Science.gov

Sample records for dose planning software

  1. Evaluation of a software system for estimating planned dose error in patients, based on planar IMRT QA measurements.

    PubMed

    Bakhtiari, Mohammad; Parniani, Ashkan; Lerma, Fritz; Reynolds, Shannon; Jordan, James; Sedaghat, Alireza; Sarfaraz, Mehrdad; Rodgers, James

    2014-03-01

    Intensity modulated radiation therapy (IMRT) dosimetry verification is routinely conducted via integrated or individual field dosimetry using film or a matrix of detectors. Techniques and software systems are commercially available which use individual field dosimetry measurements as input into algorithms that estimate 3D patient dose distributions on CT scan derived target volumes and organs at risk (OARs), thus allowing direct dose-volume histogram (DVH) analysis vs. treatment planning system (TPS) DVH. The purpose of this work is to present a systematic benchmarking technique to evaluate the accuracy and consistency of such a software system. A MapCheck2 diode array and 3DVH™ software from Sun Nuclear were used for this study. Delivered planar dose was measured with the diode array as an input to 3DVH™ software that was used to estimate the 3D dose matrix. Accuracy of the output of 3DVH™ is tested by comparing measured planar doses over a range of depths to the same planes reconstructed by 3DVH™. Different fields from complex IMRT cases were selected and examined in this study. The sensitivity to depth of measurement was evaluated. The Gamma Index analysis, comparing calculated 3D dose with measured 3D dose with 2% and 2mm distance-to-agreement (DTA) criteria returned a pass rate of > 90% for all patient cases calculated by the treatment planning system and it returned a pass rate of > 96% in 9 out of 10 cases calculated by 3DVH™. Extracted computed dose planes with 3DVH™ software at different depths in the flat phantom passed all gamma evaluation analyses when compared to measured planes at different depths using MapCheck2. Studying complex head and neck IMRT fields, it was shown that the 3D dose distribution predicted by the planned dose perturbation (PDP) algorithm is both accurate and consistent.

  2. Clinical experience with Mobius FX software for 3D dose verification for prostate VMAT plans and comparison with physical measurements

    NASA Astrophysics Data System (ADS)

    Vazquez-Quino, L. A.; Huerta-Hernandez, C. I.; Rangaraj, D.

    2017-05-01

    MobiusFX, an add-on software module from Mobius Medical Systems for IMRT and VMAT QA, uses measurements in linac treatment logs to calculate and verify the 3D dose delivered to patients. In this study, 10 volumetric-modulated arc therapy (VMAT) prostate plans were planned and delivered in a Varian TrueBeam linac. The plans consisted of beams with 6 and 10 MV energy and 2 to 3 arcs per plan. The average gamma value with criterion of 3% and 3mm MobiusFX and TPS: 99.96%, 2% and 2mm MobiusFX and TPS: 98.70 %. Further comparison with ArcCheck measurements was conducted.

  3. Sandia software guidelines: Software quality planning

    SciTech Connect

    Not Available

    1987-08-01

    This volume is one in a series of Sandia Software Guidelines intended for use in producing quality software within Sandia National Laboratories. In consonance with the IEEE Standard for Software Quality Assurance Plans, this volume identifies procedures to follow in producing a Software Quality Assurance Plan for an organization or a project, and provides an example project SQA plan. 2 figs., 4 tabs.

  4. Use of CT scans and treatment planning software for validation of the dose component of food irradiation protocols

    NASA Astrophysics Data System (ADS)

    Borsa, Joseph; Chu, Rod; Sun, Jiansheng; Linton, Nick; Hunter, Craig

    2002-03-01

    The challenging problem of estimating the dose delivered to heterogeneous products by radiation modalities of limited penetration can be readily handled by using technologies developed for, and widely used in, radiation therapy applications. In particular, combining CT scanning with radiation treatment planning programs can simulate radiation processing with either photons or electrons, and can provide detailed, high resolution and accurate dose maps for any arbitrary product and package configuration. Such dose maps are an essential part of process validation. Comparison of the simulated dose distributions with measured dose maps verifies the soundness of this approach. The present communication presents results obtained with the simulation technique for a variety of common food items which are likely candidates for radiation processing.

  5. Software Engineering Improvement Plan

    NASA Technical Reports Server (NTRS)

    2006-01-01

    In performance of this task order, bd Systems personnel provided support to the Flight Software Branch and the Software Working Group through multiple tasks related to software engineering improvement and to activities of the independent Technical Authority (iTA) Discipline Technical Warrant Holder (DTWH) for software engineering. To ensure that the products, comments, and recommendations complied with customer requirements and the statement of work, bd Systems personnel maintained close coordination with the customer. These personnel performed work in areas such as update of agency requirements and directives database, software effort estimation, software problem reports, a web-based process asset library, miscellaneous documentation review, software system requirements, issue tracking software survey, systems engineering NPR, and project-related reviews. This report contains a summary of the work performed and the accomplishments in each of these areas.

  6. Software Development Plan for DESCARTES and CIDER

    SciTech Connect

    Eslinger, P.W.

    1992-12-08

    This Software Development Plan (SDP) outlines all software activities required to obtain functional environmental accumulation and individual dose codes for the Hanford Environmental Dose Reconstruction (HEDR) project. The modeling activities addressed use the output of the air transport-code HATCHET to compute radionuclide concentrations in environmental pathways, and continue on through calculations of dose for individuals. The Hanford Environmental Dose Reconstruction (HEDR) Project has a deliverable in the June 1993 time frame to be able to start computing doses to individuals from nuclear-related activities on the Hanford Site during and following World War II. The CIDER code will compute doses and their uncertainties for individuals living in the contaminated environment computed by DESCARTES. The projected size of the code is 3000 lines.

  7. Isobio software: biological dose distribution and biological dose volume histogram from physical dose conversion using linear-quadratic-linear model

    PubMed Central

    Jaikuna, Tanwiwat; Khadsiri, Phatchareewan; Chawapun, Nisa; Saekho, Suwit

    2017-01-01

    Purpose To develop an in-house software program that is able to calculate and generate the biological dose distribution and biological dose volume histogram by physical dose conversion using the linear-quadratic-linear (LQL) model. Material and methods The Isobio software was developed using MATLAB version 2014b to calculate and generate the biological dose distribution and biological dose volume histograms. The physical dose from each voxel in treatment planning was extracted through Computational Environment for Radiotherapy Research (CERR), and the accuracy was verified by the differentiation between the dose volume histogram from CERR and the treatment planning system. An equivalent dose in 2 Gy fraction (EQD2) was calculated using biological effective dose (BED) based on the LQL model. The software calculation and the manual calculation were compared for EQD2 verification with pair t-test statistical analysis using IBM SPSS Statistics version 22 (64-bit). Results Two and three-dimensional biological dose distribution and biological dose volume histogram were displayed correctly by the Isobio software. Different physical doses were found between CERR and treatment planning system (TPS) in Oncentra, with 3.33% in high-risk clinical target volume (HR-CTV) determined by D90%, 0.56% in the bladder, 1.74% in the rectum when determined by D2cc, and less than 1% in Pinnacle. The difference in the EQD2 between the software calculation and the manual calculation was not significantly different with 0.00% at p-values 0.820, 0.095, and 0.593 for external beam radiation therapy (EBRT) and 0.240, 0.320, and 0.849 for brachytherapy (BT) in HR-CTV, bladder, and rectum, respectively. Conclusions The Isobio software is a feasible tool to generate the biological dose distribution and biological dose volume histogram for treatment plan evaluation in both EBRT and BT. PMID:28344603

  8. Isobio software: biological dose distribution and biological dose volume histogram from physical dose conversion using linear-quadratic-linear model.

    PubMed

    Jaikuna, Tanwiwat; Khadsiri, Phatchareewan; Chawapun, Nisa; Saekho, Suwit; Tharavichitkul, Ekkasit

    2017-02-01

    To develop an in-house software program that is able to calculate and generate the biological dose distribution and biological dose volume histogram by physical dose conversion using the linear-quadratic-linear (LQL) model. The Isobio software was developed using MATLAB version 2014b to calculate and generate the biological dose distribution and biological dose volume histograms. The physical dose from each voxel in treatment planning was extracted through Computational Environment for Radiotherapy Research (CERR), and the accuracy was verified by the differentiation between the dose volume histogram from CERR and the treatment planning system. An equivalent dose in 2 Gy fraction (EQD2) was calculated using biological effective dose (BED) based on the LQL model. The software calculation and the manual calculation were compared for EQD2 verification with pair t-test statistical analysis using IBM SPSS Statistics version 22 (64-bit). Two and three-dimensional biological dose distribution and biological dose volume histogram were displayed correctly by the Isobio software. Different physical doses were found between CERR and treatment planning system (TPS) in Oncentra, with 3.33% in high-risk clinical target volume (HR-CTV) determined by D90%, 0.56% in the bladder, 1.74% in the rectum when determined by D2cc, and less than 1% in Pinnacle. The difference in the EQD2 between the software calculation and the manual calculation was not significantly different with 0.00% at p-values 0.820, 0.095, and 0.593 for external beam radiation therapy (EBRT) and 0.240, 0.320, and 0.849 for brachytherapy (BT) in HR-CTV, bladder, and rectum, respectively. The Isobio software is a feasible tool to generate the biological dose distribution and biological dose volume histogram for treatment plan evaluation in both EBRT and BT.

  9. Tactical Planning Workstation Software Description

    DTIC Science & Technology

    1990-09-01

    Tactical Planning Workstation Software Description 12. PERSONAL AUTHOR(S) Packard, Bruce R. 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year...3-7 3-2. Unit type codes....................................3-7 3-3. Battle function codes ................................ 3-8 3-4...3-9 3-7. Control measure types ...............................3-11 3-8. Product description files

  10. Configuration management plan for the GENII software

    SciTech Connect

    Rittmann, P.D.

    1994-12-12

    The GENII program calculates doses from radionuclides released into the environment for a variety of possible exposure scenarios. The user prepares an input data file with the necessary modelling assumptions and parameters. The program reads the user`s input file, computes the necessary doses and stores these results in an output file. The output file also contains a listing of the user`s input and gives the title lines from the data libraries which are accessed in the course of the calculations. The purpose of this document is to provide users of the GENII software with the configuration controls which are planned for use by WHC in accordance with WHC-CM-3-10. The controls are solely for WHC employees. Non-WHC individuals are not excluded, but no promise is made or implied that they will be informed of errors or revisions to the software. The configuration controls cover the GENII software, the GENII user`s guide, the list of GENII users at WHC, and the backup copies. Revisions to the software must be approved prior to distribution in accordance with this configuration management plan.

  11. Payload software technology: Software technology development plan

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Programmatic requirements for the advancement of software technology are identified for meeting the space flight requirements in the 1980 to 1990 time period. The development items are described, and software technology item derivation worksheets are presented along with the cost/time/priority assessments.

  12. Comparison of dose calculations between pencil-beam and Monte Carlo algorithms of the iPlan RT in arc therapy using a homogenous phantom with 3DVH software

    PubMed Central

    2013-01-01

    Background To create an arc therapy plan, certain current general calculation algorithms such as pencil-beam calculation (PBC) are based on discretizing the continuous arc into multiple fields to simulate an arc. The iPlan RT™ treatment planning system incorporates not only a PBC algorithm, but also a more recent Monte Carlo calculation (MCC) algorithm that does not need beam discretization. The objective of this study is to evaluate the dose differences in a homogenous phantom between PBC and MCC by using a three-dimensional (3D) diode array detector (ArcCHECK™) and 3DVH software. Methods A cylindrically shaped ‘target’ region of interest (ROI) and a ‘periphery ROI’ surrounding the target were designed. An arc therapy plan was created to deliver 600 cGy to the target within a 350° rotation angle, calculated using the PBC and MCC algorithms. The radiation doses were measured by the ArcCHECK, and reproduced by the 3DVH software. Through this process, we could compare the accuracy of both algorithms with regard to the 3D gamma passing rate (for the entire area and for each ROI). Results Comparing the PBC and MCC planned dose distributions directly, the 3D gamma passing rates for the entire area were 97.7% with the gamma 3%/3 mm criterion. Comparing the planned dose to the measured dose, the 3D gamma passing rates were 98.8% under the PBC algorithm and 100% under the MCC algorithm. The difference was statistically significant (p = 0.034). Furthermore the gamma passing rate decreases 7.5% in the PBC when using the 2%/2 mm criterion compared to only a 0.4% decrease under the MCC. Each ROI as well as the entire area showed statistically significant higher gamma passing rates under the MCC algorithm. The failure points that did not satisfy the gamma criteria showed a regular pattern repeated every 10°. Conclusions MCC showed better accuracy than the PBC of the iPlan RT in calculating the dose distribution in arc therapy, which was validated with the

  13. Software Engineering Improvement Activities/Plan

    NASA Technical Reports Server (NTRS)

    2003-01-01

    bd Systems personnel accomplished the technical responsibilities for this reporting period, as planned. A close working relationship was maintained with personnel of the MSFC Avionics Department Software Group (ED14). Work accomplishments included development, evaluation, and enhancement of a software cost model, performing literature search and evaluation of software tools available for code analysis and requirements analysis, and participating in other relevant software engineering activities. Monthly reports were submitted. This support was provided to the Flight Software Group/ED 1 4 in accomplishing the software engineering improvement engineering activities of the Marshall Space Flight Center (MSFC) Software Engineering Improvement Plan.

  14. Software Engineering Improvement Activities/Plan

    NASA Technical Reports Server (NTRS)

    2003-01-01

    bd Systems personnel accomplished the technical responsibilities for this reporting period, as planned. A close working relationship was maintained with personnel of the MSFC Avionics Department Software Group (ED14). Work accomplishments included development, evaluation, and enhancement of a software cost model, performing literature search and evaluation of software tools available for code analysis and requirements analysis, and participating in other relevant software engineering activities. Monthly reports were submitted. This support was provided to the Flight Software Group/ED 1 4 in accomplishing the software engineering improvement engineering activities of the Marshall Space Flight Center (MSFC) Software Engineering Improvement Plan.

  15. Light Duty Utility Arm Software Test Plan

    SciTech Connect

    Kiebel, G.R.

    1995-12-18

    This plan describes how validation testing of the software will be implemented for the integrated control and data acquisition system of the Light Duty Utility Arm System (LDUA). The purpose of LDUA software validation testing is to demonstrate and document that the LDUA software meets its software requirements specification.

  16. Dose estimation software for radiation biodosimetry.

    PubMed

    Ainsbury, Elizabeth A; Lloyd, David C

    2010-02-01

    Cytogenetic analysis of chromosome damage in blood lymphocytes is widely used for radiation biodosimetry. Mathematical and statistical analysis is extremely important for accurate assessment of the data and results, and there are a number of classical statistical methods which are routinely employed. However, the large number of different mathematical techniques, the dependence of the models on certain statistical principles, and the complexity of some of the methods can lead to errors in data analysis and thus misinterpretation of results. Cytogenetic dose estimation software has been developed to address these problems by simplifying mathematical and statistical analysis of the cytogenetic data. "Dose Estimate" is a collection of mathematical and statistical methods based on the cytogenetic methods that are used for biodosimetry at the Health Protection Agency and elsewhere in the radiation cytogenetics community. Details of the biological and mathematical tools incorporated into the software are presented. Preliminary testing has been carried out, and the results demonstrate the accuracy and usefulness of the software in its current form. Proposals for improving the software through implementation of recently published Bayesian analysis techniques for cytogenetics are also outlined. An evaluation copy of the software is available on request from the authors.

  17. A software tool for 3D dose verification and analysis

    NASA Astrophysics Data System (ADS)

    Sa'd, M. Al; Graham, J.; Liney, G. P.

    2013-06-01

    The main recent developments in radiotherapy have focused on improved treatment techniques in order to generate further significant improvements in patient prognosis. There is now an internationally recognised need to improve 3D verification of highly conformal radiotherapy treatments. This is because of the very high dose gradients used in modern treatment techniques, which can result in a small error in the spatial dose distribution leading to a serious complication. In order to gain the full benefits of using 3D dosimetric technologies (such as gel dosimetry), it is vital to use 3D evaluation methods and algorithms. We present in this paper a software solution that provides a comprehensive 3D dose evaluation and analysis. The software is applied to gel dosimetry, which is based on magnetic resonance imaging (MRI) as a read-out method. The software can also be used to compare any two dose distributions, such as two distributions planned using different methods of treatment planning systems, or different dose calculation algorithms.

  18. SWiFT Software Quality Assurance Plan.

    SciTech Connect

    Berg, Jonathan Charles

    2016-01-01

    This document describes the software development practice areas and processes which contribute to the ability of SWiFT software developers to provide quality software. These processes are designed to satisfy the requirements set forth by the Sandia Software Quality Assurance Program (SSQAP). APPROVALS SWiFT Software Quality Assurance Plan (SAND2016-0765) approved by: Department Manager SWiFT Site Lead Dave Minster (6121) Date Jonathan White (6121) Date SWiFT Controls Engineer Jonathan Berg (6121) Date CHANGE HISTORY Issue Date Originator(s) Description A 2016/01/27 Jon Berg (06121) Initial release of the SWiFT Software Quality Assurance Plan

  19. Route Planning Software for Lunar Polar Missions

    NASA Astrophysics Data System (ADS)

    Cunningham, C.; Jones, H.; Amato, J.; Holst, I.; Otten, N.; Kitchell, F.; Whittaker, W.; Horchler, A.

    2016-11-01

    Rover mission planning on the lunar poles is challenging due to the long, time-varying shadows. This abstract presents software for efficiently planning traverses while balancing competing demands of science goals, rover energy constraints, and risk.

  20. An IMRT dose distribution study using commercial verification software.

    PubMed

    Liu, G; Fernando, W; Grace, M; Rykers, K

    2004-09-01

    The introduction of IMRT requires users to confirm that the isodose distributions and relative doses calculated by their planning system match the doses delivered by their linear accelerators. To this end the commercially available software, VeriSoft (PTW-Freiburg, Germany) was trialled to determine if the tools and functions it offered would be of benefit to this process. The CMS XiO (Computerized Medical System, St. Louis, MO) treatment planning system was used to generate IMRT plans that were delivered with an upgraded Elekta SL15 linac. Kodak EDR2 film sandwiched in RW3 solid water (PTW-Freiburg, Germany) was used to measure the IMRT fields delivered with 6 MV photons. The isodose and profiles measured with the film generally agreed to within +/- 3% or +/- 3 mm with the planned doses, in some regions (outside the field) the match fell to within +/- 5%. The isodose distributions of the planning system and the film could be compared on screen, allowing for electronic records of the comparison to be kept if desired. The features of this software would be of benefit to an IMRT QA program.

  1. Software verification plan for GCS. [guidance and control software

    NASA Technical Reports Server (NTRS)

    Dent, Leslie A.; Shagnea, Anita M.; Hayhurst, Kelly J.

    1990-01-01

    This verification plan is written as part of an experiment designed to study the fundamental characteristics of the software failure process. The experiment will be conducted using several implementations of software that were produced according to industry-standard guidelines, namely the Radio Technical Commission for Aeronautics RTCA/DO-178A guidelines, Software Consideration in Airborne Systems and Equipment Certification, for the development of flight software. This plan fulfills the DO-178A requirements for providing instructions on the testing of each implementation of software. The plan details the verification activities to be performed at each phase in the development process, contains a step by step description of the testing procedures, and discusses all of the tools used throughout the verification process.

  2. Software quality assurance plan for GCS

    NASA Technical Reports Server (NTRS)

    Duncan, Stephen E.; Bailey, Elizabeth K.

    1990-01-01

    The software quality assurance (SQA) function for the Guidance and Control Software (GCS) project which is part of a software error studies research program is described. The SQA plan outlines all of the procedures, controls, and audits to be carried out by the SQA organization to ensure adherence to the policies, procedures, and standards for the GCS project.

  3. Comparison of the calculated absorbed dose using the Cadplan™ treatment planning software and Tld-100 measurements in an Alderson-Rando phantom for a bronchogenic treatment

    SciTech Connect

    Gutiérrez Castillo, J. G.; Álvarez Romero, J. T. E-mail: fisarmandotorres@gmail.com Calderón, A. Torres E-mail: fisarmandotorres@gmail.com M, V. Tovar E-mail: fisarmandotorres@gmail.com

    2014-11-07

    To verify the accuracy of the absorbed doses D calculated by a TPS Cadplan for a bronchogenic treatment (in an Alderson-Rando phantom) are chosen ten points with the following D's and localizations. Point 1, posterior position on the left edge with 136.4 Gy. Points: 2, 3 and 4 in the left lung with 104.9, 104.3 and 105.8 Gy, respectively; points 5 and 6 at the mediastinum with 192.4 and 173.5 Gy; points 7, 8 and 9 in the right lung with 105.8, 104.2 and 104.7 Gy, and 10 at posterior position on right edge with 143.7 Gy. IAEA type capsules with TLD 100 powder are placed, planned and irradiated. The evaluation of the absorbed dose is carried out a curve of calibration for the LiF response (nC) {sup vs} {sup DW}, to several cavity theories. The traceability for the DW is obtained with a secondary standard calibrated at the NRC (Canada). The dosimetric properties for the materials considered are determined from the Hounsfield numbers reported by the TPS. The stopping power ratios are calculated for nominal spectrum to 6 MV photons. The percent variations among the planned and determined D in all the cases they are < ± 3%.

  4. Comparison of the calculated absorbed dose using the Cadplan™ treatment planning software and Tld-100 measurements in an Alderson-Rando phantom for a bronchogenic treatment

    NASA Astrophysics Data System (ADS)

    Gutiérrez Castillo, J. G.; Álvarez Romero, J. T.; Torres Calderón, A.; Tovar, M. V.

    2014-11-01

    To verify the accuracy of the absorbed doses D calculated by a TPS Cadplan for a bronchogenic treatment (in an Alderson-Rando phantom) are chosen ten points with the following D's and localizations. Point 1, posterior position on the left edge with 136.4 Gy. Points: 2, 3 and 4 in the left lung with 104.9, 104.3 and 105.8 Gy, respectively; points 5 and 6 at the mediastinum with 192.4 and 173.5 Gy; points 7, 8 and 9 in the right lung with 105.8, 104.2 and 104.7 Gy, and 10 at posterior position on right edge with 143.7 Gy. IAEA type capsules with TLD 100 powder are placed, planned and irradiated. The evaluation of the absorbed dose is carried out a curve of calibration for the LiF response (nC) vs DW, to several cavity theories. The traceability for the DW is obtained with a secondary standard calibrated at the NRC (Canada). The dosimetric properties for the materials considered are determined from the Hounsfield numbers reported by the TPS. The stopping power ratios are calculated for nominal spectrum to 6 MV photons. The percent variations among the planned and determined D in all the cases they are < ± 3%.

  5. SATCOP mission planning software package

    NASA Technical Reports Server (NTRS)

    Bucey, Steve

    1993-01-01

    As the CDSLR Network grows into the 1990's, it is undergoing many changes in both its capabilities and requirements. On the one hand, great progress has been made in terms of increasing the SLR systems' performance. Upgrades to the onsite computer and improved laser ranging hardware have greatly increased the number of satellite passes which can be acquired during an operating shift by reducing the amount of time needed for operations other than actual ranging. On the other hand, more requirements have been placed on the systems. Many more satellites have become available, with more scheduled for launch, thus, increasing the likelihood of simultaneous satellite visibility. In addition, the possible scenarios required for ranging these many satellites are changing frequently, with conflicting priorities and needs. It became apparent that some tools needed to be developed to assist the planners in determining Network ranging priorities. Such tools have been developed at Bendix under the direction of NASA's Dynamics of the Solid Earth Project (DOSE) for both long range planning and routine operations to maximize the amount of data collected. This paper reviews some of these tools and describe their uses.

  6. Technical Note: scuda: A software platform for cumulative dose assessment.

    PubMed

    Park, Seyoun; McNutt, Todd; Plishker, William; Quon, Harry; Wong, John; Shekhar, Raj; Lee, Junghoon

    2016-10-01

    Accurate tracking of anatomical changes and computation of actually delivered dose to the patient are critical for successful adaptive radiation therapy (ART). Additionally, efficient data management and fast processing are practically important for the adoption in clinic as ART involves a large amount of image and treatment data. The purpose of this study was to develop an accurate and efficient Software platform for CUmulative Dose Assessment (scuda) that can be seamlessly integrated into the clinical workflow. scuda consists of deformable image registration (DIR), segmentation, dose computation modules, and a graphical user interface. It is connected to our image PACS and radiotherapy informatics databases from which it automatically queries/retrieves patient images, radiotherapy plan, beam data, and daily treatment information, thus providing an efficient and unified workflow. For accurate registration of the planning CT and daily CBCTs, the authors iteratively correct CBCT intensities by matching local intensity histograms during the DIR process. Contours of the target tumor and critical structures are then propagated from the planning CT to daily CBCTs using the computed deformations. The actual delivered daily dose is computed using the registered CT and patient setup information by a superposition/convolution algorithm, and accumulated using the computed deformation fields. Both DIR and dose computation modules are accelerated by a graphics processing unit. The cumulative dose computation process has been validated on 30 head and neck (HN) cancer cases, showing 3.5 ± 5.0 Gy (mean±STD) absolute mean dose differences between the planned and the actually delivered doses in the parotid glands. On average, DIR, dose computation, and segmentation take 20 s/fraction and 17 min for a 35-fraction treatment including additional computation for dose accumulation. The authors developed a unified software platform that provides accurate and efficient monitoring of

  7. GCS plan for software aspects of certification

    NASA Technical Reports Server (NTRS)

    Shagnea, Anita M.; Lowman, Douglas S.; Withers, B. Edward

    1990-01-01

    As part of the Guidance and Control Software (GCS) research project being sponsored by NASA to evaluate the failure processes of software, standard industry software development procedures are being employed. To ensure that these procedures are authentic, the guidelines outlined in the Radio Technical Commission for Aeronautics (RTCA/DO-178A document entitled, software considerations in airborne systems and equipment certification, were adopted. A major aspect of these guidelines is proper documentation. As such, this report, the plan for software aspects of certification, was produced in accordance with DO-178A. An overview is given of the GCS research project, including the goals of the project, project organization, and project schedules. It also specifies the plans for all aspects of the project which relate to the certification of the GCS implementations developed under a NASA contract. These plans include decisions made regarding the software specification, accuracy requirements, configuration management, implementation development and verification, and the development of the GCS simulator.

  8. RELAP-7 Software Verification and Validation Plan

    SciTech Connect

    Smith, Curtis L.; Choi, Yong-Joon; Zou, Ling

    2014-09-25

    This INL plan comprehensively describes the software for RELAP-7 and documents the software, interface, and software design requirements for the application. The plan also describes the testing-based software verification and validation (SV&V) process—a set of specially designed software models used to test RELAP-7. The RELAP-7 (Reactor Excursion and Leak Analysis Program) code is a nuclear reactor system safety analysis code being developed at Idaho National Laboratory (INL). The code is based on the INL’s modern scientific software development framework – MOOSE (Multi-Physics Object-Oriented Simulation Environment). The overall design goal of RELAP-7 is to take advantage of the previous thirty years of advancements in computer architecture, software design, numerical integration methods, and physical models. The end result will be a reactor systems analysis capability that retains and improves upon RELAP5’s capability and extends the analysis capability for all reactor system simulation scenarios.

  9. Automated Gamma Knife dose planning

    NASA Astrophysics Data System (ADS)

    Leichtman, Gregg S.; Aita, Anthony L.; Goldman, H. W.

    1998-06-01

    The Gamma Knife (Elekta Instruments, Inc., Atlanta, GA), a neurosurgical, highly focused radiation delivery device, is used to eradicate deep-seated anomalous tissue within the human brain by delivering a lethal dose of radiation to target tissue. This dose is the accumulated result of delivering sequential `shots' of radiation to the target where each shot is approximately 3D Gaussian in shape. The size and intensity of each shot can be adjusted by varying the time of radiation exposure and by using one of four collimator sizes ranging from 4 - 18 mm. Current dose planning requires that the dose plan be developed manually to cover the target, and only the target, with a desired minimum radiation intensity using a minimum number of shots. This is a laborious and subjective process which typically leads to suboptimal conformal target coverage by the dose. We have used adaptive simulated annealing/quenching followed by Nelder-Mead simplex optimization to automate the selection and placement of Gaussian-based `shots' to form a simulated dose plane. In order to make the computation of the problem tractable, the algorithm, based upon contouring and polygon clipping, takes a 2 1/2-D approach to defining the cost function. Several experiments have been performed where the optimizers have been given the freedom to vary the number of shots and the weight, collimator size, and 3D location of each shot. To data best results have been obtained by forcing the optimizers to use a fixed number of unweighted shots with each optimizer set free to vary the 3D location and collimator size of each shot. Our preliminary results indicate that this technology will radically decrease planning time while significantly increasing accuracy of conformal target coverage and reproducibility over current manual methods.

  10. HotSpot Software Configuration Management Plan

    SciTech Connect

    Walker, H; Homann, S G

    2009-03-12

    This Software Configuration Management Plan (SCMP) describes the software configuration management procedures used to ensure that the HotSpot dispersion model meets the requirements of its user base, which includes: (1) Users of the PC version of HotSpot for consequence assessment, hazard assessment and safety analysis calculations; and (2) Users of the NARAC Web and iClient software tools, which allow users to run HotSpot for consequence assessment modeling These users and sponsors of the HotSpot software and the organizations they represent constitute the intended audience for this document. This plan is intended to meet Critical Recommendations 1 and 3 from the Software Evaluation of HotSpot and DOE Safety Software Toolbox Recommendation for inclusion of HotSpot in the Department of Energy (DOE) Safety Software Toolbox. HotSpot software is maintained for the Department of Energy Office of Emergency Operations by the National Atmospheric Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory (LLNL). An overview of HotSpot and NARAC are provided.

  11. Software for Optimizing Plans Involving Interdependent Goals

    NASA Technical Reports Server (NTRS)

    Estlin, Tara; Gaines, Daniel; Rabideau, Gregg

    2005-01-01

    A computer program enables construction and optimization of plans for activities that are directed toward achievement of goals that are interdependent. Goal interdependence is defined as the achievement of one or more goals affecting the desirability or priority of achieving one or more other goals. This program is overlaid on the Automated Scheduling and Planning Environment (ASPEN) software system, aspects of which have been described in a number of prior NASA Tech Briefs articles. Unlike other known or related planning programs, this program considers interdependences among goals that can change between problems and provides a language for easily specifying such dependences. Specifications of the interdependences can be formulated dynamically and provided to the associated planning software as part of the goal input. Then an optimization algorithm provided by this program enables the planning software to reason about the interdependences and incorporate them into an overall objective function that it uses to rate the quality of a plan under construction and to direct its optimization search. In tests on a series of problems of planning geological experiments by a team of instrumented robotic vehicles (rovers) on new terrain, this program was found to enhance plan quality.

  12. Automated software engineering planning with SASEA

    SciTech Connect

    Lawlis, P.K.; Hoffman, C.L.

    1998-07-01

    Planning for effective software engineering is not easy, and software project managers would usually welcome assistance in this area. Very effective assistance could be provided by automated tools that are decision aids. However, a comprehensive suite of such tools does not yet exist. One area that has been addressed is the selection of a programming language. This paper discusses in detail a decision tool that has been developed for language selection. It also addresses the areas in which other such tools are required.

  13. SAPHIRE 8 Software Project Plan

    SciTech Connect

    Curtis L.Smith; Ted S. Wood

    2010-03-01

    This project is being conducted at the request of the DOE and the NRC. The INL has been requested by the NRC to improve and maintain the Systems Analysis Programs for Hands-on Integrated Reliability Evaluation (SAPHIRE) tool set concurrent with the changing needs of the user community as well as staying current with new technologies. Successful completion will be upon NRC approved release of all software and accompanying documentation in a timely fashion. This project will enhance the SAPHIRE tool set for the user community (NRC, Nuclear Power Plant operations, Probabilistic Risk Analysis (PRA) model developers) by providing improved Common Cause Failure (CCF), External Events, Level 2, and Significance Determination Process (SDP) analysis capabilities. The SAPHIRE development team at the Idaho National Laboratory is responsible for successful completion of this project. The project is under the supervision of Curtis L. Smith, PhD, Technical Lead for the SAPHIRE application. All current capabilities from SAPHIRE version 7 will be maintained in SAPHIRE 8. The following additional capabilities will be incorporated: • Incorporation of SPAR models for the SDP interface. • Improved quality assurance activities for PRA calculations of SAPHIRE Version 8. • Continue the current activities for code maintenance, documentation, and user support for the code.

  14. HotSpot Software Test Plan

    SciTech Connect

    Walker, H; Homann, S G

    2009-03-12

    This Software Test Plan (STP) describes the procedures used to verify and validate that the HotSpot Health Physics Codes meet the requirements of its user base, which includes: (1) Users of the PC version of HotSpot conducting consequence assessment, hazard assessment and safety analysis calculations; and (2) Users of the NARAC Web and iClient software tools, which allow users to run HotSpot for consequence assessment modeling. This plan is intended to meet Critical Recommendation 2 from the Software Evaluation of HotSpot and DOE Safety Software Toolbox Recommendation for inclusion of HotSpot in the Department of Energy (DOE) Safety Software Toolbox. These users and sponsors of the HotSpot software and the organizations they represent constitute the intended audience for this document. HotSpot software is maintained for the Department of Energy Office of Emergency Operations by the National Atmospheric Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory (LLNL). An overview of HotSpot and NARAC are provided.

  15. Acceptance Test Plan for ANSYS Software

    SciTech Connect

    CREA, B.A.

    2000-10-25

    This plan governs the acceptance testing of the ANSYS software (Full Mechanical Release 5.5) for use on Project Word Management Contract (PHMC) computer systems (either UNIX or Microsoft Windows/NT). There are two phases to the acceptance testing covered by this test plan: program execution in accordance with the guidance provided in installation manuals; and ensuring results of the execution are consistent with the expected physical behavior of the system being modeled.

  16. Evolutionary software for autonomous path planning

    SciTech Connect

    Couture, S; Hage, M

    1999-02-10

    This research project demonstrated the effectiveness of using evolutionary software techniques in the development of path-planning algorithms and control programs for mobile vehicles in radioactive environments. The goal was to take maximum advantage of the programmer's intelligence by tasking the programmer with encoding the measures of success for a path-planning algorithm, rather than developing the path-planning algorithms themselves. Evolutionary software development techniques could then be used to develop algorithms most suitable to the particular environments of interest. The measures of path-planning success were encoded in the form of a fitness function for an evolutionary software development engine. The task for the evolutionary software development engine was to evaluate the performance of individual algorithms, select the best performers for the population based on the fitness function, and breed them to evolve the next generation of algorithms. The process continued for a set number of generations or until the algorithm converged to an optimal solution. The task environment was the navigation of a rover from an initial location to a goal, then to a processing point, in an environment containing physical and radioactive obstacles. Genetic algorithms were developed for a variety of environmental configurations. Algorithms were simple and non-robust strings of behaviors, but they could be evolved to be nearly optimal for a given environment. In addition, a genetic program was evolved in the form of a control algorithm that operates at every motion of the robot. Programs were more complex than algorithms and less optimal in a given environment. However, after training in a variety of different environments, they were more robust and could perform acceptably in environments they were not trained in. This paper describes the evolutionary software development engine and the performance of algorithms and programs evolved by it for the chosen task.

  17. Software for Planning Scientific Activities on Mars

    NASA Technical Reports Server (NTRS)

    Ai-Chang, Mitchell; Bresina, John; Jonsson, Ari; Hsu, Jennifer; Kanefsky, Bob; Morris, Paul; Rajan, Kanna; Yglesias, Jeffrey; Charest, Len; Maldague, Pierre

    2003-01-01

    Mixed-Initiative Activity Plan Generator (MAPGEN) is a ground-based computer program for planning and scheduling the scientific activities of instrumented exploratory robotic vehicles, within the limitations of available resources onboard the vehicle. MAPGEN is a combination of two prior software systems: (1) an activity-planning program, APGEN, developed at NASA s Jet Propulsion Laboratory and (2) the Europa planner/scheduler from NASA Ames Research Center. MAPGEN performs all of the following functions: Automatic generation of plans and schedules for scientific and engineering activities; Testing of hypotheses (or what-if analyses of various scenarios); Editing of plans; Computation and analysis of resources; and Enforcement and maintenance of constraints, including resolution of temporal and resource conflicts among planned activities. MAPGEN can be used in either of two modes: one in which the planner/scheduler is turned off and only the basic APGEN functionality is utilized, or one in which both component programs are used to obtain the full planning, scheduling, and constraint-maintenance functionality.

  18. Comparing dose prediction software used to manage gentamicin dosing.

    PubMed

    Wong, C; Kumar, S S; Graham, G G; Begg, E J; Chin, P K L; Brett, J; Ray, J E; Marriott, D J E; Williams, K M; Day, R O

    2013-05-01

    Current Australian guidelines recommend initiating directed therapy of gentamicin if administration exceeds 48 h. Directed doses of gentamicin require the monitoring of plasma concentrations of gentamicin to determine the 24-h area under the time course of plasma gentamicin concentrations (AUC) and a dosage prediction program, for example TCIWorks or Aladdin. However, doses calculated by such programs have not been compared with an established program. To compare the directed dosage of gentamicin calculated by TCIWorks, Aladdin and an Excel-based program, with an established program, Abbottbase. Peak and trough plasma concentrations after the first and second administered doses of gentamicin were available from three patient groups (n = 20-23) with varying creatinine clearances (<40, 40-80, >80 mL/min). The directed dose needed to produce 24-h AUC values of 80 mg.h/L was calculated using each program. There was a strong correlation between the directed doses predicted by each of the three programs compared with Abbottbase, following the first administered dose (r(2) > 0.97, P < 0.0001). The mean ratio (90% confidence intervals) of these directed doses of the gentamicin were: TCIWorks/Abbottbase 106% (105-107%), Aladdin/Abbottbase 102% (101-103%) and Excel/Abbottbase 108% (106-109%). The correlations and dose ratios were also similar when comparisons were made following the second administered dose. For each of the three renal function groups, all programs yielded similar directed doses. The four programs used in the calculation of directed doses of gentamicin yielded similar results. Any would be suitable for use in clinical practice. © 2012 The Authors; Internal Medicine Journal © 2012 Royal Australasian College of Physicians.

  19. SU-E-T-27: A Tool for Routine Quality Assurance of Radiotherapy Dose Calculation Software

    SciTech Connect

    Popple, R; Cardan, R; Duan, J; Wu, X; Shen, S; Brezovich, I

    2014-06-01

    Purpose: Dose calculation software is thoroughly evaluated when it is commissioned; however, evaluation of periodic software updates is typically limited in scope due to staffing constraints and the need to quickly return the treatment planning system to clinical service. We developed a tool for quickly and comprehensively testing and documenting dose calculation software against measured data. Methods: A tool was developed using MatLab (The MathWorks, Natick, MA) for evaluation of dose calculation algorithms against measured data. Inputs to the tool are measured data, reference DICOM RT PLAN files describing the measurements, and dose calculations in DICOM format. The tool consists of a collection of extensible modules that can perform analysis of point dose, depth dose curves, and profiles using dose difference, distance-to-agreement, and the gamma-index. Each module generates a report subsection that is incorporated into a master template, which is converted to final form in portable document format (PDF). Results: After each change to the treatment planning system, a report can be generated in approximately 90 minutes. The tool has been in use for more than 5 years, spanning 5 versions of the eMC and 4 versions of the AAA. We have detected changes to the algorithms that affected clinical practice once during this period. Conclusion: Our tool provides an efficient method for quality assurance of dose calculation software, providing a complete set of tests for an update. Future work includes the addition of plan level tests, allowing incorporation of, for example, the TG-119 test suite for IMRT, and integration with the treatment planning system via an application programming interface. Integration with the planning system will permit fully-automated testing and reporting at scheduled intervals.

  20. 49 CFR 236.18 - Software management control plan.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Software management control plan. 236.18 Section... Instructions: All Systems General § 236.18 Software management control plan. (a) Within 6 months of June 6, 2005, each railroad shall develop and adopt a software management control plan for its signal and...

  1. 49 CFR 236.18 - Software management control plan.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Software management control plan. 236.18 Section... Instructions: All Systems General § 236.18 Software management control plan. (a) Within 6 months of June 6, 2005, each railroad shall develop and adopt a software management control plan for its signal and...

  2. Building Software Agents for Planning, Monitoring, and Optimizing Travel

    DTIC Science & Technology

    2004-01-01

    trip. Keywords: software agents, wrappers, interactive planning, data mining, travel , and tourism . 1 Introduction The standard approach to...Building Software Agents for Planning, Monitoring, and Optimizing Travel Craig A. Knoblock Information Sciences Institute University of...the Internet and it can be used to enable travelers to better plan and execute their trips. This paper describes the use of software agents for

  3. 49 CFR 236.18 - Software management control plan.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Software management control plan. 236.18 Section... Instructions: All Systems General § 236.18 Software management control plan. (a) Within 6 months of June 6, 2005, each railroad shall develop and adopt a software management control plan for its signal and...

  4. 49 CFR 236.18 - Software management control plan.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Software management control plan. 236.18 Section... Instructions: All Systems General § 236.18 Software management control plan. (a) Within 6 months of June 6, 2005, each railroad shall develop and adopt a software management control plan for its signal and...

  5. 49 CFR 236.18 - Software management control plan.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Software management control plan. 236.18 Section... Instructions: All Systems General § 236.18 Software management control plan. (a) Within 6 months of June 6, 2005, each railroad shall develop and adopt a software management control plan for its signal and...

  6. Tolerance doses for treatment planning

    SciTech Connect

    Lyman, J.T.

    1985-10-01

    Data for the tolerance of normal tissues or organs to (low-LET) radiation has been compiled from a number of sources which are referenced at the end of this document. This tolerance dose data are ostensibly for uniform irradiation of all or part of an organ, and are for either 5% (TD/sub 5/) or 50% (TD/sub 50/) complication probability. The ''size'' of the irradiated organ is variously stated in terms of the absolute volume or the fraction of the organ volume irradiated, or the area or the length of the treatment field. The accuracy of these data is questionable. Much of the data represents doses that one or several experienced therapists have estimated could be safely given rather than quantitative analyses of clinical observations. Because these data have been obtained from multiple sources with possible different criteria for the definition of a complication, there are sometimes different values for what is apparently the same endpoint. The data from some sources shows a tendancy to be quantized in 5 Gy increments. This reflects the size of possible round off errors. It is believed that all these data have been accumulated without the benefit of 3-D dose distributions and therefore the estimates of the size of the volume and/or the uniformity of the irradiation may be less accurate than is now possible. 19 refs., 4 figs.

  7. Assessing dose rate distributions in VMAT plans

    NASA Astrophysics Data System (ADS)

    Mackeprang, P.-H.; Volken, W.; Terribilini, D.; Frauchiger, D.; Zaugg, K.; Aebersold, D. M.; Fix, M. K.; Manser, P.

    2016-04-01

    Dose rate is an essential factor in radiobiology. As modern radiotherapy delivery techniques such as volumetric modulated arc therapy (VMAT) introduce dynamic modulation of the dose rate, it is important to assess the changes in dose rate. Both the rate of monitor units per minute (MU rate) and collimation are varied over the course of a fraction, leading to different dose rates in every voxel of the calculation volume at any point in time during dose delivery. Given the radiotherapy plan and machine specific limitations, a VMAT treatment plan can be split into arc sectors between Digital Imaging and Communications in Medicine control points (CPs) of constant and known MU rate. By calculating dose distributions in each of these arc sectors independently and multiplying them with the MU rate, the dose rate in every single voxel at every time point during the fraction can be calculated. Independently calculated and then summed dose distributions per arc sector were compared to the whole arc dose calculation for validation. Dose measurements and video analysis were performed to validate the calculated datasets. A clinical head and neck, cranial and liver case were analyzed using the tool developed. Measurement validation of synthetic test cases showed linac agreement to precalculated arc sector times within  ±0.4 s and doses  ±0.1 MU (one standard deviation). Two methods for the visualization of dose rate datasets were developed: the first method plots a two-dimensional (2D) histogram of the number of voxels receiving a given dose rate over the course of the arc treatment delivery. In similarity to treatment planning system display of dose, the second method displays the dose rate as color wash on top of the corresponding computed tomography image, allowing the user to scroll through the variation over time. Examining clinical cases showed dose rates spread over a continuous spectrum, with mean dose rates hardly exceeding 100 cGy min-1 for conventional

  8. Software configuration management plan for HANDI 2000 business management system

    SciTech Connect

    BENNION, S.I.

    1999-02-10

    The Software Configuration Management Plan (SCMP) describes the configuration management and control environment for HANDI 2000 for the PP and PS software, as well as any custom developed software. This plan establishes requirements and processes for uniform documentation and coordination of HANDI 2000. This SCMP becomes effective as of this document's acceptance and will provide guidance through implementation efforts.

  9. SU-E-J-80: A Comparative Analysis of MIM and Pinnacle Software for Adaptive Planning

    SciTech Connect

    Stanford, J; Duggar, W; Morris, B; Yang, C

    2015-06-15

    Purpose: IMRT treatment is often administered with image guidance and small PTV margins. Change in body habitus such as weight loss and tumor response during the course of a treatment could be significant, thus warranting re-simulation and re-planning. Adaptive planning is challenging and places significant burden on the staff, as such some commercial vendors are now offering adaptive planning software to stream line the process of re-planning and dose accumulation between different CT data set. The purpose of this abstract is to compare the adaptive planning tools between Pinnacle version 9.8 and MIM 6.4 software. Methods: Head and Neck cases of previously treated patients that experienced anatomical changes during the course of their treatment were chosen for evaluation. The new CT data set from the re-simulation was imported to Pinnacle and MIM software. The dynamic planning tool in pinnacle was used to calculate the old plan with fixed MU setting on the new CT data. In MIM, the old CT was registered to the new data set, followed by a dose transformation to the new CT. The dose distribution to the PTV and critical structures from each software were analyzed and compared. Results: 9% difference was observed between the Global maximum doses reported by both software. Mean doses to organs at risk and PTV’s were within 6 % however pinnacle showed greater difference in PTV coverage change. Conclusion: MIM software adaptive planning corrects for geometrical changes without consideration for the effect of radiological path length on dose distribution; however Pinnacle corrects for both geometric and radiological effect on the dose distribution. Pinnacle gives a better estimate of the dosimetric impact due to anatomical changes.

  10. Spent Nuclear Fuel Project dose management plan

    SciTech Connect

    Bergsman, K.H.

    1996-03-01

    This dose management plan facilitates meeting the dose management and ALARA requirements applicable to the design activities of the Spent Nuclear Fuel Project, and establishes consistency of information used by multiple subprojects in ALARA evaluations. The method for meeting the ALARA requirements applicable to facility designs involves two components. The first is each Spent Nuclear Fuel Project subproject incorporating ALARA principles, ALARA design optimizations, and ALARA design reviews throughout the design of facilities and equipment. The second component is the Spent Nuclear Fuel Project management providing overall dose management guidance to the subprojects and oversight of the subproject dose management efforts.

  11. SAPHIRE 8 Software Quality Assurance Plan

    SciTech Connect

    Curtis Smith

    2010-02-01

    This Quality Assurance (QA) Plan documents the QA activities that will be managed by the INL related to JCN N6423. The NRC developed the SAPHIRE computer code for performing probabilistic risk assessments (PRAs) using a personal computer (PC) at the Idaho National Laboratory (INL) under Job Code Number (JCN) L1429. SAPHIRE started out as a feasibility study for a PRA code to be run on a desktop personal PC and evolved through several phases into a state-of-the-art PRA code. The developmental activity of SAPHIRE was the result of two concurrent important events: The tremendous expansion of PC software and hardware capability of the 90s and the onset of a risk-informed regulation era.

  12. VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients.

    PubMed

    Ding, Aiping; Gao, Yiming; Liu, Haikuan; Caracappa, Peter F; Long, Daniel J; Bolch, Wesley E; Liu, Bob; Xu, X George

    2015-07-21

    This paper describes the development and testing of VirtualDose--a software for reporting organ doses for adult and pediatric patients who undergo x-ray computed tomography (CT) examinations. The software is based on a comprehensive database of organ doses derived from Monte Carlo (MC) simulations involving a library of 25 anatomically realistic phantoms that represent patients of different ages, body sizes, body masses, and pregnant stages. Models of GE Lightspeed Pro 16 and Siemens SOMATOM Sensation 16 scanners were carefully validated for use in MC dose calculations. The software framework is designed with the 'software as a service (SaaS)' delivery concept under which multiple clients can access the web-based interface simultaneously from any computer without having to install software locally. The RESTful web service API also allows a third-party picture archiving and communication system software package to seamlessly integrate with VirtualDose's functions. Software testing showed that VirtualDose was compatible with numerous operating systems including Windows, Linux, Apple OS X, and mobile and portable devices. The organ doses from VirtualDose were compared against those reported by CT-Expo and ImPACT-two dosimetry tools that were based on the stylized pediatric and adult patient models that were known to be anatomically simple. The organ doses reported by VirtualDose differed from those reported by CT-Expo and ImPACT by as much as 300% in some of the patient models. These results confirm the conclusion from past studies that differences in anatomical realism offered by stylized and voxel phantoms have caused significant discrepancies in CT dose estimations.

  13. Radioisotope thermoelectric generator transportation system subsystem 143 software development plan

    SciTech Connect

    King, D.A.

    1994-11-10

    This plan describes the activities to be performed and the controls to be applied to the process of specifying, developing, and qualifying the data acquisition software for the Radioisotope Thermoelectric Generator (RTG) Transportation System Subsystem 143 Instrumentation and Data Acquisition System (IDAS). This plan will serve as a software quality assurance plan, a verification and validation (V and V) plan, and a configuration management plan.

  14. Radioisotope thermoelectric generator transportation system subsystem 143 software development plan

    NASA Astrophysics Data System (ADS)

    King, D. A.

    1994-11-01

    This plan describes the activities to be performed and the controls to be applied to the process of specifying, developing, and qualifying the data acquisition software for the Radioisotope Thermoelectric Generator (RTG) Transportation System Subsystem 143 Instrumentation and Data Acquisition System (IDAS). This plan will serve as a software quality assurance plan, a verification and validation (V and V) plan, and a configuration management plan.

  15. Software Configuration Management Plan for the Sodium Removal System

    SciTech Connect

    HILL, L.F.

    2000-03-06

    This document establishers the Software Configuration Management Plan (SCMP) for the software associated with the control system of the Sodium Removal System (SRS) located in the Interim Examination and Maintenance (IEM Cell) Facility of the FFTF Flux Test.

  16. Decision support software technology demonstration plan

    SciTech Connect

    SULLIVAN,T.; ARMSTRONG,A.

    1998-09-01

    The performance evaluation of innovative and alternative environmental technologies is an integral part of the US Environmental Protection Agency's (EPA) mission. Early efforts focused on evaluating technologies that supported the implementation of the Clean Air and Clean Water Acts. In 1986 the Agency began to demonstrate and evaluate the cost and performance of remediation and monitoring technologies under the Superfund Innovative Technology Evaluation (SITE) program (in response to the mandate in the Superfund Amendments and Reauthorization Act of 1986 (SARA)). In 1990, the US Technology Policy was announced. This policy placed a renewed emphasis on making the best use of technology in achieving the national goals of improved quality of life for all Americans, continued economic growth, and national security. In the spirit of the technology policy, the Agency began to direct a portion of its resources toward the promotion, recognition, acceptance, and use of US-developed innovative environmental technologies both domestically and abroad. Decision Support Software (DSS) packages integrate environmental data and simulation models into a framework for making site characterization, monitoring, and cleanup decisions. To limit the scope which will be addressed in this demonstration, three endpoints have been selected for evaluation: Visualization; Sample Optimization; and Cost/Benefit Analysis. Five topics are covered in this report: the objectives of the demonstration; the elements of the demonstration plan; an overview of the Site Characterization and Monitoring Technology Pilot; an overview of the technology verification process; and the purpose of this demonstration plan.

  17. The NUKDOS software for treatment planning in molecular radiotherapy.

    PubMed

    Kletting, Peter; Schimmel, Sebastian; Hänscheid, Heribert; Luster, Markus; Fernández, Maria; Nosske, Dietmar; Lassmann, Michael; Glatting, Gerhard

    2015-09-01

    The aim of this work was the development of a software tool for treatment planning prior to molecular radiotherapy, which comprises all functionality to objectively determine the activity to administer and the pertaining absorbed doses (including the corresponding error) based on a series of gamma camera images and one SPECT/CT or probe data. NUKDOS was developed in MATLAB. The workflow is based on the MIRD formalism For determination of the tissue or organ pharmacokinetics, gamma camera images as well as probe, urine, serum and blood activity data can be processed. To estimate the time-integrated activity coefficients (TIAC), sums of exponentials are fitted to the time activity data and integrated analytically. To obtain the TIAC on the voxel level, the voxel activity distribution from the quantitative 3D SPECT/CT (or PET/CT) is used for scaling and weighting the TIAC derived from the 2D organ data. The voxel S-values are automatically calculated based on the voxel-size of the image and the therapeutic nuclide ((90)Y, (131)I or (177)Lu). The absorbed dose coefficients are computed by convolution of the voxel TIAC and the voxel S-values. The activity to administer and the pertaining absorbed doses are determined by entering the absorbed dose for the organ at risk. The overall error of the calculated absorbed doses is determined by Gaussian error propagation. NUKDOS was tested for the operation systems Windows(®) 7 (64 Bit) and 8 (64 Bit). The results of each working step were compared to commercially available (SAAMII, OLINDA/EXM) and in-house (UlmDOS) software. The application of the software is demonstrated using examples form peptide receptor radionuclide therapy (PRRT) and from radioiodine therapy of benign thyroid diseases. For the example from PRRT, the calculated activity to administer differed by 4% comparing NUKDOS and the final result using UlmDos, SAAMII and OLINDA/EXM sequentially. The absorbed dose for the spleen and tumour differed by 7% and 8

  18. I-125 ROPES eye plaque dosimetry: Validation of a commercial 3D ophthalmic brachytherapy treatment planning system and independent dose calculation software with GafChromic{sup ®} EBT3 films

    SciTech Connect

    Poder, Joel; Corde, Stéphanie

    2013-12-15

    Purpose: The purpose of this study was to measure the dose distributions for different Radiation Oncology Physics and Engineering Services, Australia (ROPES) type eye plaques loaded with I-125 (model 6711) seeds using GafChromic{sup ®} EBT3 films, in order to verify the dose distributions in the Plaque Simulator™ (PS) ophthalmic 3D treatment planning system. The brachytherapy module of RADCALC{sup ®} was used to independently check the dose distributions calculated by PS. Correction factors were derived from the measured data to be used in PS to account for the effect of the stainless steel ROPES plaque backing on the 3D dose distribution.Methods: Using GafChromic{sup ®} EBT3 films inserted in a specially designed Solid Water™ eye ball phantom, dose distributions were measured three-dimensionally both along and perpendicular to I-125 (model 6711) loaded ROPES eye plaque's central axis (CAX) with 2 mm depth increments. Each measurement was performed in full scatter conditions both with and without the stainless steel plaque backing attached to the eye plaque, to assess its effect on the dose distributions. Results were compared to the dose distributions calculated by Plaque Simulator™ and checked independently with RADCALC{sup ®}.Results: The EBT3 film measurements without the stainless steel backing were found to agree with PS and RADCALC{sup ®} to within 2% and 4%, respectively, on the plaque CAX. Also, RADCALC{sup ®} was found to agree with PS to within 2%. The CAX depth doses measured using EBT3 film with the stainless steel backing were observed to result in a 4% decrease relative to when the backing was not present. Within experimental uncertainty, the 4% decrease was found to be constant with depth and independent of plaque size. Using a constant dose correction factor of T= 0.96 in PS, where the calculated dose for the full water scattering medium is reduced by 4% in every voxel in the dose grid, the effect of the plaque backing was accurately

  19. I-125 ROPES eye plaque dosimetry: validation of a commercial 3D ophthalmic brachytherapy treatment planning system and independent dose calculation software with GafChromic® EBT3 films.

    PubMed

    Poder, Joel; Corde, Stéphanie

    2013-12-01

    The purpose of this study was to measure the dose distributions for different Radiation Oncology Physics and Engineering Services, Australia (ROPES) type eye plaques loaded with I-125 (model 6711) seeds using GafChromic(®) EBT3 films, in order to verify the dose distributions in the Plaque Simulator™ (PS) ophthalmic 3D treatment planning system. The brachytherapy module of RADCALC(®) was used to independently check the dose distributions calculated by PS. Correction factors were derived from the measured data to be used in PS to account for the effect of the stainless steel ROPES plaque backing on the 3D dose distribution. Using GafChromic(®) EBT3 films inserted in a specially designed Solid Water™ eye ball phantom, dose distributions were measured three-dimensionally both along and perpendicular to I-125 (model 6711) loaded ROPES eye plaque's central axis (CAX) with 2 mm depth increments. Each measurement was performed in full scatter conditions both with and without the stainless steel plaque backing attached to the eye plaque, to assess its effect on the dose distributions. Results were compared to the dose distributions calculated by Plaque Simulator™ and checked independently with RADCALC(®). The EBT3 film measurements without the stainless steel backing were found to agree with PS and RADCALC(®) to within 2% and 4%, respectively, on the plaque CAX. Also, RADCALC(®) was found to agree with PS to within 2%. The CAX depth doses measured using EBT3 film with the stainless steel backing were observed to result in a 4% decrease relative to when the backing was not present. Within experimental uncertainty, the 4% decrease was found to be constant with depth and independent of plaque size. Using a constant dose correction factor of T = 0.96 in PS, where the calculated dose for the full water scattering medium is reduced by 4% in every voxel in the dose grid, the effect of the plaque backing was accurately modeled in the planning system. Off-axis profiles

  20. VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients

    NASA Astrophysics Data System (ADS)

    Ding, Aiping; Gao, Yiming; Liu, Haikuan; Caracappa, Peter F.; Long, Daniel J.; Bolch, Wesley E.; Liu, Bob; Xu, X. George

    2015-07-01

    This paper describes the development and testing of VirtualDose—a software for reporting organ doses for adult and pediatric patients who undergo x-ray computed tomography (CT) examinations. The software is based on a comprehensive database of organ doses derived from Monte Carlo (MC) simulations involving a library of 25 anatomically realistic phantoms that represent patients of different ages, body sizes, body masses, and pregnant stages. Models of GE Lightspeed Pro 16 and Siemens SOMATOM Sensation 16 scanners were carefully validated for use in MC dose calculations. The software framework is designed with the ‘software as a service (SaaS)’ delivery concept under which multiple clients can access the web-based interface simultaneously from any computer without having to install software locally. The RESTful web service API also allows a third-party picture archiving and communication system software package to seamlessly integrate with VirtualDose’s functions. Software testing showed that VirtualDose was compatible with numerous operating systems including Windows, Linux, Apple OS X, and mobile and portable devices. The organ doses from VirtualDose were compared against those reported by CT-Expo and ImPACT—two dosimetry tools that were based on the stylized pediatric and adult patient models that were known to be anatomically simple. The organ doses reported by VirtualDose differed from those reported by CT-Expo and ImPACT by as much as 300% in some of the patient models. These results confirm the conclusion from past studies that differences in anatomical realism offered by stylized and voxel phantoms have caused significant discrepancies in CT dose estimations.

  1. SEPAC software configuration control plan and procedures, revision 1

    NASA Technical Reports Server (NTRS)

    1981-01-01

    SEPAC Software Configuration Control Plan and Procedures are presented. The objective of the software configuration control is to establish the process for maintaining configuration control of the SEPAC software beginning with the baselining of SEPAC Flight Software Version 1 and encompass the integration and verification tests through Spacelab Level IV Integration. They are designed to provide a simplified but complete configuration control process. The intent is to require a minimum amount of paperwork but provide total traceability of SEPAC software.

  2. Beyond Reactive Planning: Self Adaptive Software and Self Modeling Software in Predictive Deliberation Management

    DTIC Science & Technology

    2008-06-01

    13th ICCRTS “C2 for Complex Endeavors” Title of Paper: Beyond Reactive Planning: Self Adaptive Software and Self Modeling Software in...Adaptive Software and Self Modeling Software in Predictive Deliberation Management 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...space. We present the following hypothesis: predictive deliberation management using self adapting and self modeling software will be required to provide

  3. Results of 1 year of clinical experience with independent dose calculation software for VMAT fields

    PubMed Central

    Colodro, Juan Fernando Mata; Berna, Alfredo Serna; Puchades, Vicente Puchades; Amores, David Ramos; Baños, Miguel Alcaraz

    2014-01-01

    It is widely accepted that a redundant independent dose calculation (RIDC) must be included in any treatment planning verification procedure. Specifically, volumetric modulated arc therapy (VMAT) technique implies a comprehensive quality assurance (QA) program in which RIDC should be included. In this paper, the results obtained in 1 year of clinical experience are presented. Eclipse from Varian is the treatment planning system (TPS), here in use. RIDC were performed with the commercial software; Diamond® (PTW) which is capable of calculating VMAT fields. Once the plan is clinically accepted, it is exported via Digital Imaging and Communications in Medicine (DICOM) to RIDC, together with the body contour, and then a point dose calculation is performed, usually at the isocenter. A total of 459 plans were evaluated. The total average deviation was -0.3 ± 1.8% (one standard deviation (1SD)). For higher clearance the plans were grouped by location in: Prostate, pelvis, abdomen, chest, head and neck, brain, stereotactic radiosurgery, lung stereotactic body radiation therapy, and miscellaneous. The highest absolute deviation was -0.8 ± 1.5% corresponding to the prostate. A linear fit between doses calculated by RIDC and by TPS produced a correlation coefficient of 0.9991 and a slope of 1.0023. These results are very close to those obtained in the validation process. This agreement led us to consider this RIDC software as a valuable tool for QA in VMAT plans. PMID:25525309

  4. Results of 1 year of clinical experience with independent dose calculation software for VMAT fields.

    PubMed

    Colodro, Juan Fernando Mata; Berna, Alfredo Serna; Puchades, Vicente Puchades; Amores, David Ramos; Baños, Miguel Alcaraz

    2014-10-01

    It is widely accepted that a redundant independent dose calculation (RIDC) must be included in any treatment planning verification procedure. Specifically, volumetric modulated arc therapy (VMAT) technique implies a comprehensive quality assurance (QA) program in which RIDC should be included. In this paper, the results obtained in 1 year of clinical experience are presented. Eclipse from Varian is the treatment planning system (TPS), here in use. RIDC were performed with the commercial software; Diamond(®) (PTW) which is capable of calculating VMAT fields. Once the plan is clinically accepted, it is exported via Digital Imaging and Communications in Medicine (DICOM) to RIDC, together with the body contour, and then a point dose calculation is performed, usually at the isocenter. A total of 459 plans were evaluated. The total average deviation was -0.3 ± 1.8% (one standard deviation (1SD)). For higher clearance the plans were grouped by location in: Prostate, pelvis, abdomen, chest, head and neck, brain, stereotactic radiosurgery, lung stereotactic body radiation therapy, and miscellaneous. The highest absolute deviation was -0.8 ± 1.5% corresponding to the prostate. A linear fit between doses calculated by RIDC and by TPS produced a correlation coefficient of 0.9991 and a slope of 1.0023. These results are very close to those obtained in the validation process. This agreement led us to consider this RIDC software as a valuable tool for QA in VMAT plans.

  5. SU-E-T-616: Plan Quality Assessment of Both Treatment Planning System Dose and Measurement-Based 3D Reconstructed Dose in the Patient

    SciTech Connect

    Olch, A

    2015-06-15

    Purpose: Systematic radiotherapy plan quality assessment promotes quality improvement. Software tools can perform this analysis by applying site-specific structure dose metrics. The next step is to similarly evaluate the quality of the dose delivery. This study defines metrics for acceptable doses to targets and normal organs for a particular treatment site and scores each plan accordingly. The input can be the TPS or the measurement-based 3D patient dose. From this analysis, one can determine whether the delivered dose distribution to the patient receives a score which is comparable to the TPS plan score, otherwise replanning may be indicated. Methods: Eleven neuroblastoma patient plans were exported from Eclipse to the Quality Reports program. A scoring algorithm defined a score for each normal and target structure based on dose-volume parameters. Each plan was scored by this algorithm and the percentage of total possible points was obtained. Each plan also underwent IMRT QA measurements with a Mapcheck2 or ArcCheck. These measurements were input into the 3DVH program to compute the patient 3D dose distribution which was analyzed using the same scoring algorithm as the TPS plan. Results: The mean quality score for the TPS plans was 75.37% (std dev=14.15%) compared to 71.95% (std dev=13.45%) for the 3DVH dose distribution. For 3/11 plans, the 3DVH-based quality score was higher than the TPS score, by between 0.5 to 8.4 percentage points. Eight/11 plans scores decreased based on IMRT QA measurements by 1.2 to 18.6 points. Conclusion: Software was used to determine the degree to which the plan quality score differed between the TPS and measurement-based dose. Although the delivery score was generally in good agreement with the planned dose score, there were some that improved while there was one plan whose delivered dose quality was significantly less than planned. This methodology helps evaluate both planned and delivered dose quality. Sun Nuclear Corporation has

  6. A free software for the evaluation and comparison of dose response models in clinical radiotherapy (DORES).

    PubMed

    Tsougos, Ioannis; Grout, Ioannis; Theodorou, Kyriaki; Kappas, Constantin

    2009-03-01

    The aim of this work was to develop a user-friendly and simple tool for fast and accurate estimation of Normal Tissue Complication Probabilities (NTCP) for several radiobiological models, which can be used as a valuable complement to the clinical experience. The software which has been named DORES (Dose Response Evaluation Software) has been developed in Visual Basic, and includes three NTCP models (Lyman-Kuther-Burman (LKB), Relative Seriality and Parallel). Required input information includes the Dose-Volume Histogram (DVH) for the Organs at Risk (OAR) of each treatment, the number of fractions and the total dose of therapy. NTCP values are computed, and subsequently placed in a spreadsheet file for further analysis. A Dose Response curve for every model is automatically generated. Every patient of the study population can be found on the curve since by definition their corresponding dose-response points fall exactly on the theoretical dose-response curve, when plotted on the same diagram. Distributions of absorbed dose alone do not provide information on the biological response of tissues to irradiation, so the use of this software may aid in the comparison of outcomes for different treatment plans or types of treatment, and also aid the evaluation of the sensitivity of different model predictions to uncertainties in parameter values. This was illustrated in a clinical case of breast cancer radiotherapy.

  7. Ask Pete, software planning and estimation through project characterization

    NASA Technical Reports Server (NTRS)

    Kurtz, T.

    2001-01-01

    Ask Pete, was developed by NASA to provide a tool for integrating the estimation and planning activities for a software development effort. It incorporates COCOMO II estimating with NASA's software development practices and IV&V criteria to characterize a project. This characterization is then used to generate estimates and tailored planning documents.

  8. Automated transportation management system (ATMS) software project management plan (SPMP)

    SciTech Connect

    Weidert, R.S., Westinghouse Hanford

    1996-05-20

    The Automated Transportation Management System (ATMS) Software Project Management plan (SPMP) is the lead planning document governing the life cycle of the ATMS and its integration into the Transportation Information Network (TIN). This SPMP defines the project tasks, deliverables, and high level schedules involved in developing the client/server ATMS software.

  9. Guidance and Control Software Project Data - Volume 1: Planning Documents

    NASA Technical Reports Server (NTRS)

    Hayhurst, Kelly J. (Editor)

    2008-01-01

    The Guidance and Control Software (GCS) project was the last in a series of software reliability studies conducted at Langley Research Center between 1977 and 1994. The technical results of the GCS project were recorded after the experiment was completed. Some of the support documentation produced as part of the experiment, however, is serving an unexpected role far beyond its original project context. Some of the software used as part of the GCS project was developed to conform to the RTCA/DO-178B software standard, "Software Considerations in Airborne Systems and Equipment Certification," used in the civil aviation industry. That standard requires extensive documentation throughout the software development life cycle, including plans, software requirements, design and source code, verification cases and results, and configuration management and quality control data. The project documentation that includes this information is open for public scrutiny without the legal or safety implications associated with comparable data from an avionics manufacturer. This public availability has afforded an opportunity to use the GCS project documents for DO-178B training. This report provides a brief overview of the GCS project, describes the 4-volume set of documents and the role they are playing in training, and includes the planning documents from the GCS project. Volume 1 contains five appendices: A. Plan for Software Aspects of Certification for the Guidance and Control Software Project; B. Software Development Standards for the Guidance and Control Software Project; C. Software Verification Plan for the Guidance and Control Software Project; D. Software Configuration Management Plan for the Guidance and Control Software Project; and E. Software Quality Assurance Activities.

  10. Software configuration management plan for HANDI 2000 business management system

    SciTech Connect

    Wilson, D.

    1998-08-25

    The Software Configuration Management Plan (SCMP) describes the configuration management and control environment for HANDI 2000 for the PP and PS software as well as any custom developed software. This plan establishes requirements and processes for uniform documentation control, system change control, systematic evaluation and coordination of HANDI 2000. This SCMP becomes effective as this document is acceptance and will provide guidance through implementation efforts.

  11. Planning for land use and conservation: Assessing GIS-based conservation software for land use planning

    Treesearch

    Rob Baldwin; Ryan Scherzinger; Don Lipscomb; Miranda Mockrin; Susan Stein

    2014-01-01

    Recent advances in planning and ecological software make it possible to conduct highly technical analyses to prioritize conservation investments and inform local land use planning. We review these tools, termed conservation planning tools, and assess the knowledge of a key set of potential users: the land use planning community. We grouped several conservation software...

  12. Training Plan Central Archive for Reusable Software (CARDS).

    DTIC Science & Technology

    1992-07-07

    TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS (STARS) Training Plan Central Archive for Reusable Software (CARDS) STARS-AC-04101/001/00 07 July 1992 Data Type... Software Technology for Adaptable, Reliable Systems (STARS) program, is approved for release under Distribution "A" of the Scientific and Tech- nical...Course. Asset Source for Software Engineering Technology (ASSET), National Software Technology Repository. STARS Reuse Concept of Operation. Task US30

  13. ICESat (GLAS) Science Processing Software Document Series. Volume 1; Science Software Management Plan; 3.0

    NASA Technical Reports Server (NTRS)

    Hancock, David W., III

    1999-01-01

    This document provides the Software Management Plan for the GLAS Standard Data Software (SDS) supporting the GLAS instrument of the EOS ICESat Spacecraft. The SDS encompasses the ICESat Science Investigator-led Processing System (I-SIPS) Software and the Instrument Support Terminal (IST) Software. For the I-SIPS Software, the SDS will produce Level 0, Level 1, and Level 2 data products as well as the associated product quality assessments and descriptive information. For the IST Software, the SDS will accommodate the GLAS instrument support areas of engineering status, command, performance assessment, and instrument health status.

  14. NEAMS SOFTWARE V&V PLAN FOR THE MARMOT SOFTWARE

    SciTech Connect

    Michael R Tonks

    2014-03-01

    In order to ensure the accuracy and quality of the microstructure based materials models being developed in conjunction with MARMOT simulations, MARMOT must undergo exhaustive verification and validation. Only after this process can we confidently rely on the MARMOT code to predict the microstructure evolution within the fuel. Therefore, in this report we lay out a V&V plan for the MARMOT code, highlighting where existing data could be used and where new data is required.

  15. NIF Projects Controls and Information Systems Software Quality Assurance Plan

    SciTech Connect

    Fishler, B

    2011-03-18

    Quality achievement for the National Ignition Facility (NIF) and the National Ignition Campaign (NIC) is the responsibility of the NIF Projects line organization as described in the NIF and Photon Science Directorate Quality Assurance Plan (NIF QA Plan). This Software Quality Assurance Plan (SQAP) is subordinate to the NIF QA Plan and establishes quality assurance (QA) activities for the software subsystems within Controls and Information Systems (CIS). This SQAP implements an activity level software quality assurance plan for NIF Projects as required by the LLNL Institutional Software Quality Assurance Program (ISQAP). Planned QA activities help achieve, assess, and maintain appropriate quality of software developed and/or acquired for control systems, shot data systems, laser performance modeling systems, business applications, industrial control and safety systems, and information technology systems. The objective of this SQAP is to ensure that appropriate controls are developed and implemented for management planning, work execution, and quality assessment of the CIS organization's software activities. The CIS line organization places special QA emphasis on rigorous configuration control, change management, testing, and issue tracking to help achieve its quality goals.

  16. Dose masking feature for BNCT radiotherapy planning

    DOEpatents

    Cook, Jeremy L.; Wessol, Daniel E.; Wheeler, Floyd J.

    2000-01-01

    A system for displaying an accurate model of isodoses to be used in radiotherapy so that appropriate planning can be performed prior to actual treatment on a patient. The nature of the simulation of the radiotherapy planning for BNCT and Fast Neutron Therapy, etc., requires that the doses be computed in the entire volume. The "entire volume" includes the patient and beam geometries as well as the air spaces in between. Isodoses derived from the computed doses will therefore extend into the air regions between the patient and beam geometries and thus depict the unrealistic possibility that radiation deposition occurs in regions containing no physical media. This problem is solved by computing the doses for the entire geometry and then masking the physical and air regions along with the isodose contours superimposed over the patient image at the corresponding plane. The user is thus able to mask out (remove) the contour lines from the unwanted areas of the image by selecting the appropriate contour masking region from the raster image.

  17. Assessments for High Dose Radionuclide Therapy Treatment Planning

    SciTech Connect

    Fisher, Darrell R.

    2003-10-01

    Advances in the biotechnology of cell-specific targeting of cancer, and the increased number of clinical trials involving treatment of cancer patients with radiolabeled antibodies, peptides, and similar delivery vehicles have led to an increase in the number of high-dose radionuclide therapy procedures. Optimized radionuclide therapy for cancer treatment is based on the concept of absorbed dose to the dose-limiting normal organ or tissue. The limiting normal tissue is often the red marrow, but it may sometimes be lungs, liver, intestinal tract, or kidneys. Appropriate treatment planning requires assessment of radiation dose to several internal organs and tissues, and usually involves biodistribution studies in the patient using a tracer amount of radionuclide bound to the targeting agent and imaged at sequential time points using a planar gamma camera. Time-activity curves are developed from the imaging data for the major organs tissues of concern, for the whole body, and sometimes for selected tumors. Patient-specific factors often require that dose estimates be customized for each patient. The Food and Drug Administration regulates the experimental use of investigational new drugs and requires reasonable calculation of radiation absorbed dose to the whole body and to critical organs using methods prescribed by the Medical Internal Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine. Review of high-dose studies in the U.S. and elsewhere shows that 1) some studies are conducted with minimal dosimetry, 2) the marrow dose is difficult to establish and is subject to large uncertainties, and 3) despite the general availability of MIRD software, internal dosimetry methods are often inconsistent from one clinical center to another.

  18. SDI (Strategic Defense Initiative) software technology program plan. Final report

    SciTech Connect

    Linn, C.J.; Redwine, S.T.; Bloom, M.I.; Brykczynski, B.; Chludzinski, J.

    1987-06-01

    This paper was prepared in response to a request from the Battle Management C3 office within the Strategic Defense Initiative Organization (SDIO) of the Department of Defense (DoD). The request was for a software-technology program plan to define software research and development (RandD) efforts required by the SDI, and to provide the basis for integrating the SDIO software technology program with ongoing non-SDIO programs. The paper emphasizes reviewing the ongoing software programs and plans within the DoD and academia. The reviews identify critical software technology areas required to meet the unique SDI requirements, and indicate priorities among the software technologies to meet attainability, productivity, and reliability goals, as well as functional performance objectives.

  19. Dose calculation software for helical tomotherapy, utilizing patient CT data to calculate an independent three-dimensional dose cube

    SciTech Connect

    Thomas, Simon J.; Eyre, Katie R.; Tudor, G. Samuel J.; Fairfoul, Jamie

    2012-01-15

    Purpose: Treatment plans for the TomoTherapy unit are produced with a planning system that is integral to the unit. The authors have produced an independent dose calculation system, to enable plans to be recalculated in three dimensions, using the patient's CT data. Methods: Software has been written using MATLAB. The DICOM-RT plan object is used to determine the treatment parameters used, including the treatment sinogram. Each projection of the sinogram is segmented and used to calculate dose at multiple calculation points in a three-dimensional grid using tables of measured beam data. A fast ray-trace algorithm is used to determine effective depth for each projection angle at each calculation point. Calculations were performed on a standard desktop personal computer, with a 2.6 GHz Pentium, running Windows XP. Results: The time to perform a calculation, for 3375 points averaged 1 min 23 s for prostate plans and 3 min 40 s for head and neck plans. The mean dose within the 50% isodose was calculated and compared with the predictions of the TomoTherapy planning system. When the modified CT (which includes the TomoTherapy couch) was used, the mean difference for ten prostate patients, was -0.4% (range -0.9% to +0.3%). With the original CT (which included the CT couch), the mean difference was -1.0% (range -1.7% to 0.0%). The number of points agreeing with a gamma 3%/3 mm averaged 99.2% with the modified CT, 96.3% with the original CT. For ten head and neck patients, for the modified and original CT, respectively, the mean difference was +1.1% (range -0.4% to +3.1%) and 1.1% (range -0.4% to +3.0%) with 94.4% and 95.4% passing a gamma 4%/4 mm. The ability of the program to detect a variety of simulated errors has been tested. Conclusions: By using the patient's CT data, the independent dose calculation performs checks that are not performed by a measurement in a cylindrical phantom. This enables it to be used either as an additional check or to replace phantom

  20. Spacecraft Trajectory Analysis and Mission Planning Simulation (STAMPS) Software

    NASA Technical Reports Server (NTRS)

    Puckett, Nancy; Pettinger, Kris; Hallstrom,John; Brownfield, Dana; Blinn, Eric; Williams, Frank; Wiuff, Kelli; McCarty, Steve; Ramirez, Daniel; Lamotte, Nicole; Vu, Tuan

    2014-01-01

    STAMPS simulates either three- or six-degree-of-freedom cases for all spacecraft flight phases using translated HAL flight software or generic GN&C models. Single or multiple trajectories can be simulated for use in optimization and dispersion analysis. It includes math models for the vehicle and environment, and currently features a "C" version of shuttle onboard flight software. The STAMPS software is used for mission planning and analysis within ascent/descent, rendezvous, proximity operations, and navigation flight design areas.

  1. SAPHIRE 8 Software Configuration Management Plan

    SciTech Connect

    Curtis Smith

    2010-01-01

    The INL software developers use version control for both the formally released SAPHIRE versions, as well as for source code. For each formal release of the software, the developers perform an acceptance test: the software must pass a suite of automated tests prior to official release. Each official release of SAPHIRE is assigned a unique version identifier. The release is bundled into a standard installation package for easy and consistent set-up by individual users. Included in the release is a list of bug fixes and new features for the current release, as well as a history of those items for past releases. Each formal release of SAPHIRE will have passed an acceptance test. In addition to assignment of a unique version identifier for an official software release, each source code file is kept in a controlled library. Source code is a collection of all the computer instructions written by developers to create the finished product. The library is kept on a server, where back-ups are regularly made. This document describes the configuration management approach used as part of the SAPHIRE development.

  2. SDS (Strategic Defense System) Software Measurement Plan

    DTIC Science & Technology

    1989-07-14

    examples should serve as starting methods for the validation methodology. TA S C rASC I ZZJ~JSAI13-11A " THE ANALYTIC SCIENCES CORPORATION I Prior...m unien I THE ANALYTIC SCIENCES CORPORATION I [MART8407] Martin & Brice; Effect of Hardware-Software Interaction on Performance; Computer, 7/84

  3. The Elements of an Effective Software Development Plan - Software Development Process Guidebook

    DTIC Science & Technology

    2011-11-11

    of their respective owners. SP0036(1, 5840, 219, MLM ) Abstract Every software development program must have a Software Development Plan (SDP). The... contract , have historically a high probability of cost and schedule overruns. This Guidebook is intended to significantly increase the probability of a...successful software-intensive contract . The principal objectives of this SDP Guidebook are: • To assist the acquisition agency in evaluating SDPs

  4. Top Down Implementation Plan for system performance test software

    NASA Technical Reports Server (NTRS)

    Jacobson, G. N.; Spinak, A.

    1982-01-01

    The top down implementation plan used for the development of system performance test software during the Mark IV-A era is described. The plan is based upon the identification of the hierarchical relationship of the individual elements of the software design, the development of a sequence of functionally oriented demonstrable steps, the allocation of subroutines to the specific step where they are first required, and objective status reporting. The results are: determination of milestones, improved managerial visibility, better project control, and a successful software development.

  5. PCMDI software system: status and future plans report no. 44

    SciTech Connect

    Williams, Dean N.

    1997-08-01

    This report describes the current status and future plans of PCMDI`s software products. A complete description of each product is provided, including the product`s problem statement, purpose, requirements, design diagram, current status, future development, developers, contributors, and off-site collaborators. While it is noted that each software product can be executed as an independent process, it is important to discern that all products work together in the complete PCMDI Software Systems: A suite of software tools facilitating for the storage, diagnosis, and visualization of climate data.

  6. BISON Software V&V Plan

    SciTech Connect

    R. L. Williamson; J. D. Hales; D. M. Perez; S. R. Novascone; G. Pastore

    2014-07-01

    The primary vision for the BISON development team is to deliver a nuclear fuel performance simulation tool that is used to provide a researcher or fuel designer with best estimate calculations of the highly coupled and nonlinear phenomena that govern nuclear fuel behavior. Accurately simulating nuclear fuel behavior is a challenging computational undertaking and verification and validation (V&V) play an important role in realizing this vision. The purpose of this V&V plan is to express the BISON team’s definition of the terms verification and validation, document what we have done regarding V&V, and outline what we plan to do.

  7. Prescribing and evaluating target dose in dose-painting treatment plans.

    PubMed

    Håkansson, Katrin; Specht, Lena; Aznar, Marianne C; Rasmussen, Jacob H; Bentzen, Søren M; Vogelius, Ivan R

    2014-09-01

    Assessment of target dose conformity in multi-dose-level treatment plans is challenging due to inevitable over/underdosage at the border zone between dose levels. Here, we evaluate different target dose prescription planning aims and approaches to evaluate the relative merit of such plans. A quality volume histogram (QVH) tool for history-based evaluation is proposed. Twenty head and neck cancer dose-painting plans with five prescription levels were evaluated, as well as clinically delivered simultaneous integrated boost (SIB) plans from 2010 and 2012. The QVH tool was used for target dose comparison between groups of plans, and to identify and improve a suboptimal dose-painting plan. Comparison of 2010 and 2012 treatment plans with the QVH tool demonstrated that 2012 plans have decreased underdosed volume at the expense of increased overdosed volume relative to the 2010 plans. This shift had not been detected previously. One suboptimal dose-painting plan was compared to the 'normal zone' of the QVH tool and could be improved by re-optimization. The QVH tool provides a method to assess target dose conformity in dose-painting and multi-dose-level plans. The tool can be useful for quality assurance of multi-center trials, and for visualizing the development of treatment planning in routine clinical practice.

  8. SAPHIRE 8 Software Independent Verification and Validation Plan

    SciTech Connect

    Rae J. Nims; Kent M. Norris

    2010-02-01

    SAPHIRE 8 is being developed with a phased or cyclic iterative rapid application development methodology. Due to this approach, a similar approach is being taken for the IV&V activities on each vital software object. The IV&V plan is structured around NUREG/BR-0167, “Software Quality Assurance Program and Guidelines,” February 1993. The Nuclear Regulatory Research Office Instruction No.: PRM-12, “Software Quality Assurance for RES Sponsored Codes,” March 26, 2007 specifies that RES-sponsored software is to be evaluated against NUREG/BR-0167. Per the guidance in NUREG/BR-0167, SAPHIRE is classified as “Level 1.” Level 1 software corresponds to technical application software used in a safety decision.

  9. SAPHIRE 8 Software Independent Verification and Validation Plan

    SciTech Connect

    Rae J. Nims

    2009-04-01

    SAPHIRE 8 is being developed with a phased or cyclic iterative rapid application development methodology. Due to this approach, a similar approach is being taken for the IV&V activities on each vital software object. The IV&V plan is structured around NUREG/BR-0167, “Software Quality Assurance Program and Guidelines,” February 1993. The Nuclear Regulatory Research Office Instruction No.: PRM-12, “Software Quality Assurance for RES Sponsored Codes,” March 26, 2007 specifies that RES-sponsored software is to be evaluated against NUREG/BR-0167. Per the guidance in NUREG/BR-0167, SAPHIRE is classified as “Level 1.” Level 1 software corresponds to technical application software used in a safety decision.

  10. Validation of an improved helical diode array and dose reconstruction software using TG-244 datasets and stringent dose comparison criteria.

    PubMed

    Ahmed, Saeed; Nelms, Benjamin; Kozelka, Jakub; Zhang, Geoffrey; Moros, Eduardo; Feygelman, Vladimir

    2016-11-08

    The original helical ArcCHECK (AC) diode array and associated software for 3D measurement-guided dose reconstruction were characterized and validated; however, recent design changes to the AC required that the subject be revisited. The most important AC change starting in 2014 was a significant reduction in the overresponse of diodes to scattered radiation outside of the direct beam, accom-plished by reducing the amount of high-Z materials adjacent to the diodes. This change improved the diode measurement accuracy, but in the process invalidated the dose reconstruction models that were assembled based on measured data acquired with the older version of the AC. A correction mechanism was intro-duced in the reconstruction software (3DVH) to accommodate this and potential future design changes without requiring updating model parameters. For each permutation of AC serial number and beam model, the user can define in 3DVH a single correction factor which will be used to compensate for the difference in the out-of-field response between the new and original AC designs. The exact value can be determined by minimizing the dose-difference with an ionization chamber or another independent dosimeter. A single value of 1.17, corresponding to the maximum measured out-of-field response difference between the new and old AC, provided satisfactory results for all studied energies (6X, 15X, and flatten-ing filter-free 10XFFF). A library of standard cases recommended by the AAPM TG-244 Report was used for reconstructed dose verification. The overall difference between reconstructed dose and an ion chamber in a water-equivalent phantom in the targets was 0.0% ± 1.4% (1 SD). The reconstructed dose on a homogeneous phantom was also compared to a biplanar diode dosimeter (Delta4) using gamma analysis with 2% (local dose-error normalization) / 2 mm / 10% cutoff criteria. The mean agreement rate was 96.7% ± 3.7%. For the plans common with the previous comparison, the mean agreement

  11. Validation of an improved helical diode array and dose reconstruction software using TG-244 datasets and stringent dose comparison criteria.

    PubMed

    Ahmed, Saeed; Nelms, Benjamin; Kozelka, Jakub; Zhang, Geoffrey; Moros, Eduardo; Feygelman, Vladimir

    2016-11-01

    The original helical ArcCHECK (AC) diode array and associated software for 3D measurement-guided dose reconstruction were characterized and validated; however, recent design changes to the AC required that the subject be revisited. The most important AC change starting in 2014 was a significant reduction in the overresponse of diodes to scattered radiation outside of the direct beam, accomplished by reducing the amount of high-Z materials adjacent to the diodes. This change improved the diode measurement accuracy, but in the process invalidated the dose reconstruction models that were assembled based on measured data acquired with the older version of the AC. A correction mechanism was introduced in the reconstruction software (3DVH) to accommodate this and potential future design changes without requiring updating model parameters. For each permutation of AC serial number and beam model, the user can define in 3DVH a single correction factor which will be used to compensate for the difference in the out-of-field response between the new and original AC designs. The exact value can be determined by minimizing the dose-difference with an ionization chamber or another independent dosimeter. A single value of 1.17, corresponding to the maximum measured out-of-field response difference between the new and old AC, provided satisfactory results for all studied energies (6X, 15X, and flattening filter-free 10XFFF). A library of standard cases recommended by the AAPM TG-244 Report was used for reconstructed dose verification. The overall difference between reconstructed dose and an ion chamber in a water-equivalent phantom in the targets was 0.0% ± 1.4% (1 SD). The reconstructed dose on a homogeneous phantom was also compared to a biplanar diode dosimeter (Delta4) using gamma analysis with 2% (local dose-error normalization)/2 mm/10% cutoff criteria. The mean agreement rate was 96.7% ± 3.7%. For the plans common with the previous comparison, the mean

  12. Infusion device standardisation and dose error reduction software.

    PubMed

    Iacovides, Ioanna; Blandford, Ann; Cox, Anna; Franklin, Bryony Dean; Lee, Paul; Vincent, Chris J

    In 2004, the National Patient Safety Agency (NPSA) released a safety alert relating to the management and use of infusion devices in England and Wales. The alert called for the standardisation of infusion devices and a consideration of using centralised equipment systems to manage device storage. There has also been growing interest in smart-pump technology, such as dose error reduction software (DERS) as a way to reduce IV medication errors. However, questions remain about the progress that has been made towards infusion device standardisation and the adoption of DERS. In this article, the authors report the results of a survey investigating the extent to which the standardisation of infusion devices has occurred in the last 10 years and centralised equipment libraries are being used in practice, as well as the prevalence of DERS use within the UK. Findings indicate that while reported standardisation levels are high, use of centralised equipment libraries remains low, as does DERS usage.

  13. Infusion device standardisation and dose error reduction software.

    PubMed

    Iacovides, Ioanna; Blandford, Ann; Cox, Anna; Franklin, Bryony Dean; Lee, Paul; Vincent, Christopher J

    2014-07-01

    In 2004, the National Patient Safety Agency (NPSA) released a safety alert relating to the management and use of infusion devices in England and Wales. The alert called for the standardisation of infusion devices and a consideration of using centralised equipment systems to manage device storage. There has also been growing interest in smart-pump technology, such as dose error reduction software (DERS) as a way to reduce IV medication errors. However, questions remain about the progress that has been made towards infusion device standardisation and the adoption of DERS. In this article, the authors report the results of a survey investigating the extent to which the standardisation of infusion devices has occurred in the last 10 years and centralised equipment libraries are being used in practice, as well as the prevalence of DERS use within the UK. Findings indicate that while reported standardisation levels are high, use of centralised equipment libraries remains low, as does DERS usage.

  14. Comparative study of old and new versions of treatment planning system using dose volume histogram indices of clinical plans

    PubMed Central

    Krishna, Gangarapu Sri; Srinivas, Vuppu; Ayyangar, K. M.; Reddy, Palreddy Yadagiri

    2016-01-01

    Recently, Eclipse treatment planning system (TPS) version 8.8 was upgraded to the latest version 13.6. It is customary that the vendor gives training on how to upgrade the existing software to the new version. However, the customer is provided less inner details about changes in the new software version. According to manufacturer, accuracy of point dose calculations and irregular treatment planning is better in the new version (13.6) compared to the old version (8.8). Furthermore, the new version uses voxel-based calculations while the earlier version used point dose calculations. Major difference in intensity-modulated radiation therapy (IMRT) plans was observed between the two versions after re-optimization and re-calculations. However, minor difference was observed for IMRT cases after performing only re-calculations. It is recommended TPS quality assurance to be performed after any major upgrade of software. This can be done by performing dose calculation comparisons in TPS. To assess the difference between the versions, 25 clinical cases from the old version were compared keeping all the patient data intact including the monitor units and comparing the differences in dose calculations using dose volume histogram (DVH) analysis. Along with DVH analysis, uniformity index, conformity index, homogeneity index, and dose spillage index were also compared for both versions. The results of comparative study are presented in this paper. PMID:27651566

  15. Dosimetric validation for an automatic brain metastases planning software using single-isocenter dynamic conformal arcs.

    PubMed

    Liu, Haisong; Li, Jun; Pappas, Evangelos; Andrews, David; Evans, James; Werner-Wasik, Maria; Yu, Yan; Dicker, Adam; Shi, Wenyin

    2016-09-01

    An automatic brain-metastases planning (ABMP) software has been installed in our institution. It is dedicated for treating multiple brain metastases with radiosurgery on linear accelerators (linacs) using a single-setup isocenter with noncoplanar dynamic conformal arcs. This study is to validate the calculated absolute dose and dose distribution of ABMP. Three types of measurements were performed to validate the planning software: 1, dual micro ion chambers were used with an acrylic phantom to measure the absolute dose; 2, a 3D cylindrical phantom with dual diode array was used to evaluate 2D dose distribution and point dose for smaller targets; and 3, a 3D pseudo-in vivo patient-specific phantom filled with polymer gels was used to evaluate the accuracy of 3D dose distribution and radiation delivery. Micro chamber measurement of two targets (volumes of 1.2 cc and 0.9 cc, respectively) showed that the percentage differences of the absolute dose at both targets were less than 1%. Averaged GI passing rate of five different plans measured with the diode array phantom was above 98%, using criteria of 3% dose difference, 1 mm distance to agreement (DTA), and 10% low-dose threshold. 3D gel phantom measurement results demonstrated a 3D displacement of nine targets of 0.7±0.4 mm (range 0.2 ~ 1.1 mm). The averaged two-dimensional (2D) GI passing rate for several region of interests (ROI) on axial slices that encompass each one of the nine targets was above 98% (5% dose difference, 2 mm DTA, and 10% low-dose threshold). Measured D95, the minimum dose that covers 95% of the target volume, of the nine targets was 0.7% less than the calculated D95. Three different types of dosimetric verification methods were used and proved the dose calculation of the new automatic brain metastases planning (ABMP) software was clinical acceptable. The 3D pseudo-in vivo patient-specific gel phantom test also served as an end-to-end test for validating not only the dose calculation, but the

  16. An Approach to Software Product Line Acquisition Planning

    DTIC Science & Technology

    2016-06-13

    Approaches Referring to presentation by John Bergey, the three approaches are • Commission a government organization to develop the product line...2009 Carnegie Mellon University An Approach to Software Product Line Acquisition Planning Army Product Line Workshop Orlando, Florida 12 February...FEB 2009 2. REPORT TYPE 3. DATES COVERED 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE An Approach to Software Product Line Acquisition

  17. Web Application Software for Ground Operations Planning Database (GOPDb) Management

    NASA Technical Reports Server (NTRS)

    Lanham, Clifton; Kallner, Shawn; Gernand, Jeffrey

    2013-01-01

    A Web application facilitates collaborative development of the ground operations planning document. This will reduce costs and development time for new programs by incorporating the data governance, access control, and revision tracking of the ground operations planning data. Ground Operations Planning requires the creation and maintenance of detailed timelines and documentation. The GOPDb Web application was created using state-of-the-art Web 2.0 technologies, and was deployed as SaaS (Software as a Service), with an emphasis on data governance and security needs. Application access is managed using two-factor authentication, with data write permissions tied to user roles and responsibilities. Multiple instances of the application can be deployed on a Web server to meet the robust needs for multiple, future programs with minimal additional cost. This innovation features high availability and scalability, with no additional software that needs to be bought or installed. For data governance and security (data quality, management, business process management, and risk management for data handling), the software uses NAMS. No local copy/cloning of data is permitted. Data change log/tracking is addressed, as well as collaboration, work flow, and process standardization. The software provides on-line documentation and detailed Web-based help. There are multiple ways that this software can be deployed on a Web server to meet ground operations planning needs for future programs. The software could be used to support commercial crew ground operations planning, as well as commercial payload/satellite ground operations planning. The application source code and database schema are owned by NASA.

  18. A new plan quality index for dose painting radiotherapy.

    PubMed

    Park, Yang-Kyun; Park, Soyeon; Wu, Hong-Gyun; Kim, Siyong

    2014-07-08

    Dose painting radiotherapy is considered a promising radiotherapy technology that enables more targeted dose delivery to tumor rich regions while saving critical normal tissues. Obviously, dose painting planning would be more complicated and hard to be evaluated with current plan quality index systems that were developed under the paradigm of uniform dose prescription. In this study, we introduce a new plan quality index, named "index of achievement (IOA)" that assesses how close the planned dose distribution is to the prescribed one in a dose painting radiotherapy plan. By using voxel-based comparison between planned and prescribed dose distributions in its formulation, the index allows for a single-value evaluation regardless of the number of prescribed dose levels, which cannot be achieved with the conventional indices such as conventional homogeneity index. Benchmark calculations using patient data demonstrated feasibility of the index not only for contour-based dose painting plans, but also for dose painting by numbers plans. Also, it was shown that there is strong correlation between the new index and conventional indices, which indicates a potential of the new index as an alternative to conventional ones in general radiotherapy plan evaluation.

  19. 75 FR 27341 - Increasing Market and Planning Efficiency Through Improved Software; Notice of Technical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... Energy Regulatory Commission Increasing Market and Planning Efficiency Through Improved Software; Notice... Software May 7, 2010. Take notice that Commission staff will convene technical conferences on the following dates to discuss increasing market and planning efficiency through improved software. ] The...

  20. Vendor assessment and software plans: Version 2.0

    SciTech Connect

    Preckshot, G.G.; Scott, J.A.

    1995-11-01

    Several previous studies performed for the Nuclear Regulatory Commission by Lawrence Livermore National Laboratory have focused on characteristics of software development processes that are important for the development of high-integrity software. These include software reliability (NUREG/CR-6101, Lawrence) and software design factors (NUREG/CR-6294, Lawrence and Preckshot and Ploof and Preckshot). Ploof and Preckshot has been included as Appendix B of this report. In addition, recent analyses of standards important to the development of software for the safety systems of nuclear power plants have indicated the importance of the understanding and use of a complete framework of standards in the development of such software (Scott et. al.). Finally, Preckshot (Appendix A) addressed the assessment of software development processes used by software vendors. The latter work defined a set of steps to be followed in conducting vendor assessments. This report relates, in detail, the vendor assessment steps to the planning audits proposed in NUREG/CR-6101. The correspondence of the vendor assessment steps to the design factor categories of NUREG/CR-6294 is also discussed.

  1. Architecture for Payload Planning System (PPS) Software Distribution

    NASA Technical Reports Server (NTRS)

    Howell, Eric; Hagopian, Jeff

    1995-01-01

    The complex and diverse nature of the pay load operations to be performed on the Space Station requires a robust and flexible planning approach, and the proper software tools which tools to support that approach. To date, the planning software for most manned operations in space has been utilized in a centralized planning environment. Centralized planning is characterized by the following: performed by a small team of people, performed at a single location, and performed using single-user planning systems. This approach, while valid for short duration flights, is not conducive to the long duration and highly distributed payload operations environment of the Space Station. The Payload Planning System (PPS) is being designed specifically to support the planning needs of the large number of geographically distributed users of the Space Station. This paper problem provides a general description of the distributed planning architecture that PPS must support and describes the concepts proposed for making PPS available to the Space Station payload user community.

  2. Poster - Thur Eve - 71: Improved dose accuracy for plan checking IMRT breast plans.

    PubMed

    Corns, R; Thomas, S; Dubrowski, P; Huang, V; Shahine, L

    2012-07-01

    Dose verification as part of plan checking is a critical component of high quality patient care. IMSure QA is a software platform used at the BC Cancer Agency that facilitates dose verification for both conformal and IMRT plans. We have recently initiated treating breast tangents using IMRT at the Fraser Valley Centre and noted increased dose discrepancies (mean difference of -3%) between Eclipse and IMSure's QA module. We identified two potential sources of error: air flash and tissue heterogeneity. We extend our generated fluences 3cm past the breast contour and into air to account for breathing, set-up uncertainties and swelling. IMSure does not account for the fluence in air or air flash. We present an air-flash-correction factor based on the ratios of TMRs and Phantom Scatter Factors which use the field sizes of fields with and without the air flash. In addition, we present a method to improve the heterogeneity correction used by IMSure to better match that used by AAA. Effectively we remove the IMSure's inherent heterogeneity correction and manually apply a AAA-based heterogeneity-correction factor. We evaluated our correction factors on a sample of 8 patients (32 fields) using ANOVA methods to determine which dose corrections most accurately reproduce Eclipse's values. We found the air-flash correction coupled with IMSure's inherent-heterogeneity correction has the best dose accuracy (mean difference improved from -3% to 0.3%). The AAA-heterogeneity correction alone also improved the accuracy (mean difference improved from -3% to - 1.5%), which is acceptable for plan checking purposes. © 2012 American Association of Physicists in Medicine.

  3. Software reuse in spacecraft planning and scheduling systems

    NASA Technical Reports Server (NTRS)

    Mclean, David; Tuchman, Alan; Broseghini, Todd; Yen, Wen; Page, Brenda; Johnson, Jay; Bogovich, Lynn; Burkhardt, Chris; Mcintyre, James; Klein, Scott

    1993-01-01

    The use of a software toolkit and development methodology that supports software reuse is described. The toolkit includes source-code-level library modules and stand-alone tools which support such tasks as data reformatting and report generation, simple relational database applications, user interfaces, tactical planning, strategic planning and documentation. The current toolkit is written in C and supports applications that run on IBM-PC's under DOS and UNlX-based workstations under OpenLook and Motif. The toolkit is fully integrated for building scheduling systems that reuse AI knowledge base technology. A typical scheduling scenario and three examples of applications that utilize the reuse toolkit will be briefly described. In addition to the tools themselves, a description of the software evolution and reuse methodology that was used is presented.

  4. SU-E-T-279: Realization of Three-Dimensional Conformal Dose Planning in Prostate Brachytherapy

    SciTech Connect

    Li, Z; Jiang, S; Yang, Z; Bai, H; Zhang, X

    2014-06-01

    Purpose: Successful clinical treatment in prostate brachytherapy is largely dependent on the effectiveness of pre-surgery dose planning. Conventional dose planning method could hardly arrive at a satisfy result. In this abstract, a three-dimensional conformal localized dose planning method is put forward to ensure the accuracy and effectiveness of pre-implantation dose planning. Methods: Using Monte Carlo method, the pre-calculated 3-D dose map for single source is obtained. As for multiple seeds dose distribution, the maps are combined linearly to acquire the 3-D distribution. The 3-D dose distribution is exhibited in the form of isodose surface together with reconstructed 3-D organs group real-timely. Then it is possible to observe the dose exposure to target volume and normal tissues intuitively, thus achieving maximum dose irradiation to treatment target and minimum healthy tissues damage. In addition, the exfoliation display of different isodose surfaces can be realized applying multi-values contour extraction algorithm based on voxels. The needles could be displayed in the system by tracking the position of the implanted seeds in real time to conduct block research in optimizing insertion trajectory. Results: This study extends dose planning from two-dimensional to three-dimensional, realizing the three-dimensional conformal irradiation, which could eliminate the limitations of 2-D images and two-dimensional dose planning. A software platform is developed using VC++ and Visualization Toolkit (VTK) to perform dose planning. The 3-D model reconstruction time is within three seconds (on a Intel Core i5 PC). Block research could be conducted to avoid inaccurate insertion into sensitive organs or internal obstructions. Experiments on eight prostate cancer cases prove that this study could make the dose planning results more reasonable. Conclusion: The three-dimensional conformal dose planning method could improve the rationality of dose planning by safely reducing

  5. Some Recent Developments in Treatment Planning Software and Methodology for BNCT

    DOE R&D Accomplishments Database

    Nigg, D. W.; Wheeler, F. J.; Wessol, D. E.; et al.

    1996-01-01

    Over the past several years the Idaho National Engineering Laboratory (INEL) has led the development of a unique, internationally-recognized set of software modules (BNCT-rtpe) for computational dosimetry and treatment planning for Boron Neutron Capture Therapy (BNCT). The computational capability represented by this software is essential to the proper administration of all forms of radiotherapy for cancer. Such software addresses the need to perform pretreatment computation and optimization of the radiation dose distribution in the target volume. This permits the achievement of the optimal therapeutic ratio (tumor dose relative to critical normal tissue dose) for each individual patient via a systematic procedure for specifying the appropriate irradiation parameters to be employed for a given treatment. These parameters include angle of therapy beam incidence, beam aperture and shape, and beam intensity as a function of position across the beam front. The INEL software is used for treatment planning in the current series of human glioma trials at Brookhaven National Laboratory (BNL) and has also been licensed for research and developmental purposes to several other BNCT research centers in the US and in Europe.

  6. Some recent developments in treatment planning software and methodology for BNCT

    SciTech Connect

    Nigg, D.W.; Wheeler, F.J.; Wessol, D.E.

    1996-12-31

    Over the past several years the Idaho National Engineering Laboratory (INEL) has led the development of a unique, internationally-recognized set of software modules (BNCT-rtpe) for computational dosimetry and treatment planning for Boron Neutron Capture Therapy (BNCT). The computational capability represented by this software is essential to the proper administration of all forms of radiotherapy for cancer. Such software addresses the need to perform pretreatment computation and optimization of the radiation dose distribution in the target volume. This permits the achievement of the optimal therapeutic ratio (tumor dose relative to critical normal tissue dose) for each individual patient via a systematic procedure for specifying the appropriate irradiation parameters to be employed for a given treatment. These parameters include angle of therapy beam incidence, beam aperture and shape, and beam intensity as a function of position across the beam front. The INEL software is used for treatment planning in the current series of human glioma trials at Brookhaven National Laboratory (BNL) and has also been licensed for research and developmental purposes to several other BNCT research centers in the US and in Europe.

  7. Some recent developments in treatment planning software and methodology for BNCT

    SciTech Connect

    Nigg, D.W.; Wheeler, F.J.; Wessol, D.E.; Wemple, C.A.; Babcock, R.; Capala, J.

    1996-12-31

    Over the past several years/the Idaho National Engineering Laboratory (INEL) has led the development of a unique, internationally-recognized set of software modules (BNCT rtpe) for computational dosimetry and treatment planning for Boron Neutron Capture Therapy (BNCT). The computational capability represented by this software is essential to the proper administration of all forms of radiotherapy for cancer. Such software addresses the need to perform pretreatment computation and optimization of the radiation dose distribution in the target volume. This permits the achievement of the optimal therapeutic ratio (tumor dose relative to critical normal tissue dose) for each individual patient via a systematic procedure for specifying the appropriate irradiation parameters to be employed for a given treatment. These parameters include angle of therapy beam incidence, beam aperture and shape,and beam intensity as a function of position across the beam front. The INEL software is used for treatment planning in the current series of human glioma trials at Brookhaven National Laboratory (BNL) and has also been licensed for research and developmental purposes to several other BNCT research centers in the US and in Europe.

  8. Supporting Community Emergency Management Planning Through a Geocollaboration Software Architecture

    NASA Astrophysics Data System (ADS)

    Schafer, Wendy A.; Ganoe, Craig H.; Carroll, John M.

    Emergency management is more than just events occurring within an emergency situation. It encompasses a variety of persistent activities such as planning, training, assessment, and organizational change. We are studying emergency management planning practices in which geographic communities (towns and regions) prepare to respond efficiently to significant emergency events. Community emergency management planning is an extensive collaboration involving numerous stakeholders throughout the community and both reflecting and challenging the community’s structure and resources. Geocollaboration is one aspect of the effort. Emergency managers, public works directors, first responders, and local transportation managers need to exchange information relating to possible emergency event locations and their surrounding areas. They need to examine geospatial maps together and collaboratively develop emergency plans and procedures. Issues such as emergency vehicle traffic routes and staging areas for command posts, arriving media, and personal first responders’ vehicles must be agreed upon prior to an emergency event to ensure an efficient and effective response. This work presents a software architecture that facilitates the development of geocollaboration solutions. The architecture extends prior geocollaboration research and reuses existing geospatial information models. Emergency management planning is one application domain for the architecture. Geocollaboration tools can be developed that support community-wide emergency management planning and preparedness. This chapter describes how the software architecture can be used for the geospatial, emergency management planning activities of one community.

  9. Overview of Hazard Assessment and Emergency Planning Software of Use to RN First Responders

    SciTech Connect

    Waller, E; Millage, K; Blakely, W F; Ross, J A; Mercier, J R; Sandgren, D J; Levine, I H; Dickerson, W E; Nemhauser, J B; Nasstrom, J S; Sugiyama, G; Homann, S; Buddemeier, B R; Curling, C A; Disraelly, D S

    2008-08-26

    There are numerous software tools available for field deployment, reach-back, training and planning use in the event of a radiological or nuclear (RN) terrorist event. Specialized software tools used by CBRNe responders can increase information available and the speed and accuracy of the response, thereby ensuring that radiation doses to responders, receivers, and the general public are kept as low as reasonably achievable. Software designed to provide health care providers with assistance in selecting appropriate countermeasures or therapeutic interventions in a timely fashion can improve the potential for positive patient outcome. This paper reviews various software applications of relevance to radiological and nuclear (RN) events that are currently in use by first responders, emergency planners, medical receivers, and criminal investigators.

  10. SU-F-P-04: Implementation of Dose Monitoring Software: Successes and Pitfalls

    SciTech Connect

    Och, J

    2016-06-15

    Purpose: to successfully install a dose monitoring software (DMS) application to assist in CT protocol and dose management. Methods: Upon selecting the DMS, we began our implementation of the application. A working group composed of Medical Physics, Radiology Administration, Information Technology, and CT technologists was formed. On-site training in the application was supplied by the vendor. The decision was made to apply the process for all the CT protocols on all platforms at all facilities. Protocols were painstakingly mapped to the correct masters, and the system went ‘live’. Results: We are routinely using DMS as a tool in our Clinical Performance CT QA program. It is useful in determining the effectiveness of revisions to existing protocols, and establishing performance baselines for new units. However, the implementation was not without difficulty. We identified several pitfalls and obstacles which frustrated progress. Including: Training deficiencies, Nomenclature problems, Communication, DICOM variability. Conclusion: Dose monitoring software can be a potent tool for QA. However, implementation of the program can be problematic and requires planning, organization and commitment.

  11. SU-E-T-210: Independent MU Dose Calculation Software for S and S IMRT Using Modified Clarkson Integration Sector

    SciTech Connect

    Adrada, A; Miller, E; Tello, Z; Medina, L; Garrigo, E; Venencia, C

    2014-06-01

    Purpose: The purpose of this work was to develop and validate an open source independent MU dose calculation software for S and S IMRT based in the algorithm proposed by Kung et.al. Methods: Treatment plans were done using Iplan v4.5 BrainLAB TPS and S and S IMRT modality. A 6MV photon beam produced by a Primus linear accelerator equipped with an Optifocus MLC was used. TPS dose calculation algorithms were pencil beam and Monte Carlo. 230 IMRT treatments plans were selected for the study. The software was written under MALTLAB environment. Treatment plans were imported by the software using RTP format. Field fluences were reconstructed adding all segments.The algorithm implemented in the software calculates the dose at a reference point as the sum of primary and scatter dose. The primary dose is obtained by masking the fluence map with a circle of radius 1cm. The scatter dose is obtained through a shaped ring mask around the previous circle with a thickness of 0.5cm; the rings are increased one after another with constant thickness until cover the entire map of influence. The dosimetric parameters Sc, Sp and TPR vary depending on radio, the transmission effect of the MLC, inverse square law and dose profile are used for the calculation. Results: The average difference between measured and independent calculated dose was 0.4% ± 2.2% [−6.8%, 6.4%]. For 91% of the studied plans the difference was less than 3%. The difference between the measured and TPS dose with pencilbeam algorithm was 2.6% ± 1.41% [−2.0%, 5.6%] and Monte Carlo algorithm was 0.4% ± 1.5% [−4.9%, 3.7%]. The differences obtained are comparable to that obtained with the ionization chamber and TPS. Conclusion: The developed software is suitable for use in S and S IMRT dose calculation. This application is open and can be downloading under request.

  12. Prism: a new approach to radiotherapy planning software.

    PubMed

    Kalet, I J; Jacky, J P; Austin-Seymour, M M; Hummel, S M; Sullivan, K J; Unger, J M

    1996-09-01

    We describe the capabilities and performance of Prism, an innovative new radiotherapy planning system with unusual features and design. The design and implementation strategies are intended to assure high quality and clinical acceptability. The features include Artificial Intelligence tools and special support for multileaf collimator (MLC) systems. The design provides unusual flexibility of operation and ease of expansion. We have implemented Prism, a three-dimensional (3D) radiotherapy treatment-planning system on standard commercial workstations with the widely available X window system. The design and implementation use ideas taken from recent software engineering research, for example, the use of behavioral entity-relationship modeling and the "Mediator Method" instead of ad-hoc programming. The Prism system includes the usual features of a 3D planning system, including Beam's Eye View and the ability to simulate any treatment geometry possible with any standard radiotherapy accelerator. It includes a rule-based expert system for automated generation of the planning target volume as defined in ICRU Report 50. In addition, it provides special support for planning treatments with a multileaf collimator (MLC). We also implemented a Radiotherapy Treatment Planning Tools Foundation for Prism, so that we are able to use software tools form other institutions without any source code modification. The Prism system has been in clinical operation at the University of Washington since July 1994 and has been installed at several other clinics. The system is run simultaneously by several users, each with their own workstation operating from a common networked database and software. In addition to the dosimetrists, the system is used by radiation oncologists to define tumor and target volumes and by radiation therapists to select treatment setups to load into a computer controlled accelerator. Experience with the installation and operation has shown the design to be

  13. Optimised layout and roadway support planning with integrated intelligent software

    SciTech Connect

    Kouniali, S.; Josien, J.P.; Piguet, J.P.

    1996-12-01

    Experience with knowledge-based systems for Layout planning and roadway support dimensioning is on hand in European coal mining since 1985. The systems SOUT (Support choice and dimensioning, 1989), SOUT 2, PLANANK (planning of bolt-support), Exos (layout planning diagnosis. 1994), Sout 3 (1995) have been developed in close cooperation by CdF{sup 1}. INERIS{sup 2} , EMN{sup 3} (France) and RAG{sup 4}, DMT{sup 5}, TH - Aachen{sup 6} (Germany); ISLSP (Integrated Software for Layout and support planning) development is in progress (completion scheduled for July 1996). This new software technology in combination with conventional programming systems, numerical models and existing databases turned out to be suited for setting-up an intelligent decision aid for layout and roadway support planning. The system enhances reliability of planning and optimises the safety-to-cost ratio for (1) deformation forecast for roadways in seam and surrounding rocks, consideration of the general position of the roadway in the rock mass (zones of increased pressure, position of operating and mined panels); (2) support dimensioning; (3) yielding arches, rigid arches, porch sets, rigid rings, yielding rings and bolting/shotcreting for drifts; (4) yielding arches, rigid arches and porch sets for roadways in seam; and (5) bolt support for gateroads (assessment of exclusion criteria and calculation of the bolting pattern) bolting of face-end zones (feasibility and safety assessment; stability guarantee).

  14. Repository-Based Software Engineering Program: Working Program Management Plan

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Repository-Based Software Engineering Program (RBSE) is a National Aeronautics and Space Administration (NASA) sponsored program dedicated to introducing and supporting common, effective approaches to software engineering practices. The process of conceiving, designing, building, and maintaining software systems by using existing software assets that are stored in a specialized operational reuse library or repository, accessible to system designers, is the foundation of the program. In addition to operating a software repository, RBSE promotes (1) software engineering technology transfer, (2) academic and instructional support of reuse programs, (3) the use of common software engineering standards and practices, (4) software reuse technology research, and (5) interoperability between reuse libraries. This Program Management Plan (PMP) is intended to communicate program goals and objectives, describe major work areas, and define a management report and control process. This process will assist the Program Manager, University of Houston at Clear Lake (UHCL) in tracking work progress and describing major program activities to NASA management. The goal of this PMP is to make managing the RBSE program a relatively easy process that improves the work of all team members. The PMP describes work areas addressed and work efforts being accomplished by the program; however, it is not intended as a complete description of the program. Its focus is on providing management tools and management processes for monitoring, evaluating, and administering the program; and it includes schedules for charting milestones and deliveries of program products. The PMP was developed by soliciting and obtaining guidance from appropriate program participants, analyzing program management guidance, and reviewing related program management documents.

  15. [Nursing care planning: proposal for a software prototype].

    PubMed

    Sperandio, Dircelene Jussara; Evora, Yolanda Dora Martinez

    2005-01-01

    This study aims to develop a software prototype to help hospital nurses plan nursing care, and carry out nursing interventions and all documentation in a computerized way. The methodology is based on the life cycle of system development, particularly the prototype concept, involving two phases: definition and development. The definition phase began with the planning stage, followed by the definition and analysis of requirements for the construction, and culminated with the specification of the software requirements. The development phase translated the group of requirements into a computerized model, structured in 10 modules, regarding the nursing care system process. The performance of this innovative resource in the different stages of the nursing care system process will be analyzed in future studies.

  16. Virtual reality AYRA software for preoperative planning in facial allotransplantation.

    PubMed

    Fernandez-Alvarez, Jose-Alberto; Infante-Cossio, Pedro; Barrera-Pulido, Fernando; Gacto-Sanchez, Purificacion; Suarez-Mejias, Cristina; Gomez-Ciriza, Gorka; Sicilia-Castro, Domingo; Gomez-Cia, Tomas

    2014-09-01

    The purpose of this study was to validate a virtual reality software for the recording of anthropometric measurements as a first step towards matching donors with recipients in the preoperative planning process which precedes the harvest of a facial allograft. Anthropometric measurements of both soft and bone tissue were recorded in 5 cryopreserved human heads to compare conventional analogue measurements with digital measurements obtained from 3-dimensional (3D) reconstructions produced using AYRA software. To test the degree of correlation between both measuring methods, intraclass correlation coefficient (ICC) was applied to each pair of measurements. ICCs calculated were greater than 0.6 (substantial or almost perfect correlation) for all of the pairs of variables, with the exception of 2 of the measurements studied in bone tissue. In facial transplantation, preoperative planning is crucial to select an allograft whose anatomical compatibility with the recipient defect is as close as possible. The dimensions of the potential face donor must be congruent to ensure the procedure's feasibility and the adequate insertion of the allograft into the defect. The recording of anthropometric measurements with the virtual reality software displayed an equivalent correlation to those produced using a conventional analogue method. The 3D reconstructions obtained by using a virtual reality software can play a useful role to facilitate the characterization of the donor face.

  17. SU-E-T-50: A Multi-Institutional Study of Independent Dose Verification Software Program for Lung SBRT

    SciTech Connect

    Kawai, D; Takahashi, R; Kamima, T; Baba, H; Yamamoto, T; Kubo, Y; Ishibashi, S; Higuchi, Y; Takahashi, H; Tachibana, H

    2015-06-15

    Purpose: The accuracy of dose distribution depends on treatment planning system especially in heterogeneity-region. The tolerance level (TL) of the secondary check using the independent dose verification may be variable in lung SBRT plans. We conducted a multi-institutional study to evaluate the tolerance level of lung SBRT plans shown in the AAPM TG114. Methods: Five institutes in Japan participated in this study. All of the institutes used a same independent dose verification software program (Simple MU Analysis: SMU, Triangle Product, Ishikawa, JP), which is Clarkson-based and CT images were used to compute radiological path length. Analytical Anisotropic Algorithm (AAA), Pencil Beam Convolution with modified Batho-method (PBC-B) and Adaptive Convolve (AC) were used for lung SBRT planning. A measurement using an ion-chamber was performed in a heterogeneous phantom to compare doses from the three different algorithms and the SMU to the measured dose. In addition to it, a retrospective analysis using clinical lung SBRT plans (547 beams from 77 patients) was conducted to evaluate the confidence limit (CL, Average±2SD) in dose between the three algorithms and the SMU. Results: Compared to the measurement, the AAA showed the larger systematic dose error of 2.9±3.2% than PBC-B and AC. The Clarkson-based SMU showed larger error of 5.8±3.8%. The CLs for clinical plans were 7.7±6.0 % (AAA), 5.3±3.3 % (AC), 5.7±3.4 % (PBC -B), respectively. Conclusion: The TLs from the CLs were evaluated. A Clarkson-based system shows a large systematic variation because of inhomogeneous correction. The AAA showed a significant variation. Thus, we must consider the difference of inhomogeneous correction as well as the dependence of dose calculation engine.

  18. Project Management Plan for the Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Shipler, D.B.

    1992-03-01

    This Project Management Plan (PMP) describes the approach that will be used to manage the Hanford Environmental Dose Reconstruction (HEDR) Project. The plan describes the management structure and the technical and administrative control systems that will be used to plan and control the HEDR Project performance. The plan also describes the relationship among key project participants: Battelle, the Centers for Disease Control (CDC), and the Technical Steering Panel (TSP).

  19. Project Management Plan for the Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Shipler, D.B.

    1992-03-01

    This Project Management Plan (PMP) describes the approach that will be used to manage the Hanford Environmental Dose Reconstruction (HEDR) Project. The plan describes the management structure and the technical and administrative control systems that will be used to plan and control the HEDR Project performance. The plan also describes the relationship among key project participants: Battelle, the Centers for Disease Control (CDC), and the Technical Steering Panel (TSP).

  20. Software for project-based learning of robot motion planning

    NASA Astrophysics Data System (ADS)

    Moll, Mark; Bordeaux, Janice; Kavraki, Lydia E.

    2013-12-01

    Motion planning is a core problem in robotics concerned with finding feasible paths for a given robot. Motion planning algorithms perform a search in the high-dimensional continuous space of robot configurations and exemplify many of the core algorithmic concepts of search algorithms and associated data structures. Motion planning algorithms can be explained in a simplified two-dimensional setting, but this masks many of the subtleties and complexities of the underlying problem. We have developed software for project-based learning of motion planning that enables deep learning. The projects that we have developed allow advanced undergraduate students and graduate students to reflect on the performance of existing textbook algorithms and their own variations on such algorithms. Formative assessment has been conducted at three institutions. The core of the software used for this teaching module is also used within the Robot Operating System, a widely adopted platform by the robotics research community. This allows for transfer of knowledge and skills to robotics research projects involving a large variety robot hardware platforms.

  1. 78 FR 31916 - Increasing Market and Planning Efficiency Through Improved Software; Supplemental Agenda Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-28

    ... Energy Regulatory Commission Increasing Market and Planning Efficiency Through Improved Software... improved software. A detailed agenda with the list of times for the selected speakers and presentation... diverse experts from public utilities, the software industry, government, research centers and...

  2. Space Station Mission Planning Study (MPS) development study. Volume 3: Software development plan

    NASA Technical Reports Server (NTRS)

    Klus, W. L.

    1987-01-01

    A software development plan is presented for the definition, design, and implementation of the Space Station (SS) Payload Mission Planning System (MPS). This plan is an evolving document and must be updated periodically as the SS design and operations concepts as well as the SS MPS concept evolve. The major segments of this plan are as follows: an overview of the SS MPS and a description of its required capabilities including the computer programs identified as configurable items with an explanation of the place and function of each within the system; an overview of the project plan and a detailed description of each development project activity breaking each into lower level tasks where applicable; identification of the resources required and recommendations for the manner in which they should be utilized including recommended schedules and estimated manpower requirements; and a description of the practices, standards, and techniques recommended for the SS MPS Software (SW) development.

  3. 78 FR 47014 - Configuration Management Plans for Digital Computer Software Used in Safety Systems of Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-02

    ... COMMISSION Configuration Management Plans for Digital Computer Software Used in Safety Systems of Nuclear... 1 of RG 1.169, ``Configuration Management Plans for Digital Computer Software Used in Safety Systems... those systems include software. This RG is one of six RG revisions addressing computer software...

  4. Does Real-Time Monitoring of Patient Dose With Dose Management Software Increase CT Technologists' Radiation Awareness?

    PubMed

    Heilmaier, Christina; Zuber, Niklaus; Bruijns, Bernardus; Weishaupt, Dominik

    2016-05-01

    Dose management software can be used to increase patient safety. The purpose of the current study was to evaluate whether real-time monitoring of patient dose in CT examinations increases CT technologists' dose awareness. Dose data of two scanners (clinical routine CT scanner, mainly outpatients; emergency CT scanner, predominantly emergency department and ICU patients) were analyzed before (period 1) and after (period 2) dose management software was implemented in clinical routine and technologists were advised to check for dose notifications (dose values above reference levels) after each examination (i.e., real-time monitoring). To assess statistically significant differences between both the scanners and the study periods, we used chi-square tests. A total of 6413 examinations were performed (period 1 = 3214 examinations, period 2 = 3199 examinations). Dose notifications were mainly because of patient miscentering (period 1 = 45% of examinations, period 2 = 23%), overweight patients (period 1 = 35%, period 2 = 49%), and scanning repetition (period 1 = 10%, period 2 = 15%). Overall, the number of dose notifications significantly declined in period 2 (period 1, n = 210; period 2, n = 120; p < 0.001). Miscentering was more often seen on the clinical routine CT examinations (period 1 = 46%, period 2 = 23%) than on the emergency CT examinations (period 1 = 44%, period 2 = 22%) and occurred significantly less frequently on both scanners in period 2 (period 1: n = 94; period 2: n = 27; p < 0.001). The relative values of dose notifications due to overweight patients or scanning repetition were higher in period 2, but these differences did not reach statistical significance (p > 0.05). Real-time monitoring of patient dose with dose management software increases CT technologists' dose awareness and leads to a reduced number of dose notifications due to human error.

  5. Patient-specific IMRT verification using independent fluence-based dose calculation software: experimental benchmarking and initial clinical experience

    NASA Astrophysics Data System (ADS)

    Georg, Dietmar; Stock, Markus; Kroupa, Bernhard; Olofsson, Jörgen; Nyholm, Tufve; Ahnesjö, Anders; Karlsson, Mikael

    2007-08-01

    Experimental methods are commonly used for patient-specific intensity-modulated radiotherapy (IMRT) verification. The purpose of this study was to investigate the accuracy and performance of independent dose calculation software (denoted as 'MUV' (monitor unit verification)) for patient-specific quality assurance (QA). 52 patients receiving step-and-shoot IMRT were considered. IMRT plans were recalculated by the treatment planning systems (TPS) in a dedicated QA phantom, in which an experimental 1D and 2D verification (0.3 cm3 ionization chamber; films) was performed. Additionally, an independent dose calculation was performed. The fluence-based algorithm of MUV accounts for collimator transmission, rounded leaf ends, tongue-and-groove effect, backscatter to the monitor chamber and scatter from the flattening filter. The dose calculation utilizes a pencil beam model based on a beam quality index. DICOM RT files from patient plans, exported from the TPS, were directly used as patient-specific input data in MUV. For composite IMRT plans, average deviations in the high dose region between ionization chamber measurements and point dose calculations performed with the TPS and MUV were 1.6 ± 1.2% and 0.5 ± 1.1% (1 S.D.). The dose deviations between MUV and TPS slightly depended on the distance from the isocentre position. For individual intensity-modulated beams (total 367), an average deviation of 1.1 ± 2.9% was determined between calculations performed with the TPS and with MUV, with maximum deviations up to 14%. However, absolute dose deviations were mostly less than 3 cGy. Based on the current results, we aim to apply a confidence limit of 3% (with respect to the prescribed dose) or 6 cGy for routine IMRT verification. For off-axis points at distances larger than 5 cm and for low dose regions, we consider 5% dose deviation or 10 cGy acceptable. The time needed for an independent calculation compares very favourably with the net time for an experimental approach

  6. 75 FR 30387 - Improving Market and Planning Efficiency Through Improved Software; Notice of Agenda and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ... Federal Energy Regulatory Commission Improving Market and Planning Efficiency Through Improved Software... discuss issues related to power system expansion planning models and software. The technical conference..., Secretary. Agenda for AD10-12 Staff Technical Conference on Planning Models and Software Federal...

  7. Planning for the V&V of infused software technologies for the Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Feather, Martin S.; Fesq, Lorraine M.; Ingham, Michel D.; Klein, Suzanne L.; Nelson, Stacy D.

    2004-01-01

    NASA's Mars Science Laboratory (MSL) rover mission is planning to make use of advanced software technologies in order to support fulfillment of its ambitious science objectives. The mission plans to adopt the Mission Data System (MDS) as the mission software architecture, and plans to make significant use of on-board autonomous capabilities for the rover software.

  8. Planning for the V&V of infused software technologies for the Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Feather, Martin S.; Fesq, Lorraine M.; Ingham, Michel D.; Klein, Suzanne L.; Nelson, Stacy D.

    2004-01-01

    NASA's Mars Science Laboratory (MSL) rover mission is planning to make use of advanced software technologies in order to support fulfillment of its ambitious science objectives. The mission plans to adopt the Mission Data System (MDS) as the mission software architecture, and plans to make significant use of on-board autonomous capabilities for the rover software.

  9. Plans for performance and model improvements in the LISE++ software

    NASA Astrophysics Data System (ADS)

    Kuchera, M. P.; Tarasov, O. B.; Bazin, D.; Sherrill, B. M.; Tarasova, K. V.

    2016-06-01

    The LISE++ software for fragment separator simulations is undergoing a major update. LISE++ is the standard software used at in-flight separator facilities for predicting beam intensity and purity. The code simulates nuclear physics experiments where fragments are produced and then selected with a fragment separator. A set of modifications to improve the functionality of the code is discussed in this work. These modifications include transportation to a modern graphics framework and updated compilers to aid in the performance and sustainability of the code. To accommodate the diversity of our users' computer platform preferences, we extend the software from Windows to a cross-platform application. The calculations of beam transport and isotope production are becoming more computationally intense with the new large scale facilities. Planned new features include new types of optimization, for example, optimization of ion optics, improvements in reaction models, and new event generator options. In addition, LISE++ interface with control systems are planned. Computational improvements as well as the schedule for updating this large package will be discussed.

  10. Biological effects and equivalent doses in radiotherapy: A software solution

    PubMed Central

    Voyant, Cyril; Julian, Daniel; Roustit, Rudy; Biffi, Katia; Lantieri, Céline

    2013-01-01

    Background The limits of TDF (time, dose, and fractionation) and linear quadratic models have been known for a long time. Medical physicists and physicians are required to provide fast and reliable interpretations regarding delivered doses or any future prescriptions relating to treatment changes. Aim We, therefore, propose a calculation interface under the GNU license to be used for equivalent doses, biological doses, and normal tumor complication probability (Lyman model). Materials and methods The methodology used draws from several sources: the linear-quadratic-linear model of Astrahan, the repopulation effects of Dale, and the prediction of multi-fractionated treatments of Thames. Results and conclusions The results are obtained from an algorithm that minimizes an ad-hoc cost function, and then compared to an equivalent dose computed using standard calculators in seven French radiotherapy centers. PMID:24936319

  11. Initial experience of ArcCHECK and 3DVH software for RapidArc treatment plan verification.

    PubMed

    Infusino, Erminia; Mameli, Alessandra; Conti, Roberto; Gaudino, Diego; Stimato, Gerardina; Bellesi, Luca; D'Angelillo, Rolando Maria; Ramella, Sara; Benassi, Marcello; Trodella, Lucio

    2014-01-01

    The purpose of this study was to perform delivery quality assurance with ArcCHECK and 3DVH system (Sun Nuclear, FL) and to evaluate the suitability of this system for volumetric-modulated arc therapy (VMAT) (RapidArc [RA]) verification. This software calculates the delivered dose distributions in patients by perturbing the calculated dose using errors detected in fluence or planar dose measurements. The device is tested to correlate the gamma passing rate (%GP) and the composite dose predicted by 3DVH software. A total of 28 patients with prostate cancer who were treated with RA were analyzed. RA treatments were delivered to a diode array phantom (ArcCHECK), which was used to create a planned dose perturbation (PDP) file. The 3DVH analysis used the dose differences derived from comparing the measured dose with the treatment planning system (TPS)-calculated doses to perturb the initial TPS-calculated dose. The 3DVH then overlays the resultant dose on the patient's structures using the resultant "PDP" beams. Measured dose distributions were compared with the calculated ones using the gamma index (GI) method by applying the global (Van Dyk) normalization and acceptance criteria, i.e., 3%/3mm. Paired differences tests were used to estimate statistical significance of the differences between the composite dose calculated using 3DVH and %GP. Also, statistical correlation by means of logistic regression analysis has been analyzed. Dose-volume histogram (DVH) analysis for patient plans revealed small differences between treatment plan calculations and 3DVH results for organ at risk (OAR), whereas planning target volume (PTV) of the measured plan was systematically higher than that predicted by the TPS. The t-test results between the planned and the estimated DVH values showed that mean values were incomparable (p < 0.05). The quality assurance (QA) gamma analysis 3%/3mm showed that in all cases there were only weak-to-moderate correlations (Pearson r: 0.12 to 0

  12. Initial experience of ArcCHECK and 3DVH software for RapidArc treatment plan verification

    SciTech Connect

    Infusino, Erminia; Mameli, Alessandra Conti, Roberto; Gaudino, Diego; Stimato, Gerardina; Bellesi, Luca; D’Angelillo, Rolando Maria; Ramella, Sara; Benassi, Marcello; Trodella, Lucio

    2014-10-01

    The purpose of this study was to perform delivery quality assurance with ArcCHECK and 3DVH system (Sun Nuclear, FL) and to evaluate the suitability of this system for volumetric-modulated arc therapy (VMAT) (RapidArc [RA]) verification. This software calculates the delivered dose distributions in patients by perturbing the calculated dose using errors detected in fluence or planar dose measurements. The device is tested to correlate the gamma passing rate (%GP) and the composite dose predicted by 3DVH software. A total of 28 patients with prostate cancer who were treated with RA were analyzed. RA treatments were delivered to a diode array phantom (ArcCHECK), which was used to create a planned dose perturbation (PDP) file. The 3DVH analysis used the dose differences derived from comparing the measured dose with the treatment planning system (TPS)-calculated doses to perturb the initial TPS-calculated dose. The 3DVH then overlays the resultant dose on the patient's structures using the resultant “PDP” beams. Measured dose distributions were compared with the calculated ones using the gamma index (GI) method by applying the global (Van Dyk) normalization and acceptance criteria, i.e., 3%/3 mm. Paired differences tests were used to estimate statistical significance of the differences between the composite dose calculated using 3DVH and %GP. Also, statistical correlation by means of logistic regression analysis has been analyzed. Dose-volume histogram (DVH) analysis for patient plans revealed small differences between treatment plan calculations and 3DVH results for organ at risk (OAR), whereas planning target volume (PTV) of the measured plan was systematically higher than that predicted by the TPS. The t-test results between the planned and the estimated DVH values showed that mean values were incomparable (p < 0.05). The quality assurance (QA) gamma analysis 3%/3 mm showed that in all cases there were only weak-to-moderate correlations (Pearson r: 0.12 to 0

  13. Planning of electroporation-based treatments using Web-based treatment-planning software.

    PubMed

    Pavliha, Denis; Kos, Bor; Marčan, Marija; Zupanič, Anže; Serša, Gregor; Miklavčič, Damijan

    2013-11-01

    Electroporation-based treatment combining high-voltage electric pulses and poorly permanent cytotoxic drugs, i.e., electrochemotherapy (ECT), is currently used for treating superficial tumor nodules by following standard operating procedures. Besides ECT, another electroporation-based treatment, nonthermal irreversible electroporation (N-TIRE), is also efficient at ablating deep-seated tumors. To perform ECT or N-TIRE of deep-seated tumors, following standard operating procedures is not sufficient and patient-specific treatment planning is required for successful treatment. Treatment planning is required because of the use of individual long-needle electrodes and the diverse shape, size and location of deep-seated tumors. Many institutions that already perform ECT of superficial metastases could benefit from treatment-planning software that would enable the preparation of patient-specific treatment plans. To this end, we have developed a Web-based treatment-planning software for planning electroporation-based treatments that does not require prior engineering knowledge from the user (e.g., the clinician). The software includes algorithms for automatic tissue segmentation and, after segmentation, generation of a 3D model of the tissue. The procedure allows the user to define how the electrodes will be inserted. Finally, electric field distribution is computed, the position of electrodes and the voltage to be applied are optimized using the 3D model and a downloadable treatment plan is made available to the user.

  14. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan : ASC software quality engineering practices Version 3.0.

    SciTech Connect

    Turgeon, Jennifer L.; Minana, Molly A.; Hackney, Patricia; Pilch, Martin M.

    2009-01-01

    The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in the US Department of Energy/National Nuclear Security Agency (DOE/NNSA) Quality Criteria, Revision 10 (QC-1) as 'conformance to customer requirements and expectations'. This quality plan defines the SNL ASC Program software quality engineering (SQE) practices and provides a mapping of these practices to the SNL Corporate Process Requirement (CPR) 001.3.6; 'Corporate Software Engineering Excellence'. This plan also identifies ASC management's and the software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals. This SNL ASC Software Quality Plan establishes the signatories commitments to improving software products by applying cost-effective SQE practices. This plan enumerates the SQE practices that comprise the development of SNL ASC's software products and explains the project teams opportunities for tailoring and implementing the practices.

  15. Clinical implementation of dose-volume histogram predictions for organs-at-risk in IMRT planning

    NASA Astrophysics Data System (ADS)

    Moore, K. L.; Appenzoller, L. M.; Tan, J.; Michalski, J. M.; Thorstad, W. L.; Mutic, S.

    2014-03-01

    True quality control (QC) of the planning process requires quantitative assessments of treatment plan quality itself, and QC in IMRT has been stymied by intra-patient anatomical variability and inherently complex three-dimensional dose distributions. In this work we describe the development of an automated system to reduce clinical IMRT planning variability and improve plan quality using mathematical models that predict achievable OAR DVHs based on individual patient anatomy. These models rely on the correlation of expected dose to the minimum distance from a voxel to the PTV surface, whereby a three-parameter probability distribution function (PDF) was used to model iso-distance OAR subvolume dose distributions. DVH models were obtained by fitting the evolution of the PDF with distance. Initial validation on clinical cohorts of 40 prostate and 24 head-and-neck plans demonstrated highly accurate model-based predictions for achievable DVHs in rectum, bladder, and parotid glands. By quantifying the integrated difference between candidate DVHs and predicted DVHs, the models correctly identified plans with under-spared OARs, validated by replanning all cases and correlating any realized improvements against the predicted gains. Clinical implementation of these predictive models was demonstrated in the PINNACLE treatment planning system by use of existing margin expansion utilities and the scripting functionality inherent to the system. To maintain independence from specific planning software, a system was developed in MATLAB to directly process DICOM-RT data. Both model training and patient-specific analyses were demonstrated with significant computational accelerations from parallelization.

  16. Project Management Plan for the Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Shipler, D.B.; McMakin, A.H.; Finch, S.M.

    1992-09-01

    This Project Management Plan (PMP) describes the approach being used to manage the Hanford Environmental Dose Reconstruction (HEDR) Project. The plan describes the management structure and the technical and administrative control systems used to plan and control HEDR Project performance. The plan also describes the relationship among key project participants: Battelle, the Centers for Disease control (CDC), and the Technical Steering Panel (TSP). Battelle's contract with CDC only extends through May 1994 when the key technical work will be completed. There-fore, this plan is focused only on the period during which Battelle is a participant.

  17. Project Management Plan for the Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Shipler, D.B.; McMakin, A.H.; Finch, S.M.

    1992-09-01

    This Project Management Plan (PMP) describes the approach being used to manage the Hanford Environmental Dose Reconstruction (HEDR) Project. The plan describes the management structure and the technical and administrative control systems used to plan and control HEDR Project performance. The plan also describes the relationship among key project participants: Battelle, the Centers for Disease control (CDC), and the Technical Steering Panel (TSP). Battelle`s contract with CDC only extends through May 1994 when the key technical work will be completed. There-fore, this plan is focused only on the period during which Battelle is a participant.

  18. Mission Planning and Sequencing Investigation of Third Party Software

    NASA Technical Reports Server (NTRS)

    Mozingo, Mike

    2011-01-01

    Mission Planning and Sequencing (MPS) maintains a system called the Automated Sequence Processor(ASP) which is responsible for checking non?interactive commands and preparing them for radiation to spacecraft. In order to streamline the process and increase maintainability MPS is looking to use a third party workflow engine to control the ASP. In addition to increasing productivity, another driver for the workflow paradigm is the new way that the software is going to represent the spacecraft state. The spacecraft state is going to be represented by a timeline data structure.

  19. Mission Planning and Sequencing Investigation of Third Party Software

    NASA Technical Reports Server (NTRS)

    Mozingo, Mike

    2011-01-01

    Mission Planning and Sequencing (MPS) maintains a system called the Automated Sequence Processor(ASP) which is responsible for checking non?interactive commands and preparing them for radiation to spacecraft. In order to streamline the process and increase maintainability MPS is looking to use a third party workflow engine to control the ASP. In addition to increasing productivity, another driver for the workflow paradigm is the new way that the software is going to represent the spacecraft state. The spacecraft state is going to be represented by a timeline data structure.

  20. Dose distribution transfer from CyberKnife to Varian treatment planning system

    NASA Astrophysics Data System (ADS)

    Osewski, W.; Ślosarek, K.; Karaszewska, B.

    2014-03-01

    The aim of this paper was to introduce one of the options of the locally developed DDcon.exe which gives the possibility to transfer the dose distribution from CyberKnife (Accuray) treatment planning system (CK TPS) to Varian treatment planning system (Eclipse TPS, Varian). DICOM format is known as a universal format for medical data. The dose distribution is stored as RTdose file in DICOM format, so there should be a possibility to transfer it between different treatment planning systems. Trying to transfer RTdose file from CK TPS to Eclipse TPS the error message occurs. That's because the RTdose file in CK TPS is connected with Structure_Set_Sequence against Eclipse TPS where it's connected with RT_Plan_Sequence. To make it transferable RTdose file from CK TPS have to be 'disconnected' from Structure_Set_Sequence and 'connected' with RT_Plan_Sequence. This is possible thanks DDcon software which creates new RTdose file by changing proper DICOM tags in original RTdose file. New homemade software gives us an opportunity to transfer dose distribution from CyberKnife TPS to TPS Eclipse. This method opens new possibilities to combine or compare different treatment techniques in Varian TPS.

  1. Use Dose Bricks Concept to Implement Nasopharyngeal Carcinoma Treatment Planning

    PubMed Central

    Wu, Jia-Ming; Yu, Tsan-Jung; Yeh, Shyh-An; Chao, Pei-Ju; Huang, Chih-Jou

    2014-01-01

    Purpose. A “dose bricks” concept has been used to implement nasopharyngeal carcinoma treatment plan; this method specializes particularly in the case with bell shape nasopharyngeal carcinoma case. Materials and Methods. Five noncoplanar fields were used to accomplish the dose bricks technique treatment plan. These five fields include (a) right superior anterior oblique (RSAO), (b) left superior anterior oblique (LSAO), (c) right anterior oblique (RAO), (d) left anterior oblique (LAO), and (e) superior inferior vertex (SIV). Nondivergence collimator central axis planes were used to create different abutting field edge while normal organs were blocked by multileaf collimators in this technique. Results. The resulting 92% isodose curves encompassed the CTV, while maximum dose was about 115%. Approximately 50% volume of parotid glands obtained 10–15% of total dose and 50% volume of brain obtained less than 20% of total dose. Spinal cord receives only 5% from the scatter dose. Conclusions. Compared with IMRT, the expenditure of planning time and costing, “dose bricks” may after all be accepted as an optional implementation in nasopharyngeal carcinoma conformal treatment plan; furthermore, this method also fits the need of other nonhead and neck lesions if organ sparing and noncoplanar technique can be executed. PMID:24967395

  2. CT-based surgical planning software improves the accuracy of total hip replacement preoperative planning.

    PubMed

    Viceconti, M; Lattanzi, R; Antonietti, B; Paderni, S; Olmi, R; Sudanese, A; Toni, A

    2003-06-01

    The present study is aimed to compare accuracy and the repeatability in planning total hip replacements with the conventional templates on radiographs to that attainable on the same clinical cases when using CT-based planning software. The sizes of the cementless components planned with new computer aided preoperative planning system called Hip-Op and with standard templates were compared to those effectively implanted. The study group intentionally included only difficult clinical cases. The most common aetiology was congenital dysplasia of hip (65.6%). The Hip-Op planning system allowed the surgeons to obtain a preoperative planning more accurate than with templates, especially for the socket. Assuming correct a size planned one calliper above or below that implanted the accuracy increased from 83% for the stem and 69% for the socket when using templates to 86% for the stem and 93% for the socket when using the Hip-Op system. The repeatability of the Hip-Op system was found comparable to that of the template procedure, which is much more familiar to the surgeons. Furthermore, the repeatability of the preoperative planning with the Hip-Op system was consistent between surgeons, independently from their major or minor experience. The study clearly shows the advantages of a three-dimensional computer-based preoperative planning over the traditional template planning, especially when deformed anatomies are involved. The surgical planning performed with the Hip-Op system is accurate and repeatable, especially for the socket and for less experienced surgeons.

  3. Software components for medical image visualization and surgical planning

    NASA Astrophysics Data System (ADS)

    Starreveld, Yves P.; Gobbi, David G.; Finnis, Kirk; Peters, Terence M.

    2001-05-01

    Purpose: The development of new applications in medical image visualization and surgical planning requires the completion of many common tasks such as image reading and re-sampling, segmentation, volume rendering, and surface display. Intra-operative use requires an interface to a tracking system and image registration, and the application requires basic, easy to understand user interface components. Rapid changes in computer and end-application hardware, as well as in operating systems and network environments make it desirable to have a hardware and operating system as an independent collection of reusable software components that can be assembled rapidly to prototype new applications. Methods: Using the OpenGL based Visualization Toolkit as a base, we have developed a set of components that implement the above mentioned tasks. The components are written in both C++ and Python, but all are accessible from Python, a byte compiled scripting language. The components have been used on the Red Hat Linux, Silicon Graphics Iris, Microsoft Windows, and Apple OS X platforms. Rigorous object-oriented software design methods have been applied to ensure hardware independence and a standard application programming interface (API). There are components to acquire, display, and register images from MRI, MRA, CT, Computed Rotational Angiography (CRA), Digital Subtraction Angiography (DSA), 2D and 3D ultrasound, video and physiological recordings. Interfaces to various tracking systems for intra-operative use have also been implemented. Results: The described components have been implemented and tested. To date they have been used to create image manipulation and viewing tools, a deep brain functional atlas, a 3D ultrasound acquisition and display platform, a prototype minimally invasive robotic coronary artery bypass graft planning system, a tracked neuro-endoscope guidance system and a frame-based stereotaxy neurosurgery planning tool. The frame-based stereotaxy module has been

  4. Development of the DVH management software for the biologically-guided evaluation of radiotherapy plan

    PubMed Central

    Kim, BoKyong; Park, Hee Chul; Oh, Dongryul; Shin, Eun Hyuk; Ahn, Yong Chan; Kim, Jinsung

    2012-01-01

    Purpose To develop the dose volume histogram (DVH) management software which guides the evaluation of radiotherapy (RT) plan of a new case according to the biological consequences of the DVHs from the previously treated patients. Materials and Methods We determined the radiation pneumonitis (RP) as an biological response parameter in order to develop DVH management software. We retrospectively reviewed the medical records of lung cancer patients treated with curative 3-dimensional conformal radiation therapy (3D-CRT). The biological event was defined as RP of the Radiation Therapy Oncology Group (RTOG) grade III or more. Results The DVH management software consisted of three parts (pre-existing DVH database, graphical tool, and Pinnacle3 script). The pre-existing DVH data were retrieved from 128 patients. RP events were tagged to the specific DVH data through retrospective review of patients' medical records. The graphical tool was developed to present the complication histogram derived from the pre-existing database (DVH and RP) and was implemented into the radiation treatment planning (RTP) system, Pinnacle3 v8.0 (Phillips Healthcare). The software was designed for the pre-existing database to be updated easily by tagging the specific DVH data with the new incidence of RP events at the time of patients' follow-up. Conclusion We developed the DVH management software as an effective tool to incorporate the phenomenological consequences derived from the pre-existing database in the evaluation of a new RT plan. It can be used not only for lung cancer patients but also for the other disease site with different toxicity parameters. PMID:23120743

  5. Accuracy of one algorithm used to modify a planned DVH with data from actual dose delivery.

    PubMed

    Ma, Tianjun; Podgorsak, Matthew B; Kumaraswamy, Lalith K

    2016-09-08

    Detection and accurate quantification of treatment delivery errors is important in radiation therapy. This study aims to evaluate the accuracy of DVH based QA in quantifying delivery errors. Eighteen previously treated VMAT plans (prostate, H&N, and brain) were randomly chosen for this study. Conventional IMRT delivery QA was done with the ArcCHECK diode detector for error-free plans and plans with the following modifications: 1) induced monitor unit differences up to ± 3.0%, 2) control point deletion (3, 5, and 8 control points were deleted for each arc), and 3) gantry angle shift (2° uniform shift clockwise and counterclockwise). 2D and 3D distance-to-agreement (DTA) analyses were performed for all plans with SNC Patient software and 3DVH software, respectively. Subsequently, accuracy of the reconstructed DVH curves and DVH parameters in 3DVH software were analyzed for all selected cases using the plans in the Eclipse treatment planning system as standard. 3D DTA analysis for error-induced plans generally gave high pass rates, whereas the 2D evaluation seemed to be more sensitive to detecting delivery errors. The average differences for DVH parameters between each pair of Eclipse recalculation and 3DVH prediction were within 2% for all three types of error-induced treatment plans. This illustrates that 3DVH accurately quantifies delivery errors in terms of actual dose delivered to the patients. 2D DTA analysis should be routinely used for clinical evaluation. Any concerns or dose discrepancies should be further analyzed through DVH-based QA for clinically relevant results and confirmation of a conventional passing-rate-based QA.

  6. Accuracy of one algorithm used to modify a planned DVH with data from actual dose delivery.

    PubMed

    Ma, Tianjun; Podgorsak, Matthew B; Kumaraswamy, Lalith

    2016-09-01

    Detection and accurate quantification of treatment delivery errors is important in radiation therapy. This study aims to evaluate the accuracy of DVH based QA in quantifying delivery errors. Eighteen previously treated VMAT plans (prostate, H&N, and brain) were randomly chosen for this study. Conventional IMRT delivery QA was done with the ArcCHECK diode detector for error-free plans and plans with the following modifications: 1) induced monitor unit differences up to ±3.0%,2) control point deletion (3, 5, and 8 control points were deleted for each arc), and 3) gantry angle shift (2° uniform shift clockwise and counterclockwise). 2D and 3D distance-to-agreement (DTA) analyses were performed for all plans with SNC Patient software and 3DVH software, respectively. Subsequently, accuracy of the reconstructed DVH curves and DVH parameters in 3DVH software were analyzed for all selected cases using the plans in the Eclipse treatment planning system as standard. 3D DTA analysis for error-induced plans generally gave high pass rates, whereas the 2D evaluation seemed to be more sensitive to detecting delivery errors. The average differences for DVH parameters between each pair of Eclipse recalculation and 3DVH prediction were within 2% for all three types of error-induced treatment plans. This illustrates that 3DVH accurately quantifies delivery errors in terms of actual dose delivered to the patients. 2D DTA analysis should be routinely used for clinical evaluation. Any concerns or dose discrepancies should be further analyzed through DVH-based QA for clinically relevant results and confirmation of a conventional passing-rate-based QA. PACS number(s): 87.56.Fc, 87.55.Qr, 87.55.dk, 87.55.km.

  7. A software tool for advanced MRgFUS prostate therapy planning and follow up

    NASA Astrophysics Data System (ADS)

    van Straaten, Dörte; Hoogenboom, Martijn; van Amerongen, Martinus J.; Weiler, Florian; Issawi, Jumana Al; Günther, Matthias; Fütterer, Jurgen; Jenne, Jürgen W.

    2017-03-01

    US guided HIFU/FUS ablation for the therapy of prostate cancer is a clinical established method, while MR guided HIFU/FUS applications for prostate recently started clinical evaluation. Even if MRI examination is an excellent diagnostic tool for prostate cancer, it is a time consuming procedure and not practicable within an MRgFUS therapy session. The aim of our ongoing work is to develop software to support therapy planning and post-therapy follow-up for MRgFUS on localized prostate cancer, based on multi-parametric MR protocols. The clinical workflow of diagnosis, therapy and follow-up of MR guided FUS on prostate cancer was deeply analyzed. Based on this, the image processing workflow was designed and all necessary components, e.g. GUI, viewer, registration tools etc. were defined and implemented. The software bases on MeVisLab with several implemented C++ modules for the image processing tasks. The developed software, called LTC (Local Therapy Control) will register and visualize automatically all images (T1w, T2w, DWI etc.) and ADC or perfusion maps gained from the diagnostic MRI session. This maximum of diagnostic information helps to segment all necessary ROIs, e.g. the tumor, for therapy planning. Final therapy planning will be performed based on these segmentation data in the following MRgFUS therapy session. In addition, the developed software should help to evaluate the therapy success, by synchronization and display of pre-therapeutic, therapy and follow-up image data including the therapy plan and thermal dose information. In this ongoing project, the first stand-alone prototype was completed and will be clinically evaluated.

  8. SU-E-T-277: Dose Calculation Comparisons Between Monaco, Pinnacle and Eclipse Treatment Planning Systems

    SciTech Connect

    Bosse, C; Kirby, N; Narayanasamy, G; Papanikolaou, N; Stathakis, S

    2015-06-15

    Purpose: Monaco treatment planning system (TPS) version 5.0 uses a Monte-Carlo based dose calculation engine. The aim of this study is to verify and compare the Monaco based dose calculations with both Pinnacle{sup 3} collapsed cone convolution superposition (CCC) and Eclipse analytical anisotropic algorithm (AAA) calculations. Methods: For this study, previously treated SBRT lung, head and neck and abdomen patients were chosen to compare dose calculations between Pinnacle, Monaco and Eclipse. Plans were chosen from those that had been treated using the Elekta VersaHD or a NovalisTX linac. The plans included 3D conventional and IMRT beams using 6MV and 6MV Flattening filter free (FFF) photon beams. The original plans calculated with CCCS or AAA along with the recalculated ones using MC from the three TPS were exported into Velocity software for inter-comparison. Results: To compare the dose calculations, Mean Lung Dose (MLD), lung V5 and V20 values, and PTV Heterogeneity indexes (HI) and Conformity indexes (CI) were all calculated and recorded from the dose volume histograms (DVH). For each patient, the CI values were identical but there were differences in all other parameters. The HI was computed higher by 5 and 4% for calculated plans AAA and CCCS respectively, compared to the MC ones. The DVH graphs showed large differences between the CCCS and AAA and Monaco for 3D FFF, VMAT and IMRT plans. Better DVH agreement between was observed for 3D conventional plans. Conclusion: Better agreement was observed between CCCS and MC calculations than AAA and MC calculations. Those differences were more profound as the field size was decreasing and in the presence of inhomogeneities.

  9. Open-source hardware and software and web application for gamma dose rate network operation.

    PubMed

    Luff, R; Zähringer, M; Harms, W; Bleher, M; Prommer, B; Stöhlker, U

    2014-08-01

    The German Federal Office for Radiation Protection operates a network of about 1800 gamma dose rate stations as a part of the national emergency preparedness plan. Each of the six network centres is capable of operating the network alone. Most of the used hardware and software have been developed in-house under open-source license. Short development cycles and close cooperation between developers and users ensure robustness, transparency and fast maintenance procedures, thus avoiding unnecessary complex solutions. This also reduces the overall costs of the network operation. An easy-to-expand web interface has been developed to make the complete system available to other interested network operators in order to increase cooperation between different countries. The interface is also regularly in use for education during scholarships of trainees supported, e.g. by the 'International Atomic Energy Agency' to operate a local area dose rate monitoring test network. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Spine stereotactic body radiation therapy plans: Achieving dose coverage, conformity, and dose falloff.

    PubMed

    Hong, Linda X; Shankar, Viswanathan; Shen, Jin; Kuo, Hsiang-Chi; Mynampati, Dinesh; Yaparpalvi, Ravindra; Goddard, Lee; Basavatia, Amar; Fox, Jana; Garg, Madhur; Kalnicki, Shalom; Tomé, Wolfgang A

    2015-01-01

    We report our experience of establishing planning objectives to achieve dose coverage, conformity, and dose falloff for spine stereotactic body radiation therapy (SBRT) plans. Patients with spine lesions were treated using SBRT in our institution since September 2009. Since September 2011, we established the following planning objectives for our SBRT spine plans in addition to the cord dose constraints: (1) dose coverage—prescription dose (PD) to cover at least 95% planning target volume (PTV) and 90% PD to cover at least 99% PTV; (2) conformity index (CI)—ratio of prescription isodose volume (PIV) to the PTV < 1.2; (3) dose falloff—ratio of 50% PIV to the PTV (R(50%)); (4) and maximum dose in percentage of PD at 2 cm from PTV in any direction (D(2cm)) to follow Radiation Therapy Oncology Group (RTOG) 0915. We have retrospectively reviewed 66 separate spine lesions treated between September 2009 and December 2012 (31 treated before September 2011 [group 1] and 35 treated after [group 2]). The χ(2) test was used to examine the difference in parameters between groups. The PTV V(100% PD) ≥ 95% objective was met in 29.0% of group 1 vs 91.4% of group 2 (p < 0.01) plans. The PTV V(90% PD) ≥ 99% objective was met in 38.7% of group 1 vs 88.6% of group 2 (p < 0.01) plans. Overall, 4 plans in group 1 had CI > 1.2 vs none in group 2 (p = 0.04). For D(2cm), 48.3% plans yielded a minor violation of the objectives and 16.1% a major violation for group 1, whereas 17.1% exhibited a minor violation and 2.9% a major violation for group 2 (p < 0.01). Spine SBRT plans can be improved on dose coverage, conformity, and dose falloff employing a combination of RTOG spine and lung SBRT protocol planning objectives. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  11. Spine stereotactic body radiation therapy plans: Achieving dose coverage, conformity, and dose falloff

    SciTech Connect

    Hong, Linda X.; Shankar, Viswanathan; Shen, Jin; Kuo, Hsiang-Chi; Mynampati, Dinesh; Yaparpalvi, Ravindra; Goddard, Lee; Basavatia, Amar; Fox, Jana; Garg, Madhur; Kalnicki, Shalom; Tomé, Wolfgang A.

    2015-10-01

    We report our experience of establishing planning objectives to achieve dose coverage, conformity, and dose falloff for spine stereotactic body radiation therapy (SBRT) plans. Patients with spine lesions were treated using SBRT in our institution since September 2009. Since September 2011, we established the following planning objectives for our SBRT spine plans in addition to the cord dose constraints: (1) dose coverage—prescription dose (PD) to cover at least 95% planning target volume (PTV) and 90% PD to cover at least 99% PTV; (2) conformity index (CI)—ratio of prescription isodose volume (PIV) to the PTV < 1.2; (3) dose falloff—ratio of 50% PIV to the PTV (R{sub 50%}); (4) and maximum dose in percentage of PD at 2 cm from PTV in any direction (D{sub 2cm}) to follow Radiation Therapy Oncology Group (RTOG) 0915. We have retrospectively reviewed 66 separate spine lesions treated between September 2009 and December 2012 (31 treated before September 2011 [group 1] and 35 treated after [group 2]). The χ{sup 2} test was used to examine the difference in parameters between groups. The PTV V{sub 100%} {sub PD} ≥ 95% objective was met in 29.0% of group 1 vs 91.4% of group 2 (p < 0.01) plans. The PTV V{sub 90%} {sub PD} ≥ 99% objective was met in 38.7% of group 1 vs 88.6% of group 2 (p < 0.01) plans. Overall, 4 plans in group 1 had CI > 1.2 vs none in group 2 (p = 0.04). For D{sub 2cm}, 48.3% plans yielded a minor violation of the objectives and 16.1% a major violation for group 1, whereas 17.1% exhibited a minor violation and 2.9% a major violation for group 2 (p < 0.01). Spine SBRT plans can be improved on dose coverage, conformity, and dose falloff employing a combination of RTOG spine and lung SBRT protocol planning objectives.

  12. 75 FR 45623 - Increasing Market and Planning Efficiency Through Improved Software; Notice Establishing Date for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ... Energy Regulatory Commission Increasing Market and Planning Efficiency Through Improved Software; Notice... conferences regarding models and software related to wholesale electricity markets and planning: \\1\\ \\1... Software, 75 FR 27,341 (2010). June 2-3 Enhanced Unit-Commitment Models. June 9-10 Enhanced...

  13. Dosimetric validation for an automatic brain metastases planning software using single-isocenter dynamic conformal arcsDosimetric validation for an automatic brain metastases planning software using single-isocenter dynamic conformal arcs.

    PubMed

    Liu, Haisong; Li, Jun; Pappas, Evangelos; Andrews, David; Evans, James; Werner-Wasik, Maria; Yu, Yan; Dicker, Adam; Shi, Wenyin

    2016-09-08

    An automatic brain-metastases planning (ABMP) software has been installed in our institution. It is dedicated for treating multiple brain metastases with radiosurgery on linear accelerators (linacs) using a single-setup isocenter with noncoplanar dynamic conformal arcs. This study is to validate the calculated absolute dose and dose distribution of ABMP. Three types of measurements were performed to validate the planning software: 1, dual micro ion chambers were used with an acrylic phantom to measure the absolute dose; 2, a 3D cylindrical phantom with dual diode array was used to evaluate 2D dose distribution and point dose for smaller targets; and 3, a 3D pseudo-in vivo patient-specific phantom filled with polymer gels was used to evaluate the accuracy of 3D dose distribution and radia-tion delivery. Micro chamber measurement of two targets (volumes of 1.2 cc and 0.9 cc, respectively) showed that the percentage differences of the absolute dose at both targets were less than 1%. Averaged GI passing rate of five different plans measured with the diode array phantom was above 98%, using criteria of 3% dose difference, 1 mm distance to agreement (DTA), and 10% low-dose threshold. 3D gel phantom measurement results demonstrated a 3D displacement of nine targets of 0.7 ± 0.4 mm (range 0.2 ~ 1.1 mm). The averaged two-dimensional (2D) GI passing rate for several region of interests (ROI) on axial slices that encompass each one of the nine targets was above 98% (5% dose difference, 2 mm DTA, and 10% low-dose threshold). Measured D95, the minimum dose that covers 95% of the target volume, of the nine targets was 0.7% less than the calculated D95. Three different types of dosimetric verification methods were used and proved the dose calculation of the new automatic brain metastases planning (ABMP) software was clinical acceptable. The 3D pseudo-in vivo patient-specific gel phantom test also served as an end-to-end test for validating not only the dose calculation, but the

  14. Trans-Atlantic Comparison of CT Radiation Doses in the Era of Radiation Dose-Tracking Software.

    PubMed

    Parakh, Anushri; Euler, Andre; Szucs-Farkas, Zsolt; Schindera, Sebastian T

    2017-09-12

    The purpose of this study is to compare diagnostic reference levels from a local European CT dose registry, using radiation-tracking software from a large patient sample, with preexisting European and North American diagnostic reference levels. Data (n = 43,761 CT scans obtained over the course of 2 years) for the European local CT dose registry were obtained from eight CT scanners at six institutions. Means, medians, and interquartile ranges of volumetric CT dose index (CTDIvol), dose-length product (DLP), size-specific dose estimate, and effective dose values for CT examinations of the head, paranasal sinuses, thorax, pulmonary angiogram, abdomen-pelvis, renal-colic, thorax-abdomen-pelvis, and thoracoabdominal angiogram were obtained using radiation-tracking software. Metrics from this registry were compared with diagnostic reference levels from Canada and California (published in 2015), the American College of Radiology (ACR) dose index registry (2015), and national diagnostic reference levels from local CT dose registries in Switzerland (2010), the United Kingdom (2011), and Portugal (2015). Our local registry had a lower 75th percentile CTDIvol for all protocols than did the individual internationally sourced data. Compared with our study, the ACR dose index registry had higher 75th percentile CTDIvol values by 55% for head, 240% for thorax, 28% for abdomen-pelvis, 42% for thorax-abdomen-pelvis, 128% for pulmonary angiogram, 138% for renal-colic, and 58% for paranasal sinus studies. Our local registry had lower diagnostic reference level values than did existing European and North American diagnostic reference levels. Automated radiation-tracking software could be used to establish and update existing diagnostic reference levels because they are capable of analyzing large datasets meaningfully.

  15. Work plan for the Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Not Available

    1989-12-01

    The primary objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that populations could have received from nuclear operations at the Hanford Site since 1944, with descriptions of uncertainties inherent in such estimates. The secondary objective is to make project records--information that HEDR staff members used to estimate radiation doses--available to the public. Preliminary dose estimates for a limited geographic area and time period, certain radionuclides, and certain populations are planned to be available in 1990; complete results are planned to be reported in 1993. Project reports and references used in the reports are available to the public in the DOE Public Reading Room in Richland, Washington. Project progress is documented in monthly reports, which are also available to the public in the DOE Public Reading Room.

  16. Studying factors affecting the indoor gamma radiation dose using the MCNP5 simulation software.

    PubMed

    Orabi, M

    2016-12-01

    Different factors and parameters affecting the indoor gamma radiation dose are considered and investigated. The change of the dose with different positions inside the room is discussed. The relative doses are also calculated for different changes; with different room dimensions, different wall thicknesses, and different building material densities. Some other factors are also discussed. The study is carried out by executing some models designed by the MCNP version 5 simulation software. The calculations of the dose rates are performed by adopting a simple and convenient calculation model which is based on the obtained relative changes of the dose rates with the different factors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. HEDR model validation plan. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Napier, B.A.; Gilbert, R.O.; Simpson, J.C.; Ramsdell, J.V. Jr.; Thiede, M.E.; Walters, W.H.

    1993-06-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project has developed a set of computational ``tools`` for estimating the possible radiation dose that individuals may have received from past Hanford Site operations. This document describes the planned activities to ``validate`` these tools. In the sense of the HEDR Project, ``validation`` is a process carried out by comparing computational model predictions with field observations and experimental measurements that are independent of those used to develop the model.

  18. Dose errors in the treatment planning process of cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Myint, W. Kenji

    This thesis reports on the examination of specific dose errors in the treatment planning process. This process begins with the acquisition of the treatment planning CT (computed tomography) dataset and ends with the calculation of dose in the patient. The treatment planning CT is a Hounsfield unit (HU) representation of the patient that is converted to relative electron density in the treatment planning system. The treatment planning system utilizes a dose calculation algorithm to predict the dose based on the relative electron density distribution of the patient. The sources of dose error investigated in this thesis can be categorized as: (i) errors in the HU representation of the patient; (ii) errors in the relative electron density distribution of the patient; and (iii) errors in the dose calculation algorithm. Errors in the dose calculation algorithms were examined in Chapter 3, where the accuracy of the Theraplan Plus treatment planning system's implementation of the pencil beam and collapsed cone convolution algorithms were investigated in lung-equivalent material. Both algorithms had difficulty modeling the broadening of the beam in the lung-equivalent material but the collapsed cone convolution algorithm generally showed consistently smaller dose errors than the pencil beam algorithm. As expected, the pencil beam model could not model any lateral electron transport and the largest dose errors were observed near lateral lung-acrylic interfaces. In chapter 4, objects present during dose delivery but not accounted for in the treatment planning CT dataset were investigated. These can be categorized as errors in the HU representation of the patient. One such example is the treatment tabletop present during delivery, but replaced with a different table during the CT scan. In this study, the attenuation of the beam by a carbon fiber treatment tabletop was quantified and a practical solution to account for the tabletop was proposed. It was determined that

  19. Development of Advanced Multi-Modality Radiation Treatment Planning Software

    SciTech Connect

    Nigg, D W; Hartmann Siantar, C

    2002-02-19

    The Idaho National Engineering and Environmental Laboratory (INEEL) has long been active in development of advanced Monte-Carlo based computational dosimetry and treatment planning methods and software for advanced radiotherapy, with a particular focus on Neutron Capture Therapy (NCT) and, to a somewhat lesser extent, Fast-Neutron Therapy. The most recent INEEL software product system of this type is known as SERA, Simulation Environment for Radiotherapy Applications. SERA is at a mature level in its life cycle, it has been licensed for research use worldwide, and it has become well established as a computational tool for research. However, along with its strengths, SERA also has some limitations in its structure and computational methodologies. More specifically, it is optimized only for neutron-based applications. Although photon transport can be computed with SERA, the simplified model that is used is designed primarily for photons produced in the neutron transport process. Thus SERA is not appropriate for applications to, for example, standard external-beam photon radiotherapy, which is by far more commonly used in the clinic than neutron based therapy.

  20. Parotid Gland Dose in Intensity-Modulated Radiotherapy for Head and Neck Cancer: Is What You Plan What You Get?

    SciTech Connect

    O'Daniel, Jennifer C.; Garden, Adam S.; Schwartz, David L.; Wang He; Ang, Kian K.; Ahamad, Anesa; Rosenthal, David I.; Morrison, William H.; Asper, Joshua A.; Zhang Lifei; Tung Shihming; Mohan, Radhe; Dong Lei

    2007-11-15

    Purpose: To quantify the differences between planned and delivered parotid gland and target doses, and to assess the benefits of daily bone alignment for head and neck cancer patients treated with intensity-modulated radiotherapy (IMRT). Methods and Materials: Eleven head and neck cancer patients received two CT scans per week with an in-room CT scanner over the course of their radiotherapy. The clinical IMRT plans, designed with 3-mm to 4-mm planning margins, were recalculated on the repeat CT images. The plans were aligned using the actual treatment isocenter marked with radiopaque markers (BB) and bone alignment to the cervical vertebrae to simulate image-guided setup. In-house deformable image registration software was used to map daily dose distributions to the original treatment plan and to calculate a cumulative delivered dose distribution for each patient. Results: Using conventional BB alignment led to increases in the parotid gland mean dose above the planned dose by 5 to 7 Gy in 45% of the patients (median, 3.0 Gy ipsilateral, p = 0.026; median, 1.0 Gy contralateral, p = 0.016). Use of bone alignment led to reductions relative to BB alignment in 91% of patients (median, 2 Gy; range, 0.3-8.3 Gy; 15 of 22 parotids improved). However, the parotid dose from bone alignment was still greater than planned (median, 1.0 Gy, p = 0.007). Neither approach affected tumor dose coverage. Conclusions: With conventional BB alignment, the parotid gland mean dose was significantly increased above the planned mean dose. Using daily bone alignment reduced the parotid dose compared with BB alignment in almost all patients. A 3- to 4-mm planning margin was adequate for tumor dose coverage.

  1. Fully automated treatment planning for head and neck radiotherapy using a voxel-based dose prediction and dose mimicking method

    NASA Astrophysics Data System (ADS)

    McIntosh, Chris; Welch, Mattea; McNiven, Andrea; Jaffray, David A.; Purdie, Thomas G.

    2017-08-01

    Recent works in automated radiotherapy treatment planning have used machine learning based on historical treatment plans to infer the spatial dose distribution for a novel patient directly from the planning image. We present a probabilistic, atlas-based approach which predicts the dose for novel patients using a set of automatically selected most similar patients (atlases). The output is a spatial dose objective, which specifies the desired dose-per-voxel, and therefore replaces the need to specify and tune dose-volume objectives. Voxel-based dose mimicking optimization then converts the predicted dose distribution to a complete treatment plan with dose calculation using a collapsed cone convolution dose engine. In this study, we investigated automated planning for right-sided oropharaynx head and neck patients treated with IMRT and VMAT. We compare four versions of our dose prediction pipeline using a database of 54 training and 12 independent testing patients by evaluating 14 clinical dose evaluation criteria. Our preliminary results are promising and demonstrate that automated methods can generate comparable dose distributions to clinical. Overall, automated plans achieved an average of 0.6% higher dose for target coverage evaluation criteria, and 2.4% lower dose at the organs at risk criteria levels evaluated compared with clinical. There was no statistically significant difference detected in high-dose conformity between automated and clinical plans as measured by the conformation number. Automated plans achieved nine more unique criteria than clinical across the 12 patients tested and automated plans scored a significantly higher dose at the evaluation limit for two high-risk target coverage criteria and a significantly lower dose in one critical organ maximum dose. The novel dose prediction method with dose mimicking can generate complete treatment plans in 12-13 min without user interaction. It is a promising approach for fully automated treatment

  2. SU-E-T-622: Identification and Improvement of Patients Eligible for Dose Escalation with Matched Plans

    SciTech Connect

    Bush, K; Holcombe, C; Kapp, D; Buyyounouski, M; Hancock, S; Xing, L; Atwood, T; King, M

    2014-06-15

    Purpose: Radiation-therapy dose-escalation beyond 80Gy may improve tumor control rates for patients with localized prostate cancer. Since toxicity remains a concern, treatment planners must achieve dose-escalation while still adhering to dose-constraints for surrounding structures. Patientmatching is a machine-learning technique that identifies prior patients that dosimetrically match DVH parameters of target volumes and critical structures prior to actual treatment planning. We evaluated the feasibility of patient-matching in (1)identifying candidates for safe dose-escalation; and (2)improving DVH parameters for critical structures in actual dose-escalated plans. Methods: We analyzed DVH parameters from 319 historical treatment plans to determine which plans could achieve dose-escalation (8640cGy) without exceeding Zelefsky dose-constraints (rectal and bladder V47Gy<53%, and V75.6Gy<30%, max-point dose to rectum of 8550cGy, max dose to PTV< 9504cGy). We then estimated the percentage of cases that could achieve safe dose-escalation using software that enables patient matching (QuickMatch, Siris Medical, Mountain View, CA). We then replanned a case that had violated DVH constraints with DVH parameters from patient matching, in order to determine whether this previously unacceptable plan could be made eligible with this automated technique. Results: Patient-matching improved the percentage of patients eligible for dose-escalation from 40% to 63% (p=4.7e-4, t-test). Using a commercial optimizer augmented with patient-matching, we demonstrated a case where patient-matching improved the toxicity-profile such that dose-escalation would have been possible; this plan was rapidly achieved using patientmatching software. In this patient, all lower-dose constraints were met with both the denovo and patient-matching plan. In the patient-matching plan, maximum dose to the rectum was 8385cGy, while the denovo plan failed to meet the maximum rectal constraint at 8571c

  3. Master Pump Shutdown MPS Software Quality Assurance Plan (SQAP)

    SciTech Connect

    BEVINS, R.R.

    2000-09-20

    The MPSS Software Quality Assurance (SQAP) describes the tools and strategy used in the development of the MPSS software. The document also describes the methodology for controlling and managing changes to the software.

  4. Effective dose and organ doses estimation taking tube current modulation into account with a commercial software package.

    PubMed

    Lopez-Rendon, X; Bosmans, H; Oyen, R; Zanca, F

    2015-07-01

    To evaluate the effect of including tube current modulation (TCM) versus using the average mAs in estimating organ and effective dose (E) using commercial software. Forty adult patients (24 females, 16 males) with normal BMI underwent chest/abdomen computed tomography (CT) performed with TCM at 120 kVp, reference mAs of 110 (chest) and 200 (abdomen). Doses to fully irradiated organs (breasts, lungs, stomach, liver and ovaries) and E were calculated using two versions of a dosimetry software: v.2.0, which uses the average mAs, and v.2.2, which accounts for TCM by implementing a gender-specific mAs profile. Student's t-test was used to assess statistically significant differences between organ doses calculated with the two versions. A statistically significant difference (p < 0.001) was found for E on chest and abdomen CT, with E being lower by 4.2% when TCM is considered. Similarly, organ doses were also significantly lower (p < 0.001): 13.7% for breasts, 7.3% for lungs, 9.1% for the liver and 8.5% for the stomach. Only the dose to the ovaries was higher with TCM (11.5%). When TCM is used, for the stylized phantom, the doses to lungs, breasts, stomach and liver decreased while the dose to the ovaries increased. • Estimated dose to the ovaries increased with TCM. • Estimated dose to lungs, breasts, stomach and liver decreased with TCM. • A unique but gender-specific mAs profile resulted in a radiation dose shift. • Even for normal size patients there is a variety in mAs profiles.

  5. Treatment planning and dose analysis for interstitial photodynamic therapy of prostate cancer

    NASA Astrophysics Data System (ADS)

    Davidson, Sean R. H.; Weersink, Robert A.; Haider, Masoom A.; Gertner, Mark R.; Bogaards, Arjen; Giewercer, David; Scherz, Avigdor; Sherar, Michael D.; Elhilali, Mostafa; Chin, Joseph L.; Trachtenberg, John; Wilson, Brian C.

    2009-04-01

    With the development of new photosensitizers that are activated by light at longer wavelengths, interstitial photodynamic therapy (PDT) is emerging as a feasible alternative for the treatment of larger volumes of tissue. Described here is the application of PDT treatment planning software developed by our group to ensure complete coverage of larger, geometrically complex target volumes such as the prostate. In a phase II clinical trial of TOOKAD vascular targeted photodynamic therapy (VTP) for prostate cancer in patients who failed prior radiotherapy, the software was used to generate patient-specific treatment prescriptions for the number of treatment fibres, their lengths, their positions and the energy each delivered. The core of the software is a finite element solution to the light diffusion equation. Validation against in vivo light measurements indicated that the software could predict the location of an iso-fluence contour to within approximately ±2 mm. The same software was used to reconstruct the treatments that were actually delivered, thereby providing an analysis of the threshold light dose required for TOOKAD-VTP of the post-irradiated prostate. The threshold light dose for VTP-induced prostate damage, as measured one week post-treatment using contrast-enhanced MRI, was found to be highly heterogeneous, both within and between patients. The minimum light dose received by 90% of the prostate, D90, was determined from each patient's dose-volume histogram and compared to six-month sextant biopsy results. No patient with a D90 less than 23 J cm-2 had complete biopsy response, while 8/13 (62%) of patients with a D90 greater than 23 J cm-2 had negative biopsies at six months. The doses received by the urethra and the rectal wall were also investigated.

  6. Radiation dose optimization in the decommissioning plan for Loviisa NPP

    SciTech Connect

    Holmberg, R.; Eurajoki, T.

    1995-03-01

    Finnish rules for nuclear power require a detailed decommissioning plan to be made and kept up to date already during plant operation. The main reasons for this {open_quotes}premature{close_quotes} plan, is, firstly, the need to demonstrate the feasibility of decommissioning, and, secondly, to make realistic cost estimates in order to fund money for this future operation. The decomissioning for Lovissa Nuclear Power Plant (NPP) (2{times}445 MW, PWR) was issued in 1987. It must be updated about every five years. One important aspect of the plant is an estimate of radiation doses to the decomissioning workers. The doses were recently re-estimated because of a need to decrease the total collective dose estimate in the original plan, 23 manSv. In the update, the dose was reduced by one-third. Part of the reduction was due to changes in the protection and procedures, in which ALARA considerations were taken into account, and partly because of re-estimation of the doses.

  7. Verification of organ doses calculated by a dose monitoring software tool based on Monte Carlo Simulation in thoracic CT protocols.

    PubMed

    Guberina, Nika; Suntharalingam, Saravanabavaan; Naßenstein, Kai; Forsting, Michael; Theysohn, Jens; Wetter, Axel; Ringelstein, Adrian

    2017-01-01

    Background The importance of monitoring of the radiation dose received by the human body during computed tomography (CT) examinations is not negligible. Several dose-monitoring software tools emerged in order to monitor and control dose distribution during CT examinations. Some software tools incorporate Monte Carlo Simulation (MCS) and allow calculation of effective dose and organ dose apart from standard dose descriptors. Purpose To verify the results of a dose-monitoring software tool based on MCS in assessment of effective and organ doses in thoracic CT protocols. Material and Methods Phantom measurements were performed with thermoluminescent dosimeters (TLD LiF:Mg,Ti) using two different thoracic CT protocols of the clinical routine: (I) standard CT thorax (CTT); and (II) CTT with high-pitch mode, P = 3.2. Radiation doses estimated with MCS and measured with TLDs were compared. Results Inter-modality comparison showed an excellent correlation between MCS-simulated and TLD-measured doses ((I) after localizer correction r = 0.81; (II) r = 0.87). The following effective and organ doses were determined: (I) (a) effective dose = MCS 1.2 mSv, TLD 1.3 mSv; (b) thyroid gland = MCS 2.8 mGy, TLD 2.5 mGy; (c) thymus = MCS 3.1 mGy, TLD 2.5 mGy; (d) bone marrow = MCS 0.8 mGy, TLD 0.9 mGy; (e) breast = MCS 2.5 mGy, TLD 2.2 mGy; (f) lung = MCS 2.8 mGy, TLD 2.7 mGy; (II) (a) effective dose = MCS 0.6 mSv, TLD 0.7 mSv; (b) thyroid gland = MCS 1.4 mGy, TLD 1.8 mGy; (c) thymus = MCS 1.4 mGy, TLD 1.8 mGy; (d) bone marrow = MCS 0.4 mGy, TLD 0.5 mGy; (e) breast = MCS 1.1 mGy, TLD 1.1 mGy; (f) lung = MCS 1.2 mGy, TLD 1.3 mGy. Conclusion Overall, in thoracic CT protocols, organ doses simulated by the dose-monitoring software tool were coherent to those measured by TLDs. Despite some challenges, the dose-monitoring software was capable of an accurate dose calculation.

  8. Generalized Tumor Dose for Treatment Planning Decision Support

    NASA Astrophysics Data System (ADS)

    Zuniga, Areli A.

    Modern radiation therapy techniques allow for improved target conformity and normal tissue sparing. These highly conformal treatment plans have allowed dose escalation techniques increasing the probability of tumor control. At the same time this conformation has introduced inhomogeneous dose distributions, making delivered dose characterizations more difficult. The concept of equivalent uniform dose (EUD) characterizes a heterogeneous dose distribution within irradiated structures as a single value and has been used in biologically based treatment planning (BBTP); however, there are no substantial validation studies on clinical outcome data supporting EUD's use and therefore has not been widely adopted as decision-making support. These highly conformal treatment plans have also introduced the need for safety margins around the target volume. These margins are designed to minimize geometrical misses, and to compensate for dosimetric and treatment delivery uncertainties. The margin's purpose is to reduce the chance of tumor recurrence. This dissertation introduces a new EUD formulation designed especially for tumor volumes, called generalized Tumor Dose (gTD). It also investigates, as a second objective, margins extensions for potential improvements in local control while maintaining or minimizing toxicity. The suitability of gTD to rank LC was assessed by means of retrospective studies in a head and neck (HN) squamous cell carcinoma (SCC) and non-small cell lung cancer (NSCLC) cohorts. The formulation was optimized based on two datasets (one of each type) and then, model validation was assessed on independent cohorts. The second objective of this dissertation was investigated by ranking the probability of LC of the primary disease adding different margin sizes. In order to do so, an already published EUD formula was used retrospectively in a HN and a NSCLC datasets. Finally, recommendations for the viability to implement this new formulation into a routine treatment

  9. Definition of Local Diagnostic Reference Levels in a Radiology Department Using a Dose Tracking Software.

    PubMed

    Ghetti, C; Ortenzia, O; Palleri, F; Sireus, M

    2016-09-10

    Dose optimization in radiological examinations is a mandatory issue: in this study local Diagnostic Reference Levels (lDRLs) for Clinical Mammography (MG), Computed Tomography (CT) and Interventional Cardiac Procedures (ICP) performed in our Radiology Department were established. Using a dose tracking software, we have collected Average Glandular Dose (AGD) for two clinical mammographic units; CTDIvol, Size-Specific Dose Estimate (SSDE), Dose Length Product (DLP) and total DLP (DLPtot) for five CT scanners; Fluoro Time, Fluoro Dose Area Product (DAP) and total DAP (DAPtot) for two angiographic systems. Data have been compared with Italian Regulation and with the recent literature. The 75th percentiles of the different dosimetric indices have been calculated. Automated methods of radiation dose data collection allow a fast and detailed analysis of a great amount of data and an easy determination of lDRLs for different radiological procedures.

  10. Implementation of a software for REmote COMparison of PARticlE and photon treatment plans: ReCompare.

    PubMed

    Löck, Steffen; Roth, Klaus; Skripcak, Tomas; Worbs, Mario; Helmbrecht, Stephan; Jakobi, Annika; Just, Uwe; Krause, Mechthild; Baumann, Michael; Enghardt, Wolfgang; Lühr, Armin

    2015-09-01

    To guarantee equal access to optimal radiotherapy, a concept of patient assignment to photon or particle radiotherapy using remote treatment plan exchange and comparison - ReCompare - was proposed. We demonstrate the implementation of this concept and present its clinical applicability. The ReCompare concept was implemented using a client-server based software solution. A clinical workflow for the remote treatment plan exchange and comparison was defined. The steps required by the user and performed by the software for a complete plan transfer were described and an additional module for dose-response modeling was added. The ReCompare software was successfully tested in cooperation with three external partner clinics and worked meeting all required specifications. It was compatible with several standard treatment planning systems, ensured patient data protection, and integrated in the clinical workflow. The ReCompare software can be applied to support non-particle radiotherapy institutions with the patient-specific treatment decision on the optimal irradiation modality by remote treatment plan exchange and comparison. Copyright © 2015. Published by Elsevier GmbH.

  11. Three dimensional planning target volumes: a model and a software tool.

    PubMed

    Austin-Seymour, M; Kalet, I; McDonald, J; Kromhout-Schiro, S; Jacky, J; Hummel, S; Unger, J

    1995-12-01

    Three dimensional (3D) target volumes are an essential component of conformal therapy because the goal is to shape the treatment volume to the target volume. The planning target volume (PTV) is defined by ICRU 50 as the clinical target volume (CTV) plus a margin to ensure that the CTV receives the prescribed dose. The margin must include all interfractional and intrafractional treatment variations. This paper describes a software tool that automatically generates 3D PTVs from CTVs for lung cancers and immobile head and neck cancers. Values for the interfractional and intrafractional treatment variations were determined by a literature review and by targeted interviews with physicians. The software tool is written in Common LISP and conforms to the specifications for shareable software of the Radiotherapy Treatment Planning Tools Collaborative Working Group. The tool is a rule-based expert system in which the inputs are the CTV contours, critical structure contours, and qualitative information about the specific patient. The output is PTV contours, which are a cylindrical expansion of the CTV. A model for creating PTVs from CTVs is embedded in the tool. The interfractional variation of setup uncertainty and the intrafractional variations of movement of the CTV (e.g., respiration) and patient motion are included in the model. Measured data for the component variations is consistent with modeling the components as independent samples from 3D Gaussian distributions. The components are combined using multivariate normal statistics to yield the cylindrical expansion factors. Rules are used to represent the values of the components for certain patient conditions (e.g., setup uncertainty for a head and neck patient immobilized in a mask). The tool uses a rule interpreter to combine qualitative information about a specific patient with rules representing the value of the components and to enter the appropriate component values for that patient into the cylindrical expansion

  12. Panthere V2: Multipurpose Simulation Software for 3D Dose Rate Calculations

    NASA Astrophysics Data System (ADS)

    Penessot, Gaël; Bavoil, Éléonore; Wertz, Laurent; Malouch, Fadhel; Visonneau, Thierry; Dubost, Julien

    2017-09-01

    PANTHERE is a multipurpose radiation protection software developed by EDF to calculate gamma dose rates in complex 3D environments. PANTHERE takes a key role in the EDF ALARA process, enabling to predict dose rates and to organize and optimize operations in high radiation environments. PANTHERE is also used for nuclear waste characterization, transport of nuclear materials, etc. It is used in most of the EDF engineering units and their design service providers and industrial partners.

  13. Evaluation of the accuracy of 3DVH software estimates of dose to virtual ion chamber and film in composite IMRT QA

    SciTech Connect

    Olch, Arthur J.

    2012-01-15

    Purpose: A novel patient-specific intensity modulated radiation therapy (IMRT) QA system, 3DVH software and mapcheck 2, purports to be able to use diode array-measured beam doses and the patient's DICOM RT plan, structure set, and dose files to predict the delivered 3D dose distribution in the patient for comparison to the treatment planning system (TPS) calculated doses. In this study, the composite dose to an ion chamber and film in phantom predicted by the 3DVH and mapcheck 2 system is compared to the actual measured chamber and film doses. If validated in this context, then 3DVH can be used to perform an equivalent dose analysis as that obtained with film dosimetry and ion chamber-based composite IMRT QA. This is important for those losing their ability to perform film dosimetry for true composite IMRT QA and provides a measure of confidence in the accuracy of 3DVH 3D dose calculations which may replace phantom-based IMRT QA. Methods: The dosimetric results from 15 consecutive patient-specific IMRT QA tests performed by composite field irradiation of ion chamber and EDR2 film in a solid water phantom were compared to the predicted doses for those virtual detectors based on the calculated 3D dose by the 3DVH software using mapcheck 2 measured doses of each beam within each plan. For each of the 15 cases, immediately after performing the ion chamber plus film measurements, the mapcheck 2 was used to measure the dose for each beam of the plan. The dose to the volume of the virtual ion chamber and the dose distribution in the plane of the virtual film calculated by the 3DVH software was extracted. The ratio of the measured to 3DVH or eclipse-predicted ion chamber doses was calculated. The same plane in the phantom measured using film and calculated with eclipse was exported from 3DVH and the 2D gamma metric was used to compare the relationship between the film doses and the eclipse or 3DVH predicted planar doses. Also, the 3D gamma value was calculated in the 3DVH

  14. Digital radiography: optimization of image quality and dose using multi-frequency software.

    PubMed

    Precht, H; Gerke, O; Rosendahl, K; Tingberg, A; Waaler, D

    2012-09-01

    New developments in processing of digital radiographs (DR), including multi-frequency processing (MFP), allow optimization of image quality and radiation dose. This is particularly promising in children as they are believed to be more sensitive to ionizing radiation than adults. To examine whether the use of MFP software reduces the radiation dose without compromising quality at DR of the femur in 5-year-old-equivalent anthropomorphic and technical phantoms. A total of 110 images of an anthropomorphic phantom were imaged on a DR system (Canon DR with CXDI-50 C detector and MLT[S] software) and analyzed by three pediatric radiologists using Visual Grading Analysis. In addition, 3,500 images taken of a technical contrast-detail phantom (CDRAD 2.0) provide an objective image-quality assessment. Optimal image-quality was maintained at a dose reduction of 61% with MLT(S) optimized images. Even for images of diagnostic quality, MLT(S) provided a dose reduction of 88% as compared to the reference image. Software impact on image quality was found significant for dose (mAs), dynamic range dark region and frequency band. By optimizing image processing parameters, a significant dose reduction is possible without significant loss of image quality.

  15. An automated fitting procedure and software for dose-response curves with multiphasic features

    PubMed Central

    Veroli, Giovanni Y. Di; Fornari, Chiara; Goldlust, Ian; Mills, Graham; Koh, Siang Boon; Bramhall, Jo L; Richards, Frances M.; Jodrell, Duncan I.

    2015-01-01

    In cancer pharmacology (and many other areas), most dose-response curves are satisfactorily described by a classical Hill equation (i.e. 4 parameters logistical). Nevertheless, there are instances where the marked presence of more than one point of inflection, or the presence of combined agonist and antagonist effects, prevents straight-forward modelling of the data via a standard Hill equation. Here we propose a modified model and automated fitting procedure to describe dose-response curves with multiphasic features. The resulting general model enables interpreting each phase of the dose-response as an independent dose-dependent process. We developed an algorithm which automatically generates and ranks dose-response models with varying degrees of multiphasic features. The algorithm was implemented in new freely available Dr Fit software (sourceforge.net/projects/drfit/). We show how our approach is successful in describing dose-response curves with multiphasic features. Additionally, we analysed a large cancer cell viability screen involving 11650 dose-response curves. Based on our algorithm, we found that 28% of cases were better described by a multiphasic model than by the Hill model. We thus provide a robust approach to fit dose-response curves with various degrees of complexity, which, together with the provided software implementation, should enable a wide audience to easily process their own data. PMID:26424192

  16. 75 FR 34734 - Improving Market and Planning Efficiency Through Improved Software; Notice of Agenda and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ... Federal Energy Regulatory Commission Improving Market and Planning Efficiency Through Improved Software... discuss issues related to enhanced optimal power flow models and software. The technical conference will... Software: An Extended AC Optimal Power Flow (AC XOPF) for Managing Available System Resources. 3:40 p.m...

  17. 76 FR 41790 - Increasing Market and Planning Efficiency Through Improved Software; Notice Establishing Date for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ... Energy Regulatory Commission Increasing Market and Planning Efficiency Through Improved Software; Notice... discuss opportunities for increasing real-time and day- ahead market efficiency through improved software... improved software, 76 Fed. Reg. 28,022 (2011). Parties wishing to submit written comments regarding...

  18. 76 FR 28022 - Increasing Market and Planning Efficiency Through Improved Software; Notice of Technical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    ... Energy Regulatory Commission Increasing Market and Planning Efficiency Through Improved Software; Notice... Software Take notice that Commission staff will convene a technical conference on June 28-30, 2011, from 8... efficiency through improved software. This conference will bring together diverse experts from ISOs/RTOs,...

  19. 78 FR 18974 - Increasing Market and Planning Efficiency Through Improved Software; Notice of Technical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... Energy Regulatory Commission Increasing Market and Planning Efficiency Through Improved Software; Notice... Software Take notice that Commission staff will convene a technical conference on June 24, 25, and 26, 2013... software. A detailed agenda with the list of and times for the selected speakers will be published on...

  20. 77 FR 19280 - Increasing Market and Planning Efficiency Through Improved Software; Notice of Technical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ... Energy Regulatory Commission Increasing Market and Planning Efficiency Through Improved Software; Notice... Software Take notice that Commission staff will convene a technical conference on June 25, 26, and 27, 2012... software. A detailed agenda with the list of and times for the selected speakers will be published on...

  1. 75 FR 30010 - Improving Market and Planning Efficiency Through Improved Software; Notice of Agenda and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-28

    ... Energy Regulatory Commission Improving Market and Planning Efficiency Through Improved Software; Notice... discuss issues related to unit commitment software. The technical conference will be held from 8 a.m. to 5..., Secretary. Agenda for AD10-12 Staff Technical Conference on Unit Commitment Software Federal...

  2. ICESat (GLAS) Science Processing Software Document Series. Volume 2; Science Data Management Plan; 4.0

    NASA Technical Reports Server (NTRS)

    Jester, Peggy L.; Hancock, David W., III

    1999-01-01

    This document provides the Data Management Plan for the GLAS Standard Data Software (SDS) supporting the GLAS instrument of the EOS ICESat Spacecraft. The SDS encompasses the ICESat Science Investigator-led Processing System (I-SIPS) Software and the Instrument Support Facility (ISF) Software. This Plan addresses the identification, authority, and description of the interface nodes associated with the GLAS Standard Data Products and the GLAS Ancillary Data.

  3. Multimodality Image Fusion and Planning and Dose Delivery for Radiation Therapy

    SciTech Connect

    Saw, Cheng B. Chen Hungcheng; Beatty, Ron E.; Wagner, Henry

    2008-07-01

    Image-guided radiation therapy (IGRT) relies on the quality of fused images to yield accurate and reproducible patient setup prior to dose delivery. The registration of 2 image datasets can be characterized as hardware-based or software-based image fusion. Hardware-based image fusion is performed by hybrid scanners that combine 2 distinct medical imaging modalities such as positron emission tomography (PET) and computed tomography (CT) into a single device. In hybrid scanners, the patient maintains the same position during both studies making the fusion of image data sets simple. However, it cannot perform temporal image registration where image datasets are acquired at different times. On the other hand, software-based image fusion technique can merge image datasets taken at different times or with different medical imaging modalities. Software-based image fusion can be performed either manually, using landmarks, or automatically. In the automatic image fusion method, the best fit is evaluated using mutual information coefficient. Manual image fusion is typically performed at dose planning and for patient setup prior to dose delivery for IGRT. The fusion of orthogonal live radiographic images taken prior to dose delivery to digitally reconstructed radiographs will be presented. Although manual image fusion has been routinely used, the use of fiducial markers has shortened the fusion time. Automated image fusion should be possible for IGRT because the image datasets are derived basically from the same imaging modality, resulting in further shortening the fusion time. The advantages and limitations of both hardware-based and software-based image fusion methodologies are discussed.

  4. Comp Plan: A computer program to generate dose and radiobiological metrics from dose-volume histogram files

    SciTech Connect

    Holloway, Lois Charlotte; Miller, Julie-Anne; Kumar, Shivani; Whelan, Brendan M.; Vinod, Shalini K.

    2012-10-01

    Treatment planning studies often require the calculation of a large number of dose and radiobiological metrics. To streamline these calculations, a computer program called Comp Plan was developed using MATLAB. Comp Plan calculates common metrics, including equivalent uniform dose, tumor control probability, and normal tissue complication probability from dose-volume histogram data. The dose and radiobiological metrics can be calculated for the original data or for an adjusted fraction size using the linear quadratic model. A homogeneous boost dose can be added to a given structure if desired. The final output is written to an Excel file in a format convenient for further statistical analysis. Comp Plan was verified by independent calculations. A lung treatment planning study comparing 45 plans for 7 structures using up to 6 metrics for each structure was successfully analyzed within approximately 5 minutes with Comp Plan. The code is freely available from the authors on request.

  5. A self-adaptive case-based reasoning system for dose planning in prostate cancer radiotherapy

    SciTech Connect

    Mishra, Nishikant; Petrovic, Sanja; Sundar, Santhanam

    2011-12-15

    Purpose: Prostate cancer is the most common cancer in the male population. Radiotherapy is often used in the treatment for prostate cancer. In radiotherapy treatment, the oncologist makes a trade-off between the risk and benefit of the radiation, i.e., the task is to deliver a high dose to the prostate cancer cells and minimize side effects of the treatment. The aim of our research is to develop a software system that will assist the oncologist in planning new treatments. Methods: A nonlinear case-based reasoning system is developed to capture the expertise and experience of oncologists in treating previous patients. Importance (weights) of different clinical parameters in the dose planning is determined by the oncologist based on their past experience, and is highly subjective. The weights are usually fixed in the system. In this research, the weights are updated automatically each time after generating a treatment plan for a new patient using a group based simulated annealing approach. Results: The developed approach is analyzed on the real data set collected from the Nottingham University Hospitals NHS Trust, City Hospital Campus, UK. Extensive experiments show that the dose plan suggested by the proposed method is coherent with the dose plan prescribed by an experienced oncologist or even better. Conclusions: The developed case-based reasoning system enables the use of knowledge and experience gained by the oncologist in treating new patients. This system may play a vital role to assist the oncologist in making a better decision in less computational time; it utilizes the success rate of the previously treated patients and it can also be used in teaching and training processes.

  6. Improving Patient Safety: Implementing Dose Monitoring Software in Fluoroscopically Guided Interventions.

    PubMed

    Heilmaier, Christina; Niklaus, Zuber; Berthold, Christian; Kara, Levent; Weishaupt, Dominik

    2015-11-01

    To assess whether dose monitoring software can be successfully implemented in fluoroscopically guided interventions and to provide dose data based on levels of complexity. After launching the software (DoseWatch; GE Healthcare Systems, Buc, France), data were collected for 6 months and analyzed by means of kerma-area product (KAP; Gy/cm(2)), cumulative air kerma (KA,R; Gy), and fluoroscopic time (minutes). Data analysis was executed by level of complexity as graded by the operators. Complexity grading was based on factors such as tortuosity and calcification of vessel, variant anatomy, and patient cooperation. The software successfully transferred dose data of 357 fluoroscopically guided procedures. KAP was 0.238-400 Gy/cm(2) with mean, median, and 75th percentile values of 46.0 Gy/cm(2), 163.2 Gy/cm(2), and 541.1 Gy/cm(2) (KA,R, 0.013-4.1 Gy; mean, median, 75th percentile, 0.48 Gy, 0.97 Gy, 3.98 Gy). Highest dose values were seen in transarterial chemoembolization (KAP mean, median, 75th percentile, 229.5 Gy/cm(2), 216.4 Gy/cm(2), 299.9 Gy/cm(2); KA,R mean, median, 75th percentile, 1.9 Gy, 1.2 Gy, 1.7 Gy). Analysis revealed that the level of complexity strongly correlated with KAP (r = 0.88; P < .001) whereas there was no direct correlation of KAP and fluoroscopy time. During the same intervention, KA,R and fluoroscopy time increased with level of complexity, but the correlation was not statistically significant. Implementation of dose monitoring software in fluoroscopically guided interventions can be successfully accomplished, and it facilitates data comparison. Copyright © 2015 SIR. Published by Elsevier Inc. All rights reserved.

  7. Patient-Specific Monte Carlo-Based Dose-Kernel Approach for Inverse Planning in Afterloading Brachytherapy

    SciTech Connect

    D'Amours, Michel; Pouliot, Jean; Dagnault, Anne; Verhaegen, Frank; Beaulieu, Luc

    2011-12-01

    Purpose: Brachytherapy planning software relies on the Task Group report 43 dosimetry formalism. This formalism, based on a water approximation, neglects various heterogeneous materials present during treatment. Various studies have suggested that these heterogeneities should be taken into account to improve the treatment quality. The present study sought to demonstrate the feasibility of incorporating Monte Carlo (MC) dosimetry within an inverse planning algorithm to improve the dose conformity and increase the treatment quality. Methods and Materials: The method was based on precalculated dose kernels in full patient geometries, representing the dose distribution of a brachytherapy source at a single dwell position using MC simulations and the Geant4 toolkit. These dose kernels are used by the inverse planning by simulated annealing tool to produce a fast MC-based plan. A test was performed for an interstitial brachytherapy breast treatment using two different high-dose-rate brachytherapy sources: the microSelectron iridium-192 source and the electronic brachytherapy source Axxent operating at 50 kVp. Results: A research version of the inverse planning by simulated annealing algorithm was combined with MC to provide a method to fully account for the heterogeneities in dose optimization, using the MC method. The effect of the water approximation was found to depend on photon energy, with greater dose attenuation for the lower energies of the Axxent source compared with iridium-192. For the latter, an underdosage of 5.1% for the dose received by 90% of the clinical target volume was found. Conclusion: A new method to optimize afterloading brachytherapy plans that uses MC dosimetric information was developed. Including computed tomography-based information in MC dosimetry in the inverse planning process was shown to take into account the full range of scatter and heterogeneity conditions. This led to significant dose differences compared with the Task Group report

  8. Patient-specific Monte Carlo-based dose-kernel approach for inverse planning in afterloading brachytherapy.

    PubMed

    D'Amours, Michel; Pouliot, Jean; Dagnault, Anne; Verhaegen, Frank; Beaulieu, Luc

    2011-12-01

    Brachytherapy planning software relies on the Task Group report 43 dosimetry formalism. This formalism, based on a water approximation, neglects various heterogeneous materials present during treatment. Various studies have suggested that these heterogeneities should be taken into account to improve the treatment quality. The present study sought to demonstrate the feasibility of incorporating Monte Carlo (MC) dosimetry within an inverse planning algorithm to improve the dose conformity and increase the treatment quality. The method was based on precalculated dose kernels in full patient geometries, representing the dose distribution of a brachytherapy source at a single dwell position using MC simulations and the Geant4 toolkit. These dose kernels are used by the inverse planning by simulated annealing tool to produce a fast MC-based plan. A test was performed for an interstitial brachytherapy breast treatment using two different high-dose-rate brachytherapy sources: the microSelectron iridium-192 source and the electronic brachytherapy source Axxent operating at 50 kVp. A research version of the inverse planning by simulated annealing algorithm was combined with MC to provide a method to fully account for the heterogeneities in dose optimization, using the MC method. The effect of the water approximation was found to depend on photon energy, with greater dose attenuation for the lower energies of the Axxent source compared with iridium-192. For the latter, an underdosage of 5.1% for the dose received by 90% of the clinical target volume was found. A new method to optimize afterloading brachytherapy plans that uses MC dosimetric information was developed. Including computed tomography-based information in MC dosimetry in the inverse planning process was shown to take into account the full range of scatter and heterogeneity conditions. This led to significant dose differences compared with the Task Group report 43 approach for the Axxent source. Copyright © 2011

  9. Technical aspects of the integration of three-dimensional treatment planning dose parameters (GEC-ESTRO Working Group) into pre-implant planning for LDR gynecological interstitial brachytherapy.

    PubMed

    Chi, A; Gao, M; Nguyen, N P; Albuquerque, K

    2009-06-01

    This study investigates the technical feasibility of pre-implant image-based treatment planning for LDR GYN interstitial brachytherapy(IB) based on the GEC-ESTRO guidelines. Initially, a virtual plan is generated based on the prescription dose and GEC-ESTRO defined OAR dose constraints with a pre-implant CT. After the actual implant, a regular diagnostic CT was obtained and fused with our pre-implant scan/initial treatment plan in our planning software. The Flexi-needle position changes, and treatment plan modifications were made if needed. Dose values were normalized to equivalent doses in 2 Gy fractions (LQED 2 Gy) derived from the linear-quadratic model with alpha/beta of 3 for late responding tissues and alpha/beta of 10 for early responding tissues. D(90) to the CTV, which was gross tumor (GTV) at the time of brachytherapy with a margin to count for microscopic disease, was 84.7 +/- 4.9% of the prescribed dose. The OAR doses were evaluated by D(2cc) (EBRT+IB). Mean D(2cc) values (LQED(2Gy)) for the rectum, bladder, sigmoid, and small bowel were the following: 63.7 +/- 8.4 Gy, 61.2 +/- 6.9 Gy, 48.0 +/- 3.5 Gy, and 49.9 +/- 4.2 Gy. This study confirms the feasibility of applying the GEC-ESTRO recommended dose parameters in pre-implant CT-based treatment planning in GYN IB. In the process, this pre-implant technique also demonstrates a good approximation of the target volume dose coverage, and doses to the OARs.

  10. The consequence of day-to-day stochastic dose deviation from the planned dose in fractionated radiation therapy.

    PubMed

    Paul, Subhadip; Roy, Prasun Kumar

    2016-02-01

    Radiation therapy is one of the important treatment procedures of cancer. The day-to-day delivered dose to the tissue in radiation therapy often deviates from the planned fixed dose per fraction. This day-to-day variation of radiation dose is stochastic. Here, we have developed the mathematical formulation to represent the day-to-day stochastic dose variation effect in radiation therapy. Our analysis shows that that the fixed dose delivery approximation under-estimates the biological effective dose, even if the average delivered dose per fraction is equal to the planned dose per fraction. The magnitude of the under-estimation effect relies upon the day-to-day stochastic dose variation level, the dose fraction size and the values of the radiobiological parameters of the tissue. We have further explored the application of our mathematical formulation for adaptive dose calculation. Our analysis implies that, compared to the premise of the Linear Quadratic Linear (LQL) framework, the Linear Quadratic framework based analytical formulation under-estimates the required dose per fraction necessary to produce the same biological effective dose as originally planned. Our study provides analytical formulation to calculate iso-effect in adaptive radiation therapy considering day-to-day stochastic dose deviation from planned dose and also indicates the potential utility of LQL framework in this context.

  11. Project W-211, initial tank retrieval systems, retrieval control system software configuration management plan

    SciTech Connect

    RIECK, C.A.

    1999-02-23

    This Software Configuration Management Plan (SCMP) provides the instructions for change control of the W-211 Project, Retrieval Control System (RCS) software after initial approval/release but prior to the transfer of custody to the waste tank operations contractor. This plan applies to the W-211 system software developed by the project, consisting of the computer human-machine interface (HMI) and programmable logic controller (PLC) software source and executable code, for production use by the waste tank operations contractor. The plan encompasses that portion of the W-211 RCS software represented on project-specific AUTOCAD drawings that are released as part of the C1 definitive design package (these drawings are identified on the drawing list associated with each C-1 package), and the associated software code. Implementation of the plan is required for formal acceptance testing and production release. The software configuration management plan does not apply to reports and data generated by the software except where specifically identified. Control of information produced by the software once it has been transferred for operation is the responsibility of the receiving organization.

  12. [Hardware and software for X-ray therapy planning].

    PubMed

    Zhizniakov, A L; Semenov, S I; Sushkova, L T; Troitskii, D P; Chirkov, K V

    2007-01-01

    Hardware, circuitry, and software suggested in this work make it possible to use the SLS-9 X-ray simulator for classical and computer tomographic imaging. The suggested hardware and software can be used as a basis for designing special-purpose tomographic systems.

  13. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan part 2 mappings for the ASC software quality engineering practices, version 2.0.

    SciTech Connect

    Heaphy, Robert; Sturtevant, Judith E.; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Minana, Molly A.; Hackney, Patricia; Forsythe, Christi A.; Schofield, Joseph Richard, Jr.; Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

    2006-09-01

    The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR001.3.2 and CPR001.3.6 and to a Department of Energy document, ''ASCI Software Quality Engineering: Goals, Principles, and Guidelines''. This document also identifies ASC management and software project teams' responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.

  14. Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan. Part 2, Mappings for the ASC software quality engineering practices. Version 1.0.

    SciTech Connect

    Ellis, Molly A.; Heaphy, Robert; Sturtevant, Judith E.; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Forsythe, Christi A.; Schofield, Joseph Richard, Jr.; Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

    2005-01-01

    The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR 1.3.2 and 1.3.6 and to a Department of Energy document, 'ASCI Software Quality Engineering: Goals, Principles, and Guidelines'. This document also identifies ASC management and software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.

  15. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan. Part 1: ASC software quality engineering practices, Version 2.0.

    SciTech Connect

    Sturtevant, Judith E.; Heaphy, Robert; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Minana, Molly A.; Hackney, Patricia; Forsythe, Christi A.; Schofield, Joseph Richard, Jr.; Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

    2006-09-01

    The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR 1.3.2 and 1.3.6 and to a Department of Energy document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines. This document also identifies ASC management and software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.

  16. A dose homogeneity and conformity evaluation between ViewRay and pinnacle-based linear accelerator IMRT treatment plans.

    PubMed

    Saenz, Daniel L; Paliwal, Bhudatt R; Bayouth, John E

    2014-04-01

    ViewRay, a novel technology providing soft-tissue imaging during radiotherapy is investigated for treatment planning capabilities assessing treatment plan dose homogeneity and conformity compared with linear accelerator plans. ViewRay offers both adaptive radiotherapy and image guidance. The combination of cobalt-60 (Co-60) with 0.35 Tesla magnetic resonance imaging (MRI) allows for magnetic resonance (MR)-guided intensity-modulated radiation therapy (IMRT) delivery with multiple beams. This study investigated head and neck, lung, and prostate treatment plans to understand what is possible on ViewRay to narrow focus toward sites with optimal dosimetry. The goal is not to provide a rigorous assessment of planning capabilities, but rather a first order demonstration of ViewRay planning abilities. Images, structure sets, points, and dose from treatment plans created in Pinnacle for patients in our clinic were imported into ViewRay. The same objectives were used to assess plan quality and all critical structures were treated as similarly as possible. Homogeneity index (HI), conformity index (CI), and volume receiving <20% of prescription dose (DRx) were calculated to assess the plans. The 95% confidence intervals were recorded for all measurements and presented with the associated bars in graphs. The homogeneity index (D5/D95) had a 1-5% inhomogeneity increase for head and neck, 3-8% for lung, and 4-16% for prostate. CI revealed a modest conformity increase for lung. The volume receiving 20% of the prescription dose increased 2-8% for head and neck and up to 4% for lung and prostate. Overall, for head and neck Co-60 ViewRay treatments planned with its Monte Carlo treatment planning software were comparable with 6 MV plans computed with convolution superposition algorithm on Pinnacle treatment planning system.

  17. Software for Project-Based Learning of Robot Motion Planning

    ERIC Educational Resources Information Center

    Moll, Mark; Bordeaux, Janice; Kavraki, Lydia E.

    2013-01-01

    Motion planning is a core problem in robotics concerned with finding feasible paths for a given robot. Motion planning algorithms perform a search in the high-dimensional continuous space of robot configurations and exemplify many of the core algorithmic concepts of search algorithms and associated data structures. Motion planning algorithms can…

  18. Software for Project-Based Learning of Robot Motion Planning

    ERIC Educational Resources Information Center

    Moll, Mark; Bordeaux, Janice; Kavraki, Lydia E.

    2013-01-01

    Motion planning is a core problem in robotics concerned with finding feasible paths for a given robot. Motion planning algorithms perform a search in the high-dimensional continuous space of robot configurations and exemplify many of the core algorithmic concepts of search algorithms and associated data structures. Motion planning algorithms can…

  19. Validation of in-house treatment planning system software for cobalt-60 teletherapy unit at two radiotherapy installations

    NASA Astrophysics Data System (ADS)

    Mu'minah, I. A. S.; Toresano, L. O. H. Z.; Wibowo, W. E.; Sugiyantari; Pawiro, S. A.

    2016-03-01

    DSSuperDose v.1.0 is an in-house treatment planning system (TPS) developed by Medical Physics and Biophysics Laboratory (LFMB) Universitas Indonesia as a treatment planning software for Cobalt-60 teletherapy unit. The main objective of this study was the validation of in-house TPS calculation as an essential part in quality assurance (QA) of radiotherapy. Validation of an in-house TPS was performed with two Cobalt-60 teletherapy units by comparison between in-house TPS and ISIS TPS and by measurements of absorbed dose. Mean dose deviations between in-house TPS and measurement were (1.97 ± 2.42)% for open field, (1.32 ± 1.30)% for tray field, and (2.91 ± 2.36)% for wedge field treatments. In-house TPS provide optimal planning for open and tray beam conditions with depth fewer than 10 cm (≤ 10 cm) and field sizes up to 20×20 cm2, while for wedge beam conditions with field sizes fewer than the physical size of the wedge. Comparison of in-house TPS and ISIS TPS demonstrated a good match of 96%. From the results, it is concluded that DSSuperDose v.1.0 is adequately accurate for treatment planning of radiotherapy.

  20. Absorbed doses behind bones with MR image-based dose calculations for radiotherapy treatment planning.

    PubMed

    Korhonen, Juha; Kapanen, Mika; Keyrilainen, Jani; Seppala, Tiina; Tuomikoski, Laura; Tenhunen, Mikko

    2013-01-01

    Magnetic resonance (MR) images are used increasingly in external radiotherapy target delineation because of their superior soft tissue contrast compared to computed tomography (CT) images. Nevertheless, radiotherapy treatment planning has traditionally been based on the use of CT images, due to the restrictive features of MR images such as lack of electron density information. This research aimed to measure absorbed radiation doses in material behind different bone parts, and to evaluate dose calculation errors in two pseudo-CT images; first, by assuming a single electron density value for the bones, and second, by converting the electron density values inside bones from T(1)∕T(2)∗-weighted MR image intensity values. A dedicated phantom was constructed using fresh deer bones and gelatine. The effect of different bone parts to the absorbed dose behind them was investigated with a single open field at 6 and 15 MV, and measuring clinically detectable dose deviations by an ionization chamber matrix. Dose calculation deviations in a conversion-based pseudo-CT image and in a bulk density pseudo-CT image, where the relative electron density to water for the bones was set as 1.3, were quantified by comparing the calculation results with those obtained in a standard CT image by superposition and Monte Carlo algorithms. The calculations revealed that the applied bulk density pseudo-CT image causes deviations up to 2.7% (6 MV) and 2.0% (15 MV) to the dose behind the examined bones. The corresponding values in the conversion-based pseudo-CT image were 1.3% (6 MV) and 1.0% (15 MV). The examinations illustrated that the representation of the heterogeneous femoral bone (cortex denser compared to core) by using a bulk density for the whole bone causes dose deviations up to 2% both behind the bone edge and the middle part of the bone (diameter <2.5 cm), but in the opposite directions. The measured doses and the calculated ones in the standard CT image were within 0.4% (through

  1. Software management and implementation plan for the Microwave Limb Sounder (MLS) carried on a NASA Earth Observing System (EOS) satellite

    NASA Technical Reports Server (NTRS)

    Shaw, H. Y.; Girard, M. A.; Perun, V. S.; Sherif, J. S.

    2003-01-01

    This paper presents a Software Management and Implementation Plan (SIMP) for managing and controlling the development of the Microwave Limb Sounder (MLS) instrument software, and the Instrument Ground Support Equipment (IGSE) software.

  2. Numerical arc segmentation algorithm for a radio conference - A software tool for communication satellite systems planning

    NASA Technical Reports Server (NTRS)

    Whyte, W. A.; Heyward, A. O.; Ponchak, D. S.; Spence, R. L.; Zuzek, J. E.

    1988-01-01

    A detailed description of a Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC) software package for communication satellite systems planning is presented. This software provides a method of generating predetermined arc segments for use in the development of an allotment planning procedure to be carried out at the 1988 World Administrative Radio Conference (WARC - 88) on the use of the GEO and the planning of space services utilizing GEO. The features of the NASARC software package are described, and detailed information is given about the function of each of the four NASARC program modules. The results of a sample world scenario are presented and discussed.

  3. Numerical arc segmentation algorithm for a radio conference - A software tool for communication satellite systems planning

    NASA Technical Reports Server (NTRS)

    Whyte, W. A.; Heyward, A. O.; Ponchak, D. S.; Spence, R. L.; Zuzek, J. E.

    1988-01-01

    A detailed description of a Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC) software package for communication satellite systems planning is presented. This software provides a method of generating predetermined arc segments for use in the development of an allotment planning procedure to be carried out at the 1988 World Administrative Radio Conference (WARC - 88) on the use of the GEO and the planning of space services utilizing GEO. The features of the NASARC software package are described, and detailed information is given about the function of each of the four NASARC program modules. The results of a sample world scenario are presented and discussed.

  4. Incorporating cost-benefit analyses into software assurance planning

    NASA Technical Reports Server (NTRS)

    Feather, M. S.; Sigal, B.; Cornford, S. L.; Hutchinson, P.

    2001-01-01

    The objective is to use cost-benefit analyses to identify, for a given project, optimal sets of software assurance activities. Towards this end we have incorporated cost-benefit calculations into a risk management framework.

  5. Development of a Radiation Dose Reporting Software for X-ray Computed Tomography (CT)

    NASA Astrophysics Data System (ADS)

    Ding, Aiping

    X-ray computed tomography (CT) has experienced tremendous technological advances in recent years and has established itself as one of the most popular diagnostic imaging tools. While CT imaging clearly plays an invaluable role in modern medicine, its rapid adoption has resulted in a dramatic increase in the average medical radiation exposure to the worldwide and United States populations. Existing software tools for CT dose estimation and reporting are mostly based on patient phantoms that contain overly simplified anatomies insufficient in meeting the current and future needs. This dissertation describes the development of an easy-to-use software platform, “VirtualDose”, as a service to estimate and report the organ dose and effective dose values for patients undergoing the CT examinations. “VirtualDose” incorporates advanced models for the adult male and female, pregnant women, and children. To cover a large portion of the ignored obese patients that frequents the radiology clinics, a new set of obese male and female phantoms are also developed and applied to study the effects of the fat tissues on the CT radiation dose. Multi-detector CT scanners (MDCT) and clinical protocols, as well as the most recent effective dose algorithms from the International Commission on Radiological Protection (ICRP) Publication 103 are adopted in “VirtualDose” to keep pace with the MDCT development and regulatory requirements. A new MDCT scanner model with both body and head bowtie filter is developed to cover both the head and body scanning modes. This model was validated through the clinical measurements. A comprehensive slice-by-slice database is established by deriving the data from a larger number of single axial scans simulated on the patient phantoms using different CT bowtie filters, beam thicknesses, and different tube voltages in the Monte Carlo N-Particle Extended (MCNPX) code. When compared to the existing CT dose software packages, organ dose data in this

  6. Implementing smart infusion pumps with dose-error reduction software: real-world experiences.

    PubMed

    Heron, Claire

    2017-04-27

    Intravenous (IV) drug administration, especially with 'smart pumps', is complex and susceptible to errors. Although errors can occur at any stage of the IV medication process, most errors occur during reconstitution and administration. Dose-error reduction software (DERS) loaded on to infusion pumps incorporates a drug library with predefined upper and lower drug dose limits and infusion rates, which can reduce IV infusion errors. Although this is an important advance for patient safety at the point of care, uptake is still relatively low. This article discuses the challenges and benefits of implementing DERS in clinical practice as experienced by three UK trusts.

  7. SU-E-T-76: A Software System to Monitor VMAT Plan Complexity in a Large Radiotherapy Centre

    SciTech Connect

    Arumugam, S; Xing, A; Vial, P; Thwaites, D; Holloway, L

    2015-06-15

    Purpose: To develop a system that analyses and reports the complexity of Volumetric Modulated Arc Therapy (VMAT) plans to aid in the decision making for streamlining patient specific dosimetric quality assurance (QA) tests. Methods: A software system, Delcheck, was developed in-house to calculate VMAT plan and delivery complexity using the treatment delivery file. Delcheck has the functionality to calculate multiple plan complexity metrics including the Li-Xing Modulation Index (LI-MI), multiplicative combination of Leaf Travel and Modulation Complexity Score (LTMCSv), Monitor Units per prescribed dose (MU/D) and the delivery complexity index (MIt) that incorporates the modulation of dose rate, leaf speed and gantry speed. Delcheck includes database functionality to store and compare plan metrics for a specified treatment site. The overall plan and delivery complexity is assessed based on the 95% conformance limit of the complexity metrics as Similar, More or Less complex. The functionality of the software was tested using 42 prostate conventional, 10 prostate SBRT and 15 prostate bed VMAT plans generated for an Elekta linear accelerator. Results: The mean(σ) of LI-MI for conventional, SBRT and prostate bed plans were 1690(486), 3215.4(1294) and 3258(982) respectively. The LTMCSv of the studied categories were 0.334(0.05), 0.325(0.07) and 0.3112(0.09). The MU/D of the studied categories were 2.4(0.4), 2.7(0.7) and 2.5(0.5). The MIt of the studied categories were 21.6(3.4), 18.2(3.0) and 35.9(6.6). The values of the complexity metrics show that LI-MI appeared to resolve the plan complexity better than LTMCSv and MU/D. The MIt value increased as the delivery complexity increased. Conclusion: The developed software was shown to be working as expected. In studied treatment categories Prostate bed plans are more complex in both plan and delivery and SBRT is more complex in plan and less complex in delivery as demonstrated by LI-MI and MIt. This project was funded

  8. Training software using virtual-reality technology and pre-calculated effective dose data.

    PubMed

    Ding, Aiping; Zhang, Di; Xu, X George

    2009-05-01

    This paper describes the development of a software package, called VR Dose Simulator, which aims to provide interactive radiation safety and ALARA training to radiation workers using virtual-reality (VR) simulations. Combined with a pre-calculated effective dose equivalent (EDE) database, a virtual radiation environment was constructed in VR authoring software, EON Studio, using 3-D models of a real nuclear power plant building. Models of avatars representing two workers were adopted with arms and legs of the avatar being controlled in the software to simulate walking and other postures. Collision detection algorithms were developed for various parts of the 3-D power plant building and avatars to confine the avatars to certain regions of the virtual environment. Ten different camera viewpoints were assigned to conveniently cover the entire virtual scenery in different viewing angles. A user can control the avatar to carry out radiological engineering tasks using two modes of avatar navigation. A user can also specify two types of radiation source: Cs and Co. The location of the avatar inside the virtual environment during the course of the avatar's movement is linked to the EDE database. The accumulative dose is calculated and displayed on the screen in real-time. Based on the final accumulated dose and the completion status of all virtual tasks, a score is given to evaluate the performance of the user. The paper concludes that VR-based simulation technologies are interactive and engaging, thus potentially useful in improving the quality of radiation safety training. The paper also summarizes several challenges: more streamlined data conversion, realistic avatar movement and posture, more intuitive implementation of the data communication between EON Studio and VB.NET, and more versatile utilization of EDE data such as a source near the body, etc., all of which needs to be addressed in future efforts to develop this type of software.

  9. Vancomycin dosing: assessment of time to therapeutic concentration and predictive accuracy of pharmacokinetic modeling software.

    PubMed

    Nunn, Maya O; Corallo, Carmela E; Aubron, Cecile; Poole, Susan; Dooley, Michael J; Cheng, Allen C

    2011-06-01

    Therapeutic drug monitoring is usually required for safe and effective administration of vancomycin. However, dosing recommendations from published guidelines are not suitable in achieving therapeutic vancomycin concentrations in a timely manner in patients with normal renal function. To audit vancomycin dosing and concentrations at our institution and evaluate the predictive accuracy of a pharmacokinetic simulation program, with a view to implementing a pharmacy-based pharmacokinetic service for vancomycin monitoring. Patients receiving vancomycin were identified prospectively through the therapeutic drug monitoring archives. Patient information was obtained from medication charts and medical records that were located on wards. Data were entered into the MM-USC*Pack program (Jelliffe R, University of Southern California, 2008, version 12.10). This software was used to predict initial and subsequent concentrations of vancomycin based on patient parameters. The predictive accuracy of this software was evaluated by comparing the predicted concentrations to the observed concentrations. During a 6-week period, 204 concentrations were measured in 77 patients. The most common dosing regimen was 1 g every 12 hours. Overall, initial trough concentrations were subtherapeutic (<10 mg/L) in 58% of patients and trough concentrations did not become therapeutic at any stage throughout therapy in 25% of patients. The pharmacokinetic modeling software demonstrated little systematic bias (-3.1%), but the precision (median prediction error) was 23% (interquartile range, 11-45%). Predictions were poorer in obese patients (body mass index >35 kg/m(2)) and in patients with unstable renal function. A delay in attaining target trough concentrations was observed in a significant proportion of patients. Pharmacokinetic modeling software is a potential tool to improve the timeliness of achieving adequate dosing by allowing concentrations to be determined prior to steady-state. The program

  10. TH-A-19A-01: An Open Source Software for Proton Treatment Planning in Heterogeneous Medium

    SciTech Connect

    Desplanques, M; Baroni, G; Wang, K; Phillips, J; Gueorguiev, G; Sharp, G

    2014-06-15

    Purpose: Due to its success in Radiation Oncology during the last decade, interest in proton therapy is on the rise. Unfortunately, despite the global enthusiasm in the field, there is presently no free, multiplatform and customizable Treatment Planning System (TPS) providing proton dose distributions in heterogenous medium. This restricts substantially the progress of clinical research for groups without access to a commercial Proton TPS. The latest implementation of our pencil beam dose calculation algorithm for proton beams within the 3D Slicer open-source environment fulfills all the conditions described above. Methods: The core dose calculation algorithm is based on the Hong algorithm (1), which was upgraded with the Kanematsu theory describing the evolution of the lateral scattering of proton beamlets in heterogeneous medium. This algorithm deals with both mono-energetic beams and Spread Out Bragg Peak (SOBP). In order to be user-friendly, we provide a graphical user interface implemented with the Qt libraries, and visualization with the 3D Slicer medical image analysis software. Two different pencil beam algorithms were developed, and the clinical proton beam line at our facility was modeled. Results: The dose distributions provided by our algorithms were compared to dose distributions coming from both commercialized XiO TPS and literature (dose measurements, GEANT4 and MCNPx) and turned out to be in a good agreement, with maximum dose discrepancies of 5% in homogeneous phantoms and 10% in heterogeneous phantoms. The algorithm of SOBP creation from an optimized weigthing of mono-energetic beams results in flat SOBP. Conclusion: We hope that our efforts in implementing this new, open-source proton TPS will help the research groups to have a free access to a useful, reliable proton dose calculation software.(1) L. Hong et al., A pencil beam algorithm for proton dose calculations, Phys. Med. Biol. 41 (1996) 1305–1330. This project is paid for by NCI

  11. Tandem-ring dwell time ratio in Nigeria: dose comparisons of two loading patterns in standard high-dose-rate brachytherapy planning for cervical cancer

    PubMed Central

    Ibhade, Obed Rachel; Idayat, Akinlade Bidemi; Atara I., Ntekim

    2015-01-01

    Purpose In high-dose-rate (HDR) brachytherapy (BT), the source dwell times and dwell positions are essential treatment planning parameters. An optimal choice of these factors is fundamental to obtain the desired target coverage with the lowest achievable dose to the organs at risk (OARs). This study evaluates relevant dose parameters in cervix brachytherapy in order to assess existing tandem-ring dwell time ratio used at the first HDR BT center in Nigeria, and compare it with an alternative source loading pattern. Material and methods At the Radiotherapy Department, University College Hospital (UCH), Ibadan, Nigeria, a total of 370 standard treatment plans in two alternative sets were generated with HDR basic 2.6 software for one hundred and eighty five cervical cancer patients. The initial 185 individual plans were created for clinical treatment using the tandem-ring dwell time ratio of 1 : 1. Modifying the initial applicator loading ratio, the second set of plans with related dose data were also obtained for study purposes only. Total reference air kerma (TRAK), total time index (TTI), ICRU volume, treatment time, point B dose, ICRU bladder dose, and rectal points dose were evaluated for both sets of plans. Results The means of all evaluated dose parameters decreased when the existing tandem-ring dwell time ratio (1 : 1) was modified to other dwell weightings (1 : 1 – 3 : 1). These reductions were 13.43% (ICRU volume), 9.83% (rectal dose), 6.68% (point B dose), 6.08% (treatment time), 5.90% (TRAK), 5.88% (TTI), and 1.08% (bladder dose). Correspondingly, coefficients of variation changed by –7.98%, –5.02%, –5.23%, –4.20%, –3.93%, 8.65%, and 3.96% from the existing pattern to the alternative one. Conclusion Tandem-ring dwell time ratio has significant influence on dosimetric parameters. This study has indicated the need to modify the existing planning approach at UCH. PMID:26034498

  12. Software Configuration Management Plan for the B-Plant Canyon Ventilation Control System

    SciTech Connect

    MCDANIEL, K.S.

    1999-08-31

    Project W-059 installed a new B Plant Canyon Ventilation System. Monitoring and control of the system is implemented by the Canyon Ventilation Control System (CVCS). This Software Configuration Management Plan provides instructions for change control of the CVCS.

  13. SimDoseCT: dose reporting software based on Monte Carlo simulation for a 320 detector-row cone-beam CT scanner and ICRP computational adult phantoms

    NASA Astrophysics Data System (ADS)

    Cros, Maria; Joemai, Raoul M. S.; Geleijns, Jacob; Molina, Diego; Salvadó, Marçal

    2017-08-01

    This study aims to develop and test software for assessing and reporting doses for standard patients undergoing computed tomography (CT) examinations in a 320 detector-row cone-beam scanner. The software, called SimDoseCT, is based on the Monte Carlo (MC) simulation code, which was developed to calculate organ doses and effective doses in ICRP anthropomorphic adult reference computational phantoms for acquisitions with the Aquilion ONE CT scanner (Toshiba). MC simulation was validated by comparing CTDI measurements within standard CT dose phantoms with results from simulation under the same conditions. SimDoseCT consists of a graphical user interface connected to a MySQL database, which contains the look-up-tables that were generated with MC simulations for volumetric acquisitions at different scan positions along the phantom using any tube voltage, bow tie filter, focal spot and nine different beam widths. Two different methods were developed to estimate organ doses and effective doses from acquisitions using other available beam widths in the scanner. A correction factor was used to estimate doses in helical acquisitions. Hence, the user can select any available protocol in the Aquilion ONE scanner for a standard adult male or female and obtain the dose results through the software interface. Agreement within 9% between CTDI measurements and simulations allowed the validation of the MC program. Additionally, the algorithm for dose reporting in SimDoseCT was validated by comparing dose results from this tool with those obtained from MC simulations for three volumetric acquisitions (head, thorax and abdomen). The comparison was repeated using eight different collimations and also for another collimation in a helical abdomen examination. The results showed differences of 0.1 mSv or less for absolute dose in most organs and also in the effective dose calculation. The software provides a suitable tool for dose assessment in standard adult patients undergoing CT

  14. SimDoseCT: dose reporting software based on Monte Carlo simulation for a 320 detector-row cone-beam CT scanner and ICRP computational adult phantoms.

    PubMed

    Cros, Maria; Joemai, Raoul M S; Geleijns, Jacob; Molina, Diego; Salvadó, Marçal

    2017-07-17

    This study aims to develop and test software for assessing and reporting doses for standard patients undergoing computed tomography (CT) examinations in a 320 detector-row cone-beam scanner. The software, called SimDoseCT, is based on the Monte Carlo (MC) simulation code, which was developed to calculate organ doses and effective doses in ICRP anthropomorphic adult reference computational phantoms for acquisitions with the Aquilion ONE CT scanner (Toshiba). MC simulation was validated by comparing CTDI measurements within standard CT dose phantoms with results from simulation under the same conditions. SimDoseCT consists of a graphical user interface connected to a MySQL database, which contains the look-up-tables that were generated with MC simulations for volumetric acquisitions at different scan positions along the phantom using any tube voltage, bow tie filter, focal spot and nine different beam widths. Two different methods were developed to estimate organ doses and effective doses from acquisitions using other available beam widths in the scanner. A correction factor was used to estimate doses in helical acquisitions. Hence, the user can select any available protocol in the Aquilion ONE scanner for a standard adult male or female and obtain the dose results through the software interface. Agreement within 9% between CTDI measurements and simulations allowed the validation of the MC program. Additionally, the algorithm for dose reporting in SimDoseCT was validated by comparing dose results from this tool with those obtained from MC simulations for three volumetric acquisitions (head, thorax and abdomen). The comparison was repeated using eight different collimations and also for another collimation in a helical abdomen examination. The results showed differences of 0.1 mSv or less for absolute dose in most organs and also in the effective dose calculation. The software provides a suitable tool for dose assessment in standard adult patients undergoing CT

  15. Validation study of ultrasound-based high-dose-rate prostate brachytherapy planning compared with CT-based planning.

    PubMed

    Batchelar, Deidre; Gaztañaga, Miren; Schmid, Matt; Araujo, Cynthia; Bachand, François; Crook, Juanita

    2014-01-01

    The use of transrectal ultrasound (TRUS) to both guide and plan high-dose-rate (HDR) brachytherapy (BT) for prostate is increasing. Studies using prostate phantoms have demonstrated the accuracy of ultrasound (US) needle tip reconstruction compared with CT imaging standard. We have assessed the in vivo accuracy of needle tip localization by TRUS using cone-beam CT (CBCT) as our reference standard. Needle positions from 37 implants have been analyzed. A median of 16 needles (range, 16-18) per implant were inserted, advanced to the prostate base, and their tips identified using live TRUS images and real-time planning BT software. Needle protrusion length from the template was recorded to allow for reverification before capturing images for planning. The needles remained locked in the template, which was fixed to the stepper, while a set of three-dimensional TRUS images was acquired for needle path reconstruction and HDR-BT treatment planning. Following treatment, CBCT images were acquired for subsequent needle reconstruction using a BT Treatment Planning System. The coordinates of each needle tip were recorded from the Treatment Planning System for CT and US and compared. A total of 574 needle tip positions have been compared between TRUS and CBCT. Of these, 59% agreed within 1 mm, 27% within 1-2 mm, and 11% agreed within 2-3 mm. The discrepancy between tip positions in the two modalities was greater than 3 mm for only 20 needles (3%). The US needle tip identification in vivo is at least as accurate as CT identification, while providing all the advantages of a one-step procedure. Copyright © 2014 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  16. Benefits of advanced software techniques for mission planning systems

    NASA Technical Reports Server (NTRS)

    Gasquet, A.; Parrod, Y.; Desaintvincent, A.

    1994-01-01

    The increasing complexity of modern spacecraft, and the stringent requirement for maximizing their mission return, call for a new generation of Mission Planning Systems (MPS). In this paper, we discuss the requirements for the Space Mission Planning and the benefits which can be expected from Artificial Intelligence techniques through examples of applications developed by Matra Marconi Space.

  17. Hyperspectral Soil Mapper (HYSOMA) software interface: Review and future plans

    NASA Astrophysics Data System (ADS)

    Chabrillat, Sabine; Guillaso, Stephane; Eisele, Andreas; Rogass, Christian

    2014-05-01

    With the upcoming launch of the next generation of hyperspectral satellites that will routinely deliver high spectral resolution images for the entire globe (e.g. EnMAP, HISUI, HyspIRI, HypXIM, PRISMA), an increasing demand for the availability/accessibility of hyperspectral soil products is coming from the geoscience community. Indeed, many robust methods for the prediction of soil properties based on imaging spectroscopy already exist and have been successfully used for a wide range of soil mapping airborne applications. Nevertheless, these methods require expert know-how and fine-tuning, which makes them used sparingly. More developments are needed toward easy-to-access soil toolboxes as a major step toward the operational use of hyperspectral soil products for Earth's surface processes monitoring and modelling, to allow non-experienced users to obtain new information based on non-expensive software packages where repeatability of the results is an important prerequisite. In this frame, based on the EU-FP7 EUFAR (European Facility for Airborne Research) project and EnMAP satellite science program, higher performing soil algorithms were developed at the GFZ German Research Center for Geosciences as demonstrators for end-to-end processing chains with harmonized quality measures. The algorithms were built-in into the HYSOMA (Hyperspectral SOil MApper) software interface, providing an experimental platform for soil mapping applications of hyperspectral imagery that gives the choice of multiple algorithms for each soil parameter. The software interface focuses on fully automatic generation of semi-quantitative soil maps such as soil moisture, soil organic matter, iron oxide, clay content, and carbonate content. Additionally, a field calibration option calculates fully quantitative soil maps provided ground truth soil data are available. Implemented soil algorithms have been tested and validated using extensive in-situ ground truth data sets. The source of the HYSOMA

  18. 77 FR 50727 - Configuration Management Plans for Digital Computer Software Used in Safety Systems of Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ... in Safety Systems of Nuclear Power Plants.'' The DG-1206 is proposed Revision 1 of RG 1.169, dated... Digital Computer Software Used in Safety Systems of Nuclear Power Plants'' is temporarily identified by... Plans for Digital Computer Software Used in Safety Systems of Nuclear Power Plants'' dated September...

  19. Windows Calorimeter Control (WinCal) program computer software configuration management plan

    SciTech Connect

    1997-03-26

    This document describes the system configuration management activities performed in support of the Windows Calorimeter Control (WinCal) system, in accordance with Site procedures based on Institute of Electrical and Electronic Engineers (IEEE) Standard 828-1990, Standard for Software Configuration Management Plans (IEEE 1990) and IEEE Standard 1042-1987, Guide to Software Configuration Management (IEEE 1987).

  20. Vienna VLBI Software: Current Release and Plans for the Future

    NASA Astrophysics Data System (ADS)

    Böhm, Johannes; Krásná, Hana; Böhm, Sigrid; Choliy, Vasyl; Hellerschmied, Andreas; Hofmeister, Armin; Karbon, Maria; Mayer, David; McCallum, Jamie; Madzak, Matthias; Nilsson, Tobias; Plank, Lucia; Shabala, Stanislav; Soja, Benedikt; Sun, Jing; Teke, Kamil

    2014-12-01

    The Vienna VLBI Software (VieVS) is a geodetic VLBI data analysis software written in Matlab. It has been developed and maintained at the Department of Geodesy and Geoinformation of the Vienna University of Technology since 2008. Recent improvements and extensions include a source structure simulator, additional estimable parameters in the global solution such as harmonic station position variations, and tools to observe satellites with VLBI radio telescopes and to analyze these observations. A highlight each year is the VieVS User Workshop which is held in September at TU Vienna. The VieVS Web site can be accessed at http://vievs.geo.tuwien.ac.at/.

  1. Enterprise Resource Planning Software in the Human Resource Classroom

    ERIC Educational Resources Information Center

    Bedell, Michael D.; Floyd, Barry D.; Nicols, Kay McGlashan; Ellis, Rebecca

    2007-01-01

    The relatively recent development of comprehensive human resource information systems (HRIS) software has led to a large demand for technologically literate human resource (HR) professionals. For the college student who is about to begin the search for that first postcollege job, the need to develop technology literacy is even more necessary. To…

  2. Enterprise Resource Planning Software in the Human Resource Classroom

    ERIC Educational Resources Information Center

    Bedell, Michael D.; Floyd, Barry D.; Nicols, Kay McGlashan; Ellis, Rebecca

    2007-01-01

    The relatively recent development of comprehensive human resource information systems (HRIS) software has led to a large demand for technologically literate human resource (HR) professionals. For the college student who is about to begin the search for that first postcollege job, the need to develop technology literacy is even more necessary. To…

  3. Comparison of composite prostate radiotherapy plan doses with dependent and independent boost phases.

    PubMed

    Narayanasamy, Ganesh; Avila, Gabrielle; Mavroidis, Panayiotis; Papanikolaou, Niko; Gutierrez, Alonso; Baacke, Diana; Shi, Zheng; Stathakis, Sotirios

    2016-09-01

    Prostate cases commonly consist of dual phase planning with a primary plan followed by a boost. Traditionally, the boost phase is planned independently from the primary plan with the risk of generating hot or cold spots in the composite plan. Alternatively, boost phase can be planned taking into account the primary dose. The aim of this study was to compare the composite plans from independently and dependently planned boosts using dosimetric and radiobiological metrics. Ten consecutive prostate patients previously treated at our institution were used to conduct this study on the Raystation™ 4.0 treatment planning system. For each patient, two composite plans were developed: a primary plan with an independently planned boost and a primary plan with a dependently planned boost phase. The primary plan was prescribed to 54 Gy in 30 fractions to the primary planning target volume (PTV1) which includes prostate and seminal vesicles, while the boost phases were prescribed to 24 Gy in 12 fractions to the boost planning target volume (PTV2) that targets only the prostate. PTV coverage, max dose, median dose, target conformity, dose homogeneity, dose to OARs, and probabilities of benefit, injury, and complication-free tumor control (P+) were compared. Statistical significance was tested using either a 2-tailed Student's t-test or Wilcoxon signed-rank test. Dosimetrically, the composite plan with dependent boost phase exhibited smaller hotspots, lower maximum dose to the target without any significant change to normal tissue dose. Radiobiologically, for all but one patient, the percent difference in the P+ values between the two methods was not significant. A large percent difference in P+ value could be attributed to an inferior primary plan. The benefits of considering the dose in primary plan while planning the boost is not significant unless a poor primary plan was achieved.

  4. Saltwell Leak Detector Station Programmable Logic Controller (PLC) Software Configuration Management Plan (SCMP)

    SciTech Connect

    WHITE, K.A.

    2000-11-28

    This document provides the procedures and guidelines necessary for computer software configuration management activities during the operation and maintenance phases of the Saltwell Leak Detector Stations as required by HNF-PRO-309, Rev. 1, Computer Software Quality Assurance, Section 2.4, Software Configuration Management. The software configuration management plan (SCMP) integrates technical and administrative controls to establish and maintain technical consistency among requirements, physical configuration, and documentation for the Saltwell Leak Detector Station Programmable Logic Controller (PLC) software during the Hanford application, operations and maintenance. This SCMP establishes the Saltwell Leak Detector Station PLC Software Baseline, status changes to that baseline, and ensures that software meets design and operational requirements and is tested in accordance with their design basis.

  5. Saltwell PIC Skid Programmable Logic Controller (PLC) Software Configuration Management Plan

    SciTech Connect

    KOCH, M.R.

    1999-11-16

    This document provides the procedures and guidelines necessary for computer software configuration management activities during the operation and maintenance phases of the Saltwell PIC Skids as required by LMH-PRO-309, Rev. 0, Computer Software Quality Assurance, Section 2.6, Software Configuration Management. The software configuration management plan (SCMP) integrates technical and administrative controls to establish and maintain technical consistency among requirements, physical configuration, and documentation for the Saltwell PIC Skid Programmable Logic Controller (PLC) software during the Hanford application, operations and maintenance. This SCMP establishes the Saltwell PIC Skid PLC Software Baseline, status changes to that baseline, and ensures that software meets design and operational requirements and is tested in accordance with their design basis.

  6. Using Software Applications to Facilitate and Enhance Strategic Planning

    DTIC Science & Technology

    1993-09-01

    planning group . The Analytic Hierarchy Process, using multi-variable criteria, is capable of ’what if" analysis and goal seeking to choose among...being considered by a planning group . The Analytic Hierarchy Process, using multi-variable criteria, is capable of "what if" analysis and goal...decision making. (Eden 1990, p. 36) b. Strategic Options Development and Analysis SODA is a group decision support system (GDSS) which uses a facilitator

  7. Franchise Plan. Central Archive for Reusable Defense Software (CARDS)

    DTIC Science & Technology

    1994-02-28

    process that assesses the business requirements and the critical success factors necessary to facilitate reuse planning. The Requirements/Implementaton...reuse infrastructure development: Analysis Implementation Study 3.4 I 3.5 !4.3 II4.4 Plan Figure 2-2 Reuse Analysis Activities "* Business Requirements which...functions. [MAR90] The business requirements will be determined by assessing the organization’s goals, objectives, domain infrastructure and technology

  8. SU-E-T-455: Impact of Different Independent Dose Verification Software Programs for Secondary Check

    SciTech Connect

    Itano, M; Yamazaki, T; Kosaka, M; Kobayashi, N; Yamashita, M; Ishibashi, S; Higuchi, Y; Tachibana, H

    2015-06-15

    Purpose: There have been many reports for different dose calculation algorithms for treatment planning system (TPS). Independent dose verification program (IndpPro) is essential to verify clinical plans from the TPS. However, the accuracy of different independent dose verification programs was not evident. We conducted a multi-institutional study to reveal the impact of different IndpPros using different TPSs. Methods: Three institutes participated in this study. They used two different IndpPros (RADCALC and Simple MU Analysis (SMU), which implemented the Clarkson algorithm. RADCALC needed the input of radiological path length (RPL) computed by the TPSs (Eclipse or Pinnacle3). SMU used CT images to compute the RPL independently from TPS). An ion-chamber measurement in water-equivalent phantom was performed to evaluate the accuracy of two IndpPros and the TPS in each institute. Next, the accuracy of dose calculation using the two IndpPros compared to TPS was assessed in clinical plan. Results: The accuracy of IndpPros and the TPSs in the homogenous phantom was +/−1% variation to the measurement. 1543 treatment fields were collected from the patients treated in the institutes. The RADCALC showed better accuracy (0.9 ± 2.2 %) than the SMU (1.7 ± 2.1 %). However, the accuracy was dependent on the TPS (Eclipse: 0.5%, Pinnacle3: 1.0%). The accuracy of RADCALC with Eclipse was similar to that of SMU in one of the institute. Conclusion: Depending on independent dose verification program, the accuracy shows systematic dose accuracy variation even though the measurement comparison showed a similar variation. The variation was affected by radiological path length calculation. IndpPro with Pinnacle3 has different variation because Pinnacle3 computed the RPL using physical density. Eclipse and SMU uses electron density, though.

  9. Dose/volume-response relations for rectal morbidity using planned and simulated motion-inclusive dose distributions.

    PubMed

    Thor, Maria; Apte, Aditya; Deasy, Joseph O; Karlsdóttir, Àsa; Moiseenko, Vitali; Liu, Mitchell; Muren, Ludvig Paul

    2013-12-01

    Many dose-limiting normal tissues in radiotherapy (RT) display considerable internal motion between fractions over a course of treatment, potentially reducing the appropriateness of using planned dose distributions to predict morbidity. Accounting explicitly for rectal motion could improve the predictive power of modelling rectal morbidity. To test this, we simulated the effect of motion in two cohorts. The included patients (232 and 159 cases) received RT for prostate cancer to 70 and 74 Gy. Motion-inclusive dose distributions were introduced as simulations of random or systematic motion to the planned dose distributions. Six rectal morbidity endpoints were analysed. A probit model using the QUANTEC recommended parameters was also applied to the cohorts. The differences in associations using the planned over the motion-inclusive dose distributions were modest. Statistically significant associations were obtained with four of the endpoints, mainly at high doses (55-70 Gy), using both the planned and the motion-inclusive dose distributions, primarily when simulating random motion. The strongest associations were observed for GI toxicity and rectal bleeding (Rs=0.12-0.21; Rs=0.11-0.20). Applying the probit model, significant associations were found for tenesmus and rectal bleeding (Rs=0.13, p=0.02). Equally strong associations with rectal morbidity were observed at high doses (>55 Gy), for the planned and the simulated dose distributions including in particular random rectal motion. Future studies should explore patient-specific descriptions of rectal motion to achieve improved predictive power. Published by Elsevier Ireland Ltd.

  10. Generation of Composite Dose and Biological Effective Dose (BED) Over Multiple Treatment Modalities and Multistage Planning Using Deformable Image Registration

    SciTech Connect

    Zhang, Geoffrey Huang, T-C; Feygelman, Vladimir; Stevens, Craig; Forster, Kenneth

    2010-07-01

    Currently there are no commercially available tools to generate composite plans across different treatment modalities and/or different planning image sets. Without a composite plan, it may be difficult to perform a meaningful dosimetric evaluation of the overall treatment course. In this paper, we introduce a method to generate composite biological effective dose (BED) plans over multiple radiotherapy treatment modalities and/or multistage plans, using deformable image registration. Two cases were used to demonstrate the method. Case I was prostate cancer treated with intensity-modulated radiation therapy (IMRT) and a permanent seed implant. Case II involved lung cancer treated with two treatment plans generated on two separate computed tomography image sets. Thin-plate spline or optical flow methods were used as appropriate to generate deformation matrices. The deformation matrices were then applied to the dose matrices and the resulting physical doses were converted to BED and added to yield the composite plan. Cell proliferation and sublethal repair were considered in the BED calculations. The difference in BED between normal tissues and tumor volumes was accounted for by using different BED models, {alpha}/{beta} values, and cell potential doubling times. The method to generate composite BED plans presented in this paper provides information not available with the traditional simple dose summation or physical dose summation. With the understanding of limitations and uncertainties of the algorithms involved, it may be valuable for the overall treatment plan evaluation.

  11. Software configuration management plan, 241-AY and 241-AZ tank farm MICON automation system

    SciTech Connect

    Hill, L.F.

    1997-10-30

    This document establishes a Computer Software Configuration Management Plan (CSCM) for controlling software for the MICON Distributed Control System (DCS) located at the 241-AY and 241-AZ Aging Waste Tank Farm facilities in the 200 East Area. The MICON DCS software controls and monitors the instrumentation and equipment associated with plant systems and processes. A CSCM identifies and defines the configuration items in a system (section 3.1), controls the release and change of these items throughout the system life cycle (section 3.2), records and reports the status of configuration items and change requests (section 3.3), and verifies the completeness and correctness of the items (section 3.4). All software development before initial release, or before software is baselined, is considered developmental. This plan does not apply to developmental software. This plan applies to software that has been baselined and released. The MICON software will monitor and control the related instrumentation and equipment of the 241-AY and 241-AZ Tank Farm ventilation systems. Eventually, this software may also assume the monitoring and control of the tank sludge washing equipment and other systems as they are brought on line. This plan applies to the System Cognizant Manager and MICON Cognizant Engineer (who is also referred to herein as the system administrator) responsible for the software/hardware and administration of the MICON system. This document also applies to any other organizations within Tank Farms which are currently active on the system including system cognizant engineers, nuclear operators, technicians, and control room supervisors.

  12. Development of Advanced Multi-Modality Radiation Treatment Planning Software for Neutron Radiotherapy and Beyond

    SciTech Connect

    Nigg, D; Wessol, D; Wemple, C; Harkin, G; Hartmann-Siantar, C

    2002-08-20

    The Idaho National Engineering and Environmental Laboratory (INEEL) has long been active in development of advanced Monte-Carlo based computational dosimetry and treatment planning methods and software for advanced radiotherapy, with a particular focus on Neutron Capture Therapy (NCT) and, to a somewhat lesser extent, Fast-Neutron Therapy. The most recent INEEL software system of this type is known as SERA, Simulation Environment for Radiotherapy Applications. As a logical next step in the development of modern radiotherapy planning tools to support the most advanced research, INEEL and Lawrence Livermore National Laboratory (LLNL), the developers of the PEREGRTNE computational engine for radiotherapy treatment planning applications, have recently launched a new project to collaborate in the development of a ''next-generation'' multi-modality treatment planning software system that will be useful for all modern forms of radiotherapy.

  13. AdaNET Dynamic Software Inventory (DSI) prototype component acquisition plan

    NASA Technical Reports Server (NTRS)

    Hanley, Lionel

    1989-01-01

    A component acquisition plan contains the information needed to evaluate, select, and acquire software and hardware components necessary for successful completion of the AdaNET Dynamic Software Inventory (DSI) Management System Prototype. This plan will evolve and be applicable to all phases of the DSI prototype development. Resources, budgets, schedules, and organizations related to component acquisition activities are provided. A purpose and description of a software or hardware component which is to be acquired are presented. Since this is a plan for acquisition of all components, this section is not applicable. The procurement activities and events conducted by the acquirer are described and who is responsible is identified, where the activity will be performed, and when the activities will occur for each planned procurement. Acquisition requirements describe the specific requirements and standards to be followed during component acquisition. The activities which will take place during component acquisition are described. A list of abbreviations and acronyms, and a glossary are contained.

  14. Development of a Software Tool to Automate ADCO Flight Controller Console Planning Tasks

    NASA Technical Reports Server (NTRS)

    Anderson, Mark G.

    2011-01-01

    This independent study project covers the development of the International Space Station (ISS) Attitude Determination and Control Officer (ADCO) Planning Exchange APEX Tool. The primary goal of the tool is to streamline existing manual and time-intensive planning tools into a more automated, user-friendly application that interfaces with existing products and allows the ADCO to produce accurate products and timelines more effectively. This paper will survey the current ISS attitude planning process and its associated requirements, goals, documentation and software tools and how a software tool could simplify and automate many of the planning actions which occur at the ADCO console. The project will be covered from inception through the initial prototype delivery in November 2011 and will include development of design requirements and software as well as design verification and testing.

  15. Biologically effective uniform dose (D) for specification, report and comparison of dose response relations and treatment plans.

    PubMed

    Mavroidis, P; Lind, B K; Brahme, A

    2001-10-01

    Developments in radiation therapy planning have improved the information about the three-dimensional dose distribution in the patient. Isodose graphs, dose volume histograms and most recently radiobiological models can be used to evaluate the dose distribution delivered to the irradiated organs and volumes of interest. The concept of a biologically effective uniform dose (D) assumes that any two dose distributions are equivalent if they cause the same probability for tumour control or normal tissue complication. In the present paper the D concept both for tumours and normal tissues is presented, making use of the fact that probabilities averaged over both dose distribution and organ radiosensitivity are more relevant to the clinical outcome than the expected number of surviving clonogens or functional subunits. D can be calculated in complex target volumes or organs at risk either from the 3D dose matrix or from the corresponding dose volume histograms of the dose plan. The value of the D concept is demonstrated by applying it to two treatment plans of a cervix cancer. Comparison is made of the D concept with the effective dose (Deff ) and equivalent uniform dose (EUD) that have been suggested in the past. The value of the concept for complex targets and fractionation schedules is also pointed out.

  16. An overview of the planned CCAT software system

    NASA Astrophysics Data System (ADS)

    Jenness, Tim; Shepherd, Martin C.; Schaaf, Reinhold; Sayers, Jack; Ossenkopf, Volker; Nikola, Thomas; Marsden, Gaelen; Higgins, Ronan; Edwards, Kevin; Brazier, Adam

    2014-07-01

    CCAT will be a 25m diameter sub-millimeter telescope capable of operating in the 0.2 to 2.1mm wavelength range. It will be located at an altitude of 5600m on Cerro Chajnantor in northern Chile near the ALMA site. The anticipated first generation instruments include large format (60,000) kinetic inductance detector (KID) cameras, a large format heterodyne array and a direct detection multi-object spectrometer. The paper describes the architecture of the CCAT software and the development strategy.

  17. Mission planning for Shuttle Imaging Radar-C (SIR-C) with a real-time interactive planning software

    NASA Technical Reports Server (NTRS)

    Potts, Su K.

    1993-01-01

    The Shuttle Imaging Radar-C (SIR-C) mission will operate from the payload bay of the space shuttle for 8 days, gathering Synthetic Aperture Radar (SAR) data over specific sites on the Earth. The short duration of the mission and the requirement for realtime planning offer challenges in mission planning and in the design of the Planning and Analysis Subsystem (PAS). The PAS generates shuttle ephemerides and mission planning data and provides an interactive real-time tool for quick mission replanning. It offers a multi-user and multiprocessing environment, and it is able to keep multiple versions of the mission timeline data while maintaining data integrity and security. Its flexible design allows one software to provide different menu options based on the user's operational function, and makes it easy to tailor the software for other Earth orbiting missions.

  18. CalcDose: a software for drug dosage conversion using metabolically active mass of animals.

    PubMed

    Khan, Haseeb Ahmad

    2003-02-01

    This Visual Basic computer program has been developed for drug dosage conversions using metabolically active mass (MAM) of the animals. The two body weights (one with known dosage and the other, for which the dosage has to be calculated) and the known dosage are entered in the respective input boxes and the appropriate units are selected using the option buttons. The program displays the report in the form of both the animals' body weights and the respective dosages in milligram per kilogram body weight as well as the total actual doses in milligrams. The object oriented layout, flexible data entry and comprehensive report format render the CalcDose software a convenient and handy tool for dosage conversions.

  19. Advances in software for faster procedure and lower radiotracer dose myocardial perfusion imaging.

    PubMed

    Piccinelli, Marina; Garcia, Ernest V

    2015-01-01

    The American Society of Nuclear Cardiology has recently published documents that encourage laboratories to take all the appropriate steps to greatly decrease patient radiation dose and has set the goal of 50% of all myocardial perfusion studies performed with an associated radiation exposure of 9mSv by 2014. In the present work, a description of the major software techniques readily available to shorten procedure time and decrease injected activity is presented. Particularly new reconstruction methods and their ability to include means for resolution recovery and noise regularization are described. The use of these improved reconstruction algorithms results in a consistent reduction in acquisition time, injected activity and consequently in the radiation dose absorbed by the patient. The clinical implications to the use of these techniques are also described in terms of maintained and even improved study quality, accuracy and sensitivity for the detection of heart disease.

  20. Dose imaging with gel-dosemeter layers: optical analysis and dedicated software.

    PubMed

    Gambarini, G; Carrara, M; Gay, S; Tomatis, S

    2006-01-01

    In radiotherapy involving thermal and epithermal neutrons, the knowledge of dose distributions, with separation of the contribution of each secondary radiation component, is of utmost importance. Layers of Fricke-Xylenol-Orange-infused gel dosemeters give the possibility of achieving such requirements because, owing to the layer-geometry, enriching or depleting the gel matrix of suitable isotopes does not sensibly alter neutron transport. The dosimetry method has been critically re-examined with the aim of improving its suitability to boron neutron capture therapy (BNCT) requirements, as it applies to the protocol of measurement and analysis, the sensitivity of the method and the range of the linearity of the dosemeters. Software has been developed and studied to obtain automatically the images of the various dose components with the established separation procedure.

  1. Acute small bowel toxicity and preoperative chemoradiotherapy for rectal cancer: Investigating dose-volume relationships and role for inverse planning

    SciTech Connect

    Tho, Lye Mun . E-mail: l.tho@beatson.gla.ac.uk; Glegg, Martin; Paterson, Jennifer; Yap, Christina; MacLeod, Alice; McCabe, Marie; McDonald, Alexander C.

    2006-10-01

    Purpose: The relationship between volume of irradiated small bowel (VSB) and acute toxicity in rectal cancer radiotherapy is poorly quantified, particularly in patients receiving concurrent preoperative chemoradiotherapy. Using treatment planning data, we studied a series of such patients. Methods and Materials: Details of 41 patients with locally advanced rectal cancer were reviewed. All received 45 Gy in 25 fractions over 5 weeks, 3-4 fields three-dimensional conformal radiotherapy with daily 5-fluorouracil and folinic acid during Weeks 1 and 5. Toxicity was assessed prospectively in a weekly clinic. Using computed tomography planning software, the VSB was determined at 5 Gy dose intervals (V{sub 5}, V{sub 1}, etc.). Eight patients with maximal VSB had dosimetry and radiobiological modeling outcomes compared between inverse and conformal three-dimensional planning. Results: VSB correlated strongly with diarrheal severity at every dose level (p < 0.03), with strongest correlation at lowest doses. Median VSB differed significantly between patients experiencing Grade 0-1 and Grade 2-4 diarrhea (p {<=} 0.05). No correlation was found with anorexia, nausea, vomiting, abdominal cramps, age, body mass index, sex, tumor position, or number of fields. Analysis of 8 patients showed that inverse planning reduced median dose to small bowel by 5.1 Gy (p = 0.008) and calculated late normal tissue complication probability (NTCP) by 67% (p = 0.016). We constructed a model using mathematical analysis to predict for acute diarrhea occurring at V{sub 5} and V{sub 15}. Conclusions: A strong dose-volume relationship exists between VSB and acute diarrhea at all dose levels during preoperative chemoradiotherapy. Our constructed model may be useful in predicting toxicity, and this has been derived without the confounding influence of surgical excision on bowel function. Inverse planning can reduce calculated dose to small bowel and late NTCP, and its clinical role warrants further

  2. Calculation of residence times and radiation doses using the standard PC software Excel.

    PubMed

    Herzog, H; Zilken, H; Niederbremer, A; Friedrich, W; Müller-Gärtner, H W

    1997-12-01

    We developed a program which aims to facilitate the calculation of radiation doses to single organs and the whole body. IMEDOSE uses Excel to include calculations, graphical displays, and interactions with the user in a single general-purpose PC software tool. To start the procedure the input data are copied into a spreadsheet. They must represent percentage uptake values of several organs derived from measurements in animals or humans. To extrapolate these data up to seven half-lives of the radionuclide, fitting to one or two exponentional functions is included and can be checked by the user. By means of the approximate time-activity information the cumulated activity or residence times are calculated. Finally these data are combined with the absorbed fraction doses (S-values) given by MIRD pamphlet No. 11 to yield radiation doses, the effective dose equivalent and the effective dose. These results are presented in a final table. Interactions are realized with push-buttons and drop-down menus. Calculations use the Visual Basic tool of Excel. In order to test our program, biodistribution data of fluorine-18 fluorodeoxyglucose were taken from the literature (Meija et al., J Nucl Med 1991; 32:699-706). For a 70-kg adult the resulting radiation doses of all target organs listed in MIRD 11 were different from the ICRP 53 values by 1%+/-18% on the average. When the residence times were introduced into MIRDOSE3 (Stabin, J Nucl Med 1996; 37:538-546) the mean difference between our results and those of MIRDOSE3 was -3%+/-6%. Both outcomes indicate the validity of the present approach.

  3. Software Tools to Support Research on Airport Departure Planning

    NASA Technical Reports Server (NTRS)

    Carr, Francis; Evans, Antony; Feron, Eric; Clarke, John-Paul

    2003-01-01

    A simple, portable and useful collection of software tools has been developed for the analysis of airport surface traffic. The tools are based on a flexible and robust traffic-flow model, and include calibration, validation and simulation functionality for this model. Several different interfaces have been developed to help promote usage of these tools, including a portable Matlab(TM) implementation of the basic algorithms; a web-based interface which provides online access to automated analyses of airport traffic based on a database of real-world operations data which covers over 250 U.S. airports over a 5-year period; and an interactive simulation-based tool currently in use as part of a college-level educational module. More advanced applications for airport departure traffic include taxi-time prediction and evaluation of "windowing" congestion control.

  4. Stereoelectroencephalography based on the Leksell stereotactic frame and Neurotech operation planning software.

    PubMed

    Zhang, Guangming; Chen, Guoqiang; Meng, Dawei; Liu, Yanwu; Chen, Jianwei; Shu, Lanmei; Liu, Wenbo

    2017-06-01

    This study aimed to introduce a new stereoelectroencephalography (SEEG) system based on Leksell stereotactic frame (L-SEEG) as well as Neurotech operation planning software, and to investigate its safety, applicability, and reliability.L-SEEG, without the help of navigation, includes SEEG operation planning software (Neurotech), Leksell stereotactic frame, and corresponding surgical instruments. Neurotech operation planning software can be used to display three-dimensional images of the cortex and cortical vessels and to plan the intracranial electrode implantation. In 44 refractory epilepsy patients, 364 intracranial electrodes were implanted through the L-SEEG system, and the postoperative complications such as bleeding, cerebral spinal fluid (CSF) leakage, infection, and electrode-related problems were also investigated.All electrodes were implanted accurately as preoperatively planned shown by postoperative lamina computed tomography and preoperative lamina magnetic resonance imaging. There was no severe complication after intracranial electrode implantation through the L-SEEG system. There were no electrode-related problems, no CSF leakage and no infection after surgery. All the patients recovered favorably after SEEG electrode implantation, and only 1 patient had asymptomatic frontal lateral ventricle hematoma (3 mL).The L-SEEG system with Neurotech operation planning software can be used for safe, accurate, and reliable intracranial electrode implantation for SEEG.

  5. Impact of dose calculation accuracy during optimization on lung IMRT plan quality.

    PubMed

    Li, Ying; Rodrigues, Anna; Li, Taoran; Yuan, Lulin; Yin, Fang-Fang; Wu, Q Jackie

    2015-01-08

    The purpose of this study was to evaluate the effect of dose calculation accuracy and the use of an intermediate dose calculation step during the optimization of intensity-modulated radiation therapy (IMRT) planning on the final plan quality for lung cancer patients. This study included replanning for 11 randomly selected free-breathing lung IMRT plans. The original plans were optimized using a fast pencil beam convolution algorithm. After optimization, the final dose calculation was performed using the analytical anisotropic algorithm (AAA). The Varian Treatment Planning System (TPS) Eclipse v11, includes an option to perform intermediate dose calculation during optimization using the AAA. The new plans were created using this intermediate dose calculation during optimization with the same planning objectives and dose constraints as in the original plan. Differences in dosimetric parameters for the planning target volume (PTV) dose coverage, organs-at-risk (OARs) dose sparing, and the number of monitor units (MU) between the original and new plans were analyzed. Statistical significance was determined with a p-value of less than 0.05. All plans were normalized to cover 95% of the PTV with the prescription dose. Compared with the original plans, the PTV in the new plans had on average a lower maximum dose (69.45 vs. 71.96Gy, p = 0.005), a better homogeneity index (HI) (0.08 vs. 0.12, p = 0.002), and a better conformity index (CI) (0.69 vs. 0.59, p = 0.003). In the new plans, lung sparing was increased as the volumes receiving 5, 10, and 30 Gy were reduced when compared to the original plans (40.39% vs. 42.73%, p = 0.005; 28.93% vs. 30.40%, p = 0.001; 14.11%vs. 14.84%, p = 0.031). The volume receiving 20 Gy was not significantly lower (19.60% vs. 20.38%, p = 0.052). Further, the mean dose to the lung was reduced in the new plans (11.55 vs. 12.12 Gy, p = 0.024). For the esophagus, the mean dose, the maximum dose, and the volumes receiving 20 and 60 Gy were lower in

  6. 324 Building life cycle dose estimates for planned work

    SciTech Connect

    Landsman, S.D.; Peterson, C.A.; Thornhill, R.E.

    1995-09-01

    This report describes a tool for use by organizational management teams to plan, manage, and oversee personnel exposures within their organizations. The report encompasses personnel radiation exposures received from activities associated with the B-Cell Cleanout Project, Surveillance and Maintenance Project, the Mk-42 Project, and other minor activities. It is designed to provide verifiable Radiological Performance Reports. The primary area workers receive radiation exposure is the Radiochemical Engineering Complex airlock. Entry to the airlock is necessary for maintenance of cranes and other equipment, and to set up the rail system used to move large pieces of equipment and shipping casks into and out of the airlock. Transfers of equipment and materials from the hot cells in the complex to the airlock are required to allow dose profiles of waste containers, shuffling of waste containers to allow grouting activities to go on, and to allow maintenance of in-cell cranes. Both DOE and the Pacific Northwest Laboratory (PNL) are currently investing in state-of-the-art decontamination equipment. Challenging goals for exposure reduction were established for several broad areas of activity. Exposure estimates and goals developed from these scheduled activities will be compared against actual exposures for scheduled and unscheduled activities that contributed to exposures received by personnel throughout the year. Included in this report are life cycle exposure estimates by calendar year for the B-Cell Cleanout project, a three-year estimate of exposures associated with Surveillance and Maintenance, and known activities for Calendar Year (CY) 1995 associated with several smaller projects. These reports are intended to provide a foundation for future dose estimates, by year, requiring updating as exposure conditions change or new avenues of approach to performing work are developed.

  7. Semiautomated head-and-neck IMRT planning using dose warping and scaling to robustly adapt plans in a knowledge database containing potentially suboptimal plans.

    PubMed

    Schmidt, Matthew; Lo, Joseph Y; Grzetic, Shelby; Lutzky, Carly; Brizel, David M; Das, Shiva K

    2015-08-01

    Prior work by the authors and other groups has studied the creation of automated intensity modulated radiotherapy (IMRT) plans of equivalent quality to those in a patient database of manually created clinical plans; those database plans provided guidance on the achievable sparing to organs-at-risk (OARs). However, in certain sites, such as head-and-neck, the clinical plans may not be sufficiently optimized because of anatomical complexity and clinical time constraints. This could lead to automated plans that suboptimally exploit OAR sparing. This work investigates a novel dose warping and scaling scheme that attempts to reduce effects of suboptimal sparing in clinical database plans, thus improving the quality of semiautomated head-and-neck cancer (HNC) plans. Knowledge-based radiotherapy (KBRT) plans for each of ten "query" patients were semiautomatically generated by identifying the most similar "match" patient in a database of 103 clinical manually created patient plans. The match patient's plans were adapted to the query case by: (1) deforming the match beam fluences to suit the query target volume and (2) warping the match primary/boost dose distribution to suit the query geometry and using the warped distribution to generate query primary/boost optimization dose-volume constraints. Item (2) included a distance scaling factor to improve query OAR dose sparing with respect to the possibly suboptimal clinical match plan. To further compensate for a component plan of the match case (primary/boost) not optimally sparing OARs, the query dose volume constraints were reduced using a dose scaling factor to be the minimum from either (a) the warped component plan (primary or boost) dose distribution or (b) the warped total plan dose distribution (primary + boost) scaled in proportion to the ratio of component prescription dose to total prescription dose. The dose-volume constraints were used to plan the query case with no human intervention to adjust constraints during

  8. Semiautomated head-and-neck IMRT planning using dose warping and scaling to robustly adapt plans in a knowledge database containing potentially suboptimal plans

    SciTech Connect

    Schmidt, Matthew Grzetic, Shelby; Lo, Joseph Y.; Lutzky, Carly; Brizel, David M.; Das, Shiva K.

    2015-08-15

    Purpose: Prior work by the authors and other groups has studied the creation of automated intensity modulated radiotherapy (IMRT) plans of equivalent quality to those in a patient database of manually created clinical plans; those database plans provided guidance on the achievable sparing to organs-at-risk (OARs). However, in certain sites, such as head-and-neck, the clinical plans may not be sufficiently optimized because of anatomical complexity and clinical time constraints. This could lead to automated plans that suboptimally exploit OAR sparing. This work investigates a novel dose warping and scaling scheme that attempts to reduce effects of suboptimal sparing in clinical database plans, thus improving the quality of semiautomated head-and-neck cancer (HNC) plans. Methods: Knowledge-based radiotherapy (KBRT) plans for each of ten “query” patients were semiautomatically generated by identifying the most similar “match” patient in a database of 103 clinical manually created patient plans. The match patient’s plans were adapted to the query case by: (1) deforming the match beam fluences to suit the query target volume and (2) warping the match primary/boost dose distribution to suit the query geometry and using the warped distribution to generate query primary/boost optimization dose-volume constraints. Item (2) included a distance scaling factor to improve query OAR dose sparing with respect to the possibly suboptimal clinical match plan. To further compensate for a component plan of the match case (primary/boost) not optimally sparing OARs, the query dose volume constraints were reduced using a dose scaling factor to be the minimum from either (a) the warped component plan (primary or boost) dose distribution or (b) the warped total plan dose distribution (primary + boost) scaled in proportion to the ratio of component prescription dose to total prescription dose. The dose-volume constraints were used to plan the query case with no human intervention

  9. Computer software configuration management plan for 200 East/West Liquid Effluent Facilities

    SciTech Connect

    Graf, F.A. Jr.

    1995-02-27

    This computer software management configuration plan covers the control of the software for the monitor and control system that operates the Effluent Treatment Facility and its associated truck load in station and some key aspects of the Liquid Effluent Retention Facility that stores condensate to be processed. Also controlled is the Treated Effluent Disposal System`s pumping stations and monitors waste generator flows in this system as well as the Phase Two Effluent Collection System.

  10. Quality Assurance Testing of Version 1.3 of U.S. EPA Benchmark Dose Software (Presentation)

    EPA Science Inventory

    EPA benchmark dose software (BMDS) issued to evaluate chemical dose-response data in support of Agency risk assessments, and must therefore be dependable. Quality assurance testing methods developed for BMDS were designed to assess model dependability with respect to curve-fitt...

  11. Quality Assurance Testing of Version 1.3 of U.S. EPA Benchmark Dose Software (Presentation)

    EPA Science Inventory

    EPA benchmark dose software (BMDS) issued to evaluate chemical dose-response data in support of Agency risk assessments, and must therefore be dependable. Quality assurance testing methods developed for BMDS were designed to assess model dependability with respect to curve-fitt...

  12. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan. Part 1 : ASC software quality engineering practices version 1.0.

    SciTech Connect

    Minana, Molly A.; Sturtevant, Judith E.; Heaphy, Robert; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Forsythe, Christi A.; Schofield, Joseph Richard, Jr.; Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

    2005-01-01

    The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in DOE/AL Quality Criteria (QC-1) as conformance to customer requirements and expectations. This quality plan defines the ASC program software quality practices and provides mappings of these practices to the SNL Corporate Process Requirements (CPR 1.3.2 and CPR 1.3.6) and the Department of Energy (DOE) document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines (GP&G). This quality plan identifies ASC management and software project teams' responsibilities for cost-effective software engineering quality practices. The SNL ASC Software Quality Plan establishes the signatories commitment to improving software products by applying cost-effective software engineering quality practices. This document explains the project teams opportunities for tailoring and implementing the practices; enumerates the practices that compose the development of SNL ASC's software products; and includes a sample assessment checklist that was developed based upon the practices in this document.

  13. An allotment planning concept and related computer software for planning the fixed satellite service at the 1988 space WARC

    NASA Technical Reports Server (NTRS)

    Miller, Edward F.; Heyward, Ann O.; Ponchak, Denise S.; Spence, Rodney L.; Whyte, Wayne A., Jr.

    1987-01-01

    The authors describe a two-phase approach to allotment planning suitable for use in planning the fixed satellite service at the 1988 Space World Administrative radio Conference (ORB-88). The two phases are (1) the identification of predetermined geostationary arc segments common to groups of administrations and (2) the use of a synthesis program to identify example scenarios of space station placements. The planning approach is described in detail and is related to the objectives of the conference. Computer software has been developed to implement the concepts, and the logic and rationale for identifying predetermined arc segments is discussed. Example scenarios are evaluated to give guidance in the selection of the technical characteristics of space communications systems to be planned. The allotment planning concept described guarantees equitable access to the geostationary orbit, provides flexibility in implementation, and reduces the need for coordination among administrations.

  14. An allotment planning concept and related computer software for planning the fixed satellite service at the 1988 space WARC

    NASA Technical Reports Server (NTRS)

    Miller, Edward F.; Heyward, Ann O.; Ponchak, Denise S.; Spence, Rodney L.; Whyte, Wayne A., Jr.

    1987-01-01

    The authors describe a two-phase approach to allotment planning suitable for use in planning the fixed satellite service at the 1988 Space World Administrative radio Conference (ORB-88). The two phases are (1) the identification of predetermined geostationary arc segments common to groups of administrations and (2) the use of a synthesis program to identify example scenarios of space station placements. The planning approach is described in detail and is related to the objectives of the conference. Computer software has been developed to implement the concepts, and the logic and rationale for identifying predetermined arc segments is discussed. Example scenarios are evaluated to give guidance in the selection of the technical characteristics of space communications systems to be planned. The allotment planning concept described guarantees equitable access to the geostationary orbit, provides flexibility in implementation, and reduces the need for coordination among administrations.

  15. Utilising pseudo-CT data for dose calculation and plan optimization in adaptive radiotherapy.

    PubMed

    Whelan, Brendan; Kumar, Shivani; Dowling, Jason; Begg, Jarrad; Lambert, Jonathan; Lim, Karen; Vinod, Shalini K; Greer, Peter B; Holloway, Lois

    2015-12-01

    To quantify the dose calculation error and resulting optimization uncertainty caused by performing inverse treatment planning on inaccurate electron density data (pseudo-CT) as needed for adaptive radiotherapy and Magnetic Resonance Imaging (MRI) based treatment planning. Planning Computer Tomography (CT) data from 10 cervix cancer patients was used to generate 4 pseudo-CT data sets. Each pseudo-CT was created based on an available method of assigning electron density to an anatomic image. An inversely modulated radiotherapy (IMRT) plan was developed on each planning CT. The dose calculation error caused by each pseudo-CT data set was quantified by comparing the dose calculated each pseudo-CT data set with that calculated on the original planning CT for the same IMRT plan. The optimization uncertainty introduced by the dose calculation error was quantified by re-optimizing the same optimization parameters on each pseudo-CT data set and comparing against the original planning CT. Dose differences were quantified by assessing the Equivalent Uniform Dose (EUD) for targets and relevant organs at risk. Across all pseudo-CT data sets and all organs, the absolute mean dose calculation error was 0.2 Gy, and was within 2 % of the prescription dose in 98.5 % of cases. Then absolute mean optimisation error was 0.3 Gy EUD, indicating that that inverse optimisation is impacted by the dose calculation error. However, the additional uncertainty introduced to plan optimisation is small compared the sources of variation which already exist. Use of inaccurate electron density data for inverse treatment planning results in a dose calculation error, which in turn introduces additional uncertainty into the plan optimization process. In this study, we showed that both of these effects are clinically acceptable for cervix cancer patients using four different pseudo-CT data sets. Dose calculation and inverse optimization on pseudo-CT is feasible for this patient cohort.

  16. Inverse Planning Approach for 3-D MRI-Based Pulse-Dose Rate Intracavitary Brachytherapy in Cervix Cancer

    SciTech Connect

    Chajon, Enrique; Dumas, Isabelle; Touleimat, Mahmoud B.Sc.; Magne, Nicolas; Coulot, Jeremy; Verstraet, Rodolfe; Lefkopoulos, Dimitri; Haie-Meder, Christine

    2007-11-01

    Purpose: The purpose of this study was to evaluate the inverse planning simulated annealing (IPSA) software for the optimization of dose distribution in patients with cervix carcinoma treated with MRI-based pulsed-dose rate intracavitary brachytherapy. Methods and Materials: Thirty patients treated with a technique using a customized vaginal mold were selected. Dose-volume parameters obtained using the IPSA method were compared with the classic manual optimization method (MOM). Target volumes and organs at risk were delineated according to the Gynecological Brachytherapy Group/European Society for Therapeutic Radiology and Oncology recommendations. Because the pulsed dose rate program was based on clinical experience with low dose rate, dwell time values were required to be as homogeneous as possible. To achieve this goal, different modifications of the IPSA program were applied. Results: The first dose distribution calculated by the IPSA algorithm proposed a heterogeneous distribution of dwell time positions. The mean D90, D100, and V100 calculated with both methods did not differ significantly when the constraints were applied. For the bladder, doses calculated at the ICRU reference point derived from the MOM differed significantly from the doses calculated by the IPSA method (mean, 58.4 vs. 55 Gy respectively; p = 0.0001). For the rectum, the doses calculated at the ICRU reference point were also significantly lower with the IPSA method. Conclusions: The inverse planning method provided fast and automatic solutions for the optimization of dose distribution. However, the straightforward use of IPSA generated significant heterogeneity in dwell time values. Caution is therefore recommended in the use of inverse optimization tools with clinical relevance study of new dosimetric rules.

  17. Optimal matching of 3D film-measured and planned doses for intensity-modulated radiation therapy quality assurance.

    PubMed

    Shin, Dongho; Yoon, Myonggeun; Park, Sung Yong; Park, Dong Hyun; Lee, Se Byeong; Kim, Dae Yong; Cho, Kwan Ho

    2007-01-01

    Intensity-modulated radiation therapy (IMRT) is one of the most complex applications of radiotherapy that requires patient-specific quality assurance (QA). Here, we describe a novel method of 3-dimensional (3D) dose-verification using 12 acrylic slabs in a 3D phantom (30 x 30 x 12 cm(3)) with extended dose rate (EDR2) films, which is both faster than conventionally used methods, and clinically useful. With custom-written software modules written in Microsoft Excel Visual Basic Application, the measured and planned dose distributions for the axial, coronal, and sagittal planes were superimposed by matching their origins, and the point doses were compared at all matched positions. Then, an optimization algorithm was used to correct the detected setup errors. The results show that this optimization method significantly reduces the average maximum dose difference by 7.73% and the number of points showing dose differences of more than 5% by 8.82% relative to the dose differences without an optimization. Our results indicate that the dose difference was significantly decreased with optimization and this optimization method is statistically reliable and effective. The results of 3D optimization are discussed in terms of various patient-specific QA data obtained from statistical analyses.

  18. Clinical evaluation of a dose monitoring software tool based on Monte Carlo Simulation in assessment of eye lens doses for cranial CT scans.

    PubMed

    Guberina, Nika; Suntharalingam, Saravanabavaan; Naßenstein, Kai; Forsting, Michael; Theysohn, Jens; Wetter, Axel; Ringelstein, Adrian

    2016-10-01

    The aim of this study was to verify the results of a dose monitoring software tool based on Monte Carlo Simulation (MCS) in assessment of eye lens doses for cranial CT scans. In cooperation with the Federal Office for Radiation Protection (Neuherberg, Germany), phantom measurements were performed with thermoluminescence dosimeters (TLD LiF:Mg,Ti) using cranial CT protocols: (I) CT angiography; (II) unenhanced, cranial CT scans with gantry angulation at a single and (III) without gantry angulation at a dual source CT scanner. Eye lens doses calculated by the dose monitoring tool based on MCS and assessed with TLDs were compared. Eye lens doses are summarized as follows: (I) CT angiography (a) MCS 7 mSv, (b) TLD 5 mSv; (II) unenhanced, cranial CT scan with gantry angulation, (c) MCS 45 mSv, (d) TLD 5 mSv; (III) unenhanced, cranial CT scan without gantry angulation (e) MCS 38 mSv, (f) TLD 35 mSv. Intermodality comparison shows an inaccurate calculation of eye lens doses in unenhanced cranial CT protocols at the single source CT scanner due to the disregard of gantry angulation. On the contrary, the dose monitoring tool showed an accurate calculation of eye lens doses at the dual source CT scanner without gantry angulation and for CT angiography examinations. The dose monitoring software tool based on MCS gave accurate estimates of eye lens doses in cranial CT protocols. However, knowledge of protocol and software specific influences is crucial for correct assessment of eye lens doses in routine clinical use.

  19. Identifying Institutional Diagnostic Reference Levels for CT with Radiation Dose Index Monitoring Software.

    PubMed

    MacGregor, Kate; Li, Iris; Dowdell, Timothy; Gray, Bruce G

    2015-08-01

    To retrospectively evaluate radiation optimization efforts over 4 years for three computed tomography (CT) protocols and to determine institutional (local) diagnostic reference levels for prospective tracking by using automated radiation dose index monitoring software. Approval for this retrospective observational study was obtained from the hospital research ethics board, and the need to obtain informed consent was waived. The study followed a 48-month radiation dose optimization effort in a large academic inner-city trauma and quaternary referral center. Exposure according to equipment, protocol, and year (2010-2013) for adult patients was determined for routine unenhanced head CT examinations, CT pulmonary angiography examinations, and CT examinations for renal colic. Mean exposure (as volume CT dose index [CTDIvol] and dose-length product [DLP]) was averaged to establish local diagnostic reference levels. Means and 75th percentiles for 2013 were compared with findings from surveys in Canada and diagnostic reference levels for similar protocol types internationally. Student t tests were performed to assess significance between annual means, and χ(2) tests were performed for changes in categoric variables. There were 36 996 examinations in 25 234 patients. There was an average exposure reduction of 22% for CTDIvol and 13% for DLP from 2010 to 2013. In 2013, mean CTDIvol for routine head examinations was 50.8 mGy ± 3.7 (standard deviation), 11.8 mGy ± 5.6 for CT pulmonary angiography examinations, and 10.2 mGy ± 4.2 for renal colic CT examinations, while mean DLP was 805.7 mGy · cm ± 124.3, 432.8 mGy-cm ± 219.9, and 469.4 mGy · cm ± 209.2, respectively. The mean CTDIvol and DLP in 2013 were at or close to identified reference values; however, additional optimization is required to reach "as low as reasonably achievable" values for all examinations. Automated methods of radiation dose data collection permit a detailed analysis of radiation dose according

  20. Correlation of Point B and Lymph Node Dose in 3D-Planned High-Dose-Rate Cervical Cancer Brachytherapy

    SciTech Connect

    Lee, Larissa J.; Sadow, Cheryl A.; Russell, Anthony; Viswanathan, Akila N.

    2009-11-01

    Purpose: To compare high dose rate (HDR) point B to pelvic lymph node dose using three-dimensional-planned brachytherapy for cervical cancer. Methods and Materials: Patients with FIGO Stage IB-IIIB cervical cancer received 70 tandem HDR applications using CT-based treatment planning. The obturator, external, and internal iliac lymph nodes (LN) were contoured. Per fraction (PF) and combined fraction (CF) right (R), left (L), and bilateral (Bil) nodal doses were analyzed. Point B dose was compared with LN dose-volume histogram (DVH) parameters by paired t test and Pearson correlation coefficients. Results: Mean PF and CF doses to point B were R 1.40 Gy +- 0.14 (CF: 7 Gy), L 1.43 +- 0.15 (CF: 7.15 Gy), and Bil 1.41 +- 0.15 (CF: 7.05 Gy). The correlation coefficients between point B and the D100, D90, D50, D2cc, D1cc, and D0.1cc LN were all less than 0.7. Only the D2cc to the obturator and the D0.1cc to the external iliac nodes were not significantly different from the point B dose. Significant differences between R and L nodal DVHs were seen, likely related to tandem deviation from irregular tumor anatomy. Conclusions: With HDR brachytherapy for cervical cancer, per fraction nodal dose approximates a dose equivalent to teletherapy. Point B is a poor surrogate for dose to specific nodal groups. Three-dimensional defined nodal contours during brachytherapy provide a more accurate reflection of delivered dose and should be part of comprehensive planning of the total dose to the pelvic nodes, particularly when there is evidence of pathologic involvement.

  1. Monte Carlo calculation of dose distributions in oligometastatic patients planned for spine stereotactic ablative radiotherapy.

    PubMed

    Moiseenko, V; Liu, M; Loewen, S; Kosztyla, R; Vollans, E; Lucido, J; Fong, M; Vellani, R; Popescu, I A

    2013-10-21

    Dosimetric consequences of plans optimized using the analytical anisotropic algorithm (AAA) implemented in the Varian Eclipse treatment planning system for spine stereotactic body radiotherapy were evaluated by re-calculating with BEAMnrc/DOSXYZnrc Monte Carlo. Six patients with spinal vertebral metastases were planned using volumetric modulated arc therapy. The planning goal was to cover at least 80% of the planning target volume with a prescribed dose of 35 Gy in five fractions. Tissue heterogeneity-corrected AAA dose distributions for the planning target volume and spinal canal planning organ-at-risk volume were compared against those obtained from Monte Carlo. The results showed that the AAA overestimated planning target volume coverage with the prescribed dose by up to 13.5% (mean 8.3% +/- 3.2%) when compared to Monte Carlo simulations. Maximum dose to spinal canal planning organ-at-risk volume calculated with Monte Carlo was consistently smaller than calculated with the treatment planning system and remained under spinal cord dose tolerance. Differences in dose distribution appear to be related to the dosimetric effects of accounting for body composition in Monte Carlo simulations. In contrast, the treatment planning system assumes that all tissues are water-equivalent in their composition and only differ in their electron density.

  2. A software architecture for hard real-time execution of automatically synthesized plans or control laws

    NASA Technical Reports Server (NTRS)

    Schoppers, Marcel

    1994-01-01

    The design of a flexible, real-time software architecture for trajectory planning and automatic control of redundant manipulators is described. Emphasis is placed on a technique of designing control systems that are both flexible and robust yet have good real-time performance. The solution presented involves an artificial intelligence algorithm that dynamically reprograms the real-time control system while planning system behavior.

  3. Digital planning of high tibial osteotomy. Interrater reliability by using two different software.

    PubMed

    Schröter, Steffen; Ihle, Christoph; Mueller, Johannes; Lobenhoffer, Philipp; Stöckle, Ulrich; van Heerwaarden, Ronald

    2013-01-01

    The purpose of the study was to determine the interrater reliability as well as the correlation of mediCAD(®) and PreOPlan(®) in deformity analysis and digital planning of osteotomies. Digital radiographs were obtained from 81 patients planned to undergo an open wedge high tibial osteotomy. The JPEG files of the radiographs were imported to landmark-based software. Deformity analysis and planning of correction were performed by 1 experienced and 2 unexperienced observers. Osteotomy planning was aimed at correction to the predefined mechanical tibiofemoral angle of 3° valgus leg alignment. The interrater reliability of measurements was assessed using intraclass correlation coefficients (ICCs) and the confidence interval. The ICC of PreOPlan(®) was from 0.841 (mechanical lateral distal femur angle) to 0.993 (wedge-angle) and from 0.896 (joint line convergence angle) to 0.995 (mechanical tibiofemoral angle) of mediCAD(®). The ICC of height of wedge-base was 0.979 with PreOPlan(®) and 0.969 with mediCAD(®). Comparing PreOPlan(®) and mediCAD(®), the ICC of the height of wedge-base of the observers was 0.966, 0.956 and 0.969, respectively. The results show a high interrater reliability of digital planning software. Experience of the observer had no influence on results. Furthermore, a high interrater reliability and correlation of digital planning specific parameters was found. Surgeons need to master limb geometry measurements and osteotomy planning on digital radiographs as digital planning reports are used for intercolleagual correspondence, teaching purposes and as medicolegal documents. The digital planning software tested agrees with the actual demands and could be recommended for deformity analysis and planning of osteotomies. Diagnostic studies, Level I.

  4. Urethra low-dose tunnels: validation of and class solution for generating urethra-sparing dose plans using inverse planning simulated annealing for prostate high-dose-rate brachytherapy.

    PubMed

    Cunha, J Adam M; Pouliot, Jean; Weinberg, Vivian; Wang-Chesebro, Alice; Roach, Mack; Hsu, I-Chow

    2012-01-01

    Urethral dose is related to severity of genitourinary toxicity in patients treated with brachytherapy for prostate cancer. This work describes a dose planning method that uses inverse planning to create a low-dose tunnel around the urethra and presents a class solution to achieve this additional dose sparing of the urethra. Fifteen patients on the Radiation Therapy Oncology Group (RTOG) 0321 protocol were treated for prostate cancer with a high-dose-rate brachytherapy dose boost to an external beam radiation treatment regimen. All were treated with 9.5Gy for each of the two fractions after 45Gy of the external beam radiation. The inverse-planning algorithm, inverse planning simulated annealing (IPSA), was used to create both the standard RTOG protocol (SRP) plan for treatment and the a posteriori urethra dose sparing (UDS) plan consisting of a dose tunnel along the urethra. Both plans maintained the protocol parameters: prostate V(100) (volume receiving 100% of prescribed dose)>90% and bladder and rectum V(75)<1 cm(3). In the SRP plans, the urethra surface was optimized to receive <125% of the prescription dose and in the UDS plans <100%. Dose-volume histograms for the clinical treatment volume, bladder, rectum, penile bulb, and urethra for both plans are compared using a paired sample t test with significance claimed for probability values<0.05. UDS planning reduced the urethra V(100) from 88% to 58% on average (p<0.01) and the V(125) from 3.3% to 0.2% (p < 0.01). Bladder and rectum V(75) were maintained at <1 cm(3) and not significantly different between plans. Prostate coverage was maintained per protocol at V(100)>90%, with mean for the SRP V(100)=93% versus UDS plan V(100)=90%. Prostate D(90) for SRP was 104% versus UDS plan D(90)=101%. For all patients, the UDS achieved a dose tunnel surrounding the length of the intraprostatic urethra. The class solution for generating UDS is presented. A urethral sparing-focused planning solution using IPSA reduces mean

  5. Evaluation of the accuracy of 3DVH software estimates of dose to virtual ion chamber and film in composite IMRT QA.

    PubMed

    Olch, Arthur J

    2012-01-01

    A novel patient-specific intensity modulated radiation therapy (IMRT) QA system, 3DVH software and mapcheck 2, purports to be able to use diode array-measured beam doses and the patient's DICOM RT plan, structure set, and dose files to predict the delivered 3D dose distribution in the patient for comparison to the treatment planning system (TPS) calculated doses. In this study, the composite dose to an ion chamber and film in phantom predicted by the 3DVH and mapcheck 2 system is compared to the actual measured chamber and film doses. If validated in this context, then 3DVH can be used to perform an equivalent dose analysis as that obtained with film dosimetry and ion chamber-based composite IMRT QA. This is important for those losing their ability to perform film dosimetry for true composite IMRT QA and provides a measure of confidence in the accuracy of 3DVH 3D dose calculations which may replace phantom-based IMRT QA. The dosimetric results from 15 consecutive patient-specific IMRT QA tests performed by composite field irradiation of ion chamber and EDR2 film in a solid water phantom were compared to the predicted doses for those virtual detectors based on the calculated 3D dose by the 3DVH software using mapcheck 2 measured doses of each beam within each plan. For each of the 15 cases, immediately after performing the ion chamber plus film measurements, the mapcheck 2 was used to measure the dose for each beam of the plan. The dose to the volume of the virtual ion chamber and the dose distribution in the plane of the virtual film calculated by the 3DVH software was extracted. The ratio of the measured to 3DVH or eclipse-predicted ion chamber doses was calculated. The same plane in the phantom measured using film and calculated with eclipse was exported from 3DVH and the 2D gamma metric was used to compare the relationship between the film doses and the eclipse or 3DVH predicted planar doses. Also, the 3D gamma value was calculated in the 3DVH software which

  6. Testing the Capacity of the National Biological Dose Response Plan (NBDRP) EX40801

    DTIC Science & Technology

    2009-11-01

    Testing the capacity of the National Biological Dose Response Plan (NBDRP) EX40801 Ruth Wilkins, James McNamee, Hillary...2. REPORT TYPE 3. DATES COVERED 4. TITLE AND SUBTITLE Testing the capacity of the National Biological Dose Response Plan (NBDRP) EX40801 5a...Report July 2009 Page 2 of 11 Testing the capacity of the NBDRP

  7. Java RMI Software Technology for the Payload Planning System of the International Space Station

    NASA Technical Reports Server (NTRS)

    Bryant, Barrett R.

    1999-01-01

    The Payload Planning System is for experiment planning on the International Space Station. The planning process has a number of different aspects which need to be stored in a database which is then used to generate reports on the planning process in a variety of formats. This process is currently structured as a 3-tier client/server software architecture comprised of a Java applet at the front end, a Java server in the middle, and an Oracle database in the third tier. This system presently uses CGI, the Common Gateway Interface, to communicate between the user-interface and server tiers and Active Data Objects (ADO) to communicate between the server and database tiers. This project investigated other methods and tools for performing the communications between the three tiers of the current system so that both the system performance and software development time could be improved. We specifically found that for the hardware and software platforms that PPS is required to run on, the best solution is to use Java Remote Method Invocation (RMI) for communication between the client and server and SQLJ (Structured Query Language for Java) for server interaction with the database. Prototype implementations showed that RMI combined with SQLJ significantly improved performance and also greatly facilitated construction of the communication software.

  8. Development of a Conference Planning Model Using Integrated Database, Word Processing, and Spreadsheet Software.

    ERIC Educational Resources Information Center

    Stevens, William E.

    This report presents a model for conducting a statewide conference for the approximately 900 members of the South Carolina Council of Teachers of Mathematics (SCCTM) using the AppleWorks integrated software as the basis of the implementation plan. The first and second chapters provide background information on the conference and the…

  9. Software Development Plan for the 241-AY and 241-AZ Tank Farm MICON automation system

    SciTech Connect

    Teats, M.C.

    1995-04-28

    Project W-030 will install a new tank ventilation system for the aging 241-AY and 241-AZ tank farm facilities. Controls for this system will be provided by a MICON distributed control system. This document defines the plan, deliverables, and schedule to develop software for the control system.

  10. Java RMI Software Technology for the Payload Planning System of the International Space Station

    NASA Technical Reports Server (NTRS)

    Bryant, Barrett R.

    1999-01-01

    The Payload Planning System is for experiment planning on the International Space Station. The planning process has a number of different aspects which need to be stored in a database which is then used to generate reports on the planning process in a variety of formats. This process is currently structured as a 3-tier client/server software architecture comprised of a Java applet at the front end, a Java server in the middle, and an Oracle database in the third tier. This system presently uses CGI, the Common Gateway Interface, to communicate between the user-interface and server tiers and Active Data Objects (ADO) to communicate between the server and database tiers. This project investigated other methods and tools for performing the communications between the three tiers of the current system so that both the system performance and software development time could be improved. We specifically found that for the hardware and software platforms that PPS is required to run on, the best solution is to use Java Remote Method Invocation (RMI) for communication between the client and server and SQLJ (Structured Query Language for Java) for server interaction with the database. Prototype implementations showed that RMI combined with SQLJ significantly improved performance and also greatly facilitated construction of the communication software.

  11. RODES software for dose assessment of rats and mice contaminated with radionuclides.

    PubMed

    Locatelli, Maxime; Miloudi, Hanane; Autret, Gwennhael; Balvay, Daniel; Desbrée, Aurélie; Blanchardon, Eric; Bertho, Jean-Marc

    2017-03-20

    In order to support animal experiments of chronic radionuclides intake with realistic dosimetry, voxel-based three-dimensional computer models of mice and rats of both sexes and three ages were built from magnetic resonance imaging. Radiation transport of mono-energetic photons of 11 energies and electrons of 7 energies was simulated with MCNPX 2.6c to assess specific absorbed fractions (SAFs) of energy emitted from 13 source regions and absorbed in 28 target regions. RODES software was developed to combine SAF with radiation emission spectra and user-supplied biokinetic data to calculate organ absorbed doses per nuclear transformation of radionuclides in source regions (S-factors) and for specific animal experiments with radionuclides. This article presents the design of RODES software including the simulation of the particles in the created rodent voxel phantoms. SAF and S-factor values were compared favourably with published results from similar studies. The results are discussed for rodents of different ages and sexes.

  12. An allotment planning concept and related computer software for planning the fixed satellite service at the 1988 space WARC

    NASA Technical Reports Server (NTRS)

    Miller, Edward F.; Heyward, Ann O.; Ponchak, Denise S.; Spence, Rodney L.; Whyte, Wayne A., Jr.; Zuzek, John E.

    1987-01-01

    Described is a two-phase approach to allotment planning suitable for use in establishing the fixed satellite service at the 1988 Space World Administrative Radio Conference (ORB-88). The two phases are (1) the identification of predetermined geostationary arc segments common togroups of administrations, and (2) the use of a synthesis program to identify example scenarios of space station placements. The planning approach is described in detail and is related to the objectives of the confernece. Computer software has been developed to implement the concepts, and a complete discussion on the logic and rationale for identifying predetermined arc segments is given. Example scenarios are evaluated to give guidance in the selection of the technical characteristics of space communications systems to be planned. The allotment planning concept described guarantees in practice equitable access to the geostationary orbit, provides flexibility in implementation, and reduces the need for coordination among administrations.

  13. Dosimetry software Hermes Internal Radiation Dosimetry: from quantitative image reconstruction to voxel-level absorbed dose distribution.

    PubMed

    Hippeläinen, Eero T; Tenhunen, Mikko J; Mäenpää, Hanna O; Heikkonen, Jorma J; Sohlberg, Antti O

    2017-05-01

    The aim of this work is to validate a software package called Hermes Internal Radiation Dosimetry (HIRD) for internal dose assessment tailored for clinical practice. The software includes all the necessary steps to perform voxel-level absorbed dose calculations including quantitative reconstruction, image coregistration and volume of interest tools. The basics of voxel-level dosimetry methods and implementations to HIRD software are reviewed. Then, HIRD is validated using simulated SPECT/CT data and data from Lu-DOTATATE-treated patients by comparing absorbed kidney doses with OLINDA/EXM-based dosimetry. In addition, electron and photon dose components are studied separately in an example patient case. The simulation study showed that HIRD can reproduce time-activity curves accurately and produce absorbed doses with less than 10% error for the kidneys, liver and spleen. From the patient data, the absorbed kidney doses calculated using HIRD and using OLINDA/EXM were highly correlated (Pearson's correlation coefficient, r=0.98). From Bland-Altman plot analysis, an average absorbed dose difference of -2% was found between the methods. In addition, we found that in Lu-DOTATATE-treated patients, photons can contribute over 10% of the kidney's total dose and is partly because of cross-irradiation from high-uptake lesions close to the kidneys. HIRD is a straightforward voxel-level internal dosimetry software. Its clinical utility was verified with simulated and clinical Lu-DOTATATE-treated patient data. Patient studies also showed that photon contribution towards the total dose can be relatively high and voxel-level dose calculations can be valuable in cases where the target organ is in close proximity to high-uptake organs.

  14. Interactive Dose Shaping - efficient strategies for CPU-based real-time treatment planning

    NASA Astrophysics Data System (ADS)

    Ziegenhein, P.; Kamerling, C. P.; Oelfke, U.

    2014-03-01

    Conventional intensity modulated radiation therapy (IMRT) treatment planning is based on the traditional concept of iterative optimization using an objective function specified by dose volume histogram constraints for pre-segmented VOIs. This indirect approach suffers from unavoidable shortcomings: i) The control of local dose features is limited to segmented VOIs. ii) Any objective function is a mathematical measure of the plan quality, i.e., is not able to define the clinically optimal treatment plan. iii) Adapting an existing plan to changed patient anatomy as detected by IGRT procedures is difficult. To overcome these shortcomings, we introduce the method of Interactive Dose Shaping (IDS) as a new paradigm for IMRT treatment planning. IDS allows for a direct and interactive manipulation of local dose features in real-time. The key element driving the IDS process is a two-step Dose Modification and Recovery (DMR) strategy: A local dose modification is initiated by the user which translates into modified fluence patterns. This also affects existing desired dose features elsewhere which is compensated by a heuristic recovery process. The IDS paradigm was implemented together with a CPU-based ultra-fast dose calculation and a 3D GUI for dose manipulation and visualization. A local dose feature can be implemented via the DMR strategy within 1-2 seconds. By imposing a series of local dose features, equal plan qualities could be achieved compared to conventional planning for prostate and head and neck cases within 1-2 minutes. The idea of Interactive Dose Shaping for treatment planning has been introduced and first applications of this concept have been realized.

  15. Three-Dimensional Path Planning Software-Assisted Transjugular Intrahepatic Portosystemic Shunt: A Technical Modification

    SciTech Connect

    Tsauo, Jiaywei Luo, Xuefeng; Ye, Linchao; Li, Xiao

    2015-06-15

    PurposeThis study was designed to report our results with a modified technique of three-dimensional (3D) path planning software assisted transjugular intrahepatic portosystemic shunt (TIPS).Methods3D path planning software was recently developed to facilitate TIPS creation by using two carbon dioxide portograms acquired at least 20° apart to generate a 3D path for overlay needle guidance. However, one shortcoming is that puncturing along the overlay would be technically impossible if the angle of the liver access set and the angle of the 3D path are not the same. To solve this problem, a prototype 3D path planning software was fitted with a utility to calculate the angle of the 3D path. Using this, we modified the angle of the liver access set accordingly during the procedure in ten patients.ResultsFailure for technical reasons occurred in three patients (unsuccessful wedged hepatic venography in two cases, software technical failure in one case). The procedure was successful in the remaining seven patients, and only one needle pass was required to obtain portal vein access in each case. The course of puncture was comparable to the 3D path in all patients. No procedure-related complication occurred following the procedures.ConclusionsAdjusting the angle of the liver access set to match the angle of the 3D path determined by the software appears to be a favorable modification to the technique of 3D path planning software assisted TIPS.

  16. Software.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1989

    1989-01-01

    Presented are reviews of two computer software packages for Apple II computers; "Organic Spectroscopy," and "Videodisc Display Program" for use with "The Periodic Table Videodisc." A sample spectrograph from "Organic Spectroscopy" is included. (CW)

  17. Development of preoperative planning software for transforaminal endoscopic surgery and the guidance for clinical applications.

    PubMed

    Chen, Xiaojun; Cheng, Jun; Gu, Xin; Sun, Yi; Politis, Constantinus

    2016-04-01

    Preoperative planning is of great importance for transforaminal endoscopic techniques applied in percutaneous endoscopic lumbar discectomy. In this study, a modular preoperative planning software for transforaminal endoscopic surgery was developed and demonstrated. The path searching method is based on collision detection, and the oriented bounding box was constructed for the anatomical models. Then, image reformatting algorithms were developed for multiplanar reconstruction which provides detailed anatomical information surrounding the virtual planned path. Finally, multithread technique was implemented to realize the steady-state condition of the software. A preoperative planning software for transforaminal endoscopic surgery (TE-Guider) was developed; seven cases of patients with symptomatic lumbar disc herniations were planned preoperatively using TE-Guider. The distances to the midlines and the direction of the optimal paths were exported, and each result was in line with the empirical value. TE-Guider provides an efficient and cost-effective way to search the ideal path and entry point for the puncture. However, more clinical cases will be conducted to demonstrate its feasibility and reliability.

  18. Comparative study of treatment dose plans after the refinement of Leksell Gamma Knife registered single-beam dose profiles

    SciTech Connect

    Cheung, Joel Y. C.; Ng, K. P.; Yu, C. P.; Ho, Robert T. K.

    2007-09-15

    We investigated the amplification of discrepancy when using multiple shots of the same collimator size helmet, by comparing dose plans in the Leksell GammaPlan registered employing the default single-beam dose profiles and the Monte Carlo generated single-beam profiles. Four collimator helmets were studied. The results show that the largest amplification of discrepancy with multiple shots was found with the 8 mm collimator because of the largest discrepancy of its single-beam dose profile. The amplification of discrepancy is significant when tumor volumes increase but insignificant when the tumor volumes are in an elongated shape. Using close shot overlapping strategy (i.e., more shots close packed together) shows no observable increase in the amplification of discrepancy. For the best quality of Leksell Gamma Knife registered radiosurgery, it is suggested that the single-beam dose profiles should be refined, especially the 8 mm collimator, to prevent error amplification when using multiple collimator shots.

  19. Patient dose management solution directly integrated in the RIS: "Gray Detector" software.

    PubMed

    Nitrosi, A; Corazza, A; Bertolini, M; Sghedoni, R; Pattacini, P; Iori, M

    2014-12-01

    On X-ray modalities, the information concerning the dose delivered to the patient is usually available in image headers or in structured reports stored in the picture archiving and communication system (PACS). Sometimes this information is sent in the Modality Performed Procedure Step message. By saving the information inside the Radiological Information System, it can be linked to the patient and to his/her episode/request. A software, "Gray Detector," implementing different and complementary extraction methods was developed. Query/retrieve on images header, Modality Performed Procedure Step message analysis, or the combination of the two methods were used. In order to avoid erroneous dose-protocol association, every accession number is linked to its unique report code, allowing multiple-protocols exam recognition. The adoption of different methods to extract dosimetric information makes it possible to integrate any kind of modality in a vendor/version neutral way. Linking the dosimetric information received from a modality to the patient and to the unique report code solves, for example, common problems in computed tomography exams, where the dosimetric value related to multiple segments/studies on the modality can be associated by the technician who performs the exam only to one accession number corresponding to a single study/segment. Analyses of dosimetric indexes' dependence on modality type, patient age, technician, and radiologist were performed. Linking dosimetric information to radiological information system data allows a contextualization of the former and helps to optimize the image-quality/dose ratio, thereby making it possible to take a clinical decision that is "patient-centered."

  20. NEAMS Software Licensing, Release, and Distribution: Implications for FY2013 Work Package Planning

    SciTech Connect

    Bernholdt, David E

    2012-06-01

    The vision of the NEAMS program is to bring truly predictive modeling and simulation (M&S) capabilities to the nuclear engineering community in order to enable a new approach to the analysis of nuclear systems. NEAMS anticipates issuing in FY 2018 a full release of its computational 'Fermi Toolkit' aimed at advanced reactor and fuel cycles. The NEAMS toolkit involves extensive software development activities, some of which have already been underway for several years, however, the Advanced Modeling and Simulation Office (AMSO), which sponsors the NEAMS program, has not yet issued any official guidance regarding software licensing, release, and distribution policies. This motivated an FY12 task in the Capability Transfer work package to develop and recommend an appropriate set of policies. The current preliminary report is intended to provide awareness of issues with implications for work package planning for FY13. We anticipate a small amount of effort associated with putting into place formal licenses and contributor agreements for NEAMS software which doesn't already have them. We do not anticipate any additional effort or costs associated with software release procedures or schedules beyond those dictated by the quality expectations for the software. The largest potential costs we anticipate would be associated with the setup and maintenance of shared code repositories for development and early access to NEAMS software products. We also anticipate an opportunity, with modest associated costs, to work with the Radiation Safety Information Computational Center (RSICC) to clarify export control assessment policies for software under development.

  1. Planning the Unplanned Experiment: Assessing the Efficacy of Standards for Safety Critical Software

    NASA Technical Reports Server (NTRS)

    Graydon, Patrick J.; Holloway, C. Michael

    2015-01-01

    We need well-founded means of determining whether software is t for use in safety-critical applications. While software in industries such as aviation has an excellent safety record, the fact that software aws have contributed to deaths illustrates the need for justi ably high con dence in software. It is often argued that software is t for safety-critical use because it conforms to a standard for software in safety-critical systems. But little is known about whether such standards `work.' Reliance upon a standard without knowing whether it works is an experiment; without collecting data to assess the standard, this experiment is unplanned. This paper reports on a workshop intended to explore how standards could practicably be assessed. Planning the Unplanned Experiment: Assessing the Ecacy of Standards for Safety Critical Software (AESSCS) was held on 13 May 2014 in conjunction with the European Dependable Computing Conference (EDCC). We summarize and elaborate on the workshop's discussion of the topic, including both the presented positions and the dialogue that ensued.

  2. Comparison of planned and measured rectal dose in-vivo during high dose rate Cobalt-60 brachytherapy of cervical cancer.

    PubMed

    Zaman, Z K; Ung, N M; Malik, R A; Ho, G F; Phua, V C E; Jamalludin, Z; Baharuldin, M T H; Ng, K H

    2014-12-01

    Cobalt-60 (Co-60) is a relatively new source for the application of high-dose rate (HDR) brachytherapy. Radiation dose to the rectum is often a limiting factor in achieving the full prescribed dose to the target during brachytherapy of cervical cancer. The aim of this study was to measure radiation doses to the rectum in-vivo during HDR Co-60 brachytherapy. A total of eleven HDR brachytherapy treatments of cervical cancer were recruited in this study. A series of diodes incorporated in a rectal probe was inserted into the patient's rectum during each brachytherapy procedure. Real-time measured rectal doses were compared to calculated doses by the treatment planning system (TPS). The differences between calculated and measured dose ranged from 8.5% to 41.2%. This corresponds to absolute dose differences ranging from 0.3 Gy to 1.5 Gy. A linear relationship was observed between calculated and measured doses with linear regression R(2) value of 0.88, indicating close association between the measured and calculated doses. In general, absorbed doses for the rectum as calculated by TPS were observed to be higher than the doses measured using the diode probe. In-vivo dosimetry is an important quality assurance method for HDR brachytherapy of cervical cancer. It provides information that can contribute to the reduction of errors and discrepancies in dose delivery. Our study has shown that in-vivo dosimetry is feasible and can be performed to estimate the dose to the rectum during HDR brachytherapy using Co-60.

  3. Dosimetric comparison of IMRT rectal and anal canal plans generated using an anterior dose avoidance structure.

    PubMed

    Leicher, Brian; Day, Ellen; Colonias, Athanasios; Gayou, Olivier

    2014-01-01

    To describe a dosimetric method using an anterior dose avoidance structure (ADAS) during the treatment planning process for intensity-modulated radiation therapy (IMRT) for patients with anal canal and rectal carcinomas. A total of 20 patients were planned on the Elekta/CMS XiO treatment planning system, version 4.5.1 (Maryland Heights MO) with a superposition algorithm. For each patient, 2 plans were created: one employing an ADAS (ADAS plan) and the other replanned without an ADAS (non-ADAS plan). The ADAS was defined to occupy the volume between the inguinal nodes and primary target providing a single organ at risk that is completely outside of the target volume. Each plan used the same beam parameters and was analyzed by comparing target coverage, overall plan dose conformity using a conformity number (CN) equation, bowel dose-volume histograms, and the number of segments, daily treatment duration, and global maximum dose. The ADAS and non-ADAS plans were equivalent in target coverage, mean global maximum dose, and sparing of small bowel in low-dose regions (5, 10, 15, and 20 Gy). The mean difference between the CN value for the non-ADAS plans and ADAS plans was 0.04 ± 0.03 (p < 0.001). The mean difference in the number of segments was 15.7 ± 12.7 (p < 0.001) in favor of ADAS plans. The ADAS plan delivery time was shorter by 2.0 ± 1.5 minutes (p < 0.001) than the non-ADAS one. The ADAS has proven to be a powerful tool when planning rectal and anal canal IMRT cases with critical structures partially contained inside the target volume.

  4. Dosimetric comparison of IMRT rectal and anal canal plans generated using an anterior dose avoidance structure

    SciTech Connect

    Leicher, Brian; Day, Ellen; Colonias, Athanasios; Gayou, Olivier

    2014-10-01

    To describe a dosimetric method using an anterior dose avoidance structure (ADAS) during the treatment planning process for intensity-modulated radiation therapy (IMRT) for patients with anal canal and rectal carcinomas. A total of 20 patients were planned on the Elekta/CMS XiO treatment planning system, version 4.5.1 (Maryland Heights MO) with a superposition algorithm. For each patient, 2 plans were created: one employing an ADAS (ADAS plan) and the other replanned without an ADAS (non-ADAS plan). The ADAS was defined to occupy the volume between the inguinal nodes and primary target providing a single organ at risk that is completely outside of the target volume. Each plan used the same beam parameters and was analyzed by comparing target coverage, overall plan dose conformity using a conformity number (CN) equation, bowel dose-volume histograms, and the number of segments, daily treatment duration, and global maximum dose. The ADAS and non-ADAS plans were equivalent in target coverage, mean global maximum dose, and sparing of small bowel in low-dose regions (5, 10, 15, and 20 Gy). The mean difference between the CN value for the non-ADAS plans and ADAS plans was 0.04 ± 0.03 (p < 0.001). The mean difference in the number of segments was 15.7 ± 12.7 (p < 0.001) in favor of ADAS plans. The ADAS plan delivery time was shorter by 2.0 ± 1.5 minutes (p < 0.001) than the non-ADAS one. The ADAS has proven to be a powerful tool when planning rectal and anal canal IMRT cases with critical structures partially contained inside the target volume.

  5. Interactive dose shaping part 1: a new paradigm for IMRT treatment planning

    NASA Astrophysics Data System (ADS)

    Ziegenhein, Peter; Kamerling, Cornelis Ph; Oelfke, Uwe

    2016-03-01

    In this work we present a novel treatment planning technique called interactive dose shaping (IDS) to be employed for the optimization of intensity modulated radiation therapy (IMRT). IDS does not rely on a Newton-based optimization algorithm which is driven by an objective function formed of dose volume constraints on pre-segmented volumes of interest (VOIs). Our new planning technique allows for direct, interactive adaptation of localized planning features. This is realized by a dose modification and recovery (DMR) planning engine which implements a two-step approach: firstly, the desired localized plan adaptation is imposed on the current plan (modification) while secondly inevitable, undesired disturbances of the dose pattern elsewhere are compensated for automatically by the recovery module. Together with an ultra-fast dose update calculation method the DMR engine has been implemented in a newly designed 3D therapy planning system Dynaplan enabling true real-time interactive therapy planning. Here we present the underlying strategy and algorithms of the DMR based planning concept. The functionality of the IDS planning approach is demonstrated for a phantom geometry of clinical resolution and size.

  6. RELAP-7 Software Verification and Validation Plan: Requirements Traceability Matrix (RTM) Part 1 – Physics and numerical methods

    SciTech Connect

    Choi, Yong Joon; Yoo, Jun Soo; Smith, Curtis Lee

    2015-09-01

    This INL plan comprehensively describes the Requirements Traceability Matrix (RTM) on main physics and numerical method of the RELAP-7. The plan also describes the testing-based software verification and validation (SV&V) process—a set of specially designed software models used to test RELAP-7.

  7. SU-E-T-129: Are Knowledge-Based Planning Dose Estimates Valid for Distensible Organs?

    SciTech Connect

    Lalonde, R; Heron, D; Huq, M; Readshaw, A

    2015-06-15

    Purpose: Knowledge-based planning programs have become available to assist treatment planning in radiation therapy. Such programs can be used to generate estimated DVHs and planning constraints for organs at risk (OARs), based upon a model generated from previous plans. These estimates are based upon the planning CT scan. However, for distensible OARs like the bladder and rectum, daily variations in volume may make the dose estimates invalid. The purpose of this study is to determine whether knowledge-based DVH dose estimates may be valid for distensible OARs. Methods: The Varian RapidPlan™ knowledge-based planning module was used to generate OAR dose estimates and planning objectives for 10 prostate cases previously planned with VMAT, and final plans were calculated for each. Five weekly setup CBCT scans of each patient were then downloaded and contoured (assuming no change in size and shape of the target volume), and rectum and bladder DVHs were recalculated for each scan. Dose volumes were then compared at 75, 60,and 40 Gy for the bladder and rectum between the planning scan and the CBCTs. Results: Plan doses and estimates matched well at all dose points., Volumes of the rectum and bladder varied widely between planning CT and the CBCTs, ranging from 0.46 to 2.42 for the bladder and 0.71 to 2.18 for the rectum, causing relative dose volumes to vary between planning CT and CBCT, but absolute dose volumes were more consistent. The overall ratio of CBCT/plan dose volumes was 1.02 ±0.27 for rectum and 0.98 ±0.20 for bladder in these patients. Conclusion: Knowledge-based planning dose volume estimates for distensible OARs are still valid, in absolute volume terms, between treatment planning scans and CBCT’s taken during daily treatment. Further analysis of the data is being undertaken to determine how differences depend upon rectum and bladder filling state. This work has been supported by Varian Medical Systems.

  8. Dosimetric comparison of absolute and relative dose distributions between tissue maximum ratio and convolution algorithms for acoustic neurinoma plans in Gamma Knife radiosurgery.

    PubMed

    Nakazawa, Hisato; Komori, Masataka; Shibamoto, Yuta; Tsugawa, Takahiko; Mori, Yoshimasa; Kobayashi, Tatsuya

    2014-08-01

    The treatment planning for Gamma Knife (GK) stereotactic radiosurgery (SRS) that performs dose calculations based on tissue maximum ratio (TMR) algorithm has disadvantages in predicting dose in tissue heterogeneity. The latest version of the planning software is equipped with a convolution dose algorithm as an optional extra and the new algorithm is able to compensate for head inhomogeneity. However, the effect of this improved calculation method requires detailed validation in clinical cases. In this study, we compared absolute and relative dose distributions of treatment plans for acoustic neurinoma between TMR and the convolution calculation. Twenty-nine clinically used plans created by TMR algorithm were recalculated by convolution method. Differences between TMR and convolution were evaluated in terms of absolute dose (beam-on time), dosimetric parameters including target coverage, selectivity, conformity index, gradient index, radical homogeneity index and the dose-volume relationship. The discrepancy in estimated absolute dose to the target ranged from 1 to 7 % between TMR and convolution. In addition, dosimetric parameters of the two methods achieved statistical significance. However, it was difficult to see the change of relative dose distribution by visual assessment on a monitor. Convolution, heterogeneity correction calculation, and the algorithm are necessary to reduce the dosimetric uncertainty of each case in GK SRS.

  9. Targeting MRS-Defined Dominant Intraprostatic Lesions with Inverse-Planned High Dose Rate Brachytherapy

    DTIC Science & Technology

    2011-06-01

    requirements depending on rectal and bladder doses. The class solution in inverse planned HDR prostate brachythe - rapy for dose escalation of a DIL...High-dose-rate brachyther- apy without external beam irradiation for locally advanced prostate cancer. Radiother Oncol 2006; 80: 62-68. 7. Galalae RM... prostate brachytherapy for dose escalation of DIL defined by combined MRI/MRSI. Radiother Oncol 2008; 88: 148-155. 16. Pouliot J, Kim Y, Lessard E et al

  10. Dose planning with comparison to in vivo dosimetry for epithermal neutron irradiation of the dog brain.

    PubMed

    Seppälä, Tiina; Auterinen, Iiro; Aschan, Carita; Serén, Tom; Benczik, Judit; Snellman, Marjatta; Huiskamp, René; Ramadan, Usama Abo; Kankaanranta, Leena; Joensuu, Heikki; Savolainen, Sauli

    2002-11-01

    Boron neutron capture therapy (BNCT) is an experimental type of radiotherapy, presently being used to treat glioblastoma and melanoma. To improve patient safety and to determine the radiobiological characteristics of the epithermal neutron beam of Finnish BNCT facility (FiR 1) dose-response studies were carried on the brain of dogs before starting the clinical trials. A dose planning procedure was developed and uncertainties of the epithermal neutron-induced doses were estimated. The accuracy of the method of computing physical doses was assessed by comparing with in vivo dosimetry. Individual radiation dose plans were computed using magnetic resonance images of the heads of 15 Beagle dogs and the computational model of the FiR 1 epithermal neutron beam. For in vivo dosimetry, the thermal neutron fluences were measured using Mn activation foils and the gamma-ray doses with MCP-7s type thermoluminescent detectors placed both on the skin surface of the head and in the oral cavity. The degree of uncertainty of the reference doses at the thermal neutron maximum was estimated using a dose-planning program. The estimated uncertainty (+/-1 standard deviation) in the total physical reference dose was +/-8.9%. The calculated and the measured dose values agreed within the uncertainties at the point of beam entry. The conclusion is that the dose delivery to the tissue can be verified in a practical and reliable fashion by placing an activation dosimeter and a TL detector at the beam entry point on the skin surface with homogeneous tissues below. However, the point doses cannot be calculated correctly in the inhomogeneous area near air cavities of the head model with this type of dose-planning program. This calls for attention in dose planning in human clinical trials in the corresponding areas.

  11. Implementation of an Analytical Model for Leakage Neutron Equivalent Dose in a Proton Radiotherapy Planning System

    PubMed Central

    Eley, John; Newhauser, Wayne; Homann, Kenneth; Howell, Rebecca; Schneider, Christopher; Durante, Marco; Bert, Christoph

    2015-01-01

    Equivalent dose from neutrons produced during proton radiotherapy increases the predicted risk of radiogenic late effects. However, out-of-field neutron dose is not taken into account by commercial proton radiotherapy treatment planning systems. The purpose of this study was to demonstrate the feasibility of implementing an analytical model to calculate leakage neutron equivalent dose in a treatment planning system. Passive scattering proton treatment plans were created for a water phantom and for a patient. For both the phantom and patient, the neutron equivalent doses were small but non-negligible and extended far beyond the therapeutic field. The time required for neutron equivalent dose calculation was 1.6 times longer than that required for proton dose calculation, with a total calculation time of less than 1 h on one processor for both treatment plans. Our results demonstrate that it is feasible to predict neutron equivalent dose distributions using an analytical dose algorithm for individual patients with irregular surfaces and internal tissue heterogeneities. Eventually, personalized estimates of neutron equivalent dose to organs far from the treatment field may guide clinicians to create treatment plans that reduce the risk of late effects. PMID:25768061

  12. Implementation of an analytical model for leakage neutron equivalent dose in a proton radiotherapy planning system.

    PubMed

    Eley, John; Newhauser, Wayne; Homann, Kenneth; Howell, Rebecca; Schneider, Christopher; Durante, Marco; Bert, Christoph

    2015-03-11

    Equivalent dose from neutrons produced during proton radiotherapy increases the predicted risk of radiogenic late effects. However, out-of-field neutron dose is not taken into account by commercial proton radiotherapy treatment planning systems. The purpose of this study was to demonstrate the feasibility of implementing an analytical model to calculate leakage neutron equivalent dose in a treatment planning system. Passive scattering proton treatment plans were created for a water phantom and for a patient. For both the phantom and patient, the neutron equivalent doses were small but non-negligible and extended far beyond the therapeutic field. The time required for neutron equivalent dose calculation was 1.6 times longer than that required for proton dose calculation, with a total calculation time of less than 1 h on one processor for both treatment plans. Our results demonstrate that it is feasible to predict neutron equivalent dose distributions using an analytical dose algorithm for individual patients with irregular surfaces and internal tissue heterogeneities. Eventually, personalized estimates of neutron equivalent dose to organs far from the treatment field may guide clinicians to create treatment plans that reduce the risk of late effects.

  13. Takin: An open-source software for experiment planning, visualisation, and data analysis

    NASA Astrophysics Data System (ADS)

    Weber, Tobias; Georgii, Robert; Böni, Peter

    Due to their non-trivial resolution function, measurements on triple-axis spectrometers require extra care from the experimentalist in order to obtain optimal results and to avoid unwanted spurious artefacts. We present a free and open-source software system that aims to ease many of the tasks encountered during the planning phase, in the execution and in data treatment of experiments performed on neutron triple-axis spectrometers. The software is currently in use and has been successfully tested at the MLZ, but can be configured to work with other triple-axis instruments and instrument control systems.

  14. CDApps: integrated software for experimental planning and data processing at beamline B23, Diamond Light Source.

    PubMed

    Hussain, Rohanah; Benning, Kristian; Javorfi, Tamas; Longo, Edoardo; Rudd, Timothy R; Pulford, Bill; Siligardi, Giuliano

    2015-03-01

    The B23 Circular Dichroism beamline at Diamond Light Source has been operational since 2009 and has seen visits from more than 200 user groups, who have generated large amounts of data. Based on the experience of overseeing the users' progress at B23, four key areas requiring the most assistance are identified: planning of experiments and note-keeping; designing titration experiments; processing and analysis of the collected data; and production of experimental reports. To streamline these processes an integrated software package has been developed and made available for the users. The subsequent article summarizes the main features of the software.

  15. Dose planning objectives in anal canal cancer IMRT: the TROG ANROTAT experience

    SciTech Connect

    Brown, Elizabeth; Cray, Alison; Haworth, Annette; Chander, Sarat; Lin, Robert; Subramanian, Brindha; Ng, Michael

    2015-06-15

    Intensity modulated radiotherapy (IMRT) is ideal for anal canal cancer (ACC), delivering high doses to irregular tumour volumes whilst minimising dose to surrounding normal tissues. Establishing achievable dose objectives is a challenge. The purpose of this paper was to utilise data collected in the Assessment of New Radiation Oncology Treatments and Technologies (ANROTAT) project to evaluate the feasibility of ACC IMRT dose planning objectives employed in the Australian situation. Ten Australian centres were randomly allocated three data sets from 15 non-identifiable computed tomography data sets representing a range of disease stages and gender. Each data set was planned by two different centres, producing 30 plans. All tumour and organ at risk (OAR) contours, prescription and dose constraint details were provided. Dose–volume histograms (DVHs) for each plan were analysed to evaluate the feasibility of dose planning objectives provided. All dose planning objectives for the bone marrow (BM) and femoral heads were achieved. Median planned doses exceeded one or more objectives for bowel, external genitalia and bladder. This reached statistical significance for bowel V30 (P = 0.04), V45 (P < 0.001), V50 (P < 0.001), external genitalia V20 (P < 0.001) and bladder V35 (P < 0.001), V40 (P = 0.01). Gender was found to be the only significant factor in the likelihood of achieving the bowel V50 (P = 0.03) and BM V30 constraints (P = 0.04). The dose planning objectives used in the ANROTAT project provide a good starting point for ACC IMRT planning. To facilitate clinical implementation, it is important to prioritise OAR objectives and recognise factors that affect the achievability of these objectives.

  16. The influence of the dose calculation resolution of VMAT plans on the calculated dose for eye lens and optic pathway.

    PubMed

    Park, Jong Min; Park, So-Yeon; Kim, Jung-In; Carlson, Joel; Kim, Jin Ho

    2017-03-01

    To investigate the effect of dose calculation grid on calculated dose-volumetric parameters for eye lenses and optic pathways. A total of 30 patients treated using the volumetric modulated arc therapy (VMAT) technique, were retrospectively selected. For each patient, dose distributions were calculated with calculation grids ranging from 1 to 5 mm at 1 mm intervals. Identical structures were used for VMAT planning. The changes in dose-volumetric parameters according to the size of the calculation grid were investigated. Compared to dose calculation with 1 mm grid, the maximum doses to the eye lens with calculation grids of 2, 3, 4 and 5 mm increased by 0.2 ± 0.2 Gy, 0.5 ± 0.5 Gy, 0.9 ± 0.8 Gy and 1.7 ± 1.5 Gy on average, respectively. The Spearman's correlation coefficient between dose gradients near structures vs. the differences between the calculated doses with 1 mm grid and those with 5 mm grid, were 0.380 (p < 0.001). For the accurate calculation of dose distributions, as well as efficiency, using a grid size of 2 mm appears to be the most appropriate choice.

  17. RE-PLAN: An Extensible Software Architecture to Facilitate Disaster Response Planning

    PubMed Central

    O’Neill, Martin; Mikler, Armin R.; Indrakanti, Saratchandra; Tiwari, Chetan; Jimenez, Tamara

    2014-01-01

    Computational tools are needed to make data-driven disaster mitigation planning accessible to planners and policymakers without the need for programming or GIS expertise. To address this problem, we have created modules to facilitate quantitative analyses pertinent to a variety of different disaster scenarios. These modules, which comprise the REsponse PLan ANalyzer (RE-PLAN) framework, may be used to create tools for specific disaster scenarios that allow planners to harness large amounts of disparate data and execute computational models through a point-and-click interface. Bio-E, a user-friendly tool built using this framework, was designed to develop and analyze the feasibility of ad hoc clinics for treating populations following a biological emergency event. In this article, the design and implementation of the RE-PLAN framework are described, and the functionality of the modules used in the Bio-E biological emergency mitigation tool are demonstrated. PMID:25419503

  18. RE-PLAN: An Extensible Software Architecture to Facilitate Disaster Response Planning.

    PubMed

    O'Neill, Martin; Mikler, Armin R; Indrakanti, Saratchandra; Tiwari, Chetan; Jimenez, Tamara

    2014-12-01

    Computational tools are needed to make data-driven disaster mitigation planning accessible to planners and policymakers without the need for programming or GIS expertise. To address this problem, we have created modules to facilitate quantitative analyses pertinent to a variety of different disaster scenarios. These modules, which comprise the REsponse PLan ANalyzer (RE-PLAN) framework, may be used to create tools for specific disaster scenarios that allow planners to harness large amounts of disparate data and execute computational models through a point-and-click interface. Bio-E, a user-friendly tool built using this framework, was designed to develop and analyze the feasibility of ad hoc clinics for treating populations following a biological emergency event. In this article, the design and implementation of the RE-PLAN framework are described, and the functionality of the modules used in the Bio-E biological emergency mitigation tool are demonstrated.

  19. Planning the Unplanned Experiment: Towards Assessing the Efficacy of Standards for Safety-Critical Software

    NASA Technical Reports Server (NTRS)

    Graydon, Patrick J.; Holloway, C. M.

    2015-01-01

    Safe use of software in safety-critical applications requires well-founded means of determining whether software is fit for such use. While software in industries such as aviation has a good safety record, little is known about whether standards for software in safety-critical applications 'work' (or even what that means). It is often (implicitly) argued that software is fit for safety-critical use because it conforms to an appropriate standard. Without knowing whether a standard works, such reliance is an experiment; without carefully collecting assessment data, that experiment is unplanned. To help plan the experiment, we organized a workshop to develop practical ideas for assessing software safety standards. In this paper, we relate and elaborate on the workshop discussion, which revealed subtle but important study design considerations and practical barriers to collecting appropriate historical data and recruiting appropriate experimental subjects. We discuss assessing standards as written and as applied, several candidate definitions for what it means for a standard to 'work,' and key assessment strategies and study techniques and the pros and cons of each. Finally, we conclude with thoughts about the kinds of research that will be required and how academia, industry, and regulators might collaborate to overcome the noted barriers.

  20. SU-E-T-505: CT-Based Independent Dose Verification for RapidArc Plan as a Secondary Check

    SciTech Connect

    Tachibana, H; Baba, H; Kamima, T; Takahashi, R

    2014-06-01

    Purpose: To design and develop a CT-based independent dose verification for the RapidArc plan and also to show the effectiveness of inhomogeneous correction in the secondary check for the plan. Methods: To compute the radiological path from the body surface to the reference point and equivalent field sizes from the multiple MLC aperture shapes in the RapidArc MLC sequences independently, DICOM files of CT image, structure and RapidArc plan were imported to our in-house software. The radiological path was computed using a three-dimensional CT arrays for each segment. The multiple MLC aperture shapes were used to compute tissue maximum ratio and phantom scatter factor using the Clarkson-method. In this study, two RapidArc plans for oropharynx cancer were used to compare the doses in CT-based calculation and water-equivalent phantom calculation using the contoured body structure to the dose in a treatment planning system (TPS). Results: The comparison in the one plan shows good agreement in both of the calculation (within 1%). However, in the other case, the CT-based calculation shows better agreement compared to the water-equivalent phantom calculation (CT-based: -2.8% vs. Water-based: -3.8%). Because there were multiple structures along the multiple beam paths and the radiological path length in the CT-based calculation and the path in the water-homogenous phantom calculation were comparatively different. Conclusion: RapidArc treatments are performed in any sites (from head, chest, abdomen to pelvis), which includes inhomogeneous media. Therefore, a more reliable CT-based calculation may be used as a secondary check for the independent verification.

  1. Graves' disease radioiodine-therapy: Choosing target absorbed doses for therapy planning

    SciTech Connect

    Willegaignon, J. Sapienza, M. T.; Coura-Filho, G. B.; Buchpiguel, C. A.; Watanabe, T.; Traino, A. C.

    2014-01-15

    Purpose: The precise determination of organ mass (m{sub th}) and total number of disintegrations within the thyroid gland (A{sup ~}) are essential for thyroid absorbed-dose calculations for radioiodine therapy. Nevertheless, these parameters may vary according to the method employed for their estimation, thus introducing uncertainty in the estimated thyroid absorbed dose and in any dose–response relationship derived using such estimates. In consideration of these points, thyroid absorbed doses for Graves’ disease (GD) treatment planning were calculated using different approaches to estimating the m{sub th} and the A{sup ~}. Methods: Fifty patients were included in the study. Thyroid{sup 131}I uptake measurements were performed at 2, 6, 24, 48, 96, and 220 h postadministration of a tracer activity in order to estimate the effective half-time (T{sub eff}) of {sup 131}I in the thyroid; the thyroid cumulated activity was then estimated using the T{sub eff} thus determined or, alternatively, calculated by numeric integration of the measured time-activity data. Thyroid mass was estimated by ultrasonography (USG) and scintigraphy (SCTG). Absorbed doses were calculated with the OLINDA/EXM software. The relationships between thyroid absorbed dose and therapy response were evaluated at 3 months and 1 year after therapy. Results: The average ratio (±1 standard deviation) betweenm{sub th} estimated by SCTG and USG was 1.74 (±0.64) and that between A{sup ~} obtained by T{sub eff} and the integration of measured activity in the gland was 1.71 (±0.14). These differences affect the calculated absorbed dose. Overall, therapeutic success, corresponding to induction of durable hypothyroidism or euthyroidism, was achieved in 72% of all patients at 3 months and in 90% at 1 year. A therapeutic success rate of at least 95% was found in the group of patients receiving doses of 200 Gy (p = 0.0483) and 330 Gy (p = 0.0131) when m{sub th} was measured by either USG or SCTG and A

  2. Graves' disease radioiodine-therapy: Choosing target absorbed doses for therapy planning

    SciTech Connect

    Willegaignon, J. Sapienza, M. T.; Coura-Filho, G. B.; Buchpiguel, C. A.; Watanabe, T.; Traino, A. C.

    2014-01-15

    Purpose: The precise determination of organ mass (m{sub th}) and total number of disintegrations within the thyroid gland (A{sup ~}) are essential for thyroid absorbed-dose calculations for radioiodine therapy. Nevertheless, these parameters may vary according to the method employed for their estimation, thus introducing uncertainty in the estimated thyroid absorbed dose and in any dose–response relationship derived using such estimates. In consideration of these points, thyroid absorbed doses for Graves’ disease (GD) treatment planning were calculated using different approaches to estimating the m{sub th} and the A{sup ~}. Methods: Fifty patients were included in the study. Thyroid{sup 131}I uptake measurements were performed at 2, 6, 24, 48, 96, and 220 h postadministration of a tracer activity in order to estimate the effective half-time (T{sub eff}) of {sup 131}I in the thyroid; the thyroid cumulated activity was then estimated using the T{sub eff} thus determined or, alternatively, calculated by numeric integration of the measured time-activity data. Thyroid mass was estimated by ultrasonography (USG) and scintigraphy (SCTG). Absorbed doses were calculated with the OLINDA/EXM software. The relationships between thyroid absorbed dose and therapy response were evaluated at 3 months and 1 year after therapy. Results: The average ratio (±1 standard deviation) betweenm{sub th} estimated by SCTG and USG was 1.74 (±0.64) and that between A{sup ~} obtained by T{sub eff} and the integration of measured activity in the gland was 1.71 (±0.14). These differences affect the calculated absorbed dose. Overall, therapeutic success, corresponding to induction of durable hypothyroidism or euthyroidism, was achieved in 72% of all patients at 3 months and in 90% at 1 year. A therapeutic success rate of at least 95% was found in the group of patients receiving doses of 200 Gy (p = 0.0483) and 330 Gy (p = 0.0131) when m{sub th} was measured by either USG or SCTG and A

  3. Survey of ANL organization plans for word processors, personal computers, workstations, and associated software. Revision 3

    SciTech Connect

    Fenske, K.R.

    1991-11-01

    The Computing and Telecommunications Division (CTD) has compiled this Survey of ANL Organization Plans for Word Processors, Personal Computers, Workstations, and Associated Software to provide DOE and Argonne with a record of recent growth in the acquisition and use of personal computers, microcomputers, and word processors at ANL. Laboratory planners, service providers, and people involved in office automation may find the Survey useful. It is for internal use only, and any unauthorized use is prohibited. Readers of the Survey should use it as a reference that documents the plans of each organization for office automation, identifies appropriate planners and other contact people in those organizations, and encourages the sharing of this information among those people making plans for organizations and decisions about office automation. The Survey supplements information in both the ANL Statement of Site Strategy for Computing Workstations and the ANL Site Response for the DOE Information Technology Resources Long-Range Plan.

  4. Survey of ANL organization plans for word processors, personal computers, workstations, and associated software

    SciTech Connect

    Fenske, K.R.

    1991-11-01

    The Computing and Telecommunications Division (CTD) has compiled this Survey of ANL Organization Plans for Word Processors, Personal Computers, Workstations, and Associated Software to provide DOE and Argonne with a record of recent growth in the acquisition and use of personal computers, microcomputers, and word processors at ANL. Laboratory planners, service providers, and people involved in office automation may find the Survey useful. It is for internal use only, and any unauthorized use is prohibited. Readers of the Survey should use it as a reference that documents the plans of each organization for office automation, identifies appropriate planners and other contact people in those organizations, and encourages the sharing of this information among those people making plans for organizations and decisions about office automation. The Survey supplements information in both the ANL Statement of Site Strategy for Computing Workstations and the ANL Site Response for the DOE Information Technology Resources Long-Range Plan.

  5. Single versus multichannel applicator in high-dose-rate vaginal brachytherapy optimized by inverse treatment planning

    PubMed Central

    Constantinescu, Camelia; Hassouna, Ashraf H.; Eltaher, Maha M.; Ghassal, Noor M.; Awad, Nesreen A.

    2014-01-01

    Purpose To retrospectively compare the potential dosimetric advantages of a multichannel vaginal applicator vs. a single channel one in intracavitary vaginal high-dose-rate (HDR) brachytherapy after hysterectomy, and evaluate the dosimetric advantage of fractional re-planning. Material and methods We randomly selected 12 patients with endometrial carcinoma, who received adjuvant vaginal cuff HDR brachytherapy using a multichannel applicator. For each brachytherapy fraction, two inverse treatment plans (for central channel and multichannel loadings) were performed and compared. The advantage of fractional re-planning was also investigated. Results Dose-volume-histogram (DVH) analysis showed limited, but statistically significant difference (p = 0.007) regarding clinical-target-volume dose coverage between single and multichannel approaches. For the organs-at-risk rectum and bladder, the use of multichannel applicator demonstrated a noticeable dose reduction, when compared to single channel, but statistically significant for rectum only (p = 0.0001). For D2cc of rectum, an average fractional dose of 6.1 ± 0.7 Gy resulted for single channel vs. 5.1 ± 0.6 Gy for multichannel. For D2cc of bladder, an average fractional dose of 5 ± 0.9 Gy occurred for single channel vs. 4.9 ± 0.8 Gy for multichannel. The dosimetric benefit of fractional re-planning was demonstrated: DVH analysis showed large, but not statistically significant differences between first fraction plan and fractional re-planning, due to large inter-fraction variations for rectum and bladder positioning and filling. Conclusions Vaginal HDR brachytherapy using a multichannel vaginal applicator and inverse planning provides dosimetric advantages over single channel cylinder, by reducing the dose to organs at risk without compromising the target volume coverage, but at the expense of an increased vaginal mucosa dose. Due to large inter-fraction dose variations, we recommend individual fraction treatment plan

  6. Single versus multichannel applicator in high-dose-rate vaginal brachytherapy optimized by inverse treatment planning.

    PubMed

    Bahadur, Yasir A; Constantinescu, Camelia; Hassouna, Ashraf H; Eltaher, Maha M; Ghassal, Noor M; Awad, Nesreen A

    2015-01-01

    To retrospectively compare the potential dosimetric advantages of a multichannel vaginal applicator vs. a single channel one in intracavitary vaginal high-dose-rate (HDR) brachytherapy after hysterectomy, and evaluate the dosimetric advantage of fractional re-planning. We randomly selected 12 patients with endometrial carcinoma, who received adjuvant vaginal cuff HDR brachytherapy using a multichannel applicator. For each brachytherapy fraction, two inverse treatment plans (for central channel and multichannel loadings) were performed and compared. The advantage of fractional re-planning was also investigated. Dose-volume-histogram (DVH) analysis showed limited, but statistically significant difference (p = 0.007) regarding clinical-target-volume dose coverage between single and multichannel approaches. For the organs-at-risk rectum and bladder, the use of multichannel applicator demonstrated a noticeable dose reduction, when compared to single channel, but statistically significant for rectum only (p = 0.0001). For D2cc of rectum, an average fractional dose of 6.1 ± 0.7 Gy resulted for single channel vs. 5.1 ± 0.6 Gy for multichannel. For D2cc of bladder, an average fractional dose of 5 ± 0.9 Gy occurred for single channel vs. 4.9 ± 0.8 Gy for multichannel. The dosimetric benefit of fractional re-planning was demonstrated: DVH analysis showed large, but not statistically significant differences between first fraction plan and fractional re-planning, due to large inter-fraction variations for rectum and bladder positioning and filling. Vaginal HDR brachytherapy using a multichannel vaginal applicator and inverse planning provides dosimetric advantages over single channel cylinder, by reducing the dose to organs at risk without compromising the target volume coverage, but at the expense of an increased vaginal mucosa dose. Due to large inter-fraction dose variations, we recommend individual fraction treatment plan optimization.

  7. The use of computer software for planning care in a resource-scarce setting.

    PubMed

    Green, David Anthony; Reeves, Ben

    2010-07-01

    Even in the best resourced units, certain situations (e.g. resuscitations) can benefit from anticipation and preplanning. A resource-scarce environment can indirectly lead to poor planning and organization. Here we share our experience of using computer software (Microsoft Office Excel) to improve the planning of patient care. This technology is now widely available and we suggest that it is feasible and, indeed, particularly valuable in a resource-poor setting. We focus on the steps taken to minimize the chances of errors rooted in the program.

  8. Three-dimensional preoperative planning software and a novel information transfer technology improve glenoid component positioning.

    PubMed

    Iannotti, Joseph; Baker, Justin; Rodriguez, Eric; Brems, John; Ricchetti, Eric; Mesiha, Mena; Bryan, Jason

    2014-05-07

    We hypothesized that a novel surgical method, in which three-dimensional (3-D) preoperative planning software is generated to create a patient-specific surgical model that is used with a reusable and adjustable tool, could substantially improve the positioning accuracy of the glenoid guide pin used in total shoulder arthroplasty. We tested this method using bone models from patients with shoulder pathology and compared the results with those achieved using surgical methods representing the current standard of care. Three surgeons with a variety of surgical experience placed a guide pin in nine bone models from patients with a variety of glenohumeral arthritis severity using (1) standard instrumentation alone, (2) standard instrumentation and 3-D preoperative surgical planning, and (3) the reusable transfer device and 3-D preoperative surgical planning. A postoperative 3-D computed tomography scan of the bone model was made and registered to the preoperative plan, and the differences between the actual and planned pin locations and trajectories were measured. Use of the standard instrumentation combined with 3-D preoperative planning software improved guide pin positioning compared with standard instrumentation and preoperative planning using 2-D imaging. The accuracy of pin positioning increased by 4.5° ± 1.0° in version (p < 0.001), 3.3° ± 1.3° in inclination (p = 0.013), and 0.4 ± 0.2 mm in location (p = 0.042). Use of the adjustable and reusable device and the 3-D software improved pin positioning by a further 3.7° ± 0.9° in version, 8.1° ± 1.2° in inclination, and 1.2 ± 0.2 mm in location (p < 0.001 for all) compared with standard instrumentation and the 3-D software; the improvement compared with use of standard instrumentation with 2-D imaging was 8.2° ± 0.9° in version, 11.4° ± 1.2° in inclination, and 1.7 ± 0.2 mm in location (p < 0.001 for all). Use of 3-D preoperative planning and use of the patient-specific bone model and

  9. Program planning using the GMAP procedure in SAS/GRAPH software

    SciTech Connect

    Nelson, T.R.; Farrell, M.P.; Gross, T.J.; White, T.R.

    1985-01-01

    A methodology that produces Program Planning Charts using SAS/GRAPH software has been developed as an aid to program management in the CO/sub 2/ Research Program of the US Department of Energy. The methodology uses programs from MAPPER, a front-end program (written by D.A. Dahl) for DISSPLA to produce Logic Flow diagrams. Each research question, or set of questions, which comprise one phase of a research program, is represented by a boxed area containing the title of the particular research question(s). The GMAP procedure of SAS/GRAPH software reads user-supplied information regarding a variable aspect of each research question and shades the boxes accordingly. The result is a color-coded planning chart depicting the user supplied information for the individual research questions and, consequently, the status of the overall program. 4 figures, 1 table.

  10. Status and Plans for the Vienna VLBI and Satellite Software (VieVS 3.0)

    NASA Astrophysics Data System (ADS)

    Gruber, Jakob; Böhm, Johannes; Böhm, Sigrid; Girdiuk, Anastasiia; Hellerschmied, Andreas; Hofmeister, Armin; Krásná, Hana; Kwak, Younghee; Landskron, Daniel; Madzak, Matthias; Mayer, David; McCallum, Jamie; Plank, Lucia; Schartner, Matthias; Shabala, Stas; Teke, Kamil; Sun, Jing

    2017-04-01

    The Vienna VLBI and Satellite Software (VieVS) is a geodetic analysis software developed and maintained at Technische Universität Wien (TU Wien) with contributions from groups all over the world. It is used for both academic purposes in university courses as well as for providing Very Long Baseline Interferometry (VLBI) analysis results to the geodetic community. Written in a modular structure in Matlab, VieVS offers easy access to the source code and the possibility to adapt the programs for particular purposes. The new version 3.0, released in early 2017, includes several new features, e.g., improved scheduling capabilities for observing quasars and satellites. This poster gives an overview of all VLBI-related activities in Vienna and provides an outlook to future plans concerning the Vienna VLBI and Satellite Software (VieVS).

  11. Design and functionalities of the MADOR® software suite for dose-reduction management after DTPA therapy.

    PubMed

    Leprince, B; Fritsch, P; Bérard, P; Roméo, P-H

    2016-03-01

    A software suite on biokinetics of radionuclides and internal dosimetry intended for the occupational health practitioners of nuclear industry and for expert opinions has been developed under Borland C++ Builder™. These computing tools allow physicians to improve the dosimetric follow-up of workers in agreement with the French regulations and to manage new internal contaminations by radionuclides such as Pu and/or Am after diethylene triamine penta-acetic acid treatments. In this paper, the concept and functionalities of the first two computing tools of this MADOR(®) suite are described. The release 0.0 is the forensic application, which allows calculating the derived recording levels for intake by inhalation or ingestion of the main radioisotopes encountered in occupational environment. Indeed, these reference values of activity are convenient to interpret rapidly the bioassay measurements and make decisions as part of medical monitoring. The release 1.0 addresses the effect of DTPA treatments on Pu/Am biokinetics and the dose benefit. The forensic results of the MADOR(®) suite were validated by comparison with reference data. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. SU-E-J-36: Combining CBCT Dose Into IMRT Treatment Planning

    SciTech Connect

    Grelewicz, Z; Wiersma, R

    2014-06-01

    Purpose: Cone beam CT (CBCT) is increasingly used in patient setup for IMRT. Daily CBCT may provide effective localization, however, it introduces concern over excessive imaging dose. Previous studies investigated the calculation of excess CBCT dose, however, no study has yet treated this dose as a source of therapeutic radiation, optimized in consideration of PTV and OARs constrains. Here we present a novel combined MV+kV inverse optimization engine to weave the CBCT and MV dose together such that CBCT dose is used for both imaging and therapeutic purposes. This may mitigate some of the excess imaging dose effects of daily CBCT and allow complete evaluation of the CBCT dose prior to treatment. Methods: The EGSnrc Monte Carlo system was used to model a Varian Trilogy CBCT system and 6 MV treatment beam. Using the model, the dose to patient from treatment beam and imaging beam was calculated for ten patients. The standard IMRT objective function was modified to include CBCT dose. Treatment plan optimization using the MOSEK optimization tool was performed retrospectively with and without assuming kV radiation dose from CBCT, assuming one CBCT per fraction. Results: Across ten patients, the CBCT delivered peaks of between .4% and 3.0% of the prescription dose to the PTV, with average CBCT dose to the PTV between .3% and .8%. By including CBCT dose to skin as a constraint during optimization, peak skin dose is reduced by between 1.9% and 7.4%, and average skin dose is reduced by .2% to 3.3%. Conclusions: Pre-treatment CBCT may deliver a substantial amount of radiation dose to the target volume. By considering CBCT dose to skin at the point of treatment planning, it is possible to reduce patient skin dose from current clinical levels, and to provide patient treatment with the improved accuracy that daily CBCT provides.

  13. Configuration management plan. System definition and project development. Repository Based Software Engineering (RBSE) program

    NASA Technical Reports Server (NTRS)

    Mckay, Charles

    1991-01-01

    This is the configuration management Plan for the AdaNet Repository Based Software Engineering (RBSE) contract. This document establishes the requirements and activities needed to ensure that the products developed for the AdaNet RBSE contract are accurately identified, that proposed changes to the product are systematically evaluated and controlled, that the status of all change activity is known at all times, and that the product achieves its functional performance requirements and is accurately documented.

  14. Reliability and scientific use of a surgical planning software for anterior cervical discectomy and fusion (ACDF).

    PubMed

    Barth, Martin; Weiß, Christel; Brenke, Christopher; Schmieder, Kirsten

    2017-04-01

    Software-based planning of a spinal implant inheres in the promise of precision and superior results. The purpose of the study was to analyze the measurement reliability, prognostic value, and scientific use of a surgical planning software in patients receiving anterior cervical discectomy and fusion (ACDF). Lateral neutral, flexion, and extension radiographs of patients receiving tailored cages as suggested by the planning software were available for analysis. Differences of vertebral wedging angles and segmental height of all cervical segments were determined at different timepoints using intraclass correlation coefficients (ICC). Cervical lordosis (C2/C7), segmental heights, global, and segmental range of motion (ROM) were determined at different timepoints. Clinical and radiological variables were correlated 12 months after surgery. 282 radiographs of 35 patients with a mean age of 53.1 ± 12.0 years were analyzed. Measurement of segmental height was highly accurate with an ICC near to 1, but angle measurements showed low ICC values. Likewise, the ICCs of the prognosticated values were low. Postoperatively, there was a significant decrease of segmental height (p < 0.0001) and loss of C2/C7 ROM (p = 0.036). ROM of unfused segments also significantly decreased (p = 0.016). High NDI was associated with low subsidence rates. The surgical planning software showed high accuracy in the measurement of height differences and lower accuracy values with angle measurements. Both the prognosticated height and angle values were arbitrary. Global ROM, ROM of the fused and intact segments, is restricted after ACDF.

  15. Design and implementation of a compliant robot with force feedback and strategy planning software

    NASA Technical Reports Server (NTRS)

    Premack, T.; Strempek, F. M.; Solis, L. A.; Brodd, S. S.; Cutler, E. P.; Purves, L. R.

    1984-01-01

    Force-feedback robotics techniques are being developed for automated precision assembly and servicing of NASA space flight equipment. Design and implementation of a prototype robot which provides compliance and monitors forces is in progress. Computer software to specify assembly steps and makes force feedback adjustments during assembly are coded and tested for three generically different precision mating problems. A model program demonstrates that a suitably autonomous robot can plan its own strategy.

  16. Visualization support for risk-informed decision making when planning and managing software developments

    NASA Technical Reports Server (NTRS)

    Feather, Martin S.; Kiper, James D.; Menzies, Tim

    2005-01-01

    Key decisions are made in the early stages of planning and management of software developments. The information basis for these decisions is often a mix of analogy with past developments, and the best judgments of domain experts. Visualization of this information can support to such decision making by clarifying the status of the information and yielding insights into the ramifications of that information vis-a-vis decision alternatives.

  17. Implications of Intercellular Signaling for Radiation Therapy: A Theoretical Dose-Planning Study

    SciTech Connect

    McMahon, Stephen J.; McGarry, Conor K.; Butterworth, Karl T.; O'Sullivan, Joe M.; Hounsell, Alan R.; Prise, Kevin M.

    2013-12-01

    Purpose: Recent in vitro results have shown significant contributions to cell killing from signaling effects at doses that are typically used in radiation therapy. This study investigates whether these in vitro observations can be reconciled with in vivo knowledge and how signaling may have an impact on future developments in radiation therapy. Methods and Materials: Prostate cancer treatment plans were generated for a series of 10 patients using 3-dimensional conformal therapy, intensity modulated radiation therapy (IMRT), and volumetric modulated arc therapy techniques. These plans were evaluated using mathematical models of survival following modulated radiation exposures that were developed from in vitro observations and incorporate the effects of intercellular signaling. The impact on dose–volume histograms and mean doses were evaluated by converting these survival levels into “signaling-adjusted doses” for comparison. Results: Inclusion of intercellular communication leads to significant differences between the signalling-adjusted and physical doses across a large volume. Organs in low-dose regions near target volumes see the largest increases, with mean signaling-adjusted bladder doses increasing from 23 to 33 Gy in IMRT plans. By contrast, in high-dose regions, there is a small decrease in signaling-adjusted dose due to reduced contributions from neighboring cells, with planning target volume mean doses falling from 74 to 71 Gy in IMRT. Overall, however, the dose distributions remain broadly similar, and comparisons between the treatment modalities are largely unchanged whether physical or signaling-adjusted dose is compared. Conclusions: Although incorporating cellular signaling significantly affects cell killing in low-dose regions and suggests a different interpretation for many phenomena, their effect in high-dose regions for typical planning techniques is comparatively small. This indicates that the significant signaling effects observed in vitro

  18. Optimizing drug-dose alerts using commercial software throughout an integrated health care system.

    PubMed

    Saiyed, Salim M; Greco, Peter J; Fernandes, Glenn; Kaelber, David C

    2017-11-01

    All default electronic health record and drug reference database vendor drug-dose alerting recommendations (single dose, daily dose, dose frequency, and dose duration) were silently turned on in inpatient, outpatient, and emergency department areas for pediatric-only and nonpediatric-only populations. Drug-dose alerts were evaluated during a 3-month period. Drug-dose alerts fired on 12% of orders (104 098/834 911). System-level and drug-specific strategies to decrease drug-dose alerts were analyzed. System-level strategies included: (1) turning off all minimum drug-dosing alerts, (2) turning off all incomplete information drug-dosing alerts, (3) increasing the maximum single-dose drug-dose alert threshold to 125%, (4) increasing the daily dose maximum drug-dose alert threshold to 125%, and (5) increasing the dose frequency drug-dose alert threshold to more than 2 doses per day above initial threshold. Drug-specific strategies included changing drug-specific maximum single and maximum daily drug-dose alerting parameters for the top 22 drug categories by alert frequency. System-level approaches decreased alerting to 5% (46 988/834 911) and drug-specific approaches decreased alerts to 3% (25 455/834 911). Drug-dose alerts varied between care settings and patient populations. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Radiation dose estimation in computed tomography examinations using NRPB-SR250 software in aretrospective analysis of a patient population.

    PubMed

    Salminen, E; Niiniviita, H; Kulmala, J; Määttänen, H; Järvinen, H

    2012-12-01

    Computed tomography (CT) imaging contributes to a major part of medical radiation exposure. With regard to patients safety, frequent CT examinations (CTEs) performed on the same patient are of particular concern. Tools for tracking the individual patient radiation exposure history and cumulative dose assessment may become important. Here, the applicability of the NRPB-SR250 software was assessed in a retrospective analysis of radiation doses from CTE made consecutively in male patients. Most of the examinations focused on the abdomen or the whole body. The mean number of CTs per patient was 6.8. Significant cumulative effective doses were observed: 76 (66 %) patients received an effective dose higher than 50 mSv, while the maximum was ∼280 mSv. A more than 3-fold effective dose difference was observed between scanners, depending on the scanning protocols. The NRPB-SR250 software proved to be a robust tool for the assessment of organ doses and the effective radiation dose from CT, while challenges were encountered in finding the precise imaging data in retrospective protocols.

  20. Multicentre knowledge sharing and planning/dose audit on flattening filter free beams for SBRT lung

    NASA Astrophysics Data System (ADS)

    Hansen, C. R.; Sykes, J. R.; Barber, J.; West, K.; Bromley, R.; Szymura, K.; Fisher, S.; Sim, J.; Bailey, M.; Chrystal, D.; Deshpande, S.; Franji, I.; Nielsen, T. B.; Brink, C.; Thwaites, D. I.

    2015-01-01

    When implementing new technology into clinical practice, there will always be a need for large knowledge gain. The aim of this study was twofold, (I) audit the treatment planning and dose delivery of Flattening Filter Free (FFF) beam technology for Stereotactic Body Radiation Therapy (SBRT) of lung tumours across a range of treatment planning systems compared to the conventional Flatting Filter (FF) beams, (II) investigate how sharing knowledge between centres of different experience can improve plan quality. All vendor/treatment planning system (TPS) combinations investigated were able to produce acceptable treatment plans and the dose accuracy was clinically acceptable for all plans. By sharing knowledge between the different centres, the minor protocol violations (MPV) could be significantly reduced, from an average of 1.9 MPV per plan to 0.6 after such sharing of treatment planning knowledge. In particular, for the centres with less SBRT and/or volumetric- modulated arc therapy (VMAT) experience the MPV average per plan improved. All vendor/TPS combinations were also able to successfully deliver the FF and FFF SBRT VMAT plans. The plan quality and dose accuracy were found to be clinically acceptable.

  1. Dose planning management of patients undergoing salvage whole brain radiation therapy after radiosurgery.

    PubMed

    Saw, Cheng B; Battin, Frank; McKeague, Janice; Haggerty, Meghan; Baikadi, Madhava; Peters, Christopher

    2016-01-01

    Dose or treatment planning management is necessary for the re-irradiation of intracranial relapses after focal irradiation, radiosurgery, or stereotactic radiotherapy. The current clinical guidelines for metastatic brain tumors are the use of focal irradiation if the patient presents with 4 lesions or less. Salvage treatments with the use of whole brain radiation therapy (WBRT) can then be used to limit disease progression if there is an intracranial relapse. However, salvage WBRT poses a number of challenges in dose planning to limit disease progression and preserve neurocognitive function. This work presents the dose planning management that addresses a method of delineating previously treated volumes, dose level matching, and the dose delivery techniques for WBRT. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  2. Development and application of a complex numerical model and software for the computation of dose conversion factors for radon progenies.

    PubMed

    Farkas, Árpád; Balásházy, Imre

    2015-04-01

    A more exact determination of dose conversion factors associated with radon progeny inhalation was possible due to the advancements in epidemiological health risk estimates in the last years. The enhancement of computational power and the development of numerical techniques allow computing dose conversion factors with increasing reliability. The objective of this study was to develop an integrated model and software based on a self-developed airway deposition code, an own bronchial dosimetry model and the computational methods accepted by International Commission on Radiological Protection (ICRP) to calculate dose conversion coefficients for different exposure conditions. The model was tested by its application for exposure and breathing conditions characteristic of mines and homes. The dose conversion factors were 8 and 16 mSv WLM(-1) for homes and mines when applying a stochastic deposition model combined with the ICRP dosimetry model (named PM-A model), and 9 and 17 mSv WLM(-1) when applying the same deposition model combined with authors' bronchial dosimetry model and the ICRP bronchiolar and alveolar-interstitial dosimetry model (called PM-B model). User friendly software for the computation of dose conversion factors has also been developed. The software allows one to compute conversion factors for a large range of exposure and breathing parameters and to perform sensitivity analyses.

  3. Treatment Planning for MRI Assisted Brachytherapy of Gynecologic Malignancies Based on Total Dose Constraints

    SciTech Connect

    Lang, Stefan Kirisits, Christian; Dimopoulos, Johannes; Georg, Dietmar; Poetter, Richard

    2007-10-01

    Purpose: To develop a method for treatment planning and optimization of magnetic resonance imaging (MRI)-assisted gynecologic brachytherapy that includes biologically weighted total dose constraints. Methods and Materials: The applied algorithm is based on the linear-quadratic model and includes dose, dose rate, and fractionation of the whole radiotherapy setting, consisting of external beam therapy plus high-dose-rate (HDR), low-dose-rate (LDR) or pulsed-dose rate (PDR) brachytherapy. Biologically effective doses (BED) are converted to more familiar isoeffective (equivalent) doses in 2-Gy fractions. For individual treatment planning of each brachytherapy fraction, the algorithm calculates the physical dose per brachytherapy fraction that corresponds to a predefined isoeffective total dose constraint. Achieved target dose and sparing of organs at risk of already delivered brachytherapy fractions are incorporated. Results: Since implementation for use in clinical routine in 2001, MRI assisted treatment plans of 216 gynecologic patients (161 HDR, 55 PDR brachytherapy) were prospectively optimized taking into account isoeffective dose-volume histogram-based total dose constraints for high-risk clinical target volume (HR CTV) and organs at risk (bladder, rectum, sigmoid). The algorithm is implemented in a spreadsheet and the procedure is fast and efficient. An uncertainty analysis of the isoeffective total doses based on variations of tissue parameters shows that confidence intervals are larger for PDR compared with HDR brachytherapy. For common treatment schedules, overall uncertainties of high-risk clinical target volume and organs at risk are within 8 Gy, except for the bladder when using the PDR technique. Conclusion: The presented method to respect total dose constraints is reliable and efficient and an essential tool when aiming to increase local control and minimize side effects.

  4. Cobalt-60 tomotherapy: Clinical treatment planning and phantom dose delivery studies

    SciTech Connect

    Dhanesar, Sandeep; Darko, Johnson; Joshi, Chandra P.; Kerr, Andrew; John Schreiner, L.

    2013-08-15

    Purpose: Investigations have shown that a Cobalt-60 (Co-60) radioactive source has the potential to play a role in intensity modulated radiation therapy (IMRT). In this paper, Co-60 tomotherapy's conformal dose delivery potential is evaluated by delivering conformal dose plans on a cylindrical homogeneous phantom containing clinical structures similar to those found in a typical head and neck (H and N) cancer. Also, the clinical potential of Co-60 tomotherapy is investigated by generating 2D clinical treatment plans for H and N and prostate anatomical regions. These plans are compared with the 6 MV based treatment plans for modalities such as linear accelerator-based tomotherapy and broad beam IMRT, and 15 MV based 3D conformal radiation therapy (3DCRT).Methods: For experimental validation studies, clinical and nonclinical conformal dose patterns were delivered on circular, homogeneous phantoms containing GafChromic film. For clinical planning study, dose calculations were performed with the EGSnrc Monte Carlo program, where a Theratronics 780C Co-60 unit and a 6 MV linear accelerator were modeled with a MIMiC binary multileaf collimator. An inhouse inverse treatment planning system was used to optimize tomotherapy plans using the same optimization parameters for both Co-60 and 6 MV beams. The IMRT and 3DCRT plans for the clinical cases were generated entirely in the Eclipse treatment planning system based on inhouse IMRT and 3DCRT site specific protocols.Results: The doses delivered to the homogeneous phantoms agreed with the calculations, indicating that it is possible to deliver highly conformal doses with the Co-60 unit. The dose distributions for Co-60 tomotherapy clinical plans for both clinical cases were similar to those obtained with 6 MV based tomotherapy and IMRT, and much more conformal compared to 3DCRT plans. The dose area histograms showed that the Co-60 plans achieve the dose objectives for the targets and organs at risk.Conclusions: These results

  5. Targeting MRS-Defined Dominant Intraprostatic Lesions with Inverse-Planned High Dose Rate Brachytherapy. Addendum

    DTIC Science & Technology

    2009-06-01

    Intraprostatic Lesions with Inverse-Planned High Dose Rate Brachytherapy PRINCIPAL INVESTIGATOR: Jean Pouliot, Ph.D. I-Chow Hsu...data sources , gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this...NUMBER Targeting MRS-Defined Dominant Intraprostatic Lesions with Inverse-Planned High Dose Rate Brachytherapy 5b. GRANT NUMBER W81XWH-04-1-0262

  6. Targeting MRS-Defined Dominant Intraprostatic Lesions with Inverse-Planned High Dose Rate Brachytherapy

    DTIC Science & Technology

    2010-06-01

    Intraprostatic Lesions with Inverse-Planned High Dose Rate Brachytherapy PRINCIPAL INVESTIGATOR: Jean Pouliot, Ph.D. I-Chow Hsu...data sources , gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this...Intraprostatic lesions with Inverse-Planned 5a. CONTRACT NUMBER W81XWH-04-1-0262 High Dose Rate Brachytherapy 5b. GRANT NUMBER

  7. Dose painting by means of Monte Carlo treatment planning at the voxel level.

    PubMed

    Jiménez-Ortega, E; Ureba, A; Vargas, A; Baeza, J A; Wals-Zurita, A; García-Gómez, F J; Barbeiro, A R; Leal, A

    2017-04-12

    To develop a new optimization algorithm to carry out true dose painting by numbers (DPBN) planning based on full Monte Carlo (MC) calculation. Four configurations with different clustering of the voxel values from PET data were proposed. An optimization method at the voxel level under Lineal Programming (LP) formulation was used for an inverse planning and implemented in CARMEN, an in-house Monte Carlo treatment planning system. Beamlet solutions fulfilled the objectives and did not show significant differences between the different configurations. More differences were observed between the segment solutions. The plan for the dose prescription map without clustering was the better solution. LP optimization at voxel level without dose-volume restrictions can carry out true DPBN planning with the MC accuracy. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  8. Creating a strategic plan for configuration management using computer aided software engineering (CASE) tools

    SciTech Connect

    Smith, P.R.; Sarfaty, R.

    1993-05-01

    This paper provides guidance in the definition, documentation, measurement, enhancement of processes, and validation of a strategic plan for configuration management (CM). The approach and methodology used in establishing a strategic plan is the same for any enterprise, including the Department of Energy (DOE), commercial nuclear plants, the Department of Defense (DOD), or large industrial complexes. The principles and techniques presented are used world wide by some of the largest corporations. The authors used industry knowledge and the areas of their current employment to illustrate and provide examples. Developing a strategic configuration and information management plan for DOE Idaho Field Office (DOE-ID) facilities is discussed in this paper. A good knowledge of CM principles is the key to successful strategic planning. This paper will describe and define CM elements, and discuss how CM integrates the facility`s physical configuration, design basis, and documentation. The strategic plan does not need the support of a computer aided software engineering (CASE) tool. However, the use of the CASE tool provides a methodology for consistency in approach, graphics, and database capability combined to form an encyclopedia and a method of presentation that is easily understood and aids the process of reengineering. CASE tools have much more capability than those stated above. Some examples are supporting a joint application development group (JAD) to prepare a software functional specification document and, if necessary, provide the capability to automatically generate software application code. This paper briefly discusses characteristics and capabilities of two CASE tools that use different methodologies to generate similar deliverables.

  9. Effectiveness of virtual reality simulation software in radiotherapy treatment planning involving non-coplanar beams with partial breast irradiation as a model.

    PubMed

    Glaser, S; Warfel, B; Price, J; Sinacore, J; Albuquerque, K

    2012-10-01

    Virtual reality simulation software (VRS - FocalSim Version 4.40 with VRS prototype, Computerized Medical Systems, St. Louis, MO) is a new radiation dose planning tool that allows for 3D visualization of the patient and the machine couch (treatment table) in relationship to the linear accelerator. This allows the radiation treatment planner to have a "room's-eye-view" and enhances the process of virtual simulation. The aim of this study was to compare VRS to a standard planning program (XiO - Version 4.50, Computerized Medical Systems, St. Louis, MO) in regards to the time it took to use each program, the angles chosen in each, and to determine if there was a dosimetric benefit to using VRS. Ten patients who had undergone left-sided lumpectomies were chosen to have treatment plans generated. A partial breast irradiation (PBI) treatment plan by external beam radiation therapy (EBRT) was generated for each patient using two different methods. In the first method the full plan was generated using XiO software. In the second method beam angles were chosen using the VRS software, those angles were transferred to XiO, and the remaining part of the plan was completed using XiO (since VRS does not allow dose calculations). On average, using VRS to choose angles took about 10 minutes longer than XiO. None of the five gantry angles differed significantly between the two programs, but four of the five couch angles did. Dose-volume histogram (DVH) data showed a significantly better conformality index, and trends toward decreased hot spots and increased coverage of the planed treatment volume (PTV) when using VRS. However, when angels were chosen in VRS a greater volume of the ipsilateral breast received a low dose of radiation (between 3% and 50% of the prescribed dose) (VRS = 23.06%, XiO = 19.57%, p < 0.0005). A significant advantage that VRS provided over XiO was the ability to detect potential collisions prior to actual treatment of the patient in three of the ten patients

  10. Independent calculation of dose distributions for helical tomotherapy using a conventional treatment planning system

    SciTech Connect

    Klüter, Sebastian Schubert, Kai; Lissner, Steffen; Sterzing, Florian; Oetzel, Dieter; Debus, Jürgen; Schlegel, Wolfgang; Oelfke, Uwe; Nill, Simeon

    2014-08-15

    Purpose: The dosimetric verification of treatment plans in helical tomotherapy usually is carried out via verification measurements. In this study, a method for independent dose calculation of tomotherapy treatment plans is presented, that uses a conventional treatment planning system with a pencil kernel dose calculation algorithm for generation of verification dose distributions based on patient CT data. Methods: A pencil beam algorithm that directly uses measured beam data was configured for dose calculation for a tomotherapy machine. Tomotherapy treatment plans were converted into a format readable by an in-house treatment planning system by assigning each projection to one static treatment field and shifting the calculation isocenter for each field in order to account for the couch movement. The modulation of the fluence for each projection is read out of the delivery sinogram, and with the kernel-based dose calculation, this information can directly be used for dose calculation without the need for decomposition of the sinogram. The sinogram values are only corrected for leaf output and leaf latency. Using the converted treatment plans, dose was recalculated with the independent treatment planning system. Multiple treatment plans ranging from simple static fields to real patient treatment plans were calculated using the new approach and either compared to actual measurements or the 3D dose distribution calculated by the tomotherapy treatment planning system. In addition, dose–volume histograms were calculated for the patient plans. Results: Except for minor deviations at the maximum field size, the pencil beam dose calculation for static beams agreed with measurements in a water tank within 2%/2 mm. A mean deviation to point dose measurements in the cheese phantom of 0.89% ± 0.81% was found for unmodulated helical plans. A mean voxel-based deviation of −0.67% ± 1.11% for all voxels in the respective high dose region (dose values >80%), and a mean local

  11. A Full-Featured User Friendly CO{sub 2}-EOR and Sequestration Planning Software

    SciTech Connect

    Savage, Bill

    2013-11-30

    A Full-Featured, User Friendly CO{sub 2}-EOR and Sequestration Planning Software This project addressed the development of an integrated software solution that includes a graphical user interface, numerical simulation, visualization tools and optimization processes for reservoir simulation modeling of CO{sub 2}-EOR. The objective was to assist the industry in the development of domestic energy resources by expanding the application of CO{sub 2}-EOR technologies, and ultimately to maximize the CO{sub 2} sequestration capacity of the U.S. The software resulted in a field-ready application for the industry to address the current CO{sub 2}-EOR technologies. The software has been made available to the public without restrictions and with user friendly operating documentation and tutorials. The software (executable only) can be downloaded from NITEC’s website at www.nitecllc.com. This integrated solution enables the design, optimization and operation of CO{sub 2}-EOR processes for small and mid-sized operators, who currently cannot afford the expensive, time intensive solutions that the major oil companies enjoy. Based on one estimate, small oil fields comprise 30% of the of total economic resource potential for the application of CO{sub 2}-EOR processes in the U.S. This corresponds to 21.7 billion barrels of incremental, technically recoverable oil using the current “best practices”, and 31.9 billion barrels using “next-generation” CO{sub 2}-EOR techniques. The project included a Case Study of a prospective CO{sub 2}-EOR candidate field in Wyoming by a small independent, Linc Energy Petroleum Wyoming, Inc. NITEC LLC has an established track record of developing innovative and user friendly software. The Principle Investigator is an experienced manager and engineer with expertise in software development, numerical techniques, and GUI applications. Unique, presently-proprietary NITEC technologies have been integrated into this application to further its ease of

  12. Software Configuration Management Plan for the K West Basin Integrated Water Treatment System (IWTS) Project A.9

    SciTech Connect

    GREEN, J.W.

    2000-05-01

    This document provides a configuration control plan for the software associated with the operation and control of the Integrated Water Treatment System (IWTS). It establishes requirements for ensuring configuration item identification, configuration control, configuration status accounting, defect reporting and resolution of computer software. It is written to comply with HNF-SD-SNF-CM-001, Spent Nuclear Fuel Configuration Management Plan (Forehand 1998) and HNF-PRO-309 Computer Software Quality Assurance Requirements, and applicable sections of administrative procedure CM-6-037-00, SNF Project Process Automation Software and Equipment.

  13. Verification of dose profiles generated by the convolution algorithm of the gamma knife(®) radiosurgery planning system.

    PubMed

    Chung, Hyun-Tai; Park, Jeong-Hoon; Chun, Kook Jin

    2017-09-01

    A convolution algorithm that takes into account electron-density inhomogeneity was recently introduced to calculate dose distributions for the Gamma Knife (GK) Perfexion™ treatment planning program. The accuracies of the dose distributions computed using the convolution method were assessed using an anthropomorphic phantom and film dosimetry. Absorbed-dose distributions inside a phantom (CIRS Radiosurgery Head Phantom, Model 605) were calculated using the convolution method of the GK treatment-planning software (Leksell Gamma Plan(®) version 10.1; LGP) for various combinations of collimator size, location, direction of calculation plane, and number of shots. Computed tomography (CT) images of the phantom and a data set of CT number versus electron density were provided to the LGP. Calculated distributions were exported as digital-image communications in medicine-radiation therapy (DICOM-RT) files. Three types of radiochromic film (GafChromic(®) MD-V2-55, MD-V3, and EBT2) were irradiated inside the phantom using GK Perfexion™. Scanned images of the measured films were processed following standard radiochromic film-handling procedures. For a two-dimensional quantitative evaluation, gamma index pass rates (GIPRs) and normalized agreement-test indices (NATIs) were obtained. Image handling and index calculations were performed using a commercial software package (DoseLab Pro version 6.80). The film-dose calibration data were well fitted with third-order polynomials (R(2)  ≥ 0.9993). The mean GIPR and NATI of the 93 analyzed films were 99.3 ± 1.1% and 0.8 ± 1.3, respectively, using 3%/1.0 mm criteria. The calculated maximum doses were 4.3 ± 1.7% higher than the measured values for the 4 mm single shots and 1.8 ± 0.7% greater than those for the 8 mm single shots, whereas differences of only 0.3 ± 0.9% were observed for the 16 mm single shots. The accuracy of the calculated distribution was not statistically related to the collimator size, number

  14. Sparing Healthy Tissue and Increasing Tumor Dose Using Bayesian Modeling of Geometric Uncertainties for Planning Target Volume Personalization

    SciTech Connect

    Herschtal, Alan; Te Marvelde, Luc; Mengersen, Kerrie; Foroudi, Farshad; Eade, Thomas; Pham, Daniel; Caine, Hannah; Kron, Tomas

    2015-06-01

    Objective: To develop a mathematical tool that can update a patient's planning target volume (PTV) partway through a course of radiation therapy to more precisely target the tumor for the remainder of treatment and reduce dose to surrounding healthy tissue. Methods and Materials: Daily on-board imaging was used to collect large datasets of displacements for patients undergoing external beam radiation therapy for solid tumors. Bayesian statistical modeling of these geometric uncertainties was used to optimally trade off between displacement data collected from previously treated patients and the progressively accumulating data from a patient currently partway through treatment, to optimally predict future displacements for that patient. These predictions were used to update the PTV position and margin width for the remainder of treatment, such that the clinical target volume (CTV) was more precisely targeted. Results: Software simulation of dose to CTV and normal tissue for 2 real prostate displacement datasets consisting of 146 and 290 patients treated with a minimum of 30 fractions each showed that re-evaluating the PTV position and margin width after 8 treatment fractions reduced healthy tissue dose by 19% and 17%, respectively, while maintaining CTV dose. Conclusion: Incorporating patient-specific displacement patterns from early in a course of treatment allows PTV adaptation for the remainder of treatment. This substantially reduces the dose to healthy tissues and thus can reduce radiation therapy–induced toxicities, improving patient outcomes.

  15. A dosimetric comparison of two high-dose-rate brachytherapy planning systems in cervix cancer: standardized template planning vs. computerized treatment planning.

    PubMed

    Patone, Hassisen; Souhami, Luis; Parker, William; Evans, Michael; Duclos, Marie; Portelance, Lorraine

    2008-01-01

    High-dose-rate brachytherapy is an important component of the curative treatment for cervical cancer. Some institutions use standardized template planning (STP), based on a precalculated table of dose rates, instead of computerized treatment planning (CTP), based on digitized orthogonal X-ray films. STP can be used as a backup check in case of computer hardware malfunction, and/or as a way to minimize treatment planning time. We performed a dosimetric comparison of STP and CTP to determine dose differences at point A and the International Commission on Radiation Units and Measurements Report 38 bladder and rectal reference points. We retrospectively reviewed the treatment plans of 62 patients (135 applications) treated with a tandem and two ovoids using the CTP method. For each of these plans, we calculated the dwell times required to deliver the same prescription dose had STP been used. We also used the planning computer to vary tandem and ovoid geometry and develop a table of dose rates based on geometric parameters. The mean dose at point A was 7.6 Gy using CTP, increasing to 8.4 Gy when the STP approach was used (p<0.05). The mean doses at the International Commission on Radiation Units and Measurements Report 38 bladder and rectal points were both 4.5 Gy with CTP and increased to 4.9 and 5.0 Gy, respectively using STP (p<0.05). Our table of dose rates showed significant dose rate dependency on the applicators geometry. Our study shows that if the STP approach had been used, a significantly higher dose would have been delivered, and that STP tables accounting for differences in implant geometry should be carefully considered.

  16. Dose calculation accuracies in whole breast radiotherapy treatment planning: a multi-institutional study.

    PubMed

    Hatanaka, Shogo; Miyabe, Yuki; Tohyama, Naoki; Kumazaki, Yu; Kurooka, Masahiko; Okamoto, Hiroyuki; Tachibana, Hidenobu; Kito, Satoshi; Wakita, Akihisa; Ohotomo, Yuko; Ikagawa, Hiroyuki; Ishikura, Satoshi; Nozaki, Miwako; Kagami, Yoshikazu; Hiraoka, Masahiro; Nishio, Teiji

    2015-07-01

    Our objective in this study was to evaluate the variation in the doses delivered among institutions due to dose calculation inaccuracies in whole breast radiotherapy. We have developed practical procedures for quality assurance (QA) of radiation treatment planning systems. These QA procedures are designed to be performed easily at any institution and to permit comparisons of results across institutions. The dose calculation accuracy was evaluated across seven institutions using various irradiation conditions. In some conditions, there was a >3 % difference between the calculated dose and the measured dose. The dose calculation accuracy differs among institutions because it is dependent on both the dose calculation algorithm and beam modeling. The QA procedures in this study are useful for verifying the accuracy of the dose calculation algorithm and of the beam model before clinical use for whole breast radiotherapy.

  17. Evaluation of dose calculation accuracy of treatment planning systems at hip prosthesis interfaces.

    PubMed

    Paulu, David; Alaei, Parham

    2017-03-20

    There are an increasing number of radiation therapy patients with hip prosthesis. The common method of minimizing treatment planning inaccuracies is to avoid radiation beams to transit through the prosthesis. However, the beams often exit through them, especially when the patient has a double-prosthesis. Modern treatment planning systems employ algorithms with improved dose calculation accuracies but even these algorithms may not predict the dose accurately at high atomic number interfaces. The current study evaluates the dose calculation accuracy of three common dose calculation algorithms employed in two commercial treatment planning systems. A hip prosthesis was molded inside a cylindrical phantom and the dose at several points within the phantom at the interface with prosthesis was measured using thermoluminescent dosimeters. The measured doses were then compared to the predicted ones by the planning systems. The results of the study indicate all three algorithms underestimate the dose at the prosthesis interface, albeit to varying degrees, and for both low- and high-energy x rays. The measured doses are higher than calculated ones by 5-22% for Pinnacle Collapsed Cone Convolution algorithm, 2-23% for Eclipse Acuros XB, and 6-25% for Eclipse Analytical Anisotropic Algorithm. There are generally better agreements for AXB algorithm and the worst results are for the AAA.

  18. CALDose_X—a software tool for the assessment of organ and tissue absorbed doses, effective dose and cancer risks in diagnostic radiology

    NASA Astrophysics Data System (ADS)

    Kramer, R.; Khoury, H. J.; Vieira, J. W.

    2008-11-01

    CALDose_X is a software tool that provides the possibility of calculating incident air kerma (INAK) and entrance surface air kerma (ESAK), two important quantities used in x-ray diagnosis, based on the output of the x-ray equipment. Additionally, the software uses conversion coefficients (CCs) to assess the absorbed dose to organs and tissues of the human body, the effective dose as well as the patient's cancer risk for radiographic examinations. The CCs, ratios between organ or tissue absorbed doses and measurable quantities, have been calculated with the FAX06 and the MAX06 phantoms for 34 projections of 10 commonly performed x-ray examinations, for 40 combinations of tube potential and filtration ranging from 50 to 120 kVcp and from 2.0 to 5.0 mm aluminum, respectively, for various field positions, for 29 selected organs and tissues and simultaneously for the measurable quantities, INAK, ESAK and kerma area product (KAP). Based on the x-ray irradiation parameters defined by the user, CALDose_X shows images of the phantom together with the position of the x-ray beam. By using true to nature voxel phantoms, CALDose_X improves earlier software tools, which were mostly based on mathematical MIRD5-type phantoms, by using a less representative human anatomy.

  19. SWEPP Assay System Version 2.0 software test plan and report

    SciTech Connect

    Ferguson, J.J.; Overlin, T.K.

    1996-07-01

    The Idaho National Engineering Laboratory (INEL) Stored Waste Examination Pilot Plant (SWEPP) operations staff use nondestructive analysis methods to characterize the radiological contents of contact- handled waste containers. Containers of waste from Rocky Flats Environmental Technology Site and other DOE sites are currently stored at SWEPP. Before these containers can be shipped to the Waste Isolation Pilot Plant (WIPP), SWEPP must verify compliance with storage, shipping, and disposal requirements. One part of the SWEPP program measures neutron emissions from the containers and estimates the mass of plutonium and other transuranic (TRU) isotopes present. A Passive/Active Neutron (PAN) assay system developed at the Los Alamos National Laboratory is used to perform these measurements. A computer program named NEUT2 was used to perform the data acquisition and reduction functions for the neutron measurements. NEUT2 uses the analysis methodology outlined, but no formal documentation exists on the software itself The SWEPP Assay System (SAS) computer program replaced the NEUT2 software. The SAS software was developed using an `object model` approach. The new software incorporates the basic analysis algorithms found in NEUT2. Additional improvements include an improved user interface, the ability to change analysis parameters without having to modify the code, and other features for maintainability. The primary purpose of this test plan and report is to document the test process and to verify that the requirements for the SAS are implemented correctly. This test plan and report satisfies the testing requirements of ASME NQA-1-1994 Supplement 11S-2 for a Quality Level 2 application. The intended audiences for this test plan are the developers and verification and validation analysts for the SAS.

  20. Mapping of dose distribution from IMRT onto MRI-guided high dose rate brachytherapy using deformable image registration for cervical cancer treatments: preliminary study with commercially available software

    PubMed Central

    Huq, M. Saiful; Houser, Chris; Beriwal, Sushil; Michalski, Dariusz

    2014-01-01

    Purpose For patients undergoing external beam radiation therapy (EBRT) and brachytherapy, recommendations for target doses and constraints are based on calculation of the equivalent dose in 2 Gy fractions (EQD2) from each phase. At present, the EBRT dose distribution is assumed to be uniform throughout the pelvis. We performed a preliminary study to determine whether deformable dose distribution mapping from the EBRT onto magnetic resonance (MR) images for the brachytherapy would yield differences in doses for organs at risk (OARs) and high-risk clinical target volume (HR-CTV). Material and methods Nine cervical cancer patients were treated to a total dose of 45 Gy in 25 fractions using intensity-modulated radiation therapy (IMRT), followed by MRI-based 3D high dose rate (HDR) brachytherapy. Retrospectively, the IMRT planning CT images were fused with the MR image for each fraction of brachytherapy using deformable image registration. The deformed IMRT dose onto MR images were converted to EQD2 and compared to the uniform dose assumption. Results For all patients, the EQD2 from the EBRT phase was significantly higher with deformable registration than with the conventional uniform dose distribution assumption. The mean EQD2 ± SD for HR-CTV D90 was 45.7 ± 0.7 Gy vs. 44.3 Gy for deformable vs. uniform dose distribution, respectively (p < 0.001). The dose to 2 cc of the bladder, rectum, and sigmoid was 46.4 ± 1.2 Gy, 46.2 ± 1.0 Gy, and 48.0 ± 2.5 Gy, respectively with deformable dose distribution, and was significantly higher than with uniform dose distribution (43.2 Gy for all OAR, p < 0.001). Conclusions This study reveals that deformed EBRT dose distribution to HR-CTV and OARs in MR images for brachytherapy is technically feasible, and achieves differences compared to a uniform dose distribution. Therefore, the assumption that EBRT contributes the same dose value may need to be carefully investigated further based on deformable image registration. PMID:25097559

  1. Balancing Plan-Driven and Agile Methods in Software Engineering Project Courses

    NASA Astrophysics Data System (ADS)

    Boehm, Barry; Port, Dan; Winsor Brown, A.

    2002-09-01

    For the past 6 years, we have been teaching a two-semester software engineering project course. The students organize into 5-person teams and develop largely web-based electronic services projects for real USC campus clients. We have been using and evolving a method called Model- Based (System) Architecting and Software Engineering (MBASE) for use in both the course and in industrial applications. The MBASE Guidelines include a lot of documents. We teach risk-driven documentation: if it is risky to document something, and not risky to leave it out (e.g., GUI screen placements), leave it out. Even so, students tend to associate more documentation with higher grades, although our grading eventually discourages this. We are always on the lookout for ways to have students learn best practices without having to produce excessive documentation. Thus, we were very interested in analyzing the various emerging agile methods. We found that agile methods and milestone plan-driven methods are part of a “how much planning is enough?” spectrum. Both agile and plan-driven methods have home grounds of project characteristics where they clearly work best, and where the other will have difficulties. Hybrid agile/plan-driven approaches are feasible, and necessary for projects having a mix of agile and plan-driven home ground characteristics. Information technology trends are going more toward the agile methods' home ground characteristics of emergent requirements and rapid change, although there is a concurrent increase in concern with dependability. As a result, we are currently experimenting with risk-driven combinations of MBASE and agile methods, such as integrating requirements, test plans, peer reviews, and pair programming into “agile quality management.”

  2. Prostate Dose Escalation by Innovative Inverse Planning-Driven IMRT

    DTIC Science & Technology

    2005-11-01

    capable of obtaining low-dose, high-resolution radiography, fluoroscopy and CBCT. The system is mounted on the treatment machine via robotically controlled...motion assessed with cine -magnetic resonance imaging ( cine -MRI)," Int J Radiat Oncol Biol Phys 62, 406-417 (2005). 9 R. Mohan, X. Zhang, H. Wang, Y...institutions). Fast cine MRI is also becoming increasingly available and may offer physicians an alternative for imaging the temporal 3 process of

  3. Specification of absorbed dose to water using model-based dose calculation algorithms for treatment planning in brachytherapy.

    PubMed

    Tedgren, Åsa Carlsson; Carlsson, Gudrun Alm

    2013-04-21

    Model-based dose calculation algorithms (MBDCAs), recently introduced in treatment planning systems (TPS) for brachytherapy, calculate tissue absorbed doses. In the TPS framework, doses have hereto been reported as dose to water and water may still be preferred as a dose specification medium. Dose to tissue medium Dmed then needs to be converted into dose to water in tissue Dw,med. Methods to calculate absorbed dose to differently sized water compartments/cavities inside tissue, infinitesimal (used for definition of absorbed dose), small, large or intermediate, are reviewed. Burlin theory is applied to estimate photon energies at which cavity sizes in the range 1 nm-10 mm can be considered small or large. Photon and electron energy spectra are calculated at 1 cm distance from the central axis in cylindrical phantoms of bone, muscle and adipose tissue for 20, 50, 300 keV photons and photons from (125)I, (169)Yb and (192)Ir sources; ratios of mass-collision-stopping powers and mass energy absorption coefficients are calculated as applicable to convert Dmed into Dw,med for small and large cavities. Results show that 1-10 nm sized cavities are small at all investigated photon energies; 100 µm cavities are large only at photon energies <20 keV. A choice of an appropriate conversion coefficient Dw, med/Dmed is discussed in terms of the cavity size in relation to the size of important cellular targets. Free radicals from DNA bound water of nanometre dimensions contribute to DNA damage and cell killing and may be the most important water compartment in cells implying use of ratios of mass-collision-stopping powers for converting Dmed into Dw,med.

  4. Specification of absorbed dose to water using model-based dose calculation algorithms for treatment planning in brachytherapy

    NASA Astrophysics Data System (ADS)

    Carlsson Tedgren, Åsa; Alm Carlsson, Gudrun

    2013-04-01

    Model-based dose calculation algorithms (MBDCAs), recently introduced in treatment planning systems (TPS) for brachytherapy, calculate tissue absorbed doses. In the TPS framework, doses have hereto been reported as dose to water and water may still be preferred as a dose specification medium. Dose to tissue medium Dmed then needs to be converted into dose to water in tissue Dw,med. Methods to calculate absorbed dose to differently sized water compartments/cavities inside tissue, infinitesimal (used for definition of absorbed dose), small, large or intermediate, are reviewed. Burlin theory is applied to estimate photon energies at which cavity sizes in the range 1 nm-10 mm can be considered small or large. Photon and electron energy spectra are calculated at 1 cm distance from the central axis in cylindrical phantoms of bone, muscle and adipose tissue for 20, 50, 300 keV photons and photons from 125I, 169Yb and 192Ir sources; ratios of mass-collision-stopping powers and mass energy absorption coefficients are calculated as applicable to convert Dmed into Dw,med for small and large cavities. Results show that 1-10 nm sized cavities are small at all investigated photon energies; 100 µm cavities are large only at photon energies <20 keV. A choice of an appropriate conversion coefficient Dw, med/Dmed is discussed in terms of the cavity size in relation to the size of important cellular targets. Free radicals from DNA bound water of nanometre dimensions contribute to DNA damage and cell killing and may be the most important water compartment in cells implying use of ratios of mass-collision-stopping powers for converting Dmed into Dw,med.

  5. Can radiation therapy treatment planning system accurately predict surface doses in postmastectomy radiation therapy patients?

    SciTech Connect

    Wong, Sharon; Back, Michael; Tan, Poh Wee; Lee, Khai Mun; Baggarley, Shaun; Lu, Jaide Jay

    2012-07-01

    Skin doses have been an important factor in the dose prescription for breast radiotherapy. Recent advances in radiotherapy treatment techniques, such as intensity-modulated radiation therapy (IMRT) and new treatment schemes such as hypofractionated breast therapy have made the precise determination of the surface dose necessary. Detailed information of the dose at various depths of the skin is also critical in designing new treatment strategies. The purpose of this work was to assess the accuracy of surface dose calculation by a clinically used treatment planning system and those measured by thermoluminescence dosimeters (TLDs) in a customized chest wall phantom. This study involved the construction of a chest wall phantom for skin dose assessment. Seven TLDs were distributed throughout each right chest wall phantom to give adequate representation of measured radiation doses. Point doses from the CMS Xio Registered-Sign treatment planning system (TPS) were calculated for each relevant TLD positions and results correlated. There were no significant difference between measured absorbed dose by TLD and calculated doses by the TPS (p > 0.05 (1-tailed). Dose accuracy of up to 2.21% was found. The deviations from the calculated absorbed doses were overall larger (3.4%) when wedges and bolus were used. 3D radiotherapy TPS is a useful and accurate tool to assess the accuracy of surface dose. Our studies have shown that radiation treatment accuracy expressed as a comparison between calculated doses (by TPS) and measured doses (by TLD dosimetry) can be accurately predicted for tangential treatment of the chest wall after mastectomy.

  6. Prostate Dose Escalation by Innovative Inverse Planning-Driven IMRT

    DTIC Science & Technology

    2006-11-01

    be correlated with internal anatomy motion. Fluoroscopy and the cine model electronic-portal-imaging device (a) (EPID) have been proposed as a means...institutions). Fast- cine MRI is ical and planning target volume (CTV and PTV, respec- also becoming increasingly available and may offer phy- tively...utilizes high-frequency (I - 10 Image-guided radiation therapy 0 L. XING et al. 93 Fig. I. Cine MR images at inhale and exhale phases for a liver cancer

  7. Voxel-based dose prediction with multi-patient atlas selection for automated radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    McIntosh, Chris; Purdie, Thomas G.

    2017-01-01

    Automating the radiotherapy treatment planning process is a technically challenging problem. The majority of automated approaches have focused on customizing and inferring dose volume objectives to be used in plan optimization. In this work we outline a multi-patient atlas-based dose prediction approach that learns to predict the dose-per-voxel for a novel patient directly from the computed tomography planning scan without the requirement of specifying any objectives. Our method learns to automatically select the most effective atlases for a novel patient, and then map the dose from those atlases onto the novel patient. We extend our previous work to include a conditional random field for the optimization of a joint distribution prior that matches the complementary goals of an accurately spatially distributed dose distribution while still adhering to the desired dose volume histograms. The resulting distribution can then be used for inverse-planning with a new spatial dose objective, or to create typical dose volume objectives for the canonical optimization pipeline. We investigated six treatment sites (633 patients for training and 113 patients for testing) and evaluated the mean absolute difference in all DVHs for the clinical and predicted dose distribution. The results on average are favorable in comparison to our previous approach (1.91 versus 2.57). Comparing our method with and without atlas-selection further validates that atlas-selection improved dose prediction on average in whole breast (0.64 versus 1.59), prostate (2.13 versus 4.07), and rectum (1.46 versus 3.29) while it is less important in breast cavity (0.79 versus 0.92) and lung (1.33 versus 1.27) for which there is high conformity and minimal dose shaping. In CNS brain, atlas-selection has the potential to be impactful (3.65 versus 5.09), but selecting the ideal atlas is the most challenging.

  8. Status and future plans for the Vienna VLBI Software VieVS

    NASA Astrophysics Data System (ADS)

    Nilsson, T.; Böhm, J.; Böhm, S.; Madzak, M.; Nafisi, V.; Plank, L.; Spicakova, H.; Sun, J.; Tierno Ros, C.; Schuh, H.

    2011-07-01

    The Vienna VLBI Software (VieVS) is a new VLBI analysis software which has been developed at the Institute of Geodesy and Geophysics of the Vienna University of Technology since 2008. In this software, which is written in Matlab, the most recent IERS Conventions and are implemented, and through a graphical user interface it is easy to use. Lately, two new modules have been added to the official version of VieVS. One is a simulation module (VIE_SIM) which allows to create simulated VLBI observations. The other is a global solution module (VIE_GLOB) which can be used for combining several sessions in a global solution in order to derive e.g. a terrestrial and/or a celestial reference frame. In this presentation an overview of VieVS and its current status will be given and its performance will be demonstrated by showing selected results. We also discuss the planned future developments of VieVS. These include the possibility to use external tropospheric delays obtained, e.g. by ray-tracing through numerical weather models, to use external ionospheric corrections from, e.g. GNSS TEC maps, and to implement a Kalman filter solution. We also plan to cover earlier steps in the VLBI data processing chain, like ambiguity resolution, which have not been considered so far in VieVS.

  9. Review of Fast Monte Carlo Codes for Dose Calculation in Radiation Therapy Treatment Planning

    PubMed Central

    Jabbari, Keyvan

    2011-01-01

    An important requirement in radiation therapy is a fast and accurate treatment planning system. This system, using computed tomography (CT) data, direction, and characteristics of the beam, calculates the dose at all points of the patient's volume. The two main factors in treatment planning system are accuracy and speed. According to these factors, various generations of treatment planning systems are developed. This article is a review of the Fast Monte Carlo treatment planning algorithms, which are accurate and fast at the same time. The Monte Carlo techniques are based on the transport of each individual particle (e.g., photon or electron) in the tissue. The transport of the particle is done using the physics of the interaction of the particles with matter. Other techniques transport the particles as a group. For a typical dose calculation in radiation therapy the code has to transport several millions particles, which take a few hours, therefore, the Monte Carlo techniques are accurate, but slow for clinical use. In recent years, with the development of the ‘fast’ Monte Carlo systems, one is able to perform dose calculation in a reasonable time for clinical use. The acceptable time for dose calculation is in the range of one minute. There is currently a growing interest in the fast Monte Carlo treatment planning systems and there are many commercial treatment planning systems that perform dose calculation in radiation therapy based on the Monte Carlo technique. PMID:22606661

  10. Electron beam dose planning using Gaussian beams. Improved radial dose profiles.

    PubMed

    Lax, I; Brahme, A; Andreo, P

    1983-01-01

    The Gaussian solution of the transport equation for electrons in a medium omits the large angle single scattering events. These events have been included by using Monte Carlo calculated radial dose profiles for point monodirectional beams. A sum of three Gaussian functions with different relative weights and widths have been fitted to the Monte Carlo calculated radial dose profiles. These profiles have been confirmed by measurements in an almost point monodirectional beam, and the importance of an adequate experimental set-up for determination of radial dose profiles is discussed. The analytic treatment when using three different functions in the Gaussian formalism is presented. Central axis depth dose curves for 10 MeV and 20 MeV have finally been calculated and compared with depth dose curves calculated using Monte Carlo technique and a single Gaussian function. Considerable errors (20-30%) result with the single Gaussian function at small field sizes whereas three components give good agreement with the Monte Carlo method.

  11. Uncertainty and Sensitivity Analyses Plan. Draft for Peer Review: Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Simpson, J.C.; Ramsdell, J.V. Jr.

    1993-04-01

    Hanford Environmental Dose Reconstruction (HEDR) Project staff are developing mathematical models to be used to estimate the radiation dose that individuals may have received as a result of emissions since 1944 from the US Department of Energy`s (DOE) Hanford Site near Richland, Washington. An uncertainty and sensitivity analyses plan is essential to understand and interpret the predictions from these mathematical models. This is especially true in the case of the HEDR models where the values of many parameters are unknown. This plan gives a thorough documentation of the uncertainty and hierarchical sensitivity analysis methods recommended for use on all HEDR mathematical models. The documentation includes both technical definitions and examples. In addition, an extensive demonstration of the uncertainty and sensitivity analysis process is provided using actual results from the Hanford Environmental Dose Reconstruction Integrated Codes (HEDRIC). This demonstration shows how the approaches used in the recommended plan can be adapted for all dose predictions in the HEDR Project.

  12. SU-D-BRD-01: Cloud-Based Radiation Treatment Planning: Performance Evaluation of Dose Calculation and Plan Optimization

    SciTech Connect

    Na, Y; Kapp, D; Kim, Y; Xing, L; Suh, T

    2014-06-01

    Purpose: To report the first experience on the development of a cloud-based treatment planning system and investigate the performance improvement of dose calculation and treatment plan optimization of the cloud computing platform. Methods: A cloud computing-based radiation treatment planning system (cc-TPS) was developed for clinical treatment planning. Three de-identified clinical head and neck, lung, and prostate cases were used to evaluate the cloud computing platform. The de-identified clinical data were encrypted with 256-bit Advanced Encryption Standard (AES) algorithm. VMAT and IMRT plans were generated for the three de-identified clinical cases to determine the quality of the treatment plans and computational efficiency. All plans generated from the cc-TPS were compared to those obtained with the PC-based TPS (pc-TPS). The performance evaluation of the cc-TPS was quantified as the speedup factors for Monte Carlo (MC) dose calculations and large-scale plan optimizations, as well as the performance ratios (PRs) of the amount of performance improvement compared to the pc-TPS. Results: Speedup factors were improved up to 14.0-fold dependent on the clinical cases and plan types. The computation times for VMAT and IMRT plans with the cc-TPS were reduced by 91.1% and 89.4%, respectively, on average of the clinical cases compared to those with pc-TPS. The PRs were mostly better for VMAT plans (1.0 ≤ PRs ≤ 10.6 for the head and neck case, 1.2 ≤ PRs ≤ 13.3 for lung case, and 1.0 ≤ PRs ≤ 10.3 for prostate cancer cases) than for IMRT plans. The isodose curves of plans on both cc-TPS and pc-TPS were identical for each of the clinical cases. Conclusion: A cloud-based treatment planning has been setup and our results demonstrate the computation efficiency of treatment planning with the cc-TPS can be dramatically improved while maintaining the same plan quality to that obtained with the pc-TPS. This work was supported in part by the National Cancer Institute (1

  13. AZ-101 Mixer Pump Demonstration Data Acquisition System and Gamma Cart Data Acquisition Control System Software Configuration Management Plan

    SciTech Connect

    WHITE, D.A.

    1999-12-29

    This Software Configuration Management Plan (SCMP) provides the instructions for change control of the AZ1101 Mixer Pump Demonstration Data Acquisition System (DAS) and the Sludge Mobilization Cart (Gamma Cart) Data Acquisition and Control System (DACS).

  14. Megavoltage computed tomography image-based low-dose rate intracavitary brachytherapy planning for cervical carcinoma.

    PubMed

    Wagner, Thomas H; Langen, Katja M; Meeks, Sanford L; Willoughby, Twyla R; Zeidan, Omar A; Staton, Robert J; Shah, Amish P; Manon, Rafael R; Kupelian, Patrick A

    2009-04-01

    Initial results of megavoltage computed tomography (MVCT) brachytherapy treatment planning are presented, using a commercially available helical tomotherapy treatment unit and standard low dose rate (LDR) brachytherapy applicators used for treatment of cervical carcinoma. The accuracy of MVCT imaging techniques, and dosimetric accuracy of the CT based plans were tested with in-house and commercially-available phantoms. Three dimensional (3D) dose distributions were computed and compared to the two dimensional (2D) dosimetry results. Minimal doses received by the 2 cm3 of bladder and rectum receiving the highest doses (D(B2cc) and D(R2cc), respectively) were computed from dose-volume histograms and compared to the doses computed for the standard ICRU bladder and rectal reference dose points. Phantom test objects in MVCT image sets were localized with sub-millimetric accuracy, and the accuracy of the MVCT-based dose calculation was verified. Fifteen brachytherapy insertions were also analyzed. The ICRU rectal point dose did not differ significantly from D(R2cc) (p=0.749, mean difference was 24 cGy +/- 283 cGy). The ICRU bladder point dose was significantly lower than the D(B2cc) (p=0.024, mean difference was 291 cGy +/- 444 cGy). The median volumes of bladder and rectum receiving at least the corresponding ICRU reference point dose were 6.1 cm(3) and 2.0 cm(3), respectively. Our initial experience in using MVCT imaging for clinical LDR gynecological brachytherapy indicates that the MVCT images are of sufficient quality for use in 3D, MVCT-based dose planning.

  15. Numerical arc segmentation algorithm for a radio conference: A software tool for communication satellite systems planning

    NASA Astrophysics Data System (ADS)

    Whyte, W. A.; Heyward, A. O.; Ponchak, D. S.; Spence, R. L.; Zuzek, J. E.

    The Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC) provides a method of generating predetermined arc segments for use in the development of an allotment planning procedure to be carried out at the 1988 World Administrative Radio Conference (WARC) on the Use of the Geostationary Satellite Orbit and the Planning of Space Services Utilizing It. Through careful selection of the predetermined arc (PDA) for each administration, flexibility can be increased in terms of choice of system technical characteristics and specific orbit location while reducing the need for coordination among administrations. The NASARC software determines pairwise compatibility between all possible service areas at discrete arc locations. NASARC then exhaustively enumerates groups of administrations whose satellites can be closely located in orbit, and finds the arc segment over which each such compatible group exists. From the set of all possible compatible groupings, groups and their associated arc segments are selected using a heuristic procedure such that a PDA is identified for each administration. Various aspects of the NASARC concept and how the software accomplishes specific features of allotment planning are discussed.

  16. Numerical arc segmentation algorithm for a radio conference: A software tool for communication satellite systems planning

    NASA Technical Reports Server (NTRS)

    Whyte, W. A.; Heyward, A. O.; Ponchak, D. S.; Spence, R. L.; Zuzek, J. E.

    1988-01-01

    The Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC) provides a method of generating predetermined arc segments for use in the development of an allotment planning procedure to be carried out at the 1988 World Administrative Radio Conference (WARC) on the Use of the Geostationary Satellite Orbit and the Planning of Space Services Utilizing It. Through careful selection of the predetermined arc (PDA) for each administration, flexibility can be increased in terms of choice of system technical characteristics and specific orbit location while reducing the need for coordination among administrations. The NASARC software determines pairwise compatibility between all possible service areas at discrete arc locations. NASARC then exhaustively enumerates groups of administrations whose satellites can be closely located in orbit, and finds the arc segment over which each such compatible group exists. From the set of all possible compatible groupings, groups and their associated arc segments are selected using a heuristic procedure such that a PDA is identified for each administration. Various aspects of the NASARC concept and how the software accomplishes specific features of allotment planning are discussed.

  17. Validation of the 'FeMorph' software in planning cam osteochondroplasty by incorporating labral morphology.

    PubMed

    Masjedi, Milad; Mandalia, Rakhee; Aqil, Adeel; Cobb, Justin

    2016-01-01

    Impingement resulting from a cam deformity may cause pain, limit the hip joint range of motion (RoM) and lead to osteoarthritis. We have previously developed FeMorph software to quantify and plan corrective surgery and predict hip RoM post surgery. This study aimed to validate the software and evaluate the influence of the acetabular labrum on hip RoM. Computed tomography data from 92 femur-pelvis pairs were analysed in conjunction with the inter/intra-observer reliability. Four cadaveric hips were dissected, and the three-dimensional (3D) shape and size of the acetabular labrum for these hips was obtained using laser scan. The influence of the acetabular labrum in the RoM and subsequent planning for corrective surgery were then evaluated in cadavers for models with and without a labrum, and used as a first step towards validation of FeMorph RoM prediction. FeMorph was successfully used to model cam deformities and plan corrective surgery. Three-dimensional alpha angles were reduced to below 50° after virtual surgery without an excessive reduction in femoral neck cross-sectional area, which could increase fracture risk. A mean increase of 8° ± 2° in permitted internal rotation was observed during impingement testing following removal of the labrum. FeMorph provides a reliable and useful method to model and plan cam deformity correction. This study indicates that the presence of the labrum is responsible for a substantial decrease in permitted internal rotation at the hip joint. This has implications for surgical planning models which often only account for bony impingement.

  18. ARCHERRT - a GPU-based and photon-electron coupled Monte Carlo dose computing engine for radiation therapy: software development and application to helical tomotherapy.

    PubMed

    Su, Lin; Yang, Youming; Bednarz, Bryan; Sterpin, Edmond; Du, Xining; Liu, Tianyu; Ji, Wei; Xu, X George

    2014-07-01

    Using the graphical processing units (GPU) hardware technology, an extremely fast Monte Carlo (MC) code ARCHERRT is developed for radiation dose calculations in radiation therapy. This paper describes the detailed software development and testing for three clinical TomoTherapy® cases: the prostate, lung, and head & neck. To obtain clinically relevant dose distributions, phase space files (PSFs) created from optimized radiation therapy treatment plan fluence maps were used as the input to ARCHERRT. Patient-specific phantoms were constructed from patient CT images. Batch simulations were employed to facilitate the time-consuming task of loading large PSFs, and to improve the estimation of statistical uncertainty. Furthermore, two different Woodcock tracking algorithms were implemented and their relative performance was compared. The dose curves of an Elekta accelerator PSF incident on a homogeneous water phantom were benchmarked against DOSXYZnrc. For each of the treatment cases, dose volume histograms and isodose maps were produced from ARCHERRT and the general-purpose code, GEANT4. The gamma index analysis was performed to evaluate the similarity of voxel doses obtained from these two codes. The hardware accelerators used in this study are one NVIDIA K20 GPU, one NVIDIA K40 GPU, and six NVIDIA M2090 GPUs. In addition, to make a fairer comparison of the CPU and GPU performance, a multithreaded CPU code was developed using OpenMP and tested on an Intel E5-2620 CPU. For the water phantom, the depth dose curve and dose profiles from ARCHERRT agree well with DOSXYZnrc. For clinical cases, results from ARCHERRT are compared with those from GEANT4 and good agreement is observed. Gamma index test is performed for voxels whose dose is greater than 10% of maximum dose. For 2%/2mm criteria, the passing rates for the prostate, lung case, and head & neck cases are 99.7%, 98.5%, and 97.2%, respectively. Due to specific architecture of GPU, modified Woodcock tracking algorithm

  19. ARCHERRT – A GPU-based and photon-electron coupled Monte Carlo dose computing engine for radiation therapy: Software development and application to helical tomotherapy

    PubMed Central

    Su, Lin; Yang, Youming; Bednarz, Bryan; Sterpin, Edmond; Du, Xining; Liu, Tianyu; Ji, Wei; Xu, X. George

    2014-01-01

    Purpose: Using the graphical processing units (GPU) hardware technology, an extremely fast Monte Carlo (MC) code ARCHERRT is developed for radiation dose calculations in radiation therapy. This paper describes the detailed software development and testing for three clinical TomoTherapy® cases: the prostate, lung, and head & neck. Methods: To obtain clinically relevant dose distributions, phase space files (PSFs) created from optimized radiation therapy treatment plan fluence maps were used as the input to ARCHERRT. Patient-specific phantoms were constructed from patient CT images. Batch simulations were employed to facilitate the time-consuming task of loading large PSFs, and to improve the estimation of statistical uncertainty. Furthermore, two different Woodcock tracking algorithms were implemented and their relative performance was compared. The dose curves of an Elekta accelerator PSF incident on a homogeneous water phantom were benchmarked against DOSXYZnrc. For each of the treatment cases, dose volume histograms and isodose maps were produced from ARCHERRT and the general-purpose code, GEANT4. The gamma index analysis was performed to evaluate the similarity of voxel doses obtained from these two codes. The hardware accelerators used in this study are one NVIDIA K20 GPU, one NVIDIA K40 GPU, and six NVIDIA M2090 GPUs. In addition, to make a fairer comparison of the CPU and GPU performance, a multithreaded CPU code was developed using OpenMP and tested on an Intel E5-2620 CPU. Results: For the water phantom, the depth dose curve and dose profiles from ARCHERRT agree well with DOSXYZnrc. For clinical cases, results from ARCHERRT are compared with those from GEANT4 and good agreement is observed. Gamma index test is performed for voxels whose dose is greater than 10% of maximum dose. For 2%/2mm criteria, the passing rates for the prostate, lung case, and head & neck cases are 99.7%, 98.5%, and 97.2%, respectively. Due to specific architecture of GPU, modified

  20. Targeting MRS-Defined Dominant Intraprostatic Lesions with Inverse-Planned High Dose Rate Brachytherapy

    DTIC Science & Technology

    2007-02-01

    For each patient, MRSI data was first fused on the axial T2-weighted MR images. Using the prostate anatomy , the combined MRI/MRSI images were then...finalized this year. This allows to import the image in the planning software. The planning image showing the current anatomy and the catheters can...HDR patients with MRI/MRSI defined DIL. For each patient, MRSI data was first fused on the axial T2-weighted MR images. Using the prostate anatomy

  1. Software Verification and Validation Plan Activities, 2011, Project Number: N6423, SAPHIRE Version 8

    SciTech Connect

    Kurt G. Vedros; Curtis L. Smith

    2011-11-01

    The SV&V Plan experienced changes over the past year to bring it into the operational software life cycle of SAPHIRE 8 and to maintain its sections on design features. Peer review of the SVVP with the former IV&V members identified the need for the operational use of metrics as a tool for quality maintenance and improvement. New tests were added to the SVVP to verify the operation of the new design features incorporated into SAPHIRE 8. Other additions to the SVVP were the addition of software metrics and the PDR and CDR processes. Audit support was provided for the NRC Technical Manager and Project Manager for the NRC OIG Audit performed throughout 2011. The SVVP is considered to be an up to date reference and useful roadmap of verification and validation activities going forward.

  2. Benefits of Matching Domain Structure for Planning Software: The Right Stuff

    NASA Technical Reports Server (NTRS)

    Billman, Dorrit Owen; Arsintescu, Lucica; Feary, Michael S.; Lee, Jessica Chia-Rong; Smith, Asha Halima; Tiwary, Rachna

    2011-01-01

    We investigated the role of domain structure in software design. We compared 2 planning applications, for a Mission Control group (International Space Station), and measured users speed and accuracy. Based on our needs analysis, we identified domain structure and used this to develop new prototype software that matched domain structure better than the legacy system. We took a high-fidelity analog of the natural task into the laboratory and found (large) periformance differences, favoring the system that matched domain structure. Our task design enabled us to attribute better periormance to better match of domain structure. We ran through the whole development cycle, in miniature, from needs analysis through design, development, and evaluation. Doing so enabled inferences not just about the particular systems compared, but also provided evidence for the viability of the design process (particularly needs analysis) that we are exploring.

  3. Fundus image fusion in EYEPLAN software: An evaluation of a novel technique for ocular melanoma radiation treatment planning

    SciTech Connect

    Daftari, Inder K.; Mishra, Kavita K.; O'Brien, Joan M.; and others

    2010-10-15

    Purpose: The purpose of this study is to evaluate a novel approach for treatment planning using digital fundus image fusion in EYEPLAN for proton beam radiation therapy (PBRT) planning for ocular melanoma. The authors used a prototype version of EYEPLAN software, which allows for digital registration of high-resolution fundus photographs. The authors examined the improvement in tumor localization by replanning with the addition of fundus photo superimposition in patients with macular area tumors. Methods: The new version of EYEPLAN (v3.05) software allows for the registration of fundus photographs as a background image. This is then used in conjunction with clinical examination, tantalum marker clips, surgeon's mapping, and ultrasound to draw the tumor contour accurately. In order to determine if the fundus image superimposition helps in tumor delineation and treatment planning, the authors identified 79 patients with choroidal melanoma in the macular location that were treated with PBRT. All patients were treated to a dose of 56 GyE in four fractions. The authors reviewed and replanned all 79 macular melanoma cases with superimposition of pretreatment and post-treatment fundus imaging in the new EYEPLAN software. For patients with no local failure, the authors analyzed whether fundus photograph fusion accurately depicted and confirmed tumor volumes as outlined in the original treatment plan. For patients with local failure, the authors determined whether the addition of the fundus photograph might have benefited in terms of more accurate tumor volume delineation. Results: The mean follow-up of patients was 33.6{+-}23 months. Tumor growth was seen in six eyes of the 79 macular lesions. All six patients were marginal failures or tumor miss in the region of dose fall-off, including one patient with both in-field recurrence as well as marginal. Among the six recurrences, three were managed by enucleation and one underwent retreatment with proton therapy. Three

  4. Development of a phantom to validate high-dose-rate brachytherapy treatment planning systems with heterogeneous algorithms

    SciTech Connect

    Moura, Eduardo S.; Rostelato, Maria Elisa C. M.; Zeituni, Carlos A.

    2015-04-15

    Purpose: This work presents the development of a phantom to verify the treatment planning system (TPS) algorithms used for high-dose-rate (HDR) brachytherapy. It is designed to measure the relative dose in a heterogeneous media. The experimental details used, simulation methods, and comparisons with a commercial TPS are also provided. Methods: To simulate heterogeneous conditions, four materials were used: Virtual Water™ (VM), BR50/50™, cork, and aluminum. The materials were arranged in 11 heterogeneity configurations. Three dosimeters were used to measure the relative response from a HDR {sup 192}Ir source: TLD-100™, Gafchromic{sup ®} EBT3 film, and an Exradin™ A1SL ionization chamber. To compare the results from the experimental measurements, the various configurations were modeled in the PENELOPE/penEasy Monte Carlo code. Images of each setup geometry were acquired from a CT scanner and imported into BrachyVision™ TPS software, which includes a grid-based Boltzmann solver Acuros™. The results of the measurements performed in the heterogeneous setups were normalized to the dose values measured in the homogeneous Virtual Water™ setup and the respective differences due to the heterogeneities were considered. Additionally, dose values calculated based on the American Association of Physicists in Medicine-Task Group 43 formalism were compared to dose values calculated with the Acuros™ algorithm in the phantom. Calculated doses were compared at the same points, where measurements have been performed. Results: Differences in the relative response as high as 11.5% were found from the homogeneous setup when the heterogeneous materials were inserted into the experimental phantom. The aluminum and cork materials produced larger differences than the plastic materials, with the BR50/50™ material producing results similar to the Virtual Water™ results. Our experimental methods agree with the PENELOPE/penEasy simulations for most setups and dosimeters. The

  5. Robustness of IPSA optimized high-dose-rate prostate brachytherapy treatment plans to catheter displacements

    PubMed Central

    Whitaker, May

    2016-01-01

    Purpose Inverse planning simulated annealing (IPSA) optimized brachytherapy treatment plans are characterized with large isolated dwell times at the first or last dwell position of each catheter. The potential of catheter shifts relative to the target and organs at risk in these plans may lead to a more significant change in delivered dose to the volumes of interest relative to plans with more uniform dwell times. Material and methods This study aims to determine if the Nucletron Oncentra dwell time deviation constraint (DTDC) parameter can be optimized to improve the robustness of high-dose-rate (HDR) prostate brachytherapy plans to catheter displacements. A set of 10 clinically acceptable prostate plans were re-optimized with a DTDC parameter of 0 and 0.4. For each plan, catheter displacements of 3, 7, and 14 mm were retrospectively applied and the change in dose volume histogram (DVH) indices and conformity indices analyzed. Results The robustness of clinically acceptable prostate plans to catheter displacements in the caudal direction was found to be dependent on the DTDC parameter. A DTDC value of 0 improves the robustness of planning target volume (PTV) coverage to catheter displacements, whereas a DTDC value of 0.4 improves the robustness of the plans to changes in hotspots. Conclusions The results indicate that if used in conjunction with a pre-treatment catheter displacement correction protocol and a tolerance of 3 mm, a DTDC value of 0.4 may produce clinically superior plans. However, the effect of the DTDC parameter in plan robustness was not observed to be as strong as initially suspected. PMID:27504129

  6. Robustness of IPSA optimized high-dose-rate prostate brachytherapy treatment plans to catheter displacements.

    PubMed

    Poder, Joel; Whitaker, May

    2016-06-01

    Inverse planning simulated annealing (IPSA) optimized brachytherapy treatment plans are characterized with large isolated dwell times at the first or last dwell position of each catheter. The potential of catheter shifts relative to the target and organs at risk in these plans may lead to a more significant change in delivered dose to the volumes of interest relative to plans with more uniform dwell times. This study aims to determine if the Nucletron Oncentra dwell time deviation constraint (DTDC) parameter can be optimized to improve the robustness of high-dose-rate (HDR) prostate brachytherapy plans to catheter displacements. A set of 10 clinically acceptable prostate plans were re-optimized with a DTDC parameter of 0 and 0.4. For each plan, catheter displacements of 3, 7, and 14 mm were retrospectively applied and the change in dose volume histogram (DVH) indices and conformity indices analyzed. The robustness of clinically acceptable prostate plans to catheter displacements in the caudal direction was found to be dependent on the DTDC parameter. A DTDC value of 0 improves the robustness of planning target volume (PTV) coverage to catheter displacements, whereas a DTDC value of 0.4 improves the robustness of the plans to changes in hotspots. The results indicate that if used in conjunction with a pre-treatment catheter displacement correction protocol and a tolerance of 3 mm, a DTDC value of 0.4 may produce clinically superior plans. However, the effect of the DTDC parameter in plan robustness was not observed to be as strong as initially suspected.

  7. SU-D-207-07: Implementation of Full/half Bowtie Filter Model in a Commercial Treatment Planning System for Kilovoltage X-Ray Imaging Dose Estimation

    SciTech Connect

    Kim, S; Alaei, P

    2015-06-15

    Purpose: To implement full/half bowtie filter models in a commercial treatment planning system (TPS) to calculate kilovoltage (kV) x-ray imaging dose of Varian On-Board Imager (OBI) cone beam CT (CBCT) system. Methods: Full/half bowtie filters of Varian OBI were created as compensator models in Pinnacle TPS (version 9.6) using Matlab software (version 2011a). The profiles of both bowtie filters were acquired from the manufacturer, imported into the Matlab system and hard coded in binary file format. A Pinnacle script was written to import each bowtie filter data into a Pinnacle treatment plan as a compensator. A kV x-ray beam model without including the compensator model was commissioned per each bowtie filter setting based on percent depth dose and lateral profile data acquired from Monte Carlo simulations. To validate the bowtie filter models, a rectangular water phantom was generated in the planning system and an anterior/posterior beam with each bowtie filter was created. Using the Pinnacle script, each bowtie filter compensator was added to the treatment plan. Lateral profile at the depth of 3cm and percent depth dose were measured using an ion chamber and compared with the data extracted from the treatment plans. Results: The kV x-ray beams for both full and half bowtie filter have been modeled in a commercial TPS. The difference of lateral and depth dose profiles between dose calculations and ion chamber measurements were within 6%. Conclusion: Both full/half bowtie filter models provide reasonable results in kV x-ray dose calculations in the water phantom. This study demonstrates the possibility of using a model-based treatment planning system to calculate the kV imaging dose for both full and half bowtie filter modes. Further study is to be performed to evaluate the models in clinical situations.

  8. Benchmarking pediatric cranial CT protocols using a dose tracking software system: a multicenter study.

    PubMed

    De Bondt, Timo; Mulkens, Tom; Zanca, Federica; Pyfferoen, Lotte; Casselman, Jan W; Parizel, Paul M

    2017-02-01

    To benchmark regional standard practice for paediatric cranial CT-procedures in terms of radiation dose and acquisition parameters. Paediatric cranial CT-data were retrospectively collected during a 1-year period, in 3 different hospitals of the same country. A dose tracking system was used to automatically gather information. Dose (CTDI and DLP), scan length, amount of retakes and demographic data were stratified by age and clinical indication; appropriate use of child-specific protocols was assessed. In total, 296 paediatric cranial CT-procedures were collected. Although the median dose of each hospital was below national and international diagnostic reference level (DRL) for all age categories, statistically significant (p-value < 0.001) dose differences among hospitals were observed. The hospital with lowest dose levels showed smallest dose variability and used age-stratified protocols for standardizing paediatric head exams. Erroneous selection of adult protocols for children still occurred, mostly in the oldest age-group. Even though all hospitals complied with national and international DRLs, dose tracking and benchmarking showed that further dose optimization and standardization is possible by using age-stratified protocols for paediatric cranial CT. Moreover, having a dose tracking system revealed that adult protocols are still applied for paediatric CT, a practice that must be avoided. • Significant differences were observed in the delivered dose between age-groups and hospitals. • Using age-adapted scanning protocols gives a nearly linear dose increase. • Sharing dose-data can be a trigger for hospitals to reduce dose levels.

  9. Software Development for Estimating the Conversion Factor (K-Factor) at Suitable Scan Areas, Relating the Dose Length Product to the Effective Dose.

    PubMed

    Kobayashi, Masanao; Asada, Yasuki; Matsubara, Kosuke; Suzuki, Syouichi; Koshida, Kichiro; Matsunaga, Yuta; Kawaguchi, Ai; Haba, Tomonobu; Toyama, Hiroshi; Kato, Ryouichi

    2017-05-01

    We developed a k-factor-creator software (kFC) that provides the k-factor for CT examination in an arbitrary scan area. It provides the k-factor from the effective dose and dose-length product by Imaging Performance Assessment of CT scanners and CT-EXPO. To assess the reliability, we compared the kFC-evaluated k-factors with those of the International Commission on Radiological Protection (ICRP) publication 102. To confirm the utility, the effective dose determined by coronary computed tomographic angiography (CCTA) was evaluated by a phantom study and k-factor studies. In the CCTA, the effective doses were 5.28 mSv in the phantom study, 2.57 mSv (51%) in the k-factor of ICRP, and 5.26 mSv (1%) in the k-factor of the kFC. Effective doses can be determined from the kFC-evaluated k-factors in suitable scan areas. Therefore, we speculate that the flexible k-factor is useful in clinical practice, because CT examinations are performed in various scan regions. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. New image-processing and noise-reduction software reduces radiation dose during complex endovascular procedures.

    PubMed

    Kirkwood, Melissa L; Guild, Jeffrey B; Arbique, Gary M; Tsai, Shirling; Modrall, J Gregory; Anderson, Jon A; Rectenwald, John; Timaran, Carlos

    2016-11-01

    A new proprietary image-processing system known as AlluraClarity, developed by Philips Healthcare (Best, The Netherlands) for radiation-based interventional procedures, claims to lower radiation dose while preserving image quality using noise-reduction algorithms. This study determined whether the surgeon and patient radiation dose during complex endovascular procedures (CEPs) is decreased after the implementation of this new operating system. Radiation dose to operators, procedure type, reference air kerma, kerma area product, and patient body mass index were recorded during CEPs on two Philips Allura FD 20 fluoroscopy systems with and without Clarity. Operator dose during CEPs was measured using optically stimulable, luminescent nanoDot (Landauer Inc, Glenwood, Ill) detectors placed outside the lead apron at the left upper chest position. nanoDots were read using a microStar ii (Landauer Inc) medical dosimetry system. For the CEPs in the Clarity group, the radiation dose to surgeons was also measured by the DoseAware (Philips Healthcare) personal dosimetry system. Side-by-side measurements of DoseAware and nanoDots allowed for cross-calibration between systems. Operator effective dose was determined using a modified Niklason algorithm. To control for patient size and case complexity, the average fluoroscopy dose rate and the dose per radiographic frame were adjusted for body mass index differences and then compared between the groups with and without Clarity by procedure. Additional factors, for example, physician practice patterns, that may have affected operator dose were inferred by comparing the ratio of the operator dose to procedural kerma area product with and without Clarity. A one-sided Wilcoxon rank sum test was used to compare groups for radiation doses, reference air kermas, and operating practices for each procedure type. The analysis included 234 CEPs; 95 performed without Clarity and 139 with Clarity. Practice patterns of operators during

  11. Three dimensional dose verification of VMAT plans using the Octavius 4D dosimetric system

    NASA Astrophysics Data System (ADS)

    Arumugam, Sankar; Xing, Aitang; Young, Tony; Thwaites, David; Holloway, Lois

    2015-01-01

    The Octavius 4D dosimetric system generates a 3D dose matrix based on a measured planar dose and user supplied Percentage Depth Dose (PDD) data. The accuracy of 3D dose matrices reconstructed by the Octavius 4D dosimetric system was systematically studied for an open static field, an open arc field and clinical VMAT plans. The Octavius reconstructed 3D dose matrices were compared with the Treatment Planning System (TPS) calculated 3D dose matrices using 3D gamma (γ) analysis with 2%/2mm and 3%/3mm tolerance criteria. The larger detector size in the 2D detector array of the Octavius system resulted in failed voxels in the high dose gradient regions. For the open arc fields mean (1σ) γ pass rates of 84.5(8.9) % and 94.2(4.5) % were observed with 2%/2mm and 3%/3mm tolerance criteria respectively and for clinical VMAT plans mean (1σ) γ pass rates of 86.8(3.5) % and 96.7(1.4) % were observed.

  12. Dosimetric advantages of generalised equivalent uniform dose-based optimisation on dose-volume objectives in intensity-modulated radiotherapy planning for bilateral breast cancer.

    PubMed

    Lee, T-F; Ting, H-M; Chao, P-J; Wang, H-Y; Shieh, C-S; Horng, M-F; Wu, J-M; Yeh, S-A; Cho, M-Y; Huang, E-Y; Huang, Y-J; Chen, H-C; Fang, F-M

    2012-11-01

    We compared and evaluated the differences between two models for treating bilateral breast cancer (BBC): (i) dose-volume-based intensity-modulated radiation treatment (DV plan), and (ii) dose-volume-based intensity-modulated radiotherapy with generalised equivalent uniform dose-based optimisation (DV-gEUD plan). The quality and performance of the DV plan and DV-gEUD plan using the Pinnacle(3) system (Philips, Fitchburg, WI) were evaluated and compared in 10 patients with stage T2-T4 BBC. The plans were delivered on a Varian 21EX linear accelerator (Varian Medical Systems, Milpitas, CA) equipped with a Millennium 120 leaf multileaf collimator (Varian Medical Systems). The parameters analysed included the conformity index, homogeneity index, tumour control probability of the planning target volume (PTV), the volumes V(20 Gy) and V(30 Gy) of the organs at risk (OAR, including the heart and lungs), mean dose and the normal tissue complication probability. Both plans met the requirements for the coverage of PTV with similar conformity and homogeneity indices. However, the DV-gEUD plan had the advantage of dose sparing for OAR: the mean doses of the heart and lungs, lung V(20) (Gy), and heart V(30) (Gy) in the DV-gEUD plan were lower than those in the DV plan (p<0.05). A better result can be obtained by starting with a DV-generated plan and then improving it by adding gEUD-based improvements to reduce the number of iterations and to improve the optimum dose distribution. Advances to knowledge The DV-gEUD plan provided superior dosimetric results for treating BBC in terms of PTV coverage and OAR sparing than the DV plan, without sacrificing the homogeneity of dose distribution in the PTV.

  13. Treatment planning system and dose delivery accuracy in extracranial stereotactic radiotherapy using Elekta body frame

    NASA Astrophysics Data System (ADS)

    Dawod, Tamer; Bremer, Michael; Karstens, Johann H.; Werner, Martin

    2010-01-01

    The purpose of this study was to measure the photon beam transmission through the Elekta Stereotactic Body Frame (ESBF) and treatment couch, to determine the dose calculations accuracy of the MasterPlan Treatment Planning System (TPS) using Pencil Beam (PBA) and Collapsed Cone (CCA) algorithms during the use of Elekta Stereotactic Body Frame (ESBF), and to demonstrate a simple calculation method to put this transmission into account during the treatment planning dose calculations. The dose was measured at the center of an in-house custom-built inhomogeneous PMMA thorax phantom with and without ‘the frame + treatment couch’. The phantom was CT-imaged inside the ESBF and planned with multiple 3D-CRT fields using PBA and CCA for photon beams of energies 6 MV and 10 MV. There were two treatment plans for dose calculations. In the first plan, the ‘frame + couch’ were included in the body contour and, therefore, included in the TPS dose calculations. In the second plan, the ‘frame + couch’ were not included in the body contour and, therefore, not included in the calculations. Transmission of the ‘frame + couch’ was determined by the ratio of the dose measurements with the ‘frame + couch’ to the measurements without them. To validate the accuracy of the calculation model, plans with and without the ‘frame + couch’ surrounding the phantoms were compared with their corresponding measurements. The transmission of the ‘frame + couch’ varies from 90.23-97.54% depending on the energy, field size, the angle of the beams and whether the beams also intercept them. The validation accuracy of the Pencil Beam (PBA) and Collapsed Cone (CCA) algorithms were within 5.33% and 4.04% respectively for the individual measurements for all gantry angles under this study. The results showed that both PBA and CCA algorithms can calculate the dose to the target within 4.25% and 1.95% of the average measured value. The attenuation caused by the ESBF and couch must be

  14. Survey of ANL organization plans for word processors, personal computers, workstations, and associated software

    SciTech Connect

    Fenske, K.R.; Rockwell, V.S.

    1992-08-01

    The Computing and Telecommunications Division (CTD) has compiled this Survey of ANL Organization plans for Word Processors, Personal Computers, Workstations, and Associated Software (ANL/TM, Revision 4) to provide DOE and Argonne with a record of recent growth in the acquisition and use of personal computers, microcomputers, and word processors at ANL. Laboratory planners, service providers, and people involved in office automation may find the Survey useful. It is for internal use only, and any unauthorized use is prohibited. Readers of the Survey should use it as a reference document that (1) documents the plans of each organization for office automation, (2) identifies appropriate planners and other contact people in those organizations and (3) encourages the sharing of this information among those people making plans for organizations and decisions about office automation. The Survey supplements information in both the ANL Statement of Site Strategy for Computing Workstations (ANL/TM 458) and the ANL Site Response for the DOE Information Technology Resources Long-Range Plan (ANL/TM 466).

  15. Survey of ANL organization plans for word processors, personal computers, workstations, and associated software. Revision 4

    SciTech Connect

    Fenske, K.R.; Rockwell, V.S.

    1992-08-01

    The Computing and Telecommunications Division (CTD) has compiled this Survey of ANL Organization plans for Word Processors, Personal Computers, Workstations, and Associated Software (ANL/TM, Revision 4) to provide DOE and Argonne with a record of recent growth in the acquisition and use of personal computers, microcomputers, and word processors at ANL. Laboratory planners, service providers, and people involved in office automation may find the Survey useful. It is for internal use only, and any unauthorized use is prohibited. Readers of the Survey should use it as a reference document that (1) documents the plans of each organization for office automation, (2) identifies appropriate planners and other contact people in those organizations and (3) encourages the sharing of this information among those people making plans for organizations and decisions about office automation. The Survey supplements information in both the ANL Statement of Site Strategy for Computing Workstations (ANL/TM 458) and the ANL Site Response for the DOE Information Technology Resources Long-Range Plan (ANL/TM 466).

  16. Developing a treatment planning process and software for improved translation of photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Cassidy, J.; Zheng, Z.; Xu, Y.; Betz, V.; Lilge, L.

    2017-04-01

    Background: The majority of de novo cancers are diagnosed in low and middle-income countries, which often lack the resources to provide adequate therapeutic options. None or minimally invasive therapies such as Photodynamic Therapy (PDT) or photothermal therapies could become part of the overall treatment options in these countries. However, widespread acceptance is hindered by the current empirical training of surgeons in these optical techniques and a lack of easily usable treatment optimizing tools. Methods: Based on image processing programs, ITK-SNAP, and the publicly available FullMonte light propagation software, a work plan is proposed that allows for personalized PDT treatment planning. Starting with, contoured clinical CT or MRI images, the generation of 3D tetrahedral models in silico, execution of the Monte Carlo simulation and presentation of the 3D fluence rate, Φ, [mWcm-2] distribution a treatment plan optimizing photon source placement is developed. Results: Permitting 1-2 days for the installation of the required programs, novices can generate their first fluence, H [Jcm-2] or Φ distribution in a matter of hours. This is reduced to 10th of minutes with some training. Executing the photon simulation calculations is rapid and not the performance limiting process. Largest sources of errors are uncertainties in the contouring and unknown tissue optical properties. Conclusions: The presented FullMonte simulation is the fastest tetrahedral based photon propagation program and provides the basis for PDT treatment planning processes, enabling a faster proliferation of low cost, minimal invasive personalized cancer therapies.

  17. FY 1991 project plan for the Hanford Environmental Dose Reconstruction Project, Phase 2

    SciTech Connect

    Not Available

    1991-02-01

    Phase 1 of the Hanford Environmental Dose Reconstruction Project was designed to develop and demonstrate a method for estimating radiation doses people may have received from Hanford Site operations since 1944. The method researchers developed relied on a variety of measured and reconstructed data as input to a modular computer model that generates dose estimates and their uncertainties. As part of Phase 1, researchers used the reconstructed data and computer model to calculate preliminary dose estimates for populations in a limited geographical area and time period. Phase 2, now under way, is designed to evaluate the Phase 1 data and model and improve them to calculate more accurate and precise dose estimates. Phase 2 will also be used to obtain preliminary estimates of two categories of doses: for Native American tribes and for individuals included in the pilot phase of the Hanford Thyroid Disease Study (HTDS). TSP Directive 90-1 required HEDR staff to develop Phase 2 task plans for TSP approval. Draft task plans for Phase 2 were submitted to the TSP at the October 11--12, 1990 public meeting, and, after discussions of each activity and associated budget needs, the TSP directed HEDR staff to proceed with a slate of specific project activities for FY 1991 of Phase 2. This project plan contains detailed information about those activities. Phase 2 is expected to last 15--18 months. In mid-FY 1991, project activities and budget will be reevaluated to determine whether technical needs or priorities have changed. Separate from, but related to, this project plan, will be an integrated plan for the remainder of the project. HEDR staff will work with the TSP to map out a strategy that clearly describes end products'' for the project and the work necessary to complete them. This level of planning will provide a framework within which project decisions in Phases 2, 3, and 4 can be made.

  18. The Liquid Argon Software Toolkit (LArSoft): Goals, Status and Plan

    SciTech Connect

    Pordes, Rush; Snider, Erica

    2016-08-17

    LArSoft is a toolkit that provides a software infrastructure and algorithms for the simulation, reconstruction and analysis of events in Liquid Argon Time Projection Chambers (LArTPCs). It is used by the ArgoNeuT, LArIAT, MicroBooNE, DUNE (including 35ton prototype and ProtoDUNE) and SBND experiments. The LArSoft collaboration provides an environment for the development, use, and sharing of code across experiments. The ultimate goal is to develop fully automatic processes for reconstruction and analysis of LArTPC events. The toolkit is based on the art framework and has a well-defined architecture to interface to other packages, including to GEANT4 and GENIE simulation software and the Pandora software development kit for pattern recognition. It is designed to facilitate and support the evolution of algorithms including their transition to new computing platforms. The development of the toolkit is driven by the scientific stakeholders involved. The core infrastructure includes standard definitions of types and constants, means to input experiment geometries as well as meta and event- data in several formats, and relevant general utilities. Examples of algorithms experiments have contributed to date are: photon-propagation; particle identification; hit finding, track finding and fitting; electromagnetic shower identification and reconstruction. We report on the status of the toolkit and plans for future work.

  19. Status and plans for the future of the Vienna VLBI Software

    NASA Astrophysics Data System (ADS)

    Madzak, Matthias; Böhm, Johannes; Böhm, Sigrid; Girdiuk, Anastasiia; Hellerschmied, Andreas; Hofmeister, Armin; Krasna, Hana; Kwak, Younghee; Landskron, Daniel; Mayer, David; McCallum, Jamie; Plank, Lucia; Schönberger, Caroline; Shabala, Stanislav; Sun, Jing; Teke, Kamil

    2016-04-01

    The Vienna VLBI Software (VieVS) is a VLBI analysis software developed and maintained at Technische Universität Wien (TU Wien) since 2008 with contributions from groups all over the world. It is used for both academic purposes in university courses as well as for providing VLBI analysis results to the geodetic community. Written in a modular structure in Matlab, VieVS offers easy access to the source code and the possibility to adapt the programs for particular purposes. The new version 2.3, released in December 2015, includes several new parameters to be estimated in the global solution, such as tidal ERP variation coefficients. The graphical user interface was slightly modified for an improved user functionality and, e.g., the possibility of deriving baseline length repeatabilities. The scheduling of satellite observations was refined, the simulator newly includes the effect of source structure which can also be corrected for in the analysis. This poster gives an overview of all VLBI-related activities in Vienna and provides an outlook to future plans concerning the Vienna VLBI Software.

  20. An empirical model for independent dose verification of the Gamma Knife treatment planning.

    PubMed

    Phaisangittisakul, Nakorn; Ma, Lijun

    2002-09-01

    A formalism for an independent dose verification of the Gamma Knife treatment planning is developed. It is based on the approximation that isodose distribution for a single shot is in the shape of an ellipsoid in three-dimensional space. The dose profiles for a phantom along each of the three major axes are fitted to a function which contains the terms that represent the contributions from a point source, an extrafocal scattering, and a flat background. The fitting parameters are extracted for all four helmet collimators, at various shot locations, and with different skull shapes. The 33 parameters of a patient's skull shape obtained from the Skull Scaling Instrument measurements are modeled for individual patients. The relative doses for a treatment volume in the form of 31 x 31 x 31 matrix of points are extracted from the treatment planning system, the Leksell Gamma-Plan (LGP). Our model evaluates the relative doses using the same input parameters as in the LGP, which are skull measurement data, shot location, weight, gamma-angle of the head frame, and helmet collimator size. For 29 single-shot cases, the discrepancy of dose at the focus point between the calculation and the LGP is found to be within -1% to 2%. For multi-shot cases, the value and the coordinate of the maximum dose point from the calculation agree within +/-7% and +/-3 mm with the LGP results. In general, the calculated doses agree with the LGP calculations within +/-10% for the off-center locations. Results of calculation with this method for the dimension and location of the 50% isodose line are in good agreement with results from Leksell GammaPlan. Therefore, this method can be served as a useful tool for secondary quality assurance of Gamma Knife treatment plans.

  1. Targeting MRS-Defined Dominant Intraprostatic Lesions with Inverse-Planned High Dose Rate Brachytherapy

    DTIC Science & Technology

    2008-06-01

    computed tomography –based high dose rate brachytherapy of prostate cancer, Journal of Applied Clinical Medical Physics, Vol. 8, No. 4, Fall 2007...Intraprostatic Lesions with Inverse-Planned High Dose Rate Brachytherapy PRINCIPAL INVESTIGATOR: Jean Pouliot, Ph.D. I-Chow Hsu, M.D...response, including the time for reviewing instructions, searching existing data sources , gathering and maintaining the data needed, and completing and

  2. Customized high-dose-rate brachytherapy using MRI planning for vaginal rhabdomyosarcoma.

    PubMed

    Hathout, Lara; Cohn, Jamie; Voros, Laszlo; Kim, Sae Hee; Heaton, Todd; Wolden, Suzanne L

    2015-01-01

    To report the technical aspects of customized high-dose-rate brachytherapy for vaginal rhabdomyosarcoma using MRI- and CT-based planning in a 20-month-old girl. An impression of the vaginal cavity at the resection site was taken after adequate lubrication of the vagina with lidocaine jelly. The impression was processed in the dental laboratory to obtain an MRI-compatible device with three imbedded catheters 0.4 mm apart, assuring tumor coverage. An MRI- and CT-based simulation under anesthesia with the applicator in place were performed, and the images were registered for contouring and planning to deliver 40 Gy in 10 fractions daily. Dose to the ovaries was limited to a mean dose less than 4 Gy. Treatment was delivered daily under anesthesia with no acute complications. Brachytherapy using a customized applicator has many advantages over prefabricated vaginal cylinders for young girls. It allows greater dose distribution conformality with the possibility of contralateral vaginal wall sparing and more reproducible daily positioning. MRI-based planning is mainly performed to facilitate delineation of the target volume and the ovaries, which are easily identified on MRI. The customized applicator offers many advantages of which treatment reproducibility, inherent MRI compatibility, and excellent dose distribution conformality. Our brachytherapy technique using MRI and CT scan planning allows precise tumor and normal tissues delineation resulting in excellent tumor coverage and normal tissues sparing. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  3. Comparison of selected dose calculation algorithms in radiotherapy treatment planning for tissues with inhomogeneities

    NASA Astrophysics Data System (ADS)

    Woon, Y. L.; Heng, S. P.; Wong, J. H. D.; Ung, N. M.

    2016-03-01

    Inhomogeneity correction is recommended for accurate dose calculation in radiotherapy treatment planning since human body are highly inhomogeneous with the presence of bones and air cavities. However, each dose calculation algorithm has its own limitations. This study is to assess the accuracy of five algorithms that are currently implemented for treatment planning, including pencil beam convolution (PBC), superposition (SP), anisotropic analytical algorithm (AAA), Monte Carlo (MC) and Acuros XB (AXB). The calculated dose was compared with the measured dose using radiochromic film (Gafchromic EBT2) in inhomogeneous phantoms. In addition, the dosimetric impact of different algorithms on intensity modulated radiotherapy (IMRT) was studied for head and neck region. MC had the best agreement with the measured percentage depth dose (PDD) within the inhomogeneous region. This was followed by AXB, AAA, SP and PBC. For IMRT planning, MC algorithm is recommended for treatment planning in preference to PBC and SP. The MC and AXB algorithms were found to have better accuracy in terms of inhomogeneity correction and should be used for tumour volume within the proximity of inhomogeneous structures.

  4. Three-Dimensional Dose Optimization for Noncoplanar Treatment Planning with Conformal Fields.

    NASA Astrophysics Data System (ADS)

    Ma, Ying-Chang L.

    1990-01-01

    Recent advances in imaging techniques, especially three dimensional reconstruction of CT images, have made precision tumor localization feasible. These imaging techniques along with developments in computer controlled radiation treatment machines have provided an important thrust in developing better techniques for cancer treatment. This often requires a complex noncoplanar beam arrangements and elaborate treatment planning, which, unfortunately, are time consuming, costly and dependent on operator expertise and experience. A reliable operator-independent dose optimization tool is therefore desirable, especially for 3D treatment planning. In this dissertation, several approaches (linear programming, quadratic programming, and direct search methods) of computer optimization using various criteria including least sire fitting on the 90% isodose to target periphery, dose uniformity, and integral dose are presented. All of these methods are subject to restrictions on the upper limit of the dose to critical organs. In the quadratic programming approach, Kuhn-Tucker theory was employed to convert the quadratic problem into one which permits application of the very powerful, revised simplex method. Several examples are used to analyze the effectiveness of these dose optimization approaches. The studies show that the quadratic programming approach with the criteria of least square fitting and critical organ constraints is superior in efficiency for dose optimization in 3D treatment planning, particularly for cases with a large number of beams. Use of least square fitting allows one to deduce optimized plans for irregularly shaped targets by employing a multi-isocentric technique. Our studies also illustrate the advantages of using irregular conformal fields, optimized beam energy, and noncoplanar beam arrangements in contrast to the conventional treatment which uses a symmetrical rectangular collimator, fixed beam energy, and coplanar beam arrangements. Optimized plans can

  5. Automated high-dose rate brachytherapy treatment planning for a single-channel vaginal cylinder applicator

    NASA Astrophysics Data System (ADS)

    Zhou, Yuhong; Klages, Peter; Tan, Jun; Chi, Yujie; Stojadinovic, Strahinja; Yang, Ming; Hrycushko, Brian; Medin, Paul; Pompos, Arnold; Jiang, Steve; Albuquerque, Kevin; Jia, Xun

    2017-06-01

    High dose rate (HDR) brachytherapy treatment planning is conventionally performed manually and/or with aids of preplanned templates. In general, the standard of care would be elevated by conducting an automated process to improve treatment planning efficiency, eliminate human error, and reduce plan quality variations. Thus, our group is developing AutoBrachy, an automated HDR brachytherapy planning suite of modules used to augment a clinical treatment planning system. This paper describes our proof-of-concept module for vaginal cylinder HDR planning that has been fully developed. After a patient CT scan is acquired, the cylinder applicator is automatically segmented using image-processing techniques. The target CTV is generated based on physician-specified treatment depth and length. Locations of the dose calculation point, apex point and vaginal surface point, as well as the central applicator channel coordinates, and the corresponding dwell positions are determined according to their geometric relationship with the applicator and written to a structure file. Dwell times are computed through iterative quadratic optimization techniques. The planning information is then transferred to the treatment planning system through a DICOM-RT interface. The entire process was tested for nine patients. The AutoBrachy cylindrical applicator module was able to generate treatment plans for these cases with clinical grade quality. Computation times varied between 1 and 3 min on an Intel Xeon CPU E3-1226 v3 processor. All geometric components in the automated treatment plans were generated accurately. The applicator channel tip positions agreed with the manually identified positions with submillimeter deviations and the channel orientations between the plans agreed within less than 1 degree. The automatically generated plans obtained clinically acceptable quality.

  6. Automated high-dose rate brachytherapy treatment planning for a single-channel vaginal cylinder applicator.

    PubMed

    Zhou, Yuhong; Klages, Peter; Tan, Jun; Chi, Yujie; Stojadinovic, Strahinja; Yang, Ming; Hrycushko, Brian; Medin, Paul; Pompos, Arnold; Jiang, Steve; Albuquerque, Kevin; Jia, Xun

    2017-02-28

    High dose rate (HDR) brachytherapy treatment planning is conventionally performed manually and/or with aids of preplanned templates. In general the standard of care would be elevated by conducting an automated process to improve treatment planning efficiency, eliminate human error, and reduce plan quality variations. Thus, our group is developing AutoBrachy, an automated HDR brachytherapy planning suite of modules used to augment a clinical treatment planning system. This paper describes our proof-of-concept module for vaginal cylinder HDR planning that has been fully developed. After a patient CT scan is acquired, the cylinder applicator is automatically segmented using image-processing techniques. The target CTV is generated based on physician-specified treatment depth and length. Locations of the dose calculation point, apex point and vaginal surface point, as well as the central applicator channel coordinates, and the corresponding dwell positions are determined according to their geometric relationship with the applicator and written to a structure file. Dwell times are computed through iterative quadratic optimization techniques. The planning information is then transferred to the treatment planning system through a DICOM-RT interface. The entire process was tested for nine patients. The AutoBrachy cylindrical applicator module was able to generate treatment plans for these cases with clinical grade quality. Computation times varied between 1 to 3 minutes on an Intel Xeon CPU E3-1226 v3 processor. All geometric components in the automated treatment plans were generated accurately. The applicator channel tip positions agreed with the manually identified positions with submillimeter deviations and the channel orientations between the plans agreed within less than 1 degree. The automatically generated plans obtained clinically acceptable quality.

  7. TU-AB-201-02: An Automated Treatment Plan Quality Assurance Program for Tandem and Ovoid High Dose-Rate Brachytherapy

    SciTech Connect

    Tan, J; Shi, F; Hrycushko, B; Medin, P; Stojadinovic, S; Pompos, A; Yang, M; Albuquerque, K; Jia, X

    2015-06-15

    Purpose: For tandem and ovoid (T&O) HDR brachytherapy in our clinic, it is required that the planning physicist manually capture ∼10 images during planning, perform a secondary dose calculation and generate a report, combine them into a single PDF document, and upload it to a record- and-verify system to prove to an independent plan checker that the case was planned correctly. Not only does this slow down the already time-consuming clinical workflow, the PDF document also limits the number of parameters that can be checked. To solve these problems, we have developed a web-based automatic quality assurance (QA) program. Methods: We set up a QA server accessible through a web- interface. A T&O plan and CT images are exported as DICOMRT files and uploaded to the server. The software checks 13 geometric features, e.g. if the dwell positions are reasonable, and 10 dosimetric features, e.g. secondary dose calculations via TG43 formalism and D2cc to critical structures. A PDF report is automatically generated with errors and potential issues highlighted. It also contains images showing important geometric and dosimetric aspects to prove the plan was created following standard guidelines. Results: The program has been clinically implemented in our clinic. In each of the 58 T&O plans we tested, a 14- page QA report was automatically generated. It took ∼45 sec to export the plan and CT images and ∼30 sec to perform the QA tests and generate the report. In contrast, our manual QA document preparation tooks on average ∼7 minutes under optimal conditions and up to 20 minutes when mistakes were made during the document assembly. Conclusion: We have tested the efficiency and effectiveness of an automated process for treatment plan QA of HDR T&O cases. This software was shown to improve the workflow compared to our conventional manual approach.

  8. Dose verification with different ion chambers for SRT/SBRT plans

    NASA Astrophysics Data System (ADS)

    Durmus, I. F.; Tas, B.; Okumus, A.; Uzel, O. E.

    2017-02-01

    Verification of patient plan is very important in stereotactic treatments. VMAT plans were prepared with 6MV-FFF or 10MV-FFF energies for 25 intracranial and extracranial stereotactic patients. Absolute dose was measured for dose verification in each plans. Iba® CC01, Iba® CC04, Iba® CC13 ion chambers placed at a depth of 5cm in solid phantom (RW3). Also we scanned this phantom with ion chambers by Siemens® Biograph mCT. QA plans were prepared by transferring twenty five patient plans to phantom assemblies for three ion chambers. All plans were performed separately for three ion chambers at Elekta® Versa HD linear accelerator. Statistical analysis of results were made by Wilcoxon signed-rank test. Difference between dose values were determined %1.84±3.4 (p: 0.001) with Iba CC13 ion chamber, %1.80±3.4 (p: 0.002) with Iba CC04 ion chamber and %0.29±4.6 (p: 0.667) with Iba CC01 ion chamber. In stereotactic treatments, dosimetric uncertainty increases in small areas. We determined more accurate results with small sized detectors. Difference between TPS calculations and all measurements were founded lower than %2.

  9. Online survey software as a data collection tool for medical education: A case study on lesson plan assessment

    PubMed Central

    Kimiafar, Khalil; Sarbaz, Masoumeh; Sheikhtaheri, Abbas

    2016-01-01

    Background: There are no general strategies or tools to evaluate daily lesson plans; however, assessments conducted using traditional methods usually include course plans. This study aimed to evaluate the strengths and weaknesses of online survey software in collecting data on education in medical fields and the application of such softwares to evaluate students' views and modification of lesson plans. Methods: After investigating the available online survey software, esurveypro was selected for assessing daily lesson plans. After using the software for one semester, a questionnaire was prepared to assess the advantages and disadvantages of this method and students’ views in a cross-sectional study. Results: The majority of the students (51.7%) rated the evaluation of classes per session (lesson plans) using the online survey as useful or very useful. About 51% (n=36) of the students considered this method effective in improving the management of each session, 67.1% (n=47) considered it effective in improving the management of sessions for the next semester, and 51.4% (n=36) said it had a high impact on improving the educational content of subsequent sessions. Finally, 61.4% (n=43) students expressed high and very high levels of satisfaction with using an online survey at each session. Conclusion: The use of online surveys may be appropriate to improve lesson plans and educational planning at different levels. This method can be used for other evaluations and for assessing people’s opinions at different levels of an educational system. PMID:28491839

  10. Online survey software as a data collection tool for medical education: A case study on lesson plan assessment.

    PubMed

    Kimiafar, Khalil; Sarbaz, Masoumeh; Sheikhtaheri, Abbas

    2016-01-01

    Background: There are no general strategies or tools to evaluate daily lesson plans; however, assessments conducted using traditional methods usually include course plans. This study aimed to evaluate the strengths and weaknesses of online survey software in collecting data on education in medical fields and the application of such softwares to evaluate students' views and modification of lesson plans. Methods: After investigating the available online survey software, esurveypro was selected for assessing daily lesson plans. After using the software for one semester, a questionnaire was prepared to assess the advantages and disadvantages of this method and students' views in a cross-sectional study. Results: The majority of the students (51.7%) rated the evaluation of classes per session (lesson plans) using the online survey as useful or very useful. About 51% (n=36) of the students considered this method effective in improving the management of each session, 67.1% (n=47) considered it effective in improving the management of sessions for the next semester, and 51.4% (n=36) said it had a high impact on improving the educational content of subsequent sessions. Finally, 61.4% (n=43) students expressed high and very high levels of satisfaction with using an online survey at each session. Conclusion: The use of online surveys may be appropriate to improve lesson plans and educational planning at different levels. This method can be used for other evaluations and for assessing people's opinions at different levels of an educational system.

  11. Effect of bladder filling on doses to prostate and organs at risk: a treatment planning study.

    PubMed

    Moiseenko, Vitali; Liu, Mitchell; Kristensen, Sarah; Gelowitz, Gerald; Berthelet, Eric

    2006-04-12

    In the present study, we aimed to evaluate effects of bladder filling on dose-volume distributions for bladder, rectum, planning target volume (PTV), and prostate in radiation therapy of prostate cancer. Patients (n = 21) were scanned with a full bladder, and after 1 hour, having been allowed to void, with an empty bladder. Radiotherapy plans were generated using a four-field box technique and dose of 70 Gy in 35 fractions. First, plans obtained for full- and empty-bladder scans were compared. Second, situations in which a patient was planned on full bladder but was treated on empty bladder, and vice versa, were simulated, assuming that patients were aligned to external tattoos. Doses to the prostate [equivalent uniform dose (EUD)], bladder and rectum [effective dose (Deff)], and normal tissue complication probability (NTCP) were compared. Dose to the small bowel was examined. Mean bladder volume was 354.3 cm3 when full and 118.2 cm3 when empty. Median prostate EUD was 70 Gy for plans based on full- and empty-bladder scans alike. The median rectal Deff was 55.6 Gy for full-bladder anatomy and 56.8 Gy for empty-bladder anatomy, and the corresponding bladder Deff was 29.0 Gy and 49.3 Gy respectively. In 1 patient, part of the small bowel (7.5 cm3) received more than 50 Gy with full-bladder anatomy, and in 6 patients, part (2.5 cm3-30 cm3) received more than 50 Gy with empty-bladder anatomy. Bladder filling had no significant impact on prostate EUD or rectal Deff. A minimal volume of the small bowel received more than 50 Gy in both groups, which is below dose tolerance. The bladder Deff was higher with empty-bladder anatomy; however, the predicted complication rates were clinically insignificant. When the multileaf collimator pattern was applied in reverse, substantial underdosing of the planning target volume (PTV) was observed, particularly for patients with prostate shifts in excess of 0.5 cm in any one direction. However, the prostate shifts showed no correlation

  12. FY 1993 task plans for the Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Shipler, D B

    1991-10-01

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate radiation doses from Hanford Site operations since 1944 to individuals and populations. The primary objective of work to be performed in FY 1993 is to complete the source term estimates and dose estimates for key radionuclides for the air and river pathways. At the end of FY 1993, the capability will be in place to estimate doses for individuals in the extended (32-county) study area, 1944--1991. Native American research will continue to provide input for tribal dose estimates. In FY 1993, the Technical Steering Panel (TSP) will decide whether demographic and river pathways data collection should be extended beyond FY 1993 levels. The FY 1993 work scopes and milestones in this document are based on the work plan discussed at the TSP Budget/Fiscal Subcommittee meeting on August 19--20, 1991. Table 1 shows the FY 1993 milestones; Table 2 shows estimated costs. The subsequent work scope descriptions are based on the milestones. This document and the FY 1992 task plans will form the basis for a contract with Battelle and the Centers for Disease Control (CDC). The 2-year dose reconstruction contract is expected to begin in February 1992. This contract will replace the current arrangement, whereby the US Department of Energy directly funds the Pacific Northwest Laboratory to conduct dose reconstruction work. In late FY 1992, the FY 1993 task plans will be more fully developed with detailed technical approaches, data quality objectives, and budgeted labor hours. The task plans will be updated again in July 1993 to reflect any scope, milestone, or cost changes directed during the year by the TSP. 2 tabs.

  13. Designing and Implementing a Distributed System Architecture for the Mars Rover Mission Planning Software (Maestro)

    NASA Technical Reports Server (NTRS)

    Goldgof, Gregory M.

    2005-01-01

    Distributed systems allow scientists from around the world to plan missions concurrently, while being updated on the revisions of their colleagues in real time. However, permitting multiple clients to simultaneously modify a single data repository can quickly lead to data corruption or inconsistent states between users. Since our message broker, the Java Message Service, does not ensure that messages will be received in the order they were published, we must implement our own numbering scheme to guarantee that changes to mission plans are performed in the correct sequence. Furthermore, distributed architectures must ensure that as new users connect to the system, they synchronize with the database without missing any messages or falling into an inconsistent state. Robust systems must also guarantee that all clients will remain synchronized with the database even in the case of multiple client failure, which can occur at any time due to lost network connections or a user's own system instability. The final design for the distributed system behind the Mars rover mission planning software fulfills all of these requirements and upon completion will be deployed to MER at the end of 2005 as well as Phoenix (2007) and MSL (2009).

  14. Design and evaluation of a software prototype for participatory planning of environmental adaptations.

    PubMed

    Eriksson, J; Ek, A; Johansson, G

    2000-03-01

    A software prototype to support the planning process for adapting home and work environments for people with physical disabilities was designed and later evaluated. The prototype exploits low-cost three-dimensional (3-D) graphics products in the home computer market. The essential features of the prototype are: interactive rendering with optional hardware acceleration, interactive walk-throughs, direct manipulation tools for moving objects and measuring distances, and import of 3-D-objects from a library. A usability study was conducted, consisting of two test sessions (three weeks apart) and a final interview. The prototype was then tested and evaluated by representatives of future users: five occupational therapist students, and four persons with physical disability, with no previous experience of the prototype. Emphasis in the usability study was placed on the prototype's efficiency and learnability. We found that it is possible to realise a planning tool for environmental adaptations, both regarding usability and technical efficiency. The usability evaluation confirms our findings from previous case studies, regarding the relevance and positive attitude towards this kind of planning tool. Although the prototype was found to be satisfactorily efficient for the basic tasks, the paper presents several suggestions for improvement of future prototype versions.

  15. Software for the estimation of organ equivalent and effective doses from diagnostic radiology procedures.

    PubMed

    Osei, Ernest K; Barnett, Rob

    2009-09-01

    Diagnostic radiological imaging such as conventional radiography, fluoroscopy and computed tomography (CT) examinations will continue to provide tremendous benefits in modern healthcare. The benefit derived by the patient should far outweigh the risk associated with a properly conducted imaging examination. Nonetheless, it is very important to be able to quantify the risk associated with any radiological examination of patients, and effective dose has been considered a useful indicator of patient exposure. Quantification of the risks associated with radiological imaging is very important as such information will be helpful to physicians and their patients for comparing risks from various imaging examinations and for making informed decisions whenever there is a need for any radiological imaging. The determination of equivalent and effective doses in diagnostic radiology is of interest as a basis for estimates of risk from medical exposures. In this paper we describe a simple computer program OrgDose, which calculates the doses to 27 organs in the body and then calculates the organ equivalent and effective doses and the risk from various procedures in the radiology department including conventional radiography, fluoroscopy and computed tomography examinations. The program will be a useful tool for the medical and paramedical personnel who are involved with assessing organ and effective doses and risks from diagnostic radiology procedures.

  16. TestDose: A nuclear medicine software based on Monte Carlo modeling for generating gamma camera acquisitions and dosimetry

    SciTech Connect

    Garcia, Marie-Paule Villoing, Daphnée; Ferrer, Ludovic; Cremonesi, Marta; Botta, Francesca; Ferrari, Mahila; Bardiès, Manuel

    2015-12-15

    Purpose: The TestDose platform was developed to generate scintigraphic imaging protocols and associated dosimetry by Monte Carlo modeling. TestDose is part of a broader project (www.dositest.com) whose aim is to identify the biases induced by different clinical dosimetry protocols. Methods: The TestDose software allows handling the whole pipeline from virtual patient generation to resulting planar and SPECT images and dosimetry calculations. The originality of their approach relies on the implementation of functional segmentation for the anthropomorphic model representing a virtual patient. Two anthropomorphic models are currently available: 4D XCAT and ICRP 110. A pharmacokinetic model describes the biodistribution of a given radiopharmaceutical in each defined compartment at various time-points. The Monte Carlo simulation toolkit GATE offers the possibility to accurately simulate scintigraphic images and absorbed doses in volumes of interest. The TestDose platform relies on GATE to reproduce precisely any imaging protocol and to provide reference dosimetry. For image generation, TestDose stores user’s imaging requirements and generates automatically command files used as input for GATE. Each compartment is simulated only once and the resulting output is weighted using pharmacokinetic data. Resulting compartment projections are aggregated to obtain the final image. For dosimetry computation, emission data are stored in the platform database and relevant GATE input files are generated for the virtual patient model and associated pharmacokinetics. Results: Two samples of software runs are given to demonstrate the potential of TestDose. A clinical imaging protocol for the Octreoscan™ therapeutical treatment was implemented using the 4D XCAT model. Whole-body “step and shoot” acquisitions at different times postinjection and one SPECT acquisition were generated within reasonable computation times. Based on the same Octreoscan™ kinetics, a dosimetry

  17. Impact of using linear optimization models in dose planning for HDR brachytherapy

    SciTech Connect

    Holm, Aasa; Larsson, Torbjoern; Carlsson Tedgren, Aasa

    2012-02-15

    Purpose: Dose plans generated with optimization models hitherto used in high-dose-rate (HDR) brachytherapy have shown a tendency to yield longer dwell times than manually optimized plans. Concern has been raised for the corresponding undesired hot spots, and various methods to mitigate these have been developed. The hypotheses upon this work is based are (a) that one cause for the long dwell times is the use of objective functions comprising simple linear penalties and (b) that alternative penalties, as these are piecewise linear, would lead to reduced length of individual dwell times. Methods: The characteristics of the linear penalties and the piecewise linear penalties are analyzed mathematically. Experimental comparisons between the two types of penalties are carried out retrospectively for a set of prostate cancer patients. Results: When the two types of penalties are compared, significant changes can be seen in the dwell times, while most dose-volume parameters do not differ significantly. On average, total dwell times were reduced by 4.2%, with a reduction of maximum dwell times by 25%, when the alternative penalties were used. Conclusions: The use of linear penalties in optimization models for HDR brachytherapy is one cause for the undesired long dwell times that arise in mathematically optimized plans. By introducing alternative penalties, a significant reduction in dwell times can be achieved for HDR brachytherapy dose plans. Although various measures for mitigating the long dwell times are already available, the observation that linear penalties contribute to their appearance is of fundamental interest.

  18. Using the Concept of "Population Dose" in Planning and Evaluating Community-Level Obesity Prevention Initiatives

    ERIC Educational Resources Information Center

    Cheadle, Allen; Schwartz, Pamela M.; Rauzon, Suzanne; Bourcier, Emily; Senter, Sandra; Spring, Rebecca; Beery, William L.

    2013-01-01

    When planning and evaluating community-level initiatives focused on policy and environment change, it is useful to have estimates of the impact on behavioral outcomes of particular strategies (e.g., building a new walking trail to promote physical activity). We have created a measure of estimated strategy-level impact--"population dose"--based on…

  19. Using the Concept of "Population Dose" in Planning and Evaluating Community-Level Obesity Prevention Initiatives

    ERIC Educational Resources Information Center

    Cheadle, Allen; Schwartz, Pamela M.; Rauzon, Suzanne; Bourcier, Emily; Senter, Sandra; Spring, Rebecca; Beery, William L.

    2013-01-01

    When planning and evaluating community-level initiatives focused on policy and environment change, it is useful to have estimates of the impact on behavioral outcomes of particular strategies (e.g., building a new walking trail to promote physical activity). We have created a measure of estimated strategy-level impact--"population dose"--based on…

  20. Estimation of the radiation dose from radiotherapy for skin haemangiomas in childhood: the ICTA software for epidemiology

    NASA Astrophysics Data System (ADS)

    Shamsaldin, A.; Lundell, M.; Diallo, I.; Ligot, L.; Chavaudra, J.; de Vathaire, F.

    2000-12-01

    Radium applicators and pure beta emitters have been widely used in the past to treat skin haemangioma in early childhood. A well defined relationship between the low doses received from these applicators and radiation-induced cancers requires accurate dosimetry. A human-based CT scan phantom has been used to simulate every patient and treatment condition and then to calculate the source-target distance when radium and pure beta applicators were used. The effective transmission factor ϕ(r) for the gamma spectrum emitted by the radium sources applied on the skin surface was modelled using Monte Carlo simulations. The well-known quantization approach was used to calculate gamma doses delivered from radium applicators to various anatomical points. For 32P, 90Sr/90Y applicators and 90Y needles we have used the apparent exponential attenuation equation. The dose calculation algorithm was integrated into the ICTA software (standing for a model that constructs an Individualized phantom based on CT slices and Auxological data), which has been developed for epidemiological studies of cohorts of patients who received radium and beta-treatments for skin haemangioma. The ϕ(r) values obtained for radium skin applicators are in good agreement with the available values in the first 10 cm but higher at greater distances. Gamma doses can be calculated with this algorithm at 165 anatomical points throughout the body of patients treated with radium applicators. Lung heterogeneity and air crossed by the gamma rays are considered. Comparison of absorbed doses in water from a 10 mg equivalent radium source simulated by ICTA with those measured at the Radiumhemmet, Karolinska Hospital (RAH) showed good agreement, but ICTA estimation of organ doses did not always correspond those estimated at the RAH. Beta doses from 32P, 90Sr/90Y applicators and 90Y needles are calculated up to the maximum beta range (11 mm).

  1. Validation of OSLD and a treatment planning system for surface dose determination in IMRT treatments

    SciTech Connect

    Zhuang, Audrey H.; Olch, Arthur J.

    2014-08-15

    Purpose: To evaluate the accuracy of skin dose determination for composite multibeam 3D conformal radiation therapy (3DCRT) and intensity modulated radiation therapy (IMRT) treatments using optically stimulated luminescent dosimeters (OSLDs) and Eclipse treatment planning system. Methods: Surface doses measured by OSLDs in the buildup region for open field 6 MV beams, either perpendicular or oblique to the surface, were evaluated by comparing against dose measured by Markus Parallel Plate (PP) chamber, surface diodes, and calculated by Monte Carlo simulations. The accuracy of percent depth dose (PDD) calculation in the buildup region from the authors’ Eclipse system (Version 10), which was precisely commissioned in the buildup region and was used with 1 mm calculation grid, was also evaluated by comparing to PP chamber measurements and Monte Carlo simulations. Finally, an anthropomorphic pelvic phantom was CT scanned with OSLDs in place at three locations. A planning target volume (PTV) was defined that extended close to the surface. Both an 8 beam 3DCRT and IMRT plan were generated in Eclipse. OSLDs were placed at the CT scanned reference locations to measure the skin doses and were compared to diode measurements and Eclipse calculations. Efforts were made to ensure that the dose comparison was done at the effective measurement points of each detector and corresponding locations in CT images. Results: The depth of the effective measurement point is 0.8 mm for OSLD when used in the buildup region in a 6 MV beam and is 0.7 mm for the authors’ surface diode. OSLDs and Eclipse system both agree well with Monte Carlo and/or Markus PP ion chamber and/or diode in buildup regions in 6 MV beams with normal or oblique incidence and across different field sizes. For the multiple beam 3DCRT plan and IMRT plans, the differences between OSLDs and Eclipse calculations on the surface of the anthropomorphic phantom were within 3% and distance-to-agreement less than 0.3 mm

  2. Dose domain regularization of MLC leaf patterns for highly complex IMRT plans

    SciTech Connect

    Nguyen, Dan; Yu, Victoria Y.; Ruan, Dan; Cao, Minsong; Low, Daniel A.; Sheng, Ke; O’Connor, Daniel

    2015-04-15

    Purpose: The advent of automated beam orientation and fluence optimization enables more complex intensity modulated radiation therapy (IMRT) planning using an increasing number of fields to exploit the expanded solution space. This has created a challenge in converting complex fluences to robust multileaf collimator (MLC) segments for delivery. A novel method to regularize the fluence map and simplify MLC segments is introduced to maximize delivery efficiency, accuracy, and plan quality. Methods: In this work, we implemented a novel approach to regularize optimized fluences in the dose domain. The treatment planning problem was formulated in an optimization framework to minimize the segmentation-induced dose distribution degradation subject to a total variation regularization to encourage piecewise smoothness in fluence maps. The optimization problem was solved using a first-order primal-dual algorithm known as the Chambolle-Pock algorithm. Plans for 2 GBM, 2 head and neck, and 2 lung patients were created using 20 automatically selected and optimized noncoplanar beams. The fluence was first regularized using Chambolle-Pock and then stratified into equal steps, and the MLC segments were calculated using a previously described level reducing method. Isolated apertures with sizes smaller than preset thresholds of 1–3 bixels, which are square units of an IMRT fluence map from MLC discretization, were removed from the MLC segments. Performance of the dose domain regularized (DDR) fluences was compared to direct stratification and direct MLC segmentation (DMS) of the fluences using level reduction without dose domain fluence regularization. Results: For all six cases, the DDR method increased the average planning target volume dose homogeneity (D95/D5) from 0.814 to 0.878 while maintaining equivalent dose to organs at risk (OARs). Regularized fluences were more robust to MLC sequencing, particularly to the stratification and small aperture removal. The maximum and

  3. SU-D-BRC-03: Development and Validation of an Online 2D Dose Verification System for Daily Patient Plan Delivery Accuracy Check

    SciTech Connect

    Zhao, J; Hu, W; Xing, Y; Wu, X; Li, Y

    2016-06-15

    Purpose: All plan verification systems for particle therapy are designed to do plan verification before treatment. However, the actual dose distributions during patient treatment are not known. This study develops an online 2D dose verification tool to check the daily dose delivery accuracy. Methods: A Siemens particle treatment system with a modulated scanning spot beam is used in our center. In order to do online dose verification, we made a program to reconstruct the delivered 2D dose distributions based on the daily treatment log files and depth dose distributions. In the log files we can get the focus size, position and particle number for each spot. A gamma analysis is used to compare the reconstructed dose distributions with the dose distributions from the TPS to assess the daily dose delivery accuracy. To verify the dose reconstruction algorithm, we compared the reconstructed dose distributions to dose distributions measured using PTW 729XDR ion chamber matrix for 13 real patient plans. Then we analyzed 100 treatment beams (58 carbon and 42 proton) for prostate, lung, ACC, NPC and chordoma patients. Results: For algorithm verification, the gamma passing rate was 97.95% for the 3%/3mm and 92.36% for the 2%/2mm criteria. For patient treatment analysis,the results were 97.7%±1.1% and 91.7%±2.5% for carbon and 89.9%±4.8% and 79.7%±7.7% for proton using 3%/3mm and 2%/2mm criteria, respectively. The reason for the lower passing rate for the proton beam is that the focus size deviations were larger than for the carbon beam. The average focus size deviations were −14.27% and −6.73% for proton and −5.26% and −0.93% for carbon in the x and y direction respectively. Conclusion: The verification software meets our requirements to check for daily dose delivery discrepancies. Such tools can enhance the current treatment plan and delivery verification processes and improve safety of clinical treatments.

  4. Dose-volume histogram parameters of high-dose-rate brachytherapy for Stage I-II cervical cancer (≤4cm) arising from a small-sized uterus treated with a point A dose-reduced plan.

    PubMed

    Nakagawa, Akiko; Ohno, Tatsuya; Noda, Shin-ei; Kubo, Nobuteru; Kuwako, Keiko; Saitoh, Jun-Ichi; Nakano, Takashi

    2014-07-01

    We investigated the rectal dose-sparing effect and tumor control of a point A dose-reduced plan in patients with Stage I-II cervical cancer (≤4 cm) arising from a small-sized uterus. Between October 2008 and August 2011, 19 patients with Stage I-II cervical cancer (≤4 cm) were treated with external beam radiotherapy (EBRT) for the pelvis and CT-guided brachytherapy. Seven patients were treated with brachytherapy with standard loading of source-dwell positions and a fraction dose of 6 Gy at point A (conventional brachy-plan). The other 12 patients with a small uterus close to the rectum or small intestine were treated with brachytherapy with a point A dose-reduction to match D2cc of the rectum and <6 Gy as the dose constraint ('point A dose-reduced plan') instead of the 6-Gy plan at point A ('tentative 6-Gy plan'). The total doses from EBRT and brachytherapy were added up and normalized to a biological equivalent dose of 2 Gy per fraction (EQD2). The median doses to the high-risk clinical target volume (HR-CTV) D90 in the conventional brachy-plan, tentative 6-Gy plan and point A dose-reduced plan were 62 GyEQD2, 80 GyEQD2 and 64 GyEQD2, respectively. The median doses of rectal D2cc in the corresponding three plans were 42 GyEQD2, 62 GyEQD2 and 51 GyEQD2, respectively. With a median follow-up period of 35 months, three patients developed Grade-1 late rectal complications and no patients developed local recurrence. Our preliminary results suggested that CT-guided brachytherapy using an individualized point A dose-reduced plan might be useful for reducing late rectal complications while maintaining primary tumor control.

  5. MRI-based treatment planning and dose delivery verification for intraocular melanoma brachytherapy.

    PubMed

    Zoberi, Jacqueline Esthappan; Garcia-Ramirez, Jose; Hedrick, Samantha; Rodriguez, Vivian; Bertelsman, Carol G; Mackey, Stacie; Hu, Yanle; Gach, H Michael; Rao, P Kumar; Grigsby, Perry W

    2017-08-14

    Episcleral plaque brachytherapy (EPB) planning is conventionally based on approximations of the implant geometry with no volumetric imaging following plaque implantation. We have developed an MRI-based technique for EPB treatment planning and dose delivery verification based on the actual patient-specific geometry. MR images of 6 patients, prescribed 85 Gy over 96 hours from Collaborative Ocular Melanoma Study-based EPB, were acquired before and after implantation. Preimplant and postimplant scans were used to generate "preplans" and "postplans", respectively. In the preplans, a digital plaque model was positioned relative to the tumor, sclera, and nerve. In the postplans, the same plaque model was positioned based on the imaged plaque. Plaque position, point doses, percentage of tumor volume receiving 85 Gy (V100), and dose to 100% of tumor volume (Dmin) were compared between preplans and postplans. All isodose plans were computed using TG-43 formalism with no heterogeneity corrections. Shifts and tilts of the plaque ranged from 1.4 to 8.6 mm and 1.0 to 3.8 mm, respectively. V100 was ≥97% for 4 patients. Dmin for preplans and postplans ranged from 83 to 118 Gy and 45 to 110 Gy, respectively. Point doses for tumor apex and base were all found to decrease from the preimplant to the postimplant plan, with mean differences of 16.7 ± 8.6% and 30.5 ± 11.3%, respectively. By implementing MRI for EPB, we eliminate reliance on approximations of the eye and tumor shape and the assumption of idealized plaque placement. With MRI, one can perform preimplant as well as postimplant imaging, facilitating EPB treatment planning based on the actual patient-specific geometry and dose-delivery verification based on the imaged plaque position. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  6. Mission planning, mission analysis and software formulation. Level C requirements for the shuttle mission control center orbital guidance software

    NASA Technical Reports Server (NTRS)

    Langston, L. J.

    1976-01-01

    The formulation of Level C requirements for guidance software was reported. Requirements for a PEG supervisor which controls all input/output interfaces with other processors and determines which PEG mode is to be utilized were studied in detail. A description of the two guidance modes for which Level C requirements have been formulated was presented. Functions required for proper execution of the guidance software were defined. The requirements for a navigation function that is used in the prediction logic of PEG mode 4 were discussed. It is concluded that this function is extracted from the current navigation FSSR.

  7. Comparison of 3D reconstruction of mandible for pre-operative planning using commercial and open-source software

    NASA Astrophysics Data System (ADS)

    Abdullah, Johari Yap; Omar, Marzuki; Pritam, Helmi Mohd Hadi; Husein, Adam; Rajion, Zainul Ahmad

    2016-12-01

    3D printing of mandible is important for pre-operative planning, diagnostic purposes, as well as for education and training. Currently, the processing of CT data is routinely performed with commercial software which increases the cost of operation and patient management for a small clinical setting. Usage of open-source software as an alternative to commercial software for 3D reconstruction of the mandible from CT data is scarce. The aim of this study is to compare two methods of 3D reconstruction of the mandible using commercial Materialise Mimics software and open-source Medical Imaging Interaction Toolkit (MITK) software. Head CT images with a slice thickness of 1 mm and a matrix of 512x512 pixels each were retrieved from the server located at the Radiology Department of Hospital Universiti Sains Malaysia. The CT data were analysed and the 3D models of mandible were reconstructed using both commercial Materialise Mimics and open-source MITK software. Both virtual 3D models were saved in STL format and exported to 3matic and MeshLab software for morphometric and image analyses. Both models were compared using Wilcoxon Signed Rank Test and Hausdorff Distance. No significant differences were obtained between the 3D models of the mandible produced using Mimics and MITK software. The 3D model of the mandible produced using MITK open-source software is comparable to the commercial MIMICS software. Therefore, open-source software could be used in clinical setting for pre-operative planning to minimise the operational cost.

  8. Optimization of collimator parameters to reduce rectal dose in intensity-modulated prostate treatment planning

    SciTech Connect

    Chapek, Julie . E-mail: Julie.chapek@hci.utah.edu; Tobler, Matt; Toy, Beau J.; Lee, Christopher M.; Leavitt, Dennis D.

    2005-01-01

    The inability to avoid rectal wall irradiation has been a limiting factor in prostate cancer treatment planning. Treatment planners must not only consider the maximum dose that the rectum receives throughout a course of treatment, but also the dose that any volume of the rectum receives. As treatment planning techniques have evolved and prescription doses have escalated, limitations of rectal dose have remained an area of focus. External pelvic immobilization devices have been incorporated to aid in daily reproducibility and lessen concern for daily patient motion. Internal immobilization devices (such as the intrarectal balloon) and visualization techniques (including daily ultrasound or placement of fiducial markers) have been utilized to reduce the uncertainty of intrafractional prostate positional variation, thus allowing for minimization of treatment volumes. Despite these efforts, prostate volumes continue to abut portions of the rectum, and the necessary volume expansions continue to include portions of the anterior rectal wall within high-dose regions. The addition of collimator parameter optimization (both collimator angle and primary jaw settings) to intensity-modulated radiotherapy (IMRT) allows greater rectal sparing compared to the use of IMRT alone. We use multiple patient examples to illustrate the positive effects seen when utilizing collimator parameter optimization in conjunction with IMRT to further reduce rectal doses.

  9. CALIPSO space-based aerosol lidar: flight software design and planned operations paradigm

    NASA Astrophysics Data System (ADS)

    DeCoursey, Robert J.; Hunt, William H.; Natarajan, Sudha; Verhappen, Ron; Wusk, Mary Beth; Lucker, Patricia L.

    2005-01-01

    The CALIPSO (Cloud Aerosol LIDAR Infrared Pathfinder Satellite Observations) satellite is due to launch from Vandenberg AFB aboard a Delta rocket in April of 2005. CALIPSO is an international mission consisting of NASA, Ball Aerospace and the French space agency CNES. Onboard CALIPSO are three instruments, a two wavelength/two polarization lidar, an Infrared radiometer and a wide field camera. This paper will focus on the software design, development and functionality of the lidar systems including the transmitter and receiver as well as the planned operations paradigm. The operations paradigm simply stated is this: command the payload once a week with all commands being time-tagged, and receive and process health and status from the payload four (4) times per day. Science data totaling over 5 gigabytes a day is down-linked once every 24 hours. A modular approach was used in the design of the flight software where the executable code is separated into 8 loadable modules and the configuration of the individual instruments is accomplished via several loadable tables. This design scheme allows for manageable updates to the executable image and allows the science team to change and experiment with instrument configuration on an as needed basis without over stressing the command uplink system. Redundant copies of all nominal executable image files are kept onboard as is a maintenance image. The Onboard Fault Detection Isolation and Recovery (FDIR) system insures the safety of the payload and all instruments.

  10. A software tool to aid budget planning for long-term care at local authority level.

    PubMed

    Xie, Haifeng; Chaussalet, Thierry; Toffa, Sam; Crowther, Peter

    2005-01-01

    In this paper, we present a software tool that implements a novel modelling framework developed by the authors to provide useful information to budget planners for long-term care at local authority level. By combining unit costs of care with an underlying survival model for publicly funded residents in long-term care, the software tool is able to provide forecasts on the cost of maintaining the group of elderly who are currently in long-term care (referred to as known commitments) for a period of time. User interacts with the tool via a friendly graphical interface that guides them through a set of screens of options in a familiar wizard fashion. This tool was created and tested in collaboration with an English borough. Feedbacks from the care planner and manager show that the tool helps them gain better understanding on the behaviour of length-of-stay of residents under their care, and provides quantitative inputs into their decision making on budget planning for long-term care.

  11. Dose and volume parameters for MRI-based treatment planning in intracavitary brachytherapy for cervical cancer

    SciTech Connect

    Kirisits, Christian . E-mail: Christian.Kirisits@meduniwien.ac.at; Poetter, Richard; Lang, Stefan; Dimopoulos, Johannes; Wachter-Gerstner, Natascha; Georg, Dietmar

    2005-07-01

    Purpose: Magnetic resonance imaging (MRI)-based treatment planning in intracavitary brachytherapy allows optimization of the dose distribution on a patient-by-patient basis. In addition to traditionally used point dose and volume parameters, dose-volume histogram (DVH) analysis enables further possibilities for prescribing and reporting. This study reports the systematic development of our concept applied in clinical routine. Methods and Materials: A group of 22 patients treated with 93 fractions using a tandem-ring applicator and MRI-based individual treatment planning for each application was analyzed in detail. High-risk clinical target volumes and gross tumor volumes were contoured. The dose to bladder, rectum, and sigma was analyzed according to International Commission of Radiation Units and Measurements (ICRU) Report 38 and DVH parameters (e.g., D{sub 2cc} represents the minimal dose for the most irradiated 2 cm{sup 3}). Total doses, including external beam radiotherapy and the values for each individual brachytherapy fraction, were biologically normalized to conventional 2-Gy fractions ({alpha}/{beta} 10 Gy for target, 3 Gy for organs at risk). Results: The total prescribed dose was about 85 Gy{sub {alpha}}{sub {beta}}{sub 10}, which was mainly achieved by 45 Gy external beam radiotherapy plus 4 x 7 Gy brachytherapy (total 84 Gy{sub {alpha}}{sub {beta}}{sub 10}). The mean value was 82 Gy{sub {alpha}}{sub {beta}}{sub 10} for the point A dose (left, right) and 84 cm{sup 3} for the volume of the prescribed dose. The average dose to the clinical target volume was 66 Gy{sub {alpha}}{sub {beta}}{sub 10} for the minimum target dose, 87 Gy{sub {alpha}}{sub {beta}}{sub 10} for the dose received by at least 90% of the volume, with a mean volume treated with at least the prescribed dose of 89%. The mean D{sub 2cc} for the bladder was 83 Gy{sub {alpha}}{sub {beta}}{sub 3}, the ICRU point dose was 75 Gy{sub {alpha}}{sub {beta}}{sub 3}, and the dose at the ICRU point

  12. Implementation of Monte Carlo Dose calculation for CyberKnife treatment planning

    NASA Astrophysics Data System (ADS)

    Ma, C.-M.; Li, J. S.; Deng, J.; Fan, J.

    2008-02-01

    Accurate dose calculation is essential to advanced stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT) especially for treatment planning involving heterogeneous patient anatomy. This paper describes the implementation of a fast Monte Carlo dose calculation algorithm in SRS/SRT treatment planning for the CyberKnife® SRS/SRT system. A superposition Monte Carlo algorithm is developed for this application. Photon mean free paths and interaction types for different materials and energies as well as the tracks of secondary electrons are pre-simulated using the MCSIM system. Photon interaction forcing and splitting are applied to the source photons in the patient calculation and the pre-simulated electron tracks are repeated with proper corrections based on the tissue density and electron stopping powers. Electron energy is deposited along the tracks and accumulated in the simulation geometry. Scattered and bremsstrahlung photons are transported, after applying the Russian roulette technique, in the same way as the primary photons. Dose calculations are compared with full Monte Carlo simulations performed using EGS4/MCSIM and the CyberKnife treatment planning system (TPS) for lung, head & neck and liver treatments. Comparisons with full Monte Carlo simulations show excellent agreement (within 0.5%). More than 10% differences in the target dose are found between Monte Carlo simulations and the CyberKnife TPS for SRS/SRT lung treatment while negligible differences are shown in head and neck and liver for the cases investigated. The calculation time using our superposition Monte Carlo algorithm is reduced up to 62 times (46 times on average for 10 typical clinical cases) compared to full Monte Carlo simulations. SRS/SRT dose distributions calculated by simple dose algorithms may be significantly overestimated for small lung target volumes, which can be improved by accurate Monte Carlo dose calculations.

  13. SU-E-T-372: Evaluation and Comparison of Second-Check Monitor Unit Calculation Software with Pinnacle Treatment Planning System

    SciTech Connect

    Tuazon, B; Narayanasamy, G; Kirby, N; Papanikolaou, N; Stathakis, S; Mavroidis, P

    2015-06-15

    Purpose: The purpose of this study was to evaluate and compare the accuracy of dose calculation algorithms in the second check software programs Radcalc, Diamond, IMSure, and MUcheck, against the Pinnacle3 treatment planning system (TPS). Methods: Baseline accuracy of the second check software was established by comparison against Pinnacle TPS data using open square fields of 5, 10, 20, 30 and 40cm in a SAD setup. 18 previously treated patients’ files were exported from the Pinnacle3 TPS to each of the four second check softwares, consisting of 146 step and shoot intensity modulated radiotherapy (IMRT) beams and 60 Smart Arcs. Monitor unit (MU) calculated in each of the software were compared with the TPS and the values were represented as a percent difference. Open fields were calculated as a baseline for each software’s accuracy using 5×5, 10×10, 20×20, 30×30, and 40×40 fields. Box plots, Pearson correlation, and Bland-Altman analysis were used for comparison of the results. Results: The baseline accuracy was established to within 0.6%, −1.4%, −0.2%, and −1.0% for Diamond, IMSure,MUcheck, and Radcalc, respectively. In the clinical data, the dose difference represented as mean ± 1 standard deviation were 0.7%±0.1%, −0.3%±0.1%, −1.5%±0.1%, and 0.4%±0.0% for Diamond, IMSure, MUcheck, and Radcalc, respectively Conclusion: The implementation of Clarkson algorithm for the dose calculation between each of the software in question can vary considerably. The currently used second check software, Radcalc has shown the best agreement on average, variance, and smallest percent range from Pinnacle3 TPS values. The closest in average percent difference from the TPS data was the IMSure software, but has significantly larger variance and percent range. The mean percent differences in Diamond and MUcheck were significantly larger than Radcalc and IMSure.

  14. A comparison between anisotropic analytical and multigrid superposition dose calculation algorithms in radiotherapy treatment planning

    SciTech Connect

    Wu, Vincent W.C.; Tse, Teddy K.H.; Ho, Cola L.M.; Yeung, Eric C.Y.

    2013-07-01

    Monte Carlo (MC) simulation is currently the most accurate dose calculation algorithm in radiotherapy planning but requires relatively long processing time. Faster model-based algorithms such as the anisotropic analytical algorithm (AAA) by the Eclipse treatment planning system and multigrid superposition (MGS) by the XiO treatment planning system are 2 commonly used algorithms. This study compared AAA and MGS against MC, as the gold standard, on brain, nasopharynx, lung, and prostate cancer patients. Computed tomography of 6 patients of each cancer type was used. The same hypothetical treatment plan using the same machine and treatment prescription was computed for each case by each planning system using their respective dose calculation algorithm. The doses at reference points including (1) soft tissues only, (2) bones only, (3) air cavities only, (4) soft tissue-bone boundary (Soft/Bone), (5) soft tissue-air boundary (Soft/Air), and (6) bone-air boundary (Bone/Air), were measured and compared using the mean absolute percentage error (MAPE), which was a function of the percentage dose deviations from MC. Besides, the computation time of each treatment plan was recorded and compared. The MAPEs of MGS were significantly lower than AAA in all types of cancers (p<0.001). With regards to body density combinations, the MAPE of AAA ranged from 1.8% (soft tissue) to 4.9% (Bone/Air), whereas that of MGS from 1.6% (air cavities) to 2.9% (Soft/Bone). The MAPEs of MGS (2.6%±2.1) were significantly lower than that of AAA (3.7%±2.5) in all tissue density combinations (p<0.001). The mean computation time of AAA for all treatment plans was significantly lower than that of the MGS (p<0.001). Both AAA and MGS algorithms demonstrated dose deviations of less than 4.0% in most clinical cases and their performance was better in homogeneous tissues than at tissue boundaries. In general, MGS demonstrated relatively smaller dose deviations than AAA but required longer computation time.

  15. A BrachyPhantom for verification of dose calculation of HDR brachytherapy planning system.

    PubMed

    Austerlitz, C; Campos, C A T

    2013-11-01

    To develop a calibration phantom for (192)Ir high dose rate (HDR) brachytherapy units that renders possible the direct measurement of absorbed dose to water and verification of treatment planning system. A phantom, herein designated BrachyPhantom, consists of a Solid Water™ 8-cm high cylinder with a diameter of 14 cm cavity in its axis that allows the positioning of an A1SL ionization chamber with its reference measuring point at the midheight of the cylinder's axis. Inside the BrachyPhantom, at a 3-cm radial distance from the chamber's reference measuring point, there is a circular channel connected to a cylindrical-guide cavity that allows the insertion of a 6-French flexible plastic catheter from the BrachyPhantom surface. The PENELOPE Monte Carlo code was used to calculate a factor, P(sw)(lw), to correct the reading of the ionization chamber to a full scatter condition in liquid water. The verification of dose calculation of a HDR brachytherapy treatment planning system was performed by inserting a catheter with a dummy source in the phantom channel and scanning it with a CT. The CT scan was then transferred to the HDR computer program in which a multiple treatment plan was programmed to deliver a total dose of 150 cGy to the ionization chamber. The instrument reading was then converted to absorbed dose to water using the N(gas) formalism and the P(sw)(lw) factor. Likewise, the absorbed dose to water was calculated using the source strength, Sk, values provided by 15 institutions visited in this work. A value of 1.020 (0.09%, k = 2) was found for P(sw)(lw). The expanded uncertainty in the absorbed dose assessed with the BrachyPhantom was found to be 2.12% (k = 1). To an associated Sk of 27.8 cGy m(2) h(-1), the total irradiation time to deliver 150 cGy to the ionization chamber point of reference was 161.0 s. The deviation between the absorbed doses to water assessed with the BrachyPhantom and those calculated by the treatment plans and using the Sk values

  16. SU-D-BRB-02: Combining a Commercial Autoplanning Engine with Database Dose Predictions to Further Improve Plan Quality

    SciTech Connect

    Robertson, SP; Moore, JA; Hui, X; Cheng, Z; McNutt, TR; DeWeese, TL; Tran, P; Quon, H; Bzdusek, K; Kumar, P

    2016-06-15

    Purpose: Database dose predictions and a commercial autoplanning engine both improve treatment plan quality in different but complimentary ways. The combination of these planning techniques is hypothesized to further improve plan quality. Methods: Four treatment plans were generated for each of 10 head and neck (HN) and 10 prostate cancer patients, including Plan-A: traditional IMRT optimization using clinically relevant default objectives; Plan-B: traditional IMRT optimization using database dose predictions; Plan-C: autoplanning using default objectives; and Plan-D: autoplanning using database dose predictions. One optimization was used for each planning method. Dose distributions were normalized to 95% of the planning target volume (prostate: 8000 cGy; HN: 7000 cGy). Objectives used in plan optimization and analysis were the larynx (25%, 50%, 90%), left and right parotid glands (50%, 85%), spinal cord (0%, 50%), rectum and bladder (0%, 20%, 50%, 80%), and left and right femoral heads (0%, 70%). Results: All objectives except larynx 25% and 50% resulted in statistically significant differences between plans (Friedman’s χ{sup 2} ≥ 11.2; p ≤ 0.011). Maximum dose to the rectum (Plans A-D: 8328, 8395, 8489, 8537 cGy) and bladder (Plans A-D: 8403, 8448, 8527, 8569 cGy) were significantly increased. All other significant differences reflected a decrease in dose. Plans B-D were significantly different from Plan-A for 3, 17, and 19 objectives, respectively. Plans C-D were also significantly different from Plan-B for 8 and 13 objectives, respectively. In one case (cord 50%), Plan-D provided significantly lower dose than plan C (p = 0.003). Conclusion: Combining database dose predictions with a commercial autoplanning engine resulted in significant plan quality differences for the greatest number of objectives. This translated to plan quality improvements in most cases, although special care may be needed for maximum dose constraints. Further evaluation is warranted

  17. A novel method for 4D measurement-guided planned dose perturbation to estimate patient dose/DVH changes due to interplay

    NASA Astrophysics Data System (ADS)

    Nelms, B.; Feygelman, V.

    2013-06-01

    As IMRT/VMAT technology continues to evolve, so do the dosimetric QA methods. We present the theoretical framework for the novel planned dose perturbation algorithm. It allows not only to reconstruct the 3D volumetric doe on a patient from a measurement in a cylindrical phantom, but also to incorporate the effects of the interplay between the intrafractional organ motion and dynamic delivery. Unlike in our previous work, this 4D dose reconstruction does not require the knowledge of the TPS dose for each control point of the plan, making the method much more practical. Motion is viewed as just another source of error, accounted for by perturbing (morphing) the planned dose distribution based on the limited empirical dose from the phantom measurement. The strategy for empirical verification of the algorithm is presented as the necessary next step.

  18. Planning of anatomical liver segmentectomy and subsegmentectomy with 3-dimensional simulation software.

    PubMed

    Takamoto, Takeshi; Hashimoto, Takuya; Ogata, Satoshi; Inoue, Kazuto; Maruyama, Yoshikazu; Miyazaki, Akiyuki; Makuuchi, Masatoshi

    2013-10-01

    The aim of this study was to evaluate whether 3-dimensional (3D) simulation software is applicable to and useful for anatomic liver segmentectomy and subsegmentectomy. A prospective study of 83 consecutive patients who underwent anatomic segmentectomy or subsegmentectomy using the puncture method was performed. All patients underwent 3D simulation analysis (SA) preoperatively for planning operative procedures. The clinical information acquired by 3D SA and the consistency of virtual and real hepatectomy were evaluated. The time needed for completing 3D SA was 18.3 ± .7 minutes. Three-dimensional SA proposed resection of multiple segments or subsegments in 29 patients (35%). It also helped complement the resection line in 26 patients (31%) who lacked a bold staining area on the liver surface. The volume of segment or subsegment calculated by 3D SA was correlated with the actual resected specimen (R(2) = .9942, P < .01). The bordering hepatic veins were clearly exposed in 71 patients (86%), in accordance with completed drawings by 3D SA. Three-dimensional SA showed accurate completed drawings and assisted liver surgeons in planning and executing anatomic segmentectomy and subsegmentectomy. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. The accuracy of treatment planning system dose modelling in the presence of brass mesh bolus.

    PubMed

    Richmond, Neil

    2017-01-01

    This work assesses the dosimetric accuracy of three commercial treatment planning system (TPS) photon dose calculation algorithms in the presence of brass mesh used as a bolus. Bolus material is used in radiotherapy to provide dose build-up where superficial tissues require irradiation. They are generally water equivalent but high density materials can also be used. Dose calculations were performed on Monaco and Masterplan TPS (Elekta AB, Sweden) using phantoms defined by the three DICOM CT image sets of water equivalent blocks (no bolus, 1 layer and 2 layers of brass mesh) exported from the CT scanner. The effect of the mesh on monitor units, build-up dose, phantom exit dose and beam penumbra were compared to measured data. Dose calculations for 6 and 15 MV photon beams on plain water equivalent phantoms were seen to agree well with measurement validating the basic planning system algorithms and models. Dose in the build-up region, phantom exit dose and beam penumbra were poorly modelled in the presence of the brass mesh. The beam attenuation created by the bolus material was overestimated by all three calculation algorithms, at both photon energies, e.g. 1.6% for one layer and up to 3.1% for two layers at 6 MV. The poor modelling of the physical situation in the build-up region is in part a consequence of the high HU artefact caused by the mesh in the CT image. CT imaging is not recommended with the brass mesh bolus in situ due to the poor accuracy of the subsequent TPS modelling.

  20. Repeatability of dose painting by numbers treatment planning in prostate cancer radiotherapy based on multiparametric magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    van Schie, Marcel A.; Steenbergen, Peter; Viet Dinh, Cuong; Ghobadi, Ghazaleh; van Houdt, Petra J.; Pos, Floris J.; Heijmink, Stijn W. T. J. P.; van der Poel, Henk G.; Renisch, Steffen; Vik, Torbjørn; van der Heide, Uulke A.

    2017-07-01

    Dose painting by numbers (DPBN) refers to a voxel-wise prescription of radiation dose modelled from functional image characteristics, in contrast to dose painting by contours which requires delineations to define the target for dose escalation. The direct relation between functional imaging characteristics and DPBN implies that random variations in images may propagate into the dose distribution. The stability of MR-only prostate cancer treatment planning based on DPBN with respect to these variations is as yet unknown. We conducted a test-retest study to investigate the stability of DPBN for prostate cancer in a semi-automated MR-only treatment planning workflow. Twelve patients received a multiparametric MRI on two separate days prior to prostatectomy. The tumor probability (TP) within the prostate was derived from image features with a logistic regression model. Dose mapping functions were applied to acquire a DPBN prescription map that served to generate an intensity modulated radiation therapy (IMRT) treatment plan. Dose calculations were done on a pseudo-CT derived from the MRI. The TP and DPBN map and the IMRT dose distribution were compared between both MRI sessions, using the intraclass correlation coefficient (ICC) to quantify repeatability of the planning pipeline. The quality of each treatment plan was measured with a quality factor (QF). Median ICC values for the TP and DPBN map and the IMRT dose distribution were 0.82, 0.82 and 0.88, respectively, for linear dose mapping and 0.82, 0.84 and 0.94 for square root dose mapping. A median QF of 3.4% was found among all treatment plans. We demonstrated the stability of DPBN radiotherapy treatment planning in prostate cancer, with excellent overall repeatability and acceptable treatment plan quality. Using validated tumor probability modelling and simple dose mapping techniques it was shown that despite day-to-day variations in imaging data still consistent treatment plans were obtained.

  1. Whole-body dose evaluation with an adaptive treatment planning system for boron neutron capture therapy.

    PubMed

    Takada, Kenta; Kumada, Hiroaki; Isobe, Tomonori; Terunuma, Toshiyuki; Kamizawa, Satoshi; Sakurai, Hideyuki; Sakae, Takeji; Matsumura, Akira

    2015-12-01

    Dose evaluation for out-of-field organs during radiotherapy has gained interest in recent years. A team led by University of Tsukuba is currently implementing a project for advancing boron neutron capture therapy (BNCT), along with a radiation treatment planning system (RTPS). In this study, the authors used the RTPS (the 'Tsukuba-Plan') to evaluate the dose to out-of-field organs during BNCT. Computed tomography images of a whole-body phantom were imported into the RTPS, and a voxel model was constructed for the Monte Carlo calculations, which used the Particle and Heavy Ion Transport Code System. The results indicate that the thoracoabdominal organ dose during BNCT for a brain tumour and maxillary sinus tumour was 50-360 and 120-1160 mGy-Eq, respectively. These calculations required ∼29.6 h of computational time. This system can evaluate the out-of-field organ dose for BNCT irradiation during treatment planning with patient-specific irradiation conditions. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Radiobiological impact of dose calculation algorithms on biologically optimized IMRT lung stereotactic body radiation therapy plans.

    PubMed

    Liang, X; Penagaricano, J; Zheng, D; Morrill, S; Zhang, X; Corry, P; Griffin, R J; Han, E Y; Hardee, M; Ratanatharathom, V

    2016-01-22

    The aim of this study is to evaluate the radiobiological impact of Acuros XB (AXB) vs. Anisotropic Analytic Algorithm (AAA) dose calculation algorithms in combined dose-volume and biological optimized IMRT plans of SBRT treatments for non-small-cell lung cancer (NSCLC) patients. Twenty eight patients with NSCLC previously treated SBRT were re-planned using Varian Eclipse (V11) with combined dose-volume and biological optimization IMRT sliding window technique. The total dose prescribed to the PTV was 60 Gy with 12 Gy per fraction. The plans were initially optimized using AAA algorithm, and then were recomputed using AXB using the same MUs and MLC files to compare with the dose distribution of the original plans and assess the radiobiological as well as dosimetric impact of the two different dose algorithms. The Poisson Linear-Quadatric (PLQ) and Lyman-Kutcher-Burman (LKB) models were used for estimating the tumor control probability (TCP) and normal tissue complication probability (NTCP), respectively. The influence of the model parameter uncertainties on the TCP differences and the NTCP differences between AAA and AXB plans were studied by applying different sets of published model parameters. Patients were grouped into peripheral and centrally-located tumors to evaluate the impact of tumor location. PTV dose was lower in the re-calculated AXB plans, as compared to AAA plans. The median differences of PTV(D95%) were 1.7 Gy (range: 0.3, 6.5 Gy) and 1.0 Gy (range: 0.6, 4.4 Gy) for peripheral tumors and centrally-located tumors, respectively. The median differences of PTV(mean) were 0.4 Gy (range: 0.0, 1.9 Gy) and 0.9 Gy (range: 0.0, 4.3 Gy) for peripheral tumors and centrally-located tumors, respectively. TCP was also found lower in AXB-recalculated plans compared with the AAA plans. The median (range) of the TCP differences for 30 month local control were 1.6 % (0.3 %, 5.8 %) for peripheral tumors and 1.3 % (0.5 %, 3.4 %) for centrally located tumors. The lower TCP

  3. Parameter-based estimation of CT dose index and image quality using an in-house android™-based software

    NASA Astrophysics Data System (ADS)

    Mubarok, S.; Lubis, L. E.; Pawiro, S. A.

    2016-03-01

    Compromise between radiation dose and image quality is essential in the use of CT imaging. CT dose index (CTDI) is currently the primary dosimetric formalisms in CT scan, while the low and high contrast resolutions are aspects indicating the image quality. This study was aimed to estimate CTDIvol and image quality measures through a range of exposure parameters variation. CTDI measurements were performed using PMMA (polymethyl methacrylate) phantom of 16 cm diameter, while the image quality test was conducted by using catphan ® 600. CTDI measurements were carried out according to IAEA TRS 457 protocol using axial scan mode, under varied parameters of tube voltage, collimation or slice thickness, and tube current. Image quality test was conducted accordingly under the same exposure parameters with CTDI measurements. An Android™ based software was also result of this study. The software was designed to estimate the value of CTDIvol with maximum difference compared to actual CTDIvol measurement of 8.97%. Image quality can also be estimated through CNR parameter with maximum difference to actual CNR measurement of 21.65%.

  4. SU-E-J-68: Adaptive Radiotherapy of Head and Neck Cancer: Re-Planning Based On Prior Dose

    SciTech Connect

    Dogan, N; Padgett, K; Evans, J; Sleeman, W; Song, S; Fatyga, M

    2015-06-15

    Purpose: Adaptive Radiotherapy (ART) with frequent CT imaging has been used to improve dosimetric accuracy by accounting for anatomical variations, such as primary tumor shrinkage and/or body weight loss, in Head and Neck (H&N) patients. In most ART strategies, the difference between the planned and the delivered dose is estimated by generating new plans on repeated CT scans using dose-volume constraints used with the initial planning CT without considering already delivered dose. The aim of this study was to assess the dosimetric gains achieved by re-planning based on prior dose by comparing them to re-planning not based-on prior dose for H&N patients. Methods: Ten locally-advanced H&N cancer patients were selected for this study. For each patient, six weekly CT imaging were acquired during the course of radiotherapy. PTVs, parotids, cord, brainstem, and esophagus were contoured on both planning and six weekly CT images. ART with weekly re-plans were done by two strategies: 1) Generating a new optimized IMRT plan without including prior dose from previous fractions (NoPriorDose) and 2) Generating a new optimized IMRT plan based on the prior dose given from previous fractions (PriorDose). Deformable image registration was used to accumulate the dose distributions between planning and six weekly CT scans. The differences in accumulated doses for both strategies were evaluated using the DVH constraints for all structures. Results: On average, the differences in accumulated doses for PTV1, PTV2 and PTV3 for NoPriorDose and PriorDose strategies were <2%. The differences in Dmean to the cord and brainstem were within 3%. The esophagus Dmean was reduced by 2% using PriorDose. PriorDose strategy, however, reduced the left parotid D50 and Dmean by 15% and 14% respectively. Conclusion: This study demonstrated significant parotid sparing, potentially reducing xerostomia, by using ART with IMRT optimization based on prior dose for weekly re-planning of H&N cancer patients.

  5. Three-dimensional conformal versus intensity-modulated radiotherapy dose planning in stereotactic radiotherapy: Application of standard quality parameters for plan evaluation

    SciTech Connect

    Grzadziel, Aleksandra; Grosu, Anca-Ligia . E-mail: anca-ligia.grosu@lrz.tum.de; Kneschaurek, Peter

    2006-11-15

    Purpose: The implementation of intensity-modulated radiotherapy (IMRT) technique into clinical practice is becoming routine, but still lacks a generally accepted method for plan evaluation. We present a comparison of the dose distribution of conformal three-dimensional radiotherapy plans with IMRT plans for cranial lesions in stereotactic radiotherapy. The primary aim of this study was to judge the quality of the treatment plans. The next purpose was to assess the usefulness of several quality factors for plan evaluation. Methods and Materials: Five patients, who were treated in our department, were analyzed. Four had meningioma and one had pituitary adenoma. For each case, 10 different plans were created and analyzed: 2 conventional conformal three-dimensional plans and 8 IMRT plans, using the 'step and shoot' delivery method. The first conventional plan was an individually designed beam arrangement and was used for patient treatment. The second plan was a standard plan with the same beam arrangement for all patients. Beam arrangements from the conformal plans were the base for the inversely planned IMRT. To evaluate the plans, the following factors were investigated: minimal and maximal dose to the planning target volume, homogeneity index, coverage index, conformity index, and tumor control probabilities and normal tissue complication probabilities. These quantities were incorporated into scoring factors and assigned to each plan. Results: The greatest homogeneity was reached in the conformal plans and IMRT plans with high planning target volume priority in the optimization process. This consequently led to a better probability of tumor control. Better protection of organs at risk and thereby lower normal tissue complication probabilities were achieved in the IMRT plans with increased weighting of the organs at risk. Conclusion: These results show the efficiency, as well as some limitations, of the IMRT techniques. The use of different quality factors allowed us

  6. Quantitative comparison of dose distribution in radiotherapy plans using 2D gamma maps and X-ray computed tomography

    PubMed Central

    Balosso, Jacques

    2016-01-01

    Background The advanced dose calculation algorithms implemented in treatment planning system (TPS) have remarkably improved the accuracy of dose calculation especially the modeling of electrons transport in the low density medium. The purpose of this study is to evaluate the use of 2D gamma (γ) index to quantify and evaluate the impact of the calculation of electrons transport on dose distribution for lung radiotherapy. Methods X-ray computed tomography images were used to calculate the dose for twelve radiotherapy treatment plans. The doses were originally calculated with Modified Batho (MB) 1D density correction method, and recalculated with anisotropic analytical algorithm (AAA), using the same prescribed dose. Dose parameters derived from dose volume histograms (DVH) and target coverage indices were compared. To compare dose distribution, 2D γ-index was applied, ranging from 1%/1 mm to 6%/6 mm. The results were displayed using γ-maps in 2D. Correlation between DVH metrics and γ passing rates was tested using Spearman’s rank test and Wilcoxon paired test to calculate P values. Results the plans generated with AAA predicted more heterogeneous dose distribution inside the target, with P<0.05. However, MB overestimated the dose predicting more coverage of the target by the prescribed dose. The γ analysis showed that the difference between MB and AAA could reach up to ±10%. The 2D γ-maps illustrated that AAA predicted more dose to organs at risks, as well as lower dose to the target compared to MB. Conclusions Taking into account of the electrons transport on radiotherapy plans showed a significant impact on delivered dose and dose distribution. When considering the AAA represent the true cumulative dose, a readjusting of the prescribed dose and an optimization to protect the organs at risks should be taken in consideration in order to obtain the better clinical outcome. PMID:27429908

  7. W-026 acceptance test plan plant control system software (submittal {number_sign} 216)

    SciTech Connect

    Watson, T.L., Fluor Daniel Hanford

    1997-02-14

    Acceptance Testing of the WRAP 1 Plant Control System software will be conducted throughout the construction of WRAP 1 with final testing on the glovebox software being completed in December 1996. The software tests will be broken out into five sections; one for each of the four Local Control Units and one for the supervisory software modules. The acceptance test report will contain completed copies of the software tests along with the applicable test log and completed Exception Test Reports.

  8. SU-E-T-78: A Study of Dose Falloff Gradient in RapidArc Planning of Lung SBRT

    SciTech Connect

    Desai, D; Srinivasan, S; Elasmar, H; Johnson, E

    2015-06-15

    Purpose: Rapid dose falloff beyond PTV is an important criterion for normal tissue sparing in SBRT. RTOG protocols use D2cm and R50% for plan quality evaluation. This study is aimed at analyzing the dose falloff gradient beyond the PTV extending into normal tissue structures and to ascertain the impact of PTV geometry and location on the dose falloff gradient in RapidArc planning of lung SBRT Methods: In this retrospective study, we analyzed 39 clinical RapidArc lung SBRT treatment plans that met RTOG-0915 criteria. Planning was done on Eclipse 8.9 for delivery on either Novalis NTx or TrueBeam STx equipped with HD MLCs. PTV volumes ranged between 5.3 and 113 cc (2.2 to 6 cm sphere equivalent diameter respectively) and their geographic locations were distributed in both lungs. 6X, 6X-FFF, 10X, and 10X-FFF energies were used for planning. All of these SBRT plans were planned using either 2 or 3 full or hemi arcs, with moderate couch kicks. Dose falloff gradients were obtained by generating 7 concentric 5 mm rings beyond PTV surface. Mean dose in each ring is used to evaluate percentage dose falloff gradient as a function of distance from the PTV surface. Results: The mean percentage dose falloff beyond PTV surface in all plans followed an exponential decay and the data was modeled with double exponential decay fit. Photon energy selection in the plan had a minimal impact on the mean percentage dose fall off beyond PTV surface. Conclusion: Dose falloff beyond PTV surface as a function of distance can be ascertained by the use of the double exponential decay fit coefficients in RapidArc planning of lung SBRT. This will help also in plan quality evaluation in addition to D2cm and R50% defined by RTOG.

  9. Potential pitfalls of the PTV concept in dose-to-medium planning optimization.

    PubMed

    Sterpin, E

    2016-09-01

    In typical treatment planning of 3D IMRT, the incident energy fluence is optimized to achieve a homogeneous dose distribution to the PTV. The PTV includes the tumour but also healthy tissues that may have a different dose response for the same incident energy fluence, like bony structures included in the PTV (mandibles in head and neck tumours or femoral bones in sarcomas). Dose to medium optimization compensates for this heterogeneous response, leading to a non-homogeneous energy fluence in the PTV and a non-homogeneous dose in the CTV in the presence of geometric errors. We illustrate qualitatively this statement in a cylindrical geometry where the PTV includes a CTV (7cm diameter) made of water surrounded by ICRU compact bone (1.2cm thickness); such configuration was chosen to exaggerate the aforementioned effect. Optimization was performed assuming dose equals photon energy fluence times mass energy absorption coefficient. Bone has a 4% lower dose response in a 6 MV flattening filter free spectrum. After optimization either in medium or assuming everything as water composition, the geometry was shifted by 1.2cm and dose recomputed. As expected, compensating for the under-response of the bone material during optimization in medium leads to an overdosage of the CTV when patient geometric errors are taken into account. Optimization in dose assuming everything as water composition leads to a uniform coverage. Robust optimization or forcing a uniform atomic composition in the PTV margin may resolve this incompatibility between the PTV concept and dose to medium optimization.

  10. Interactive reconstructions of cranial 3D implants under MeVisLab as an alternative to commercial planning software.

    PubMed

    Egger, Jan; Gall, Markus; Tax, Alois; Ücal, Muammer; Zefferer, Ulrike; Li, Xing; von Campe, Gord; Schäfer, Ute; Schmalstieg, Dieter; Chen, Xiaojun

    2017-01-01

    In this publication, the interactive planning and reconstruction of cranial 3D Implants under the medical prototyping platform MeVisLab as alternative to commercial planning software is introduced. In doing so, a MeVisLab prototype consisting of a customized data-flow network and an own C++ module was set up. As a result, the Computer-Aided Design (CAD) software prototype guides a user through the whole workflow to generate an implant. Therefore, the workflow begins with loading and mirroring the patients head for an initial curvature of the implant. Then, the user can perform an additional Laplacian smoothing, followed by a Delaunay triangulation. The result is an aesthetic looking and well-fitting 3D implant, which can be stored in a CAD file format, e.g. STereoLithography (STL), for 3D printing. The 3D printed implant can finally be used for an in-depth pre-surgical evaluation or even as a real implant for the patient. In a nutshell, our research and development shows that a customized MeVisLab software prototype can be used as an alternative to complex commercial planning software, which may also not be available in every clinic. Finally, not to conform ourselves directly to available commercial software and look for other options that might improve the workflow.

  11. Interactive reconstructions of cranial 3D implants under MeVisLab as an alternative to commercial planning software

    PubMed Central

    Egger, Jan; Gall, Markus; Tax, Alois; Ücal, Muammer; Zefferer, Ulrike; Li, Xing; von Campe, Gord; Schäfer, Ute; Schmalstieg, Dieter; Chen, Xiaojun

    2017-01-01

    In this publication, the interactive planning and reconstruction of cranial 3D Implants under the medical prototyping platform MeVisLab as alternative to commercial planning software is introduced. In doing so, a MeVisLab prototype consisting of a customized data-flow network and an own C++ module was set up. As a result, the Computer-Aided Design (CAD) software prototype guides a user through the whole workflow to generate an implant. Therefore, the workflow begins with loading and mirroring the patients head for an initial curvature of the implant. Then, the user can perform an additional Laplacian smoothing, followed by a Delaunay triangulation. The result is an aesthetic looking and well-fitting 3D implant, which can be stored in a CAD file format, e.g. STereoLithography (STL), for 3D printing. The 3D printed implant can finally be used for an in-depth pre-surgical evaluation or even as a real implant for the patient. In a nutshell, our research and development shows that a customized MeVisLab software prototype can be used as an alternative to complex commercial planning software, which may also not be available in every clinic. Finally, not to conform ourselves directly to available commercial software and look for other options that might improve the workflow. PMID:28264062

  12. Dosimetric impact of applicator displacement during high dose rate (HDR) Cobalt-60 brachytherapy for cervical cancer: A planning study

    NASA Astrophysics Data System (ADS)

    Yong, J. S.; Ung, N. M.; Jamalludin, Z.; Malik, R. A.; Wong, J. H. D.; Liew, Y. M.; Ng, K. H.

    2016-02-01

    We investigated the dosimetric impact of applicator displacement on dose specification during high dose rate (HDR) Cobalt-60 (Co-60) brachytherapy for cervical cancer through a planning study. Eighteen randomly selected HDR full insertion plans were restrospectively studied. The tandem and ovoids were virtually shifted translationally and rotationally in the x-, y- and z-axis directions on the treatment planning system. Doses to reference points and volumes of interest in the plans with shifted applicators were compared with the original plans. The impact of dose displacement on 2D (point-based) and 3D (volume-based) treatment planning techniques was also assessed. A ±2 mm translational y-axis applicator shift and ±4° rotational x-axis applicator shift resulted in dosimetric changes of more than 5% to organs at risk (OAR) reference points. Changes to the maximum doses to 2 cc of the organ (D2cc) in 3D planning were statistically significant and higher than the reference points in 2D planning for both the rectum and bladder (p<0.05). Rectal D2cc was observed to be the most sensitive to applicator displacement among all dose metrics. Applicator displacement that is greater than ±2 mm translational y-axis and ±4° rotational x-axis resulted in significant dose changes to the OAR. Thus, steps must be taken to minimize the possibility of applicator displacement during brachytherapy.

  13. SU-E-T-621: Comprehensive Study of Head and Neck IMRT Parameters on Planning and Delivery Efficiency, Plan Quality, and Dose Accuracy.

    PubMed

    Mittauer, K; Lu, B; Liu, C; Yan, G; Gopal, A

    2012-06-01

    To optimize planning and delivery efficiency, and quality of head and neck IMRT through the evaluation of planning parameters. This study also serves to identify the impact on dose accuracy due to calculation grid size. Eleven head and neck patients, 45 trials per patient (495 trials in total), were evaluated varying IMRT parameters of dose grid, minimum MU per segment, minimum segment area, and control point number. Plans were recomputed on Pinnacle Treatment Planning System (TPS), and scaled to the planning target volume (PTV) constraint of 95% volume. Differential dose volume histograms (DVHs) were exported, and a program was written to compile DVH results. Plans were delivered on an Elekta Synergy linear accelerator to assess delivery time. Plan quality, calculation time, and delivery time served as this study's endpoints. The 4 mm dose grid with 2 mm fluence grid in each direction, saving 1/3 the computation time, were most comparable by DVH results to the 2 mm dose and fluence grid. Dose uncertainty due to dose calculation grid effect was as high as 8.2%, 5.5 Gy for PTVs and 13.3%, 2.1 Gy for organs at risk. Smaller volumes and high gradient regions were more susceptible to uncertainties. Threshold values that maintained adequate plan quality were 5 cm(2) for minimum segment area and 5 MU for minimum MU. Minimum MU was more costly in terms of plan quality compared to the minimum segment area. DVH differences can be effectively used to quantify the dose grid calculation uncertainty. For minimum MU and segment area, the DVH differences are an effect of the intensity map, defined by MLC shape and the number of control points. Exceeding the adequate number of control points diminishes returns of plan quality and increases patient treatment time. © 2012 American Association of Physicists in Medicine.

  14. Influence of optimizing protocol choice on the integral dose value in prostate radiotherapy planning by dynamic techniques - Pilot study.

    PubMed

    Zaleska, Anna; Bogaczyk, Krzysztof; Piotrowski, Tomasz

    2017-01-01

    The purpose of this study was to compare the values of integral dose, calculated for treatment plans of dynamic radiotherapy techniques prepared with two different optimization protocols. Delivering radiation by IMRT, VMAT and also HT techniques has an influence on the low dose deposition of large areas of the patient body. Delivery of low dose can induce injury of healthy cells. In this situation, a good solution would be to reduce the area, which receives a low dose, but with appropriate dose level for the target volume. To calculate integral dose values of plans structures, we used 90 external beam radiotherapy plans prepared for three techniques (intensity modulated radiotherapy, volumetric modulated arc therapy and helical tomotherapy). One technique includes three different geometry combinations. 45 plans were prepared with classic optimization protocol and 45 with rings optimization protocol which should reduce the low doses in the normal tissue. Differences in values of the integral dose depend on the geometry and technique of irradiation, as well as optimization protocol used in preparing treatment plans. The application of the rings optimization caused the value of normal tissue integral dose (NTID) to decrease. It is possible to limit the area of low dose irradiation and reduce NTID in dynamic techniques with the same clinical constraints for OAR and PTV volumes by using an optimization protocol other than the classic one.

  15. SU-E-T-425: Spherical Dose Distributions for Radiosurgery Using a Standardized MLC Plan

    SciTech Connect

    Popple, R; Brezovich, I; Wu, X; Fiveash, J

    2014-06-01

    Purpose: To investigate a standardized MLC treatment plan to generate small spherical dose distributions. Methods: The static virtual cone plan comprised six table positions with clockwise and counterclockwise arcs having collimator angles 45 and 135 degrees, respectively, at each position. The central two leaves of a 2.5 mm leaf width MLC were set to a constant gap. Control points were weighted proportional to the sine of the gantry angle. Plans were created for the 10 MV flattening-filter-free beam of a TrueBeam STx (Varian Medical Systems) with gaps of 1, 1.5, 2, and 3 mm and were delivered to a phantom containing radiochromic film. Dose was calculated using the Eclipse AAA (Varian Medical Systems). A dynamic plan in which the table and gantry moved simultaneously with 1.5 mm gap was also created and delivered using the TrueBeam developer mode. Results: The full-width-half-max (FWHM) varied with leaf gap, ranging from 5.2 to 6.2 mm. Calculated FWHM was smaller than measured by 0.7 mm for the 1 mm gap and ≤ 0.4 mm for the larger gaps. The measured-to-calculated dose ratio was 0.93, 0.96, 1.01, and 0.99 for 1 mm, 1.5 mm, 2 mm, and 3 mm gaps, respectively. The dynamic results were the same as the static. The position deviations between the phantom target position and the center of the dose distribution were < 0.4 mm. Conclusion: The virtual cone can deliver spherical dose distributions suitable for radio surgery of small targets such as the trigeminal nerve. The Eclipse AAA accurately calculates the expected dose, particularly for leaf gap ≥ 1.5 mm. The measured dose distribution is slightly larger than the calculation, which is likely due to systematic leaf position error, isocenter variation due to gantry sag and table eccentricity, and inaccuracy in MLC leaf end modeling.

  16. Migrating data from TcSE to DOORS : an evaluation of the T-Plan Integrator software application.

    SciTech Connect

    Post, Debra S.; Manzanares, David A.; Taylor, Jeffrey L.

    2011-02-01

    This report describes our evaluation of the T-Plan Integrator software application as it was used to transfer a real data set from the Teamcenter for Systems Engineering (TcSE) software application to the DOORS software application. The T-Plan Integrator was evaluated to determine if it would meet the needs of Sandia National Laboratories to migrate our existing data sets from TcSE to DOORS. This report presents the struggles of migrating data and focuses on how the Integrator can be used to map a data set and its data architecture from TcSE to DOORS. Finally, this report describes how the bulk of the migration can take place using the Integrator; however, about 20-30% of the data would need to be transferred from TcSE to DOORS manually. This report does not evaluate the transfer of data from DOORS to TcSE.

  17. FY 1992 task plans for the Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    1991-10-01

    Phase 1 of the HEDR Project was designed to develop and demonstrate a method for estimating radiation doses people may have received from Hanford Site operations since 1944. The method researchers developed relied on a variety of measured and reconstructed data as input to a modular computer model that generates dose estimates and their uncertainties. As part of Phase 1, researchers used the reconstructed data and computer model to calculate preliminary dose estimates for populations from limited radionuclides, in a limited geographical area and time period. Phase 1 ended in FY 1990. In February 1991, the TSP decided to shift the project planning approach away from phases--which were centered around completion of major portions of technical activities--to individual fiscal years (FYs), which span October of one year through September of the next. Therefore, activities that were previously designated to occur in phases are now designated in an integrated schedule to occur in one or more of the next fiscal years into FY 1995. Task plans are updated every 6 months. In FY 1992, scientists will continue to improve Phase 1 data and models to calculate more accurate and precise dose estimates. The plan for FY 1992 has been prepared based on activities and budgets approved by the Technical Steering Panel (TSP) at its meeting on August 19--20, 1991. The activities can be divided into four categories: (1) model and data evaluation activities, (2) additional dose estimates, (3) model and data development activities, and (4) technical and communication support. 3 figs., 2 tabs.

  18. Application of the new MultiTrans SP3 radiation transport code in BNCT dose planning.

    PubMed

    Kotiluoto, P; Hiisamäki, P; Savolainen, S

    2001-09-01

    Dose planning in boron neutron capture therapy (BNCT) is a complex problem and requires sophisticated numerical methods. In the framework of the Finnish BNCT project, new deterministic three-dimensional radiation transport code MultiTrans SP3 has been developed at VTT Chemical Technology, based on a novel application of the tree multigrid technique. To test the applicability of this new code in a realistic BNCT dose planning problem, cylindrical PMMA (polymethyl-methacrylate) phantom was chosen as a benchmark case. It is a convenient benchmark, as it has been modeled by several different codes, including well-known DORT and MCNP. Extensive measured data also exist. In this paper, a comparison of the new MultiTrans SP3 code with other methods is presented for the PMMA phantom case. Results show that the total neutron dose rate to ICRU adult brain calculated by the MultiTrans SP3 code differs less than 4% in 2 cm depth in phantom (in thermal maximum) from the DORT calculation. Results also show that the calculated 197Au(n,gamma) and 55Mn(n,gamma) reaction rates in 2 cm depth in phantom differ less than 4% and 1% from the measured values, respectively. However, the photon dose calculated by the MultiTrans SP3 code seems to be incorrect in this PMMA phantom case, which requires further studying. As expected, the deterministic MultiTrans SP3 code is over an order of magnitude faster than stochastic Monte Carlo codes (with similar resolution), thus providing a very efficient tool for BNCT dose planning.

  19. Intraoperative ultrasound-based planning can effectively replace postoperative CT-based planning for high-dose-rate brachytherapy for prostate cancer.

    PubMed

    Batchelar, Deidre L; Chung, Hans T; Loblaw, Andrew; Law, Niki; Cisecki, Thomas; Morton, Gerard C

    2016-01-01

    Ultrasound (US)-based planning for high-dose-rate brachytherapy allows prostate patients to be implanted, imaged, planned, and treated without changing position. This is advantageous with respect to accuracy and efficiency of treatment but is only valuable if plan quality relative to CT is maintained. This study evaluates any dosimetric impact of changing from CT- to US-based planning. Thirty patients each were randomly selected from CT-planned and US-planned cohorts. All received single fraction high-dose-rate brachytherapy (15 Gy) followed by 37.5 Gy in 15 fractions external beam radiation therapy. Prostate V90, V100, V150, V200, D90, and the dose homogeneity index were compared. For the rectum, Dmax, D0.5cc, D1cc, V10, V50, and V80 were examined. For the urethra, only Dmax and D10 were considered. US plans had smaller 200% hot spots, although the dose homogeneity index for both was 0.7 ± 0.1. On average, plans using either modality satisfied planning goals. Although several parameters were significantly different between the two modalities (p < 0.05), the absolute differences were small. Of greatest, clinical relevance was the difference in frequency with which upper dose goals were exceeded. The prostate V200 goal was exceeded in 53% of CT-planned cases, but only 20% of those planned with US. The urethral D10 goal was never exceeded using US but was exceeded in 13% of CT cases. US planning results in plans that, clinically, are dosimetrically equivalent to CT-based planning. Upper dosimetric goals are, however, exceeded less often with US than with CT. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  20. Development and use of the computer software package for planning the 12 GHz broadcasting-satellite service at RARC '83

    NASA Technical Reports Server (NTRS)

    Bowen, R. R.; Brown, K. E.; Hothi, H. S.; Miller, E. F.

    1985-01-01

    The 1983 Regional Administrative Radio Conference (RARC '83) had mainly the objective to draw up a plan of detailed frequency assignments and orbital positions for the 12 GHz broadcasting-satellite service (BSS) in ITU Region 2 (the Western Hemisphere) and associated feeder links (earth-to-space) in the 17 GHz band. It was found that for RARC '83 new planning methods and procedures would be needed. The new requirements made it necessary to develop a new generation of planning software. Attention is given to the development of the computer programs to be used at the conference, the package of computer programs, and the use of the computer programs.

  1. Development and use of the computer software package for planning the 12 GHz broadcasting-satellite service at RARC '83

    NASA Technical Reports Server (NTRS)

    Bowen, R. R.; Brown, K. E.; Hothi, H. S.; Miller, E. F.

    1985-01-01

    The 1983 Regional Administrative Radio Conference (RARC '83) had mainly the objective to draw up a plan of detailed frequency assignments and orbital positions for the 12 GHz broadcasting-satellite service (BSS) in ITU Region 2 (the Western Hemisphere) and associated feeder links (earth-to-space) in the 17 GHz band. It was found that for RARC '83 new planning methods and procedures would be needed. The new requirements made it necessary to develop a new generation of planning software. Attention is given to the development of the computer programs to be used at the conference, the package of computer programs, and the use of the computer programs.

  2. RELAP-7 Software Verification and Validation Plan - Requirements Traceability Matrix (RTM) Part 2: Code Assessment Strategy, Procedure, and RTM Update

    SciTech Connect

    Yoo, Jun Soo; Choi, Yong Joon; Smith, Curtis Lee

    2016-09-01

    This document addresses two subjects involved with the RELAP-7 Software Verification and Validation Plan (SVVP): (i) the principles and plan to assure the independence of RELAP-7 assessment through the code development process, and (ii) the work performed to establish the RELAP-7 assessment plan, i.e., the assessment strategy, literature review, and identification of RELAP-7 requirements. Then, the Requirements Traceability Matrices (RTMs) proposed in previous document (INL-EXT-15-36684) are updated. These RTMs provide an efficient way to evaluate the RELAP-7 development status as well as the maturity of RELAP-7 assessment through the development process.

  3. Evaluation of the MIM Symphony treatment planning system for low-dose-rate- prostate brachytherapy.

    PubMed

    Dhanesar, Sandeep K; Lim, Tze Y; Du, Weiliang; Bruno, Teresa L; Frank, Steven J; Kudchadker, Rajat J

    2015-09-08

    MIM Symphony is a recently introduced low-dose-rate prostate brachytherapy treatment planning system (TPS). We evaluated the dosimetric and planning accuracy of this new TPS compared to the universally used VariSeed TPS. For dosimetric evaluation of the MIM Symphony version 5.4 TPS, we compared dose calculations from the MIM Symphony TPS with the formalism recommended by the American Association of Physicists in Medicine Task Group 43 report (TG-43) and those generated by the VariSeed version 8.0 TPS for iodine-125 (I-125; Models 6711 and IAI-125A), palladium-103 (Pd-103; Model 200), and cesium-131 (Cs-131; Model Cs-1). Validation was performed for both line source and point source approximations. As part of the treatment planning validation, first a QA phantom (CIRS Brachytherapy QA Phantom Model 045 SN#D7210-3) containing three ellipsoid objects with certified volumes was scanned in order to check the volume accuracy of the contoured structures in MIM Symphony. Then the DICOM data containing 100 patient plans from the VariSeed TPS were imported into the MIM Symphony TPS. The 100 plans included 25 each of I-125 pre-implant plans, Pd-103 pre-implant plans, I-125 Day 30 plans (i.e., from 1 month after implantation), and Pd-103 Day 30 plans. The dosimetric parameters (including prostate volume, prostate D90 values, and rectum V100 values) of the 100 plans were calculated independently on the two TPSs. Other TPS tests that were done included verification of source input and geometrical accuracy, data transfer between different planning systems, text printout, 2D dose plots, DVH printout, and template grid accuracy. According to the line source formalism, the dosimetric results between the MIM Symphony TPS and TG-43 were within 0.5% (0.02 Gy) for r > 1 cm. In the line source approximation validation, MIM Symphony TPS values agreed with VariSeed TPS values to within 0.5% (0.09 Gy) for r > 1 cm. Similarly, in point source approximation validation, the MIM Symphony values

  4. Comparison of single and multiple dwell position methods in MammoSite high dose rate (HDR) brachytherapy planning.

    PubMed

    Kim, Yongbok; Trombetta, Mark G; Miften, Moyed

    2010-05-28

    The purpose of this study is to dosimetrically compare two plans generated using single dwell position method (SDPM) and multiple dwell position methods (MDPM) in MammoSite high dose rate (HDR) brachytherapy planning for 19 breast cancer patients. In computed tomography (CT) image-based HDR planning, a surface optimization technique was used in both methods. Following dosimetric parameters were compared for fraction 1 plans: %PTV_EVAL (planning target volume for plan evaluation) coverage, dose homogeneity index (DHI), dose con-formal index (COIN), maximum dose to skin and ipsilateral lung, and breast tissue volume receiving 150% (V150[cc]) and 200% (V200[cc]) of the prescribed dose. In addition, a plan was retrospectively generated for each fraction 2-10 to simulate the clinical situation where the fraction 1 plan was used for fractions 2-10 without modification. In order to create nine derived plans for each method and for each of the 19 patients, the catheter location and contours of target and critical structures were defined on the CT images acquired prior to each fraction 2-10, while using the same dwell-time distribution as used for fraction 1 (original plan). Interfraction dose variations were evaluated for 19 patients by comparing the derived nine plans (each for fractions 2-10) with the original plan (fraction 1) using the same dosimetric parameters used for fraction 1 plan comparison. For the fraction 1 plan comparison, the MDPM resulted in slightly increased %PTV_EVAL coverage, COIN, V150[cc] and V200[cc] values by an average of 1.2%, 0.025, 0.5 cc and 0.7cc, respectively, while slightly decreased DHI, maximum skin and ipsilateral lung dose by an average of 0.003, 3.2 cGy and 5.8 cGy, respectively. For the inter-fraction dose variation comparison, the SDPM resulted in slightly smaller variations in %PTV_EVAL coverage, DHI, maximum skin dose and V150[cc] values by an average of 0.4%, 0.0005, 0.5 cGy and 0.2 cc, respectively, while slightly higher average

  5. SU-F-19A-01: APBI Brachytherapy Treatment Planning: The Impact of Heterogeneous Dose Calculations

    SciTech Connect

    Loupot, S; Han, T; Salehpour, M; Gifford, K

    2014-06-15

    Purpose: To quantify the difference in dose to PTV-EVAL and OARs (skin and rib) as calculated by (TG43) and heterogeneous calculations (CCC). Methods: 25 patient plans (5 Contura and 20 SAVI) were selected for analysis. Clinical dose distributions were computed with a commercially available treatment planning algorithm (TG43-D-(w,w)) and then recomputed with a pre-clinical collapsed cone convolution algorithm (CCCD-( m,m)). PTV-EVAL coverage (V90%, V95%), and rib and skin maximum dose were compared via percent difference. Differences in dose to normal tissue (V150cc, V200cc of PTV-EVAL) were also compared. Changes in coverage and maximum dose to organs at risk are reported in percent change, (100*(TG43 − CCC) / TG43)), and changes in maximum dose to normal tissue are absolute change in cc (TG43 − CCC). Results: Mean differences in V90, V95, V150, and V200 for the SAVI cases were −0.2%, −0.4%, −0.03cc, and −0.14cc, respectively, with maximum differences of −0.78%, −1.7%, 1.28cc, and 1.01cc, respectively. Mean differences in the 0.1cc dose to the rib and skin were −1.4% and −0.22%, respectively, with maximum differences of −4.5% and 16%, respectively. Mean differences in V90, V95, V150, and V200 for the Contura cases were −1.2%, −2.1%, −1.8cc, and −0.59cc, respectively, with maximum differences of −2.0%, −3.16%, −2.9cc, and −0.76cc, respectively. Mean differences in the 0.1cc dose to the rib and skin were −2.6% and −3.9%, respectively, with maximum differences of −3.2% and −5.7%, respectively. Conclusion: The effects of translating clinical knowledge based on D-(w,w) to plans reported in D-(m,m) are minimal (2% or less) on average, but vary based on the type and placement of the device, source, and heterogeneity information.

  6. ALARA database value in future outage work planning and dose management

    SciTech Connect

    Miller, D.W.; Green, W.H.

    1995-03-01

    ALARA database encompassing job-specific duration and man-rem plant specific information over three refueling outages represents an invaluable tool for the outage work planner and ALARA engineer. This paper describes dose-management trends emerging based on analysis of three refueling outages at Clinton Power Station. Conclusions reached based on hard data available from a relational database dose-tracking system is a valuable tool for planning of future outage work. The system`s ability to identify key problem areas during a refueling outage is improving as more outage comparative data becomes available. Trends over a three outage period are identified in this paper in the categories of number and type of radiation work permits implemented, duration of jobs, projected vs. actual dose rates in work areas, and accuracy of outage person-rem projection. The value of the database in projecting 1 and 5 year station person-rem estimates is discussed.

  7. FY 1991 Task plans for the Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Not Available

    1991-04-01

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate radiation doses from Hanford Site operations since 1944 to populations and individuals. The objectives of work in Fiscal Year (FY) 1991 are to analyze data and models used in Phase 1 and restructure the models to increase accuracy and reduce uncertainty in dose estimation capability. Databases will be expanded and efforts will begin to determine the appropriate scope (space, time, radionuclides, pathways and individuals/population groups) and accuracy (level of uncertainty in dose estimates) for the project. Project scope and accuracy requirements, once defined, can be translated into additional model and data requirements later in the project. Task plans for FY 1991 have been prepared based on activities approved by the Technical Steering Panel (TSP) in October 1990 and mid-year revisions discussed at the TSP planning/budget workshop in February 1991. The activities can be divided into two broad categories: (1) model and data development and evaluation, (2) project, technical and communication support. 3 figs., 1 tab.

  8. Absorbed and effective doses from cone beam volumetric imaging for implant planning.

    PubMed

    Okano, T; Harata, Y; Sugihara, Y; Sakaino, R; Tsuchida, R; Iwai, K; Seki, K; Araki, K

    2009-02-01

    Volumetric CT using a cone beam has been developed by several manufacturers for dentomaxillofacial imaging. The purpose of this study was to measure doses for implant planning with cone beam volumetric imaging (CBVI) in comparison with conventional multidetector CT (MDCT). The two CBVI systems used were a 3D Accuitomo (J. Morita), including an image-intensifier type (II) and a flat-panel type (FPD), and a CB MercuRay (Hitachi). The 3D Accuitomo operated at 80 kV, 5 mA and 18 s. The CB MercuRay operated at 120 kV, 15 mA, 9.8 s. The MDCT used was a HiSpeed QX/i (GE), operated at 120 kV, 100 mA and 0.7 s, and its scan length was 77 mm for both jaws. Measurement of the absorbed tissue and organ doses was performed with an Alderson phantom, embedding the radiophotoluminescence glass dosemeter into the organs/tissues. The values obtained were converted into the absorbed dose. The effective dose as defined by the International Commission on Radiological Protection was then calculated. The absorbed doses of the 3D Accuitomo of the organs in the primary beam ranged from 1-5 mGy, and were several to ten times lower than other doses. The effective dose of the 3D Accuitomo ranged from 18 muSv to 66 muSv, and was an order of magnitude smaller than the others. In conclusion, these results show that the dose in the 3D Accuitomo is lower than the CB MercuRay and much less than MDCT.

  9. Influence of the jaw tracking technique on the dose calculation accuracy of small field VMAT plans.

    PubMed

    Swinnen, Ans C C; Öllers, Michel C; Roijen, Erik; Nijsten, Sebastiaan M; Verhaegen, Frank

    2017-01-01

    The aim of this study was to evaluate experimentally the accuracy of the dose calculation algorithm AcurosXB in small field highly modulated Volumetric Modulated Arc Therapy (VMAT). The 1000SRS detector array inserted in the rotational Octavius 4D phantom (PTW) was used for 3D dose verification of VMAT treatments characterized by small to very small targets. Clinical treatment plans (n = 28) were recalculated on the phantom CT data set in the Eclipse TPS. All measurements were done on a Varian TrueBeamSTx, which can provide the jaw tracking technique (JTT). The effect of disabling the JTT, thereby fixing the jaws at static field size of 3 × 3 cm(2) and applying the MLC to shape the smallest apertures, was investigated for static fields between 0.5 × 0.5-3 × 3 cm(2) and for seven VMAT patients with small brain metastases. The dose calculation accuracy has been evaluated by comparing the measured and calculated dose outputs and dose distributions. The dosimetric agreement has been presented by a local gamma evaluation criterion of 2%/2 mm. Regarding the clinical plans, the mean ± SD of the volumetric gamma evaluation scores considering the dose levels for evaluation of 10%, 50%, 80% and 95% are (96.0 ± 6.9)%, (95.2 ± 6.8)%, (86.7 ± 14.8)% and (56.3 ± 42.3)% respectively. For the smallest field VMAT treatments, discrepancies between calculated and measured doses up to 16% are obtained. The difference between the 1000SRS central chamber measurements compared to the calculated dose outputs for static fields 3 × 3, 2 × 2, 1 × 1 and 0.5 × 0.5 cm(2) collimated with MLC whereby jaws are fixed at 3 × 3 cm(2) and for static fields shaped with the collimator jaws only (MLC retracted), is on average respectively, 0.2%, 0.8%, 6.8%, 5.7% (6 MV) and 0.1%, 1.3%, 11.7%, 21.6% (10 MV). For the seven brain mets patients was found that the smaller the target volumes, the higher the improvement in agreement between measured and calculated doses after disabling the JTT

  10. Independent Verification and Validation Of SAPHIRE 8 Software Quality Assurance Plan Project Number: N6423 U.S. Nuclear Regulatory Commission

    SciTech Connect

    Kent Norris

    2010-02-01

    This report provides an evaluation of the Software Quality Assurance Plan. The Software Quality Assurance Plan is intended to ensure all actions necessary for the software life cycle; verification and validation activities; documentation and deliverables; project management; configuration management, nonconformance reporting and corrective action; and quality assessment and improvement have been planned and a systematic pattern of all actions necessary to provide adequate confidence that a software product conforms to established technical requirements; and to meet the contractual commitments prepared by the sponsor; the Nuclear Regulatory Commission.

  11. Integrated Task Plans for the Hanford Environmental Dose Reconstruction Project, FY 1992 through May 1994

    SciTech Connect

    Shipler, D.B.

    1992-09-01

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate radiation doses from Hanford Site operations since 1944 to populations and individuals. The primary objective of work to be performed through May 1994 is to (1) determine the project's appropriate scope (space, time, radionuclides, pathways and individuals/population groups), (2) determine the project's appropriate level of accuracy (level of uncertainty in dose estimates) for the project, (3) complete model and data development, and (4) estimate doses for the Hanford Thyroid Disease Study (HTDS), representative individuals, and special populations as described herein. The plan for FY 1992 through May 1994 has been prepared based on activities and budgets approved by the Technical Steering Panel (TSP) at its meetings on August 19--20, 1991, and April 23--25, 1992. The activities can be divided into four broad categories: (1) model and data evaluation activities, (2)additional dose estimates, (3) model and data development activities, and (4)technical and communication support.

  12. A Review on the Use of Grid-Based Boltzmann Equation Solvers for Dose Calculation in External Photon Beam Treatment Planning

    PubMed Central

    Kan, Monica W. K.; Yu, Peter K. N.; Leung, Lucullus H. T.

    2013-01-01

    Deterministic linear Boltzmann transport equation (D-LBTE) solvers have recently been developed, and one of the latest available software codes, Acuros XB, has been implemented in a commercial treatment planning system for radiotherapy photon beam dose calculation. One of the major limitations of most commercially available model-based algorithms for photon dose calculation is the ability to account for the effect of electron transport. This induces some errors in patient dose calculations, especially near heterogeneous interfaces between low and high density media such as tissue/lung interfaces. D-LBTE solvers have a high potential of producing accurate dose distributions in and near heterogeneous media in the human body. Extensive previous investigations have proved that D-LBTE solvers were able to produce comparable dose calculation accuracy as Monte Carlo methods with a reasonable speed good enough for clinical use. The current paper reviews the dosimetric evaluations of D-LBTE solvers for external beam photon radiotherapy. This content summarizes and discusses dosimetric validations for D-LBTE solvers in both homogeneous and heterogeneous media under different circumstances and also the clinical impact on various diseases due to the conversion of dose calculation from a conventional convolution/superposition algorithm to a recently released D-LBTE solver. PMID:24066294

  13. A review on the use of grid-based Boltzmann equation solvers for dose calculation in external photon beam treatment planning.

    PubMed

    Kan, Monica W K; Yu, Peter K N; Leung, Lucullus H T

    2013-01-01

    Deterministic linear Boltzmann transport equation (D-LBTE) solvers have recently been developed, and one of the latest available software codes, Acuros XB, has been implemented in a commercial treatment planning system for radiotherapy photon beam dose calculation. One of the major limitations of most commercially available model-based algorithms for photon dose calculation is the ability to account for the effect of electron transport. This induces some errors in patient dose calculations, especially near heterogeneous interfaces between low and high density media such as tissue/lung interfaces. D-LBTE solvers have a high potential of producing accurate dose distributions in and near heterogeneous media in the human body. Extensive previous investigations have proved that D-LBTE solvers were able to produce comparable dose calculation accuracy as Monte Carlo methods with a reasonable speed good enough for clinical use. The current paper reviews the dosimetric evaluations of D-LBTE solvers for external beam photon radiotherapy. This content summarizes and discusses dosimetric validations for D-LBTE solvers in both homogeneous and heterogeneous media under different circumstances and also the clinical impact on various diseases due to the conversion of dose calculation from a conventional convolution/superposition algorithm to a recently released D-LBTE solver.

  14. Treatment planning using MRI data: an analysis of the dose calculation accuracy for different treatment regions

    PubMed Central

    2010-01-01

    Background Because of superior soft tissue contrast, the use of magnetic resonance imaging (MRI) as a complement to computed tomography (CT) in the target definition procedure for radiotherapy is increasing. To keep the workflow simple and cost effective and to reduce patient dose, it is natural to strive for a treatment planning procedure based entirely on MRI. In the present study, we investigate the dose cal