duration of the experiment, backwashing with permeate water, no separate saturation of the membrane with substance without presence of carbon). p-Nitrophenol was chosen as an appropriate test substance to assess the efficiency of different operation modes. Dead-end and cross-flow filtration were compared with respect to different PAC dosing procedures: continuous dosing into a continuously stirred tank reactor (CSTR) in front of the module and direct dosing into the pipe in front of the module (continuous, single-pulse and multi-pulse dosing). There was no advantage in cross-flow mode over dead-end referring to PNP concentration in the permeate. Relating to the carbon dosing procedure, the best results were obtained for continuous PAC addition. The option of dosing directly into the pipe has the advantage of no additional tank being necessary. In the case of single-pulse dosing, the formation of a carbon layer on the membrane surface was assumed and an LDF model applied for a simplified estimation of the "breakthrough behaviour" in the thus formed "PAC filter layer".
Volumetric modulated arc therapy vs. c-IMRT for the treatment of upper thoracic esophageal cancer.
Zhang, Wu-Zhe; Zhai, Tian-Tian; Lu, Jia-Yang; Chen, Jian-Zhou; Chen, Zhi-Jian; Li, De-Rui; Chen, Chuang-Zhen
2015-01-01
To compare plans using volumetric-modulated arc therapy (VMAT) with conventional sliding window intensity-modulated radiation therapy (c-IMRT) to treat upper thoracic esophageal cancer (EC). CT datasets of 11 patients with upper thoracic EC were identified. Four plans were generated for each patient: c-IMRT with 5 fields (5F) and VMAT with a single arc (1A), two arcs (2A), or three arcs (3A). The prescribed doses were 64 Gy/32 F for the primary tumor (PTV64). The dose-volume histogram data, the number of monitoring units (MUs) and the treatment time (TT) for the different plans were compared. All of the plans generated similar dose distributions for PTVs and organs at risk (OARs), except that the 2A- and 3A-VMAT plans yielded a significantly higher conformity index (CI) than the c-IMRT plan. The CI of the PTV64 was improved by increasing the number of arcs in the VMAT plans. The maximum spinal cord dose and the planning risk volume of the spinal cord dose for the two techniques were similar. The 2A- and 3A-VMAT plans yielded lower mean lung doses and heart V50 values than the c-IMRT. The V20 and V30 for the lungs in all of the VMAT plans were lower than those in the c-IMRT plan, at the expense of increasing V5, V10 and V13. The VMAT plan resulted in significant reductions in MUs and TT. The 2A-VMAT plan appeared to spare the lungs from moderate-dose irradiation most effectively of all plans, at the expense of increasing the low-dose irradiation volume, and also significantly reduced the number of required MUs and the TT. The CI of the PTVs and the OARs was improved by increasing the arc-number from 1 to 2; however, no significant improvement was observed using the 3A-VMAT, except for an increase in the TT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz, Roberto; Jaboin, Jerry J.; Morales-Paliza, Manuel
Purpose: To conduct a retrospective review of 168 consecutively treated locally advanced head-and-neck cancer (LAHNC) patients treated with intensity-modulated radiotherapy (IMRT)/chemotherapy, to determine the rate and risk factors for developing hypothyroidism. Methods and Materials: Intensity-modulated radiotherapy was delivered in 33 daily fractions to 69.3 Gy to gross disease and 56.1 Gy to clinically normal cervical nodes. Dose-volume histograms (DVHs) of IMRT plans were used to determine radiation dose to thyroid and were compared with DVHs using conventional three-dimensional radiotherapy (3D-RT) in 10 of these same patients randomly selected for replanning and with DVHs of 16 patients in whom the thyroidmore » was intentionally avoided during IMRT. Weekly paclitaxel (30 mg/m{sup 2}) and carboplatin area under the curve-1 were given concurrently with IMRT. Results: Sixty-one of 128 evaluable patients (47.7%) developed hypothyroidism after a median of 1.08 years after IMRT (range, 2.4 months to 3.9 years). Age and volume of irradiated thyroid were associated with hypothyroidism development after IMRT. Compared with 3D-RT, IMRT with no thyroid dose constraints resulted in significantly higher minimum, maximum, and median dose (p < 0.0001) and percentage thyroid volume receiving 10, 20, and 60 Gy (p < 0.05). Compared with 3D-RT, IMRT with thyroid dose constraints resulted in lower median dose and percentage thyroid volume receiving 30, 40, and 50 Gy (p < 0.005) but higher minimum and maximum dose (p < 0.005). Conclusions: If not protected, IMRT for LAHNC can result in higher radiation to the thyroid than with conventional 3D-RT. Techniques to reduce dose and volume of radiation to thyroid tissue with IMRT are achievable and recommended.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kan, Monica W.K., E-mail: kanwkm@ha.org.hk; Department of Physics and Materials Science, City University of Hong Kong, Hong Kong; Leung, Lucullus H.T.
2013-01-01
Purpose: To assess the dosimetric implications for the intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy with RapidArc (RA) of nasopharyngeal carcinomas (NPC) due to the use of the Acuros XB (AXB) algorithm versus the anisotropic analytical algorithm (AAA). Methods and Materials: Nine-field sliding window IMRT and triple-arc RA plans produced for 12 patients with NPC using AAA were recalculated using AXB. The dose distributions to multiple planning target volumes (PTVs) with different prescribed doses and critical organs were compared. The PTVs were separated into components in bone, air, and tissue. The change of doses by AXB duemore » to air and bone, and the variation of the amount of dose changes with number of fields was also studied using simple geometric phantoms. Results: Using AXB instead of AAA, the averaged mean dose to PTV{sub 70} (70 Gy was prescribed to PTV{sub 70}) was found to be 0.9% and 1.2% lower for IMRT and RA, respectively. It was approximately 1% lower in tissue, 2% lower in bone, and 1% higher in air. The averaged minimum dose to PTV{sub 70} in bone was approximately 4% lower for both IMRT and RA, whereas it was approximately 1.5% lower for PTV{sub 70} in tissue. The decrease in target doses estimated by AXB was mostly contributed from the presence of bone, less from tissue, and none from air. A similar trend was observed for PTV{sub 60} (60 Gy was prescribed to PTV{sub 60}). The doses to most serial organs were found to be 1% to 3% lower and to other organs 4% to 10% lower for both techniques. Conclusions: The use of the AXB algorithm is highly recommended for IMRT and RapidArc planning for NPC cases.« less
NASA Astrophysics Data System (ADS)
Zhou, Yuhong; Klages, Peter; Tan, Jun; Chi, Yujie; Stojadinovic, Strahinja; Yang, Ming; Hrycushko, Brian; Medin, Paul; Pompos, Arnold; Jiang, Steve; Albuquerque, Kevin; Jia, Xun
2017-06-01
High dose rate (HDR) brachytherapy treatment planning is conventionally performed manually and/or with aids of preplanned templates. In general, the standard of care would be elevated by conducting an automated process to improve treatment planning efficiency, eliminate human error, and reduce plan quality variations. Thus, our group is developing AutoBrachy, an automated HDR brachytherapy planning suite of modules used to augment a clinical treatment planning system. This paper describes our proof-of-concept module for vaginal cylinder HDR planning that has been fully developed. After a patient CT scan is acquired, the cylinder applicator is automatically segmented using image-processing techniques. The target CTV is generated based on physician-specified treatment depth and length. Locations of the dose calculation point, apex point and vaginal surface point, as well as the central applicator channel coordinates, and the corresponding dwell positions are determined according to their geometric relationship with the applicator and written to a structure file. Dwell times are computed through iterative quadratic optimization techniques. The planning information is then transferred to the treatment planning system through a DICOM-RT interface. The entire process was tested for nine patients. The AutoBrachy cylindrical applicator module was able to generate treatment plans for these cases with clinical grade quality. Computation times varied between 1 and 3 min on an Intel Xeon CPU E3-1226 v3 processor. All geometric components in the automated treatment plans were generated accurately. The applicator channel tip positions agreed with the manually identified positions with submillimeter deviations and the channel orientations between the plans agreed within less than 1 degree. The automatically generated plans obtained clinically acceptable quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calvo-Ortega, Juan Francisco, E-mail: jfcdrr@yahoo.es; Moragues, Sandra; Pozo, Miquel
2015-01-01
To evaluate the dosimetric effect of placing the isocenter away from the planning target volume (PTV) on intensity-modulated radiosurgery (IMRS) plans to treat brain lesions. A total of 15 patients who received cranial IMRS at our institution were randomly selected. Each patient was treated with an IMRS plan designed with the isocenter located at the target center (plan A). A second off-target isocenter plan (plan B) was generated for each case. In all the plans,100% of the prescription dose covered 99% of the target volume. The plans A and B were compared for the target dosage (conformity index [CI] andmore » homogeneity index) and organs-at-risk (OAR) dose sparing. Peripheral dose falloff was compared by using the metrics volume of normal brain receiving more than 12-Gy dose (V12) and CI at the level of the 50% of the prescription dose (CI 50%). The values found for each metric (plan B vs plan A) were (mean ± standard deviation [SD]) as follows—CI: 1.28 ± 0.15 vs 1.28 ± 0.15, p = 0.978; homogeneity index (HI): 1.29 ± 0.14 vs 1.34 ± 0.17, p = 0.079; maximum dose to the brainstem: 2.95 ± 2.11 vs 2.89 ± 1.88 Gy, p = 0.813; maximum dose to the optical pathway: 2.65 ± 4.18 vs 2.44 ± 4.03 Gy, p = 0.195; and maximum dose to the eye lens: 0.33 ± 0.73 vs 0.33 ± 0.53 Gy, p = 0.970. The values of the peripheral dose falloff were (plan B vs plan A) as follows—V12: 5.98 ± 4.95 vs 6.06 ± 4.92 cm{sup 3}, p = 0.622, and CI 50%: 6.08 ± 2.77 vs 6.28 ± 3.01, p = 0.119. The off-target isocenter solution resulted in dosimetrically comparable plans as the center-target isocenter technique, by avoiding the risk of gantry-couch collision during the cone beam computed tomography (CBCT) acquisition.« less
Inoue, Tatsuya; Widder, Joachim; van Dijk, Lisanne V; Takegawa, Hideki; Koizumi, Masahiko; Takashina, Masaaki; Usui, Keisuke; Kurokawa, Chie; Sugimoto, Satoru; Saito, Anneyuko I; Sasai, Keisuke; Van't Veld, Aart A; Langendijk, Johannes A; Korevaar, Erik W
2016-11-01
To investigate the impact of setup and range uncertainties, breathing motion, and interplay effects using scanning pencil beams in robustly optimized intensity modulated proton therapy (IMPT) for stage III non-small cell lung cancer (NSCLC). Three-field IMPT plans were created using a minimax robust optimization technique for 10 NSCLC patients. The plans accounted for 5- or 7-mm setup errors with ±3% range uncertainties. The robustness of the IMPT nominal plans was evaluated considering (1) isotropic 5-mm setup errors with ±3% range uncertainties; (2) breathing motion; (3) interplay effects; and (4) a combination of items 1 and 2. The plans were calculated using 4-dimensional and average intensity projection computed tomography images. The target coverage (TC, volume receiving 95% of prescribed dose) and homogeneity index (D2 - D98, where D2 and D98 are the least doses received by 2% and 98% of the volume) for the internal clinical target volume, and dose indexes for lung, esophagus, heart and spinal cord were compared with that of clinical volumetric modulated arc therapy plans. The TC and homogeneity index for all plans were within clinical limits when considering the breathing motion and interplay effects independently. The setup and range uncertainties had a larger effect when considering their combined effect. The TC decreased to <98% (clinical threshold) in 3 of 10 patients for robust 5-mm evaluations. However, the TC remained >98% for robust 7-mm evaluations for all patients. The organ at risk dose parameters did not significantly vary between the respective robust 5-mm and robust 7-mm evaluations for the 4 error types. Compared with the volumetric modulated arc therapy plans, the IMPT plans showed better target homogeneity and mean lung and heart dose parameters reduced by about 40% and 60%, respectively. In robustly optimized IMPT for stage III NSCLC, the setup and range uncertainties, breathing motion, and interplay effects have limited impact on target coverage, dose homogeneity, and organ-at-risk dose parameters. Copyright © 2016 Elsevier Inc. All rights reserved.
Bloemen-van Gurp, Esther J; Mijnheer, Ben J; Verschueren, Tom A M; Lambin, Philippe
2007-11-15
To predict the three-dimensional dose distribution of our total body irradiation technique, using a commercial treatment planning system (TPS). In vivo dosimetry, using metal oxide field effect transistors (MOSFETs) and thermoluminescence detectors (TLDs), was used to verify the calculated dose distributions. A total body computed tomography scan was performed and loaded into our TPS, and a three-dimensional-dose distribution was generated. In vivo dosimetry was performed at five locations on the patient. Entrance and exit dose values were converted to midline doses using conversion factors, previously determined with phantom measurements. The TPS-predicted dose values were compared with the MOSFET and TLD in vivo dose values. The MOSFET and TLD dose values agreed within 3.0% and the MOSFET and TPS data within 0.5%. The convolution algorithm of the TPS, which is routinely applied in the clinic, overestimated the dose in the lung region. Using a superposition algorithm reduced the calculated lung dose by approximately 3%. The dose inhomogeneity, as predicted by the TPS, can be reduced using a simple intensity-modulated radiotherapy technique. The use of a TPS to calculate the dose distributions in individual patients during total body irradiation is strongly recommended. Using a TPS gives good insight of the over- and underdosage in a patient and the influence of patient positioning on dose homogeneity. MOSFETs are suitable for in vivo dosimetry purposes during total body irradiation, when using appropriate conversion factors. The MOSFET, TLD, and TPS results agreed within acceptable margins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, J; Zheng, X; Liu, H
Purpose: This study is to evaluate the feasibility of simultaneously integrated boost (SIB) to hypoxic subvolume (HTV) in nasopharyngeal carcinomas under the guidance of 18F-Fluoromisonidazole (FMISO) PET/CT using a novel non-uniform volumetric modulated arc therapy (VMAT)technique. Methods: Eight nasopharyngeal carcinoma patients treated with conventional uniform VMAT were retrospectively analyzed. For each treatment, actual conventional uniform VMAT plan with two or more arcs (2–2.5 arcs, totally rotating angle < 1000o) was designed with dose boost to hopxic subvolume (total dose, 84Gy) in the gross tumor volme (GTV) under the guidance of 18F- FMISO PET/CT. Based on the same dataset, experimental singlemore » arc non-uniform VAMT plans were generated with the same dose prescription using customized software tools. Dosimetric parameters, quality assurance and the efficiency of the treatment delivery were compared between the uniform and non-uniform VMAT plans. Results: To develop the non-uniform VMAT technique, a specific optimization model was successfully established. Both techniques generate high-quality plans with pass rate (>98%) with the 3mm, 3% criterion. HTV received dose of 84.1±0.75Gy and 84.1±1.2Gy from uniform and non-uniform VMAT plans, respectively. In terms of target coverage and dose homogeneity, there was no significant statistical difference between actual and experimental plans for each case. However, for critical organs at risk (OAR), including the parotids, oral cavity and larynx, dosimetric difference was significant with better dose sparing form experimental plans. Regarding plan implementation efficiency, the average machine time was 3.5 minutes for the actual VMAT plans and 3.7 minutes for the experimental nonuniform VMAT plans (p>0.050). Conclusion: Compared to conventional VMAT technique, the proposed non-uniform VMAT technique has the potential to produce efficient and safe treatment plans, especially in cases with complicated anatomical structures and demanding dose boost to subvolumes.« less
Fortin, Israël; Fortin, Bernard; Lambert, Louise; Clavel, Sébastien; Alizadeh, Moein; Filion, Edith J; Soulières, Denis; Bélair, Manon; Guertin, Louis; Nguyen-Tan, Phuc Felix
2014-09-01
In comparison to sliding-window intensity-modulated radiation therapy (sw-IMRT), we hypothesized that helical tomotherapy (HT) would achieve similar locoregional control and, at the same time, decrease the parotid gland dose, thus leading to a xerostomia reduction. The association between radiation techniques, mean parotid dose, and xerostomia incidence, was reviewed in 119 patients with advanced oropharyngeal carcinoma treated with concurrent chemoradiation using sw-IMRT (n = 59) or HT (n = 60). Ipsilateral and contralateral parotid mean doses were significantly lower for patients treated with HT versus sw-IMRT: 24 Gy versus 32 Gy ipsilaterally and 20 Gy versus 25 Gy contralaterally. The incidence of grade ≥2 xerostomia was significantly lower in the HT group than in the sw-IMRT group: 12% versus 78% at 6 months, 3% versus 51% at 12 months, and 0% versus 25% at 24 months. Total parotid mean dose <25 Gy was strongly associated to a lower incidence of grade ≥2 xerostomia at 6, 12, and 24 months. This retrospective series suggests that using HT can better spare the parotid glands while respecting quantitative analysis of normal tissue effects in the clinic (QUANTEC)'s criteria. Copyright © 2013 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Raef S.; Shen, Sui; Ove, Roger
We wanted to describe a technique for the implementation of intensity-modulated radiotherapy (IMRT) with a real-time position monitor (RPM) respiratory gating system for the treatment of pleural space with intact lung. The technique is illustrated by a case of pediatric osteosarcoma, metastatic to the pleura of the right lung. The patient was simulated in the supine position where a breathing tracer and computed tomography (CT) scans synchronized at end expiration were acquired using the RPM system. The gated CT images were used to define target volumes and critical structures. Right pleural gated IMRT delivered at end expiration was prescribed tomore » a dose of 44 Gy, with 55 Gy delivered to areas of higher risk via simultaneous integrated boost (SIB) technique. IMRT was necessary to avoid exceeding the tolerance of intact lung. Although very good coverage of the target volume was achieved with a shell-shaped dose distribution, dose over the targets was relatively inhomogeneous. Portions of target volumes necessarily intruded into the right lung, the liver, and right kidney, limiting the degree of normal tissue sparing that could be achieved. The radiation doses to critical structures were acceptable and well tolerated. With intact lung, delivering a relatively high dose to the pleura with acceptable doses to surrounding normal tissues using respiratory gated pleural IMRT is feasible. Treatment delivery during a limited part of the respiratory cycle allows for reduced CT target volume motion errors, with reduction in the portion of the planning margin that accounts for respiratory motion, and subsequent increase in the therapeutic ratio.« less
Volumetric Modulated Arc Radiotherapy for Vestibular Schwannomas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lagerwaard, Frank J.; Meijer, Otto W.M.; Hoorn, Elles A.P. van der
2009-06-01
Purpose: To evaluate volumetric modulated arc radiotherapy (RapidArc [RA]), a novel approach allowing for rapid treatment delivery, for the treatment of vestibular schwannoma (VS). Methods and Materials: The RA plans were generated for a small (0.5 cm{sup 3}), intermediate (2.8 cm{sup 3}), and large (14.8 cm{sup 3}) VS. The prescription dose was 12.5 Gy to the encompassing 80% isodose. The RA plans were compared with conventional radiosurgery plans using both a single dynamic conformal arc (1DCA) and five noncoplanar dynamic conformal arcs (5DCA). Conformity indices (CI) and dose-volume histograms of critical organs were compared. The RA plan for the medium-sizedmore » VS was measured in a phantom using Gafchromic EBT films and compared with calculated dose distributions. Results: The RA planning was completed within 30 min in all cases, and calculated treatment delivery time (after patient setup) was 5 min vs. 20 min for 5DCA. A superior CI was achieved with RA, with a substantial decrease in low-dose irradiation of the normal brain achieved relative to 5DCA plans. Maximum doses to critical organs were similar for RA and 5DCA but were higher for 1DCA. Film measurements showed the differences between calculated and measured doses to be smaller than 1.5% in the high-dose area and smaller than 3% in the low-dose area. Conclusion: The RA plans consistently achieved a higher CI and decrease in areas of low-dose irradiation. This, together with shorter treatment delivery times, has led to RA replacing our conventional five-arc radiosurgery technique for VS.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, J; Fan, J; Gopinatha Pillai, A
Purpose: To further reduce CT dose, a practical sparse-view acquisition scheme is proposed to provide the same attenuation estimation as higher dose for PET imaging in the extended scan field-of-view. Methods: CT scans are often used for PET attenuation correction and can be acquired at very low CT radiation dose. Low dose techniques often employ low tube voltage/current accompanied with a smooth filter before backprojection to reduce CT image noise. These techniques can introduce bias in the conversion from HU to attenuation values, especially in the extended CT scan field-of-view (FOV). In this work, we propose an ultra-low dose CTmore » technique for PET attenuation correction based on sparse-view acquisition. That is, instead of an acquisition of full amount of views, only a fraction of views are acquired. We tested this technique on a 64-slice GE CT scanner using multiple phantoms. CT scan FOV truncation completion was performed based on the published water-cylinder extrapolation algorithm. A number of continuous views per rotation: 984 (full), 246, 123, 82 and 62 have been tested, corresponding to a CT dose reduction of none, 4x, 8x, 12x and 16x. We also simulated sparse-view acquisition by skipping views from the fully-acquired view data. Results: FBP reconstruction with Q. AC filter on reduced views in the full extended scan field-of-view possesses similar image quality to the reconstruction on acquired full view data. The results showed a further potential for dose reduction compared to the full acquisition, without sacrificing any significant attenuation support to the PET. Conclusion: With the proposed sparse-view method, one can potential achieve at least 2x more CT dose reduction compared to the current Ultra-Low Dose (ULD) PET/CT protocol. A pre-scan based dose modulation scheme can be combined with the above sparse-view approaches, which can even further reduce the CT scan dose during a PET/CT exam.« less
A new dynamical atmospheric ionizing radiation (AIR) model for epidemiological studies
NASA Technical Reports Server (NTRS)
De Angelis, G.; Clem, J. M.; Goldhagen, P. E.; Wilson, J. W.
2003-01-01
A new Atmospheric Ionizing Radiation (AIR) model is currently being developed for use in radiation dose evaluation in epidemiological studies targeted to atmospheric flight personnel such as civilian airlines crewmembers. The model will allow computing values for biologically relevant parameters, e.g. dose equivalent and effective dose, for individual flights from 1945. Each flight is described by its actual three dimensional flight profile, i.e. geographic coordinates and altitudes varying with time. Solar modulated primary particles are filtered with a new analytical fully angular dependent geomagnetic cut off rigidity model, as a function of latitude, longitude, arrival direction, altitude and time. The particle transport results have been obtained with a technique based on the three-dimensional Monte Carlo transport code FLUKA, with a special procedure to deal with HZE particles. Particle fluxes are transformed into dose-related quantities and then integrated all along the flight path to obtain the overall flight dose. Preliminary validations of the particle transport technique using data from the AIR Project ER-2 flight campaign of measurements are encouraging. Future efforts will deal with modeling of the effects of the aircraft structure as well as inclusion of solar particle events. Published by Elsevier Ltd on behalf of COSPAR.
Commissioning and validation of COMPASS system for VMAT patient specific quality assurance
NASA Astrophysics Data System (ADS)
Pimthong, J.; Kakanaporn, C.; Tuntipumiamorn, L.; Laojunun, P.; Iampongpaiboon, P.
2016-03-01
Pre-treatment patient specific quality assurance (QA) of advanced treatment techniques such as volumetric modulated arc therapy (VMAT) is one of important QA in radiotherapy. The fast and reliable dosimetric device is required. The objective of this study is to commission and validate the performance of COMPASS system for dose verification of VMAT technique. The COMPASS system is composed of an array of ionization detectors (MatriXX) mounted to the gantry using a custom holder and software for the analysis and visualization of QA results. We validated the COMPASS software for basic and advanced clinical application. For the basic clinical study, the simple open field in various field sizes were validated in homogeneous phantom. And the advanced clinical application, the fifteen prostate and fifteen nasopharyngeal cancers VMAT plans were chosen to study. The treatment plans were measured by the MatriXX. The doses and dose-volume histograms (DVHs) reconstructed from the fluence measurements were compared to the TPS calculated plans. And also, the doses and DVHs computed using collapsed cone convolution (CCC) Algorithm were compared with Eclipse TPS calculated plans using Analytical Anisotropic Algorithm (AAA) that according to dose specified in ICRU 83 for PTV.
Ocular allergy modulation to hi-dose antigen sensitization is a Treg-dependent process.
Lee, Hyun Soo; Schlereth, Simona; Khandelwal, Payal; Saban, Daniel R
2013-01-01
A reproducible method to inhibit allergic immune responses is accomplished with hi-dose Ag sensitization, via intraperitoneal (IP) injection. However, the role of CD4+ CD25+ FoxP3+ T regulatory cells (Treg) in this process is unknown, as is whether such modulation extends to ocular allergy. We therefore determined herein whether hi-dose sensitization modulates ocular allergy, and whether CD4+ CD25+ FoxP3+ Treg are involved. C57BL/6 mice were IP sensitized via low-dose (100 µg) versus hi-dose (1000 µg) ovalbumin (OVA), in aluminum hydroxide (1 mg) and pertussis-toxin (300 ng). Other mice received anti-CD25 Ab (PC61) to ablate Treg during sensitization. In another experiment, Treg from hi-dose sensitized mice were adoptively transferred into low-dose sensitized mice. Once daily OVA challenges were administered. Clinical signs, IgE, T cell cytokines, and eosinophils were assessed. Data revealed that hi-dose, but not low-dose, sensitization led to allergy modulation, indicated by decreased clinical signs, serum IgE levels, Th2 recall responses, and eosinophil recruitment. T cells from hi-dose sensitized mice showed a robust increase in TGF-b production, and Treg from these mice were able to efficiently suppress effector T cell proliferation in vitro. In addition, in vivo Treg ablation in hi-dose sensitized mice revoked allergy modulation. Lastly, Treg from hi-dose sensitized mice were able to adoptively transfer allergy modulation to their low-dose sensitized counterparts. Collectively, these findings indicate that modulation to hi-dose sensitization, which is extended to ocular allergy, occurs in a Treg-dependent manner. In addition, our data suggest that hi-dose sensitization may henceforth facilitate the further examination of CD4+ CD25+ FoxP3+ Treg in allergic disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romesser, Paul B.; Qureshi, Muhammad M.; Kovalchuk, Nataliya
2014-07-01
To determine the effect of gross tumor volume of the primary (GTV-P) and nodal (GTV-N) disease on planned radiation dose to the brachial plexus (BP) in head and neck intensity-modulated radiotherapy (IMRT). Overall, 75 patients underwent definitive IMRT to a median total dose of 69.96 Gy in 33 fractions. The right BP and left BP were prospectively contoured as separate organs at risk. The GTV was related to BP dose using the unpaired t-test. Receiver operating characteristics curves were constructed to determine optimized volumetric thresholds of GTV-P and GTV-N corresponding to a maximum BP dose cutoff of > 66 Gy.more » Multivariate analyses were performed to account for factors associated with a higher maximal BP dose. A higher maximum BP dose (> 66 vs ≤ 66 Gy) correlated with a greater mean GTV-P (79.5 vs 30.8 cc; p = 0.001) and ipsilateral GTV-N (60.6 vs 19.8 cc; p = 0.014). When dichotomized by the optimized nodal volume, patients with an ipsilateral GTV-N ≥ 4.9 vs < 4.9 cc had a significant difference in maximum BP dose (64.2 vs 59.4 Gy; p = 0.001). Multivariate analysis confirmed that an ipsilateral GTV-N ≥ 4.9 cc was an independent predictor for the BP to receive a maximal dose of > 66 Gy when adjusted individually for BP volume, GTV-P, the use of a low anterior neck field technique, total planned radiation dose, and tumor category. Although both the primary and the nodal tumor volumes affected the BP maximal dose, the ipsilateral nodal tumor volume (GTV-N ≥ 4.9 cc) was an independent predictor for high maximal BP dose constraints in head and neck IMRT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekici, Kemal, E-mail: drkemal06@hotmail.com; Pepele, Eda K.; Yaprak, Bahaddin
2016-01-01
Various radiotherapy planning methods for T1N0 laryngeal cancer have been proposed to decrease normal tissue toxicity. We compare helical tomotherapy (HT), linac-based intensity-modulated radiation therapy (IMRT), volumetric-modulated arc therapy (VMAT), and 3-D conformal radiotherapy (3D-CRT) techniques for T1N0 laryngeal cancer. Overall, 10 patients with T1N0 laryngeal cancer were selected and evaluated. Furthermore, 10 radiotherapy treatment plans have been created for all 10 patients, including HT, IMRT, VMAT, and 3D-CRT. IMRT, VMAT, and HT plans vs 3D-CRT plans consistently provided superior planning target volume (PTV) coverage. Similar target coverage was observed between the 3 IMRT modalities. Compared with 3D-CRT, IMRT, HT,more » and VMAT significantly reduced the mean dose to the carotid arteries. VMAT resulted in the lowest mean dose to the submandibular and thyroid glands. Compared with 3D-CRT, IMRT, HT, and VMAT significantly increased the maximum dose to the spinal cord It was observed that the 3 IMRT modalities studied showed superior target coverage with less variation between each plan in comparison with 3D-CRT. The 3D-CRT plans performed better at the D{sub max} of the spinal cord. Clinical investigation is warranted to determine if these treatment approaches would translate into a reduction in radiation therapy–induced toxicities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherpak, Amanda
Purpose: The Octavius 1000{sup SRS} detector was commissioned in December 2014 and is used routinely for verification of all SRS and SBRT plans. Results of verifications were analyzed to assess trends and limitations of the device and planning methods. Methods: Plans were delivered using a True Beam STx and results were evaluated using gamma analysis (95%, 3%/3mm) and absolute dose difference (5%). Verification results were analyzed based on several plan parameters including tumour volume, degree of modulation and prescribed dose. Results: During a 12 month period, a total of 124 patient plans were verified using the Octavius detector. Thirteen plansmore » failed the gamma criteria, while 7 plans failed based on the absolute dose difference. When binned according to degree of modulation, a significant correlation was found between MU/cGy and both mean dose difference (r=0.78, p<0.05) and gamma (r=−0.60, p<0.05). When data was binned according to tumour volume, the standard deviation of average gamma dropped from 2.2% – 3.7% for the volumes less than 30 cm{sup 3} to below 1% for volumes greater than 30 cm{sup 3}. Conclusions: The majority of plans and verification failures involved tumour volumes smaller than 30 cm{sup 3}. This was expected due to the nature of disease treated with SBRT and SRS techniques and did not increase rate of failure. Correlations found with MU/cGy indicate that as modulation increased, results deteriorated but not beyond the previously set thresholds.« less
Restricted Field IMRT Dramatically Enhances IMRT Planning for Mesothelioma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, Aaron M.; Schofield, Deborah; Hacker, Fred
2007-12-01
Purpose: To improve the target coverage and normal tissue sparing of intensity-modulated radiotherapy (IMRT) for mesothelioma after extrapleural pneumonectomy. Methods and Materials: Thirteen plans from patients previously treated with IMRT for mesothelioma were replanned using a restricted field technique. This technique was novel in two ways. It limited the entrance beams to 200{sup o} around the target and three to four beams per case had their field apertures restricted down to the level of the heart or liver to further limit the contralateral lung dose. New constraints were added that included a mean lung dose of <9.5 Gy and volumemore » receiving {>=}5 Gy of <55%. Results: In all cases, the planning target volume coverage was excellent, with an average of 97% coverage of the planning target volume by the target dose. No change was seen in the target coverage with the new technique. The heart, kidneys, and esophagus were all kept under tolerance in all cases. The average mean lung dose, volume receiving {>=}20 Gy, and volume receiving {>=}5 Gy with the new technique was 6.6 Gy, 3.0%, and 50.8%, respectively, compared with 13.8 Gy, 15%, and 90% with the previous technique (p < 0.0001 for all three comparisons). The maximal value for any case in the cohort was 8.0 Gy, 7.3%, and 57.5% for the mean lung dose, volume receiving {>=}20 Gy, and volume receiving {>=}5 Gy, respectively. Conclusion: Restricted field IMRT provides an improved method to deliver IMRT to a complex target after extrapleural pneumonectomy. An upcoming Phase I trial will provide validation of these results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ouyang, L; Folkerts, M; Lee, H
2015-06-15
Purpose: To perform a dosimetric evaluation on a new developed volumetric modulated arc therapy based total body irradiation (VMAT-TBI). Methods: Three patients were CT scanned with an indexed rotatable body frame to get whole body CT images. Concatenated CT images were imported in Pinnacle treatment planning system and whole body and lung were contoured as PTV and organ at risk, respectively. Treatment plans were generated by matching multiple isocenter volumetric modulated arc (VMAT) fields of the upper body and multiple isocenter parallel-opposed fields of the lower body. For each plan, 1200 cGy in 8 fractions was prescribed to the wholemore » body volume and the lung dose was constrained to a mean dose of 750 cGy. Such a two-level dose plan was achieved by inverse planning of the torso VMAT fields. For comparison, conventional standing TBI (cTBI) plans were generated on the same whole body CT images at an extended SSD (550cm).The shape of compensators and lung blocks are simulated using body segments and lung contours Compensation was calculated based on the patient CT images, in mimic of the standing TBI treatment. The whole body dose distribution of cTBI plans were calculated with a home-developed GPU Monte Carlo dose engine. Calculated cTBI dose distribution was prescribed to the mid-body point at umbilical level. Results: The VMAT-TBI treatment plans of three patients’ plans achieved 80.2%±5.0% coverage of the total body volume within ±10% of the prescription dose, while cTBI treatment plans achieved 72.2%±4.0% coverage of the total body volume. The averaged mean lung dose of all three patients is lower for VMAT-TBI (7.48 cGy) than for cTBI (8.96 cGy). Conclusion: The proposed patient comfort-oriented VMAT-TBI technique provides for a uniform dose distribution within the total body while reducing the dose to the lungs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Matthew Christopher, E-mail: wardm3@ccf.org; Pham, Yvonne D.; Kotecha, Rupesh
2016-04-01
Conventional parallel-opposed radiotherapy (PORT) is the established standard technique for early-stage glottic carcinoma. However, case reports have reported the utility of intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) with or without image guidance (image-guided radiotherapy, IGRT) in select patients. The proposed advantages of IMRT/VMAT include sparing of the carotid artery, thyroid gland, and the remaining functional larynx, although these benefits remain unclear. The following case study presents a patient with multiple vascular comorbidities treated with VMAT for early-stage glottic carcinoma. A detailed explanation of the corresponding treatment details, dose-volume histogram (DVH) analysis, and a review of the relevant literaturemore » are provided. Conventional PORT remains the standard of care for early-stage glottic carcinoma. IMRT or VMAT may be beneficial for select patients, although great care is necessary to avoid a geographical miss. Clinical data supporting the benefit of CRT are lacking. Therefore, these techniques should be used with caution and only in selected patients.« less
NASA Astrophysics Data System (ADS)
Mothersill, Carmel; Seymour, Colin
2012-07-01
Our recent data suggest there is a physical component to the bystander signal induced by radiation exposure and that alternative medicine techniques such as Reiki and acupuncture or exposures to weak EM fields alter the response of cells to direct irradiation and either altered bystander signal production or altered the response of cells receiving bystander signals. Our proposed mechanism to explain these findings is that perturbation of electromagnetic (EM) fields is central to the induction of low radiation dose responses especially non-targeted bystander effects. In this presentation we review the alternative medicine data and other data sets from our laboratory which test our hypothesis that perturbation of bio-fields will modulate radiation response in the low dose region. The other data sets include exposure to MRI, shielding using lead and or Faraday cages, the use of physical barriers to bystander signal transmission and the use of membrane channel blockers. The data taken together strongly suggest that EM field perturbation can modulate low dose response and that in fact the EM field rather than the targeted deposition of ionizing energy in the DNA may be the key determinant of dose response in a cell or organism The results also lead us to suspect that at least when chemical transmission is blocked, bystander signals can be transmitted by other means. Our recent experiments suggest light signals and volatiles are not likely. We conclude that alternative medicine and other techniques involving electromagnetic perturbations can modify the response of cells to low doses of ionizing radiation and can induce bystander effects similar to those seen in medium transfer experiments. In addition to the obvious implications for mechanistic studies of low dose effects, this could perhaps provide a novel target to exploit in space radiation protection and in optimizing therapeutic gain during radiotherapy.
NASA Astrophysics Data System (ADS)
Gutierrez, Alonso Navar
2007-12-01
Recent improvements in imaging technology and radiation delivery have led to the development of advanced treatment techniques in radiotherapy which have opened the door for novel therapeutic approaches to improve the efficacy of radiation cancer treatments. Among these advances is image-guided, intensity modulated radiation therapy (IG-IMRT), in which imaging is incorporated to aid in inter-/intra-fractional target localization and to ensure accurate delivery of precise and highly conformal dose distributions. In principle, clinical implementation of IG-IMRT should improve normal tissue sparing and permit effective biological dose escalation thus widening the radiation therapeutic window and lead to increases in survival through improved local control of primary neoplastic diseases. Details of the development of three clinical applications made possible solely with IG-IMRT radiation delivery techniques are presented: (1) Laparoscopically implanted tissue expander radiotherapy (LITE-RT) has been developed to enhance conformal avoidance of normal tissue during the treatment of intra-abdominopelvic cancers. LITE-RT functions by geometrically displacing surrounding normal tissue and isolating the target volume through the interfractional inflation of a custom-shaped tissue expander throughout the course of treatment. (2) The unique delivery geometry of helical tomotherapy, a novel form of IG-IMRT, enables the delivery of composite treatment plan m which whole brain radiotherapy (WBRT) with hippocampal avoidance, hypothesized to reduce the risk of memory function decline and improve the patient's quality of life, and simultaneously integrated boost to multiple brain metastases to improve intracranial tumor control is achieved. (3) Escalation of biological dose to targets through integrated, selective subvolume boosts have been shown to efficiently increase tumor dose without significantly increasing normal tissue dose. Helical tomotherapy was used to investigate the feasibility of delivering a simultaneously integrated subvolume boost to canine nasal tumors and was found to dramatically increase estimated 1-year tumor control probability (TCP) without increasing the dose to the eyes, so as to preserve vision, and to the brain, so as to prevent neuropathy.
NASA Astrophysics Data System (ADS)
Mahnam, Mehdi; Gendreau, Michel; Lahrichi, Nadia; Rousseau, Louis-Martin
2017-07-01
In this paper, we propose a novel heuristic algorithm for the volumetric-modulated arc therapy treatment planning problem, optimizing the trade-off between delivery time and treatment quality. We present a new mixed integer programming model in which the multi-leaf collimator leaf positions, gantry speed, and dose rate are determined simultaneously. Our heuristic is based on column generation; the aperture configuration is modeled in the columns and the dose distribution and time restriction in the rows. To reduce the number of voxels and increase the efficiency of the master model, we aggregate similar voxels using a clustering technique. The efficiency of the algorithm and the treatment quality are evaluated on a benchmark clinical prostate cancer case. The computational results show that a high-quality treatment is achievable using a four-thread CPU. Finally, we analyze the effects of the various parameters and two leaf-motion strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yepes, P; Mirkovic, D; Mohan, R
Purpose: To determine the suitability of fast Monte Carlo techniques for dose calculation in particle therapy based on track-repeating algorithm for Intensity Modulated Proton Therapy, IMPT. The application of this technique will make possible detailed retrospective studies of large cohort of patients, which may lead to a better determination of Relative Biological Effects from the analysis of patient data. Methods: A cohort of six head-and-neck patients treated at the University of Texas MD Anderson Cancer Center with IMPT were utilized. The dose distributions were calculated with the standard Treatment Plan System, TPS, MCNPX, GEANT4 and FDC, a fast track-repeating algorithmmore » for proton therapy for the verification and the patient plans. FDC is based on a GEANT4 database of trajectories of protons in a water. The obtained dose distributions were compared to each other utilizing the g-index criteria for 3mm-3% and 2mm-2%, for the maximum spatial and dose differences. The γ-index was calculated for voxels with a dose at least 10% of the maximum delivered dose. Dose Volume Histograms are also calculated for the various dose distributions. Results: Good agreement between GEANT4 and FDC is found with less than 1% of the voxels with a γ-index larger than 1 for 2 mm-2%. The agreement between MCNPX with FDC is within the requirements of clinical standards, even though it is slightly worse than the comparison with GEANT4.The comparison with TPS yielded larger differences, what is also to be expected because pencil beam algorithm do not always performed well in highly inhomogeneous areas like head-and-neck. Conclusion: The good agreement between a track-repeating algorithm and a full Monte Carlo for a large cohort of patients and a challenging, site like head-and-neck, opens the path to systematic and detailed studies of large cohorts, which may yield better understanding of biological effects.« less
Dose verification for respiratory-gated volumetric modulated arc therapy (VMAT)
Qian, Jianguo; Xing, Lei; Liu, Wu; Luxton, Gary
2011-01-01
A novel commercial medical linac system (TrueBeam™, Varian Medical Systems, Palo Alto, CA) allows respiratory-gated volumetric modulated arc therapy (VMAT), a new modality for treating moving tumors with high precision and improved accuracy by allowing for regular motion associated with a patient's breathing during VMAT delivery. The purpose of this work is to adapt a previously-developed dose reconstruction technique to evaluate the fidelity of VMAT treatment during gated delivery under clinic-relevant periodic motion related to patient breathing. A Varian TrueBeam system was used in this study. VMAT plans were created for three patients with lung or pancreas tumors. Conventional 6 MV and 15 MV beams with flattening filter and high dose-rate 10 MV beams with no flattening filter were used in these plans. Each patient plan was delivered to a phantom first without gating and then with gating for three simulated respiratory periods (3, 4.5 and 6 seconds). Using the adapted log file-based dose reconstruction procedure supplemented with ion chamber array (Seven29™, PTW, Freiburg, Germany) measurements, the delivered dose was used to evaluate the fidelity of gated VMAT delivery. Comparison of Seven29 measurements with and without gating showed good agreement with gamma-index passing rates above 99% for 1%/1mm dose accuracy/distance-to-agreement criteria. With original plans as reference, gamma-index passing rates were 100% for the reconstituted plans (1%/1 mm criteria) and 93.5–100% for gated Seven29 measurements (3%/3 mm criteria). In the presence of leaf error deliberately introduced into the gated delivery of a pancreas patient plan, both dose reconstruction and Seven29 measurement consistently indicated substantial dosimetric differences from the original plan. In summary, a dose reconstruction procedure was demonstrated for evaluating the accuracy of respiratory-gated VMAT delivery. This technique showed that under clinical operation, the TrueBeam system faithfully realized treatment plans with gated delivery. This methodology affords a useful tool for machine and patient-specific quality assurance of the newly available respiratory-gated VMAT. PMID:21753232
NASA Astrophysics Data System (ADS)
Sato, Tatsuhiko; Satoh, Daiki; Endo, Akira; Shigyo, Nobuhiro; Watanabe, Fusao; Sakurai, Hiroki; Arai, Yoichi
2011-05-01
A dose and spectrum monitoring system applicable to neutrons, photons and muons over wide ranges of energy, designated as DARWIN, has been developed for radiological protection in high-energy accelerator facilities. DARWIN consists of a phoswitch-type scintillation detector, a data-acquisition (DAQ) module for digital waveform analysis, and a personal computer equipped with a graphical-user-interface (GUI) program for controlling the system. The system was recently upgraded by introducing an original DAQ module based on a field programmable gate array, FPGA, and also by adding a function for estimating neutron and photon spectra based on an unfolding technique without requiring any specific scientific background of the user. The performance of the upgraded DARWIN was examined in various radiation fields, including an operational field in J-PARC. The experiments revealed that the dose rates and spectra measured by the upgraded DARWIN are quite reasonable, even in radiation fields with peak structures in terms of both spectrum and time variation. These results clearly demonstrate the usefulness of DARWIN for improving radiation safety in high-energy accelerator facilities.
OSL studies of alkali fluoroperovskite single crystals for radiation dosimetry
NASA Astrophysics Data System (ADS)
Daniel, D. Joseph; Raja, A.; Madhusoodanan, U.; Annalakshmi, O.; Ramasamy, P.
2016-08-01
This paper presents a preliminary investigation of the optically stimulated luminescence (OSL) of alkali fluoroperovskite single crystals for radiation dosimetry. The perovskite-like KMgF3, NaMgF3 and LiBaF3 polycrystalline compounds doped with rare earths (Eu2+ and Ce3+) were synthesized by standard solid state reaction technique. Phase purity of the synthesized compounds was analyzed by powder X-ray diffraction technique. Single crystals of these compounds have been grown from melt by using vertical Bridgman-Stockbarger method. The Linearly Modulated OSL and Continuous Wave OSL measurements were performed in these alkali fluorides using blue light stimulation. Thermal bleaching experiments have shown that OSL signals originate from traps which are unstable near 200 °C, thus proving the suitability of the signals for dosimetric purposes. Optical bleaching measurements were also performed for these fluoride samples. OSL dose response was studied as a function of dose which was found to increase with beta dose.
Gordillo, Belén; Baca-Bocanegra, Berta; Rodriguez-Pulído, Francisco J; González-Miret, M Lourdes; García Estévez, Ignacio; Quijada-Morín, Natalia; Heredia, Francisco J; Escribano-Bailón, M Teresa
2016-09-01
Oak chips-related phenolics are able to modify the composition of red wine and modulate the colour stability. In this study, the effect of two maceration techniques, traditional and oak chips-grape mix process, on the phenolic composition and colour of Syrah red wines from warm climate was studied. Two doses of oak chips (3 and 6g/L) at two maceration times (5 and 10days) during fermentation was considered. Changes on phenolic composition (HPLC-DAD-MS), copigmentation/polymerisation (spectrophotometry), and colour (Tristimulus and Differential Colorimetry) were assessed by multivariate statistical techniques. The addition of oak chips at shorter maceration times enhanced phenolic extraction, colour and its stabilisation in comparison to the traditional maceration. On contrast, increasing chip dose in extended maceration time resulted in wines with lighter and less stable colour. Results open the possibility of optimise alternative technological applications to traditional grape maceration for avoiding the common loss of colour of wines from warm climate. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chera, Bhishamjit S.; Amdur, Robert J., E-mail: amdurr@shands.ufl.ed; Morris, Christopher G.
2010-08-01
Purpose: To compare radiation doses to carotid arteries among various radiotherapy techniques for treatment of early-stage squamous cell carcinoma (SCC) of the true vocal cords. Methods and Materials: Five patients were simulated using computed tomography (CT). Clinical and planning target volumes (PTV) were created for bilateral and unilateral stage T1 vocal cord cancers. Planning risk volumes for the carotid arteries and spinal cord were delineated. For each patient, three treatment plans were designed for bilateral and unilateral target volumes: opposed laterals (LATS), three-dimensional conformal radiotherapy (3DCRT), and intensity-modulated radiotherapy (IMRT), for a total of 30 plans. More than 95% ofmore » the PTV received the prescription dose (63Gy at 2.25 Gy per treatment). Results: Carotid dose was lowest with IMRT. With a bilateral vocal cord target, the median carotid dose was 10Gy with IMRT vs. 25 Gy with 3DCRT and 38 Gy with LATS (p < 0.05); with a unilateral target, the median carotid dose was 4 Gy with IMRT vs. 19 Gy with 3DCRT and 39 Gy with LATS (p < 0.05). The dosimetric tradeoff with IMRT is a small area of high dose in the PTV. The worst heterogeneity results were at a maximum point dose of 80 Gy (127%) in a unilateral target that was close to the carotid. Conclusions: There is no question that IMRT can reduce the dose to the carotid arteries in patients with early-stage vocal cord cancer. The question is whether the potential advantage of reducing the carotid dose outweighs the risk of tumor recurrence due to contouring errors and organ motion and the risk of complications from dose heterogeneity.« less
Uses of megavoltage digital tomosynthesis in radiotherapy
NASA Astrophysics Data System (ADS)
Sarkar, Vikren
With the advent of intensity modulated radiotherapy, radiation treatment plans are becoming more conformal to the tumor with the decreasing margins. It is therefore of prime importance that the patient be positioned correctly prior to treatment. Therefore, image guided treatment is necessary for intensity modulated radiotherapy plans to be implemented successfully. Current advanced imaging devices require costly hardware and software upgrade, and radiation imaging solutions, such as cone beam computed tomography, may introduce extra radiation dose to the patient in order to acquire better quality images. Thus, there is a need to extend current existing imaging device ability and functions while reducing cost and radiation dose. Existing electronic portal imaging devices can be used to generate computed tomography-like tomograms through projection images acquired over a small angle using the technique of cone-beam digital tomosynthesis. Since it uses a fraction of the images required for computed tomography reconstruction, use of this technique correspondingly delivers only a fraction of the imaging dose to the patient. Furthermore, cone-beam digital tomosynthesis can be offered as a software-only solution as long as a portal imaging device is available. In this study, the feasibility of performing digital tomosynthesis using individually-acquired megavoltage images from a charge coupled device-based electronic portal imaging device was investigated. Three digital tomosynthesis reconstruction algorithms, the shift-and-add, filtered back-projection, and simultaneous algebraic reconstruction technique, were compared considering the final image quality and radiation dose during imaging. A software platform, DART, was created using a combination of the Matlab and C++ languages. The platform allows for the registration of a reference Cone Beam Digital Tomosynthesis (CBDT) image against a daily acquired set to determine how to shift the patient prior to treatment. Finally, the software was extended to investigate if the digital tomosynthesis dataset could be used in an adaptive radiotherapy regimen through the use of the Pinnacle treatment planning software to recalculate dose delivered. The feasibility study showed that the megavoltage CBDT visually agreed with corresponding megavoltage computed tomography images. The comparative study showed that the best compromise between imaging quality and imaging dose is obtained when 11 projection images, acquired over an imaging angle of 40°, are used with the filtered back-projection algorithm. DART was successfully used to register reference and daily image sets to within 1 mm in-plane and 2.5 mm out of plane. The DART platform was also effectively used to generate updated files that the Pinnacle treatment planning system used to calculate updated dose in a rigidly shifted patient. These doses were then used to calculate a cumulative dose distribution that could be used by a physician as reference to decide when the treatment plan should be updated. In conclusion, this study showed that a software solution is possible to extend existing electronic portal imaging devices to function as cone-beam digital tomosynthesis devices and achieve daily requirement for image guided intensity modulated radiotherapy treatments. The DART platform also has the potential to be used as a part of adaptive radiotherapy solution.
A gEUD-based inverse planning technique for HDR prostate brachytherapy: Feasibility study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giantsoudi, D.; Department of Radiation Oncology, Francis H. Burr Proton Therapy Center, Boston, Massachusetts 02114; Baltas, D.
2013-04-15
Purpose: The purpose of this work was to study the feasibility of a new inverse planning technique based on the generalized equivalent uniform dose for image-guided high dose rate (HDR) prostate cancer brachytherapy in comparison to conventional dose-volume based optimization. Methods: The quality of 12 clinical HDR brachytherapy implants for prostate utilizing HIPO (Hybrid Inverse Planning Optimization) is compared with alternative plans, which were produced through inverse planning using the generalized equivalent uniform dose (gEUD). All the common dose-volume indices for the prostate and the organs at risk were considered together with radiobiological measures. The clinical effectiveness of the differentmore » dose distributions was investigated by comparing dose volume histogram and gEUD evaluators. Results: Our results demonstrate the feasibility of gEUD-based inverse planning in HDR brachytherapy implants for prostate. A statistically significant decrease in D{sub 10} or/and final gEUD values for the organs at risk (urethra, bladder, and rectum) was found while improving dose homogeneity or dose conformity of the target volume. Conclusions: Following the promising results of gEUD-based optimization in intensity modulated radiation therapy treatment optimization, as reported in the literature, the implementation of a similar model in HDR brachytherapy treatment plan optimization is suggested by this study. The potential of improved sparing of organs at risk was shown for various gEUD-based optimization parameter protocols, which indicates the ability of this method to adapt to the user's preferences.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pogson, EM; Liverpool and Macarthur Cancer Therapy Centres, Liverpool, NSW; Ingham Institute for Applied Medical Research, Sydney, NSW
Purpose: To identify the robustness of different treatment techniques in respect to simulated linac errors on the dose distribution to the target volume and organs at risk for step and shoot IMRT (ssIMRT), VMAT and Autoplan generated VMAT nasopharynx plans. Methods: A nasopharynx patient dataset was retrospectively replanned with three different techniques: 7 beam ssIMRT, one arc manual generated VMAT and one arc automatically generated VMAT. Treatment simulated uncertainties: gantry, collimator, MLC field size and MLC shifts, were introduced into these plans at increments of 5,2,1,−1,−2 and −5 (degrees or mm) and recalculated in Pinnacle. The mean and maximum dosesmore » were calculated for the high dose PTV, parotids, brainstem, and spinal cord and then compared to the original baseline plan. Results: Simulated gantry angle errors have <1% effect on the PTV, ssIMRT is most sensitive. The small collimator errors (±1 and ±2 degrees) impacted the mean PTV dose by <2% for all techniques, however for the ±5 degree errors mean target varied by up to 7% for the Autoplan VMAT and 10% for the max dose to the spinal cord and brain stem, seen in all techniques. The simulated MLC shifts introduced the largest errors for the Autoplan VMAT, with the larger MLC modulation presumably being the cause. The most critical error observed, was the MLC field size error, where even small errors of 1 mm, caused significant changes to both the PTV and the OAR. The ssIMRT is the least sensitive and the Autoplan the most sensitive, with target errors of up to 20% over and under dosages observed. Conclusion: For a nasopharynx patient the plan robustness observed is highest for the ssIMRT plan and lowest for the Autoplan generated VMAT plan. This could be caused by the more complex MLC modulation seen for the VMAT plans. This project is supported by a grant from NSW Cancer Council.« less
Soukup, A; Meier, V; Pot, S; Voelter, K; Rohrer Bley, C
2018-05-14
In order to overcome the common local treatment failure of canine sinonasal tumours, integrated boost techniques were tried in the cobalt/orthovoltage era, but dismissed because of unacceptable early (acute) toxicity. Intriguingly, a recent calculation study of a simultaneously integrated boost (SIB) technique for sinonasal irradiation using intensity-modulated radiation therapy (IMRT) predicted theoretical feasibility. In this prospective pilot study we applied a commonly used protocol of 10 × 4.2 Gy to the planning target volume (PTV) with a 20%-SIB dose to the gross tumour volume (GTV). Our hypothesis expected this dose escalation to be clinically tolerable if applied with image-guided IMRT. We included 9 dogs diagnosed with sinonasal tumours without local/distant metastases. For treatment planning, organs at risk were contoured according to strict anatomical guidelines. Planning volume extensions (GTV/CTV/PTV) were standardized to minimize interplanner variability. Treatments were applied with rigid patient positioning and verified daily with image guidance. After radiation therapy, we set focus on early ophthalmologic complications as well as mucosal and cutaneous toxicity. Early toxicity was evaluated at week 1, 2, 3, 8 and 12 after radiotherapy. Only mild ophthalmologic complications were found. Three patients (33%) had self-limiting moderate to severe early toxicity (grade 3 mucositis) which was managed medically. No patient developed ulcerations/haemorrhage/necrosis of skin/mucosa. The SIB protocol applied with image-guided IMRT to treat canine sinonasal tumours led to clinically acceptable side effects. The suspected increased tumour control probability and the risk of late toxicity with the used dose escalation of 20% has to be further investigated. © 2018 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potter, N; Lebron, S; Yan, G
Purpose: Various dosimetric benefits such as increased dose rate, and reduced leakage and out of field dose has led to the growth of FFF technology in the clinic. In this study, we concentrate on investigating the feasibility of using flattening-filter-free (FFF) beams to deliver conventional flat beams (CFB), since completely getting rid of the flattening-filter module from the gantry head can not only simplify the gantry design but also decrease the workload on machine maintain and quality assurance. Methods: The sliding window based IMRT technique was utilized to generate the CFB from the FFF beam for various beam configurations onmore » the Elekta Versa HD. The flat beam reproducibility and MU efficiency were compared for each beam configuration among FFF planning, delivery and CFB planning. Results: Compared to the CFB plan, the 3%3mm passing rates of the FFF beams from both measurement and plan are 100% and 95%(or better) for 15×15 cm{sup 2} or smaller field size and for any field size greater than 15×15 cm{sup 2}at 10 cm depth, respectively. The largest discrepancy is about 5% and typically appears at the field shoulder area. The MU increase average was 80% for FFF compared to CFB, however has a minimal impact on treatment delivery time. Conclusion: The ability to deliver conventional flat treatments is not absent when operating in FFF mode. With proper TPS manipulation and beam modulation, FFF mode can achieve reasonable flat profiles and comparable dose coverage as CFB does for various conventional treatment techniques, such as four field box, or long spine treatment techniques. The ability to deliver most clinical treatments from the same treatment unit, will allow for less quality assurance as well as maintenance, and completely eliminate the need for the flattening filter on modern linacs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ware, S; Clouser, E
2014-06-01
Purpose: To determine the out of field response of Microstar ii OSLDs as a function of field modulation and distance in VMAT plan delivery. This work has potential application in fetal dose monitoring or measurements on cardiac pacemakers Methods: VMAT plans were created in Eclipse and optimized to varying degrees of modulation. Three plans were chosen to represent low, medium and high degrees of modulation (modulation factors as defined by MU/cGy). Plans were delivered to slabs of solid water with dimensions 60cm length, 30cm width, and 10cm height. For each modulation factor, 2 OSLDs were placed at 1cm depth withmore » out of field distances of 1, 2, 3, 5, 8 and 10cm and the plan delivered isocentrically to a depth of 5cm. This technique was repeated for a Farmer Chamber by incrementing the table by the appropriate distance. The charge readings for the Farmer Chamber were converted to dose and the ratios taken as functions of modulation factors and distances out of field Results: Examination of the results as a function of out of field distance shows a trend of increasing OSLD/Farmer Chamber ratios for all modulation factors. The slopes appear to be roughly equivalent for all modulation factors investigated. Results as a function of modulation showed a downward trend for all out of field distances, with the greatest differences seen at 5cm and 8cm Conclusion: This study demonstrates that the response of OSLD dosimeters change as a function of out of field distance and modulation. The differences seen are within the stated accuracy of the system for the out of field distances and modulations investigated. Additional investigation is warranted to see if the OSLD response changes appreciably with longer out of field distances or wider ranges of modulation.« less
NASA Astrophysics Data System (ADS)
La Tessa, C.; Berger, T.; Kaderka, R.; Schardt, D.; Burmeister, S.; Labrenz, J.; Reitz, G.; Durante, M.
2014-04-01
Short- and long-term side effects following the treatment of cancer with radiation are strongly related to the amount of dose deposited to the healthy tissue surrounding the tumor. The characterization of the radiation field outside the planned target volume is the first step for estimating health risks, such as developing a secondary radioinduced malignancy. In ion and high-energy photon treatments, the major contribution to the dose deposited in the far-out-of-field region is given by neutrons, which are produced by nuclear interaction of the primary radiation with the beam line components and the patient’s body. Measurements of the secondary neutron field and its contribution to the absorbed dose and equivalent dose for different radiotherapy technologies are presented in this work. An anthropomorphic RANDO phantom was irradiated with a treatment plan designed for a simulated 5 × 2 × 5 cm3 cancer volume located in the center of the head. The experiment was repeated with 25 MV IMRT (intensity modulated radiation therapy) photons and charged particles (protons and carbon ions) delivered with both passive modulation and spot scanning in different facilities. The measurements were performed with active (silicon-scintillation) and passive (bubble, thermoluminescence 6LiF:Mg, Ti (TLD-600) and 7LiF:Mg, Ti (TLD-700)) detectors to investigate the production of neutral particles both inside and outside the phantom. These techniques provided the whole energy spectrum (E ⩽ 20 MeV) and corresponding absorbed dose and dose equivalent of photo neutrons produced by x-rays, the fluence of thermal neutrons for all irradiation types and the absorbed dose deposited by neutrons with 0.8 < E < 10 MeV during the treatment with scanned carbon ions. The highest yield of thermal neutrons is observed for photons and, among ions, for passively modulated beams. For the treatment with high-energy x-rays, the contribution of secondary neutrons to the dose equivalent is of the same order of magnitude as the primary radiation. In carbon therapy delivered with raster scanning, the absorbed dose deposited by neutrons in the energy region between 0.8 and 10 MeV is almost two orders of magnitude lower than charged fragments. We conclude that, within the energy range explored in this experimental work, the out-of-field dose from secondary neutrons is lowest for ions delivered by scanning, followed by passive modulation, and finally by high-energy IMRT photons.
Tessa, C La; Berger, T; Kaderka, R; Schardt, D; Burmeister, S; Labrenz, J; Reitz, G; Durante, M
2014-04-21
Short- and long-term side effects following the treatment of cancer with radiation are strongly related to the amount of dose deposited to the healthy tissue surrounding the tumor. The characterization of the radiation field outside the planned target volume is the first step for estimating health risks, such as developing a secondary radioinduced malignancy. In ion and high-energy photon treatments, the major contribution to the dose deposited in the far-out-of-field region is given by neutrons, which are produced by nuclear interaction of the primary radiation with the beam line components and the patient's body. Measurements of the secondary neutron field and its contribution to the absorbed dose and equivalent dose for different radiotherapy technologies are presented in this work. An anthropomorphic RANDO phantom was irradiated with a treatment plan designed for a simulated 5 × 2 × 5 cm³ cancer volume located in the center of the head. The experiment was repeated with 25 MV IMRT (intensity modulated radiation therapy) photons and charged particles (protons and carbon ions) delivered with both passive modulation and spot scanning in different facilities. The measurements were performed with active (silicon-scintillation) and passive (bubble, thermoluminescence ⁶LiF:Mg, Ti (TLD-600) and ⁷LiF:Mg, Ti (TLD-700)) detectors to investigate the production of neutral particles both inside and outside the phantom. These techniques provided the whole energy spectrum (E ≤ 20 MeV) and corresponding absorbed dose and dose equivalent of photo neutrons produced by x-rays, the fluence of thermal neutrons for all irradiation types and the absorbed dose deposited by neutrons with 0.8 < E < 10 MeV during the treatment with scanned carbon ions. The highest yield of thermal neutrons is observed for photons and, among ions, for passively modulated beams. For the treatment with high-energy x-rays, the contribution of secondary neutrons to the dose equivalent is of the same order of magnitude as the primary radiation. In carbon therapy delivered with raster scanning, the absorbed dose deposited by neutrons in the energy region between 0.8 and 10 MeV is almost two orders of magnitude lower than charged fragments. We conclude that, within the energy range explored in this experimental work, the out-of-field dose from secondary neutrons is lowest for ions delivered by scanning, followed by passive modulation, and finally by high-energy IMRT photons.
Left-sided breast cancer irradiation using rotational and fixed-field radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, X. Sharon, E-mail: xqi@mednet.ucla.edu; Liu, Tian X.; Liu, Arthur K.
2014-10-01
The 3-dimensional conformal radiotherapy (3DCRT) technique is the standard for breast cancer radiotherapy. During treatment planning, not only the coverage of the planning target volume (PTV) but also the minimization of the dose to critical structures, such as the lung, heart, and contralateral breast tissue, need to be considered. Because of the complexity and variations of patient anatomy, more advanced radiotherapy techniques are sometimes desired to better meet the planning goals. In this study, we evaluated external-beam radiation treatment techniques for left breast cancer using various delivery platforms: fixed-field including TomoDirect (TD), static intensity-modulated radiotherapy (sIMRT), and rotational radiotherapy includingmore » Elekta volumetric-modulated arc therapy (VMAT) and tomotherapy helical (TH). A total of 10 patients with left-sided breast cancer who did or did not have positive lymph nodes and were previously treated with 3DCRT/sIMRT to the entire breast were selected, their treatment was planned with Monaco VMAT, TD, and TH. Dosimetric parameters including PTV coverage, organ-at-risk (OAR) sparing, dose-volume histograms, and target minimum/maximum/mean doses were evaluated. It is found that for plans providing comparable PTV coverage, the Elekta VMAT plans were generally more inhomogeneous than the TH and TD plans. For the cases with regional node involvement, the average mean doses administered to the heart were 9.2 (± 5.2) and 8.8 (± 3.0) Gy in the VMAT and TH plans compared with 11.9 (± 6.4) and 11.8 (± 9.2) Gy for the 3DCRT and TD plans, respectively, with slightly higher doses given to the contralateral lung or breast or both. On average, the total monitor units for VMAT plans are 11.6% of those TH plans. Our studies have shown that VMAT and TH plans offer certain dosimetric advantages over fixed-field IMRT plans for advanced breast cancer requiring regional nodal treatment. However, for early-stage breast cancer fixed-field radiotherapy is potentially more beneficial in terms of OAR sparing.« less
Left-sided breast cancer irradiation using rotational and fixed-field radiotherapy.
Qi, X Sharon; Liu, Tian X; Liu, Arthur K; Newman, Francis; Rabinovitch, Rachel; Kavanagh, Brian; Hu, Y Angie
2014-01-01
The 3-dimensional conformal radiotherapy (3DCRT) technique is the standard for breast cancer radiotherapy. During treatment planning, not only the coverage of the planning target volume (PTV) but also the minimization of the dose to critical structures, such as the lung, heart, and contralateral breast tissue, need to be considered. Because of the complexity and variations of patient anatomy, more advanced radiotherapy techniques are sometimes desired to better meet the planning goals. In this study, we evaluated external-beam radiation treatment techniques for left breast cancer using various delivery platforms: fixed-field including TomoDirect (TD), static intensity-modulated radiotherapy (sIMRT), and rotational radiotherapy including Elekta volumetric-modulated arc therapy (VMAT) and tomotherapy helical (TH). A total of 10 patients with left-sided breast cancer who did or did not have positive lymph nodes and were previously treated with 3DCRT/sIMRT to the entire breast were selected, their treatment was planned with Monaco VMAT, TD, and TH. Dosimetric parameters including PTV coverage, organ-at-risk (OAR) sparing, dose-volume histograms, and target minimum/maximum/mean doses were evaluated. It is found that for plans providing comparable PTV coverage, the Elekta VMAT plans were generally more inhomogeneous than the TH and TD plans. For the cases with regional node involvement, the average mean doses administered to the heart were 9.2 (± 5.2) and 8.8 (± 3.0)Gy in the VMAT and TH plans compared with 11.9 (± 6.4) and 11.8 (± 9.2)Gy for the 3DCRT and TD plans, respectively, with slightly higher doses given to the contralateral lung or breast or both. On average, the total monitor units for VMAT plans are 11.6% of those TH plans. Our studies have shown that VMAT and TH plans offer certain dosimetric advantages over fixed-field IMRT plans for advanced breast cancer requiring regional nodal treatment. However, for early-stage breast cancer fixed-field radiotherapy is potentially more beneficial in terms of OAR sparing. Copyright © 2014 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Time-resolved experiments in the frequency domain using synchrotron radiation (invited)
NASA Astrophysics Data System (ADS)
De Stasio, Gelsomina; Giusti, A. M.; Parasassi, T.; Ravagnan, G.; Sapora, O.
1992-01-01
PLASTIQUE is the only synchrotron radiation beam line in the world that performs time-resolved fluorescence experiments in frequency domain. These experiments are extremely valuable sources of information on the structure and the dynamics of molecules. This technique measures fluorescence lifetimes with picosecond resolution in the near UV spectral range. Such accurate measurements are rendered possible by taking phase and modulation data, and by the advantages of the cross-correlation technique. A successful experiment demonstrated the radiation damage induced by low doses of radiation on rabbit blood cell membranes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sonier, Marcus, E-mail: Marcus.Sonier@bccancer.bc.ca; Chu, William; Department of Radiation Oncology, University of Toronto, Toronto, ON
To develop a volumetric modulated arc therapy (VMAT) treatment planning solution in the treatment of primary renal cell carcinoma and oligometastatic adrenal lesions with stereotactic body radiation therapy. Single-arc VMAT plans (n = 5) were compared with clinically delivered step-and-shoot intensity-modulated radiotherapy (IMRT) with planning target volume coverage normalized between techniques. Target volume conformity, organ-at-risk (OAR) dose, treatment time, and monitor units were compared. A VMAT planning solution, created from a combination of arc settings and optimization constraints, auto-generated treatment plans in a single optimization. The treatment planning solution was evaluated on 15 consecutive patients receiving kidney and adrenal stereotacticmore » body radiation therapy. Treatment time was reduced from 13.0 ± 2.6 to 4.0 ± 0.9 minutes for IMRT and VMAT, respectively. The VMAT planning solution generated treatment plans with increased target homogeneity, improved 95% conformity index, and a reduced maximum point dose to nearby OARs but with increased intermediate dose to distant OARs. The conformity of the 95% isodose improved from 1.32 ± 0.39 to 1.12 ± 0.05 for IMRT and VMAT treatment plans, respectively. Evaluation of the planning solution showed clinically acceptable dose distributions for 13 of 15 cases with tight conformity of the prescription isodose to the planning target volume of 1.07 ± 0.04, delivering minimal dose to OARs. The introduction of a stereotactic body radiation therapy VMAT treatment planning solution improves the efficiency of planning and delivery time, producing treatment plans of comparable or superior quality to IMRT in the case of primary renal cell carcinoma and oligometastatic adrenal lesions.« less
SU-G-BRC-14: Multi-Lesion, Multi-Rx, Brain Radiosurgery with Novel Single Isocenter Technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honig, N; Alani, S; Schlocker, A
Purpose: There is a strong trend to treat multiple brain metastases with radiosurgery rather than whole brain irradiation. This feasibility study investigates a novel planning technique for radio-surgical treatment of multiple brain lesions with differing dose prescriptions, a single isocenter, and dynamic conformal arcs. The novel technique will be compared to the well-established single-isocenter volumetric modulated arc therapy (VMAT) technique commonly used for treating brain lesions. Methods: Six patients with metastatic brain lesions were selected for a prospective treatment planning study to evaluate Interdigitating MLC Dynamic Conformal Arc (IMDCA) technique. Arcs were planned for simultaneous irradiation to maximize beam deliverymore » efficiency. To accommodate varying PTV dose prescriptions, selected arcs were re-irradiated in reverse. Beam weights were adjusted until all prescription constraints were met. The number of lesions ranged between 2 to 4 (mode = 3). For comparison, SRS VMAT plans were generated utilizing an established single-isocenter, 3 arc planning template. All plans were compared by means of Paddick conformity index (PCI), RTOG Conformity Index (RCI), gradient index (GI), and the normal brain volume receiving 10% (V10) of the highest prescription dose. The monitor units and delivery time were tabulated for each plan. Results: IMDCA achieved conformal plans (PCI = 0.72±0.03, RCI = 1.33±0.03) with steep dose fall-off (GI = 3.79±0.03) on average for all of the plans evaluated. The VMAT plans had slightly better conformity (PCI = 0.85 ± 0.03, RCI = 1.13 ± 0.03) than IMDCA, but overall worse GI (4.29 ± 0.06). IMDCA plans had lower V10% values, required 50% fewer MUs, and had 34% shorter beam delivery time on average compared to VMAT plans. Conclusion: IMDCA plans with varying dose prescriptions for multiple lesions, had comparable dosimetric coverage as VMAT plans, but were obtained with significantly lower integral dose, fewer monitor units, and quicker delivery time.« less
Zhang, Rui; Heins, David; Sanders, Mary; Guo, Beibei; Hogstrom, Kenneth
2018-05-10
The purpose of this study was to assess the potential benefits and limitations of a mixed beam therapy, which combined bolus electron conformal therapy (BECT) with intensity modulated photon radiotherapy (IMRT) and volumetric modulated photon arc therapy (VMAT), for left-sided post-mastectomy breast cancer patients. Mixed beam treatment plans were produced for nine post-mastectomy radiotherapy (PMRT) patients previously treated at our clinic with VMAT alone. The mixed beam plans consisted of 40 Gy to the chest wall area using BECT, 40 Gy to the supraclavicular area using parallel opposed IMRT, and 10 Gy to the total planning target volume (PTV) by optimizing VMAT on top of the BECT+IMRT dose distribution. The treatment plans were created in a commercial treatment planning system (TPS), and all plans were evaluated based on PTV coverage, dose homogeneity index (DHI), conformity index (CI), dose to organs at risk (OARs), normal tissue complication probability (NTCP), and secondary cancer complication probability (SCCP). The standard VMAT alone planning technique was used as the reference for comparison. Both techniques produced clinically acceptable PMRT plans but with a few significant differences: VMAT showed significantly better CI (0.70 vs. 0.53, p < 0.001) and DHI (0.12 vs. 0.20, p < 0.001) over mixed beam therapy. For normal tissues, mixed beam therapy showed better OAR sparing and significantly reduced NTCP for cardiac mortality (0.23% vs. 0.80%, p = 0.01) and SCCP for contralateral breast (1.7% vs. 3.1% based on linear model, and 1.2% vs. 1.9% based on linear-exponential model, p < 0.001 in both cases), but showed significantly higher mean (50.8 Gy vs. 49.3 Gy, p < 0.001) and maximum skin doses (59.7 Gy vs. 53.3 Gy, p < 0.001) compared with VMAT. Patients with more tissue (minimum distance between the distal PTV surface and lung approximately > 0.5 cm and volume of tissue between the distal PTV surface and heart or lung approximately > 250 cm 3 ) between distal PTV surface and lung may benefit the most from mixed beam therapy. This work has demonstrated that mixed beam therapy (BECT+IMRT : VMAT = 4 : 1) produces clinically acceptable plans having reduced OAR doses and risks of side effects compared with VMAT. Even though VMAT alone produces more homogenous and conformal dose distributions, mixed beam therapy remains as a viable option for treating post-mastectomy patients, possibly leading to reduced normal tissue complications. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
The impact of different dose response parameters on biologically optimized IMRT in breast cancer
NASA Astrophysics Data System (ADS)
Costa Ferreira, Brigida; Mavroidis, Panayiotis; Adamus-Górka, Magdalena; Svensson, Roger; Lind, Bengt K.
2008-05-01
The full potential of biologically optimized radiation therapy can only be maximized with the prediction of individual patient radiosensitivity prior to treatment. Unfortunately, the available biological parameters, derived from clinical trials, reflect an average radiosensitivity of the examined populations. In the present study, a breast cancer patient of stage I II with positive lymph nodes was chosen in order to analyse the effect of the variation of individual radiosensitivity on the optimal dose distribution. Thus, deviations from the average biological parameters, describing tumour, heart and lung response, were introduced covering the range of patient radiosensitivity reported in the literature. Two treatment configurations of three and seven biologically optimized intensity-modulated beams were employed. The different dose distributions were analysed using biological and physical parameters such as the complication-free tumour control probability (P+), the biologically effective uniform dose (\\bar{\\bar{D}} ), dose volume histograms, mean doses, standard deviations, maximum and minimum doses. In the three-beam plan, the difference in P+ between the optimal dose distribution (when the individual patient radiosensitivity is known) and the reference dose distribution, which is optimal for the average patient biology, ranges up to 13.9% when varying the radiosensitivity of the target volume, up to 0.9% when varying the radiosensitivity of the heart and up to 1.3% when varying the radiosensitivity of the lung. Similarly, in the seven-beam plan, the differences in P+ are up to 13.1% for the target, up to 1.6% for the heart and up to 0.9% for the left lung. When the radiosensitivity of the most important tissues in breast cancer radiation therapy was simultaneously changed, the maximum gain in outcome was as high as 7.7%. The impact of the dose response uncertainties on the treatment outcome was clinically insignificant for the majority of the simulated patients. However, the jump from generalized to individualized radiation therapy may significantly increase the therapeutic window for patients with extreme radio sensitivity or radioresistance, provided that these are identified. Even for radiosensitive patients a simple treatment technique is sufficient to maximize the outcome, since no significant benefits were obtained with a more complex technique using seven intensity-modulated beams portals.
Lee, Choonsik; Kim, Kwang Pyo; Bolch, Wesley E; Moroz, Brian E; Folio, Les
2015-12-01
We developed computational methods and tools to assess organ doses for pediatric and adult patients undergoing computed tomography (CT) examinations. We used the International Commission on Radiological Protection (ICRP) reference pediatric and adult phantoms combined with the Monte Carlo simulation of a reference CT scanner to establish comprehensive organ dose coefficients (DC), organ absorbed dose per unit volumetric CT Dose Index (CTDIvol) (mGy/mGy). We also developed methods to estimate organ doses with tube current modulation techniques and size specific dose estimates. A graphical user interface was designed to obtain user input of patient- and scan-specific parameters, and to calculate and display organ doses. A batch calculation routine was also integrated into the program to automatically calculate organ doses for a large number of patients. We entitled the computer program, National Cancer Institute dosimetry system for CT(NCICT). We compared our dose coefficients with those from CT-Expo, and evaluated the performance of our program using CT patient data. Our pediatric DCs show good agreements of organ dose estimation with those from CT-Expo except for thyroid. Our results support that the adult phantom in CT-Expo seems to represent a pediatric individual between 10 and 15 years rather than an adult. The comparison of CTDIvol values between NCICT and dose pages from 10 selected CT scans shows good agreements less than 12% except for two cases (up to 20%). The organ dose comparison between mean and modulated mAs shows that mean mAs-based calculation significantly overestimates dose (up to 2.4-fold) to the organs in close proximity to lungs in chest and chest-abdomen-pelvis scans. Our program provides more realistic anatomy based on the ICRP reference phantoms, higher age resolution, the most up-to-date bone marrow dosimetry, and several convenient features compared to previous tools. The NCICT will be available for research purpose in the near future.
NASA Astrophysics Data System (ADS)
Murray, Louise J.; Thompson, Christopher M.; Lilley, John; Cosgrove, Vivian; Franks, Kevin; Sebag-Montefiore, David; Henry, Ann M.
2015-02-01
Risks of radiation-induced second primary cancer following prostate radiotherapy using 3D-conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT), flattening filter free (FFF) and stereotactic ablative radiotherapy (SABR) were evaluated. Prostate plans were created using 10 MV 3D-CRT (78 Gy in 39 fractions) and 6 MV 5-field IMRT (78 Gy in 39 fractions), VMAT (78 Gy in 39 fractions, with standard flattened and energy-matched FFF beams) and SABR (42.7 Gy in 7 fractions with standard flattened and energy-matched FFF beams). Dose-volume histograms from pelvic planning CT scans of three prostate patients, each planned using all 6 techniques, were used to calculate organ equivalent doses (OED) and excess absolute risks (EAR) of second rectal and bladder cancers, and pelvic bone and soft tissue sarcomas, using mechanistic, bell-shaped and plateau models. For organs distant to the treatment field, chamber measurements recorded in an anthropomorphic phantom were used to calculate OEDs and EARs using a linear model. Ratios of OED give relative radiation-induced second cancer risks. SABR resulted in lower second cancer risks at all sites relative to 3D-CRT. FFF resulted in lower second cancer risks in out-of-field tissues relative to equivalent flattened techniques, with increasing impact in organs at greater distances from the field. For example, FFF reduced second cancer risk by up to 20% in the stomach and up to 56% in the brain, relative to the equivalent flattened technique. Relative to 10 MV 3D-CRT, 6 MV IMRT or VMAT with flattening filter increased second cancer risks in several out-of-field organs, by up to 26% and 55%, respectively. For all techniques, EARs were consistently low. The observed large relative differences between techniques, in absolute terms, were very low, highlighting the importance of considering absolute risks alongside the corresponding relative risks, since when absolute risks are very low, large relative risks become less meaningful. A calculated relative radiation-induced second cancer risk benefit from SABR and FFF techniques was theoretically predicted, although absolute radiation-induced second cancer risks were low for all techniques, and absolute differences between techniques were small.
Redmond, Kristin J.; Achanta, Pragathi; Grossman, Stuart A.; Armour, Michael; Reyes, Juvenal; Kleinberg, Lawrence; Tryggestad, Erik; Quinones-Hinojosa, Alfredo
2015-01-01
Radiation therapy (RT) for brain tumors is associated with neurocognitive toxicity which may be a result of damage to neural progenitor cells (NPCs). We present a novel technique to limit the radiation dose to NPC without compromising tumor coverage. A study was performed in mice to examine the rationale and another was conducted in humans to determine its feasibility. C57BL/6 mice received localized radiation using a dedicated animal irradiation system with on-board CT imaging with either: (1) Radiation which spared NPC containing regions; (2) Radiation which did not spare these niches; or (3) Sham irradiation. Mice were sacrificed 24 h later and the brains were processed for immunohistochemical Ki-67 staining. For the human component of the study, 33 patients with primary brain tumors were evaluated. Two intensity modulated radiotherapy (IMRT) plans were retrospectively compared: a standard clinical plan and a plan which spares NPC regions while maintaining the same dose coverage of the tumor. The change in radiation dose to the contralateral NPC-containing regions was recorded. In the mouse model, non-NPC-sparing radiation treatment resulted in a significant decrease in the number of Ki67+ cells in dentate gyrus (DG) (P = 0.008) and subventricular zone (SVZ) (P = 0.005) compared to NPC-sparing radiation treatment. In NPC-sparing clinical plans, NPC regions received significantly lower radiation dose with no clinically relevant changes in tumor coverage. This novel radiation technique should significantly reduce radiation doses to NPC containing regions of the brain which may reduce neurocognitive deficits following RT for brain tumors. PMID:21327710
A novel technique for VMAT QA with EPID in cine mode on a Varian TrueBeam linac
NASA Astrophysics Data System (ADS)
Liu, Bo; Adamson, Justus; Rodrigues, Anna; Zhou, Fugen; Yin, Fang-fang; Wu, Qiuwen
2013-10-01
Volumetric modulated arc therapy (VMAT) is a relatively new treatment modality for dynamic photon radiation therapy. Pre-treatment quality assurance (QA) is necessary and many efforts have been made to apply electronic portal imaging device (EPID)-based IMRT QA methods to VMAT. It is important to verify the gantry rotation speed during delivery as this is a new variable that is also modulated in VMAT. In this paper, we present a new technique to perform VMAT QA using an EPID. The method utilizes EPID cine mode and was tested on Varian TrueBeam in research mode. The cine images were acquired during delivery and converted to dose matrices after profile correction and dose calibration. A sub-arc corresponding to each cine image was extracted from the original plan and its portal image prediction was calculated. Several analyses were performed including 3D γ analysis (2D images + gantry angle axis), 2D γ analysis, and other statistical analyses. The method was applied to 21 VMAT photon plans of 3 photon energies. The accuracy of the cine image information was investigated. Furthermore, this method's sensitivity to machine delivery errors was studied. The pass rate (92.8 ± 1.4%) for 3D γ analysis was comparable to those from Delta4 system (99.9 ± 0.1%) under similar criteria (3%, 3 mm, 5% threshold and 2° angle to agreement) at 6 MV. The recorded gantry angle and start/stop MUs were found to have sufficient accuracy for clinical QA. Machine delivery errors can be detected through combined analyses of 3D γ, gantry angle, and percentage dose difference. In summary, we have developed and validated a QA technique that can simultaneously verify the gantry angle and delivered MLC fluence for VMAT treatment.This technique is efficient and its accuracy is comparable to other QA methods.
Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham
2013-01-01
Introduction Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147–53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. Methods A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRT plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. Results The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose–volume histogram (DVH) doses were consistently lower. Conclusion The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques. PMID:26229623
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham
Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147–53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRTmore » plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose–volume histogram (DVH) doses were consistently lower. The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques.« less
NASA Astrophysics Data System (ADS)
McCurdy, B. M. C.
2013-06-01
An overview is provided of the use of amorphous silicon electronic portal imaging devices (EPIDs) for dosimetric purposes in radiation therapy, focusing on 3D patient dose estimation. EPIDs were originally developed to provide on-treatment radiological imaging to assist with patient setup, but there has also been a natural interest in using them as dosimeters since they use the megavoltage therapy beam to form images. The current generation of clinically available EPID technology, amorphous-silicon (a-Si) flat panel imagers, possess many characteristics that make them much better suited to dosimetric applications than earlier EPID technologies. Features such as linearity with dose/dose rate, high spatial resolution, realtime capability, minimal optical glare, and digital operation combine with the convenience of a compact, retractable detector system directly mounted on the linear accelerator to provide a system that is well-suited to dosimetric applications. This review will discuss clinically available a-Si EPID systems, highlighting dosimetric characteristics and remaining limitations. Methods for using EPIDs in dosimetry applications will be discussed. Dosimetric applications using a-Si EPIDs to estimate three-dimensional dose in the patient during treatment will be overviewed. Clinics throughout the world are implementing increasingly complex treatments such as dynamic intensity modulated radiation therapy and volumetric modulated arc therapy, as well as specialized treatment techniques using large doses per fraction and short treatment courses (ie. hypofractionation and stereotactic radiosurgery). These factors drive the continued strong interest in using EPIDs as dosimeters for patient treatment verification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chin, E; Hoppe, R; Million, L
2015-06-15
Purpose: Integration of coordinated robotic table motion with inversely-planned arc delivery has the potential to resolve table-top delivery limitations of large-field treatments such as Total Body Irradiation (TBI), Total Lymphoid Irradiation (TLI), and Cranial-Spinal Irradiation (CSI). We formulate the foundation for Trajectory Modulated Arc Therapy (TMAT), and using Varian Developer Mode capabilities, experimentally investigate its practical implementation for such techniques. Methods: A MATLAB algorithm was developed for inverse planning optimization of the table motion, MLC positions, and gantry motion under extended-SSD geometry. To maximize the effective field size, delivery trajectories for TMAT TBI were formed with the table rotated atmore » 270° IEC and dropped vertically to 152.5cm SSD. Preliminary testing of algorithm parameters was done through retrospective planning analysis. Robotic delivery was programmed using custom XML scripting on the TrueBeam Developer Mode platform. Final dose was calculated using the Eclipse AAA algorithm. Initial verification of delivery accuracy was measured using OSLDs on a solid water phantom of varying thickness. Results: A comparison of DVH curves demonstrated that dynamic couch motion irradiation was sufficiently approximated by static control points spaced in intervals of less than 2cm. Optimized MLC motion decreased the average lung dose to 68.5% of the prescription dose. The programmed irradiation integrating coordinated table motion was deliverable on a TrueBeam STx linac in 6.7 min. With the couch translating under an open 10cmx20cm field angled at 10°, OSLD measurements along the midline of a solid water phantom at depths of 3, 5, and 9cm were within 3% of the TPS AAA algorithm with an average deviation of 1.2%. Conclusion: A treatment planning and delivery system for Trajectory Modulated Arc Therapy of extended volumes has been established and experimentally demonstrated for TBI. Extension to other treatment techniques such as TLI and CSI is readily achievable through the developed platform. Grant Funding by Varian Medical Systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, X; Witztum, A; Liang, X
2014-06-15
Purpose: To present a novel technique to deliver passive-scattering proton beam with fixed range and modulation using a 3D printed patient-specific bolus for proton stereotactic radiosurgery and radiotherapy. Methods: A CIRS head phantom was used to simulate a patient with a small brain lesion. A custom bolus was created in the Eclipse Treatment Planning System (TPS) to compensate for the different water equivalent depths from the patient surface to the target from multiple beam directions. To simulate arc therapy, a plan was created on the initial CT using three passive-scattering proton beams with a fixed range and modulations irradiating frommore » different angles. The DICOM-RT structure file of the bolus was exported from the TPS and converted to STL format for 3D printing. The phantom was rescanned with the printed custom bolus and head cup to verify the dose distribution comparing to the initial plan. EBT3 films were placed in the sagital plane of the target to verify the delivered dose distribution. The relative stopping power of the printing material(ABSplus-P430) was measured using the Zebra multi-plate ion chamber. Results: The relative stopping power of the 3D printing material, ABSplus-P430 was 1.05 which is almost water equivalent. The dose difference between verification CT and Initial CT is almost negligible. Film measurement also confirmed the accuracy for this new proton delivery technique. Conclusion: Our method using 3D printed range modifiers simplify the treatment delivery of multiple passive-scattering beams in treatment of small lesion in brain. This technique makes delivery of multiple beam more efficient and can be extended to allow arc therapy with proton beams. The ability to create and construct complex patient specific bolus structures provides a new dimension in creating optimized quality treatment plans not only for proton therapy but also for electron and photon therapy.« less
NASA Astrophysics Data System (ADS)
Mani, Karthick Raj; Bhuiyan, Md. Anisuzzaman; Alam, Md. Mahbub; Ahmed, Sharif; Sumon, Mostafa Aziz; Sengupta, Ashim Kumar; Rahman, Md. Shakilur; Azharul Islam, Md. S. M.
2018-03-01
Aim: To compare the dosimetric advantage of stereotactic body radiotherapy (SBRT) for localized lung tumor between deep inspiration breath hold technique and free breathing technique. Materials and methods: We retrospectively included ten previously treated lung tumor patients in this dosimetric study. All the ten patients underwent CT simulation using 4D-CT free breathing (FB) and deep inspiration breath hold (DIBH) techniques. Plans were created using three coplanar full modulated arc using 6 MV flattening filter free (FFF) bream with a dose rate of 1400 MU/min. Same dose constraints for the target and the critical structures for a particular patient were used during the plan optimization process in DIBH and FB datasets. We intend to deliver 50 Gy in 5 fractions for all the patients. For standardization, all the plans were normalized at target mean of the planning target volume (PTV). Doses to the critical structures and targets were recorded from the dose volume histogram for evaluation. Results: The mean right and left lung volumes were inflated by 1.55 and 1.60 times in DIBH scans compared to the FB scans. The mean internal target volume (ITV) increased in the FB datasets by 1.45 times compared to the DIBH data sets. The mean dose followed by standard deviation (x¯ ± σx¯) of ipsilateral lung for DIBH-SBRT and FB-SBRT plans were 7.48 ± 3.57 (Gy) and 10.23 ± 4.58 (Gy) respectively, with a mean reduction of 36.84% in DIBH-SBRT plans. Ipsilateral lung were reduced to 36.84% in DIBH plans compared to FB plans. Conclusion: Significant dose reduction in ipsilateral lung due to the lung inflation and target motion restriction in DIBH-SBRT plans were observed compare to FB-SBRT. DIBH-SBRT plans demonstrate superior dose reduction to the normal tissues and other critical structures.
NASA Astrophysics Data System (ADS)
Fu, Wanyi; Sturgeon, Gregory M.; Agasthya, Greeshma; Segars, W. Paul; Kapadia, Anuj J.; Samei, Ehsan
2017-03-01
This study aimed to estimate the organ dose reduction potential for organ-dose-based tube current modulated (ODM) thoracic CT with wide dose reduction arc. Twenty-one computational anthropomorphic phantoms (XCAT, age range: 27- 75 years, weight range: 52.0-105.8 kg) were used to create a virtual patient population with clinical anatomic variations. For each phantom, two breast tissue compositions were simulated: 50/50 and 20/80 (glandular-to-adipose ratio). A validated Monte Carlo program was used to estimate the organ dose for standard tube current modulation (TCM) (SmartmA, GE Healthcare) and ODM (GE Healthcare) for a commercial CT scanner (Revolution, GE Healthcare) with explicitly modeled tube current modulation profile, scanner geometry, bowtie filtration, and source spectrum. Organ dose was determined using a typical clinical thoracic CT protocol. Both organ dose and CTDIvol-to-organ dose conversion coefficients (h factors) were compared between TCM and ODM. ODM significantly reduced all radiosensitive organ doses (p<0.01). The breast dose was reduced by 30+/-2%. For h factors, organs in the anterior region (e.g. thyroid, stomach) exhibited substantial decreases, and the medial, distributed, and posterior region either saw an increase or no significant change. The organ-dose-based tube current modulation significantly reduced organ doses especially for radiosensitive superficial anterior organs such as the breasts.
NASA Astrophysics Data System (ADS)
Lishnevskii, A. E.; Benghin, V. V.
2018-03-01
The DB-8 detectors of the ISS radiation monitoring system (RMS) have operated almost continuously onboard the ISS service module since August 2001 till December 2014. The RMS data obtained were used for the daily monitoring of the radiation environment aboard the station. This paper considers the technique of RMS data analysis that allows one to distinguish the contributions of galactic cosmic rays and the Earth's inner radiation belt to the daily dose based on the dosimetry data obtained as a result of the station's passage in areas of the highest geomagnetic latitudes. The paper presents the results of an analysis of the dosimetry data based on this technique for 2005-2011, as well as a comparison with similar results the authors obtained previously using the technique based on an analysis of the dosimetry data obtained during station passages in the area of the South Atlantic Anomaly.
Glaser, Adam K; Zhang, Rongxiao; Gladstone, David J; Pogue, Brian W
2014-07-21
Recent studies have proposed that light emitted by the Cherenkov effect may be used for a number of radiation therapy dosimetry applications. There is a correlation between the captured light and expected dose under certain conditions, yet discrepancies have also been observed and a complete examination of the theoretical differences has not been done. In this study, a fundamental comparison between the Cherenkov emission and absorbed dose was explored for x-ray photons, electrons, and protons using both a theoretical and Monte Carlo-based analysis. Based on the findings of where dose correlates with Cherenkov emission, it was concluded that for x-ray photons the light emission would be optimally suited for narrow beam stereotactic radiation therapy and surgery validation studies, for verification of dynamic intensity-modulated and volumetric modulated arc therapy treatment plans in water tanks, near monoenergetic sources (e.g., Co-60 and brachy therapy sources) and also for entrance and exit surface imaging dosimetry of both narrow and broad beams. For electron use, Cherenkov emission was found to be only suitable for surface dosimetry applications. Finally, for proton dosimetry, there exists a fundamental lack of Cherenkov emission at the Bragg peak, making the technique of little use, although post-irradiation detection of light emission from radioisotopes could prove to be useful.
Elith, Craig A; Dempsey, Shane E; Warren-Forward, Helen M
2014-01-01
Introduction This study compared four different volumetric modulated arc therapy (VMAT) beam arrangements for the treatment of early-stage prostate cancer examining plan quality and the impact on a radiotherapy department's resources. Methods Twenty prostate cases were retrospectively planned using four VMAT beam arrangements (1) a partial arc (PA), (2) one arc (1A), (3) one arc plus a partial arc (1A + PA) and (4) two arcs (2A). The quality of the dose distributions generated were compared by examining the overall plan quality, the homogeneity and conformity to the planning target volume (PTV), the number of monitor units and the dose delivered to the organs at risk. Departmental resources were considered by recording the planning time and beam delivery time. Results Each technique produced a plan of similar quality that was considered adequate for treatment; though some differences were noted. The 1A, 1A + PA and 2A plans demonstrated a better conformity to the PTV which correlated to improved sparing of the rectum in the 60–70 Gy range for the 1A + PA and 2A techniques. The time needed to generate the plans was different for each technique ranging from 13.1 min for 1A + PA to 17.8 min for 1A. The PA beam delivery time was fastest with a mean time of 0.9 min. Beam-on times then increased with an increase in the number of arcs up to an average of 2.2 min for the 2A technique. Conclusion Which VMAT technique is best suited for clinical implementation for the treatment of prostate cancer may be dictated by the individual patient and the availability of departmental resources. PMID:26229643
Characterization and control of EUV scanner dose uniformity and stability
NASA Astrophysics Data System (ADS)
Robinson, Chris; Corliss, Dan; Meli, Luciana; Johnson, Rick
2018-03-01
The EUV source is an impressive feat of engineering that provides 13.5 nm radiation by vaporizing tin droplets with a high power CO2 laser and focusing the photons produced in the resultant plasma into the scanner illumination system. Great strides have been made in addressing the many potential stability challenges, but there are still residual spatial and temporal dose non-uniformity signatures. Since even small dose errors can impact the yieldable process window for the advanced lithography products that are exposed on EUV scanners it is crucial to monitor and control the dose variability. Using on-board metrology, the EUV scanner outputs valuable metrics that provide real time insight into the dose performance. We have supplemented scanner data collection with a wafer based methodology that provides high throughput, high sensitivity, quantitative characterization of the EUV scanner dose delivery. The technique uses open frame EUV exposures, so it is exclusive of lithographic pattern imaging, exclusive of lithographic mask pattern and not limited by placement of metrology features. Processed wafers are inspected rapidly, providing 20,000 pixels of detail per exposure field in approximately one minute. Exposing the wafer on the scanner with a bit less than the resist E0 (open frame clearing dose) results in good sensitivity to small variations in the EUV dose delivered. The nominal exposure dose can be modulated by field to calibrate the inspection results and provide quantitative assessment of variations with < 1% sensitivity. This technique has been used for dose uniformity assessments. It is also being used for long term dose stability monitoring and has proven valuable for short term dose stability follow up investigations.
Kakkar, Chandan; Sripathi, Smiti; Parakh, Anushri; Shrivastav, Rajendra
2016-01-01
Introduction Urolithiasis is one of the major, recurring problem in young individuals and CT being the commonest diagnostic modality used. In order to reduce the radiation dose to the patient who are young and as stone formation is a recurring process; one of the simplest way would be, low dose CT along with tube current modulation. Aim Aim of this study was to compare the sensitivity and specificity of low dose (70mAs) with standard dose (250mAs) protocol in detecting urolithiasis and to define the tube current and mean effective patient dose by these protocols. Materials and Methods A prospective study was conducted in 200 patients over a period of 2 years with acute flank pain presentation. CT was performed in 100 cases with standard dose and another 100 with low dose protocol using tube current modulation. Sensitivity and specificity for calculus detection, percentage reduction of dose and tube current with low dose protocol was calculated. Results Urolithiasis was detected in 138 patients, 67 were examined by high dose and 71 were by low dose protocol. Sensitivity and Specificity of low dose protocol was 97.1% and 96.4% with similar results found in high BMI patients. Tube current modulation resulted in reduction of effective tube current by 12.17%. The mean effective patient dose for standard dose was 10.33 mSv whereas 2.92 mSv for low dose with 51.13–53.8% reduction in low dose protocol. Conclusion The study has reinforced that low-dose CT with tube current modulation is appropriate for diagnosis of urolithiasis with significant reduction in tube current and patient effective dose. PMID:27437322
Koteshwar, Prakashini; Kakkar, Chandan; Sripathi, Smiti; Parakh, Anushri; Shrivastav, Rajendra
2016-05-01
Urolithiasis is one of the major, recurring problem in young individuals and CT being the commonest diagnostic modality used. In order to reduce the radiation dose to the patient who are young and as stone formation is a recurring process; one of the simplest way would be, low dose CT along with tube current modulation. Aim of this study was to compare the sensitivity and specificity of low dose (70mAs) with standard dose (250mAs) protocol in detecting urolithiasis and to define the tube current and mean effective patient dose by these protocols. A prospective study was conducted in 200 patients over a period of 2 years with acute flank pain presentation. CT was performed in 100 cases with standard dose and another 100 with low dose protocol using tube current modulation. Sensitivity and specificity for calculus detection, percentage reduction of dose and tube current with low dose protocol was calculated. Urolithiasis was detected in 138 patients, 67 were examined by high dose and 71 were by low dose protocol. Sensitivity and Specificity of low dose protocol was 97.1% and 96.4% with similar results found in high BMI patients. Tube current modulation resulted in reduction of effective tube current by 12.17%. The mean effective patient dose for standard dose was 10.33 mSv whereas 2.92 mSv for low dose with 51.13-53.8% reduction in low dose protocol. The study has reinforced that low-dose CT with tube current modulation is appropriate for diagnosis of urolithiasis with significant reduction in tube current and patient effective dose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inoue, Tatsuya; Widder, Joachim; Dijk, Lisanne V. van
2016-11-01
Purpose: To investigate the impact of setup and range uncertainties, breathing motion, and interplay effects using scanning pencil beams in robustly optimized intensity modulated proton therapy (IMPT) for stage III non-small cell lung cancer (NSCLC). Methods and Materials: Three-field IMPT plans were created using a minimax robust optimization technique for 10 NSCLC patients. The plans accounted for 5- or 7-mm setup errors with ±3% range uncertainties. The robustness of the IMPT nominal plans was evaluated considering (1) isotropic 5-mm setup errors with ±3% range uncertainties; (2) breathing motion; (3) interplay effects; and (4) a combination of items 1 and 2.more » The plans were calculated using 4-dimensional and average intensity projection computed tomography images. The target coverage (TC, volume receiving 95% of prescribed dose) and homogeneity index (D{sub 2} − D{sub 98}, where D{sub 2} and D{sub 98} are the least doses received by 2% and 98% of the volume) for the internal clinical target volume, and dose indexes for lung, esophagus, heart and spinal cord were compared with that of clinical volumetric modulated arc therapy plans. Results: The TC and homogeneity index for all plans were within clinical limits when considering the breathing motion and interplay effects independently. The setup and range uncertainties had a larger effect when considering their combined effect. The TC decreased to <98% (clinical threshold) in 3 of 10 patients for robust 5-mm evaluations. However, the TC remained >98% for robust 7-mm evaluations for all patients. The organ at risk dose parameters did not significantly vary between the respective robust 5-mm and robust 7-mm evaluations for the 4 error types. Compared with the volumetric modulated arc therapy plans, the IMPT plans showed better target homogeneity and mean lung and heart dose parameters reduced by about 40% and 60%, respectively. Conclusions: In robustly optimized IMPT for stage III NSCLC, the setup and range uncertainties, breathing motion, and interplay effects have limited impact on target coverage, dose homogeneity, and organ-at-risk dose parameters.« less
Comparison of 3DCRT,VMAT and IMRT techniques in metastatic vertebra radiotherapy: A phantom Study
NASA Astrophysics Data System (ADS)
Gedik, Sonay; Tunc, Sema; Kahraman, Arda; Kahraman Cetintas, Sibel; Kurt, Meral
2017-09-01
Vertebra metastases can be seen during the prognosis of cancer patients. Treatment ways of the metastasis are radiotherapy, chemotherapy and surgery. Three-dimensional conformal therapy (3D-CRT) is widely used in the treatment of vertebra metastases. Also, Intensity Modulated Radiotherapy (IMRT) and Volumetric Arc Therapy (VMAT) are used too. The aim of this study is to examine the advantages and disadvantages of the different radiotherapy techniques. In the aspect of this goal, it is studied with a randophantom in Uludag University Medicine Faculty, Radiation Oncology Department. By using a computerized tomography image of the phantom, one 3DCRT plan, two VMAT and three IMRT plans for servical vertebra and three different 3DCRT plans, two VMAT and two IMRT plans for lomber vertebra are calculated. To calculate 3DCRT plans, CMS XiO Treatment System is used and to calculate VMAT and IMRT plans Monaco Treatment Planning System is used in the department. The study concludes with the dosimetric comparison of the treatment plans in the spect of critical organ doses, homogeneity and conformity index. As a result of this study, all critical organ doses are suitable for QUANTEC Dose Limit Report and critical organ doses depend on the techniques which used in radiotherapy. According to homogeneity and conformity indices, VMAT and IMRT plans are better than one in 3DCRT plans in servical and lomber vertebra radiotherapy plans.
Evaluation of Larynx-Sparing Techniques With IMRT When Treating the Head and Neck
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webster, Gareth J.; Rowbottom, Carl G.; Ho, Kean F.
2008-10-01
Purpose: Concern exists that widespread implementation of whole-field intensity-modulated radiotherapy (IMRT) for the treatment of head-and-neck cancer has resulted in increased levels of dysphagia relative to those seen with conventional planning. Other investigators have suggested an alternative junctioned-IMRT (J-IMRT) method, which matches an IMRT plan to a centrally blocked neck field to restrict the laryngeal dose and reduce dysphagia. The effect on target coverage and sparing of organs at risk, including laryngeal sparing, in the optimization was evaluated and compared with that achieved using a J-IMRT technique. Methods and Materials: A total of 13 oropharyngeal cancer whole-field IMRT plans weremore » planned with and without including laryngeal sparing in the optimization. A comparison of the target coverage and sparing of organs at risk was made using the resulting dose-volume histograms and dose distribution. The nine plans with disease located superior to the level of the larynx were replanned using a series of J-IMRT techniques to compare the two laryngeal-sparing techniques. Results: An average mean larynx dose of 29.1 Gy was achieved if disease did not extend to the level of the larynx, with 38.8 Gy for disease extending inferiorly and close to the larynx (reduced from 46.2 and 47.7 Gy, respectively, without laryngeal sparing). Additional laryngeal sparing could be achieved with J-IMRT (mean dose 24.4 Gy), although often at the expense of significantly reduced coverage of the target volume and with no improvement to other areas of the IMRT plan. Conclusion: The benefits of J-IMRT can be achieved with whole-field IMRT if laryngeal sparing is incorporated into the class solution. Inclusion of laryngeal sparing had no effect on other parameters in the plan.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Öğretici, Akın, E-mail: akinogretici@gmail.com; Akbaş, Uğur; Köksal, Canan
The aim of this research was to investigate the fetal doses of pregnant patients undergoing conformal radiotherapy or intensity-modulated radiation therapy (IMRT) for breast cancers. An Alderson Rando phantom was chosen to simulate a pregnant patient with breast cancer who is receiving radiation therapy. This phantom was irradiated using the Varian Clinac DBX 600 system (Varian Medical System, Palo Alto, CA) linear accelerator, according to the standard treatment plans of both three-dimensional conformal radiation therapy (3-D CRT) and IMRT techniques. Thermoluminescent dosimeters were used to measure the irradiated phantom's virtually designated uterus area. Thermoluminescent dosimeter measurements (in the phantom) revealedmore » that the mean cumulative fetal dose for 3-D CRT is 1.39 cGy and for IMRT it is 8.48 cGy, for a pregnant breast cancer woman who received radiation treatment of 50 Gy. The fetal dose was confirmed to increase by 70% for 3-D CRT and 40% for IMRT, if it is closer to the irradiated field by 5 cm. The mean fetal dose from 3-D CRT is 1.39 cGy and IMRT is 8.48 cGy, consistent with theoretic calculations. The IMRT technique causes the fetal dose to be 5 times more than that of 3-D CRT. Theoretic knowledge concerning the increase in the peripheral doses as the measurements approached the beam was also practically proven.« less
Volumetric Modulated Arc Therapy vs. c-IMRT for the Treatment of Upper Thoracic Esophageal Cancer
Lu, Jia-Yang; Chen, Jian-Zhou; Chen, Zhi-Jian; Li, De-Rui; Chen, Chuang-Zhen
2015-01-01
Objective To compare plans using volumetric-modulated arc therapy (VMAT) with conventional sliding window intensity-modulated radiation therapy (c-IMRT) to treat upper thoracic esophageal cancer (EC). Methods CT datasets of 11 patients with upper thoracic EC were identified. Four plans were generated for each patient: c-IMRT with 5 fields (5F) and VMAT with a single arc (1A), two arcs (2A), or three arcs (3A). The prescribed doses were 64 Gy/32 F for the primary tumor (PTV64). The dose-volume histogram data, the number of monitoring units (MUs) and the treatment time (TT) for the different plans were compared. Results All of the plans generated similar dose distributions for PTVs and organs at risk (OARs), except that the 2A- and 3A-VMAT plans yielded a significantly higher conformity index (CI) than the c-IMRT plan. The CI of the PTV64 was improved by increasing the number of arcs in the VMAT plans. The maximum spinal cord dose and the planning risk volume of the spinal cord dose for the two techniques were similar. The 2A- and 3A-VMAT plans yielded lower mean lung doses and heart V50 values than the c-IMRT. The V20 and V30 for the lungs in all of the VMAT plans were lower than those in the c-IMRT plan, at the expense of increasing V5, V10 and V13. The VMAT plan resulted in significant reductions in MUs and TT. Conclusion The 2A-VMAT plan appeared to spare the lungs from moderate-dose irradiation most effectively of all plans, at the expense of increasing the low-dose irradiation volume, and also significantly reduced the number of required MUs and the TT. The CI of the PTVs and the OARs was improved by increasing the arc-number from 1 to 2; however, no significant improvement was observed using the 3A-VMAT, except for an increase in the TT. PMID:25815477
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, W; Wu, L; Lu, J
2015-06-15
Purpose: To compare plans using volumetric-modulated arc therapy (VMAT) with conventional sliding window intensity-modulated radiation therapy (c-IMRT) to treat upper thoracic esophageal cancer (EC). Methods: CT datasets of 11 patients with upper thoracic EC were identified. Four plans were generated for each patient: c-IMRT with 5 fields (5F) and VMAT with a single arc (1A), two arcs (2A), or three arcs (3A). The prescribed doses were 64 Gy/32 F for the primary tumor (planning target volume 64, PTV64). The dose-volume histogram data, the number of monitoring units (MUs) and the treatment time (TT) for the different plans were compared. Results:more » All of the plans generated similar dose distributions for PTVs and organs at risk (OARs), except that the 2A- and 3A-VMAT plans yielded a significantly higher conformity index (CI) than the c-IMRT plan. The CI of the PTV64 was improved by increasing the number of arcs in the VMAT plans. The maximum spinal cord dose and the planning risk volume of the spinal cord dose for the two techniques were similar. The 2A- and 3A-VMAT plans yielded lower mean lung doses and heart V50 than the c-IMRT. The V20 and V30 for the lungs in all of the VMAT plans were lower than those in the c-IMRT plan, at the expense of increasing V5, V10 and V13. The VMAT plan resulted in significant reductions in MUs and TT. Conclusion: The 2A-VMAT plan appeared to spare the lungs from moderate-dose irradiation most effectively of all plans, at the expense of increasing the low-dose irradiation volume, and also significantly reduced the number of required MUs and the TT. The CI of the PTVs and the OARs was improved by increasing the arc-number from 1 to 2. however, no significant improvement was observed using the 3A-VMAT, except for an increase in the TT. This work was sponsored by Shantou University Medical College Clinical Research Enhancement Initiative(NO.201424)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomson, David J.; The University of Manchester, Manchester Academic Health Science Centre, Institute of Cancer Sciences, Manchester; Beasley, William J.
Introduction: Interfractional anatomical alterations may have a differential effect on the dose delivered by step-and-shoot intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT). The increased degrees of freedom afforded by rotational delivery may increase plan robustness (measured by change in target volume coverage and doses to organs at risk [OARs]). However, this has not been evaluated for head and neck cancer. Materials and methods: A total of 10 patients who required repeat computed tomography (CT) simulation and replanning during head and neck IMRT were included. Step-and-shoot IMRT and VMAT plans were generated from the original planning scan. The initial andmore » second CT simulation scans were fused and targets/OAR contours transferred, reviewed, and modified. The plans were applied to the second CT scan and doses recalculated without repeat optimization. Differences between step-and-shoot IMRT and VMAT for change in target volume coverage and doses to OARs between first and second CT scans were compared by Wilcoxon signed rank test. Results: There were clinically relevant dosimetric changes between the first and the second CT scans for both the techniques (reduction in mean D{sub 95%} for PTV2 and PTV3, D{sub min} for CTV2 and CTV3, and increased mean doses to the parotid glands). However, there were no significant differences between step-and-shoot IMRT and VMAT for change in any target coverage parameter (including D{sub 95%} for PTV2 and PTV3 and D{sub min} for CTV2 and CTV3) or dose to any OARs (including parotid glands) between the first and the second CT scans. Conclusions: For patients with head and neck cancer who required replanning mainly due to weight loss, there were no significant differences in plan robustness between step-and-shoot IMRT and VMAT. This information is useful with increased clinical adoption of VMAT.« less
NASA Astrophysics Data System (ADS)
Shin, Wook-Geun; Testa, Mauro; Kim, Hak Soo; Jeong, Jong Hwi; Byeong Lee, Se; Kim, Yeon-Joo; Min, Chul Hee
2017-10-01
For the independent validation of treatment plans, we developed a fully automated Monte Carlo (MC)-based patient dose calculation system with the tool for particle simulation (TOPAS) and proton therapy machine installed at the National Cancer Center in Korea to enable routine and automatic dose recalculation for each patient. The proton beam nozzle was modeled with TOPAS to simulate the therapeutic beam, and MC commissioning was performed by comparing percent depth dose with the measurement. The beam set-up based on the prescribed beam range and modulation width was automated by modifying the vendor-specific method. The CT phantom was modeled based on the DICOM CT files with TOPAS-built-in function, and an in-house-developed C++ code directly imports the CT files for positioning the CT phantom, RT-plan file for simulating the treatment plan, and RT-structure file for applying the Hounsfield unit (HU) assignment, respectively. The developed system was validated by comparing the dose distributions with those calculated by the treatment planning system (TPS) for a lung phantom and two patient cases of abdomen and internal mammary node. The results of the beam commissioning were in good agreement of up to 0.8 mm2 g-1 for B8 option in both of the beam range and the modulation width of the spread-out Bragg peaks. The beam set-up technique can predict the range and modulation width with an accuracy of 0.06% and 0.51%, respectively, with respect to the prescribed range and modulation in arbitrary points of B5 option (128.3, 132.0, and 141.2 mm2 g-1 of range). The dose distributions showed higher than 99% passing rate for the 3D gamma index (3 mm distance to agreement and 3% dose difference) between the MC simulations and the clinical TPS in the target volume. However, in the normal tissues, less favorable agreements were obtained for the radiation treatment planning with the lung phantom and internal mammary node cases. The discrepancies might come from the limitations of the clinical TPS, which is the inaccurate dose calculation algorithm for the scattering effect, in the range compensator and inhomogeneous material. Moreover, the steep slope of the compensator, conversion of the HU values to the human phantom, and the dose calculation algorithm for the HU assignment also could be reasons of the discrepancies. The current study could be used for the independent dose validation of treatment plans including high inhomogeneities, the steep compensator, and riskiness such as lung, head & neck cases. According to the treatment policy, the dose discrepancies predicted with MC could be used for the acceptance decision of the original treatment plan.
TH-EF-BRB-11: Volumetric Modulated Arc Therapy for Total Body Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ouyang, L; Folkerts, M; Hrycushko, B
Purpose: To develop a modern, patient-comfortable total body irradiation (TBI) technique suitable for standard-sized linac vaults. Methods: An indexed rotatable immobilization system (IRIS) was developed to make possible total-body CT imaging and radiation delivery on conventional couches. Treatment consists of multi-isocentric volumetric modulated arc therapy (VMAT) to the upper body and parallel-opposed fields to the lower body. Each isocenter is indexed to the couch and includes a 180° IRIS rotation between the upper and lower body fields. VMAT fields are optimized to satisfy lung dose objectives while achieving a uniform therapeutic dose to the torso. End-to-end tests with a randomore » phantom were used to verify dosimetric characteristics. Treatment plan robustness regarding setup uncertainty was assessed by simulating global and regional isocenter setup shifts on patient data sets. Dosimetric comparisons were made with conventional extended distance, standing TBI (cTBI) plans using a Monte Carlo-based calculation. Treatment efficiency was assessed for eight courses of patient treatment. Results: The IRIS system is level and orthogonal to the scanned CT image plane, with lateral shifts <2mm following rotation. End-to-end tests showed surface doses within ±10% of the prescription dose, field junction doses within ±15% of prescription dose. Plan robustness tests showed <15% changes in dose with global setup errors up to 5mm in each direction. Local 5mm relative setup errors in the chest resulted in < 5% dose changes. Local 5mm shift errors in the pelvic and upper leg junction resulted in <10% dose changes while a 10mm shift error causes dose changes up to 25%. Dosimetric comparison with cTBI showed VMAT-TBI has advantages in preserving chest wall dose with flexibility in leveraging the PTV-body and PTV-lung dose. Conclusion: VMAT-TBI with the IRIS system was shown clinically feasible as a cost-effective approach to TBI for standard-sized linac vaults.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciura, Katherine; McBurney, Michelle; Nguyen, Baongoc
Intensity-modulated radiation therapy (IMRT) is becoming the treatment of choice for many head and neck cancer patients. IMRT reduces some toxicities by reducing radiation dose to uninvolved normal tissue near tumor targets; however, other tissues not irradiated using previous 3D techniques may receive clinically significant doses, causing undesirable side effects including nausea and vomiting (NV). Irradiation of the brainstem, and more specifically, the area postrema and dorsal vagal complex (DVC), has been linked to NV. We previously reported preliminary hypothesis-generating dose effects associated with NV in IMRT patients. The goal of this study is to relate brainstem dose to NVmore » symptoms. We retrospectively studied 100 consecutive patients that were treated for oropharyngeal cancer with IMRT. We contoured the brainstem, area postrema, and DVC with the assistance of an expert diagnostic neuroradiologist. We correlated dosimetry for the 3 areas contoured with weekly NV rates during IMRT. NV rates were significantly higher for patients who received concurrent chemotherapy. Post hoc analysis demonstrated that chemoradiation cases exhibited a trend towards the same dose-response relationship with both brainstem mean dose (p = 0.0025) and area postrema mean dose (p = 0.004); however, both failed to meet statistical significance at the p {<=} 0.002 level. Duration of toxicity was also greater for chemoradiation patients, who averaged 3.3 weeks with reported Common Terminology Criteria for Adverse Events (CTC-AE), compared with an average of 2 weeks for definitive RT patients (p = 0.002). For definitive RT cases, no dose-response trend could be ascertained. The mean brainstem dose emerged as a key parameter of interest; however, no one dose parameter (mean/median/EUD) best correlated with NV. This study does not address extraneous factors that would affect NV incidence, including the use of antiemetics, nor chemotherapy dose schedule specifics before and during RT. A prospective study will be required to depict exactly how IMRT dose affects NV.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Y; Ozawa, S; Tsegmed, U
2014-06-01
Purpose: To verify volumetric modulated arc therapy (VMAT) using flattening filter free (FFF) mode with jaw tracking (JT) feature for single breath hold as long as 15 s per arc in liver stereotactic body radiation therapy (SBRT) against intensity modulated radiation therapy (IMRT) FFF-JT. Methods: Ten hepatocellular carcinoma (HCC) cases were planned with 10 MV FFF using Pinnacle3 treatment planning system which delivered by TrueBeam to administer 48 Gy/ 4 fractions. Eight non-coplanar beams were assigned to IMRT using step-and-shoot technique. For VMAT, two or three non-coplanar partial arcs (up to 180 degrees) were further divided into subarcs with gantrymore » rotation less than 80 degrees to limit delivery time within 15 s. Dose distributions were verified using OCTAVIUS II system and pass rates were evaluated using gamma analysis with criteria of 3%/3 mm at threshold of 5% to the maximum dose. The actual irradiation time was measured. Results: The VMAT-FFF-JT of partial-arcs with sub-divided arcs was able to produce a highly conformal plan as well as IMRT-FFF-JT. Isodose lines and DVH showed slight improvement in dosimetry when JT was employed for both IMRT and VMAT. Consequently, VMAT-FFF-JT was superior in reducing the dose to liver minus gross tumor volume. VMAT-FFF-JT has shorter total treatment time compared with 3D conformal radiation therapy (3D-CRT) FFF because the gantry was rotated simultaneously with the beam delivery in VMAT. Moreover, due to the small and regular shape of HCC, VMAT-FFF-JT offered less multileaf collimator motion, thus the interplay effect is expected to be reduced. The patient specific QA of IMRT and VMAT acquired the pass rates higher than 90%. Conclusion: VMAT-FFF-JT could be a promising technique for liver SBRT as the sub-divided arcs method was able to accommodate a single breath hold irradiation time of less than 15 s without deterioration of the dose distribution compared with IMRT-FFF-JT.« less
Esophageal cancer dose escalation using a simultaneous integrated boost technique.
Welsh, James; Palmer, Matthew B; Ajani, Jaffer A; Liao, Zhongxing; Swisher, Steven G; Hofstetter, Wayne L; Allen, Pamela K; Settle, Steven H; Gomez, Daniel; Likhacheva, Anna; Cox, James D; Komaki, Ritsuko
2012-01-01
We previously showed that 75% of radiation therapy (RT) failures in patients with unresectable esophageal cancer are in the gross tumor volume (GTV). We performed a planning study to evaluate if a simultaneous integrated boost (SIB) technique could selectively deliver a boost dose of radiation to the GTV in patients with esophageal cancer. Treatment plans were generated using four different approaches (two-dimensional conformal radiotherapy [2D-CRT] to 50.4 Gy, 2D-CRT to 64.8 Gy, intensity-modulated RT [IMRT] to 50.4 Gy, and SIB-IMRT to 64.8 Gy) and optimized for 10 patients with distal esophageal cancer. All plans were constructed to deliver the target dose in 28 fractions using heterogeneity corrections. Isodose distributions were evaluated for target coverage and normal tissue exposure. The 50.4 Gy IMRT plan was associated with significant reductions in mean cardiac, pulmonary, and hepatic doses relative to the 50.4 Gy 2D-CRT plan. The 64.8 Gy SIB-IMRT plan produced a 28% increase in GTV dose and comparable normal tissue doses as the 50.4 Gy IMRT plan; compared with the 50.4 Gy 2D-CRT plan, the 64.8 Gy SIB-IMRT produced significant dose reductions to all critical structures (heart, lung, liver, and spinal cord). The use of SIB-IMRT allowed us to selectively increase the dose to the GTV, the area at highest risk of failure, while simultaneously reducing the dose to the normal heart, lung, and liver. Clinical implications warrant systematic evaluation. Copyright © 2012 Elsevier Inc. All rights reserved.
Esophageal Cancer Dose Escalation using a Simultaneous Integrated Boost Technique
Welsh, James; Palmer, Matthew B.; Ajani, Jaffer A.; Liao, Zhongxing; Swisher, Steven G.; Hofstetter, Wayne L.; Allen, Pamela K.; Settle, Steven H.; Gomez, Daniel; Likhacheva, Anna; Cox, James D.; Komaki, Ritsuko
2014-01-01
Purpose We previously showed that 75% of radiation therapy (RT) failures in patients with unresectable esophageal cancer are in the gross tumor volume (GTV). We performed a planning study to evaluate if a simultaneous integrated boost (SIB) technique could selectively deliver a boost dose of radiation to the GTV in patients with esophageal cancer. Methods and Materials Treatment plans were generated using four different approaches (two-dimensional conformal RT [2D-CRT] to 50.4 Gy or 64.8 Gy, intensity-modulated RT [IMRT] to 50.4 Gy, and SIB-IMRT to 64.8 Gy) and optimized for 10 patients with distal esophageal cancer. All plans were constructed to deliver the target dose in 28 fractions using heterogeneity corrections. Isodose distributions were evaluated for target coverage and normal tissue exposure. Results The 50.4-Gy IMRT plan was associated with significant reductions in mean cardiac, pulmonary, and hepatic doses relative to the 50.4-Gy 2D-CRT plan. The 64.8-Gy SIB-IMRT plan produced a 28% increase in GTV dose and the same normal tissue doses as the 50.4-Gy IMRT plan; compared with the 50.4-Gy 2D-CRT plan, the 64.8-Gy SIB-IMRT produced significant dose reductions to all critical structures (heart, lung, liver, and spinal cord). Conclusions The use of SIB-IMRT allowed us to selectively increase the dose to the GTV, the area at highest risk of failure, while simultaneously reducing the dose to the normal heart, lung, and liver. Clinical implications warrant systematic evaluation. PMID:21123005
Sookpeng, Supawitoo; Butdee, Chitsanupong
2017-06-01
The study aimed to evaluate the image quality in terms of signal-to-noise ratio (SNR) and dose to the lens of the eye and the other nearby organs from the CT brain scan using an automatic tube current modulation (ATCM) system with or without CT gantry tilt is needed. An anthropomorphic phantom was scanned with different settings including use of different ATCM, fixed tube current time product (mAs) settings and degree angles of gantry tilt. Gafchromic film XR-QA2 was used to measure absorbed dose of the organs. Relative doses and SNR for the various scan settings were compared with the reference setting of the fixed 330 mAs. Average absorbed dose for the lens of the eyes varied from 8.7 to 21.7 mGy. The use of the ATCM system with the gantry tilt resulted in up to 60% decrease in the dose to the lens of the eye. SNR significantly decreased while tilting the gantry using the fixed mAs techniques, compared to that of the reference setting. However, there were no statistical significant differences for SNRs between the reference setting and all ATCM settings. Compared to the reference setting of the fixed effective mAs, using the ATCM system and appropriate tilting, the gantry resulted in a substantial decrease in the dose to the lens of the eye while preserving signal-to-noise ratio. CT brain examination should be carefully controlled to optimize dose for lens of the eye and image quality of the examination.
NASA Astrophysics Data System (ADS)
Petric, Martin Peter
This thesis describes the development and implementation of a novel method for the dosimetric verification of intensity modulated radiation therapy (IMRT) fields with several advantages over current techniques. Through the use of a tissue equivalent plastic scintillator sheet viewed by a charge-coupled device (CCD) camera, this method provides a truly tissue equivalent dosimetry system capable of efficiently and accurately performing field-by-field verification of IMRT plans. This work was motivated by an initial study comparing two IMRT treatment planning systems. The clinical functionality of BrainLAB's BrainSCAN and Varian's Helios IMRT treatment planning systems were compared in terms of implementation and commissioning, dose optimization, and plan assessment. Implementation and commissioning revealed differences in the beam data required to characterize the beam prior to use with the BrainSCAN system requiring higher resolution data compared to Helios. This difference was found to impact on the ability of the systems to accurately calculate dose for highly modulated fields, with BrainSCAN being more successful than Helios. The dose optimization and plan assessment comparisons revealed that while both systems use considerably different optimization algorithms and user-control interfaces, they are both capable of producing substantially equivalent dose plans. The extensive use of dosimetric verification techniques in the IMRT treatment planning comparison study motivated the development and implementation of a novel IMRT dosimetric verification system. The system consists of a water-filled phantom with a tissue equivalent plastic scintillator sheet built into the top surface. Scintillation light is reflected by a plastic mirror within the phantom towards a viewing window where it is captured using a CCD camera. Optical photon spread is removed using a micro-louvre optical collimator and by deconvolving a glare kernel from the raw images. Characterization of this new dosimetric verification system indicates excellent dose response and spatial linearity, high spatial resolution, and good signal uniformity and reproducibility. Dosimetric results from square fields, dynamic wedged fields, and a 7-field head and neck IMRT treatment plan indicate good agreement with film dosimetry distributions. Efficiency analysis of the system reveals a 50% reduction in time requirements for field-by-field verification of a 7-field IMRT treatment plan compared to film dosimetry.
Low-dose-rate or high-dose-rate brachytherapy in treatment of prostate cancer – between options
2013-01-01
Purpose Permanent low-dose-rate (LDR-BT) and temporary high-dose-rate (HDR-BT) brachytherapy are competitive techniques for clinically localized prostate radiotherapy. Although a randomized trial will likely never to be conducted comparing these two forms of brachytherapy, a comparative analysis proves useful in understanding some of their intrinsic differences, several of which could be exploited to improve outcomes. The aim of this paper is to look for possible similarities and differences between both brachytherapy modalities. Indications and contraindications for monotherapy and for brachytherapy as a boost to external beam radiation therapy (EBRT) are presented. It is suggested that each of these techniques has attributes that advocates for one or the other. First, they represent the extreme ends of the spectrum with respect to dose rate and fractionation, and therefore have inherently different radiobiological properties. Low-dose-rate brachytherapy has the great advantage of being practically a one-time procedure, and enjoys a long-term follow-up database supporting its excellent outcomes and low morbidity. Low-dose-rate brachytherapy has been a gold standard for prostate brachytherapy in low risk patients since many years. On the other hand, HDR is a fairly invasive procedure requiring several sessions associated with a brief hospital stay. Although lacking in significant long-term data, it possesses the technical advantage of control over its postimplant dosimetry (by modulating the source dwell time and position), which is absent in LDR brachytherapy. This important difference in dosimetric control allows HDR doses to be escalated safely, a flexibility that does not exist for LDR brachytherapy. Conclusions Radiobiological models support the current clinical evidence for equivalent outcomes in localized prostate cancer with either LDR or HDR brachytherapy, using current dose regimens. At present, all available clinical data regarding these two techniques suggests that they are equally effective, stage for stage, in providing high tumor control rates. PMID:23634153
Miyazaki, Masayoshi; Nishiyama, Kinji; Ueda, Yoshihiro; Ohira, Shingo; Tsujii, Katsutomo; Isono, Masaru; Masaoka, Akira; Teshima, Teruki
2016-07-01
The aim of this study was to compare three strategies for intensity-modulated radiotherapy (IMRT) for 20 head-and-neck cancer patients. For simultaneous integrated boost (SIB), doses were 66 and 54 Gy in 30 fractions for PTVboost and PTVelective, respectively. Two-phase IMRT delivered 50 Gy in 25 fractions to PTVelective in the First Plan, and 20 Gy in 10 fractions to PTVboost in the Second Plan. Sequential SIB (SEQ-SIB) delivered 55 Gy and 50 Gy in 25 fractions, respectively, to PTVboost and PTVelective using SIB in the First Plan and 11 Gy in 5 fractions to PTVboost in the Second Plan. Conformity indexes (CIs) (mean ± SD) for PTVboost and PTVelective were 1.09 ± 0.05 and 1.34 ± 0.12 for SIB, 1.39 ± 0.14 and 1.80 ± 0.28 for two-phase IMRT, and 1.14 ± 0.07 and 1.60 ± 0.18 for SEQ-SIB, respectively. CI was significantly highest for two-phase IMRT. Maximum doses (Dmax) to the spinal cord were 42.1 ± 1.5 Gy for SIB, 43.9 ± 1.0 Gy for two-phase IMRT and 40.3 ± 1.8 Gy for SEQ-SIB. Brainstem Dmax were 50.1 ± 2.2 Gy for SIB, 50.5 ± 4.6 Gy for two-phase IMRT and 47.4 ± 3.6 Gy for SEQ-SIB. Spinal cord Dmax for the three techniques was significantly different, and brainstem Dmax was significantly lower for SEQ-SIB. The compromised conformity of two-phase IMRT can result in higher doses to organs at risk (OARs). Lower OAR doses in SEQ-SIB made SEQ-SIB an alternative to SIB, which applies unconventional doses per fraction. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Dell'Acqua, V; Kobiela, J; Kraja, F; Leonardi, M C; Surgo, A; Zerella, M A; Arculeo, S; Fodor, C; Ricotti, R; Zampino, M G; Ravenda, S; Spinoglio, G; Biffi, R; Bazani, A; Luraschi, R; Vigorito, S; Spychalski, P; Orecchia, R; Glynne-Jones, R; Jereczek-Fossa, B A
2018-03-28
Intensity-modulated radiotherapy (IMRT) is considered the preferred option in squamous cell canal cancer (SCAC), delivering high doses to tumor volumes while minimizing dose to surrounding normal tissues. IMRT has steep dose gradients, but the technique is more demanding as deep understanding of target structures is required. To evaluate genital marginal failure in a cohort of patients with non-metastatic SCAC treated either with IMRT or 3DCRT and concurrent chemotherapy, 117 patients with SCAC were evaluated: 64 and 53 patients were treated with IMRT and 3DCRT techniques, respectively. All patients underwent clinical and radiological examination during their follow-up. Tumor response was evaluated with response evaluation criteria in solid tumors v1.1 guideline on regular basis. All patients' data were analyzed, and patients with marginal failure were identified. Concomitant chemotherapy was administered in 97 and 77.4% of patients in the IMRT and 3DCRT groups, respectively. In the IMRT group, the median follow-up was 25 months (range 6-78). Progressive disease was registered in 15.6% of patients; infield recurrence, distant recurrence and both infield recurrence and distant recurrence were identified in 5, 4 and 1 patient, respectively. Two out of 64 patients (3.1%) had marginal failures, localized at vagina/recto-vaginal septum and left perineal region. In the 3DCRT group, the median follow-up was 71.3 months (range 6-194 months). Two out of 53 patients (3.8%) had marginal failures, localized at recto-vaginal septum and perigenital structures. The rate of marginal failures was comparable in IMRT and 3DCRT groups (χ 2 test p = 0.85). In this series, the use of IMRT for the treatment of SCAC did not increase the rate of marginal failures offering improved dose conformity to the target. Dose constraints should be applied with caution-particularly in females with involvement of the vagina or the vaginal septum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbiero, Sara; Specialty School in Medical Physics, University of Pisa, Pisa; Rink, Alexandra
2016-01-01
Purpose: To report on single-fraction stereotactic body radiotherapy (RT) (SBRT) with flattening filter (FF)–free (FFF) volumetric modulated arc therapy (VMAT) for lung cancer and to compare dosimetric results with VMAT with FF. Methods and materials: Overall, 25 patients were treated with 6-MV FFF VMAT (Varian TrueBeam STx LINAC) to a prescribed dose of 24 Gy in a single fraction. Treatment plans were recreated using FF VMAT. Dose-volume indices, monitor units (MU), and treatment times were compared between FFF and FF VMAT techniques. Results: Dose constraints to PTV, spinal cord, and lungs were reached in FFF and FF plans. In FFFmore » plans, average conformity index was 1.13 (95% CI: 1.07 to1.38). Maximum doses to spinal cord, heart, esophagus, and trachea were 2.9 Gy (95% CI: 0.4 to 6.7 Gy), 0.8 Gy (95% CI: 0 to 3.6 Gy), 3.3 Gy (95% CI: 0.02 to 13.9 Gy), and 1.5 Gy (95% CI: 0 to 4.9 Gy), respectively. Average V7 Gy, V7.4 Gy, and mean dose to the healthy lung were 126.5 cc (95% CI: 41.3 to 248.9 cc), 107.3 cc (95% CI: 18.7 to 232.8 cc), and 1.1 Gy (95% CI: 0.3 to 2.2 Gy), respectively. No statistically significant differences were found in dosimetric results and MU between FF and FFF treatments. Treatment time was reduced by an average factor of 2.31 (95% CI: 2.15 to 2.43) from FF treatments to FFF, and the difference was statistically significant. Conclusions: FFF VMAT for lung SBRT provides equivalent dosimetric results to the target and organs at risk as FF VMAT while significantly reducing treatment time.« less
Qin, An; Sun, Ying; Liang, Jian; Yan, Di
2015-04-01
To evaluate online/offline image-guided/adaptive treatment techniques for prostate cancer radiation therapy with daily cone-beam CT (CBCT) imaging. Three treatment techniques were evaluated retrospectively using daily pre- and posttreatment CBCT images on 22 prostate cancer patients. Prostate, seminal vesicles (SV), rectal wall, and bladder were delineated on all CBCT images. For each patient, a pretreatment intensity modulated radiation therapy plan with clinical target volume (CTV) = prostate + SV and planning target volume (PTV) = CTV + 3 mm was created. The 3 treatment techniques were as follows: (1) Daily Correction: The pretreatment intensity modulated radiation therapy plan was delivered after online CBCT imaging, and position correction; (2) Online Planning: Daily online inverse plans with 3-mm CTV-to-PTV margin were created using online CBCT images, and delivered; and (3) Hybrid Adaption: Daily Correction plus an offline adaptive inverse planning performed after the first week of treatment. The adaptive plan was delivered for all remaining 15 fractions. Treatment dose for each technique was constructed using the daily posttreatment CBCT images via deformable image registration. Evaluation was performed using treatment dose distribution in target and critical organs. Treatment equivalent uniform dose (EUD) for the CTV was within [85.6%, 100.8%] of the pretreatment planned target EUD for Daily Correction; [98.7%, 103.0%] for Online Planning; and [99.2%, 103.4%] for Hybrid Adaptation. Eighteen percent of the 22 patients in Daily Correction had a target dose deficiency >5%. For rectal wall, the mean ± SD of the normalized EUD was 102.6% ± 2.7% for Daily Correction, 99.9% ± 2.5% for Online Planning, and 100.6% ± 2.1% for Hybrid Adaptation. The mean ± SD of the normalized bladder EUD was 108.7% ± 8.2% for Daily Correction, 92.7% ± 8.6% for Online Planning, and 89.4% ± 10.8% for Hybrid Adaptation. Both Online Planning and Hybrid Adaptation can achieve comparable target coverage and normal tissue sparing and are superior to the Daily Correction technique. The Daily Correction technique using a 3-mm target margin in the pretreatment plan is not appropriate to compensate for residual variations in CBCT image-guided prostate cancer radiation therapy. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, An; Sun, Ying; Liang, Jian
Purpose: To evaluate online/offline image-guided/adaptive treatment techniques for prostate cancer radiation therapy with daily cone-beam CT (CBCT) imaging. Methods and Materials: Three treatment techniques were evaluated retrospectively using daily pre- and posttreatment CBCT images on 22 prostate cancer patients. Prostate, seminal vesicles (SV), rectal wall, and bladder were delineated on all CBCT images. For each patient, a pretreatment intensity modulated radiation therapy plan with clinical target volume (CTV) = prostate + SV and planning target volume (PTV) = CTV + 3 mm was created. The 3 treatment techniques were as follows: (1) Daily Correction: The pretreatment intensity modulated radiation therapy plan was delivered after online CBCT imaging, and positionmore » correction; (2) Online Planning: Daily online inverse plans with 3-mm CTV-to-PTV margin were created using online CBCT images, and delivered; and (3) Hybrid Adaption: Daily Correction plus an offline adaptive inverse planning performed after the first week of treatment. The adaptive plan was delivered for all remaining 15 fractions. Treatment dose for each technique was constructed using the daily posttreatment CBCT images via deformable image registration. Evaluation was performed using treatment dose distribution in target and critical organs. Results: Treatment equivalent uniform dose (EUD) for the CTV was within [85.6%, 100.8%] of the pretreatment planned target EUD for Daily Correction; [98.7%, 103.0%] for Online Planning; and [99.2%, 103.4%] for Hybrid Adaptation. Eighteen percent of the 22 patients in Daily Correction had a target dose deficiency >5%. For rectal wall, the mean ± SD of the normalized EUD was 102.6% ± 2.7% for Daily Correction, 99.9% ± 2.5% for Online Planning, and 100.6% ± 2.1% for Hybrid Adaptation. The mean ± SD of the normalized bladder EUD was 108.7% ± 8.2% for Daily Correction, 92.7% ± 8.6% for Online Planning, and 89.4% ± 10.8% for Hybrid Adaptation. Conclusions: Both Online Planning and Hybrid Adaptation can achieve comparable target coverage and normal tissue sparing and are superior to the Daily Correction technique. The Daily Correction technique using a 3-mm target margin in the pretreatment plan is not appropriate to compensate for residual variations in CBCT image-guided prostate cancer radiation therapy.« less
NASA Astrophysics Data System (ADS)
Budde, Adam; Nilsen, Roy; Nett, Brian
2014-03-01
State of the art automatic exposure control modulates the tube current across view angle and Z based on patient anatomy for use in axial full scan reconstructions. Cardiac CT, however, uses a fundamentally different image reconstruction that applies a temporal weighting to reduce motion artifacts. This paper describes a phase based mA modulation that goes beyond axial and ECG modulation; it uses knowledge of the temporal view weighting applied within the reconstruction algorithm to improve dose efficiency in cardiac CT scanning. Using physical phantoms and synthetic noise emulation, we measure how knowledge of sinogram temporal weighting and the prescribed cardiac phase can be used to improve dose efficiency. First, we validated that a synthetic CT noise emulation method produced realistic image noise. Next, we used the CT noise emulation method to simulate mA modulation on scans of a physical anthropomorphic phantom where a motion profile corresponding to a heart rate of 60 beats per minute was used. The CT noise emulation method matched noise to lower dose scans across the image within 1.5% relative error. Using this noise emulation method to simulate modulating the mA while keeping the total dose constant, the image variance was reduced by an average of 11.9% on a scan with 50 msec padding, demonstrating improved dose efficiency. Radiation dose reduction in cardiac CT can be achieved while maintaining the same level of image noise through phase based dose modulation that incorporates knowledge of the cardiac reconstruction algorithm.
Commissioning of intensity modulated neutron radiotherapy (IMNRT).
Burmeister, Jay; Spink, Robyn; Liang, Liang; Bossenberger, Todd; Halford, Robert; Brandon, John; Delauter, Jonathan; Snyder, Michael
2013-02-01
Intensity modulated neutron radiotherapy (IMNRT) has been developed using inhouse treatment planning and delivery systems at the Karmanos Cancer Center∕Wayne State University Fast Neutron Therapy facility. The process of commissioning IMNRT for clinical use is presented here. Results of commissioning tests are provided including validation measurements using representative patient plans as well as those from the TG-119 test suite. IMNRT plans were created using the Varian Eclipse optimization algorithm and an inhouse planning system for calculation of neutron dose distributions. Tissue equivalent ionization chambers and an ionization chamber array were used for point dose and planar dose distribution comparisons with calculated values. Validation plans were delivered to water and virtual water phantoms using TG-119 measurement points and evaluation techniques. Photon and neutron doses were evaluated both inside and outside the target volume for a typical IMNRT plan to determine effects of intensity modulation on the photon dose component. Monitor unit linearity and effects of beam current and gantry angle on output were investigated, and an independent validation of neutron dosimetry was obtained. While IMNRT plan quality is superior to conventional fast neutron therapy plans for clinical sites such as prostate and head and neck, it is inferior to photon IMRT for most TG-119 planning goals, particularly for complex cases. This results significantly from current limitations on the number of segments. Measured and calculated doses for 11 representative plans (six prostate∕five head and neck) agreed to within -0.8 ± 1.4% and 5.0 ± 6.0% within and outside the target, respectively. Nearly all (22∕24) ion chamber point measurements in the two phantom arrangements were within the respective confidence intervals for the quantity [(measured-planned)∕prescription dose] derived in TG-119. Mean differences for all measurements were 0.5% (max = 7.0%) and 1.4% (max = 4.1%) in water and virtual water, respectively. The mean gamma pass rate for all cases was 92.8% (min = 88.6%). These pass rates are lower than typically achieved with photon IMRT, warranting development of a planar dosimetry system designed specifically for IMNRT and∕or the improvement of neutron beam modeling in the penumbral region. The fractional photon dose component did not change significantly in a typical IMNRT plan versus a conventional fast neutron therapy plan, and IMNRT delivery is not expected to significantly alter the RBE. All other commissioning results were considered satisfactory for clinical implementation of IMNRT, including the external neutron dose validation, which agreed with the predicted neutron dose to within 1%. IMNRT has been successfully commissioned for clinical use. While current plan quality is inferior to photon IMRT, it is superior to conventional fast neutron therapy. Ion chamber validation results for IMNRT commissioning are also comparable to those typically achieved with photon IMRT. Gamma pass rates for planar dose distributions are lower than typically observed for photon IMRT but may be improved with improved planar dosimetry equipment and beam modeling techniques. In the meantime, patient-specific quality assurance measurements should rely more heavily on point dose measurements with tissue equivalent ionization chambers. No significant technical impediments are anticipated in the clinical implementation of IMNRT as described here.
Dosimetry with diamond detectors
NASA Astrophysics Data System (ADS)
Gervino, G.; Marino, C.; Silvestri, F.; Lavagno, A.; Truc, F.
2010-05-01
In this paper we present the dosimetry analysis in terms of stability and repeatability of the signal and dose rate dependence of a synthetic single crystal diamond grown by Chemical Vapor Deposition (CVD) technique. The measurements carried out by 5 MeV X-ray photons beam show very promising results, even if the dose rate detector response points out that the charge trapping centers distribution is not uniform inside the crystal volume. This handicap that affects the detectors performances, must be ascribed to the growing process. Synthetic single crystal diamonds could be a valuable alternative to air ionization chambers for quality beam control and for intensity modulated radiation therapy beams dosimetry.
Radiation therapy for breast cancer: Literature review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balaji, Karunakaran, E-mail: karthik.balaji85@gmail.com; School of Advanced Sciences, VIT University, Vellore; Subramanian, Balaji
Concave shape with variable size target volume makes treatment planning for the breast/chest wall a challenge. Conventional techniques used for the breast/chest wall cancer treatment provided better sparing of organs at risk (OARs), with poor conformity and uniformity to the target volume. Advanced technologies such as intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) improve the target coverage at the cost of higher low dose volumes to OARs. Novel hybrid techniques present promising results in breast/chest wall irradiation in terms of target coverage as well as OARs sparing. Several published data compared these technologies for the benefit ofmore » the breast/chest wall with or without nodal volumes. The aim of this article is to review relevant data and identify the scope for further research in developing optimal treatment plan for breast/chest wall cancer treatment.« less
Intensity-Modulated Radiation Therapy (IMRT) for Head and Neck Surgeons
Gutiontov, Stanley I.; Shin, Edward J.; Lok, Benjamin; Lee, Nancy Y.; Cabanillas, Ruben
2016-01-01
The development of intensity-modulated radiation therapy has played a major role in improving outcomes and decreasing morbidity in head and neck cancer patients. This review addresses this vital modality with a focus on the important role of the head and neck surgeon. The technique as well as its benefits and points of caution are outlined, the definitions of tumor and treatment volumes are discussed, and the dose and fractionation are detailed. Following this are several sections dedicated to the role of the head and neck surgeon in the planning of both definitive and post-operative radiation therapy to the primary site and neck. There is a focus throughout on anatomic and surgical considerations; commonly encountered situations are illustrated. With a deeper understanding of this technique and their own pivotal contribution to target delineation, head and neck surgeons will be poised to expand their role and improve cancer care for their patients. PMID:26705685
Comparison of 3D CRT and IMRT Tratment Plans
Bakiu, Erjona; Telhaj, Ervis; Kozma, Elvisa; Ruçi, Ferdinand; Malkaj, Partizan
2013-01-01
Plans of patients with prostate tumor have been studied. These patients have been scanned in the CT simulator and the images have been sent to the Focal, the system where the doctor delineates the tumor and the organs at risk. After that in the treatment planning system XiO there are created for the same patients three dimensional conformal and intensity modulated radiotherapy treatment plans. The planes are compared according to the dose volume histograms. It is observed that the plans with IMRT technique conform better the isodoses to the planning target volume and protect more the organs at risk, but the time needed to create such plans and to control it is higher than 3D CRT. So it necessary to decide in which patients to do one or the other technique depending on the full dose given to PTV and time consuming in genereral. PMID:24167395
Volumetric Modulated Arc (Radio) Therapy in Pets Treatment: The “La Cittadina Fondazione” Experience
Dolera, Mario; Malfassi, Luca; Carrara, Nancy; Finesso, Sara; Marcarini, Silvia; Mazza, Giovanni; Pavesi, Simone; Sala, Massimo; Urso, Gaetano
2018-01-01
Volumetric Modulated Arc Therapy (VMAT) is a modern technique, widely used in human radiotherapy, which allows a high dose to be delivered to tumor volumes and low doses to the surrounding organs at risk (OAR). Veterinary clinics takes advantage of this feature due to the small target volumes and distances between the target and the OAR. Sparing the OAR permits dose escalation, and hypofractionation regimens reduce the number of treatment sessions with a simpler manageability in the veterinary field. Multimodal volumes definition is mandatory for the small volumes involved and a positioning device precisely reproducible with a setup confirmation is needed before each session for avoiding missing the target. Additionally, the elaborate treatment plan must pursue hard constraints and objectives, and its feasibility must be evaluated with a per patient quality control. The aim of this work is to report results with regard to brain meningiomas and gliomas, trigeminal nerve tumors, brachial plexus tumors, adrenal tumors with vascular invasion and rabbit thymomas, in comparison with literature to determine if VMAT is a safe and viable alternative to surgery or chemotherapy alone, or as an adjuvant therapy in pets. PMID:29364837
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calvo, Juan Francisco, E-mail: jfcdrr@gmail.com; San José, Sol; Garrido, LLuís
2013-10-01
To introduce an approach for online adaptive replanning (i.e., dose-guided radiosurgery) in frameless stereotactic radiosurgery, when a 6-dimensional (6D) robotic couch is not available in the linear accelerator (linac). Cranial radiosurgical treatments are planned in our department using intensity-modulated technique. Patients are immobilized using thermoplastic mask. A cone-beam computed tomography (CBCT) scan is acquired after the initial laser-based patient setup (CBCT{sub setup}). The online adaptive replanning procedure we propose consists of a 6D registration-based mapping of the reference plan onto actual CBCT{sub setup}, followed by a reoptimization of the beam fluences (“6D plan”) to achieve similar dosage as originally wasmore » intended, while the patient is lying in the linac couch and the original beam arrangement is kept. The goodness of the online adaptive method proposed was retrospectively analyzed for 16 patients with 35 targets treated with CBCT-based frameless intensity modulated technique. Simulation of reference plan onto actual CBCT{sub setup}, according to the 4 degrees of freedom, supported by linac couch was also generated for each case (4D plan). Target coverage (D99%) and conformity index values of 6D and 4D plans were compared with the corresponding values of the reference plans. Although the 4D-based approach does not always assure the target coverage (D99% between 72% and 103%), the proposed online adaptive method gave a perfect coverage in all cases analyzed as well as a similar conformity index value as was planned. Dose-guided radiosurgery approach is effective to assure the dose coverage and conformity of an intracranial target volume, avoiding resetting the patient inside the mask in a “trial and error” way so as to remove the pitch and roll errors when a robotic table is not available.« less
Funama, Yoshinori; Awai, Kazuo; Hatemura, Masahiro; Shimamura, Masamitchi; Yanaga, Yumi; Oda, Seitaro; Yamashita, Yasuyuki
2008-01-01
To investigate whether it is possible to obtain adequate images at uniform image noise levels and reduced radiation exposure with our automatic tube current modulation (ATCM) technique for 64-detector CT. The study population consisted of 64 patients with known or suspected lung or abdominal disease. We used a 64-detector CT scanner (LightSpeed VCT, GE Healthcare, Waukesha, WI, USA) and a combined angular and longitudinal tube current modulation technique (Smart mA, GE Healthcare, Waukesha, WI, USA) to examine 34 patients. The scanning parameters were identical; the minimum and maximum tube current thresholds were 50 and 800 mA, respectively. For study of the constant tube current technique, 30 additional patients were examined at 350 mA. The CT number and image noise (SD of the CT number) were measured in the 64 patients at six levels, i.e., the center of the left ventricle, the liver dome, the porta hepatis, the center of the spleen and the right and left renal pelvis. When we used the ATCM technique, the mean image noise ranged from 8.40 at the center of the left ventricle to 11.31 at the porta hepatis; the mean tube current ranged from 105.9 mAs at the center of the left ventricle to 169.6 mAs at the center of the spleen. The mean dose reduction rate per constant tube current at 175 mAs ranged from 3.1 to 39.5%. By use of the ATCM technique, it is possible to maintain a constant image noise level with a 64-detector CT.
NASA Astrophysics Data System (ADS)
Bejarano Buele, Ana Isabel
The treatment regimen for breast cancer patients typically involves Whole Breast Irradiation (WBI). The coverage and extent of the radiation treatment is dictated by location of tumor mass, breast tissue distribution, involvement of lymph nodes, and other factors. The current standard treatment approach used at our institution is a 3D tangential beam geometry, which involves two fields irradiating the breast, or a four field beam arrangement covering the whole breast and involved nodes, while decreasing the dose to organs as risk (OARs) such as the lung and heart. The coverage of these targets can be difficult to achieve in patients with unfavorable thoracic geometries, especially in those cases in which the planning target volume (PTV) is extended to the chest wall. It is a well-known fact that exposure of the heart to ionizing radiation has been proved to increase the subsequent rate of ischemic heart disease. In these cases, inverse planned treatments have become a proven alternative to the 3D approach. The goal of this research project is to evaluate the factors that affect our current techniques as well as to adapt the development of inverse modulated techniques for our clinic, in which breast cancer patients are one of the largest populations treated. For this purpose, a dosimetric comparison along with the evaluation of immobilization devices was necessary. Radiation treatment plans were designed and dosimetrically compared for 5 patients in both, supine and prone positions. For 8 patients, VMAT and IMRT plans were created and evaluated in the supine position. Skin flash incorporation for inverse modulated plans required measurement of the surface dose as well as an evaluation of breast volume changes during a treatment course. It was found that prone 3D conformal plans as well as the VMAT and IMRT plans are generally superior in sparing OARs to supine plans with comparable PTV coverage. Prone setup leads to larger shifts in breast volume as well as in positioning due to the difference in target geometry and nature of the immobilization device. IMRT and VMAT plans offer sparing of OARs from high dose regions with an increase of irradiated volume in the low dose regions. Skin flash incorporation was found to be accurate with the use of virtual bolus in the TPS for inverse modulated plans. Various factors influencing dose delivery in breast cancer radiation treatments were examined and quantified. Practical recommendations developed in the course of this project can improve our current techniques and provide alternatives to treat unique and challenging clinical cases.
Optimization of equivalent uniform dose using the L-curve criterion.
Chvetsov, Alexei V; Dempsey, James F; Palta, Jatinder R
2007-10-07
Optimization of equivalent uniform dose (EUD) in inverse planning for intensity-modulated radiation therapy (IMRT) prevents variation in radiobiological effect between different radiotherapy treatment plans, which is due to variation in the pattern of dose nonuniformity. For instance, the survival fraction of clonogens would be consistent with the prescription when the optimized EUD is equal to the prescribed EUD. One of the problems in the practical implementation of this approach is that the spatial dose distribution in EUD-based inverse planning would be underdetermined because an unlimited number of nonuniform dose distributions can be computed for a prescribed value of EUD. Together with ill-posedness of the underlying integral equation, this may significantly increase the dose nonuniformity. To optimize EUD and keep dose nonuniformity within reasonable limits, we implemented into an EUD-based objective function an additional criterion which ensures the smoothness of beam intensity functions. This approach is similar to the variational regularization technique which was previously studied for the dose-based least-squares optimization. We show that the variational regularization together with the L-curve criterion for the regularization parameter can significantly reduce dose nonuniformity in EUD-based inverse planning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takao, S; Matsuzaki, Y; Matsuura, T
Purpose: Spot-scanning technique has been utilized to achieve conformal dose distribution to large and complicated tumors. This technique generally does not require patient-specific devices such as aperture and compensator. The commercially available spot-scanning proton therapy (SSPT) systems, however, cannot deliver proton beams to the region shallower than 4 g/cm2. Therefore some range compensation device is required to treat superficial tumors with SSPT. This study shows dosimetric comparison of the following treatment techniques: (i) with a tabletop bolus, (ii) with a nozzle-mounted applicator, and (iii) without any devices and using intensity-modulated proton therapy (IMPT) technique. Methods: The applicator composed of amore » combination of a mini-ridge filter and a range shifter has been manufactured by Hitachi, Ltd., and the tabletop bolus was made by .decimal, Inc. Both devices have been clinically implemented in our facility. Three patients with liver tumors close to the skin surface were examined in this study. Each treatment plan was optimized so that the prescription dose of 76 Gy(RBE) or 66 Gy(RBE) would be delivered to 99% of the clinical target volume in 20 fractions. Three beams were used for tabletop bolus plan and IMPT plan, whereas two beams were used in the applicator plan because the gantry angle available was limited due to potential collision to patient and couch. The normal liver, colon, and skin were considered as organs at risk (OARs). Results: The target heterogeneity index (HI = D{sub 5}/D{sub 95}) was 1.03 on average in each planning technique. The mean dose to the normal liver was considerably less than 20 Gy(RBE) in all cases. The dose to the skin could be reduced by 20 Gy(RBE) on average in the IMPT plan compared to the applicator plan. Conclusion: It has been confirmed that all treatment techniques met the dosimetric criteria for the OARs and could be implemented clinically.« less
NASA Astrophysics Data System (ADS)
Maggio, Angelo; Carillo, Viviana; Cozzarini, Cesare; Perna, Lucia; Rancati, Tiziana; Valdagni, Riccardo; Gabriele, Pietro; Fiorino, Claudio
2013-04-01
The aim of this study was to evaluate the correlation between the ‘true’ absolute and relative dose-volume histograms (DVHs) of the bladder wall, dose-wall histogram (DWH) defined on MRI imaging and other surrogates of bladder dosimetry in prostate cancer patients, planned both with 3D-conformal and intensity-modulated radiation therapy (IMRT) techniques. For 17 prostate cancer patients, previously treated with radical intent, CT and MRI scans were acquired and matched. The contours of bladder walls were drawn by using MRI images. External bladder surfaces were then used to generate artificial bladder walls by performing automatic contractions of 5, 7 and 10 mm. For each patient a 3D conformal radiotherapy (3DCRT) and an IMRT treatment plan was generated with a prescription dose of 77.4 Gy (1.8 Gy/fr) and DVH of the whole bladder of the artificial walls (DVH-5/10) and dose-surface histograms (DSHs) were calculated and compared against the DWH in absolute and relative value, for both treatment planning techniques. A specific software (VODCA v. 4.4.0, MSS Inc.) was used for calculating the dose-volume/surface histogram. Correlation was quantified for selected dose-volume/surface parameters by the Spearman correlation coefficient. The agreement between %DWH and DVH5, DVH7 and DVH10 was found to be very good (maximum average deviations below 2%, SD < 5%): DVH5 showed the best agreement. The correlation was slightly better for absolute (R = 0.80-0.94) compared to relative (R = 0.66-0.92) histograms. The DSH was also found to be highly correlated with the DWH, although slightly higher deviations were generally found. The DVH was not a good surrogate of the DWH (R < 0.7 for most of parameters). When comparing the two treatment techniques, more pronounced differences between relative histograms were seen for IMRT with respect to 3DCRT (p < 0.0001).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jie; Lang, Jinyi; Wang, Pei
2014-01-01
Reirradiation of patients who were previously treated with radiotherapy is vastly challenging. Pulsed low–dose rate (PLDR) external beam radiotherapy has the potential to reduce normal tissue toxicities while providing significant tumor control for recurrent cancers. This work investigates treatment planning techniques for intensity-modulated radiation therapy (IMRT)-based PLDR treatment of various sites, including cases with pancreatic and prostate cancer. A total of 20 patients with clinical recurrence were selected for this study, including 10 cases with pancreatic cancer and 10 with prostate cancer. Large variations in the target volume were included to test the ability of IMRT using the existing treatmentmore » planning system and optimization algorithm to deliver uniform doses in individual gantry angles/fields for PLDR treatments. Treatment plans were generated with 10 gantry angles using the step-and-shoot IMRT delivery technique, which can be delivered in 3-minute intervals to achieve an effective low dose rate of 6.7 cGy/min. Instead of dose constraints on critical structures, ring structures were mainly used in PLDR-IMRT optimization. In this study, the PLDR-IMRT plans were compared with the PLDR-3-dimensional conformal radiation therapy (3DCRT) plans and the PLDR-RapidArc plans. For the 10 cases with pancreatic cancer that were investigated, the mean planning target volume (PTV) dose for each gantry angle in the PLDR-IMRT plans ranged from 17.6 to 22.4 cGy. The maximum doses ranged between 22.9 and 34.8 cGy. The minimum doses ranged from 8.2 to 17.5 cGy. For the 10 cases with prostate cancer that were investigated, the mean PTV doses for individual gantry angles ranged from 18.8 to 22.6 cGy. The maximum doses per gantry angle were between 24.0 and 34.7 cGy. The minimum doses per gantry angle ranged from 4.4 to 17.4 cGy. A significant reduction in the organ at risk (OAR) dose was observed with the PLDR-IMRT plan when compared with that using the PLDR-3DCRT plan. The volume receiving an 18-Gy (V{sub 18}) dose for the left and right kidneys was reduced by 10.6% and 12.5%, respectively, for the pancreatic plans. The volume receiving a 45-Gy (V{sub 45}) dose for the small bowel decreased from 65.3% to 45.5%. For the cases with prostate cancer, the volume receiving a 40-Gy (V{sub 40}) dose for the bladder and the rectum was reduced significantly by 25.1% and 51.2%, respectively. When compared with the RapidArc technique, the volume receiving a 30-Gy (V{sub 30}) dose for the left and the right kidneys was lower in the IMRT plans. For most OARs, no significant differences were observed between the PLDR-IMRT and the PLDR-RapidArc plans. These results clearly demonstrated that the PLDR-IMRT plan was suitable for PLDR pancreatic and prostate cancer treatments in terms of the overall plan quality. A significant reduction in the OAR dose was achieved with the PLDR-IMRT plan when compared with that using the PLDR-3DCRT plan. For most OARs, no significant differences were observed between the PLDR-IMRT and the PLDR-RapidArc plans. When compared with the PLDR-3DCRT plan, the PLDR-IMRT plan could provide superior target coverage and normal tissue sparing for PLDR reirradiation of recurrent pancreatic and prostate cancers. The PLDR-IMRT plan is an effective treatment choice for recurrent cancers in most cancer centers.« less
NASA Astrophysics Data System (ADS)
Webster, Matthew Julian
The ultimate goal of any treatment of cancer is to maximize the likelihood of killing the tumor while minimizing the chance of damaging healthy tissues. One of the most effective ways to accomplish this is through radiation therapy, which must be able to target the tumor volume with a high accuracy while minimizing the dose delivered to healthy tissues. A successful method of accomplishing this is brachytherapy which works by placing the radiation source in very close proximity to the tumor. However, most current applications of brachytherapy rely mostly on the geometric manipulation of isotropic sources, which limits the ability to specifically target the tumor. The purpose of this work is to introduce several types of shielded brachytherapy applicators which are capable of targeting tumors with much greater accuracy than existing technologies. These applicators rely on the modulation of the dose profile through a high-density tungsten alloy shields to create anisotropic dose distributions. Two classes of applicators have been developed in this work. The first relies on the active motion of the shield, to aim a highly directional radiation profile. This allows for very precise control of the dose distribution for treatment, achieving unparalleled dose coverage to the tumor while sparing healthy tissues. This technique has been given the moniker of Dynamic Modulated Brachytherapy (DMBT). The second class of applicators, designed to reduce treatment complexity uses static applicators. These applicators retain the use of the tungsten shield, but the shield is motionless during treatment. By intelligently designing the shield, significant improvements over current methods have been demonstrated. Although these static applicators fail to match the dosimetric quality of DMBT applicators the simplified setup and treatment procedure gives them significant appeal. The focus of this work has been to optimize these shield designs, specifically for the treatment of rectal and breast carcinomas. The use of Monte Carlo methods and development of optimization algorithms have played a prominent role in accomplishing this. The use of shielded applicators, such as the ones described here, is the next logical step in the rapidly evolving field of brachytherapy.
Yartsev, S; Kron, T; Van Dyk, J
2007-01-01
Helical tomotherapy (HT) is a novel treatment approach that combines Intensity-Modulate Radiation Therapy (IMRT) delivery with in-built image guidance using megavoltage (MV) CT scanning. The technique utilises a 6 MV linear accelerator mounted on a CT type ring gantry. The beam is collimated to a fan beam, which is intensity modulated using a binary multileaf collimator (MLC). As the patient advances slowly through the ring gantry, the linac rotates around the patient with a leaf-opening pattern optimised to deliver a highly conformal dose distribution to the target in the helical beam trajectory. The unit also allows the acquisition of MVCT images using the same radiation source detuned to reduce its effective energy to 3.5 MV, making the dose required for imaging less than 3 cGy. This paper discusses the major features of HT and describes the advantages and disadvantages of this approach in the context of the commercial Hi-ART system. PMID:21614257
Emerging Techniques for Dose Optimization in Abdominal CT
Platt, Joel F.; Goodsitt, Mitchell M.; Al-Hawary, Mahmoud M.; Maturen, Katherine E.; Wasnik, Ashish P.; Pandya, Amit
2014-01-01
Recent advances in computed tomographic (CT) scanning technique such as automated tube current modulation (ATCM), optimized x-ray tube voltage, and better use of iterative image reconstruction have allowed maintenance of good CT image quality with reduced radiation dose. ATCM varies the tube current during scanning to account for differences in patient attenuation, ensuring a more homogeneous image quality, although selection of the appropriate image quality parameter is essential for achieving optimal dose reduction. Reducing the x-ray tube voltage is best suited for evaluating iodinated structures, since the effective energy of the x-ray beam will be closer to the k-edge of iodine, resulting in a higher attenuation for the iodine. The optimal kilovoltage for a CT study should be chosen on the basis of imaging task and patient habitus. The aim of iterative image reconstruction is to identify factors that contribute to noise on CT images with use of statistical models of noise (statistical iterative reconstruction) and selective removal of noise to improve image quality. The degree of noise suppression achieved with statistical iterative reconstruction can be customized to minimize the effect of altered image quality on CT images. Unlike with statistical iterative reconstruction, model-based iterative reconstruction algorithms model both the statistical noise and the physical acquisition process, allowing CT to be performed with further reduction in radiation dose without an increase in image noise or loss of spatial resolution. Understanding these recently developed scanning techniques is essential for optimization of imaging protocols designed to achieve the desired image quality with a reduced dose. © RSNA, 2014 PMID:24428277
Poster - 52: Smoothing constraints in Modulated Photon Radiotherapy (XMRT) fluence map optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGeachy, Philip; Villarreal-Barajas, Jose Eduardo
Purpose: Modulated Photon Radiotherapy (XMRT), which simultaneously optimizes photon beamlet energy (6 and 18 MV) and fluence, has recently shown dosimetric improvement in comparison to conventional IMRT. That said, the degree of smoothness of resulting fluence maps (FMs) has yet to be investigated and could impact the deliverability of XMRT. This study looks at investigating FM smoothness and imposing smoothing constraint in the fluence map optimization. Methods: Smoothing constraints were modeled in the XMRT algorithm with the sum of positive gradient (SPG) technique. XMRT solutions, with and without SPG constraints, were generated for a clinical prostate scan using standard dosimetricmore » prescriptions, constraints, and a seven coplanar beam arrangement. The smoothness, with and without SPG constraints, was assessed by looking at the absolute and relative maximum SPG scores for each fluence map. Dose volume histograms were utilized when evaluating impact on the dose distribution. Results: Imposing SPG constraints reduced the absolute and relative maximum SPG values by factors of up to 5 and 2, respectively, when compared with their non-SPG constrained counterparts. This leads to a more seamless conversion of FMS to their respective MLC sequences. This improved smoothness resulted in an increase to organ at risk (OAR) dose, however the increase is not clinically significant. Conclusions: For a clinical prostate case, there was a noticeable improvement in the smoothness of the XMRT FMs when SPG constraints were applied with a minor increase in dose to OARs. This increase in OAR dose is not clinically meaningful.« less
Organ dose conversion coefficients for tube current modulated CT protocols for an adult population
NASA Astrophysics Data System (ADS)
Fu, Wanyi; Tian, Xiaoyu; Sahbaee, Pooyan; Zhang, Yakun; Segars, William Paul; Samei, Ehsan
2016-03-01
In computed tomography (CT), patient-specific organ dose can be estimated using pre-calculated organ dose conversion coefficients (organ dose normalized by CTDIvol, h factor) database, taking into account patient size and scan coverage. The conversion coefficients have been previously estimated for routine body protocol classes, grouped by scan coverage, across an adult population for fixed tube current modulated CT. The coefficients, however, do not include the widely utilized tube current (mA) modulation scheme, which significantly impacts organ dose. This study aims to extend the h factors and the corresponding dose length product (DLP) to create effective dose conversion coefficients (k factor) database incorporating various tube current modulation strengths. Fifty-eight extended cardiac-torso (XCAT) phantoms were included in this study representing population anatomy variation in clinical practice. Four mA profiles, representing weak to strong mA dependency on body attenuation, were generated for each phantom and protocol class. A validated Monte Carlo program was used to simulate the organ dose. The organ dose and effective dose was further normalized by CTDIvol and DLP to derive the h factors and k factors, respectively. The h factors and k factors were summarized in an exponential regression model as a function of body size. Such a population-based mathematical model can provide a comprehensive organ dose estimation given body size and CTDIvol. The model was integrated into an iPhone app XCATdose version 2, enhancing the 1st version based upon fixed tube current modulation. With the organ dose calculator, physicists, physicians, and patients can conveniently estimate organ dose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J; Yang, Z; Hu, W
2015-06-15
Purpose: This study was to investigate the dosimetric benefit of a novel intensity modulated radiation therapy (IMRT) technique for irradiating the left breast and regional lymph node (RLN). Methods: The breast and RLN (internal mammary node and periclavicular node) and normal tissue were contoured for 16 consecutive left-sided breast cancer patients previously treated with RT after lumpectomy. Nine equi-spaced fields IMRT (9 -field IMRT), tangential multi-beam IMRT (tangential-IMRT) and IMRT with fixed-jaw technique (FJT-IMRT) were developed and compared with three-dimensional conformal RT (3DCRT). Prescribed dose was 50 Gy in 25 fractions. Dose distributions and dose volume histograms were used tomore » evaluate plans. Results: All IMRTs achieved similar target coverage and substantially reduced heart V30 and V20 compared to the 3DCRT. The average heart mean dose had different changes, which were 9.0Gy for 9-field IMRT, 5.7Gy for tangential-IMRT and 4.2Gy for FJT-IMRT. For the contralateral lung and breast, the 9-field IMRT has the highest mean dose; and the FJT-IMRT and tangential-IMRT had similar lower value. For the thyroid, both 9-field IMRT and FJT-IMRT had similar V30 (20% and 22%) and were significantly lower than that of 3DCRT (34%) and tangential-IMRT (46%). Moreover, the thyroid mean dose of FJT-IMRT is the lowest. For cervical esophagus and humeral head, the FJT-IMRT also had the best sparing. Conclusion: All 9-field IMRT, tangential-IMRT and FJT-IMRT had superiority for targets coverage and substantially reduced the heart volume of high dose irradiation. The FJT-IMRT showed advantages of avoiding the contralateral breast and lung irradiation and decreasing the thyroid, humeral head and cervical esophagus radiation dose at the expense of a slight monitor units (MUs) increasing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beninati, G; Barbiere, J; Godfrey, L
2016-06-15
Purpose: To demonstrate that Volumetric Modulated Arc Therapy (VMAT) can be an alternative technique to Brachytherapy Accelerated Partial Breast Irradiation (APBI) for treating large breasted women. The non-coplanar VMAT technique uses a commercially available couch and a small number of angles. This technique with the patient in the prone position can reduce high skin and critical structure doses in large breasted women, which are usually associated with Brachytherapy APBI. Methods: Philips Pinnacle treatment planning system with Smart Arc was used to plan a left sided laterally located excision cavity on a standard prone breast patient setup. Three thirty-degree arcs enteredmore » from the lateral side at respective couch angles of 345, 0, and 15 degrees. A fourth thirty degree arc beam entered from the medial side at a couch angle of 0 degrees. The arcs were selected to avoid critical structures as much as possible. A test run was then performed to verify that the beams did not collide with the patient nor support structures. NSABP B-39/RTOG 0413 protocol guidelines were used for dose prescription, normal tissue, and target definition. Results: Dose Volume Histogram analysis indicated that all parameters were equal or better than RTOG recommendations. Of particular note regarding the plan quality:1.(a) For a prescribed dose of 3850cGy the PTV-EVAL target volume receiving 100 percent of the dose(V100) was 93; protocol recommendation is V90 > 90 percent. (b) Maximum dose was 110 percent versus the allowed 120 percent .2. Uninvolved percentage of normal breast V100 and V50 were 17 and 47 versus allowed 35 and 60 percent respectively.3. For the skin, V100 was 5.7cc and the max dose to 0.1 cc was 4190cGy. Conclusion: Prone Breast non-coplanar VMAT APBI can achieve better skin cosmesis and lower critical structure doses than Brachytherapy APBI.« less
Persson, Emilia; Gustafsson, Christian; Nordström, Fredrik; Sohlin, Maja; Gunnlaugsson, Adalsteinn; Petruson, Karin; Rintelä, Niina; Hed, Kristoffer; Blomqvist, Lennart; Zackrisson, Björn; Nyholm, Tufve; Olsson, Lars E; Siversson, Carl; Jonsson, Joakim
2017-11-01
To validate the dosimetric accuracy and clinical robustness of a commercially available software for magnetic resonance (MR) to synthetic computed tomography (sCT) conversion, in an MR imaging-only workflow for 170 prostate cancer patients. The 4 participating centers had MriPlanner (Spectronic Medical), an atlas-based sCT generation software, installed as a cloud-based service. A T2-weighted MR sequence, covering the body contour, was added to the clinical protocol. The MR images were sent from the MR scanner workstation to the MriPlanner platform. The sCT was automatically returned to the treatment planning system. Four MR scanners and 2 magnetic field strengths were included in the study. For each patient, a CT-treatment plan was created and approved according to clinical practice. The sCT was rigidly registered to the CT, and the clinical treatment plan was recalculated on the sCT. The dose distributions from the CT plan and the sCT plan were compared according to a set of dose-volume histogram parameters and gamma evaluation. Treatment techniques included volumetric modulated arc therapy, intensity modulated radiation therapy, and conventional treatment using 2 treatment planning systems and different dose calculation algorithms. The overall (multicenter/multivendor) mean dose differences between sCT and CT dose distributions were below 0.3% for all evaluated organs and targets. Gamma evaluation showed a mean pass rate of 99.12% (0.63%, 1 SD) in the complete body volume and 99.97% (0.13%, 1 SD) in the planning target volume using a 2%/2-mm global gamma criteria. Results of the study show that the sCT conversion method can be used clinically, with minimal differences between sCT and CT dose distributions for target and relevant organs at risk. The small differences seen are consistent between centers, indicating that an MR imaging-only workflow using MriPlanner is robust for a variety of field strengths, vendors, and treatment techniques. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Wenyong, Tu; Lu, Liu; Jun, Zeng; Weidong, Yin; Yun, Li
2010-01-01
This study presents a dosimetric optimization effort aiming to compare noncoplanar field (NCF) on 3 dimensions conformal radiotherapy (3D-CRT) and coplanar field (CF) on intensity-modulated radiotherapy (IMRT) planning for postocular invasion tumor. We performed a planning study on the computed tomography data of 8 consecutive patients with localized postocular invasion tumor. Four fields NCF 3D-CRT in the transverse plane with gantry angles of 0-10 degrees , 30-45 degrees , 240-270 degrees , and 310-335 degrees degrees were isocentered at the center of gravity of the target volume. The geometry of the beams was determined by beam's eye view. The same constraints were prepared with between CF IMRT optimization and NCF 3D-CRT treatment. The maximum point doses (D max) for the different optic pathway structures (OPS) with NCF 3D-CRT treatment should differ in no more than 3% from those with the NCF IMRT plan. Dose-volume histograms (DVHs) were obtained for all targets and organ at risk (OAR) with both treatment techniques. Plans with NCF 3D-CRT and CF IMRT constraints on target dose in homogeneity were computed, as well as the conformity index (CI) and homogeneity index (HI) in the target volume. The PTV coverage was optimal with both NCF 3D-CRT and CF IMRT plans in the 8 tumor sites. No difference was noted between the two techniques for the average D(max) and D(min) dose. NCF 3D-CRT and CF IMRT will yield similar results on CI. However, HI was a significant difference between NCF 3D-CRT and CF IMRT plan (p < 0.001). Physical endpoints for target showed the mean target dose to be low in the CF IMRT plan, caused by a large target dose in homogeneity (p < 0.001). The impact of NCF 3D-CRT versus CF IMRT set-up is very slight. NCF3D-CRT is one of the treatment options for postocular invasion tumor. However, constraints for OARs are needed. 2010 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Feasibility of intensity-modulated radiotherapy for esophageal cancer in definite chemoradiotherapy.
Hsieh, He-Yuan; Yeh, Hui-Ling; Hsu, Chung-Ping; Lin, Jin-Ching; Chuang, Cheng-Yen; Lin, Jai-Fu; Chang, Chen-Fa
2016-07-01
Esophageal cancer is a highly lethal malignancy, and its treatment has undergone a major evolution over the past 15 years. The objective of this study was to report our experience on the efficacy of definite chemoradiotherapy with the intensity-modulated radiotherapy (IMRT) technique in treating locally advanced esophageal cancer. From September 2004 to November 2011, 39 patients with biopsy-proven esophageal cancer, clinical stage T1-4N0-3M0 according to the American Joint Committee on Cancer 7(th) edition were enrolled. In these enrolled cases, either the tumor was unresectable or the patients refused surgery. All patients received a total radiation dose of 40-56 Gy in 20-28 fractions using IMRT planning. Five to seven radiation beam angles were designed according to the specific shape of the clinical target volume (CTV) and were delivered by a linear accelerator with photons of 6-10 MV energy. The gross tumor volume, CTV, planning target volume, and the organs at risk were outlined, and the homogeneity index (HI) and the conformity index (CI) were calculated. The treatment-related toxicities were also reviewed. The mean follow-up time was 22.4 months (range, 2.0-91.0 months). The 2- and 3-year overall survival rates were 30% and 28%, respectively. The most common Grade 3/4 toxicity was hematologic toxicity (43.6%). The IMRT plans showed high-dose homogeneity to the target, with a calculated HI of 0.9. The calculated CI of 0.8 also showed high conformity treatment dose to target within an acceptable dose range. For the total lungs, the average mean dose was 1313.7 cGy. The V5 and V20 of the total lungs were 67.8% and 23.4%, respectively. For the heart, the average mean dose was 2319.2 cGy. The V30 and V35 of the heart were 30.2% and 21.5%, respectively. Concurrent chemoradiotherapy using the IMRT technique for treating locally advanced unresectable esophageal cancer is feasible, with better conformity of target volume as well as improved sparing of organs at risk. Copyright © 2016. Published by Elsevier Taiwan LLC.
Duma, Marciana Nona; Berndt, Johannes; Rondak, Ina-Christine; Devecka, Michal; Wilkens, Jan J; Geinitz, Hans; Combs, Stephanie Elisabeth; Oechsner, Markus
2015-01-01
The aim of this study was to assess the effect of breathing motion on the delivered dose in esophageal cancer 3-dimensional (3D)-conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT), and volumetric modulated arc therapy (VMAT). We assessed 16 patients with esophageal cancer. All patients underwent 4D-computed tomography (4D-CT) for treatment planning. For each of the analyzed patients, 1 3D-CRT, 1 IMRT, and 1 VMAT (RapidArc-RA) plan were calculated. Each of the 3 initial plans was recalculated on the 4D-CT (for the maximum free inspiration and maximum free expiration) to assess the effect of breathing motion. We assessed the minimum dose (Dmin) and mean dose (Dmean) to the esophagus within the planning target volume, the volume changes of the lungs, the Dmean and the total lung volume receiving at least 40Gy (V40), and the V30, V20, V10, and V5. For the heart we assessed the Dmean and the V25. Over all techniques and all patients the change in Dmean as compared with the planned Dmean (planning CT [PCT]) to the esophagus was 0.48% in maximum free inspiration (CT_insp) and 0.55% in maximum free expiration (CT_exp). The Dmin CT_insp change was 0.86% and CT_exp change was 0.89%. The Dmean change of the lungs (heart) was in CT_insp 1.95% (2.89%) and 3.88% (2.38%) in CT_exp. In all, 4 patients had a clinically relevant change of the dose (≥ 5% Dmean to the heart and the lungs) between inspiration and expiration. These patients had a very cranially or caudally situated tumor. There are no relevant differences in the delivered dose to the regions of interest among the 3 techniques. Breathing motion management could be considered to achieve a better sparing of the lungs or heart in patients with cranially or caudally situated tumors. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duma, Marciana Nona, E-mail: Marciana.Duma@mri.tum.de; Berndt, Johannes; Rondak, Ina-Christine
2015-01-01
The aim of this study was to assess the effect of breathing motion on the delivered dose in esophageal cancer 3-dimensional (3D)-conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT), and volumetric modulated arc therapy (VMAT). We assessed 16 patients with esophageal cancer. All patients underwent 4D-computed tomography (4D-CT) for treatment planning. For each of the analyzed patients, 1 3D-CRT, 1 IMRT, and 1 VMAT (RapidArc—RA) plan were calculated. Each of the 3 initial plans was recalculated on the 4D-CT (for the maximum free inspiration and maximum free expiration) to assess the effect of breathing motion. We assessed the minimum dose (D{sub min})more » and mean dose (D{sub mean}) to the esophagus within the planning target volume, the volume changes of the lungs, the D{sub mean} and the total lung volume receiving at least 40 Gy (V{sub 40}), and the V{sub 30}, V{sub 20}, V{sub 10}, and V{sub 5}. For the heart we assessed the D{sub mean} and the V{sub 25}. Over all techniques and all patients the change in D{sub mean} as compared with the planned D{sub mean} (planning CT [PCT]) to the esophagus was 0.48% in maximum free inspiration (CT-insp) and 0.55% in maximum free expiration (CT-exp). The D{sub min} CT-insp change was 0.86% and CT-exp change was 0.89%. The D{sub mean} change of the lungs (heart) was in CT-insp 1.95% (2.89%) and 3.88% (2.38%) in CT-exp. In all, 4 patients had a clinically relevant change of the dose (≥ 5% D{sub mean} to the heart and the lungs) between inspiration and expiration. These patients had a very cranially or caudally situated tumor. There are no relevant differences in the delivered dose to the regions of interest among the 3 techniques. Breathing motion management could be considered to achieve a better sparing of the lungs or heart in patients with cranially or caudally situated tumors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Yao; Chen, Josephine; Leary, Celeste I.
Radiation of the low neck can be accomplished using split-field intensity-modulated radiation therapy (sf-IMRT) or extended-field intensity-modulated radiation therapy (ef-IMRT). We evaluated the effect of these treatment choices on target coverage and thyroid and larynx doses. Using data from 14 patients with cancers of the oropharynx, we compared the following 3 strategies for radiating the low neck: (1) extended-field IMRT, (2) traditional split-field IMRT with an initial cord-junction block to 40 Gy, followed by a full-cord block to 50 Gy, and (3) split-field IMRT with a full-cord block to 50 Gy. Patients were planned using each of these 3 techniques.more » To facilitate comparison, extended-field plans were normalized to deliver 50 Gy to 95% of the neck volume. Target coverage was assessed using the dose to 95% of the neck volume (D{sub 95}). Mean thyroid and larynx doses were computed. Extended-field IMRT was used as the reference arm; the mean larynx dose was 25.7 ± 7.4 Gy, and the mean thyroid dose was 28.6 ± 2.4 Gy. Split-field IMRT with 2-step blocking reduced laryngeal dose (mean larynx dose 15.2 ± 5.1 Gy) at the cost of a moderate reduction in target coverage (D{sub 95} 41.4 ± 14 Gy) and much higher thyroid dose (mean thyroid dose 44.7 ± 3.7 Gy). Split-field IMRT with initial full-cord block resulted in greater laryngeal sparing (mean larynx dose 14.2 ± 5.1 Gy) and only a moderately higher thyroid dose (mean thyroid dose 31 ± 8 Gy) but resulted in a significant reduction in target coverage (D{sub 95} 34.4 ± 15 Gy). Extended-field IMRT comprehensively covers the low neck and achieves acceptable thyroid and laryngeal sparing. Split-field IMRT with a full-cord block reduces laryngeal doses to less than 20 Gy and spares the thyroid, at the cost of substantially reduced coverage of the low neck. Traditional 2-step split-field IMRT similarly reduces the laryngeal dose but also reduces low-neck coverage and delivers very high doses to the thyroid.« less
NASA Astrophysics Data System (ADS)
Chen, Ho-Hsing; Wu, Jay; Chuang, Keh-Shih; Kuo, Hsiang-Chi
2007-07-01
Intensity-modulated radiation therapy (IMRT) utilizes nonuniform beam profile to deliver precise radiation doses to a tumor while minimizing radiation exposure to surrounding normal tissues. However, the problem of intrafraction organ motion distorts the dose distribution and leads to significant dosimetric errors. In this research, we applied an aperture adaptive technique with a visual guiding system to toggle the problem of respiratory motion. A homemade computer program showing a cyclic moving pattern was projected onto the ceiling to visually help patients adjust their respiratory patterns. Once the respiratory motion becomes regular, the leaf sequence can be synchronized with the target motion. An oscillator was employed to simulate the patient's breathing pattern. Two simple fields and one IMRT field were measured to verify the accuracy. Preliminary results showed that after appropriate training, the amplitude and duration of volunteer's breathing can be well controlled by the visual guiding system. The sharp dose gradient at the edge of the radiation fields was successfully restored. The maximum dosimetric error in the IMRT field was significantly decreased from 63% to 3%. We conclude that the aperture adaptive technique with the visual guiding system can be an inexpensive and feasible alternative without compromising delivery efficiency in clinical practice.
Optimized Orthovoltage Stereotactic Radiosurgery
NASA Astrophysics Data System (ADS)
Fagerstrom, Jessica M.
Because of its ability to treat intracranial targets effectively and noninvasively, stereotactic radiosurgery (SRS) is a prevalent treatment modality in modern radiation therapy. This work focused on SRS delivering rectangular function dose distributions, which are desirable for some targets such as those with functional tissue included within the target volume. In order to achieve such distributions, this work used fluence modulation and energies lower than those utilized in conventional SRS. In this work, the relationship between prescription isodose and dose gradients was examined for standard, unmodulated orthovoltage SRS dose distributions. Monte Carlo-generated energy deposition kernels were used to calculate 4pi, isocentric dose distributions for a polyenergetic orthovoltage spectrum, as well as monoenergetic orthovoltage beams. The relationship between dose gradients and prescription isodose was found to be field size and energy dependent, and values were found for prescription isodose that optimize dose gradients. Next, a pencil-beam model was used with a Genetic Algorithm search heuristic to optimize the spatial distribution of added tungsten filtration within apertures of cone collimators in a moderately filtered 250 kVp beam. Four cone sizes at three depths were examined with a Monte Carlo model to determine the effects of the optimized modulation compared to open cones, and the simulations found that the optimized cones were able to achieve both improved penumbra and flatness statistics at depth compared to the open cones. Prototypes of the filter designs calculated using mathematical optimization techniques and Monte Carlo simulations were then manufactured and inserted into custom built orthovoltage SRS cone collimators. A positioning system built in-house was used to place the collimator and filter assemblies temporarily in the 250 kVp beam line. Measurements were performed in water using radiochromic film scanned with both a standard white light flatbed scanner as well as a prototype laser densitometry system. Measured beam profiles showed that the modulated beams could more closely approach rectangular function dose profiles compared to the open cones. A methodology has been described and implemented to achieve optimized SRS delivery, including the development of working prototypes. Future work may include the construction of a full treatment platform.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomez, Daniel R., E-mail: dgomez@mdanderson.org; Estilo, Cherry L.; Wolden, Suzanne L.
Purpose: Osteoradionecrosis (ORN) is a known complication of radiation therapy to the head and neck. However, the incidence of this complication with intensity-modulated radiation therapy (IMRT) and dental sequelae with this technique have not been fully elucidated. Methods and Materials: From December 2000 to July 2007, 168 patients from our institution have been previously reported for IMRT of the oral cavity, nasopharynx, larynx/hypopharynx, sinus, and oropharynx. All patients underwent pretreatment dental evaluation, including panoramic radiographs, an aggressive fluoride regimen, and a mouthguard when indicated. The median maximum mandibular dose was 6,798 cGy, and the median mean mandibular dose was 3,845more » cGy. Patient visits were retrospectively reviewed for the incidence of ORN, and dental records were reviewed for the development of dental events. Univariate analysis was then used to assess the effect of mandibular and parotid gland dosimetric parameters on dental endpoints. Results: With a median clinic follow-up of 37.4 months (range, 0.8-89.6 months), 2 patients, both with oral cavity primaries, experienced ORN. Neither patient had preradiation dental extractions. The maximum mandibular dose and mean mandibular dose of the 2 patients were 7,183 and 6,828 cGy and 5812 and 5335 cGy, respectively. In all, 17% of the patients (n = 29) experienced a dental event. A mean parotid dose of >26 Gy was predictive of a subsequent dental caries, whereas a maximum mandibular dose >70 Gy and a mean mandibular dose >40 Gy were correlated with dental extractions after IMRT. Conclusions: ORN is rare after head-and-neck IMRT, but is more common with oral cavity primaries. Our results suggest different mechanisms for radiation-induced caries versus extractions.« less
Gomez, Daniel R; Estilo, Cherry L; Wolden, Suzanne L; Zelefsky, Michael J; Kraus, Dennis H; Wong, Richard J; Shaha, Ashok R; Shah, Jatin P; Mechalakos, James G; Lee, Nancy Y
2011-11-15
Osteoradionecrosis (ORN) is a known complication of radiation therapy to the head and neck. However, the incidence of this complication with intensity-modulated radiation therapy (IMRT) and dental sequelae with this technique have not been fully elucidated. From December 2000 to July 2007, 168 patients from our institution have been previously reported for IMRT of the oral cavity, nasopharynx, larynx/hypopharynx, sinus, and oropharynx. All patients underwent pretreatment dental evaluation, including panoramic radiographs, an aggressive fluoride regimen, and a mouthguard when indicated. The median maximum mandibular dose was 6,798 cGy, and the median mean mandibular dose was 3,845 cGy. Patient visits were retrospectively reviewed for the incidence of ORN, and dental records were reviewed for the development of dental events. Univariate analysis was then used to assess the effect of mandibular and parotid gland dosimetric parameters on dental endpoints. With a median clinic follow-up of 37.4 months (range, 0.8-89.6 months), 2 patients, both with oral cavity primaries, experienced ORN. Neither patient had preradiation dental extractions. The maximum mandibular dose and mean mandibular dose of the 2 patients were 7,183 and 6,828 cGy and 5812 and 5335 cGy, respectively. In all, 17% of the patients (n = 29) experienced a dental event. A mean parotid dose of >26 Gy was predictive of a subsequent dental caries, whereas a maximum mandibular dose >70 Gy and a mean mandibular dose >40 Gy were correlated with dental extractions after IMRT. ORN is rare after head-and-neck IMRT, but is more common with oral cavity primaries. Our results suggest different mechanisms for radiation-induced caries versus extractions. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poorvu, Philip D.; Sadow, Cheryl A.; Townamchai, Kanokpis
2013-04-01
Purpose: To characterize the rates of acute and late duodenal and other gastrointestinal (GI) toxicities among patients treated for cervical and endometrial cancers with extended-field intensity modulated radiation therapy (EF-IMRT) to the paraaortic nodes and to analyze dose-volume relationships of GI toxicities. Methods and Materials: Fifty-three patients with endometrial or cervical cancer underwent EF-IMRT to the paraaortic nodes, of whom 46 met the inclusion criteria for GI toxicity and 45 for duodenal toxicity analysis. The median prescribed dose to the paraaortic nodes was 54 Gy (range, 41.4-65 Gy). The 4 duodenal segments, whole duodenum, small bowel loops, peritoneum, and peritoneummore » plus retroperitoneal segments of colon were contoured retrospectively, and dosimetric analysis was performed to identify dose-volume relationships to grade ≥3 acute (<90 day) and late (≥90 day) GI toxicity. Results: Only 3/46 patients (6.5%) experienced acute grade ≥3 GI toxicity and 3/46 patients (6.5%) experienced late grade ≥3 GI toxicity. The median dose administered to these 6 patients was 50.4 Gy. One of 12 patients who received 63 to 65 Gy at the level of the renal hilum experienced grade 3 GI toxicity. Dosimetric analysis of patients with and without toxicity revealed no differences between the mean absolute or fractional volumes at any 5-Gy interval between 5 Gy and the maximum dose. None of the patients experienced duodenal toxicity. Conclusions: Treatment of paraaortic nodes with IMRT is associated with low rates of GI toxicities and no duodenal-specific toxicity, including patients treated with concurrent chemotherapy. This technique may allow sufficient dose sparing of the bowel to enable safe dose escalation to at least 65 Gy.« less
Deveau, Michael A; Gutiérrez, Alonso N; Mackie, Thomas R; Tomé, Wolfgang A; Forrest, Lisa J
2010-01-01
Intensity-modulated radiation therapy (IMRT) can be employed to yield precise dose distributions that tightly conform to targets and reduce high doses to normal structures by generating steep dose gradients. Because of these sharp gradients, daily setup variations may have an adverse effect on clinical outcome such that an adjacent normal structure may be overdosed and/or the target may be underdosed. This study provides a detailed analysis of the impact of daily setup variations on optimized IMRT canine nasal tumor treatment plans when variations are not accounted for due to the lack of image guidance. Setup histories of ten patients with nasal tumors previously treated using helical tomotherapy were replanned retrospectively to study the impact of daily setup variations on IMRT dose distributions. Daily setup shifts were applied to IMRT plans on a fraction-by-fraction basis. Using mattress immobilization and laser alignment, mean setup error magnitude in any single dimension was at least 2.5 mm (0-10.0 mm). With inclusions of all three translational coordinates, mean composite offset vector was 5.9 +/- 3.3 mm. Due to variations, a loss of equivalent uniform dose for target volumes of up to 5.6% was noted which corresponded to a potential loss in tumor control probability of 39.5%. Overdosing of eyes and brain was noted by increases in mean normalized total dose and highest normalized dose given to 2% of the volume. Findings suggest that successful implementation of canine nasal IMRT requires daily image guidance to ensure accurate delivery of precise IMRT distributions when non-rigid immobilization techniques are utilized. Unrecognized geographical misses may result in tumor recurrence and/or radiation toxicities to the eyes and brain.
Deveau, Michael A.; Gutiérrez, Alonso N.; Mackie, Thomas R.; Tomé, Wolfgang A.; Forrest, Lisa J.
2009-01-01
Intensity-modulated radiation therapy (IMRT) can be employed to yield precise dose distributions that tightly conform to targets and reduce high doses to normal structures by generating steep dose gradients. Because of these sharp gradients, daily setup variations may have an adverse effect on clinical outcome such that an adjacent normal structure may be overdosed and/or the target may be underdosed. This study provides a detailed analysis of the impact of daily setup variations on optimized IMRT canine nasal tumor treatment plans when variations are not accounted for due to the lack of image guidance. Setup histories of ten patients with nasal tumors previously treated using helical tomotherapy were replanned retrospectively to study the impact of daily setup variations on IMRT dose distributions. Daily setup shifts were applied to IMRT plans on a fraction-by-fraction basis. Using mattress immobilization and laser alignment, mean setup error magnitude in any single dimension was at least 2.5mm (0-10.0mm). With inclusions of all three translational coordinates, mean composite offset vector was 5.9±3.3mm. Due to variations, a loss of equivalent uniform dose (EUD) for target volumes of up to 5.6% was noted which corresponded to a potential loss in TCP of 39.5%. Overdosing of eyes and brain was noted by increases in mean normalized total dose (NTDmean) and highest normalized dose given to 2% of the volume (NTD2%). Findings suggest that successful implementation of canine nasal IMRT requires daily image guidance to ensure accurate delivery of precise IMRT distributions when non-rigid immobilization techniques are utilized. Unrecognized geographical misses may result in tumor recurrence and/or radiation toxicities to the eyes and brain. PMID:20166402
Dang, Pragya; Singh, Sarabjeet; Saini, Sanjay; Shepard, Jo-Anne O.
2009-01-01
Objective To assess effects of off-centering, automatic exposure control, and padding on attenuation values, noise, and radiation dose when using in-plane bismuth-based shields for CT scanning. Materials and Methods A 30 cm anthropomorphic chest phantom was scanned on a 64-multidetector CT, with the center of the phantom aligned to the gantry isocenter. Scanning was repeated after placing a bismuth breast shield on the anterior surface with no gap and with 1, 2, and 6 cm of padding between the shield and the phantom surface. The "shielded" phantom was also scanned with combined modulation and off-centering of the phantom at 2 cm, 4 cm and 6 cm below the gantry isocenter. CT numbers, noise, and surface radiation dose were measured. The data were analyzed using an analysis of variance. Results The in-plane shield was not associated with any significant increment for the surface dose or CT dose index volume, which was achieved by comparing the radiation dose measured by combined modulation technique to the fixed mAs (p > 0.05). Irrespective of the gap or the surface CT numbers, surface noise increased to a larger extent compared to Hounsfield unit (HU) (0-6 cm, 26-55%) and noise (0-6 cm, 30-40%) in the center. With off-centering, in-plane shielding devices are associated with less dose savings, although dose reduction was still higher than in the absence of shielding (0 cm off-center, 90% dose reduction; 2 cm, 61%) (p < 0.0001). Streak artifacts were noted at 0 cm and 1 cm gaps but not at 2 cm and 6 cm gaps of shielding to the surface distances. Conclusion In-plane shields are associated with greater image noise, artifactually increased attenuation values, and streak artifacts. However, shields reduce radiation dose regardless of the extent of off-centering. Automatic exposure control did not increase radiation dose when using a shield. PMID:19270862
Lafond, Caroline; Chiavassa, Sophie; Bertaut, Cindy; Boussion, Nicolas; Chapel, Nathalie; Chapron, Lucie; Coste, Frédéric; Crespin, Sylvain; Dy, Gilles; Faye, Papa Abdoulaye; Leleu, Cyril; Bouvier, Jeanne; Madec, Ludovic; Mesgouez, Jérôme; Palisson, Jérémy; Vela, Anthony; Delpon, Grégory
2016-05-01
Static beam intensity-modulated-radiation-therapy (IMRT) and/or Volumetric-Modulated-Arc-Therapy (VMAT) are now available in many regional radiotherapy departments. The aim of this multi-institutional audit was to design a new methodology based on radiochromic films to perform an independent quality control. A set of data were sent to all participating centres for two clinical localizations: prostate and Head and Neck (H&N) cancers. The agreement between calculations and measurements was verified in the Octavius phantom (PTW) by point measurements using ionization chambers and by 2D measurements using EBT3 radiochromic films. Due to uncertainties in the whole procedure, criteria were set to 5% and 3% in local dose and 3mm in distance excluding doses lower than 10% of the maximum doses. No normalization point or area was used for the quantitative analysis. 13 radiotherapy centres participated in this audit involving 28 plans (12 IMRT, 16 VMAT). For point measurements, mean errors were -0.18±1.54% and 0.00±1.58% for prostate and H&N cases respectively. For 2D measurements with 5%/3mm criteria, gamma map analysis showed a pixel pass rate higher than 95% for prostate and H&N. Mean gamma index was lower than 0.4 for prostate and 0.5 for H&N. Both techniques yielded similar results. This study showed the feasibility of an independent quality control by peers for conventional IMRT and VMAT. Results from all participating centres were found to be in good agreement. This regional study demonstrated the feasibility of our new methodology based on radiochromic films without dose normalization on a specific point. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cashmore, Jason, E-mail: Jason.cashmore@uhb.nhs.uk; Ramtohul, Mark; Ford, Dan
Purpose: Intensity modulated radiotherapy (IMRT) has been linked with an increased risk of secondary cancer induction due to the extra leakage radiation associated with delivery of these techniques. Removal of the flattening filter offers a simple way of reducing head leakage, and it may be possible to generate equivalent IMRT plans and to deliver these on a standard linear accelerator operating in unflattened mode. Methods and Materials: An Elekta Precise linear accelerator has been commissioned to operate in both conventional and unflattened modes (energy matched at 6 MV) and a direct comparison made between the treatment planning and delivery ofmore » pediatric intracranial treatments using both approaches. These plans have been evaluated and delivered to an anthropomorphic phantom. Results: Plans generated in unflattened mode are clinically identical to those for conventional IMRT but can be delivered with greatly reduced leakage radiation. Measurements in an anthropomorphic phantom at clinically relevant positions including the thyroid, lung, ovaries, and testes show an average reduction in peripheral doses of 23.7%, 29.9%, 64.9%, and 70.0%, respectively, for identical plan delivery compared to conventional IMRT. Conclusions: IMRT delivery in unflattened mode removes an unwanted and unnecessary source of scatter from the treatment head and lowers leakage doses by up to 70%, thereby reducing the risk of radiation-induced second cancers. Removal of the flattening filter is recommended for IMRT treatments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliver, Mike; Gladwish, Adam; Craig, Jeff
2008-07-15
Purpose and background: Intensity modulated arc therapy (IMAT) is a rotational variant of Intensity modulated radiation therapy (IMRT) that is achieved by allowing the multileaf collimator (MLC) positions to vary as the gantry rotates around the patient. This work describes a method to generate an IMAT plan through the use of a fast ray tracing technique based on dosimetric and geometric information for setting initial MLC leaf positions prior to final IMAT optimization. Methods and materials: Three steps were used to generate an IMAT plan. The first step was to generate arcs based on anatomical contours. The second step wasmore » to generate ray importance factor (RIF) maps by ray tracing the dose distribution inside the planning target volume (PTV) to modify the MLC leaf positions of the anatomical arcs to reduce the maximum dose inside the PTV. The RIF maps were also segmented to create a new set of arcs to improve the dose to low dose voxels within the PTV. In the third step, the MLC leaf positions from all arcs were put through a leaf position optimization (LPO) algorithm and brought into a fast Monte Carlo dose calculation engine for a final dose calculation. The method was applied to two phantom cases, a clinical prostate case and the Radiological Physics Center (RPC)'s head and neck phantom. The authors assessed the plan improvements achieved by each step and compared plans with and without using RIF. They also compared the IMAT plan with an IMRT plan for the RPC phantom. Results: All plans that incorporated RIF and LPO had lower objective function values than those that incorporated LPO only. The objective function value was reduced by about 15% after the generation of RIF arcs and 52% after generation of RIF arcs and leaf position optimization. The IMAT plan for the RPC phantom had similar dose coverage for PTV1 and PTV2 (the same dose volume histogram curves), however, slightly lower dose to the normal tissues compared to a six-field IMRT plan. Conclusion: The use of a ray importance factor can generate initial IMAT arcs efficiently for further MLC leaf position optimization to obtain more favorable IMAT plan.« less
Yen, Yu-Chun; Chang, Jer-Hwa; Lin, Wei-Cheng; Chiou, Jeng-Fong; Chang, Yin-Chun; Chang, Chia-Lun; Hsu, Han-Lin; Chow, Jyh-Ming; Yuan, Kevin Sheng-Po; Wu, Alexander T H; Wu, Szu-Yuan
2017-06-01
Few large, prospective, randomized studies have investigated the effectiveness of esophagectomy in patients with thoracic esophageal squamous cell carcinoma (TESCC) who receive definitive radiotherapy (RT) or concurrent chemoradiotherapy (CCRT) through modern, intensity modulated-RT (IMRT) techniques. The therapeutic effects of esophagectomy in patients with TESCC were evaluated using modern clinical staging and RT techniques and suitable RT doses. The authors analyzed data from patients with TESCC from the Taiwan Cancer Registry database. Patients were categorized into the following groups on the basis of treatment modality to compare their outcomes: group 1 received definitive CCRT, group 2 received neoadjuvant RT followed by esophagectomy (total IMRT dose, ≥50 grays [Gy]), and group 3 receiving neoadjuvant CCRT followed by esophagectomy (total IMRT dose, ≥ 50 Gy). The median total RT dose and fraction size were 50.4 Gy and 1.8 Gy per fraction, respectively. Group 1 was used as the control arm for investigating the risk of mortality after treatment. In total, 3123 patients who had TESCC without distant metastasis were enrolled. Patient ages 65 years and older, Charlson comorbidity index scores ≥3, advanced clinical stages (IIA-IIIC), alcohol consumption, and cigarette smoking were identified as significant, independent poor prognostic risk factors for overall survival in multivariate Cox regression analyses. In group 3, after adjustment for confounders, the adjusted hazard ratios (95% confidence intervals [CIs]) for overall mortality were 0.62 (95% CI, 0.41-0.93) for patients with clinical stage IIA disease, 0.61 (95% CI, 0.41-0.91) for those with clinical stage IIB disease, 0.47 (95% CI, 0.38-0.55) for those with clinical stage IIIA disease, 0.47 (95% CI, 0.39-0.56) for those with clinical stage IIIB disease, and 0.46 (95% CI, 0.37-0.57) for those with clinical stage IIIC disease. Esophagectomy can be beneficial in patients with TESCC after definitive CCRT, especially in those who have advanced-stage disease. Cancer 2017;123:2043-2053. © 2017 American Cancer Society. © 2017 American Cancer Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kainz, K; Prah, D; Ahunbay, E
2014-06-01
Purpose: A novel modulated arc therapy technique, mARC, enables superposition of step-and-shoot IMRT segments upon a subset of the optimization points (OPs) of a continuous-arc delivery. We compare two approaches to mARC planning: one with the number of OPs fixed throughout optimization, and another where the planning system determines the number of OPs in the final plan, subject to an upper limit defined at the outset. Methods: Fixed-OP mARC planning was performed for representative cases using Panther v. 5.01 (Prowess, Inc.), while variable-OP mARC planning used Monaco v. 5.00 (Elekta, Inc.). All Monaco planning used an upper limit of 91more » OPs; those OPs with minimal MU were removed during optimization. Plans were delivered, and delivery times recorded, on a Siemens Artiste accelerator using a flat 6MV beam with 300 MU/min rate. Dose distributions measured using ArcCheck (Sun Nuclear Corporation, Inc.) were compared with the plan calculation; the two were deemed consistent if they agreed to within 3.5% in absolute dose and 3.5 mm in distance-to-agreement among > 95% of the diodes within the direct beam. Results: Example cases included a prostate and a head-and-neck planned with a single arc and fraction doses of 1.8 and 2.0 Gy, respectively. Aside from slightly more uniform target dose for the variable-OP plans, the DVHs for the two techniques were similar. For the fixed-OP technique, the number of OPs was 38 and 39, and the delivery time was 228 and 259 seconds, respectively, for the prostate and head-and-neck cases. For the final variable-OP plans, there were 91 and 85 OPs, and the delivery time was 296 and 440 seconds, correspondingly longer than for fixed-OP. Conclusion: For mARC, both the fixed-OP and variable-OP approaches produced comparable-quality plans whose delivery was successfully verified. To keep delivery time per fraction short, a fixed-OP planning approach is preferred.« less
SU-E-T-548: How To Decrease Spine Dose In Patients Who Underwent Sterotactic Spine Radiosurgery?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acar, H; Altinok, A; Kucukmorkoc, E
2014-06-01
Purpose: Stereotactic radiosurgery for spine metastases involves irradiation using a single high dose fraction. The purpose of this study was to dosimetrically compare stereotactic spine radiosurgery(SRS) plans using a recently new volumetric modulated arc therapy(VMAT) technique against fix-field intensity-modulated radiotherapy(IMRT). Plans were evaluated for target conformity and spinal cord sparing. Methods: Fifteen previously treated patients were replanned using the Eclipse 10.1 TPS AAA calculation algorithm. IMRT plans with 7 fields were generated. The arc plans used 2 full arc configurations. Arc and IMRT plans were normalized and prescribed to deliver 16.0 Gy in a single fraction to 90% of themore » planning target volume(PTV). PTVs consisted of the vertebral body expanded by 3mm, excluding the PRV-cord, where the cord was expanded by 2mm.RTOG 0631 recommendations were applied for treatment planning. Partial spinal cord volume was defined as 5mm above and below the radiosurgery target volume. Plans were compared for conformity and gradient index as well as spinal cord sparing. Results: The conformity index values of fifteen patients for two different treatment planning techniques were shown in table 1. Conformity index values for 2 full arc planning (average CI=0.84) were higher than that of IMRT planning (average CI=0.79). The gradient index values of fifteen patients for two different treatment planning techniques were shown in table 2. Gradient index values for 2 full arc planning (average GI=3.58) were higher than that of IMRT planning (average GI=2.82).The spinal cord doses of fifteen patients for two different treatment planning techniques were shown in table 3. D0.35cc, D0.03cc and partial spinal cord D10% values in 2 full arc plannings (average D0.35cc=819.3cGy, D0.03cc=965.4cGy, 10%partial spinal=718.1cGy) were lower than IMRT plannings (average D0.35cc=877.4cGy, D0.03c=1071.4cGy, 10%partial spinal=805.1cGy). Conclusions: The two arc VMAT technique is superior to 7 field IMRT technique in terms of both spinal cord sparing and better conformity and gradient indexes.« less
Park, Jong Min; Park, So-Yeon; Kim, Jung-In; Carlson, Joel; Kim, Jin Ho
2017-03-01
To investigate the effect of dose calculation grid on calculated dose-volumetric parameters for eye lenses and optic pathways. A total of 30 patients treated using the volumetric modulated arc therapy (VMAT) technique, were retrospectively selected. For each patient, dose distributions were calculated with calculation grids ranging from 1 to 5 mm at 1 mm intervals. Identical structures were used for VMAT planning. The changes in dose-volumetric parameters according to the size of the calculation grid were investigated. Compared to dose calculation with 1 mm grid, the maximum doses to the eye lens with calculation grids of 2, 3, 4 and 5 mm increased by 0.2 ± 0.2 Gy, 0.5 ± 0.5 Gy, 0.9 ± 0.8 Gy and 1.7 ± 1.5 Gy on average, respectively. The Spearman's correlation coefficient between dose gradients near structures vs. the differences between the calculated doses with 1 mm grid and those with 5 mm grid, were 0.380 (p < 0.001). For the accurate calculation of dose distributions, as well as efficiency, using a grid size of 2 mm appears to be the most appropriate choice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaidar-Person, Orit; Roach, Mack; Créhange, Gilles, E-mail: gcrehange@cgfl.fr
2013-07-15
Given the low α/β ratio of prostate cancer, prostate hypofractionation has been tested through numerous clinical studies. There is a growing body of literature suggesting that with high conformal radiation therapy and even with more sophisticated radiation techniques, such as high-dose-rate brachytherapy or image-guided intensity modulated radiation therapy, morbidity associated with shortening overall treatment time with higher doses per fraction remains low when compared with protracted conventional radiation therapy to the prostate only. In high-risk prostate cancer patients, there is accumulating evidence that either dose escalation to the prostate or hypofractionation may improve outcome. Nevertheless, selected patients who have amore » high risk of lymph node involvement may benefit from whole-pelvic radiation therapy (WPRT). Although combining WPRT with hypofractionated prostate radiation therapy is feasible, it remains investigational. By combining modern advances in radiation oncology (high-dose-rate prostate brachytherapy, intensity modulated radiation therapy with an improved image guidance for soft-tissue sparing), it is hypothesized that WPRT could take advantage of recent results from hypofractionation trials. Moreover, the results from hypofractionation trials raise questions as to whether hypofractionation to pelvic lymph nodes with a high risk of occult involvement might improve the outcomes in WPRT. Although investigational, this review discusses the challenging idea of WPRT in the context of hypofractionation for patients with high-risk prostate cancer.« less
Liu, Wei; Li, Yupeng; Li, Xiaoqiang; Cao, Wenhua; Zhang, Xiaodong
2012-01-01
Purpose: The distal edge tracking (DET) technique in intensity-modulated proton therapy (IMPT) allows for high energy efficiency, fast and simple delivery, and simple inverse treatment planning; however, it is highly sensitive to uncertainties. In this study, the authors explored the application of DET in IMPT (IMPT-DET) and conducted robust optimization of IMPT-DET to see if the planning technique’s sensitivity to uncertainties was reduced. They also compared conventional and robust optimization of IMPT-DET with three-dimensional IMPT (IMPT-3D) to gain understanding about how plan robustness is achieved. Methods: They compared the robustness of IMPT-DET and IMPT-3D plans to uncertainties by analyzing plans created for a typical prostate cancer case and a base of skull (BOS) cancer case (using data for patients who had undergone proton therapy at our institution). Spots with the highest and second highest energy layers were chosen so that the Bragg peak would be at the distal edge of the targets in IMPT-DET using 36 equally spaced angle beams; in IMPT-3D, 3 beams with angles chosen by a beam angle optimization algorithm were planned. Dose contributions for a number of range and setup uncertainties were calculated, and a worst-case robust optimization was performed. A robust quantification technique was used to evaluate the plans’ sensitivity to uncertainties. Results: With no uncertainties considered, the DET is less robust to uncertainties than is the 3D method but offers better normal tissue protection. With robust optimization to account for range and setup uncertainties, robust optimization can improve the robustness of IMPT plans to uncertainties; however, our findings show the extent of improvement varies. Conclusions: IMPT’s sensitivity to uncertainties can be improved by using robust optimization. They found two possible mechanisms that made improvements possible: (1) a localized single-field uniform dose distribution (LSFUD) mechanism, in which the optimization algorithm attempts to produce a single-field uniform dose distribution while minimizing the patching field as much as possible; and (2) perturbed dose distribution, which follows the change in anatomical geometry. Multiple-instance optimization has more knowledge of the influence matrices; this greater knowledge improves IMPT plans’ ability to retain robustness despite the presence of uncertainties. PMID:22755694
SU-F-I-06: Evaluation of Imaging Dose for Modulation Layer Based Dual Energy Cone-Beam CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ju, Eunbin; Ahn, SoHyun; Cho, Samju
Purpose: Dual energy cone beam CT system is finding a variety of promising applications in diagnostic CT, both in imaging of endogenous materials and exogenous materials across a range of body sites. Dual energy cone beam CT system to suggest in this study acquire image by rotating 360 degree with half of the X-ray window covered using copper modulation layer. In the region that covered by modulation layer absorb the low energy X-ray by modulation layer. Relative high energy X-ray passes through the layer and contributes to image reconstruction. Dose evaluation should be carried out in order to utilize suchmore » an imaging acquirement technology for clinical use. Methods: For evaluating imaging dose of modulation layer based dual energy cone beam CT system, Prototype cone beam CT that configured X-ray tube (D054SB, Toshiba, Japan) and detector (PaxScan 2520V, Varian Medical Systems, Palo Alto, CA) is used. A range of 0.5–2.0 mm thickness of modulation layer is implemented in Monte Carlo simulation (MCNPX, ver. 2.6.0, Los Alamos National Laboratory, USA) with half of X-ray window covered. In-house phantom using in this study that has 3 cylindrical phantoms configured water, Teflon air with PMMA covered for verifying the comparability the various material in human body and is implemented in Monte Carlo simulation. The actual dose with 2.0 mm copper covered half of X-ray window is measured using Gafchromic EBT3 film with 5.0 mm bolus for compared with simulative dose. Results: Dose in phantom reduced 33% by copper modulation layer of 2.0 mm. Scattering dose occurred in modulation layer by Compton scattering effect is 0.04% of overall dose. Conclusion: Modulation layer of that based dual energy cone beam CT has not influence on unnecessary scatter dose. This study was supported by the Radiation Safety Research Programs (1305033) through the Nuclear Safety and Security Commission.« less
Proton radiography and proton computed tomography based on time-resolved dose measurements
NASA Astrophysics Data System (ADS)
Testa, Mauro; Verburg, Joost M.; Rose, Mark; Min, Chul Hee; Tang, Shikui; Hassane Bentefour, El; Paganetti, Harald; Lu, Hsiao-Ming
2013-11-01
We present a proof of principle study of proton radiography and proton computed tomography (pCT) based on time-resolved dose measurements. We used a prototype, two-dimensional, diode-array detector capable of fast dose rate measurements, to acquire proton radiographic images expressed directly in water equivalent path length (WEPL). The technique is based on the time dependence of the dose distribution delivered by a proton beam traversing a range modulator wheel in passive scattering proton therapy systems. The dose rate produced in the medium by such a system is periodic and has a unique pattern in time at each point along the beam path and thus encodes the WEPL. By measuring the time dose pattern at the point of interest, the WEPL to this point can be decoded. If one measures the time-dose patterns at points on a plane behind the patient for a beam with sufficient energy to penetrate the patient, the obtained 2D distribution of the WEPL forms an image. The technique requires only a 2D dosimeter array and it uses only the clinical beam for a fraction of second with negligible dose to patient. We first evaluated the accuracy of the technique in determining the WEPL for static phantoms aiming at beam range verification of the brain fields of medulloblastoma patients. Accurate beam ranges for these fields can significantly reduce the dose to the cranial skin of the patient and thus the risk of permanent alopecia. Second, we investigated the potential features of the technique for real-time imaging of a moving phantom. Real-time tumor tracking by proton radiography could provide more accurate validations of tumor motion models due to the more sensitive dependence of proton beam on tissue density compared to x-rays. Our radiographic technique is rapid (˜100 ms) and simultaneous over the whole field, it can image mobile tumors without the problem of interplay effect inherently challenging for methods based on pencil beams. Third, we present the reconstructed pCT images of a cylindrical phantom containing inserts of different materials. As for all conventional pCT systems, the method illustrated in this work produces tomographic images that are potentially more accurate than x-ray CT in providing maps of proton relative stopping power (RSP) in the patient without the need for converting x-ray Hounsfield units to proton RSP. All phantom tests produced reasonable results, given the currently limited spatial and time resolution of the prototype detector. The dose required to produce one radiographic image, with the current settings, is ˜0.7 cGy. Finally, we discuss a series of techniques to improve the resolution and accuracy of radiographic and tomographic images for the future development of a full-scale detector.
Karava, Konstantina; Ehrbar, Stefanie; Riesterer, Oliver; Roesch, Johannes; Glatz, Stefan; Klöck, Stephan; Guckenberger, Matthias; Tanadini-Lang, Stephanie
2017-11-09
Radiotherapy for pancreatic cancer has two major challenges: (I) the tumor is adjacent to several critical organs and, (II) the mobility of both, the tumor and its surrounding organs at risk (OARs). A treatment planning study simulating stereotactic body radiation therapy (SBRT) for pancreatic tumors with both the internal target volume (ITV) concept and the tumor tracking approach was performed. The two respiratory motion-management techniques were compared in terms of doses to the target volume and organs at risk. Two volumetric-modulated arc therapy (VMAT) treatment plans (5 × 5 Gy) were created for each of the 12 previously treated pancreatic cancer patients, one using the ITV concept and one the tumor tracking approach. To better evaluate the overall dose delivered to the moving tumor volume, 4D dose calculations were performed on four-dimensional computed tomography (4DCT) scans. The resulting planning target volume (PTV) size for each technique was analyzed. Target and OAR dose parameters were reported and analyzed for both 3D and 4D dose calculation. Tumor motion ranged from 1.3 to 11.2 mm. Tracking led to a reduction of PTV size (max. 39.2%) accompanied with significant better tumor coverage (p<0.05, paired Wilcoxon signed rank test) both in 3D and 4D dose calculations and improved organ at risk sparing. Especially for duodenum, stomach and liver, the mean dose was significantly reduced (p<0.05) with tracking for 3D and 4D dose calculations. By using an adaptive tumor tracking approach for respiratory-induced pancreatic motion management, a significant reduction in PTV size can be achieved, which subsequently facilitates treatment planning, and improves organ dose sparing. The dosimetric benefit of tumor tracking is organ and patient-specific.
NASA Astrophysics Data System (ADS)
Lin, Mu-Han; Price, Robert A., Jr.; Li, Jinsheng; Kang, Shengwei; Li, Jie; Ma, C.-M.
2013-11-01
Many tumor cells demonstrate hyperradiosensitivity at doses below ˜50 cGy. Together with the increased normal tissue repair under low dose rate, the pulsed low dose rate radiotherapy (PLDR), which separates a daily fractional dose of 200 cGy into 10 pulses with 3 min interval between pulses (˜20 cGy/pulse and effective dose rate 6.7 cGy min-1), potentially reduces late normal tissue toxicity while still providing significant tumor control for re-irradiation treatments. This work investigates the dosimetric and technical feasibilities of intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT)-based PLDR treatments using Varian Linacs. Twenty one cases (12 real re-irradiation cases) including treatment sites of pancreas, prostate, pelvis, lung, head-and-neck, and breast were recruited for this study. The lowest machine operation dose rate (100 MU min-1) was employed in the plan delivery. Ten-field step-and-shoot IMRT and dual-arc VMAT plans were generated using the Eclipse TPS with routine planning strategies. The dual-arc plans were delivered five times to achieve a 200 cGy daily dose (˜20 cGy arc-1). The resulting plan quality was evaluated according to the heterogeneity and conformity indexes (HI and CI) of the planning target volume (PTV). The dosimetric feasibility of retaining the hyperradiosensitivity for PLDR was assessed based on the minimum and maximum dose in the target volume from each pulse. The delivery accuracy of VMAT and IMRT at the 100 MU min-1 machine operation dose rate was verified using a 2D diode array and ion chamber measurements. The delivery reproducibility was further investigated by analyzing the Dynalog files of repeated deliveries. A comparable plan quality was achieved by the IMRT (CI 1.10-1.38 HI 1.04-1.10) and the VMAT (CI 1.08-1.26 HI 1.05-1.10) techniques. The minimum/maximum PTV dose per pulse is 7.9 ± 5.1 cGy/33.7 ± 6.9 cGy for the IMRT and 12.3 ± 4.1 cGy/29.2 ± 4.7 cGy for the VMAT. Six out of the 186 IMRT pulses (fields) were found to exceed 50 cGy maximum PTV dose per pulse while the maximum PTV dose per pulse was within 40 cGy for all the VMAT pulses (arcs). However, for VMAT plans, the dosimetric quality of the entire treatment plan was less superior for the breast cases and large irregular targets. The gamma passing rates for both techniques at the 100 MU min-1 dose rate were at least 94.1% (3%/3 mm) and the point dose measurements agreed with the planned values to within 2.2%. The average root mean square error of the leaf position was 0.93 ± 0.83 mm for IMRT and 0.53 ± 0.48 mm for VMAT based on the Dynalog file analysis. The RMS error of the leaf position was nearly identical for the repeated deliveries of the same plans. In general, both techniques are feasible for PLDR treatments. VMAT was more advantageous for PLDR with more uniform target dose per pulse, especially for centrally located tumors. However, for large, irregular and/or peripheral tumors, IMRT could produce more favorable PLDR plans. By taking the biological benefit of PLDR delivery and the dosimetric benefit of IMRT and VMAT, the proposed methods have a great potential for those previously-irradiated recurrent patients.
'Omics analysis of low dose acetaminophen intake demonstrates novel response pathways in humans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jetten, Marlon J.A.; Gaj, Stan; Ruiz-Aracama, Ainhoa
2012-03-15
Acetaminophen is the primary cause of acute liver toxicity in Europe/USA, which led the FDA to reconsider recommendations concerning safe acetaminophen dosage/use. Unfortunately, the current tests for liver toxicity are no ideal predictive markers for liver injury, i.e. they only measure acetaminophen exposure after profound liver toxicity has already occurred. Furthermore, these tests do not provide mechanistic information. Here, 'omics techniques (global analysis of metabolomic/gene-expression responses) may provide additional insight. To better understand acetaminophen-induced responses at low doses, we evaluated the effects of (sub-)therapeutic acetaminophen doses on metabolite formation and global gene-expression changes (including, for the first time, full-genome humanmore » miRNA expression changes) in blood/urine samples from healthy human volunteers. Many known and several new acetaminophen-metabolites were detected, in particular in relation to hepatotoxicity-linked, oxidative metabolism of acetaminophen. Transcriptomic changes indicated immune-modulating effects (2 g dose) and oxidative stress responses (4 g dose). For the first time, effects of acetaminophen on full-genome human miRNA expression have been considered and confirmed the findings on mRNA level. 'Omics techniques outperformed clinical chemistry tests and revealed novel response pathways to acetaminophen in humans. Although no definitive conclusion about potential immunotoxic effects of acetaminophen can be drawn from this study, there are clear indications that the immune system is triggered even after intake of low doses of acetaminophen. Also, oxidative stress-related gene responses, similar to those seen after high dose acetaminophen exposure, suggest the occurrence of possible pre-toxic effects of therapeutic acetaminophen doses. Possibly, these effects are related to dose-dependent increases in levels of hepatotoxicity-related metabolites. -- Highlights: ► 'Omics techniques outperformed classic clinical chemistry tests. ► Metabolomic analyses led to the detection of five new acetaminophen metabolites. ► Low dose APAP changed immune and oxidative stress related gene expression in blood. ► APAP-induced full-genome human blood miRNA profiles were assessed for the first time.« less
NASA Astrophysics Data System (ADS)
Bush, K.; Zavgorodni, S.; Gagne, I.; Townson, R.; Ansbacher, W.; Beckham, W.
2010-08-01
The aim of the study was to perform the Monte Carlo (MC) evaluation of RapidArc™ (Varian Medical Systems, Palo Alto, CA) dose calculations for four oropharynx midline sparing planning strategies. Six patients with squamous cell cancer of the oropharynx were each planned with four RapidArc head and neck treatment strategies consisting of single and double photon arcs. In each case, RTOG0522 protocol objectives were used during planning optimization. Dose calculations performed with the analytical anisotropic algorithm (AAA) are compared against BEAMnrc/DOSXYZnrc dose calculations for the 24-plan dataset. Mean dose and dose-to-98%-of-structure-volume (D98%) were used as metrics in the evaluation of dose to planning target volumes (PTVs). Mean dose and dose-to-2%-of-structure-volume (D2%) were used to evaluate dose differences within organs at risk (OAR). Differences in the conformity index (CI) and the homogeneity index (HI) as well as 3D dose distributions were also observed. AAA calculated PTV mean dose, D98%, and HIs showed very good agreement with MC dose calculations within the 0.8% MC (statistical) calculation uncertainty. Regional node volume (PTV-80%) mean dose and D98% were found to be overestimated (1.3%, σ = 0.8% and 2.3%, σ = 0.8%, respectively) by the AAA with respect to MC calculations. Mean dose and D2% to OAR were also observed to be consistently overestimated by the AAA. Increasing dose calculation differences were found in planning strategies exhibiting a higher overall fluence modulation. From the plan dataset, the largest local dose differences were observed in heavily shielded regions and within the esophageal and sinus cavities. AAA dose calculations as implemented in RapidArc™ demonstrate excellent agreement with MC calculations in unshielded regions containing moderate inhomogeneities. Acceptable agreement is achieved in regions of increased MLC shielding. Differences in dose are attributed to inaccuracies in the AAA-modulated fluence modeling, modeling of material inhomogeneities and dose deposition within low-density materials. The use of MC dose calculations leads to the same general conclusion as using AAA that a two arc delivery with limited collimator opening can provide the greatest amount of midline sparing compared to the other techniques investigated.
Ripple structure of crystalline layers in ion-beam-induced Si wafers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazra, S.; Chini, T.K.; Sanyal, M.K.
Ion-beam-induced ripple formation in Si wafers was studied by two complementary surface sensitive techniques, namely atomic force microscopy (AFM) and depth-resolved x-ray grazing incidence diffraction (GID). The formation of ripple structure at high doses ({approx}7x10{sup 17} ions/cm{sup 2}), starting from initiation at low doses ({approx}1x10{sup 17} ions/cm{sup 2}) of ion beam, is evident from AFM, while that in the buried crystalline region below a partially crystalline top layer is evident from GID study. Such ripple structure of crystalline layers in a large area formed in the subsurface region of Si wafers is probed through a nondestructive technique. The GID techniquemore » reveals that these periodically modulated wavelike buried crystalline features become highly regular and strongly correlated as one increases the Ar ion-beam energy from 60 to 100 keV. The vertical density profile obtained from the analysis of a Vineyard profile shows that the density in the upper top part of ripples is decreased to about 15% of the crystalline density. The partially crystalline top layer at low dose transforms to a completely amorphous layer for high doses, and the top morphology was found to be conformal with the underlying crystalline ripple.« less
Yang, Ruijie; Zhao, Nan; Liao, Anyan; Wang, Hao; Qu, Ang
2016-01-01
To investigate the dosimetric and radiobiological differences among volumetric modulated arc therapy (VMAT), high-dose rate (HDR) brachytherapy, and low-dose rate (LDR) permanent seeds implant for localized prostate cancer. A total of 10 patients with localized prostate cancer were selected for this study. VMAT, HDR brachytherapy, and LDR permanent seeds implant plans were created for each patient. For VMAT, planning target volume (PTV) was defined as the clinical target volume plus a margin of 5mm. Rectum, bladder, urethra, and femoral heads were considered as organs at risk. A 78Gy in 39 fractions were prescribed for PTV. For HDR and LDR plans, the dose prescription was D90 of 34Gy in 8.5Gy per fraction, and 145Gy to clinical target volume, respectively. The dose and dose volume parameters were evaluated for target, organs at risk, and normal tissue. Physical dose was converted to dose based on 2-Gy fractions (equivalent dose in 2Gy per fraction, EQD2) for comparison of 3 techniques. HDR and LDR significantly reduced the dose to rectum and bladder compared with VMAT. The Dmean (EQD2) of rectum decreased 22.36Gy in HDR and 17.01Gy in LDR from 30.24Gy in VMAT, respectively. The Dmean (EQD2) of bladder decreased 6.91Gy in HDR and 2.53Gy in LDR from 13.46Gy in VMAT. For the femoral heads and normal tissue, the mean doses were also significantly reduced in both HDR and LDR compared with VMAT. For the urethra, the mean dose (EQD2) was 80.26, 70.23, and 104.91Gy in VMAT, HDR, and LDR brachytherapy, respectively. For localized prostate cancer, both HDR and LDR brachytherapy were clearly superior in the sparing of rectum, bladder, femoral heads, and normal tissue compared with VMAT. HDR provided the advantage in sparing of urethra compared with VMAT and LDR. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ruijie, E-mail: ruijyang@yahoo.com; Zhao, Nan; Liao, Anyan
To investigate the dosimetric and radiobiological differences among volumetric modulated arc therapy (VMAT), high-dose rate (HDR) brachytherapy, and low-dose rate (LDR) permanent seeds implant for localized prostate cancer. A total of 10 patients with localized prostate cancer were selected for this study. VMAT, HDR brachytherapy, and LDR permanent seeds implant plans were created for each patient. For VMAT, planning target volume (PTV) was defined as the clinical target volume plus a margin of 5 mm. Rectum, bladder, urethra, and femoral heads were considered as organs at risk. A 78 Gy in 39 fractions were prescribed for PTV. For HDR andmore » LDR plans, the dose prescription was D{sub 90} of 34 Gy in 8.5 Gy per fraction, and 145 Gy to clinical target volume, respectively. The dose and dose volume parameters were evaluated for target, organs at risk, and normal tissue. Physical dose was converted to dose based on 2-Gy fractions (equivalent dose in 2 Gy per fraction, EQD{sub 2}) for comparison of 3 techniques. HDR and LDR significantly reduced the dose to rectum and bladder compared with VMAT. The D{sub mean} (EQD{sub 2}) of rectum decreased 22.36 Gy in HDR and 17.01 Gy in LDR from 30.24 Gy in VMAT, respectively. The D{sub mean} (EQD{sub 2}) of bladder decreased 6.91 Gy in HDR and 2.53 Gy in LDR from 13.46 Gy in VMAT. For the femoral heads and normal tissue, the mean doses were also significantly reduced in both HDR and LDR compared with VMAT. For the urethra, the mean dose (EQD{sub 2}) was 80.26, 70.23, and 104.91 Gy in VMAT, HDR, and LDR brachytherapy, respectively. For localized prostate cancer, both HDR and LDR brachytherapy were clearly superior in the sparing of rectum, bladder, femoral heads, and normal tissue compared with VMAT. HDR provided the advantage in sparing of urethra compared with VMAT and LDR.« less
Gauer, Tobias; Sothmann, Thilo; Blanck, Oliver; Petersen, Cordula; Werner, René
2018-06-01
Radiotherapy of extracranial metastases changed from normofractioned 3D CRT to extreme hypofractionated stereotactic treatment using VMAT beam techniques. Random interaction between tumour motion and dynamically changing beam parameters might result in underdosage of the CTV even for an appropriately dimensioned ITV (interplay effect). This study presents a clinical scenario of extreme hypofractionated stereotactic treatment and analyses the impact of interplay effects on CTV dose coverage. For a thoracic/abdominal phantom with an integrated high-resolution detector array placed on a 4D motion platform, dual-arc treatment plans with homogenous target coverage were created using a common VMAT technique and delivered in a single fraction. CTV underdosage through interplay effects was investigated by comparing dose measurements with and without tumour motion during plan delivery. Our study agrees with previous works that pointed out insignificant interplay effects on target coverage for very regular tumour motion patterns like simple sinusoidal motion. However, we identified and illustrated scenarios that are likely to result in a clinically relevant CTV underdosage. For tumour motion with abnormal variability, target coverage quantified by the CTV area receiving more than 98% of the prescribed dose decreased to 78% compared to 100% at static dose measurement. This study is further proof of considerable influence of interplay effects on VMAT dose delivery in stereotactic radiotherapy. For selected conditions of an exemplary scenario, interplay effects and related motion-induced target underdosage primarily occurred in tumour motion pattern with increased motion variability and VMAT plan delivery using complex MLC dose modulation.
Using patient data similarities to predict radiation pneumonitis via a self-organizing map
NASA Astrophysics Data System (ADS)
Chen, Shifeng; Zhou, Sumin; Yin, Fang-Fang; Marks, Lawrence B.; Das, Shiva K.
2008-01-01
This work investigates the use of the self-organizing map (SOM) technique for predicting lung radiation pneumonitis (RP) risk. SOM is an effective method for projecting and visualizing high-dimensional data in a low-dimensional space (map). By projecting patients with similar data (dose and non-dose factors) onto the same region of the map, commonalities in their outcomes can be visualized and categorized. Once built, the SOM may be used to predict pneumonitis risk by identifying the region of the map that is most similar to a patient's characteristics. Two SOM models were developed from a database of 219 lung cancer patients treated with radiation therapy (34 clinically diagnosed with Grade 2+ pneumonitis). The models were: SOMall built from all dose and non-dose factors and, for comparison, SOMdose built from dose factors alone. Both models were tested using ten-fold cross validation and Receiver Operating Characteristics (ROC) analysis. Models SOMall and SOMdose yielded ten-fold cross-validated ROC areas of 0.73 (sensitivity/specificity = 71%/68%) and 0.67 (sensitivity/specificity = 63%/66%), respectively. The significant difference between the cross-validated ROC areas of these two models (p < 0.05) implies that non-dose features add important information toward predicting RP risk. Among the input features selected by model SOMall, the two with highest impact for increasing RP risk were: (a) higher mean lung dose and (b) chemotherapy prior to radiation therapy. The SOM model developed here may not be extrapolated to treatment techniques outside that used in our database, such as several-field lung intensity modulated radiation therapy or gated radiation therapy.
Assessing dose rate distributions in VMAT plans
NASA Astrophysics Data System (ADS)
Mackeprang, P.-H.; Volken, W.; Terribilini, D.; Frauchiger, D.; Zaugg, K.; Aebersold, D. M.; Fix, M. K.; Manser, P.
2016-04-01
Dose rate is an essential factor in radiobiology. As modern radiotherapy delivery techniques such as volumetric modulated arc therapy (VMAT) introduce dynamic modulation of the dose rate, it is important to assess the changes in dose rate. Both the rate of monitor units per minute (MU rate) and collimation are varied over the course of a fraction, leading to different dose rates in every voxel of the calculation volume at any point in time during dose delivery. Given the radiotherapy plan and machine specific limitations, a VMAT treatment plan can be split into arc sectors between Digital Imaging and Communications in Medicine control points (CPs) of constant and known MU rate. By calculating dose distributions in each of these arc sectors independently and multiplying them with the MU rate, the dose rate in every single voxel at every time point during the fraction can be calculated. Independently calculated and then summed dose distributions per arc sector were compared to the whole arc dose calculation for validation. Dose measurements and video analysis were performed to validate the calculated datasets. A clinical head and neck, cranial and liver case were analyzed using the tool developed. Measurement validation of synthetic test cases showed linac agreement to precalculated arc sector times within ±0.4 s and doses ±0.1 MU (one standard deviation). Two methods for the visualization of dose rate datasets were developed: the first method plots a two-dimensional (2D) histogram of the number of voxels receiving a given dose rate over the course of the arc treatment delivery. In similarity to treatment planning system display of dose, the second method displays the dose rate as color wash on top of the corresponding computed tomography image, allowing the user to scroll through the variation over time. Examining clinical cases showed dose rates spread over a continuous spectrum, with mean dose rates hardly exceeding 100 cGy min-1 for conventional fractionation. A tool to analyze dose rate distributions in VMAT plans with sub-second accuracy was successfully developed and validated. Dose rates encountered in clinical VMAT test cases show a continuous spectrum with a mean less than or near 100 cGy min-1 for conventional fractionation.
Control algorithms for dynamic attenuators.
Hsieh, Scott S; Pelc, Norbert J
2014-06-01
The authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are prepatient beam shaping filters that modulate the distribution of x-ray fluence incident on the patient on a view-by-view basis. These attenuators can reduce dose while improving key image quality metrics such as peak or mean variance. In each view, the attenuator presents several degrees of freedom which may be individually adjusted. The total number of degrees of freedom across all views is very large, making many optimization techniques impractical. The authors develop a theory for optimally controlling these attenuators. Special attention is paid to a theoretically perfect attenuator which controls the fluence for each ray individually, but the authors also investigate and compare three other, practical attenuator designs which have been previously proposed: the piecewise-linear attenuator, the translating attenuator, and the double wedge attenuator. The authors pose and solve the optimization problems of minimizing the mean and peak variance subject to a fixed dose limit. For a perfect attenuator and mean variance minimization, this problem can be solved in simple, closed form. For other attenuator designs, the problem can be decomposed into separate problems for each view to greatly reduce the computational complexity. Peak variance minimization can be approximately solved using iterated, weighted mean variance (WMV) minimization. Also, the authors develop heuristics for the perfect and piecewise-linear attenuators which do not require a priori knowledge of the patient anatomy. The authors compare these control algorithms on different types of dynamic attenuators using simulated raw data from forward projected DICOM files of a thorax and an abdomen. The translating and double wedge attenuators reduce dose by an average of 30% relative to current techniques (bowtie filter with tube current modulation) without increasing peak variance. The 15-element piecewise-linear dynamic attenuator reduces dose by an average of 42%, and the perfect attenuator reduces dose by an average of 50%. Improvements in peak variance are several times larger than improvements in mean variance. Heuristic control eliminates the need for a prescan. For the piecewise-linear attenuator, the cost of heuristic control is an increase in dose of 9%. The proposed iterated WMV minimization produces results that are within a few percent of the true solution. Dynamic attenuators show potential for significant dose reduction. A wide class of dynamic attenuators can be accurately controlled using the described methods.
Kataria, Tejinder; Govardhan, H B; Gupta, Deepak; Mohanraj, U; Bisht, Shyam Singh; Sambasivaselli, R; Goyal, S; Abhishek, A; Srivatsava, A; Pushpan, L; Kumar, V; Vikraman, S
2014-01-01
Dosimetric comparison of VMAT with IMRT in middle third esophageal cancer for planning target volume (PTV) and organs at risk (OAR). Ten patients in various stages from I‒III were inducted in the neo-adjuvant chemoradiation protocol for this study. The prescribed dose was 4500 cGy in 25 fractions. Both VMAT and IMRT plan were generated in all cases and Dose Volume Histogram (DVH) comparative analysis was performed for PTV and OAR. Paired t-test was used for statistical analysis. The PTV Dmean and D95 in IMRT and VMAT plan were 4566.6±50.6 cGy vs 4462.8±81.8 cGy (P=0.1) and 4379.8±50.6 cGy Vs 4424.3±109.8 cGy (P=0.1), respectively. The CI and HI for PTV in IMRT vs VMAT plans were 0.96±0.02 vs 0.97±0.01 (P=0.4) and 10.58±3.07 vs 9.45±2.42 (P=0.2), respectively. Lung doses for VMAT vs IMRT were 4.19 vs 2.59% (P=0.03) for V35-7.63 vs 4.76% (P=0.01) for V30-13.6 vs 9.98% (P=0.01) for V25-24.77 vs 18.57% (P=0.04) for V20-46.5 vs 34.73% (P=0.002) for V15. The Mean Lung Dose (MLD) was reduced by VMAT technique compared to IMRT; 1524.6±308.37 cGy and 1353±186.32 cGy (P=0.012). There was no change in Dmax to spinal cord in both the techniques. There was a dose reduction by VMAT compared to IMRT to the heart but it was statistically insignificant; V35-6.75% vs 5.55% (P=0.223); V30-12.3% vs 10.91% (P=0.352); V25-21.81% vs 20.16% (P=0.459); V20-38.11% vs 32.88% (P=0.070); V15-61.05% vs 54.2% (P=0.10). VMAT can be a better option in treating mid esophageal carcinoma as compared to IMRT. The VMAT plans resulted in equivalent or superior dose distribution with a reduction in the dose to lung and heart.
Baek, J G; Kim, E C; Kim, S K
2015-01-01
Objective: Radiation-induced anal toxicity can be induced by low radiation doses in patients with haemorrhoids. The object of this study was to determine the dosimetric benefits of different whole pelvic radiotherapy (WPRT) techniques in terms of dose delivered to the anal canal in post-operative patients with cervical cancer. Methods: The planning CT images of 10 patients with cervical cancer undergoing postoperative radiotherapy were used for comparison of three different plans. All patients had been treated using the conventional box technique WPRT (CV-WPRT), and we tried low-margin-modified WPRT (LM-WPRT), three-dimensional conformal techniques WPRT (CF-WPRT) and intensity-modulated WPRT (IM-WPRT) planning for dosimetric comparison of the anal canal, retrospectively. Results: Mean anal canal doses of the IM-WPRT were significantly lower (p < 0.05) than those of CV-WPRT, LM-WPRT and CF-WPRT, and V10, V20, V30 and V40 to the anal canal were also significantly lower for IM-WPRT (p < 0.05). The proportion of planning target volumes (PTVs) that received ≥98% of the prescribed dose for all plans was >99%, and the proportion that received ≥108% of the prescribed dose for IM-WPRT was <2%. Volumes of bladders and rectums that received ≥30 or ≥40 Gy were significantly lower for IM-WPRT than for three of the four-field WPRT plans (p = 0.000). Conclusion: IM-WPRT can significantly reduce radiation dose delivered to the anal canal and does not compromise PTV coverage. In patients with haemorrhoids, IM-WPRT may be of value for the prevention of anal complications. Advances in knowledge: Although tolerance of the anal canal tends to be ignored in patients undergoing post-operative WPRT, patients with haemorrhoids may suffer complications at low radiation doses. The present study shows IM-WPRT can be meaningful in these patients. PMID:26395671
Baek, J G; Kim, E C; Kim, S K; Jang, H
2015-01-01
Radiation-induced anal toxicity can be induced by low radiation doses in patients with haemorrhoids. The object of this study was to determine the dosimetric benefits of different whole pelvic radiotherapy (WPRT) techniques in terms of dose delivered to the anal canal in post-operative patients with cervical cancer. The planning CT images of 10 patients with cervical cancer undergoing postoperative radiotherapy were used for comparison of three different plans. All patients had been treated using the conventional box technique WPRT (CV-WPRT), and we tried low-margin-modified WPRT (LM-WPRT), three-dimensional conformal techniques WPRT (CF-WPRT) and intensity-modulated WPRT (IM-WPRT) planning for dosimetric comparison of the anal canal, retrospectively. Mean anal canal doses of the IM-WPRT were significantly lower (p < 0.05) than those of CV-WPRT, LM-WPRT and CF-WPRT, and V10, V20, V30 and V40 to the anal canal were also significantly lower for IM-WPRT (p < 0.05). The proportion of planning target volumes (PTVs) that received ≥98% of the prescribed dose for all plans was >99%, and the proportion that received ≥108% of the prescribed dose for IM-WPRT was <2%. Volumes of bladders and rectums that received ≥30 or ≥40 Gy were significantly lower for IM-WPRT than for three of the four-field WPRT plans (p = 0.000). IM-WPRT can significantly reduce radiation dose delivered to the anal canal and does not compromise PTV coverage. In patients with haemorrhoids, IM-WPRT may be of value for the prevention of anal complications. Although tolerance of the anal canal tends to be ignored in patients undergoing post-operative WPRT, patients with haemorrhoids may suffer complications at low radiation doses. The present study shows IM-WPRT can be meaningful in these patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganesh, T; Sarkar, B; Munshi, A
2016-06-15
Purpose: Objective of this study was to evaluate the impact of using flattening filter free (FFF) beam with 0.5 cm multileaf collimator (MLC) leaves over conventional flattened beam with 1 cm leaf width MLC on the treatment plan quality in cranio-spinal irradiation (CSI). Methods: For five medulloblastoma cases (3 males and 2 females), who were previously treated by volumetric modulated arc therapy (VMAT) technique using conventional flattened beam shaped by 1 cm width MLC leaves, four test plans were generated and compared against the delivered plan. These retrospective plans consisted of four different combinations of flattened and FFF beams frommore » Elekta’s Agility treatment head with 0.5 cm width MLC leaves. Sparing of organs at risks (OAR) in terms of dose to 5%, 50%, 75% and 90% volumes, mean and maximum dose were evaluated. Results: All plans satisfied the planning objective of covering 95% of PTV by at least 95% of prescription dose. Marginal variation of dose spillage was observed between different VMAT plans at very low dose range (1–5 Gy). Variation in dose statistics for PTVs and OARs were within 1% or 1 Gy. Amongst the five plans, the plan with flattened beam with 1 cm MLC had the highest number of MUs, 2.13 times higher than the plan with Agility MLC with FFF beam that had the least number of MUs. No statistically significant difference (p≥0.05) was observed between the reference plan and the retrospectively generated plans in terms of PTV coverage, cold spot, hot spot and organ at risk doses. Conclusion: In the treatment of CSI cases by VMAT technique, FFF beams and/or finer width MLC did not exhibit advantage over the flattened beams or wider MLC in terms of plan quality except for reduction in MUs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cozzarini, Cesare, E-mail: cozzarini.cesare@hsr.it; Chiorda, Barbara Noris; Sini, Carla
Purpose: To address the thus-far poorly investigated severity and duration of hematologic toxicity from whole-pelvis radiation therapy (WPRT) in a cohort of chemo-naïve patients treated with postprostatectomy radiation therapy including WPRT with different intensity modulated radiation therapy (IMRT) techniques, doses, and fractionations. Methods and Materials: This analysis pertains to 125 patients (70 from a pilot study and 55 from an observational protocol) for whom 1 baseline and at least 3 subsequent blood samples (median 6), obtained at irradiation midpoint and end, and thereafter at 3, 6, and 12 months, were available. Patients were treated with adjuvant (n=73) or salvage intent; static-fieldmore » IMRT (n=19); volumetric modulated arc therapy (n=60) or helical Tomotherapy (n=46); and conventional (n=39) or moderately hypofractionated (median 2.35 Gy per fraction, n=86) regimens. The median 2-Gy equivalent dose (EQD2) to the prostatic bed was 70.4 Gy with a lymph-nodal planning target volume of 50.2 Gy. Clinical and dosimetric data were collected. Results: Both leukopenia and thrombocytopenia were significant (median nadir count 65% and 67% of baseline, respectively), with leukopenia also persisting (1-year median count 75% of baseline). Lymphopenia was the major contributor to the severity and 1-year persistence of leukopenia; all patients developed acute grade ≥1 lymphopenia (61% and 26% grade 2 and ≥3, respectively), whereas 1-year grade ≥2 lymphopenia was still present in 16%. In addition to an independent predictive role of corresponding baseline values, multivariable analyses highlighted that higher EQD2 doses to lymph nodal planning target volume increased risk of acute neutropenia and hypofractionation for acute thrombocytopenia. Of note, patients of older age were at higher risk for acute grade 2 lymphopenia, and interestingly, increased risk of grade >2 lymphopenia for those who smoked at least one year. No role for different IMRT techniques indicated. Conclusions: Leukopenia and lymphopenia after postprostatectomy WPRT were found to be less negligible and more prolonged than expected. A number of radiation-related and clinical factors favoring hematologic toxicity, whose awareness may be crucial when prescribing WPRT, in particular if concomitant to chemotherapy, were identified.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelefsky, Michael J., E-mail: zelefskm@mskcc.org; Greco, Carlo; Motzer, Robert
2012-04-01
Purpose: To report tumor local progression-free outcomes after treatment with single-dose, image-guided, intensity-modulated radiotherapy and hypofractionated regimens for extracranial metastases from renal cell primary tumors. Patients and Methods: Between 2004 and 2010, 105 lesions from renal cell carcinoma were treated with either single-dose, image-guided, intensity-modulated radiotherapy to a prescription dose of 18-24 Gy (median, 24) or hypofractionation (three or five fractions) with a prescription dose of 20-30 Gy. The median follow-up was 12 months (range, 1-48). Results: The overall 3-year actuarial local progression-free survival for all lesions was 44%. The 3-year local progression-free survival for those who received a highmore » single-dose (24 Gy; n = 45), a low single-dose (<24 Gy; n = 14), or hypofractionation regimens (n = 46) was 88%, 21%, and 17%, respectively (high single dose vs. low single dose, p = .001; high single dose vs. hypofractionation, p < .001). Multivariate analysis revealed the following variables were significant predictors of improved local progression-free survival: 24 Gy dose compared with a lower dose (p = .009) and a single dose vs. hypofractionation (p = .008). Conclusion: High single-dose, image-guided, intensity-modulated radiotherapy is a noninvasive procedure resulting in high probability of local tumor control for metastatic renal cell cancer generally considered radioresistant according to the classic radiobiologic ranking.« less
Energy spectrum control for modulated proton beams.
Hsi, Wen C; Moyers, Michael F; Nichiporov, Dmitri; Anferov, Vladimir; Wolanski, Mark; Allgower, Chris E; Farr, Jonathan B; Mascia, Anthony E; Schreuder, Andries N
2009-06-01
In proton therapy delivered with range modulated beams, the energy spectrum of protons entering the delivery nozzle can affect the dose uniformity within the target region and the dose gradient around its periphery. For a cyclotron with a fixed extraction energy, a rangeshifter is used to change the energy but this produces increasing energy spreads for decreasing energies. This study investigated the magnitude of the effects of different energy spreads on dose uniformity and distal edge dose gradient and determined the limits for controlling the incident spectrum. A multilayer Faraday cup (MLFC) was calibrated against depth dose curves measured in water for nonmodulated beams with various incident spectra. Depth dose curves were measured in a water phantom and in a multilayer ionization chamber detector for modulated beams using different incident energy spreads. Some nozzle entrance energy spectra can produce unacceptable dose nonuniformities of up to +/-21% over the modulated region. For modulated beams and small beam ranges, the width of the distal penumbra can vary by a factor of 2.5. When the energy spread was controlled within the defined limits, the dose nonuniformity was less than +/-3%. To facilitate understanding of the results, the data were compared to the measured and Monte Carlo calculated data from a variable extraction energy synchrotron which has a narrow spectrum for all energies. Dose uniformity is only maintained within prescription limits when the energy spread is controlled. At low energies, a large spread can be beneficial for extending the energy range at which a single range modulator device can be used. An MLFC can be used as part of a feedback to provide specified energy spreads for different energies.
Comparison of treatment plans: a retrospective study by the method of radiobiological evaluation
NASA Astrophysics Data System (ADS)
Puzhakkal, Niyas; Kallikuzhiyil Kochunny, Abdullah; Manthala Padannayil, Noufal; Singh, Navin; Elavan Chalil, Jumanath; Kulangarakath Umer, Jamshad
2016-09-01
There are many situations in radiotherapy where multiple treatment plans need to be compared for selection of an optimal plan. In this study we performed the radiobiological method of plan evaluation to verify the treatment plan comparison procedure of our clinical practice. We estimated and correlated various radiobiological dose indices with physical dose metrics for a total of 30 patients representing typical cases of head and neck, prostate and brain tumors. Three sets of plans along with a clinically approved plan (final plan) treated by either Intensity Modulated Radiation Therapy (IMRT) or Rapid Arc (RA) techniques were considered. The study yielded improved target coverage for final plans, however, no appreciable differences in doses and the complication probabilities of organs at risk were noticed. Even though all four plans showed adequate dose distributions, from dosimetric point of view, the final plan had more acceptable dose distribution. The estimated biological outcome and dose volume histogram data showed least differences between plans for IMRT when compared to RA. Our retrospective study based on 120 plans, validated the radiobiological method of plan evaluation. The tumor cure or normal tissue complication probabilities were found to be correlated with the corresponding physical dose indices.
Chang, Kevin J; Collins, Scott; Li, Baojun; Mayo-Smith, William W
2017-06-01
For assessment of the effect of varying the peak kilovoltage (kVp), the adaptive statistical iterative reconstruction technique (ASiR), and automatic dose modulation on radiation dose and image noise in a human cadaver, a cadaver torso underwent CT scanning at 80, 100, 120 and 140 kVp, each at ASiR settings of 0, 30 and 50 %, and noise indices (NIs) of 5.5, 11 and 22. The volume CT dose index (CTDI vol ), image noise, and attenuation values of liver and fat were analyzed for 20 data sets. Size-specific dose estimates (SSDEs) and liver-to-fat contrast-to-noise ratios (CNRs) were calculated. Values for different combinations of kVp, ASiR, and NI were compared. The CTDI vol varied by a power of 2 with kVp values between 80 and 140 without ASiR. Increasing ASiR levels allowed a larger decrease in CTDI vol and SSDE at higher kVp than at lower kVp while image noise was held constant. In addition, CTDI vol and SSDE decreased with increasing NI at each kVp, but the decrease was greater at higher kVp than at lower kVp. Image noise increased with decreasing kVp despite a fixed NI; however, this noise could be offset with the use of ASiR. The CT number of the liver remained unchanged whereas that of fat decreased as the kVp decreased. Image noise and dose vary in a complicated manner when the kVp, ASiR, and NI are varied in a human cadaver. Optimization of CT protocols will require balancing of the effects of each of these parameters to maximize image quality while minimizing dose.
Total Ionizing Dose Test Report for the UC1823A Pulse Width Modulator
NASA Technical Reports Server (NTRS)
Chen, Dakai; Forney, James
2017-01-01
The purpose of this study is to examine the total ionizing dose susceptibility for the UC1823A pulse width modulator manufactured by Texas Instruments, Inc. The part is suspected to be vulnerable to enhanced low dose rate sensitivity (ELDRS).
Cao, F; Ramaseshan, R; Corns, R; Harrop, S; Nuraney, N; Steiner, P; Aldridge, S; Liu, M; Carolan, H; Agranovich, A; Karva, A
2012-07-01
Craniospinal irradiation were traditionally treated the central nervous system using two or three adjacent field sets. A intensity-modulated radiotherapy (IMRT) plan (Jagged-Junction IMRT) which overcomes problems associated with field junctions and beam edge matching, improves planning and treatment setup efficiencies with homogenous target dose distribution was developed. Jagged-Junction IMRT was retrospectively planned on three patients with prescription of 36 Gy in 20 fractions and compared to conventional treatment plans. Planning target volume (PTV) included the whole brain and spinal canal to the S3 vertebral level. The plan employed three field sets, each with a unique isocentre. One field set with seven fields treated the cranium. Two field sets treated the spine, each set using three fields. Fields from adjacent sets were overlapped and the optimization process smoothly integrated the dose inside the overlapped junction. For the Jagged-Junction IMRT plans vs conventional technique, average homogeneity index equaled 0.08±0.01 vs 0.12±0.02, and conformity number equaled 0.79±0.01 vs 0.47±0.12. The 95% isodose surface covered (99.5±0.3)% of the PTV vs (98.1±2.0)%. Both Jagged-Junction IMRT plans and the conventional plans had good sparing of the organs at risk. Jagged-Junction IMRT planning provided good dose homogeneity and conformity to the target while maintaining a low dose to the organs at risk. Jagged-Junction IMRT optimization smoothly distributed dose in the junction between field sets. Since there was no beam matching, this treatment technique is less likely to produce hot or cold spots at the junction in contrast to conventional techniques. © 2012 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Chen, Liang-Kuang; Wu, Tung-Hsin; Yang, Ching-Ching; Tsai, Chia-Jung; Lee, Jason J. S.
2010-07-01
The aim of this study is to assess radiation dose and the corresponding image quality from suggested CT protocols which depends on different mean heart rate and high heart rate variability by using 256-slice CT. Fifty consecutive patients referred for a cardiac CT examination were included in this study. All coronary computed tomographic angiography (CCTA) examinations were performed on a 256-slice CT scanner with one of five different protocols: retrospective ECG-gating (RGH) with full dose exposure in all R-R intervals (protocol A), RGH of 30-80% pulsing window with tube current modulation (B), RGH of 78±5% pulsing window with tube current modulation (C), prospective ECG-triggering (PGT) of 78% R-R interval with 5% padding window (D) and PGT of 78% R-R interval without padding window (E). Radiation dose parameters and image quality scoring were determined and compared. In this study, no significant differences were found in comparison on image quality of the five different protocols. Protocol A obtained the highest radiation dose comparing with those of protocols B, C, D and E by a factor of 1.6, 2.4, 2.5 and 4.3, respectively ( p<0.001), which were ranged between 2.7 and 11.8 mSv. The PGT could significantly reduce radiation dose delivered to patients, as compared to the RGH. However, the use of PGT has limitations and is only good in assessing cases with lower mean heart rate and stable heart rate variability. With higher mean heart rate and high heart rate variability circumstances, the RGH within 30-80% of R-R interval pulsing window is suggested as a feasible technique for assessing diagnostic performance.
Tryptophan availability modulates serotonin release from rat hypothalamic slices
NASA Technical Reports Server (NTRS)
Schaechter, Judith D.; Wurtman, Richard J.
1989-01-01
The relationship between the tryptophan availability and serononin release from rat hypothalamus was investigated using a new in vitro technique for estimating rates at which endogenous serotonin is released spontaneously or upon electrical depolarization from hypothalamic slices superfused with a solution containing various amounts of tryptophan. It was found that the spontaneous, as well as electrically induced, release of serotonin from the brain slices exhibited a dose-dependent relationship with the tryptophan concentration of the superfusion medium.
Preliminary results of a prototype C-shaped PET designed for an in-beam PET system
NASA Astrophysics Data System (ADS)
Kim, Hyun-Il; Chung, Yong Hyun; Lee, Kisung; Kim, Kyeong Min; Kim, Yongkwon; Joung, Jinhun
2016-06-01
Positron emission tomography (PET) can be utilized in particle beam therapy to verify the dose distribution of the target volume as well as the accuracy of the treatment. We present an in-beam PET scanner that can be integrated into a particle beam therapy system. The proposed PET scanner consisted of 14 detector modules arranged in a C-shape to avoid blockage of the particle beam line by the detector modules. Each detector module was composed of a 9×9 array of 4.0 mm×4.0 mm×20.0 mm LYSO crystals optically coupled to four 29-mm-diameter PMTs using the photomultiplier-quadrant-sharing (PQS) technique. In this study, a Geant4 Application for Tomographic Emission (GATE) simulation study was conducted to design a C-shaped PET scanner and then experimental evaluation of the proposed design was performed. The spatial resolution and sensitivity were measured according to NEMA NU2-2007 standards and were 6.1 mm and 5.61 cps/kBq, respectively, which is in good agreement with our simulation, with an error rate of 12.0%. Taken together, our results demonstrate the feasibility of the proposed C-shaped in-beam PET system, which we expect will be useful for measuring dose distribution in particle therapy.
TH-AB-BRB-01: Trajectory Modulated Arc Therapy: Application to Partial Breast Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hristov, D.
2016-06-15
Current state-of-the art digital C-arm medical linear accelerators are capable of delivering radiation treatments with high level of automation, which affords coordinated motions of gantry, couch, and multileaf collimator (MLC) with dose rate modulations. The new machine capacity has shown the potential to bring substantially improved radiation dosimetry and/or delivery efficiency to many challenging diseases. Combining an integrated beam orientation optimization algorithm with automated machine navigation, markedly improved dose conformity has been achieved using 4ρ therapy. Trajectory modulated radiation therapy (TMAT) can be used to deliver highly conformal dose to partial breast or to carve complex dose distribution for therapymore » involving extended volumes such as total marrow and total lymph node treatment. Dynamic electron arc radiotherapy (DEAR) not only overcomes the deficiencies of conventional electron therapy in dose conformity and homogeneity but also achieves so without patient-specific shields. The combination of MLC and couch tracking provides improved motion management of thoracic and abdominal tumors. A substantial body of work has been done in these technological advances for clinical translation. The proposed symposium will provide a timely review of these exciting opportunities. Learning Objectives: Recognize the potential of using digitally controlled linacs for clinically significant improvements in delivered dose distributions for various treatment sites. Identify existing approaches to treatment planning, optimization and delivery for treatment techniques utilizing the advanced functions of digital linacs and venues for further development and improvement. Understand methods for testing and validating delivery system performance. Identify tools available on current delivery systems for implementation and control for such treatments. Obtain the update in clinical applications, trials and regulatory approval. K. Sheng, NIH U19AI067769, NIH R43CA183390, NIH R01CA188300, Varian Medical Systems V. Yu, Varian Medical Systems, AAPM Summer Undergraduate Fellowship, NSF graduate fellowship S. Nill, Elekta AB. Cancer Research UK under Programme C33589/A19727, NIHR Biomedical Research Centre at The Royal Marsden and The Institute of Cancer Research.« less
A comprehensive formulation for volumetric modulated arc therapy planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Dan; Lyu, Qihui; Ruan, Dan
2016-07-15
Purpose: Volumetric modulated arc therapy (VMAT) is a widely employed radiation therapy technique, showing comparable dosimetry to static beam intensity modulated radiation therapy (IMRT) with reduced monitor units and treatment time. However, the current VMAT optimization has various greedy heuristics employed for an empirical solution, which jeopardizes plan consistency and quality. The authors introduce a novel direct aperture optimization method for VMAT to overcome these limitations. Methods: The comprehensive VMAT (comVMAT) planning was formulated as an optimization problem with an L2-norm fidelity term to penalize the difference between the optimized dose and the prescribed dose, as well as an anisotropicmore » total variation term to promote piecewise continuity in the fluence maps, preparing it for direct aperture optimization. A level set function was used to describe the aperture shapes and the difference between aperture shapes at adjacent angles was penalized to control MLC motion range. A proximal-class optimization solver was adopted to solve the large scale optimization problem, and an alternating optimization strategy was implemented to solve the fluence intensity and aperture shapes simultaneously. Single arc comVMAT plans, utilizing 180 beams with 2° angular resolution, were generated for a glioblastoma multiforme case, a lung (LNG) case, and two head and neck cases—one with three PTVs (H&N{sub 3PTV}) and one with foue PTVs (H&N{sub 4PTV})—to test the efficacy. The plans were optimized using an alternating optimization strategy. The plans were compared against the clinical VMAT (clnVMAT) plans utilizing two overlapping coplanar arcs for treatment. Results: The optimization of the comVMAT plans had converged within 600 iterations of the block minimization algorithm. comVMAT plans were able to consistently reduce the dose to all organs-at-risk (OARs) as compared to the clnVMAT plans. On average, comVMAT plans reduced the max and mean OAR dose by 6.59% and 7.45%, respectively, of the prescription dose. Reductions in max dose and mean dose were as high as 14.5 Gy in the LNG case and 15.3 Gy in the H&N{sub 3PTV} case. PTV coverages measured by D95, D98, and D99 were within 0.25% of the prescription dose. By comprehensively optimizing all beams, the comVMAT optimizer gained the freedom to allow some selected beams to deliver higher intensities, yielding a dose distribution that resembles a static beam IMRT plan with beam orientation optimization. Conclusions: The novel nongreedy VMAT approach simultaneously optimizes all beams in an arc and then directly generates deliverable apertures. The single arc VMAT approach thus fully utilizes the digital Linac’s capability in dose rate and gantry rotation speed modulation. In practice, the new single VMAT algorithm generates plans superior to existing VMAT algorithms utilizing two arcs.« less
Task-driven imaging in cone-beam computed tomography.
Gang, G J; Stayman, J W; Ouadah, S; Ehtiati, T; Siewerdsen, J H
Conventional workflow in interventional imaging often ignores a wealth of prior information of the patient anatomy and the imaging task. This work introduces a task-driven imaging framework that utilizes such information to prospectively design acquisition and reconstruction techniques for cone-beam CT (CBCT) in a manner that maximizes task-based performance in subsequent imaging procedures. The framework is employed in jointly optimizing tube current modulation, orbital tilt, and reconstruction parameters in filtered backprojection reconstruction for interventional imaging. Theoretical predictors of noise and resolution relates acquisition and reconstruction parameters to task-based detectability. Given a patient-specific prior image and specification of the imaging task, an optimization algorithm prospectively identifies the combination of imaging parameters that maximizes task-based detectability. Initial investigations were performed for a variety of imaging tasks in an elliptical phantom and an anthropomorphic head phantom. Optimization of tube current modulation and view-dependent reconstruction kernel was shown to have greatest benefits for a directional task (e.g., identification of device or tissue orientation). The task-driven approach yielded techniques in which the dose and sharp kernels were concentrated in views contributing the most to the signal power associated with the imaging task. For example, detectability of a line pair detection task was improved by at least three fold compared to conventional approaches. For radially symmetric tasks, the task-driven strategy yielded results similar to a minimum variance strategy in the absence of kernel modulation. Optimization of the orbital tilt successfully avoided highly attenuating structures that can confound the imaging task by introducing noise correlations masquerading at spatial frequencies of interest. This work demonstrated the potential of a task-driven imaging framework to improve image quality and reduce dose beyond that achievable with conventional imaging approaches.
Qin, Yujiao; Gardner, Stephen J; Kim, Joshua; Huang, Yimei; Wen, Ning; Doemer, Anthony; Chetty, Indrin J
2017-10-01
To evaluate the performance of a commercial plastic scintillator detector (PSD) for small-field stereotactic patient-specific quality assurance (QA) measurements using flattening-filter-free beam. A total of 10 spherical targets [volume range: (0.03 cc-2 cc)] were planned with two techniques: (a) dynamic conformal arc (DCA-10 plans) and (b) volumetric modulated arc therapy (VMAT-10 plans). All plans were generated using Varian Eclipse treatment planning system, and AcurosXB v.13 algorithm in 1.0 mm grid size. Additionally, 14 previously treated cranial and spine SRS plans were evaluated [6 DCA, 8 VMAT, volume range: (0.04 cc-119.02 cc)]. Plan modulation was quantified via two metrics: MU per prescription dose (MU/Rx) and Average Leaf Pair Opening (ALPO). QA was performed on the Varian Edge linear accelerator equipped with HDMLC. Three detectors were used: (a) PinPoint ion chamber (PTW; active volume 0.015 cc), (b) Exradin W1 PSD (Standard Imaging; active volume 0.002 cc), and (c) Gafchromic EBT3 film (Ashland). PinPoint chamber and PSD were positioned perpendicular to beam axis in a Lucy phantom (Standard Imaging); films were placed horizontally capturing the coronal plane. PSD, film, and PinPoint chamber measured average differences of 1.00 ± 1.54%, 1.30 ± 1.69%, and -0.66 ± 2.36%, respectively, compared to AcurosXB dose calculation. As the target volume decreased, PinPoint chamber measured lower doses (maximum -5.07% at 0.07 cc target), while PSD and film measured higher doses (2.87% and 2.54% at 0.03 cc target) than AcurosXB. Film agreed with the benchmark detector PSD by an average difference of 0.31 ± 1.20%, but suffered from larger uncertainty; PinPoint chamber underestimated dose by more than 4% for targets smaller than 0.2 cc. Taking PSD as the measurement standard, DCA plans achieved good QA results across all volumes studied, with an average of -0.07 ± 0.89%; for VMAT plans, PSD measured consistently higher dose (1.95 ± 1.36%) than AcurosXB. Correlation study revealed that plan modulation quantified by both MU/Rx and ALPO correlated significantly with QA results. Among all three detectors, PSD demonstrated superior performances in plans with small fields and heavy modulation. High consistency and low uncertainty made PSD a suitable detector for clinical routine SRS QA. PinPoint chamber should be avoided for targets smaller than 0.2 cc; film dosimetry can be utilized with careful evaluation of its uncertainty bracket. Compared to PSD measurements, AcurosXB calculation demonstrated high accuracy for nonmodulated small fields. The positive correlation between plan modulation and QA discrepancy calls for our attention for clinical SRS plans with high modulation. © 2017 American Association of Physicists in Medicine.
Method of predicting the mean lung dose based on a patient's anatomy and dose-volume histograms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zawadzka, Anna, E-mail: a.zawadzka@zfm.coi.pl; Nesteruk, Marta; Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich
The aim of this study was to propose a method to predict the minimum achievable mean lung dose (MLD) and corresponding dosimetric parameters for organs-at-risk (OAR) based on individual patient anatomy. For each patient, the dose for 36 equidistant individual multileaf collimator shaped fields in the treatment planning system (TPS) was calculated. Based on these dose matrices, the MLD for each patient was predicted by the homemade DosePredictor software in which the solution of linear equations was implemented. The software prediction results were validated based on 3D conformal radiotherapy (3D-CRT) and volumetric modulated arc therapy (VMAT) plans previously prepared formore » 16 patients with stage III non–small-cell lung cancer (NSCLC). For each patient, dosimetric parameters derived from plans and the results calculated by DosePredictor were compared. The MLD, the maximum dose to the spinal cord (D{sub max} {sub cord}) and the mean esophageal dose (MED) were analyzed. There was a strong correlation between the MLD calculated by the DosePredictor and those obtained in treatment plans regardless of the technique used. The correlation coefficient was 0.96 for both 3D-CRT and VMAT techniques. In a similar manner, MED correlations of 0.98 and 0.96 were obtained for 3D-CRT and VMAT plans, respectively. The maximum dose to the spinal cord was not predicted very well. The correlation coefficient was 0.30 and 0.61 for 3D-CRT and VMAT, respectively. The presented method allows us to predict the minimum MLD and corresponding dosimetric parameters to OARs without the necessity of plan preparation. The method can serve as a guide during the treatment planning process, for example, as initial constraints in VMAT optimization. It allows the probability of lung pneumonitis to be predicted.« less
Berg, A; Pernkopf, M; Waldhäusl, C; Schmidt, W; Moser, E
2004-09-07
Precise methods of modem radiation therapy such as intensity modulated radiotherapy (IMRT), brachytherapy (BT) and high LET irradiation allow for high dose localization in volumes of a few mm3. However, most dosimetry methods-ionization chambers, TLD arrangements or silicon detectors, for example-are not capable of detecting sub-mm dose variations or do not allow for simple dose imaging. Magnetic resonance based polymer dosimetry (MRPD) appears to be well suited to three-dimensional high resolution relative dosimetry but the spatial resolution based on a systematic modulation transfer function (MTF) approach has not yet been investigated. We offer a theoretical construct for addressing the spatial resolution in different dose imaging systems, i.e. the dose modulation transfer function (DMTF) approach, an experimental realization of this concept with a phantom and quantitative comparisons between two dosimetric systems: polymer gel and film dosimetry. Polymer gel samples were irradiated by Co-60 photons through an absorber grid which is characterized by periodic structures of different spatial period (a), the smallest one at width of a/2 = 280 microm. The modulation in dose under the grid is visualized via calibrated, high resolution, parameter-selective (T2) and dose images based on multi-echo MR imaging. The DMTF is obtained from the modulation depth of the spin-spin relaxation time (T2) after calibration. Voxel sizes below 0.04 mm3 could be achieved, which are significantly smaller than those reported in MR based dose imaging on polymer gels elsewhere, using a powerful gradient system and a highly sensitive small birdcage resonator on a whole-body 3T MR scanner. Dose modulations at 22% of maximum dose amplitude could be observed at about 2 line pairs per mm. The polymer DMTF results are compared to those of a typical clinical film-scanner system. This study demonstrates that MR based gel dosimetry at 200 microm pixel resolution might even be superior, with reference to relative spatial resolution, to the results of a standard film-scanner system offering a nominal scan resolution of 200 microm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bossart, E; Monterroso, M; Couto, M
Purpose: Dosimetrically compare CyberKnife (CK) and linac-based (LB) stereotactic body radiotherapy (SBRT) plans for lumbar spine. Methods: Ten patient plans with lumbar spine tumors treated with CK were selected and retrospectively optimized using three techniques: CK, volumetric modulated arc (VMAT, three arcs), and 9-field-intensity modulated radiotherapy (IMRT). For the LB plans, the target volume was expanded by 1mm to accommodate additional uncertainty in patient positioning. All plans were optimized to a prescription dose of 27Gy in 3 fractions covering 90% of the PTV. If the dose constraints to the cauda equina (cauda) were not met, the prescription dose was loweredmore » to 24Gy. Parameters evaluated included Paddick Conformity-Index (CI) and Gradient-Index (GI). A two-tailed paired t-test was used to establish statistically significant differences in cauda doses. Results: Target volumes for LB plans were on average 38% larger. In terms of the indices, the closer the index values to unity the steeper the dose falloff and the higher the dose conformity to the target. The results showed that LB plans were in general statistically superior to CK plans. The IMRT plan showed the best average gradient index of 2.995, with VMAT and CK GI values of 3.699 and 5.476, respectively. Similarly, the same trend occurs with the average CI results: 0.821, 0.814, and 0.758, corresponding to IMRT, VMAT, and CK. Notably, in one CK plan the target dose was reduced to 24Gy to meet cauda constraints. Additionally, there was a statistically significant dose difference for the cauda between the CK and LB plans. Conclusion: This study demonstrates that LB plans for lumbar spine SBRT can be as effective or even better than CK plans. Despite the expansion of the target volume, the LB plans did not demonstrate dosimetric inferiority. The LB plans Resultin 2-to-3 fold decrease of treatment time.« less
Giantsoudi, Drosoula; Seco, Joao; Eaton, Bree R.; Simeone, F. Joseph; Kooy, Hanne; Yock, Torunn I.; Tarbell, Nancy J; DeLaney, Thomas F.; Adams, Judith; Paganetti, Harald; MacDonald, Shannon M.
2017-01-01
Purpose At present, proton craniospinal irradiation (CSI) for growing children is delivered to the whole vertebral body (WVB) to avoid asymmetric growth. We aim to demonstrate the feasibility and potential clinical benefit of delivering vertebral body sparing (VBS) versus WVB CSI with passively scattered (PS) and intensity modulated proton therapy (IMPT) in growing children treated for medulloblastoma. Methods Five plans were generated for medulloblastoma patients, previously treated with CSI PS proton radiation therapy (PRT): (a) single posterior-anterior (PA) PS field covering the WVB (PS-PA-WVB), (b) single PA PS field including only the thecal sac in the target volume (PS-PA-VBS), (c) single PA IMPT field covering the WVB (IMPT-PA-WVB), (d) single PA IMPT field, target volume including thecal sac only (IMPT-PA-VBS) and (e) two posterior-oblique (−35°, 35°) IMPT fields, target volume including thecal sac only (IMPT2F-VBS). For all cases, 23.4Gy(RBE) was prescribed to 95% of the spinal canal. Dose, LET and variable-RBE-weighted dose distributions were calculated for all plans using the TOPAS Monte Carlo system. Results IMPT VBS techniques spared efficiently the anterior vertebral bodies (AVB), even when accounting for potential higher variable RBE predicted by linear energy transfer (LET) distributions. Assuming RBE=1.1, V10Gy(RBE) decreased from 100% for the WVB techniques to 59.5–76.8% for the cervical, 29.9–34.6% for the thoracic and 20.6–25.1% for the lumbar, and V20Gy(RBE) decreased from 99.0% to 17.8–20.0% for the cervical, 7.2–7.6% for the thoracic and 4.0–4.6% for the lumbar AVB when IMPT VBS techniques were applied. Corresponding values for the PS VBS technique were higher. Conclusions Advanced proton techniques may sufficiently reduce the dose to the vertebral body and allow for vertebral column growth for children with CNS tumors requiring CSI. This holds even when considering variable RBE values. A clinical trial is planned for VBS to the thoracic and lumbosacral spine in growing children. PMID:28587051
Giantsoudi, Drosoula; Seco, Joao; Eaton, Bree R; Simeone, F Joseph; Kooy, Hanne; Yock, Torunn I; Tarbell, Nancy J; DeLaney, Thomas F; Adams, Judith; Paganetti, Harald; MacDonald, Shannon M
2017-05-01
At present, proton craniospinal irradiation (CSI) for growing children is delivered to the whole vertebral body (WVB) to avoid asymmetric growth. We aimed to demonstrate the feasibility and potential clinical benefit of delivering vertebral body sparing (VBS) versus WVB CSI with passively scattered (PS) and intensity modulated proton therapy (IMPT) in growing children treated for medulloblastoma. Five plans were generated for medulloblastoma patients, who had been previously treated with CSI PS proton radiation therapy: (1) single posteroanterior (PA) PS field covering the WVB (PS-PA-WVB); (2) single PA PS field that included only the thecal sac in the target volume (PS-PA-VBS); (3) single PA IMPT field covering the WVB (IMPT-PA-WVB); (4) single PA IMPT field, target volume including thecal sac only (IMPT-PA-VBS); and (5) 2 posterior-oblique (-35°, +35°) IMPT fields, with the target volume including the thecal sac only (IMPT2F-VBS). For all cases, 23.4 Gy (relative biologic effectiveness [RBE]) was prescribed to 95% of the spinal canal. The dose, linear energy transfer, and variable-RBE-weighted dose distributions were calculated for all plans using the tool for particle simulation, version 2, Monte Carlo system. IMPT VBS techniques efficiently spared the anterior vertebral bodies (AVBs), even when accounting for potential higher variable RBE predicted by linear energy transfer distributions. Assuming an RBE of 1.1, the V10 Gy(RBE) decreased from 100% for the WVB techniques to 59.5% to 76.8% for the cervical, 29.9% to 34.6% for the thoracic, and 20.6% to 25.1% for the lumbar AVBs, and the V20 Gy(RBE) decreased from 99.0% to 17.8% to 20.0% for the cervical, 7.2% to 7.6% for the thoracic, and 4.0% to 4.6% for the lumbar AVBs when IMPT VBS techniques were applied. The corresponding percentages for the PS VBS technique were higher. Advanced proton techniques can sufficiently reduce the dose to the vertebral body and allow for vertebral column growth for children with central nervous system tumors requiring CSI. This was true even when considering variable RBE values. A clinical trial is planned for VBS to the thoracic and lumbosacral spine in growing children. Copyright © 2017 Elsevier Inc. All rights reserved.
Cardiac-Sparing Whole Lung IMRT in Children With Lung Metastasis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalapurakal, John A., E-mail: j-kalapurakal@northwestern.edu; Zhang, Yunkai; Kepka, Alan
Purpose: To demonstrate the dosimetric advantages of cardiac-sparing (CS) intensity modulated radiation therapy (IMRT) in children undergoing whole lung irradiation (WLI). Methods and Materials: Chest CT scans of 22 children who underwent simulation with 3-dimensional (n=10) or 4-dimensional (n=12) techniques were used for this study. Treatment planning was performed using standard anteroposterior-posteroanterior (S-RT) technique and CS-IMRT. Left and right flank fields were added to WLI fields to determine whether CS-IMRT offered any added protection to normal tissues at the junction between these fields. The radiation dose to the lung PTV, cardiac structures, liver, and thyroid were analyzed and compared. Results:more » CS-IMRT had 4 significant advantages over S-RT: (1) superior cardiac protection (2) superior 4-dimensional lung planning target volume coverage, (3) superior dose uniformity in the lungs with fewer hot spots, and (4) significantly lower dose to the heart when flank RT is administered after WLI. Conclusions: The use of CS-IMRT and 4-dimensional treatment planning has the potential to improve tumor control rates and reduce cardiac toxicity in children receiving WLI.« less
Two-dimensional dosimetry of radiotherapeutical proton beams using thermoluminescence foils.
Czopyk, L; Klosowski, M; Olko, P; Swakon, J; Waligorski, M P R; Kajdrowicz, T; Cuttone, G; Cirrone, G A P; Di Rosa, F
2007-01-01
In modern radiation therapy such as intensity modulated radiation therapy or proton therapy, one is able to cover the target volume with improved dose conformation and to spare surrounding tissue with help of modern measurement techniques. Novel thermoluminescence dosimetry (TLD) foils, developed from the hot-pressed mixture of LiF:Mg,Cu,P (MCP TL) powder and ethylene-tetrafluoroethylene (ETFE) copolymer, have been applied for 2-D dosimetry of radiotherapeutical proton beams at INFN Catania and IFJ Krakow. A TLD reader with 70 mm heating plate and CCD camera was used to read the 2-D emission pattern of irradiated foils. The absorbed dose profiles were evaluated, taking into account correction factors specific for TLD such as dose and energy response. TLD foils were applied for measuring of dose distributions within an eye phantom and compared with predictions obtained from the MCNPX code and Eclipse Ocular Proton Planning (Varian Medical Systems) clinical radiotherapy planning system. We demonstrate the possibility of measuring 2-D dose distributions with point resolution of about 0.5 x 0.5 mm(2).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadsell, M; Xing, L; Bush, K
We propose a new type of treatment that employs a modulated tangential photon field to provide superior coverage of complex superficial targets when compared to other commonly employed methods, and drastically reduce dose to the underlying sensitive structures often present in these cases. TMAT plans were formulated for a set of four representative cases: 1. Scalp sarcoma, 2. Posterior chest-wall sarcoma, 3. Pleural mesothelioma with intact lung, 4. Chest-wall with deep inframammary nodes. For these cases, asymmetric jaw placement, angular limitations, and central isocenter placements were used to force optimization solutions with beam lines tangential to the body surface. Whenmore » compared with unrestricted modulated arcs, the tangential arc scalp treatment reduced the max and mean doses delivered to the brain by 33Gy (from 55Gy to 22Gy) and 6Gy (from 14Gy to 8Gy), respectively. In the posterior chest wall case, the V10 for the ipsilateral lung was kept below 5% impressively while retaining the 45Gy target prescription coverage by over 97%. For the breast chest-wall case, the TMAT plan achieved reductions in high dose to the ipsilateral lung and heart by a factor of 2–3 when compared to classic, laterally opposed, tangents and reduced the V5 by 40% when compared to standard modulated arcs. TMAT has outperformed the conventional modalities of treatment for superficial lesions used in our clinic. We hope that with the advent of digitally controlled linear accelerators, we can uncover further benefits of this new technique and extend its applicability to a wider section of the patient population.« less
Hansen, Christian Rønn; Nielsen, Morten; Bertelsen, Anders Smedegaard; Hazell, Irene; Holtved, Eva; Zukauskaite, Ruta; Bjerregaard, Jon Kroll; Brink, Carsten; Bernchou, Uffe
2017-11-01
The quality of radiotherapy planning has improved substantially in the last decade with the introduction of intensity modulated radiotherapy. The purpose of this study was to analyze the plan quality and efficacy of automatically (AU) generated VMAT plans for inoperable esophageal cancer patients. Thirty-two consecutive inoperable patients with esophageal cancer originally treated with manually (MA) generated volumetric modulated arc therapy (VMAT) plans were retrospectively replanned using an auto-planning engine. All plans were optimized with one full 6MV VMAT arc giving 60 Gy to the primary target and 50 Gy to the elective target. The planning techniques were blinded before clinical evaluation by three specialized oncologists. To supplement the clinical evaluation, the optimization time for the AU plan was recorded along with DVH parameters for all plans. Upon clinical evaluation, the AU plan was preferred for 31/32 patients, and for one patient, there was no difference in the plans. In terms of DVH parameters, similar target coverage was obtained between the two planning methods. The mean dose for the spinal cord increased by 1.8 Gy using AU (p = .002), whereas the mean lung dose decreased by 1.9 Gy (p < .001). The AU plans were more modulated as seen by the increase of 12% in mean MUs (p = .001). The median optimization time for AU plans was 117 min. The AU plans were in general preferred and showed a lower mean dose to the lungs. The automation of the planning process generated esophageal cancer treatment plans quickly and with high quality.
A national dosimetry audit for stereotactic ablative radiotherapy in lung.
Distefano, Gail; Lee, Jonny; Jafari, Shakardokht; Gouldstone, Clare; Baker, Colin; Mayles, Helen; Clark, Catharine H
2017-03-01
A UK national dosimetry audit was carried out to assess the accuracy of Stereotactic Ablative Body Radiotherapy (SABR) lung treatment delivery. This mail-based audit used an anthropomorphic thorax phantom containing nine alanine pellets positioned in the lung region for dosimetry, as well as EBT3 film in the axial plane for isodose comparison. Centres used their local planning protocol/technique, creating 27 SABR plans. A range of delivery techniques including conformal, volumetric modulated arc therapy (VMAT) and Cyberknife (CK) were used with six different calculation algorithms (collapsed cone, superposition, pencil-beam (PB), AAA, Acuros and Monte Carlo). The mean difference between measured and calculated dose (excluding PB results) was 0.4±1.4% for alanine and 1.4±3.4% for film. PB differences were -6.1% and -12.9% respectively. The median of the absolute maximum isodose-to-isodose distances was 3mm (-6mm to 7mm) and 5mm (-10mm to +19mm) for the 100% and 50% isodose lines respectively. Alanine and film is an effective combination for verifying dosimetric and geometric accuracy. There were some differences across dose algorithms, and geometric accuracy was better for VMAT and CK compared with conformal techniques. The alanine dosimetry results showed that planned and delivered doses were within ±3.0% for 25/27 SABR plans. Copyright © 2017 Elsevier B.V. All rights reserved.
Kardar, Laleh; Li, Yupeng; Li, Xiaoqiang; Li, Heng; Cao, Wenhua; Chang, Joe Y.; Liao, Li; Zhu, Ronald X.; Sahoo, Narayan; Gillin, Michael; Liao, Zhongxing; Komaki, Ritsuko; Cox, James D.; Lim, Gino; Zhang, Xiaodong
2015-01-01
Purpose The primary aim of this study was to evaluate the impact of interplay effects for intensity-modulated proton therapy (IMPT) plans for lung cancer in the clinical setting. The secondary aim was to explore the technique of iso-layered re-scanning for mitigating these interplay effects. Methods and Materials Single-fraction 4D dynamic dose without considering re-scanning (1FX dynamic dose) was used as a metric to determine the magnitude of dosimetric degradation caused by 4D interplay effects. The 1FX dynamic dose was calculated by simulating the machine delivery processes of proton spot scanning on moving patient described by 4D computed tomography (4DCT) during the IMPT delivery. The dose contributed from an individual spot was fully calculated on the respiratory phase corresponding to the life span of that spot, and the final dose was accumulated to a reference CT phase by using deformable image registration. The 1FX dynamic dose was compared with the 4D composite dose. Seven patients with various tumor volumes and motions were selected. Results The CTV prescription coverage for the 7 patients were 95.04%, 95.38%, 95.39%, 95.24%, 95.65%, 95.90%, and 95.53%, calculated with use of the 4D composite dose, and were 89.30%, 94.70%, 85.47%, 94.09%, 79.69%, 91.20%, and 94.19% with use of the 1FX dynamic dose. For the 7 patients, the CTV coverage, calculated by using single-fraction dynamic dose, were 95.52%, 95.32%, 96.36%, 95.28%, 94.32%, 95.53%, and 95.78%, using maximum MU limit value of 0.005. In other words, by increasing the number of delivered spots in each fraction, the degradation of CTV coverage improved up to 14.6%. Conclusions Single-fraction 4D dynamic dose without re-scanning was validated as a surrogate to evaluate the interplay effects for IMPT for lung cancer in the clinical setting. The interplay effects can be potentially mitigated by increasing the number of iso-layered re-scanning in each fraction delivery. PMID:25407877
Kardar, Laleh; Li, Yupeng; Li, Xiaoqiang; Li, Heng; Cao, Wenhua; Chang, Joe Y; Liao, Li; Zhu, Ronald X; Sahoo, Narayan; Gillin, Michael; Liao, Zhongxing; Komaki, Ritsuko; Cox, James D; Lim, Gino; Zhang, Xiaodong
2014-01-01
The primary aim of this study was to evaluate the impact of the interplay effects of intensity modulated proton therapy (IMPT) plans for lung cancer in the clinical setting. The secondary aim was to explore the technique of isolayered rescanning to mitigate these interplay effects. A single-fraction 4-dimensional (4D) dynamic dose without considering rescanning (1FX dynamic dose) was used as a metric to determine the magnitude of dosimetric degradation caused by 4D interplay effects. The 1FX dynamic dose was calculated by simulating the machine delivery processes of proton spot scanning on a moving patient, described by 4D computed tomography during IMPT delivery. The dose contributed from an individual spot was fully calculated on the respiratory phase that corresponded to the life span of that spot, and the final dose was accumulated to a reference computed tomography phase by use of deformable image registration. The 1FX dynamic dose was compared with the 4D composite dose. Seven patients with various tumor volumes and motions were selected for study. The clinical target volume (CTV) prescription coverage for the 7 patients was 95.04%, 95.38%, 95.39%, 95.24%, 95.65%, 95.90%, and 95.53% when calculated with the 4D composite dose and 89.30%, 94.70%, 85.47%, 94.09%, 79.69%, 91.20%, and 94.19% when calculated with the 1FX dynamic dose. For these 7 patients, the CTV coverage calculated by use of a single-fraction dynamic dose was 95.52%, 95.32%, 96.36%, 95.28%, 94.32%, 95.53%, and 95.78%, with a maximum monitor unit limit value of 0.005. In other words, by increasing the number of delivered spots in each fraction, the degradation of CTV coverage improved up to 14.6%. A single-fraction 4D dynamic dose without rescanning was validated as a surrogate to evaluate the interplay effects of IMPT for lung cancer in the clinical setting. The interplay effects potentially can be mitigated by increasing the amount of isolayered rescanning in each fraction delivery.
Binny, Diana; Mezzenga, Emilio; Lancaster, Craig M; Trapp, Jamie V; Kairn, Tanya; Crowe, Scott B
2017-06-01
The aims of this study were to investigate machine beam parameters using the TomoTherapy quality assurance (TQA) tool, establish a correlation to patient delivery quality assurance results and to evaluate the relationship between energy variations detected using different TQA modules. TQA daily measurement results from two treatment machines for periods of up to 4years were acquired. Analyses of beam quality, helical and static output variations were made. Variations from planned dose were also analysed using Statistical Process Control (SPC) technique and their relationship to output trends were studied. Energy variations appeared to be one of the contributing factors to delivery output dose seen in the analysis. Ion chamber measurements were reliable indicators of energy and output variations and were linear with patient dose verifications. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Poster — Thur Eve — 61: A new framework for MPERT plan optimization using MC-DAO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, M; Lloyd, S AM; Townson, R
2014-08-15
This work combines the inverse planning technique known as Direct Aperture Optimization (DAO) with Intensity Modulated Radiation Therapy (IMRT) and combined electron and photon therapy plans. In particular, determining conditions under which Modulated Photon/Electron Radiation Therapy (MPERT) produces better dose conformality and sparing of organs at risk than traditional IMRT plans is central to the project. Presented here are the materials and methods used to generate and manipulate the DAO procedure. Included is the introduction of a powerful Java-based toolkit, the Aperture-based Monte Carlo (MC) MPERT Optimizer (AMMO), that serves as a framework for optimization and provides streamlined access tomore » underlying particle transport packages. Comparison of the toolkit's dose calculations to those produced by the Eclipse TPS and the demonstration of a preliminary optimization are presented as first benchmarks. Excellent agreement is illustrated between the Eclipse TPS and AMMO for a 6MV photon field. The results of a simple optimization shows the functioning of the optimization framework, while significant research remains to characterize appropriate constraints.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aznar, Marianne C., E-mail: marianne.camille.aznar@regionh.dk; Faculty of Sciences, Niels Bohr Institute, and Faculty of Health Sciences, University of Copenhagen, Copenhagen; Maraldo, Maja V.
Purpose: Hodgkin lymphoma (HL) survivors have an increased risk of cardiovascular disease (CD), lung cancer, and breast cancer. We investigated the risk for the development of CD and secondary lung, breast, and thyroid cancer after radiation therapy (RT) delivered with deep inspiration breath-hold (DIBH) compared with free-breathing (FB) using 3-dimensional conformal RT (3DCRT) and intensity modulated RT (IMRT). The aim of this study was to determine which treatment modality best reduced the combined risk of life-threatening late effects in patients with mediastinal HL. Methods and Materials: Twenty-two patients with early-stage mediastinal HL were eligible for the study. Treatment plans weremore » calculated with both 3DCRT and IMRT on both DIBH and FB planning computed tomographic scans. We reported the estimated dose to the heart, lung, female breasts, and thyroid and calculated the estimated life years lost attributable to CD and to lung, breast, and thyroid cancer. Results: DIBH lowered the estimated dose to heart and lung regardless of delivery technique (P<.001). There was no significant difference between IMRT-FB and 3DCRT-DIBH in mean heart dose, heart V20Gy, and lung V20Gy. The mean breast dose was increased with IMRT regardless of breathing technique. Life years lost was lowest with DIBH and highest with FB. Conclusions: In this cohort, 3DCRT-DIBH resulted in lower estimated doses and lower lifetime excess risks than did IMRT-FB. Combining IMRT and DIBH could be beneficial for a subgroup of patients.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Liyun, E-mail: liyunc@isu.edu.tw; Ho, Sheng-Yow; Lee, Tsair-Fwu
Purpose: Ashland Inc. EBT2 and EBT3 films are widely used in quality assurance for radiation therapy; however, there remains a relatively high degree of uncertainty [B. Hartmann, M. Martisikova, and O. Jakel, “Homogeneity of Gafchromic EBT2 film,” Med. Phys. 37, 1753–1756 (2010)]. Micke et al. (2011) recently improved the spatial homogeneity using all color channels of a flatbed scanner; however, van Hoof et al. (2012) pointed out that the corrected nonuniformity still requires further investigation for larger fields. To reduce the calibration errors and the uncertainty, the authors propose a new red-channel percentage-depth-dose method in combination with a modified three-channelmore » technique. Methods: For the ease of comparison, the EBT2 film image used in the authors’ previous study (2012) was reanalyzed using different approaches. Photon beams of 6-MV were delivered to two different films at two different beam on times, resulting in the absorption doses of ranging from approximately 30 to 300 cGy at the vertical midline of the film, which was set to be coincident with the central axis of the beam. The film was tightly sandwiched in a 30{sup 3}-cm{sup 3} polystyrene phantom, and the pixel values for red, green, and blue channels were extracted from 234 points on the central axis of the beam and compared with the corresponding depth doses. The film was first calibrated using the multichannel method proposed by Micke et al. (2010), accounting for nonuniformities in the scanner. After eliminating the scanner and dose-independent nonuniformities, the film was recalibrated via the dose-dependent optical density of the red channel and fitted to a power function. This calibration was verified via comparisons of the dose profiles extracted from the films, where three were exposed to a 60° physical wedge field and three were exposed to composite fields, and all of which were measured in a water phantom. A correction for optical attenuation was implemented, and treatment plans of intensity modulated radiation therapy and volumetric modulated arc therapy were evaluated. Results: The method described here demonstrated improved accuracy with reduced uncertainty. The relative error compared with the measurements of a water phantom was less than 1%, and the overall calibration uncertainty was less than 2%. Verification tests revealed that the results were close to those of the authors’ previous study, and all differences were within 3%, except those with a high-dose gradient. The gamma pass rates (2%/2 mm) of the treatment plan evaluated using the method described here were greater than 99%, and no obvious stripe patterns were observed in the dose-difference maps. Conclusions: Spatial homogeneity was significantly improved via the calibration method described here. This technique is both convenient and time-efficient because it does not require cutting the film, and only two exposures are necessary.« less
Chang, Liyun; Ho, Sheng-Yow; Lee, Tsair-Fwu; Yeh, Shyh-An; Ding, Hueisch-Jy; Chen, Pang-Yu
2015-10-01
Ashland Inc. EBT2 and EBT3 films are widely used in quality assurance for radiation therapy; however, there remains a relatively high degree of uncertainty [B. Hartmann, M. Martisikova, and O. Jakel, "Homogeneity of Gafchromic EBT2 film," Med. Phys. 37, 1753-1756 (2010)]. Micke et al. (2011) recently improved the spatial homogeneity using all color channels of a flatbed scanner; however, van Hoof et al. (2012) pointed out that the corrected nonuniformity still requires further investigation for larger fields. To reduce the calibration errors and the uncertainty, the authors propose a new red-channel percentage-depth-dose method in combination with a modified three-channel technique. For the ease of comparison, the EBT2 film image used in the authors' previous study (2012) was reanalyzed using different approaches. Photon beams of 6-MV were delivered to two different films at two different beam on times, resulting in the absorption doses of ranging from approximately 30 to 300 cGy at the vertical midline of the film, which was set to be coincident with the central axis of the beam. The film was tightly sandwiched in a 30(3)-cm(3) polystyrene phantom, and the pixel values for red, green, and blue channels were extracted from 234 points on the central axis of the beam and compared with the corresponding depth doses. The film was first calibrated using the multichannel method proposed by Micke et al. (2010), accounting for nonuniformities in the scanner. After eliminating the scanner and dose-independent nonuniformities, the film was recalibrated via the dose-dependent optical density of the red channel and fitted to a power function. This calibration was verified via comparisons of the dose profiles extracted from the films, where three were exposed to a 60° physical wedge field and three were exposed to composite fields, and all of which were measured in a water phantom. A correction for optical attenuation was implemented, and treatment plans of intensity modulated radiation therapy and volumetric modulated arc therapy were evaluated. The method described here demonstrated improved accuracy with reduced uncertainty. The relative error compared with the measurements of a water phantom was less than 1%, and the overall calibration uncertainty was less than 2%. Verification tests revealed that the results were close to those of the authors' previous study, and all differences were within 3%, except those with a high-dose gradient. The gamma pass rates (2%/2 mm) of the treatment plan evaluated using the method described here were greater than 99%, and no obvious stripe patterns were observed in the dose-difference maps. Spatial homogeneity was significantly improved via the calibration method described here. This technique is both convenient and time-efficient because it does not require cutting the film, and only two exposures are necessary.
NASA Astrophysics Data System (ADS)
Angel, Erin
Advances in Computed Tomography (CT) technology have led to an increase in the modality's diagnostic capabilities and therefore its utilization, which has in turn led to an increase in radiation exposure to the patient population. As a result, CT imaging currently constitutes approximately half of the collective exposure to ionizing radiation from medical procedures. In order to understand the radiation risk, it is necessary to estimate the radiation doses absorbed by patients undergoing CT imaging. The most widely accepted risk models are based on radiosensitive organ dose as opposed to whole body dose. In this research, radiosensitive organ dose was estimated using Monte Carlo based simulations incorporating detailed multidetector CT (MDCT) scanner models, specific scan protocols, and using patient models based on accurate patient anatomy and representing a range of patient sizes. Organ dose estimates were estimated for clinical MDCT exam protocols which pose a specific concern for radiosensitive organs or regions. These dose estimates include estimation of fetal dose for pregnant patients undergoing abdomen pelvis CT exams or undergoing exams to diagnose pulmonary embolism and venous thromboembolism. Breast and lung dose were estimated for patients undergoing coronary CTA imaging, conventional fixed tube current chest CT, and conventional tube current modulated (TCM) chest CT exams. The correlation of organ dose with patient size was quantified for pregnant patients undergoing abdomen/pelvis exams and for all breast and lung dose estimates presented. Novel dose reduction techniques were developed that incorporate organ location and are specifically designed to reduce close to radiosensitive organs during CT acquisition. A generalizable model was created for simulating conventional and novel attenuation-based TCM algorithms which can be used in simulations estimating organ dose for any patient model. The generalizable model is a significant contribution of this work as it lays the foundation for the future of simulating TCM using Monte Carlo methods. As a result of this research organ dose can be estimated for individual patients undergoing specific conventional MDCT exams. This research also brings understanding to conventional and novel close reduction techniques in CT and their effect on organ dose.
NASA Astrophysics Data System (ADS)
Ding, Huanjun; Gao, Hao; Zhao, Bo; Cho, Hyo-Min; Molloi, Sabee
2014-10-01
Both computer simulations and experimental phantom studies were carried out to investigate the radiation dose reduction with tensor framelet based iterative image reconstruction (TFIR) for a dedicated high-resolution spectral breast computed tomography (CT) based on a silicon strip photon-counting detector. The simulation was performed with a 10 cm-diameter water phantom including three contrast materials (polyethylene, 8 mg ml-1 iodine and B-100 bone-equivalent plastic). In the experimental study, the data were acquired with a 1.3 cm-diameter polymethylmethacrylate (PMMA) phantom containing iodine in three concentrations (8, 16 and 32 mg ml-1) at various radiation doses (1.2, 2.4 and 3.6 mGy) and then CT images were reconstructed using the filtered-back-projection (FBP) technique and the TFIR technique, respectively. The image quality between these two techniques was evaluated by the quantitative analysis on contrast-to-noise ratio (CNR) and spatial resolution that was evaluated using the task-based modulation transfer function (MTF). Both the simulation and experimental results indicated that the task-based MTF obtained from TFIR reconstruction with one-third of the radiation dose was comparable to that from the FBP reconstruction for low contrast target. For high contrast target, the TFIR was substantially superior to the FBP reconstruction in terms of spatial resolution. In addition, TFIR was able to achieve a factor of 1.6-1.8 increase in CNR, depending on the target contrast level. This study demonstrates that the TFIR can reduce the required radiation dose by a factor of two-thirds for a CT image reconstruction compared to the FBP technique. It achieves much better CNR and spatial resolution for high contrast target in addition to retaining similar spatial resolution for low contrast target. This TFIR technique has been implemented with a graphic processing unit system and it takes approximately 10 s to reconstruct a single-slice CT image, which can potentially be used in a future multi-slit multi-slice spiral CT system.
Fan-beam intensity modulated proton therapy.
Hill, Patrick; Westerly, David; Mackie, Thomas
2013-11-01
This paper presents a concept for a proton therapy system capable of delivering intensity modulated proton therapy using a fan beam of protons. This system would allow present and future gantry-based facilities to deliver state-of-the-art proton therapy with the greater normal tissue sparing made possible by intensity modulation techniques. A method for producing a divergent fan beam of protons using a pair of electromagnetic quadrupoles is described and particle transport through the quadrupole doublet is simulated using a commercially available software package. To manipulate the fan beam of protons, a modulation device is developed. This modulator inserts or retracts acrylic leaves of varying thickness from subsections of the fan beam. Each subsection, or beam channel, creates what effectively becomes a beam spot within the fan area. Each channel is able to provide 0-255 mm of range shift for its associated beam spot, or stop the beam and act as an intensity modulator. Results of particle transport simulations through the quadrupole system are incorporated into the MCNPX Monte Carlo transport code along with a model of the range and intensity modulation device. Several design parameters were investigated and optimized, culminating in the ability to create topotherapy treatment plans using distal-edge tracking on both phantom and patient datasets. Beam transport calculations show that a pair of electromagnetic quadrupoles can be used to create a divergent fan beam of 200 MeV protons over a distance of 2.1 m. The quadrupole lengths were 30 and 48 cm, respectively, with transverse field gradients less than 20 T/m, which is within the range of water-cooled magnets for the quadrupole radii used. MCNPX simulations of topotherapy treatment plans suggest that, when using the distal edge tracking delivery method, many delivery angles are more important than insisting on narrow beam channel widths in order to obtain conformal target coverage. Overall, the sharp distal falloff of a proton depth-dose distribution was found to provide sufficient control over the dose distribution to meet objectives, even with coarse lateral resolution and channel widths as large as 2 cm. Treatment plans on both phantom and patient data show that dose conformity suffers when treatments are delivered from less than approximately ten angles. Treatment time for a sample prostate delivery is estimated to be on the order of 10 min, and neutron production is estimated to be comparable to that found for existing collimated systems. Fan beam proton therapy is a method of delivering intensity modulated proton therapy which may be employed as an alternative to magnetic scanning systems. A fan beam of protons can be created by a set of quadrupole magnets and modified by a dual-purpose range and intensity modulator. This can be used to deliver inversely planned treatments, with spot intensities optimized to meet user defined dose objectives. Additionally, the ability of a fan beam delivery system to effectively treat multiple beam spots simultaneously may provide advantages as compared to spot scanning deliveries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, M; Rosica, D; Agarwal, V
Purpose: Two separate low-dose CT scans are usually performed for attenuation correction of rest and stress N-13 ammonia PET/CT myocardial perfusion imaging (PET/CT). We utilize an automatic exposure control (AEC) technique to reduce CT radiation dose while maintaining perfusion image quality. Our goal is to assess the reproducibility of displayed CT dose index (CTDI) on same-day repeat CT scans (CT1 and CT2). Methods: Retrospectively, we reviewed CT images of PET/CT studies performed on the same day. Low-dose CT utilized AEC technique based on tube current modulation called Smart-mA. The scan parameters were 64 × 0.625mm collimation, 5mm slice thickness, 0.984more » pitch, 1-sec rotation time, 120 kVp, and noise index 50 with a range of 10–200 mA. The scan length matched with PET field of view (FOV) with the heart near the middle of axial FOV. We identified the reference slice number (RS) for an anatomical landmark (carina) and used it to estimate axial shift between two CTs. For patient size, we measured an effective diameter on the reference slice. The effect of patient positioning to CTDI was evaluated using the table height. We calculated the absolute percent difference of the CTDI (%diff) for estimation of the reproducibility. Results: The study included 168 adults with an average body-mass index of 31.72 ± 9.10 (kg/m{sup 2}) and effective diameter was 32.72 ± 4.60 cm. The average CTDI was 1.95 ± 1.40 mGy for CT1 and 1.97 ± 1.42mGy for CT2. The mean %diff was 7.8 ± 6.8%. Linear regression analysis showed a significant correlation between the table height and %diff CTDI. (r=0.82, p<0.001) Conclusion: We have shown for the first time in human subjects, using two same-day CT images, that the AEC technique in low-dose CT is reproducible within 10% and significantly depends on the patient centering.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scholey, J. E.; Lin, L.; Ainsley, C. G.
2015-06-15
Purpose: To evaluate the accuracy and limitations of a commercially-available treatment planning system’s (TPS’s) dose calculation algorithm for proton pencil-beam scanning (PBS) and present a novel technique to efficiently derive a clinically-acceptable beam model. Methods: In-air fluence profiles of PBS spots were modeled in the TPS alternately as single-(SG) and double-Gaussian (DG) functions, based on fits to commissioning data. Uniform-fluence, single-energy-layer square fields of various sizes and energies were calculated with both beam models and delivered to water. Dose was measured at several depths. Motivated by observed discrepancies in measured-versus-calculated dose comparisons, a third model was constructed based on double-Gaussianmore » parameters contrived through a novel technique developed to minimize these differences (DGC). Eleven cuboid-dose-distribution-shaped fields with varying range/modulation and field size were subsequently generated in the TPS, using each of the three beam models described, and delivered to water. Dose was measured at the middle of each spread-out Bragg peak. Results: For energies <160 MeV, the DG model fit square-field measurements to <2% at all depths, while the SG model could disagree by >6%. For energies >160 MeV, both SG and DG models fit square-field measurements to <1% at <4 cm depth, but could exceed 6% deeper. By comparison, disagreement with the DGC model was always <3%. For the cuboid plans, calculation-versus-measured percent dose differences exceeded 7% for the SG model, being larger for smaller fields. The DG model showed <3% disagreement for all field sizes in shorter-range beams, although >5% differences for smaller fields persisted in longer-range beams. In contrast, the DGC model predicted measurements to <2% for all beams. Conclusion: Neither the TPS’s SG nor DG models, employed as intended, are ideally suited for routine clinical use. However, via a novel technique to be presented, its DG model can be tuned judiciously to yield acceptable results.« less
IMRT for Image-Guided Single Vocal Cord Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osman, Sarah O.S., E-mail: s.osman@erasmusmc.nl; Astreinidou, Eleftheria; Boer, Hans C.J. de
2012-02-01
Purpose: We have been developing an image-guided single vocal cord irradiation technique to treat patients with stage T1a glottic carcinoma. In the present study, we compared the dose coverage to the affected vocal cord and the dose delivered to the organs at risk using conventional, intensity-modulated radiotherapy (IMRT) coplanar, and IMRT non-coplanar techniques. Methods and Materials: For 10 patients, conventional treatment plans using two laterally opposed wedged 6-MV photon beams were calculated in XiO (Elekta-CMS treatment planning system). An in-house IMRT/beam angle optimization algorithm was used to obtain the coplanar and non-coplanar optimized beam angles. Using these angles, the IMRTmore » plans were generated in Monaco (IMRT treatment planning system, Elekta-CMS) with the implemented Monte Carlo dose calculation algorithm. The organs at risk included the contralateral vocal cord, arytenoids, swallowing muscles, carotid arteries, and spinal cord. The prescription dose was 66 Gy in 33 fractions. Results: For the conventional plans and coplanar and non-coplanar IMRT plans, the population-averaged mean dose {+-} standard deviation to the planning target volume was 67 {+-} 1 Gy. The contralateral vocal cord dose was reduced from 66 {+-} 1 Gy in the conventional plans to 39 {+-} 8 Gy and 36 {+-} 6 Gy in the coplanar and non-coplanar IMRT plans, respectively. IMRT consistently reduced the doses to the other organs at risk. Conclusions: Single vocal cord irradiation with IMRT resulted in good target coverage and provided significant sparing of the critical structures. This has the potential to improve the quality-of-life outcomes after RT and maintain the same local control rates.« less
Morris, K
2017-06-01
The dose of radiotherapy is often verified by measuring the dose of radiation at specific points within a phantom. The presence of high-density implant materials such as titanium, however, may cause complications both during calculation and delivery of the dose. Numerous studies have reported photon/electron backscatter and alteration of the dose by high-density implants, but we know of no evidence of a dosimetry phantom that incorporates high density implants or fixtures. The aim of the study was to design and manufacture a tissue-equivalent head phantom for use in verification of the dose in radiotherapy using a combination of traditional laboratory materials and techniques and 3-dimensional technology that can incorporate titanium maxillofacial devices. Digital designs were used together with Mimics® 18.0 (Materialise NV) and FreeForm® software. DICOM data were downloaded and manipulated into the final pieces of the phantom mould. Three-dimensional digital objects were converted into STL files and exported for additional stereolithography. Phantoms were constructed in four stages: material testing and selection, design of a 3-dimensional mould, manufacture of implants, and final fabrication of the phantom using traditional laboratory techniques. Three tissue-equivalent materials were found and used to successfully manufacture a suitable phantom with interchangeable sections that contained three versions of titanium maxillofacial implants. Maxillofacial and other materials can be used to successfully construct a head phantom with interchangeable titanium implant sections for use in verification of doses of radiotherapy. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Jeffrey M.; Handorf, Elizabeth A.; Price, Robert A.
A small decrease in testosterone level has been documented after prostate irradiation, possibly owing to the incidental dose to the testes. Testicular doses from prostate external beam radiation plans with either intensity-modulated radiation therapy (IMRT) or volumetric-modulated arc therapy (VMAT) were calculated to investigate any difference. Testicles were contoured for 16 patients being treated for localized prostate cancer. For each patient, 2 plans were created: 1 with IMRT and 1 with VMAT. No specific attempt was made to reduce testicular dose. Minimum, maximum, and mean doses to the testicles were recorded for each plan. Of the 16 patients, 4 receivedmore » a total dose of 7800 cGy to the prostate alone, 7 received 8000 cGy to the prostate alone, and 5 received 8000 cGy to the prostate and pelvic lymph nodes. The mean (range) of testicular dose with an IMRT plan was 54.7 cGy (21.1 to 91.9) and 59.0 cGy (25.1 to 93.4) with a VMAT plan. In 12 cases, the mean VMAT dose was higher than the mean IMRT dose, with a mean difference of 4.3 cGy (p = 0.019). There was a small but statistically significant increase in mean testicular dose delivered by VMAT compared with IMRT. Despite this, it unlikely that there is a clinically meaningful difference in testicular doses from either modality.« less
Dodge, Cristina T.; Tamm, Eric P.; Cody, Dianna D.; Liu, Xinming; Jensen, Corey T.; Wei, Wei; Kundra, Vikas
2016-01-01
The purpose of this study was to characterize image quality and dose performance with GE CT iterative reconstruction techniques, adaptive statistical iterative reconstruction (ASiR), and model‐based iterative reconstruction (MBIR), over a range of typical to low‐dose intervals using the Catphan 600 and the anthropomorphic Kyoto Kagaku abdomen phantoms. The scope of the project was to quantitatively describe the advantages and limitations of these approaches. The Catphan 600 phantom, supplemented with a fat‐equivalent oval ring, was scanned using a GE Discovery HD750 scanner at 120 kVp, 0.8 s rotation time, and pitch factors of 0.516, 0.984, and 1.375. The mA was selected for each pitch factor to achieve CTDIvol values of 24, 18, 12, 6, 3, 2, and 1 mGy. Images were reconstructed at 2.5 mm thickness with filtered back‐projection (FBP); 20%, 40%, and 70% ASiR; and MBIR. The potential for dose reduction and low‐contrast detectability were evaluated from noise and contrast‐to‐noise ratio (CNR) measurements in the CTP 404 module of the Catphan. Hounsfield units (HUs) of several materials were evaluated from the cylinder inserts in the CTP 404 module, and the modulation transfer function (MTF) was calculated from the air insert. The results were confirmed in the anthropomorphic Kyoto Kagaku abdomen phantom at 6, 3, 2, and 1 mGy. MBIR reduced noise levels five‐fold and increased CNR by a factor of five compared to FBP below 6 mGy CTDIvol, resulting in a substantial improvement in image quality. Compared to ASiR and FBP, HU in images reconstructed with MBIR were consistently lower, and this discrepancy was reversed by higher pitch factors in some materials. MBIR improved the conspicuity of the high‐contrast spatial resolution bar pattern, and MTF quantification confirmed the superior spatial resolution performance of MBIR versus FBP and ASiR at higher dose levels. While ASiR and FBP were relatively insensitive to changes in dose and pitch, the spatial resolution for MBIR improved with increasing dose and pitch. Unlike FBP, MBIR and ASiR may have the potential for patient imaging at around 1 mGy CTDIvol. The improved low‐contrast detectability observed with MBIR, especially at low‐dose levels, indicate the potential for considerable dose reduction. PACS number(s): 87.57.Q‐, 87.57,nf, 87.57.C‐, 87.57.cj, 87.57.cf, 87.57.cm, 87.57.uq PMID:27074454
Low radiation dose in computed tomography: the role of iodine
Aschoff, Andrik J; Catalano, Carlo; Krix, Martin; Albrecht, Thomas
2017-01-01
Recent approaches to reducing radiation exposure during CT examinations typically utilize automated dose modulation strategies on the basis of lower tube voltage combined with iterative reconstruction and other dose-saving techniques. Less clearly appreciated is the potentially substantial role that iodinated contrast media (CM) can play in low-radiation-dose CT examinations. Herein we discuss the role of iodinated CM in low-radiation-dose examinations and describe approaches for the optimization of CM administration protocols to further reduce radiation dose and/or CM dose while maintaining image quality for accurate diagnosis. Similar to the higher iodine attenuation obtained at low-tube-voltage settings, high-iodine-signal protocols may permit radiation dose reduction by permitting a lowering of mAs while maintaining the signal-to-noise ratio. This is particularly feasible in first pass examinations where high iodine signal can be achieved by injecting iodine more rapidly. The combination of low kV and IR can also be used to reduce the iodine dose. Here, in optimum contrast injection protocols, the volume of CM administered rather than the iodine concentration should be reduced, since with high-iodine-concentration CM further reductions of iodine dose are achievable for modern first pass examinations. Moreover, higher concentrations of CM more readily allow reductions of both flow rate and volume, thereby improving the tolerability of contrast administration. PMID:28471242
SU-E-T-404: Simple Field-In-Field Technique for Total Body Irradiation in Large Patients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chi, P; Pinnix, C; Dabaja, B
2014-06-01
Purpose: A simple Field-in-Field technique for Total Body Irradiation (TBI) was developed for traditional AP/PA TBI treatments to improve dosimetric uniformity in patients with large separation. Methods: TBI at our institution currently utilizes an AP/PA technique at an extended source-to-surface distance (SSD) of 380cm with patients in left decubitus position during the AP beam and in right decubitus during the PA beam. Patients who have differences in thickness (separation) between the abdomen and head greater than 10cm undergo CT simulation in both left and right decubitus treatment positions. One plan for each CT is generated to evaluate dose to patientmore » midline with both AP and PA fields, but only corresponding AP fields will be exported for treatment for patient left decubitus position and PA fields for patient right decubitus position. Subfields are added by collimating with the x-ray jaws according to separation changes at 5–7% steps to minimize hot regions to less than 10%. Finally, the monitor units (MUs) for the plans are verified with hand calculation and water phantom measurements. Results: Dose uniformity (+/−10%) is achieved with field-in-field using only asymmetric jaws. It is dosimetrically robust with respect to minor setup/patient variations inevitable due to patient conditions. MUs calculated with Pinnacle were verified in 3 clinical cases and only a 2% difference was found compared to homogeneous calculation. In-vivo dosimeters were also used to verify doses received by each patient with and confirmed dose variations less than 10%. Conclusion: We encountered several cases with separation differences that raised uniformity concerns — based on a 1% dose difference per cm separation difference assumption. This could Resultin an unintended hot spot, often in the head/neck, up to 25%. This method allows dose modulation without adding treatment complexity nor introducing radiobiological variations, providing a reasonable solution for this unique TBI situation.« less
NASA Astrophysics Data System (ADS)
Rupcich, Franco John
The purpose of this study was to quantify the effectiveness of techniques intended to reduce dose to the breast during CT coronary angiography (CTCA) scans with respect to task-based image quality, and to evaluate the effectiveness of optimal energy weighting in improving contrast-to-noise ratio (CNR), and thus the potential for reducing breast dose, during energy-resolved dedicated breast CT. A database quantifying organ dose for several radiosensitive organs irradiated during CTCA, including the breast, was generated using Monte Carlo simulations. This database facilitates estimation of organ-specific dose deposited during CTCA protocols using arbitrary x-ray spectra or tube-current modulation schemes without the need to run Monte Carlo simulations. The database was used to estimate breast dose for simulated CT images acquired for a reference protocol and five protocols intended to reduce breast dose. For each protocol, the performance of two tasks (detection of signals with unknown locations) was compared over a range of breast dose levels using a task-based, signal-detectability metric: the estimator of the area under the exponential free-response relative operating characteristic curve, AFE. For large-diameter/medium-contrast signals, when maintaining equivalent AFE, the 80 kV partial, 80 kV, 120 kV partial, and 120 kV tube-current modulated protocols reduced breast dose by 85%, 81%, 18%, and 6%, respectively, while the shielded protocol increased breast dose by 68%. Results for the small-diameter/high-contrast signal followed similar trends, but with smaller magnitude of the percent changes in dose. The 80 kV protocols demonstrated the greatest reduction to breast dose, however, the subsequent increase in noise may be clinically unacceptable. Tube output for these protocols can be adjusted to achieve more desirable noise levels with lesser dose reduction. The improvement in CNR of optimally projection-based and image-based weighted images relative to photon-counting was investigated for six different energy bin combinations using a bench-top energy-resolving CT system with a cadmium zinc telluride (CZT) detector. The non-ideal spectral response reduced the CNR for the projection-based weighted images, while image-based weighting improved CNR for five out of the six investigated bin combinations, despite this non-ideal response, indicating potential for image-based weighting to reduce breast dose during dedicated breast CT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakhalkar, H. S.; Oldham, M.
2008-01-15
This study introduces a charge coupled device (CCD) area detector based optical-computed tomography (optical-CT) scanner for comprehensive verification of radiation dose distributions recorded in nonscattering radiochromic dosimeters. Defining characteristics include: (i) a very fast scanning time of {approx}5 min to acquire a complete three-dimensional (3D) dataset, (ii) improved image formation through the use of custom telecentric optics, which ensures accurate projection images and minimizes artifacts from scattered and stray-light sources, and (iii) high resolution (potentially 50 {mu}m) isotropic 3D dose readout. The performance of the CCD scanner for 3D dose readout was evaluated by comparison with independent 3D readout frommore » the single laser beam OCTOPUS-scanner for the same PRESAGE dosimeters. The OCTOPUS scanner was considered the 'gold standard' technique in light of prior studies demonstrating its accuracy. Additional comparisons were made against calculated dose distributions from the ECLIPSE treatment-planning system. Dose readout for the following treatments were investigated: (i) a single rectangular beam irradiation to investigate small field and very steep dose gradient dosimetry away from edge effects, (ii) a 2-field open beam parallel-opposed irradiation to investigate dosimetry along steep dose gradients, and (iii) a 7-field intensity modulated radiation therapy (IMRT) irradiation to investigate dosimetry for complex treatment delivery involving modulation of fluence and for dosimetry along moderate dose gradients. Dose profiles, dose-difference plots, and gamma maps were employed to evaluate quantitative estimates of agreement between independently measured and calculated dose distributions. Results indicated that dose readout from the CCD scanner was in agreement with independent gold-standard readout from the OCTOPUS-scanner as well as the calculated ECLIPSE dose distribution for all treatments, except in regions within a few millimeters of the edge of the dosimeter, where edge artifact is predominant. Agreement of line profiles was observed, even along steep dose gradients. Dose difference plots indicated that the CCD scanner dose readout differed from the OCTOPUSscanner readout and ECLIPSE calculations by {approx}10% along steep dose gradients and by {approx}5% along moderate dose gradients. Gamma maps (3% dose-difference and 3 mm distance-to-agreement acceptance criteria) revealed agreement, except for regions within 5 mm of the edge of the dosimeter where the edge artifact occurs. In summary, the data demonstrate feasibility of using the fast, high-resolution CCD scanner for comprehensive 3D dosimetry in all applications, except where dose readout is required close to the edges of the dosimeter. Further work is ongoing to reduce this artifact.« less
NASA Astrophysics Data System (ADS)
Huang, Shengzhou; Li, Mujun; Shen, Lianguan; Qiu, Jinfeng; Zhou, Youquan
2018-03-01
A novel fabrication method for high quality aspheric microlens array (MLA) was developed by combining the dose-modulated DMD-based lithography and surface thermal reflow process. In this method, the complex shape of aspheric microlens is pre-modeled via dose modulation in a digital micromirror device (DMD) based maskless projection lithography. And the dose modulation mainly depends on the distribution of exposure dose of photoresist. Then the pre-shaped aspheric microlens is polished by a following non-contact thermal reflow (NCTR) process. Different from the normal process, the reflow process here is investigated to improve the surface quality while keeping the pre-modeled shape unchanged, and thus will avoid the difficulties in generating the aspheric surface during reflow. Fabrication of a designed aspheric MLA with this method was demonstrated in experiments. Results showed that the obtained aspheric MLA was good in both shape accuracy and surface quality. The presented method may be a promising approach in rapidly fabricating high quality aspheric microlens with complex surface.
Balloon-occluded Retrograde Transvenous Obliteration (BRTO): Technique and Intraprocedural Imaging
Sabri, Saher S.; Saad, Wael E. A.
2011-01-01
Balloon-occluded retrograde transvenous obliteration (BRTO) is an endovascular technique used as a therapeutic adjunct or alternative to transjugular intrahepatic shunts (TIPS) in the management of gastric varices. Occlusion balloons are strategically placed to modulate flow within the gastrorenal or gastrocaval shunt to allow stagnation of the sclerosant material within the gastric varix. The approach and complexity of the procedure depends on the anatomic classification of inflow and outflow veins of the varix. Ethanolamine oleate has been described as the main sclerosant used in this procedure. Recently, foam sclerosants have gained popularity as alternative embolization agents, which provide the advantage of better variceal wall contact and potentially less dose of sclerosant. PMID:22942548
A novel approach to EPID-based 3D volumetric dosimetry for IMRT and VMAT QA
NASA Astrophysics Data System (ADS)
Alhazmi, Abdulaziz; Gianoli, Chiara; Neppl, Sebastian; Martins, Juliana; Veloza, Stella; Podesta, Mark; Verhaegen, Frank; Reiner, Michael; Belka, Claus; Parodi, Katia
2018-06-01
Intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) are relatively complex treatment delivery techniques and require quality assurance (QA) procedures. Pre-treatment dosimetric verification represents a fundamental QA procedure in daily clinical routine in radiation therapy. The purpose of this study is to develop an EPID-based approach to reconstruct a 3D dose distribution as imparted to a virtual cylindrical water phantom to be used for plan-specific pre-treatment dosimetric verification for IMRT and VMAT plans. For each depth, the planar 2D dose distributions acquired in air were back-projected and convolved by depth-specific scatter and attenuation kernels. The kernels were obtained by making use of scatter and attenuation models to iteratively estimate the parameters from a set of reference measurements. The derived parameters served as a look-up table for reconstruction of arbitrary measurements. The summation of the reconstructed 3D dose distributions resulted in the integrated 3D dose distribution of the treatment delivery. The accuracy of the proposed approach was validated in clinical IMRT and VMAT plans by means of gamma evaluation, comparing the reconstructed 3D dose distributions with Octavius measurement. The comparison was carried out using (3%, 3 mm) criteria scoring 99% and 96% passing rates for IMRT and VMAT, respectively. An accuracy comparable to the one of the commercial device for 3D volumetric dosimetry was demonstrated. In addition, five IMRT and five VMAT were validated against the 3D dose calculation performed by the TPS in a water phantom using the same passing rate criteria. The median passing rates within the ten treatment plans was 97.3%, whereas the lowest was 95%. Besides, the reconstructed 3D distribution is obtained without predictions relying on forward dose calculation and without external phantom or dosimetric devices. Thus, the approach provides a fully automated, fast and easy QA procedure for plan-specific pre-treatment dosimetric verification.
Koontz, Bridget F; Das, Shiva; Temple, Kathy; Bynum, Sigrun; Catalano, Suzanne; Koontz, Jason I; Montana, Gustavo S; Oleson, James R
2009-01-01
Adjuvant radiotherapy for locally advanced prostate cancer improves biochemical and clinical disease-free survival. While comparisons in intact prostate cancer show a benefit for intensity modulated radiation therapy (IMRT) over 3D conformal planning, this has not been studied for post-prostatectomy radiotherapy (RT). This study compares normal tissue and target dosimetry and radiobiological modeling of IMRT vs. 3D conformal planning in the postoperative setting. 3D conformal plans were designed for 15 patients who had been treated with IMRT planning for salvage post-prostatectomy RT. The same computed tomography (CT) and target/normal structure contours, as well as prescription dose, was used for both IMRT and 3D plans. Normal tissue complication probabilities (NTCPs) were calculated based on the dose given to the bladder and rectum by both plans. Dose-volume histogram and NTCP data were compared by paired t-test. Bladder and rectal sparing were improved with IMRT planning compared to 3D conformal planning. The volume of the bladder receiving at least 75% (V75) and 50% (V50) of the dose was significantly reduced by 28% and 17%, respectively (p = 0.002 and 0.037). Rectal dose was similarly reduced, V75 by 33% and V50 by 17% (p = 0.001 and 0.004). While there was no difference in the volume of rectum receiving at least 65 Gy (V65), IMRT planning significant reduced the volume receiving 40 Gy or more (V40, p = 0.009). Bladder V40 and V65 were not significantly different between planning modalities. Despite these dosimetric differences, there was no significant difference in the NTCP for either bladder or rectal injury. IMRT planning reduces the volume of bladder and rectum receiving high doses during post-prostatectomy RT. Because of relatively low doses given to the bladder and rectum, there was no statistically significant improvement in NTCP between the 3D conformal and IMRT plans.
A GPU-accelerated and Monte Carlo-based intensity modulated proton therapy optimization system.
Ma, Jiasen; Beltran, Chris; Seum Wan Chan Tseung, Hok; Herman, Michael G
2014-12-01
Conventional spot scanning intensity modulated proton therapy (IMPT) treatment planning systems (TPSs) optimize proton spot weights based on analytical dose calculations. These analytical dose calculations have been shown to have severe limitations in heterogeneous materials. Monte Carlo (MC) methods do not have these limitations; however, MC-based systems have been of limited clinical use due to the large number of beam spots in IMPT and the extremely long calculation time of traditional MC techniques. In this work, the authors present a clinically applicable IMPT TPS that utilizes a very fast MC calculation. An in-house graphics processing unit (GPU)-based MC dose calculation engine was employed to generate the dose influence map for each proton spot. With the MC generated influence map, a modified least-squares optimization method was used to achieve the desired dose volume histograms (DVHs). The intrinsic CT image resolution was adopted for voxelization in simulation and optimization to preserve spatial resolution. The optimizations were computed on a multi-GPU framework to mitigate the memory limitation issues for the large dose influence maps that resulted from maintaining the intrinsic CT resolution. The effects of tail cutoff and starting condition were studied and minimized in this work. For relatively large and complex three-field head and neck cases, i.e., >100,000 spots with a target volume of ∼ 1000 cm(3) and multiple surrounding critical structures, the optimization together with the initial MC dose influence map calculation was done in a clinically viable time frame (less than 30 min) on a GPU cluster consisting of 24 Nvidia GeForce GTX Titan cards. The in-house MC TPS plans were comparable to a commercial TPS plans based on DVH comparisons. A MC-based treatment planning system was developed. The treatment planning can be performed in a clinically viable time frame on a hardware system costing around 45,000 dollars. The fast calculation and optimization make the system easily expandable to robust and multicriteria optimization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, D; Salmon, H; Pavan, G
2014-06-01
Purpose: Evaluate and compare retrospective prostate treatment plan using Volumetric Modulated Arc Therapy (RapidArc™ - Varian) technique with single or double arcs at COI Group. Methods: Ten patients with present prostate and seminal vesicle neoplasia were replanned as a target treatment volume and a prescribed dose of 78 Gy. A baseline planning, using single arc, was developed for each case reaching for the best result on PTV, in order to minimize the dose on organs at risk (OAR). Maintaining the same optimization objectives used on baseline plan, two copies for optimizing single and double arcs, have been developed. The plansmore » were performed with 10 MV photon beam energy on Eclipse software, version 11.0, making use of Trilogy linear accelerator with Millenium HD120 multileaf collimator. Comparisons on PTV have been performed, such as: maximum, minimum and mean dose, gradient dose, as well as the quantity of monitor units, treatment time and homogeneity and conformity index. OARs constrains dose have been evaluated, comparing both optimizations. Results: Regarding PTV coverage, the difference of the minimum, maximum and mean dose were 1.28%, 0.7% and 0.2% respectively higher for single arc. When analyzed the index of homogeneity found a difference of 0.99% higher when compared with double arcs. However homogeneity index was 0.97% lower on average by using single arc. The doses on the OARs, in both cases, were in compliance to the recommended limits RTOG 0415. With the use of single arc, the quantity of monitor units was 10,1% lower, as well as the Beam-On time, 41,78%, when comparing double arcs, respectively. Conclusion: Concerning the optimization of patients with present prostate and seminal vesicle neoplasia, the use of single arc reaches similar objectives, when compared to double arcs, in order to decrease the treatment time and the quantity of monitor units.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, T; Lin, H; Xu, X
Purpose: To develop a nuclear medicine dosimetry module for the GPU-based Monte Carlo code ARCHER. Methods: We have developed a nuclear medicine dosimetry module for the fast Monte Carlo code ARCHER. The coupled electron-photon Monte Carlo transport kernel included in ARCHER is built upon the Dose Planning Method code (DPM). The developed module manages the radioactive decay simulation by consecutively tracking several types of radiation on a per disintegration basis using the statistical sampling method. Optimization techniques such as persistent threads and prefetching are studied and implemented. The developed module is verified against the VIDA code, which is based onmore » Geant4 toolkit and has previously been verified against OLINDA/EXM. A voxelized geometry is used in the preliminary test: a sphere made of ICRP soft tissue is surrounded by a box filled with water. Uniform activity distribution of I-131 is assumed in the sphere. Results: The self-absorption dose factors (mGy/MBqs) of the sphere with varying diameters are calculated by ARCHER and VIDA respectively. ARCHER’s result is in agreement with VIDA’s that are obtained from a previous publication. VIDA takes hours of CPU time to finish the computation, while it takes ARCHER 4.31 seconds for the 12.4-cm uniform activity sphere case. For a fairer CPU-GPU comparison, more effort will be made to eliminate the algorithmic differences. Conclusion: The coupled electron-photon Monte Carlo code ARCHER has been extended to radioactive decay simulation for nuclear medicine dosimetry. The developed code exhibits good performance in our preliminary test. The GPU-based Monte Carlo code is developed with grant support from the National Institute of Biomedical Imaging and Bioengineering through an R01 grant (R01EB015478)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bostani, Maryam, E-mail: mbostani@mednet.ucla.edu; McMillan, Kyle; Cagnon, Chris H.
2014-11-01
Purpose: Monte Carlo (MC) simulation methods have been widely used in patient dosimetry in computed tomography (CT), including estimating patient organ doses. However, most simulation methods have undergone a limited set of validations, often using homogeneous phantoms with simple geometries. As clinical scanning has become more complex and the use of tube current modulation (TCM) has become pervasive in the clinic, MC simulations should include these techniques in their methodologies and therefore should also be validated using a variety of phantoms with different shapes and material compositions to result in a variety of differently modulated tube current profiles. The purposemore » of this work is to perform the measurements and simulations to validate a Monte Carlo model under a variety of test conditions where fixed tube current (FTC) and TCM were used. Methods: A previously developed MC model for estimating dose from CT scans that models TCM, built using the platform of MCNPX, was used for CT dose quantification. In order to validate the suitability of this model to accurately simulate patient dose from FTC and TCM CT scan, measurements and simulations were compared over a wide range of conditions. Phantoms used for testing range from simple geometries with homogeneous composition (16 and 32 cm computed tomography dose index phantoms) to more complex phantoms including a rectangular homogeneous water equivalent phantom, an elliptical shaped phantom with three sections (where each section was a homogeneous, but different material), and a heterogeneous, complex geometry anthropomorphic phantom. Each phantom requires varying levels of x-, y- and z-modulation. Each phantom was scanned on a multidetector row CT (Sensation 64) scanner under the conditions of both FTC and TCM. Dose measurements were made at various surface and depth positions within each phantom. Simulations using each phantom were performed for FTC, detailed x–y–z TCM, and z-axis-only TCM to obtain dose estimates. This allowed direct comparisons between measured and simulated dose values under each condition of phantom, location, and scan to be made. Results: For FTC scans, the percent root mean square (RMS) difference between measurements and simulations was within 5% across all phantoms. For TCM scans, the percent RMS of the difference between measured and simulated values when using detailed TCM and z-axis-only TCM simulations was 4.5% and 13.2%, respectively. For the anthropomorphic phantom, the difference between TCM measurements and detailed TCM and z-axis-only TCM simulations was 1.2% and 8.9%, respectively. For FTC measurements and simulations, the percent RMS of the difference was 5.0%. Conclusions: This work demonstrated that the Monte Carlo model developed provided good agreement between measured and simulated values under both simple and complex geometries including an anthropomorphic phantom. This work also showed the increased dose differences for z-axis-only TCM simulations, where considerable modulation in the x–y plane was present due to the shape of the rectangular water phantom. Results from this investigation highlight details that need to be included in Monte Carlo simulations of TCM CT scans in order to yield accurate, clinically viable assessments of patient dosimetry.« less
Clemente-Gutiérrez, Francisco; Pérez-Vara, Consuelo
2015-03-08
A pretreatment quality assurance program for volumetric techniques should include redundant calculations and measurement-based verifications. The patient-specific quality assurance process must be based in clinically relevant metrics. The aim of this study was to show the commission, clinical implementation, and comparison of two systems that allow performing a 3D redundant dose calculation. In addition, one of them is capable of reconstructing the dose on patient anatomy from measurements taken with a 2D ion chamber array. Both systems were compared in terms of reference calibration data (absolute dose, output factors, percentage depth-dose curves, and profiles). Results were in good agreement for absolute dose values (discrepancies were below 0.5%) and output factors (mean differences were below 1%). Maximum mean discrepancies were located between 10 and 20 cm of depth for PDDs (-2.7%) and in the penumbra region for profiles (mean DTA of 1.5 mm). Validation of the systems was performed by comparing point-dose measurements with values obtained by the two systems for static, dynamic fields from AAPM TG-119 report, and 12 real VMAT plans for different anatomical sites (differences better than 1.2%). Comparisons between measurements taken with a 2D ion chamber array and results obtained by both systems for real VMAT plans were also performed (mean global gamma passing rates better than 87.0% and 97.9% for the 2%/2 mm and 3%/3 mm criteria). Clinical implementation of the systems was evaluated by comparing dose-volume parameters for all TG-119 tests and real VMAT plans with TPS values (mean differences were below 1%). In addition, comparisons between dose distributions calculated by TPS and those extracted by the two systems for real VMAT plans were also performed (mean global gamma passing rates better than 86.0% and 93.0% for the 2%/2 mm and 3%/ 3 mm criteria). The clinical use of both systems was successfully evaluated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, S; Chin, E; Xing, L
Purpose: The integration of couch motion during arc delivery is necessitated to enable irradiation trajectories such as coronal arcs, and to enhance the geometrical sampling for dynamic deliveries to the highest extent. To enable such capability, a platform of Trajectory Modulated Arc Therapy (TMAT) is developed in conjunction with standardized noncollisional dynamic path-set for irradiation of intracranial lesions. Methods: A generalized path-set was constructed through the combination of sagittal arcs (45 degrees from the CAX), axial arcs, and coronal arcs produced through modulation of the dynamic rotation of couch. The standardized path was implemented in a contiguous manner enabling themore » formation of fully automated sub-trajectories to provide maximal geometrical convergence with minimal number of arcs. Progressive sampling technique is used for direct aperture optimization of the MLCs and the selection of couch positions across the control points. Dosimetry of the resulting plans was assessed relative to clinically delivered plans. Using the TrueBeam Developer Mode, plan deliverability was tested. Results: Treatment planning of TMAT sub-trajectories for central, anterior and posterior tumor sites with volumes ranging from 4.75cc to 107cc demonstrated radically reduced doses to the critical OARs when compared to the clinically treated VMAT. Specifically, percentage reduction in mean dose for critical organs such as brainstem, cochlea, and optic nerve are found to be as low as 74±15%, 50±26% and 74±30% respectively as compared to VMAT. Conformity Index, defined as the ratio of tumor volume (VPTV) and 100% dose volume (V(D100%)), was reduced up to 12% while the Gradient Index, defined as V(D100%)/V(D50%), was concurrently improved by up to 14%. Conclusion: An automated standardized trajectory with dynamically modulated couch-gantry arcs has been developed for intracranial radiotherapy. Through the incorporation of coronal arcs, it is demonstrated that significantly reduced OAR doses can be achieved relative to clinically treated patient plans via VMAT. Research Grant Funding Support by Varian Medical Systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lagerwaard, Frank J.; Hoorn, Elles A.P. van der; Verbakel, Wilko
2009-09-01
Purpose: Volumetric modulated arc therapy (RapidArc [RA]; Varian Medical Systems, Palo Alto, CA) allows for the generation of intensity-modulated dose distributions by use of a single gantry rotation. We used RA to plan and deliver whole-brain radiotherapy (WBRT) with a simultaneous integrated boost in patients with multiple brain metastases. Methods and Materials: Composite RA plans were generated for 8 patients, consisting of WBRT (20 Gy in 5 fractions) with an integrated boost, also 20 Gy in 5 fractions, to Brain metastases, and clinically delivered in 3 patients. Summated gross tumor volumes were 1.0 to 37.5 cm{sup 3}. RA plans weremore » measured in a solid water phantom by use of Gafchromic films (International Specialty Products, Wayne, NJ). Results: Composite RA plans could be generated within 1 hour. Two arcs were needed to deliver the mean of 1,600 monitor units with a mean 'beam-on' time of 180 seconds. RA plans showed excellent coverage of planning target volume for WBRT and planning target volume for the boost, with mean volumes receiving at least 95% of the prescribed dose of 100% and 99.8%, respectively. The mean conformity index was 1.36. Composite plans showed much steeper dose gradients outside Brain metastases than plans with a conventional summation of WBRT and radiosurgery. Comparison of calculated and measured doses showed a mean gamma for double-arc plans of 0.30, and the area with a gamma larger than 1 was 2%. In-room times for clinical RA sessions were approximately 20 minutes for each patient. Conclusions: RA treatment planning and delivery of integrated plans of WBRT and boosts to multiple brain metastases is a rapid and accurate technique that has a higher conformity index than conventional summation of WBRT and radiosurgery boost.« less
Improved neutron activation prediction code system development
NASA Technical Reports Server (NTRS)
Saqui, R. M.
1971-01-01
Two integrated neutron activation prediction code systems have been developed by modifying and integrating existing computer programs to perform the necessary computations to determine neutron induced activation gamma ray doses and dose rates in complex geometries. Each of the two systems is comprised of three computational modules. The first program module computes the spatial and energy distribution of the neutron flux from an input source and prepares input data for the second program which performs the reaction rate, decay chain and activation gamma source calculations. A third module then accepts input prepared by the second program to compute the cumulative gamma doses and/or dose rates at specified detector locations in complex, three-dimensional geometries.
A methodology for image quality evaluation of advanced CT systems.
Wilson, Joshua M; Christianson, Olav I; Richard, Samuel; Samei, Ehsan
2013-03-01
This work involved the development of a phantom-based method to quantify the performance of tube current modulation and iterative reconstruction in modern computed tomography (CT) systems. The quantification included resolution, HU accuracy, noise, and noise texture accounting for the impact of contrast, prescribed dose, reconstruction algorithm, and body size. A 42-cm-long, 22.5-kg polyethylene phantom was designed to model four body sizes. Each size was represented by a uniform section, for the measurement of the noise-power spectrum (NPS), and a feature section containing various rods, for the measurement of HU and the task-based modulation transfer function (TTF). The phantom was scanned on a clinical CT system (GE, 750HD) using a range of tube current modulation settings (NI levels) and reconstruction methods (FBP and ASIR30). An image quality analysis program was developed to process the phantom data to calculate the targeted image quality metrics as a function of contrast, prescribed dose, and body size. The phantom fabrication closely followed the design specifications. In terms of tube current modulation, the tube current and resulting image noise varied as a function of phantom size as expected based on the manufacturer specification: From the 16- to 37-cm section, the HU contrast for each rod was inversely related to phantom size, and noise was relatively constant (<5% change). With iterative reconstruction, the TTF exhibited a contrast dependency with better performance for higher contrast objects. At low noise levels, TTFs of iterative reconstruction were better than those of FBP, but at higher noise, that superiority was not maintained at all contrast levels. Relative to FBP, the NPS of iterative reconstruction exhibited an ~30% decrease in magnitude and a 0.1 mm(-1) shift in the peak frequency. Phantom and image quality analysis software were created for assessing CT image quality over a range of contrasts, doses, and body sizes. The testing platform enabled robust NPS, TTF, HU, and pixel noise measurements as a function of body size capable of characterizing the performance of reconstruction algorithms and tube current modulation techniques.
Shen, Y; Lu, T; Yang, X L
1999-03-01
In horizontal cells freshly dissociated from crucian carp (Carassius auratus) retina, we examined the effects of modulators of glutamate receptor desensitization, concanavalin A, cyclothiazide, aniracetam and 4-[2-(phenylsulfonylamino)ethylthio]-2,6-difluoro-phenoxyacetam ide (PEPA), on responses to rapid application of glutamate and kainate, using whole-cell voltage-clamp techniques. Incubation of concanavalin A suppressed the peak response but weakly potentiated the equilibrium response of horizontal cells to glutamate. Cyclothiazide blocked glutamate-induced desensitization in a dose-dependent manner, which resulted in a steady increase of the equilibrium current. The concentration of cyclothiazide causing a half-maximal potentiation for the equilibrium response was 85 microM. Furthermore, cyclothiazide shifted the dose-response relationship of the equilibrium current to the right, but slightly suppressed the kainate-induced sustained current. These effects of concanavalin A and cyclothiazide are consistent with the supposition that glutamate receptors of carp horizontal cells may be an alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)-preferring subtype. In order to further characterize the AMPA receptors of horizontal cells, modulation by aniracetam and PEPA of glutamate- and kainate-induced currents was studied. Aniracetam, a preferential modulator of flop variants of AMPA receptors, considerably blocked desensitization of glutamate-induced currents, but only slightly potentiated kainate-induced currents. It was further found that PEPA, a flop-preferring allosteric modulator of AMPA receptor desensitization, slightly suppressed the peak current, while it dramatically potentiated the equilibrium current induced by glutamate in a dose-dependent manner. PEPA was much potent than aniracetam at these receptors and showed the effect on glutamate-induced desensitization even at a concentration as low as 3 microM. PEPA also potentiated non-desensitizing currents induced by kainate, but with much less extent. These modulatory effects of concanavalin A, cyclothiazide, aniracetam and PEPA on AMPA receptors in carp horizontal cells were rather similar to those obtained at AMPA receptors assembled from flop variants expressed in Xenopus oocyte and HEK cell. Consequently, we speculate that the AMPA receptor on carp horizontal cells may predominantly carry the flop splice variants.
NASA Astrophysics Data System (ADS)
Rosso, V.; Battistoni, G.; Belcari, N.; Camarlinghi, N.; Ciocca, M.; Collini, F.; Ferretti, S.; Kraan, A. C.; Lucenò, S.; Molinelli, S.; Pullia, M.; Sportelli, G.; Zaccaro, E.; Del Guerra, A.
2016-07-01
One of the most promising new radiotherapy techniques makes use of charged particles like protons and carbon ions, rather than photons. At present, there are more than 50 particle therapy centers operating worldwide, and many new centers are being constructed. Positron Emission Tomography (PET) is considered a well-established non-invasive technique to monitor range and delivered dose in patients treated with particle therapy. Nuclear interactions of the charged hadrons with the patient tissue lead to the production of β+ emitting isotopes (mainly 15O and 11C), that decay with a short lifetime producing a positron. The two 511 keV annihilation photons can be detected with a PET detector. In-beam PET is particularly interesting because it could allow monitoring the ions range also during dose delivery. A large area dual head PET prototype was built and tested. The system is based on an upgraded version of the previously developed DoPET prototype. Each head covers now 15×15 cm2 and is composed by 9 (3×3) independent modules. Each module consists of a 23×23 LYSO crystal matrix (2 mm pitch) coupled to H8500 PMT and is readout by custom front-end and a FPGA based data acquisition electronics. Data taken at the CNAO treatment facility in Pavia with proton and carbon beams impinging on heterogeneous phantoms demonstrate the DoPET capability to detect the presence of a small air cavity in the phantom.
Inaba, Koji; Okamoto, Hiroyuki; Wakita, Akihisa; Nakamura, Satoshi; Kobayashi, Kazuma; Harada, Ken; Kitaguchi, Mayuka; Sekii, Shuhei; Takahashi, Kana; Yoshio, Kotaro; Murakami, Naoya; Morota, Madoka; Ito, Yoshinori; Sumi, Minako; Uno, Takashi; Itami, Jun
2014-11-01
During radiotherapy for gastric lymphoma, it is difficult to protect the liver and kidneys in cases where there is considerable overlap between these organs and the target volume. This study was conducted to compare the three radiotherapy planning techniques of four-fields 3D conformal radiotherapy (3DCRT), half-field radiotherapy (the half-beam method) and intensity-modulated radiotherapy (IMRT) used to treat primary gastric lymphoma in which the planning target volume (PTV) had a large overlap with the left kidney. A total of 17 patients with gastric diffuse large B-cell lymphoma (DLBCL) were included. In DLBCL, immunochemotherapy (Rituximab + CHOP) was followed by radiotherapy of 40 Gy to the whole stomach and peri-gastric lymph nodes. 3DCRT, the half-field method, and IMRT were compared with respect to the dose-volume histogram (DVH) parameters and generalized equivalent uniform dose (gEUD) to the kidneys, liver and PTV. The mean dose and gEUD for 3DCRT was higher than for IMRT and the half-beam method in the left kidney and both kidneys. The mean dose and gEUD of the left kidney was 2117 cGy and 2224 cGy for 3DCRT, 1520 cGy and 1637 cGy for IMRT, and 1100 cGy and 1357 cGy for the half-beam method, respectively. The mean dose and gEUD of both kidneys was 1335 cGy and 1559 cGy for 3DCRT, 1184 cGy and 1311 cGy for IMRT, and 700 cGy and 937 cGy for the half-beam method, respectively. Dose-volume histograms (DVHs) of the liver revealed a larger volume was irradiated in the dose range <25 Gy with 3DCRT, while the half-beam method irradiated a larger volume of liver with the higher dose range (>25 Gy). IMRT and the half-beam method had the advantages of dose reduction for the kidneys and liver. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Simultaneous integrated vs. sequential boost in VMAT radiotherapy of high-grade gliomas.
Farzin, Mostafa; Molls, Michael; Astner, Sabrina; Rondak, Ina-Christine; Oechsner, Markus
2015-12-01
In 20 patients with high-grade gliomas, we compared two methods of planning for volumetric-modulated arc therapy (VMAT): simultaneous integrated boost (SIB) vs. sequential boost (SEB). The investigation focused on the analysis of dose distributions in the target volumes and the organs at risk (OARs). After contouring the target volumes [planning target volumes (PTVs) and boost volumes (BVs)] and OARs, SIB planning and SEB planning were performed. The SEB method consisted of two plans: in the first plan the PTV received 50 Gy in 25 fractions with a 2-Gy dose per fraction. In the second plan the BV received 10 Gy in 5 fractions with a dose per fraction of 2 Gy. The doses of both plans were summed up to show the total doses delivered. In the SIB method the PTV received 54 Gy in 30 fractions with a dose per fraction of 1.8 Gy, while the BV received 60 Gy in the same fraction number but with a dose per fraction of 2 Gy. All of the OARs showed higher doses (Dmax and Dmean) in the SEB method when compared with the SIB technique. The differences between the two methods were statistically significant in almost all of the OARs. Analysing the total doses of the target volumes we found dose distributions with similar homogeneities and comparable total doses. Our analysis shows that the SIB method offers advantages over the SEB method in terms of sparing OARs.
Control algorithms for dynamic attenuators
Hsieh, Scott S.; Pelc, Norbert J.
2014-01-01
Purpose: The authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are prepatient beam shaping filters that modulate the distribution of x-ray fluence incident on the patient on a view-by-view basis. These attenuators can reduce dose while improving key image quality metrics such as peak or mean variance. In each view, the attenuator presents several degrees of freedom which may be individually adjusted. The total number of degrees of freedom across all views is very large, making many optimization techniques impractical. The authors develop a theory for optimally controlling these attenuators. Special attention is paid to a theoretically perfect attenuator which controls the fluence for each ray individually, but the authors also investigate and compare three other, practical attenuator designs which have been previously proposed: the piecewise-linear attenuator, the translating attenuator, and the double wedge attenuator. Methods: The authors pose and solve the optimization problems of minimizing the mean and peak variance subject to a fixed dose limit. For a perfect attenuator and mean variance minimization, this problem can be solved in simple, closed form. For other attenuator designs, the problem can be decomposed into separate problems for each view to greatly reduce the computational complexity. Peak variance minimization can be approximately solved using iterated, weighted mean variance (WMV) minimization. Also, the authors develop heuristics for the perfect and piecewise-linear attenuators which do not require a priori knowledge of the patient anatomy. The authors compare these control algorithms on different types of dynamic attenuators using simulated raw data from forward projected DICOM files of a thorax and an abdomen. Results: The translating and double wedge attenuators reduce dose by an average of 30% relative to current techniques (bowtie filter with tube current modulation) without increasing peak variance. The 15-element piecewise-linear dynamic attenuator reduces dose by an average of 42%, and the perfect attenuator reduces dose by an average of 50%. Improvements in peak variance are several times larger than improvements in mean variance. Heuristic control eliminates the need for a prescan. For the piecewise-linear attenuator, the cost of heuristic control is an increase in dose of 9%. The proposed iterated WMV minimization produces results that are within a few percent of the true solution. Conclusions: Dynamic attenuators show potential for significant dose reduction. A wide class of dynamic attenuators can be accurately controlled using the described methods. PMID:24877818
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, Robert L., E-mail: rdixon@wfubmc.edu; Boone, John M.; Kraft, Robert A.
2014-11-01
Purpose: With the increasing clinical use of shift-variant CT protocols involving tube current modulation (TCM), variable pitch or pitch modulation (PM), and variable aperture a(t), the interpretation of the scanner-reported CTDI{sub vol} is called into question. This was addressed for TCM in their previous paper published by Dixon and Boone [Med. Phys. 40, 111920 (14pp.) (2013)] and is extended to PM and concurrent TCM/PM as well as variable aperture in this work. Methods: Rigorous convolution equations are derived to describe the accumulated dose distributions for TCM, PM, and concurrent TCM/PM. A comparison with scanner-reported CTDI{sub vol} formulae clearly identifies themore » source of their differences with the traditional CTDI{sub vol}. Dose distribution simulations using the convolution are provided for a variety of TCM and PM scenarios including a helical shuttle used for perfusion studies (as well as constant mA)—all having the same scanner-reported CTDI{sub vol}. These new convolution simulations for TCM are validated by comparison with their previous discrete summations. Results: These equations show that PM is equivalent to TCM if the pitch variation p(z) is proportional to 1/i(z), where i(z) is the local tube current. The simulations show that the local dose at z depends only weakly on the local tube current i(z) or local pitch p(z) due to scatter from all other locations along z, and that the “local CTDI{sub vol}(z)” or “CTDI{sub vol} per slice” do not represent a local dose but rather only a relative i(z) or p(z). The CTDI-paradigm does not apply to shift-variant techniques and the scanner-reported CTDI{sub vol} for the same lacks physical significance and relevance. Conclusions: While the traditional CTDI{sub vol} at constant tube current and pitch conveys useful information (the peak dose at the center of the scan length), CTDI{sub vol} for shift-variant techniques (TCM or PM) conveys no useful information about the associated dose distribution it purportedly represents. On the other hand, the total energy absorbed E (“integral dose”) as well as its surrogate DLP remain robust (invariant) with respect to shift-variance, depending only on the total mAs = 〈i〉t{sub 0} accumulated during the total beam-on time t{sub 0} and aperture a, where 〈i〉 is the average current.« less
NASA Astrophysics Data System (ADS)
Tian, Yi; Chen, Mahao; Kong, Jun
2009-02-01
With the online z-axis tube current modulation (OZTCM) technique proposed by this work, full automatic exposure control (AEC) for CT systems could be realized with online feedback not only for angular tube current modulation (TCM) but also for z-axis TCM either. Then the localizer radiograph was not required for TCM any more. OZTCM could be implemented with 2 schemes as attenuation based μ-OZTCM and image noise level based μ-OZTCM. Respectively the maximum attenuation of projection readings and standard deviation of reconstructed images can be used to modulate the tube current level in z-axis adaptively for each half (180 degree) or full (360 degree) rotation. Simulation results showed that OZTCM achieved better noise level than constant tube current scan case by using same total dose in mAs. The OZTCM can provide optimized base tube current level for angular TCM to realize an effective auto exposure control when localizer radiograph is not available or need to be skipped for simplified scan protocol in case of emergency procedure or children scan, etc.
Titze, Melanie I; Schaaf, Otmar; Hofmann, Marco H; Sanderson, Michael P; Zahn, Stephan K; Quant, Jens; Lehr, Thorsten
2016-06-01
BI 893923 is a novel IGF1R/INSR tyrosine kinase inhibitor demonstrating anti-tumor efficacy and good tolerability. We aimed to characterize the relationship between BI 893923 plasma concentration, tumor biomarker modulation, tumor growth and hyperglycemia in mice using in silico modeling analyses. In vitro molecular and cellular assays were used to demonstrate the potency and selectivity of BI 893923. Diverse in vitro DMPK assays were used to characterize the compound's drug-like properties. Mice xenografted with human GEO tumors were treated with different doses of BI 893923 to demonstrate the compound's efficacy, biomarker modulation and tolerability. PK/PD analyses were performed using nonlinear mixed-effects modeling. BI 893923 demonstrated potent and selective molecular inhibition of the IGF1R and INSR and demonstrated attractive drug-like properties (permeability, bioavailability). BI 893923 dose-dependently reduced GEO tumor growth and demonstrated good tolerability, characterized by transient hyperglycemia and normal body weight gain. A population PK/PD model was developed, which established relationships between BI 893923 pharmacokinetics, hyperglycemia, pIGF1R reduction and tumor growth. BI 893923 demonstrates molecular properties consistent with a highly attractive inhibitor of the IGF1R/INSR. A generic PK/PD model was developed to support preclinical drug development and dose finding in mice.
Influence of (11)C-choline PET/CT on radiotherapy planning in prostate cancer.
López, Escarlata; Lazo, Antonio; Gutiérrez, Antonio; Arregui, Gregorio; Núñez, Isabel; Sacchetti, Antonio
2015-01-01
To evaluate the influence of (11)C-choline PET/CT on radiotherapy planning in prostate cancer patients. Precise information on the extension of prostate cancer is crucial for the choice of an appropriate therapeutic strategy. (11)C-choline positron emission tomography ((11)C-choline PET/CT) has two roles in radiation oncology (RT): (1) patient selection for treatment and (2) target volume selection and delineation. In conjunction with high-accuracy techniques, it might offer an opportunity of dose escalation and better tumour control while sparing healthy tissues. We carried out a retrospective study in order to analyse RT planning modification based on (11)C-choline PET/CT in 16 prostate cancer patients. Patients were treated with hypofractionated step-and-shoot Intensity Modulated Radiotherapy (IMRT), or Volumetric Modulated Arc Therapy (VMAT), and a daily cone-beam CT for Image Guided Radiation Therapy (IGRT). All patients underwent a (11)C-choline-PET/CT scan prior to radiotherapy. In 37.5% of cases, a re-delineation and new dose prescription occurred. Data show good preliminary clinical results in terms of biochemical control and toxicity. No gastrointestinal (GI)/genitourinary (GU) grade III toxicities were observed after a median follow-up of 9.5 months. In our experience, concerning the treatment of prostate cancer (PCa), (11)C-choline PET/CT may be helpful in radiotherapy planning, either for dose escalation or exclusion of selected sites.
Cashmore, Jason; Ramtohul, Mark; Ford, Dan
2011-07-15
Intensity modulated radiotherapy (IMRT) has been linked with an increased risk of secondary cancer induction due to the extra leakage radiation associated with delivery of these techniques. Removal of the flattening filter offers a simple way of reducing head leakage, and it may be possible to generate equivalent IMRT plans and to deliver these on a standard linear accelerator operating in unflattened mode. An Elekta Precise linear accelerator has been commissioned to operate in both conventional and unflattened modes (energy matched at 6 MV) and a direct comparison made between the treatment planning and delivery of pediatric intracranial treatments using both approaches. These plans have been evaluated and delivered to an anthropomorphic phantom. Plans generated in unflattened mode are clinically identical to those for conventional IMRT but can be delivered with greatly reduced leakage radiation. Measurements in an anthropomorphic phantom at clinically relevant positions including the thyroid, lung, ovaries, and testes show an average reduction in peripheral doses of 23.7%, 29.9%, 64.9%, and 70.0%, respectively, for identical plan delivery compared to conventional IMRT. IMRT delivery in unflattened mode removes an unwanted and unnecessary source of scatter from the treatment head and lowers leakage doses by up to 70%, thereby reducing the risk of radiation-induced second cancers. Removal of the flattening filter is recommended for IMRT treatments. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Damien C., E-mail: damien.weber@unige.ch; Johanson, Safora; Peguret, Nicolas
2011-10-01
Purpose: To assess the excess relative risk (ERR) of radiation-induced cancers (RIC) in female patients with Hodgkin lymphoma (HL) female patients treated with conformal (3DCRT), intensity modulated (IMRT), or volumetric modulated arc (RA) radiation therapy. Methods and Materials: Plans for 10 early-stage HL female patients were computed for 3DCRT, IMRT, and RA with involved field RT (IFRT) and involvednode RT (INRT) radiation fields. Organs at risk dose--volume histograms were computed and inter-compared for IFRT vs. INRT and 3DCRT vs. IMRT/RA, respectively. The ERR for cancer induction in breasts, lungs, and thyroid was estimated using both linear and nonlinear models. Results:more » The mean estimated ERR for breast, lung, and thyroid were significantly lower (p < 0.01) with INRT than with IFRT planning, regardless of the radiation delivery technique used, assuming a linear dose-risk relationship. We found that using the nonlinear model, the mean ERR values were significantly (p < 0.01) increased with IMRT or RA compared to those with 3DCRT planning for the breast, lung, and thyroid, using an IFRT paradigm. After INRT planning, IMRT or RA increased the risk of RIC for lung and thyroid only. Conclusions: In this comparative planning study, using a nonlinear dose--risk model, IMRT or RA increased the estimated risk of RIC for breast, lung, and thyroid for HL female patients. This study also suggests that INRT planning, compared to IFRT planning, may reduce the ERR of RIC when risk is predicted using a linear model. Observing the opposite effect, with a nonlinear model, however, questions the validity of these biologically parameterized models.« less
Park, Jong Min; Park, So-Yeon; Choi, Chang Heon; Chun, Minsoo; Kim, Jin Ho; Kim, Jung-In
2017-01-01
To investigate the plan quality of tri-Co-60 intensity-modulated radiation therapy (IMRT) with magnetic-resonance image-guided radiation therapy compared with volumetric-modulated arc therapy (VMAT) for prostate cancer. Twenty patients with intermediate-risk prostate cancer, who received radical VMAT were selected. Additional tri-Co-60 IMRT plans were generated for each patient. Both primary and boost plans were generated with tri-Co-60 IMRT and VMAT techniques. The prescription doses of the primary and boost plans were 50.4 Gy and 30.6 Gy, respectively. The primary and boost planning target volumes (PTVs) of the tri-Co-60 IMRT were generated with 3 mm margins from the primary clinical target volume (CTV, prostate + seminal vesicle) and a boost CTV (prostate), respectively. VMAT had a primary planning target volume (primary CTV + 1 cm or 2 cm margins) and a boost PTV (boost CTV + 0.7 cm margins), respectively. For both tri-Co-60 IMRT and VMAT, all the primary and boost plans were generated that 95% of the target volumes would be covered by the 100% of the prescription doses. Sum plans were generated by summation of primary and boost plans. In sum plans, the average values of V70 Gy of the bladder of tri-Co-60 IMRT vs. VMAT were 4.0% ± 3.1% vs. 10.9% ± 6.7%, (p < 0.001). Average values of V70 Gy of the rectum of tri-Co-60 IMRT vs. VMAT were 5.2% ± 1.8% vs. 19.1% ± 4.0% (p < 0.001). The doses of tri-Co-60 IMRT delivered to the bladder and rectum were smaller than those of VMAT while maintaining identical target coverage in both plans. PMID:29207634
Mojżeszek, N; Farah, J; Kłodowska, M; Ploc, O; Stolarczyk, L; Waligórski, M P R; Olko, P
2017-02-01
To measure the environmental doses from stray neutrons in the vicinity of a solid slab phantom as a function of beam energy, field size and modulation width, using the proton pencil beam scanning (PBS) technique. Measurements were carried out using two extended range WENDI-II rem-counters and three tissue equivalent proportional counters. Detectors were suitably placed at different distances around the RW3 slab phantom. Beam irradiation parameters were varied to cover the clinical ranges of proton beam energies (100-220MeV), field sizes ((2×2)-(20×20)cm 2 ) and modulation widths (0-15cm). For pristine proton peak irradiations, large variations of neutron H ∗ (10)/D were observed with changes in beam energy and field size, while these were less dependent on modulation widths. H ∗ (10)/D for pristine proton pencil beams varied between 0.04μSvGy -1 at beam energy 100MeV and a (2×2)cm 2 field at 2.25m distance and 90° angle with respect to the beam axis, and 72.3μSvGy -1 at beam energy 200MeV and a (20×20) cm 2 field at 1m distance along the beam axis. The obtained results will be useful in benchmarking Monte Carlo calculations of proton radiotherapy in PBS mode and in estimating the exposure to stray radiation of the patient. Such estimates may be facilitated by the obtained best-fitted simple analytical formulae relating the stray neutron doses at points of interest with beam irradiation parameters. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ajo, Ramzi, Jr.
Modern treatment planning systems (TPS's) utilize different algorithms in computing dose within the patient medium. The algorithms rely on properly modeled clinical setups in order to perform optimally. Aside from various parameters of the beam, modifiers, such as multileaf collimators (MLC's), must also be modeled properly. That could not be more true today, where dynamic delivery such as intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) are being increasingly utilized due to their ability to deliver higher dose precisely to the target while sparing more surrounding normal tissue. Two of the most popular TPS's, Pinnacle (Philips) and Eclipse (Varian), were compared, with special emphasis placed on parameterization of the dosimetric leaf gap (DLG) in Eclipse. The DLG is a parameter that accounts for Varian's rounded MLC leaf ends. While Pinnacle accounts for the rounded leaf end by modeling the MLC's, Eclipse uses a measured parameter. This study investigated whether a single value measured DLG is sufficient for dynamic delivery. Using five planning volumes for vertebral body SBRT treatments, each prescribed for 3000 cGy in 5 fractions, an array of 20 treatment plans was generated using varying energies of 6MV-FFF and 10MV-FFF. Treatment techniques consisted of 9-field Step-and-shoot IMRT, and dual-arc VMAT using patient specific optimization criteria in the Pinnacle TPS v9.8. Each plan was normalized to ensure coverage of 3000cGy to 95% of the target volume. The dose was computed in Pinnacle v9.8, with the Collapsed Cone Convolution Superposition algorithm and Eclipse v11, with the Acuros XB algorithm, using a dose grid resolution of 2 mm in both systems. Dose volume histograms (DVH's) were generated for a comparison of max and mean dose to the targets and spinal cord, as well as 95% coverage of the targets and the volume of the spinal cord receiving 14.5 Gy (V14.5). Patient specific quality assurance (PSQA) fields were generated and then delivered, using a Varian Edge linear accelerator, to a 4D QA phantom for a gamma analysis and distance to agreement (DTA) comparison. All Eclipse calculations were made for both measured and optimized DLG parameters. Calculated vs. measured point dose for the Pinnacle TPS had an average difference of 2.79 +/- 2.00%. Gamma analysis using a 3% and 3 mm DTA had 99/100 fields passing at > 95%. Using measured values of the DLG in Eclipse, calculated vs. measured point dose was -4.44 +/- 1.97%, and DTA had 33/110 fields passing at > 95%. After an optimization of the DLG in Eclipse, calculated vs. measured point dose had an average difference of 2.20 +/- 2.23%, and DTA with 95/110 fields passing at > 95%. This study looked at the performance of the Pinnacle and Eclipse TPS's, with special consideration given to the DLG parameterization used by Eclipse. The results support the idea that a single valued DLG is not sufficient for dynamic delivery. An optimization of the parameter is necessary to account for the high modulation of IMRT and VMAT techniques.
NASA Astrophysics Data System (ADS)
Ulizio, Vincent Michael
With the advancement of technology there is an increasing ability for lesions to be treated with higher radiation doses each fraction. This also allows for low fractionated treatments. Because the patient is receiving a higher dose of radiation per fraction and because of the fast dose falloff in these targets there must be extreme accuracy in the delivery. The 6 DOF couch allows for extra rotational corrections and for a more accurate set-up. The movement of the couch needs to be verified to be accurate and because of this, end to end quality assurance tests for the couch have been made. After the set-up is known to be accurate then different treatment techniques can be studied. SBRT of the Spine has a very fast dose falloff near the spinal cord and was typically treated with IMRT. Treatment plans generated using this technique tend to have streaks of low dose radiation, so VMAT is being studied to determine if this treatment technique can reduce the low dose radiation volume as well as improve OAR sparing. For the 6 DOF couch QA, graph paper is placed on the anterior and right lateral sides of the VisionRT OSMS Cube Phantom. Each rotational shift is then applied individually, with a 3 degree shift in the positive and negative directions for pitch and roll. A mark is drawn on the paper to record each shift. A CBCT is then taken of the Cube and known shifts are applied and then an additional CBCT is taken to return the Cube to isocenter. The original IMRT plans for SBRT of the Spine are evaluated and then a plan is made utilizing VMAT. These plans are then compared for low dose radiation, OAR sparing, and conformity. If the original IMRT plan is determined to be an inferior treatment to what is acceptable, then this will be re-planned and compared to the VMAT plan. The 6 DOF couch QA tests have proven to be accurate and reproducible. The average deviations in the 3 degree and -3 degree pitch and roll directions were 0.197, 0.068, 0.091, and 0.110 degrees, respectively. The average CBCT shift errors all came out less than 0.05 cm in translational directions and less than 0.05 degrees in all rotational directions. The VMAT plans had similar OAR sparing, target coverage, and conformity. In all cases the 50% isodose volume was lower for the VMAT plans. All of the tests for the 6 DOF couch are accurate and good to use in our monthly tests. VMAT has shown to be better than IMRT for Spine SBRT and should be used in all cases, when treating the Spine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randeniya, S; Mirkovic, D; Titt, U
2014-06-01
Purpose: In intensity modulated proton therapy (IMPT), energy dependent, protons per monitor unit (MU) calibration factors are important parameters that determine absolute dose values from energy deposition data obtained from Monte Carlo (MC) simulations. Purpose of this study was to assess the sensitivity of MC-computed absolute dose distributions to the protons/MU calibration factors in IMPT. Methods: A “verification plan” (i.e., treatment beams applied individually to water phantom) of a head and neck patient plan was calculated using MC technique. The patient plan had three beams; one posterior-anterior (PA); two anterior oblique. Dose prescription was 66 Gy in 30 fractions. Ofmore » the total MUs, 58% was delivered in PA beam, 25% and 17% in other two. Energy deposition data obtained from the MC simulation were converted to Gy using energy dependent protons/MU calibrations factors obtained from two methods. First method is based on experimental measurements and MC simulations. Second is based on hand calculations, based on how many ion pairs were produced per proton in the dose monitor and how many ion pairs is equal to 1 MU (vendor recommended method). Dose distributions obtained from method one was compared with those from method two. Results: Average difference of 8% in protons/MU calibration factors between method one and two converted into 27 % difference in absolute dose values for PA beam; although dose distributions preserved the shape of 3D dose distribution qualitatively, they were different quantitatively. For two oblique beams, significant difference in absolute dose was not observed. Conclusion: Results demonstrate that protons/MU calibration factors can have a significant impact on absolute dose values in IMPT depending on the fraction of MUs delivered. When number of MUs increases the effect due to the calibration factors amplify. In determining protons/MU calibration factors, experimental method should be preferred in MC dose calculations. Research supported by National Cancer Institute grant P01CA021239.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levin, Daphne; Menhel, Janna; Alezra, Dror
2008-01-01
We compared 9-field, equispaced intensity modulated radiation therapy (IMRT), 4- to 5-field, directionally optimized IMRT, and 3-dimensional (3D) noncoplanar planning approaches for tumors of the maxillary sinus. Ten patients were planned retrospectively to compare the different treatment techniques. Prescription doses were 60 to 70 Gy. Critical structures contoured included optic nerves and chiasm, lacrimal glands, lenses, and retinas. As an aid for plan assessment, we introduced a new tool: Critical Organ Scoring Index (COSI), which allows quantitative evaluation of the tradeoffs between target coverage and critical organ sparing. This index was compared with other, commonly used conformity indices. For amore » reliable assessment of both tumor coverage and dose to critical organs in the different planning techniques, we introduced a 2D, graphical representation of COSI vs. conformity index (CI). Dose-volume histograms and mean, maximum, and minimum organ doses were also compared. IMRT plans delivered lower doses to ipsilateral structures, but were unable to spare them. 3D plans delivered less dose to contralateral structures, and were more homogeneous, as well. Both IMRT approaches gave similar results. In cases where choice of optimal plan was difficult, the novel 2D COSI-CI representation gave an accurate picture of the tradeoffs between target coverage and organ sparing, even in cases where other conformity indices failed. Due to their unique anatomy, maxillary sinus tumors may benefit more from a noncoplanar approach than from IMRT. The new graphical representation proposed is a quick, visual, reliable tool, which may facilitate the physician's choice of best treatment plan for a given patient.« less
Deetjen, Anja; Möllmann, Susanne; Conradi, Guido; Rolf, Andreas; Schmermund, Axel; Hamm, Christian W; Dill, Thorsten
2007-01-01
Objective To evaluate the radiation‐dose‐reduction potential of automatic exposure control (AEC) in 16‐slice and 64‐slice multislice computed tomography (MSCT) of the coronary arteries (computed tomography angiography, CTA) in patients. The rapid growth in MSCT CTA emphasises the necessity of adjusting technique factors to reduce radiation dose exposure. Design A retrospective data analysis was performed for 154 patients who had undergone MSCT CTA. Group 1 (n = 56) had undergone 16‐slice MSCT without AEC, and group 2 (n = 51), with AEC. In group 1, invasive coronary angiography (ICA) had been performed in addition. Group 3 (n = 47) had been examined using a 64‐slice scanner (with AEC, without ECG‐triggered tube current modulation). Results In group 1, the mean (SD) effective dose (ED) for MSCT CTA was 9.76 (1.84) mSv and for ICA it was 2.6 (1.27) mSv. In group 2, the mean ED for MSCT CTA was 5.83 (1.73) mSv, which signifies a 42.8% dose reduction for CTA by the use of AEC. In comparison to ICA, MSCT CTA without AEC shows a 3.8‐fold increase in radiation dose, and the radiation dose of CTA with AEC was increased by a factor of 1.9. In group 3, the mean ED for MSCT CTA was 13.58 (2.80) mSV. Conclusions This is the first study to show the significant dose‐reduction potential (42.8%) of AEC in MSCT CTA in patients. This relatively new technique can be used to optimise the radiation dose levels in MSCT CTA. PMID:17395667
Image-guided total marrow and total lymphatic irradiation using helical tomotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultheiss, Timothy E.; Wong, Jeffrey; Liu, An
2007-03-15
Purpose: To develop a treatment technique to spare normal tissue and allow dose escalation in total body irradiation (TBI). We have developed intensity-modulated radiotherapy techniques for the total marrow irradiation (TMI), total lymphatic irradiation, or total bone marrow plus lymphatic irradiation using helical tomotherapy. Methods and Materials: For TBI, we typically use 12 Gy in 10 fractions delivered at an extended source-to-surface distance (SSD). Using helical tomotherapy, it is possible to deliver equally effective doses to the bone marrow and lymphatics while sparing normal organs to a significant degree. In the TMI patients, whole body skeletal bone, including the ribsmore » and sternum, comprise the treatment target. In the total lymphatic irradiation, the target is expanded to include the spleen and major lymph node areas. Sanctuary sites for disease (brain and testes) are included when clinically indicated. Spared organs include the lungs, esophagus, parotid glands, eyes, oral cavity, liver, kidneys, stomach, small and large intestine, bladder, and ovaries. Results: With TBI, all normal organs received the TBI dose; with TMI, total lymphatic irradiation, and total bone marrow plus lymphatic irradiation, the visceral organs are spared. For the first 6 patients treated with TMI, the median dose to organs at risk averaged 51% lower than would be achieved with TBI. By putting greater weight on the avoidance of specific organs, greater sparing was possible. Conclusion: Sparing of normal tissues and dose escalation is possible using helical tomotherapy. Late effects such as radiation pneumonitis, veno-occlusive disease, cataracts, neurocognitive effects, and the development of second tumors should be diminished in severity and frequency according to the dose reduction realized for the organs at risk.« less
Solar Modulation of Inner Trapped Belt Radiation Flux as a Function of Atmospheric Density
NASA Technical Reports Server (NTRS)
Lodhi, M. A. K.
2005-01-01
No simple algorithm seems to exist for calculating proton fluxes and lifetimes in the Earth's inner, trapped radiation belt throughout the solar cycle. Most models of the inner trapped belt in use depend upon AP8 which only describes the radiation environment at solar maximum and solar minimum in Cycle 20. One exception is NOAAPRO which incorporates flight data from the TIROS/NOAA polar orbiting spacecraft. The present study discloses yet another, simple formulation for approximating proton fluxes at any time in a given solar cycle, in particular between solar maximum and solar minimum. It is derived from AP8 using a regression algorithm technique from nuclear physics. From flux and its time integral fluence, one can then approximate dose rate and its time integral dose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Illidge, Tim, E-mail: Tim.Illidge@ics.manchester.ac.uk; Specht, Lena; Yahalom, Joachim
2014-05-01
Radiation therapy (RT) is the most effective single modality for local control of non-Hodgkin lymphoma (NHL) and is an important component of therapy for many patients. Many of the historic concepts of dose and volume have recently been challenged by the advent of modern imaging and RT planning tools. The International Lymphoma Radiation Oncology Group (ILROG) has developed these guidelines after multinational meetings and analysis of available evidence. The guidelines represent an agreed consensus view of the ILROG steering committee on the use of RT in NHL in the modern era. The roles of reduced volume and reduced doses aremore » addressed, integrating modern imaging with 3-dimensional planning and advanced techniques of RT delivery. In the modern era, in which combined-modality treatment with systemic therapy is appropriate, the previously applied extended-field and involved-field RT techniques that targeted nodal regions have now been replaced by limiting the RT to smaller volumes based solely on detectable nodal involvement at presentation. A new concept, involved-site RT, defines the clinical target volume. For indolent NHL, often treated with RT alone, larger fields should be considered. Newer treatment techniques, including intensity modulated RT, breath holding, image guided RT, and 4-dimensional imaging, should be implemented, and their use is expected to decrease significantly the risk for normal tissue damage while still achieving the primary goal of local tumor control.« less
Atlas-guided prostate intensity modulated radiation therapy (IMRT) planning.
Sheng, Yang; Li, Taoran; Zhang, You; Lee, W Robert; Yin, Fang-Fang; Ge, Yaorong; Wu, Q Jackie
2015-09-21
An atlas-based IMRT planning technique for prostate cancer was developed and evaluated. A multi-dose atlas was built based on the anatomy patterns of the patients, more specifically, the percent distance to the prostate and the concaveness angle formed by the seminal vesicles relative to the anterior-posterior axis. A 70-case dataset was classified using a k-medoids clustering analysis to recognize anatomy pattern variations in the dataset. The best classification, defined by the number of classes or medoids, was determined by the largest value of the average silhouette width. Reference plans from each class formed a multi-dose atlas. The atlas-guided planning (AGP) technique started with matching the new case anatomy pattern to one of the reference cases in the atlas; then a deformable registration between the atlas and new case anatomies transferred the dose from the atlas to the new case to guide inverse planning with full automation. 20 additional clinical cases were re-planned to evaluate the AGP technique. Dosimetric properties between AGP and clinical plans were evaluated. The classification analysis determined that the 5-case atlas would best represent anatomy patterns for the patient cohort. AGP took approximately 1 min on average (corresponding to 70 iterations of optimization) for all cases. When dosimetric parameters were compared, the differences between AGP and clinical plans were less than 3.5%, albeit some statistical significances observed: homogeneity index (p > 0.05), conformity index (p < 0.01), bladder gEUD (p < 0.01), and rectum gEUD (p = 0.02). Atlas-guided treatment planning is feasible and efficient. Atlas predicted dose can effectively guide the optimizer to achieve plan quality comparable to that of clinical plans.
Topical Review: Polymer gel dosimetry
Baldock, C; De Deene, Y; Doran, S; Ibbott, G; Jirasek, A; Lepage, M; McAuley, K B; Oldham, M; Schreiner, L J
2010-01-01
Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. PMID:20150687
Reducing rectal injury in men receiving prostate cancer radiation therapy: current perspectives
Serrano, Nicholas A; Kalman, Noah S; Anscher, Mitchell S
2017-01-01
Dose escalation is now the standard of care for the treatment of prostate cancer with radiation therapy. However, the rectum tends to be the dose-limiting structure when treating prostate cancer, given its close proximity. Early and late toxicities can occur when the rectum receives large doses of radiation therapy. New technologies allow for prevention of these toxicities. In this review, we examine the evidence that supports various dose constraints employed to prevent these rectal injuries from occurring. We also examine the use of intensity-modulated radiation therapy and how this compares to older radiation therapy techniques that allow for further sparing of the rectum during a radiation therapy course. We then review the literature on endorectal balloons and the effects of their daily use throughout a radiation therapy course. Tissue spacers are now being investigated in greater detail; these devices are injected into the rectoprostatic fascia to physically increase the distance between the prostate and the anterior rectal wall. Last, we review the use of systemic drugs, specifically statin medications and antihypertensives, as well as their impact on rectal toxicity. PMID:28814898
NASA Astrophysics Data System (ADS)
Guan, Fada
Monte Carlo method has been successfully applied in simulating the particles transport problems. Most of the Monte Carlo simulation tools are static and they can only be used to perform the static simulations for the problems with fixed physics and geometry settings. Proton therapy is a dynamic treatment technique in the clinical application. In this research, we developed a method to perform the dynamic Monte Carlo simulation of proton therapy using Geant4 simulation toolkit. A passive-scattering treatment nozzle equipped with a rotating range modulation wheel was modeled in this research. One important application of the Monte Carlo simulation is to predict the spatial dose distribution in the target geometry. For simplification, a mathematical model of a human body is usually used as the target, but only the average dose over the whole organ or tissue can be obtained rather than the accurate spatial dose distribution. In this research, we developed a method using MATLAB to convert the medical images of a patient from CT scanning into the patient voxel geometry. Hence, if the patient voxel geometry is used as the target in the Monte Carlo simulation, the accurate spatial dose distribution in the target can be obtained. A data analysis tool---root was used to score the simulation results during a Geant4 simulation and to analyze the data and plot results after simulation. Finally, we successfully obtained the accurate spatial dose distribution in part of a human body after treating a patient with prostate cancer using proton therapy.
Boyle, John; Craciunescu, Oana; Steffey, Beverly; Cai, Jing; Chino, Junzo
2014-11-01
To evaluate the safety of dose escalated radiotherapy using a simultaneous integrated boost technique in patients with locally advanced gynecological malignancies. Thirty-nine women with locally advanced gynecological malignancies were treated with intensity modulated radiation therapy utilizing a simultaneous integrated boost (SIB) technique for gross disease in the para-aortic and/or pelvic nodal basins, sidewall extension, or residual primary disease. Women were treated to 45Gy in 1.8Gy fractions to elective nodal regions. Gross disease was simultaneously treated to 55Gy in 2.2Gy fractions (n=44 sites). An additional sequential boost of 10Gy in 2Gy fractions was delivered if deemed appropriate (n=29 sites). Acute and late toxicity, local control in the treated volumes (LC), overall survival (OS), and distant metastases (DM) were assessed. All were treated with a SIB to a dose of 55Gy. Twenty-four patients were subsequently treated with a sequential boost to a median dose of 65Gy. Median follow-up was 18months. Rates of acute>grade 2 gastrointestinal (GI), genitourinary (GU), and hematologic (heme) toxicities were 2.5%, 0%, and 30%, respectively. There were no grade 4 acute toxicities. At one year, grade 1-2 late GI toxicities were 24.5%. There were no grade 3 or 4 late GI toxicities. Rates of grade 1-2 late GU toxicities were 12.7%. There were no grade 3 or 4 late GU toxicities. Dose escalated radiotherapy using a SIB results in acceptable rates of acute toxicity. Copyright © 2014 Elsevier Inc. All rights reserved.
Standard and Nonstandard Craniospinal Radiotherapy Using Helical TomoTherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, William, E-mail: william@medphys.mcgill.c; Brodeur, Marylene; Roberge, David
2010-07-01
Purpose: To show the advantages of planning and delivering craniospinal radiotherapy with helical TomoTherapy (TomoTherapy Inc., Madison, WI) by presenting 4 cases treated at our institution. Methods and Materials: We first present a standard case of craniospinal irradiation in a patient with recurrent myxopapillary ependymoma (MPE) and follow this with 2 cases requiring differential dosing to multiple target volumes. One of these, a patient with recurrent medulloblastoma, required a lower dose to be delivered to the posterior fossa because the patient had been previously irradiated to the full dose, and the other required concurrent boosts to leptomeningeal metastases as partmore » of his treatment for newly diagnosed MPE. The final case presented is a patient with pronounced scoliosis who required spinal irradiation for recurrent MPE. Results: The four cases presented were planned and treated successfully with Helical Tomotherapy. Conclusions: Helical TomoTherapy delivers continuous arc-based intensity-modulated radiotherapy that gives high conformality and excellent dose homogeneity for the target volumes. Increased healthy tissue sparing is achieved at higher doses albeit at the expense of larger volumes of tissue receiving lower doses. Helical TomoTherapy allows for differential dosing of multiple targets, resulting in very elegant dose distributions. Daily megavoltage computed tomography imaging allows for precision of patient positioning, permitting a reduction in planning margins and increased healthy tissue sparing in comparison with standard techniques.« less
Dyer, Brandon A; Jenshus, Abriel; Mayadev, Jyoti S
2018-02-28
Radiation therapy (RT) plays a definitive role in locally advanced vulvar cancer, and in the adjuvant setting with high risk postoperative features after wide local excision. There is significant morbidity associated with traditional, large RT fields using 2D or 3D techniques, and the use of intensity-modulated radiation therapy (IMRT) in vulvar cancer is increasing. However, there remains a paucity of technical information regarding the prevention of a marginal miss during the treatment planning process. The use of an integrated skin flash (ISF) during RT planning can be used to account for anatomic variation, and intra- and interfraction motion seen during treatment. Herein we present the case of a patient with a T1aN0M0, Stage IA vulva cancer to illustrate the progressive vulvar swelling and lymph edema seen during treatment and retrospectively evaluate the dosimetric effects of using an ISF RT plan vs standard RT planning techniques. Standard planning techniques to treat vulvar cancer patients with IMRT do not sufficiently account for the change in patient anatomy and can lead to a marginal miss. ISF is an RT planning technique that can decrease the risk of a marginal miss and the technique is easily implemented during the planning stages of RT treatment. Furthermore, use of an ISF technique can improve vulvar clinical target volume coverage and plan homogeneity. Based on our experience, and this study, a 2-cm ISF is suggested to account for variations in daily clinical setup and changes in patient anatomy during treatment. Published by Elsevier Inc.
Underestimation of Low-Dose Radiation in Treatment Planning of Intensity-Modulated Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Si Young; Liu, H. Helen; Mohan, Radhe
2008-08-01
Purpose: To investigate potential dose calculation errors in the low-dose regions and identify causes of such errors for intensity-modulated radiotherapy (IMRT). Methods and Materials: The IMRT treatment plans of 23 patients with lung cancer and mesothelioma were reviewed. Of these patients, 15 had severe pulmonary complications after radiotherapy. Two commercial treatment-planning systems (TPSs) and a Monte Carlo system were used to calculate and compare dose distributions and dose-volume parameters of the target volumes and critical structures. The effect of tissue heterogeneity, multileaf collimator (MLC) modeling, beam modeling, and other factors that could contribute to the differences in IMRT dose calculationsmore » were analyzed. Results: In the commercial TPS-generated IMRT plans, dose calculation errors primarily occurred in the low-dose regions of IMRT plans (<50% of the radiation dose prescribed for the tumor). Although errors in the dose-volume histograms of the normal lung were small (<5%) above 10 Gy, underestimation of dose <10 Gy was found to be up to 25% in patients with mesothelioma or large target volumes. These errors were found to be caused by inadequate modeling of MLC transmission and leaf scatter in commercial TPSs. The degree of low-dose errors depends on the target volumes and the degree of intensity modulation. Conclusions: Secondary radiation from MLCs contributes a significant portion of low dose in IMRT plans. Dose underestimation could occur in conventional IMRT dose calculations if such low-dose radiation is not properly accounted for.« less
[Clinical experience of carbon ion radiotherapy for malignant tumors].
Ishikawa, Hitoshi; Tsuji, Hiroshi; Tsujii, Hirohiko
2006-04-01
The carbon ion (C-ion) beams provide unique advantageous biological and physical properties in radiotherapy (RT) for malignant tumors. C-ion beams have a high relative biological effectiveness (RBE) resulting from the high linear energy transfer (LET). In terms of their physical characteristics, C-ion beams exhibit a spread-out Bragg peak (SOBP) and make for a better dose distribution of the target volume by specified beam modulations. Between June 1994 and August 2005, a total of 2,371 patients with malignant tumors were registered in phase I/II dose-escalation studies and clinical phase II trials using C-ion beams generated at Heavy Ion Medical Accelerator in Chiba (HIMAC). In the initial dose-escalation studies, grade 3 or more late rectal complications had developed in some patients. However, the adverse effects were resolved because of the use of appropriate dose levels and modification of the radiation technique. C-ion beams can carry out hypofractionated radiotherapy with a large fraction dose and reduce the overall treatment times compared with conventional radiotherapy. They can also achieve better local tumor control even for radio-resistant tumors such as malignant melanoma, hepatocellular carcinoma and bone and soft tissue sarcomas with minimal morbidity to the normal surrounding tissues.
[Doses to organs at risk in conformational radiotherapy and stereotaxic irradiation: The heart].
Vandendorpe, B; Servagi Vernat, S; Ramiandrisoa, F; Bazire, L; Kirova, Y M
2017-10-01
Radiation therapy of breast cancer, Hodgkin lymphoma, lung cancer and others thoracic irradiations induce an ionizing radiation dose to the heart. Irradiation of the heart, associated with patient cardiovascular risk and cancer treatment-induced cardiotoxicity, increase cardiovascular mortality. The long survival after breast or Hodgkin lymphoma irradiation requires watching carefully late treatment toxicity. The over-risk of cardiac events is related to the dose received by the heart and the irradiated cardiac volume. The limitation of cardiac irradiation should be a priority in the planning of thoracic irradiations. Practices have to be modified, using modern techniques to approach of the primary objective of radiotherapy which is to optimize the dose to the target volume, sparing healthy tissues, in this case the heart. We have reviewed the literature on cardiac toxicity induced by conformational tridimensional radiation therapy, intensity-modulated radiation therapy or stereotactic body radiation therapy, in order to evaluate the possibilities to limit cardiotoxicity. Finally, we summarise the recommendations on dose constraints to the heart and coronary arteries. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.
Anderson, N; Lawford, C; Khoo, V; Rolfo, M; Joon, D L; Wada, M
2011-12-01
Intensity-modulated radiotherapy (IMRT) has reduced the impact of acute and late toxicities associated with head and neck radiotherapy. Treatment planning system (TPS) advances in biological cost function based optimization (BBO) and improved segmentation techniques have increased organ at risk (OAR) sparing compared to conventional dose-based optimization (DBO). A planning study was undertaken to compare OAR avoidance in DBO and BBO treatment planning. Simultaneous integrated boost treatment plans were produced for 10 head and neck patients using both planning systems. Plans were compared for tar get coverage and OAR avoidance. Comparisons were made using the BBO TPS Monte Carlo dose engine to eliminate differences due to inherent algorithms. Target coverage (V95%) was maintained for both solutions. BBO produced lower OAR doses, with statistically significant improvement to left (12.3%, p = 0.005) and right parotid mean dose (16.9%, p = 0.004), larynx V50_Gy (71.0%, p = 0.005), spinal cord (21.9%, p < 0.001) and brain stem dose maximums (31.5%, p = 0.002). This study observed improved OAR avoidance with BBO planning. Further investigations will be undertaken to review any clinical benefit of this improved planned dosimetry.
Anderson, N.; Lawford, C.; Khoo, V.; Rolfo, M.; Joon, D. Lim; Wada, M.
2011-01-01
Intensity-modulated radiotherapy (IMRT) has reduced the impact of acute and late toxicities associated with head and neck radiotherapy. Treatment planning system (TPS) advances in biological cost function based optimization (BBO) and improved segmentation techniques have increased organ at risk (OAR) sparing compared to conventional dose-based optimization (DBO). A planning study was undertaken to compare OAR avoidance in DBO and BBO treatment planning. Simultaneous integrated boost treatment plans were produced for 10 head and neck patients using both planning systems. Plans were compared for tar get coverage and OAR avoidance. Comparisons were made using the BBO TPS Monte Carlo dose engine to eliminate differences due to inherent algorithms. Target coverage (V95%) was maintained for both solutions. BBO produced lower OAR doses, with statistically significant improvement to left (12.3%, p = 0.005) and right parotid mean dose (16.9%, p = 0.004), larynx V50 Gy (71.0%, p = 0.005), spinal cord (21.9%, p < 0.001) and brain stem dose maximums (31.5%, p = 0.002). This study observed improved OAR avoidance with BBO planning. Further investigations will be undertaken to review any clinical benefit of this improved planned dosimetry. PMID:22066597
Wink, Krista C J; Roelofs, Erik; Simone, Charles B; Dechambre, David; Santiago, Alina; van der Stoep, Judith; Dries, Wim; Smits, Julia; Avery, Stephen; Ammazzalorso, Filippo; Jansen, Nicolas; Jelen, Urszula; Solberg, Timothy; de Ruysscher, Dirk; Troost, Esther G C
2018-03-12
To compare dose to organs at risk (OARs) and dose-escalation possibility for 24 stage I non-small cell lung cancer (NSCLC) patients in a ROCOCO (Radiation Oncology Collaborative Comparison) trial. For each patient, 3 photon plans [Intensity-modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT) and CyberKnife], a double scattered proton (DSP) and an intensity-modulated carbon-ion (IMIT) therapy plan were created. Dose prescription was 60 Gy (equivalent) in 8 fractions. The mean dose and dose to 2% of the clinical target volume (CTV) were lower for protons and ions compared with IMRT (p < 0.01). Doses to the lungs, heart, and mediastinal structures were lowest with IMIT (p < 0.01), doses to the spinal cord were lowest with DSP (p < 0.01). VMAT and CyberKnife allowed for reduced doses to most OARs compared with IMRT. Dose escalation was possible for 8 patients. Generally, the mediastinum was the primary dose-limiting organ. On average, the doses to the OARs were lowest using particles, with more homogenous CTV doses. Given the ability of VMAT and CyberKnife to limit doses to OARs compared with IMRT, the additional benefit of particles may only be clinically relevant in selected patients and thus should be carefully weighed for every individual patient. Copyright © 2018 Elsevier B.V. All rights reserved.