Science.gov

Sample records for dose rate determination

  1. On determining dose rate constants spectroscopically

    SciTech Connect

    Rodriguez, M.; Rogers, D. W. O.

    2013-01-15

    Purpose: To investigate several aspects of the Chen and Nath spectroscopic method of determining the dose rate constants of {sup 125}I and {sup 103}Pd seeds [Z. Chen and R. Nath, Phys. Med. Biol. 55, 6089-6104 (2010)] including the accuracy of using a line or dual-point source approximation as done in their method, and the accuracy of ignoring the effects of the scattered photons in the spectra. Additionally, the authors investigate the accuracy of the literature's many different spectra for bare, i.e., unencapsulated {sup 125}I and {sup 103}Pd sources. Methods: Spectra generated by 14 {sup 125}I and 6 {sup 103}Pd seeds were calculated in vacuo at 10 cm from the source in a 2.7 Multiplication-Sign 2.7 Multiplication-Sign 0.05 cm{sup 3} voxel using the EGSnrc BrachyDose Monte Carlo code. Calculated spectra used the initial photon spectra recommended by AAPM's TG-43U1 and NCRP (National Council of Radiation Protection and Measurements) Report 58 for the {sup 125}I seeds, or TG-43U1 and NNDC(2000) (National Nuclear Data Center, 2000) for {sup 103}Pd seeds. The emitted spectra were treated as coming from a line or dual-point source in a Monte Carlo simulation to calculate the dose rate constant. The TG-43U1 definition of the dose rate constant was used. These calculations were performed using the full spectrum including scattered photons or using only the main peaks in the spectrum as done experimentally. Statistical uncertainties on the air kerma/history and the dose rate/history were Less-Than-Or-Slanted-Equal-To 0.2%. The dose rate constants were also calculated using Monte Carlo simulations of the full seed model. Results: The ratio of the intensity of the 31 keV line relative to that of the main peak in {sup 125}I spectra is, on average, 6.8% higher when calculated with the NCRP Report 58 initial spectrum vs that calculated with TG-43U1 initial spectrum. The {sup 103}Pd spectra exhibit an average 6.2% decrease in the 22.9 keV line relative to the main peak when

  2. A METHODOLOGY FOR DETERMINING THE DOSE RATE FOR BOUNDING MASS LIMITS IN A 9977 PACKAGING

    SciTech Connect

    Abramczyk, G.; Bellamy, S.; Nathan, S.; Loftin, B.

    2012-05-24

    The Small Gram Quantity (SGQ) concept is based on the understanding that the hazards associated with the shipment of a radioactive material are directly proportional to its mass. This study describes a methodology that estimates the acceptable masses for several neutron and gamma emitting isotopes that can be shipped in a 9977 Package compliant with the Title 10 of the Code of Federal Regulations, Part 71 (10CFR71) external radiation level limits. 10CFR71.33 states that a shipping application identifies the radioactive and fissile materials at their maximum quantity and provides an evaluation demonstrating compliance with the external radiation standards. Since rather small amounts of some isotopes emit sufficiently strong radiation to produce a large external dose rate, quantifying of the dose rate for a proposed content is a challenging issue for the SGQ approach. It is essential to quantify external radiation levels from several common gamma and neutron sources that can be safely placed in a specific packaging, to ensure compliance with federal regulations. A methodology was established for determining the dose rate for bounding mass limits for a set of isotopes in the Model 9977 Shipping Package. Calculations were performed to estimate external radiation levels using the MCNP radiation transport code to develop a set of response multipliers (Green's functions) for 'dose per source particle' for each neutron and photon spectral group. The source spectrum from one gram of each isotope was folded with the response multipliers to generate the dose rate per gram of each isotope in the 9977 shipping package and its associated shielded containers. The maximum amount of a single isotope that could be shipped within the regulatory limits for dose rate at the surface was determined. For a package containing a mixture of isotopes, the acceptability for shipment can be determined by a sum of fractions approach. Furthermore, the results of this analysis can be easily

  3. Method to determine the position-dependant metal correction factor for dose-rate equivalent laser testing of semiconductor devices

    DOEpatents

    Horn, Kevin M.

    2013-07-09

    A method reconstructs the charge collection from regions beneath opaque metallization of a semiconductor device, as determined from focused laser charge collection response images, and thereby derives a dose-rate dependent correction factor for subsequent broad-area, dose-rate equivalent, laser measurements. The position- and dose-rate dependencies of the charge-collection magnitude of the device are determined empirically and can be combined with a digital reconstruction methodology to derive an accurate metal-correction factor that permits subsequent absolute dose-rate response measurements to be derived from laser measurements alone. Broad-area laser dose-rate testing can thereby be used to accurately determine the peak transient current, dose-rate response of semiconductor devices to penetrating electron, gamma- and x-ray irradiation.

  4. PACKAGING CERTIFICATION PROGRAM METHODOLOGY FOR DETERMINING DOSE RATES FOR SMALL GRAM QUANTITIES IN SHIPPING PACKAGINGS

    SciTech Connect

    Nathan, S.; Loftin, B.; Abramczyk, G.; Bellamy, S.

    2012-05-09

    The Small Gram Quantity (SGQ) concept is based on the understanding that small amounts of hazardous materials, in this case radioactive materials (RAM), are significantly less hazardous than large amounts of the same materials. This paper describes a methodology designed to estimate an SGQ for several neutron and gamma emitting isotopes that can be shipped in a package compliant with 10 CFR Part 71 external radiation level limits regulations. These regulations require packaging for the shipment of radioactive materials, under both normal and accident conditions, to perform the essential functions of material containment, subcriticality, and maintain external radiation levels within the specified limits. By placing the contents in a helium leak-tight containment vessel, and limiting the mass to ensure subcriticality, the first two essential functions are readily met. Some isotopes emit sufficiently strong photon radiation that small amounts of material can yield a large dose rate outside the package. Quantifying the dose rate for a proposed content is a challenging issue for the SGQ approach. It is essential to quantify external radiation levels from several common gamma and neutron sources that can be safely placed in a specific packaging, to ensure compliance with federal regulations. The Packaging Certification Program (PCP) Methodology for Determining Dose Rate for Small Gram Quantities in Shipping Packagings provides bounding shielding calculations that define mass limits compliant with 10 CFR 71.47 for a set of proposed SGQ isotopes. The approach is based on energy superposition with dose response calculated for a set of spectral groups for a baseline physical packaging configuration. The methodology includes using the MCNP radiation transport code to evaluate a family of neutron and photon spectral groups using the 9977 shipping package and its associated shielded containers as the base case. This results in a set of multipliers for 'dose per particle' for

  5. A photon spectrometric dose-rate constant determination for the Advantage Pd-103 brachytherapy source

    SciTech Connect

    Chen, Zhe Jay; Bongiorni, Paul; Nath, Ravinder

    2010-02-15

    Purpose: Although several dosimetric characterizations using Monte Carlo simulation and thermoluminescent dosimetry (TLD) have been reported for the new Advantage Pd-103 source (IsoAid, LLC, Port Richey, FL), no AAPM consensus value has been established for the dosimetric parameters of the source. The aim of this work was to perform an additional dose-rate constant ({Lambda}) determination using a recently established photon spectrometry technique (PST) that is independent of the published TLD and Monte Carlo techniques. Methods: Three Model IAPD-103A Advantage Pd-103 sources were used in this study. The relative photon energy spectrum emitted by each source along the transverse axis was measured using a high-resolution germanium spectrometer designed for low-energy photons. For each source, the dose-rate constant was determined from its emitted energy spectrum. The PST-determined dose-rate constant ({sub PST}{Lambda}) was then compared to those determined by TLD ({sub TLD}{Lambda}) and Monte Carlo ({sub MC}{Lambda}) techniques. A likely consensus {Lambda} value was estimated as the arithmetic mean of the average {Lambda} values determined by each of three different techniques. Results: The average {sub PST}{Lambda} value for the three Advantage sources was found to be (0.676{+-}0.026) cGyh{sup -1} U{sup -1}. Intersource variation in {sub PST}{Lambda} was less than 0.01%. The {sub PST}{Lambda} was within 2% of the reported {sub MC}{Lambda} values determined by PTRAN, EGSnrc, and MCNP5 codes. It was 3.4% lower than the reported {sub TLD}{Lambda}. A likely consensus {Lambda} value was estimated to be (0.688{+-}0.026) cGyh{sup -1} U{sup -1}, similar to the AAPM consensus values recommended currently for the Theragenics (Buford, GA) Model 200 (0.686{+-}0.033) cGyh{sup -1} U{sup -1}, the NASI (Chatsworth, CA) Model MED3633 (0.688{+-}0.033) cGyh{sup -1} U{sup -1}, and the Best Medical (Springfield, VA) Model 2335 (0.685{+-}0.033) cGyh{sup -1} U{sup -1} {sup 103}Pd

  6. Analysis of Potassium in Bricks--Determining the Dose Rate from {sup 40}K for Thermoluminescence Dating

    SciTech Connect

    Musilek, Ladislav; Polach, Tomas; Trojek, Tomas

    2008-08-07

    Thermoluminescence (TL) dating is based on accumulating the natural radiation dose in the material of a dated artefact (brick, pottery, etc.), and comparing the dose accumulated during the lifetime of the object with the dose rate within the sample collected for TL measurement. Determining the dose rate from natural radionuclides in materials is one of the most important and most difficult parts of the technique. The most important radionuclides present are usually nuclides of the uranium and thorium decay series and {sup 40}K. An analysis of the total potassium concentration enables us to determine the {sup 40}K content effectively, and from this it is possible to calculate the dose rate originating from this radiation source. X-ray fluorescence (XRF) analysis can be used to determine the potassium concentration in bricks rapidly and efficiently. The procedure for analysing potassium, examples of results of dose rate calculation and possible sources of error are described here.

  7. PCP METHODOLOGY FOR DETERMINING DOSE RATES FOR SMALL GRAM QUANTITIES IN SHIPPING PACKAGINGS

    SciTech Connect

    Nathan, S.

    2011-08-23

    The Small Gram Quantity (SGQ) concept is based on the understanding that small amounts of hazardous materials, in this case radioactive materials, are significantly less hazardous than large amounts of the same materials. This study describes a methodology designed to estimate an SGQ for several neutron and gamma emitting isotopes that can be shipped in a package compliant with 10 CFR Part 71 external radiation level limits regulations. These regulations require packaging for the shipment of radioactive materials perform, under both normal and accident conditions, the essential functions of material containment, subcriticality, and maintain external radiation levels within regulatory limits. 10 CFR 71.33(b)(1)(2)&(3) state radioactive and fissile materials must be identified and their maximum quantity, chemical and physical forms be included in an application. Furthermore, the U.S. Federal Regulations require application contain an evaluation demonstrating the package (i.e., the packaging and its contents) satisfies the external radiation standards for all packages (10 CFR 71.31(2), 71.35(a), & 71.47). By placing the contents in a He leak-tight containment vessel, and limiting the mass to ensure subcriticality, the first two essential functions are readily met. Some isotopes emit sufficiently strong photon radiation that small amounts of material can yield a large external dose rate. Quantifying of the dose rate for a proposed content is a challenging issue for the SGQ approach. It is essential to quantify external radiation levels from several common gamma and neutron sources that can be safely placed in a specific packaging, to ensure compliance with federal regulations. The Packaging Certification Program (PCP) Methodology for Determining Dose Rate for Small Gram Quantities in Shipping Packagings described in this report provides bounding mass limits for a set of proposed SGQ isotopes. Methodology calculations were performed to estimate external radiation levels

  8. A GREEN'S FUNCTION APPROACH FOR DETERMINING DOSE RATES FOR SMALL GRAM QUANTITIES IN SHIPPING PACKAGINGS

    SciTech Connect

    Nathan, S.

    2012-06-14

    The Small Gram Quantity (SGQ) concept is based on the understanding that small amounts of hazardous materials, in this case radioactive materials (RAM), are significantly less hazardous than large amounts of the same materials. This paper describes a methodology designed to estimate an SGQ for several neutron and gamma emitting isotopes that can be shipped in a package in compliance with 10 CFR Part 71 external radiation level limits regulations. The neutron and photon sources were calculated using both ORIGEN-S and RASTA. The response from a unit source in each neutron and photon group was calculated using MCNP5 with each unshielded and shielded container configuration. Effects of self-shielding on both neutron and photon response were evaluated by including either plutonium oxide or iron in the source region for the case with no shielded container. For the cases of actinides mixed with light elements, beryllium is the bounding light element. The added beryllium (10 to 90 percent of the actinide mass) in the cases studied represents between 9 and 47 percent concentration of the total mixture mass. For beryllium concentrations larger than 50 percent, the increase in the neutron source term and dose rate tend to increase at a much lower rate than at concentrations lower than 50%. The intimately mixed actinide-beryllium form used in these models is very conservative and thus the limits presented in this report are practical bounds on the mass that can be safely shipped. The calculated dose rate from one gram of each isotope was then used to determin the maximum amount of a single isotope that could be shipped in the Model 9977 Package (or packagings having the same or larger external dimensions as well as similar structural materials) and have the external radiation level within the regulatory dose limits at the surface of the package. The estimates of the mass limits presented would also serve as conservative limits for both the Models 9975 and 9978 packages. If a

  9. Determination of alpha dose rate profile at the HLW nuclear glass/water interface

    NASA Astrophysics Data System (ADS)

    Mougnaud, S.; Tribet, M.; Rolland, S.; Renault, J.-P.; Jégou, C.

    2015-07-01

    Alpha irradiation and radiolysis can affect the alteration behavior of High Level Waste (HLW) nuclear glasses. In this study, the way the energy of alpha particles, emitted by a typical HLW glass, is deposited in water at the glass/water interface is investigated, with the aim of better characterizing the dose deposition at the glass/water interface during water-induced leaching mechanisms. A simplified chemical composition was considered for the nuclear glass under study, wherein the dose rate is about 140 Gy/h. The MCNPX calculation code was used to calculate alpha dose rate and alpha particle flux profiles at the glass/water interface in different systems: a single glass grain in water, a glass powder in water and a water-filled ideal crack in a glass package. Dose rate decreases within glass and in water as distance to the center of the grain increases. A general model has been proposed to fit a dose rate profile in water and in glass from values for dose rate in glass bulk, alpha range in water and linear energy transfer considerations. The glass powder simulation showed that there was systematic overlapping of radiation fields for neighboring glass grains, but the water dose rate always remained lower than the bulk value. Finally, for typical ideal cracks in a glass matrix, an overlapping of irradiation fields was observed while the crack aperture was lower than twice the alpha range in water. This led to significant values for the alpha dose rate within the crack volume, as long as the aperture remained lower than 60 μm.

  10. Photon spectrometry for the determination of the dose-rate constant of low-energy photon-emitting brachytherapy sources.

    PubMed

    Chen, Zhe Jay; Nath, Ravinder

    2007-04-01

    Accurate determination of dose-rate constant (lambda) for interstitial brachytherapy sources emitting low-energy photons (< 50 keV) has remained a challenge in radiation dosimetry because of the lack of a suitable absolute dosimeter for accurate measurement of the dose rates near these sources. Indeed, a consensus value of lambda taken as the arithmetic mean of the dose-rate constants determined by different research groups and dosimetry techniques has to be used at present for each source model in order to minimize the uncertainties associated with individual determinations of lambda. Because the dosimetric properties of a source are fundamentally determined by the characteristics of the photons emitted by the source, a new technique based on photon spectrometry was developed in this work for the determination of dose-rate constant. The photon spectrometry technique utilized a high-resolution gamma-ray spectrometer to measure source-specific photon characteristics emitted by the low-energy sources and determine their dose-rate constants based on the measured photon-energy spectra and known dose-deposition properties of mono-energetic photons in water. This technique eliminates many of the difficulties arising from detector size, the energy dependence of detector sensitivity, and the use of non-water-equivalent solid phantoms in absolute dose rate measurements. It also circumvents the uncertainties that might be associated with the source modeling in Monte Carlo simulation techniques. It was shown that the estimated overall uncertainty of the photon spectrometry technique was less than 4%, which is significantly smaller than the reported 8-10% uncertainty associated with the current thermo-luminescent dosimetry technique. In addition, the photon spectrometry technique was found to be stable and quick in lambda determination after initial setup and calibration. A dose-rate constant can be determined in less than two hours for each source. These features make it

  11. Determination of surface dose rate of indigenous (32)P patch brachytherapy source by experimental and Monte Carlo methods.

    PubMed

    Kumar, Sudhir; Srinivasan, P; Sharma, S D; Saxena, Sanjay Kumar; Bakshi, A K; Dash, Ashutosh; Babu, D A R; Sharma, D N

    2015-09-01

    Isotope production and Application Division of Bhabha Atomic Research Center developed (32)P patch sources for treatment of superficial tumors. Surface dose rate of a newly developed (32)P patch source of nominal diameter 25 mm was measured experimentally using standard extrapolation ionization chamber and Gafchromic EBT film. Monte Carlo model of the (32)P patch source along with the extrapolation chamber was also developed to estimate the surface dose rates from these sources. The surface dose rates to tissue (cGy/min) measured using extrapolation chamber and radiochromic films are 82.03±4.18 (k=2) and 79.13±2.53 (k=2) respectively. The two values of the surface dose rates measured using the two independent experimental methods are in good agreement to each other within a variation of 3.5%. The surface dose rate to tissue (cGy/min) estimated using the MCNP Monte Carlo code works out to be 77.78±1.16 (k=2). The maximum deviation between the surface dose rates to tissue obtained by Monte Carlo and the extrapolation chamber method is 5.2% whereas the difference between the surface dose rates obtained by radiochromic film measurement and the Monte Carlo simulation is 1.7%. The three values of the surface dose rates of the (32)P patch source obtained by three independent methods are in good agreement to one another within the uncertainties associated with their measurements and calculation. This work has demonstrated that MCNP based electron transport simulations are accurate enough for determining the dosimetry parameters of the indigenously developed (32)P patch sources for contact brachytherapy applications.

  12. Effects of dose rates on radiation-induced replenishment of intestinal stem cells determined by Lgr5 lineage tracing.

    PubMed

    Otsuka, Kensuke; Iwasaki, Toshiyasu

    2015-07-01

    An understanding of the dynamics of intestinal Lgr5(+) stem cells is important for elucidating the mechanism of colonic cancer development. We previously established a method for evaluating Lgr5(+) stem cells by tamoxifen-dependent Lgr5-lineage tracing and showed that high-dose-rate radiation stimulated replenishment of colonic stem cells. In this study, we evaluated the effects of low-dose-rate radiation on stem cell maintenance. Tamoxifen (4OHT)-injected Lgr5-EGFP-IRES-Cre(ERT2) × ROSA-LSL-LacZ mice were used, LacZ-labeled colonic crypts were enumerated, and the loss of LacZ(+) crypts under low-dose-rate radiation was estimated. After 4OHT treatment, the number of LacZ-labeled Lgr5(+) stem cells was higher in the colon of infant mice than in adult mice. The percentage of LacZ-labeled crypts in infant mice rapidly decreased after 4OHT treatment. However, the percentage of labeled crypts plateaued at ∼2% at 4 weeks post-treatment and remained unchanged for up to 7 months. Thus, it will be advantageous to evaluate the long-term effects of low-dose-rate radiation. Next, we determined the percentages of LacZ-labeled crypts irradiated with 1 Gy administered at different dose rates. As reported in our previous study, mice exposed to high-dose-rate radiation (30 Gy/h) showed a marked replenishment (P = 0.04). However, mice exposed to low-dose-rate radiation (0.003 Gy/h) did not exhibit accelerated stem-cell replenishment (P = 0.47). These findings suggest the percentage of labeled crypts can serve as a useful indicator of the effects of dose rate on the stem cell pool.

  13. Determination of Radioisotope Content by Measurement of Waste Package Dose Rates - 13394

    SciTech Connect

    Souza, Daiane Cristini B.; Gimenes Tessaro, Ana Paula; Vicente, Roberto

    2013-07-01

    The objective of this communication is to report the observed correlation between the calculated air kerma rates produced by radioactive waste drums containing untreated ion-exchange resin and activated charcoal slurries with the measured radiation field of each package. Air kerma rates at different distances from the drum surface were calculated with the activity concentrations previously determined by gamma spectrometry of waste samples and the estimated mass, volume and geometry of solid and liquid phases of each waste package. The water content of each waste drum varies widely between different packages. Results will allow determining the total activity of wastes and are intended to complete the previous steps taken to characterize the radioisotope content of wastes packages. (authors)

  14. Acoustic dose and acoustic dose-rate.

    PubMed

    Duck, Francis

    2009-10-01

    Acoustic dose is defined as the energy deposited by absorption of an acoustic wave per unit mass of the medium supporting the wave. Expressions for acoustic dose and acoustic dose-rate are given for plane-wave conditions, including temporal and frequency dependencies of energy deposition. The relationship between the acoustic dose-rate and the resulting temperature increase is explored, as is the relationship between acoustic dose-rate and radiation force. Energy transfer from the wave to the medium by means of acoustic cavitation is considered, and an approach is proposed in principle that could allow cavitation to be included within the proposed definitions of acoustic dose and acoustic dose-rate.

  15. Tank Z-361 dose rate calculations

    SciTech Connect

    Richard, R.F.

    1998-09-30

    Neutron and gamma ray dose rates were calculated above and around the 6-inch riser of tank Z-361 located at the Plutonium Finishing Plant. Dose rates were also determined off of one side of the tank. The largest dose rate 0.029 mrem/h was a gamma ray dose and occurred 76.2 cm (30 in.) directly above the open riser. All other dose rates were negligible. The ANSI/ANS 1991 flux to dose conversion factor for neutrons and photons were used in this analysis. Dose rates are reported in units of mrem/h with the calculated uncertainty shown within the parentheses.

  16. Determination of the Absorbed Dose Rate to Water for the 18-mm Helmet of a Gamma Knife

    SciTech Connect

    Chung, Hyun-Tai; Park, Youngho; Hyun, Sangil; Choi, Yongsoo; Kim, Gi Hong; Kim, Dong Gyu; Chun, Kook Jin

    2011-04-01

    Purpose: To measure the absorbed dose rate to water of {sup 60}Co gamma rays of a Gamma Knife Model C using water-filled phantoms (WFP). Methods and Materials: Spherical WFP with an equivalent water depth of 5, 7, 8, and 9 cm were constructed. The dose rates at the center of an 18-mm helmet were measured in an 8-cm WFP (WFP-3) and two plastic phantoms. Two independent measurement systems were used: one was calibrated to an air kerma (Set I) and the other was calibrated to the absorbed dose to water (Set II). The dose rates of WFP-3 and the plastic phantoms were converted to dose rates for an 8-cm water depth using the attenuation coefficient and the equivalent water depths. Results: The dose rate measured at the center of WFP-3 using Set II was 2.2% and 1.0% higher than dose rates measured at the center of the two plastic phantoms. The measured effective attenuation coefficient of Gamma Knife photon beam in WFPs was 0.0621 cm{sup -1}. After attenuation correction, the difference between the dose rate at an 8-cm water depth measured in WFP-3 and dose rates in the plastic phantoms was smaller than the uncertainty of the measurements. Conclusions: Systematic errors related to the characteristics of the phantom materials in the dose rate measurement of a Gamma Knife need to be corrected for. Correction of the dose rate using an equivalent water depth and attenuation provided results that were more consistent.

  17. Influence of dose rate on fast neutron OER and biological effectiveness determined for growth inhibition in Vicia faba.

    PubMed

    Van Dam, J; Billiet, G; Bonte, J; Octave-Prignot, M; Wambersie, A

    1983-09-01

    The influence of dose rate on the effectiveness of a neutron irradiation was investigated using growth inhibition in Vicia faba bean roots as biological system. d(50) + Be neutron beams produced at the cyclotron CYCLONE of the University of Louvain-la-Neuve were used, at high and low dose rate, by modifying the deuteron beam current. When decreasing the dose rate from 0.14 Gy.min-1 to 0.2 Gy.h-1, the effectiveness of the neutrons decreased down to 0.84 +/- 0.05 (dose ratio, at high and low dose rate. Dhigh/Dlow, producing equal biological effect). Control irradiations, with 60Co gamma-rays, indicated a similar reduction in effectiveness (0.84 +/- 0.03) when decreasing dose rate from 0.6 Gy.min-1 to 0.7 Gy.h-1. In previous experiments, on the same Vicia faba system, higher RBE values were observed for 252Cf neutrons, at low dose rate (RBE = 8.3), compared to different neutron beams actually used in external beam therapy (RBE = 3.2 - 3.6 for d(50) + Be, p(75) + Be and 15 MeV (d, T) neutrons). According to present results, this higher RBE has to be related to the lower energy of the 252Cf neutron spectrum (2 MeV), since the influence of dose rate was shown to be small. As far as OER is concerned, for d(50) + Be neutrons, it decreases from 1.65 +/- 0.12 to 1.59 +/- 0.09 when decreasing dose rate from 0.14 Gy.min-1 to 0.2 Gy.h-1. Control irradiations with 60Co gamma-rays have shown an OER decrease from 2.69 +/- 0.08 to 2.55 +/- 0.11 when decreasing dose rate from 0.6 Gy.min-1 to 0.7 Gy.h-1. These rather small OER reductions are within the statistical fluctuations.

  18. Dose rate assessment in tooth enamel

    NASA Astrophysics Data System (ADS)

    Wieser, A.; Göksu, H. Y.; Regulla, D. F.; Vogenauer, A.

    A mammoth found in the southern part of Germany was dated by ESR spectroscopy. This dating method is based on the measurement of the accumulated dose in tooth enamel and assessment of the annual dose. The accumulated dose is obtained from the radiation induced ESR signal at g = 2.0018 of the enamel. The annual dose was first determined by measuring the 238U, 232Th and 40K content of the tooth and of the surrounding soil. As a crosscheck, the dose rate from the tooth was measured by inserting TL dosimeters in the dentine and storing them at 'zero' background in a salt mine. The cosmic dose rate and the gamma dose rate from the soil was evaluated from TL dosimeters buried at the excavation site. The results are discussed with respect to the applicability of ESR dating on teeth.

  19. Comparative analysis of dose rates in bricks determined by neutron activation analysis, alpha counting and X-ray fluorescence analysis for the thermoluminescence fine grain dating method

    NASA Astrophysics Data System (ADS)

    Bártová, H.; Kučera, J.; Musílek, L.; Trojek, T.

    2014-11-01

    In order to evaluate the age from the equivalent dose and to obtain an optimized and efficient procedure for thermoluminescence (TL) dating, it is necessary to obtain the values of both the internal and the external dose rates from dated samples and from their environment. The measurements described and compared in this paper refer to bricks from historic buildings and a fine-grain dating method. The external doses are therefore negligible, if the samples are taken from a sufficient depth in the wall. However, both the alpha dose rate and the beta and gamma dose rates must be taken into account in the internal dose. The internal dose rate to fine-grain samples is caused by the concentrations of natural radionuclides 238U, 235U, 232Th and members of their decay chains, and by 40K concentrations. Various methods can be used for determining trace concentrations of these natural radionuclides and their contributions to the dose rate. The dose rate fraction from 238U and 232Th can be calculated, e.g., from the alpha count rate, or from the concentrations of 238U and 232Th, measured by neutron activation analysis (NAA). The dose rate fraction from 40K can be calculated from the concentration of potassium measured, e.g., by X-ray fluorescence analysis (XRF) or by NAA. Alpha counting and XRF are relatively simple and are accessible for an ordinary laboratory. NAA can be considered as a more accurate method, but it is more demanding regarding time and costs, since it needs a nuclear reactor as a neutron source. A comparison of these methods allows us to decide whether the time- and cost-saving simpler techniques introduce uncertainty that is still acceptable.

  20. Determination of florfenicol dose rate in feed for control of mortality in nile tilapia Oreochromis nilotica infected with streptococcus iniae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A dose titration study was conducted to determine the dosage of florfenicol (FFC) in feed to control Streptococcus iniae-associated mortality in Nile tilapia Oreochromis niloticus. Six tanks were assigned to each of five treatments: (1) not challenged with S. iniae and fed unmedicated feed; (2) chal...

  1. An improved determination of the internal beta-ray dose-rate in granite rocks and its effect on thermoluminescence dates

    NASA Astrophysics Data System (ADS)

    Plachy, A. L.

    1980-12-01

    The dose is due primarily to the potassium 40 contained in the other minerals in the rock. The purpose of improving the dosimeter determination is to produce thermoluminescence (TL) dates of sufficient accuracy that they can be used to calibrate radiocarbon dates beyond 7000 years before present. To accurately determine the dose rate, a matrix representation of the rock is made using color photography of the cathodoluminescence (CL) from polished rock sections to identify and map the minerals. This matrix is the input data for a FORTRAN IV computer program which finds the quartz points and then determines the average distribution of minerals about the quartz points. This is combined with beta ray dosimetry data and the potassium 40 concentrations of the various minerals to yield the dose rate.

  2. Atmospheric radiation flight dose rates

    NASA Astrophysics Data System (ADS)

    Tobiska, W. K.

    2015-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.

  3. Estimation of the Dose and Dose Rate Effectiveness Factor

    NASA Technical Reports Server (NTRS)

    Chappell, L.; Cucinotta, F. A.

    2013-01-01

    Current models to estimate radiation risk use the Life Span Study (LSS) cohort that received high doses and high dose rates of radiation. Transferring risks from these high dose rates to the low doses and dose rates received by astronauts in space is a source of uncertainty in our risk calculations. The solid cancer models recommended by BEIR VII [1], UNSCEAR [2], and Preston et al [3] is fitted adequately by a linear dose response model, which implies that low doses and dose rates would be estimated the same as high doses and dose rates. However animal and cell experiments imply there should be curvature in the dose response curve for tumor induction. Furthermore animal experiments that directly compare acute to chronic exposures show lower increases in tumor induction than acute exposures. A dose and dose rate effectiveness factor (DDREF) has been estimated and applied to transfer risks from the high doses and dose rates of the LSS cohort to low doses and dose rates such as from missions in space. The BEIR VII committee [1] combined DDREF estimates using the LSS cohort and animal experiments using Bayesian methods for their recommendation for a DDREF value of 1.5 with uncertainty. We reexamined the animal data considered by BEIR VII and included more animal data and human chromosome aberration data to improve the estimate for DDREF. Several experiments chosen by BEIR VII were deemed inappropriate for application to human risk models of solid cancer risk. Animal tumor experiments performed by Ullrich et al [4], Alpen et al [5], and Grahn et al [6] were analyzed to estimate the DDREF. Human chromosome aberration experiments performed on a sample of astronauts within NASA were also available to estimate the DDREF. The LSS cohort results reported by BEIR VII were combined with the new radiobiology results using Bayesian methods.

  4. Dosimetric Considerations to Determine the Optimal Technique for Localized Prostate Cancer Among External Photon, Proton, or Carbon-Ion Therapy and High-Dose-Rate or Low-Dose-Rate Brachytherapy

    SciTech Connect

    Georg, Dietmar

    2014-03-01

    Purpose: To assess the dosimetric differences among volumetric modulated arc therapy (VMAT), scanned proton therapy (intensity-modulated proton therapy, IMPT), scanned carbon-ion therapy (intensity-modulated carbon-ion therapy, IMIT), and low-dose-rate (LDR) and high-dose-rate (HDR) brachytherapy (BT) treatment of localized prostate cancer. Methods and Materials: Ten patients were considered for this planning study. For external beam radiation therapy (EBRT), planning target volume was created by adding a margin of 5 mm (lateral/anterior–posterior) and 8 mm (superior–inferior) to the clinical target volume. Bladder wall (BW), rectal wall (RW), femoral heads, urethra, and pelvic tissue were considered as organs at risk. For VMAT and IMPT, 78 Gy(relative biological effectiveness, RBE)/2 Gy were prescribed. The IMIT was based on 66 Gy(RBE)/20 fractions. The clinical target volume planning aims for HDR-BT ({sup 192}Ir) and LDR-BT ({sup 125}I) were D{sub 90%} ≥34 Gy in 8.5 Gy per fraction and D{sub 90%} ≥145 Gy. Both physical and RBE-weighted dose distributions for protons and carbon-ions were converted to dose distributions based on 2-Gy(IsoE) fractions. From these dose distributions various dose and dose–volume parameters were extracted. Results: Rectal wall exposure 30-70 Gy(IsoE) was reduced for IMIT, LDR-BT, and HDR-BT when compared with VMAT and IMPT. The high-dose region of the BW dose–volume histogram above 50 Gy(IsoE) of IMPT resembled the VMAT shape, whereas all other techniques showed a significantly lower high-dose region. For all 3 EBRT techniques similar urethra D{sub mean} around 74 Gy(IsoE) were obtained. The LDR-BT results were approximately 30 Gy(IsoE) higher, HDR-BT 10 Gy(IsoE) lower. Normal tissue and femoral head sparing was best with BT. Conclusion: Despite the different EBRT prescription and fractionation schemes, the high-dose regions of BW and RW expressed in Gy(IsoE) were on the same order of magnitude. Brachytherapy techniques

  5. Dose rate mapping of VMAT treatments

    NASA Astrophysics Data System (ADS)

    Podesta, Mark; Antoniu Popescu, I.; Verhaegen, Frank

    2016-06-01

    Human tissues exhibit a varying response to radiation dose depending on the dose rate and fractionation scheme used. Dose rate effects have been reported for different radiations, and tissue types. The literature indicates that there is not a significant difference in response for low-LET radiation when using dose rates between 1 Gy min-1 and 12 Gy min-1 but lower dose rates have an observable sparing effect on tissues and a differential effect between tissues. In intensity-modulated radiotherapy such as volumetric modulated arc therapy (VMAT) the dose can be delivered with a wide range of dose rates. In this work we developed a method based on time-resolved Monte Carlo simulations to quantify the dose rate frequency distribution for clinical VMAT treatments for three cancer sites, head and neck, lung, and pelvis within both planning target volumes (PTV) and normal tissues. The results show a wide range of dose rates are used to deliver dose in VMAT and up to 75% of the PTV can have its dose delivered with dose rates  <1 Gy min-1. Pelvic plans on average have a lower mean dose rate within the PTV than lung or head and neck plans but a comparable mean dose rate within the organs at risk. Two VMAT plans that fulfil the same dose objectives and constraints may be delivered with different dose rate distributions, particularly when comparing single arcs to multiple arc plans. It is concluded that for dynamic plans, the dose rate range used varies to a larger degree than previously assumed. The effect of the dose rate range in VMAT on clinical outcome is unknown.

  6. Dose rate mapping of VMAT treatments.

    PubMed

    Podesta, Mark; Popescu, I Antoniu; Verhaegen, Frank

    2016-06-07

    Human tissues exhibit a varying response to radiation dose depending on the dose rate and fractionation scheme used. Dose rate effects have been reported for different radiations, and tissue types. The literature indicates that there is not a significant difference in response for low-LET radiation when using dose rates between 1 Gy min(-1) and 12 Gy min(-1) but lower dose rates have an observable sparing effect on tissues and a differential effect between tissues. In intensity-modulated radiotherapy such as volumetric modulated arc therapy (VMAT) the dose can be delivered with a wide range of dose rates. In this work we developed a method based on time-resolved Monte Carlo simulations to quantify the dose rate frequency distribution for clinical VMAT treatments for three cancer sites, head and neck, lung, and pelvis within both planning target volumes (PTV) and normal tissues. The results show a wide range of dose rates are used to deliver dose in VMAT and up to 75% of the PTV can have its dose delivered with dose rates  <1 Gy min(-1). Pelvic plans on average have a lower mean dose rate within the PTV than lung or head and neck plans but a comparable mean dose rate within the organs at risk. Two VMAT plans that fulfil the same dose objectives and constraints may be delivered with different dose rate distributions, particularly when comparing single arcs to multiple arc plans. It is concluded that for dynamic plans, the dose rate range used varies to a larger degree than previously assumed. The effect of the dose rate range in VMAT on clinical outcome is unknown.

  7. Determination of air-kerma strength for the {sup 192}Ir GammaMedplus iX pulsed-dose-rate brachytherapy source

    SciTech Connect

    Riley, A. D.; Pike, T. L.; Micka, J. A.; Fulkerson, R. K.; DeWerd, L. A.

    2013-07-15

    Purpose: Pulsed-dose-rate (PDR) brachytherapy was originally proposed to combine the therapeutic advantages of high-dose-rate (HDR) and low-dose-rate brachytherapy. Though uncommon in the United States, several facilities employ pulsed-dose-rate brachytherapy in Europe and Canada. Currently, there is no air-kerma strength standard for PDR brachytherapy {sup 192}Ir sources traceable to the National Institute of Standards and Technology. Discrepancies in clinical measurements of the air-kerma strength of the PDR brachytherapy sources using HDR source-calibrated well chambers warrant further investigation.Methods: In this research, the air-kerma strength for an {sup 192}Ir PDR brachytherapy source was compared with the University of Wisconsin Accredited Dosimetry Calibration Laboratory transfer standard well chambers, the seven-distance technique [B. E. Rasmussen et al., 'The air-kerma strength standard for 192Ir HDR sources,' Med. Phys. 38, 6721-6729 (2011)], and the manufacturer's stated value. Radiochromic film and Monte Carlo techniques were also employed for comparison to the results of the measurements.Results: While the measurements using the seven-distance technique were within + 0.44% from the manufacturer's determination, there was a + 3.10% difference between the transfer standard well chamber measurements and the manufacturer's stated value. Results showed that the PDR brachytherapy source has geometric and thus radiological qualities that exhibit behaviors similar to a point source model in contrast to a conventional line source model.Conclusions: The resulting effect of the pointlike characteristics of the PDR brachytherapy source likely account for the differences observed between well chamber and in-air measurements.

  8. Dose Rate Effects in Linear Bipolar Transistors

    NASA Technical Reports Server (NTRS)

    Johnston, Allan; Swimm, Randall; Harris, R. D.; Thorbourn, Dennis

    2011-01-01

    Dose rate effects are examined in linear bipolar transistors at high and low dose rates. At high dose rates, approximately 50% of the damage anneals at room temperature, even though these devices exhibit enhanced damage at low dose rate. The unexpected recovery of a significant fraction of the damage after tests at high dose rate requires changes in existing test standards. Tests at low temperature with a one-second radiation pulse width show that damage continues to increase for more than 3000 seconds afterward, consistent with predictions of the CTRW model for oxides with a thickness of 700 nm.

  9. A systematic evaluation of the dose-rate constant determined by photon spectrometry for 21 different models of low-energy photon-emitting brachytherapy sources

    NASA Astrophysics Data System (ADS)

    (Jay Chen, Zhe; Nath, Ravinder

    2010-10-01

    The aim of this study was to perform a systematic comparison of the dose-rate constant (Λ) determined by the photon spectrometry technique (PST) with the consensus value (CONΛ) recommended by the American Association of Physicists in Medicine (AAPM) for 21 low-energy photon-emitting interstitial brachytherapy sources. A total of 63 interstitial brachytherapy sources (21 different models with 3 sources per model) containing either 125I (14 models), 103Pd (6 models) or 131Cs (1 model) were included in this study. A PST described by Chen and Nath (2007 Med. Phys. 34 1412-30) was used to determine the dose-rate constant (PSTΛ) for each source model. Source-dependent variations in PSTΛ were analyzed systematically against the spectral characteristics of the emitted photons and the consensus values recommended by the AAPM brachytherapy subcommittee. The values of PSTΛ for the encapsulated sources of 103Pd, 125I and 131Cs varied from 0.661 to 0.678 cGyh-1 U-1, 0.959 to 1.024 cGyh-1U-1 and 1.066 to 1.073 cGyh-1U-1, respectively. The relative variation in PSTΛ among the six 103Pd source models, caused by variations in photon attenuation and in spatial distributions of radioactivity among the source models, was less than 3%. Greater variations in PSTΛ were observed among the 14 125I source models; the maximum relative difference was over 6%. These variations were caused primarily by the presence of silver in some 125I source models and, to a lesser degree, by the variations in photon attenuation and in spatial distribution of radioactivity among the source models. The presence of silver generates additional fluorescent x-rays with lower photon energies which caused the PSTΛ value to vary from 0.959 to 1.019 cGyh-1U-1 depending on the amount of silver used by a given source model. For those 125I sources that contain no silver, their PSTΛ was less variable and had values within 1% of 1.024 cGyh-1U-1. For the 16 source models that currently have an AAPM recommended

  10. Assessing dose rate distributions in VMAT plans

    NASA Astrophysics Data System (ADS)

    Mackeprang, P.-H.; Volken, W.; Terribilini, D.; Frauchiger, D.; Zaugg, K.; Aebersold, D. M.; Fix, M. K.; Manser, P.

    2016-04-01

    Dose rate is an essential factor in radiobiology. As modern radiotherapy delivery techniques such as volumetric modulated arc therapy (VMAT) introduce dynamic modulation of the dose rate, it is important to assess the changes in dose rate. Both the rate of monitor units per minute (MU rate) and collimation are varied over the course of a fraction, leading to different dose rates in every voxel of the calculation volume at any point in time during dose delivery. Given the radiotherapy plan and machine specific limitations, a VMAT treatment plan can be split into arc sectors between Digital Imaging and Communications in Medicine control points (CPs) of constant and known MU rate. By calculating dose distributions in each of these arc sectors independently and multiplying them with the MU rate, the dose rate in every single voxel at every time point during the fraction can be calculated. Independently calculated and then summed dose distributions per arc sector were compared to the whole arc dose calculation for validation. Dose measurements and video analysis were performed to validate the calculated datasets. A clinical head and neck, cranial and liver case were analyzed using the tool developed. Measurement validation of synthetic test cases showed linac agreement to precalculated arc sector times within  ±0.4 s and doses  ±0.1 MU (one standard deviation). Two methods for the visualization of dose rate datasets were developed: the first method plots a two-dimensional (2D) histogram of the number of voxels receiving a given dose rate over the course of the arc treatment delivery. In similarity to treatment planning system display of dose, the second method displays the dose rate as color wash on top of the corresponding computed tomography image, allowing the user to scroll through the variation over time. Examining clinical cases showed dose rates spread over a continuous spectrum, with mean dose rates hardly exceeding 100 cGy min-1 for conventional

  11. Comparison of TID Effects in Space-Like Variable Dose Rates and Constant Dose Rates

    NASA Technical Reports Server (NTRS)

    Harris, Richard D.; McClure, Steven S.; Rax, Bernard G.; Evans, Robin W.; Jun, Insoo

    2008-01-01

    The degradation of the LM193 dual voltage comparator has been studied at different TID dose rate profiles, including several different constant dose rates and a variable dose rate that simulates the behavior of a solar flare. A comparison of results following constant dose rate vs. variable dose rates is made to explore how well the constant dose rates used for typical part testing predict the performance during a simulated space-like mission. Testing at a constant dose rate equal to the lowest dose rate seen during the simulated flare provides an extremely conservative estimate of the overall amount of degradation. A constant dose rate equal to the average dose rate is also more conservative than the variable rate. It appears that, for this part, weighting the dose rates by the amount of total dose received at each rate (rather than the amount of time at each dose rate) results in an average rate that produces an amount of degradation that is a reasonable approximation to that received by the variable rate.

  12. Dose rate in brachytherapy using after-loading machine: pulsed or high-dose rate?

    PubMed

    Hannoun-Lévi, J-M; Peiffert, D

    2014-10-01

    Since February 2014, it is no longer possible to use low-dose rate 192 iridium wires due to the end of industrial production of IRF1 and IRF2 sources. The Brachytherapy Group of the French society of radiation oncology (GC-SFRO) has recommended switching from iridium wires to after-loading machines. Two types of after-loading machines are currently available, based on the dose rate used: pulsed-dose rate or high-dose rate. In this article, we propose a comparative analysis between pulsed-dose rate and high-dose rate brachytherapy, based on biological, technological, organizational and financial considerations.

  13. Determinants of Toxicity, Patterns of Failure, and Outcome Among Adult Patients With Soft Tissue Sarcomas of the Extremity and Superficial Trunk Treated With Greater Than Conventional Doses of Perioperative High-Dose-Rate Brachytherapy and External Beam Radiotherapy

    SciTech Connect

    San Miguel, Inigo; San Julian, Mikel; Cambeiro, Mauricio; Sanmamed, Miguel Fernandez; Vazquez-Garcia, Blanca; Pagola, Maria; Gaztanaga, Miren; Martin-Algarra, Salvador; Martinez-Monge, Rafael

    2011-11-15

    Purpose: The present study was undertaken to determine factors predictive of toxicity, patterns of failure, and survival in 60 adult patients with soft tissue sarcomas of the extremity and superficial trunk treated with combined perioperative high-dose-rate brachytherapy and external beam radiotherapy. Methods and Materials: The patients were treated with surgical resection and perioperative high-dose-rate brachytherapy (16 or 24 Gy) for negative and close/microscopically positive resection margins, respectively. External beam radiotherapy (45 Gy) was added postoperatively to reach a 2-Gy equivalent dose of 62.9 and 72.3 Gy, respectively. Adjuvant chemotherapy with ifosfamide and doxorubicin was given to patients with advanced high-grade tumors. Results: Grade 3 toxic events were observed in 18 patients (30%) and Grade 4 events in 6 patients (10%). No Grade 5 events were observed. A location in the lower limb was significant for Grade 3 or greater toxic events on multivariate analysis (p = .013), and the tissue volume encompassed by the 150% isodose line showed a trend toward statistical significance (p = .086). The local control, locoregional control, and distant control rate at 9 years was 77.4%, 69.5%, and 63.8%, respectively. On multivariate analysis, microscopically involved margins correlated with local control (p = .036) and locoregional control (p = .007) and tumor size correlated with distant metastases (p = .004). The 9-year disease-free survival and overall survival rate was 47.0% and 61.5%, respectively. Multivariate analysis showed poorer disease-free survival rates for patients with tumors >6 cm (p = .005) and microscopically involved margins (p = .043), and overall survival rates decreased with increasing tumor size (p = .011). Conclusions: Grade 3 or greater wound complications can probably be decreased using meticulous treatment planning to decrease the tissue volume encompassed by the 150% isodose line, especially in lower limb locations

  14. A systematic evaluation of the dose-rate constant determined by photon spectrometry for 21 different models of low-energy photon-emitting brachytherapy sources.

    PubMed

    Chen, Zhe Jay; Nath, Ravinder

    2010-10-21

    The aim of this study was to perform a systematic comparison of the dose-rate constant (Λ) determined by the photon spectrometry technique (PST) with the consensus value ((CON)Λ) recommended by the American Association of Physicists in Medicine (AAPM) for 21 low-energy photon-emitting interstitial brachytherapy sources. A total of 63 interstitial brachytherapy sources (21 different models with 3 sources per model) containing either (125)I (14 models), (103)Pd (6 models) or (131)Cs (1 model) were included in this study. A PST described by Chen and Nath (2007 Med. Phys. 34 1412-30) was used to determine the dose-rate constant ((PST)Λ) for each source model. Source-dependent variations in (PST)Λ were analyzed systematically against the spectral characteristics of the emitted photons and the consensus values recommended by the AAPM brachytherapy subcommittee. The values of (PST)Λ for the encapsulated sources of (103)Pd, (125)I and (131)Cs varied from 0.661 to 0.678 cGyh(-1) U(-1), 0.959 to 1.024 cGyh(-1)U(-1) and 1.066 to 1.073 cGyh(-1)U(-1), respectively. The relative variation in (PST)Λ among the six (103)Pd source models, caused by variations in photon attenuation and in spatial distributions of radioactivity among the source models, was less than 3%. Greater variations in (PST)Λ were observed among the 14 (125)I source models; the maximum relative difference was over 6%. These variations were caused primarily by the presence of silver in some (125)I source models and, to a lesser degree, by the variations in photon attenuation and in spatial distribution of radioactivity among the source models. The presence of silver generates additional fluorescent x-rays with lower photon energies which caused the (PST)Λ value to vary from 0.959 to 1.019 cGyh(-1)U(-1) depending on the amount of silver used by a given source model. For those (125)I sources that contain no silver, their (PST)Λ was less variable and had values within 1% of 1.024 cGyh(-1)U(-1). For the 16

  15. Effect of improved TLD dosimetry on the determination of dose rate constants for {sup 125}I and {sup 103}Pd brachytherapy seeds

    SciTech Connect

    Rodriguez, M.; Rogers, D. W. O.

    2014-11-01

    Purpose: To more accurately account for the relative intrinsic energy dependence and relative absorbed-dose energy dependence of TLDs when used to measure dose rate constants (DRCs) for {sup 125}I and {sup 103}Pd brachytherapy seeds, to thereby establish revised “measured values” for all seeds and compare the revised values with Monte Carlo and consensus values. Methods: The relative absorbed-dose energy dependence, f{sup rel}, for TLDs and the phantom correction, P{sub phant}, are calculated for {sup 125}I and {sup 103}Pd seeds using the EGSnrc BrachyDose and DOSXYZnrc codes. The original energy dependence and phantom corrections applied to DRC measurements are replaced by calculated (f{sup rel}){sup −1} and P{sub phant} values for 24 different seed models. By comparing the modified measured DRCs to the MC values, an appropriate relative intrinsic energy dependence, k{sub bq}{sup rel}, is determined. The new P{sub phant} values and relative absorbed-dose sensitivities, S{sub AD}{sup rel}, calculated as the product of (f{sup rel}){sup −1} and (k{sub bq}{sup rel}){sup −1}, are used to individually revise the measured DRCs for comparison with Monte Carlo calculated values and TG-43U1 or TG-43U1S1 consensus values. Results: In general, f{sup rel} is sensitive to the energy spectra and models of the brachytherapy seeds. Values may vary up to 8.4% among {sup 125}I and {sup 103}Pd seed models and common TLD shapes. P{sub phant} values depend primarily on the isotope used. Deduced (k{sub bq}{sup rel}){sup −1} values are 1.074 ± 0.015 and 1.084 ± 0.026 for {sup 125}I and {sup 103}Pd seeds, respectively. For (1 mm){sup 3} chips, this implies an overall absorbed-dose sensitivity relative to {sup 60}Co or 6 MV calibrations of 1.51 ± 1% and 1.47 ± 2% for {sup 125}I and {sup 103}Pd seeds, respectively, as opposed to the widely used value of 1.41. Values of P{sub phant} calculated here have much lower statistical uncertainties than literature values, but

  16. [Hopes of high dose-rate radiotherapy].

    PubMed

    Fouillade, Charles; Favaudon, Vincent; Vozenin, Marie-Catherine; Romeo, Paul-Henri; Bourhis, Jean; Verrelle, Pierre; Devauchelle, Patrick; Patriarca, Annalisa; Heinrich, Sophie; Mazal, Alejandro; Dutreix, Marie

    2017-03-07

    In this review, we present the synthesis of the newly acquired knowledge concerning high dose-rate irradiations and the hopes that these new radiotherapy modalities give rise to. The results were presented at a recent symposium on the subject.

  17. Impact of Drug Therapy, Radiation Dose, and Dose Rate on Renal Toxicity Following Bone Marrow Transplantation

    SciTech Connect

    Cheng, Jonathan C.; Schultheiss, Timothy E. Wong, Jeffrey Y.C.

    2008-08-01

    Purpose: To demonstrate a radiation dose response and to determine the dosimetric and chemotherapeutic factors that influence the incidence of late renal toxicity following total body irradiation (TBI). Methods and Materials: A comprehensive retrospective review was performed of articles reporting late renal toxicity, along with renal dose, fractionation, dose rate, chemotherapy regimens, and potential nephrotoxic agents. In the final analysis, 12 articles (n = 1,108 patients), consisting of 24 distinct TBI/chemotherapy conditioning regimens were included. Regimens were divided into three subgroups: adults (age {>=}18 years), children (age <18 years), and mixed population (both adults and children). Multivariate logistic regression was performed to identify dosimetric and chemotherapeutic factors significantly associated with late renal complications. Results: Individual analysis was performed on each population subgroup. For the purely adult population, the only significant variable was total dose. For the mixed population, the significant variables included total dose, dose rate, and the use of fludarabine. For the pediatric population, only the use of cyclosporin or teniposide was significant; no dose response was noted. A logistic model was generated with the exclusion of the pediatric population because of its lack of dose response. This model yielded the following significant variables: total dose, dose rate, and number of fractions. Conclusion: A dose response for renal damage after TBI was identified. Fractionation and low dose rates are factors to consider when delivering TBI to patients undergoing bone marrow transplantation. Drug therapy also has a major impact on kidney function and can modify the dose-response function.

  18. Radiation Leukemogenesis at Low Dose Rates

    SciTech Connect

    Weil, Michael; Ullrich, Robert

    2013-09-25

    The major goals of this program were to study the efficacy of low dose rate radiation exposures for the induction of acute myeloid leukemia (AML) and to characterize the leukemias that are caused by radiation exposures at low dose rate. An irradiator facility was designed and constructed that allows large numbers of mice to be irradiated at low dose rates for protracted periods (up to their life span). To the best of our knowledge this facility is unique in the US and it was subsequently used to study radioprotectors being developed for radiological defense (PLoS One. 7(3), e33044, 2012) and is currently being used to study the role of genetic background in susceptibility to radiation-induced lung cancer. One result of the irradiation was expected; low dose rate exposures are ineffective in inducing AML. However, another result was completely unexpected; the irradiated mice had a very high incidence of hepatocellular carcinoma (HCC), approximately 50%. It was unexpected because acute exposures are ineffective in increasing HCC incidence above background. This is a potential important finding for setting exposure limits because it supports the concept of an 'inverse dose rate effect' for some tumor types. That is, for the development of some tumor types low dose rate exposures carry greater risks than acute exposures.

  19. Determinants of Complications and Outcome in High-Risk Squamous Cell Head-and-Neck Cancer Treated With Perioperative High-Dose Rate Brachytherapy (PHDRB)

    SciTech Connect

    Martinez-Monge, Rafael; Pagola Divasson, Maria; Cambeiro, Mauricio; Gaztanaga, Miren; Moreno, Marta; Arbea, Leire; Montesdeoca, Nestor; Alcalde, Juan

    2011-11-15

    Purpose: To determine the impact of a set of patient, tumor, and treatment factors on toxicity and outcome in patients with head-and-neck squamous cell cancer treated with surgical resection and perioperative high-dose rate brachytherapy (PHDRB) alone (single-modality [SM] group) (n = 46) or PHDRB combined with postoperative radiation or chemoradiation (combined-modality [CM] group) (n = 57). Methods and Materials: From 2000 to 2008, 103 patients received PHDRB after complete macroscopic resection. SM patients received 32 or 40 Gy of PHDRB in 8 or 10 twice-daily treatments for R0 and R1 resections. CM patients received 16 or 24 Gy of PHDRB in 4 or 6 twice-daily treatments for R0 and R1 resections, followed by external radiation of 45 Gy in 25 fractions with or without concomitant chemotherapy. Results: Grade {>=}4 complications according to the Radiation Therapy Oncology Group were more frequent in the SM group than in the CM group (p = 0.024). Grade {>=}3 and {>=}4 complications increased with the antecedent of prior irradiation (p = 0.032 and p = 0.006, respectively) and with TV{sub 150} values of 13 mL or greater (p = 0.032 and p = 0.032, respectively). After a median follow-up of 34.8 and 60.8 months for SM and CM patients, respectively, patients with high-risk margins had a 9-year local control rate of 68.0% whereas patients with wider margins had a 9-year local control of 93.7% (p = 0.045). Patients with primary and recurrent tumors had 9-year actuarial locoregional control rates of 81.8% and 54.2%, respectively (p = 0.003). Patients with lymph-vascular space invasion (LVSI)-positive and LVSI-negative tumors had 9-year distant control rates of 62.8% and 81.6%, respectively (p = 0.034). Disease-free survival rates decreased in recurrent cases (p = 0.006) as well as in LVSI-positive patients (p = 0.035). Conclusions: The complications observed are largely attributable to the antecedent of prior irradiation but can possibly be minimized by meticulous mapping and

  20. Biological effects of α-radiation exposure by (241)Am in Arabidopsis thaliana seedlings are determined both by dose rate and (241)Am distribution.

    PubMed

    Biermans, Geert; Horemans, Nele; Vanhoudt, Nathalie; Vandenhove, Hildegarde; Saenen, Eline; Van Hees, May; Wannijn, Jean; Vangronsveld, Jaco; Cuypers, Ann

    2015-11-01

    Human activity has led to an increasing amount of radionuclides in the environment and subsequently to an increased risk of exposure of the biosphere to ionising radiation. Due to their high linear energy transfer, α-emitters form a threat to biota when absorbed or integrated in living tissue. Among these, (241)Am is of major concern due to high affinity for organic matter and high specific activity. This study examines the dose-dependent biological effects of α-radiation delivered by (241)Am at the morphological, physiological and molecular level in 14-day old seedlings of Arabidopsis thaliana after hydroponic exposure for 4 or 7 days. Our results show that (241)Am has high transfer to the roots but low translocation to the shoots. In the roots, we observed a transcriptional response of reactive oxygen species scavenging and DNA repair pathways. At the physiological and morphological level this resulted in a response which evolved from redox balance control and stable biomass at low dose rates to growth reduction, reduced transfer and redox balance decline at higher dose rates. This situation was also reflected in the shoots where, despite the absence of a transcriptional response, the control of photosynthesis performance and redox balance declined with increasing dose rate. The data further suggest that the effects in both organs were initiated in the roots, where the highest dose rates occurred, ultimately affecting photosynthesis performance and carbon assimilation. Though further detailed study of nutrient balance and (241)Am localisation is necessary, it is clear that radionuclide uptake and distribution is a major parameter in the global exposure effects on plant performance and health.

  1. Extended range radiation dose-rate monitor

    DOEpatents

    Valentine, Kenneth H.

    1988-01-01

    An extended range dose-rate monitor is provided which utilizes the pulse pileup phenomenon that occurs in conventional counting systems to alter the dynamic response of the system to extend the dose-rate counting range. The current pulses from a solid-state detector generated by radiation events are amplified and shaped prior to applying the pulses to the input of a comparator. The comparator generates one logic pulse for each input pulse which exceeds the comparator reference threshold. These pulses are integrated and applied to a meter calibrated to indicate the measured dose-rate in response to the integrator output. A portion of the output signal from the integrator is fed back to vary the comparator reference threshold in proportion to the output count rate to extend the sensitive dynamic detection range by delaying the asymptotic approach of the integrator output toward full scale as measured by the meter.

  2. Historical river flow rates for dose calculations

    SciTech Connect

    Carlton, W.H.

    1991-06-10

    Annual average river flow rates are required input to the LADTAP Computer Code for calculating offsite doses from liquid releases of radioactive materials to the Savannah River. The source of information on annual river flow rates used in dose calculations varies, depending on whether calculations are for retrospective releases or prospective releases. Examples of these types of releases are: Retrospective - releases from routine operations (annual environmental reports) and short term release incidents that have occurred. Prospective - releases that might be expected in the future from routine or abnormal operation of existing or new facilities (EIS`s, EID`S, SAR`S, etc.). This memorandum provides historical flow rates at the downstream gauging station at Highway 301 for use in retrospective dose calculations and derives flow rate data for the Beaufort-Jasper and Port Wentworth water treatment plants.

  3. Determination of Prognostic Factors for Vaginal Mucosal Toxicity Associated With Intravaginal High-Dose Rate Brachytherapy in Patients With Endometrial Cancer

    SciTech Connect

    Bahng, Agnes Y.; Dagan, Avner; Bruner, Deborah W.; Lin, Lilie L.

    2012-02-01

    Purpose: The objective of this study was to determine the patient- and treatment-related prognostic factors associated with vaginal toxicity in patients who received intravaginal high dose rate (HDR) brachytherapy alone as adjuvant treatment for endometrial cancer. Secondary goals of this study included a quantitative assessment of optimal dilator use frequency and a crude assessment of clinical predictors for compliant dilator use. Methods and Materials: We retrospectively reviewed the charts of 100 patients with histologically confirmed endometrial cancer who underwent total hysterectomy and bilateral salpingo-oophorectomy with or without lymph node dissection and adjuvant intravaginal brachytherapy between 1995 and 2009 at the Hospital of University of Pennsylvania. The most common treatment regimen used was 21 Gy in three fractions (71 patients). Symptoms of vaginal mucosal toxicity were taken from the history and physical exams noted in the patients' charts and were graded according to the Common Toxicity Criteria for Adverse Events v. 4.02. Results: The incidence of Grade 1 or asymptomatic vaginal toxicity was 33% and Grade 2-3 or symptomatic vaginal toxicity was 14%. Multivariate analysis of age, active length, and dilator use two to three times a week revealed odds ratios of 0.93 (p = 0.013), 3.96 (p = 0.008), and 0.17 (p = 0.032) respectively. Conclusion: Increasing age, vaginal dilator use of at least two to three times a week, and shorter active length were found to be significantly associated with a decreased risk of vaginal stenosis. Future prospective studies are necessary to validate our findings.

  4. Enhanced Low Dose Rate Sensitivity at Ultra-Low Dose Rates

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Pease, Ronald; Forney, James; Carts, Martin; Phan, Anthony; Cox, Stephen; Kruckmeyer, Kriby; Burns, Sam; Albarian, Rafi; Holcombe, Bruce; Little, Bradley; Salzman, James; Chaumont, Geraldine; Duperray, Herve; Ouellet, Al; Buchner, Stephen; LaBel, Kenneth

    2011-01-01

    We have presented results of ultra-low dose rate irradiations (< or = 10 mrad(Si)/s) for a variety of radiation hardened and commercial linear bipolar devices. We observed low dose rate enhancement factors exceeding 1.5 in several parts. The worst case of dose rate enhancement resulted in functional failures, which occurred after 10 and 60 krad(Si), for devices irradiated at 0.5 and 10 mrad(Si)/s, respectively. Devices fabricated with radiation hardened processes and designs also displayed dose rate enhancement at below 10 mrad(Si)/s. Furthermore, the data indicated that these devices have not reached the damage saturation point. Therefore the degradation will likely continue to increase with increasing total dose, and the low dose rate enhancement will further magnify. The cases presented here, in addition to previous examples, illustrate the significance and pervasiveness of low dose rate enhancement at dose rates lower than 10 mrad(Si). These results present further challenges for radiation hardness assurance of bipolar linear circuits, and raise the question of whether the current standard test dose rate is conservative enough to bound degradations due to ELDRS.

  5. Evaluation of Rectal Dose During High-Dose-Rate Intracavitary Brachytherapy for Cervical Carcinoma

    SciTech Connect

    Sha, Rajib Lochan; Reddy, Palreddy Yadagiri; Rao, Ramakrishna; Muralidhar, Kanaparthy R.; Kudchadker, Rajat J.

    2011-01-01

    High-dose-rate intracavitary brachytherapy (HDR-ICBT) for carcinoma of the uterine cervix often results in high doses being delivered to surrounding organs at risk (OARs) such as the rectum and bladder. Therefore, it is important to accurately determine and closely monitor the dose delivered to these OARs. In this study, we measured the dose delivered to the rectum by intracavitary applications and compared this measured dose to the International Commission on Radiation Units and Measurements rectal reference point dose calculated by the treatment planning system (TPS). To measure the dose, we inserted a miniature (0.1 cm{sup 3}) ionization chamber into the rectum of 86 patients undergoing radiation therapy for cervical carcinoma. The response of the miniature chamber modified by 3 thin lead marker rings for identification purposes during imaging was also characterized. The difference between the TPS-calculated maximum dose and the measured dose was <5% in 52 patients, 5-10% in 26 patients, and 10-14% in 8 patients. The TPS-calculated maximum dose was typically higher than the measured dose. Our study indicates that it is possible to measure the rectal dose for cervical carcinoma patients undergoing HDR-ICBT. We also conclude that the dose delivered to the rectum can be reasonably predicted by the TPS-calculated dose.

  6. Cervix cancer brachytherapy: high dose rate.

    PubMed

    Miglierini, P; Malhaire, J-P; Goasduff, G; Miranda, O; Pradier, O

    2014-10-01

    Cervical cancer, although less common in industrialized countries, is the fourth most common cancer affecting women worldwide and the fourth leading cause of cancer death. In developing countries, these cancers are often discovered at a later stage in the form of locally advanced tumour with a poor prognosis. Depending on the stage of the disease, treatment is mainly based on a chemoradiotherapy followed by uterovaginal brachytherapy ending by a potential remaining tumour surgery or in principle for some teams. The role of irradiation is crucial to ensure a better local control. It has been shown that the more the delivered dose is important, the better the local results are. In order to preserve the maximum of organs at risk and to allow this dose escalation, brachytherapy (intracavitary and/or interstitial) has been progressively introduced. Its evolution and its progressive improvement have led to the development of high dose rate brachytherapy, the advantages of which are especially based on the possibility of outpatient treatment while maintaining the effectiveness of other brachytherapy forms (i.e., low dose rate or pulsed dose rate). Numerous innovations have also been completed in the field of imaging, leading to a progress in treatment planning systems by switching from two-dimensional form to a three-dimensional one. Image-guided brachytherapy allows more precise target volume delineation as well as an optimized dosimetry permitting a better coverage of target volumes.

  7. Validation of the flooding dose technique to determine fractional rates of protein synthesis in a model bivalve species, the blue mussel (Mytilus edulis L.).

    PubMed

    McCarthy, Ian D; Nicholls, Ruth; Malham, Shelagh K; Whiteley, Nia M

    2016-01-01

    For the first time, use of the flooding dose technique using (3)H-Phenylalanine is validated for measuring whole-animal and tissue-specific rates of protein synthesis in the blue mussel Mytilus edulis (61mm shell length; 4.0g fresh body mass). Following injection, the phenylalanine-specific radioactivities in the gill, mantle and whole-animal free pools were elevated within one hour and remained elevated and stable for up to 6h following injection of (3)H-phenylalanine into the posterior adductor muscle. Incorporation of (3)H-phenylalanine into body protein was linear over time following injection and the non-significant intercepts for the regressions suggested incorporation into body protein occurred rapidly after injection. These results validate the technique for measuring rates of protein synthesis in mussels. There were no differences in the calculated rates following 1-6h incubation in gill, mantle or whole-animal and fractional rates of protein synthesis from the combined time course data were 9.5±0.8%d(-1) for the gill, 2.5±0.3%d(-1) for the mantle and 2.6±0.3%d(-1) for the whole-animal, respectively (mean values±SEM). The whole-animal absolute rate of protein synthesis was calculated as 18.9±0.6mg protein day(-1). The use of this technique in measuring one of the major components of maintenance metabolism and growth will provide a valuable and convenient tool in furthering our understanding of the protein metabolism and energetics of this keystone marine invertebrate and its ability to adjust and respond to fluctuations, such as that expected as a result of climate change.

  8. PRECEDENTS FOR AUTHORIZATION OF CONTENTS USING DOSE RATE MEASUREMENTS

    SciTech Connect

    Abramczyk, G.; Bellamy, S.; Nathan, S.; Loftin, B.

    2012-06-05

    For the transportation of Radioactive Material (RAM) packages, the requirements for the maximum allowed dose rate at the package surface and in its vicinity are given in Title 10 of the Code of Federal Regulations, Section 71.47. The regulations are based on the acceptable dose rates to which the public, workers, and the environment may be exposed. As such, the regulations specify dose rates, rather than quantity of radioactive isotopes and require monitoring to confirm the requirements are met. 10CFR71.47 requires that each package of radioactive materials offered for transportation must be designed and prepared for shipment so that under conditions normally incident to transportation the radiation level does not exceed 2 mSv/h (200 mrem/h) at any point on the external Surface of the package, and the transport index does not exceed 10. Before shipment, the dose rate of the package is determined by measurement, ensuring that it conforms to the regulatory limits, regardless of any analyses. This is the requirement for all certified packagings. This paper discusses the requirements for establishing the dose rates when shipping RAM packages and the precedents for meeting these requirements by measurement.

  9. Radiobiological evaluation of low dose-rate prostate brachytherapy implants

    NASA Astrophysics Data System (ADS)

    Knaup, Courtney James

    Low dose-rate brachytherapy is a radiation therapy treatment for men with prostate cancer. While this treatment is common, the use of isotopes with varying dosimetric characteristics means that the prescription level and normal organ tolerances vary. Additionally, factors such as prostate edema, seed loss and seed migration may alter the dose distribution within the prostate. The goal of this work is to develop a radiobiological response tool based on spatial dose information which may be used to aid in treatment planning, post-implant evaluation and determination of the effects of prostate edema and seed migration. Aim 1: Evaluation of post-implant prostate edema and its dosimetric and biological effects. Aim 2: Incorporation of biological response to simplify post-implant evaluation. Aim 3: Incorporation of biological response to simplify treatment plan comparison. Aim 4: Radiobiologically based comparison of single and dual-isotope implants. Aim 5: Determine the dosimetric and radiobiological effects of seed disappearance and migration.

  10. Activity concentrations and dose rates from decorative granite countertops.

    PubMed

    Llope, W J

    2011-06-01

    The gamma radiation emitted from a variety of commercial decorative granites available for use in U.S. homes has been measured with portable survey meters as well as an NaI(Th) gamma spectrometer. The (40)K, U-nat, and (232)Th activity concentrations were determined using a full-spectrum analysis. The dose rates that would result from two different arrangements of decorative granite slabs as countertops were explored in simulations involving an adult anthropomorphic phantom.

  11. Patient-specific dose calculation methods for high-dose-rate iridium-192 brachytherapy

    NASA Astrophysics Data System (ADS)

    Poon, Emily S.

    In high-dose-rate 192Ir brachytherapy, the radiation dose received by the patient is calculated according to the AAPM Task Group 43 (TG-43) formalism. This table-based dose superposition method uses dosimetry parameters derived with the radioactive 192Ir source centered in a water phantom. It neglects the dose perturbations caused by inhomogeneities, such as the patient anatomy, applicators, shielding, and radiographic contrast solution. In this work, we evaluated the dosimetric characteristics of a shielded rectal applicator with an endocavitary balloon injected with contrast solution. The dose distributions around this applicator were calculated by the GEANT4 Monte Carlo (MC) code and measured by ionization chamber and GAFCHROMIC EBT film. A patient-specific dose calculation study was then carried out for 40 rectal treatment plans. The PTRAN_CT MC code was used to calculate the dose based on computed tomography (CT) images. This study involved the development of BrachyGUI, an integrated treatment planning tool that can process DICOM-RT data and create PTRAN_CT input initialization files. BrachyGUI also comes with dose calculation and evaluation capabilities. We proposed a novel scatter correction method to account for the reduction in backscatter radiation near tissue-air interfaces. The first step requires calculating the doses contributed by primary and scattered photons separately, assuming a full scatter environment. The scatter dose in the patient is subsequently adjusted using a factor derived by MC calculations, which depends on the distances between the point of interest, the 192Ir source, and the body contour. The method was validated for multicatheter breast brachytherapy, in which the target and skin doses for 18 patient plans agreed with PTRAN_CT calculations better than 1%. Finally, we developed a CT-based analytical dose calculation method. It corrects for the photon attenuation and scatter based upon the radiological paths determined by ray tracing

  12. Dose equivalence for high-dose-rate to low-dose-rate intracavitary irradiation in the treatment of cancer of the uterine cervix

    SciTech Connect

    Akine, Y.; Tokita, N.; Ogino, T.; Kajiura, Y.; Tsukiyama, I.; Egawa, S. )

    1990-12-01

    By comparing the incidence of major radiation injury, we estimated doses clinically equivalent for high-dose-rate (HDR) to conventional low-dose-rate (LDR) intracavitary irradiation in patients with Stages IIb and IIIb cancer of the uterine cervix. We reviewed a total of 300 patients who were treated with external beam therapy to the pelvis (50 Gy in 5 weeks) followed either by low-dose-rate (253 patients) or high-dose-rate (47 patients) intracavitary treatment. The high-dose-rate intracavitary treatment was given 5 Gy per session to point A, 4 fractions in 2 weeks, with a total dose of 20 Gy. The low-dose-rate treatment was given with one or two application(s) delivering 11-52 Gy to the point A. The local control rates were similar in both groups. The incidence of major radiation injury requiring surgical intervention were 5.1% (13/253) and 4.3% (2/47) for low-dose-rate and high-dose-rate groups, respectively. The 4.3% incidence corresponded to 29.8 Gy with low-dose-rate irradiation, thus, it was concluded that the clinically equivalent dose for high-dose-rate irradiation was approximately 2/3 (20/29.8) of the dose used in low-dose-rate therapy.

  13. Determinants of thiopental induction dose requirements.

    PubMed

    Avram, M J; Sanghvi, R; Henthorn, T K; Krejcie, T C; Shanks, C A; Fragen, R J; Howard, K A; Kaczynski, D A

    1993-01-01

    Dose requirements for thiopental anesthetic induction have significant age- and gender-related variability. We studied the association of the patient characteristics age, gender, weight, lean body mass, and cardiac output with thiopental requirements. Doses of thiopental, infused at 150 mg/min, required to reach both a clinical end-point and an electroencephalographic (EEG) end-point were determined in 30 males and 30 females, aged 18-83 yr. Univariate least squares linear regression analysis revealed outliers in the relationships of age, weight, lean body mass, and cardiac output to thiopental dose at clinical and EEG endpoints. Differential weighting of data points minimized the effect of outliers in the construction of a robust multiple linear regression model of the relationship between several selected independent variables and the dependent variables thiopental dose at clinical and EEG endpoints. The multiple linear regression model for thiopental dose at the clinical end-point selecting the regressor variables age, weight, and gender (R2 = 0.76) was similar to that for age, lean body mass, and gender (R2 = 0.75). Thiopental dose at the EEG endpoint was better described by models selecting the variables age, weight, and cardiac output (R2 = 0.88) or age, lean body mass, and cardiac output (R2 = 0.87). Although cardiac output varied with age, age always remained a selected variable. Because weight and lean body mass differed with gender, their selection as variables in the model eliminated gender as a selected variable or minimized its importance.

  14. The Effects of ELDRS at Ultra-Low Dose Rates

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Forney, James; Carts, Martin; Phan, Anthony; Pease, Ronald; Kruckmeyer, Kirby; Cox, Stephen; LaBel, Kenneth; Burns, Samuel; Albarian, Rafi; Holcombe, Bruce; Little, Bradley; Salzman, James; Chaumont, Geraldine; Duperray, Herve; Ouellet, Al

    2011-01-01

    We present results on the effects on ELDRS at dose rates of 10, 5, 1, and 0.5 mrad(Si)/s for a variety of radiation hardened and commercial devices. We observed low dose rate enhancement below 10 mrad(Si)/s in several different parts. The magnitudes of the dose rate effects vary. The TL750L, a commercial voltage regulator, showed dose rate dependence in the functional failures, with initial failures occurring after 10 krad(Si) for the parts irradiated at 0.5 mrad(Si)/s. The RH1021 showed an increase in low dose rate enhancement by 2x at 5 mrad(Si)/s relative to 8 mrad(Si)/s and high dose rate, and parametric failure after 100 krad(Si). Additionally the ELDRS-free devices, such as the LM158 and LM117, showed evidence of dose rate sensitivity in parametric degradations. Several other parts also displayed dose rate enhancement, with relatively lower degradations up to approx.15 to 20 krad(Si). The magnitudes of the dose rate enhancement will likely increase in significance at higher total dose levels.

  15. High Dose-Rate Versus Low Dose-Rate Brachytherapy for Lip Cancer

    SciTech Connect

    Ghadjar, Pirus; Bojaxhiu, Beat; Simcock, Mathew; Terribilini, Dario; Isaak, Bernhard; Gut, Philipp; Wolfensberger, Patrick; Broemme, Jens O.; Geretschlaeger, Andreas; Behrensmeier, Frank; Pica, Alessia; Aebersold, Daniel M.

    2012-07-15

    Purpose: To analyze the outcome after low-dose-rate (LDR) or high-dose-rate (HDR) brachytherapy for lip cancer. Methods and Materials: One hundred and three patients with newly diagnosed squamous cell carcinoma of the lip were treated between March 1985 and June 2009 either by HDR (n = 33) or LDR brachytherapy (n = 70). Sixty-eight patients received brachytherapy alone, and 35 received tumor excision followed by brachytherapy because of positive resection margins. Acute and late toxicity was assessed according to the Common Terminology Criteria for Adverse Events 3.0. Results: Median follow-up was 3.1 years (range, 0.3-23 years). Clinical and pathological variables did not differ significantly between groups. At 5 years, local recurrence-free survival, regional recurrence-free survival, and overall survival rates were 93%, 90%, and 77%. There was no significant difference for these endpoints when HDR was compared with LDR brachytherapy. Forty-two of 103 patients (41%) experienced acute Grade 2 and 57 of 103 patients (55%) experienced acute Grade 3 toxicity. Late Grade 1 toxicity was experienced by 34 of 103 patients (33%), and 5 of 103 patients (5%) experienced late Grade 2 toxicity; no Grade 3 late toxicity was observed. Acute and late toxicity rates were not significantly different between HDR and LDR brachytherapy. Conclusions: As treatment for lip cancer, HDR and LDR brachytherapy have comparable locoregional control and acute and late toxicity rates. HDR brachytherapy for lip cancer seems to be an effective treatment with acceptable toxicity.

  16. Radiation dose rates from UF{sub 6} cylinders

    SciTech Connect

    Friend, P.J.

    1991-12-31

    This paper describes the results of many studies, both theoretical and experimental, which have been carried out by Urenco over the last 15 years into radiation dose rates from uranium hexafluoride (UF{sub 6}) cylinders. The contents of the cylinder, its history, and the geometry all affect the radiation dose rate. These factors are all examined in detail. Actual and predicted dose rates are compared with levels permitted by IAEA transport regulations.

  17. [Pulsed-dose rate brachytherapy in cervical cancers: why, how?].

    PubMed

    Mazeron, R; Dumas, I; Martin, V; Martinetti, F; Benhabib-Boukhelif, W; Gensse, M-C; Chargari, C; Guemnie-Tafo, A; Haie-Méder, C

    2014-10-01

    The end of the production of 192 iridium wires terminates low dose rate brachytherapy and requires to move towards pulsed-dose rate or high-dose rate brachytherapy. In the case of gynecological cancers, technical alternatives exist, and many teams have already taken the step of pulsed-dose rate for scientific reasons. Using a projector source is indeed a prerequisite for 3D brachytherapy, which gradually installs as a standard treatment in the treatment of cervical cancers. For other centers, this change implies beyond investments in equipment and training, organizational consequences to ensure quality.

  18. Total ionizing dose effects of domestic SiGe HBTs under different dose rates

    NASA Astrophysics Data System (ADS)

    Liu, Mo-Han; Lu, Wu; Ma, Wu-Ying; Wang, Xin; Guo, Qi; He, Cheng-Fa; Jiang, Ke; Li, Xiao-Long; Xun, Ming-Zhu

    2016-03-01

    The total ionizing radiation (TID) response of commercial NPN silicon germanium hetero-junction bipolar transistors (SiGe HBTs) produced domestically are investigated under dose rates of 800 mGy(Si)/s and 1.3 mGy(Si)/s with a Co-60 gamma irradiation source. The changes of transistor parameters such as Gummel characteristics, and excess base current before and after irradiation, are examined. The results of the experiments show that for the KT1151, the radiation damage is slightly different under the different dose rates after prolonged annealing, and shows a time dependent effect (TDE). For the KT9041, however, the degradations of low dose rate irradiation is higher than for the high dose rate, demonstrating that there is a potential enhanced low dose rate sensitivity (ELDRS) effect for the KT9041. The possible underlying physical mechanisms of the different dose rates responses induced by the gamma rays are discussed.

  19. Rate determination from vector observations

    NASA Technical Reports Server (NTRS)

    Weiss, Jerold L.

    1993-01-01

    Vector observations are a common class of attitude data provided by a wide variety of attitude sensors. Attitude determination from vector observations is a well-understood process and numerous algorithms such as the TRIAD algorithm exist. These algorithms require measurement of the line of site (LOS) vector to reference objects and knowledge of the LOS directions in some predetermined reference frame. Once attitude is determined, it is a simple matter to synthesize vehicle rate using some form of lead-lag filter, and then, use it for vehicle stabilization. Many situations arise, however, in which rate knowledge is required but knowledge of the nominal LOS directions are not available. This paper presents two methods for determining spacecraft angular rates from vector observations without a priori knowledge of the vector directions. The first approach uses an extended Kalman filter with a spacecraft dynamic model and a kinematic model representing the motion of the observed LOS vectors. The second approach uses a 'differential' TRIAD algorithm to compute the incremental direction cosine matrix, from which vehicle rate is then derived.

  20. Estimation of Weapon Yield From Inversion of Dose Rate Contours

    DTIC Science & Technology

    2009-03-01

    Zucchini .................................................................................... 76 Operation PLUMBBOB—Priscilla...Appendix E: ESS FOM ....................................................................................................112 Appendix F: Zucchini FOM...Relationship of Dose Rate Contour Area, Weather Grid, and AOI ............... 57 23. Zucchini FDC, DNA-EX, and HPAC Dose Rate Contours at 28KT

  1. Effects Of Dose Rates On Radiation Damage In CMOS Parts

    NASA Technical Reports Server (NTRS)

    Goben, Charles A.; Coss, James R.; Price, William E.

    1990-01-01

    Report describes measurements of effects of ionizing-radiation dose rate on consequent damage to complementary metal oxide/semiconductor (CMOS) electronic devices. Depending on irradiation time and degree of annealing, survivability of devices in outer space, or after explosion of nuclear weapons, enhanced. Annealing involving recovery beyond pre-irradiation conditions (rebound) detrimental. Damage more severe at lower dose rates.

  2. LDR brachytherapy: can low dose rate hypersensitivity from the "inverse" dose rate effect cause excessive cell killing to peripherial connective tissues and organs?

    PubMed

    Leonard, B E; Lucas, A C

    2009-02-01

    Examined here are the possible effects of the "inverse" dose rate effect (IDRE) on low dose rate (LDR) brachytherapy. The hyper-radiosensitivity and induced radioresistance (HRS/IRR) effect benefits cell killing in radiotherapy, and IDRE and HRS/IRR seem to be generated from the same radioprotective mechanisms. We have computed the IDRE excess cell killing experienced in LDR brachytherapy using permanent seed implants. We conclude, firstly, that IDRE is a dose rate-dependent manifestation of HRS/IRR. Secondly, the presence of HRS/IRR or IDRE in a cell species or tissue must be determined by direct dose-response measurements. Thirdly, a reasonable estimate is that 50-80% of human adjoining connective and organ tissues experience IDRE from permanent implanted LDR brachytherapy. If IDRE occurs for tissues at point A for cervical cancer, the excess cell killing will be about a factor of 3.5-4.0 if the initial dose rate is 50-70 cGy h(-1). It is greater for adjacent tissues at lower dose rates and higher for lower initial dose rates at point A. Finally, higher post-treatment complications are observed in LDR brachytherapy, often for unknown reasons. Some of these are probably a result of IDRE excess cell killing. Measurements of IDRE need be performed for connective and adjacent organ tissues, i.e. bladder, rectum, urinary tract and small bowels. The measured dose rate-dependent dose responses should extended to <10 cGy h(-1) and involve multiple patients to detect patient variability. Results may suggest a preference for high dose rate brachytherapy or LDR brachytherapy without permanent retention of the implant seeds (hence the dose rates in peripheral tissues and organs remain above IDRE thresholds).

  3. Absorbed dose thresholds and absorbed dose rate limitations for studies of electron radiation effects on polyetherimides

    NASA Technical Reports Server (NTRS)

    Long, Edward R., Jr.; Long, Sheila Ann T.; Gray, Stephanie L.; Collins, William D.

    1989-01-01

    The threshold values of total absorbed dose for causing changes in tensile properties of a polyetherimide film and the limitations of the absorbed dose rate for accelerated-exposure evaluation of the effects of electron radiation in geosynchronous orbit were studied. Total absorbed doses from 1 kGy to 100 MGy and absorbed dose rates from 0.01 MGy/hr to 100 MGy/hr were investigated, where 1 Gy equals 100 rads. Total doses less than 2.5 MGy did not significantly change the tensile properties of the film whereas doses higher than 2.5 MGy significantly reduced elongation-to-failure. There was no measurable effect of the dose rate on the tensile properties for accelerated electron exposures.

  4. GAMMA DOSE RATE NEAR A NEW (252)Cf BRACHYTHERAPY SOURCE

    SciTech Connect

    Fortune, Eugene C; Gauld, Ian C; Wang, C

    2011-01-01

    A new generation of medical grade (252)Cf sources was developed in 2002 at the Oak Ridge National Laboratory. The combination of small size and large activity of (252)Cf makes the new source suitable to be used with the conventional high-dose-rate remote afterloading system for interstitial brachytherapy. A recent in-water calibration experiment showed that the measured gamma dose rates near the new source are slightly greater than the neutron dose rates, contradicting the well established neutron-to-gamma dose ratio of approximately 2:1 at locations near a (252)Cf brachytherapy source. Specifically, the MCNP-predicted gamma dose rate is a factor of two lower than the measured gamma dose rate at the distance of I cm, and the differences between the two results gradually diminish at distances farther away from the source. To resolve this discrepancy, we updated the source gamma spectrum by including in the ORIGEN-S data library the experimentally measured (252)Cf prompt gamma spectrum as well as the true (252)Cf spontaneous fission yield data to explicitly model delayed gamma emissions from fission products. We also investigated the bremsstrahlung X-rays produced by the beta particles emitted from fission product decays. The results show that the discrepancy of gamma dose rates is mainly caused by the omission of the bremsstrahlung X-rays in the MCNP runs. By including the bremsstrahlung X-rays, the MCNP results show that the gamma dose rates near a new (252)Cf source agree well with the measured results and that the gamma dose rates are indeed greater than the neutron dose rates.

  5. External dose-rate conversion factors for calculation of dose to the public

    SciTech Connect

    Not Available

    1988-07-01

    This report presents a tabulation of dose-rate conversion factors for external exposure to photons and electrons emitted by radionuclides in the environment. This report was prepared in conjunction with criteria for limiting dose equivalents to members of the public from operations of the US Department of Energy (DOE). The dose-rate conversion factors are provided for use by the DOE and its contractors in performing calculations of external dose equivalents to members of the public. The dose-rate conversion factors for external exposure to photons and electrons presented in this report are based on a methodology developed at Oak Ridge National Laboratory. However, some adjustments of the previously documented methodology have been made in obtaining the dose-rate conversion factors in this report. 42 refs., 1 fig., 4 tabs.

  6. Strategy for stochastic dose-rate induced enhanced elimination of malignant tumour without dose escalation.

    PubMed

    Paul, Subhadip; Roy, Prasun Kumar

    2016-09-01

    The efficacy of radiation therapy, a primary modality of cancer treatment, depends in general upon the total radiation dose administered to the tumour during the course of therapy. Nevertheless, the delivered radiation also irradiates normal tissues and dose escalation procedure often increases the elimination of normal tissue as well. In this article, we have developed theoretical frameworks under the premise of linear-quadratic-linear (LQL) model using stochastic differential equation and Jensen's inequality for exploring the possibility of attending to the two therapeutic performance objectives in contraposition-increasing the elimination of prostate tumour cells and enhancing the relative sparing of normal tissue in fractionated radiation therapy, within a prescribed limit of total radiation dose. Our study predicts that stochastic temporal modulation in radiation dose-rate appreciably enhances prostate tumour cell elimination, without needing dose escalation in radiation therapy. However, constant higher dose-rate can also enhance the elimination of tumour cells. In this context, we have shown that the sparing of normal tissue with stochastic dose-rate is considerably more than the sparing of normal tissue with the equivalent constant higher dose-rate. Further, by contrasting the stochastic dose-rate effects under LQL and linear-quadratic (LQ) models, we have also shown that the LQ model over-estimates stochastic dose-rate effect in tumour and under-estimates the stochastic dose-rate effect in normal tissue. Our study indicates the possibility of utilizing stochastic modulation of radiation dose-rate for designing enhanced radiation therapy protocol for cancer.

  7. High dose rate brachytherapy source measurement intercomparison.

    PubMed

    Poder, Joel; Smith, Ryan L; Shelton, Nikki; Whitaker, May; Butler, Duncan; Haworth, Annette

    2017-03-24

    This work presents a comparison of air kerma rate (AKR) measurements performed by multiple radiotherapy centres for a single HDR (192)Ir source. Two separate groups (consisting of 15 centres) performed AKR measurements at one of two host centres in Australia. Each group travelled to one of the host centres and measured the AKR of a single (192)Ir source using their own equipment and local protocols. Results were compared to the (192)Ir source calibration certificate provided by the manufacturer by means of a ratio of measured to certified AKR. The comparisons showed remarkably consistent results with the maximum deviation in measurement from the decay-corrected source certificate value being 1.1%. The maximum percentage difference between any two measurements was less than 2%. The comparisons demonstrated the consistency of well-chambers used for (192)Ir AKR measurements in Australia, despite the lack of a local calibration service, and served as a valuable focal point for the exchange of ideas and dosimetry methods.

  8. Microfluidic Thrombosis under Multiple Shear Rates and Antiplatelet Therapy Doses

    PubMed Central

    Ku, David N.; Forest, Craig R.

    2014-01-01

    The mainstay of treatment for thrombosis, the formation of occlusive platelet aggregates that often lead to heart attack and stroke, is antiplatelet therapy. Antiplatelet therapy dosing and resistance are poorly understood, leading to potential incorrect and ineffective dosing. Shear rate is also suspected to play a major role in thrombosis, but instrumentation to measure its influence has been limited by flow conditions, agonist use, and non-systematic and/or non-quantitative studies. In this work we measured occlusion times and thrombus detachment for a range of initial shear rates (500, 1500, 4000, and 10000 s−1) and therapy concentrations (0–2.4 µM for eptifibatide, 0–2 mM for acetyl-salicylic acid (ASA), 3.5–40 Units/L for heparin) using a microfluidic device. We also measured complete blood counts (CBC) and platelet activity using whole blood impedance aggregometry. Effects of shear rate and dose were analyzed using general linear models, logistic regressions, and Cox proportional hazards models. Shear rates have significant effects on thrombosis/dose-response curves for all tested therapies. ASA has little effect on high shear occlusion times, even at very high doses (up to 20 times the recommended dose). Under ASA therapy, thrombi formed at high shear rates were 4 times more prone to detachment compared to those formed under control conditions. Eptifibatide reduced occlusion when controlling for shear rate and its efficacy increased with dose concentration. In contrast, the hazard of occlusion from ASA was several orders of magnitude higher than that of eptifibatide. Our results show similar dose efficacy to our low shear measurements using whole blood aggregometry. This quantitative and statistically validated study of the effects of a wide range of shear rate and antiplatelet therapy doses on occlusive thrombosis contributes to more accurate understanding of thrombosis and to models for optimizing patient treatment. PMID:24404131

  9. Response of human fibroblasts to low dose rate gamma irradiation

    SciTech Connect

    Dritschilo, A.; Brennan, T.; Weichselbaum, R.R.; Mossman, K.L.

    1984-11-01

    Cells from 11 human strains, including fibroblasts from patients with the genetic diseases of ataxia telangiectasia (AT), xeroderma pigmentosum (XP), and Fanconi's anemia (FA), were exposed to ..gamma.. radiation at high (1.6-2.2 Gy/min) and at low (0.03-0.07 Gy/min) dose rates. Survival curves reveal an increase inthe terminal slope (D/sub 0/) when cells are irradiated at low dose rates compared to high dose rates. This was true for all cell lines tested, although the AT, FA, and XP cells are reported or postulated to have radiation repair deficiencies. From the response of these cells, it is apparent that radiation sensitivities differ; however, at low dose rate, all tested human cells are able to repair injury.

  10. Dose Rate and Total Dose Radiation Testing of the Texas Instruments TMS320C30 32-Bit Floating Point Digital Signal Processor.

    DTIC Science & Technology

    1991-08-01

    curies. The radiation exposure rate is determined by the distance of the exposed specimens from the Co-60 source. 4.2 DOSE RATE TESTING We tested the... exposure . The test fixture monitored the internal registers and memory locations of the device while being exposed to subsequently higher dose rates. An...instrument measures the dose rate of the radiation exposure . Calibration of the dosimetry system is accomplished using thermoluminescent dosimeters (TLDs

  11. Rapid Measurement of Neutron Dose Rate for Transport Index

    SciTech Connect

    Morris, R.L.

    2000-02-27

    A newly available neutron dose equivalent remmeter with improved sensitivity and energy response has been put into service at Rocky Flats Environmental Technology Site (RFETS). This instrument is being used to expedite measurement of the Transport Index and as an ALARA tool to identify locations where slightly elevated neutron dose equivalent rates exist. The meter is capable of measuring dose rates as low as 0.2 {mu}Sv per hour (20 {mu}rem per hour). Tests of the angular response and energy response of the instrument are reported. Calculations of the theoretical instrument response made using MCNP{trademark} are reported for materials typical of those being shipped.

  12. Critical target and dose and dose-rate responses for the induction of chromosomal instability by ionizing radiation

    NASA Technical Reports Server (NTRS)

    Limoli, C. L.; Corcoran, J. J.; Milligan, J. R.; Ward, J. F.; Morgan, W. F.

    1999-01-01

    To investigate the critical target, dose response and dose-rate response for the induction of chromosomal instability by ionizing radiation, bromodeoxyuridine (BrdU)-substituted and unsubstituted GM10115 cells were exposed to a range of doses (0.1-10 Gy) and different dose rates (0.092-17.45 Gy min(-1)). The status of chromosomal stability was determined by fluorescence in situ hybridization approximately 20 generations after irradiation in clonal populations derived from single progenitor cells surviving acute exposure. Overall, nearly 700 individual clones representing over 140,000 metaphases were analyzed. In cells unsubstituted with BrdU, a dose response was found, where the probability of observing delayed chromosomal instability in any given clone was 3% per gray of X rays. For cells substituted with 25-66% BrdU, however, a dose response was observed only at low doses (<1.0 Gy); at higher doses (>1.0 Gy), the incidence of chromosomal instability leveled off. There was an increase in the frequency and complexity of chromosomal instability per unit dose compared to cells unsubstituted with BrdU. The frequency of chromosomal instability appeared to saturate around approximately 30%, an effect which occurred at much lower doses in the presence of BrdU. Changing the gamma-ray dose rate by a factor of 190 (0.092 to 17.45 Gy min(-1)) produced no significant differences in the frequency of chromosomal instability. The enhancement of chromosomal instability promoted by the presence of the BrdU argues that DNA comprises at least one of the critical targets important for the induction of this end point of genomic instability.

  13. Monitoring of radiation dose rates around a clinical nuclear medicine site

    NASA Astrophysics Data System (ADS)

    Shao, Chia-Ho; Lu, Cheng-Chang; Chen, Tou-Rong; Weng, Jui-Hung; Kao, Pan-Fu; Dong, Shang-Lung; Chou, Ming-Jen

    2014-11-01

    The monitoring of radiation dose around the nuclear medicine site is an important study issue. In this study, TLD-100H radiation dosimeters were used to measure the ambient radiation dose rates around a clinical nuclear medicine site in order to investigate the latent hot zones of radiation exposure. Results of this study showed that the radiation doses measured from all piping and storage systems were comparable to the background dose. A relatively high dose was observed at the single bend point of waste water piping of the PET/CT. Another important finding was the unexpected high dose rates observed at the non-restricted waiting area (NRWA) of SPECT. To conclude, this study provides useful information for further determination of an appropriate dose reduction strategy to achieve the ALARA principle in a clinical nuclear medicine site.

  14. Calculation of the biological effective dose for piecewise defined dose-rate fits

    SciTech Connect

    Hobbs, Robert F.; Sgouros, George

    2009-03-15

    An algorithmic solution to the biological effective dose (BED) calculation from the Lea-Catcheside formula for a piecewise defined function is presented. Data from patients treated for metastatic thyroid cancer were used to illustrate the solution. The Lea-Catcheside formula for the G-factor of the BED is integrated numerically using a large number of small trapezoidal fits to each integral. The algorithmically calculated BED is compatible with an analytic calculation for a similarly valued exponentially fitted dose-rate plot and is the only resolution for piecewise defined dose-rate functions.

  15. Determination of dose distributions and parameter sensitivity

    SciTech Connect

    Napier, B.A.; Farris, W.T.; Simpson, J.C.

    1992-12-01

    A series of scoping calculations has been undertaken to evaluate the absolute and relative contribution of different radionuclides and exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford site. This scoping calculation (Calculation 005) examined the contributions of numerous parameters to the uncertainty distribution of doses calculated for environmental exposures and accumulation in foods. This study builds on the work initiated in the first scoping study of iodine in cow's milk and the third scoping study, which added additional pathways. Addressed in this calculation were the contributions to thyroid dose of infants from (1) air submersion and groundshine external dose, (2) inhalation, (3) ingestion of soil by humans, (4) ingestion of leafy vegetables, (5) ingestion of other vegetables and fruits, (6) ingestion of meat, (7) ingestion of eggs, and (8) ingestion of cows' milk from Feeding Regime 1 as described in Calculation 001.

  16. Equivalent dose rate by muons to the human body.

    PubMed

    Băcioiu, I

    2011-11-01

    In this paper, the relative sensitivity from different human tissues of the human body, at a ground level, from muon cosmic radiation has been studied. The aim of this paper was to provide information on the equivalent dose rates received from atmospheric muons to human body, at the ground level. The calculated value of the effective dose rate by atmospheric muons plus the radiation levels of the natural annual background radiation dose, at the ground level, in the momentum interval of cosmic ray muon (0.2-120.0 GeV/c) is about 2.106±0.001 mSv/y, which is insignificant in comparison with the values of the doses from the top of the atmosphere.

  17. Acute genitourinary toxicity after high dose rate (HDR) brachytherapy combined with hypofractionated external-beam radiation therapy for localized prostate cancer: Second analysis to determine the correlation between the urethral dose in HDR brachytherapy and the severity of acute genitourinary toxicity

    SciTech Connect

    Akimoto, Tetsuo . E-mail: takimoto@showa.gunma-u.ac.jp; Katoh, Hiroyuki; Noda, Shin-ei; Ito, Kazuto; Yamamoto, Takumi; Kashiwagi, Bunzo; Nakano, Takashi

    2005-10-01

    Purpose: We have been treating localized prostate cancer with high-dose-rate (HDR) brachytherapy combined with hypofractionated external beam radiation therapy (EBRT) at our institution. We recently reported the existence of a correlation between the severity of acute genitourinary (GU) toxicity and the urethral radiation dose in HDR brachytherapy by using different fractionation schema. The purpose of this study was to evaluate the role of the urethral dose in the development of acute GU toxicity more closely than in previous studies. For this purpose, we conducted an analysis of patients who had undergone HDR brachytherapy with a fixed fractionation schema combined with hypofractionated EBRT. Methods and Materials: Among the patients with localized prostate cancer who were treated by 192-iridium HDR brachytherapy combined with hypofractionated EBRT at Gunma University Hospital between August 2000 and November 2004, we analyzed 67 patients who were treated by HDR brachytherapy with the fractionation schema of 9 Gy x two times combined with hypofractionated EBRT. Hypofractionated EBRT was administered at a fraction dose of 3 Gy three times weekly, and a total dose of 51 Gy was delivered to the prostate gland and seminal vesicles using the four-field technique. No elective pelvic irradiation was performed. After the completion of EBRT, all the patients additionally received transrectal ultrasonography-guided HDR brachytherapy. The planning target volume was defined as the prostate gland with a 5-mm margin all around, and the planning was conducted based on computed tomography images. The tumor stage was T1c in 13 patients, T2 in 31 patients, and T3 in 23 patients. The Gleason score was 2-6 in 12 patients, 7 in 34 patients, and 8-10 in 21 patients. Androgen ablation was performed in all the patients. The median follow-up duration was 11 months (range 3-24 months). The toxicities were graded based on the Radiation Therapy Oncology Group and the European Organization

  18. Low-dose-rate or high-dose-rate brachytherapy in treatment of prostate cancer – between options

    PubMed Central

    2013-01-01

    Purpose Permanent low-dose-rate (LDR-BT) and temporary high-dose-rate (HDR-BT) brachytherapy are competitive techniques for clinically localized prostate radiotherapy. Although a randomized trial will likely never to be conducted comparing these two forms of brachytherapy, a comparative analysis proves useful in understanding some of their intrinsic differences, several of which could be exploited to improve outcomes. The aim of this paper is to look for possible similarities and differences between both brachytherapy modalities. Indications and contraindications for monotherapy and for brachytherapy as a boost to external beam radiation therapy (EBRT) are presented. It is suggested that each of these techniques has attributes that advocates for one or the other. First, they represent the extreme ends of the spectrum with respect to dose rate and fractionation, and therefore have inherently different radiobiological properties. Low-dose-rate brachytherapy has the great advantage of being practically a one-time procedure, and enjoys a long-term follow-up database supporting its excellent outcomes and low morbidity. Low-dose-rate brachytherapy has been a gold standard for prostate brachytherapy in low risk patients since many years. On the other hand, HDR is a fairly invasive procedure requiring several sessions associated with a brief hospital stay. Although lacking in significant long-term data, it possesses the technical advantage of control over its postimplant dosimetry (by modulating the source dwell time and position), which is absent in LDR brachytherapy. This important difference in dosimetric control allows HDR doses to be escalated safely, a flexibility that does not exist for LDR brachytherapy. Conclusions Radiobiological models support the current clinical evidence for equivalent outcomes in localized prostate cancer with either LDR or HDR brachytherapy, using current dose regimens. At present, all available clinical data regarding these two techniques

  19. Chromosomal Aberrations in Normal and AT Cells Exposed to High Dose of Low Dose Rate Irradiation

    NASA Technical Reports Server (NTRS)

    Kawata, T.; Shigematsu, N.; Kawaguchi, O.; Liu, C.; Furusawa, Y.; Hirayama, R.; George, K.; Cucinotta, F.

    2011-01-01

    Ataxia telangiectasia (A-T) is a human autosomally recessive syndrome characterized by cerebellar ataxia, telangiectases, immune dysfunction, and genomic instability, and high rate of cancer incidence. A-T cell lines are abnormally sensitive to agents that induce DNA double strand breaks, including ionizing radiation. The diverse clinical features in individuals affected by A-T and the complex cellular phenotypes are all linked to the functional inactivation of a single gene (AT mutated). It is well known that cells deficient in ATM show increased yields of both simple and complex chromosomal aberrations after high-dose-rate irradiation, but, less is known on how cells respond to low-dose-rate irradiation. It has been shown that AT cells contain a large number of unrejoined breaks after both low-dose-rate irradiation and high-dose-rate irradiation, however sensitivity for chromosomal aberrations at low-dose-rate are less often studied. To study how AT cells respond to low-dose-rate irradiation, we exposed confluent normal and AT fibroblast cells to up to 3 Gy of gamma-irradiation at a dose rate of 0.5 Gy/day and analyzed chromosomal aberrations in G0 using fusion PCC (Premature Chromosomal Condensation) technique. Giemsa staining showed that 1 Gy induces around 0.36 unrejoined fragments per cell in normal cells and around 1.35 fragments in AT cells, whereas 3Gy induces around 0.65 fragments in normal cells and around 3.3 fragments in AT cells. This result indicates that AT cells can rejoin breaks less effectively in G0 phase of the cell cycle? compared to normal cells. We also analyzed chromosomal exchanges in normal and AT cells after exposure to 3 Gy of low-dose-rate rays using a combination of G0 PCC and FISH techniques. Misrejoining was detected in the AT cells only? When cells irradiated with 3 Gy were subcultured and G2 chromosomal aberrations were analyzed using calyculin-A induced PCC technique, the yield of unrejoined breaks decreased in both normal and AT

  20. Radiation damage in single-particle cryo-electron microscopy: effects of dose and dose rate

    PubMed Central

    Karuppasamy, Manikandan; Karimi Nejadasl, Fatemeh; Vulovic, Milos; Koster, Abraham J.; Ravelli, Raimond B. G.

    2011-01-01

    Radiation damage is an important resolution limiting factor both in macromolecular X-ray crystallography and cryo-electron microscopy. Systematic studies in macromolecular X-ray crystallography greatly benefited from the use of dose, expressed as energy deposited per mass unit, which is derived from parameters including incident flux, beam energy, beam size, sample composition and sample size. In here, the use of dose is reintroduced for electron microscopy, accounting for the electron energy, incident flux and measured sample thickness and composition. Knowledge of the amount of energy deposited allowed us to compare doses with experimental limits in macromolecular X-ray crystallography, to obtain an upper estimate of radical concentrations that build up in the vitreous sample, and to translate heat-transfer simulations carried out for macromolecular X-ray crystallography to cryo-electron microscopy. Stroboscopic exposure series of 50–250 images were collected for different incident flux densities and integration times from Lumbricus terrestris extracellular hemoglobin. The images within each series were computationally aligned and analyzed with similarity metrics such as Fourier ring correlation, Fourier ring phase residual and figure of merit. Prior to gas bubble formation, the images become linearly brighter with dose, at a rate of approximately 0.1% per 10 MGy. The gradual decomposition of a vitrified hemoglobin sample could be visualized at a series of doses up to 5500 MGy, by which dose the sample was sublimed. Comparison of equal-dose series collected with different incident flux densities showed a dose-rate effect favoring lower flux densities. Heat simulations predict that sample heating will only become an issue for very large dose rates (50 e−Å−2 s−1 or higher) combined with poor thermal contact between the grid and cryo-holder. Secondary radiolytic effects are likely to play a role in dose-rate effects. Stroboscopic data collection

  1. Volumetric (3D) bladder dose parameters are more reproducible than point (2D) dose parameters in vaginal vault high-dose-rate brachytherapy

    PubMed Central

    Sapienza, Lucas Gomes; Flosi, Adriana; Aiza, Antonio; de Assis Pellizzon, Antonio Cassio; Chojniak, Rubens; Baiocchi, Glauco

    2016-01-01

    There is no consensus on the use of computed tomography in vaginal cuff brachytherapy (VCB) planning. The purpose of this study was to prospectively determine the reproducibility of point bladder dose parameters (DICRU and maximum dose), compared with volumetric-based parameters. Twenty-two patients who were treated with high-dose-rate (HDR) VCB underwent simulation by computed tomography (CT-scan) with a Foley catheter at standard tension (position A) and extra tension (position B). CT-scan determined the bladder ICRU dose point in both positions and compared the displacement and recorded dose. Volumetric parameters (D0.1cc, D1.0cc, D2.0cc, D4.0cc and D50%) and point dose parameters were compared. The average spatial shift in ICRU dose point in the vertical, longitudinal and lateral directions was 2.91 mm (range: 0.10–9.00), 12.04 mm (range: 4.50–24.50) and 2.65 mm (range: 0.60–8.80), respectively. The DICRU ratio for positions A and B was 1.64 (p < 0.001). Moreover, a decrease in Dmax was observed (p = 0.016). Tension level of the urinary catheter did not affect the volumetric parameters. Our data suggest that point parameters (DICRU and Dmax) are not reproducible and are not the ideal choice for dose reporting. PMID:27296459

  2. Simulating total-dose and dose-rate effects on digital microelectronics timing delays using VHDL

    SciTech Connect

    Brothers, C.P. Jr.; Pugh, R.D.

    1995-12-01

    This paper describes a fast timing simulator based on Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL) for simulating the timing of digital microelectronics in pre-irradiation, total dose, and dose-rate radiation environments. The goal of this research is the rapid and accurate timing simulation of radiation-hardened microelectronic circuits before, during, and after exposure to ionizing radiation. The results of this research effort were the development of VHDL compatible models capable of rapid and accurate simulation of the effect of radiation on the timing performance of microelectronic circuits. The effects of radiation for total dose at 1 Mrad(Si) and dose rates up to 2 {times} 10{sup 12} rads(Si) per second were modeled for a variety of Separation by IMplantion of OXygen (SIMOX) circuits. In all cases tested, the VHDL simulations ran at least 600 times faster than SPICE while maintaining a timing accuracy to within 15% of SPICE values.

  3. Total dose and dose rate models for bipolar transistors in circuit simulation.

    SciTech Connect

    Campbell, Phillip Montgomery; Wix, Steven D.

    2013-05-01

    The objective of this work is to develop a model for total dose effects in bipolar junction transistors for use in circuit simulation. The components of the model are an electrical model of device performance that includes the effects of trapped charge on device behavior, and a model that calculates the trapped charge densities in a specific device structure as a function of radiation dose and dose rate. Simulations based on this model are found to agree well with measurements on a number of devices for which data are available.

  4. A practical approach to determine dose metrics for nanomaterials.

    PubMed

    Delmaar, Christiaan J E; Peijnenburg, Willie J G M; Oomen, Agnes G; Chen, Jingwen; de Jong, Wim H; Sips, Adriënne J A M; Wang, Zhuang; Park, Margriet V D Z

    2015-05-01

    Traditionally, administered mass is used to describe doses of conventional chemical substances in toxicity studies. For deriving toxic doses of nanomaterials, mass and chemical composition alone may not adequately describe the dose, because particles with the same chemical composition can have completely different toxic mass doses depending on properties such as particle size. Other dose metrics such as particle number, volume, or surface area have been suggested, but consensus is lacking. The discussion regarding the most adequate dose metric for nanomaterials clearly needs a systematic, unbiased approach to determine the most appropriate dose metric for nanomaterials. In the present study, the authors propose such an approach and apply it to results from in vitro and in vivo experiments with silver and silica nanomaterials. The proposed approach is shown to provide a convenient tool to systematically investigate and interpret dose metrics of nanomaterials. Recommendations for study designs aimed at investigating dose metrics are provided.

  5. [Side effects of postoperative irradiation of uterine cancer with high dose rate iridium and low dose rate radium].

    PubMed

    Kucera, H; Unel, N; Weghaupt, K

    1986-02-01

    A report is given about reversible and irreversible complications following postoperative irradiation in cases of endometrial carcinoma. Intravaginal brachytherapy was performed. In advanced cases or in cases with poor prognosis (tumor grading) percutaneous irradiation was added (Co60). In 156 cases low-dose-rate irradiation (Ra226) and in 143 cases high-dose-rate irradiation (Ir192) was applied intravaginally. Reversible complications (cystitis, proctitis) could be observed following Radium in 7%, following Iridium in 14%. Irreversible complications (fistulas, stenoses): 1.9% following Radium and 3.5% following Iridium. When high-dose-rate irradiation was combined with percutaneous Co60 therapy, reversible complications occurred in 22.8%. After changing the Iridium-therapy scheme (reduction of dose from 10 to 7 Gy and irradiation only of the upper two thirds of the vagina) complications only could be observed in the same level as in Radium-therapy. High-dose-rate irradiation does not need hospitalization of the patients.

  6. Patient release criteria for low dose rate brachytherapy implants.

    PubMed

    Boyce, Dale E; Sheetz, Michael A

    2013-04-01

    A lack of consensus regarding a model governing the release of patients following sealed source brachytherapy has led to a set of patient release policies that vary from institution to institution. The U.S. Nuclear Regulatory Commission has issued regulatory guidance on patient release in NUREG 1556, Volume 9, Rev. 2, Appendix U, which allows calculation of release limits following implant brachytherapy. While the formalism presented in NUREG is meaningful for the calculation of release limits in the context of relatively high energy gamma emitters, it does not estimate accurately the effective dose equivalent for the common low dose rate brachytherapy sources Cs, I, and Pd. NUREG 1556 states that patient release may be based on patient-specific calculations as long as the calculation is documented. This work is intended to provide a format for patient-specific calculations to be used for the consideration of patients' release following the implantation of certain low dose rate brachytherapy isotopes.

  7. ACDOS2: an improved neutron-induced dose rate code

    SciTech Connect

    Lagache, J.C.

    1981-06-01

    To calculate the expected dose rate from fusion reactors as a function of geometry, composition, and time after shutdown a computer code, ACDOS2, was written, which utilizes up-to-date libraries of cross-sections and radioisotope decay data. ACDOS2 is in ANSI FORTRAN IV, in order to make it readily adaptable elsewhere.

  8. Total Dose Effects on Error Rates in Linear Bipolar Systems

    NASA Technical Reports Server (NTRS)

    Buchner, Stephen; McMorrow, Dale; Bernard, Muriel; Roche, Nicholas; Dusseau, Laurent

    2007-01-01

    The shapes of single event transients in linear bipolar circuits are distorted by exposure to total ionizing dose radiation. Some transients become broader and others become narrower. Such distortions may affect SET system error rates in a radiation environment. If the transients are broadened by TID, the error rate could increase during the course of a mission, a possibility that has implications for hardness assurance.

  9. Development and characterization of a novel variable low-dose rate irradiator for in vivo mouse studies

    PubMed Central

    Olipitz, Werner; Hembrador, Sheena; Davidson, Matthew; Yanch, Jacquelyn C.; Engelward, Bevin P.

    2011-01-01

    Radiation exposure of humans generally results in low doses delivered at low dose-rate. Our limited knowledge of the biological effects of low dose radiation is mainly based on data from the atomic bomb long-term survivor study (LSS) cohort. However, the total doses and dose-rates in the LSS cohort are still higher than most environmental and occupational exposures in humans. Importantly, the dose-rate is a critical determinant of health risks stemming from radiation exposure. Understanding the shape of the dose-rate response curve for different biological outcomes is thus crucial for projecting the biological hazard from radiation in different environmental and man-made conditions. A significant barrier to performing low dose-rate studies is the difficulty in creating radiation source configurations compatible with long-term cellular or animal experiments. In this study the design and characterization of a large area, 125I-based irradiator is described. The irradiator allows continuous long-term exposure of mice at variable dose-rates and can be sited in standard animal care facilities. The dose-rate is determined by the level of 125I activity added to a large NaOH filled, rectangular phantom. The desired dose rate is maintained at essentially constant levels by weekly additions of 125I to compensate for decay. Dosimetry results for long-term animal irradiation at targeted dose rates of 0.00021 and 0.0021 cGy min−1 are presented. PMID:20386202

  10. Influence of low-dose and low-dose-rate ionizing radiation on mutation induction in human cells

    NASA Astrophysics Data System (ADS)

    Yatagai, F.; Umebayashi, Y.; Suzuki, M.; Abe, T.; Suzuki, H.; Shimazu, T.; Ishioka, N.; Iwaki, M.; Honma, M.

    This is a review paper to introduce our recent studies on the genetic effects of low-dose and low-dose-rate ionizing radiation (IR). Human lymphoblastoid TK6 cells were exposed to γ-rays at a dose-rate of 1.2 mGy/h (total 30 mGy). The frequency of early mutations (EMs) in the thymidine kinase ( TK) gene locus was determined to be 1.7 × 10 -6, or 1.9-fold higher than the level seen in unirradated controls [Umebayashi, Y., Honma, M., Suzuki, M., Suzuki, H., Shimazu, T., Ishioka, N., Iwaki, M., Yatagai, F., Mutation induction in cultured human cells after low-dose and low-dose-rate γ-ray irradiation: detection by LOH analysis. J. Radiat. Res., 48, 7-11, 2007]. These mutants were then analyzed for loss of heterozygosity (LOH) events. Small interstitial-deletion events were restricted to the TK gene locus and were not observed in EMs in unirradated controls, but they comprised about half of the EMs (8/15) after IR exposure. Because of the low level of exposure to IR, this specific type of event cannot be considered to be the direct result of an IR-induced DNA double strand break (DSB). To better understand the effects of low-level IR exposure, the repair efficiency of site-specific chromosomal DSBs was also examined. The pre γ-irradiation under the same condition did not largely influence the efficiency of DSB repair via end-joining, but enhanced such efficiency via homologous recombination to an about 40% higher level (unpublished data). All these results suggest that DNA repair and mutagenesis can be indirectly influenced by low-dose/dose-rate IR.

  11. Ethylene oxide dose and dose-rate effects in the mouse dominant-lethal test

    SciTech Connect

    Generoso, W.M.; Cain, K.T.; Hughes, L.A.; Sega, G.A.; Braden, P.W.; Gosslee, D.G.; Shelby, M.D.

    1986-01-01

    In the dose-response study, male mice were exposed by inhalation to ethylene oxide (EtO) for 4 consecutive days. Mice were exposed for 6 hr per day to 300 ppm, 400 ppm, or 500 ppm EtO for a daily total of 1800, 2400, or 3000 ppm X hr (total exposures of 7200, 9600 and 12,000 ppm X hr), respectively. In the dose-rate study, mice were given a total exposure of 1800 ppm X hr per day, also for 4 consecutive days, delivered either at 300 ppm in 6 hr, 600 ppm in 3 hr, or 1200 ppm in 1.5 hr. Quantitation of dominant-lethal responses was made on matings involving sperm exposed as late spermatids and early spermatozoa, the most sensitive stages to EtO. In the dose-response study, a dose-related increase in dominant-lethal mutations was observed, the dose-response curve proved to be nonlinear. In the dose-rate study, increasing the exposure concentrations resulted in increased dominant-lethal responses.

  12. Inverse modelling of radionuclide release rates using gamma dose rate observations

    NASA Astrophysics Data System (ADS)

    Hamburger, Thomas; Stohl, Andreas; von Haustein, Christoph; Thummerer, Severin; Wallner, Christian

    2014-05-01

    Severe accidents in nuclear power plants such as the historical accident in Chernobyl 1986 or the more recent disaster in the Fukushima Dai-ichi nuclear power plant in 2011 have drastic impacts on the population and environment. The hazardous consequences reach out on a national and continental scale. Environmental measurements and methods to model the transport and dispersion of the released radionuclides serve as a platform to assess the regional impact of nuclear accidents - both, for research purposes and, more important, to determine the immediate threat to the population. However, the assessments of the regional radionuclide activity concentrations and the individual exposure to radiation dose underlie several uncertainties. For example, the accurate model representation of wet and dry deposition. One of the most significant uncertainty, however, results from the estimation of the source term. That is, the time dependent quantification of the released spectrum of radionuclides during the course of the nuclear accident. The quantification of the source terms of severe nuclear accidents may either remain uncertain (e.g. Chernobyl, Devell et al., 1995) or rely on rather rough estimates of released key radionuclides given by the operators. Precise measurements are mostly missing due to practical limitations during the accident. Inverse modelling can be used to realise a feasible estimation of the source term (Davoine and Bocquet, 2007). Existing point measurements of radionuclide activity concentrations are therefore combined with atmospheric transport models. The release rates of radionuclides at the accident site are then obtained by improving the agreement between the modelled and observed concentrations (Stohl et al., 2012). The accuracy of the method and hence of the resulting source term depends amongst others on the availability, reliability and the resolution in time and space of the observations. Radionuclide activity concentrations are observed on a

  13. New-onset depression following stable, slow, and rapid rate of prescription opioid dose escalation.

    PubMed

    Salas, Joanne; Scherrer, Jeffrey F; Schneider, Frank David; Sullivan, Mark D; Bucholz, Kathleen K; Burroughs, Thomas; Copeland, Laurel A; Ahmedani, Brian K; Lustman, Patrick J

    2017-02-01

    Recent studies suggest that longer durations of opioid use, independent of maximum morphine equivalent dose (MED) achieved, is associated with increased risk of new-onset depression (NOD). Conversely, other studies, not accounting for duration, found that higher MED increased probability of depressive symptoms. To determine whether rate of MED increase is associated with NOD, a retrospective cohort analysis of Veterans Health Administration data (2000-2012) was conducted. Eligible patients were new, chronic (>90 days) opioid users, aged 18 to 80, and without depression diagnoses for 2 years before start of follow-up (n = 7051). Mixed regression models of MED across follow-up defined 4 rate of dose change categories: stable, decrease, slow increase, and rapid increase. Cox proportional hazard models assessed the relationship of rate of dose change and NOD, controlling for pain, duration of use, maximum MED, and other confounders using inverse probability of treatment-weighted propensity scores. Incidence rate for NOD was 14.1/1000PY (person-years) in stable rate, 13.0/1000PY in decreasing, 19.3/1000PY in slow increasing, and 27.5/1000PY in rapid increasing dose. Compared with stable rate, risk of NOD increased incrementally for slow (hazard ratio = 1.22; 95% confidence interval: 1.05-1.42) and rapid (hazard ratio = 1.58; 95% confidence interval: 1.30-1.93) rate of dose increase. Faster rates of MED escalation contribute to NOD, independent of maximum dose, pain, and total opioid duration. Dose escalation may be a proxy for loss of control or undetected abuse known to be associated with depression. Clinicians should avoid rapid dose increase when possible and discuss risk of depression with patients if dose increase is warranted for pain.

  14. Genetic Factors Affecting Susceptibility to Low Dose & Low Dose-Rate Radiation

    SciTech Connect

    Bedford, Joel

    2014-04-18

    Our laboratory has, among other things, developed and used the gamma H2AX focus assay and other chromosomal and cell killing assays to show that differences in this DNA double strand break (dsb) related response can be clearly and distinctly demonstrated for cells which are mildly hyper-radiosensitive such as those associated with A-T heterozygosity. We have found this level of mild hypersensitivity for cells from some 20 to 30 % of apparently normal individuals and from apparently normal parents of Retinoblastoma patients. We found significant differences in gene expression in somatic cells from unaffected parents of Rb patients as compared with normal controls, suggesting that these parents may harbor some as yet unidentified genetic abnormality. In other experiments we sought to determine the extent of differences in normal human cellular reaponses to radiation depending on their irradiation in 2D monolayer vs 3D organized acinar growth conditions. We exmined cell reproductive death, chromosomal aberration induction, and the levels of γ-H2AX foci in cells after single acute gamma-ray doses and immediately after 20 hours of irradiation at a dose rate of 0.0017 Gy/min. We found no significant differences in the dose-responses of these cells under the 2D or 3D growth conditions. While this does not mean such differences cannot occur in other situations, it does mean that they do not generally or necessarily occur. In another series of studies in collaboration with Dr Chuan Li, with supprt from this current grant. We reported a role for apoptotic cell death in promoting wound healing and tissue regeneration in mice. Apoptotic cells released growth signals that stimulated the proliferation of progenitor or stem cells. In yet another collaboration with Dr, B. Chen with funds from this grant, the relative radiosensitivity to cell killing as well as chromosomal instability of 13 DNA-PKcs site-directed mutant cell lines (defective at phosphorylation sites or kinase

  15. Prototype Operational Advances for Atmospheric Radiation Dose Rate Specification

    NASA Astrophysics Data System (ADS)

    Tobiska, W. K.; Bouwer, D.; Bailey, J. J.; Didkovsky, L. V.; Judge, K.; Garrett, H. B.; Atwell, W.; Gersey, B.; Wilkins, R.; Rice, D.; Schunk, R. W.; Bell, D.; Mertens, C. J.; Xu, X.; Crowley, G.; Reynolds, A.; Azeem, I.; Wiltberger, M. J.; Wiley, S.; Bacon, S.; Teets, E.; Sim, A.; Dominik, L.

    2014-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. The coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has developed innovative, new space weather observations that will become part of the toolset that is transitioned into operational use. One prototype operational system for providing timely information about the effects of space weather is SET's Automated Radiation Measurements for Aerospace Safety (ARMAS) system. ARMAS will provide the "weather" of the radiation environment to improve aircraft crew and passenger safety. Through several dozen flights the ARMAS project has successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time via Iridium satellites, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. We are extending the dose measurement domain above commercial aviation altitudes into the stratosphere with a collaborative project organized by NASA's Armstrong Flight Research Center (AFRC) called Upper-atmospheric Space and Earth Weather eXperiment (USEWX). In USEWX we will be flying on the ER-2 high altitude aircraft a micro dosimeter for

  16. Dosimetric Study of a Low-Dose-Rate Brachytherapy Source

    NASA Astrophysics Data System (ADS)

    Rodríguez-Villafuerte, M.; Arzamendi, S.; Díaz-Perches, R.

    Carcinoma of the cervix is the most common malignancy - in terms of both incidence and mortality - in Mexican women. Low dose rate (LDR) intracavitary brachytherapy is normally prescribed for the treatment of this disease to the vast majority of patients attending public hospitals in our country. However, most treatment planning systems being used in these hospitals still rely on Sievert integral dose calculations. Moreover, experimental verification of dose distributions are hardly ever done. In this work we present a dosimetric characterisation of the Amersham CDCS-J 137Cs source, an LDR brachytherapy source commonly used in Mexican hospitals. To this end a Monte Carlo simulation was developed, that includes a realistic description of the internal structure of the source embedded in a scattering medium. The Monte Carlo results were compared to experimental measurements of dose distributions. A lucite phantom with the same geometric characteristics as the one used in the simulation was built. Dose measurements were performed using thermoluminescent dosimeters together with commercial RadioChromic dye film. A comparison between our Monte Carlo simulation, the experimental data, and results reported in the literature is presented.

  17. Dose rate effects in radiation degradation of polymer-based cable materials

    NASA Astrophysics Data System (ADS)

    Plaček, V.; Bartoníček, B.; Hnát, V.; Otáhal, B.

    2003-08-01

    Cable ageing under the nuclear power plant (NPP) conditions must be effectively managed to ensure that the required plant safety and reliability are maintained throughout the plant service life. Ionizing radiation is one of the main stressors causing age-related degradation of polymer-based cable materials in air. For a given absorbed dose, radiation-induced damage to a polymer in air environment usually depends on the dose rate of the exposure. In this work, the effect of dose rate on the degradation rate has been studied. Three types of NPP cables (with jacket/insulation combinations PVC/PVC, PVC/PE, XPE/XPE) were irradiated at room temperature using 60Co gamma ray source at average dose rates of 7, 30 and 100 Gy/h with the doses up to 590 kGy. The irradiated samples have been tested for their mechanical properties, thermo-oxidative stability (using differential scanning calorimetry, DSC), and density. In the case of PVC and PE samples, the tested properties have shown evident dose rate effects, while the XPE material has shown no noticeable ones. The values of elongation at break and the thermo-oxidative stability decrease with the advanced degradation, density tends to increase with the absorbed dose. For XPE samples this effect can be partially explained by the increase of crystallinity. It was tested by the DSC determination of the crystalline phase amount.

  18. DOSE TO CURIE DETERMINATION FOR CONTAINERS WITH MEASURABLE CS-137

    SciTech Connect

    RATHBUN LA; ANDERSON JD; SWAN RJ

    2010-12-03

    The Next Generation Retrieval (NGR) project will retrieve suspect transuranic (TRU) waste containers from Trenches 17 and 27 in the 218-E-12B (12B) burial ground. The trenches were in operation from May 1970 through October 1972. A portion of the retrieved containers that will require shipment to and acceptance at a treatment, storage, and disposal (TSD) facility and the containers will be either remote-handled (RH) and/or contact-handled (CH). The method discussed in this document will be used for the RH and some of the CH containers to determine the radionuclide inventory. Waste disposition (shipment and TSD acceptance) requires that the radioactive content be characterized for each container. Source-term estimates using high resolution, shielded, gamma-ray scan assay techniques cannot be performed on a number of RH and other containers with high dose rates from {sup 137}Cs-{sup 137m}Ba. This document provides the method to quantify the radioactive inventory of fission product gamma emitters within the containers based on the surface dose rate measurements taken in the field with hand-held survey instruments.

  19. Limitations of the TG-43 formalism for skin high-dose-rate brachytherapy dose calculations

    SciTech Connect

    Granero, Domingo; Perez-Calatayud, Jose; Vijande, Javier; Ballester, Facundo; Rivard, Mark J.

    2014-02-15

    Purpose: In skin high-dose-rate (HDR) brachytherapy, sources are located outside, in contact with, or implanted at some depth below the skin surface. Most treatment planning systems use the TG-43 formalism, which is based on single-source dose superposition within an infinite water medium without accounting for the true geometry in which conditions for scattered radiation are altered by the presence of air. The purpose of this study is to evaluate the dosimetric limitations of the TG-43 formalism in HDR skin brachytherapy and the potential clinical impact. Methods: Dose rate distributions of typical configurations used in skin brachytherapy were obtained: a 5 cm × 5 cm superficial mould; a source inside a catheter located at the skin surface with and without backscatter bolus; and a typical interstitial implant consisting of an HDR source in a catheter located at a depth of 0.5 cm. Commercially available HDR{sup 60}Co and {sup 192}Ir sources and a hypothetical {sup 169}Yb source were considered. The Geant4 Monte Carlo radiation transport code was used to estimate dose rate distributions for the configurations considered. These results were then compared to those obtained with the TG-43 dose calculation formalism. In particular, the influence of adding bolus material over the implant was studied. Results: For a 5 cm × 5 cm{sup 192}Ir superficial mould and 0.5 cm prescription depth, dose differences in comparison to the TG-43 method were about −3%. When the source was positioned at the skin surface, dose differences were smaller than −1% for {sup 60}Co and {sup 192}Ir, yet −3% for {sup 169}Yb. For the interstitial implant, dose differences at the skin surface were −7% for {sup 60}Co, −0.6% for {sup 192}Ir, and −2.5% for {sup 169}Yb. Conclusions: This study indicates the following: (i) for the superficial mould, no bolus is needed; (ii) when the source is in contact with the skin surface, no bolus is needed for either {sup 60}Co and {sup 192}Ir. For

  20. NAC-1 cask dose rate calculations for LWR spent fuel

    SciTech Connect

    CARLSON, A.B.

    1999-02-24

    A Nuclear Assurance Corporation nuclear fuel transport cask, NAC-1, is being considered as a transport and storage option for spent nuclear fuel located in the B-Cell of the 324 Building. The loaded casks will be shipped to the 200 East Area Interim Storage Area for dry interim storage. Several calculations were performed to assess the photon and neutron dose rates. This report describes the analytical methods, models, and results of this investigation.

  1. Comparison of monoenergetic photon organ dose rate coefficients for stylized and voxel phantoms submerged in air

    SciTech Connect

    Bellamy, Michael B.; Hiller, Mauritius M.; Dewji, Shaheen A.; Veinot, Kenneth G.; Leggett, Richard Wayne; Eckerman, Keith F.; Easterly, Clay E.; Hertel, Nolan E.

    2016-02-01

    As part of a broader effort to calculate effective dose rate coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, soil or water, age-specific stylized phantoms have been employed to determine dose coefficients relating dose rate to organs and tissues in the body. In this article, dose rate coefficients computed using the International Commission on Radiological Protection reference adult male voxel phantom are compared with values computed using the Oak Ridge National Laboratory adult male stylized phantom in an air submersion exposure geometry. Monte Carlo calculations for both phantoms were performed for monoenergetic source photons in the range of 30 keV to 5 MeV. Furthermore, these calculations largely result in differences under 10 % for photon energies above 50 keV, and it can be expected that both models show comparable results for the environmental sources of radionuclides.

  2. Comparison of monoenergetic photon organ dose rate coefficients for stylized and voxel phantoms submerged in air

    DOE PAGES

    Bellamy, Michael B.; Hiller, Mauritius M.; Dewji, Shaheen A.; ...

    2016-02-01

    As part of a broader effort to calculate effective dose rate coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, soil or water, age-specific stylized phantoms have been employed to determine dose coefficients relating dose rate to organs and tissues in the body. In this article, dose rate coefficients computed using the International Commission on Radiological Protection reference adult male voxel phantom are compared with values computed using the Oak Ridge National Laboratory adult male stylized phantom in an air submersion exposure geometry. Monte Carlo calculations for both phantoms were performed for monoenergetic source photonsmore » in the range of 30 keV to 5 MeV. Furthermore, these calculations largely result in differences under 10 % for photon energies above 50 keV, and it can be expected that both models show comparable results for the environmental sources of radionuclides.« less

  3. Ambient dose and dose rate measurements in the vicinity of Elekta Precise accelerators for radiation therapy.

    PubMed

    Zutz, H; Hupe, O

    2014-12-01

    In radiation therapy, commercially available medical linear accelerators (LINACs) are used. At high primary beam energies in the 10-MeV range, the leakage dose of the accelerator head and the backscatter from the room walls, the air and the patient become more important. Therefore, radiation protection measurements of photon dose rates in the treatment room and in the maze are performed to quantify the radiation field. Since the radiation of the LINACs is usually pulsed with short radiation pulse durations in the microsecond range, there are problems with electronic dose (rate) meters commonly used in radiation protection. In this paper measurements with ionisation chambers are presented and electronic dosemeters are used for testing at selected positions. The measured time-averaged dose rate ranges from a few microsieverts per hour in the maze to some millisieverts per hour in the vicinity of the accelerator head and up to some sieverts per hour in the blanked primary beam and several hundred sieverts per hour in the direct primary beam.

  4. Study of coolant activation and dose rates with flow rate and power perturbations in pool-type research reactors

    SciTech Connect

    Mirza, N.M.; Mirza, S.M.; Ahmad, N. )

    1991-12-01

    This paper reports on a computer code using the multigroup diffusion theory based LEOPARD and ODMUG programs that has been developed to calculate the activity in the coolant leaving the core of a pool-type research reactor. Using this code, the dose rates at various locations along the coolant path with varying coolant flow rate and reactor power perturbations are determined. A flow rate decrease from 1000 to 145 m{sup 3}/h is considered. The results indicate that a flow rate decrease leads to an increase in the coolant outlet temperature, which affects the neutron group constants and hence the group fluxes. The activity in the coolant leaving the core increases with flow rate decrease. However, at the inlet of the holdup tank, the total dose rate first increases, then passes through a maximum at {approximately} 500 m{sup 3}/h, and finally decreases with flow rate decrease. The activity at the outlet of the holdup tank is mainly due to {sup 24}Na and {sup 56}Mn, and it increases by {approximately} 2% when the flow rate decreases from 1000 to 145 m{sup 3}/h. In an accidental power rise at constant flow rate, the activity in the coolant increases, and the dose rates at all the points along the coolant path show a slight nonlinear rise as the reactor power density increases.

  5. Optimal mapping of terrestrial gamma dose rates using geological parent material and aerogeophysical survey data.

    PubMed

    Rawlins, B G; Scheib, C; Tyler, A N; Beamish, D

    2012-12-01

    Regulatory authorities need ways to estimate natural terrestrial gamma radiation dose rates (nGy h⁻¹) across the landscape accurately, to assess its potential deleterious health effects. The primary method for estimating outdoor dose rate is to use an in situ detector supported 1 m above the ground, but such measurements are costly and cannot capture the landscape-scale variation in dose rates which are associated with changes in soil and parent material mineralogy. We investigate the potential for improving estimates of terrestrial gamma dose rates across Northern Ireland (13,542 km²) using measurements from 168 sites and two sources of ancillary data: (i) a map based on a simplified classification of soil parent material, and (ii) dose estimates from a national-scale, airborne radiometric survey. We used the linear mixed modelling framework in which the two ancillary variables were included in separate models as fixed effects, plus a correlation structure which captures the spatially correlated variance component. We used a cross-validation procedure to determine the magnitude of the prediction errors for the different models. We removed a random subset of 10 terrestrial measurements and formed the model from the remainder (n = 158), and then used the model to predict values at the other 10 sites. We repeated this procedure 50 times. The measurements of terrestrial dose vary between 1 and 103 (nGy h⁻¹). The median absolute model prediction errors (nGy h⁻¹) for the three models declined in the following order: no ancillary data (10.8) > simple geological classification (8.3) > airborne radiometric dose (5.4) as a single fixed effect. Estimates of airborne radiometric gamma dose rate can significantly improve the spatial prediction of terrestrial dose rate.

  6. Low-dose-rate, low-dose irradiation delays neurodegeneration in a model of retinitis pigmentosa.

    PubMed

    Otani, Atsushi; Kojima, Hiroshi; Guo, Congrong; Oishi, Akio; Yoshimura, Nagahisa

    2012-01-01

    The existence of radiation hormesis is controversial. Several stimulatory effects of low-dose (LD) radiation have been reported to date; however, the effects on neural tissue or neurodegeneration remain unknown. Here, we show that LD radiation has a neuroprotective effect in mouse models of retinitis pigmentosa, a hereditary, progressive neurodegenerative disease that leads to blindness. Various LD radiation doses were administered to the eyes in a retinal degeneration mouse model, and their pathological and physiological effects were analyzed. LD gamma radiation in a low-dose-rate (LDR) condition rescues photoreceptor cell apoptosis both morphologically and functionally. The greatest effect was observed in a condition using 650 mGy irradiation and a 26 mGy/minute dose rate. Multiple rounds of irradiation strengthened this neuroprotective effect. A characteristic up-regulation (563%) of antioxidative gene peroxiredoxin-2 (Prdx2) in the LDR-LD-irradiated retina was observed compared to the sham-treated control retina. Silencing the Prdx2 using small-interfering RNA administration reduced the LDR-LD rescue effect on the photoreceptors. Our results demonstrate for the first time that LDR-LD irradiation has a biological effect in neural cells of living animals. The results support that radiation exhibits hormesis, and this effect may be applied as a novel therapeutic concept for retinitis pigmentosa and for other progressive neurodegenerative diseases regardless of the mechanism of degeneration involved.

  7. Light dose versus rate of delivery: implications for macroalgal productivity.

    PubMed

    Desmond, Matthew J; Pritchard, Daniel W; Hepburn, Christopher D

    2017-04-07

    The role of how light is delivered over time is an area of macroalgal photosynthesis that has been overlooked but may play a significant role in controlling rates of productivity and the structure and persistence of communities. Here we present data that quantify the relative influence of total quantum dose and delivery rate on the photosynthetic productivity of five ecologically important Phaeophyceae species from southern New Zealand. Results suggested that greater net oxygen production occurs when light is delivered at a lower photon flux density (PFD) over a longer period compared to a greater PFD over a shorter period, given the same total dose. This was due to greater efficiency (α) at a lower PFD which, for some species, meant a compensatory effect can occur. This resulted in equal or greater productivity even when the total quantum dose of the lower PFD was significantly reduced. It was also shown that light limitation at Huriawa Peninsula, where macroaglae were sourced, may be restricting the acclimation potential of species at greater depths, and that even at shallow depth periods of significant light limitation are likely to occur. This research is of particular interest as the variability of light delivery to coastal reef systems increases as a result of anthropogenic disturbances, and as the value of in situ community primary productivity estimates is recognised.

  8. Nuclear mass inventory, photon dose rate and thermal decay heat of spent research reactor fuel assemblies

    SciTech Connect

    Pond, R.B.; Matos, J.E.

    1996-05-01

    As part of the Department of Energy`s spent nuclear fuel acceptance criteria, the mass of uranium and transuranic elements in spent research reactor fuel must be specified. These data are, however, not always known or readily determined. It is the purpose of this report to provide estimates of these data for some of the more common research reactor fuel assembly types. The specific types considered here are MTR, TRIGA and DIDO fuel assemblies. The degree of physical protection given to spent fuel assemblies is largely dependent upon the photon dose rate of the spent fuel material. These data also, are not always known or readily determined. Because of a self-protecting dose rate level of radiation (dose rate greater than 100 ren-x/h at I m in air), it is important to know the dose rate of spent fuel assemblies at all time. Estimates of the photon dose rate for spent MTR, TRIGA and DIDO-type fuel assemblies are given in this report.

  9. A radiobiological model for the relative biological effectiveness of high-dose-rate 252Cf brachytherapy.

    PubMed

    Rivard, Mark J; Melhus, Christopher S; Zinkin, Heather D; Stapleford, Liza J; Evans, Krista E; Wazer, David E; Odlozilíková, Anna

    2005-09-01

    While there is significant clinical experience using both low- and high-dose-rate 252Cf brachytherapy, there are minimal data regarding values for the neutron relative biological effectiveness (RBE) with both modalities. The aim of this research was to derive a radiobiological model for 252Cf neutron RBE and to compare these results with neutron RBE values used clinically in Russia. The linear-quadratic (LQ) model was used as the basis to characterize cell survival after irradiation, with identical cell killing rates (S(N) = S(gamma)) between 252Cf neutrons and photons used for derivation of RBE. Using this equality, a relationship among neutron dose and LQ radiobiological parameter (i.e., alpha(N), beta(N), alpha(gamma), beta(gamma)) was obtained without the need to specify the photon dose. These results were used to derive the 252Cf neutron RBE, which was then compared with Russian neutron RBE values. The 252Cf neutron RBE was determined after incorporating the LQ radiobiological parameters obtained from cell survival studies with fast neutrons and teletherapy photons. For single-fraction high-dose-rate neutron doses of 0.5, 1.0, 1.5 and 2.0 Gy, the total biologically equivalent doses were 1.8, 3.4, 4.7 and 6.0 RBE Gy with 252Cf neutron RBE values of 3.2, 2.9, 2.7 and 2.5, respectively. Using clinical data for late-responding reactions from 252Cf, Russian investigators created an empirical model that predicted high-dose-rate 252Cf neutron RBE values ranging from 3.6 to 2.9 for similar doses and fractionation schemes and observed that 252Cf neutron RBE increases with the number of treatment fractions. Using these relationships, our results were in general concordance with high-dose-rate 252Cf RBE values obtained from Russian clinical experience.

  10. Dose and dose rate effects of whole-body gamma-irradiation: I. Lymphocytes and lymphoid organs

    NASA Technical Reports Server (NTRS)

    Pecaut, M. J.; Nelson, G. A.; Gridley, D. S.

    2001-01-01

    The major goal of part I of this study was to compare varying doses and dose rates of whole-body gamma-radiation on lymphoid cells and organs. C57BL/6 mice (n = 75) were exposed to 0, 0.5, 1.5, and 3.0 Gy gamma-rays (60Co) at 1 cGy/min (low-dose rate, LDR) and 80 cGy/min (high-dose rate, HDR) and euthanized 4 days later. A significant dose-dependent loss of spleen mass was observed with both LDR and HDR irradiation; for the thymus this was true only with HDR. Decreasing leukocyte and lymphocyte numbers occurred with increasing dose in blood and spleen at both dose rates. The numbers (not percentages) of CD3+ T lymphocytes decreased in the blood in a dose-dependent manner at both HDR and LDR. Splenic T cell counts decreased with dose only in HDR groups; percentages increased with dose at both dose rates. Dose-dependent decreases occurred in CD4+ T helper and CD8+ T cytotoxic cell counts at HDR and LDR. In the blood the percentages of CD4+ cells increased with increasing dose at both dose rates, whereas in the spleen the counts decreased only in the HDR groups. The percentages of the CD8+ population remained stable in both blood and spleen. CD19+ B cell counts and percentages in both compartments declined markedly with increasing HDR and LDR radiation. NK1.1+ natural killer cell numbers and proportions remained relatively stable. Overall, these data indicate that the observed changes were highly dependent on the dose, but not dose rate, and that cells in the spleen are more affected by dose rate than those in blood. The results also suggest that the response of lymphocytes in different body compartments may be variable.

  11. Dosimetry Modeling for Focal Low-Dose-Rate Prostate Brachytherapy

    SciTech Connect

    Al-Qaisieh, Bashar; Mason, Josh; Bownes, Peter; Henry, Ann; Dickinson, Louise; Ahmed, Hashim U.; Emberton, Mark; Langley, Stephen

    2015-07-15

    Purpose: Focal brachytherapy targeted to an individual lesion(s) within the prostate may reduce side effects experienced with whole-gland brachytherapy. The outcomes of a consensus meeting on focal prostate brachytherapy were used to investigate optimal dosimetry of focal low-dose-rate (LDR) prostate brachytherapy targeted using multiparametric magnetic resonance imaging (mp-MRI) and transperineal template prostate mapping (TPM) biopsy, including the effects of random and systematic seed displacements and interseed attenuation (ISA). Methods and Materials: Nine patients were selected according to clinical characteristics and concordance of TPM and mp-MRI. Retrospectively, 3 treatment plans were analyzed for each case: whole-gland (WG), hemi-gland (hemi), and ultra-focal (UF) plans, with 145-Gy prescription dose and identical dose constraints for each plan. Plan robustness to seed displacement and ISA were assessed using Monte Carlo simulations. Results: WG plans used a mean 28 needles and 81 seeds, hemi plans used 17 needles and 56 seeds, and UF plans used 12 needles and 25 seeds. Mean D90 (minimum dose received by 90% of the target) and V100 (percentage of the target that receives 100% dose) values were 181.3 Gy and 99.8% for the prostate in WG plans, 195.7 Gy and 97.8% for the hemi-prostate in hemi plans, and 218.3 Gy and 99.8% for the focal target in UF plans. Mean urethra D10 was 205.9 Gy, 191.4 Gy, and 92.4 Gy in WG, hemi, and UF plans, respectively. Mean rectum D2 cm{sup 3} was 107.5 Gy, 77.0 Gy, and 42.7 Gy in WG, hemi, and UF plans, respectively. Focal plans were more sensitive to seed displacement errors: random shifts with a standard deviation of 4 mm reduced mean target D90 by 14.0%, 20.5%, and 32.0% for WG, hemi, and UF plans, respectively. ISA has a similar impact on dose-volume histogram parameters for all plan types. Conclusions: Treatment planning for focal LDR brachytherapy is feasible. Dose constraints are easily met with a notable

  12. Advanced Computational Approaches for Characterizing Stochastic Cellular Responses to Low Dose, Low Dose Rate Exposures

    SciTech Connect

    Scott, Bobby, R., Ph.D.

    2003-06-27

    applications of NEOTRANS2, indicate that nonlinear threshold-type, dose-response relationships for excess stochastic effects (problematic nonlethal mutations, neoplastic transformation) should be expected after exposure to low linear energy transfer (LET) gamma rays or gamma rays in combination with high-LET alpha radiation. Similar thresholds are expected for low-dose-rate low-LET beta irradiation. We attribute the thresholds to low-dose, low-LET radiation induced protection against spontaneous mutations and neoplastic transformations. The protection is presumed mainly to involve selective elimination of problematic cells via apoptosis. Low-dose, low-LET radiation is presumed to trigger wide-area cell signaling, which in turn leads to problematic bystander cells (e.g., mutants, neoplastically transformed cells) selectively undergoing apoptosis. Thus, this protective bystander effect leads to selective elimination of problematic cells (a tissue cleansing process in vivo). However, this protective bystander effects is a different process from low-dose stimulation of the immune system. Low-dose, low-LET radiation stimulation of the immune system may explain why thresholds for inducing excess cancer appear much larger (possibly more than 100-fold larger) than thresholds for inducing excess mutations and neoplastic transformations, when the dose rate is low. For ionizing radiation, the current risk assessment paradigm is such that the relative risk (RR) is always ¡Ý 1, no matter how small the dose. Our research results indicate that for low-dose or low-dose-rate, low-LET irradiation, RR < 1 may be more the rule than the exception. Directly tied to the current RR paradigm are the billion-dollar cleanup costs for radionuclide-contaminated DOE sites. Our research results suggest that continued use of the current RR paradigm for which RR ¡Ý 1 could cause more harm than benefit to society (e.g., by spreading unwarranted fear about phantom excess risks associated with low-dose low

  13. Dose Rate Calibration of a Commercial Beta-Particle Irradiator Used In Archeological and Geological Dating

    SciTech Connect

    Bernal, S.M.

    2004-10-31

    The 801E Multiple Sample Irradiator, manufactured by Daybreak Nuclear Systems, is capable of exposing up to 30 samples to beta radiation by placing each sample one by one directly beneath a heavily shielded ceramic Sr-90/Y-90 source and opening a specially designed shutter. Daybreak Nuclear Systems does not provide the {sup 90}Sr/{sup 90}Y dose rate to the sample because of variations of up to 20% in the nominal activity of the beta sources (separately manufactured by AEA Technology). Thus it is left to the end user to determine. Here aluminum oxide doped with carbon (Al{sub 2}O{sub 3}:C), in the form of Landauer's Luxel{trademark}, was irradiated to different known doses using a calibrated {sup 90}Sr/{sup 90}Y beta particle irradiator, and the OSL signal monitored after each irradiation to generate a calibration curve. Comparison of the OSL Signal from the unknown 801E Irradiator dose with the calibration curve enabled the dose and therefore dose rate to be determined. The timing accuracy of the 801E Irradiator was also evaluated and found to be +/- 0.5 seconds. The dose rate of the beta source was found to be 0.147 +/- 0.007 Gy/s.

  14. The Dose Rate Conversion Factors for Nuclear Fallout

    SciTech Connect

    Spriggs, G D

    2009-02-13

    In a previous paper, the composite exposure rate conversion factor (ECF) for nuclear fallout was calculated using a simple theoretical photon-transport model. The theoretical model was used to fill in the gaps in the FGR-12 table generated by ORNL. The FGR-12 table contains the individual conversion factors for approximate 1000 radionuclides. However, in order to calculate the exposure rate during the first 30 minutes following a nuclear detonation, the conversion factors for approximately 2000 radionuclides are needed. From a human-effects standpoint, it is also necessary to have the dose rate conversion factors (DCFs) for all 2000 radionuclides. The DCFs are used to predict the whole-body dose rates that would occur if a human were standing in a radiation field of known exposure rate. As calculated by ORNL, the whole-body dose rate (rem/hr) is approximately 70% of the exposure rate (R/hr) at one meter above the surface. Hence, the individual DCFs could be estimated by multiplying the individual ECFs by 0.7. Although this is a handy rule-of-thumb, a more consistent (and perhaps, more accurate) method of estimating the individual DCFs for the missing radionuclides in the FGR-12 table is to use the linear relationship between DCF and total gamma energy released per decay. This relationship is shown in Figure 1. The DCFs for individual organs in the body can also be estimated from the estimated whole-body DCF. Using the DCFs given FGR-12, the ratio of the organ-specific DCFs to the whole-body DCF were plotted as a function of the whole-body DCF. From these plots, the asymptotic ratios were obtained (see Table 1). Using these asymptotic ratios, the organ-specific DCFs can be estimated using the estimated whole-body DCF for each of the missing radionuclides in the FGR-12 table. Although this procedure for estimating the organ-specific DCFs may over-estimate the value for some low gamma-energy emitters, having a finite value for the organ-specific DCFs in the table is

  15. Radon exhalation rates and gamma doses from ceramic tiles.

    PubMed

    O'Brien, R S; Aral, H; Peggie, J R

    1998-12-01

    This study was carried out to assess the possible radiological hazard resulting from the use of zircon in glaze applied to tiles used in buildings. The 226Ra content of various stains and glazing compounds was measured using gamma spectroscopy and the 222Rn exhalation rates for these materials were measured using adsorption on activated charcoal. The radon exhalation rates were found to be close to or less than the minimum detectable values for the equipment used. This limit was much lower than the estimated exhalation rates, which were calculated assuming that the parameters controlling the emanation and diffusion of 222Rn in the materials studied were similar to those of soil. This implied that the 222Rn emanation coefficients and/or diffusion coefficients for most of the materials studied were very much lower than expected. Measurements on zircon powders showed that the 222Rn emanation coefficient for zircon was much lower than that for soil, indicating that only a small fraction of the 222Rn produced by the decay of 226Ra was able to escape from the zircon grains. The estimated increase in radon concentration in room air and the estimated external gamma radiation dose resulting from the use of zircon glaze are both much lower than the relevant action level and dose limit.

  16. High-dose-rate and pulsed-dose-rate brachytherapy for oral cavity cancer and oropharynx cancer

    PubMed Central

    2010-01-01

    Interstitial brachytherapy represents the treatment of choice for small tumours, regionally localized in the oral cavity and the oropharynx. In the technical setting, continuous low-dose-rate (LDR) brachytherapy represented for many years the gold standard for administering radiation in head and neck brachytherapy. Large series of head and neck cancer patients treated with LDR brachytherapy have been reported, constituting an invaluable source of clinical data and the gold standard to compare results of new techniques. Nowadays, LDR brachytherapy competes with fractionated HDR and hyperfractionated PDR. In the paper an overview of the different time-dose-fraction alternatives to LDR brachytherapy in head and neck cancer is presented, as well as the radiobiological basis of different dose-rate schedules, the linear-quadratic model, interconversion of fractionation schedules and the repair half-times for early- and late-responding tissues. In subsequent sections essentials of switching from LDR to HDR and from LDR to PDR are discussed. Selected clinical results using HDR and PDR brachytherapy in oral cavity and oropharynx cancer are presented. PMID:28050175

  17. Absorbed dose rates in tissue from prompt gamma emissions from near-thermal neutron absorption

    DOE PAGES

    Schwahn, Scott O.

    2015-10-01

    Prompt gamma emission data from the International Atomic Energy Agency s Prompt Gamma-ray Neutron Activation Analysis database are analyzed to determine the absorbed dose rates in tissue to be expected when natural elements are exposed in a near-thermal neutron environment.

  18. In vitro RABiT measurement of dose rate effects on radiation induction of micronuclei in human peripheral blood lymphocytes

    PubMed Central

    Bertucci, Antonella; Smilenov, Lubomir B.; Turner, Helen C.; Amundson, Sally A.; Brenner, David J.

    2016-01-01

    Developing new methods for radiation biodosimetry has been identified as a high priority need in case of a radiological accident or nuclear terrorist attacks. A large-scale radiological incident would result in an immediate critical need to assess the radiation doses received by thousands of individuals. Casualties will be exposed to different doses and dose-rates due to their geographical position and sheltering conditions, and dose-rate is one of the principal factors that determine the biological consequences of a given absorbed dose. In these scenarios high-throughput platforms are required to identify the biological dose in a large number of exposed individuals for clinical monitoring and medical treatment. The RABiT (Rapid Automated Biodosimetry Tool) is designed to be completely automated from the input of blood sample into the machine to the output of a dose estimate. The primary goal of this paper was to quantify the dose-rate effects for RABiT-measured micronuclei in vitro in human lymphocytes. Blood samples from healthy volunteers were exposed in vitro to different doses of X-rays to acute and protracted doses over a period up to 24 hours. The acute dose (ADR) was delivered at ∼1.03Gy/min and the low dose rate (LDR) exposure at ∼0.31Gy/min. The results showed that the yield of micronuclei decreases with decreasing dose-rate starting at 2Gy, whereas response was indistinguishable from that of acute exposure in the low dose region, up to 0.5Gy. The results showed a linear-quadratic dose-response relationship for the occurrence of micronuclei for the acute exposure and a linear dose-response relationship for the low dose-rate exposure. PMID:26791381

  19. Reporting small bowel dose in cervix cancer high-dose-rate brachytherapy.

    PubMed

    Liao, Yixiang; Dandekar, Virag; Chu, James C H; Turian, Julius; Bernard, Damian; Kiel, Krystyna

    2016-01-01

    Small bowel (SB) is an organ at risk (OAR) that may potentially develop toxicity after radiotherapy for cervix cancer. However, its dose from brachytherapy (BT) is not systematically reported as in other OARs, even with image-guided brachytherapy (IGBT). This study aims to introduce consideration of quantified objectives for SB in BT plan optimization and to evaluate the feasibility of sparing SB while maintaining adequate target coverage. In all, 13 patients were included in this retrospective study. All patients were treated with external beam radiotherapy (EBRT) 45Gy in 25 fractions followed by high dose rate (HDR)-BT boost of 28Gy in 4 fractions using tandem/ring applicator. Magnetic resonance imaging (MRI) and computed tomographic (CT) images were obtained to define the gross tumor volume (GTV), high-risk clinical target volume (HR-CTV) and OARs (rectum, bladder, sigmoid colon, and SB). Treatment plans were generated for each patient using GEC-ESTRO recommendations based on the first CT/MRI. Treatment plans were revised to reduce SB dose when the [Formula: see text] dose to SB was > 5Gy, while maintaining other OAR constraints. For the 7 patients with 2 sets of CT and MRI studies, the interfraction variation of the most exposed SB was analyzed. Plan revisions were done in 6 of 13 cases owing to high [Formula: see text] of SB. An average reduction of 19% in [Formula: see text] was achieved. Meeting SB and other OAR constraints resulted in less than optimal target coverage in 2 patients (D90 of HR-CTV < 77Gyαβ10). The highest interfraction variation was observed for SB at 16 ± 59%, as opposed to 28 ± 27% for rectum and 21 ± 16% for bladder. Prospective reporting of SB dose could provide data required to establish a potential correlation with radiation-induced late complication for SB.

  20. Isodose mapping of terrestrial gamma radiation dose rate of Selangor state, Kuala Lumpur and Putrajaya, Malaysia.

    PubMed

    Sanusi, M S M; Ramli, A T; Gabdo, H T; Garba, N N; Heryanshah, A; Wagiran, H; Said, M N

    2014-09-01

    A terrestrial gamma radiation survey for the state of Selangor, Kuala Lumpur and Putrajaya was conducted to obtain baseline data for environmental radiological health practices. Based on soil type, geological background and information from airborne survey maps, 95 survey points statistically representing the study area were determined. The measured doses varied according to geological background and soil types. They ranged from 17 nGy h(-1) to 500 nGy h(-1). The mean terrestrial gamma dose rate in air above the ground was 182 ± 81 nGy h(-1). This is two times higher than the average dose rate of terrestrial gamma radiation in Malaysia which is 92 nGy h(-1) (UNSCEAR 2000). An isodose map was produced to represent exposure rate from natural sources of terrestrial gamma radiation.

  1. Radiation dose-rate meter using an energy-sensitive counter

    DOEpatents

    Kopp, Manfred K.

    1988-01-01

    A radiation dose-rate meter is provided which uses an energy-sensitive detector and combines charge quantization and pulse-rate measurement to monitor radiation dose rates. The charge from each detected photon is quantized by level-sensitive comparators so that the resulting total output pulse rate is proportional to the dose-rate.

  2. Monte Carlo Study of Radiation Dose Enhancement by Gadolinium in Megavoltage and High Dose Rate Radiotherapy

    PubMed Central

    Zhang, Daniel G.; Feygelman, Vladimir; Moros, Eduardo G.; Latifi, Kujtim; Zhang, Geoffrey G.

    2014-01-01

    MRI is often used in tumor localization for radiotherapy treatment planning, with gadolinium (Gd)-containing materials often introduced as a contrast agent. Motexafin gadolinium is a novel radiosensitizer currently being studied in clinical trials. The nanoparticle technologies can target tumors with high concentration of high-Z materials. This Monte Carlo study is the first detailed quantitative investigation of high-Z material Gd-induced dose enhancement in megavoltage external beam photon therapy. BEAMnrc, a radiotherapy Monte Carlo simulation package, was used to calculate dose enhancement as a function of Gd concentration. Published phase space files for the TrueBeam flattening filter free (FFF) and conventional flattened 6MV photon beams were used. High dose rate (HDR) brachytherapy with Ir-192 source was also investigated as a reference. The energy spectra difference caused a dose enhancement difference between the two beams. Since the Ir-192 photons have lower energy yet, the photoelectric effect in the presence of Gd leads to even higher dose enhancement in HDR. At depth of 1.8 cm, the percent mean dose enhancement for the FFF beam was 0.38±0.12, 1.39±0.21, 2.51±0.34, 3.59±0.26, and 4.59±0.34 for Gd concentrations of 1, 5, 10, 15, and 20 mg/mL, respectively. The corresponding values for the flattened beam were 0.09±0.14, 0.50±0.28, 1.19±0.29, 1.68±0.39, and 2.34±0.24. For Ir-192 with direct contact, the enhanced were 0.50±0.14, 2.79±0.17, 5.49±0.12, 8.19±0.14, and 10.80±0.13. Gd-containing materials used in MRI as contrast agents can also potentially serve as radiosensitizers in radiotherapy. This study demonstrates that Gd can be used to enhance radiation dose in target volumes not only in HDR brachytherapy, but also in 6 MV FFF external beam radiotherapy, but higher than the currently used clinical concentration (>5 mg/mL) would be needed. PMID:25275550

  3. Reaction rate theory of radiation exposure:Effects of dose rate on mutation frequency

    NASA Astrophysics Data System (ADS)

    Bando, Masako; Nakamura, Issei; Manabe, Yuichiro

    2014-03-01

    We revisit the linear no threshold (LNT) hypothesis deduced from the prominent works done by H. J. Muller for the DNA mutation induced by the artificial radiation and by W. L. Russell and E. M. Kelly for that of mega-mouse experiments, developing a new kinetic reaction theory. While the existing theoretical models primarily rely on the dependence of the total dose D on the mutation frequency, the key ingredient in our theory is the dose rate d(t) that accounts for decrease in the mutation rate during the time course of the cellular reactions. The general form for the mutation frequency with the constant dose rate d is simply expressed as, dFm(t)/dt = A - BFm(t) , with A =a0 +a1(d +deff) and B =b0 +b1(d +deff) . We discuss the solution for a most likely case with B > 0 ; Fm(t) = [A/B -Fm(0) ] (1 -e-Bt) +Fm(0) with the control value Fm(0) . We show that all the data of mega-mouse experiments by Russel with different dose rates fall on the universal scaling function Φ(τ) ≡ [Fm(τ) -Fm(0) ]/[ A / B -Fm(0) ] = 1 - exp(- τ) with scaled time τ = Bt . The concept of such a scaling rule provides us with a strong tool to study different species in a unified manner.

  4. Per-beam, planar IMRT QA passing rates do not predict clinically relevant patient dose errors

    SciTech Connect

    Nelms, Benjamin E.; Zhen Heming; Tome, Wolfgang A.

    2011-02-15

    Purpose: The purpose of this work is to determine the statistical correlation between per-beam, planar IMRT QA passing rates and several clinically relevant, anatomy-based dose errors for per-patient IMRT QA. The intent is to assess the predictive power of a common conventional IMRT QA performance metric, the Gamma passing rate per beam. Methods: Ninety-six unique data sets were created by inducing four types of dose errors in 24 clinical head and neck IMRT plans, each planned with 6 MV Varian 120-leaf MLC linear accelerators using a commercial treatment planning system and step-and-shoot delivery. The error-free beams/plans were used as ''simulated measurements'' (for generating the IMRT QA dose planes and the anatomy dose metrics) to compare to the corresponding data calculated by the error-induced plans. The degree of the induced errors was tuned to mimic IMRT QA passing rates that are commonly achieved using conventional methods. Results: Analysis of clinical metrics (parotid mean doses, spinal cord max and D1cc, CTV D95, and larynx mean) vs IMRT QA Gamma analysis (3%/3 mm, 2/2, 1/1) showed that in all cases, there were only weak to moderate correlations (range of Pearson's r-values: -0.295 to 0.653). Moreover, the moderate correlations actually had positive Pearson's r-values (i.e., clinically relevant metric differences increased with increasing IMRT QA passing rate), indicating that some of the largest anatomy-based dose differences occurred in the cases of high IMRT QA passing rates, which may be called ''false negatives.'' The results also show numerous instances of false positives or cases where low IMRT QA passing rates do not imply large errors in anatomy dose metrics. In none of the cases was there correlation consistent with high predictive power of planar IMRT passing rates, i.e., in none of the cases did high IMRT QA Gamma passing rates predict low errors in anatomy dose metrics or vice versa. Conclusions: There is a lack of correlation between

  5. Variable dose rate single-arc IMAT delivered with a constant dose rate and variable angular spacing

    NASA Astrophysics Data System (ADS)

    Tang, Grace; Earl, Matthew A.; Yu, Cedric X.

    2009-11-01

    Single-arc intensity-modulated arc therapy (IMAT) has gained worldwide interest in both research and clinical implementation due to its superior plan quality and delivery efficiency. Single-arc IMAT techniques such as the Varian RapidArc™ deliver conformal dose distributions to the target in one single gantry rotation, resulting in a delivery time in the order of 2 min. The segments in these techniques are evenly distributed within an arc and are allowed to have different monitor unit (MU) weightings. Therefore, a variable dose-rate (VDR) is required for delivery. Because the VDR requirement complicates the control hardware and software of the linear accelerators (linacs) and prevents most existing linacs from delivering IMAT, we propose an alternative planning approach for IMAT using constant dose-rate (CDR) delivery with variable angular spacing. We prove the equivalence by converting VDR-optimized RapidArc plans to CDR plans, where the evenly spaced beams in the VDR plan are redistributed to uneven spacing such that the segments with larger MU weighting occupy a greater angular interval. To minimize perturbation in the optimized dose distribution, the angular deviation of the segments was restricted to <=± 5°. This restriction requires the treatment arc to be broken into multiple sectors such that the local MU fluctuation within each sector is reduced, thereby lowering the angular deviation of the segments during redistribution. The converted CDR plans were delivered with a single gantry sweep as in the VDR plans but each sector was delivered with a different value of CDR. For four patient cases, including two head-and-neck, one brain and one prostate, all CDR plans developed with the variable spacing scheme produced similar dose distributions to the original VDR plans. For plans with complex angular MU distributions, the number of sectors increased up to four in the CDR plans in order to maintain the original plan quality. Since each sector was delivered

  6. Variable dose rate single-arc IMAT delivered with a constant dose rate and variable angular spacing.

    PubMed

    Tang, Grace; Earl, Matthew A; Yu, Cedric X

    2009-11-07

    Single-arc intensity-modulated arc therapy (IMAT) has gained worldwide interest in both research and clinical implementation due to its superior plan quality and delivery efficiency. Single-arc IMAT techniques such as the Varian RapidArc deliver conformal dose distributions to the target in one single gantry rotation, resulting in a delivery time in the order of 2 min. The segments in these techniques are evenly distributed within an arc and are allowed to have different monitor unit (MU) weightings. Therefore, a variable dose-rate (VDR) is required for delivery. Because the VDR requirement complicates the control hardware and software of the linear accelerators (linacs) and prevents most existing linacs from delivering IMAT, we propose an alternative planning approach for IMAT using constant dose-rate (CDR) delivery with variable angular spacing. We prove the equivalence by converting VDR-optimized RapidArc plans to CDR plans, where the evenly spaced beams in the VDR plan are redistributed to uneven spacing such that the segments with larger MU weighting occupy a greater angular interval. To minimize perturbation in the optimized dose distribution, the angular deviation of the segments was restricted to dose distributions to the original VDR plans. For plans with complex angular MU distributions, the number of sectors increased up to four in the CDR plans in order to maintain the original plan quality. Since each sector was

  7. ACDOS3: a further improved neutron dose-rate code

    SciTech Connect

    Martin, C.S.

    1982-07-01

    ACD0S3 is a computer code designed primarily to calculate the activities and dose rates produced by neutron activation in a variety of simple geometries. Neutron fluxes, in up to 50 groups and with energies up to 20 MeV, must be supplied as part of the input data. The neutron-source strength must also be supplied, or alternately, the code will compute it from neutral-beam operating parameters in the case where the source is a fusion-reactor injector. ACD0S3 differs from the previous version ACD0S2 in that additional geometries have been added, the neutron cross-section library has been updated, an estimate of the energy deposited by neutron reactions has been provided, and a significant increase in efficiency in reading the data libraries has been incorporated.

  8. Bronchoscopic phototherapy at comparable dose rates: Early results

    SciTech Connect

    Pass, H.I.; Delaney, T.; Smith, P.D.; Bonner, R.; Russo, A.

    1989-05-01

    Photodynamic therapy is a recently introduced treatment for surface malignancies. Since January 1987, 10 patients with endobronchial neoplasms have had bronchoscopic photodynamic therapy at similar dose rates (400 mW/cm) for total atelectasis (2), carinal narrowing with respiratory insufficiency (2), or partial obstruction without collapse (4). Two patients underwent photodynamic therapy as a preliminary to immunotherapy. Histologies included endobronchial metastases (colon, ovary, melanoma, and sarcoma, 1 each; and renal cell, 3) and primary lung cancer (3). The 2 patients with total atelectasis had complete reexpansion after photodynamic therapy, which permitted eventual sleeve lobectomy in 1. Carinal narrowing was ameliorated in the 2 patients seen with inspiratory stridor, thereby permitting hospital discharge. Endoscopically resected fragments after photodynamic therapy exhibited avascular necrosis. These data support further controlled studies of photodynamic therapy by thoracic surgical oncologists to define its limitations as well as to improve and expand its efficacy as a palliative or surgical adjuvant.

  9. The susceptibility of TaOx-based memristors to high dose rate ionizing radiation and total ionizing dose

    DOE PAGES

    McLain, Michael Lee; Sheridan, Timothy J.; Hjalmarson, Harold Paul; ...

    2014-11-11

    This paper investigates the effects of high dose rate ionizing radiation and total ionizing dose (TID) on tantalum oxide (TaOx) memristors. Transient data were obtained during the pulsed exposures for dose rates ranging from approximately 5.0 ×107 rad(Si)/s to 4.7 ×108 rad(Si)/s and for pulse widths ranging from 50 ns to 50 μs. The cumulative dose in these tests did not appear to impact the observed dose rate response. Static dose rate upset tests were also performed at a dose rate of ~3.0 ×108 rad(Si)/s. This is the first dose rate study on any type of memristive memory technology. Inmore » addition to assessing the tolerance of TaOx memristors to high dose rate ionizing radiation, we also evaluated their susceptibility to TID. The data indicate that it is possible for the devices to switch from a high resistance off-state to a low resistance on-state in both dose rate and TID environments. The observed radiation-induced switching is dependent on the irradiation conditions and bias configuration. Furthermore, the dose rate or ionizing dose level at which a device switches resistance states varies from device to device; the enhanced susceptibility observed in some devices is still under investigation. As a result, numerical simulations are used to qualitatively capture the observed transient radiation response and provide insight into the physics of the induced current/voltages.« less

  10. Determination of transit dose profile for a {sup 192}Ir HDR source

    SciTech Connect

    Fonseca, G. P.; Antunes, P. C. G.; Yoriyaz, H.

    2013-05-15

    Purpose: Several studies have reported methodologies to calculate and correct the transit dose component of the moving radiation source for high dose rate (HDR) brachytherapy planning systems. However, most of these works employ the average source speed, which varies significantly with the measurement technique used, and does not represent a realistic speed profile, therefore, providing an inaccurate dose determination. In this work, the authors quantified the transit dose component of a HDR unit based on the measurement of the instantaneous source speed to produce more accurate dose values. Methods: The Nucletron microSelectron-HDR Ir-192 source was characterized considering the Task Group 43 (TG-43U1) specifications. The transit dose component was considered through the calculation of the dose distribution using a Monte Carlo particle transport code, MCNP5, for each source position and correcting it by the source speed. The instantaneous source speed measurements were performed in a previous work using two optical fibers connected to a photomultiplier and an oscilloscope. Calculated doses were validated by comparing relative dose profiles with those obtained experimentally using radiochromic films. Results: TG-43U1 source parameters were calculated to validate the Monte Carlo simulations. These agreed with the literature, with differences below 1% for the majority of the points. Calculated dose profiles without transit dose were also validated by comparison with ONCENTRA{sup Registered-Sign} Brachy v. 3.3 dose values, yielding differences within 1.5%. Dose profiles obtained with MCNP5 corrected using the instantaneous source speed profile showed differences near dwell positions of up to 800% in comparison to values corrected using the average source speed, but they are in good agreement with the experimental data, showing a maximum discrepancy of approximately 3% of the maximum dose. Near a dwell position the transit dose is about 22% of the dwell dose delivered

  11. Gamma radiation measurements and dose rates in commercially-used natural tiling rocks (granites).

    PubMed

    Tzortzis, Michalis; Tsertos, Haralabos; Christofides, Stelios; Christodoulides, George

    2003-01-01

    The gamma radiation in samples of a variety of natural tiling rocks (granites) imported in Cyprus for use in the building industry was measured, employing high-resolution gamma-ray spectroscopy. The rock samples were pulverised, sealed in 1-l plastic Marinelli beakers, and measured in the laboratory with an accumulating time between 10 and 14 h each. From the measured gamma-ray spectra, activity concentrations were determined for (232)Th (range from 1 to 906 Bq kg(-1)), (238)U (from 1 to 588 Bq kg(-1)) and (40)K (from 50 to 1606 Bq kg(-1)). The total absorbed dose rates in air calculated from the concentrations of the three radionuclides ranged from 7 to 1209 nGy h(-1) for full utilization of the materials, from 4 to 605 nGy h(-1) for half utilization and from 2 to 302 nGy h(-1) for one quarter utilization. The total effective dose rates per person indoors were determined to be between 0.02 and 2.97 mSv y(-1) for half utilization of the materials. Applying dose criteria recently recommended by the EU for superficial materials, 25 of the samples meet the exemption dose limit of 0.3 mSv y(-1), two of them meet the upper dose limit of 1 mSv y(-1) and only one clearly exceeds this limit.

  12. Dose and dose rate dependency of lipid peroxide formation in rat tissues by low level contamination with tritiated water

    NASA Astrophysics Data System (ADS)

    Moisoi, N.; Petcu, I.

    1999-01-01

    The changes in peroxide level in different tissues (liver, kidney, small intestine, spleen, bone marrow) of rats exposed to low levels of tritiated water were investigated in relation to tissue radiosensitivity, the irradiation dose and the dose rate domain. The radiation exposure was performed by internal contamination of rats with tritiated water, in the 0 50cGy dose domain, with dose rates in the range of 0.01 2cGy/day. For the lower dose rates (< 0.35cGy/day) the peroxide levels did not increase for doses up to 10cGy, while a dose rate of 1 1.75cGy/day induced an increase in peroxide levels starting at 5cGy. The increases were more significant for the tissues with higher radiosensitivity: spleen, small intestine and bone marrow. For the 4.2 7cGy dose domain and very low dose rates, up to 0.1cGy/day, the peroxide level seemed to have an inverse dose rate dependency. Nous avons étudié la modification du niveau des peroxydes lipidiques pour des tissus ayant des radiosensibilités différentes (foie, rein, rate, intestin grêle, moelle osseuse) après irradiation de rats par contamination interne à l'eau tritiée dans le domaine des faibles doses (0 - 50 cGy) et faibles débits de doses (0,01 - 2 cGy/jour). L'irradiation au débit de dose inférieure à 0,35 cGy/jour, n'augmente le niveau de peroxydation que pour des doses supérieures à 10 cGy. Par contre, le débit de 1-1.75 cGy/jour induit une augmentation significative du paramètre étudié à partir de la dose de 5 cGy. Cette augmentation est plus accentuée pour la rate, l'intestin grêle et la moelle osseuse. Aux doses de 4,2-7 cGy et débits de doses très faibles (< 0.1 cGy), le niveau de peroxydation montre une dépendance inverse par rapport au débit de dose.

  13. Assessment of gamma dose rates from terrestrial exposure in Serbia and Montenegro.

    PubMed

    Dragović, S; Janković, Lj; Onjia, A

    2006-01-01

    The gamma dose rates due to naturally occuring terrestrial radionuclides ((226)Ra, (232)Th and (40)K) were calculated based on their activities in soil samples, determined by gamma-ray spectrometry. A total of 140 soil samples from 21 different regions of Serbia and Montenegro were collected. The gamma dose rates ranged from 7.40 to 29.7 nGy h(-1) for (226)Ra, from 12.9 to 46.5 nGy h(-1) for (232)Th and from 12.5 to 37.1 nGy h(-1) for (40)K. The total absorbed gamma dose rate due to these radionuclides varied from 34.5 to 97.6 nGy h(-1) with mean of 66.8 nGy h(-1). Assuming a 20% occupancy factor, the corresponding annual effective dose varied from 4.23 x 10(-5) to 11.9 x 10(-5) Sv with mean of 8.19 x 10(-5) Sv, i.e. the dose was lower than world wide average value. According to the values of external hazard index (mean: 0.39) obtained in this study, the radiation hazard was found to be insignificant for population living in the investigated area.

  14. High-dose-rate brachytherapy in uterine cervical carcinoma

    SciTech Connect

    Patel, Firuza D. . E-mail: patelfd@glide.net.in; Rai, Bhavana; Mallick, Indranil; Sharma, Suresh C.

    2005-05-01

    Purpose: High-dose-rate (HDR) brachytherapy is in wide use for curative treatment of cervical cancer. The American Brachytherapy Society has recommended that the individual fraction size be <7.5 Gy and the range of fractions should be four to eight; however, many fractionation schedules, varying from institution to institution, are in use. We use 9 Gy/fraction of HDR in two to five fractions in patients with carcinoma of the uterine cervix. We found that our results and toxicity were comparable to those reported in the literature and hereby present our experience with this fractionation schedule. Methods and Materials: A total of 121 patients with Stage I-III carcinoma of the uterine cervix were treated with HDR brachytherapy between 1996 and 2000. The total number of patients analyzed was 113. The median patient age was 53 years, and the histopathologic type was squamous cell carcinoma in 93% of patients. The patients were subdivided into Groups 1 and 2. In Group 1, 18 patients with Stage Ib-IIb disease, tumor size <4 cm, and preserved cervical anatomy underwent simultaneous external beam radiotherapy to the pelvis to a dose of 40 Gy in 20 fractions within 4 weeks with central shielding and HDR brachytherapy of 9 Gy/fraction, given weekly, and interdigitated with external beam radiotherapy. The 95 patients in Group 2, who had Stage IIb-IIIb disease underwent external beam radiotherapy to the pelvis to a dose of 46 Gy in 23 fractions within 4.5 weeks followed by two sessions of HDR intracavitary brachytherapy of 9 Gy each given 1 week apart. The follow-up range was 3-7 years (median, 36.4 months). Late toxicity was graded according to the Radiation Therapy Oncology Group criteria. Results: The 5-year actuarial local control and disease-free survival rate was 74.5% and 62.0%, respectively. The actuarial local control rate at 5 years was 100% for Stage I, 80% for Stage II, and 67.2% for Stage III patients. The 5-year actuarial disease-free survival rate was 88.8% for

  15. Radiation Dose Predicts for Biochemical Control in Intermediate-Risk Prostate Cancer Patients Treated With Low-Dose-Rate Brachytherapy

    SciTech Connect

    Ho, Alice Y.; Burri, Ryan J.; Cesaretti, Jamie A.; Stone, Nelson N.; Stock, Richard G.

    2009-09-01

    Purpose: To evaluate the influence of patient- and treatment-related factors on freedom from biochemical failure (FFbF) in patients with intermediate-risk prostate cancer. Methods and Materials: From a prospectively collected database of 2250 men treated at Mount Sinai Hospital from 1990 to 2004 with low-dose-rate brachytherapy for prostate cancer, 558 men with either one or more intermediate-risk features (prostate-specific antigen [PSA] level 10-20 ng/mL, Gleason score 7, or Stage T2b) were identified who had a minimum follow-up of 24 months and postimplant CT-based dosimetric analysis. Biologically effective dose (BED) values were calculated to compare doses from different isotopes and treatment regimens. Patients were treated with brachytherapy with or without hormone therapy and/or external-beam radiotherapy. Patient- and treatment-related factors were analyzed with respect to FFbF. The median follow-up was 60 months (range, 24-167 months). Biochemical failure was defined according to the Phoenix definition. Univariate analyses were used to determine whether any variable was predictive of FFbF. A two-sided p value of <0.05 was considered significant. Results: Overall, the actuarial FFbF at 10 years was 86%. Dose (BED <150 Gy{sub 2} vs. {>=}150 Gy{sub 2}) was the only significant predictor of FFbF (p < 0.001). None of the other variables (PSA, external-beam radiotherapy, Gleason score, treatment type, hormones, stage, and number of risk factors) was found to be a statistically significant predictor of 10-year FFbF. Conclusions: Radiation dose is an important predictor of FFbF in intermediate-risk prostate cancer. Treatment should continue to be individualized according to presenting disease characteristics until results from Radiation Therapy Oncology Group trial 0232 become available.

  16. 10 CFR 20.2104 - Determination of prior occupational dose.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Determination of prior occupational dose. 20.2104 Section 20.2104 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20... of the transmitted report cannot be established. (d) The licensee shall record the exposure...

  17. 10 CFR 20.2104 - Determination of prior occupational dose.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Determination of prior occupational dose. 20.2104 Section 20.2104 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20... of the transmitted report cannot be established. (d) The licensee shall record the exposure...

  18. 10 CFR 20.2104 - Determination of prior occupational dose.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Determination of prior occupational dose. 20.2104 Section 20.2104 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20... of the transmitted report cannot be established. (d) The licensee shall record the exposure...

  19. 10 CFR 20.2104 - Determination of prior occupational dose.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Determination of prior occupational dose. 20.2104 Section 20.2104 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20... of the transmitted report cannot be established. (d) The licensee shall record the exposure...

  20. 10 CFR 20.2104 - Determination of prior occupational dose.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Determination of prior occupational dose. 20.2104 Section 20.2104 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20... of the transmitted report cannot be established. (d) The licensee shall record the exposure...

  1. Absorbed dose-to-water protocol applied to synchrotron-generated x-rays at very high dose rates

    NASA Astrophysics Data System (ADS)

    Fournier, P.; Crosbie, J. C.; Cornelius, I.; Berkvens, P.; Donzelli, M.; Clavel, A. H.; Rosenfeld, A. B.; Petasecca, M.; Lerch, M. L. F.; Bräuer-Krisch, E.

    2016-07-01

    Microbeam radiation therapy (MRT) is a new radiation treatment modality in the pre-clinical stage of development at the ID17 Biomedical Beamline of the European synchrotron radiation facility (ESRF) in Grenoble, France. MRT exploits the dose volume effect that is made possible through the spatial fractionation of the high dose rate synchrotron-generated x-ray beam into an array of microbeams. As an important step towards the development of a dosimetry protocol for MRT, we have applied the International Atomic Energy Agency’s TRS 398 absorbed dose-to-water protocol to the synchrotron x-ray beam in the case of the broad beam irradiation geometry (i.e. prior to spatial fractionation into microbeams). The very high dose rates observed here mean the ion recombination correction factor, k s , is the most challenging to quantify of all the necessary corrections to apply for ionization chamber based absolute dosimetry. In the course of this study, we have developed a new method, the so called ‘current ramping’ method, to determine k s for the specific irradiation and filtering conditions typically utilized throughout the development of MRT. Using the new approach we deduced an ion recombination correction factor of 1.047 for the maximum ESRF storage ring current (200 mA) under typical beam spectral filtering conditions in MRT. MRT trials are currently underway with veterinary patients at the ESRF that require additional filtering, and we have estimated a correction factor of 1.025 for these filtration conditions for the same ESRF storage ring current. The protocol described herein provides reference dosimetry data for the associated Treatment Planning System utilized in the current veterinary trials and anticipated future human clinical trials.

  2. Dose-effect relation of interstitial low-dose-rate radiation (Ir192) in an animal tumor model

    SciTech Connect

    Ruifrok, A.C.; Levendag, P.C.; Lakeman, R.F.; Deurloo, I.K.; Visser, A.G. )

    1990-01-01

    One way to deliver high doses of radiation to deep seated tumors without damaging the surrounding tissue is by interstitial techniques. This is commonly applied clinically; however, biological data of tumor response to interstitial low-dose-rate gamma irradiation are scarce. Therefore, we have studied the response of rhabdomyosarcoma R1 tumors implanted in the flanks of female Wag/Rij rats using an interstitial Ir192 afterloading system. A template was developed by which four catheters can be implanted in a square geometry with a fixed spacing. Subsequently four Ir192 wires of 2 cm length each are inserted. For dose prescription the highest isodose enveloping the tumor volume was chosen. Interstitial irradiation was performed using tumor volumes of 1500-2000 mm3. A range of minimum tumor doses of 20 up to 115 Gy were given at a mean dose-rate of 48 cGy/hr. Dose-effect relations were obtained from tumor growth curves and tumor cure data, and compared to data from external irradiation. The dose required for 50% cures with interstitial irradiation (TCD50) appears to be 95 +/- 9 Gy. The TCD50 for low-dose-rate interstitial gamma irradiation is 1.5 times the TCD50 for single dose external X ray irradiation at high dose rates, but is comparable to the TCD50 found after fractionated X ray irradiation at high dose rate. Sham treatment of the tumors had no effect on the time needed to reach twice the treatment volume. The growth rate of tumors regrowing after interstitial radiotherapy is not markedly different from the growth rate of untreated (control) tumors (volume doubting time 5.6 +/- 1 day), in contrast to the decreased growth rate after external X ray irradiation.

  3. New model for assessing dose, dose rate, and temperature sensitivity of radiation-induced absorption in glasses

    SciTech Connect

    Gilard, Olivier; Quadri, Gianandrea; Caussanel, Matthieu; Duval, Herve; Reynaud, Francois

    2010-11-15

    A new theoretical approach is proposed to explain the dose, dose rate and temperature sensitivity of the radiation-induced absorption (RIA) in glasses. In this paper, a {beta}{sup th}-order dispersive kinetic model is used to simulate the growth of the density of color centers in irradiated glasses. This model yields an explanation for the power-law dependence on dose and dose rate usually observed for the RIA in optical fibers. It also leads to an Arrhenius-like relationship between the RIA and the glass temperature during irradiation. With a very limited number of adjustable parameters, the model succeeds in explaining, with a good agreement, the RIA growth of two different optical fiber references over wide ranges of dose, dose rate and temperature.

  4. Low-Dose Radiation Cataract and Genetic Determinants of Radiosensitivity

    SciTech Connect

    Kleiman, Norman Jay

    2013-11-30

    The lens of the eye is one of the most radiosensitive tissues in the body. Ocular ionizing radiation exposure results in characteristic, dose related, progressive lens changes leading to cataract formation. While initial, early stages of lens opacification may not cause visual disability, the severity of such changes progressively increases with dose until vision is impaired and cataract extraction surgery may be required. Because of the transparency of the eye, radiation induced lens changes can easily be followed non-invasively over time. Thus, the lens provides a unique model system in which to study the effects of low dose ionizing radiation exposure in a complex, highly organized tissue. Despite this observation, considerable uncertainties remain surrounding the relationship between dose and risk of developing radiation cataract. For example, a growing number of human epidemiological findings suggest significant risk among various groups of occupationally and accidentally exposed individuals and confidence intervals that include zero dose. Nevertheless, questions remain concerning the relationship between lens opacities, visual disability, clinical cataract, threshold dose and/or the role of genetics in determining radiosensitivity. Experimentally, the response of the rodent eye to radiation is quite similar to that in humans and thus animal studies are well suited to examine the relationship between radiation exposure, genetic determinants of radiosensitivity and cataractogenesis. The current work has expanded our knowledge of the low-dose effects of X-irradiation or high-LET heavy ion exposure on timing and progression of radiation cataract and has provided new information on the genetic, molecular, biochemical and cell biological features which contribute to this pathology. Furthermore, findings have indicated that single and/or multiple haploinsufficiency for various genes involved in DNA repair and cell cycle checkpoint control, such as Atm, Brca1 or Rad9

  5. Morphological transformation of Syrian hamster embryo cells by low doses of fission neutrons delivered at different dose rates

    SciTech Connect

    Jones, C.A.; Sedita, B.A. ); Hill, C.K. . Cancer Research Lab.); Elkind, M.M. . Dept. of Radiology and Radiation Biology)

    1991-01-01

    Both induction of cell transformation and killing were examined with Syrian hamster embryo (SHE) fibroblasts exposed to low doses of JANUS fission-spectrum neutrons delivered at high (10.3 cGy/min) and low (0.43 and 0.086 cGy/min) dose rates. Second-passage cells were irradiated in mass cultures, then cloned over feeder cells. Morphologically transformed colonies were identified 8-10 days later. Cell killing was independent of dose rate, but the yield of transformation was greater after low-dose-rate irradiations. Decreasing the neutron dose-rate from 10.3 to 0.086 cGy/min resulted in a two- to threefold increase in the yield of transformation for neutron exposures below 50 cGy, and enhancement which was consistently observed in repetitive experiments in different radiosensitive SHE cell preparations. 43 refs., 5 figs., 1 tab.

  6. Differences in rates of decrease of environmental radiation dose rates by ground surface property in Fukushima City after the Fukushima Daiichi nuclear power plant accident.

    PubMed

    Kakamu, Takeyasu; Kanda, Hideyuki; Tsuji, Masayoshi; Kobayashi, Daisuke; Miyake, Masao; Hayakawa, Takehito; Katsuda, Shin-ichiro; Mori, Yayoi; Okouchi, Toshiyasu; Hazama, Akihiro; Fukushima, Tetsuhito

    2013-01-01

    After the Great East Japan Earthquake on 11 March 2011, the environmental radiation dose in Fukushima City increased. On 11 April, 1 mo after the earthquake, the environmental radiation dose rate at various surfaces in the same area differed greatly by surface property. Environmental radiation measurements continue in order to determine the estimated time to 50% reduction in environmental radiation dose rates by surface property in order to make suggestions for decontamination in Fukushima. The measurements were carried out from 11 April to 11 November 2011. Forty-eight (48) measurement points were selected, including four kinds of ground surface properties: grass (13), soil (5), artificial turf (7), and asphalt (23). Environmental radiation dose rate was measured at heights of 100 cm above the ground surface. Time to 50% reduction of environmental radiation dose rates was estimated for each ground surface property. Radiation dose rates on 11 November had decreased significantly compared with those on 11 April for all surface properties. Artificial turf showed the longest time to 50% reduction (544.32 d, standard error: 96.86), and soil showed the shortest (213.20 d, standard error: 35.88). The authors found the environmental radiation dose rate on artificial materials to have a longer 50% reduction time than that on natural materials. These results contribute to determining an order of priority for decontamination after nuclear disasters.

  7. Dose and dose rate effects of whole-body proton-irradiation on lymphocyte blastogenesis and hematological variables: part II

    NASA Technical Reports Server (NTRS)

    Pecaut, Michael J.; Gridley, Daila S.; Smith, Anna L.; Nelson, Gregory A.

    2002-01-01

    The goal of part II of this study was to evaluate functional characteristics of leukocytes and circulating blood cell parameters after whole-body proton irradiation at varying doses and at low- and high-dose-rates (LDR and HDR, respectively). C57BL/6 mice (n=51) were irradiated and euthanized at 4 days post-exposure for assay. Significant radiation dose- (but not dose-rate-) dependent decreases were observed in splenocyte responses to T and B cell mitogens when compared to sham-irradiated controls (P<0.001). Spontaneous blastogenesis, also significantly dose-dependent, was increased in both blood and spleen (P<0.001). Red blood cell counts, hemoglobin concentration, and hematocrit were decreased in a dose-dependent manner (P<0.05), whereas thrombocyte numbers were only slightly affected. Comparison of proton- and gamma-irradiated groups (both receiving 3 Gy at HDR) showed a higher level of spontaneous blastogenesis in blood leukocytes and a lower splenocyte response to concanavalin A following proton irradiation (P<0.05). There were no dose rate effects. Collectively, the data demonstrate that the measurements in blood and spleen were largely dependent upon the total dose of proton radiation and that an 80-fold difference in the dose rate was not a significant factor. A difference, however, was found between protons and gamma-rays in the degree of change induced in some of the measurements.

  8. Dose rate effect of pulsed electron beam on micronucleus frequency in human peripheral blood lymphocytes.

    PubMed

    Acharya, Santhosh; Sanjeev, Ganesh; Bhat, Nagesh N; Narayana, Yerol

    2010-03-01

    The micronucleus assay in human peripheral blood lymphocytes is a sensitive indicator of radiation damage and could serve as a biological dosimeter in evaluating suspected overexposure to ionising radiation. Micronucleus (MN) frequency as a measure of chromosomal damage has also extensively been employed to quantify the effects of radiation dose rate on biological systems. Here we studied the effects of 8 MeV pulsed electron beam emitted by Microtron electron accelerator on MN induction at dose rates between 35 Gy min-1 and 352.5 Gy min-1. These dose rates were achieved by varying the pulse repetition rate (PRR). Fricke dosimeter was employed to measure the absorbed dose at different PRR and to ensure uniform dose distribution of the electron beam. To study the dose rate effect, blood samples were irradiated to an absorbed dose of (4.7+/-0.2) Gy at different rates and cytogenetic damage was quantified using the micronucleus assay. The obtained MN frequency showed no dose rate dependence within the studied dose rate range. Our earlier dose effect study using 8 MeV electrons revealed that the response of MN was linear-quadratic. Therefore, in the event of an accident, dose estimation can be made using linear-quadratic dose response parameters, without adding dose rate as a correction factor.

  9. SU-E-T-165: Characterization of Dose Distributions in High-Dose-Rate Surface Brachytherapy

    SciTech Connect

    Buzurovic, I; Hansen, J; Bhagwat, M; O’Farrell, D; Damato, A; Friesen, S; Devlin, P; Cormack, R

    2015-06-15

    Purpose: To characterize dose distributions in high-dose-rate(HDR) surface brachytherapy using an Ir-125 source for different geometries, field sizes and topology of the clinical targets(CT). To investigate the depth doses at the central axis(CAX), edges of the treatment fields(E), and lateral dose distributions(L) present when using flap applicators in skin cancer treatments. Methods: When malignancies diagnosed on the skin are treated, various geometries of the CT require proper adaptation of the flap or custom-made applicators to the treatment site. Consequently, the dose at the depth on CAX and field edges changes with variation of the curvatures and size of the applicators. To assess the dose distributions, we created a total of 10 treatment plans(TP) for 10×10 and 20×20 field sizes(FS) with a step size of 1cm. The geometry of the applicators was: planar(PA), curved to 30(CA30) and 60(CA60) degrees with respect to the CAX, half-cylinder(HC), and cylindrical shape(CS). One additional TP was created in which the applicators were positioned to form a dome shape(DS) with a diameter of 16cm. This TP was used to emulate treatment of the average sized scalp. All TPs were optimized to deliver a prescription dose at 8mm equidistantly from the planes containing the dwell positions. This optimization is equivalent to the clinical arrangement since the SSD for the flap applicators is 5mm and the prescription depth is 3mm in the majority of clinical cases. Results: The depths (in mm) of the isodose lines were: FS(10×10):PA[90%(9.1CAX,8.0E,7.6L),50%(28.3CAX,20E,17.3L), 25%(51.1CAX,40E,27L)],CA30[90%(10.3CAX,8.2E,7.9L),50%(32.1CAX, 16.2E,15.8L),25%(61.3CAX,36.7E,31.8L)],CA60[90%(12.2CAX,6.1E,6.3L ),50%(47CAX,14E,16.6L),25%(70.8CAX,31.9E,35.4L)],HC[90%(11.1CA X,6.3E,7.3L),50%(38.3CAX,14.6E,16.1L),25%(66.2CAX,33.8E,34.2L)];FS (20×20):PA[90%(11.1CAX,9.0E,7.0L),50%(34.4CAX,21.9E,15.3L),25%(7 0.4CAX,50.9E,34.8L)],CA30[90%(10.9CAX,7.5E,7.1L),50%(38.8CAX,16. 7E,15.4L),25

  10. How accurately can the peak skin dose in fluoroscopy be determined using indirect dose metrics?

    SciTech Connect

    Jones, A. Kyle; Ensor, Joe E.; Pasciak, Alexander S.

    2014-07-15

    Purpose: Skin dosimetry is important for fluoroscopically-guided interventions, as peak skin doses (PSD) that result in skin reactions can be reached during these procedures. There is no consensus as to whether or not indirect skin dosimetry is sufficiently accurate for fluoroscopically-guided interventions. However, measuring PSD with film is difficult and the decision to do so must be madea priori. The purpose of this study was to assess the accuracy of different types of indirect dose estimates and to determine if PSD can be calculated within ±50% using indirect dose metrics for embolization procedures. Methods: PSD were measured directly using radiochromic film for 41 consecutive embolization procedures at two sites. Indirect dose metrics from the procedures were collected, including reference air kerma. Four different estimates of PSD were calculated from the indirect dose metrics and compared along with reference air kerma to the measured PSD for each case. The four indirect estimates included a standard calculation method, the use of detailed information from the radiation dose structured report, and two simplified calculation methods based on the standard method. Indirect dosimetry results were compared with direct measurements, including an analysis of uncertainty associated with film dosimetry. Factors affecting the accuracy of the different indirect estimates were examined. Results: When using the standard calculation method, calculated PSD were within ±35% for all 41 procedures studied. Calculated PSD were within ±50% for a simplified method using a single source-to-patient distance for all calculations. Reference air kerma was within ±50% for all but one procedure. Cases for which reference air kerma or calculated PSD exhibited large (±35%) differences from the measured PSD were analyzed, and two main causative factors were identified: unusually small or large source-to-patient distances and large contributions to reference air kerma from cone

  11. Dose-effect relation of interstitial low-dose-rate radiation (Ir192) in an animal tumor model.

    PubMed

    Ruifrok, A C; Levendag, P C; Lakeman, R F; Deurloo, I K; Visser, A G

    1990-01-01

    One way to deliver high doses of radiation to deep seated tumors without damaging the surrounding tissue is by interstitial techniques. This is commonly applied clinically; however, biological data of tumor response to interstitial low-dose-rate gamma irradiation are scarce. Therefore, we have studied the response of rhabdomyosarcoma R1 tumors implanted in the flanks of female Wag/Rij rats using an interstitial Ir192 afterloading system. A template was developed by which four catheters can be implanted in a square geometry with a fixed spacing. Subsequently four Ir192 wires of 2 cm length each are inserted. For dose prescription the highest isodose enveloping the tumor volume was chosen. Interstitial irradiation was performed using tumor volumes of 1500-2000 mm3. A range of minimum tumor doses of 20 up to 115 Gy were given at a mean dose-rate of 48 cGy/hr. Dose-effect relations were obtained from tumor growth curves and tumor cure data, and compared to data from external irradiation. The dose required for 50% cures with interstitial irradiation (TCD50) appears to be 95 +/- 9 Gy. The TCD50 for low-dose-rate interstitial gamma irradiation is 1.5 times the TCD50 for single dose external X ray irradiation at high dose rates, but is comparable to the TCD50 found after fractionated X ray irradiation at high dose rate. Sham treatment of the tumors had no effect on the time needed to reach twice the treatment volume. The growth rate of tumors regrowing after interstitial radiotherapy is not markedly different from the growth rate of untreated (control) tumors (volume doubting time 5.6 +/- 1 day), in contrast to the decreased growth rate after external X ray irradiation. It is argued that the absence of a clear tumor bed effect may be explained by some sparing of the stroma by the low-dose-rate of the interstitial irradiation per se as well as by the physical dose distribution of the interstitial Ir192 sources, giving a relative low dose of radiation to the surrounding

  12. Modeling Low-Dose-Rate Effects in Irradiated Bipolar-Base Oxides

    SciTech Connect

    Cirba, C.R.; Fleetwood, D.M.; Graves, R.J.; Michez, A.; Milanowski, R.J.; Saigne, F.; Schrimpf, R.D.; Witczak, S.C.

    1998-10-26

    A physical model is developed to quantify the contribution of oxide-trapped charge to enhanced low-dose-rate gain degradation in bipolar junction transistors. Multiple-trapping simulations show that space charge limited transport is partially responsible for low-dose-rate enhancement. At low dose rates, more holes are trapped near the silicon-oxide interface than at high dose rates, resulting in larger midgap voltage shifts at lower dose rates. The additional trapped charge near the interface may cause an exponential increase in excess base current, and a resultant decrease in current gain for some NPN bipolar technologies.

  13. Retrospective Dosimetric Comparison of Low-Dose-Rate and Pulsed-Dose-Rate Intracavitary Brachytherapy Using a Tandem and Mini-Ovoids

    SciTech Connect

    Mourtada, Firas Gifford, Kent A.; Berner, Paula A.; Horton, John L.; Price, Michael J.; Lawyer, Ann A.; Eifel, Patricia J.

    2007-10-01

    The purpose of this study was to compare the dose distribution of Iridium-192 ({sup 192}Ir) pulsed-dose-rate (PDR) brachytherapy to that of Cesium-137 ({sup 137}Cs) low-dose-rate (LDR) brachytherapy around mini-ovoids and an intrauterine tandem. Ten patient treatment plans were selected from our clinical database, all of which used mini-ovoids and an intrauterine tandem. A commercial treatment planning system using AAPM TG43 formalism was used to calculate the dose in water for both the {sup 137}Cs and {sup 192}Ir sources. For equivalent system loadings, we compared the dose distributions in relevant clinical planes, points A and B, and to the ICRU bladder and rectal reference points. The mean PDR doses to points A and B were 3% {+-} 1% and 6% {+-} 1% higher than the LDR doses, respectively. For the rectum point, the PDR dose was 4% {+-} 3% lower than the LDR dose, mainly because of the {sup 192}Ir PDR source anisotropy. For the bladder point, the PDR dose was 1% {+-} 4% higher than the LDR dose. We conclude that the PDR and LDR dose distributions are equivalent for intracavitary brachytherapy with a tandem and mini-ovoids. These findings will aid in the transfer from the current practice of LDR intracavitary brachytherapy to PDR for the treatment of gynecologic cancers.

  14. Committed effective dose determination in southern Brazilian cereal flours.

    PubMed

    Scheibel, V; Appoloni, C R

    2013-01-01

    The health impact of radionuclide ingestion from foodstuffs was evaluated by the committed effective doses determined in eight commercial samples of South-Brazilian cereal flours (soy, wheat, cornmeal, cassava, rye, oat, barley and rice flours). The radioactivity traces of (228)Th, (228)Ra, (226)Ra, (40)K, (7)Be and (137)Cs were measured by gamma-ray spectrometry employing an HPGe detector of 66 % relative efficiency. The efficiency curve has taken into account the differences in densities and chemical composition between the matrix and the certified sample. The highest concentration levels of (228)Th and (40)K were 3.5±0.4 and 1469±17 Bq kg(-1) for soy flour, respectively, within the 95 % confidence level. The lower limit of detection for (137)Cs ranged from 0.04 to 0.4 Bq kg(-1). The highest committed effective dose was 0.36 μSv.y(-1) for (228)Ra in cassava flour (adults). All committed effective doses determined at the present work were lower than the International Atomic Energy Agency dose limit of 1 mSv.y(-1), to the public exposure.

  15. Dose and dose rate effects of whole-body gamma-irradiation: II. Hematological variables and cytokines

    NASA Technical Reports Server (NTRS)

    Gridley, D. S.; Pecaut, M. J.; Miller, G. M.; Moyers, M. F.; Nelson, G. A.

    2001-01-01

    The goal of part II of this study was to evaluate the effects of gamma-radiation on circulating blood cells, functional characteristics of splenocytes, and cytokine expression after whole-body irradiation at varying total doses and at low- and high-dose-rates (LDR, HDR). Young adult C57BL/6 mice (n = 75) were irradiated with either 1 cGy/min or 80 cGy/min photons from a 60Co source to cumulative doses of 0.5, 1.5, and 3.0 Gy. The animals were euthanized at 4 days post-exposure for in vitro assays. Significant dose- (but not dose-rate-) dependent decreases were observed in erythrocyte and blood leukocyte counts, hemoglobin, hematocrit, lipopolysaccharide (LPS)-induced 3H-thymidine incorporation, and interleukin-2 (IL-2) secretion by activated spleen cells when compared to sham-irradiated controls (p < 0.05). Basal proliferation of leukocytes in the blood and spleen increased significantly with increasing dose (p < 0.05). Significant dose rate effects were observed only in thrombocyte counts. Plasma levels of transforming growth factor-beta 1 (TGF-beta 1) and splenocyte secretion of tumor necrosis factor-alpha (TNF-alpha) were not affected by either the dose or dose rate of radiation. The data demonstrate that the responses of blood and spleen were largely dependent upon the total dose of radiation employed and that an 80-fold difference in the dose rate was not a significant factor in the great majority of measurements.

  16. Dose equivalent rate constants and barrier transmission data for nuclear medicine facility dose calculations and shielding design.

    PubMed

    Kusano, Maggie; Caldwell, Curtis B

    2014-07-01

    A primary goal of nuclear medicine facility design is to keep public and worker radiation doses As Low As Reasonably Achievable (ALARA). To estimate dose and shielding requirements, one needs to know both the dose equivalent rate constants for soft tissue and barrier transmission factors (TFs) for all radionuclides of interest. Dose equivalent rate constants are most commonly calculated using published air kerma or exposure rate constants, while transmission factors are most commonly calculated using published tenth-value layers (TVLs). Values can be calculated more accurately using the radionuclide's photon emission spectrum and the physical properties of lead, concrete, and/or tissue at these energies. These calculations may be non-trivial due to the polyenergetic nature of the radionuclides used in nuclear medicine. In this paper, the effects of dose equivalent rate constant and transmission factor on nuclear medicine dose and shielding calculations are investigated, and new values based on up-to-date nuclear data and thresholds specific to nuclear medicine are proposed. To facilitate practical use, transmission curves were fitted to the three-parameter Archer equation. Finally, the results of this work were applied to the design of a sample nuclear medicine facility and compared to doses calculated using common methods to investigate the effects of these values on dose estimates and shielding decisions. Dose equivalent rate constants generally agreed well with those derived from the literature with the exception of those from NCRP 124. Depending on the situation, Archer fit TFs could be significantly more accurate than TVL-based TFs. These results were reflected in the sample shielding problem, with unshielded dose estimates agreeing well, with the exception of those based on NCRP 124, and Archer fit TFs providing a more accurate alternative to TVL TFs and a simpler alternative to full spectral-based calculations. The data provided by this paper should assist

  17. Measurement for the dose-rates of the cosmic-ray components on the ground.

    PubMed

    Rasolonjatovo, Danielle A H; Suzuki, Hiroyuki; Hirabayashi, Naoya; Nunomiya, Tomoya; Nakamura, Takashi; Nakao, Noriaki

    2002-12-01

    In this study, we aimed to measure the directly ionizing component (muons and photons) and the indirectly ionizing component (neutrons) of the cosmic-ray spectra and evaluate their dose rate contribution to the total dose rate on a ground level in Japan. Measurements were carried out in Tohoku University, Japan, from October 2000. The pulse-height spectra of the cosmic-ray photons and muons were measured with a 12.7 cm diameter and 12.7 cm long NaI(Tl) scintillation detector. In order to measure energy spectra of cosmic-ray photons and muons, response functions of the detector to photons and muons were determined by the Monte Carlo simulation codes. The cosmic-ray photon dose was evaluated directly from the measured pulse-height spectrum by using the spectrum weight function, and the cosmic-ray muon dose was evaluated by converting the measured pulse height spectrum into deposited energy within the detector. The quantity of the cosmic-ray electrons is estimated to be very small and is not taken into account in this study. The cosmic-ray neutron spectrum and the neutron dose were measured by using a multi-moderator spectrometer (Bonner ball) and a rem counter. The measurements could finally give the annual absorbed dose in tissue of the cosmic-ray muons of 315 microSv/y and annual ambient doses of the cosmic-ray photons and neutrons on the ground in Japan of 55 microSv/y and 31 microSv/y, respectively.

  18. Evaluation of High Performance Converters Under Low Dose Rate Total Ionizing Dose (TID) Testing for NASA Programs

    NASA Technical Reports Server (NTRS)

    Sharma, Ashok K.; Sahu, Kusum

    1998-01-01

    This paper reports the results of low dose rate (0.01-0.18 rads(Si)/sec) total ionizing dose (TID) tests performed on several types of high performance converters. The parts used in this evaluation represented devices such as a high speed flash converter, a 16-bit ADC and a voltage-to-frequency converter.

  19. Enhanced low dose rate sensitivity (ELDRS) of linear circuits in a space environment

    SciTech Connect

    Titus, J.L.; Emily, D.; Krieg, J.F.; Turflinger, T.; Pease, R.L.; Campbell, A.

    1999-12-01

    To investigate the ELDRS effect in a real space environment, an experiment was designed, launched, and placed in a highly elliptical orbit in November 1997. After its deployment, the electrical responses of several bipolar transistors and linear circuits have been and continue to be recorded once during every 12-hour orbit. System dosimeters are monitored to establish an average accumulated dose per orbit. With this information, the electrical parameter data are correlated with the dosimetry data to determine the total dose response of each device. This paper updates information on the ELDRS experiment through May 14, 1999. As of this date, the experiment has been in flight for a period of 18 months and has accumulated an approximate dose of 18 krd(Si). For comparison, devices, specifically linear circuits with the same date code, were irradiated using Co-60 sources, herein defined as ground-based tests. The ground-based tests are used to evaluate two hardness assurance tests, a room temperature irradiation at 10 mrd(Si)/s and an elevated temperature irradiation at 100 C and 10 rd(Si)/s and to evaluate the ELDRS response. To that end, irradiations were performed at room temperature, approximately 22 C, at fixed dose rates of 100, 1, and 0.01 rd(Si)/s and at elevated temperature, approximately 100 C, at a fixed dose rate of 10 rd(Si)/s. Currently, irradiations are being performed at room temperature at a fixed dose rate of 0.001 rd(Si)/s. Comparing the ground-based data to the flight data clearly demonstrates that enhanced parametric degradation has occurred in the flight parts. The two hardness assurance screens predicted ELDRS but the design margin for the elevated temperature test may not be adequate.

  20. Longterm Monitoring of Ambient Dose Equivalent Rates at Aviation Altitudes

    NASA Astrophysics Data System (ADS)

    Möller, Thomas; Briese, J.; Burda, O.; Burmeister, S.; Glaßmeier, K. H.; Haag, K. H.; Heber, B.; Klages, T.; Langner, F.; Luchtenberg, F.; Matthiae, D.; Meier, M.; Nezel, M.; Reitz, G.; Wissmann, F.

    Galactic Cosmic Rays (GCRs) are high energetic charged particles, mainly protons and alpha-particles, originating from galactic sources and impinging on the Earth from all directions. The intensity of these particles is modulated by the solar activity, the Earth's magnetosphere and its atmosphere. Depending on the geomagnetic latitude only particles above certain cut-off rigidities can reach the top of the atmosphere. The cut-off rigidity is independent of the par-ticle sort; it is lowest over the magnetic poles and highest close to the equator. In the Earth's atmosphere, interactions of incident cosmic particles with atoms of the atmosphere's compo-nents cause not only deceleration or absorption of the primary particles but also production of new secondary particles which in turn can generate further particles. This results in a sec-ondary radiation field in the lower layers of the atmosphere, the composition and dose rate of which is dependent on altitude and magnetic latitude respectively. Beside this slowly varying background, solar energetic particle events (SPEs) may temporarily change this radiation field. One of the scientific goals of the RAMONA cooperation (RAdiation Monitoring ON board Aircraft) is to investigate the impact of SPEs on the radiation environment at flight altitudes. Although different models for such Space Weather effects have been developed, it is still im-possible to forecast the occurrence of a relevant SPE. Therefore, the permanent operation of appropriate dosimetric instruments onboard aircraft is pursued in order to gain knowledge for further model developments. Three NAVIDOS dosimetry systems (NAVIgation DOSimeter) developed by the RAMONA cooperation, have already been installed in aircraft. First results of the corresponding measurements will be presented.

  1. Determination of the prescription dose for biradionuclide permanent prostate brachytherapy

    SciTech Connect

    Nuttens, V. E.; Lucas, S.

    2008-12-15

    A model based on the linear quadratic model that has been corrected for repopulation, sublethal cell damage repair, and RBE effect has been used to determine the prescription dose for prostate permanent brachytherapy using seeds loaded with a mixture of {sup 103}Pd and {sup 125}I or a mixture of {sup 103}Pd and {sup 131}Cs. The prescription dose was determined by comparing the tumor cell survival fractions between the considered biradionuclide seed implant and one monoradionuclide seed implant chosen from {sup 103}Pd, {sup 125}I, and {sup 131}Cs. Prostate edema is included in the model. The influence of the value of the radiobiological parameters and RBE were also investigated. Two mixtures of radionuclides were considered: {sup 103}Pd{sub 0.75}-{sup 125}I{sub 0.25} and {sup 103}Pd{sub 0.25}-{sup 131}Cs{sub 0.75}, where the subscripts indicate the fractions of total initial internal activity in the biradionuclide seed. These fractions were selected in order to obtain a dose distribution that lies between that of {sup 103}Pd and {sup 125}I/{sup 131}Cs. As expected, the computed prescription dose values are dependent on the model parameters (edema half-life and magnitude, radiobiogical parameters, and RBE). The radionuclide used as a benchmark also has a strong impact on the derived prescribed dose. The large uncertainties in the radiobiological parameters and RBE values produce big errors in the computed prescribed dose. Averaged over the range of all the parameters and depending on the radionuclide used as a benchmark (in subscript), the derived prescription dose for the first mixture (PdI) would be: D{sub Pd}{sup PdI}=142{sub -16}{sup +15} Gy and D{sub I}{sup PdI}=142{sub -8}{sup +6} Gy; and D{sub Pd}{sup PdCs}=128{sub -13}{sup +13} Gy and D{sub Cs}{sup PdCs}=115{sub -7}{sup +6} Gy for the PdCs mixture. The uncertainties could be reduced if the radiobiological parameters and RBE value were known more accurately. However, as edema characteristics are patient

  2. Measurements of air dose rates in and around houses in the Fukushima Prefecture in Japan after the Fukushima accident.

    PubMed

    Matsuda, Norihiro; Mikami, Satoshi; Sato, Tetsuro; Saito, Kimiaki

    2017-01-01

    Measurements of air dose rates for 192 houses in a less contaminated area (<0.5 μSv h(-1)) of the Fukushima Prefecture in Japan were conducted in both living rooms and/or bedrooms using optically stimulated luminescence (OSL) dosimeters and around the houses via a man-borne survey at intervals of several meters. The relation of the two air dose rates (inside and outside) for each house, including the background from natural radionuclides, was divided into several categories, determined by construction materials (light and heavy) and floor number, with the dose reduction factors being expressed as the ratio of the dose inside to that outside the house. For wooden and lightweight steel houses (classed as light), the dose rates inside and outside the houses showed a positive correlation and linear regression with a slope-intercept form due to the natural background, although the degree of correlation was not very high. The regression coefficient, i.e., the average dose reduction factor, was 0.38 on the first floor and 0.49 on the second floor. It was found that the contribution of natural radiation cannot be neglected when we consider dose reduction factors in less contaminated areas. The reductions in indoor dose rates are observed because a patch of ground under each house is not contaminated (this is the so-called uncontaminated effect) since the shielding capability of light construction materials is typically low. For reinforced steel-framed concrete houses (classed as heavy), the dose rates inside the houses did not show a correlation with those outside the houses due to the substantial shielding capability of these materials. The average indoor dose rates were slightly higher than the arithmetic mean value of the outdoor dose rates from the natural background because concrete acts as a source of natural radionuclides. The characteristics of the uncontaminated effect were clarified through Monte Carlo simulations. It was found that there is a great variation

  3. Catchment-scale distribution of radiocesium air dose rate in a mountainous deciduous forest and its relation to topography.

    PubMed

    Atarashi-Andoh, Mariko; Koarashi, Jun; Takeuchi, Erina; Tsuduki, Katsunori; Nishimura, Syusaku; Matsunaga, Takeshi

    2015-09-01

    A large number of air dose rate measurements were collected by walking through a mountainous area with a small gamma-ray survey system, KURAMA-II. The data were used to map the air dose rate of a mountainous deciduous forest that received radiocesium from the Fukushima Dai-ichi Nuclear Power Plant accident. Measurements were conducted in a small stream catchment (0.6 km(2) in area) in August and September 2013, and the relationship between air dose rates and the mountainous topography was examined. Air dose rates increased with elevation, indicating that more radiocesium was deposited on ridges, and suggesting that it had remained there for 2.5 y with no significant downslope migration by soil erosion or water drainage. Orientation in relation to the dominant winds when the radioactive plume flowed to the catchment also strongly affected the air dose rates. Based on our continuous measurements using the KURAMA-II, we describe the variation in air dose rates in a mountainous forest area and suggest that it is important to consider topography when determining sampling points and resolution to assess the spatial variability of dose rates and contaminant deposition.

  4. Application of airborne gamma spectrometric survey data to estimating terrestrial gamma-ray dose rates: an example in California.

    PubMed

    Wollenberg, H A; Revzan, K L; Smith, A R

    1994-01-01

    We examined the applicability of radioelement data from the National Aerial Radiometric Reconnaissance, an element of the National Uranium Resource Evaluation, to estimate terrestrial gamma-ray absorbed dose rates, by comparing dose rates calculated from aeroradiometric surveys of uranium, thorium, and potassium concentrations with dose rates calculated from a radiogeologic data base and the distribution of lithologies in California. Gamma-ray dose rates increase generally from north to south following lithological trends, with low values of 25-30 nGy h-1 in the northernmost 1 x 2 degrees quadrangles between 41 and 42 degrees N to high values of 75-100 nGy h-1 in southeastern California. Lithologic-based estimates of mean dose rates in the quadrangles generally match those from aeroradiometric data, with statewide means of 63 and 60 nGy h-1, respectively. These are intermediate between a population-weighted global average of 51 nGy h-1 reported in 1982 by UNSCEAR and a weighted continental average of 70 nGy h-1, based on the global distribution of rock types. The concurrence of lithologically and aeroradiometrically determined dose rates in California, with its varied geology and topography encompassing settings representative of the continents, indicates that the National Aerial Radiometric Reconnaissance data are applicable to estimates of terrestrial absorbed dose rates from natural gamma emitters.

  5. Dose Rate Calculations for the 2-MCO/2-DHLW Waste Package

    SciTech Connect

    G. Radulescu

    2000-10-03

    The objective of this calculation is to determine the dose rates on the external surfaces of the waste package (WP) containing two Hanford defense high-level waste (DHLW) glass canisters and two Hanford multi-canister overpacks (MCO). Each MCO is loaded with the N Reactor spent nuclear fuel (SNF). The information provided by the sketches attached to this calculation is that of the potential design for the WP type considered in this calculation. The scope of this calculation is limited to reporting dose rates averaged over segments of the WP radial and axial surfaces and of surfaces 1 m and 2 m from the WP. The results of this calculation will be used to assess the shielding performance of the 2-MC012-DHLW WP engineering design.

  6. The dose rate effect and the homogeneity of radio-oxidation of plastics

    NASA Astrophysics Data System (ADS)

    Plaček, V.; Bartoníček, B.

    2001-12-01

    The homogeneity of the radio-oxidation of plastics in different depths from the surface has been determined by measuring the thermo-oxidative stability (oxidative induction time - OIT) of irradiated samples. Two materials have been studied: a fire retarding EPR/EVA cable sheathing compound with the thickness of 4.4 mm and a high-density polyethylene (HDPE) (20 mm thick) which was studied for potential use as a material for radioactive waste disposal containers. Both materials have been irradiated using 60Co gamma-ray source at different dose rates in the interval from 8.5 to 8550 Gy/h. Irradiated samples have been cut into very thin slices and the thermo-oxidative stability (OIT) has been measured using differential scanning calorimeter. In this way the dependence of OIT values on the distance from the surface has been obtained for both samples and at applied dose rates.

  7. Effective Dose Rate Coefficients for Immersions in Radioactive Air and Water.

    PubMed

    Bellamy, M B; Veinot, K G; Hiller, M M; Dewji, S A; Eckerman, K F; Easterly, C E; Hertel, N E; Leggett, R W

    2016-05-05

    The Oak Ridge National Laboratory Center for Radiation Protection Knowledge (CRPK) has undertaken a number of calculations in support of a revision to the United States Environmental Protection Agency (US EPA) Federal Guidance Report on external exposure to radionuclides in air, water and soil (FGR 12). Age-specific mathematical phantom calculations were performed for the conditions of submersion in radioactive air and immersion in water. Dose rate coefficients were calculated for discrete photon and electron energies and folded with emissions from 1252 radionuclides using ICRP Publication 107 decay data to determine equivalent and effective dose rate coefficients. The coefficients calculated in this work compare favorably to those reported in FGR12 as well as by other authors that employed voxel phantoms for similar exposure scenarios.

  8. Lymphoid cell kinetics under continuous low dose-rate gamma irradiation: A comparison study

    NASA Technical Reports Server (NTRS)

    Foster, B. R.

    1975-01-01

    A comparison study was conducted of the effects of continuous low dose-rate gamma irradiation on cell population kinetics of lymphoid tissue (white pulp) of the mouse spleen with findings as they relate to the mouse thymus. Experimental techniques employed included autoradiography and specific labeling with tritiated thymidine (TdR-(h-3)). The problem studied involved the mechanism of cell proliferation of lymphoid tissue of the mouse spleen and thymus under the stress of continuous irradiation at a dose rate of 10 roentgens (R) per day for 105 days (15 weeks). The aim was to determine whether or not a steady state or near-steady state of cell population could be established for this period of time, and what compensatory mechanisms of cell population were involved.

  9. Possible use of EPDM in radioactive waste disposal: Long term low dose rate and short term high dose rate irradiation in aquatic and atmospheric environment

    NASA Astrophysics Data System (ADS)

    Hacıoğlu, Fırat; Özdemir, Tonguç; Çavdar, Seda; Usanmaz, Ali

    2013-02-01

    In this study, changes in the properties of ethylene propylene diene terpolymer (EPDM) irradiated with different dose rates in ambient atmosphere and aqueous environment were investigated. Irradiations were carried out both with low dose and high dose rate irradiation sources. EPDM samples which were differentiated from each other by peroxide type and 5-ethylidene 2-norbornene (ENB) contents were used. Long term low dose rate irradiations were carried out for the duration of up to 2.5 years (total dose of 1178 kGy) in two different irradiation environments. Dose rates (both high and low), irradiation environments (in aquatic and open to atmosphere), and peroxide types (aliphatic or aromatic) were the parameters studied. Characterization of irradiated EPDM samples were performed by hardness, compression, tensile, dynamic mechanical analysis (DMA), TGA-FTIR, ATR-FTIR, XRD and SEM tests. It was observed that the irradiation in water environment led to a lower degree of degradation when compared to that of irradiation open to atmosphere for the same irradiation dose. In addition, irradiation environment, peroxide type and dose rate had effects on the extent of change in the properties of EPDM. It was observed that EPDM is relatively radiation resistant and a candidate polymer for usage in radioactive waste management.

  10. Comparison of planned and measured rectal dose in-vivo during high dose rate Cobalt-60 brachytherapy of cervical cancer.

    PubMed

    Zaman, Z K; Ung, N M; Malik, R A; Ho, G F; Phua, V C E; Jamalludin, Z; Baharuldin, M T H; Ng, K H

    2014-12-01

    Cobalt-60 (Co-60) is a relatively new source for the application of high-dose rate (HDR) brachytherapy. Radiation dose to the rectum is often a limiting factor in achieving the full prescribed dose to the target during brachytherapy of cervical cancer. The aim of this study was to measure radiation doses to the rectum in-vivo during HDR Co-60 brachytherapy. A total of eleven HDR brachytherapy treatments of cervical cancer were recruited in this study. A series of diodes incorporated in a rectal probe was inserted into the patient's rectum during each brachytherapy procedure. Real-time measured rectal doses were compared to calculated doses by the treatment planning system (TPS). The differences between calculated and measured dose ranged from 8.5% to 41.2%. This corresponds to absolute dose differences ranging from 0.3 Gy to 1.5 Gy. A linear relationship was observed between calculated and measured doses with linear regression R(2) value of 0.88, indicating close association between the measured and calculated doses. In general, absorbed doses for the rectum as calculated by TPS were observed to be higher than the doses measured using the diode probe. In-vivo dosimetry is an important quality assurance method for HDR brachytherapy of cervical cancer. It provides information that can contribute to the reduction of errors and discrepancies in dose delivery. Our study has shown that in-vivo dosimetry is feasible and can be performed to estimate the dose to the rectum during HDR brachytherapy using Co-60.

  11. Determination of Time Dependent Virus Inactivation Rates

    NASA Astrophysics Data System (ADS)

    Chrysikopoulos, C. V.; Vogler, E. T.

    2003-12-01

    A methodology is developed for estimating temporally variable virus inactivation rate coefficients from experimental virus inactivation data. The methodology consists of a technique for slope estimation of normalized virus inactivation data in conjunction with a resampling parameter estimation procedure. The slope estimation technique is based on a relatively flexible geostatistical method known as universal kriging. Drift coefficients are obtained by nonlinear fitting of bootstrap samples and the corresponding confidence intervals are obtained by bootstrap percentiles. The proposed methodology yields more accurate time dependent virus inactivation rate coefficients than those estimated by fitting virus inactivation data to a first-order inactivation model. The methodology is successfully applied to a set of poliovirus batch inactivation data. Furthermore, the importance of accurate inactivation rate coefficient determination on virus transport in water saturated porous media is demonstrated with model simulations.

  12. The radiobiological effect of intra-fraction dose-rate modulation in intensity modulated radiation therapy (IMRT)

    NASA Astrophysics Data System (ADS)

    Bewes, J. M.; Suchowerska, N.; Jackson, M.; Zhang, M.; McKenzie, D. R.

    2008-07-01

    Intensity-modulated radiation therapy (IMRT) achieves optimal dose conformity to the tumor through the use of spatially and temporally modulated radiation fields. In particular, average dose rate and instantaneous dose rate (pulse amplitude) are highly variable within a single IMRT fraction. In this study we isolate these variables and determine their impact on cell survival. Survival was assessed using a clonogenic assay. Two cell lines of differing radiosensitivity were examined: melanoma (MM576) and non-small cell lung cancer (NCI-H460). The survival fraction was observed to be independent of instantaneous dose rate. A statistically significant trend to increased survival was observed as the average dose rate was decreased, for a constant total dose. The results are relevant to IMRT practice, where average treatment times can be significantly extended to allow for movement of the multi-leaf collimator (MLC). Our in vitro study adds to the pool of theoretical evidence for the consequences of protracted treatments. We find that extended delivery times can substantially increase the cell survival. This also suggests that regional variation in the dose-rate history across a tumor, which is inherent to IMRT, will affect radiation dose efficacy.

  13. Objective method to report planner-independent skin/rib maximal dose in balloon-based high dose rate (HDR) brachytherapy for breast cancer

    SciTech Connect

    Kim, Yongbok; Trombetta, Mark G.

    2011-04-15

    Purpose: An objective method was proposed and compared with a manual selection method to determine planner-independent skin and rib maximal dose in balloon-based high dose rate (HDR) brachytherapy planning. Methods: The maximal dose to skin and rib was objectively extracted from a dose volume histogram (DVH) of skin and rib volumes. A virtual skin volume was produced by expanding the skin surface in three dimensions (3D) external to the breast with a certain thickness in the planning computed tomography (CT) images. Therefore, the maximal dose to this volume occurs on the skin surface the same with a conventional manual selection method. The rib was also delineated in the planning CT images and its maximal dose was extracted from its DVH. The absolute (Abdiff=|D{sub max}{sup Man}-D{sub max}{sup DVH}|) and relative (Rediff[%]=100x(|D{sub max}{sup Man}-D{sub max}{sup DVH}|)/D{sub max}{sup DVH}) maximal skin and rib dose differences between the manual selection method (D{sub max}{sup Man}) and the objective method (D{sub max}{sup DVH}) were measured for 50 balloon-based HDR (25 MammoSite and 25 Contura) patients. Results: The average{+-}standard deviation of maximal dose difference was 1.67%{+-}1.69% of the prescribed dose (PD). No statistical difference was observed between MammoSite and Contura patients for both Abdiff and Rediff[%] values. However, a statistically significant difference (p value <0.0001) was observed in maximal rib dose difference compared with maximal skin dose difference for both Abdiff (2.30%{+-}1.71% vs 1.05%{+-}1.43%) and Rediff[%] (2.32%{+-}1.79% vs 1.21%{+-}1.41%). In general, rib has a more irregular contour and it is more proximally located to the balloon for 50 HDR patients. Due to the inverse square law factor, more dose difference was observed in higher dose range (D{sub max}>90%) compared with lower dose range (D{sub max}<90%): 2.16%{+-}1.93% vs 1.19%{+-}1.25% with p value of 0.0049. However, the Rediff[%] analysis eliminated the

  14. Chromosome aberrations in human lymphocytes induced by 250 MeV protons: effects of dose, dose rate and shielding

    NASA Technical Reports Server (NTRS)

    George, K.; Willingham, V.; Wu, H.; Gridley, D.; Nelson, G.; Cucinotta, F. A.

    2002-01-01

    Although the space radiation environment consists predominantly of energetic protons, astronauts inside a spacecraft are chronically exposed to both primary particles as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary neutrons and secondary charged particles can have an LET value that is greater than the primary protons and, therefore, produce a higher relative biological effectiveness (RBE). Using the accelerator facility at Loma Linda University, we exposed human lymphocytes in vitro to 250 MeV protons with doses ranging from 0 to 60 cGy at three different dose rates: a low dose rate of 7.5 cGy/h, an intermediate dose rate of 30 cGy/h and a high dose rate of 70 cGy/min. The effect of 15 g/cm2 aluminum shielding on the induction of chromosome aberrations was investigated for each dose rate. After exposure, lymphocytes were incubated in growth medium containing phytohemagglutinin (PHA) and chromosome spreads were collected using a chemical-induced premature chromosome condensation (PCC) technique. Aberrations were analyzed using the fluorescence in situ hybridization (FISH) technique with three different colored chromosome-painting probes. The frequency of reciprocal and complex-type chromosome exchanges were compared in shielded and unshielded samples. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  15. Chromosome aberrations in human lymphocytes induced by 250 MeV protons: effects of dose, dose rate and shielding.

    PubMed

    George, K; Willingham, V; Wu, H; Gridley, D; Nelson, G; Cucinotta, F A

    2002-01-01

    Although the space radiation environment consists predominantly of energetic protons, astronauts inside a spacecraft are chronically exposed to both primary particles as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary neutrons and secondary charged particles can have an LET value that is greater than the primary protons and, therefore, produce a higher relative biological effectiveness (RBE). Using the accelerator facility at Loma Linda University, we exposed human lymphocytes in vitro to 250 MeV protons with doses ranging from 0 to 60 cGy at three different dose rates: a low dose rate of 7.5 cGy/h, an intermediate dose rate of 30 cGy/h and a high dose rate of 70 cGy/min. The effect of 15 g/cm2 aluminum shielding on the induction of chromosome aberrations was investigated for each dose rate. After exposure, lymphocytes were incubated in growth medium containing phytohemagglutinin (PHA) and chromosome spreads were collected using a chemical-induced premature chromosome condensation (PCC) technique. Aberrations were analyzed using the fluorescence in situ hybridization (FISH) technique with three different colored chromosome-painting probes. The frequency of reciprocal and complex-type chromosome exchanges were compared in shielded and unshielded samples.

  16. Concepts for dose determination in flat-detector CT

    NASA Astrophysics Data System (ADS)

    Kyriakou, Yiannis; Deak, Paul; Langner, Oliver; Kalender, Willi A.

    2008-07-01

    Flat-detector computed tomography (FD-CT) scanners provide large irradiation fields of typically 200 mm in the cranio-caudal direction. In consequence, dose assessment according to the current definition of the computed tomography dose index CTDIL=100 mm, where L is the integration length, would demand larger ionization chambers and phantoms which do not appear practical. We investigated the usefulness of the CTDI concept and practical dosimetry approaches for FD-CT by measurements and Monte Carlo (MC) simulations. An MC simulation tool (ImpactMC, VAMP GmbH, Erlangen, Germany) was used to assess the dose characteristics and was calibrated with measurements of air kerma. For validation purposes measurements were performed on an Axiom Artis C-arm system (Siemens Medical Solutions, Forchheim, Germany) equipped with a flat detector of 40 cm × 30 cm. The dose was assessed for 70 kV and 125 kV in cylindrical PMMA phantoms of 160 mm and 320 mm diameter with a varying phantom length from 150 to 900 mm. MC simulation results were compared to the values obtained with a calibrated ionization chambers of 100 mm and 250 mm length and to thermoluminesence (TLD) dose profiles. The MCs simulations were used to calculate the efficiency of the CTDIL determination with respect to the desired CTDI∞. Both the MC simulation results and the dose distributions obtained by MC simulation were in very good agreement with the CTDI measurements and with the reference TLD profiles, respectively, to within 5%. Standard CTDI phantoms which have a z-extent of 150 mm underestimate the dose at the center by up to 55%, whereas a z-extent of >=600 mm appears to be sufficient for FD-CT; the baseline value of the respective profile was within 1% to the reference baseline. As expected, the measurements with ionization chambers of 100 mm and 250 mm offer a limited accuracy, whereas an increased integration length of >=600 mm appeared to be necessary to approximate CTDI∞ in within 1%. MC simulations

  17. Laser-based irradiation apparatus and method to measure the functional dose-rate response of semiconductor devices

    DOEpatents

    Horn, Kevin M.

    2008-05-20

    A broad-beam laser irradiation apparatus can measure the parametric or functional response of a semiconductor device to exposure to dose-rate equivalent infrared laser light. Comparisons of dose-rate response from before, during, and after accelerated aging of a device, or from periodic sampling of devices from fielded operational systems can determine if aging has affected the device's overall functionality. The dependence of these changes on equivalent dose-rate pulse intensity and/or duration can be measured with the apparatus. The synchronized introduction of external electrical transients into the device under test can be used to simulate the electrical effects of the surrounding circuitry's response to a radiation exposure while exposing the device to dose-rate equivalent infrared laser light.

  18. Dose-rate plays a significant role in synchrotron radiation X-ray-induced damage of rodent testes

    PubMed Central

    Chen, Heyu; Wang, Ban; Wang, Caixia; Cao, Wei; Zhang, Jie; Ma, Yingxin; Hong, Yunyi; Fu, Shen; Wu, Fan; Ying, Weihai

    2016-01-01

    Synchrotron radiation (SR) X-ray has significant potential for applications in medical imaging and cancer treatment. However, the mechanisms underlying SR X-ray-induced tissue damage remain unclear. Previous studies on regular X-ray-induced tissue damage have suggested that dose-rate could affect radiation damage. Because SR X-ray has exceedingly high dose-rate compared to regular X-ray, it remains to be determined if dose-rate may affect SR X-ray-induced tissue damage. We used rodent testes as a model to investigate the role of dose-rate in SR X-ray-induced tissue damage. One day after SR X-ray irradiation, we determined the effects of the irradiation of the same dosage at two different dose-rates, 0.11 Gy/s and 1.1 Gy/s, on TUNEL signals, caspase-3 activation and DNA double-strand breaks (DSBs) of the testes. Compared to those produced by the irradiation at 0.11 Gy/s, irradiation at 1.1 Gy/s produced higher levels of DSBs, TUNEL signals, and caspase-3 activation in the testes. Our study has provided the first evidence suggesting that dose-rate could be a significant factor in SR X-ray-induced tissue damage, which may establish a valuable base for utilizing this factor to manipulate the tissue damage in SR X-ray-based medical applications. PMID:28078052

  19. Dose-rate plays a significant role in synchrotron radiation X-ray-induced damage of rodent testes.

    PubMed

    Chen, Heyu; Wang, Ban; Wang, Caixia; Cao, Wei; Zhang, Jie; Ma, Yingxin; Hong, Yunyi; Fu, Shen; Wu, Fan; Ying, Weihai

    2016-01-01

    Synchrotron radiation (SR) X-ray has significant potential for applications in medical imaging and cancer treatment. However, the mechanisms underlying SR X-ray-induced tissue damage remain unclear. Previous studies on regular X-ray-induced tissue damage have suggested that dose-rate could affect radiation damage. Because SR X-ray has exceedingly high dose-rate compared to regular X-ray, it remains to be determined if dose-rate may affect SR X-ray-induced tissue damage. We used rodent testes as a model to investigate the role of dose-rate in SR X-ray-induced tissue damage. One day after SR X-ray irradiation, we determined the effects of the irradiation of the same dosage at two different dose-rates, 0.11 Gy/s and 1.1 Gy/s, on TUNEL signals, caspase-3 activation and DNA double-strand breaks (DSBs) of the testes. Compared to those produced by the irradiation at 0.11 Gy/s, irradiation at 1.1 Gy/s produced higher levels of DSBs, TUNEL signals, and caspase-3 activation in the testes. Our study has provided the first evidence suggesting that dose-rate could be a significant factor in SR X-ray-induced tissue damage, which may establish a valuable base for utilizing this factor to manipulate the tissue damage in SR X-ray-based medical applications.

  20. Pharmacopeial methodologies for determining aerodynamic mass distributions of ultra-high dose inhaler medicines.

    PubMed

    Wong, William; Crapper, John; Chan, Hak-Kim; Traini, Daniela; Young, Paul M

    2010-03-11

    Three different impactor methodologies, the Andersen cascade impactor (ACI), next-generation impactor (NGI) and multistage-liquid impinger (MSLI) were studied to determine their performance when testing ultra-high dose dry powder formulations. Cumulative doses of spray-dried mannitol (Aridol) were delivered to each impactor at a flow rate of 60Lmin(-1) (up to a max dose of 800mg delivering 20 sequential 40mg capsules). In general, total drug collected in both the ACI and NGI falls below the range 85-115% of label claim criteria recommended by the United States of America Food and Drug Administration (FDA) at nominal mannitol doses exceeding 20mg and 200mg, respectively. In comparison analysis of the MSLI data, over a 5-800mg cumulative dosing range, indicated that the percentage of nominal dose recovered from the MSLI was within the +/-15% limits set in this study. Furthermore all samples, apart from the 5mg and 10mg analysis were within 5% of the nominal cumulative dose. While the MSLI is not routinely used for regulatory submission, the use of this impinger when studying ultra-high dose formulations should be considered as a complementary and comparative source of aerosol deposition data.

  1. Dose and dose rate effects of whole-body proton irradiation on leukocyte populations and lymphoid organs: part I

    NASA Technical Reports Server (NTRS)

    Gridley, Daila S.; Pecaut, Michael J.; Dutta-Roy, Radha; Nelson, Gregory A.

    2002-01-01

    The goal of part I of this study was to evaluate the effects of whole-body proton irradiation on lymphoid organs and specific leukocyte populations. C57BL/6 mice were exposed to the entry region of the proton Bragg curve to total doses of 0.5 gray (Gy), 1.5 Gy, and 3.0 Gy, each delivered at a low dose rate (LDR) of 1 cGy/min and high dose rate (HDR) of 80 cGy/min. Non-irradiated and 3 Gy HDR gamma-irradiated groups were included as controls. At 4 days post-irradiation, highly significant radiation dose-dependent reductions were observed in the mass of both lymphoid organs and the numbers of leukocytes and T (CD3(+)), T helper (CD3(+)/CD4(+)), T cytotoxic (CD3(+)/CD8(+)), and B (CD19(+)) cells in both blood and spleen. A less pronounced dose effect was noted for natural killer (NK1.1(+) NK) cells in spleen. Monocyte, but not granulocyte, counts in blood were highly dose-dependent. The numbers for each population generally tended to be lower with HDR than with LDR radiation; a significant dose rate effect was found in the percentages of T and B cells, monocytes, and granulocytes and in CD4(+):CD8(+) ratios. These data indicate that mononuclear cell response to the entry region of the proton Bragg curve is highly dependent upon the total dose and that dose rate effects are evident with some cell types. Results from gamma- and proton-irradiated groups (both at 3 Gy HDR) were similar, although proton-irradiation gave consistently lower values in some measurements.

  2. Assessment of gamma-dose rate in city of Kermanshah

    PubMed Central

    Tavakoli, Mohamad Bagher; Kodamoradi, Ehsan; Shaneh, Zahra

    2012-01-01

    Introduction: Environmental natural radiation measurement is of great importance and interest especially for human health. The induction of genetic disorder and cancer appears to be the most important in an exposed population. Materials and Methods: Measurements of background gamma rays were performed using a mini-rad environmental survey meter at 25 different locations around the city of Kermanshah (a city in the west of Iran). The measurements were also performed at two different time of day one in the morning and the other in the afternoon. At each location and time measurements were repeated for five times and the mean was considered as the background dose at that location. Results and Discussions: Comparison between the measured results in the morning and afternoon has not shown any significant difference (P > 0.95). The maximum and minimum obtained results were 2.63 mSv/y and 1.49 mSv/y, respectively. From the total measurements at 25 sites mean and SD background radiation dose to the population is 2.24 ± 0.25 mSv. Conclusion: The mean radiation dose to the population is about 2.5 times of the world average total external exposure cosmic rays and terrestrial gamma rays dose reported by UNSCEAR. PMID:23555133

  3. Determination of cytotoxic thermal dose during HIFU ablation

    NASA Astrophysics Data System (ADS)

    Nandlall, Sacha D.; Bazán-Peregrino, Miriam; Mo, Steven; Coussios, Constantin-C.

    2012-10-01

    Thermal dose has been proposed for various hyperthermic cancer treatment modalities as a measure of heat-induced cell and tissue damage. However, many of the models that are currently used for calculating thermal dose have not been validated or suitably adapted for the elevated temperatures and rates of heating encountered during ablation by High-Intensity Focused Ultrasound (HIFU). This work quantifies the performance of the widely employed Cumulative Equivalent Minutes at 43°C (CEM43) thermal dose metric under HIFU-relevant heating. A total of 36 agar phantoms were embedded with different human cancer cell lines (PC3, 22RV1, or ZR75.1) as well as calcein AM and propidium iodide assays. The phantoms were cast in sterile molds with internal dimensions of 7 cm × 7 cm × 2 mm. Using a water bath, 12 of the phantoms were treated with mild hyperthermia (43-46°C for up to 60 minutes), while another 12 were subjected to HIFU-relevant temperature profiles (60-80°C peak temperature, 2-3°C/s peak heating rate). In each of the remaining 12 phantoms, 8 HIFU exposures were carried out in a 37°C water tank (1.067 MHz, 95% duty cycle, 3-6 MPa peak rarefaction pressure, 2-20 s exposure duration). Cavitation emissions were monitored passively with a detector transducer that was confocally and co-axially aligned with the HIFU source. Cell death was quantified by measuring the locally averaged fluorescence intensity of the assays relative to unheated and severely heat-shocked phantoms. The results show that the CEM43 dose required to achieve the same level of heat-induced cell death varies considerably across cell lines, and that inertial cavitation can cause significant mechanical damage at ablation-relevant intensities even when no significant thermal dose is delivered (CEM43 < 5 s). These findings demonstrate the need for improved models of cell death at ablation-relevant temperatures.

  4. Effect of radiocesium transfer on ambient dose rate in forest environments affected by the Fukushima Nuclear Power Plant accident

    NASA Astrophysics Data System (ADS)

    Kato, H.

    2015-12-01

    We investigated the transfer of canopy-intercepted radiocesium to the forest floor during 3 years following the Fukushima Daiichi Nuclear Power Plant accident. The cesium-137 (Cs-137) contents in throughfall, stemflow, and litterfall were monitored in two coniferous stands (plantation of Japanese cedar) and a deciduous broad-leaved forest stand (Japanese oak with red pine). We also measured the ambient dose rate (ADR) at different heights in the forest using a survey meter and a portable Ge gamma-ray detector. Total Cs-137 deposition flux from the canopy to forest floor for the mature cedar, young cedar, and the mixed broad-leaved stands were 166 kBq/m2, 174 kBq/m2, and 60 kBq/m2, respectively. These values correspond to 38%, 40% and 13% of total atmospheric input after the accident. The ambient dose rate in forest exhibited height dependency and its vertical distribution varied with forest type and stand age. The ambient dose rate showed an exponential decrease with time for all the forest sites, however the decreasing trend differed depending on the height of dose measurement and forest type. The ambient dose rate at the canopy (approx. 10 m-height) decreased faster than that expected from physical decay of the two radiocesium isotopes, whereas those at the forest floor varied between the three forest stands. The radiocesium deposition via throughfall seemed to increase ambient dose rate during the first 200 days after the accident, however there was no clear relationship between litterfall and ambient dose rate since 400 days after the accident. These data suggested that the ambient dose rate in forest environment varied both spatially and temporally reflecting the transfer of radiocesium from canopy to forest floor. However, further monitoring investigation and analysis are required to determine the effect of litterfall on long-term trend of ambient dose rate in forest environments.

  5. A model to calculate the induced dose rate around an 18 MV ELEKTA linear accelerator.

    PubMed

    Perrin, Bruce; Walker, Anne; Mackay, Ranald

    2003-03-07

    The dose rate due to activity induced by (gamma, n) reactions around an ELEKTA Precise accelerator running at 18 MV is reported. A model to calculate the induced dose rate for a variety of working practices has been derived and compared to the measured values. From this model, the dose received by the staff using the machine can be estimated. From measured dose rates at the face of the linear accelerator for a 10 x 10 cm2 jaw setting at 18 MV an activation coefficient per MU was derived for each of the major activation products. The relative dose rates at points around the linac head, for different energy and jaw settings, were measured. Dose rates adjacent to the patient support system and portal imager were also measured. A model to calculate the dose rate at these points was derived, and compared to those measured over a typical working week. The model was then used to estimate the maximum dose to therapists for the current working schedule on this machine. Calculated dose rates at the linac face agreed to within +/- 12% of those measured over a week, with a typical dose rate of 4.5 microSv h(-1) 2 min after the beam has stopped. The estimated maximum annual whole body dose for a treatment therapist, with the machine treating at only 18 MV, for 60000 MUs per week was 2.5 mSv. This compares well with value of 2.9 mSv published for a Clinac 21EX. A model has been derived to calculate the dose from the four dominant activation products of an ELEKTA Precise 18 MV linear accelerator. This model is a useful tool to calculate the induced dose rate around the treatment head. The model can be used to estimate the dose to the staff for typical working patterns.

  6. Benchmarking of MCNP for calculating dose rates at an interim storage facility for nuclear waste.

    PubMed

    Heuel-Fabianek, Burkhard; Hille, Ralf

    2005-01-01

    During the operation of research facilities at Research Centre Jülich, Germany, nuclear waste is stored in drums and other vessels in an interim storage building on-site, which has a concrete shielding at the side walls. Owing to the lack of a well-defined source, measured gamma spectra were unfolded to determine the photon flux on the surface of the containers. The dose rate simulation, including the effects of skyshine, using the Monte Carlo transport code MCNP is compared with the measured dosimetric data at some locations in the vicinity of the interim storage building. The MCNP data for direct radiation confirm the data calculated using a point-kernel method. However, a comparison of the modelled dose rates for direct radiation and skyshine with the measured data demonstrate the need for a more precise definition of the source. Both the measured and the modelled dose rates verified the fact that the legal limits (<1 mSv a(-1)) are met in the area outside the perimeter fence of the storage building to which members of the public have access. Using container surface data (gamma spectra) to define the source may be a useful tool for practical calculations and additionally for benchmarking of computer codes if the discussed critical aspects with respect to the source can be addressed adequately.

  7. Mapping of dose distribution from IMRT onto MRI-guided high dose rate brachytherapy using deformable image registration for cervical cancer treatments: preliminary study with commercially available software

    PubMed Central

    Huq, M. Saiful; Houser, Chris; Beriwal, Sushil; Michalski, Dariusz

    2014-01-01

    Purpose For patients undergoing external beam radiation therapy (EBRT) and brachytherapy, recommendations for target doses and constraints are based on calculation of the equivalent dose in 2 Gy fractions (EQD2) from each phase. At present, the EBRT dose distribution is assumed to be uniform throughout the pelvis. We performed a preliminary study to determine whether deformable dose distribution mapping from the EBRT onto magnetic resonance (MR) images for the brachytherapy would yield differences in doses for organs at risk (OARs) and high-risk clinical target volume (HR-CTV). Material and methods Nine cervical cancer patients were treated to a total dose of 45 Gy in 25 fractions using intensity-modulated radiation therapy (IMRT), followed by MRI-based 3D high dose rate (HDR) brachytherapy. Retrospectively, the IMRT planning CT images were fused with the MR image for each fraction of brachytherapy using deformable image registration. The deformed IMRT dose onto MR images were converted to EQD2 and compared to the uniform dose assumption. Results For all patients, the EQD2 from the EBRT phase was significantly higher with deformable registration than with the conventional uniform dose distribution assumption. The mean EQD2 ± SD for HR-CTV D90 was 45.7 ± 0.7 Gy vs. 44.3 Gy for deformable vs. uniform dose distribution, respectively (p < 0.001). The dose to 2 cc of the bladder, rectum, and sigmoid was 46.4 ± 1.2 Gy, 46.2 ± 1.0 Gy, and 48.0 ± 2.5 Gy, respectively with deformable dose distribution, and was significantly higher than with uniform dose distribution (43.2 Gy for all OAR, p < 0.001). Conclusions This study reveals that deformed EBRT dose distribution to HR-CTV and OARs in MR images for brachytherapy is technically feasible, and achieves differences compared to a uniform dose distribution. Therefore, the assumption that EBRT contributes the same dose value may need to be carefully investigated further based on deformable image registration. PMID:25097559

  8. Correlation of Point B and Lymph Node Dose in 3D-Planned High-Dose-Rate Cervical Cancer Brachytherapy

    SciTech Connect

    Lee, Larissa J.; Sadow, Cheryl A.; Russell, Anthony; Viswanathan, Akila N.

    2009-11-01

    Purpose: To compare high dose rate (HDR) point B to pelvic lymph node dose using three-dimensional-planned brachytherapy for cervical cancer. Methods and Materials: Patients with FIGO Stage IB-IIIB cervical cancer received 70 tandem HDR applications using CT-based treatment planning. The obturator, external, and internal iliac lymph nodes (LN) were contoured. Per fraction (PF) and combined fraction (CF) right (R), left (L), and bilateral (Bil) nodal doses were analyzed. Point B dose was compared with LN dose-volume histogram (DVH) parameters by paired t test and Pearson correlation coefficients. Results: Mean PF and CF doses to point B were R 1.40 Gy +- 0.14 (CF: 7 Gy), L 1.43 +- 0.15 (CF: 7.15 Gy), and Bil 1.41 +- 0.15 (CF: 7.05 Gy). The correlation coefficients between point B and the D100, D90, D50, D2cc, D1cc, and D0.1cc LN were all less than 0.7. Only the D2cc to the obturator and the D0.1cc to the external iliac nodes were not significantly different from the point B dose. Significant differences between R and L nodal DVHs were seen, likely related to tandem deviation from irregular tumor anatomy. Conclusions: With HDR brachytherapy for cervical cancer, per fraction nodal dose approximates a dose equivalent to teletherapy. Point B is a poor surrogate for dose to specific nodal groups. Three-dimensional defined nodal contours during brachytherapy provide a more accurate reflection of delivered dose and should be part of comprehensive planning of the total dose to the pelvic nodes, particularly when there is evidence of pathologic involvement.

  9. Determining Effective Methadone Doses for Individual Opioid-Dependent Patients

    PubMed Central

    Trafton, Jodie A; Minkel, Jared; Humphreys, Keith

    2006-01-01

    Background Randomized clinical trials of methadone maintenance have found that on average high daily doses are more effective for reducing heroin use, and clinical practice guidelines recommend 60 mg/d as a minimum dosage. Nevertheless, many clinicians report that some patients can be stably maintained on lower methadone dosages to optimal effect, and clinic dosing practices vary substantially. Studies of individual responses to methadone treatment may be more easily translated into clinical practice. Methods and Findings A volunteer sample of 222 opioid-dependent US veterans initiating methadone treatment was prospectively observed over the year after treatment entry. In the 168 who achieved at least 1 mo of heroin abstinence, methadone dosages on which patients maintained heroin-free urine samples ranged from 1.5 mg to 191.2 mg (median = 69 mg). Among patients who achieved heroin abstinence, higher methadone dosages were predicted by having a diagnosis of posttraumatic stress disorder or depression, having a greater number of previous opioid detoxifications, living in a region with lower average heroin purity, attending a clinic where counselors discourage dosage reductions, and staying in treatment longer. These factors predicted 42% of the variance in dosage associated with heroin abstinence. Conclusions Effective and ineffective methadone dosages overlap substantially. Dosing guidelines should focus more heavily on appropriate processes of dosage determination rather than solely specifying recommended dosages. To optimize therapy, methadone dosages must be titrated until heroin abstinence is achieved. PMID:16448216

  10. Photon dose rates from spent fuel assemblies with relation to self-protection (Rev. 1)

    SciTech Connect

    Pond, R.B.; Matos, J.E.

    1996-02-01

    Photon dose rates as a function of fission product decay times have been calculated for spent fuel assemblies typical of MTR-type research and test reactors. Based upon these dose rates, the length of time that a spent fuel assembly will be self-protecting (dose rate greater than 100 rem/h at 1 m in air) can be estimated knowing the mass of fuel burned, the fraction of fuel burned, and the fuel assembly specific power density.

  11. 10 CFR 20.1203 - Determination of external dose from airborne radioactive material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Determination of external dose from airborne radioactive... RADIATION Occupational Dose Limits § 20.1203 Determination of external dose from airborne radioactive material. Licensees shall, when determining the dose from airborne radioactive material, include...

  12. 10 CFR 20.1203 - Determination of external dose from airborne radioactive material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Determination of external dose from airborne radioactive... RADIATION Occupational Dose Limits § 20.1203 Determination of external dose from airborne radioactive material. Licensees shall, when determining the dose from airborne radioactive material, include...

  13. 10 CFR 20.1203 - Determination of external dose from airborne radioactive material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Determination of external dose from airborne radioactive... RADIATION Occupational Dose Limits § 20.1203 Determination of external dose from airborne radioactive material. Licensees shall, when determining the dose from airborne radioactive material, include...

  14. 10 CFR 20.1203 - Determination of external dose from airborne radioactive material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Determination of external dose from airborne radioactive... RADIATION Occupational Dose Limits § 20.1203 Determination of external dose from airborne radioactive material. Licensees shall, when determining the dose from airborne radioactive material, include...

  15. Brachytherapy optimization using radiobiological-based planning for high dose rate and permanent implants for prostate cancer treatment

    NASA Astrophysics Data System (ADS)

    Seeley, Kaelyn; Cunha, J. Adam; Hong, Tae Min

    2017-01-01

    We discuss an improvement in brachytherapy--a prostate cancer treatment method that directly places radioactive seeds inside target cancerous regions--by optimizing the current standard for delivering dose. Currently, the seeds' spatiotemporal placement is determined by optimizing the dose based on a set of physical, user-defined constraints. One particular approach is the ``inverse planning'' algorithms that allow for tightly fit isodose lines around the target volumes in order to reduce dose to the patient's organs at risk. However, these dose distributions are typically computed assuming the same biological response to radiation for different types of tissues. In our work, we consider radiobiological parameters to account for the differences in the individual sensitivities and responses to radiation for tissues surrounding the target. Among the benefits are a more accurate toxicity rate and more coverage to target regions for planning high-dose-rate treatments as well as permanent implants.

  16. Development of a high precision dosimetry system for the measurement of surface dose rate distribution for eye applicators

    SciTech Connect

    Eichmann, Marion; Fluehs, Dirk; Spaan, Bernhard

    2009-10-15

    Purpose: The therapeutic outcome of the therapy with ophthalmic applicators is highly dependent on the application of a sufficient dose to the tumor, whereas the dose applied to the surrounding tissue needs to be minimized. The goal for the newly developed apparatus described in this work is the determination of the individual applicator surface dose rate distribution with a high spatial resolution and a high precision in dose rate with respect to time and budget constraints especially important for clinical procedures. Inhomogeneities of the dose rate distribution can be detected and taken into consideration for the treatment planning. Methods: In order to achieve this, a dose rate profile as well as a surface profile of the applicator are measured and correlated with each other. An instrumental setup has been developed consisting of a plastic scintillator detector system and a newly designed apparatus for guiding the detector across the applicator surface at a constant small distance. It performs an angular movement of detector and applicator with high precision. Results: The measurements of surface dose rate distributions discussed in this work demonstrate the successful operation of the measuring setup. Measuring the surface dose rate distribution with a small distance between applicator and detector and with a high density of measuring points results in a complete and gapless coverage of the applicator surface, being capable of distinguishing small sized spots with high activities. The dosimetrical accuracy of the measurements and its analysis is sufficient (uncertainty in the dose rate in terms of absorbed dose to water is <7%), especially when taking the surgical techniques in positioning of the applicator on the eyeball into account. Conclusions: The method developed so far allows a fully automated quality assurance of eye applicators even under clinical conditions. These measurements provide the basis for future calculation of a full 3D dose rate

  17. Radon Dose Determination for Cave Guides in Czech Republic

    SciTech Connect

    Thinova, Lenka; Rovenska, Katerina

    2008-08-07

    According to recommended approach there are six (from total of twelve) open-to-public caves in Czech Republic, reaching near to an effective lung-dose of 6mSv/year. A conservative approach for estimating the potential effective lung-dose in caves (or underground) is based on two season's measurements, using solid state alpha track detector (Kodak in plastic diffusion chamber). The obtained dataset is converted into an annual effective dose, in agreement with the ICRP65 recommendation, using the 'cave factor' 1.5. The value of 'cave factor' which depends on the spectrum of aerosol particles, or on the proportional representation of the unattached/attached ratio (6.5 : 93.5 for residential places, 13.6 : 86.4 for caves due to lower concentration of free aerosols) and on the equilibrium factor. Thus conversion factor is 1.5 times higher in comparison with ICRP 65. Is this correct? Because a more precisely determined dose value would have a significant impact on radon remedies, or on restricting the time workers stay underground, a series of measurement was initiated in 2003 with the aim to specify input data, computation and errors in effective dose assessment in each one of the evaluated caves separately. The enhancement of personal dosimetry for underground work places includes a study of the given questions, from the following points of view in each cave: continual radon measurement; regular measurements of radon and its daughters to estimate the equilibrium factor and the presence of free {sup 218}Po; regular indoor air flow measurements to study the location of the radon supply and its transfer among individual areas of the cave; natural radioactive element content evaluation in subsoil and in water inside/outside, a study of the radon sources in the cave; determination of the free fraction from continual unattached and attached fraction measurement (grid and filter); thoron measurement. Air flow measurements provide very interesting information about the origin

  18. Enhanced Low Dose Rate Effects in Bipolar Circuits: A New Hardness Assurance Problem for NASA

    NASA Technical Reports Server (NTRS)

    Johnston, A.; Barnes, C.

    1995-01-01

    Many bipolar integrated circuits are much more susceptible to ionizing radiation at low dose rates than they are at high dose rates typically used for radiation parts testing. Since the low dose rate is equivalent to that seen in space, the standard lab test no longer can be considered conservative and has caused the Air Force to issue an alert. Although a reliable radiation hardness assurance test has not yet been designed, possible mechanisms for low dose rate enhancement and hardness assurance tests are discussed.

  19. The dose and dose-rate effects of paternal irradiation on transgenerational instability in mice: a radiotherapy connection.

    PubMed

    Mughal, Safeer K; Myazin, Andrey E; Zhavoronkov, Leonid P; Rubanovich, Alexander V; Dubrova, Yuri E

    2012-01-01

    The non-targeted effects of human exposure to ionising radiation, including transgenerational instability manifesting in the children of irradiated parents, remains poorly understood. Employing a mouse model, we have analysed whether low-dose acute or low-dose-rate chronic paternal γ-irradiation can destabilise the genomes of their first-generation offspring. Using single-molecule PCR, the frequency of mutation at the mouse expanded simple tandem repeat (ESTR) locus Ms6-hm was established in DNA samples extracted from sperm of directly exposed BALB/c male mice, as well as from sperm and the brain of their first-generation offspring. For acute γ-irradiation from 10-100 cGy a linear dose-response for ESTR mutation induction was found in the germ line of directly exposed mice, with a doubling dose of 57 cGy. The mutagenicity of acute exposure to 100 cGy was more pronounced than that for chronic low-dose-rate irradiation. The analysis of transgenerational effects of paternal irradiation revealed that ESTR mutation frequencies were equally elevated in the germ line (sperm) and brain of the offspring of fathers exposed to 50 and 100 cGy of acute γ-rays. In contrast, neither paternal acute irradiation at lower doses (10-25 cGy), nor low-dose-rate exposure to 100 cGy affected stability of their offspring. Our data imply that the manifestation of transgenerational instability is triggered by a threshold dose of acute paternal irradiation. The results of our study also suggest that most doses of human exposure to ionising radiation, including radiotherapy regimens, may be unlikely to result in transgenerational instability in the offspring children of irradiated fathers.

  20. Absorbed dose simulations in near-surface regions using high dose rate Iridium-192 sources applied for brachytherapy

    NASA Astrophysics Data System (ADS)

    Moura, E. S.; Zeituni, C. A.; Sakuraba, R. K.; Gonçalves, V. D.; Cruz, J. C.; Júnior, D. K.; Souza, C. D.; Rostelato, M. E. C. M.

    2014-02-01

    Brachytherapy treatment with Iridium-192 high dose rate (HDR) sources is widely used for various tumours and it could be developed in many anatomic regions. Iridium-192 sources are inserted inside or close to the region that will be treated. Usually, the treatment is performed in prostate, gynaecological, lung, breast and oral cavity regions for a better clinical dose coverage compared with other techniques, such as, high energy photons and Cobalt-60 machines. This work will evaluate absorbed dose distributions in near-surface regions around Ir-192 HDR sources. Near-surface dose measurements are a complex task, due to the contribution of beta particles in the near-surface regions. These dose distributions should be useful for non-tumour treatments, such as keloids, and other non-intracavitary technique. For the absorbed dose distribution simulations the Monte Carlo code PENELOPE with the general code penEasy was used. Ir-192 source geometry and a Polymethylmethacrylate (PMMA) tube, for beta particles shield were modelled to yield the percentage depth dose (PDD) on a cubic water phantom. Absorbed dose simulations were realized at the central axis to yield the Ir-192 dose fall-off along central axis. The results showed that more than 99.2% of the absorbed doses (relative to the surface) are deposited in 5 cm depth but with slower rate at higher distances. Near-surface treatments with Ir-192 HDR sources yields achievable measurements and with proper clinical technique and accessories should apply as an alternative for treatment of lesions where only beta sources were used.

  1. 'In vivo' Dose Measurements in High-Dose-Rate Brachytherapy Treatments for Cervical Cancer: A Project Proposal

    SciTech Connect

    Reynoso Mejia, C. A.; Buenfil Burgos, A. E.; Ruiz Trejo, C.; Mota Garcia, A.; Trejo Duran, E.; Rodriguez Ponce, M.; Gamboa de Buen, I.

    2010-12-07

    The aim of this thesis project is to compare doses calculated from the treatment planning system using computed tomography images, with those measured 'in vivo' by using thermoluminescent dosimeters placed at different regions of the rectum and bladder of a patient during high-dose-rate intracavitary brachytherapy treatment of uterine cervical carcinoma. The experimental dosimeters characterisation and calibration have concluded and the protocol to carry out the 'in vivo' measurements has been established. In this work, the calibration curves of two types of thermoluminescent dosimeters (rods and chips) are presented, and the proposed protocol to measure the 'in vivo' dose is fully described.

  2. ``In vivo'' Dose Measurements in High-Dose-Rate Brachytherapy Treatments for Cervical Cancer: A Project Proposal

    NASA Astrophysics Data System (ADS)

    Mejía, C. A. Reynoso; Burgos, A. E. Buenfil; Trejo, C. Ruiz; García, A. Mota; Durán, E. Trejo; Ponce, M. Rodríguez; de Buen, I. Gamboa

    2010-12-01

    The aim of this thesis project is to compare doses calculated from the treatment planning system using computed tomography images, with those measured "in vivo" by using thermoluminescent dosimeters placed at different regions of the rectum and bladder of a patient during high-dose-rate intracavitary brachytherapy treatment of uterine cervical carcinoma. The experimental dosimeters characterisation and calibration have concluded and the protocol to carry out the "in vivo" measurements has been established. In this work, the calibration curves of two types of thermoluminescent dosimeters (rods and chips) are presented, and the proposed protocol to measure the "in vivo" dose is fully described.

  3. Absorbed dose rate in air in metropolitan Tokyo before the Fukushima Daiichi Nuclear Power Plant accident.

    PubMed

    Inoue, K; Hosoda, M; Fukushi, M; Furukawa, M; Tokonami, S

    2015-11-01

    The monitoring of absorbed dose rate in air has been carried out continually at various locations in metropolitan Tokyo after the accident of the Fukushima Daiichi Nuclear Power Plant. While the data obtained before the accident are needed to more accurately assess the effects of radionuclide contamination from the accident, detailed data for metropolitan Tokyo obtained before the accident have not been reported. A car-borne survey of the absorbed dose rate in air in metropolitan Tokyo was carried out during August to September 2003. The average absorbed dose rate in air in metropolitan Tokyo was 49±6 nGy h(-1). The absorbed dose rate in air in western Tokyo was higher compared with that in central Tokyo. Here, if the absorbed dose rate indoors in Tokyo is equivalent to that outdoors, the annual effective dose would be calculated as 0.32 mSv y(-1).

  4. Changes in ambient dose equivalent rates around roads at Kawamata town after the Fukushima accident.

    PubMed

    Kinase, Sakae; Sato, Satoshi; Sakamoto, Ryuichi; Yamamoto, Hideaki; Saito, Kimiaki

    2015-11-01

    Changes in ambient dose equivalent rates noted through vehicle-borne surveys have elucidated ecological half-lives of radioactive caesium in the environment. To confirm that the ecological half-lives are appropriate for predicting ambient dose equivalent rates within living areas, it is important to ascertain ambient dose equivalent rates on/around roads. In this study, radiation monitoring on/around roads at Kawamata town, located about 37 km northwest of the Fukushima Daiichi Nuclear Power Plant, was performed using monitoring vehicles and survey meters. It was found that the ambient dose equivalent rates around roads were higher than those on roads as of October 2012. And withal the ecological half-lives on roads were essentially consistent with those around roads. With dose predictions using ecological half-lives on roads, it is necessary to make corrections to ambient dose equivalent rates through the vehicle-borne surveys against those within living areas.

  5. 'In Vivo' Dosimetry in High Dose Rate Brachytherapy for Cervical Cancer Treatments

    SciTech Connect

    Gonzalez-Azcorra, S. A.; Ruiz-Trejo, C.; Buenfil, A. E.; Mota-Garcia, A.; Poitevin-Chacon, M. A.; Santamaria-Torruco, B. J.; Rodriguez-Ponce, M.; Herrera-Martinez, F. P.; Gamboa de Buen, I.

    2008-08-11

    In this prospective study, rectal dose was measured 'in vivo' using TLD-100 crystals (3x3x1 mm{sup 3}), and it has been compared to the prescribed dose. Measurements were performed in patients with cervical cancer classified in FIGO stages IB-IIIB and treated with high dose rate brachytherapy (HDR BT) at the Instituto Nacional de Cancerologia (INCan)

  6. [Genetic changes in yeast cells Saccharomyces irradiated by fast neutrons with different dose rate].

    PubMed

    Malinova, I V; Tsyb, T S; Komarova, E V

    2009-01-01

    No neutron dose rate effects in the wide range of 10(-3) Gy/s to 10(6) Gy/s were observed in yeast diploid cells for induction of mitotic segregation and crossing-over. The RBE values for these effects were determined as doses ratio (Dgamma/D(n)) at maximum effects. The RBE were 2.2-1.9 for neutrons of the reactor BR-10 (E = = 0.85 MeV) and the pulse reactor BARS-6 (E = 1.44 MeV). The RBE values for genetic effects were 1.0 at the equal survival level for neutrons and gamma-rays 60Co.

  7. High-Dose-Rate Prostate Brachytherapy Consistently Results in High Quality Dosimetry

    SciTech Connect

    White, Evan C.; Kamrava, Mitchell R.; Demarco, John; Park, Sang-June; Wang, Pin-Chieh; Kayode, Oluwatosin; Steinberg, Michael L.; Demanes, D. Jeffrey

    2013-02-01

    Purpose: We performed a dosimetry analysis to determine how well the goals for clinical target volume coverage, dose homogeneity, and normal tissue dose constraints were achieved with high-dose-rate (HDR) prostate brachytherapy. Methods and Materials: Cumulative dose-volume histograms for 208 consecutively treated HDR prostate brachytherapy implants were analyzed. Planning was based on ultrasound-guided catheter insertion and postoperative CT imaging; the contoured clinical target volume (CTV) was the prostate, a small margin, and the proximal seminal vesicles. Dosimetric parameters analyzed for the CTV were D90, V90, V100, V150, and V200. Dose to the urethra, bladder, bladder balloon, and rectum were evaluated by the dose to 0.1 cm{sup 3}, 1 cm{sup 3}, and 2 cm{sup 3} of each organ, expressed as a percentage of the prescribed dose. Analysis was stratified according to prostate size. Results: The mean prostate ultrasound volume was 38.7 {+-} 13.4 cm{sup 3} (range: 11.7-108.6 cm{sup 3}). The mean CTV was 75.1 {+-} 20.6 cm{sup 3} (range: 33.4-156.5 cm{sup 3}). The mean D90 was 109.2% {+-} 2.6% (range: 102.3%-118.4%). Ninety-three percent of observed D90 values were between 105 and 115%. The mean V90, V100, V150, and V200 were 99.9% {+-} 0.05%, 99.5% {+-} 0.8%, 25.4% {+-} 4.2%, and 7.8% {+-} 1.4%. The mean dose to 0.1 cm{sup 3}, 1 cm{sup 3}, and 2 cm{sup 3} for organs at risk were: Urethra: 107.3% {+-} 3.0%, 101.1% {+-} 14.6%, and 47.9% {+-} 34.8%; bladder wall: 79.5% {+-} 5.1%, 69.8% {+-} 4.9%, and 64.3% {+-} 5.0%; bladder balloon: 70.3% {+-} 6.8%, 59.1% {+-} 6.6%, and 52.3% {+-} 6.2%; rectum: 76.3% {+-} 2.5%, 70.2% {+-} 3.3%, and 66.3% {+-} 3.8%. There was no significant difference between D90 and V100 when stratified by prostate size. Conclusions: HDR brachytherapy allows the physician to consistently achieve complete prostate target coverage and maintain normal tissue dose constraints for organs at risk over a wide range of target volumes.

  8. Dose-rate conversion factors for external exposure to photons and electrons

    SciTech Connect

    Kocher, D.C.

    1981-08-01

    Dose-rate conversion factors for external exposure to photons and electrons have been calculated for approximately 500 radionuclides of potential importance in environmental radiological assessments. The dose-rate factors were obtained using the DOSFACTER computer code. The results given in this report incorporate calculation of electron dose-rate factors for radiosensitive tissues of the skin, improved estimates of organ dose-rate factors for photons, based on organ doses for monoenergetic sources at the body surface of an exposed individual, and the spectra of scattered photons in air from monoenergetic sources in an infinite, uniformly contaminated atmospheric cloud, calculation of dose-rate factors for other radionuclides in addition to those of interest in the nuclear fuel cycle, and incorporation of updated radioactive decay data for all radionuclides. Dose-rate factors are calculated for three exposure modes - immersion in contaminated air, immersion in contaminated water, and exposure at a height of 1 m above a contaminated ground surface. The report presents the equations used to calculate the external dose-rate factors for photons and electrons, documentation of the revised DOSFACTER computer code, and a complete tabulation of the calculated dose-rate factors. 30 refs., 12 figs.

  9. Can point doses predict volumetric dose to rectum and bladder: a CT-based planning study in high dose rate intracavitary brachytherapy of cervical carcinoma?

    PubMed Central

    Patil, V M; Patel, F D; Chakraborty, S; Oinam, A S; Sharma, S C

    2011-01-01

    Objective Point doses, as defined by the International Commission on Radiation Units and Measurements (ICRU), are classically used to evaluate doses to the rectum and bladder in high dose rate intracavitary brachytherapy (HDR-ICBT) in cervical cancer. Several studies have shown good correlation between the ICRU point doses and the volumetric doses to these organs. In the present study we attempted to evaluate whether this correlation could be used to predict the volumetric doses to these organs. Methods A total of 150 HDR-ICBT insertions performed between December 2006 and June 2008 were randomly divided into two groups. Group A (n=50) was used to derive the correlation between the point and volumetric doses using regression analysis. This was tested in Group B (n=100) insertions using studentised residuals and Bland–Altman plots. Results Significant correlations were obtained for all volumetric doses and ICRU point doses for rectum and bladder in Group A insertions. The strongest correlation was found for the dose to 2 cc volumes (D2cc). The correlation coefficients for bladder and rectal D2cc versus the respective ICRU point doses were 0.82 and 0.77, respectively (p<0.001). Statistical validation of equations generated in Group B showed mean studentised residual values of 0.001 and 0.000 for the bladder and rectum. However, Bland–Altman analysis showed that the error range for these equations for bladder and rectum were ±64% and ±41% of the point A dose, respectively, which makes these equations unreliable for clinical use. Conclusion Volumetric imaging is essential to obtain proper information about volumetric doses. PMID:21511749

  10. Induction of reciprocal translocations in rhesus monkey stem-cell spermatogonia: effects of low doses and low dose rates

    SciTech Connect

    van Buul, P.P.; Richardson, J.F. Jr.; Goudzwaard, J.H.

    1986-01-01

    The induction of reciprocal translocation in rhesus monkey spermatogonial stem cells was studied following exposure to low doses of acute X rays (0.25 Gy, 300 mGy/min) or to low-dose-rate X rays (1 Gy, 2 mGy/min) and gamma rays (1 Gy, 0.2 mGy/min). The results obtained at 0.25 Gy of X rays fitted exactly the linear extrapolation down from the 0.5 and 1.0 Gy points obtained earlier. Extension of X-ray exposure reduced the yield of translocations similar to that in the mouse by about 50%. The reduction to 40% of translocation rate after chronic gamma exposure was clearly less than the value of about 80% reported for the mouse over the same range of dose rates. Differential cell killing with ensuing differential elimination of aberration-carrying cells is the most likely explanation for the differences between mouse and monkey.

  11. Dedicated high dose rate 192Ir brachytherapy radiation fields for in vitro cell exposures at variable source-target cell distances: killing of mammalian cells depends on temporal dose rate fluctuation

    NASA Astrophysics Data System (ADS)

    Veigel, Cornelia; Hartmann, Günther H.; Fritz, Peter; Debus, Jürgen; Weber, Klaus-Josef

    2017-02-01

    Afterloading brachytherapy is conducted by the stepwise movement of a radioactive source through surgically implanted applicator tubes where at predefined dwell positions calculated dwell times optimize spatial dose delivery with respect to a planned dose level. The temporal exposure pattern exhibits drastic fluctuations in dose rate at a given coordinate and within a single treatment session because of the discontinuous and repeated source movement into the target volume. This could potentially affect biological response. Therefore, mammalian cells were exposed as monolayers to a high dose rate 192Ir source by utilizing a dedicated irradiation device where the distance between a planar array of radioactive source positions and the plane of the cell monolayer could be varied from 2.5 mm to 40 mm, thus varying dose rate pattern for any chosen total dose. The Gammamed IIi afterloading system equipped with a nominal 370 GBq (10 Ci) 192-Ir source was used to irradiate V79 Chinese hamster lung fibroblasts from both confluent and from exponential growth phase with dose up to 12 Gy (at room temperature, total exposure not exceeding 1 h). For comparison, V79 cells were also exposed to 6 MV x-rays from a clinical linear accelerator (dose rate of 2.5 Gy min‑1). As biological endpoint, cell survival was determined by standard colony forming assay. Dose measurements were conducted with a diamond detector (sensitive area 7.3 mm2), calibrated by means of 60Co radiation. Additionally, dose delivery was simulated by Monte Carlo calculations using the EGSnrc code system. The calculated secondary electron fluence spectra at the cell location did not indicate a significant change of radiation quality (i.e. higher linear energy transfer) at the lower distances. Clonogenic cell survival curves obtained after brachytherapy exhibited an altered biological response compared to x-rays which was characterized by a significant reduction of the survival curve shoulder when dose rate

  12. Targeting MRS-Defined Dominant Intraprostatic Lesions with Inverse-Planned High Dose Rate Brachytherapy

    DTIC Science & Technology

    2011-06-01

    requirements depending on rectal and bladder doses. The class solution in inverse planned HDR prostate brachythe - rapy for dose escalation of a DIL...High-dose-rate brachyther- apy without external beam irradiation for locally advanced prostate cancer. Radiother Oncol 2006; 80: 62-68. 7. Galalae RM... prostate brachytherapy for dose escalation of DIL defined by combined MRI/MRSI. Radiother Oncol 2008; 88: 148-155. 16. Pouliot J, Kim Y, Lessard E et al

  13. Biological effective dose for comparison and combination of external beam and low-dose rate interstitial brachytherapy prostate cancer treatment plans

    SciTech Connect

    Jani, Ashesh B.; Hand, Christopher M.; Lujan, Anthony E.; Roeske, John C.; Zagaja, Gregory P.; Vijayakumar, Srinivasan; Pelizzari, Charles A

    2004-03-31

    We report a methodology for comparing and combining dose information from external beam radiotherapy (EBRT) and interstitial brachytherapy (IB) components of prostate cancer treatment using the biological effective dose (BED). On a prototype early-stage prostate cancer patient treated with EBRT and low-dose rate I-125 brachytherapy, a 3-dimensional dose distribution was calculated for each of the EBRT and IB portions of treatment. For each component of treatment, the BED was calculated on a point-by-point basis to produce a BED distribution. These individual BED distributions could then be summed for combined therapies. BED dose-volume histograms (DVHs) of the prostate, urethra, rectum, and bladder were produced and compared for various combinations of EBRT and IB. Transformation to BED enabled computation of the relative contribution of each modality to the prostate dose, as the relative weighting of EBRT and IB was varied. The BED-DVHs of the prostate and urethra demonstrated dramatically increased inhomogeneity with the introduction of even a small component of IB. However, increasing the IB portion relative to the EBRT component resulted in lower dose to the surrounding normal structures, as evidenced by the BED-DVHs of the bladder and rectum. Conformal EBRT and low-dose rate IB conventional dose distributions were successfully transformed to the common 'language' of BED distributions for comparison and for merging prostate cancer radiation treatment plans. The results of this analysis can assist physicians in quantitatively determining the best combination and weighting of radiation treatment modalities for individual patients.

  14. Inverse modelling of radionuclide release rates using gamma dose rate observations

    NASA Astrophysics Data System (ADS)

    Hamburger, Thomas; Evangeliou, Nikolaos; Stohl, Andreas; von Haustein, Christoph; Thummerer, Severin; Wallner, Christian

    2015-04-01

    Severe accidents in nuclear power plants such as the historical accident in Chernobyl 1986 or the more recent disaster in the Fukushima Dai-ichi nuclear power plant in 2011 have drastic impacts on the population and environment. Observations and dispersion modelling of the released radionuclides help to assess the regional impact of such nuclear accidents. Modelling the increase of regional radionuclide activity concentrations, which results from nuclear accidents, underlies a multiplicity of uncertainties. One of the most significant uncertainties is the estimation of the source term. That is, the time dependent quantification of the released spectrum of radionuclides during the course of the nuclear accident. The quantification of the source term may either remain uncertain (e.g. Chernobyl, Devell et al., 1995) or rely on estimates given by the operators of the nuclear power plant. Precise measurements are mostly missing due to practical limitations during the accident. The release rates of radionuclides at the accident site can be estimated using inverse modelling (Davoine and Bocquet, 2007). The accuracy of the method depends amongst others on the availability, reliability and the resolution in time and space of the used observations. Radionuclide activity concentrations are observed on a relatively sparse grid and the temporal resolution of available data may be low within the order of hours or a day. Gamma dose rates, on the other hand, are observed routinely on a much denser grid and higher temporal resolution and provide therefore a wider basis for inverse modelling (Saunier et al., 2013). We present a new inversion approach, which combines an atmospheric dispersion model and observations of radionuclide activity concentrations and gamma dose rates to obtain the source term of radionuclides. We use the Lagrangian particle dispersion model FLEXPART (Stohl et al., 1998; Stohl et al., 2005) to model the atmospheric transport of the released radionuclides. The

  15. Variations of the ambient dose equivalent rate in the ground level air.

    PubMed

    Lebedyte, M; Butkus, D; Morkŭnas, G

    2003-01-01

    The ambient dose equivalent rate is caused by ionizing radiation of radionuclides in the atmosphere and on the ground surface as well as by cosmic radiation. Seasonal and diurnal variations of the ambient dose equivalent rate (ADER) in the ground level air are influenced by the concentration of 222Rn daughters. The 222Rn concentration in the ground level atmosphere, in turn, depends on the rate of the 222Rn exhalation from soil and turbulent air mixing. Its diurnal and seasonal variations depend on meteorological conditions. The aim of this study is to estimate the influence of variations of the rate of the 222Rn exhalation from soil and its concentrations in the ground level air on variations of ADER in the ground level air, as well as the dependence of these parameters on meteorological conditions. The 222Rn diffusion coefficient and its exhalation rate in undisturbed loamy soil have been determined. The 222Rn concentration in the soil air and its concentration in the ground level air correlate inversely (correlation coefficient is r = -0.62). The main factors determining the 222Rn exhalation from soil are: the soil temperature (r = 0.64), the difference in temperature of soil and air (r = 0.57), and the precipitation amount (r = 0.50). The intensity of gamma radiation in the ground level air is mostly related to the 222Rn concentration in the air (r = 0.62), while the effect of the exhalation rate from soil is relatively low (r = 0.36). It has been shown that ADER due to 222Rn progeny causes only 7-16% of the total ADER and influences its variation. The comparison of variations of ADER due to 222Rn progeny and the total ADER during several years shows that these parameters correlate positively.

  16. Variations of dose rate observed by MSL/RAD in transit to Mars

    NASA Astrophysics Data System (ADS)

    Guo, Jingnan; Zeitlin, Cary; Wimmer-Schweingruber, Robert F.; Hassler, Donald M.; Posner, Arik; Heber, Bernd; Köhler, Jan; Rafkin, Scot; Ehresmann, Bent; Appel, Jan K.; Böhm, Eckart; Böttcher, Stephan; Burmeister, Sönke; Brinza, David E.; Lohf, Henning; Martin, Cesar; Reitz, Günther

    2015-05-01

    Aims: To predict the cruise radiation environment related to future human missions to Mars, the correlation between solar modulation potential and the dose rate measured by the Radiation Assessment Detector (RAD) has been analyzed and empirical models have been employed to quantify this correlation. Methods: The instrument RAD, onboard Mars Science Laboratory's (MSL) rover Curiosity, measures a broad spectrum of energetic particles along with the radiation dose rate during the 253-day cruise phase as well as on the surface of Mars. With these first ever measurements inside a spacecraft from Earth to Mars, RAD observed the impulsive enhancement of dose rate during solar particle events as well as a gradual evolution of the galactic cosmic ray (GCR) induced radiation dose rate due to the modulation of the primary GCR flux by the solar magnetic field, which correlates with long-term solar activities and heliospheric rotation. Results: We analyzed the dependence of the dose rate measured by RAD on solar modulation potentials and estimated the dose rate and dose equivalent under different solar modulation conditions. These estimations help us to have approximate predictions of the cruise radiation environment, such as the accumulated dose equivalent associated with future human missions to Mars. Conclusions: The predicted dose equivalent rate during solar maximum conditions could be as low as one-fourth of the current RAD cruise measurement. However, future measurements during solar maximum and minimum periods are essential to validate our estimations.

  17. Transcriptional Response in Mouse Thyroid Tissue after 211At Administration: Effects of Absorbed Dose, Initial Dose-Rate and Time after Administration

    PubMed Central

    Rudqvist, Nils; Spetz, Johan; Schüler, Emil; Parris, Toshima Z.; Langen, Britta; Helou, Khalil; Forssell-Aronsson, Eva

    2015-01-01

    Background 211At-labeled radiopharmaceuticals are potentially useful for tumor therapy. However, a limitation has been the preferential accumulation of released 211At in the thyroid gland, which is a critical organ for such therapy. The aim of this study was to determine the effect of absorbed dose, dose-rate, and time after 211At exposure on genome-wide transcriptional expression in mouse thyroid gland. Methods BALB/c mice were i.v. injected with 1.7, 7.5 or 100 kBq 211At. Animals injected with 1.7 kBq were killed after 1, 6, or 168 h with mean thyroid absorbed doses of 0.023, 0.32, and 1.8 Gy, respectively. Animals injected with 7.5 and 100 kBq were killed after 6 and 1 h, respectively; mean thyroid absorbed dose was 1.4 Gy. Total RNA was extracted from pooled thyroids and the Illumina RNA microarray platform was used to determine mRNA levels. Differentially expressed transcripts and enriched GO terms were determined with adjusted p-value <0.01 and fold change >1.5, and p-value <0.05, respectively. Results In total, 1232 differentially expressed transcripts were detected after 211At administration, demonstrating a profound effect on gene regulation. The number of regulated transcripts increased with higher initial dose-rate/absorbed dose at 1 or 6 h. However, the number of regulated transcripts decreased with mean absorbed dose/time after 1.7 kBq 211At administration. Furthermore, similar regulation profiles were seen for groups administered 1.7 kBq. Interestingly, few previously proposed radiation responsive genes were detected in the present study. Regulation of immunological processes were prevalent at 1, 6, and 168 h after 1.7 kBq administration (0.023, 0.32, 1.8 Gy). PMID:26177204

  18. Prospective Clinical Trial of Bladder Filling and Three-Dimensional Dosimetry in High-Dose-Rate Vaginal Cuff Brachytherapy

    SciTech Connect

    Stewart, Alexandra J.; Cormack, Robert A.; Lee, Hang; Xiong Li; Hansen, Jorgen L.; O'Farrell, Desmond A.; Viswanathan, Akila N.

    2008-11-01

    Purpose: To investigate the effect of bladder filling on dosimetry and to determine the best bladder dosimetric parameter for vaginal cuff brachytherapy. Methods and Materials: In this prospective clinical trial, a total of 20 women underwent vaginal cylinder high-dose-rate brachytherapy. The bladder was full for Fraction 2 and empty for Fraction 3. Dose-volume histogram and dose-surface histogram values were generated for the bladder, rectum, and urethra. The midline maximal bladder point (MBP) and the midline maximal rectal point were recorded. Paired t tests, Pearson correlations, and regression analyses were performed. Results: The volume and surface area of the irradiated bladder were significantly smaller when the bladder was empty than when full. Of the several dose-volume histogram and dose-surface histogram parameters evaluated, the bladder maximal dose received by 2 cm{sup 3} of tissue, volume of bladder receiving {>=}50% of the dose, volume of bladder receiving {>=}70% of the dose, and surface area of bladder receiving {>=}50% of the dose significantly predicted for the difference between the empty vs. full filling state. The volume of bladder receiving {>=}70% of the dose and the maximal dose received by 2 cm{sup 3} of tissue correlated significantly with the MBP. Bladder filling did not alter the volume or surface area of the rectum irradiated. However, an empty bladder did result in the nearest point of bowel being significantly closer to the vaginal cylinder than when the bladder was full. Conclusions: Patients undergoing vaginal cuff brachytherapy treated with an empty bladder have a lower bladder dose than those treated with a full bladder. The MBP correlated well with the volumetric assessments of bladder dose and provided a noninvasive method for reporting the MBP dose using three-dimensional imaging. The MBP can therefore be used as a surrogate for complex dosimetry in the clinic.

  19. Low-dose-rate extrapolation using the multistage model

    SciTech Connect

    Portier, C.; Hoel, D.

    1983-12-01

    The distribution of the maximum likelihood estimates of virtually safe levels of exposure to environmental chemicals is derived by using large-sample theory and Monte Carlo simulation according to the Armitage-Doll multistage model. Using historical dose-response we develop a set of 33 two-stage models upon which we base our conclusions. The large-sample distributions of the virtually safe dose are normal for cases in which the multistage-model parameters have nonzero expectation, and are skewed in other cases. The large-sample theory does not provide a good approximation of the distribution observed for small bioassays when Monte Carlo simulation is used. The constrained nature of the multistage-model parameters leads to bimodal distributions for small bioassays. The two modes are the direct result of estimating the linear parameter in the multistage model; the lower mode results from estimating this parameter to be nonzero, and the upper mode from estimating it to be zero. The results of this research emphasize the need for incorporation of the biological theory in the model-selection process.

  20. Computational Medical Apportionment Determination for Impairment Ratings

    NASA Astrophysics Data System (ADS)

    Artz, Jerry; Thompson, Marten; Alchemy, Md, John; Penn, Md, Daniel

    2017-01-01

    Unique computational techniques are used to calculate apportionment percentages for Whole Person Impairment (WPI) Ratings for workers with job-related injuries/illnesses. This interdisciplinary project includes collaboration among physicists, engineers, and concerned medical professionals. Medical providers are often asked to medically determine multiple contributing factors to disease states (e.g. diabetes, obesity, arthritis, and prior injury) in the context of personal injury as it pertains to permanent impairment. The process of making this determination is referred to as ``apportionment''. The economic value of apportionment is far reaching and represents a significant impact to all stakeholders in the injury resolution and settlement arena. The process of apportionment is necessary to assign monetary value for the stakeholders when an injury occurs. The ultimate trier-of-fact is the judicial system. The medical provider's role in this capacity is to apply known medical scientific knowledge and present it in a format that is objective and reproducible for the stakeholders. In this presentation the traditional challenges of apportionment will be outlined, and a novel approach creating mathematical bounding and modeling of pathology-weighted data sets will be presented.

  1. Impact of the Revised 10 CFR 835 on the Neutron Dose Rates at LLNL

    SciTech Connect

    Radev, R

    2009-01-13

    In June 2007, 10 CFR 835 [1] was revised to include new radiation weighting factors for neutrons, updated dosimetric models, and dose terms consistent with the newer ICRP recommendations. A significant aspect of the revised 10 CFR 835 is the adoption of the recommendations outlined in ICRP-60 [2]. The recommended new quantities demand a review of much of the basic data used in protection against exposure to sources of ionizing radiation. The International Commission on Radiation Units and Measurements has defined a number of quantities for use in personnel and area monitoring [3,4,5] including the ambient dose equivalent H*(d) to be used for area monitoring and instrument calibrations. These quantities are used in ICRP-60 and ICRP-74. This report deals only with the changes in the ambient dose equivalent and ambient dose rate equivalent for neutrons as a result of the implementation of the revised 10 CFR 835. In the report, the terms neutron dose and neutron dose rate will be used for convenience for ambient neutron dose and ambient neutron dose rate unless otherwise stated. This report provides a qualitative and quantitative estimate of how much the neutron dose rates at LLNL will change with the implementation of the revised 10 CFR 835. Neutron spectra and dose rates from selected locations at the LLNL were measured with a high resolution spectroscopic neutron dose rate system (ROSPEC) as well as with a standard neutron rem meter (a.k.a., a remball). The spectra obtained at these locations compare well with the spectra from the Radiation Calibration Laboratory's (RCL) bare californium source that is currently used to calibrate neutron dose rate instruments. The measurements obtained from the high resolution neutron spectrometer and dose meter ROSPEC and the NRD dose meter compare within the range of {+-}25%. When the new radiation weighting factors are adopted with the implementation of the revised 10 CFR 835, the measured dose rates will increase by up to 22

  2. Interstitial pneumonitis following bone marrow transplantation after low dose rate total body irradiation

    SciTech Connect

    Barrett, A.; Depledge, M.H.; Powles, R.L.

    1983-07-01

    Idiopathic and infective interstitial pneumonitis (IPn) is a common complication after bone marrow transplantation (BMT) in many centers and carries a high mortality. We report here a series of 107 patients with acute leukemia grafted at the Royal Marsden Hospital in which only 11 (10.3%) developed IPn and only 5 died (5%). Only one case of idiopathic IPn was seen. Factors which may account for this low incidence are discussed. Sixty of 107 patients were transplanted in first remission of acute myeloid leukemia (AML) and were therefore in good general condition. Lung radiation doses were carefully monitored and doses of 10.5 Gy were not exceeded except in a group of 16 patients in whom a study of escalating doses of TBI (up to 13 Gy) was undertaken. The dose rate used for total body irradiation (TBI) was lower than that used in other centers and as demonstrated elsewhere by ourselves and others, reduction of dose rate to <0.05 Gy/min may be expected to lead to substantial reduction in lung damage. Threshold doses of approximately 8 Gy for IPn have been reported, but within the dose range of 8 to 10.5 Gy we suggest that dose rate may significantly affect the incidence. Data so far available suggest a true improvement in therapeutic ratio for low dose rate single fraction TBI compared with high dose rate.

  3. Physics-aspects of dose accuracy in high dose rate (HDR) brachytherapy: source dosimetry, treatment planning, equipment performance and in vivo verification techniques.

    PubMed

    Palmer, Antony; Bradley, David; Nisbet, Andrew

    2012-06-01

    This study provides a review of recent publications on the physics-aspects of dosimetric accuracy in high dose rate (HDR) brachytherapy. The discussion of accuracy is primarily concerned with uncertainties, but methods to improve dose conformation to the prescribed intended dose distribution are also noted. The main aim of the paper is to review current practical techniques and methods employed for HDR brachytherapy dosimetry. This includes work on the determination of dose rate fields around brachytherapy sources, the capability of treatment planning systems, the performance of treatment units and methods to verify dose delivery. This work highlights the determinants of accuracy in HDR dosimetry and treatment delivery and presents a selection of papers, focusing on articles from the last five years, to reflect active areas of research and development. Apart from Monte Carlo modelling of source dosimetry, there is no clear consensus on the optimum techniques to be used to assure dosimetric accuracy through all the processes involved in HDR brachytherapy treatment. With the exception of the ESTRO mailed dosimetry service, there is little dosimetric audit activity reported in the literature, when compared with external beam radiotherapy verification.

  4. On the use of pulsed reduced dose rate for improvement of the therapeutic ratio

    NASA Astrophysics Data System (ADS)

    Rasmussen, Karl H., V.

    This work demonstrates three related aspects of the efficacy, delivery, and verification of pulsed reduced dose rate radiotherapy (PRDR). PRDR is a method of irradiation designed to minimize radiation-related toxicities in patients undergoing reirradiation for loco-regional reoccurrence of glioblastoma. PRDR uses 0.2GyX10fx daily doses delivered over a 30-minute time span. Under PRDR treatments, a subset of patients have had an unexpectedly positive response to treatment. It was a primary goal of this project to determine if low-dose hyper-radiosensitivity was a contributor to the increased radio-response from these patients. This was done through the use of human T98G glioma and HT29 colorectal cells, and V79.379-A Chinese hamster fibroblasts with drug inhibition of the p53 and PI3K pathways. Radiation was delivered with a medical linear accelerator in either 2Gy acute doses or through PRDR. Methods used to analyze the effect of these techniques included clonogenic assay, flow cytometry, and western blots. Comparison of survival ratios demonstrated no decrease in efficacy for either the standard T98G or HT29 cell lines when using PRDR as compared to an acute dose. T98G with PI3K inhibition and V79.397-A cells demonstrated a decreased efficacy of treatment using PRDR relative to an acute dose. These results suggest an equivalency in tumor treatment with a possible improvement in normal tissue toxicities for the PRDR method. An additional method of delivering PRDR through the use of Tomotherapy was proposed and demonstrated to be accurate. Tomotherapy planning forces the short leaf open times for individual MLC projections from low dose fractionation closed, resulting in an undeliverable plan due to the loss of a large number of usable projections. Application of a virtual grid with directional blocking allows for the output from useable segments to be above this threshold, resulting in a deliverable treatment plan. Finally, analysis was performed on a proposed QA

  5. CT based three dimensional dose-volume evaluations for high-dose rate intracavitary brachytherapy for cervical cancer

    PubMed Central

    2014-01-01

    Background In this study, high risk clinical target volumes (HR-CTVs) according to GEC-ESTRO guideline were contoured retrospectively based on CT images taken at the time of high-dose rate intracavitary brachytherapy (HDR-ICBT) and correlation between clinical outcome and dose of HR-CTV were analyzed. Methods Our study population consists of 51 patients with cervical cancer (Stages IB-IVA) treated with 50 Gy external beam radiotherapy (EBRT) using central shield combined with 2–5 times of 6 Gy HDR-ICBT with or without weekly cisplatin. Dose calculation was based on Manchester system and prescribed dose of 6 Gy were delivered for point A. CT images taken at the time of each HDR-ICBT were reviewed and HR-CTVs were contoured. Doses were converted to the equivalent dose in 2 Gy (EQD2) by applying the linear quadratic model (α/β = 10 Gy). Results Three-year overall survival, Progression-free survival, and local control rate was 82.4%, 85.3% and 91.7%, respectively. Median cumulative dose of HR-CTV D90 was 65.0 Gy (52.7-101.7 Gy). Median length from tandem to the most lateral edge of HR-CTV at the first ICBT was 29.2 mm (range, 18.0-51.9 mm). On univariate analysis, both LCR and PFS was significantly favorable in those patients D90 for HR-CTV was 60 Gy or greater (p = 0.001 and 0.03, respectively). PFS was significantly favorable in those patients maximum length from tandem to edge of HR-CTV at first ICBT was shorter than 3.5 cm (p = 0.042). Conclusion Volume-dose showed a relationship to the clinical outcome in CT based brachytherapy for cervical carcinoma. PMID:24938757

  6. 31 CFR 359.14 - How are composite rates determined?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 2 2013-07-01 2013-07-01 false How are composite rates determined... BONDS, SERIES I General Information § 359.14 How are composite rates determined? Composite rates are set... composite interest rates.): Composite rate = {(Fixed rate ÷ 2) + Semiannual inflation rate + } × 2. 2...

  7. 31 CFR 359.14 - How are composite rates determined?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 2 2011-07-01 2011-07-01 false How are composite rates determined... BONDS, SERIES I General Information § 359.14 How are composite rates determined? Composite rates are set... composite interest rates.): Composite rate = {(Fixed rate ÷ 2) + Semiannual inflation rate + } × 2. 2...

  8. 31 CFR 359.14 - How are composite rates determined?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance: Treasury 2 2014-07-01 2014-07-01 false How are composite rates determined... BONDS, SERIES I General Information § 359.14 How are composite rates determined? Composite rates are set... composite interest rates.): Composite rate = {(Fixed rate ÷ 2) + Semiannual inflation rate + } × 2. 2...

  9. 31 CFR 359.14 - How are composite rates determined?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 2 2012-07-01 2012-07-01 false How are composite rates determined... BONDS, SERIES I General Information § 359.14 How are composite rates determined? Composite rates are set... composite interest rates.): Composite rate = {(Fixed rate ÷ 2) + Semiannual inflation rate + } × 2. 2...

  10. 31 CFR 359.14 - How are composite rates determined?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false How are composite rates determined... BONDS, SERIES I General Information § 359.14 How are composite rates determined? Composite rates are set... composite interest rates.): Composite rate = {(Fixed rate ÷ 2) + Semiannual inflation rate + } × 2. 2...

  11. Temporal Variations of Air Dose Rates in East Fukushima During Japanese Fiscal Years 2012 and 2013.

    PubMed

    Akimoto, Kazuhiro

    2017-01-01

    Temporal variations of ambient air dose rates in eastern Fukushima prefecture during Japanese fiscal years 2012 and 2013 are analyzed. The average overall variation rate of air dose rates in east Fukushima during the examined period is found to be 0.49 (51% down) compared to the theoretically predicted value 0.65 (35% down) based on physical decay of radioactive cesium nuclides. On average, local dose rates declined almost linearly for the relatively short period. Temporal characteristics of air dose rates may be classified into variation rates, peaks, spikes, and oscillations. During the examined period, a typical dose-rate curve formed a long-term peak in summer that lasted one through a few months as well as a long-term spike in winter that lasted likewise. Otherwise, occasional short-term peaks and short-term spikes, in addition to long-term oscillations, were observed. Air dose rates may be effectively modulated at short timescales mainly by precipitation. Moreover, it is likely that winds may oscillate air dose rates due to resuspension of radio-dusts.

  12. Dose rate dependence for different dosimeters and detectors: TLD, OSL, EBT films, and diamond detectors

    SciTech Connect

    Karsch, L.; Beyreuther, E.; Burris-Mog, T.; Kraft, S.; Richter, C.; Zeil, K.; Pawelke, J.

    2012-05-15

    Purpose: The use of laser accelerators in radiation therapy can perhaps increase the low number of proton and ion therapy facilities in some years due to the low investment costs and small size. The laser-based acceleration technology leads to a very high peak dose rate of about 10{sup 11} Gy/s. A first dosimetric task is the evaluation of dose rate dependence of clinical dosimeters and other detectors. Methods: The measurements were done at ELBE, a superconductive linear electron accelerator which generates electron pulses with 5 ps length at 20 MeV. The different dose rates are reached by adjusting the number of electrons in one beam pulse. Three clinical dosimeters (TLD, OSL, and EBT radiochromic films) were irradiated with four different dose rates and nearly the same dose. A faraday cup, an integrating current transformer, and an ionization chamber were used to control the particle flux on the dosimeters. Furthermore two diamond detectors were tested. Results: The dosimeters are dose rate independent up to 410{sup 9} Gy/s within 2% (OSL and TLD) and up to 1510{sup 9} Gy/s within 5% (EBT films). The diamond detectors show strong dose rate dependence. Conclusions: TLD, OSL dosimeters, and EBT films are suitable for pulsed beams with a very high pulse dose rate like laser accelerated particle beams.

  13. Can high dose rates used in cancer radiotherapy change therapeutic effectiveness?

    PubMed Central

    Konopacka, Maria; Sochanik, Aleksander; Ślosarek, Krzysztof

    2017-01-01

    Current cancer radiotherapy relies on increasingly high dose rates of ionising radiation (100–2400 cGy/min). It is possible that changing dose rates is not paralleled by treatment effectiveness. Irradiating cancer cells is assumed to induce molecular alterations that ultimately lead to apoptotic death. Studies comparing the efficacy of radiation-induced DNA damage and apoptotic death in relation to varying dose rates do not provide unequivocal data. Whereas some have demonstrated higher dose rates (single dose) to effectively kill cancer cells, others claim the opposite. Recent gene expression studies in cells subject to variable dose rates stress alterations in molecular signalling, especially in the expression of genes linked to cell survival, immune response, and tumour progression. Novel irradiation techniques of modern cancer treatment do not rely anymore on maintaining absolute constancy of dose rates during radiation emission: instead, timing and exposure areas are regulated temporally and spatially by modulating the dose rate and beam shape. Such conditions may be reflected in tumour cells’ response to irradiation, and this is supported by the references provided. PMID:28239281

  14. Long-term stability of liquid ionization chambers with regard to their qualification as local reference dosimeters for low dose-rate absorbed dose measurements in water.

    PubMed

    Bahar-Gogani, J; Grindborg, J E; Johansson, B E; Wickman, G

    2001-03-01

    The long-term sensitivity and calibration stability of liquid ionization chambers (LICs) has been studied at a local and a secondary standards dosimetry laboratory over a period of 3 years. The chambers were transported several times by mail between the two laboratories for measurements. The LICs used in this work are designed for absorbed dose measurements in the dose rate region of 0.1-100 mGy min(-1) and have a liquid layer thickness of 1 mm and a sensitive volume of 16.2 mm3. The liquids used as sensitive media in the chambers are mixtures of isooctane (C8H18) and tetramethylsilane (Si(CH3)4) in different proportions (about 2 to 1). Operating at a polarizing voltage of 300 V the leakage current of the chambers was stable and never exceeded 3% of the observable current at a dose rate of about 1 mGy min(-1). The volume sensitivity of the chambers was measured to be of the order of 10(-9) C Gy(-1) mm3. No systematic changes in the absorbed dose to water calibration was observed for any of the chambers during the test period (sigma < 0.2%). Variations in chamber dose response with small changes in the polarizing voltage as well as sensitivity changes with accumulated absorbed dose were also investigated. Measurements showed that the LIC response varies by 0.15% per 1% change in applied voltage around 300 V. No significant change could be observed in the LIC sensitivity after a single absorbed dose of 15 kGy. The results indicate that the LIC can be made to serve as a calibration transfer instrument and a reference detector for absorbed dose to water determinations providing good precision and long-term reproducibility.

  15. Using RADFET for the real-time measurement of gamma radiation dose rate

    NASA Astrophysics Data System (ADS)

    Andjelković, Marko S.; Ristić, Goran S.; Jakšić, Aleksandar B.

    2015-02-01

    RADFETs (RADiation sensitive Field Effect Transistors) are integrating ionizing radiation dosimeters operating on the principle of conversion of radiation-induced threshold voltage shift into absorbed dose. However, one of the major drawbacks of RADFETs is the inability to provide the information on the dose rate in real-time using the conventional absorbed dose measurement technique. The real-time monitoring of dose rate and absorbed dose can be achieved with the current mode dosimeters such as PN and PIN diodes/photodiodes, but these dosimeters have some limitations as absorbed dose meters and hence they are often not a suitable replacement for RADFETs. In that sense, this paper investigates the possibility of using the RADFET as a real-time dose rate meter so that it could be applied for simultaneous online measurement of the dose rate and absorbed dose. A RADFET sample, manufactured by Tyndall National Institute, Cork, Ireland, was tested as a dose rate meter under gamma irradiation from a Co-60 source. The RADFET was configured as a PN junction, such that the drain, gate and source terminals were grounded, while the radiation-induced current was measured at the bulk terminal, whereby the bulk was successively biased with 0 , 10 , 20  and 30 V. In zero-bias mode the radiation-induced current was unstable, but in the biased mode the current response was stable for the investigated dose rates from 0.65  to 32.1 Gy h-1 and up to the total absorbed dose of 25 Gy. The current increased with the dose rate in accordance with the power law, whereas the sensitivity of the current read-out was linear with respect to the applied bias voltage. Comparison with previously analyzed PIN photodiodes has shown that the investigated RADFET is competitive with PIN photodiodes as a gamma radiation dose rate meter and therefore has the potential to be employed for the real-time monitoring of the dose rate and absorbed dose.

  16. TLD skin dose measurements and acute and late effects after lumpectomy and high-dose-rate brachytherapy only for early breast cancer

    SciTech Connect

    Perera, Francisco . E-mail: francisco.perera@lrcc.on.ca; Chisela, Frank; Stitt, Larry; Engel, Jay; Venkatesan, Varagur

    2005-08-01

    Purpose: This report examines the relationships between measured skin doses and the acute and late skin and soft tissue changes in a pilot study of lumpectomy and high-dose-rate brachytherapy only for breast cancer. Methods and Materials: Thirty-seven of 39 women enrolled in this pilot study of high-dose-rate brachytherapy (37.2 Gy in 10 fractions b.i.d.) each had thermoluminescent dosimetry (TLD) at 5 points on the skin of the breast overlying the implant volume. Skin changes at TLD dose points and fibrosis at the lumpectomy site were documented every 6 to 12 months posttreatment using a standardized physician-rated cosmesis questionnaire. The relationships between TLD dose and acute skin reaction, pigmentation, or telangiectasia at 5 years were analyzed using the GEE algorithm and the GENMOD procedure in the SAS statistical package. Fisher's exact test was used to determine whether there were any significant associations between acute skin reaction and late pigmentation or telangiectasia or between the volumes encompassed by various isodoses and fibrosis or fat necrosis. Results: The median TLD dose per fraction (185 dose points) multiplied by 10 was 9.2 Gy. In all 37 patients, acute skin reaction Grade 1 or higher was observed at 5.9% (6 of 102) of dose points receiving 10 Gy or less vs. 44.6% (37 of 83) of dose points receiving more than 10 Gy (p < 0.0001). In 25 patients at 60 months, 1.5% telangiectasia was seen at dose points receiving 10 Gy or less (1 of 69) vs. 18% (10 of 56) telangiectasia at dose points receiving more than 10 Gy (p 0.004). Grade 1 or more pigmentation developed at 1.5% (1 of 69) of dose points receiving less than 10 Gy vs. 25% (14 of 56) of dose points receiving more than 10 Gy (p < 0.001). A Grade 1 or more acute skin reaction was also significantly associated with development of Grade 1 or more pigmentation or telangiectasia at 60 months. This association was most significant for acute reaction and telangiectasia directly over the

  17. Quality Control of High-Dose-Rate Brachytherapy: Treatment Delivery Analysis Using Statistical Process Control

    SciTech Connect

    Able, Charles M.; Bright, Megan; Frizzell, Bart

    2013-03-01

    Purpose: Statistical process control (SPC) is a quality control method used to ensure that a process is well controlled and operates with little variation. This study determined whether SPC was a viable technique for evaluating the proper operation of a high-dose-rate (HDR) brachytherapy treatment delivery system. Methods and Materials: A surrogate prostate patient was developed using Vyse ordnance gelatin. A total of 10 metal oxide semiconductor field-effect transistors (MOSFETs) were placed from prostate base to apex. Computed tomography guidance was used to accurately position the first detector in each train at the base. The plan consisted of 12 needles with 129 dwell positions delivering a prescribed peripheral dose of 200 cGy. Sixteen accurate treatment trials were delivered as planned. Subsequently, a number of treatments were delivered with errors introduced, including wrong patient, wrong source calibration, wrong connection sequence, single needle displaced inferiorly 5 mm, and entire implant displaced 2 mm and 4 mm inferiorly. Two process behavior charts (PBC), an individual and a moving range chart, were developed for each dosimeter location. Results: There were 4 false positives resulting from 160 measurements from 16 accurately delivered treatments. For the inaccurately delivered treatments, the PBC indicated that measurements made at the periphery and apex (regions of high-dose gradient) were much more sensitive to treatment delivery errors. All errors introduced were correctly identified by either the individual or the moving range PBC in the apex region. Measurements at the urethra and base were less sensitive to errors. Conclusions: SPC is a viable method for assessing the quality of HDR treatment delivery. Further development is necessary to determine the most effective dose sampling, to ensure reproducible evaluation of treatment delivery accuracy.

  18. Investigation of determinism in heart rate variability

    NASA Astrophysics Data System (ADS)

    Gomes, M. E. D.; Souza, A. V. P.; Guimarães, H. N.; Aguirre, L. A.

    2000-06-01

    The article searches for the possible presence of determinism in heart rate variability (HRV) signals by using a new approach based on NARMA (nonlinear autoregressive moving average) modeling and free-run prediction. Thirty-three 256-point HRV time series obtained from Wistar rats submitted to different autonomic blockade protocols are considered, and a collection of surrogate data sets are generated from each one of them. These surrogate sequences are assumed to be nondeterministic and therefore they may not be predictable. The original HRV time series and related surrogates are submitted to NARMA modeling and prediction. Special attention has been paid to the problem of stationarity. The results consistently show that the surrogate data sets cannot be predicted better than the trivial predictor—the mean—while most of the HRV control sequences are predictable to a certain degree. This suggests that the normal HRV signals have a deterministic signature. The HRV time series derived from the autonomic blockade segments of the experimental protocols do not show the same predictability performance, albeit the physiological interpretation is not obvious. These results have important implications to the methodology of HRV analysis, indicating that techniques from nonlinear dynamics and deterministic chaos may be applied to elicit more information about the autonomic modulation of the cardiovascular activity.

  19. Dose-Rate Dependence of High-Dose Health Effects in Humans from Photon Radiation with Application to Radiological Terrorism

    SciTech Connect

    Strom, Daniel J.

    2005-01-14

    In 1981, as part of a symposium entitled ''The Control of Exposure of the Public to Ionizing Radiation in the Event of Accident or Attack,'' Lushbaugh, H?bner, and Fry published a paper examining ''radiation tolerance'' of various human health endpoints as a function of dose rate. This paper may not have received the notice it warrants. The health endpoints examined by Lushbaugh et al. were the lethal dose that will kill 50% of people within 60 days of exposure without medical care (LD50/60); severe bone marrow damage in healthy men; severe bone marrow damage in leukemia patients; temporary sterility (azoospermia); reduced male fertility; and late effects such as cancer. Their analysis was grounded in extensive clinical experience and anchored to a few selected data points, and based on the 1968 dose-rate dependence theory of J.L. Bateman. The Lushbaugh et al. paper did not give predictive equations for the relationships, although they were implied in the text, and the relationships were presented in a non-intuitive way. This work derives the parameters needed in Bateman's equation for each health endpoint, tabulates the results, and plots them in a more conventional manner on logarithmic scales. The results give a quantitative indication of how the human organism can tolerate more radiation dose when it is delivered at lower dose rates. For example, the LD50/60 increases from about 3 grays (300 rads) when given at very high dose rates to over 10 grays (1,000 rads) when given at much lower dose rates over periods of several months. The latter figure is borne out by the case of an individual who survived for at least 19 years after receiving doses in the range of 9 to 17 grays (900-1700 rads) over 106 days. The Lushbaugh et al. work shows the importance of sheltering when confronted with long-term exposure to radiological contamination such as would be expected from a radiological dispersion event, reactor accident, or ground-level nuclear explosion.

  20. Factors for Predicting Rectal Dose of High-Dose-Rate Intracavitary Brachytherapy After Pelvic Irradiation in Patients With Cervical Cancer: A Retrospective Study With Radiography-Based Dosimetry

    SciTech Connect

    Huang Engyen; Wang Chongjong; Lan Jenhong; Chen Huichun; Fang Fumin; Hsu, H.-C.; Huang Yujie; Wang Changyu; Wang Yuming

    2010-02-01

    Purpose: To evaluate the predictive factors for rectal dose of the first fraction of high-dose-rate intracavitary brachytherapy (HDR-ICBT) in patients with cervical cancer. Methods and Materials: From March 1993 through February 2008, 946 patients undergoing pelvic irradiation and HDR-ICBT were analyzed. Examination under anesthesia (EUA) at the first implantation of the applicator was usually performed in the early period. Rectal point was determined radiographically according to the 38th Report of the International Commission of Radiation Units and Measurements (ICRU). The ICRU rectal dose (PRD) as a percentage of point A dose was calculated; multiple linear regression models were used to predict PRD. Results: Factors influencing successful rectal dose calculation were EUA (p < 0.001) and absence of diabetes (p = 0.047). Age (p < 0.001), body weight (p = 0.002), diabetes (p = 0.020), and EUA (p < 0.001) were independent factors for the PRD. The predictive equation derived from the regression model was PRD (%) = 57.002 + 0.443 x age (years) - 0.257 x body weight (kg) + 6.028 x diabetes (no: 0; yes: 1) - 8.325 x EUA (no: 0; yes: 1) Conclusion: Rectal dose at the first fraction of HDR-ICBT is positively influenced by age and diabetes, and negatively correlated with EUA and body weight. A small fraction size at point A may be considered in patients with a potentially high rectal dose to reduce the biologically effective dose if the ICRU rectal dose has not been immediately obtained in the first fraction of HDR-ICBT.

  1. The effect of continuous low dose-rate gamma irradiation on cell population kinetics of lymphoid tissue

    NASA Technical Reports Server (NTRS)

    Foster, B. R.

    1973-01-01

    The problem studied involved cell proliferation in mice thymus undergoing irradiation at a dose rate of 10 roetgens/day for 105 days. Specifically, the aim was to determine wheather or not a steady state of cell population can be established for the indicated period of time and what compensatory mechanisms of cell population are involved.

  2. Points of Interest: What Determines Interest Rates?

    ERIC Educational Resources Information Center

    Schilling, Tim

    Interest rates can significantly influence people's behavior. When rates decline, homeowners rush to buy new homes and refinance old mortgages; automobile buyers scramble to buy new cars; the stock market soars, and people tend to feel more optimistic about the future. But even though individuals respond to changes in rates, they may not fully…

  3. Prospects for quantitative two-dimensional radiochromic film dosimetry for low dose-rate brachytherapy sources

    SciTech Connect

    Le Yi; Ali, Imad; Dempsey, James F.; Williamson, Jeffrey F.

    2006-12-15

    Radiochromic film (RCF) has been shown to be a precise and accurate two-dimensional dosimeter for acute exposure radiation fields. However, ''temporal history'' mismatch between calibration and brachytherapy films due to RCF dose-rate effects could introduce potentially large uncertainties in low dose-rate (LDR) brachytherapy absolute dose measurement. This article presents a quantitative evaluation of the precision and accuracy of a laser scanner-based RCF-dosimetry system and the effect of the temporal history mismatch in LDR absolute dose measurement. MD-55-2 RCF was used to measure absolute dose for a low dose-rate {sup 137}Cs brachytherapy source using both single- and double-exposure techniques. Dose-measurement accuracy was evaluated by comparing RCF to Monte Carlo photon-transport simulation. The temporal history mismatch effect was investigated by examining dependence of RCF accuracy on irradiation-to-densitometry time interval. The predictions of the empirical cumulative dose superposition model (CDSM) were compared with measurements. For the double-exposure technique, the agreement between measurement and Monte Carlo simulation was better than 4% in the 3-60 Gy dose range with measurement precisions (coverage factor k=1) of <2% and <6% for the doses greater or less than 3 Gy, respectively. The overall uncertainty (k=1) of dose rate/air-kerma strength measurements achievable by this dosimetry system for a spatial resolution of 0.1 mm is less than 4% for doses greater than 5 Gy. The measured temporal history mismatch systematic error is about 1.8% for a 48 h postexposure time when using the double exposure technique and agrees with CDSM's prediction qualitatively. This work demonstrates that the model MD-55-2 RCF detector has the potential to support quantitative dose measurements about LDR brachytherapy sources with precision and accuracy better than that of previously described dosimeters. The impacts of this work on the future use of new type of RCF

  4. Conventional High-Dose-Rate Brachytherapy With Concomitant Complementary IMRT Boost: A Novel Approach for Improving Cervical Tumor Dose Coverage

    SciTech Connect

    Duan, Jun; Kim, Robert Y. Elassal, Shaaban; Lin Huiyi; Shen Sui

    2008-07-01

    Purpose: To investigate the feasibility of combining conventional high-dose-rate (HDR) brachytherapy with a concomitant complementary intensity-modulated radiotherapy (IMRT) boost for improved target coverage in cervical cancers. Methods and Materials: Six patients with cervical cancer underwent conventional HDR (C-HDR) treatment. Computed tomography (CT) and magnetic resonance imaging (MRI) scans were acquired with a CT/MRI-compatible applicator in place. The clinical target volumes (CTVs), defined as the gross target volume with a 3-mm margin and the uterus, were delineated on the CT scans, along with the organs at risk (OARs). The IMRT plans were optimized to generate dose distributions complementing those of C-HDR to cover the CTV while maintaining low doses to the OARs (IMRT-HDR). For comparison, dwell-weight optimized HDR (O-HDR) plans were also generated to cover the CTV and spare the OARs. The three treatment techniques (C-HDR, O-HDR, and IMRT-HDR) were compared. The percentage of volume receiving 95% of the prescription dose (V{sub 95}) was used to evaluate dose coverage to the CTV, and the minimal doses in the 2.0-cm{sup 3} volume receiving the greatest dose were calculated to compare the doses to the OARs. Results: The C-HDR technique provided very poor CTV coverage in 5 cases (V{sub 95} <62%). Although O-HDR provided excellent gross tumor volume coverage (V{sub 95} {>=}96.9%), it resulted in unacceptably high doses to the OARs in all 6 cases and unsatisfactory coverage to the whole CTV in 3 cases. IMRT-HDR not only yielded substantially improved CTV coverage (average V{sub 95} = 95.3%), but also kept the doses to the bladder and rectum reasonably low. Conclusion: Compared with C-HDR and O-HDR, concomitant IMRT boost complementary to C-HDR not only provided excellent CTV coverage, but also maintained reasonably low doses to the OARs.

  5. Influence of Dose Rate on the Cellular Response to Low- and High-LET Radiations

    PubMed Central

    Wozny, Anne-Sophie; Alphonse, Gersende; Battiston-Montagne, Priscillia; Simonet, Stéphanie; Poncet, Delphine; Testa, Etienne; Guy, Jean-Baptiste; Rancoule, Chloé; Magné, Nicolas; Beuve, Michael; Rodriguez-Lafrasse, Claire

    2016-01-01

    Nowadays, head and neck squamous cell carcinoma (HNSCC) treatment failure is mostly explained by locoregional progression or intrinsic radioresistance. Radiotherapy (RT) has recently evolved with the emergence of heavy ion radiations or new fractionation schemes of photon therapy, which modify the dose rate of treatment delivery. The aim of the present study was then to evaluate the in vitro influence of a dose rate variation during conventional RT or carbon ion hadrontherapy treatment in order to improve the therapeutic care of patient. In this regard, two HNSCC cell lines were irradiated with photons or 72 MeV/n carbon ions at a dose rate of 0.5, 2, or 10 Gy/min. For both radiosensitive and radioresistant cells, the change in dose rate significantly affected cell survival in response to photon exposure. This variation of radiosensitivity was associated with the number of initial and residual DNA double-strand breaks (DSBs). By contrast, the dose rate change did not affect neither cell survival nor the residual DNA DSBs after carbon ion irradiation. As a result, the relative biological efficiency at 10% survival increased when the dose rate decreased. In conclusion, in the RT treatment of HNSCC, it is advised to remain very careful when modifying the classical schemes toward altered fractionation. At the opposite, as the dose rate does not seem to have any effects after carbon ion exposure, there is less need to adapt hadrontherapy treatment planning during active system irradiation. PMID:27014633

  6. Variation of indoor radon concentration and ambient dose equivalent rate in different outdoor and indoor environments.

    PubMed

    Stojanovska, Zdenka; Boev, Blazo; Zunic, Zora S; Ivanova, Kremena; Ristova, Mimoza; Tsenova, Martina; Ajka, Sorsa; Janevik, Emilija; Taleski, Vaso; Bossew, Peter

    2016-05-01

    Subject of this study is an investigation of the variations of indoor radon concentration and ambient dose equivalent rate in outdoor and indoor environments of 40 dwellings, 31 elementary schools and five kindergartens. The buildings are located in three municipalities of two, geologically different, areas of the Republic of Macedonia. Indoor radon concentrations were measured by nuclear track detectors, deployed in the most occupied room of the building, between June 2013 and May 2014. During the deploying campaign, indoor and outdoor ambient dose equivalent rates were measured simultaneously at the same location. It appeared that the measured values varied from 22 to 990 Bq/m(3) for indoor radon concentrations, from 50 to 195 nSv/h for outdoor ambient dose equivalent rates, and from 38 to 184 nSv/h for indoor ambient dose equivalent rates. The geometric mean value of indoor to outdoor ambient dose equivalent rates was found to be 0.88, i.e. the outdoor ambient dose equivalent rates were on average higher than the indoor ambient dose equivalent rates. All measured can reasonably well be described by log-normal distributions. A detailed statistical analysis of factors which influence the measured quantities is reported.

  7. Comparison of measured and calculated dose rates for the Castor HAW 20/28 CG.

    PubMed

    Ringleb, O; Kühl, H; Scheib, H; Rimpler, A

    2005-01-01

    In January 2003 neutron and gamma dose rate measurements at a CASTOR HAW 20/28 CG were performed by the Bundesamt für Strahlenschutz at Gorleben. First, commercial dose rate measurement devices were used, then spectral measurements with a Bonner sphere system were made to verify the results. Axial and circumferential dose rate profiles were measured near the cask surface and spectral measurements were performed for some locations. A shielding analysis of the cask was performed with the MCNP Monte Carlo Code with ENDF/B-VI cross section libraries. The cask was modelled 'as built', i.e. with its real inventory, dimensions and material densities and with the same configuration and position as in the storage facility. The average C/E-ratios are 1.3 for neutron dose rates and 1.4 for gamma dose rates. Both the measured and calculated dose rates show the same qualitative trends in the axial and circumferential direction. The spectral measurements show a variation in the spectra across the cask surface. This correlates with the variation found in the C/E-ratios. At cask midheight good agreement between the Bonner sphere system and the commercial device (LB 6411) is found with a 7% lower derived H*(10) dose rate from the Bonner sphere system.

  8. Photon dose rates from spent fuel assemblies with relation to self- protection

    SciTech Connect

    Pond, R.B.; Matos, J.E.

    1995-12-01

    Photon dose rates as a function of fission product decay times have been calculated for spent fuel assemblies typical of MTR-type research and test reactors. Based upon these dose rates, the length of time that a spent fuel assembly will be self-protecting (dose rate greater than 100 rem/h at 1 m in air) can be estimated knowing the mass of fuel burned, the fraction of fuel burned, and the fuel assembly specific power density. The calculated dose rates cover 20 years of fission product decay, spent fuel with up to 80% {sup 235}U burnup and assembly power densities ranging from 0.089 to 2.857 MW/kg{sup 235}U. Most of the results are unshielded dose rates at 1 m in air with some shielded dose rates at 40 cm in water. Dose rate sensitivity estimates have been evaluated for a variety of MTR fuel assembly designs and for uncertainties in both the physical and analytical models of the fuel assemblies.

  9. Influence of Dose Rate on the Cellular Response to Low- and High-LET Radiations.

    PubMed

    Wozny, Anne-Sophie; Alphonse, Gersende; Battiston-Montagne, Priscillia; Simonet, Stéphanie; Poncet, Delphine; Testa, Etienne; Guy, Jean-Baptiste; Rancoule, Chloé; Magné, Nicolas; Beuve, Michael; Rodriguez-Lafrasse, Claire

    2016-01-01

    Nowadays, head and neck squamous cell carcinoma (HNSCC) treatment failure is mostly explained by locoregional progression or intrinsic radioresistance. Radiotherapy (RT) has recently evolved with the emergence of heavy ion radiations or new fractionation schemes of photon therapy, which modify the dose rate of treatment delivery. The aim of the present study was then to evaluate the in vitro influence of a dose rate variation during conventional RT or carbon ion hadrontherapy treatment in order to improve the therapeutic care of patient. In this regard, two HNSCC cell lines were irradiated with photons or 72 MeV/n carbon ions at a dose rate of 0.5, 2, or 10 Gy/min. For both radiosensitive and radioresistant cells, the change in dose rate significantly affected cell survival in response to photon exposure. This variation of radiosensitivity was associated with the number of initial and residual DNA double-strand breaks (DSBs). By contrast, the dose rate change did not affect neither cell survival nor the residual DNA DSBs after carbon ion irradiation. As a result, the relative biological efficiency at 10% survival increased when the dose rate decreased. In conclusion, in the RT treatment of HNSCC, it is advised to remain very careful when modifying the classical schemes toward altered fractionation. At the opposite, as the dose rate does not seem to have any effects after carbon ion exposure, there is less need to adapt hadrontherapy treatment planning during active system irradiation.

  10. Laser-based irradiation apparatus and methods for monitoring the dose-rate response of semiconductor devices

    DOEpatents

    Horn, Kevin M.

    2006-03-28

    A scanned, pulsed, focused laser irradiation apparatus can measure and image the photocurrent collection resulting from a dose-rate equivalent exposure to infrared laser light across an entire silicon die. Comparisons of dose-rate response images or time-delay images from before, during, and after accelerated aging of a device, or from periodic sampling of devices from fielded operational systems allows precise identification of those specific age-affected circuit structures within a device that merit further quantitative analysis with targeted materials or electrical testing techniques. Another embodiment of the invention comprises a broad-beam, dose rate-equivalent exposure apparatus. The broad-beam laser irradiation apparatus can determine if aging has affected the device's overall functionality. This embodiment can be combined with the synchronized introduction of external electrical transients into a device under test to simulate the electrical effects of the surrounding circuitry's response to a radiation exposure.

  11. Determination of radionuclides and pathways contributing to cumulative dose. Hanford Environmental Dose Reconstruction Project: Dose code recovery activities, Calculation 004

    SciTech Connect

    Napier, B.A.

    1992-12-01

    A series of scoping calculations has been undertaken to evaluate the absolute and relative contributions of different radionuclides and exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford Site. This scoping calculation (Calculation 004) examined the contributions of numerous radionuclides to cumulative dose via environmental exposures and accumulation in foods. Addressed in this calculation were the contributions to organ and effective dose of infants and adults from (1) air submersion and groundshine external dose, (2) inhalation, (3) ingestion of soil by humans, (4) ingestion of leafy vegetables, (5) ingestion of other vegetables and fruits, (6) ingestion of meat, (7) ingestion of eggs, and (8) ingestion of cows` milk from Feeding Regime 1, as described in calculation 002. This calculation specifically addresses cumulative radiation doses to infants and adults resulting from releases occurring over the period 1945 through 1972.

  12. Treatment Outcome of Medium-Dose-Rate Intracavitary Brachytherapy for Carcinoma of the Uterine Cervix: Comparison With Low-Dose-Rate Intracavitary Brachytherapy

    SciTech Connect

    Kaneyasu, Yuko; Kita, Midori; Okawa, Tomohiko; Maebayashi, Katsuya; Kohno, Mari; Sonoda, Tatsuo; Hirabayashi, Hisae; Nagata, Yasushi; Mitsuhashi, Norio

    2012-09-01

    Purpose: To evaluate and compare the efficacy of medium-dose-rate (MDR) and low-dose-rate (LDR) intracavitary brachytherapy (ICBT) for uterine cervical cancer. Methods and Materials: We evaluated 419 patients with squamous cell carcinoma of the cervix who were treated by radical radiotherapy with curative intent at Tokyo Women's Medical University from 1969 to 1999. LDR was used from 1969 to 1986, and MDR has been used since July 1987. When compared with LDR, fraction dose was decreased and fraction size was increased (1 or 2 fractions) for MDR to make the total dose of MDR equal to that of LDR. In general, the patients received a total dose of 60 to 70 Gy at Point A with external beam radiotherapy combined with brachytherapy according to the International Federation of Gynecology and Obstetrics stage. In the LDR group, 32 patients had Stage I disease, 81 had Stage II, 182 had Stage III, and 29 had Stage IVA; in the MDR group, 9 patients had Stage I disease, 19 had Stage II, 55 had Stage III, and 12 had Stage IVA. Results: The 5-year overall survival rates for Stages I, II, III, and IVA in the LDR group were 78%, 72%, 55%, and 34%, respectively. In the MDR group, the 5-year overall survival rates were 100%, 68%, 52%, and 42%, respectively. No significant statistical differences were seen between the two groups. The actuarial rates of late complications Grade 2 or greater at 5 years for the rectum, bladder, and small intestine in the LDR group were 11.1%, 5.8%, and 2.0%, respectively. The rates for the MDR group were 11.7%, 4.2%, and 2.6%, respectively, all of which were without statistical differences. Conclusion: These data suggest that MDR ICBT is effective, useful, and equally as good as LDR ICBT in daytime (about 5 hours) treatments of patients with cervical cancer.

  13. DETECTORS AND EXPERIMENTAL METHODS: ELDRS and dose-rate dependence of vertical NPN transistor

    NASA Astrophysics Data System (ADS)

    Zheng, Yu-Zhan; Lu, Wu; Ren, Di-Yuan; Wang, Gai-Li; Yu, Xue-Feng; Guo, Qi

    2009-01-01

    The enhanced low-dose-rate sensitivity (ELDRS) and dose-rate dependence of vertical NPN transistors are investigated in this article. The results show that the vertical NPN transistors exhibit more degradation at low dose rate, and that this degradation is attributed to the increase on base current. The oxide trapped positive charge near the SiO2-Si interface and interface traps at the interface can contribute to the increase on base current and the two-stage hydrogen mechanism associated with space charge effect can well explain the experimental results.

  14. Evaluation of Enhanced Low Dose Rate Sensitivity in Discrete Bipolar Junction Transistors

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Ladbury Raymond; LaBel, Kenneth; Topper, Alyson; Ladbury, Raymond; Triggs, Brian; Kazmakites, Tony

    2012-01-01

    We evaluate the low dose rate sensitivity in several families of discrete bipolar transistors across device parameter, quality assurance level, and irradiation bias configuration. The 2N2222 showed the most significant low dose rate sensitivity, with low dose rate enhancement factor of 3.91 after 100 krad(Si). The 2N2907 also showed critical degradation levels. The devices irradiated at 10 mrad(Si)/s exceeded specifications after 40 and 50 krad(Si) for the 2N2222 and 2N2907 devices, respectively.

  15. Image-guided high-dose-rate brachytherapy in inoperable endometrial cancer

    PubMed Central

    Petsuksiri, J; Chansilpa, Y; Hoskin, P J

    2014-01-01

    Inoperable endometrial cancer may be treated with curative aim using radical radiotherapy alone. The radiation techniques are external beam radiotherapy (EBRT) alone, EBRT plus brachytherapy and brachytherapy alone. Recently, high-dose-rate brachytherapy has been used instead of low-dose-rate brachytherapy. Image-guided brachytherapy enables sufficient coverage of tumour and reduction of dose to the organs at risk, thus increasing the therapeutic ratio of treatment. Local control rates with three-dimensional brachytherapy appear better than with conventional techniques (about 90–100% and 70–90%, respectively). PMID:24807067

  16. Simulation of the dose rate per activity of beta-emitting radionuclides.

    PubMed

    Behrens, R

    2015-12-01

    The dose rate per activity was simulated for 10 beta-emitting radionuclides and for different activity distributions (point source, areal sources and a semi-infinite volume source). The results are given for 7 different distances from the source (from 0.01 to 2 m) for both contributions: the beta- and electron-emission, and the X- and gamma-emission. Data are provided for both operational quantities and organ doses: Hp(0.07), Hp(3), Hp(10), Hskin and Hlens. Finally, a software applicaton to interpolate the dose rate per activity due to the beta-emission of arbitrary radionuclides is presented and a simple superposition of these data and of gamma-ray dose constants to calculate the total dose rate is described.

  17. Dose-rate dependent stochastic effects in radiation cell-survival models.

    PubMed

    Sachs, R K; Hlatky, L R

    1990-01-01

    When cells are subjected to ionizing radiation the specific energy rate (microscopic analog of dose-rate) varies from cell to cell. Within one cell, this rate fluctuates during the course of time; a crossing of a sensitive cellular site by a high energy charged particle produces many ionizations almost simultaneously, but during the interval between events no ionizations occur. In any cell-survival model one can incorporate the effect of such fluctuations without changing the basic biological assumptions. Using stochastic differential equations and Monte Carlo methods to take into account stochastic effects we calculated the dose-survival relationships in a number of current cell survival models. Some of the models assume quadratic misrepair; others assume saturable repair enzyme systems. It was found that a significant effect of random fluctuations is to decrease the theoretically predicted amount of dose-rate sparing. In the limit of low dose-rates neglecting the stochastic nature of specific energy rates often leads to qualitatively misleading results by overestimating the surviving fraction drastically. In the opposite limit of acute irradiation, analyzing the fluctuations in rates merely amounts to analyzing fluctuations in total specific energy via the usual microdosimetric specific energy distribution function, and neglecting fluctuations usually underestimates the surviving fraction. The MOnte Carlo methods interpolate systematically between the low dose-rate and high dose-rate limits. As in other approaches, the slope of the survival curve at low dose-rates is virtually independent of dose and equals the initial slope of the survival curve for acute radiation.

  18. Methodology for estimating radiation dose rates to freshwater biota exposed to radionuclides in the environment

    SciTech Connect

    Blaylock, B.G.; Frank, M.L.; O`Neal, B.R.

    1993-08-01

    The purpose of this report is to present a methodology for evaluating the potential for aquatic biota to incur effects from exposure to chronic low-level radiation in the environment. Aquatic organisms inhabiting an environment contaminated with radioactivity receive external radiation from radionuclides in water, sediment, and from other biota such as vegetation. Aquatic organisms receive internal radiation from radionuclides ingested via food and water and, in some cases, from radionuclides absorbed through the skin and respiratory organs. Dose rate equations, which have been developed previously, are presented for estimating the radiation dose rate to representative aquatic organisms from alpha, beta, and gamma irradiation from external and internal sources. Tables containing parameter values for calculating radiation doses from selected alpha, beta, and gamma emitters are presented in the appendix to facilitate dose rate calculations. The risk of detrimental effects to aquatic biota from radiation exposure is evaluated by comparing the calculated radiation dose rate to biota to the U.S. Department of Energy`s (DOE`s) recommended dose rate limit of 0.4 mGy h{sup {minus}1} (1 rad d{sup {minus}1}). A dose rate no greater than 0.4 mGy h{sup {minus}1} to the most sensitive organisms should ensure the protection of populations of aquatic organisms. DOE`s recommended dose rate is based on a number of published reviews on the effects of radiation on aquatic organisms that are summarized in the National Council on Radiation Protection and Measurements Report No. 109 (NCRP 1991). DOE recommends that if the results of radiological models or dosimetric measurements indicate that a radiation dose rate of 0. 1 mGy h{sup {minus}1} will be exceeded, then a more detailed evaluation of the potential ecological consequences of radiation exposure to endemic populations should be conducted.

  19. An automated optimization tool for high-dose-rate (HDR) prostate brachytherapy with divergent needle pattern

    NASA Astrophysics Data System (ADS)

    Borot de Battisti, M.; Maenhout, M.; de Senneville, B. Denis; Hautvast, G.; Binnekamp, D.; Lagendijk, J. J. W.; van Vulpen, M.; Moerland, M. A.

    2015-10-01

    Focal high-dose-rate (HDR) for prostate cancer has gained increasing interest as an alternative to whole gland therapy as it may contribute to the reduction of treatment related toxicity. For focal treatment, optimal needle guidance and placement is warranted. This can be achieved under MR guidance. However, MR-guided needle placement is currently not possible due to space restrictions in the closed MR bore. To overcome this problem, a MR-compatible, single-divergent needle-implant robotic device is under development at the University Medical Centre, Utrecht: placed between the legs of the patient inside the MR bore, this robot will tap the needle in a divergent pattern from a single rotation point into the tissue. This rotation point is just beneath the perineal skin to have access to the focal prostate tumor lesion. Currently, there is no treatment planning system commercially available which allows optimization of the dose distribution with such needle arrangement. The aim of this work is to develop an automatic inverse dose planning optimization tool for focal HDR prostate brachytherapy with needle insertions in a divergent configuration. A complete optimizer workflow is proposed which includes the determination of (1) the position of the center of rotation, (2) the needle angulations and (3) the dwell times. Unlike most currently used optimizers, no prior selection or adjustment of input parameters such as minimum or maximum dose or weight coefficients for treatment region and organs at risk is required. To test this optimizer, a planning study was performed on ten patients (treatment volumes ranged from 8.5 cm3to 23.3 cm3) by using 2-14 needle insertions. The total computation time of the optimizer workflow was below 20 min and a clinically acceptable plan was reached on average using only four needle insertions.

  20. Health Risks From Low Doses and Low Dose-Rates of Ionizing Radiation. Session 5: Future of Radiation Protection Regulations.

    PubMed

    Cool, Donald A

    2016-03-01

    The system of radiological protection is a prospective approach to protection of individuals in all exposure situations. It must be applied equitably across all age groups and all populations. This is a very different circumstance from dose assessment for a particular individual where the unique characteristics of the individual and the exposure can be taken into account. Notwithstanding the ongoing discussions on the possible shape of the dose response at low doses and dose rates, the prospective system of protection has therefore historically used a linear assumption as a pragmatic, prudent and protective approach. These radiation protection criteria are not intended to be a demarcation between "safe" and "unsafe" and are the product of a risk-informed judgement that includes inputs from science, ethics, and experience. There are significant implications for different dose response relationships. A linear model allows for equal treatment of an exposure, irrespective of the previously accumulated exposure. In contrast, other models would predict different implications. Great care is therefore needed in separating the thinking around risk assessment from risk management, and prospective protection for all age groups and genders from retrospective assessment for a particular individual. In the United States, the prospective regulatory structure functions effectively because of assumptions that facilitate independent treatment of different types of exposures, and which provide pragmatic and prudent protection. While the a linear assumption may, in fact, not be consistent with the biological reality, the implications of a different regulatory model must be considered carefully.

  1. Oligodendroglial response to ionizing radiation: Dose and dose-rate response

    SciTech Connect

    Levy, R.P.

    1991-12-01

    An in vitro system using neuroglia from neonatal rat brain was developed to examine the morphologic, immunocytochemical and biochemical response of oligodendroglia to ionizing radiation. Following acute {gamma}-irradiation at day-in-culture (DIC) 8, oligodendrocyte counts at DIC 14 were 55% to 65% of control values after 2 Gy, and 29% to 36% after 5 Gy. Counts increased to near-normal levels at DIC 21 in the 2 Gy group and to 75% of normal in the 5 Gy group. Myelin basic protein levels (MBP) at DIC 14 were 60% of control values after 2 Gy, and 40% after 5 Gy. At DIC 21, MBP after 2 Gy was 45% greater than that observed at DIC 14, but MBP, as a fraction of age-matched control values, dropped from 60% to 50%. Following 5 Gy, absolute MBP changed little between DIC 14 and DIC 21, but decreased from 40% to 25% of control cultures. The response to split-dose irradiation indicated that nearly all sublethal damage in the oligodendrocyte population (and its precursors) was repaired within 3 h to 4 h. A new compartmental cell model for radiation response in vitro of the oligodendrocyte population is proposed and examined in relation to the potential reaction to radiation injury in the brain.

  2. Methodology for Estimating Radiation Dose Rates to Freshwater Biota Exposed to Radionuclides in the Environment

    SciTech Connect

    Blaylock, B.G.

    1993-01-01

    The purpose of this report is to present a methodology for evaluating the potential for aquatic biota to incur effects from exposure to chronic low-level radiation in the environment. Aquatic organisms inhabiting an environment contaminated with radioactivity receive external radiation from radionuclides in water, sediment, and from other biota such as vegetation. Aquatic organisms receive internal radiation from radionuclides ingested via food and water and, in some cases, from radionuclides absorbed through the skin and respiratory organs. Dose rate equations, which have been developed previously, are presented for estimating the radiation dose rate to representative aquatic organisms from alpha, beta, and gamma irradiation from external and internal sources. Tables containing parameter values for calculating radiation doses from selected alpha, beta, and gamma emitters are presented in the appendix to facilitate dose rate calculations. The risk of detrimental effects to aquatic biota from radiation exposure is evaluated by comparing the calculated radiation dose rate to biota to the U.S. Department of Energy's (DOE's) recommended dose rate limit of 0.4 mGy h{sup -1} (1 rad d{sup -1}). A dose rate no greater than 0.4 mGy h{sup -1} to the most sensitive organisms should ensure the protection of populations of aquatic organisms. DOE's recommended dose rate is based on a number of published reviews on the effects of radiation on aquatic organisms that are summarized in the National Council on Radiation Protection and Measurements Report No. 109 (NCRP 1991). The literature identifies the developing eggs and young of some species of teleost fish as the most radiosensitive organisms. DOE recommends that if the results of radiological models or dosimetric measurements indicate that a radiation dose rate of 0.1 mGy h{sup -1} will be exceeded, then a more detailed evaluation of the potential ecological consequences of radiation exposure to endemic populations should be

  3. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice.

    PubMed

    Favaudon, Vincent; Caplier, Laura; Monceau, Virginie; Pouzoulet, Frédéric; Sayarath, Mano; Fouillade, Charles; Poupon, Marie-France; Brito, Isabel; Hupé, Philippe; Bourhis, Jean; Hall, Janet; Fontaine, Jean-Jacques; Vozenin, Marie-Catherine

    2014-07-16

    In vitro studies suggested that sub-millisecond pulses of radiation elicit less genomic instability than continuous, protracted irradiation at the same total dose. To determine the potential of ultrahigh dose-rate irradiation in radiotherapy, we investigated lung fibrogenesis in C57BL/6J mice exposed either to short pulses (≤ 500 ms) of radiation delivered at ultrahigh dose rate (≥ 40 Gy/s, FLASH) or to conventional dose-rate irradiation (≤ 0.03 Gy/s, CONV) in single doses. The growth of human HBCx-12A and HEp-2 tumor xenografts in nude mice and syngeneic TC-1 Luc(+) orthotopic lung tumors in C57BL/6J mice was monitored under similar radiation conditions. CONV (15 Gy) triggered lung fibrosis associated with activation of the TGF-β (transforming growth factor-β) cascade, whereas no complications developed after doses of FLASH below 20 Gy for more than 36 weeks after irradiation. FLASH irradiation also spared normal smooth muscle and epithelial cells from acute radiation-induced apoptosis, which could be reinduced by administration of systemic TNF-α (tumor necrosis factor-α) before irradiation. In contrast, FLASH was as efficient as CONV in the repression of tumor growth. Together, these results suggest that FLASH radiotherapy might allow complete eradication of lung tumors and reduce the occurrence and severity of early and late complications affecting normal tissue.

  4. Bovine spongiform encephalopathy: the effect of oral exposure dose on attack rate and incubation period in cattle.

    PubMed

    Wells, G A H; Konold, T; Arnold, M E; Austin, A R; Hawkins, S A C; Stack, M; Simmons, M M; Lee, Y H; Gavier-Widén, D; Dawson, M; Wilesmith, J W

    2007-04-01

    The dose-response of cattle exposed to the bovine spongiform encephalopathy (BSE) agent is an important component of modelling exposure risks for animals and humans and thereby, the modulation of surveillance and control strategies for BSE. In two experiments calves were dosed orally with a range of amounts of a pool of brainstems from BSE-affected cattle. Infectivity in the pool was determined by end-point titration in mice. Recipient cattle were monitored for clinical disease and, from the incidence of pathologically confirmed cases and their incubation periods (IPs), the attack rate and IP distribution according to dose were estimated. The dose at which 50 % of cattle would be clinically affected was estimated at 0.20 g brain material used in the experiment, with 95 % confidence intervals of 0.04-1.00 g. The IP was highly variable across all dose groups and followed a log-normal distribution, with decreasing mean as dose increased. There was no evidence of a threshold dose at which the probability of infection became vanishingly small, with 1/15 (7 %) of animals affected at the lowest dose (1 mg).

  5. Effect of frequency of dosing of plant sterols on plasma cholesterol levels and synthesis rate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective was to compare the effects of plant sterols (PS) consumed as a single dose (single) at breakfast or as three doses consumed with breakfast, lunch and dinner (divided) on plasma lipoprotien levels and cholesterol endogenous fractional synthesis rate (FSR). A randomized, placebo-controll...

  6. Analgesia dose prescribing and estimated glomerular filtration rate decline: a general practice database linkage cohort study

    PubMed Central

    Nderitu, Paul; Doos, Lucy; Strauss, Vicky Y; Lambie, Mark; Davies, Simon J; Kadam, Umesh T

    2014-01-01

    Objective We aimed to quantify the short-term effect of non-steroidal anti-inflammatory drugs (NSAIDs), aspirin and paracetamol analgesia dose prescribing on estimated glomerular filtration rate (eGFR) decline in the general practice population. Design A population-based longitudinal clinical data linkage cohort study. Setting Two large general practices in North Staffordshire, UK. Participants Patients aged 40 years and over with ≥2 eGFR measurements spaced ≥90 days apart between 1 January 2009 and 31 December 2010 were selected. Exposure Using WHO Defined Daily Dose standardised cumulative analgesia prescribing, patients were categorised into non-user, normal and high-dose groups. Outcome measure The primary outcome was defined as a >5 mL/min/1.73 m2/year eGFR decrease between the first and last eGFR. Logistic regression analyses were used to estimate risk, adjusting for sociodemographics, comorbidity, baseline chronic kidney disease (CKD) status, renin-angiotensin-system inhibitors and other analgesia prescribing. Results There were 4145 patients (mean age 66 years, 55% female) with an analgesia prescribing prevalence of 17.2% for NSAIDs, 39% for aspirin and 22% for paracetamol and stage 3–5 CKD prevalence was 16.1% (n=667). Normal or high-dose NSAID and paracetamol prescribing was not significantly associated with eGFR decline. High-dose aspirin prescribing was associated with a reduced risk of eGFR decline in patients with a baseline (first) eGFR ≥60 mL/min/1.73 m2; OR=0.52 (95% CI 0.35 to 0.77). Conclusions NSAID, aspirin and paracetamol prescribing over 2 years did not significantly affect eGFR decline with a reduced risk of eGFR decline in high-dose aspirin users with well-preserved renal function. However, the long-term effects of analgesia use on eGFR decline remain to be determined. PMID:25138808

  7. High Dose-Rate Intracavitary Brachytherapy for Cervical Carcinomas With Lower Vaginal Infiltration

    SciTech Connect

    Kazumoto, Tomoko Kato, Shingo; Tabushi, Katsuyoshi; Kutsutani-Nakamura, Yuzuru; Mizuno, Hideyuki; Takahashi, Michiko; Shiromizu, Kenji; Saito, Yoshihiro

    2007-11-15

    Purpose: This report presents the clinical applications of an automated treatment-planning program of high-dose-rate intracavitary brachytherapy (HDR-ICBT) for advanced uterine cervical cancer infiltrating the parametrium and the lower vagina. Methods and Materials: We adopted HDR-ICBT under optimized dose distribution for 22 cervical cancer patients with tumor infiltration of the lower half of the vagina. All patients had squamous cell carcinoma with International Federation of Gynecology and Obstetrics clinical stages IIB-IVA. After whole pelvic external beam irradiation with a median dose of 30.6 Gy, a conventional ICBT was applied as 'pear-shaped' isodose curve. Then 3-4 more sessions per week of this new method of ICBT were performed. With a simple determination of the treatment volume, the cervix-parametrium, and the lower vagina were covered automatically and simultaneously by this program, that was designated as 'utero-vaginal brachytherapy'. The mean follow-up period was 87.4 months (range, 51.8-147.9 months). Results: Isodose curve for this program was 'galaxy-shaped'. Five-year local-progression-free survival and overall survival rates were 90.7% and 81.8%, respectively. Among those patients with late complications higher than Grade 2 Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer morbidity score, only one (4.5%) developed severe proctitis. Conclusions: Because of the favorable treatment outcomes, this treatment-planning program with a simplified target-volume based dosimetry was proposed for cervical cancer with lower vaginal infiltration.

  8. Determination of rate distributions from kinetic experiments.

    PubMed

    Steinbach, P J; Chu, K; Frauenfelder, H; Johnson, J B; Lamb, D C; Nienhaus, G U; Sauke, T B; Young, R D

    1992-01-01

    Rate processes in proteins are often not adequately described by simple exponential kinetics. Instead of modeling the kinetics in the time domain, it can be advantageous to perform a numerical inversion leading to a rate distribution function f(lambda). The features observed in f(lambda) (number, positions, and shapes of peaks) can then be interpreted. We discuss different numerical techniques for obtaining rate distribution functions, with special emphasis on the maximum entropy method. Examples are given for the application of these techniques to flash photolysis data of heme proteins.

  9. Boron dose determination for BNCT using Fricke and EPR dosimetry

    SciTech Connect

    Wielopolski, L.; Ciesielski, B.

    1995-02-01

    In Boron Neutron Capture Therapy (BNCT) the dominant dose delivered to the tumor is due to {alpha} and {sup 7}Li charged particles resulting from a neutron capture by {sup 10}B and is referred to herein as the boron dose. Boron dose is directly attributable to the following two independent factors, one boron concentration and the neutron capture energy dependent cross section of boron, and two the energy spectrum of the neutrons that interact with boron. The neutron energy distribution at a given point is dictated by the incident neutron energy distribution, the depth in tissue, geometrical factors such as beam size and patient`s dimensions. To account for these factors can be accommodated by using Monte Carlo theoretical simulations. However, in conventional experimental BNCT dosimetry, e.g., using TLDs or ionization chambers, it is only possible to estimate the boron dose. To overcome some of the limitations in the conventional dosimetry, modifications in ferrous sulfate dosimetry (Fricke) and Electron Paramagnetic Resonance (EPR) dosimetry in alanine, enable to measure specifically boron dose in a mixed gamma neutron radiation fields. The boron dose, in either of the dosimeters, is obtained as a difference between measurements with boronated and unboronated dosimeters. Since boron participates directly in the measurements, the boron dosimetry reflects the true contribution, integral of the neutron energy spectrum with boron cross section, of the boron dose to the total dose. Both methods are well established and used extensively in dosimetry, they are presented briefly here.

  10. Radiation response of industrial materials: Dose-rate and morphology implications

    NASA Astrophysics Data System (ADS)

    Berejka, Anthony J.

    2007-08-01

    Industrial uses of ionizing radiation mostly rely upon high current, high dose-rate (100 kGy/s) electron beam (EB) accelerators. To a lesser extent, industry uses low dose-rate (2.8 × 10-3 kGy/s) radioactive Cobalt-60 as a gamma source, generally for some rather specific purposes, as medical device sterilization and the treatment of food and foodstuffs. There are nearly nine times as many (∼1400) high current EB units in commercial operation than gamma sources (∼160). However, gamma sources can be easily scaled-down so that much research on materials effects is conducted using gamma radiation. Likewise, laboratories are more likely to have very low beam current and consequently low dose-rate accelerators such as Van de Graaff generators and linear accelerators. With the advent of very high current EB accelerators, X-ray processing has become an industrially viable option. With X-rays from high power sources, dose-rates can be modulated based upon accelerator power and the attenuation of the X-ray by the distance of the material from the X-ray target. Dose and dose-rate dependence has been found to be of consequence in several commercial applications which can employ the use of ionizing radiation. The combination of dose and dose-rate dependence of the polymerization and crosslinking of wood impregnants and of fiber composite matrix materials can yield more economically viable results which have promising commercial potential. Monomer and oligomer structure also play an important role in attaining these desirable results. The influence of morphology is shown on the radiation response of olefin polymers, such as ethylene, propylene and isobutylene polymers and their copolymers. Both controlled morphology and controlled dose-rate have commercial consequences. These are also impacted both by the adroit selection of materials and through the possible use of X-ray processing.

  11. Cell cycle alterations, apoptosis, and response to low-dose-rate radioimmunotherapy in lymphoma cells

    SciTech Connect

    Macklis, R.M.; Beresford, B.A.; Palayoor, S.; Sweeney, S.; Humm, J.L.

    1993-10-20

    In an attempt to elucidate some aspects of the radiobiological basis of radioimmunotherapy, we have evaluated the in vitro cellular response patterns for malignant lymphoma cell lines exposed to high- and low-dose-rate radiation administered within the physiological context of antibody cell-surface binding. We used two different malignant lymphoma cell lines, a Thy1.2{sup +} murine T-lymphoma line called EL-4 and a CD20{sup +} human B-lymphoma line called Raji. Irradiated cells were evaluated for viability, cell-cycle changes, patterns of post-radiation morphologic changes, and biochemical hallmarks of radiation-associated necrosis and programmed cell death. The EL-4 line was sensitive to both high-dose-rate and low-dose-rate irradiation, while the Raji showed efficient cell kill only after high-dose-rate irradiation. Studies of radiation-induced cell cycle changes demonstrated that both cell lines were efficiently blocked at the G2/M interface by high-dose-rate irradiation, with the Raji cells appearing somewhat more susceptible than the EL-4 cells to low-dose-rate radiation-induced G2/M block. Electron microscopy and DNA gel electrophoresis studies showed that a significant proportion of the EL-4 cells appeared to be dying by radiation-induced programmed cell death (apoptosis) while the Raji cells appeared to be dying primarily by classical radiation-induced cellular necrosis. We propose that the unusual clinical responsiveness of some high and low grade lymphomas to modest doses of low-dose-rate radioimmunotherapy may be explained in part by the induction of apoptosis. The unusual dose-response characteristics observed in some experimental models of radiation-induced apoptosis may require a reappraisal of standard linear quadratic and alpha/beta algorithms used to predict target tissue cytoreduction after radioimmunotheraphy. 34 refs., 4 figs.

  12. Dose- and Rate-Dependent Effects of Cocaine on Striatal Firing Related to Licking

    PubMed Central

    Tang, Chengke; Mittler, Taliah; Duke, Dawn C.; Zhu, Yun; Pawlak, Anthony P.; West, Mark O.

    2011-01-01

    To examine the role of striatal mechanisms in cocaine-induced stereotyped licking, we investigated the acute effects of cocaine on striatal neurons in awake, freely moving rats before and after cocaine administration (0, 5, 10, or 20 mg/kg). Stereotyped licking was induced only by the high dose. Relative to control (saline), cocaine reduced lick duration and concurrently increased interlick interval, particularly at the high dose, but it did not affect licking rhythm. Firing rates of striatal neurons phasically related to licking movements were compared between matched licks before and after injection, minimizing any influence of sensorimotor variables on changes in firing. Both increases and decreases in average firing rate of striatal neurons were observed after cocaine injection, and these changes exhibited a dose-dependent pattern that strongly depended on predrug firing rate. At the middle and high doses relative to the saline group, the average firing rates of slow firing neurons were increased by cocaine, resulting from a general elevation of movement-related firing rates. In contrast, fast firing neurons showed decreased average firing rates only in the high-dose group, with reduced firing rates across the entire range for these neurons. Our findings suggest that at the high dose, increased phasic activity of slow firing striatal neurons and simultaneously reduced phasic activity of fast firing striatal neurons may contribute, respectively, to the continual initiation of stereotypic movements and the absence of longer movements. PMID:17991811

  13. Determination of radionuclides and pathways contributing to cumulative dose

    SciTech Connect

    Napier, B.A.

    1992-12-01

    A series of scoping calculations has been undertaken to evaluate the absolute and relative contributions of different radionuclides and exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford Site. This scoping calculation (Calculation 004) examined the contributions of numerous radionuclides to cumulative dose via environmental exposures and accumulation in foods. Addressed in this calculation were the contributions to organ and effective dose of infants and adults from (1) air submersion and groundshine external dose, (2) inhalation, (3) ingestion of soil by humans, (4) ingestion of leafy vegetables, (5) ingestion of other vegetables and fruits, (6) ingestion of meat, (7) ingestion of eggs, and (8) ingestion of cows' milk from Feeding Regime 1, as described in calculation 002. This calculation specifically addresses cumulative radiation doses to infants and adults resulting from releases occurring over the period 1945 through 1972.

  14. New method of proportional counter feedback biasing for wide-range radiation dose-rate monitors

    SciTech Connect

    Kopp, M.K.; Valentine, K.H.; Guerrant, G.C.; Manning, F.W.

    1984-01-01

    A prototypic wide-range radiation dose-rate monitor for civil defense applications has been developed and tested. The specified dose-rate range (0 to 500 R/h) was displayed on a single readout scale by using feedback-controlled biasing of a proportional counter. This new method is based on controlling the avalanche multiplication factor (gas gain) of the counter by varying its bias voltage in response to its measured output current (i.e., detected dose rate). The counter output current varies between 0 and 1.5 nA in a quasi-logarithmic response to dose rates between 0 and 500 R/h. The corresponding values of gas gain and bias voltage range from 1 to 300 and 200 to 1900 V respectively.

  15. Limitations of current dosimetry for intracavitary accelerated partial breast irradiation with high dose rate iridium-192 and electronic brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Raffi, Julie A.

    Intracavitary accelerated partial breast irradiation (APBI) is a method of treating early stage breast cancer using a high dose rate (HDR) brachytherapy source positioned within the lumpectomy cavity. An expandable applicator stretches the surrounding tissue into a roughly spherical or elliptical shape and the dose is prescribed to 1 cm beyond the edge of the cavity. Currently, dosimetry for these treatments is most often performed using the American Association of Physicists in Medicine Task Group No. 43 (TG-43) formalism. The TG-43 dose-rate equation determines the dose delivered to a homogeneous water medium by scaling the measured source strength with standardized parameters that describe the radial and angular features of the dose distribution. Since TG-43 parameters for each source model are measured or calculated in a homogeneous water medium, the dosimetric effects of the patient's dimensions and composition are not accounted for. Therefore, the accuracy of TG-43 calculations for intracavitary APBI is limited by the presence of inhomogeneities in and around the target volume. Specifically, the breast is smaller than the phantoms used to determine TG-43 parameters and is surrounded by air, ribs, and lung tissue. Also, the composition of the breast tissue itself can affect the dose distribution. This dissertation is focused on investigating the limitations of TG-43 dosimetry for intracavitary APBI for two HDR brachytherapy sources: the VariSource TM VS2000 192Ir source and the AxxentRTM miniature x-ray source. The dose for various conditions was determined using thermoluminescent dosimeters (TLDs) and Monte Carlo (MC) calculations. Accurate measurements and calculations were achieved through the implementation of new measurement and simulation techniques and a novel breast phantom was developed to enable anthropomorphic phantom measurements. Measured and calculated doses for phantom and patient geometries were compared with TG-43 calculated doses to

  16. HDRMC, an accelerated Monte Carlo dose calculator for high dose rate brachytherapy with CT-compatible applicators

    SciTech Connect

    Chibani, Omar C-M Ma, Charlie

    2014-05-15

    Purpose: To present a new accelerated Monte Carlo code for CT-based dose calculations in high dose rate (HDR) brachytherapy. The new code (HDRMC) accounts for both tissue and nontissue heterogeneities (applicator and contrast medium). Methods: HDRMC uses a fast ray-tracing technique and detailed physics algorithms to transport photons through a 3D mesh of voxels representing the patient anatomy with applicator and contrast medium included. A precalculated phase space file for the{sup 192}Ir source is used as source term. HDRM is calibrated to calculated absolute dose for real plans. A postprocessing technique is used to include the exact density and composition of nontissue heterogeneities in the 3D phantom. Dwell positions and angular orientations of the source are reconstructed using data from the treatment planning system (TPS). Structure contours are also imported from the TPS to recalculate dose-volume histograms. Results: HDRMC was first benchmarked against the MCNP5 code for a single source in homogenous water and for a loaded gynecologic applicator in water. The accuracy of the voxel-based applicator model used in HDRMC was also verified by comparing 3D dose distributions and dose-volume parameters obtained using 1-mm{sup 3} versus 2-mm{sup 3} phantom resolutions. HDRMC can calculate the 3D dose distribution for a typical HDR cervix case with 2-mm resolution in 5 min on a single CPU. Examples of heterogeneity effects for two clinical cases (cervix and esophagus) were demonstrated using HDRMC. The neglect of tissue heterogeneity for the esophageal case leads to the overestimate of CTV D90, CTV D100, and spinal cord maximum dose by 3.2%, 3.9%, and 3.6%, respectively. Conclusions: A fast Monte Carlo code for CT-based dose calculations which does not require a prebuilt applicator model is developed for those HDR brachytherapy treatments that use CT-compatible applicators. Tissue and nontissue heterogeneities should be taken into account in modern HDR

  17. Absorbed dose determination in kilovoltage X-ray synchrotron radiation using alanine dosimeters.

    PubMed

    Butler, D J; Lye, J E; Wright, T E; Crossley, D; Sharpe, P H G; Stevenson, A W; Livingstone, J; Crosbie, J C

    2016-12-01

    Alanine dosimeters from the National Physical Laboratory (NPL) in the UK were irradiated using kilovoltage synchrotron radiation at the imaging and medical beam line (IMBL) at the Australian Synchrotron. A 20 × 20 mm(2) area was irradiated by scanning the phantom containing the alanine through the 1 mm × 20 mm beam at a constant velocity. The polychromatic beam had an average energy of 95 keV and nominal absorbed dose to water rate of 250 Gy/s. The absorbed dose to water in the solid water phantom was first determined using a PTW Model 31014 PinPoint ionization chamber traceable to a graphite calorimeter. The alanine was read out at NPL using correction factors determined for (60)Co, traceable to NPL standards, and a published energy correction was applied to correct for the effect of the synchrotron beam quality. The ratio of the doses determined by alanine at NPL and those determined at the synchrotron was 0.975 (standard uncertainty 0.042) when alanine energy correction factors published by Waldeland et al. (Waldeland E, Hole E O, Sagstuen E and Malinen E, Med. Phys. 2010, 37, 3569) were used, and 0.996 (standard uncertainty 0.031) when factors by Anton et al. (Anton M, Büermann L., Phys Med Biol. 2015 60 6113-29) were used. The results provide additional verification of the IMBL dosimetry.

  18. NEUTRON GENERATOR FACILITY AT SFU: GEANT4 DOSE RATE PREDICTION AND VERIFICATION.

    PubMed

    Williams, J; Chester, A; Domingo, T; Rizwan, U; Starosta, K; Voss, P

    2016-11-01

    Detailed dose rate maps for a neutron generator facility at Simon Fraser University were produced via the GEANT4 Monte Carlo framework. Predicted neutron dose rates throughout the facility were compared with radiation survey measurements made during the facility commissioning process. When accounting for thermal neutrons, the prediction and measurement agree within a factor of 2 or better in most survey locations, and within 10 % inside the vault housing the neutron generator.

  19. Use of MOS structures for the investigation of low-dose-rate effects in bipolar transistors

    SciTech Connect

    Belyakov, V.V.; Pershenkov, V.S.; Shalnov, A.V.; Shvetzov-Shilovsky, I.N.

    1995-12-01

    A possible physical mechanism for bipolar transistor low-dose-rate irradiation response is discussed. This mechanism is described in terms of shallow electron traps in oxide. The experimental results on positive charge build-up at low dose-rates and small electric field in oxide are presented. The use of MOS transistor in bipolar mode for investigation of surface peripheral recombination current in bipolar transistor and extraction of MOS structure physical parameters is described.

  20. The Influence of Radon (Gas and Progeny) and Weather Conditions on Ambient Dose Equivalent Rate.

    PubMed

    Márquez, J L; Benito, G; Saez, J C; Navarro, N; Alvarez, A; Quiñones, J

    2016-08-13

    The purpose of this study is to identify the influence of radon (gas and progeny) on the ambient dose equivalent rate measured at the reference station ESMERALDA, where continuous measurements of the ambient dose equivalent rate (every 10 min) combined with activity concentration measurements of radon gas and radon progeny as well as meteorological parameters have been collected. This study has been performed using a correlation study based on a principal components analysis and the Spearman's rank correlation coefficient.

  1. Estimation of glomerular filtration rate from low-dose injection of iohexol and a single blood sample

    SciTech Connect

    Thomsen, H.S.; Hvid-Jacobsen, K. )

    1991-04-01

    Clearance of a small dose of iohexol (7 g I) was compared with the glomerular filtration rate (GFR) marker {sup 51}Cr EDTA in 11 healthy volunteers. The two tracers were injected simultaneously. The plasma concentration of iohexol was measured with x-ray fluorescence technique. Glomerular filtration rate was determined using blood samples drawn three and four hours after injection. An excellent correlation (0.92 less than r less than 0.97) between iohexol clearance and {sup 51}Cr EDTA clearance was found. Glomerular filtration rate can be reliably determined with a low dose of iohexol and a single blood sample obtained three hours after the injection in persons with normal serum creatinine. This new method is a good alternative to the methods using radiopharmaceuticals; it causes no radioactive burden to the patients, increases patient comfort, reduces costs, and requires no special license.

  2. Impact on ambient dose rate in metropolitan Tokyo from the Fukushima Daiichi Nuclear Power Plant accident.

    PubMed

    Inoue, Kazumasa; Tsuruoka, Hiroshi; Van Le, Tan; Arai, Moeko; Saito, Kyoko; Fukushi, Masahiro

    2016-07-01

    A car-borne survey was made in metropolitan Tokyo, Japan, in December 2014 to estimate external dose. This survey was conducted for all municipalities of Tokyo and the results were compared with measurements done in 2003. The ambient dose rate measured in the whole area of Tokyo in December 2014 was 60 nGy h(-1) (23-142 nGy h(-1)), which was 24% higher than the rate in 2003. Higher dose rates (>70 nGy h(-1)) were observed on the eastern and western ends of Tokyo; furthermore, the contribution ratio from artificial radionuclides ((134)Cs and (137)Cs) to ambient dose rate in eastern Tokyo was twice as high as that of western Tokyo. Based on the measured ambient dose rate, the effective dose rate after the accident was estimated to be 0.45 μSv h(-1) in Tokyo. This value was 22% higher than the value before the accident as of December 2014.

  3. Intrathyroidal iodide binding rates and plasma methimazole concentrations in hyperthyroid patients on small doses of carbimazole.

    PubMed Central

    Low, L C; McCruden, D C; Alexander, W D; Hilditch, T E; Skellern, G G; Knight, B I

    1981-01-01

    1 The effect of small doses of carbimazole on the binding rate constant of intrathyroidal iodide, plasma methimazole concentrations and circulating thyroid hormone concentrations in five hyperthyroid patients is presented. 2 In all patients there was a marked reduction in iodide binding with carbimazole doses as low as 5 to 10 mg daily. 3 In three patients little further reduction in the observed binding rate occurred with daily doses in excess of 10 mg despite progressive increases in plasma methimazole concentrations. 4 At the end of 4 weeks' treatment with 10 mg carbimazole daily, the reduction in thyroid hormone concentrations and clinical improvement were such as to suggest that this dose may be an effective starting dose in many patients. PMID:7295461

  4. TOLERANCE TO COCAINE’S EFFECTS FOLLOWING CHRONIC ADMINISTRATION OF A DOSE WITHOUT DETECTED EFFECTS ON RESPONSE RATE OR PAUSE

    PubMed Central

    Minervini, Vanessa; Branch, Marc N.

    2014-01-01

    To observe tolerance to drug effects on operant behavior, the dose that researchers have often selected for chronic administration is one that disrupts, but does not abolish, responding. Some evidence suggests that tolerance may develop after chronic administration of relatively smaller doses. The purpose of the present experiment was to assess systematically effects of chronic administration of a dose without detected effect on responding. Specifically, response rates and postreinforcement pauses of five pigeons key pecking under a three-component multiple fixed-ratio schedule of food reinforcement were observed under chronic cocaine administration. We evaluated the effects of a range of doses (1.0 mg/kg to 17.0 mg/kg) during acute administration. The largest dose that failed to alter responding acutely then was administered chronically (1.0 mg/kg for one pigeon, 3.0 mg/kg for three pigeons, and 5.6 mg/kg for one pigeon). After 30 consecutive sessions of chronic administration, smaller and larger doses occasionally were substituted for the chronic dose. Pigeons then received presession saline administration for 30 consecutive sessions, and the postchronic effects of the series of doses on responding were determined. All subjects developed tolerance to doses of cocaine that initially had caused large decreases in rate, with the magnitude of the effects varying across components of the multiple schedule and subjects. Specifically, tolerance generally was greatest in the components with smaller ratios. Following postchronic saline administration, tolerance was usually diminished. Overall, the results demonstrate that under these conditions, repeated experience with disruptive effects of cocaine on food-maintained responding is not a necessary factor in the development of tolerance. PMID:24019029

  5. Determination of radionuclides and pathways contributing to dose in 1945

    SciTech Connect

    Napier, B.A.

    1992-12-01

    A series of scoping calculations has been undertaken to evaluate the absolute and relative contributions of different radionuclides and exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford Site. This scoping calculation (Calculation 003) examined the contributions of numerous radionuclides to dose via environmental exposures and accumulation in foods. This study builds on the work initiated in the first scoping study of iodine in cow's milk (calculation 001). Addressed in this calculation were the contributions to organ and effective dose of infants and adults from (1) air submersion and groundshine external dose, (2) inhalation, (3) ingestion of soil by humans, (4) ingestion of leafy vegetables, (5) ingestion of other vegetables and fruits, (6) ingestion of meat, (7) ingestion of eggs, and (8) ingestion of cows' milk from Feeding Regime 1, as described in Calculation 001.

  6. Global convergence analysis of fast multiobjective gradient-based dose optimization algorithms for high-dose-rate brachytherapy.

    PubMed

    Lahanas, M; Baltas, D; Giannouli, S

    2003-03-07

    We consider the problem of the global convergence of gradient-based optimization algorithms for interstitial high-dose-rate (HDR) brachytherapy dose optimization using variance-based objectives. Possible local minima could lead to only sub-optimal solutions. We perform a configuration space analysis using a representative set of the entire non-dominated solution space. A set of three prostate implants is used in this study. We compare the results obtained by conjugate gradient algorithms, two variable metric algorithms and fast-simulated annealing. For the variable metric algorithm BFGS from numerical recipes, large fluctuations are observed. The limited memory L-BFGS algorithm and the conjugate gradient algorithm FRPR are globally convergent. Local minima or degenerate states are not observed. We study the possibility of obtaining a representative set of non-dominated solutions using optimal solution rearrangement and a warm start mechanism. For the surface and volume dose variance and their derivatives, a method is proposed which significantly reduces the number of required operations. The optimization time, ignoring a preprocessing step, is independent of the number of sampling points in the planning target volume. Multiobjective dose optimization in HDR brachytherapy using L-BFGS and a new modified computation method for the objectives and derivatives has been accelerated, depending on the number of sampling points, by a factor in the range 10-100.

  7. The influence of dose, dose-rate and particle fragmentation on cataract induction by energetic iron ions

    NASA Technical Reports Server (NTRS)

    Medvedovsky, C.; Worgul, B. V.; Huang, Y.; Brenner, D. J.; Tao, F.; Miller, J.; Zeitlin, C.; Ainsworth, E. J.

    1994-01-01

    Because activities in space necessarily involve chronic exposure to a heterogeneous charged particle radiation field it is important to assess the influence of dose-rate and the possible modulating role of heavy particle fragmentation on biological systems. Using the well-studied cataract model, mice were exposed to plateau 600 MeV/amu Fe-56 ions either as acute or fractionated exposures at total doses of 5-504 cGy. Additional groups of mice received 20, 360 and 504 cGy behind 50 mm of polyethylene, which simulates body shielding. The reference radiation consisted of Co-60 gamma radiation. The animals were examined by slit lamp biomicroscopy over their three year life spans. In accordance with our previous observations with heavy particles, the cataractogenic potential of the 600 MeV/amu Fe-56 ions was greater than for low-Linear Energy Transfer (LET) radiation and increased with decreasing dose relative to gamma rays. Fractionation of a given dose of Fe-56 ions did not reduce the cataractogenicity of the radiation compared to the acute regimen. Fragmentation of the beam in the polyethylene did not alter the cataractotoxicity of the ions, either when administered singly or in fractions.

  8. Estimated dose rates to members of the public from external exposure to patients with 131I thyroid treatment

    DOE PAGES

    Dewji, S.; Bellamy, M.; Hertel, N.; ...

    2015-03-25

    specific activities of 131I in the thyroid, bladder, and combined remaining tissues were calculated as a function of time after administration. Exposures to members of the public were considered for 131I patients with normal thyroid uptake (peak thyroid uptake of ~27% of administered 131I), differentiated thyroid cancer (DTC, 5% uptake), and hyperthyroidism (80% uptake). Results: The scenario with the patient seated behind the member of the public yielded the highest dose rate estimate of seated public transportation exposure cases. The dose rate to the adjacent room guest was highest for the exposure scenario in which the hotel guest and patient are seated by a factor of ~4 for the normal and differentiated thyroid cancer uptake cases and by a factor of ~3 for the hyperthyroid case. Conclusions: It was determined that for all modeled cases, the DTC case yielded the lowest external dose rates, whereas the hyperthyroid case yielded the highest dose rates. In estimating external dose to members of the public from patients with 131I therapy, consideration must be given to (patient- and case-specific) administered 131I activities and duration of exposure for a more complete estimate. The method implemented here included a detailed calculation model, which provides a means to determine dose rate estimates for a range of scenarios. Finally, the method was demonstrated for variations of three scenarios, showing how dose rates are expected to vary with uptake, voiding pattern, and patient location.« less

  9. Estimated dose rates to members of the public from external exposure to patients with {sup 131}I thyroid treatment

    SciTech Connect

    Dewji, S. Bellamy, M.; Leggett, R.; Eckerman, K.; Hertel, N.; Sherbini, S.; Saba, M.

    2015-04-15

    specific activities of {sup 131}I in the thyroid, bladder, and combined remaining tissues were calculated as a function of time after administration. Exposures to members of the public were considered for {sup 131}I patients with normal thyroid uptake (peak thyroid uptake of ∼27% of administered {sup 131}I), differentiated thyroid cancer (DTC, 5% uptake), and hyperthyroidism (80% uptake). Results: The scenario with the patient seated behind the member of the public yielded the highest dose rate estimate of seated public transportation exposure cases. The dose rate to the adjacent room guest was highest for the exposure scenario in which the hotel guest and patient are seated by a factor of ∼4 for the normal and differentiated thyroid cancer uptake cases and by a factor of ∼3 for the hyperthyroid case. Conclusions: It was determined that for all modeled cases, the DTC case yielded the lowest external dose rates, whereas the hyperthyroid case yielded the highest dose rates. In estimating external dose to members of the public from patients with {sup 131}I therapy, consideration must be given to (patient- and case-specific) administered {sup 131}I activities and duration of exposure for a more complete estimate. The method implemented here included a detailed calculation model, which provides a means to determine dose rate estimates for a range of scenarios. The method was demonstrated for variations of three scenarios, showing how dose rates are expected to vary with uptake, voiding pattern, and patient location.

  10. Rates of Change in Naturalistic Psychotherapy: Contrasting Dose-Effect and Good-Enough Level Models of Change

    ERIC Educational Resources Information Center

    Baldwin, Scott A.; Berkeljon, Arjan; Atkins, David C.; Olsen, Joseph A.; Nielsen, Stevan L.

    2009-01-01

    Most research on the dose-effect model of change has combined data across patients who vary in their total dose of treatment and has implicitly assumed that the rate of change during therapy is constant across doses. In contrast, the good-enough level model predicts that rate of change will be related to total dose of therapy. In this study, the…

  11. Dose-rate effects on the radiation-induced oxidation of electric cable used in nuclear power plants

    NASA Astrophysics Data System (ADS)

    Reynolds, A. B.; Bell, R. M.; Bryson, N. M. N.; Doyle, T. E.; Hall, M. B.; Mason, L. R.; Quintric, L.; Terwilliger, P. L.

    1995-01-01

    Dose-rate effects were measured for typical ethylene propylene rubber (EPR) and crosslinked polyethylene (XLPE) electric cable used in nuclear power plants. The radiation source was the 60Co Irradiation Facility at the University of Virginia. Dose rates were varied from 5 Gy/h to 2500 Gy/h. It was found that there is little or no dose-rate effect at low doses for four of the five EPR cable products tested from 2500 Gy/h down to dose rates of 5 Gy/h but perhaps a small dose-rate effect at high doses for dose rates above 340 Gy/h. A small dose-rate exists for the fifth EPR above 340 Gy/h at all doses. A dose-rate effect exists above 40 Gy/h for two of the three XLPE cable products tested, but there is no dose-rate for these XLPE's between 40 Gy/h and 5 Gy/h. These results indicate that the dose-rate effects observed are due to oxygen diffusion effects during heterogeneous aging and suggest that there is no dose-rate effect for either EPR or XLPE during homogeneous aging.

  12. The efficacy of multiple-dose methotrexate treatment for unruptured tubal ectopic pregnancy and conversion rate to surgery: a study on 294 cases.

    PubMed

    Balci, Osman; Ozdemir, Suna; Mahmoud, Alaa S; Acar, Ali; Colakoglu, Mehmet C

    2010-05-01

    In this prospective study 294 patients diagnosed with ectopic pregnancy (EP) were treated with multiple-dose methotrexate (MTX) to determine the conversion rate to surgery. We concluded that multiple-dose MTX treatment had a low success rate, and the success rate was not related to initial b-hCG value; it was more related to the size of gestational mass before treatment.

  13. A review of the clinical experience in pulsed dose rate brachytherapy

    PubMed Central

    Balgobind, Brian V; Koedooder, Kees; Ordoñez Zúñiga, Diego; Dávila Fajardo, Raquel; Rasch, Coen R N

    2015-01-01

    Pulsed dose rate (PDR) brachytherapy is a treatment modality that combines physical advantages of high dose rate (HDR) brachytherapy with the radiobiological advantages of low dose rate brachytherapy. The aim of this review was to describe the effective clinical use of PDR brachytherapy worldwide in different tumour locations. We found 66 articles reporting on clinical PDR brachytherapy including the treatment procedure and outcome. Moreover, PDR brachytherapy has been applied in almost all tumour sites for which brachytherapy is indicated and with good local control and low toxicity. The main advantage of PDR is, because of the small pulse sizes used, the ability to spare normal tissue. In certain cases, HDR resembles PDR brachytherapy by the use of multifractionated low-fraction dose. PMID:26290399

  14. Dose rate dependency of electronic personal dosemeters measuring X- and gamma-ray radiation.

    PubMed

    McCaffrey, J P; Shen, H; Downton, B

    2008-01-01

    Three models of electronic personal dosemeters (EPDs)-Siemens Mk 2.3, Rados RAD-60S and Vertec Bleeper Sv-were irradiated with seven photon beam qualities: 60Co, 137Cs and the ISO narrow spectrum series X-ray qualities N-250, N-200, N-150, N-60 and N-20. The personal dose equivalent rates delivered to the devices varied between 0.002 and 0.25 mSv s(-1). Measurements were made with the EPDs mounted free-in-air as well as against Lucite and water phantoms. Results for all models of EPDs showed differences in personal dose equivalent energy response for different energies covered by this range of radiation qualities, with different models showing variations from 15 to 65%. In some cases, the personal dose equivalent rate response of these devices varied by a factor of 3 between irradiations at typical calibration dose rates and those normally encountered by nuclear energy workers.

  15. A review of the clinical experience in pulsed dose rate brachytherapy.

    PubMed

    Balgobind, Brian V; Koedooder, Kees; Ordoñez Zúñiga, Diego; Dávila Fajardo, Raquel; Rasch, Coen R N; Pieters, Bradley R

    2015-01-01

    Pulsed dose rate (PDR) brachytherapy is a treatment modality that combines physical advantages of high dose rate (HDR) brachytherapy with the radiobiological advantages of low dose rate brachytherapy. The aim of this review was to describe the effective clinical use of PDR brachytherapy worldwide in different tumour locations. We found 66 articles reporting on clinical PDR brachytherapy including the treatment procedure and outcome. Moreover, PDR brachytherapy has been applied in almost all tumour sites for which brachytherapy is indicated and with good local control and low toxicity. The main advantage of PDR is, because of the small pulse sizes used, the ability to spare normal tissue. In certain cases, HDR resembles PDR brachytherapy by the use of multifractionated low-fraction dose.

  16. Hit rates and radiation doses to nuclei of bone lining cells from alpha-particle-emitting radionuclides

    NASA Technical Reports Server (NTRS)

    Polig, E.; Jee, W. S.; Kruglikov, I. L.

    1992-01-01

    Factors relating the local concentration of a bone-seeking alpha-particle emitter to the mean hit rate have been determined for nuclei of bone lining cells using a Monte Carlo procedure. Cell nuclei were approximated by oblate spheroids with dimensions and location taken from a previous histomorphometric study. The Monte Carlo simulation is applicable for planar and diffuse labels at plane or cylindrical bone surfaces. Additionally, the mean nuclear dose per hit, the dose mean per hit, the mean track segment length and its second moment, the percentage of stoppers, and the frequency distribution of the dose have been determined. Some basic features of the hit statistics for bone lining cells have been outlined, and the consequences of existing standards of radiation protection with regard to the hit frequency to cell nuclei are discussed.

  17. Effect of Radiocesium Transfer on Ambient Dose Rate in Forest Environment

    NASA Astrophysics Data System (ADS)

    Kato, Hiroaki; Onda, Yuichi; Loffredo, Nicolas; Hisadome, Keigo; Kawamori, Ayumi

    2014-05-01

    We investigated the transfer of canopy-intercepted radiocesium to the forest floor following the Fukushima Daiichi nuclear power plant accident. The cesium-137 (Cs-137) contents of throughfall, stemflow, and litterfall were monitored in two coniferous stands (plantation of Japanese cedar) and a deciduous broad-leaved forest stand (beech with red pine). We also measured an ambient dose rate at different height in the forest by using a survey meter (TCS-172B, Hitachi-Aloka Medical, LTD.) and a portable Ge gamma-ray detector (Detective-DX-100T, Ortec, Ametek, Inc.). In decreasing order of total Cs-137 deposition from the canopy to forest floor were the mature cedar stand, the young cedar stand, and the broad-leaved forest. The ambient dose rate in forest exhibited height dependency and its vertical distribution varied by forest type and stand age. The ambient dose rate showed an exponential decrease with time for all the forest sites, however the decreasing trend differed depending on the height of dose measurement and forest type. The ambient dose rates at the canopy (approx. 10 m-) decreased earlier than physical attenuation of radiocesium, whereas those at the forest floor varied among three forest stands. These data suggested that an ambient dose rate in forest environment can be variable in spatially and temporally reflecting the transfer of radiocesium from canopy to forest floor.

  18. A coupled deterministic/stochastic method for computing neutron capture therapy dose rates

    NASA Astrophysics Data System (ADS)

    Hubbard, Thomas Richard

    new method was validated by comparing results to experimental measurements and benchmark data in a series of test cases chosen to demonstrate the strengths and weaknesses of the method. Experimental cases included the SAINT gold foil irradiations at the UVAR and detailed phantom dosimetry measurements at the Brookhaven Medical Research Reactor (BMRR). Results of the validation studies showed that the method provides values that are, in most cases, within one fractional standard deviation (FSD) of accepted experimental and benchmark values. A sample brain tumor treatment case was modeled for the conceptual UVAR NCT facility in order to determine the effect of body orientation, size, position, and shielding on the neutron dose rate at a variety of body parts. Ssb{n} "ray effects" were apparent and caused inaccuracies toward the back of the coupling surface; these can be avoided. The method provides treatment planners the ability to calculate dose rates throughout a patient's body and in the treatment room for various treatment configurations in order to minimize the dose to healthy tissue. The thermal neutrons provide the major contribution to neutron dose, but their effect can be minimized by applying localized shielding and by orienting the patient in order to maximize self-shielding. The method may also be used for facility design studies, and such studies of the UVAR have confirmed its suitability as an NCT facility.

  19. Dose rate effects in the radiation damage of the plastic scintillators of the CMS hadron endcap calorimeter

    DOE PAGES

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; ...

    2016-10-07

    We present measurements of the reduction of light output by plastic scintillators irradiated in the CMS detector during the 8 TeV run of the Large Hadron Collider and show that they indicate a strong dose rate effect. The damage for a given dose is larger for lower dose rate exposures. The results agree with previous measurements of dose rate effects, but are stronger due to the very low dose rates probed. Here, we show that the scaling with dose rate is consistent with that expected from diffusion effects.

  20. Dose rate effects in the radiation damage of the plastic scintillators of the CMS hadron endcap calorimeter

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Litomin, A.; Mossolov, V.; Shumeiko, N.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Spilbeeck, A.; Alves, G. A.; Aldá Júnior, W. L.; Hensel, C.; Carvalho, W.; Chinellato, J.; De Oliveira Martins, C.; Matos Figueiredo, D.; Mora Herrera, C.; Nogima, H.; Prado Da Silva, W. L.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Finger, M.; Finger, M., Jr.; Jain, S.; Khurana, R.; Adamov, G.; Tsamalaidze, Z.; Behrens, U.; Borras, K.; Campbell, A.; Costanza, F.; Gunnellini, P.; Lobanov, A.; Melzer-Pellmann, I.-A.; Muhl, C.; Roland, B.; Sahin, M.; Saxena, P.; Hegde, V.; Kothekar, K.; Pandey, S.; Sharma, S.; Beri, S. B.; Bhawandeep, B.; Chawla, R.; Kalsi, A.; Kaur, A.; Kaur, M.; Walia, G.; Bhattacharya, S.; Ghosh, S.; Nandan, S.; Purohit, A.; Sharan, M.; Banerjee, S.; Bhattacharya, S.; Bhowmik, S.; Chatterjee, S.; Das, P.; Dewanjee, R. K.; Jain, S.; Kumar, S.; Maity, M.; Majumder, G.; Mandakini, P.; Patil, M.; Sarkar, T.; Saikh, A.; Sezen, S.; Juodagalvis, A.; Afanasiev, S.; Bunin, P.; Ershov, Y.; Golutvin, I.; Malakhov, A.; Moisenz, P.; Smirnov, V.; Zarubin, A.; Chadeeva, M.; Chistov, R.; Danilov, M.; Popova, E.; Rusinov, V.; Andreev, Yu.; Dermenev, A.; Karneyeu, A.; Krasnikov, N.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Toms, M.; Zhokin, A.; Flacher, H.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Kaminskiy, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Terkulov, A.; Bitioukov, S.; Elumakhov, D.; Kalinin, A.; Krychkine, V.; Mandrik, P.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Volkov, A.; Adiguzel, A.; Bakirci, N.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Isildak, B.; Karapinar, G.; Murat Guler, A.; Ocalan, K.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cankocak, K.; Sen, S.; Boyarintsev, A.; Grynyov, B.; Levchuk, L.; Popov, V.; Sorokin, P.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Gastler, D.; Hazen, E.; Rohlf, J.; Sulak, L.; Wu, S.; Zou, D.; Hakala, J.; Heintz, U.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Mao, Z.; Gary, J. W.; Ghiasi Shirazi, S. M.; Lacroix, F.; Long, O. R.; Wei, H.; Bhandari, R.; Heller, R.; Stuart, D.; Yoo, J. H.; Apresyan, A.; Chen, Y.; Duarte, J.; Spiropulu, M.; Winn, D.; Abdullin, S.; Banerjee, S.; Chlebana, F.; Freeman, J.; Green, D.; Hare, D.; Hirschauer, J.; Joshi, U.; Lincoln, D.; Los, S.; Pedro, K.; Spalding, W. J.; Strobbe, N.; Tkaczyk, S.; Whitbeck, A.; Linn, S.; Markowitz, P.; Martinez, G.; Bertoldi, M.; Hagopian, S.; Hagopian, V.; Kolberg, T.; Baarmand, M. M.; Noonan, D.; Roy, T.; Yumiceva, F.; Bilki, B.; Clarida, W.; Debbins, P.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Miller, M.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Schmidt, I.; Snyder, C.; Southwick, D.; Tiras, E.; Yi, K.; Al-bataineh, A.; Bowen, J.; Castle, J.; McBrayer, W.; Murray, M.; Wang, Q.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Baden, A.; Belloni, A.; Eno, S. C.; Ferraioli, C.; Grassi, T.; Hadley, N. J.; Jeng, G.-Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Yang, Z. S.; Apyan, A.; Bierwagen, K.; Brandt, S.; Klute, M.; Niu, X.; Chatterjee, R. M.; Evans, A.; Frahm, E.; Kubota, Y.; Lesko, Z.; Mans, J.; Ruckstuhl, N.; Heering, A.; Karmgard, D. J.; Musienko, Y.; Ruchti, R.; Wayne, M.; Benaglia, A. D.; Medvedeva, T.; Mei, K.; Tully, C.; Bodek, A.; de Barbaro, P.; Galanti, M.; Garcia-Bellido, A.; Khukhunaishvili, A.; Lo, K. H.; Vishnevskiy, D.; Zielinski, M.; Agapitos, A.; Chou, J. P.; Hughes, E.; Saka, H.; Sheffield, D.; Akchurin, N.; Damgov, J.; De Guio, F.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Goadhouse, S.; Hirosky, R.; Wang, Y.; CMS-HCAL Collaboration

    2016-10-01

    We present measurements of the reduction of light output by plastic scintillators irradiated in the CMS detector during the 8 TeV run of the Large Hadron Collider and show that they indicate a strong dose rate effect. The damage for a given dose is larger for lower dose rate exposures. The results agree with previous measurements of dose rate effects, but are stronger due to the very low dose rates probed. We show that the scaling with dose rate is consistent with that expected from diffusion effects.

  1. Multi-Level Effects of Low Dose Rate Ionizing Radiation on Southern Toad, Anaxyrus [Bufo] terrestris

    PubMed Central

    Stark, Karolina; Scott, David E.; Tsyusko, Olga; Coughlin, Daniel P.; Hinton, Thomas G.

    2015-01-01

    Despite their potential vulnerability to contaminants from exposure at multiple life stages, amphibians are one of the least studied groups of vertebrates in ecotoxicology, and research on radiation effects in amphibians is scarce. We used multiple endpoints to assess the radiosensitivity of the southern toad (Anaxyrus [Bufo] terrestris) during its pre-terrestrial stages of development –embryonic, larval, and metamorphic. Toads were exposed, from several hours after oviposition through metamorphosis (up to 77 days later), to four low dose rates of 137Cs at 0.13, 2.4, 21, and 222 mGy d-1, resulting in total doses up to 15.8 Gy. Radiation treatments did not affect hatching success of embryos, larval survival, or the length of the larval period. The individual family variation in hatching success of embryos was larger than the radiation response. In contrast, newly metamorphosed individuals from the higher dose-rate treatments had higher mass and mass/length body indices, a measure which may relate to higher post-metamorphic survival. The increased mass and index at higher dose rates may indicate that the chronic, low dose rate radiation exposures triggered secondary responses. Additionally, the increases in growth were linked to a decrease in DNA damage (as measured by the Comet Assay) in red blood cells at a dose rate of 21 mGy d-1 and a total dose of 1.1 Gy. In conclusion, the complex effects of low dose rates of ionizing radiation may trigger growth and cellular repair mechanisms in amphibian larvae. PMID:25927361

  2. Multi-Level Effects of Low Dose Rate Ionizing Radiation on Southern Toad, Anaxyrus [Bufo] terrestris.

    PubMed

    Stark, Karolina; Scott, David E; Tsyusko, Olga; Coughlin, Daniel P; Hinton, Thomas G

    2015-01-01

    Despite their potential vulnerability to contaminants from exposure at multiple life stages, amphibians are one of the least studied groups of vertebrates in ecotoxicology, and research on radiation effects in amphibians is scarce. We used multiple endpoints to assess the radiosensitivity of the southern toad (Anaxyrus [Bufo] terrestris) during its pre-terrestrial stages of development -embryonic, larval, and metamorphic. Toads were exposed, from several hours after oviposition through metamorphosis (up to 77 days later), to four low dose rates of 137Cs at 0.13, 2.4, 21, and 222 mGy d-1, resulting in total doses up to 15.8 Gy. Radiation treatments did not affect hatching success of embryos, larval survival, or the length of the larval period. The individual family variation in hatching success of embryos was larger than the radiation response. In contrast, newly metamorphosed individuals from the higher dose-rate treatments had higher mass and mass/length body indices, a measure which may relate to higher post-metamorphic survival. The increased mass and index at higher dose rates may indicate that the chronic, low dose rate radiation exposures triggered secondary responses. Additionally, the increases in growth were linked to a decrease in DNA damage (as measured by the Comet Assay) in red blood cells at a dose rate of 21 mGy d-1 and a total dose of 1.1 Gy. In conclusion, the complex effects of low dose rates of ionizing radiation may trigger growth and cellular repair mechanisms in amphibian larvae.

  3. Multi-level effects of low dose rate ionizing radiation on southern toad, Anaxyrus [Bufo] terrestris

    DOE PAGES

    Stark, Karolina; Scott, David E.; Tsyusko, Olga; ...

    2015-04-30

    Despite their potential vulnerability to contaminants from exposure at multiple life stages, amphibians are one of the least studied groups of vertebrates in ecotoxicology, and research on radiation effects in amphibians is scarce. We used multiple endpoints to assess the radiosensitivity of the southern toad (Anaxyrus [Bufo] terrestris) during its pre-terrestrial stages of development –embryonic, larval, and metamorphic. Toads were exposed, from several hours after oviposition through metamorphosis (up to 77 days later), to four low dose rates of ¹³⁷Cs at 0.13, 2.4, 21, and 222 mGy d⁻¹, resulting in total doses up to 15.8 Gy. Radiation treatments did notmore » affect hatching success of embryos, larval survival, or the length of the larval period. The individual family variation in hatching success of embryos was larger than the radiation response. In contrast, newly metamorphosed individuals from the higher dose-rate treatments had higher mass and mass/length body indices, a measure which may relate to higher post-metamorphic survival. The increased mass and index at higher dose rates may indicate that the chronic, low dose rate radiation exposures triggered secondary responses. Additionally, the increases in growth were linked to a decrease in DNA damage (as measured by the Comet Assay) in red blood cells at a dose rate of 21mGy d⁻¹ and a total dose of 1.1 Gy. In conclusion, the complex effects of low dose rates of ionizing radiation may trigger growth and cellular repair mechanisms in amphibian larvae.« less

  4. Determining organ doses from computed tomography scanners using cadaveric subjects

    NASA Astrophysics Data System (ADS)

    Griglock, Thomas M.

    The use of computed tomographic (CT) imaging has increased greatly since its inception in 1972. Technological advances have increased both the applicability of CT exams for common health problems as well as the radiation doses used to perform these exams. The increased radiation exposures have garnered much attention in the media and government agencies, and have brought about numerous attempts to quantify the amount of radiation received by patients. While the overwhelming majority of these attempts have focused on creating models of the human body (physical or computational), this research project sought to directly measure the radiation inside an actual human being. Three female cadaveric subjects of varying sizes were used to represent live patients. Optically-stimulated luminescent (OSL) dosimeters were used to measure the radiation doses. A dosimeter placement system was developed, tested, and optimized to allow accurate and reproducible placement of the dosimeters within the cadaveric subjects. A broad-beam, 320-slice, volumetric CT scanner was utilized to perform all CT exams, including five torso exams, four cardiac exams, and three organ perfusion exams. Organ doses ranged in magnitude from less than 1 to over 120 mGy, with the largest doses measured for perfusion imaging. A methodology has been developed that allows fast and accurate measurement of actual organ doses resulting from CT exams. The measurements made with this methodology represent the first time CT organ doses have been directly measured within a human body. These measurements are of great importance because they allow comparison to the doses measured using previous methods, and can be used to more accurately assess the risks from CT imaging.

  5. Peach Bottom Atomic Power Station recirc pipe dose rates with zinc injection and condenser replacement

    SciTech Connect

    DiCello, D.C.; Odell, A.D.; Jackson, T.J.

    1995-03-01

    Peach Bottom Atomic Power Station (PBAPS) is located near the town of Delta, Pennsylvania, on the west bank of the Susquehanna River. It is situated approximately 20 miles south of Lancaster, Pennsylvania. The site contains two boiling water reactors of General Electric design and each rated at 3,293 megawatts thermal. The units are BWR 4s and went commercial in 1977. There is also a decommissioned high temperature gas-cooled reactor on site, Unit 1. PBAPS Unit 2 recirc pipe was replaced in 1985 and Unit 3 recirc pipes replaced in 1988 with 326 NGSS. The Unit 2 replacement pipe was electropolished, and the Unit 3 pipe was electropolished and passivated. The Unit 2 brass condenser was replaced with a Titanium condenser in the first quarter of 1991, and the Unit 3 condenser was replaced in the fourth quarter of 1991. The admiralty brass condensers were the source of natural zinc in both units. Zinc injection was initiated in Unit 2 in May 1991, and in Unit 3 in May 1992. Contact dose rate measurements were made in standard locations on the 28-inch recirc suction and discharge lines to determine the effectiveness of zinc injection and to monitor radiation build-up in the pipe. Additionally, HPGe gamma scans were performed to determine the isotopic composition of the oxide layer inside the pipe. In particular, the specific ({mu}Ci/cm{sup 2}) of Co-60 and Zn-65 were analyzed.

  6. Effects of operationally effective doses of dextroamphetamine on heart rates and blood pressures of army aviators.

    PubMed

    Caldwell, J A

    1996-11-01

    The cardiovascular effects of 30 mg of dextroamphetamine, given in divided 10-mg doses at midnight, 4 a.m., and 8 a.m. during a sustained-operations scenario, were explored. Blood pressures and heart rates of male and female UH-60 pilots were measured during two periods of continuous wakefulness in which subjects received dextroamphetamine and placebo. Persistent elevations in heart rates were observed from 2 hours after the second 10-mg dose of dextroamphetamine until the end of the day. Systolic blood pressures of males were elevated from 1 hour after the first 10-mg dose until 5 hours after the third 10-mg dose. Systolic blood pressures of females increased 1 hour after the third 10-mg dose of dextroamphetamine and remained high until 6 hours after the third 10-mg dose. Diastolic blood pressures in both genders showed a persistent elevation from 2 hours past the second 10-mg dose until 6 hours after the third 10-mg dose. These changes did not result in any clinically detectable adverse sequelae.

  7. Robustness of IPSA optimized high-dose-rate prostate brachytherapy treatment plans to catheter displacements

    PubMed Central

    Whitaker, May

    2016-01-01

    Purpose Inverse planning simulated annealing (IPSA) optimized brachytherapy treatment plans are characterized with large isolated dwell times at the first or last dwell position of each catheter. The potential of catheter shifts relative to the target and organs at risk in these plans may lead to a more significant change in delivered dose to the volumes of interest relative to plans with more uniform dwell times. Material and methods This study aims to determine if the Nucletron Oncentra dwell time deviation constraint (DTDC) parameter can be optimized to improve the robustness of high-dose-rate (HDR) prostate brachytherapy plans to catheter displacements. A set of 10 clinically acceptable prostate plans were re-optimized with a DTDC parameter of 0 and 0.4. For each plan, catheter displacements of 3, 7, and 14 mm were retrospectively applied and the change in dose volume histogram (DVH) indices and conformity indices analyzed. Results The robustness of clinically acceptable prostate plans to catheter displacements in the caudal direction was found to be dependent on the DTDC parameter. A DTDC value of 0 improves the robustness of planning target volume (PTV) coverage to catheter displacements, whereas a DTDC value of 0.4 improves the robustness of the plans to changes in hotspots. Conclusions The results indicate that if used in conjunction with a pre-treatment catheter displacement correction protocol and a tolerance of 3 mm, a DTDC value of 0.4 may produce clinically superior plans. However, the effect of the DTDC parameter in plan robustness was not observed to be as strong as initially suspected. PMID:27504129

  8. Early effects comparison of X-rays delivered at high-dose-rate pulses by a plasma focus device and at low dose rate on human tumour cells.

    PubMed

    Virelli, A; Zironi, I; Pasi, F; Ceccolini, E; Nano, R; Facoetti, A; Gavoçi, E; Fiore, M R; Rocchi, F; Mostacci, D; Cucchi, G; Castellani, G; Sumini, M; Orecchia, R

    2015-09-01

    A comparative study has been performed on the effects of high-dose-rate (DR) X-ray beams produced by a plasma focus device (PFMA-3), to exploit its potential medical applications (e.g. radiotherapy), and low-DR X-ray beams produced by a conventional source (XRT). Experiments have been performed at 0.5 and 2 Gy doses on a human glioblastoma cell line (T98G). Cell proliferation rate and potassium outward currents (IK) have been investigated by time lapse imaging and patch clamp recordings. The results showed that PFMA-3 irradiation has a greater capability to reduce the proliferation rate activity with respect to XRT, while it does not affect IK of T98G cells at any of the dose levels tested. XRT irradiation significantly reduces the mean IK amplitude of T98G cells only at 0.5 Gy. This work confirms that the DR, and therefore the source of radiation, is crucial for the planning and optimisation of radiotherapy applications.

  9. Effect of radiation dose-rate on hematopoietic cell engraftment in adult zebrafish.

    PubMed

    Glass, Tiffany J; Hui, Susanta K; Blazar, Bruce R; Lund, Troy C

    2013-01-01

    Although exceptionally high radiation dose-rates are currently attaining clinical feasibility, there have been relatively few studies reporting the biological consequences of these dose-rates in hematopoietic cell transplant (HCT). In zebrafish models of HCT, preconditioning before transplant is typically achieved through radiation alone. We report the comparison of outcomes in adult zebrafish irradiated with 20 Gy at either 25 or 800 cGy/min in the context of experimental HCT. In non-transplanted irradiated fish we observed no substantial differences between dose-rate groups as assessed by fish mortality, cell death in the kidney, endogenous hematopoietic reconstitution, or gene expression levels of p53 and ddb2 (damage-specific DNA binding protein 2) in the kidney. However, following HCT, recipients conditioned with the higher dose rate showed significantly improved donor-derived engraftment at 9 days post transplant (p ≤ 0.0001), and improved engraftment persisted at 31 days post transplant. Analysis for sdf-1a expression, as well as transplant of hematopoietic cells from cxcr4b -/- zebrafish, (odysseus), cumulatively suggest that the sdf-1a/cxcr4b axis is not required of donor-derived cells for the observed dose-rate effect on engraftment. Overall, the adult zebrafish model of HCT indicates that exceptionally high radiation dose-rates can impact HCT outcome, and offers a new system for radiobiological and mechanistic interrogation of this phenomenon. Key words: Radiation dose rate, Total Marrow Irradiation (TMI), Total body irradiation (TBI), SDF-1, Zebrafish, hematopoietic cell transplant.

  10. A two-dose-rate method for general recombination correction for liquid ionization chambers in pulsed beams

    NASA Astrophysics Data System (ADS)

    Tölli, Heikki; Sjögren, Rickard; Wendelsten, Mikael

    2010-08-01

    The correction for general recombination losses in liquid ionization chambers (LICs) is more complex than that in air-filled ionization chambers. The reason for this is that the saturation charge in LICs, i.e. the charge that escapes initial recombination, depends on the applied voltage. This paper presents a method, based on measurements at two different dose rates in a pulsed beam, for general recombination correction in LICs. The Boag theory for pulsed beams is used and the collection efficiency is determined by numerical methods which are equivalent to the two-voltage method used in dosimetry with air-filled ionization chambers. The method has been tested in experiments in water in a 20 MeV electron beam using two LICs filled with isooctane and tetramethylsilane. The dose per pulse in the electron beam was varied between 0.1 mGy/pulse and 8 mGy/pulse. The relative standard deviations of the collection efficiencies determined with the two-dose-rate method ranged between 0.1% and 1.5%. The dose-rate variations of the general recombination corrected charge measured with the LICs are in excellent agreement with the corresponding values obtained with an air-filled plane parallel ionization chamber.

  11. Determination of surface dose and the effect of bolus to surface dose in electron beams

    SciTech Connect

    Guenhan, Basri; Kemikler, Goenuel; Koca, Ayse

    2003-09-30

    When treating tumors from surface to a certain depth (< 5 cm), electron beams are preferred in radiotherapy. To increase the surface doses of lower electron beams, tissue-equivalent bolus materials are often used. We observed that the surface doses increased with increasing field sizes and electron energies. At the same time, we also observed that all electron parameters were shifted toward the skin as much as the thickness of the bolus used. The effect of bolus to the surface doses was more significant at low electron energies than at higher electron energies. Rando phantom measurements at 6-, 7.5-, and 9-MeV were slightly lower than the solid phantom measurements, which could only be explained by the inverse square law effect and the Rando phantom contour irregularity.

  12. Continuous gamma-irradiation of rats: dose-rate effect on loss and recovery of spermatogenesis.

    PubMed

    Pinon-Lataillade, G; Maas, J

    1985-07-01

    Male Sprague Dawley rats were continuously irradiated at a dose-rate of either 5 or 7 cGy/day, up to a total dose of 900 cGy. Changes in spermatogenesis with irradiation and the recovery of the testis during 33 weeks after irradiation were studied. No clear dose-rate effect with testicular weight occurred. During the irradiation time, increased dose and dose-rate induced a decrease in A spermatogonia and preleptotene spermatocyte number. In our experimental conditions germ cell production did not plateau, as shown by the increasing number of tubular cross sections devoid of germ cells beyond 500 cGy. The recovery of seminiferous epithelium occurred essentially within nine weeks. It was not dose-rate dependent and was still incomplete after 33 weeks. This lack of recovery might be due to limited compensatory division ability of the stem cells. Clusters of Sertoli cells were observed in the lumen of the seminiferous tubules; impaired function of these cells could also prevent the complete recovery of the seminiferous epithelium. By 16 weeks after the end of irradiation 67% of 5 cGy/day irradiated rats and 34% of 7 cGy/day irradiated rats recovered fertility.

  13. Megavoltage computed tomography image-based low-dose rate intracavitary brachytherapy planning for cervical carcinoma.

    PubMed

    Wagner, Thomas H; Langen, Katja M; Meeks, Sanford L; Willoughby, Twyla R; Zeidan, Omar A; Staton, Robert J; Shah, Amish P; Manon, Rafael R; Kupelian, Patrick A

    2009-04-01

    Initial results of megavoltage computed tomography (MVCT) brachytherapy treatment planning are presented, using a commercially available helical tomotherapy treatment unit and standard low dose rate (LDR) brachytherapy applicators used for treatment of cervical carcinoma. The accuracy of MVCT imaging techniques, and dosimetric accuracy of the CT based plans were tested with in-house and commercially-available phantoms. Three dimensional (3D) dose distributions were computed and compared to the two dimensional (2D) dosimetry results. Minimal doses received by the 2 cm3 of bladder and rectum receiving the highest doses (D(B2cc) and D(R2cc), respectively) were computed from dose-volume histograms and compared to the doses computed for the standard ICRU bladder and rectal reference dose points. Phantom test objects in MVCT image sets were localized with sub-millimetric accuracy, and the accuracy of the MVCT-based dose calculation was verified. Fifteen brachytherapy insertions were also analyzed. The ICRU rectal point dose did not differ significantly from D(R2cc) (p=0.749, mean difference was 24 cGy +/- 283 cGy). The ICRU bladder point dose was significantly lower than the D(B2cc) (p=0.024, mean difference was 291 cGy +/- 444 cGy). The median volumes of bladder and rectum receiving at least the corresponding ICRU reference point dose were 6.1 cm(3) and 2.0 cm(3), respectively. Our initial experience in using MVCT imaging for clinical LDR gynecological brachytherapy indicates that the MVCT images are of sufficient quality for use in 3D, MVCT-based dose planning.

  14. High-dose nimotuzumab improves the survival rate of esophageal cancer patients who underwent radiotherapy

    PubMed Central

    Wang, Chunyu; Fu, Xiaolong; Cai, Xuwei; Wu, Xianghua; Hu, Xichun; Fan, Min; Xiang, Jiaqing; Zhang, Yawei; Chen, Haiquan; Jiang, Guoliang; Zhao, Kuaile

    2016-01-01

    Nimotuzumab (h-R3) is a humanized monoclonal antibody that is safe to use against epidermal growth factor receptor (EGFR). However, the available information is insufficient about the dose effect of monoclonal antibody against epidermal growth factor receptor for the treatment of esophageal squamous cell carcinoma (ESCC). We retrospectively recruited 66 patients with ESCC who were treated with h-R3 and chemoradiotherapy/radiotherapy. Patients who received more than 1,200 mg of h-R3 were classified as the high-dose group, and the remaining patients were classified as the low-dose group. The endpoint for efficacy was the overall survival. Differences in survival between the groups were analyzed using the log-rank test. The Cox proportional hazards model was used in multivariate analysis to identify independent prognostic factors. The low-dose and high-dose groups comprised 55 and eleven patients, respectively. The median follow-up time in the final analysis was 46 months. The high-dose group showed no increased incidence of toxicities compared to the low-dose group. The 1-, 2-, and 5-year overall survival rates in the low-dose and high-dose groups were 66.9%, 50.0%, 31.5% and 90.0%, 80.0%, 66.7%, respectively (P=0.04). Multivariate analyses showed that the high-dose group had better survival than the low-dose group (hazard ratio 0.28, 95% confidence interval 0.09–0.94, P=0.039). Taken together, high-dose h-R3 showed limited toxicity and improved survival in patients with ESCC. PMID:26766917

  15. Determination of the cosmic-ray-induced neutron flux and ambient dose equivalent at flight altitude

    NASA Astrophysics Data System (ADS)

    Pazianotto, M. T.; Cortés-Giraldo, M. A.; Federico, C. A.; Gonçalez, O. L.; Quesada, J. M.; Carlson, B. V.

    2015-07-01

    There is interest in modeling the atmosphere in the South Atlantic Magnetic Anomaly in order to obtain information about the cosmic-ray induced neutron spectrum and angular distribution as functions of altitude. In this work we use the Monte Carlo codes MCNPX and Geant4 to determine the cosmic-ray-induced neutron flux in the atmosphere produced by the cosmic ray protons incident on the top of the atmosphere and to estimate the ambient dose equivalent rate as function of altitude. The results present a reasonable conformity to other codes (QARM and EXPACS) based on other parameterizations.

  16. Impact of the differential fluence distribution of brachytherapy sources on the spectroscopic dose-rate constant

    SciTech Connect

    Malin, Martha J.; Bartol, Laura J.; DeWerd, Larry A. E-mail: ladewerd@wisc.edu

    2015-05-15

    Purpose: To investigate why dose-rate constants for {sup 125}I and {sup 103}Pd seeds computed using the spectroscopic technique, Λ{sub spec}, differ from those computed with standard Monte Carlo (MC) techniques. A potential cause of these discrepancies is the spectroscopic technique’s use of approximations of the true fluence distribution leaving the source, φ{sub full}. In particular, the fluence distribution used in the spectroscopic technique, φ{sub spec}, approximates the spatial, angular, and energy distributions of φ{sub full}. This work quantified the extent to which each of these approximations affects the accuracy of Λ{sub spec}. Additionally, this study investigated how the simplified water-only model used in the spectroscopic technique impacts the accuracy of Λ{sub spec}. Methods: Dose-rate constants as described in the AAPM TG-43U1 report, Λ{sub full}, were computed with MC simulations using the full source geometry for each of 14 different {sup 125}I and 6 different {sup 103}Pd source models. In addition, the spectrum emitted along the perpendicular bisector of each source was simulated in vacuum using the full source model and used to compute Λ{sub spec}. Λ{sub spec} was compared to Λ{sub full} to verify the discrepancy reported by Rodriguez and Rogers. Using MC simulations, a phase space of the fluence leaving the encapsulation of each full source model was created. The spatial and angular distributions of φ{sub full} were extracted from the phase spaces and were qualitatively compared to those used by φ{sub spec}. Additionally, each phase space was modified to reflect one of the approximated distributions (spatial, angular, or energy) used by φ{sub spec}. The dose-rate constant resulting from using approximated distribution i, Λ{sub approx,i}, was computed using the modified phase space and compared to Λ{sub full}. For each source, this process was repeated for each approximation in order to determine which approximations used in

  17. RECOVERY OF A TRITIATED LANA SAMPLE FOR DOSE CONVERSION FACTOR DETERMINATION

    SciTech Connect

    Staack, G.

    2010-11-12

    The purpose of this work is to develop a technical basis for both estimating the dose of a worker exposed to respirable tritiated LaNi{sub 4.25}Al{sub 0.75} (LANA) and implementing hazard appropriate controls. Savannah River National Laboratory (SRNL) has agreed to provide Lovelace Respiratory Research Institute (LRRI) with a tritiated LANA sample. LRRI will determine the particle size distribution (PSD) as well as perform dissolution rate studies on the sample in serum ultrafiltrate (SUF), a simulated lung fluid. The rate of tritium release from the sample will be measured over a three month period. Tritium release rate information will be used to calculate a DCF for respirable tritiated LANA.

  18. Effects of trapped proton flux anisotropy on dose rates in low Earth orbit.

    PubMed

    Badhwar, G D; Kushin, V V; Akatov YuA; Myltseva, V A

    1999-06-01

    Trapped protons in the South Atlantic Anomaly (SAA) have a rather narrow pitch angle distribution and exhibit east-west anisotropy. In low Earth orbits, the E-W effect results in different amounts of radiation dose received by different sections of the spacecraft. This effect is best studied on missions in which the spacecraft flies in a fixed orientation. The magnitude of the effect depends on the particle energy and altitude through the SAA. In this paper, we describe a clear example of this effect from measurements of radiation dose rates and linear energy transfer spectra made on Space Shuttle flight STS-94 (28.5 degree inclination x 296 km altitude). The ratio of dose rates from the two directions at this location in the mid-deck was 2.7. As expected from model calculations, the spectra from the two directions are different, that is the ratio is energy dependent. The data can be used to distinguish the anisotropy models. The flight carried an active tissue equivalent proportional counter (TEPC), and passive thermoluminscent detectors (TLDs), and two types of nuclear emulsions. Using nuclear emulsions, charged particles and secondary neutron energy spectra were measured. The combined galactic cosmic radiation+trapped charged particle lineal energy spectra measured by the TEPC and the linear energy transfer spectrum measured by nuclear emulsions are in good agreement. The charged particle absorbed dose rates varied from 112 to 175 microGy/day, and dose equivalent rates from 264.3 to 413 microSv/day. Neutrons in the 1-10 MeV contributed a dose rate of 3.7 microGy/day and dose equivalent rate of 30.8 microSv/day, respectively.

  19. Spectrum-dose conversion operator of NaI(Tl) and CsI(Tl) scintillation detectors for air dose rate measurement in contaminated environments.

    PubMed

    Tsuda, Shuichi; Saito, Kimiaki

    2017-01-01

    Spectrum-dose conversion operators, the G(E) functions, for common NaI(Tl) scintillation survey meters and CsI(Tl) detectors are obtained for measurements in a semi-infinite plane of contaminated ground field by photon-emitting radionuclides (ground source). The calculated doses at a height of 100 cm from the ground in (137)Cs-contaminated environments by the Monte Carlo simulation technique are compared with those obtained using the G(E) functions by assuming idealized irradiation geometries such as anterior-posterior or isotropic. The simulation reveals that one could overestimate air dose rates in the environment by a maximum of 20-30% for NaI(Tl) detectors and 40-50% for CsI(Tl) detectors depending on photon energy when using the G(E) functions assuming idealized irradiation geometries for ground source measurements. Measurements obtained after the nuclear accident in Fukushima reveal that the doses calculated using a G(E) function for a unidirectional irradiation geometry are 1.17 times higher than those calculated using a G(E) function for the ground source in the case of a CsI(Tl) scintillation detector, which has a rectangular parallelepiped crystal (13 × 13 × 20 mm(3)). However, if a G(E) function is used assuming irradiation to a surface of the detector, the doses agree with those of the ground source within 2%. These results indicate that in contaminated environments, the commonly used scintillation-based detectors overestimate doses within the acceptable limit. In addition, the degree of overestimation depends on the irradiation direction of each detector assumed for developing the G(E) function. With regard to directional dependence of the detectors, reliable air dose rates in the environment can be obtained using the G(E) function determined in unidirectional irradiation geometry, provided that the irradiation surface of the crystal is determined properly.

  20. High-dose-rate intraluminal brachytherapy during preoperative chemoradiation for locally advanced rectal cancers

    PubMed Central

    Tunio, Mutahir Ali; Rafi, Mansoor; Hashmi, Altaf; Mohsin, Rehan; Qayyum, Abdul; Hasan, Mujahid; Sattar, Amjad; Mubarak, Muhammad

    2010-01-01

    AIM: To determine the feasibility and safety of high dose rate intraluminal brachytherapy (HDR-ILBT) boost during preoperative chemoradiation for rectal cancer. METHODS: Between 2008 and 2009, thirty-six patients with locally advanced rectal cancer (≥ T3 or N+), were treated initially with concurrent capecitabine (825 mg/m2 oral twice daily) and pelvic external beam radiotherapy (EBRT) (45 Gy in 25 fractions), then were randomized to group A; HDR-ILBT group (n = 17) to receive 5.5-7 Gy × 2 to gross tumor volume (GTV) and group B; EBRT group (n = 19) to receive 5.4 Gy × 3 fractions to GTV with EBRT. All patients underwent total mesorectal excision. RESULTS: Grade 3 acute toxicities were registered in 12 patients (70.6%) in group A and in 8 (42.1%) in group B. Complete pathologic response of T stage (ypT0) in group A was registered in 10 patients (58.8%) and in group B, 3 patients (15.8%) had ypT0 (P < 0.0001). Sphincter preservation was reported in 6/9 patients (66.7%) in group A and in 5/10 patients (50%) in group B (P < 0.01). Overall radiological response was 68.15% and 66.04% in Group A and B, respectively. During a median follow up of 18 mo, late grade 1 and 2 sequelae were registered in 3 patients (17.6%) and 4 patients (21.1%) in the groups A and B, respectively. CONCLUSION: HDR-ILBT was found to be effective dose escalation technique in preoperative chemoradiation for rectal cancers, with higher response rates, downstaging and with manageable acute toxicities. PMID:20845511

  1. Analysis of high-dose rate brachytherapy dose distribution resemblance in CyberKnife hypofractionated treatment plans of localized prostate cancer.

    PubMed

    Sudahar, H; Kurup, P G G; Murali, V; Mahadev, P; Velmurugan, J

    2013-01-01

    The present study is to analyze the CyberKnife hypofractionated dose distribution of localized prostate cancer in terms of high-dose rate (HDR) brachytherapy equivalent doses to assess the degree of HDR brachytherapy resemblance of CyberKnife dose distribution. Thirteen randomly selected localized prostate cancer cases treated using CyberKnife with a dose regimen of 36.25Gy in 5 fractions were considered. HDR equivalent doses were calculated for 30Gy in 3 fractions of HDR brachytherapy regimen. The D5% of the target in the CyberKnife hypofractionation was 41.57 ± 2.41Gy. The corresponding HDR fractionation (3 fractions) equivalent dose was 32.81 ± 1.86Gy. The mean HDR fractionation equivalent dose, D98%, was 27.93 ± 0.84Gy. The V100% of the prostate target was 95.57% ± 3.47%. The V100% of the bladder and the rectum were 717.16 and 79.6mm(3), respectively. Analysis of the HDR equivalent dose of CyberKnife dose distribution indicates a comparable resemblance to HDR dose distribution in the peripheral target doses (D98% to D80%) reported in the literature. However, there is a substantial difference observed in the core high-dose regions especially in D10% and D5%. The dose fall-off within the OAR is also superior in reported HDR dose distribution than the HDR equivalent doses of CyberKnife.

  2. Dose Rate Analysis Capability for Actual Spent Fuel Transportation Cask Contents

    SciTech Connect

    Radulescu, Georgeta; Lefebvre, Robert A; Peplow, Douglas E.; Williams, Mark L; Scaglione, John M

    2014-01-01

    The approved contents for a U.S. Nuclear Regulatory Commission (NRC) licensed spent nuclear fuel casks are typically based on bounding used nuclear fuel (UNF) characteristics. However, the contents of the UNF canisters currently in storage at independent spent fuel storage installations are considerably heterogeneous in terms of fuel assembly burnup, initial enrichment, decay time, cladding integrity, etc. Used Nuclear Fuel Storage, Transportation & Disposal Analysis Resource and Data System (UNF ST&DARDS) is an integrated data and analysis system that facilitates automated cask-specific safety analyses based on actual characteristics of the as-loaded UNF. The UNF-ST&DARDS analysis capabilities have been recently expanded to include dose rate analysis of as-loaded transportation packages. Realistic dose rate values based on actual canister contents may be used in place of bounding dose rate values to support development of repackaging operations procedures, evaluation of radiation-related transportation risks, and communication with stakeholders. This paper describes the UNF-ST&DARDS dose rate analysis methodology based on actual UNF canister contents and presents sample dose rate calculation results.

  3. Radiation bronchitis and stenosis secondary to high dose rate endobronchial irradiation

    SciTech Connect

    Speiser, B.L. ); Spratling, L.

    1993-03-15

    The purpose of the study was to describe a new clinical entity observed in follow-up bronchoscopies in patients who were treated with high dose rate and medium dose rate remote afterloading brachytherapy of the tracheobronchial tree. Patients were treated by protocol with medium dose rate, 47 patients receiving 1000 cGy at a 5 mm depth times three fractions, high dose rate 144 patients receiving 1000 cGy at a 10 mm depth for three fractions and high dose rate 151 patients receiving cGy at a 10 mm depth for three fractions followed by bronchoscopy. Incidence of this entity was 9% for the first group, 12% for the second, and 13% for the third group. Reactions were grade 1 consisting of mild inflammatory response with a partial whitish circumferential membrane in an asymptomatic patient; grade 2, thicker complete white circumferential membrane with cough and/or obstructive problems requiring intervention; grade 3, severe inflammatory response with marked membranous exudate and mild fibrotic reaction; and grade 4 a predominant fibrotic reaction with progressive stenosis. Variables associated with a slightly increased incidence of radiation bronchitis and stenosis included: large cell carcinoma histology, curative intent, prior laser photoresection, and/or concurrent external radiation. Survival was the strongest predictor of the reaction. Radiation bronchitis and stenosis is a new clinical entity that must be identified in bronchial brachytherapy patients and treated appropriately. 23 refs., 3 figs., 7 tabs.

  4. Safety Aspects of Pulsed Dose Rate Brachytherapy: Analysis of Errors in 1,300 Treatment Sessions

    SciTech Connect

    Koedooder, Kees Wieringen, Niek van; Grient, Hans N.B. van der; Herten, Yvonne R.J. van; Pieters, Bradley R.; Blank, Leo

    2008-03-01

    Purpose: To determine the safety of pulsed-dose-rate (PDR) brachytherapy by analyzing errors and technical failures during treatment. Methods and Materials: More than 1,300 patients underwent treatment with PDR brachytherapy, using five PDR remote afterloaders. Most patients were treated with consecutive pulse schemes, also outside regular office hours. Tumors were located in the breast, esophagus, prostate, bladder, gynecology, anus/rectum, orbit, head/neck, with a miscellaneous group of small numbers, such as the lip, nose, and bile duct. Errors and technical failures were analyzed for 1,300 treatment sessions, for which nearly 20,000 pulses were delivered. For each tumor localization, the number and type of occurring errors were determined, as were which localizations were more error prone than others. Results: By routinely using the built-in dummy check source, only 0.2% of all pulses showed an error during the phase of the pulse when the active source was outside the afterloader. Localizations treated using flexible catheters had greater error frequencies than those treated with straight needles or rigid applicators. Disturbed pulse frequencies were in the range of 0.6% for the anus/rectum on a classic version 1 afterloader to 14.9% for orbital tumors using a version 2 afterloader. Exceeding the planned overall treatment time by >10% was observed in only 1% of all treatments. Patients received their dose as originally planned in 98% of all treatments. Conclusions: According to the experience in our institute with 1,300 PDR treatments, we found that PDR is a safe brachytherapy treatment modality, both during and outside of office hours.

  5. Targeting MRS-Defined Dominant Intraprostatic Lesions with Inverse-Planned High Dose Rate Brachytherapy

    DTIC Science & Technology

    2010-06-01

    prostate and the protection to the urethra , rectum, and bladder for prostate cancer patients treated with High Dose Rate (HDR) brachytherapy. The multi...and the protection to the urethra , rectum and bladder for prostate cancer patients treated with HDR brachytherapy. BODY The feasibility...of the DIL without compromising the dose coverage of the prostate and the protection to the urethra , rectum, and bladder for prostate cancer patients

  6. Salvage high-dose-rate interstitial brachytherapy for locally recurrent rectal cancer*

    PubMed Central

    Pellizzon, Antônio Cássio Assis

    2016-01-01

    For tumors of the lower third of the rectum, the only safe surgical procedure is abdominal-perineal resection. High-dose-rate interstitial brachytherapy is a promising treatment for local recurrence of previously irradiated lower rectal cancer, due to the extremely high concentrated dose delivered to the tumor and the sparing of normal tissue, when compared with a course of external beam radiation therapy. PMID:27403021

  7. Current topics in the treatment of prostate cancer with low-dose-rate brachytherapy.

    PubMed

    Stock, Richard G; Stone, Nelson N

    2010-02-01

    The treatment of prostate cancer with low dose rate prostate brachytherapy has grown rapidly in the last 20 years. Outcome analyses performed in this period have enriched understanding of this modality. This article focuses on the development of a real-time ultrasound-guided implant technique, the importance of radiation dose, trimodality treatment of high-risk disease, long-term treatment outcomes, and treatment-associated morbidity.

  8. Measurement of radon/thoron exhalation rates and gamma-ray dose rate in granite areas in Japan.

    PubMed

    Prasad, G; Ishikawa, T; Hosoda, M; Sahoo, S K; Kavasi, N; Sorimachi, A; Tokonami, S; Uchida, S

    2012-11-01

    Radon and thoron exhalation rates and gamma-ray dose rate in different places in Hiroshima Prefecture were measured. Exhalation rates were measured using an accumulation chamber method. The radon exhalation rate was found to vary from 3 to 37 mBq m(-2) s(-1), while the thoron exhalation rate ranged from 40 to 3330 mBq m(-2) s(-1). The highest radon exhalation rate (37 mBq m(-2) s(-1)) and gamma-ray dose rate (92 nGy h(-1)) were found in the same city (Kure City). In Kure City, indoor radon and thoron concentrations were previously measured at nine selected houses using a radon-thoron discriminative detector (Raduet). The indoor radon concentrations varied from 16 to 78 Bq m(-3), which was higher than the average value in Japan (15.5 Bq m(-3)). The indoor thoron concentration ranged from ND (not detected: below a detection limit of approximately 10 Bq m(-3)) to 314 Bq m(-3). The results suggest that radon exhalation rate from the ground is an influential factor for indoor radon concentration.

  9. Comparative dosimetry of GammaMed Plus high-dose rate 192Ir brachytherapy source

    PubMed Central

    Patel, N. P.; Majumdar, B.; Vijayan, V.

    2010-01-01

    The comparative dosimetry of GammaMed (GM) Plus high-dose rate brachytherapy source was performed by an experiment using 0.1-cc thimble ionization chamber and simulation-based study using EGSnrc code. In-water dose measurements were performed with 0.1-cc chamber to derive the radial dose function (r = 0.8 to 20.0 cm) and anisotropy function (r = 5.0 cm with polar angle from 10° to 170°). The nonuniformity correction factor for 0.1-cc chamber was applied for in-water measurements at shorter distances from the source. The EGSnrc code was used to derive the dose rate constant (Λ), radial dose function gL(r) and anisotropy function F(r, θ) of GM Plus source. The dosimetric data derived using EGSnrc code in our study were in very good agreement relative to published data for GM Plus source. The radial dose function up to 12 cm derived from measured dose using 0.1-cc chamber was in agreement within ±3% of data derived by the simulation study. PMID:20927220

  10. Payload dose rate from direct beam radiation and exhaust gas fission products. [for nuclear engine for rocket vehicles

    NASA Technical Reports Server (NTRS)

    Capo, M. A.; Mickle, R.

    1975-01-01

    A study was made to determine the dose rate at the payload position in the NERVA System (1) due to direct beam radiation and (2) due to the possible effect of fission products contained in the exhaust gases for various amounts of hydrogen propellant in the tank. Results indicate that the gamma radiation is more significant than the neutron flux. Under different assumptions the gamma contribution from the exhaust gases was 10 to 25 percent of total gamma flux.

  11. Chromosomal Aberrations in DNA Repair Defective Cell Lines: Comparisons of Dose Rate and Radiation Quality

    NASA Technical Reports Server (NTRS)

    George, K. A.; Hada, M.; Patel, Z.; Huff, J.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Chromosome aberration yields were assessed in DNA double-strand break repair (DSB) deficient cells after acute doses of gamma-rays or high-LET iron nuclei, or low dose-rate (0.018 Gy/hr) gamma-rays. We studied several cell lines including fibroblasts deficient in ATM (product of the gene that is mutated in ataxia telangiectasia patients) or NBS (product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase, DNA-PK activity. Chromosomes were analyzed using the fluorescence in-situ hybridization (FISH) chromosome painting method in cells at the first division post-irradiation and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma radiation induced higher yields of both simple and complex exchanges in the DSB repair defective cells than in the normal cells. The quadratic dose-response terms for both chromosome exchange types were significantly higher for the ATM and NBS defective lines than for normal fibroblasts. However, the linear dose-response term was significantly higher only for simple exchanges in the NBS cells. Large increases in the quadratic dose response terms indicate the important roles of ATM and NBS in chromatin modifications that facilitate correct DSB repair and minimize aberration formation. Differences in the response of AT and NBS deficient cells at lower doses suggests important questions about the applicability of observations of radiation sensitivity at high dose to low dose exposures. For all iron nuclei irradiated cells, regression models preferred purely linear and quadratic dose responses for simple and complex exchanges, respectively. All the DNA repair defective cell lines had lower Relative biological effectiveness (RBE) values than normal cells, the lowest being for the DNA-PK-deficient cells, which was near unity. To further

  12. The MapCHECK Measurement Uncertainty function and its effect on planar dose pass rates.

    PubMed

    Bailey, Daniel W; Spaans, Jason D; Kumaraswamy, Lalith K; Podgorsak, Matthew B

    2016-03-01

    Our study aimed to quantify the effect of the Measurement Uncertainty function on planar dosimetry pass rates, as measured and analyzed with the Sun Nuclear Corporation MapCHECK 2 array and its associated software. This optional function is toggled in the program preferences of the software (though turned on by default upon installation), and automatically increases the dose difference tolerance defined by the user for each planar dose comparison. Dose planes from 109 static-gantry IMRT fields and 40 VMAT arcs, of varying modulation complexity, were measured at 5 cm water-equivalent depth in the MapCHECK 2 diode array, and respective calculated dose planes were exported from a commercial treatment planning system. Planar dose comparison pass rates were calculated within the Sun Nuclear Corporation analytic software using a number of calculation parameters, including Measurement Uncertainty on and off. By varying the percent difference (%Diff) criterion for similar analyses performed with Measurement Uncertainty turned off, an effective %Diff criterion was defined for each field/arc corresponding to the pass rate achieved with Measurement Uncertainty turned on. On average, the Measurement Uncertainty function increases the user-defined %Diff criterion by 0.8%-1.1% for 3%/3 mm analysis, depending on plan type and calculation technique (corresponding to an average change in pass rate of 1.0%-3.5%, and a maximum change of 8.7%). At the 2%/2 mm level, the Measurement Uncertainty function increases the user-defined %Diff criterion by 0.7%-1.2% on average, again depending on plan type and calculation technique (corresponding to an average change in pass rate of 3.5%-8.1%, and a maximum change of 14.2%). The largest increases in pass rate due to the Measurement Uncertainty function are generally seen with poorly matched planar dose comparisons, while the function has a notably smaller effect as pass rates approach 100%. The Measurement Uncertainty function, then, may

  13. The MapCHECK Measurement Uncertainty function and its effect on planar dose pass rates.

    PubMed

    Bailey, Daniel W; Spaans, Jason D; Kumaraswamy, Lalith K; Podgorsak, Matthew B

    2016-03-08

    Our study aimed to quantify the effect of the Measurement Uncertainty function on planar dosimetry pass rates, as measured and analyzed with the Sun Nuclear Corporation MapCHECK 2 array and its associated software. This optional function is toggled in the program preferences of the software (though turned on by default upon installation), and automatically increases the dose difference tolerance defined by the user for each planar dose comparison. Dose planes from 109 static-gantry IMRT fields and 40 VMAT arcs, of varying modulation complexity, were measured at 5 cm water-equivalent depth in the MapCHECK 2 diode array, and respective calculated dose planes were exported from a commercial treatment planning system. Planar dose comparison pass rates were calculated within the Sun Nuclear Corporation analytic software using a number of calculation parameters, including Measurement Uncertainty on and off. By varying the percent difference (%Diff) criterion for similar analyses performed with Measurement Uncertainty turned off, an effective %Diff criterion was defined for each field/arc corresponding to the pass rate achieved with Measurement Uncertainty turned on. On average, the Measurement Uncertainty function increases the user-defined %Diff criterion by 0.8%-1.1% for 3%/3 mm analysis, depending on plan type and calculation technique (corresponding to an average change in pass rate of 1.0%-3.5%, and a maximum change of 8.7%). At the 2%/2 mm level, the Measurement Uncertainty function increases the user-defined %Diff criterion by 0.7%-1.2% on average, again depending on plan type and calculation technique (corresponding to an average change in pass rate of 3.5%-8.1%, and a maximum change of 14.2%). The largest increases in pass rate due to the Measurement Uncertainty function are generally seen with poorly matched planar dose comparisons, while the function has a notably smaller effect as pass rates approach 100%. The Measurement Uncertainty function, then, may

  14. Iron Oxide Nanoparticle Agglomeration Influences Dose-Rates and Modulates Oxidative Stress Mediated Dose-Response Profiles In Vitro

    SciTech Connect

    Sharma, Gaurav; Kodali, Vamsi K.; Gaffrey, Matthew J.; Wang, Wei; Minard, Kevin R.; Karin, Norman J.; Teeguarden, Justin G.; Thrall, Brian D.

    2013-07-31

    Spontaneous agglomeration of engineered nanoparticles (ENPs) is a common problem in cell culture media which can confound interpretation of in vitro nanotoxicity studies. The authors created stable agglomerates of iron oxide nanoparticles (IONPs) in conventional culture medium, which varied in hydrodynamic size (276 nm-1.5 μm) but were composed of identical primary particles with similar surface potentials and protein coatings. Studies using C10 lung epithelial cells show that the dose rate effects of agglomeration can be substantial, varying by over an order of magnitude difference in cellular dose in some cases. Quantification by magnetic particle detection showed that small agglomerates of carboxylated IONPs induced greater cytotoxicity and redox-regulated gene expression when compared with large agglomerates on an equivalent total cellular IONP mass dose basis, whereas agglomerates of amine-modified IONPs failed to induce cytotoxicity or redox-regulated gene expression despite delivery of similar cellular doses. Dosimetry modelling and experimental measurements reveal that on a delivered surface area basis, large and small agglomerates of carboxylated IONPs have similar inherent potency for the generation of ROS, induction of stress-related genes and eventual cytotoxicity. The results suggest that reactive moieties on the agglomerate surface are more efficient in catalysing cellular ROS production than molecules buried within the agglomerate core. Because of the dynamic, size and density-dependent nature of ENP delivery to cells in vitro, the biological consequences of agglomeration are not discernible from static measures of exposure concentration (μg/ml) alone, highlighting the central importance of integrated physical characterisation and quantitative dosimetry for in vitro studies. The combined experimental and computational approach provides a quantitative framework for evaluating relationships between the biocompatibility of nanoparticles and their

  15. Determination of canine dose conversion factors in mixed neutron and gamma radiation fields. Technical report

    SciTech Connect

    Torres, B.A.; Bhatt, R.C.; Myska, J.C.; Holland, B.K.

    1996-07-01

    The primary objective of mixed-field neutron/gamma radiation dosimetry in canine irradiation experiments conducted at the Armed Forces Radiobiology Research Institute (AFRRI) is to determine the absorbed midline tissue dose (MLT) at the region of interest in the canine. A dose conversion factor (DCF) can be applied to free-in-air (FIA) dose measurements to estimate the MLT doses to canines. This report is a summary of the measured DCFs that were used to determine the MLT doses in canines at AFRRI from 1979 to 1992.

  16. Radionuclides in the adriatic sea and related dose-rate assessment for marine biota.

    PubMed

    Petrinec, Branko; Strok, Marko; Franic, Zdenko; Smodis, Borut; Pavicic-Hamer, Dijana

    2013-01-01

    Artificial and natural radionuclides were determined in the Adriatic Sea in the seawater and sediment samples in the period from 2007 to 2011. The sampling areas were coastal waters of Slovenia, Croatia and Albania, together with the deepest part of the Adriatic in South Adriatic Pit and Otranto strait. Sampling locations were chosen to take into account all major geological and geographical features of this part of the Adriatic Sea and possible coastal influences. After initial sample preparation steps, samples were measured by gamma-ray spectrometry. In the seawater ⁴⁰K activity concentrations were in the range from 6063 to 10519 Bq m⁻³, ¹³⁷Cs from 1.6 to 3.8 Bq m⁻³, ²²⁶Ra from 23 to 31 Bq m⁻³, ²²⁸Ra from 1 to 25 Bq m⁻³ and ²³⁸U from 64 to 490 Bq m⁻³. The results of sediment samples showed that ⁴⁰K was in the range from 87 to 593 Bq kg⁻¹, ¹³⁷Cs from 0.8 to 7.3 Bq kg⁻¹, ²²⁶Ra from 18 to 35 Bq kg⁻¹, ²²⁸Ra from 4 to 29 Bq kg⁻¹ and ²³⁸U from 14 to 120 Bq kg⁻¹. In addition, the ERICA Assessment Tool was used for the assessment of dose rates for reference marine organisms using the activity concentrations of the determined radionuclides in seawater. The assessment showed that for the most of the organisms, the dose rates were within the background levels, indicating that the determined values for seawater does not pose a significant risk for the most of marine biota. In the study, the results are critically discussed and compared with other similar studies worldwide. Generally, the activity concentrations of the examined radionuclides did not differ from those reported for the rest of the Mediterranean Sea.

  17. 12 CFR 1026.14 - Determination of annual percentage rate.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 9 2014-01-01 2014-01-01 false Determination of annual percentage rate. 1026... periodic rate by the number of periods in a year. (c) Optional effective annual percentage rate for... appendix F to this part regarding determination of the denominator of the fraction under this paragraph....

  18. Quantitative determination of phosgene doses by reflectometric badge readout.

    PubMed

    Niessner, Reinhard

    2010-07-01

    Commercial phosgene dosimeter badges are lacking precise and sensitive analysis when used only by visual comparison to a color reference. To meet the discussed occupational standard set to 54 ppm min, objective quantification by reflectance measurement is proposed. At 573 nm, the pink dye ("Koenig's salt") formed at the membrane surface by reaction of phosgene, and aromatic amine shows a strict linear relationship in reflectance between doses of 10 and 300 ppm min. The detection limit is calculated to 29 ppm min.

  19. INTERCAL: long-term inter-comparison experiment for dose rate and spectrometric probes.

    PubMed

    Bleher, M; Doll, H; Harms, W; Stöhlker, U

    2014-08-01

    The Schauinsland inter-calibration facility (INTERCAL) has been designed to enable long-term comparison experiments for 20 different dose rate probes from different networks. Two reference probes characterised by the European Radiation Dosimetry WG3 inter-calibration experiments in 2008 and 2009 have been installed at the INTERCAL facility. Additional instrumentation provides measured data of activity in air and nuclide-specific dose rate as well as environmental parameters such as air pressure, temperature, precipitation and soil moisture. Complementary to WG3 experiments, the INTERCAL platform is an ideal framework to investigate the long-term behaviour of dose rate probes and different spectrometry systems under environmental conditions. Two additional exposure experiments were performed in April 2009 and in May 2012.

  20. Biological cell irradiation at ultrahigh dose rate employing laser driven protons

    SciTech Connect

    Doria, D.; Kakolee, K. F.; Kar, S.; and others

    2012-07-09

    The ultrashort duration of laser-driven multi-MeV ion bursts offers the possibility of radiobiological studies at extremely high dose rates. Employing the TARANIS Terawatt laser at Queen's University, the effect of proton irradiation at MeV-range energies on live cells has been investigated at dose rates exceeding 10{sup 9}Gy/s as a single exposure. A clonogenic assay showed consistent lethal effects on V-79 live cells, which, even at these dose rates, appear to be in line with previously published results employing conventional sources. A Relative Biological Effectiveness (RBE) of 1.4{+-}0.2 at 10% survival is estimated from a comparison with a 225 kVp X-ray source.

  1. The susceptibility of TaOx-based memristors to high dose rate ionizing radiation and total ionizing dose

    SciTech Connect

    McLain, Michael Lee; Sheridan, Timothy J.; Hjalmarson, Harold Paul; Mickel, Patrick R.; Hanson, Donald J.; McDonald, Joseph K.; Hughart, David Russell; Marinella, Matthew J.

    2014-11-11

    This paper investigates the effects of high dose rate ionizing radiation and total ionizing dose (TID) on tantalum oxide (TaOx) memristors. Transient data were obtained during the pulsed exposures for dose rates ranging from approximately 5.0 ×107 rad(Si)/s to 4.7 ×108 rad(Si)/s and for pulse widths ranging from 50 ns to 50 μs. The cumulative dose in these tests did not appear to impact the observed dose rate response. Static dose rate upset tests were also performed at a dose rate of ~3.0 ×108 rad(Si)/s. This is the first dose rate study on any type of memristive memory technology. In addition to assessing the tolerance of TaOx memristors to high dose rate ionizing radiation, we also evaluated their susceptibility to TID. The data indicate that it is possible for the devices to switch from a high resistance off-state to a low resistance on-state in both dose rate and TID environments. The observed radiation-induced switching is dependent on the irradiation conditions and bias configuration. Furthermore, the dose rate or ionizing dose level at which a device switches resistance states varies from device to device; the enhanced susceptibility observed in some devices is still under investigation. As a result, numerical simulations are used to qualitatively capture the observed transient radiation response and provide insight into the physics of the induced current/voltages.

  2. Model of radiation-induced gain degradation of NPN bipolar junction transistor at different dose rates

    NASA Astrophysics Data System (ADS)

    Qifeng, Zhao; Yiqi, Zhuang; Junlin, Bao; Wei, Hu

    2015-06-01

    Ionizing-radiation-induced current gain degradation in NPN bipolar junction transistors is due to an increase in base current as a result of recombination at the surface of the device. A model is presented which identifies the physical mechanism responsible for current gain degradation. The increase in surface recombination velocity due to interface states results in an increase in base current. Besides, changing the surface potential along the base surface induced by the oxide-trapped charges can also lead to an increased base current. By combining the production mechanisms of oxide-trapped charges and interface states, this model can explain the fact that the current gain degradation is more severe at a low dose rate than at a high dose rate. The radiations were performed in a Co60 source up to a total dose of 70 krad(Si). The low dose rate was 0.1 rad(Si)/s and the high dose rate was 10 rad(Si)/s. The model accords well with the experimental results. Project supported by the National Natural Science Foundation of China (Nos. 61076101, 61204092).

  3. Radiation-induced 1/f noise degradation of PNP bipolar junction transistors at different dose rates

    NASA Astrophysics Data System (ADS)

    Qi-Feng, Zhao; Yi-Qi, Zhuang; Jun-Lin, Bao; Wei, Hu

    2016-04-01

    It is found that ionizing-radiation can lead to the base current and the 1/f noise degradations in PNP bipolar junction transistors. In this paper, it is suggested that the surface of the space charge region of the emitter-base junction is the main source of the base surface 1/f noise. A model is developed which identifies the parameters and describes their interactive contributions to the recombination current at the surface of the space charge region. Based on the theory of carrier number fluctuation and the model of surface recombination current, a 1/f noise model is developed. This model suggests that 1/f noise degradations are the result of the accumulation of oxide-trapped charges and interface states. Combining models of ELDRS, this model can explain the reason why the 1/f noise degradation is more severe at a low dose rate than at a high dose rate. The radiations were performed in a Co60 source up to a total dose of 700 Gy(Si). The low dose rate was 0.001 Gy(Si)/s and the high dose rate was 0.1 Gy(Si)/s. The model accords well with the experimental results. Project supported by the National Natural Science Foundation of China (Grant Nos. 61076101 and 61204092).

  4. High-dose-rate brachytherapy boost for prostate cancer: rationale and technique.

    PubMed

    Morton, Gerard C

    2014-10-01

    High-dose-rate brachytherapy (HDR) is a method of conformal dose escalation to the prostate. It can be used as a local boost in combination with external beam radiotherapy, with a high degree of efficacy and low rate of long term toxicity. Data consistently reports relapse free survival rates of greater than 90% for intermediate risk patients and greater than 80% for high risk. Results are superior to those achieved with external beam radiotherapy alone. A wide range of dose and fractionation is reported, however, we have found that a single 15 Gy HDR combined with hypofractionated radiotherapy to a dose of 37.5 Gy in 15 fractions is well tolerated and is associated with a long term relapse-free survival of over 90%. Either CT-based or trans-rectal ultrasound-based planning may be used. The latter enables treatment delivery without having to move the patient with risk of catheter displacement. We have found it to be an efficient and quick method of treatment, allowing catheter insertion, planning, and treatment delivery to be completed in less than 90 minutes. High-dose-rate boost should be considered the treatment of choice for many men with high and intermediate risk prostate cancer.

  5. Moving from gamma passing rates to patient DVH-based QA metrics in pretreatment dose QA

    SciTech Connect

    Zhen, Heming; Nelms, Benjamin E.; Tome, Wolfgang A.

    2011-10-15

    Purpose: The purpose of this work is to explore the usefulness of the gamma passing rate metric for per-patient, pretreatment dose QA and to validate a novel patient-dose/DVH-based method and its accuracy and correlation. Specifically, correlations between: (1) gamma passing rates for three 3D dosimeter detector geometries vs clinically relevant patient DVH-based metrics; (2) Gamma passing rates of whole patient dose grids vs DVH-based metrics, (3) gamma passing rates filtered by region of interest (ROI) vs DVH-based metrics, and (4) the capability of a novel software algorithm that estimates corrected patient Dose-DVH based on conventional phan-tom QA data are analyzed. Methods: Ninety six unique ''imperfect'' step-and-shoot IMRT plans were generated by applying four different types of errors on 24 clinical Head/Neck patients. The 3D patient doses as well as the dose to a cylindrical QA phantom were then recalculated using an error-free beam model to serve as a simulated measurement for comparison. Resulting deviations to the planned vs simulated measured DVH-based metrics were generated, as were gamma passing rates for a variety of difference/distance criteria covering: dose-in-phantom comparisons and dose-in-patient comparisons, with the in-patient results calculated both over the whole grid and per-ROI volume. Finally, patient dose and DVH were predicted using the conventional per-beam planar data as input into a commercial ''planned dose perturbation'' (PDP) algorithm, and the results of these predicted DVH-based metrics were compared to the known values. Results: A range of weak to moderate correlations were found between clinically relevant patient DVH metrics (CTV-D95, parotid D{sub mean}, spinal cord D1cc, and larynx D{sub mean}) and both 3D detector and 3D patient gamma passing rate (3%/3 mm, 2%/2 mm) for dose-in-phantom along with dose-in-patient for both whole patient volume and filtered per-ROI. There was considerable scatter in the gamma passing rate

  6. Emesis as a Screening Diagnostic for Low Dose Rate (LDR) Total Body Radiation Exposure

    PubMed Central

    Camarata, A. S.; Switchenko, J. M.; Demidenko, E.; Flood, A. B.; Swartz, H. M.; Ali, A. N.

    2015-01-01

    Current radiation disaster manuals list the time-to-emesis (TE) as the key triage indicator of radiation dose. The data used to support TE recommendations were derived primarily from nearly instantaneous, high dose rate exposures as part of variable condition accident databases. To date, there has not been a systematic differentiation between triage dose estimates associated with high and low dose rate (LDR) exposures, even though it is likely that after a nuclear detonation or radiologic disaster, many surviving casualties would have received a significant portion of their total exposure from fallout (LDR exposure) rather than from the initial nuclear detonation or criticality event (high dose rate exposure). This commentary discusses the issues surrounding the use of emesis as a screening diagnostic for radiation dose after LDR exposure. As part of this discussion, previously published clinical data on emesis after LDR total body irradiation (TBI) is statistically re-analyzed as an illustration of the complexity of the issue and confounding factors. This previously published data includes 107 patients who underwent TBI up to 10.5 Gy in a single fraction delivered over several hours at 0.02 to 0.04 Gy/min. Estimates based on these data for the sensitivity of emesis as a screening diagnostic for low dose rate radiation exposure range from 57.1% to 76.6%, and the estimates for specificity range from 87.5% to 99.4%. Though the original data contain multiple confounding factors, the evidence regarding sensitivity suggests that emesis appears to be quite poor as a medical screening diagnostic for LDR exposures. PMID:26910032

  7. Benchmark Experiment of Dose Rate Distributions Around the Gamma Knife Medical Apparatus

    NASA Astrophysics Data System (ADS)

    Oishi, K.; Kosako, K.; Kobayashi, Y.; Sonoki, I.

    2014-06-01

    Dose rate measurements around a gamma knife apparatus were performed by using an ionization chamber. Analyses have been performed by using the Monte Carlo code MCNP-5. The nuclear library used for the dose rate distribution of 60Co was MCPLIB04. The calculation model was prepared with a high degree of fidelity, such as the position of each Cobalt source and shielding materials. Comparisons between measured results and calculated ones were performed, and a very good agreement was observed. It is concluded that the Monte Carlo calculation method with its related nuclear data library is very effective for such a complicated radiation oncology apparatus.

  8. ANALYSIS OF DOSE RATES DURING REPLACEMENT OF MANIPULATORS IN THE FFTF INTERIM EXAMINATION & MAINTENANCE (IEM) CELL

    SciTech Connect

    NELSON, J.V.

    2002-01-23

    Replacement of a master-slave manipulator in the Interim Examination and Maintenance Cell at the Fast Flux Test Facility was carried out in August 2001. This operation created a 178-mm opening in the thick concrete wall of the hot cell. To aid in radiological work planning, dose rates outside the penetration in the wall were predicted using MCNP{trademark} photon transport calculations. The predicted dose rate was 7.7 mrem/h, which was reasonably close to the value of 10.4 mrem/h inferred from measurements.

  9. Benchmark Experiment of Dose Rate Distributions Around the Gamma Knife Medical Apparatus

    SciTech Connect

    Oishi, K.; Kosako, K.; Kobayashi, Y.; Sonoki, I.

    2014-06-15

    Dose rate measurements around a gamma knife apparatus were performed by using an ionization chamber. Analyses have been performed by using the Monte Carlo code MCNP-5. The nuclear library used for the dose rate distribution of {sup 60}Co was MCPLIB04. The calculation model was prepared with a high degree of fidelity, such as the position of each Cobalt source and shielding materials. Comparisons between measured results and calculated ones were performed, and a very good agreement was observed. It is concluded that the Monte Carlo calculation method with its related nuclear data library is very effective for such a complicated radiation oncology apparatus.

  10. ITER Generic Diagnostic Upper Port Plug Nuclear Heating and Personnel Dose Rate Assesment

    SciTech Connect

    Russell E. Feder and Mahmoud Z. Youssef

    2009-01-28

    Neutronics analysis to find nuclear heating rates and personnel dose rates were conducted in support of the integration of diagnostics in to the ITER Upper Port Plugs. Simplified shielding models of the Visible-Infrared diagnostic and of a large aperture diagnostic were incorporated in to the ITER global CAD model. Results for these systems are representative of typical designs with maximum shielding and a small aperture (Vis-IR) and minimal shielding with a large aperture. The neutronics discrete-ordinates code ATTILA® and SEVERIAN® (the ATTILA parallel processing version) was used. Material properties and the 500 MW D-T volume source were taken from the ITER “Brand Model” MCNP benchmark model. A biased quadrature set equivelant to Sn=32 and a scattering degree of Pn=3 were used along with a 46-neutron and 21-gamma FENDL energy subgrouping. Total nuclear heating (neutron plug gamma heating) in the upper port plugs ranged between 380 and 350 kW for the Vis-IR and Large Aperture cases. The Large Aperture model exhibited lower total heating but much higher peak volumetric heating on the upper port plug structure. Personnel dose rates are calculated in a three step process involving a neutron-only transport calculation, the generation of activation volume sources at pre-defined time steps and finally gamma transport analyses are run for selected time steps. ANSI-ANS 6.1.1 1977 Flux-to-Dose conversion factors were used. Dose rates were evaluated for 1 full year of 500 MW DT operation which is comprised of 3000 1800-second pulses. After one year the machine is shut down for maintenance and personnel are permitted to access the diagnostic interspace after 2-weeks if dose rates are below 100 μSv/hr. Dose rates in the Visible-IR diagnostic model after one day of shutdown were 130 μSv/hr but fell below the limit to 90 μSv/hr 2-weeks later. The Large Aperture style shielding model exhibited higher and more persistent dose rates. After 1-day the dose rate was 230

  11. Dose-rate and irradiation temperature dependence of BJT SPICE model rad-parameters

    SciTech Connect

    Montagner, X.; Briand, R.; Fouillat, P.; Touboul, A.; Schrimpf, R.D.; Galloway, K.F.; Calvet, M.C.; Calvel, P.

    1998-06-01

    A method to predict low dose rate degradation of bipolar transistors using high dose-rate, high temperature irradiation is evaluated, based on an analysis of four new rad-parameters that are introduced in the BJT SPICE model. This improved BJT model describes the radiation-induced excess base current with great accuracy. The low-level values of the rad-parameters are good tools for evaluating the proposed high-temperature test method because of their high sensitivity to radiation-induced degradation.

  12. 42 CFR 418.306 - Determination of payment rates.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (CONTINUED) MEDICARE PROGRAM (CONTINUED) HOSPICE CARE Payment for Hospice Care § 418.306 Determination of payment rates. (a) Applicability. CMS establishes payment rates for each of the categories of hospice care... hospice care are as follows: (1) The following rates, which are 120 percent of the rates in effect...

  13. 42 CFR 418.306 - Determination of payment rates.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (CONTINUED) MEDICARE PROGRAM (CONTINUED) HOSPICE CARE Payment for Hospice Care § 418.306 Determination of payment rates. (a) Applicability. CMS establishes payment rates for each of the categories of hospice care... hospice care are as follows: (1) The following rates, which are 120 percent of the rates in effect...

  14. Ruthenium-106 brachytherapy for thick uveal melanoma: reappraisal of apex and base dose radiation and dose rate

    PubMed Central

    Jaberi, Ramin; Sedaghat, Ahad; Azma, Zohreh; Nojomi, Marzieh; Falavarjani, Khalil Ghasemi; Nazari, Hossein

    2016-01-01

    Purpose To evaluate the outcomes of ruthenium-106 (106Ru) brachytherapy in terms of radiation parameters in patients with thick uveal melanomas. Material and methods Medical records of 51 patients with thick (thickness ≥ 7 mm and < 11 mm) uveal melanoma treated with 106Ru brachytherapy during a ten-year period were reviewed. Radiation parameters, tumor regression, best corrected visual acuity (BCVA), and treatment-related complications were assessed. Results Fifty one eyes of 51 consecutive patients including 25 men and 26 women with a mean age of 50.5 ± 15.2 years were enrolled. Patients were followed for 36.1 ± 26.5 months (mean ± SD). Mean radiation dose to tumor apex and to sclera were 71 (± 19.2) Gy and 1269 (± 168.2) Gy. Radiation dose rates to tumor apex and to sclera were 0.37 (± 0.14) Gy/h and 6.44 (± 1.50) Gy/h. Globe preservation was achieved in 82.4%. Preoperative mean tumor thickness of 8.1 (± 0.9) mm decreased to 4.5 (± 1.6) mm, 3.4 (± 1.4) mm, and 3.0 (± 1.46) mm at 12, 24, and 48 months after brachytherapy (p = 0.03). Four eyes that did not show regression after 6 months of brachytherapy were enucleated. Secondary enucleation was performed in 5 eyes because of tumor recurrence or neovascular glaucoma. Tumor recurrence was evident in 6 (11.8%) patients. Mean Log MAR (magnification requirement) visual acuity declined from 0.75 (± 0.63) to 0.94 (± 0.5) (p = 0.04). Best corrected visual acuity of 20/200 or worse was recorded in 37% of the patients at the time of diagnosis and 61.7% of the patients at last exam (p = 0.04). Non-proliferative and proliferative radiation-induced retinopathy was observed in 20 and 7 eyes. Conclusions Thick uveal melanomas are amenable to 106Ru brachytherapy with less than recommended apex radiation dose and dose rates. PMID:26985199

  15. Poster — Thur Eve — 27: Flattening Filter Free VMAT Quality Assurance: Dose Rate Considerations for Detector Response

    SciTech Connect

    Viel, Francis; Duzenli, Cheryl; Camborde, Marie-Laure; Strgar, Vincent; Horwood, Ron; Atwal, Parmveer; Gete, Ermias; Karan, Tania

    2014-08-15

    Introduction: Radiation detector responses can be affected by dose rate. Due to higher dose per pulse and wider range of mu rates in FFF beams, detector responses should be characterized prior to implementation of QA protocols for FFF beams. During VMAT delivery, the MU rate may also vary dramatically within a treatment fraction. This study looks at the dose per pulse variation throughout a 3D volume for typical VMAT plans and the response characteristics for a variety of detectors, and makes recommendations on the design of QA protocols for FFF VMAT QA. Materials and Methods: Linac log file data and a simplified dose calculation algorithm are used to calculate dose per pulse for a variety of clinical VMAT plans, on a voxel by voxel basis, as a function of time in a cylindrical phantom. Diode and ion chamber array responses are characterized over the relevant range of dose per pulse and dose rate. Results: Dose per pulse ranges from <0.1 mGy/pulse to 1.5 mGy/pulse in a typical VMAT treatment delivery using the 10XFFF beam. Diode detector arrays demonstrate increased sensitivity to dose (+./− 3%) with increasing dose per pulse over this range. Ion chamber arrays demonstrate decreased sensitivity to dose (+/− 1%) with increasing dose rate over this range. Conclusions: QA protocols should be designed taking into consideration inherent changes in detector sensitivity with dose rate. Neglecting to account for changes in detector response with dose per pulse can lead to skewed QA results.

  16. Statistical variability and confidence intervals for planar dose QA pass rates

    SciTech Connect

    Bailey, Daniel W.; Nelms, Benjamin E.; Attwood, Kristopher; Kumaraswamy, Lalith; Podgorsak, Matthew B.

    2011-11-15

    Purpose: The most common metric for comparing measured to calculated dose, such as for pretreatment quality assurance of intensity-modulated photon fields, is a pass rate (%) generated using percent difference (%Diff), distance-to-agreement (DTA), or some combination of the two (e.g., gamma evaluation). For many dosimeters, the grid of analyzed points corresponds to an array with a low areal density of point detectors. In these cases, the pass rates for any given comparison criteria are not absolute but exhibit statistical variability that is a function, in part, on the detector sampling geometry. In this work, the authors analyze the statistics of various methods commonly used to calculate pass rates and propose methods for establishing confidence intervals for pass rates obtained with low-density arrays. Methods: Dose planes were acquired for 25 prostate and 79 head and neck intensity-modulated fields via diode array and electronic portal imaging device (EPID), and matching calculated dose planes were created via a commercial treatment planning system. Pass rates for each dose plane pair (both centered to the beam central axis) were calculated with several common comparison methods: %Diff/DTA composite analysis and gamma evaluation, using absolute dose comparison with both local and global normalization. Specialized software was designed to selectively sample the measured EPID response (very high data density) down to discrete points to simulate low-density measurements. The software was used to realign the simulated detector grid at many simulated positions with respect to the beam central axis, thereby altering the low-density sampled grid. Simulations were repeated with 100 positional iterations using a 1 detector/cm{sup 2} uniform grid, a 2 detector/cm{sup 2} uniform grid, and similar random detector grids. For each simulation, %/DTA composite pass rates were calculated with various %Diff/DTA criteria and for both local and global %Diff normalization

  17. Anatomy-Based Inverse Planning Simulated Annealing Optimization in High-Dose-Rate Prostate Brachytherapy: Significant Dosimetric Advantage Over Other Optimization Techniques

    SciTech Connect

    Jacob, Dayee Raben, Adam; Sarkar, Abhirup; Grimm, Jimm; Simpson, Larry

    2008-11-01

    Purpose: To perform an independent validation of an anatomy-based inverse planning simulated annealing (IPSA) algorithm in obtaining superior target coverage and reducing the dose to the organs at risk. Method and Materials: In a recent prostate high-dose-rate brachytherapy protocol study by the Radiation Therapy Oncology Group (0321), our institution treated 20 patients between June 1, 2005 and November 30, 2006. These patients had received a high-dose-rate boost dose of 19 Gy to the prostate, in addition to an external beam radiotherapy dose of 45 Gy with intensity-modulated radiotherapy. Three-dimensional dosimetry was obtained for the following optimization schemes in the Plato Brachytherapy Planning System, version 14.3.2, using the same dose constraints for all the patients treated during this period: anatomy-based IPSA optimization, geometric optimization, and dose point optimization. Dose-volume histograms were generated for the planning target volume and organs at risk for each optimization method, from which the volume receiving at least 75% of the dose (V{sub 75%}) for the rectum and bladder, volume receiving at least 125% of the dose (V{sub 125%}) for the urethra, and total volume receiving the reference dose (V{sub 100%}) and volume receiving 150% of the dose (V{sub 150%}) for the planning target volume were determined. The dose homogeneity index and conformal index for the planning target volume for each optimization technique were compared. Results: Despite suboptimal needle position in some implants, the IPSA algorithm was able to comply with the tight Radiation Therapy Oncology Group dose constraints for 90% of the patients in this study. In contrast, the compliance was only 30% for dose point optimization and only 5% for geometric optimization. Conclusions: Anatomy-based IPSA optimization proved to be the superior technique and also the fastest for reducing the dose to the organs at risk without compromising the target coverage.

  18. Dose rate effects on damage formation in ion-implanted gallium arsenide

    SciTech Connect

    Haynes, T.E.; Holland, O.W.

    1990-09-01

    The residual damage in GaAs was measured by ion channeling following implantation of either 100 keV {sup 30}Si{sup +} at temperatures of 300K or 77K, or 360 keV {sup 120}Sn{sup +} at 300K. For room-temperature Si implants and fluences between 1 and 10 {times} 10{sup 14} Si/cm{sup 2}, the amount of damage created was strongly dependent upon the ion current density, which was varied between 0.05 and 12 {mu}A/cm{sup 2}. Two different stages of damage growth were identified by an abrupt increase in the damage growth rate as a function of fluence, and the threshold fluence for the onset of the second stage was found to be dependent on the dose rate. The dose rate effect on damage was substantially weaker for {sup 120}Sn{sup +} implants and was negligible for Si implants at 77K. The damage was found to be most sensitive to the average current density, demonstrating that the defects which are the precursors to the residual dose-rate dependent damage have active lifetimes of at least 3 {times} 10{sup {minus}4} s. The dose rate effect and its variation with ion mass and temperature are discussed in the context of homogeneous nucleation and growth of damage during ion irradiation.

  19. Indoor terrestrial gamma dose rate mapping in France: a case study using two different geostatistical models.

    PubMed

    Warnery, E; Ielsch, G; Lajaunie, C; Cale, E; Wackernagel, H; Debayle, C; Guillevic, J

    2015-01-01

    Terrestrial gamma dose rates show important spatial variations in France. Previous studies resulted in maps of arithmetic means of indoor terrestrial gamma dose rates by "departement" (French district). However, numerous areas could not be characterized due to the lack of data. The aim of our work was to obtain more precise estimates of the spatial variability of indoor terrestrial gamma dose rates in France by using a more recent and complete data base and geostatistics. The study was based on the exploitation of 97,595 measurements results distributed in 17,404 locations covering all of France. Measurements were done by the Institute for Radioprotection and Nuclear Safety (IRSN) using RPL (Radio Photo Luminescent) dosimeters, exposed during several months between years 2011 and 2012 in French dentist surgeries and veterinary clinics. The data used came from dosimeters which were not exposed to anthropic sources. After removing the cosmic rays contribution in order to study only the telluric gamma radiation, it was decided to work with the arithmetic means of the time-series measurements, weighted by the time-exposure of the dosimeters, for each location. The values varied between 13 and 349 nSv/h, with an arithmetic mean of 76 nSv/h. The observed statistical distribution of the gamma dose rates was skewed to the right. Firstly, ordinary kriging was performed in order to predict the gamma dose rate on cells of 1*1 km(2), all over the domain. The second step of the study was to use an auxiliary variable in estimates. The IRSN achieved in 2010 a classification of the French geological formations, characterizing their uranium potential on the bases of geology and local measurement results of rocks uranium content. This information is georeferenced in a map at the scale 1:1,000,000. The geological uranium potential (GUP) was classified in 5 qualitative categories. As telluric gamma rays mostly come from the progenies of the (238)Uranium series present in rocks, this

  20. Environmental radioactivity in the UK: the airborne geophysical view of dose rate estimates.

    PubMed

    Beamish, David

    2014-12-01

    This study considers UK airborne gamma-ray data obtained through a series of high spatial resolution, low altitude surveys over the past decade. The ground concentrations of the naturally occurring radionuclides Potassium, Thorium and Uranium are converted to air absorbed dose rates and these are used to assess terrestrial exposure levels from both natural and technologically enhanced sources. The high resolution airborne information is also assessed alongside existing knowledge from soil sampling and ground-based measurements of exposure levels. The surveys have sampled an extensive number of the UK lithological bedrock formations and the statistical information provides examples of low dose rate lithologies (the formations that characterise much of southern England) to the highest sustained values associated with granitic terrains. The maximum dose rates (e.g. >300 nGy h(-1)) encountered across the sampled granitic terrains are found to vary by a factor of 2. Excluding granitic terrains, the most spatially extensive dose rates (>50 nGy h(-1)) are found in association with the Mercia Mudstone Group (Triassic argillaceous mudstones) of eastern England. Geological associations between high dose rate and high radon values are also noted. Recent studies of the datasets have revealed the extent of source rock (i.e. bedrock) flux attenuation by soil moisture in conjunction with the density and porosity of the temperate latitude soils found in the UK. The presence or absence of soil cover (and associated presence or absence of attenuation) appears to account for a range of localised variations in the exposure levels encountered. The hypothesis is supported by a study of an extensive combined data set of dose rates obtained from soil sampling and by airborne geophysical survey. With no attenuation factors applied, except those intrinsic to the airborne estimates, a bias to high values of between 10 and 15 nGy h(-1) is observed in the soil data. A wide range of

  1. Solar particle dose rate buildup and distribution in critical body organs

    NASA Technical Reports Server (NTRS)

    Atwell, William; Weyland, Mark D.; Simonsen, Lisa C.

    1993-01-01

    Human body organs have varying degrees of radiosensitivity as evidenced by radioepidemiologic tables. The major critical organs for both the male and female that have been identified include the lung, thyroid, stomach, and breast (female). Using computerized anatomical models of the 50th percentile United States Air Force male and female, we present the self-shielding effects of these various body organs and how the shielding effects change as the location (dose point) in the body varies. Several major solar proton events from previous solar cycles and several events from the current 22nd solar cycle have been analyzed. The solar particle event rise time, peak intensity, and decay time vary considerably from event to event. Absorbed dose and dose equivalent rate calculations and organ risk assessment data are presented for each critical body organ. These data are compared with the current NASA astronaut dose limits as recommended by the National Council on Radiation Protection and Measurements.

  2. Dosimetry in steep dose-rate gradient radiation fields: A challenge in clinical applications

    NASA Astrophysics Data System (ADS)

    Massillon-JL, G.

    2010-12-01

    The fundamental goal of radiotherapy is to reduce the damage to normal tissue and optimize the dose to the tumor with an associated high probability of cure. Because of this, an accurate and precise knowledge of the radiation dose distribution delivered around the tumor volume during radiotherapy treatments such as stereotactic radiosurgery, intensity modulated radiotherapy or brachytherapy with low-energy X-ray and beta particle sources is of great importance. However, in each of these radiation fields, there exists a steep dose-rate gradient which makes it very difficult to perform accurate dose measurements. In this work, the physics phenomena involved in the energy absorption for each of these situations are discussed, and a brief revision of what the Medical Physics community is doing is presented.

  3. Dosimetry in steep dose-rate gradient radiation fields: A challenge in clinical applications

    SciTech Connect

    Massillon-JL, G.

    2010-12-07

    The fundamental goal of radiotherapy is to reduce the damage to normal tissue and optimize the dose to the tumor with an associated high probability of cure. Because of this, an accurate and precise knowledge of the radiation dose distribution delivered around the tumor volume during radiotherapy treatments such as stereotactic radiosurgery, intensity modulated radiotherapy or brachytherapy with low-energy X-ray and beta particle sources is of great importance. However, in each of these radiation fields, there exists a steep dose-rate gradient which makes it very difficult to perform accurate dose measurements. In this work, the physics phenomena involved in the energy absorption for each of these situations are discussed, and a brief revision of what the Medical Physics community is doing is presented.

  4. Automated high-dose rate brachytherapy treatment planning for a single-channel vaginal cylinder applicator.

    PubMed

    Zhou, Yuhong; Klages, Peter; Tan, Jun; Chi, Yujie; Stojadinovic, Strahinja; Yang, Ming; Hrycushko, Brian; Medin, Paul; Pompos, Arnold; Jiang, Steve; Albuquerque, Kevin; Jia, Xun

    2017-02-28

    High dose rate (HDR) brachytherapy treatment planning is conventionally performed manually and/or with aids of preplanned templates. In general the standard of care would be elevated by conducting an automated process to improve treatment planning efficiency, eliminate human error, and reduce plan quality variations. Thus, our group is developing AutoBrachy, an automated HDR brachytherapy planning suite of modules used to augment a clinical treatment planning system. This paper describes our proof-of-concept module for vaginal cylinder HDR planning that has been fully developed. After a patient CT scan is acquired, the cylinder applicator is automatically segmented using image-processing techniques. The target CTV is generated based on physician-specified treatment depth and length. Locations of the dose calculation point, apex point and vaginal surface point, as well as the central applicator channel coordinates, and the corresponding dwell positions are determined according to their geometric relationship with the applicator and written to a structure file. Dwell times are computed through iterative quadratic optimization techniques. The planning information is then transferred to the treatment planning system through a DICOM-RT interface. The entire process was tested for nine patients. The AutoBrachy cylindrical applicator module was able to generate treatment plans for these cases with clinical grade quality. Computation times varied between 1 to 3 minutes on an Intel Xeon CPU E3-1226 v3 processor. All geometric components in the automated treatment plans were generated accurately. The applicator channel tip positions agreed with the manually identified positions with submillimeter deviations and the channel orientations between the plans agreed within less than 1 degree. The automatically generated plans obtained clinically acceptable quality.

  5. Feasibility study of volumetric modulated arc therapy with constant dose rate for endometrial cancer

    SciTech Connect

    Yang, Ruijie; Wang, Junjie; Xu, Feng; Li, Hua; Zhang, Xile

    2013-10-01

    To investigate the feasibility, efficiency, and delivery accuracy of volumetric modulated arc therapy with constant dose rate (VMAT-CDR) for whole-pelvic radiotherapy (WPRT) of endometrial cancer. The nine-field intensity-modulated radiotherapy (IMRT), VMAT with variable dose-rate (VMAT-VDR), and VMAT-CDR plans were created for 9 patients with endometrial cancer undergoing WPRT. The dose distribution of planning target volume (PTV), organs at risk (OARs), and normal tissue (NT) were compared. The monitor units (MUs) and treatment delivery time were also evaluated. For each VMAT-CDR plan, a dry run was performed to assess the dosimetric accuracy with MatriXX from IBA. Compared with IMRT, the VMAT-CDR plans delivered a slightly greater V{sub 20} of the bowel, bladder, pelvis bone, and NT, but significantly decreased the dose to the high-dose region of the rectum and pelvis bone. The MUs decreased from 1105 with IMRT to 628 with VMAT-CDR. The delivery time also decreased from 9.5 to 3.2 minutes. The average gamma pass rate was 95.6% at the 3%/3 mm criteria with MatriXX pretreatment verification for 9 patients. VMAT-CDR can achieve comparable plan quality with significant shorter delivery time and smaller number of MUs compared with IMRT for patients with endometrial cancer undergoing WPRT. It can be accurately delivered and be an alternative to IMRT on the linear accelerator without VDR capability.

  6. Low Dose Rate Radiosensitization of Hepatocellular Carcinoma In Vitro and in Patients1

    PubMed Central

    Cuneo, Kyle C.; Davis, Mary A.; Feng, Mary U.; Novelli, Paula M.; Ensminger, William D.; Lawrence, Theodore S.

    2014-01-01

    Transarterial radioembolization (TARE) with 90Y microspheres delivers low dose rate radiation (LDR) to intrahepatic tumors. In the current study, we examined clonogenic survival, DNA damage, and cell cycle distribution in hepatocellular carcinoma (HCC) cell lines treated with LDR in combination with varying doses and schedules of 5-fluorouracil (5-FU), gemcitabine, and sorafenib. Radiosensitization was seen with 1 to 3 μM 5-FU (enhancement ratio 2.2–13.9) and 30 to 100 nM gemcitabine (enhancement ratio 1.9–2.9) administered 24 hours before LDR (0.26 Gy/h to 4.2 Gy). Sorafenib radiosensitized only at high concentrations (3–10 μM) when administered after LDR. For a given radiation dose, greater enhancement was seen with LDR compared to standard dose rate therapy. Summarizing our clinical experience with low dose rate radiosensitization, 13 patients (5 with HCC, 8 with liver metastases) were treated a total of 16 times with TARE and concurrent gemcitabine. Six partial responses and one complete response were observed with a median time to local failure of 7.1 months for all patients and 9.9 months for patients with HCC. In summary, HCC is sensitized to LDR with clinically achievable concentrations of gemcitabine and 5-FU in vitro. Encouraging responses were seen in a small cohort of patients treated with TARE and concurrent gemcitabine. Future studies are needed to validate the safety and efficacy of this approach. PMID:24956939

  7. Fluence rate or cumulative dose? Vulnerability of larval northern pike (Esox lucius) to ultraviolet radiation.

    PubMed

    Vehniäinen, E-R; Häkkinen, Jani M; Oikari, Aimo O J

    2007-01-01

    Newly hatched larvae of northern pike were exposed in the laboratory to four fluence rates of ultraviolet radiation (UVR; 290-400 nm) over three different time periods, resulting in total doses ranging from 3.0 +/- 0.2 to 63.0 +/- 4.4 kJ.m(-2). Mortality and behavior of the larvae were followed for 8-12 days, and growth measured at the end of the experiment. Also, the principle of reciprocity-that the UVR-induced mortality depends on the cumulative dose, independent of fluence rate-was tested. Fluence rates higher than 1480 +/- 150 mW.m(-2) caused mortality and growth retardation. The highest fluence rate (3040 +/- 210 mW.m(-2)) caused 100% mortality in 5 days. All fluence rates caused behavioral disorders, which led to death at fluence rates higher than 1480 mW.m(-2). Reciprocity failure occurred with the lowest and highest dose (550 +/- 45 and 3040 +/- 210 mW.m(-2), respectively). The results show that fluence rate is of primary importance when assessing the UVR-related risk.

  8. Remote Sensing of Radiation Dose Rate by Customizing an Autonomous Robot

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Nakahara, M.; Morisato, K.; Takashina, T.; Kanematsu, H.

    2012-03-01

    Distribution of radiation dose was measured by customizing an autonomous cleaning robot "Roomba" and a scintillation counter. The robot was used as a vehicle carrying the scintillation survey meter, and was additionally equipped with an H8 micro computer to remote-control the vehicle and to send measured data. The data obtained were arranged with position data, and then the distribution map of the radiation dose rate was produced. Manual, programmed and autonomous driving tests were conducted, and all performances were verified. That is, for each operational mode, the measurements both with moving and with discrete moving were tried in and outside of a room. Consequently, it has been confirmed that remote sensing of radiation dose rate is possible by customizing a robot on market.

  9. Single versus multichannel applicator in high-dose-rate vaginal brachytherapy optimized by inverse treatment planning

    PubMed Central

    Constantinescu, Camelia; Hassouna, Ashraf H.; Eltaher, Maha M.; Ghassal, Noor M.; Awad, Nesreen A.

    2014-01-01

    Purpose To retrospectively compare the potential dosimetric advantages of a multichannel vaginal applicator vs. a single channel one in intracavitary vaginal high-dose-rate (HDR) brachytherapy after hysterectomy, and evaluate the dosimetric advantage of fractional re-planning. Material and methods We randomly selected 12 patients with endometrial carcinoma, who received adjuvant vaginal cuff HDR brachytherapy using a multichannel applicator. For each brachytherapy fraction, two inverse treatment plans (for central channel and multichannel loadings) were performed and compared. The advantage of fractional re-planning was also investigated. Results Dose-volume-histogram (DVH) analysis showed limited, but statistically significant difference (p = 0.007) regarding clinical-target-volume dose coverage between single and multichannel approaches. For the organs-at-risk rectum and bladder, the use of multichannel applicator demonstrated a noticeable dose reduction, when compared to single channel, but statistically significant for rectum only (p = 0.0001). For D2cc of rectum, an average fractional dose of 6.1 ± 0.7 Gy resulted for single channel vs. 5.1 ± 0.6 Gy for multichannel. For D2cc of bladder, an average fractional dose of 5 ± 0.9 Gy occurred for single channel vs. 4.9 ± 0.8 Gy for multichannel. The dosimetric benefit of fractional re-planning was demonstrated: DVH analysis showed large, but not statistically significant differences between first fraction plan and fractional re-planning, due to large inter-fraction variations for rectum and bladder positioning and filling. Conclusions Vaginal HDR brachytherapy using a multichannel vaginal applicator and inverse planning provides dosimetric advantages over single channel cylinder, by reducing the dose to organs at risk without compromising the target volume coverage, but at the expense of an increased vaginal mucosa dose. Due to large inter-fraction dose variations, we recommend individual fraction treatment plan

  10. (Dose and dose-rate effects on radiation response): Foreign trip report, May 5--13, 1989

    SciTech Connect

    Selby, P.B.

    1989-05-25

    The traveler attended the thirty-eighth session of UNSCEAR where he took part in the meetings of the Biological Subgroup and the Working Group of the entire UNSCEAR Committee. He was responsible for the correction of several major errors in the draft version of the document entitled ''Dose and Dose-Rate Effects on Radiation Response. '' He also played a key role in bringing about UNSCEAR's decision to prepare a document on hereditary defects in the current cycle. To a large extent, it was because of the traveler's arguments that UNSCEAR reversed the Secretariat's decision not to reevaluate genetic risk in this cycle and decided that a genetics report was among its highest priorities. Important contacts were made with many internationally prominent scientists involved in radiation protection and risk evaluation. It was apparent how important it is to ORNL, to DOE, to the United States Government, and to UNSCEAR itself to have a representative from the United States present who has firsthand familiarity with the mouse data that are used to such an important extent in genetic risk estimation. Many of these data were collected in the Biology Division of ORNL.

  11. High-dose-rate intracavitary irradiation in the treatment of carcinoma of the uterine cervix: early experience with 84 patients

    SciTech Connect

    Akine, Y.; Arimoto, H.; Ogino, T.; Kajiura, Y.; Tsukiyama, I.; Egawa, S.; Yamada, T.; Tanemura, K.; Tsunematsu, R.; Ohmi, K.

    1988-05-01

    Eighty-four patients with previously untreated invasive carcinoma of the uterine cervix were treated by high-dose-rate intracavitary irradiation using a remotely controlled afterloading system (Ralstron) with or without external irradiation at the National Cancer Center Hospital, Tokyo, between 1977 and 1981. Survival rates and local control rates were comparable to those for 372 patients treated by low-dose-rate intracavitary irradiation with or without external irradiation from 1972 to 1981 at the hospital. The incidence of major complications was 5.1 and 2.4% for the patients treated by low-dose-rate intracavitary irradiation and by high-dose-rate irradiation, respectively. The results are comparable to those reported by other institutions. We have abandoned the conventional low-dose-rate intracavitary irradiation with the impression that the high-dose-rate remotely controlled afterloading system is a good alternative to the conventional one.

  12. Comparison of Monoenergetic Photon Organ Dose Rate Coefficients for the Female Stylized and Voxel Phantoms Submerged in Air

    DOE PAGES

    Hiller, Mauritius; Dewji, Shaheen Azim

    2017-02-16

    Dose rate coefficients computed using the International Commission on Radiological Protection (ICRP) reference adult female voxel phantom were compared with values computed using the Oak Ridge National Laboratory (ORNL) adult female stylized phantom in an air submersion exposure geometry. This is a continuation of previous work comparing monoenergetic organ dose rate coefficients for the male adult phantoms. With both the male and female data computed, effective dose rate as defined by ICRP Publication 103 was compared for both phantoms. Organ dose rate coefficients for the female phantom and ratios of organ dose rates for the voxel and stylized phantoms aremore » provided in the energy range from 30 to 5 MeV. Analysis of the contribution of the organs to effective dose is also provided. Lastly, comparison of effective dose rates between the voxel and stylized phantoms was within 8% at 100 keV and is <5% between 200 and 5000 keV.« less

  13. MEASURED AND CALCULATED HEATING AND DOSE RATES FOR THE HFIR HB4 BEAM TUBE AND COLD SOURCE

    SciTech Connect

    Slater, Charles O; Primm, Trent; Pinkston, Daniel; Cook, David Howard; Selby, Douglas L; Ferguson, Phillip D; Bucholz, James A; Popov, Emilian L

    2009-03-01

    The High Flux Isotope Reactor at the Oak Ridge National Laboratory was upgraded to install a cold source in horizontal beam tube number 4. Calculations were performed and measurements were made to determine heating within the cold source and dose rates within and outside a shield tunnel surrounding the beam tube. This report briefly describes the calculations and presents comparisons of the measured and calculated results. Some calculated dose rates are in fair to good agreement with the measured results while others, particularly those at the shield interfaces, differ greatly from the measured results. Calculated neutron exposure to the Teflon seals in the hydrogen transfer line is about one fourth of the measured value, underpredicting the lifetime by a factor of four. The calculated cold source heating is in good agreement with the measured heating.

  14. Absolute depth-dose-rate measurements for an 192Ir HDR brachytherapy source in water using MOSFET detectors.

    PubMed

    Zilio, Valéry Olivier; Joneja, Om Parkash; Popowski, Youri; Rosenfeld, Anatoly; Chawla, Rakesh

    2006-06-01

    Reported MOSFET measurements concern mostly external radiotherapy and in vivo dosimetry. In this paper, we apply the technique for absolute dosimetry in the context of HDR brachytherapy using an 192Ir source. Measured radial dose rate distributions in water for different planes perpendicular to the source axis are presented and special attention is paid to the calibration of the R and K type detectors, and to the determination of appropriate correction factors for the sensitivity variation with the increase of the threshold voltage and the energy dependence. The experimental results are compared with Monte Carlo simulated dose rate distributions. The experimental results show a good agreement with the Monte Carlo simulations: the discrepancy between experimental and Monte Carlo results being within 5% for 82% of the points and within 10% for 95% of the points. Moreover, all points except two are found to lie within the experimental uncertainties, confirming thereby the quality of the results obtained.

  15. Subtle variations in Pten dose determine cancer susceptibility.

    PubMed

    Alimonti, Andrea; Carracedo, Arkaitz; Clohessy, John G; Trotman, Lloyd C; Nardella, Caterina; Egia, Ainara; Salmena, Leonardo; Sampieri, Katia; Haveman, William J; Brogi, Edi; Richardson, Andrea L; Zhang, Jiangwen; Pandolfi, Pier Paolo

    2010-05-01

    Cancer susceptibility has been attributed to at least one heterozygous genetic alteration in a tumor suppressor gene (TSG). It has been hypothesized that subtle variations in TSG expression can promote cancer development. However, this hypothesis has not yet been definitively supported in vivo. Pten is a TSG frequently lost in human cancer and mutated in inherited cancer-predisposition syndromes. Here we analyze Pten hypermorphic mice (Pten(hy/+)), expressing 80% normal levels of Pten. Pten(hy/+) mice develop a spectrum of tumors, with breast tumors occurring at the highest penetrance. All breast tumors analyzed here retained two intact copies of Pten and maintained Pten levels above heterozygosity. Notably, subtle downregulation of Pten altered the steady-state biology of the mammary tissues and the expression profiles of genes involved in cancer cell proliferation. We present an alterative working model for cancer development in which subtle reductions in the dose of TSGs predispose to tumorigenesis in a tissue-specific manner.

  16. Accelerated tests for bounding the low dose rate radiation response of lateral PNP bipolar junction transistors

    SciTech Connect

    Witczak, S.C.; Schrimpf, R.D.; Galloway, K.F.; Schmidt, D.M.; Fleetwood, D.M.; Pease, R.L.; Coombs, W.E.; Suehle, J.S.

    1996-03-01

    Low dose rate gain degradation of lateral pnp bipolar transistors can be simulated by accelerated irradiations performed at approximately 135 degrees C. Degradation enhancement is explained by temperature- dependent radiation-induced interface trap formation above the transistor`s base.

  17. Neutron spectra and dose-rate measurements around a transport cask for spent reactor fuel

    NASA Astrophysics Data System (ADS)

    Rimpler, Arndt

    1997-02-01

    A storage facility with a capacity of 420 containers is available for the interim storage of spent fuel from power reactors at the village of Gorleben in Germany. During transportation and storage of spent fuel casks radiation exposure of the personnel is dominated by neutrons. The routine control of the dose rate limits according to the transport regulations and the licence of the storage facility is performed with conventional neutron survey meters. These monitors, calibrated for fast neutrons at radionuclide neutron sources, usually overestimate the real dose rate in unknown neutron fields. In this paper, a series of measurements with several monitoring instruments near a transport cask of the CASTOR type is presented. The results are compared with reference data for the does equivalents calculated from the measured fluence spectra using a Bonner multisphere spectrometer. Besides reliable information about neutron spectra and dose rates at the container, it was found that some of the rem counters overestimate the true dose rate by a factor of 2 or more.

  18. A geochemical assessment of terrestrial gamma-ray absorbed dose rates.

    PubMed

    Wollenberg, H A; Smith, A R

    1990-02-01

    A survey of the geochemical literature and unpublished data has resulted in the classification of the concentrations of the naturally occurring radioelements U, Th, and K by their associated rock types. A data base of over 2500 entries has been compiled, permitting calculation of terrestrial gamma-ray absorbed dose rates. The general lithology of terrains may be distinguished by their radioelement ratios, relative abundances, and total gamma radioactivities. The gamma-ray absorbed dose rates in air above igneous rocks generally vary with their silica contents, and with the exception of shale, sedimentary rocks have lower K:U and K:Th ratios than most igneous rocks. The appreciable difference between the overall mean terrestrial gamma-ray dose rate for rock of the continental surface (approximately 7 X 10(-8) Gy h-1) and the mean dose rate from field measurements over soil (approximately 5 X 10(-8) Gy h-1) is explained by the substantial differences between radioelement concentrations of soil and rock, differences that may vary markedly with rock type.

  19. Monitoring performance of the cameras under the high dose-rate gamma ray environments.

    PubMed

    Cho, Jai Wan; Choi, Young Soo; Jeong, Kyung Min

    2014-05-01

    CCD/CMOS cameras, loaded on a robot system, are generally used as the eye of the robot and monitoring unit. A major problem that arises when dealing with images provided by CCD/CMOS cameras under severe accident situations of a nuclear power plant is the presence of speckles owing to the high dose-rate gamma irradiation fields. To use a CCD/CMOS camera as a monitoring unit in a high radiation area, the legibility of the camera image in such intense gamma-radiation fields should therefore be defined. In this paper, the authors describe the monitoring index as a figure of merit of the camera's legibleness under a high dose-rate gamma ray irradiation environment. From a low dose-rate (10 Gy h) to a high dose-rate (200 Gy h) level, the legible performances of the cameras owing to the speckles are evaluated. The numbers of speckles generated by gamma ray irradiation in the camera image are calculated by an image processing technique. The legibility of the sensor indicator (thermo/hygrometer) owing to the number of speckles is also presented.

  20. Bladder–Rectum Spacer Balloon in High-Dose-Rate Brachytherapy in Cervix Carcinoma

    SciTech Connect

    Rai, Bhavana; Patel, Firuza D.; Chakraborty, Santam; Sharma, Suresh C.; Kapoor, Rakesh; Aprem, Abi Santhosh

    2013-04-01

    Purpose: To compare bladder and rectum doses with the use of a bladder–rectum spacer balloon (BRSB) versus standard gauze packing in the same patient receiving 2 high-dose-rate intracavitary brachytherapy fractions. Methods and Materials: This was a randomized study to compare the reduction in bladder and rectum doses with the use of a BRSB compared with standard gauze packing in patients with carcinoma of the cervix being treated with high-dose-rate intracavitary brachytherapy. The patients were randomized between 2 arms. In arm A, vaginal packing was done with standard gauze packing in the first application, and BRSB was used in the second application. Arm B was the reverse of arm A. The International Commission for Radiation Units and Measurement (ICRU) point doses and doses to 0.1-cm{sup 3}, 1-cm{sup 3}, 2-cm{sup 3}, 5-cm{sup 3}, and 10-cm{sup 3} volumes of bladder and rectum were compared. The patients were also subjectively assessed for the ease of application and the time taken for application. Statistical analysis was done using the paired t test. Results: A total of 43 patients were enrolled; however, 3 patients had to be excluded because the BRSB could not be inserted owing to unfavorable local anatomy. Thus 40 patients (80 plans) were evaluated. The application was difficult in 3 patients with BRSB, and in 2 patients with BRSB the application time was prolonged. There was no significant difference in bladder doses to 0.1 cm{sup 3}, 1 cm{sup 3}, 2 cm{sup 3}, 5 cm{sup 3}, and 10 cm{sup 3} and ICRU bladder point. Statistically significant dose reductions to 0.1-cm{sup 3}, 1-cm{sup 3}, and 2-cm{sup 3} volumes for rectum were observed with the BRSB. No significant differences in 5-cm{sup 3} and 10-cm{sup 3} volumes and ICRU rectum point were observed. Conclusion: A statistically significant dose reduction was observed for small high-dose volumes in rectum with the BRSB. The doses to bladder were comparable for BRSB and gauze packing. Transparent balloons of

  1. Effects of growth medium and fertilizer rate on the yield response of soybeans exposed to chronic doses of ozone

    SciTech Connect

    Heagle, A.S.; Letchworth, M.B.; Mitchell, C.A.

    1983-01-01

    The objectives were to determine whether wide variation in fertilizer rates or type of growth medium would affect the response of soybeans, Glycine max 'Davis' exposed to chronic doses of ozone (O/sub 3/) in open-top field chambers. Responses to O/sub 3/ were compared for plants grown in the ground or in pots containing an artificial growth medium. In 1977, the yield of plants grown in pots containing soil, sand, and a mixture of perlite, peat moss, and vermiculite was greater than that of plants grown in the ground; in 1978, the reverse was true. However, the percentage yeild loss caused by O/sub 3/ was not affected by the growth medium either year. Separate tests were made for potted plants that received different levels of fertilizer. At moderate fertilizer rates, the yield response to different doses of O/sub 3/ was not significantly affected by fertilizer rate for either year. In 1978, plants with no fertilizer added were severely stunted and even relatively high doses of O/sub 3/ did not further decrease yield. The results suggest that plant response to O/sub 3/ will be fairly uniform over a range of substrate types and fertilizer rates when edaphic conditions are adequate to insure normal plant growth. 17 references, 5 figures, 2 tables.

  2. Dose rate estimation of the Tohoku hynobiid salamander, Hynobius lichenatus, in Fukushima.

    PubMed

    Fuma, Shoichi; Ihara, Sadao; Kawaguchi, Isao; Ishikawa, Takahiro; Watanabe, Yoshito; Kubota, Yoshihisa; Sato, Youji; Takahashi, Hiroyuki; Aono, Tatsuo; Ishii, Nobuyoshi; Soeda, Haruhi; Matsui, Kumi; Une, Yumi; Minamiya, Yukio; Yoshida, Satoshi

    2015-05-01

    The radiological risks to the Tohoku hynobiid salamanders (class Amphibia), Hynobius lichenatus due to the Fukushima Dai-ichi Nuclear Power Plant accident were assessed in Fukushima Prefecture, including evacuation areas. Aquatic egg clutches (n = 1 for each sampling date and site; n = 4 in total), overwintering larvae (n = 1-5 for each sampling date and site; n = 17 in total), and terrestrial juveniles or adults (n = 1 or 3 for each sampling date and site; n = 12 in total) of H. lichenatus were collected from the end of April 2011 to April 2013. Environmental media such as litter (n = 1-5 for each sampling date and site; n = 30 in total), soil (n = 1-8 for each sampling date and site; n = 31 in total), water (n = 1 for each sampling date and site; n = 17 in total), and sediment (n = 1 for each sampling date and site; n = 17 in total) were also collected. Activity concentrations of (134)Cs + (137)Cs were 1.9-2800, 0.13-320, and 0.51-220 kBq (dry kg) (-1) in the litter, soil, and sediment samples, respectively, and were 0.31-220 and <0.29-40 kBq (wet kg)(-1) in the adult and larval salamanders, respectively. External and internal absorbed dose rates to H. lichenatus were calculated from these activity concentration data, using the ERICA Assessment Tool methodology. External dose rates were also measured in situ with glass dosimeters. There was agreement within a factor of 2 between the calculated and measured external dose rates. In the most severely contaminated habitat of this salamander, a northern part of Abukuma Mountains, the highest total dose rates were estimated to be 50 and 15 μGy h(-1) for the adults and overwintering larvae, respectively. Growth and survival of H. lichenatus was not affected at a dose rate of up to 490 μGy h(-1) in the previous laboratory chronic gamma-irradiation experiment, and thus growth and survival of this salamander would not be affected, even in the most severely contaminated habitat in Fukushima Prefecture. However, further

  3. Low dose radiation hypersensitivity and clustered DNA damages in human fibroblasts exposed to low dose and dose rate protons or 137CS y-rays

    SciTech Connect

    Bennett P. V.; Bennett, P.V.; Keszenman, D.J.; Johnson, A.M.; Sutherland, B.M.; Wilson, P.F.

    2013-05-14

    Effective radioprotection for human space travelers hinges upon understanding the individual properties of charged particles. A significant fraction of particle radiation astronauts will encounter in space exploratory missions will come from high energy protons in galactic cosmic radiation (GCR) and/or possible exposures to lower energy proton flux from solar particle events (SPEs). These potential exposures present major concerns for NASA and others, in planning and executing long term space exploratory missions. We recently reported cell survival and transformation (acquisition of anchorage-independent growth in soft agar) frequencies in apparently normal NFF-28 primary human fibroblasts exposed to 0-30 cGy of 50MeV, 100MeV (SPE-like), or 1000 MeV (GCR-like) monoenergetic protons. These were modeled after 1989 SPE energies at an SPE-like low dose-rate (LDR) of 1.65 cGy/min or high dose rate (HDR) of 33.3 cGy/min delivered at the NASA Space Radiation Laboratory (NSRL) at BNL.

  4. The Contribution of Tissue Level Organization to Genomic Stability Following Low Dose/Low Dose Rate Gamma and Proton Irradiation

    SciTech Connect

    Cheryl G. Burrell, Ph.D.

    2012-05-14

    low dose radiation exposure. Cells viability/cytotoxicity analysis data are currently being analyzed to determine how these endpoints are affected under our experimental conditions. The results from this study will be translatable to risk assessment for assigning limits to radiation workers, pre-dosing for more effective radiotherapy and the consequences of long duration space flight. The data from this study has been presented a various scientific meetings/workshops and a manuscript, containing the findings, is currently being prepared for publication. Due to unforeseen challenges in collecting the data and standardizing experimental procedures, the second and third aims have not been completed. However, attempts will be made, based on the availability of funds, to continue this project so that these aims can be satisfied.

  5. Four-dimensional dose distributions of step-and-shoot IMRT delivered with real-time tumor tracking for patients with irregular breathing: Constant dose rate vs dose rate regulation

    SciTech Connect

    Yang Xiaocheng; Han-Oh, Sarah; Gui Minzhi; Niu Ying; Yu, Cedric X.; Yi Byongyong

    2012-09-15

    Purpose: Dose-rate-regulated tracking (DRRT) is a tumor tracking strategy that programs the MLC to track the tumor under regular breathing and adapts to breathing irregularities during delivery using dose rate regulation. Constant-dose-rate tracking (CDRT) is a strategy that dynamically repositions the beam to account for intrafractional 3D target motion according to real-time information of target location obtained from an independent position monitoring system. The purpose of this study is to illustrate the differences in the effectiveness and delivery accuracy between these two tracking methods in the presence of breathing irregularities. Methods: Step-and-shoot IMRT plans optimized at a reference phase were extended to remaining phases to generate 10-phased 4D-IMRT plans using segment aperture morphing (SAM) algorithm, where both tumor displacement and deformation were considered. A SAM-based 4D plan has been demonstrated to provide better plan quality than plans not considering target deformation. However, delivering such a plan requires preprogramming of the MLC aperture sequence. Deliveries of the 4D plans using DRRT and CDRT tracking approaches were simulated assuming the breathing period is either shorter or longer than the planning day, for 4 IMRT cases: two lung and two pancreatic cases with maximum GTV centroid motion greater than 1 cm were selected. In DRRT, dose rate was regulated to speed up or slow down delivery as needed such that each planned segment is delivered at the planned breathing phase. In CDRT, MLC is separately controlled to follow the tumor motion, but dose rate was kept constant. In addition to breathing period change, effect of breathing amplitude variation on target and critical tissue dose distribution is also evaluated. Results: Delivery of preprogrammed 4D plans by the CDRT method resulted in an average of 5% increase in target dose and noticeable increase in organs at risk (OAR) dose when patient breathing is either 10% faster or

  6. Shutdown Dose Rate Analysis Using the Multi-Step CADIS Method

    SciTech Connect

    Ibrahim, Ahmad M.; Peplow, Douglas E.; Peterson, Joshua L.; Grove, Robert E.

    2015-01-01

    The Multi-Step Consistent Adjoint Driven Importance Sampling (MS-CADIS) hybrid Monte Carlo (MC)/deterministic radiation transport method was proposed to speed up the shutdown dose rate (SDDR) neutron MC calculation using an importance function that represents the neutron importance to the final SDDR. This work applied the MS-CADIS method to the ITER SDDR benchmark problem. The MS-CADIS method was also used to calculate the SDDR uncertainty resulting from uncertainties in the MC neutron calculation and to determine the degree of undersampling in SDDR calculations because of the limited ability of the MC method to tally detailed spatial and energy distributions. The analysis that used the ITER benchmark problem compared the efficiency of the MS-CADIS method to the traditional approach of using global MC variance reduction techniques for speeding up SDDR neutron MC calculation. Compared to the standard Forward-Weighted-CADIS (FW-CADIS) method, the MS-CADIS method increased the efficiency of the SDDR neutron MC calculation by 69%. The MS-CADIS method also increased the fraction of nonzero scoring mesh tally elements in the space-energy regions of high importance to the final SDDR.

  7. Shutdown Dose Rate Analysis Using the Multi-Step CADIS Method

    DOE PAGES

    Ibrahim, Ahmad M.; Peplow, Douglas E.; Peterson, Joshua L.; ...

    2015-01-01

    The Multi-Step Consistent Adjoint Driven Importance Sampling (MS-CADIS) hybrid Monte Carlo (MC)/deterministic radiation transport method was proposed to speed up the shutdown dose rate (SDDR) neutron MC calculation using an importance function that represents the neutron importance to the final SDDR. This work applied the MS-CADIS method to the ITER SDDR benchmark problem. The MS-CADIS method was also used to calculate the SDDR uncertainty resulting from uncertainties in the MC neutron calculation and to determine the degree of undersampling in SDDR calculations because of the limited ability of the MC method to tally detailed spatial and energy distributions. The analysismore » that used the ITER benchmark problem compared the efficiency of the MS-CADIS method to the traditional approach of using global MC variance reduction techniques for speeding up SDDR neutron MC calculation. Compared to the standard Forward-Weighted-CADIS (FW-CADIS) method, the MS-CADIS method increased the efficiency of the SDDR neutron MC calculation by 69%. The MS-CADIS method also increased the fraction of nonzero scoring mesh tally elements in the space-energy regions of high importance to the final SDDR.« less

  8. Towards enabling ultrasound guidance in cervical cancer high-dose-rate brachytherapy

    NASA Astrophysics Data System (ADS)

    Wong, Adrian; Sojoudia, Samira; Gaudet, Marc; Yap, Wan Wan; Chang, Silvia D.; Abolmaesumi, Purang; Aquino-Parsons, Christina; Moradi, Mehdi

    2014-03-01

    MRI and Computed Tomography (CT) are used in image-based solutions for guiding High Dose Rate (HDR) brachytherapy treatment of cervical cancer. MRI is costly and CT exposes the patients to ionizing radiation. Ultrasound, on the other hand, is affordable and safe. The long-term goal of our work is to enable the use of multiparametric ultrasound imaging in image-guided HDR for cervical cancer. In this paper, we report the development of enabling technology for ultrasound guidance and tissue typing. We report a system to obtain the 3D freehand transabdominal ultrasound RF signals and B-mode images of the uterus, and a method for registration of ultrasound to MRI. MRI and 3D ultrasound images of the female pelvis were registered by contouring the uterus in the two modalities, creating a surface model, followed by rigid and B-spline deformable registration. The resulting transformation was used to map the location of the tumor from the T2-weighted MRI to ultrasound images and to determine cancerous and normal areas in ultrasound. B-mode images show a contrast for cancer vs. normal tissue. Our study shows the potential and the challenges of ultrasound imaging in guiding cervical cancer treatments.

  9. Effect of dose rate on inactivation of microorganisms in spices by electron-beams and gamma-rays irradiation

    NASA Astrophysics Data System (ADS)

    Ito, Hitoshi; Islam, Md. Shamsul

    1994-06-01

    Total aerobic bacteria in spices used in this study were determined to be 1 × 10 6 to 6 × 10 7 per gram. A study on the inactivation of microorganisms in spices showed that doses of 6-9kGy of EB (electron-beams) or γ-irradiation were required to reduce the total aerobic bacteria in many However, a little increase of resistance was observed on the inactivation of total aerobic bacteria in many spices in case of EB irradiation. These difference of radiation sensitivities between EB and γ-rays was explained by dose rate effect on oxidation damage to microorganisms from the results of radiation sensitivities of Bacillus pumilus and B. megaterium spores at dry conditions. On the other hand, these high dose rate of EB irradiation suppressed the increase of peroxide values in spices at high dose irradiation up to 80 kGy. However, components of essential oils in spices were not changed even irradiated up to 50 kGy with EB and γ-rays.

  10. Chloroquine improves survival and hematopoietic recovery following lethal low dose- rate radiation

    PubMed Central

    Lim, Yiting; Hedayati, Mohammad; Merchant, Akil A.; Zhang, Yonggang; Yu, Hsiang-Hsuan M; Kastan, Michael B.; Matsui, William; DeWeese, Theodore L.

    2012-01-01

    Purpose We have previously shown that the anti-malarial agent chloroquine can abrogate the lethal cellular effects of low dose-rate (LDR) radiation in vitro, most likely by activating the ataxia-telangiectasia mutated (ATM) protein. Here, we demonstrate that chloroquine treatment also protects against lethal doses of LDR radiation in vivo. Methods and Materials C57BL/6 mice were irradiated with total of 12.8 Gy delivered at 9.4 cGy/hr. ATM null mice from the same background were used to determine the influence of ATM. Chloroquine was administered by two intraperitoneal injections of 59.4 μg per 17 g of body weight, 24 hrs and 4 hrs before irradiation. Bone marrow cells isolated from tibia, fibula and vertebral bones were transplanted into lethally irradiated CD45 congenic recipient mice by retro orbital injection. Chimerism was assessed by flow cytometry. In vitro methyl cellulose colony forming assay of whole bone marrow cells as well as FACS analysis of lineage depleted cells was used to assess the effect of chloroquine on progenitor cells. Results Mice pretreated with chloroquine prior to radiation exhibited a significantly higher survival rate compared to mice treated with radiation alone (80 vs.31 percent, p=0.0026). Chloroquine administration prior to radiation did not impact the survival of ATM null mice (p=0.86). Chloroquine also had a significant effect on the early engraftment of bone marrow cells from the irradiated donor mice 6 weeks after the transplantation (4.2 percent vs. 0.4 percent, p=0.015). Conclusion Chloroquine administration prior to radiation had a significant effect on the survival of normal but not ATM null mice strongly suggesting that the in vivo effect like the in vitro effect is also ATM dependent. Chloroquine improved the early engraftment of bone marrow cells from LDR irradiated mice, presumably by protecting the progenitor cells from radiation injury. Chloroquine thus could serve as a very useful drug for protection against the

  11. Chloroquine Improves Survival and Hematopoietic Recovery After Lethal Low-Dose-Rate Radiation

    SciTech Connect

    Lim Yiting; Hedayati, Mohammad; Merchant, Akil A.; Zhang Yonggang; Yu, Hsiang-Hsuan M.; Kastan, Michael B.; Matsui, William; DeWeese, Theodore L.

    2012-11-01

    Purpose: We have previously shown that the antimalarial agent chloroquine can abrogate the lethal cellular effects of low-dose-rate (LDR) radiation in vitro, most likely by activating the ataxia-telangiectasia mutated (ATM) protein. Here, we demonstrate that chloroquine treatment also protects against lethal doses of LDR radiation in vivo. Methods and Materials: C57BL/6 mice were irradiated with a total of 12.8 Gy delivered at 9.4 cGy/hour. ATM null mice from the same background were used to determine the influence of ATM. Chloroquine was administered by two intraperitoneal injections of 59.4 {mu}g per 17 g of body weight, 24 hours and 4 hours before irradiation. Bone marrow cells isolated from tibia, fibula, and vertebral bones were transplanted into lethally irradiated CD45 congenic recipient mice by retroorbital injection. Chimerism was assessed by flow cytometry. In vitro methylcellulose colony-forming assay of whole bone marrow cells and fluorescence activated cell sorting analysis of lineage depleted cells were used to assess the effect of chloroquine on progenitor cells. Results: Mice pretreated with chloroquine before radiation exhibited a significantly higher survival rate than did mice treated with radiation alone (80% vs. 31%, p = 0.0026). Chloroquine administration before radiation did not affect the survival of ATM null mice (p = 0.86). Chloroquine also had a significant effect on the early engraftment of bone marrow cells from the irradiated donor mice 6 weeks after transplantation (4.2% vs. 0.4%, p = 0.015). Conclusion: Chloroquine administration before radiation had a significant effect on the survival of normal but not ATM null mice, strongly suggesting that the in vivo effect, like the in vitro effect, is also ATM dependent. Chloroquine improved the early engraftment of bone marrow cells from LDR-irradiated mice, presumably by protecting the progenitor cells from radiation injury. Chloroquine thus could serve as a very useful drug for protection

  12. Extensive antibiotic prescription rate among hospitalized patients in Uganda: but with frequent missed-dose days

    PubMed Central

    Kiguba, Ronald; Karamagi, Charles; Bird, Sheila M.

    2016-01-01

    Objectives To describe the patterns of systemic antibiotic use and missed-dose days and detail the prescription, dispensing and administration of frequently used hospital-initiated antibiotics among Ugandan inpatients. Methods This was a prospective cohort of consented adult inpatients admitted on the medical and gynaecological wards of the 1790 bed Mulago National Referral Hospital. Results Overall, 79% (603/762; 95% CI: 76%–82%) of inpatients received at least one antibiotic during hospitalization while 39% (300/762; 95% CI: 36%–43%) had used at least one antibiotic in the 4 weeks pre-admission; 1985 antibiotic DDDs, half administered parenterally, were consumed in 3741 inpatient-days. Two-fifths of inpatients who received at least one of the five frequently used hospital-initiated antibiotics (ceftriaxone, metronidazole, ciprofloxacin, amoxicillin and azithromycin) missed at least one antibiotic dose-day (44%, 243/558). The per-day risk of missed antibiotic administration was greatest on day 1: ceftriaxone (36%, 143/398), metronidazole (27%, 67/245), ciprofloxacin (34%, 39/114) and all inpatients who missed at least one dose-day of prescribed amoxicillin and azithromycin. Most patients received fewer doses than were prescribed: ceftriaxone (74%, 273/371), ciprofloxacin (90%, 94/105) and metronidazole (97%, 222/230). Of prescribed doses, only 62% of ceftriaxone doses (1178/1895), 35% of ciprofloxacin doses (396/1130) and 27% of metronidazole doses (1043/3862) were administered. Seven percent (13/188) of patients on intravenous metronidazole and 6% (5/87) on intravenous ciprofloxacin switched to oral route. Conclusions High rates of antibiotic use both pre-admission and during hospitalization were observed, with low parenteral/oral switch of hospital-initiated antibiotics. Underadministration of prescribed antibiotics was common, especially on the day of prescription, risking loss of efficacy and antibiotic resistance. PMID:26945712

  13. Austrian results from Matroshka poncho and organ dose determination

    NASA Astrophysics Data System (ADS)

    Hajek, M.; Bergmann, R.; Fugger, M.; Vana, N.

    Cosmic rays in low-earth orbits LEO primarily consist of high-energy charged particles originating from galactic cosmic radiation GCR energetic solar particle events SPE and trapped radiation belts These radiations of high linear energy transfer LET generally inflict greater biological damage than that resulting from typical terrestrial radiation hazards Particle and energy spectra are attenuated in interaction processes within shielding structures and within the human body Reliable assessment of health risks to astronaut crews is pivotal in the design of future expeditions into interplanetary space and requires knowledge of absorbed radiation doses in critical radiosensitive organs and tissues The European Space Agency ESA Matroshka experiment---conducted under the aegis of the German Aerospace Center DLR ---is aimed at simulating an astronaut s body during extravehicular activities EVA Matroshka basically consists of a human phantom torso attached to a base structure and covered with a protective carbon-fibre container acting as a spacesuit model The phantom is divided into 33 tissue-equivalent polyurethane slices of specific density for tissue and organs Natural bones are embedded Channels and cut-outs enable accommodation of active and passive radiation monitors The torso is dressed by a skin-equivalent poncho which is also designed for dosimeter integration The phantom houses in total 7 active and more than 6000 passive radiation sensors Thereof the Atomic Institute of the Austrian Universities ATI provided more than

  14. The determination of the penetrating radiation dose at Hanford

    SciTech Connect

    Rathbun, L.A.

    1989-09-01

    Most of the thermoluminescent dosimeters (TLDs) and other devices that have been used to measure environmental radiation on the Hanford Site have measured natural background levels of radiation. Measurements of offsite environmental radiation near the boundary of the Hanford Site have often indicated higher doses than onsite measurements have. However, the converse has been found when radiation measurements from the cities and communities of southeastern Washington were compared with onsite measurements. The historical trends described for environmental TLD data have been better defined in this study by compiling the TLD data for selected locations over a 6-year period (1983 to 1988). The ongoing Hanford Environmental Surveillance Program also provides radionuclide concentrations in soil based on samples collected by technicians at Pacific Northwest Laboratory (PNL) and sent to a commercial laboratory for analyses. As part of the study described in this report, a portable gamma spectroscopy system was used in the field to identify concentrations of gamma-emitting radionuclides in the soil at various locations on the Hanford Site and in the surrounding area. This work began in 1986. Supplemental radiation measurements were made with a microprocessor-based survey meter and large NaI detector. 20 refs., 4 figs., 3 tabs.

  15. Subtle variations in Pten dose determine cancer susceptibility

    PubMed Central

    Alimonti, Andrea; Carracedo, Arkaitz; Clohessy, John G; Trotman, Lloyd C; Nardella, Caterina; Egia, Ainara; Salmena, Leonardo; Sampieri, Katia; Haveman, William J; Brogi, Edi; Richardson, Andrea L; Zhang, Jiangwen; Pandolfi, Pier Paolo

    2010-01-01

    Cancer susceptibility has been attributed to at least one heterozygous genetic alteration in a tumor suppressor gene (TSG)1. It has been hypothesized that subtle variations in TSG expression can promote cancer development2,3. However, this hypothesis has not yet been definitively supported in vivo. PTEN is a TSG frequently lost in human cancer and mutated in inherited cancer-predisposition syndromes4. Here, we analyze Pten hypermorphic mice (Ptenhy/+), expressing 80% normal levels of Pten. Ptenhy/+ mice develop a spectrum of tumors, with breast tumors occurring at the highest penetrance. All breast tumors analyzed here retained two intact copies of Pten and maintained Pten levels above heterozygosis. Notably, subtle downregulation of Pten altered the steady-state biology of the mammary tissues and the expression profiles of genes involved in cancer cell proliferation. We present an alterative working model for cancer development in which subtle reductions in the dose of TSGs predispose to tumorigenesis in a tissue-specific manner. PMID:20400965

  16. 47 CFR 54.607 - Determining the rural rate.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) UNIVERSAL SERVICE Universal Service Support for Health Care Providers § 54.607 Determining the rural rate. (a) The rural rate shall be the average of the rates actually being charged to commercial customers, other than health care providers, for identical or similar services provided by the...

  17. Effects of 14-day oral low dose selenium nanoparticles and selenite in rat-as determined by metabolite pattern determination.

    PubMed

    Hadrup, Niels; Loeschner, Katrin; Skov, Kasper; Ravn-Haren, Gitte; Larsen, Erik H; Mortensen, Alicja; Lam, Henrik R; Frandsen, Henrik L

    2016-01-01

    Selenium (Se) is an essential element with a small difference between physiological and toxic doses. To provide more effective and safe Se dosing regimens, as compared to dosing with ionic selenium, nanoparticle formulations have been developed. However, due to the nano-formulation, unexpected toxic effects may occur. We used metabolite pattern determination in urine to investigate biological and/or toxic effects in rats administered nanoparticles and for comparison included ionic selenium at an equimolar dose in the form of sodium selenite. Low doses of 10 and 100 fold the recommended human high level were employed to study the effects at borderline toxicity. Evaluations of all significantly changed putative metabolites, showed that Se nanoparticles and sodium selenite induced similar dose dependent changes of the metabolite pattern. Putative identified metabolites included increased decenedioic acid and hydroxydecanedioic acid for both Se formulations whereas dipeptides were only increased for selenite. These effects could reflect altered fatty acid and protein metabolism, respectively.

  18. Effects of 14-day oral low dose selenium nanoparticles and selenite in rat—as determined by metabolite pattern determination

    PubMed Central

    Loeschner, Katrin; Skov, Kasper; Ravn-Haren, Gitte; Larsen, Erik H.; Mortensen, Alicja; Lam, Henrik R.; Frandsen, Henrik L.

    2016-01-01

    Selenium (Se) is an essential element with a small difference between physiological and toxic doses. To provide more effective and safe Se dosing regimens, as compared to dosing with ionic selenium, nanoparticle formulations have been developed. However, due to the nano-formulation, unexpected toxic effects may occur. We used metabolite pattern determination in urine to investigate biological and/or toxic effects in rats administered nanoparticles and for comparison included ionic selenium at an equimolar dose in the form of sodium selenite. Low doses of 10 and 100 fold the recommended human high level were employed to study the effects at borderline toxicity. Evaluations of all significantly changed putative metabolites, showed that Se nanoparticles and sodium selenite induced similar dose dependent changes of the metabolite pattern. Putative identified metabolites included increased decenedioic acid and hydroxydecanedioic acid for both Se formulations whereas dipeptides were only increased for selenite. These effects could reflect altered fatty acid and protein metabolism, respectively. PMID:27781177

  19. Total-body irradiation and cataract incidence: A randomized comparison of two instantaneous dose rates

    SciTech Connect

    Ozsahin, M.; Belkacemi, Y.; Pene, F.; Dominique, C.; Schwartz, L.H.; Uzal, C.; Lefkopoulos, D.; Gindrey-Vie, B.; Vitu-Loas, L.; Touboul, E. )

    1994-01-15

    To assess the influence of instantaneous total-body irradiation dose rate in hematological malignancies, the authors randomized 157 patients according to different instantaneous dose rates. Patients have undergone a total-body irradiation before bone-marrow transplantation according to two different techniques: Either in one fraction (1000 cGy given to the midplane at the level of L4, and 800 cGy to the lungs) or in six fractions (1200 cGy over 3 consecutive days to the midplane at the level of L4, and 900 cGy to the lungs). Patients were randomized according to two instantaneous dose rates, called LOW and HIGH, in single-dose (6 vs. 15 cGy/min) and fractionated (3 vs. 6 cGy/min) TBI groups; there were 77 cases for the LOW and 80 for the HIGH groups, with 57 patients receiving single-dose (28 LOW, 29 HIGH) and 100 patients receiving fractionated total-body irradiation (49 LOW, 51 HIGH). As of July 1992, 16 of 157 patients developed cataracts after 17 to 46 months, with an estimated incidence of 23% at 5 years. Four of 77 patients in the LOW group, 12 of 80 patients in the HIGH group developed cataracts, with 5-year estimated incidences of 12% and 34%, respectively. Ten of 57 patients in the single-dose group, and 6 of 100 patients in the fractionated group developed cataracts, with 5-year estimated incidences of 39% and 13%, respectively. When the subgroups were considered, in the single-dose group, 3 of 28 LOW patients, and 7 of 29 HIGH patients developed cataracts, with 5-year estimated incidences of 24% and 53%, respectively; in the fractionated group, 1 of 49 LOW patients, and 5 of 51 HIGH patients developed cataracts, with 5-year estimated incidences of 4% and 22%, respectively. There was no statistically significant difference in terms of 5-year estimated cataract incidence between the patients receiving steroids and those not. The instantaneous dose rate was the only independent factor influencing the cataractogenesis. 18 refs., 5 figs., 1 tab.

  20. The time variation of dose rate artificially increased by the Fukushima nuclear crisis

    PubMed Central

    Hosoda, Masahiro; Tokonami, Shinji; Sorimachi, Atsuyuki; Monzen, Satoru; Osanai, Minoru; Yamada, Masatoshi; Kashiwakura, Ikuo; Akiba, Suminori

    2011-01-01

    A car-borne survey for dose rate in air was carried out in March and April 2011 along an expressway passing northwest of the Fukushima Dai-ichi Nuclear Power Station which released radionuclides starting after the Great East Japan Earthquake on March 11, 2011, and in an area closer to the Fukushima NPS which is known to have been strongly affected. Dose rates along the expressway, i.e. relatively far from the power station were higher after than before March 11, in some places by several orders of magnitude, implying that there were some additional releases from Fukushima NPS. The maximum dose rate in air within the high level contamination area was 36 μGy h−1, and the estimated maximum cumulative external dose for evacuees who came from Namie Town to evacuation sites (e.g. Fukushima, Koriyama and Nihonmatsu Cities) was 68 mSv. The evacuation is justified from the viewpoint of radiation protection. PMID:22355606

  1. The estimation of absorbed dose rates for non-human biota : an extended inter-comparison.

    SciTech Connect

    Batlle, J. V. I.; Beaugelin-Seiller, K.; Beresford, N. A.; Copplestone, D.; Horyna, J.; Hosseini, A.; Johansen, M.; Kamboj, S.; Keum, D.-K.; Kurosawa, N.; Newsome, L.; Olyslaegers, G.; Vandenhove, H.; Ryufuku, S.; Lynch, S. V.; Wood, M. D.; Yu, C.

    2011-05-01

    An exercise to compare 10 approaches for the calculation of unweighted whole-body absorbed dose rates was conducted for 74 radionuclides and five of the ICRP's Reference Animals and Plants, or RAPs (duck, frog, flatfish egg, rat and elongated earthworm), selected for this exercise to cover a range of body sizes, dimensions and exposure scenarios. Results were analysed using a non-parametric method requiring no specific hypotheses about the statistical distribution of data. The obtained unweighted absorbed dose rates for internal exposure compare well between the different approaches, with 70% of the results falling within a range of variation of {+-}20%. The variation is greater for external exposure, although 90% of the estimates are within an order of magnitude of one another. There are some discernible patterns where specific models over- or under-predicted. These are explained based on the methodological differences including number of daughter products included in the calculation of dose rate for a parent nuclide; source-target geometry; databases for discrete energy and yield of radionuclides; rounding errors in integration algorithms; and intrinsic differences in calculation methods. For certain radionuclides, these factors combine to generate systematic variations between approaches. Overall, the technique chosen to interpret the data enabled methodological differences in dosimetry calculations to be quantified and compared, allowing the identification of common issues between different approaches and providing greater assurance on the fundamental dose conversion coefficient approaches used in available models for assessing radiological effects to biota.

  2. RaD-X: Complementary measurements of dose rates at aviation altitudes

    NASA Astrophysics Data System (ADS)

    Meier, Matthias M.; Matthiä, Daniel; Forkert, Tomas; Wirtz, Michael; Scheibinger, Markus; Hübel, Robert; Mertens, Christopher J.

    2016-09-01

    The RaD-X stratospheric balloon flight organized by the National Aeronautics and Space Administration was launched from Fort Sumner on 25 September 2015 and carried several instruments to measure the radiation field in the upper atmosphere at the average vertical cutoff rigidity Rc of 4.1 GV. The German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt) in cooperation with Lufthansa German Airlines supported this campaign with an independent measuring flight at the altitudes of civil aviation on a round trip from Germany to Japan. The goal was to measure dose rates under similar space weather conditions over an area on the Northern Hemisphere opposite to the RaD-X flight. Dose rates were measured in the target areas, i.e., around vertical cutoff rigidity Rc of 4.1 GV, at two flight altitudes for about 1 h at each position with acceptable counting statistics. The analysis of the space weather situation during the flights shows that measuring data were acquired under stable and moderate space weather conditions with a virtually undisturbed magnetosphere. The measured rates of absorbed dose in silicon and ambient dose equivalent complement the data recorded during the balloon flight. The combined measurements provide a set of experimental data suitable for validating and improving numerical models for the calculation of radiation exposure at aviation altitudes.

  3. Assessing the reproducibility of fractional rates of protein synthesis in muscle tissue measured using the flooding dose technique.

    PubMed

    McCarthy, Ian D; Brown, James

    2016-07-01

    The flooding dose technique of Garlick et al. (1980) has become the main method for measuring tissue and whole-animal rates of protein synthesis in ectotherms. However, single tissue samples are used to determine rates of protein synthesis and no studies have examined the pattern of flooding in large tissues such as the white muscle in fishes, which can comprise up to 55% of the wet body mass of a fish and which is poorly perfused. The present study has examined, for the first time, the patterns of flooding and measured rates of protein synthesis in five different regions of the white muscle in the Arctic charr Salvelinus alpinus ranging in size from 25g to 1.6kg following a flooding dose injection of L-[(3)H]-phenylalanine. The results indicate that the degree of flooding (i.e. free pool specific radioactivity relative to that of the injection solution) and elevation in free phenylalanine concentrations can vary between regions but the calculated fractional rates of protein synthesis were similar in four of the five regions studied. The variability in rates of protein synthesis increased with body size with greater variability observed between regions for fish >1kg in body mass. For consistency between studies, it is recommended that samples are taken from the epaxial muscle in the region below the dorsal fin when measuring fractional rates of white muscle synthesis in fishes.

  4. Idiorrhythmic dose-rate variability in dietary zinc intake generates a different response pattern of zinc metabolism than conventional dose-response feeding.

    PubMed

    Momcilović, B; Reeves, P G; Blake, M J

    1997-07-01

    We compared the effects of idiorrhythmic dose-rate feeding and conventional dose-response on the induction of intestinal metallothionein (iMT), expression of aortal heat-shock protein mRNA (HSP70mRNA) induced by restraint stress, and accumulation of Zn in the femur and incisor of young growing male rats. An idiorrhythmic approach requires that the average dietary Zn concentration (modulo, M) over the whole experiment (epoch, E) is kept constant across different groups. This is done by adjusting the Zn concentration of the supplemented diet supplied to compensate for the reduction in the number of days on which Zn-supplemented diet is fed, the latter being spread evenly over the experiment. Idiorrhythms involve offering the diet with n times the overall Zn concentration (M) only every nth day with Zn-deficient diet offered on other days. Idiorrythmic Zn dose-rate feeding changed Zn accumulation in the femur and incisor in a complex bi-modal fashion, indicating that metabolic efficiency of dietary Zn is not constant but depends on Zn dose-rate. In contrast to feeding Zn in the conventional dose-response scheme, iMT and HSP70mRNA were not affected by idiorrhythmic dose-rate feeding. Idiorrhythmic cycling in dietary Zn load posed no risk of a biochemical overload nor caused the animals to be stressed. Idiorrhythmic dose-rate feeding brings the dimension of time to the conventional dose-response model.

  5. Influence of dose rate on the transformation of Syrian hamster embryo cells by fission-spectrum neutrons

    SciTech Connect

    Jones, C.A.; Sedita, B.A.; Hill, C.K.; Elkind, M.M.

    1988-01-01

    Several explanations for this neutron dose-rate effect have been proposed, but further investigation is necessary to determine the mechanisms involved. In all cell transformation studies to date the immortalized, aneuploid 10T1/2 cell-line has been used. These cells may be premalignant; thus their response characteristics and, in particular, the nature of the transformation event, might differ from that in a normal, fibroblast cell. One reason for the present study was to determine whether the low-dose-rate effect of fission neutrons could be demonstrated in normal cells. If so, a normal cell system, which would more closely resemble a normal in vivo system, could be used for mechanistic studies. We chose Syrian hamster embryo (SHE) fibroblasts which are normal, diploid cells with a limited life span in culture. Upon exposure to low doses of ionizing radiation, the fraction of the cells that are transformed can be identified in a standard 8--10 day colony assay by examining their clonal morphology. Transformed cells form colonies with a dense, criss-crossed or piled-up structure. A high percentage of the transformed colonies can be further propagated and will acquire additional neoplastic characteristics; i.e., anchorage independence, immortality, altered proteolytic activity, karyotype alterations, and finally, tumorigenicity.

  6. SU-E-J-93: Parametrisation of Dose to the Mucosa of the Anterior Rectal Wall in Transrectal Ultrasound Guided High-Dose-Rate Brachytherapy of the Prostate

    SciTech Connect

    Aitkenhead, A; Hamlett, L; Wood, D; Choudhury, A

    2014-06-01

    Purpose: In high-dose-rate (HDR) brachytherapy of the prostate, radiation is delivered from a number of radioactive sources which are inserted via catheter into the target volume. The rectal mucosa also receives dose during the treatment, which may lead to late toxicity effects. To allow possible links between rectal dose and toxicity to be investigated, suitable methods of parametrising the rectal dose are needed. Methods: During treatment of a series of 95 patients, anatomy and catheter locations were monitored by transrectal ultrasound, and target volume positions were contoured on the ultrasound scan by the therapist. The anterior rectal mucosal wall was identified by contouring the transrectal ultrasound balloon within the ultrasound scan. Source positions and dwell times, along with the dose delivered to the patient were computed using the Oncentra Prostate treatment planning system (TPS). Data for the series of patients were exported from the TPS in Dicom format, and a series of parametrisation methods were developed in a Matlab environment to assess the rectal dose. Results: Contours of the anterior rectal mucosa were voxelised within Matlab to allow the dose to the rectal mucosa to be analysed directly from the 3D dose grid. Dose parametrisations based on dose-surface (DSH) and dose-line (DLH) histograms were obtained. Both lateral and longitudinal extents of the mucosal dose were parametrised using dose-line histograms in the relevant directions. Conclusion: We have developed a series of dose parametrisations for quantifying the dose to the rectal mucosa during HDR prostate brachytherapy which are suitable for future studies investigating potential associations between mucosal dose and late toxicity effects. The geometry of the transrectal probe standardises the rectal anatomy, making this treatment technique particularly suited to studies of this nature.

  7. Analysis of high–dose rate brachytherapy dose distribution resemblance in CyberKnife hypofractionated treatment plans of localized prostate cancer

    SciTech Connect

    Sudahar, H.; Kurup, P.G.G.; Murali, V.; Mahadev, P.; Velmurugan, J.

    2013-01-01

    The present study is to analyze the CyberKnife hypofractionated dose distribution of localized prostate cancer in terms of high–dose rate (HDR) brachytherapy equivalent doses to assess the degree of HDR brachytherapy resemblance of CyberKnife dose distribution. Thirteen randomly selected localized prostate cancer cases treated using CyberKnife with a dose regimen of 36.25 Gy in 5 fractions were considered. HDR equivalent doses were calculated for 30 Gy in 3 fractions of HDR brachytherapy regimen. The D{sub 5%} of the target in the CyberKnife hypofractionation was 41.57 ± 2.41 Gy. The corresponding HDR fractionation (3 fractions) equivalent dose was 32.81 ± 1.86 Gy. The mean HDR fractionation equivalent dose, D{sub 98%}, was 27.93 ± 0.84 Gy. The V{sub 100%} of the prostate target was 95.57% ± 3.47%. The V{sub 100%} of the bladder and the rectum were 717.16 and 79.6 mm{sup 3}, respectively. Analysis of the HDR equivalent dose of CyberKnife dose distribution indicates a comparable resemblance to HDR dose distribution in the peripheral target doses (D{sub 98%} to D{sub 80%}) reported in the literature. However, there is a substantial difference observed in the core high-dose regions especially in D{sub 10%} and D{sub 5%}. The dose fall-off within the OAR is also superior in reported HDR dose distribution than the HDR equivalent doses of CyberKnife.

  8. Determination of the feasibility of reducing the spatial domain of the HEDR dose code. Hanford Environmental Dose Reconstruction Project: Dose code recovery activities, Calculation 006

    SciTech Connect

    Napier, B.A.; Snyder, S.F.

    1992-12-01

    A series of scoping calculations has been undertaken to evaluate the doses that may have been received by individuals living in the vicinity of the Hanford site. The primary impetus for this scoping calculation was to determine if large areas of the Hanford Environmental Dose Reconstruction (HEDR) Project atmospheric domain could be excluded from detailed calculation because the atmospheric transport of radionuclides from Hanford resulted in no (or negligible) deposition in those areas. The secondary impetus was to investigate whether an intermediate screen could be developed to reduce the data storage requirements by taking advantage of locations with periods of ``effectively zero`` deposition. This scoping calculation (Calculation 006) examined the spatial distribution of potential doses resulting from releases in the year 1945. This study builds on the work initiated in the first scoping study, of iodine in cow`s milk, and the third scoping study, which added additional pathways. Addressed in this calculation were the contributions to thyroid dose of infants from (1) air submersion and groundshine external dose, (2) inhalation, (3) ingestion of soil by humans, (4) ingestion of leafy vegetables, (5) ingestion of other vegetables and fruits, and (6) ingestion of meat, (7) ingestion of eggs, and (8) ingestion of cow`s milk from Feeding Regime 1 as described in scoping calculation 001.

  9. The role of dose rate in radiation cancer risk: evaluating the effect of dose rate at the molecular, cellular and tissue levels using key events in critical pathways following exposure to low LET radiation

    PubMed Central

    Brooks, Antone L.; Hoel, David G.; Preston, R. Julian

    2016-01-01

    Abstract Purpose: This review evaluates the role of dose rate on cell and molecular responses. It focuses on the influence of dose rate on key events in critical pathways in the development of cancer. This approach is similar to that used by the U.S. EPA and others to evaluate risk from chemicals. It provides a mechanistic method to account for the influence of the dose rate from low-LET radiation, especially in the low-dose region on cancer risk assessment. Molecular, cellular, and tissues changes are observed in many key events and change as a function of dose rate. The magnitude and direction of change can be used to help establish an appropriate dose rate effectiveness factor (DREF). Conclusions: Extensive data on key events suggest that exposure to low dose-rates are less effective in producing changes than high dose rates. Most of these data at the molecular and cellular level support a large (2–30) DREF. In addition, some evidence suggests that doses delivered at a low dose rate decrease damage to levels below that observed in the controls. However, there are some data human and mechanistic data that support a dose-rate effectiveness factor of 1. In summary, a review of the available molecular, cellular and tissue data indicates that not only is dose rate an important variable in understanding radiation risk but it also supports the selection of a DREF greater than one as currently recommended by ICRP (2007) and BEIR VII (NRC/NAS 2006). PMID:27266588

  10. Measured and Calculated Neutron Spectra and Dose Equivalent Rates at High Altitudes; Relevance to SST Operations and Space Research

    NASA Technical Reports Server (NTRS)

    Foelsche, T.; Mendell, R. B.; Wilson, J. W.; Adams, R. R.

    1974-01-01

    Results of the NASA Langley-New York University high-altitude radiation study are presented. Measurements of the absorbed dose rate and of secondary fast neutrons (1 to 10 MeV energy) during the years 1965 to 1971 are used to determine the maximum radiation exposure from galactic and solar cosmic rays of supersonic transport (SST) and subsonic jet occupants. The maximum dose equivalent rates that the SST crews might receive turn out to be 13 to 20 percent of the maximum permissible dose rate (MPD) for radiation workers (5 rem/yr). The exposure of passengers encountering an intense giant-energy solar particle event could exceed the MPD for the general population (0.5 rem/yr), but would be within these permissible limits if in such rare cases the transport descends to subsonic altitude; it is in general less than 12 percent of the MPD. By Monte Carlo calculations of the transport and buildup of nucleons in air for incident proton energies E of 0.02 to 10 GeV, the measured neutron spectra were extrapolated to lower and higher energies and for galactic cosmic rays were found to continue with a relatively high intensity to energies greater than 400 MeV, in a wide altitude range. This condition, together with the measured intensity profiles of fast neutrons, revealed that the biologically important fast and energetic neutrons penetrate deep into the atmosphere and contribute approximately 50 percent of the dose equivalant rates at SST and present subsonic jet altitudes.

  11. Developing A Directional High-Dose Rate (d-HDR) Brachytherapy Source

    NASA Astrophysics Data System (ADS)

    Heredia, Athena Yvonne

    Conventional sources used in brachytherapy provide nearly isotropic or radially symmetric dose distributions. Optimizations of dose distributions have been limited to varied dwell times at specified locations within a given treatment volume, or manipulations in source position for seed implantation techniques. In years past, intensity modulated brachytherapy (IMBT) has been used to reduce the amount of radiation to surrounding sensitive structures in select intracavitary cases by adding space or partial shields. Previous work done by Lin et al., at the University of Wisconsin-Madison, has shown potential improvements in conformality for brachytherapy treatments using a directionally shielded low dose rate (LDR) source for treatments in breast and prostate. Directional brachytherapy sources irradiate approximately half of the radial angles around the source, and adequately shield a quarter of the radial angles on the opposite side, with sharp gradient zones between the treated half and shielded quarter. With internally shielded sources, the radiation can be preferentially emitted in such a way as to reduce toxicities in surrounding critical organs. The objective of this work is to present findings obtained in the development of a new directional high dose rate (d-HDR) source. To this goal, 103Pd (Z = 46) is reintroduced as a potential radionuclide for use in HDR brachytherapy. 103Pd has a low average photon energy (21 keV) and relatively short half -life (17 days), which is why it has historically been used in low dose rate applications and implantation techniques. Pd-103 has a carrier-free specific activity of 75000 Ci/g. Using cyclotron produced 103Pd, near carrier-free specific activities can be achieved, providing suitability for high dose rate applications. The evolution of the d-HDR source using Monte Carlo simulations is presented, along with dosimetric parameters used to fully characterize the source. In addition, a discussion on how to obtain elemental

  12. Assessment of gamma dose rate over a suspected uranium mineralisation area of Jebel Mun, Western Sudan.

    PubMed

    Sam, A K; Sirelkhatim, D A; Hassona, R K; Hassan, R E; Hag Musa, E; Ahmed, M M O

    2002-01-01

    This study was conducted at the request of authorities in western Darfour State, to address the public concern about the levels of radioactivity in the area of Jebel Mun situated at Sudan-Chad international boundaries. It has been identified as a high background radiation area through aerial geological surveys conducted in late 1970s. The ambient gamma dose in the area was measured with the aid of a hand-held dose rate meter (Mini-Rad, Series 1000) and the surface rock samples were collected and analysed for their radioactivity content using a high-resolution gamma spectrometry equipped with HPGe with relative efficiency of 18%. The activity concentrations of 238U, 232Th and 40K were found to range from 39-253 Bq.kg(-1), 41-527 Bq.kg(-1) and 77-3027 Bq.kg(-1), respectively. From the values of the standard deviation it was concluded that the activity concentration of the considered primordial radionuclides was highly scattered (localised) which in turn indicates non-uniformity in the geological features and/or formations. 238U activity concentration corresponds to equivalent mass concentration of 7.77+/-6.12 ppm (3.19-20.73 ppm), which is of no economic importance. Samples are enriched in thorium relative to uranium as reflected by the Th:U mass ratio which ranges from 3 to 17. The absorbed dose rate in air as estimated from the measured activity concentrations of the primordial radionuclides using the DRCFs (dose rate conversion factors) falls within the range of 70-522 nGy.h(-1) with an average of 221+/-130 nGy.h(-1). It corresponds to an annual effective dose equivalent averaged of 0.27 mSv. The regression analysis has shown that the correlation between calculated and the measured ambient dose rate is marginally significant (r2 = 0.59). The 232Th series is the major producer of the surface radioactivity followed by 40K as they contribute 48% and 32% of the total absorbed dose, respectively.

  13. Dose rate effect on micronuclei induction in human blood lymphocytes exposed to single pulse and multiple pulses of electrons.

    PubMed

    Acharya, Santhosh; Bhat, N N; Joseph, Praveen; Sanjeev, Ganesh; Sreedevi, B; Narayana, Y

    2011-05-01

    The effects of single pulses and multiple pulses of 7 MV electrons on micronuclei (MN) induction in cytokinesis-blocked human peripheral blood lymphocytes (PBLs) were investigated over a wide range of dose rates per pulse (instantaneous dose rate). PBLs were exposed to graded doses of 2, 3, 4, 6, and 8 Gy of single electron pulses of varying pulse widths at different dose rates per pulse, ranging from 1 × 10(6) Gy s(-1) to 3.2 × 10(8) Gy s(-1). Different dose rates per pulse were achieved by changing the dose per electron pulse by adjusting the beam current and pulse width. MN yields per unit absorbed dose after irradiation with single electron pulses were compared with those of multiple pulses of electrons. A significant decrease in the MN yield with increasing dose rates per pulse was observed, when dose was delivered by a single electron pulse. However, no reduction in the MN yield was observed when dose was delivered by multiple pulses of electrons. The decrease in the yield at high dose rates per pulse suggests possible radical recombination, which leads to decreased biological damage. Cellular response to the presence of very large numbers of chromosomal breaks may also alter the damage.

  14. Assessment of ambient gamma dose rate around a prospective uranium mining area of South India - A comparative study of dose by direct methods and soil radioactivity measurements

    NASA Astrophysics Data System (ADS)

    Karunakara, N.; Yashodhara, I.; Sudeep Kumara, K.; Tripathi, R. M.; Menon, S. N.; Kadam, S.; Chougaonkar, M. P.

    Indoor and outdoor gamma dose rates were evaluated around a prospective uranium mining region - Gogi, South India through (i) direct measurements using a GM based gamma dose survey meter, (ii) integrated measurement days using CaSO4:Dy based thermo luminescent dosimeters (TLDs), and (iii) analyses of 273 soil samples for 226Ra, 232Th, and 40K activity concentration using HPGe gamma spectrometry. The geometric mean values of indoor and outdoor gamma dose rates were 104 nGy h-1 and 97 nGy h-1, respectively with an indoor to outdoor dose ratio of 1.09. The gamma dose rates and activity concentrations of 226Ra, 232Th, and 40K varied significantly within a small area due to the highly localized mineralization of the elements. Correlation study showed that the dose estimated from the soil radioactivity is better correlated with that measured directly using the portable survey meter, when compared to that obtained from TLDs. This study showed that in a region having localized mineralization in situ measurements using dose survey meter provide better representative values of gamma dose rates.

  15. Rotational IMRT delivery using a digital linear accelerator in very high dose rate 'burst mode'

    NASA Astrophysics Data System (ADS)

    Salter, Bill J.; Sarkar, Vikren; Wang, Brian; Shukla, Himanshu; Szegedi, Martin; Rassiah-Szegedi, Prema

    2011-04-01

    Recently, there has been a resurgence of interest in arc-based IMRT, through the use of 'conventional' multileaf collimator (MLC) systems that can treat large tumor volumes in a single, or very few pass(es) of the gantry. Here we present a novel 'burst mode' modulated arc delivery approach, wherein 2000 monitor units per minute (MU min-1) high dose rate bursts of dose are facilitated by a flattening-filter-free treatment beam on a Siemens Artiste (Oncology Care Systems, Siemens Medical Solutions, Concord, CA, USA) digital linear accelerator in a non-clinical configuration. Burst mode delivery differs from continuous mode delivery, used by Elekta's VMAT (Elekta Ltd, Crawley, UK) and Varian's RapidArc (Varian Medical Systems, Palo Alto, CA, USA) implementations, in that dose is not delivered while MLC leaves are moving. Instead, dose is delivered in bursts over very short arc angles and only after an MLC segment shape has been completely formed and verified by the controller. The new system was confirmed to be capable of delivering a wide array of clinically relevant treatment plans, without machine fault or other delivery anomalies. Dosimetric accuracy of the modulated arc platform, as well as the Prowess (Prowess Inc., Concord, CA, USA) prototype treatment planning version utilized here, was quantified and confirmed, and delivery times were measured as significantly brief, even with large hypofractionated doses. The burst mode modulated arc approach evaluated here appears to represent a capable, accurate and efficient delivery approach.

  16. Rotational IMRT delivery using a digital linear accelerator in very high dose rate 'burst mode'.

    PubMed

    Salter, Bill J; Sarkar, Vikren; Wang, Brian; Shukla, Himanshu; Szegedi, Martin; Rassiah-Szegedi, Prema

    2011-04-07

    Recently, there has been a resurgence of interest in arc-based IMRT, through the use of 'conventional' multileaf collimator (MLC) systems that can treat large tumor volumes in a single, or very few pass(es) of the gantry. Here we present a novel 'burst mode' modulated arc delivery approach, wherein 2000 monitor units per minute (MU min(-1)) high dose rate bursts of dose are facilitated by a flattening-filter-free treatment beam on a Siemens Artiste (Oncology Care Systems, Siemens Medical Solutions, Concord, CA, USA) digital linear accelerator in a non-clinical configuration. Burst mode delivery differs from continuous mode delivery, used by Elekta's VMAT (Elekta Ltd, Crawley, UK) and Varian's RapidArc (Varian Medical Systems, Palo Alto, CA, USA) implementations, in that dose is not delivered while MLC leaves are moving. Instead, dose is delivered in bursts over very short arc angles and only after an MLC segment shape has been completely formed and verified by the controller. The new system was confirmed to be capable of delivering a wide array of clinically relevant treatment plans, without machine fault or other delivery anomalies. Dosimetric accuracy of the modulated arc platform, as well as the Prowess (Prowess Inc., Concord, CA, USA) prototype treatment planning version utilized here, was quantified and confirmed, and delivery times were measured as significantly brief, even with large hypofractionated doses. The burst mode modulated arc approach evaluated here appears to represent a capable, accurate and efficient delivery approach.

  17. Dosimetric perturbations of a lead shield for surface and interstitial high-dose-rate brachytherapy.

    PubMed

    Candela-Juan, Cristian; Granero, Domingo; Vijande, Javier; Ballester, Facundo; Perez-Calatayud, Jose; Rivard, Mark J

    2014-06-01

    In surface and interstitial high-dose-rate brachytherapy with either (60)Co, (192)Ir, or (169)Yb sources, some radiosensitive organs near the surface may be exposed to high absorbed doses. This may be reduced by covering the implants with a lead shield on the body surface, which results in dosimetric perturbations. Monte Carlo simulations in Geant4 were performed for the three radionuclides placed at a single dwell position. Four different shield thicknesses (0, 3, 6, and 10 mm) and three different source depths (0, 5, and 10 mm) in water were considered, with the lead shield placed at the phantom surface. Backscatter dose enhancement and transmission data were obtained for the lead shields. Results were corrected to account for a realistic clinical case with multiple dwell positions. The range of the high backscatter dose enhancement in water is 3 mm for (60)Co and 1 mm for both (192)Ir and (169)Yb. Transmission data for (60)Co and (192)Ir are smaller than those reported by Papagiannis et al (2008 Med. Phys. 35 4898-4906) for brachytherapy facility shielding; for (169)Yb, the difference is negligible. In conclusion, the backscatter overdose produced by the lead shield can be avoided by just adding a few millimetres of bolus. Transmission data provided in this work as a function of lead thickness can be used to estimate healthy organ equivalent dose saving. Use of a lead shield is justified.

  18. Rate of expulsion of Trichuris trichiura with multiple and single dose regimens of albendazole.

    PubMed

    Bundy, D A; Thompson, D E; Cooper, E S; Blanchard, J

    1985-01-01

    The efficacy of multiple and single dose regimens of albendazole on Trichuris trichiura infection was evaluated by counting the number of worms expelled/day from two pair-matched groups of children, for nine days following therapy. The temporal patterns of worm expulsion were similar whether the children received a single 400 mg dose or two consecutive doses: no worms were passed before the second day, or after the sixth day, after intervention, and the maximum worm expulsion rate was attained on the fourth day. A second treatment six days after the first expelled no more worms. The results obtained here resemble those obtained previously with a three-day (600 mg) regimen of mebendazole in a study of heavily infected children. We conclude: that irrespective of dose, benzimidazole carbamates require the gut transit time plus 48 hours to immobilize T. trichiura; and that a single dose of albendazole is effective against light infections of T. trichiura but requires further evaluation with high intensity infections.

  19. Voxel modeling of rabbits for use in radiological dose rate calculations.

    PubMed

    Caffrey, E A; Johansen, M P; Higley, K A

    2016-01-01

    Radiation dose to biota is generally calculated using Monte Carlo simulations of whole body ellipsoids with homogeneously distributed radioactivity throughout. More complex anatomical phantoms, termed voxel phantoms, have been developed to test the validity of these simplistic geometric models. In most voxel models created to date, human tissue composition and density values have been used in lieu of biologically accurate values for non-human biota. This has raised questions regarding variable tissue composition and density effects on the fraction of radioactive emission energy absorbed within tissues (e.g. the absorbed fraction - AF), along with implications for age-dependent dose rates as organisms mature. The results of this study on rabbits indicates that the variation in composition between two mammalian tissue types (e.g. human vs rabbit bones) made little difference in self-AF (SAF) values (within 5% over most energy ranges). However, variable tissue density (e.g. bone vs liver) can significantly impact SAF values. An examination of differences across life-stages revealed increasing SAF with testis and ovary size of over an order of magnitude for photons and several factors for electrons, indicating the potential for increasing dose rates to these sensitive organs as animals mature. AFs for electron energies of 0.1, 0.2, 0.4, 0.5, 0.7, 1.0, 1.5, 2.0, and 4.0 MeV and photon energies of 0.01, 0.015, 0.02, 0.03, 0.05, 0.1, 0.2, 0.5, 1.0, 1.5, 2.0, and 4.0 MeV are provided for eleven rabbit tissues. The data presented in this study can be used to calculate accurate organ dose rates for rabbits and other small rodents; to aide in extending dose results among different mammal species; and to validate the use of ellipsoidal models for regulatory purposes.

  20. Long-term results of breast cancer irradiation treatment with low-dose-rate external irradiation

    SciTech Connect

    Pierquin, Bernard; Tubiana, Maurice . E-mail: maurice.tubiana@biomedicale.univ-paris5.fr; Pan, Camille; Lagrange, Jean-Leon; Calitchi, Elie; Otmezguine, Yves

    2007-01-01

    Purpose: The aim of this study was to assess beam therapy with low-dose-rate (LDR) external irradiation in a group of patients with breast cancer. Methods and Materials: This trial compared, from 1986 to 1989, patients with advanced breast cancer treated either by conventional fractionation or low-dose-rate (LDR) external radiotherapy (dose-rate 15 mGy/min, 5 sessions of 9 Gy delivered on 5 consecutive days). Results: A total of 21 patients were included in the fractionated therapy arm. At follow-up 15 years after treatment, 7 local recurrences had occurred, 3 patients had died of cancer, 18 patients were alive, 10 were without evidence of disease, and 6 had evidence of disease. A total of 22 patients had been included in the LDR arm of the study. Of these, 11 had received a dose of 45 Gy; thereafter, in view of severe local reactions, the dose was reduced to 35 Gy. There was no local recurrence in patients who had received 45 Gy, although there were 2 local recurrences among the 11 patients after 35 Gy. The sequelae were severe in patients who received 45 Gy but were comparable to those observed in patients treated by fractionated radiotherapy who received 35 Gy. The higher efficacy of tumor control in patients treated by LDR irradiation as well as the lower tolerance of normal tissue are probably related to the lack of repopulation. Conclusion: Although the patient numbers in this study are limited, based on our study results we conclude that the data for LDR irradiation are encouraging and that further investigation is warranted.

  1. IUdR polymers for combined continuous low-dose rate and high-dose rate sensitization of experimental human malignant gliomas.

    PubMed

    Yuan, X; Dillehay, L E; Williams, J R; Shastri, V R; Williams, J A

    2001-04-20

    Local polymeric delivery enhances IUdR radiosensitization of human malignant gliomas (MG). The combined low-dose rate (LDR) (0.03 Gy/h) and fractionated high-dose rate (HDR) treatments result in cures of experimental MGs. To enhance efficacy, we combined polymeric IUdR delivery, LDR, and HDR for treatments of both subcutaneous and intracranial MGs. In vitro: Cells (U251 MG) were trypsinized and replated in triplicate 1 day prior to LDR irradiation in media either without (control) or with 10 microM IUdR. After 72 hr, LDR irradiation cells were acutely irradiated (1.1 Gy/min) with increasing (0, 1.25, 2.5, 5.0, or 10 Gy) single doses. Implantable IUdR polymers [(poly(bis(p-carboxyphenoxy)-propane) (PCPP): sebaic acid (PCPP:SA), 20:80] (50% loading; 10 mg) were synthesized. In vivo: For flank vs. intracranial tumors, mice had 6 x 10(6) subcutaneous vs. 2 x 10(5) intracranial cells. For intracranial or subcutaneous MGs, mice had intratumoral blank (empty) vs. IUdR polymer treatments. One day after implantation, mice had immediate external LDR (3 cGy/h x 3 days total body irradiation) or HDR (2 Gy BID x 4 days to tumor site) or concurrent treatments. For the in vitro IUdR treatments, LDR resulted in a striking increase in cell-killing when combined with HDR. For the in vivo LDR treatments of flank tumors, the growth delay was greater for the IUdR vs. blank polymer treatments. For the combined LDR and HDR, the IUdR treatments resulted in a dramatic decrease in tumor volumes. On day 60 the log V/V0 were -1.7 +/- 0.22 for combined LDR + HDR + IUdR polymer (P < 0.05 vs. combined LDR + HDR + blank polymer). Survival for the intracranial controls was 22.9 +/- 1.2 days. For the blank polymer + LDR vs. blank polymer + LDR + HDR treatments, survival was 25.3 +/- 1.7 (P = NS) vs. 48.1 +/- 3.5 days (P < 0.05). For IUdR polymer + LDR treatment survival was 27.3 +/- 2.3 days (P = NS). The most striking improvement in survival followed the IUdR polymer + LDR + HDR treatment: 66

  2. Effects of radiation types and dose rates on selected cable-insulating materials

    NASA Astrophysics Data System (ADS)

    Hanisch, F.; Maier, P.; Okada, S.; Schönbacher, H.

    A series of radiation tests have been carried out on halogen-free cable-insulating and cable-sheathing materials comprising commercial LDPE, EPR, EVA and SIR compounds. samples were irradiated at five different radiation sources, e.g. a nuclear reactor, fuel elements, a 60Co source, and in the stray radiation field of high-energy proton and electron accelerators at CERN and DESY. The integrated doses were within 50-5000 kGy and the dose rates within 10 mGy/s-70 Gy/s. Tensile tests and gel-fraction measurements were carried out. The results confirm that LDPEs are very sensitive to long-term ageing effects, and that important errors exceeding an order of magnitude can be made when assessing radiation damage by accelerated tests. On the other hand, well-stabilized LDPEs and the cross-linked rubber compounds do not show large dose-rate effects for the values given above. Furthermore, the interpretation of the elongation-at-break data and their relation to gel-fraction measurements show that radiation damage is related to the total absorbed dose irrespective of the different radiation types used in this experiment.

  3. Monte Carlo dosimetric study of the medium dose rate CSM40 source.

    PubMed

    Vijande, J; Granero, D; Perez-Calatayud, J; Ballester, F

    2013-12-01

    The (137)Cs medium dose rate (MDR) CSM40 source model (Eckert & Ziegler BEBIG, Germany) is in clinical use but no dosimetric dataset has been published. This study aims to obtain dosimetric data for the CSM40 source for its use in clinical practice as required by the American Association of Physicists in Medicine (AAPM) and the European Society for Radiotherapy and Oncology (ESTRO). Penelope2008 and Geant4 Monte Carlo codes were used to characterize this source dosimetrically. It was located in an unbounded water phantom with composition and mass density as recommended by AAPM and ESTRO. Due to the low photon energies of (137)Cs, absorbed dose was approximated by collisional kerma. Additional simulations were performed to obtain the air-kerma strength, sK. Mass-energy absorption coefficients in water and air were consistently derived and used to calculate collisional kerma. Results performed with both radiation transport codes showed agreement typically within 0.05%. Dose rate constant, radial dose function and anisotropy function are provided for the CSM40 and compared with published data for other commercially available (137)Cs sources. An uncertainty analysis has been performed. The data provided by this study can be used as input data and verification in the treatment planning systems.

  4. Characteristics and verification of a car-borne survey system for dose rates in air: KURAMA-II.

    PubMed

    Tsuda, S; Yoshida, T; Tsutsumi, M; Saito, K

    2015-01-01

    The car-borne survey system KURAMA-II, developed by the Kyoto University Research Reactor Institute, has been used for air dose rate mapping after the Fukushima Dai-ichi Nuclear Power Plant accident. KURAMA-II consists of a CsI(Tl) scintillation detector, a GPS device, and a control device for data processing. The dose rates monitored by KURAMA-II are based on the G(E) function (spectrum-dose conversion operator), which can precisely calculate dose rates from measured pulse-height distribution even if the energy spectrum changes significantly. The characteristics of KURAMA-II have been investigated with particular consideration to the reliability of the calculated G(E) function, dose rate dependence, statistical fluctuation, angular dependence, and energy dependence. The results indicate that 100 units of KURAMA-II systems have acceptable quality for mass monitoring of dose rates in the environment.

  5. First observations of enhanced low dose rate sensitivity (ELDRS) in space: One part of the MPTB experiment

    SciTech Connect

    Titus, J.L.; Combs, W.E.; Turflinger, T.L.; Krieg, J.F.; Tausch, H.J.; Brown, D.B.; Campbell, A.B.; Pease, R.L.

    1998-12-01

    Bipolar devices, most notably circuits fabricated with lateral PNP transistors (LPNP) and substrate PNP transistors (SPNP), have been observed to exhibit an enhanced low dose rate sensitivity when exposed to ionizing radiation. These dose rate sensitive bipolar devices exhibited enhanced degradation of base current in transistors and of input bias current, offset current, and/or offset voltage in linear circuits at dose rates greater than 1 rd(Si)/s. The total dose responses of several bipolar transistors and linear circuits in a space environment are demonstrated to exhibit enhanced degradation comparable, in magnitude, to ground-based data irradiated at a dose rate of 10 mrd(Si)/s indicating that enhanced low dose rate sensitivities (ELDRS) do indeed exist in space.

  6. Influence of clouds on the cosmic radiation dose rate on aircraft.

    PubMed

    Pazianotto, Maurício T; Federico, Claudio A; Cortés-Giraldo, Miguel A; Pinto, Marcos Luiz de A; Gonçalez, Odair L; Quesada, José Manuel M; Carlson, Brett V; Palomo, Francisco R

    2014-10-01

    Flight missions were made in Brazilian territory in 2009 and 2011 with the aim of measuring the cosmic radiation dose rate incident on aircraft in the South Atlantic Magnetic Anomaly and to compare it with Monte Carlo simulations. During one of these flights, small fluctuations were observed in the vicinity of the aircraft with formation of Cumulonimbus clouds. Motivated by these observations, in this work, the authors investigated the relationship between the presence of clouds and the neutron flux and dose rate incident on aircraft using computational simulation. The Monte Carlo simulations were made using the MCNPX and Geant4 codes, considering the incident proton flux at the top of the atmosphere and its propagation and neutron production through several vertically arranged slabs, which were modelled according to the ISO specifications.

  7. Terrestrial gamma radiation dose rate in Ryukyu Islands, subtropical region of Japan.

    PubMed

    Furukawa, M; Kina, S; Shiroma, M; Shiroma, Y; Masuda, N; Motomura, D; Hiraoka, H; Fujioka, S; Kawakami, T; Yasuda, Y; Arakawa, K; Fukahori, K; Jyunicho, M; Ishikawa, S; Ohomoto, T; Shingaki, R; Akata, N; Zhuo, W; Tokonami, S

    2015-11-01

    In order to explain the distribution of natural radiation level in the Asia, in situ measurements of dose rate in air due to terrestrial gamma radiation have been conducted in a total of 21 islands that belong to Ryukyu Islands (Ryukyu Archipelago), subtropical rejoin of southwest Japan. Car-borne surveys have also been carried out in Okinawa-jima, the biggest island of the archipelago. Based on the results for these measurements, arithmetic mean, the maximum and the minimum of the dose rates at 1 m in height from the unpaved soil ground in the archipelago were estimated to be 47, 165 and 8 nGy h(-1), respectively. A comparative study of car-borne data obtained prior to and subsequent to the 2011 Fukushima nuclear accident, as for Okinawa-jima, indicated that the nuclear accident has no impact on the environmental radiation at the present time.

  8. Dose rate dependence of the speciation of neptunium in irradiated solutions of nitric acid

    SciTech Connect

    Precek, M.; Paulenova, A.; Mincher, B.J.; Mezyk, S.P.

    2013-07-01

    The effects of radiation on the redox speciation of neptunium are of interest due to their impact on the performance of separation of neptunium from highly radioactive solutions of dissolved used nuclear fuel. In this study, the influence of dose rate change from 0.4 kGy/h to 6 kGy/h was examined during irradiation of solutions of initially hexavalent 2.0-2.5 mM neptunium in nitric acid of two different concentrations (0.5 and 1 M). Results indicate that the immediate radiolytic steady-state concentration of neptunium(V) were depressed and its initial radiolytic yield was up to 2-times lower (in 1 M HNO{sub 3} solutions)during irradiations with the higher dose rate. The finding is explained on the basis of the enhancement of the role of oxidizing radicals during the radiolytic process. (authors)

  9. The trail of the development of high-dose-rate brachytherapy for cervical cancer in Japan.

    PubMed

    Inoue, Toshihiko

    2003-07-01

    The differences in radiotherapeutic treatment systems for cervical cancer between the United States and Japan can be attributed either to the tolerance of high-risk organs, or dosimetry itself. High-dose-rate (HDR) brachytherapy is the standard treatment for uterine cervix carcinoma in Japan. In addition, HDR Co-60 afterloading machines have been gradually replaced with Ir-192 micro-source afterloading machines during the past ten years. This implies that it has now become impossible to conduct a prospective comparative study of HDR versus low-dose-rate (LDR) brachytherapy for cervical cancer in Japan. An examination of the history of HDR intracavitary radiotherapy for uterine cervix carcinoma in Japan led us to the conclusion that HDR intracavitary brachytherapy for the treatment of cervical cancer is as effective as LDR intracavitary brachytherapy in terms of both survival and complications. In Japan, studies on the former can be drawn from a long experience of more than 35 years.

  10. Open-source hardware and software and web application for gamma dose rate network operation.

    PubMed

    Luff, R; Zähringer, M; Harms, W; Bleher, M; Prommer, B; Stöhlker, U

    2014-08-01

    The German Federal Office for Radiation Protection operates a network of about 1800 gamma dose rate stations as a part of the national emergency preparedness plan. Each of the six network centres is capable of operating the network alone. Most of the used hardware and software have been developed in-house under open-source license. Short development cycles and close cooperation between developers and users ensure robustness, transparency and fast maintenance procedures, thus avoiding unnecessary complex solutions. This also reduces the overall costs of the network operation. An easy-to-expand web interface has been developed to make the complete system available to other interested network operators in order to increase cooperation between different countries. The interface is also regularly in use for education during scholarships of trainees supported, e.g. by the 'International Atomic Energy Agency' to operate a local area dose rate monitoring test network.

  11. Temporal variation of dose rate distribution around the Fukushima Daiichi nuclear power station using unmanned helicopter.

    PubMed

    Sanada, Yukihisa; Orita, Tadashi; Torii, Tatsuo

    2016-12-01

    Aerial radiological survey using an unmanned aerial vehicle (UAV) was applied to measurement surface contamination around the Fukushima Daiichi nuclear power station (FDNPS). An unmanned helicopter monitoring system (UHMS) was developed to survey the environmental effect of radioactive cesium scattered as a result of the FDNPS accident. The UHMS was used to monitor the area surrounding the FDNPS six times from 2012 to 2015. Quantitative changes in the radioactivity distribution trend were revealed from the results of these monitoring runs. With this information, we found that the actual reduction of dose rate was faster than the one calculated with radiocesium physical half-life. It is indicated that the attenuation effect of radiation by radiocesium penetration in soil is dominant as for reason of reduction of dose rate.

  12. Mathematical Modeling of Radiocesium Migration and Air Dose Rate Changes in Eastern Fukushima Prefecture

    NASA Astrophysics Data System (ADS)

    Kitamura, A.; Sakuma, K.; Kurikami, H.; Malins, A.; Okumura, M.; Itakura, M.; Yamada, S.; Machida, M.

    2015-12-01

    Radioactive cesium that was deposited over Fukushima Prefecture after the accident at the Fukushima Daiichi nuclear power plant station is one of the major concerns regarding health physics today. Its migration is primarily by soil erosion and sediment transport within surface water during times of heavy rainfall and flooding. In order to predict the future distribution of radioactive cesium and resulting air dose rate at any location in Fukushima, we have integrated a number of mathematical models covering different time and spatial scales. In this presentation we report our overall scheme of prediction starting from sediment and radioactive cesium movement and resulting long term air dose rate changes. Specifically, we present simulation results of sediment movement and radioactive cesium migration using semi-empirical and physics based watershed models, and that of sediment and radioactive cesium behavior in a dam reservoir using one and two dimensional river simulation models. The model's results are compared with ongoing field monitoring.

  13. Monte Carlo calculation of artificial radionuclide radiation dose rates for marine species in the Western Pacific.

    PubMed

    Su, Jian; Yu, Wen; Zeng, Zhi; Ma, Hao; Chen, Liqi; Cheng, Jianping

    2014-03-01

    After the Fukushima nuclear accident, there is a widespread concern over the radioactive contamination of the marine environment. To protect non-human species, a radiation dose rate calculation model for Western Pacific marine species was established. Ten kinds of marine species in the Western Pacific were modelled by Geant4 for Monte Carlo simulation. Organisms were modelled with two ellipsoids: one represented organs and the other represented muscle. The enhanced dose rates by 10 main kinds of nuclides were calculated. According to the reported activities of three main nuclides ((134)Cs, (137)Cs and (131)I) in seawater near Fukushima coastal, the radiation risks of marine species were estimated. The results showed that the marine species near the Fukushima accident drain outlets might be at risk. But organisms that were >15 km away from the drain outlets were relatively safe.

  14. Factors affecting quality for beta dose rate measurements using ISO 6980 series I reference sources

    SciTech Connect

    Burns, R.E. Jr.; O`Brien, J.M. Jr.

    1993-12-31

    Atlan-Tech, Inc. has performed several calibrations of ISO 6980 Series 1 reference beta sources over the past two to three years. There were many problems encountered in attempting to compare the results of these calibrations with those from other laboratories, indicating the need for more standardization in the methodology employed for the measurement of the absorbed dose rate from ISO 6980 Series 1 reference beta sources. This document describes some of the problems encountered in attempting to intercompare results of beta dose-rate measurements. It proposes some solutions in an attempt to open a dialogue among facilities using reference beta standards for the purpose of promoting better measurement quality assurance through data intercomparison.

  15. Growth rate determinations from radiocarbon in bamboo corals (genus Keratoisis)

    NASA Astrophysics Data System (ADS)

    Farmer, Jesse R.; Robinson, Laura F.; Hönisch, Bärbel

    2015-11-01

    Radiocarbon (14C) measurements are an important tool for determining growth rates of bamboo corals, a cosmopolitan group of calcitic deep-sea corals. Published growth rate estimates for bamboo corals are highly variable, with potential environmental or ecological drivers of this variability poorly constrained. Here we systematically investigate the application of 14C for growth rate determinations in bamboo corals using 55 14C dates on the calcite and organic fractions of six bamboo corals (identified as Keratoisis sp.) from the western North Atlantic Ocean. Calcite 14C measurements on the distal surface of these corals and five previously published bamboo corals exhibit a strong one-to-one relationship with the 14C of dissolved inorganic carbon (DI14C) in ambient seawater (r2=0.98), confirming the use of Keratoisis sp. calcite 14C as a proxy for seawater 14C activity. Radial growth rates determined from 14C age-depth regressions, 14C plateau tuning and bomb 14C reference chronologies range from 12 to 78 μm y-1, in general agreement with previously published radiometric growth rates. We document potential biases to 14C growth rate determinations resulting from water mass variability, bomb radiocarbon, secondary infilling (ontogeny), and growth rate nonlinearity. Radial growth rates for Keratoisis sp. specimens do not correlate with ambient temperature, suggesting that additional biological and/or environmental factors may influence bamboo coral growth rates.

  16. Low-Dose-Rate Californium-252 Neutron Intracavitary Afterloading Radiotherapy Combined With Conformal Radiotherapy for Treatment of Cervical Cancer

    SciTech Connect

    Zhang Min; Xu Hongde; Pan Songdan; Lin Shan; Yue Jianhua; Liu Jianren

    2012-07-01

    Purpose: To study the efficacy of low-dose-rate californium-252 ({sup 252}Cf) neutron intracavitary afterloading radiotherapy (RT) combined with external pelvic RT for treatment of cervical cancer. Methods and Materials: The records of 96 patients treated for cervical cancer from 2006 to 2010 were retrospectively reviewed. For patients with tumors {<=}4 cm in diameter, external beam radiation was performed (1.8 Gy/day, five times/week) until the dose reached 20 Gy, and then {sup 252}Cf neutron intracavitary afterloading RT (once/week) was begun, and the frequency of external beam radiation was changed to four times/week. For patients with tumors >4 cm, {sup 252}Cf RT was performed one to two times before whole-pelvis external beam radiation. The tumor-eliminating dose was determined by using the depth limit of 5 mm below the mucosa as the reference point. In all patients, the total dose of the external beam radiation ranged from 46.8 to 50 Gy. For {sup 252}Cf RT, the dose delivered to point A was 6 Gy/fraction, once per week, for a total of seven times, and the total dose was 42 Gy. Results: The mean {+-} SD patient age was 54.7 {+-} 13.7 years. Six patients had disease assessed at stage IB, 13 patients had stage IIA, 49 patients had stage IIB, 3 patients had stage IIIA, 24 patients had stage IIIB, and 1 patient had stage IVA. All patients obtained complete tumor regression (CR). The mean {+-} SD time to CR was 23.5 {+-} 3.4 days. Vaginal bleeding was fully controlled in 80 patients within 1 to 8 days. The mean {+-} SD follow-up period was 27.6 {+-} 12.7 months (range, 6-48 months). Five patients died due to recurrence or metastasis. The 3-year survival and disease-free recurrence rates were 89.6% and 87.5 %, respectively. Nine patients experienced mild radiation proctitis, and 4 patients developed radiocystitis. Conclusions: Low-dose-rate {sup 252}Cf neutron RT combined with external pelvic RT is effective for treating cervical cancer, with a low incidence of

  17. Acceleration of atherogenesis in ApoE−/− mice exposed to acute or low-dose-rate ionizing radiation

    PubMed Central

    Mancuso, Mariateresa; Pasquali, Emanuela; Braga-Tanaka, Ignacia; Tanaka, Satoshi; Pannicelli, Alessandro; Giardullo, Paola; Pazzaglia, Simonetta; Tapio, Soile; Atkinson, Michael J.; Saran, Anna

    2015-01-01

    There is epidemiological evidence for increased non-cancer mortality, primarily due to circulatory diseases after radiation exposure above 0.5 Sv. We evaluated the effects of chronic low-dose rate versus acute exposures in a murine model of spontaneous atherogenesis. Female ApoE−/− mice (60 days) were chronically irradiated for 300 days with gamma rays at two different dose rates (1 mGy/day; 20 mGy/day), with total accumulated doses of 0.3 or 6 Gy. For comparison, age-matched ApoE−/− females were acutely exposed to the same doses and sacrificed 300 days post-irradiation. Mice acutely exposed to 0.3 or 6 Gy showed increased atherogenesis compared to age-matched controls, and this effect was persistent. When the same doses were delivered at low dose rate over 300 days, we again observed a significant impact on global development of atherosclerosis, although at 0.3 Gy effects were limited to the descending thoracic aorta. Our data suggest that a moderate dose of 0.3 Gy can have persistent detrimental effects on the cardiovascular system, and that a high dose of 6 Gy poses high risks at both high and low dose rates. Our results were clearly nonlinear with dose, suggesting that lower doses may be more damaging than predicted by a linear dose response. PMID:26359350

  18. Biological impact of low dose-rate simulated solar particle event radiation in vivo.

    PubMed

    Chang, P Y; Doppalapudi, R; Bakke, J; Wang, A; Menda, S; Davis, Z

    2010-08-01

    C57Bl6-lacZ animals were exposed to a range of low dose-rate simulated solar particle event (sSPE) radiation at the NASA-sponsored Research Laboratory (NSRL) at Brookhaven National Laboratory (BNL). Peripheral blood was harvested from animals from 1 to 12 days after total body irradiation (TBI) to quantify the level of circulating reticulocytes (RET) and micronucleated reticulocytes (MN-RET) as an early indicator of radiation-induced genotoxicity. Bone marrow lymphocytes and hippocampal tissues from each animal were collected at 12 days and up to two months, to evaluate dose-dependent late effects after sSPE exposure. Early hematopoietic changes show that the % RET was reduced up to 3 days in response to radiation exposure but recovered at 12 days postirradiation. The % MN-RET in peripheral blood was temporally regulated and dependant on the total accumulated dose. Total chromosome aberrations in lymphocytes increased linearly with dose within a week after radiation and remained significantly higher than the control values at 4 weeks after exposure. The level of aberrations in the irradiated animals returned to control levels by 8 weeks postirradiation. Measurements of chromosome 2 and 8 specific aberrations indicate that, consistent with conventional giemsa-staining methods, the level of aberrations is also not significantly higher than in control animals at 8 weeks postirradiation. The hippocampus was surveyed for differential transcriptional regulation of genes known to be associated with neurogenesis. Our results showed differential expression of neurotrophin and their associated receptor genes within 1 week after sSPE exposure. Progressive changes in the profile of expressed genes known to be involved in neurogenic signaling pathways were dependent on the sSPE dose. Our results to date suggest that radiation-induced changes in the hematopoietic system, i.e., chromosome aberrations in lymphocytes, are transient and do not persist past 4 weeks after radiation

  19. Individual external dose monitoring of all citizens of Date City by passive dosimeter 5 to 51 months after the Fukushima NPP accident (series): 1. Comparison of individual dose with ambient dose rate monitored by aircraft surveys.

    PubMed

    Miyazaki, Makoto; Hayano, Ryugo

    2016-12-06

    Date (da'te) City in Fukushima Prefecture has conducted a population-wide individual dose monitoring program after the Fukushima Daiichi Nuclear Power Plant Accident, which provides a unique and comprehensive data set of the individual doses of citizens. The purpose of this paper, the first in the series, is to establish a method for estimating effective doses based on the available ambient dose rate survey data. We thus examined the relationship between the individual external doses and the corresponding ambient doses assessed from airborne surveys. The results show that the individual doses were about 0.15 times the ambient doses, the coefficient of 0.15 being a factor of 4 smaller than the value employed by the Japanese government, throughout the period of the airborne surveys used. The method obtained in this study could aid in the prediction of individual doses in the early phase of future radiological accidents involving large-scale contamination.

  20. Tolerance of the vaginal vault to high-dose rate brachytherapy and concomitant chemo-pelvic irradiation: Long-term perspective☆

    PubMed Central

    Kaidar-Person, Orit; Abdah-Bortnyak, Roxolyana; Amit, Amnon; Nevelsky, Alexander; Berniger, Alison; Bar-Deroma, Raquel; Ben-Yosef, Rahamim; Kuten, Abraham

    2013-01-01

    Aim/background We sought to determine the tolerance level and complication rates of the vaginal vault to combined high-dose-rate intra-cavitary brachytherapy with concomitant chemo-radiotherapy. Patients and methods A retrospective review of medical records of all the patients who received definitive chemo-radiotherapy for cervical cancer between 1998 and 2002 was undertaken. The records were reviewed for doses and for radiation-associated early and late sequelae of the vagina, rectum and bladder. Cumulative biological effective dose was calculated for two reference vaginal surface points. Results Fifty patients were included. Average age at diagnosis was 54 years. Median follow-up was 59 months. There were no recorded instances of acute grade IV toxicity. Maximal high-dose-rate vaginal surface dose (upper central point) was 103 Gy, and maximal brachytherapy lateral surface dose was 70 Gy. Maximal cumulative biological effective dose for the lateral surface reference point was 465.5 Gy3, and the maximal cumulative biological effective dose for the superior reference point was 878.6 Gy3. There were no cases of vaginal necrosis or fistulas, and no cases of grade IV late vaginal, rectal or bladder toxicity. No correlation was found between the maximal vaginal surface dose and vaginal, rectal or bladder toxicity. Conclusions The maximal surface HDR brachytherapy dose of 103 Gy and the maximal cBED of 878.6 Gy3 were not associated with fistula or necrosis or other grade 3–4 vaginal complications. Concomitant chemo-radiotherapy, including pelvic radiotherapy and high-dose-rate intracavitary brachytherapy, is relatively safe for cervical cancer patients. PMID:24936320

  1. ''The Incubation Period for Void Swelling and its Dependence on Temperature, Dose Rate, and Dislocation Structure Evolution''

    SciTech Connect

    Surh, M P; Sturgeon, J B; Wolfer, W G

    2002-06-13

    Void swelling in structural materials used for nuclear reactors is characterized by an incubation period whose duration largely determines the usefulness of the material for core components. Significant evolution of the dislocation and void microstructures that control radiation-induced swelling can occur during this period. Thus, a theory of incubation must treat time-dependent void nucleation in combination with dislocation evolution, in which the sink strengths of voids and dislocations change in concert. We present theoretical results for void nucleation and growth including the time-dependent, self-consistent coupling of point defect concentrations to the evolution of both void populations and dislocation density. Simulations show that the incubation radiation dose is a strong function of the starting dislocation density and of the dislocation bias factors for vacancy and interstitial absorption. Irradiation dose rate and temperature also affect the duration of incubation. The results are in general agreement with experiment for high purity metals.

  2. A comparison of analytic models for estimating dose equivalent rates in shielding with beam spill measurements

    SciTech Connect

    Frankle, S.C.; Fitzgerald, D.H.; Hutson, R.L.; Macek, R.J.; Wilkinson, C.A.

    1992-12-31

    A comparison of 800-MeV proton beam spill measurements at the Los Alamos Meson Physics Facility (LAMPF) with analytical model calculations of neutron dose equivalent rates (DER) show agreement within factors of 2-3 for simple shielding geometries. The DER estimates were based on a modified Moyer model for transverse angles and a Monte Carlo based forward angle model described in the proceeding paper.

  3. Using rainfall radar data to improve interpolated maps of dose rate in the Netherlands.

    PubMed

    Hiemstra, Paul H; Pebesma, Edzer J; Heuvelink, Gerard B M; Twenhöfel, Chris J W

    2010-12-01

    The radiation monitoring network in the Netherlands is designed to detect and track increased radiation levels, dose rate more specifically, in 10-minute intervals. The network consists of 153 monitoring stations. Washout of radon progeny by rainfall is the most important cause of natural variations in dose rate. The increase in dose rate at a given time is a function of the amount of progeny decaying, which in turn is a balance between deposition of progeny by rainfall and radioactive decay. The increase in progeny is closely related to average rainfall intensity over the last 2.5h. We included decay of progeny by using weighted averaged rainfall intensity, where the weight decreases back in time. The decrease in weight is related to the half-life of radon progeny. In this paper we show for a rainstorm on the 20th of July 2007 that weighted averaged rainfall intensity estimated from rainfall radar images, collected every 5min, performs much better as a predictor of increases in dose rate than using the non-averaged rainfall intensity. In addition, we show through cross-validation that including weighted averaged rainfall intensity in an interpolated map using universal kriging (UK) does not necessarily lead to a more accurate map. This might be attributed to the high density of monitoring stations in comparison to the spatial extent of a typical rain event. Reducing the network density improved the accuracy of the map when universal kriging was used instead of ordinary kriging (no trend). Consequently, in a less dense network the positive influence of including a trend is likely to increase. Furthermore, we suspect that UK better reproduces the sharp boundaries present in rainfall maps, but that the lack of short-distance monitoring station pairs prevents cross-validation from revealing this effect.

  4. Non-melanoma skin cancer treated with high-dose-rate brachytherapy: a review of literature

    PubMed Central

    Rembielak, Agata; Manfredi, Bruno; Ursino, Stefano; Pasqualetti, Francesco; Laliscia, Concetta; Orlandi, Francesca; Morganti, Riccardo; Fabrini, Maria Grazia; Paiar, Fabiola

    2016-01-01

    Purpose The incidence of non-melanoma skin cancer (NMSC) has been increasing over the past 30 years. There are different treatment options and surgical excision is the most frequent treatment due to its low rates of recurrence. Radiotherapy is an effective alternative of surgery, and brachytherapy (BT) might be a better therapeutic option due to high radiation dose concentration to the tumor with rapid dose fall-off resulting in normal tissues sparing. The aim of this review was to evaluate the local control, toxicity, and cosmetic outcomes in NMSC treated with high-dose-rate BT (HDR-BT). Material and methods In May 2016, a systematic search of bibliographic database of PubMed, Web of Science, Scopus, and Cochrane Library with a combination of key words of “skin cancer”, “high dose rate brachytherapy”, “squamous cell carcinoma”, “basal cell carcinoma”, and “non melanoma skin cancer“ was performed. In this systematic review, we included randomized trials, non-randomized trials, prospective and retrospective studies in patients affected by NMSC treated with HDR-BT. Results Our searches generated a total of 85 results, and through a process of screening, 10 publications were selected for the review. Brachytherapy was well tolerated with acceptable toxicity and high local control rates (median: 97%). Cosmetic outcome was reported in seven study and consisted in an excellent and good cosmetic results in 94.8% of cases. Conclusions Based on the review data, we can conclude that the treatment of NMSC with HDR-BT is effective with excellent and good cosmetics results, even in elderly patients. The hypofractionated course appears effective with very good local disease control. More data with large-scale randomized controlled trials are needed to assess the efficacy and safety of brachytherapy. PMID:28115960

  5. Development of a Portable Gamma-ray Survey System for the Measurement of Air Dose Rates

    NASA Astrophysics Data System (ADS)

    Goto, Jun; Shobugawa, Yugo; Kawano, Yoh; Amaya, Yoshihiro; Izumikawa, Takuji; Katsuragi, Yoshinori; Shiiya, Tomohiro; Suzuki, Tsubasa; Takahashi, Takeshi; Takahashi, Toshihiro; Yoshida, Hidenori; Naito, Makoto

    BIo-Safety Hybrid Automatic MOnitor-Niigata (BISHAMON), a portable gamma-ray survey system, was developed to support victims of the Fukushima Daiichi nuclear disaster. BISHAMON is capable of constructing a map of the distribution of ambient dose equivalent rates using vehicle-mounted or on-foot survey methods. In this study, we give an overview of BISHAMON and its measurement results including a comparison with those of other systems such as KURAMA.

  6. Distribution of terrestrial gamma radiation dose rate in the eastern coastal area of Odisha, India.

    PubMed

    Gusain, G S; Rautela, B S; Sahoo, S K; Ishikawa, T; Prasad, G; Omori, Y; Sorimachi, A; Tokonami, S; Ramola, R C

    2012-11-01

    Terrestrial gamma radiation is one of the important radiation exposures on the earth's surface that results from the three primordial radionuclides (226)Ra, (232)Th and (40)K. The elemental concentration of these elements in the earth's crust could result in the anomalous variation of the terrestrial gamma radiation in the environment. The geology of the local area plays an important role in distribution of these radioactive elements. Environmental terrestrial gamma radiation dose rates were measured around the eastern coastal area of Odisha with the objective of establishing baseline data on the background radiation level. The values of the terrestrial gamma radiation dose rate vary significantly at different locations in the study area. The values of the terrestrial gamma dose rate ranged from 77 to 1651 nGy h(-1), with an average of 230 nGy h(-1). During the measurement of the terrestrial gamma dose rate, sand and soil samples were also collected for the assessment of natural radionuclides. The activities of (226)Ra, (232)Th and (40)K from these samples were measured using a gamma-ray spectrometry with a NaI(Tl) detector. Activity concentrations of (226)Ra, (232)Th and (40)K ranged from 15.6 to 69 Bq kg(-1) with an average of 46.7 Bq kg(-1), from 28.9 to 973 Bq kg(-1) with an average of 250 Bq kg(-1) and from 139 to 952 Bq kg(-1) with an average of 429, respectively. The detailed significance of these studies has been discussed from the radiation protection point of view.

  7. Effects of glycerol co-solvent on the rate and form of polymer gel dose response

    NASA Astrophysics Data System (ADS)

    Jirasek, A.; Hilts, M.; Berman, A.; McAuley, K. B.

    2009-02-01

    A factor currently limiting the clinical utility of x-ray CT polymer gel dosimetry is the overall low dose sensitivity (and hence low dose resolution) of the system. Hence, active research remains in the investigation of polymer gel formulations with increased CT dose response. An ideal polymer gel dosimeter will exhibit a sensitive CT response which is linear over a suitable dose range, making clinical implementation reasonably straightforward. This study reports on the variations in rate and form of the CT dose response of irradiated polymer gels manufactured with glycerol, which is a co-solvent that permits dissolution of additional bisacrylamide above its water solubility limit (3% by weight). This study focuses on situations where the concentration of bisacrylamide is kept at or below its water solubility limit so that the influence of the co-solvent on the dose response can be explored separately from the effects of increased cross-linker concentration. CT imaging and Raman spectroscopy are used to construct dose-response curves for irradiated gels varying in (i) initial total monomer (%T) and (ii) initial co-solvent concentration. Results indicate that: (i) for a fixed glycerol concentration, gel response increases linearly with %T. Furthermore, the functional form of the dose response remains constant, in agreement with a previous model of polymer formation. (ii) Polymer gels with constant %T and increasing co-solvent concentrations also show enhanced CT response. In addition, the functional form of the response is altered in these gels as co-solvent concentration is increased. Raman data indicate that the fraction of bis-acrylamide incorporated into polymerization, as opposed to cyclization, increases as co-solvent concentration increases. The changes in functional form indicate varying polymer yields (per unit dose), akin to relative fractional monomer/cross-linker (i.e. %C) changes in earlier studies. These results are put into context of the model of

  8. Remote Sensing of Radiation Dose Rate by a Robot for Outdoor Usage

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Doi, K.; Kanematsu, H.; Utsumi, Y.; Hashimoto, R.; Takashina, T.

    2013-04-01

    In the present paper, the design and prototyping of a telemetry system, in which GPS, camera, and scintillation counter were mounted on a crawler type traveling vehicle, were conducted for targeting outdoor usage such as school playground. As a result, the crawler type traveling vehicle can be operated smoothly in the school grounds of brick and asphalt. The results were as follows: (1) It was confirmed that the crawler type traveling vehicle can be operated smoothly in the school grounds of brick and asphalt (running speed: 17[m/min]). (2) It was confirmed that the location information captured by GPS is visible on the Google map, and that the incorporation of video information is also possible to play. (3)A radiation dose rate of 0.09[μSv / h] was obtained in the ground. The value is less than the 1/40 ([3.8μSv / h]) allowable radiation dose rate for children in Fukushima Prefecture.(4)As a further work, modifying to program traveling, the measurement of the distribution of the radiation dose rate in a school of Fukushima Prefecture, and class delivery on radiation measurement will be carried out.

  9. Radiation Dose-Rate Effects on Gene Expression in a Mouse Biodosimetry Model

    PubMed Central

    Paul, Sunirmal; Smilenov, Lubomir B.; Elliston, Carl D.; Amundson, Sally A.

    2015-01-01

    In the event of a nuclear accident o