Radiation dose-rate meter using an energy-sensitive counter
Kopp, Manfred K.
1988-01-01
A radiation dose-rate meter is provided which uses an energy-sensitive detector and combines charge quantization and pulse-rate measurement to monitor radiation dose rates. The charge from each detected photon is quantized by level-sensitive comparators so that the resulting total output pulse rate is proportional to the dose-rate.
Using RADFET for the real-time measurement of gamma radiation dose rate
NASA Astrophysics Data System (ADS)
Andjelković, Marko S.; Ristić, Goran S.; Jakšić, Aleksandar B.
2015-02-01
RADFETs (RADiation sensitive Field Effect Transistors) are integrating ionizing radiation dosimeters operating on the principle of conversion of radiation-induced threshold voltage shift into absorbed dose. However, one of the major drawbacks of RADFETs is the inability to provide the information on the dose rate in real-time using the conventional absorbed dose measurement technique. The real-time monitoring of dose rate and absorbed dose can be achieved with the current mode dosimeters such as PN and PIN diodes/photodiodes, but these dosimeters have some limitations as absorbed dose meters and hence they are often not a suitable replacement for RADFETs. In that sense, this paper investigates the possibility of using the RADFET as a real-time dose rate meter so that it could be applied for simultaneous online measurement of the dose rate and absorbed dose. A RADFET sample, manufactured by Tyndall National Institute, Cork, Ireland, was tested as a dose rate meter under gamma irradiation from a Co-60 source. The RADFET was configured as a PN junction, such that the drain, gate and source terminals were grounded, while the radiation-induced current was measured at the bulk terminal, whereby the bulk was successively biased with 0 , 10 , 20 and 30 V. In zero-bias mode the radiation-induced current was unstable, but in the biased mode the current response was stable for the investigated dose rates from 0.65 to 32.1 Gy h-1 and up to the total absorbed dose of 25 Gy. The current increased with the dose rate in accordance with the power law, whereas the sensitivity of the current read-out was linear with respect to the applied bias voltage. Comparison with previously analyzed PIN photodiodes has shown that the investigated RADFET is competitive with PIN photodiodes as a gamma radiation dose rate meter and therefore has the potential to be employed for the real-time monitoring of the dose rate and absorbed dose.
Compensated count-rate circuit for radiation survey meter
Todd, Richard A.
1981-01-01
A count-rate compensating circuit is provided which may be used in a portable Geiger-Mueller (G-M) survey meter to ideally compensate for counting loss errors in the G-M tube detector. In a G-M survey meter, wherein the pulse rate from the G-M tube is converted into a pulse rate current applied to a current meter calibrated to indicate dose rate, the compensated circuit generates and controls a reference voltage in response to the rate of pulses from the detector. This reference voltage is gated to the current-generating circuit at a rate identical to the rate of pulses coming from the detector so that the current flowing through the meter is varied in accordance with both the frequency and amplitude of the reference voltage pulses applied thereto so that the count rate is compensated ideally to indicate a true count rate within 1% up to a 50% duty cycle for the detector. A positive feedback circuit is used to control the reference voltage so that the meter output tracks true count rate indicative of the radiation dose rate.
Compensated count-rate circuit for radiation survey meter
Todd, R.A.
1980-05-12
A count-rate compensating circuit is provided which may be used in a portable Geiger-Mueller (G-M) survey meter to ideally compensate for couting loss errors in the G-M tube detector. In a G-M survey meter, wherein the pulse rate from the G-M tube is converted into a pulse rate current applied to a current meter calibrated to indicate dose rate, the compensation circuit generates and controls a reference voltage in response to the rate of pulses from the detector. This reference voltage is gated to the current-generating circuit at a rate identical to the rate of pulses coming from the detector so that the current flowing through the meter is varied in accordance with both the frequency and amplitude of the reference voltage pulses applied thereto so that the count rate is compensated ideally to indicate a true count rate within 1% up to a 50% duty cycle for the detector. A positive feedback circuit is used to control the reference voltage so that the meter output tracks true count rate indicative of the radiation dose rate.
NASA Astrophysics Data System (ADS)
Karunakara, N.; Yashodhara, I.; Sudeep Kumara, K.; Tripathi, R. M.; Menon, S. N.; Kadam, S.; Chougaonkar, M. P.
Indoor and outdoor gamma dose rates were evaluated around a prospective uranium mining region - Gogi, South India through (i) direct measurements using a GM based gamma dose survey meter, (ii) integrated measurement days using CaSO4:Dy based thermo luminescent dosimeters (TLDs), and (iii) analyses of 273 soil samples for 226Ra, 232Th, and 40K activity concentration using HPGe gamma spectrometry. The geometric mean values of indoor and outdoor gamma dose rates were 104 nGy h-1 and 97 nGy h-1, respectively with an indoor to outdoor dose ratio of 1.09. The gamma dose rates and activity concentrations of 226Ra, 232Th, and 40K varied significantly within a small area due to the highly localized mineralization of the elements. Correlation study showed that the dose estimated from the soil radioactivity is better correlated with that measured directly using the portable survey meter, when compared to that obtained from TLDs. This study showed that in a region having localized mineralization in situ measurements using dose survey meter provide better representative values of gamma dose rates.
Gamma radiation field intensity meter
Thacker, Louis H.
1994-01-01
A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.
Gamma radiation field intensity meter
Thacker, Louis H.
1995-01-01
A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.
Gamma radiation field intensity meter
Thacker, L.H.
1995-10-17
A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.
Gamma radiation field intensity meter
Thacker, L.H.
1994-08-16
A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carl, W. F.
NASA Langley Research Center requested a measurement and determination of the ambient gamma dose equivalent rate and kerma at 100 cm from the 252Cf source and determination of the ambient gamma dose equivalent rate and kerma at 200 cm from the 60Co source for the Radiation Budget Instrument Experiment (Rad-X). An Exradin A6 ion chamber with Shonka air-equivalent plastic walls in combination with a Supermax electrometer were used to measure the exposure rate and free-in-air kerma rate of the two sources at the requested distances. The measured gamma exposure, kerma, and dose equivalent rates are tabulated.
Assessment of neutron dosemeters around standard sources and nuclear fissile objects.
Raimondi, N; Tournier, B; Groetz, J E; Piot, J; Riebler, E; Crovisier, P; Chambaudet, A; Cabanné, N
2002-01-01
In order to evaluate the neutron doses around nuclear fissile objects, a comparative study has been made on several neutron dosemeters: bubble dosemeters, etched-track detectors (CR-39) and 3He-filled proportional counters used as dose-rate meters. The measurements were made on the ambient and the personal dose equivalents H*(10) and Hp(10). Results showed that several bubble dosemeters should have been used due to a low reproducibility in the measurements. A strong correlation with the neutron energy was also found, with about a 30% underestimation of Hp(10) for neutrons from the PuBe source, and about a 9% overestimation for neutrons from the 252Cf source. Measurements of the nuclear fissile objects were made using the CR-39 and the dose-rate meters. The CR-39 led to an underestimation of 30% with respect to the neutron dose-rate meter measurements. In addition, the MCNP calculation code was used in the different configurations.
Arduino based radiation survey meter
NASA Astrophysics Data System (ADS)
Rahman, Nur Aira Abd; Lombigit, Lojius; Abdullah, Nor Arymaswati; Azman, Azraf; Dolah, Taufik; Muzakkir, Amir; Jaafar, Zainudin; Mohamad, Glam Hadzir Patai; Ramli, Abd Aziz Mhd; Zain, Rasif Mohd; Said, Fazila; Khalid, Mohd Ashhar; Taat, Muhamad Zahidee
2016-01-01
This paper presents the design of new digital radiation survey meter with LND7121 Geiger Muller tube detector and Atmega328P microcontroller. Development of the survey meter prototype is carried out on Arduino Uno platform. 16-bit Timer1 on the microcontroller is utilized as external pulse counter to produce count per second or CPS measurement. Conversion from CPS to dose rate technique is also performed by Arduino to display results in micro Sievert per hour (μSvhr-1). Conversion factor (CF) value for conversion of CPM to μSvhr-1 determined from manufacturer data sheet is compared with CF obtained from calibration procedure. The survey meter measurement results are found to be linear for dose rates below 3500 µSv/hr.
An alternative arrangement of metered dosing fluid using centrifugal pump
NASA Astrophysics Data System (ADS)
Islam, Md. Arafat; Ehsan, Md.
2017-06-01
Positive displacement dosing pumps are extensively used in various types of process industries. They are widely used for metering small flow rates of a dosing fluid into a main flow. High head and low controllable flow rates make these pumps suitable for industrial flow metering applications. However their pulsating flow is not very suitable for proper mixing of fluids and they are relatively more expensive to buy and maintain. Considering such problems, alternative techniques to control the fluid flow from a low cost centrifugal pump is practiced. These include - throttling, variable speed drive, impeller geometry control and bypass control. Variable speed drive and impeller geometry control are comparatively costly and the flow control by throttling is not an energy efficient process. In this study an arrangement of metered dosing flow was developed using a typical low cost centrifugal pump using bypass flow technique. Using bypass flow control technique a wide range of metered dosing flows under a range of heads were attained using fixed pump geometry and drive speed. The bulk flow returning from the system into the main tank ensures better mixing which may eliminate the need of separate agitators. Comparative performance study was made between the bypass flow control arrangement of centrifugal pump and a diaphragm type dosing pump. Similar heads and flow rates were attainable using the bypass control system compared to the diaphragm dosing pump, but using relatively more energy. Geometrical optimization of the centrifugal pump impeller was further carried out to make the bypass flow arrangement more energy efficient. Although both the systems run at low overall efficiencies but the capital cost could be reduced by about 87% compared to the dosing pump. The savings in capital investment and lower maintenance cost very significantly exceeds the relatively higher energy cost of the bypass system. This technique can be used as a cost effective solution for industries in Bangladesh and have been implemented in two salt iodization plants at Narayangang.
Impact of the Revised 10 CFR 835 on the Neutron Dose Rates at LLNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radev, R
2009-01-13
In June 2007, 10 CFR 835 [1] was revised to include new radiation weighting factors for neutrons, updated dosimetric models, and dose terms consistent with the newer ICRP recommendations. A significant aspect of the revised 10 CFR 835 is the adoption of the recommendations outlined in ICRP-60 [2]. The recommended new quantities demand a review of much of the basic data used in protection against exposure to sources of ionizing radiation. The International Commission on Radiation Units and Measurements has defined a number of quantities for use in personnel and area monitoring [3,4,5] including the ambient dose equivalent H*(d) tomore » be used for area monitoring and instrument calibrations. These quantities are used in ICRP-60 and ICRP-74. This report deals only with the changes in the ambient dose equivalent and ambient dose rate equivalent for neutrons as a result of the implementation of the revised 10 CFR 835. In the report, the terms neutron dose and neutron dose rate will be used for convenience for ambient neutron dose and ambient neutron dose rate unless otherwise stated. This report provides a qualitative and quantitative estimate of how much the neutron dose rates at LLNL will change with the implementation of the revised 10 CFR 835. Neutron spectra and dose rates from selected locations at the LLNL were measured with a high resolution spectroscopic neutron dose rate system (ROSPEC) as well as with a standard neutron rem meter (a.k.a., a remball). The spectra obtained at these locations compare well with the spectra from the Radiation Calibration Laboratory's (RCL) bare californium source that is currently used to calibrate neutron dose rate instruments. The measurements obtained from the high resolution neutron spectrometer and dose meter ROSPEC and the NRD dose meter compare within the range of {+-}25%. When the new radiation weighting factors are adopted with the implementation of the revised 10 CFR 835, the measured dose rates will increase by up to 22%. The health physicists should consider this increase for any areas that have dose rates near a posting limit, such as near the 100 mrem/hr for a high radiation area, as this increase in measured dose rate may result in some changes to postings and consequent radiological controls.« less
Extended range radiation dose-rate monitor
Valentine, Kenneth H.
1988-01-01
An extended range dose-rate monitor is provided which utilizes the pulse pileup phenomenon that occurs in conventional counting systems to alter the dynamic response of the system to extend the dose-rate counting range. The current pulses from a solid-state detector generated by radiation events are amplified and shaped prior to applying the pulses to the input of a comparator. The comparator generates one logic pulse for each input pulse which exceeds the comparator reference threshold. These pulses are integrated and applied to a meter calibrated to indicate the measured dose-rate in response to the integrator output. A portion of the output signal from the integrator is fed back to vary the comparator reference threshold in proportion to the output count rate to extend the sensitive dynamic detection range by delaying the asymptotic approach of the integrator output toward full scale as measured by the meter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, C A; Clarke, S D; Pozzi, S A
Purpose: To develop an instrument for measuring neutron and photon dose rates from mixed fields with a single device. Methods: Stilbene organic scintillators can be used to detect fast neutrons and photons. Stilbene was used to measure emission from mixed particle sources californium-252 (Cf-252) and plutonium-beryllium (PuBe). Many source detector configurations were used, along with varying amounts of shielding. Collected spectra were analyzed using pulse shape discrimination software, to separate neutron and photon interactions. With a measured light output to energy relationship the pulse height spectrum was converted to energy deposited in the detector. Energy deposited was converted to dosemore » with a variety of standard dose factors, for comparison to current methods. For validation, all measurements and processing was repeated using an EJ-309 liquid scintillator detector. Dose rates were also measured in the same configuration with commercially available dose meters for further validation. Results: Measurements of dose rates will show agreement across all methods. Higher accuracy of pulse shape discrimination at lower energies with stilbene leads to more accurate measurement of neutron and photon deposited dose. In strong fields of mixed particles discrimination can be performed well at a very low energy threshold. This shows accurate dose measurements over a large range of incident particle energy. Conclusion: Stilbene shows promise as a material for dose rate measurements due to its strong ability for separating neutrons and photon pulses and agreement with current methods. A dual particle dose meter would simplify methods which are currently limited to the measurement of only one particle type. Future work will investigate the use of a silicon photomultiplier to reduce the size and required voltage of the assembly, for practical use as a handheld survey meter, room monitor, or phantom installation. Funding From the United States Department of Energy and the National Nuclear Security Administration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahman, Nur Aira Abd, E-mail: nur-aira@nm.gov.my; Lombigit, Lojius; Abdullah, Nor Arymaswati
This paper presents the design of new digital radiation survey meter with LND7121 Geiger Muller tube detector and Atmega328P microcontroller. Development of the survey meter prototype is carried out on Arduino Uno platform. 16-bit Timer1 on the microcontroller is utilized as external pulse counter to produce count per second or CPS measurement. Conversion from CPS to dose rate technique is also performed by Arduino to display results in micro Sievert per hour (μSvhr{sup −1}). Conversion factor (CF) value for conversion of CPM to μSvhr{sup −1} determined from manufacturer data sheet is compared with CF obtained from calibration procedure. The surveymore » meter measurement results are found to be linear for dose rates below 3500 µSv/hr.« less
Formulation and Development of Metered Dose Inhalations of Salbutamol in Solution Form
Khale, Anubha; Bajaj, Amrita
2011-01-01
In the present study attempts were made to prepare metered dose inhalation of salbutamol in solution form and compared it with the marketed metered dose inhalation in suspension form. Solution form of the drug was found better than marketed suspension formulation with respect to homogeneity and content uniformity. Propellant blend P-11 and P-12 in the proportion 30:70 was selected as it gave optimum vapour pressure. Surfactant oleic acid in concentration 10 mg per can was selected as it gave best results with clarity, spray pattern, vapour pressure, content per spray and rate of evaporation. Ethyl alcohol 2 ml per can was used as a cosolvent to give a clear solution, optimum vapour pressure, maximum content per spray and fair rate of evaporation. The selected formulation was subjected to the physico-chemical evaluation tests as per the standard pharmacopoeial procedures and the characteristics of the formulations were further compared with a conventional marketed formulation. In vitro study reveled the net respirable fraction was better than marketed preparation. PMID:22923867
Terrestrial Gamma Radiation Dose Rate of West Sarawak
NASA Astrophysics Data System (ADS)
Izham, A.; Ramli, A. T.; Saridan Wan Hassan, W. M.; Idris, H. N.; Basri, N. A.
2017-10-01
A study of terrestrial gamma radiation (TGR) dose rate was conducted in west of Sarawak, covering Kuching, Samarahan, Serian, Sri Aman, and Betong divisions to construct a baseline TGR dose rate level data of the areas. The total area covered was 20,259.2 km2, where in-situ measurements of TGR dose rate were taken using NaI(Tl) scintillation detector Ludlum 19 micro R meter NaI(Tl) approximately 1 meter above ground level. Twenty-nine soil samples were taken across the 5 divisions covering 26 pairings of 9 geological formations and 7 soil types. A hyperpure Germanium detector was then used to find the samples' 238U, 232Th, and 40K radionuclides concentrations producing a correction factor Cf = 0.544. A total of239 measured data were corrected with Cf resulting in a mean Dm of 47 ± 1 nGy h-1, with a range between 5 nGy h-1 - 103 nGy h-1. A multiple regression analysis was conducted between geological means and soil types means against the corrected TGR dose rate Dm, generating Dg,s= 0.847Dg+ 0.637Ds- 22.313 prediction model with a normalized Beta equation of Dg,s= 0.605Dg+ 0.395Ds. The model has an 84.6% acceptance of Whitney- Mann test null hypothesis when tested against the corrected TGR dose rates.
... Rotahaler® Turbuhaler® Twisthaler® Metered-Dose Inhaler (MDI) HFA Propellant Metered-Dose Inhaler and Spacer AeroChamber® AeroChamber® with ... Rotahaler® Turbuhaler® Twisthaler® Metered-Dose Inhaler (MDI) HFA Propellant Metered-Dose Inhaler and Spacer AeroChamber® AeroChamber® with ...
Quick-Relief Medications for Lung Diseases
... Rotahaler® Turbuhaler® Twisthaler® Metered-Dose Inhaler (MDI) HFA Propellant Metered-Dose Inhaler and Spacer AeroChamber® AeroChamber® with ... Rotahaler® Turbuhaler® Twisthaler® Metered-Dose Inhaler (MDI) HFA Propellant Metered-Dose Inhaler and Spacer AeroChamber® AeroChamber® with ...
Radiation dose in the high background radiation area in Kerala, India.
Christa, E P; Jojo, P J; Vaidyan, V K; Anilkumar, S; Eappen, K P
2012-03-01
A systematic radiological survey has been carried out in the region of high-background radiation area in Kollam district of Kerala to define the natural gamma-radiation levels. One hundred and forty seven soil samples from high-background radiation areas and five samples from normal background region were collected as per standard sampling procedures and were analysed for (238)U, (232)Th and (40)K by gamma-ray spectroscopy. External gamma dose rates at all sampling locations were also measured using a survey meter. The activities of (238)U, (232)Th and (40)K was found to vary from 17 to 3081 Bq kg(-1), 54 to 11976 Bq kg(-1) and BDL (67.4 Bq kg(-1)) to 216 Bq kg(-1), respectively, in the study area. Such heterogeneous distribution of radionuclides in the region may be attributed to the deposition phenomenon of beach sand soil in the region. Radium equivalent activities were found high in several locations. External gamma dose rates estimated from the levels of radionuclides in soil had a range from 49 to 9244 nGy h(-1). The result of gamma dose rate measured at the sampling sites using survey meter showed an excellent correlation with dose rates computed from the natural radionuclides estimated from the soil samples.
Sarmaga, Don; DuBois, Jeffrey A; Lyon, Martha E
2011-01-01
Background Off-meter dosed photometric glucose-oxidase-based glucose meters have been reported to be susceptible to interference by hydrogen-peroxide-based disinfecting agents. The objective of this study was to determine if a single application of hydrogen-peroxide-containing Accel® wipe to disinfect an on-meter dosed amperometric glucose-oxidase-based glucose meter will influence its performance. Method The performance of five on-meter dosed amperometric glucose-oxidase-based glucose meters was determined before and after disinfecting the devices with a single application of either CaviWipes® (14.3% isopropanol and 0.23% diisobutyl-phenoxy-ethoxyethyl dimethyl benzyl ammonium chloride) or Accel (0.5% hydrogen peroxide) wipes. Replicate glucose measurements were conducted before disinfecting the devices, immediately after disinfecting, and then 1 and 2 min postdisinfecting, with measurements in triplicate. Analysis was sequentially completed for five different meters. Results were analyzed by a two-way analysis of variance (Analyze-it software). Results No clinical (<0.3 mmol/liter) or statistical differences (p > .05) in glucose concentration were detected when the on-meter dosed amperometric glucose-oxidase-based glucose meters were disinfected with either CaviWipes or Accel wipes and measured immediately or 1 or 2 min postdisinfecting. No clinically significant difference in glucose concentration was detected between meters (<0.3 mmol/liter). Conclusion The on-meter dosed glucose oxidase amperometric-based glucose meters are not analytically susceptible to interference by a single application of hydrogen-peroxide-containing Accel disinfectant wipes. PMID:22226263
Sarmaga, Don; Dubois, Jeffrey A; Lyon, Martha E
2011-11-01
Off-meter dosed photometric glucose-oxidase-based glucose meters have been reported to be susceptible to interference by hydrogen-peroxide-based disinfecting agents. The objective of this study was to determine if a single application of hydrogen-peroxide-containing Accel® wipe to disinfect an on-meter dosed amperometric glucose-oxidase-based glucose meter will influence its performance. The performance of five on-meter dosed amperometric glucose-oxidase-based glucose meters was determined before and after disinfecting the devices with a single application of either CaviWipes® (14.3% isopropanol and 0.23% diisobutyl-phenoxy-ethoxyethyl dimethyl benzyl ammonium chloride) or Accel (0.5% hydrogen peroxide) wipes. Replicate glucose measurements were conducted before disinfecting the devices, immediately after disinfecting, and then 1 and 2 min postdisinfecting, with measurements in triplicate. Analysis was sequentially completed for five different meters. Results were analyzed by a two-way analysis of variance (Analyze-it software). No clinical (<0.3 mmol/liter) or statistical differences (p > .05) in glucose concentration were detected when the on-meter dosed amperometric glucose-oxidase-based glucose meters were disinfected with either CaviWipes or Accel wipes and measured immediately or 1 or 2 min postdisinfecting. No clinically significant difference in glucose concentration was detected between meters (<0.3 mmol/liter). The on-meter dosed glucose oxidase amperometric-based glucose meters are not analytically susceptible to interference by a single application of hydrogen-peroxide-containing Accel disinfectant wipes. © 2011 Diabetes Technology Society.
Americium-241 Decorporation Model
2014-10-01
doses compared Radiation Dose Convert mass to activity if needed Calculate critical organ doses/ effective whole body dose (Christy and Eckerman...compartments over time with and without treatment, excretion rates, and radiation doses to critical organs. Calculations from the model may be used to...268 x E + 2 newton-meter (N/m) pound-force/foot2 4.788 026 x E – 2 kilo pascal (kPa) pound-force/inch2 (psi) 6.894 757 kilo pascal (kPa) pound- mass
Nebulised fenoterol compared with metered aerosol.
Melville, C; Phelan, P D; Landau, L I
1985-01-01
The effect of nebulised fenoterol was compared with that of a similar dose administered by metered aerosol in 14 children, aged 7 to 17 years with moderately severe asthma. The initial response to fenoterol delivered by metered aerosol or nebuliser was the same, but a second dose by nebuliser after a dose by metered aerosol produced maximum potential bronchodilatation which was not seen when a second dose by metered aerosol was given after that by nebuliser. Administration of a bronchodilator by nebuliser does seem advantageous in the treatment of some children. PMID:3985659
Olsher, Richard H.; Hsu, Hsiao-Hua; Casson, William H.; Vasilik, Dennis G.; Kleck, Jeffrey H.; Beverding, Anthony
1996-01-01
A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.
NASA Astrophysics Data System (ADS)
Matsumura, H.; Toyoda, A.; Masumoto, K.; Yoshida, G.; Yagishita, T.; Nakabayashi, T.; Sasaki, H.; Matsumura, K.; Yamaya, Y.; Miyazaki, Y.
2018-06-01
In the decommissioning work for concrete walls of PET-cyclotron rooms, an in-situ measurement is expected to be useful for obtaining a contour map of the specific activity on the walls without destroying the structure. In this study, specific activities of γ-ray-emitting radionuclides in concrete walls were determined by using an in-situ measurement method employing a portable Ge semiconductor detector, and compared with the specific activity obtained using the sampling measurement method, at the Medical and Pharmacological Research Center Foundation in Hakui, Ishikawa, Japan. Accordingly, the specific activity could be determined by the in-situ determination method. Since there is a clear correlation between the total specific activity of γ-ray-emitting radionuclides and contact dose rate, the specific activity can be determined approximately by contact dose-rate measurement using a NaI scintillation survey meter. The specific activity of each γ-ray-emitting radionuclide can also be estimated from the contact dose rate using a NaI scintillation survey meter. The in-situ measurement method is a powerful tool for the decommissioning of the PET cyclotron room.
Development of Room Temperature Stable Formulation of Formoterol Fumarate/Beclomethasone HFA pMDI
Purohit, D.; Trehan, A.; Arora, V.
2009-01-01
The primary aim of present investigation was to develop and formulate room temperature stable formulation of formoterol fumarate and beclomethasone dipropionate with extra fine part size of hydrofluoroalkane pressurized metered dose inhalers. Particle size distribution of hydrofluoroalkane pressurized metered dose inhalers was evaluated using Twin Stage Glass Impinger and Anderson Cascade Impactor. A tetrafluoroethane and/or heptafluoropropane were evaluated for preparation of hydrofluoroalkane pressurized metered dose inhalers. The fine particle fractions delivered from hydrofluoroalkane propellant suspension pressurized metered dose inhalers can be predicted on the basis of formulation parameters and is dependent of metering chamber of valve and orifice size of actuators. The results presented in investigation showed the importance of formulation excipients with formulation of pressurized metered dose inhalers viz, canister, valve and actuators used in formulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurnaz, Asli; Kuecuekoemeroglu, B.; Okumusoglu, N. T.
In this study, it was determined environmental gamma radiation dose rate for some counties of Trabzon-Turkey. A detailed ambient gamma dose measurement has been performed in the seven counties of Trabzon, using a portable environmental survey meter (NaI detector, INSPECTOR 1000). The measurements were performed indoor and outdoor of buildings and also at each spot, a reading was taken at 1 m above ground level. The dose rates varied from 42.69 nGy/h and 140.91 nGy/h for indoor gamma dose and 27.84 nGy/h and 121.80 nGy/h for outdoor gamma dose . Average indoor and outdoor gamma dose rates were ascertained tomore » be 71.05 nGy/h and 60.20 nGy/h, respectively. The annual effective doses were calculated from indoor and outdoor gamma doses to be 348.56 muSv/y and 73.83 muSv/y, respectively.« less
NASA Astrophysics Data System (ADS)
Liamsuwan, T.; Channuie, J.; Ratanatongchai, W.
2015-05-01
Reliable measurement of neutron radiation is important for monitoring and protection in workplace where neutrons are present. Although Thailand has been familiar with applications of neutron sources and neutron beams for many decades, there is no calibration facility dedicated to neutron measuring devices available in the country. Recently, Thailand Institute of Nuclear Technology (TINT) has set up a multi-purpose irradiation facility equipped with a 50 Ci americium-241/beryllium neutron irradiator. The facility is planned to be used for research, nuclear analytical techniques and, among other applications, calibration of neutron measuring devices. In this work, the neutron calibration fields were investigated in terms of neutron energy spectra and dose equivalent rates using Monte Carlo simulations, an in-house developed neutron spectrometer and commercial survey meters. The characterized neutron fields can generate neutron dose equivalent rates ranging from 156 μSv/h to 3.5 mSv/h with nearly 100% of dose contributed by neutrons of energies larger than 0.01 MeV. The gamma contamination was less than 4.2-7.5% depending on the irradiation configuration. It is possible to use the described neutron fields for calibration test and routine quality assurance of neutron dose rate meters and passive dosemeters commonly used in radiation protection dosimetry.
Bellamy, D.; Penketh, A.
1987-01-01
The potency and side effects of salbutamol and fenoterol inhalers have been compared in 8 asthmatic patients using a dose response curve. There was no significant difference in the absolute or percentage increase in FEV1 with the two treatments, but fenoterol caused a significantly greater (P less than 0.01) increase in heart rate than did salbutamol. A greater degree of bronchodilatation was observed with increased doses and we suggest that regular higher doses may provide better bronchodilatation and control of asthma in selected patients. PMID:3432172
Changes in ambient dose equivalent rates around roads at Kawamata town after the Fukushima accident.
Kinase, Sakae; Sato, Satoshi; Sakamoto, Ryuichi; Yamamoto, Hideaki; Saito, Kimiaki
2015-11-01
Changes in ambient dose equivalent rates noted through vehicle-borne surveys have elucidated ecological half-lives of radioactive caesium in the environment. To confirm that the ecological half-lives are appropriate for predicting ambient dose equivalent rates within living areas, it is important to ascertain ambient dose equivalent rates on/around roads. In this study, radiation monitoring on/around roads at Kawamata town, located about 37 km northwest of the Fukushima Daiichi Nuclear Power Plant, was performed using monitoring vehicles and survey meters. It was found that the ambient dose equivalent rates around roads were higher than those on roads as of October 2012. And withal the ecological half-lives on roads were essentially consistent with those around roads. With dose predictions using ecological half-lives on roads, it is necessary to make corrections to ambient dose equivalent rates through the vehicle-borne surveys against those within living areas. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Investigation of natural effective gamma dose rates case study: Ardebil Province in Iran
2012-01-01
Gamma rays pose enough energy to induce chemical changes that may be biologically important for the normal functioning of body cells. The external exposure of human beings to natural environmental gamma radiation normally exceeds that from all man-made sources combined. In this research natural background gamma dose rates and corresponding annual effective doses were determined for selected cities of Ardebil province. Outdoor gamma dose rates were measured using an Ion Chamber Survey Meter in 105 locations in selected districts. Average absorbed doses for Ardebil, Sar-Ein, Germy, Neer, Shourabil Recreational Lake, and Kosar were determined as 265, 219, 344, 233, 352, and 358 nSv/h, respectively. Although dose rates recorded for Germi and Kosar are comparable with some areas with high natural radiation background, however, the dose rates in other districts are well below the levels reported for such locations. Average annual effective dose due to indoor and outdoor gamma radiation for Ardebil province was estimated as 1.73 (1.35–2.39) mSv, which is on average 2 times higher than the world population weighted average. PMID:23369115
Activity concentrations and dose rates from decorative granite countertops.
Llope, W J
2011-06-01
The gamma radiation emitted from a variety of commercial decorative granites available for use in U.S. homes has been measured with portable survey meters as well as an NaI(Th) gamma spectrometer. The (40)K, U-nat, and (232)Th activity concentrations were determined using a full-spectrum analysis. The dose rates that would result from two different arrangements of decorative granite slabs as countertops were explored in simulations involving an adult anthropomorphic phantom. Copyright © 2011 Elsevier Ltd. All rights reserved.
Aquino-Pérez, Dulce María; Peña-Cadena, Daniel; Trujillo-García, José Ubaldo; Jiménez-Sandoval, Jaime Omar; Machorro-Muñoz, Olga Stephanie
2013-01-01
The use of metered dose inhaler (MDI) is key in the treatment of asthma; its effectiveness is related to proper technique. The purpose of this study is to evaluate the use of the technique of metered dose inhalers for the parents or guardians of school children with asthma. In this cross-sectional study, we used a sample of 221 individual caregivers (parent or guardian) of asthmatic children from 5 to 12 years old, who use MDI. We designed a validated questionnaire consisting of 27 items which addressed the handling of inhaler technique. Descriptive statistics was used. Caregivers were rated as "good technique" in 41 fathers (18.6%), 77 mothers (34.8%) and 9 tutors (4.1%), and with a "regular technique" 32 fathers (14.5%), 48 mothers (21.2%) and 14 guardians (6.3%). Asthmatic children aged 9 were rated as with "good technique" in 24 (10.9%). According to gender, we found a "good technique" in 80 boys (36.2%) and 47 girls (21.3%) and with a "regular technique" in 59 boys (26.7%) and 35 girls (15.8%), P 0.0973, RP 0.9. We found with a "regular technique" mainly those asthmatic children diagnosed at ages between 1 to 3 years. Most of the participants had a good technical qualification; however major mistakes were made at key points in the performance of it.
Plutonium 238/239 Decorporation Model
2014-10-01
distribution in tissue compartments over time with and without treatment, excretion rates, and radiation doses to critical organs. Calculations from...kPa) pound- mass -foot2 (moment of inertia) 4.214 011 x E – 2 kilogram-meter2 (kg*m2) pound- mass /foot3 1.601 846 x E + 1 kilogram/m3 (kg/m3) rad...45 Figure 21. Acute Doses to Critical Organs from Pu-238 and Pu-239 Over 90 Days ................... 46 Figure 22. Doses
Predicted blood glucose from insulin administration based on values from miscoded glucose meters.
Raine, Charles H; Pardo, Scott; Parkes, Joan Lee
2008-07-01
The proper use of many types of self-monitored blood glucose (SMBG) meters requires calibration to match strip code. Studies have demonstrated the occurrence and impact on insulin dose of coding errors with SMBG meters. This paper reflects additional analyses performed with data from Raine et al. (JDST, 2:205-210, 2007). It attempts to relate potential insulin dose errors to possible adverse blood glucose outcomes when glucose meters are miscoded. Five sets of glucose meters were used. Two sets of meters were autocoded and therefore could not be miscoded, and three sets required manual coding. Two of each set of manually coded meters were deliberately miscoded, and one from each set was properly coded. Subjects (n = 116) had finger stick blood glucose obtained at fasting, as well as at 1 and 2 hours after a fixed meal (Boost((R)); Novartis Medical Nutrition U.S., Basel, Switzerland). Deviations of meter blood glucose results from the reference method (YSI) were used to predict insulin dose errors and resultant blood glucose outcomes based on these deviations. Using insulin sensitivity data, it was determined that, given an actual blood glucose of 150-400 mg/dl, an error greater than +40 mg/dl would be required to calculate an insulin dose sufficient to produce a blood glucose of less than 70 mg/dl. Conversely, an error less than or equal to -70 mg/dl would be required to derive an insulin dose insufficient to correct an elevated blood glucose to less than 180 mg/dl. For miscoded meters, the estimated probability to produce a blood glucose reduction to less than or equal to 70 mg/dl was 10.40%. The corresponding probabilities for autocoded and correctly coded manual meters were 2.52% (p < 0.0001) and 1.46% (p < 0.0001), respectively. Furthermore, the errors from miscoded meters were large enough to produce a calculated blood glucose outcome less than or equal to 50 mg/dl in 42 of 833 instances. Autocoded meters produced zero (0) outcomes less than or equal to 50 mg/dl out of 279 instances, and correctly coded manual meters produced 1 of 416. Improperly coded blood glucose meters present the potential for insulin dose errors and resultant clinically significant hypoglycemia or hyperglycemia. Patients should be instructed and periodically reinstructed in the proper use of blood glucose meters, particularly for meters that require coding.
Novel spectrometers for environmental dose rate monitoring.
Kessler, P; Behnke, B; Dabrowski, R; Dombrowski, H; Röttger, A; Neumaier, S
2018-07-01
A new generation of dosemeters, based on the scintillators LaBr 3 , CeBr 3 and SrI 2 , read out with conventional photomultipliers, to be used in the field of environmental gamma-radiation monitoring, was investigated. The main features of these new instruments and especially their outdoor performance, studied by long-term investigations under real weather conditions, are presented. The systems were tested at the reference sites for environmental radiation of the Physikalisch-Technische Bundesanstalt. The measurements are compared with that of well characterized classical dose rate reference instruments to demonstrate the suitability of new spectrometers for environmental dose rate monitoring even in adverse weather conditions. Their potential to replace the (mainly Geiger Müller based) dose rate meters operated in about 5000 European early waning network stations as well as in environmental radiation monitoring in general is shown. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Okeyode, I C; Rabiu, J A; Alatise, O O; Makinde, V; Akinboro, F G; Al-Azmi, D; Mustapha, A O
2017-04-01
A radiation monitoring system comprising a Geiger-Muller counter connected to a smart phone via Bluetooth was used for a dose rate survey in some parts of south-western Nigeria. The smart phone has the Geographical Positioning System, which provides the navigation information and saves it along with the dose rate data. A large number of data points was obtained that shows the dose rate distribution within the region. The results show that the ambient dose rates in the region range from 60 to 520 nSv -1 and showed a bias that is attributable to the influence of geology on the ambient radiation dose in the region. The geology influence was demonstrated by superimposing the dose rate plot and the geological map of the area. The potential applications of the device in determining baseline information and in area monitoring, e.g. for lost or abandoned sources, radioactive materials stockpiles, etc., were discussed in the article, particularly against the background of Nigeria's plan to develop its nuclear power program. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
A quality assurance program for clinical PDT
NASA Astrophysics Data System (ADS)
Dimofte, Andreea; Finlay, Jarod; Ong, Yi Hong; Zhu, Timothy C.
2018-02-01
Successful outcome of Photodynamic therapy (PDT) depends on accurate delivery of prescribed light dose. A quality assurance program is necessary to ensure that light dosimetry is correctly measured. We have instituted a QA program that include examination of long term calibration uncertainty of isotropic detectors for light fluence rate, power meter head intercomparison for laser power, stability of the light-emitting diode (LED) light source integrating sphere as a light fluence standard, laser output and calibration of in-vivo reflective fluorescence and absorption spectrometers. We examined the long term calibration uncertainty of isotropic detector sensitivity, defined as fluence rate per voltage. We calibrate the detector using the known calibrated light fluence rate of the LED light source built into an internally baffled 4" integrating sphere. LED light sources were examined using a 1mm diameter isotropic detector calibrated in a collimated beam. Wavelengths varying from 632nm to 690nm were used. The internal LED method gives an overall calibration accuracy of +/- 4%. Intercomparison among power meters was performed to determine the consistency of laser power and light fluence rate measured among different power meters. Power and fluence readings were measured and compared among detectors. A comparison of power and fluence reading among several power heads shows long term consistency for power and light fluence rate calibration to within 3% regardless of wavelength. The standard LED light source is used to calibrate the transmission difference between different channels for the diffuse reflective absorption and fluorescence contact probe as well as isotropic detectors used in PDT dose dosimeter.
Predicted Blood Glucose from Insulin Administration Based on Values from Miscoded Glucose Meters
Raine, Charles H.; Pardo, Scott; Parkes, Joan Lee
2008-01-01
Objectives The proper use of many types of self-monitored blood glucose (SMBG) meters requires calibration to match strip code. Studies have demonstrated the occurrence and impact on insulin dose of coding errors with SMBG meters. This paper reflects additional analyses performed with data from Raine et al. (JDST, 2:205–210, 2007). It attempts to relate potential insulin dose errors to possible adverse blood glucose outcomes when glucose meters are miscoded. Methods Five sets of glucose meters were used. Two sets of meters were autocoded and therefore could not be miscoded, and three sets required manual coding. Two of each set of manually coded meters were deliberately miscoded, and one from each set was properly coded. Subjects (n = 116) had finger stick blood glucose obtained at fasting, as well as at 1 and 2 hours after a fixed meal (Boost®; Novartis Medical Nutrition U.S., Basel, Switzerland). Deviations of meter blood glucose results from the reference method (YSI) were used to predict insulin dose errors and resultant blood glucose outcomes based on these deviations. Results Using insulin sensitivity data, it was determined that, given an actual blood glucose of 150–400 mg/dl, an error greater than +40 mg/dl would be required to calculate an insulin dose sufficient to produce a blood glucose of less than 70 mg/dl. Conversely, an error less than or equal to -70 mg/dl would be required to derive an insulin dose insufficient to correct an elevated blood glucose to less than 180 mg/dl. For miscoded meters, the estimated probability to produce a blood glucose reduction to less than or equal to 70 mg/dl was 10.40%. The corresponding probabilities for autocoded and correctly coded manual meters were 2.52% (p < 0.0001) and 1.46% (p < 0.0001), respectively. Furthermore, the errors from miscoded meters were large enough to produce a calculated blood glucose outcome less than or equal to 50 mg/dl in 42 of 833 instances. Autocoded meters produced zero (0) outcomes less than or equal to 50 mg/dl out of 279 instances, and correctly coded manual meters produced 1 of 416. Conclusions Improperly coded blood glucose meters present the potential for insulin dose errors and resultant clinically significant hypoglycemia or hyperglycemia. Patients should be instructed and periodically reinstructed in the proper use of blood glucose meters, particularly for meters that require coding. PMID:19885229
The KFM, A Homemade Yet Accurate and Dependable Fallout Meter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kearny, C.H.
The KFM is a homemade fallout meter that can be made using only materials, tools, and skills found in millions of American homes. It is an accurate and dependable electroscope-capacitor. The KFM, in conjunction with its attached table and a watch, is designed for use as a rate meter. Its attached table relates observed differences in the separations of its two leaves (before and after exposures at the listed time intervals) to the dose rates during exposures of these time intervals. In this manner dose rates from 30 mR/hr up to 43 R/hr can be determined with an accuracy ofmore » {+-}25%. A KFM can be charged with any one of the three expedient electrostatic charging devices described. Due to the use of anhydrite (made by heating gypsum from wallboard) inside a KFM and the expedient ''dry-bucket'' in which it can be charged when the air is very humid, this instrument always can be charged and used to obtain accurate measurements of gamma radiation no matter how high the relative humidity. The heart of this report is the step-by-step illustrated instructions for making and using a KFM. These instructions have been improved after each successive field test. The majority of the untrained test families, adequately motivated by cash bonuses offered for success and guided only by these written instructions, have succeeded in making and using a KFM. NOTE: ''The KFM, A Homemade Yet Accurate and Dependable Fallout Meter'', was published by Oak Ridge National Laboratory report in1979. Some of the materials originally suggested for suspending the leaves of the Kearny Fallout Meter (KFM) are no longer available. Because of changes in the manufacturing process, other materials (e.g., sewing thread, unwaxed dental floss) may not have the insulating capability to work properly. Oak Ridge National Laboratory has not tested any of the suggestions provided in the preface of the report, but they have been used by other groups. When using these instructions, the builder can verify the insulating ability of his materials by checking the leakage rate and comparing it to the author's leakage tests.« less
Belachew, Sewunet Admasu; Tilahun, Fasil; Ketsela, Tirsit; Achaw Ayele, Asnakew; Kassie Netere, Adeladlew; Getnet Mersha, Amanual; Befekadu Abebe, Tamrat; Melaku Gebresillassie, Begashaw; Getachew Tegegn, Henok; Asfaw Erku, Daniel
2017-01-01
When compared to systemic administration, if used correctly inhalers deliver a smaller enough percent of the drug right to the site of action in the lungs, with a faster onset of effect and with reduced systemic availability that minimizes adverse effects. However, the health professionals' and patients' use of metered dose inhaler is poor. This study was aimed to explore community pharmacy professionals' (pharmacists' and druggists') competency on metered dose inhaler (MDI) technique. A cross sectional study was employed on pharmacy professionals working in community drug retail outlets in Gondar town, northwest Ethiopia from March to May 2017. Evaluation tool was originally taken and adapted from the National Asthma Education and Prevention Programmes of America (NAEPP) step criteria for the demonstration of a metered dose inhaler to score the knowledge/proficiency of using the inhaler. Among 70 community pharmacy professionals approached, 62 (32 pharmacists and 30 druggists/Pharmacy technicians) completed the survey with a response rate of 85.6%. Only three (4.8%) respondents were competent by demonstrating the vital steps correctly. Overall, only 13 participants got score seven or above, but most of them had missed the essential steps which included steps 1, 2, 5, 6, 7 or 8. There was a significant difference (P = 0.015) in competency of demonstrating adequate inhalational technique among respondents who took training on basic inhalational techniques and who did not. This study shown that, community pharmacy professionals' competency of MDI technique was very poor. So as to better incorporate community pharmacies into future asthma illness management and optimize the contribution of pharmacists, interventions would emphasis to improve the total competence of community pharmacy professionals through establishing and providing regular educational programs.
Fabrication of topical metered dose film forming sprays for pain management.
Ranade, Sneha; Bajaj, Amrita; Londhe, Vaishali; Babul, Najib; Kao, Danny
2017-03-30
Topical film-forming metered dose spray formulations were designed for management of pain. Ropivacaine, a local anesthetic is explored for its topical efficacy in alleviating pain. Metered dose spray containers, organic solvents, film forming polymers and permeation enhancers were utilized to fabricate the Metered Dose topical spray. Factors like viscosity, spray pattern, spray angle, volume of actuation, droplet size distribution of the metered dose spray formulation and drying time, flexibility and wash-ability of the film formed after spraying were assessed. Permeation of the drug into the porcine skin was observed based on ex-vivo diffusion studies and confocal microscopy. The results indicated a high level of drug concentration in the skin layers. Anti-nociceptive efficacy of the formulations was assessed on Wistar rats by hot plate and tail flick tests, based on the response to pain perception. The results were comparable to the conventional lidocaine gel. Topical film forming sprays have the ability to provide an accurate, long lasting and patient compliant delivery of drugs on the skin as compared to conventional gels. Copyright © 2017 Elsevier B.V. All rights reserved.
Proton recoil scintillator neutron rem meter
Olsher, Richard H.; Seagraves, David T.
2003-01-01
A neutron rem meter utilizing proton recoil and thermal neutron scintillators to provide neutron detection and dose measurement. In using both fast scintillators and a thermal neutron scintillator the meter provides a wide range of sensitivity, uniform directional response, and uniform dose response. The scintillators output light to a photomultiplier tube that produces an electrical signal to an external neutron counter.
Tunable, Quantitative Fenton-RAFT Polymerization via Metered Reagent Addition.
Nothling, Mitchell D; McKenzie, Thomas G; Reyhani, Amin; Qiao, Greg G
2018-05-10
A continuous supply of radical species is a key requirement for activating chain growth and accessing quantitative monomer conversions in reversible addition-fragmentation chain transfer (RAFT) polymerization. In Fenton-RAFT, activation is provided by hydroxyl radicals, whose indiscriminate reactivity and short-lived nature poses a challenge to accessing extended polymerization times and quantitative monomer conversions. Here, an alternative Fenton-RAFT procedure is presented, whereby radical generation can be finely controlled via metered dosing of a component of the Fenton redox reaction (H 2 O 2 ) using an external pumping system. By limiting the instantaneous flux of radicals and ensuring sustained radical generation over tunable time periods, metered reagent addition reduces unwanted radical "wasting" reactions and provides access to consistent quantitative monomer conversions with high chain-end fidelity. Fine tuning of radical concentration during polymerization is achieved simply via adjustment of reagent dose rate, offering significant potential for automation. This modular strategy holds promise for extending traditional RAFT initiation toward more tightly regulated radical concentration profiles and affords excellent prospects for the automation of Fenton-RAFT polymerization. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Malins, Alex; Kurikami, Hiroshi; Nakama, Shigeo; Saito, Tatsuo; Okumura, Masahiko; Machida, Masahiko; Kitamura, Akihiro
2016-01-01
The air dose rate in an environment contaminated with (134)Cs and (137)Cs depends on the amount, depth profile and horizontal distribution of these contaminants within the ground. This paper introduces and verifies a tool that models these variables and calculates ambient dose equivalent rates at 1 m above the ground. Good correlation is found between predicted dose rates and dose rates measured with survey meters in Fukushima Prefecture in areas contaminated with radiocesium from the Fukushima Dai-ichi Nuclear Power Plant accident. This finding is insensitive to the choice for modeling the activity depth distribution in the ground using activity measurements of collected soil layers, or by using exponential and hyperbolic secant fits to the measurement data. Better predictions are obtained by modeling the horizontal distribution of radioactive cesium across an area if multiple soil samples are available, as opposed to assuming a spatially homogeneous contamination distribution. Reductions seen in air dose rates above flat, undisturbed fields in Fukushima Prefecture are consistent with decrement by radioactive decay and downward migration of cesium into soil. Analysis of remediation strategies for farmland soils confirmed that topsoil removal and interchanging a topsoil layer with a subsoil layer result in similar reductions in the air dose rate. These two strategies are more effective than reverse tillage to invert and mix the topsoil. Copyright © 2015 Elsevier Ltd. All rights reserved.
Andoh, Masaki; Nakahara, Yukio; Tsuda, Shuichi; Yoshida, Tadayoshi; Matsuda, Norihiro; Takahashi, Fumiaki; Mikami, Satoshi; Kinouchi, Nobuyuki; Sato, Tetsuro; Tanigaki, Minoru; Takamiya, Koichi; Sato, Nobuhiro; Okumura, Ryo; Uchihori, Yukio; Saito, Kimiaki
2015-01-01
A series of car-borne surveys using the Kyoto University RAdiation MApping (KURAMA) and KURAMA-II survey systems has been conducted over a wide area in eastern Japan since June 2011 to evaluate the distribution of air dose rates around the Fukushima Dai-ichi Nuclear Power Plant and to evaluate the time-dependent trend of decrease in air dose rates. An automated data processing system for the KURAMA-II system was established, which enabled rapid analysis of large amounts of data obtained using about 100 KURAMA-II units. The initial data used for evaluating the migration status of radioactive cesium were obtained in the first survey, followed by other car-borne surveys conducted over more extensive and wider measurement ranges. By comparing the measured air dose rates obtained in each survey (until December 2012), the decreasing trend of air dose rates measured through car-borne surveys was found to be more pronounced than those expected on the basis of the physical decay of radioactive cesium and of the air dose rates measured using NaI (Tl) survey meters in the areas surrounding the roadways. In addition, it was found that the extent of decrease in air dose rates depended on land use, wherein it decreased faster for land used as building sites than for forested areas. Copyright © 2014 Elsevier Ltd. All rights reserved.
Delivery of propellant soluble drug from a metered dose inhaler.
Ashworth, H L; Wilson, C G; Sims, E E; Wotton, P K; Hardy, J G
1991-01-01
The deposition of particulate suspensions delivered from a metered dose inhaler has been investigated extensively. The distribution of propellant, delivered from a metered dose inhaler, was studied by radiolabelling it with technetium-99m hexamethylpropyleneamine oxime. Andersen sampler measurements indicated that half of the dose was associated with particles in the size range 0.5-5 microns diameter. The preparation was administered to healthy subjects by inhalation and deposition was monitored with a gamma camera. Each lung image was divided into an inner, mid, and peripheral zone. The effects on deposition of varying the size of the delivery orifice (0.46, 0.61, and 0.76 mm internal diameters) and the effect of attaching a spacer were assessed. Lung deposition was independent of the orifice size within the actuator. Without the spacer the average dose deposited in the lungs was 39%, with 15% penetrating into the peripheral part of the lungs. Attachment of the spacer to the mouth-piece increased the mean lung deposition to 57% and reduced oropharyngeal deposition. The study has shown that propellant soluble drugs can be delivered efficiently to the lungs from a metered dose inhaler. Images PMID:2038731
Zhang, Haiying; Jiao, Ling; Cui, Songye; Wang, Liang; Tan, Jian; Zhang, Guizhi; He, Yajing; Ruan, Shuzhou; Fan, Saijun; Zhang, Wenyi
2014-01-01
Radiation safety is an integral part of targeted radionuclide therapy. The aim of this work was to study the external dose rate and retained body activity as functions of time in differentiated thyroid carcinoma patients receiving 131I therapy. Seventy patients were stratified into two groups: the ablation group (A) and the follow-up group (FU). The patients’ external dose rate was measured, and simultaneously, their retained body radiation activity was monitored at various time points. The equations of the external dose rate and the retained body activity, described as a function of hours post administration, were fitted. Additionally, the release time for patients was calculated. The reduction in activity in the group receiving a second or subsequent treatment was more rapid than the group receiving only the initial treatment. Most important, an expeditious method was established to indirectly evaluate the retained body activity of patients by measuring the external dose rate with a portable radiation survey meter. By this method, the calculated external dose rate limits are 19.2, 8.85, 5.08 and 2.32 μSv·h−1 at 1, 1.5, 2 and 3 m, respectively, according to a patient’s released threshold level of retained body activity <400 MBq. This study is beneficial for radiation safety decision-making. PMID:25337944
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-23
... oral pressurized metered-dose inhaler that contained chlorofluorocarbons (CFCs) as a propellant. CFCs may no longer be used as a propellant for any albuterol metered-dose inhalers. (See 70 FR 17168, April...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-19
... pressurized metered-dose inhaler that contained chlorofluorocarbons (CFCs) as a propellant. CFCs may no longer be used as a propellant for any albuterol metered-dose inhalers (see 70 FR 17168, April 4, 2005...
Cardiovascular and hypokalaemic effects of inhaled salbutamol, fenoterol, and isoprenaline.
Crane, J; Burgess, C; Beasley, R
1989-01-01
The cardiovascular and hypokalaemic effects of equal doses of inhaled fenoterol, isoprenaline and salbutamol were compared in eight healthy male volunteers, in a double blind, placebo controlled study. Increasing doses of 400, 600, and 800 micrograms were given from a metered dose inhaler at 15 minute intervals, followed by measurements of heart rate, blood pressure, total electromechanical systole (as a measure of inotropic response), QTc interval, and plasma potassium concentration. After repeated inhalation, fenoterol resulted in significantly greater chronotropic, electrocardiographic, and hypokalaemic effects than either isoprenaline or salbutamol. The maximum inotropic effect of fenoterol was similar to that of isoprenaline. PMID:2928998
Response of six neutron survey meters in mixed fields of fast and thermal neutrons.
Kim, S I; Kim, B H; Chang, I; Lee, J I; Kim, J L; Pradhan, A S
2013-10-01
Calibration neutron fields have been developed at KAERI (Korea Atomic Energy Research Institute) to study the responses of commonly used neutron survey meters in the presence of fast neutrons of energy around 10 MeV. The neutron fields were produced by using neutrons from the (241)Am-Be sources held in a graphite pile and a DT neutron generator. The spectral details and the ambient dose equivalent rates of the calibration fields were established, and the responses of six neutron survey meters were evaluated. Four single-moderator-based survey meters exhibited an under-responses ranging from ∼9 to 55 %. DINEUTRUN, commonly used in fields around nuclear reactors, exhibited an over-response by a factor of three in the thermal neutron field and an under-response of ∼85 % in the mixed fields. REM-500 (tissue-equivalent proportional counter) exhibited a response close to 1.0 in the fast neutron fields and an under-response of ∼50 % in the thermal neutron field.
NASA Astrophysics Data System (ADS)
Kato, H.
2015-12-01
We investigated the transfer of canopy-intercepted radiocesium to the forest floor during 3 years following the Fukushima Daiichi Nuclear Power Plant accident. The cesium-137 (Cs-137) contents in throughfall, stemflow, and litterfall were monitored in two coniferous stands (plantation of Japanese cedar) and a deciduous broad-leaved forest stand (Japanese oak with red pine). We also measured the ambient dose rate (ADR) at different heights in the forest using a survey meter and a portable Ge gamma-ray detector. Total Cs-137 deposition flux from the canopy to forest floor for the mature cedar, young cedar, and the mixed broad-leaved stands were 166 kBq/m2, 174 kBq/m2, and 60 kBq/m2, respectively. These values correspond to 38%, 40% and 13% of total atmospheric input after the accident. The ambient dose rate in forest exhibited height dependency and its vertical distribution varied with forest type and stand age. The ambient dose rate showed an exponential decrease with time for all the forest sites, however the decreasing trend differed depending on the height of dose measurement and forest type. The ambient dose rate at the canopy (approx. 10 m-height) decreased faster than that expected from physical decay of the two radiocesium isotopes, whereas those at the forest floor varied between the three forest stands. The radiocesium deposition via throughfall seemed to increase ambient dose rate during the first 200 days after the accident, however there was no clear relationship between litterfall and ambient dose rate since 400 days after the accident. These data suggested that the ambient dose rate in forest environment varied both spatially and temporally reflecting the transfer of radiocesium from canopy to forest floor. However, further monitoring investigation and analysis are required to determine the effect of litterfall on long-term trend of ambient dose rate in forest environments.
NASA Astrophysics Data System (ADS)
Dinis, Pedro A.; Pereira, Alcides C.; Quinzeca, Domingos; Jombi, Domingos
2017-10-01
A strandplain at the downdrift side of the wave-dominated Catumbela delta (Angola) includes distinguishable deposits with very high natural radioactivity (up to 0.44 microSv/hour). In order to establish the geometry of these sedimentary units and understand their genetic processes, dose rate surveys were performed with the portable equipment Rados RDS-40WE. In addition, grain-size distribution, heavy-mineral composition and gamma-ray mass spectra of the high dose rate deposits were analysed. High dose rate values are found in ribbon units aligned parallel to the shoreline, which are a few tens of meters wide and up to approximately 3 km long. These units reflect the concentration of Th-bearing grains in coastal deposits enriched in heavy minerals. An integrated analysis of the high dose rate ribbons in GIS environment with aerial photography and topographic maps suggests that parts of the high dose rate units formed during the last two centuries may be related with the erosion of older shoreline deposits, due to updrift displacements of the Catumbela river outlet and recycling of shoreline accumulations with downdrift deposition. Simple gamma-ray surveys carried out with a portable detector can unravel depositional units characterised by significant enrichment in heavy-mineral grains that are likely to correspond to key events in the evolution of wave-dominated accumulations. The location of such deposits should be taken into account when planning future work using more expensive or time-consuming techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chabeuf, Jean-Michel; Boya, Didier
The investigation and characterization of radioactive waste pits and effluent storage tanks represents a substantial and challenging step in the overall decommissioning programme launched by AREVA NC in 1998 on the site of Marcoule on behalf of the French Atomic Energy commission. Physical ,radiological and regulatory constraints, combined with a tight schedule, have lead our teams to use proven conventional instrumentation and robotics in innovative configurations . One such investigation, conducted on a particularly challenging radioactive effluent storage pit, is described below. The 'H' pit is a stainless steel clad concrete cavity, located in the second basement of the de-claddingmore » building of Marcoule site. It was used for forty years as buffer storage for high activity effluents and has a length of 5 meters, a width of 3 meters , a height of 2.5 meters, and is topped by lead plates over 5 cm thick and The bottom of the cavity is covered with a layer of mud containing mainly graphite, diatoms and resins. The mud level ranges from about 20 centimeters to over 50 centimeters. The overall mud volume is around 2.4 cubic meters. Ambient dose rates above the lead plates exceed 10 mSv/h. The main purpose of our investigation was to characterize the muds for future recovery and conditioning prior to decontaminating the pit. The history of the pit together with the varying mud altimetry lead us to believe that sedimentation had probably occurred throughout the years. We thus decided to combine dose rate measurements using IF104 probes, gamma spectroscopy with CdTe probes and sample collections at different depths to ensure the representativeness and full characterization of the muds. Poor access, ambient dose rates have lead us to conceive a robotic arm, mounted on an shaft which can be modified to fit a wide range of pits and tanks. Custom built robotic tools with maximum manoeuvrability generally involve costs and delays far exceeding our purposes. SIT, a French manufacturer of high precision handling equipment for the nuclear industry, supplied us with a user customized 'Python' Robotic arm and the associated computerized command and control equipment within 6 months of the order. The arm allowed the necessary free movement for a precise characterization of the entire pit while being flexible enough to carry varying measuring and sample collection tools. Investigations included video imaging, precise dimensional checks, collection of effluent samples, gamma spectroscopy and collimated dose rate measurements. Specific tooling and arm extensions were created by SIT for each measurement type. The investigations were conducted successfully, providing a detailed view of the pit condition, a complete mapping of collimated dose rates, a grid of gamma spectroscopy, as well as 8 samples of radioactive mud which were subsequently analyzed in our laboratory . A simple yet innovative technology allowed us to fully characterize this pit and its content within a time frame of less than Eight months We subsequently developed a mud recovery scenario, a process for the conditioning of radioactive muds by cementation, and a complete scenario for the pit decontamination and dismantling. The robotic arm is now being used for the characterization and decontamination of other similar environments on the site of Marcoule.« less
Vincken, Walter; Dewberry, Helen; Moonen, Diane
2003-09-01
Respimat (RMT) soft mist inhaler (SMI) is a novel, propellant-free alternative to chlorofluorocarbon metered-dose inhalers (CFC-MDIs). The aim of this study was to evaluate the safety and establish the equipotent dose of fenoterol delivered by RMT SMI vs. a conventional MDI. Double-blind, randomized, crossover, comparative study between fenoterol inhaled via RMT (either 50 microg/actuation, RMT50; or 100 microg/actuation. RMT100) and MDI (100 microg/actuation; MDI100). A total of 41 asthma patients received cumulative doses of fenoterol 600 microg (RMT50) or 1200 microg (RMT100 and MDI100) on 3 test days. The bronchodilator response (forced expiratory volume in 1 second [FEV1]) was considered therapeutically equivalent (i.e., noninferior) if the 95% confidence intervals for the difference in their mean changes from baseline were within limits of +/- 0.15L. Systemic exposure was evaluated from plasma fenoterol levels. Adverse events (AEs) were recorded. RMT50 and RMT100 produced noninferior bronchodilatation to MDI100 from 30minutes after the first dose. RMT50 showed equivalent safety and tolerability to MDI100, whereas RMT100 produced a higher incidence of AEs, a significantly greater plasma potassium reduction and a significant increase in pulse rate. Fenoterol plasma levels were twice as high with RMT100 as with RMT50 or MDI100. CONCLUSIONS; The nominal dose of fenoterol administered via RMT SMI can be at least halved to achieve equivalent efficacy, safety, and tolerability to a MDI.
Price current-meter standard rating development by the U.S. geological survey
Hubbard, E.F.; Schwarz, G.E.; Thibodeaux, K.G.; Turcios, L.M.
2001-01-01
The U.S. Geological Survey has developed new standard rating tables for use with Price type AA and pygmy current meters, which are employed to measure streamflow velocity. Current-meter calibration data, consisting of the rates of rotation of meters at several different constant water velocities, have shown that the original rating tables are no longer representative of the average responsiveness of newly purchased meters or meters in the field. The new rating tables are based on linear regression equations that are weighted to reflect the population mix of current meters in the field and weighted inversely to the variability of the data at each calibration velocity. For calibration velocities of 0.3 m/s and faster, at which most streamflow measurements are made, the new AA-rating predicts the true velocities within 1.5% and the new pygmy-meter rating within 2.0% for more than 95% of the meters. At calibration velocities, the new AA-meter rating is up to 1.4% different from the original rating, and the new pygmy-meter rating is up to 1.6% different.
Determination of the gamma-ray skyshine dose contribution in a Loss Of Shielding accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis, M.L.; Weiner, R.F.; Osborn, D.M.
2007-07-01
The goal of this research is to determine the gamma-ray dose contribution from skyshine. In a transportation accident involving the loss of lead gamma shielding, first responders to the accident will be exposed to both direct gamma radiation streaming from the exposed spent nuclear fuel and atmospherically reflected gamma radiation. The reflected radiation is referred to as skyshine and should contribute minimally to the overall dose; however, when there is minimal shielding above the exposed source, skyshine at large distances from the source must be considered. The program SKYDOSE developed by Shultis and Faw evaluates the gamma-ray skyshine dose frommore » a point, isotropic, polyenergetic, gamma-photon source. Assuming an infinite black wall shielding all direct radiation, the model assumes a first responder is located at varying distances from the wall. Skyshine doses are calculated both through SKYDOSE's integral line-beam method and an approximate approach prescribed by the National Council of Radiation Protection and Measurements. Initial results from SKYDOSE indicate nearly equivalent dose rates from either direct or skyshine radiation at nine meters from the wall, which seemed unusual and not readily explained. NCRP methodology, however, yields skyshine dose rates which are drastically smaller than direct dose rates at the same distance. Further investigation using the program MicroSkyshine{sup R}, which allows a variety of source configurations, suggests skyshine contributes minimally to dose in a loss-of-shielding accident. (authors)« less
Yousefi, Morteza; Inthavong, Kiao; Tu, Jiyuan
2017-10-01
A key issue in pulmonary drug delivery is improvement of the delivery device for effective and targeted treatment. Pressurized metered dose inhalers (pMDIs) are the most popular aerosol therapy device for treating lung diseases. This article studies the effect of spray characteristics: injection velocity, spray cone angle, particle size distribution (PSD), and its mass median aerodynamic diameter (MMAD) on drug delivery. An idealized oral airway geometry, extending from mouth to the main bronchus, was connected to a pMDI device. Inhalation flow rates of 15, 30, and 60 L/min were used and drug particle tracking was a one-way coupled Lagrangian model. The results showed that most particles deposited in the pharynx, where the airway has a reduced cross-sectional area. Particle deposition generally decreased with initial spray velocity and with increased spray cone angle for 30 and 60 L/min flow rates. However, for 15 L/min flow rate, the deposition increased slightly with an increase in the spray velocity and cone angle. The effect of spray cone angle was more significant than the initial spray velocity on particle deposition. When the MMAD of a PSD was reduced, the deposition efficiency also reduces, suggesting greater rates of particle entry into the lung. The deposition rate showed negligible change when the MMAD was more than 8 μm. Spray injection angle and velocity change the drug delivery efficacy; however, the efficiency shows more sensitivity to the injection angle. The 30 L/min airflow rate delivers spray particles to the lung more efficiently than 15 and 60 L/min airflow rate, and reducing MMAD can help increase drug delivery to the lung.
Clearie, Karine L; Williamson, Peter A; Meldrum, Karen; Gillen, Michael; Carlsson, Lars-Goran; Carlholm, Marie; Ekelund, Jan; Lipworth, Brian J
2011-01-01
AIMS A hydrofluoroalkane formulation of budesonide pressurized metered-dose inhaler has been developed to replace the existing chlorofluorocarbon one. The aim of this study was to evaluate the pharmacokinetic and pharmacodynamic characteristics of both formulations. METHODS Systemic bioavailability and bioactivity of both hydrofluoroalkane and chlorofluorocarbon pressurized metered-dose inhaler formulations at 800 µg twice daily was determined during a randomized crossover systemic pharmacokinetic/pharmacodynamic study at steady state in healthy volunteers. Measurements included the following: plasma cortisol AUC24h[area under the concentration-time curve (0–24 h)], budesonide AUC0–12h and Cmax. Clinical efficacy was determined during a randomized crossover pharmacodynamic study in asthmatic patients receiving 200 µg followed by 800 µg budesonide via chlorofluorocarbon or hydrofluoroalkane pressurized metered-dose inhaler each for 4 weeks. Methacholine PC20 (primary outcome), exhaled nitric oxide, spirometry, peak expiratory flow and symptoms were evaluated. RESULTS In the pharmacokinetic study, there were no differences in cortisol, AUC0–12h[area under the concentration-time curve (0–12 h)], Tmax (time to maximum concentration) or Cmax (peak serum concentration) between the hydrofluoroalkane and chlorofluorocarbon pressurized metered-dose inhaler. The ratio of budesonide hydrofluoroalkane vs. chlorofluorocarbon pressurized metered-dose inhaler for cortisol AUC24h was 1.02 (95% confidence interval 0.93–1.11) and budesonide AUC0–12h was 1.03 (90% confidence interval 0.9–1.18). In the asthma pharmacodynamic study, there was a significant dose response (P < 0.0001) for methacholine PC20 (provocative concentration of methacholine needed to produce a 20% fall in FEV1) with a relative potency ratio of 1.10 (95% confidence interval 0.49–2.66), and no difference at either dose. No significant differences between formulations were seen with the secondary outcome variables. CONCLUSIONS Hydrofluoroalkane and chlorofluorocarbon formulations of budesonide were therapeutically equivalent in terms of relative lung bioavailability, airway efficacy and systemic effects. PMID:21395643
The Adaptive Aerosol Delivery (AAD) technology: Past, present, and future.
Denyer, John; Dyche, Tony
2010-04-01
Conventional aerosol delivery systems and the availability of new technologies have led to the development of "intelligent" nebulizers such as the I-neb Adaptive Aerosol Delivery (AAD) System. Based on the AAD technology, the I-neb AAD System has been designed to continuously adapt to changes in the patient's breathing pattern, and to pulse aerosol only during the inspiratory part of the breathing cycle. This eliminates waste of aerosol during exhalation, and creates a foundation for precise aerosol (dose) delivery. To facilitate the delivery of precise metered doses of aerosol to the patient, a unique metering chamber design has been developed. Through the vibrating mesh technology, the metering chamber design, and the AAD Disc function, the aerosol output rate and metered (delivered) dose can be tailored to the demands of the specific drug to be delivered. In the I-neb AAD System, aerosol delivery is guided through two algorithms, one for the Tidal Breathing Mode (TBM), and one for slow and deep inhalations, the Target Inhalation Mode (TIM). The aim of TIM is to reduce the treatment time by increasing the total inhalation time per minute, and to increase lung deposition by reducing impaction in the upper airways through slow and deep inhalations. A key feature of the AAD technology is the patient feedback mechanisms that are provided to guide the patient on delivery performance. These feedback signals, which include visual, audible, and tactile forms, are configured in a feedback cascade that leads to a high level of compliance with the use of the I-neb AAD System. The I-neb Insight and the Patient Logging System facilitate a further degree of sophistication to the feedback mechanisms, by providing information on long term adherence and compliance data. These can be assessed by patients and clinicians via a Web-based delivery of information in the form of customized graphical analyses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houston, J.R.; Blumer, P.J.
1979-03-01
Environmental data collected during 1978 in the vicinity of the Marine Research Laboratory show continued compliance with all applicable state and federal regulations and furthermore show no detectable change from conditions that existed in previous years. Samples collected for radiological analysis included soil, drinking water, bay water, clams, and seaweed. Radiation dose rates at 1 meter aboveground were also measured.
Dermatologic radiotherapy and thyroid cancer. Dose measurements and risk quantification.
Goldschmidt, H; Gorson, R O; Lassen, M
1983-05-01
Thyroid doses for various dermatologic radiation techniques were measured with thermoluminescent dosimeters and ionization rate meters in an Alderson-Rando anthropomorphic phantom. The effects of changes in radiation quality and of the use or nonuse of treatment cones and thyroid shields were evaluated in detail. The results indicate that the potential risk of radiogenic thyroid cancer is very small when proper radiation protection measures are used. The probability of radiogenic thyroid cancer developing and the potential mortality risk were assessed quantitatively for each measurement. The quantification of radiation risks allows comparisons with risks of other therapeutic modalities and the common hazards of daily life.
Sheth, Poonam; Grimes, Matthew R; Stein, Stephen W; Myrdal, Paul B
2017-08-07
Pressurized metered dose inhalers (pMDIs) are widely used for the treatment of pulmonary diseases. The overall efficiency of pMDI drug delivery may be defined by in vitro parameters such as the amount of drug that deposits on the model throat and the proportion of the emitted dose that has particles that are sufficiently small to deposit in the lung (i.e., fine particle fraction, FPF). The study presented examines product performance of ten solution pMDI formulations containing a variety of cosolvents with diverse chemical characteristics by cascade impaction with three inlets (USP induction port, Alberta Idealized Throat, and a large volume chamber). Through the data generated in support of this study, it was demonstrated that throat deposition, cascade impactor deposition, FPF, and mass median aerodynamic diameter of solution pMDIs depend on the concentration and vapor pressure of the cosolvent, and the selection of model throat. Theoretical droplet lifetimes were calculated for each formulation using a discrete two-stage evaporation process model and it was determined that the droplet lifetime is highly correlated to throat deposition and FPF indicating that evaporation kinetics significantly influences pMDI drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.
Flint, K. C.; Hockley, B.; Johnson, N. M.
1983-01-01
The efficacy of a single metered dose inhaler containing a combination of fenoterol (100 micrograms/puff) and ipratropium bromide (40 micrograms/puff) has been assessed in 12 asthmatics. We conclude that the bronchodilator effect of 2 puffs of the combination inhaler was significantly greater than that achieved by 2 puffs of salbutamol (100 micrograms/puff). PMID:6227877
McIvor, R Andrew; Devlin, Hollie M; Kaplan, Alan
2018-01-01
Valved holding chambers (VHCs) have been used with pressurized metered-dose inhalers since the early 1980s. They have been shown to increase fine particle delivery to the lungs, decrease oropharyngeal deposition, and reduce side effects such as throat irritation, dysphonia, and oral candidiasis that are common with use of pressurized metered-dose inhalers (pMDIs) alone. VHCs act as aerosol reservoirs, allowing the user to actuate the pMDI device and then inhale the medication in a two-step process that helps users overcome challenges in coordinating pMDI actuation with inhalation. The design of VHC devices can have an impact on performance. Features such as antistatic properties, effective face-to-facemask seal feedback whistles indicating correct inhalation speed, and inhalation indicators all help improve function and performance, and have been demonstrated to improve asthma control, reduce the rate of exacerbations, and improve quality of life. Not all VHCs are the same, and they are not interchangeable. Each pairing of a pMDI device plus VHC should be considered as a unique delivery system.
Devlin, Hollie M.
2018-01-01
Valved holding chambers (VHCs) have been used with pressurized metered-dose inhalers since the early 1980s. They have been shown to increase fine particle delivery to the lungs, decrease oropharyngeal deposition, and reduce side effects such as throat irritation, dysphonia, and oral candidiasis that are common with use of pressurized metered-dose inhalers (pMDIs) alone. VHCs act as aerosol reservoirs, allowing the user to actuate the pMDI device and then inhale the medication in a two-step process that helps users overcome challenges in coordinating pMDI actuation with inhalation. The design of VHC devices can have an impact on performance. Features such as antistatic properties, effective face-to-facemask seal feedback whistles indicating correct inhalation speed, and inhalation indicators all help improve function and performance, and have been demonstrated to improve asthma control, reduce the rate of exacerbations, and improve quality of life. Not all VHCs are the same, and they are not interchangeable. Each pairing of a pMDI device plus VHC should be considered as a unique delivery system. PMID:29849831
Oparaji, U; Tsai, Y H; Liu, Y C; Lee, K W; Patelli, E; Sheu, R J
2017-06-01
This paper presents improved and extended results of our previous study on corrections for conventional neutron dose meters used in environments with high-energy neutrons (En > 10 MeV). Conventional moderated-type neutron dose meters tend to underestimate the dose contribution of high-energy neutrons because of the opposite trends of dose conversion coefficients and detection efficiencies as the neutron energy increases. A practical correction scheme was proposed based on analysis of hundreds of neutron spectra in the IAEA-TRS-403 report. By comparing 252Cf-calibrated dose responses with reference values derived from fluence-to-dose conversion coefficients, this study provides recommendations for neutron field characterization and the corresponding dose correction factors. Further sensitivity studies confirm the appropriateness of the proposed scheme and indicate that (1) the spectral correction factors are nearly independent of the selection of three commonly used calibration sources: 252Cf, 241Am-Be and 239Pu-Be; (2) the derived correction factors for Bonner spheres of various sizes (6"-9") are similar in trend and (3) practical high-energy neutron indexes based on measurements can be established to facilitate the application of these correction factors in workplaces. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Dose estimates for the 1104 m APS storage ring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moe, H.J.
1989-06-01
The estimated dose equivalent rates outside the shielded storage ring, and the estimated annual dose equivalent to members of the public due to direct radiation and skyshine from the ring, have been recalculated. The previous estimates found in LS-84 (MOE 87) and cited in the 1987 Conceptual Design Report of the APS (ANL 87) required revision because of changes in the ring circumference and in the proposed location of the ring with respect to the nearest site boundary. The values assumed for the neutron quality factors were also overestimated (by a factor of 2) in the previous computation, and themore » correct values have been used for this estimate. The methodology used to compute dose and dose rate from the storage ring is the same as that used in LS-90 (MOE 87a). The calculations assumed 80 cm thick walls of ordinary concrete (or the shielding equivalent of this) and a roof thickness of 1 meter of ordinary concrete. The circumference of the ring was increased to 1,104 m, and the closest distance to the boundary was taken as 140 m. The recalculation of the skyshine component used the same methodology as that used in LS-84.« less
Robinson, Christie A; Tsourounis, Candy
2013-03-01
To assess the literature that evaluates how variations in metered-dose inhaler (MDI) technique affect lung distribution for inhaled corticosteroids (ICSs) formulated as MDI suspensions and solutions. PubMed (up to November 2012) and Cochrane Library (up to November 2012) were searched using the terms metered-dose inhalers, HFA 134a, Asthma/*drug therapy, and inhaled corticosteroids. In addition, reference citations from publications identified were reviewed. All articles in English from the data sources that assessed MDI technique comparing total lung distribution (TLD) of MDI solutions or suspensions formulated with ICSs were included in the review. Five relevant studies were identified. Five controlled studies compared how variations in MDI technique affect TLD for ICS MDI solutions with suspensions. MDI solutions resulted in greater TLD compared with larger particle MDI suspensions. Delayed or early inspiration upon device actuation of MDI solutions resulted in less TLD than coordinated actuation, but with a 3- to 4-times greater TLD than MDI suspensions inhaled using a standard technique. A sixth study evaluated inspiratory flow rates (IFR) for small, medium, and large particles. Rapid and slow IFRs resulted in similar TLD for small particles, while far fewer particles reached the airways with medium and large particles at rapid, rather than slow, IFRs. Based on the literature evaluated, standard MDI technique should be used for ICS suspensions. ICS MDI solutions can provide a higher average TLD than larger-particle ICS suspensions using standard technique, discoordinated inspiration and medication actuation timing, or rapid and slow IFRs. ICS MDI solutions allow for a more forgiving technique, which makes them uniquely suitable options for patients with asthma who have difficultly with MDI technique.
NASA Astrophysics Data System (ADS)
Sulieman, A.; Elhadi, T.; Babikir, E.; Alkhorayef, M.; Alnaaimi, M.; Alduaij, M.; Bradley, D. A.
2017-11-01
In many countries diagnostic medical exposures typically account for a very large fraction of the collective effective dose that can be assigned to anthropological sources and activities. This in part flags up the question of whether sufficient steps are being taken in regard to potential dose saving from such medical services. As a first step, one needs to survey doses to compare against those of best practice. The present study has sought evaluation of the radiation protection status and patient doses for certain key radiological procedures in four film-based radiology departments within Sudan. The radiation exposure survey, carried out using a survey meter and quality control test tools, involved a total of 299 patients their examinations being carried out at one or other of these four departments. The entrance surface air kerma (ESAK) was determined from exposure settings using DosCal software and an Unfors -Xi-meter. The mean ESAK for x-ray examination of the chest was 0.30±0.1 mGy, for the skull it was 0.96±0.7 mGy, for the abdomen 0.85±0.01 mGy, for spinal procedures 1.30±0.6 mGy and for procedures involving the limbs it was 0.43±0.3 mGy. Ambient dose-rates in the reception area, at the closed door of the x-ray room, recorded instantaneous values of up to 100 μSv/h. In regard to protection, the associated levels were found to be acceptable in three of the four departments, corrective action being required for one department, regular quality control also being recommended.
Matsuda, Norihiro; Mikami, Satoshi; Sato, Tetsuro; Saito, Kimiaki
2017-01-01
Measurements of air dose rates for 192 houses in a less contaminated area (<0.5 μSv h -1 ) of the Fukushima Prefecture in Japan were conducted in both living rooms and/or bedrooms using optically stimulated luminescence (OSL) dosimeters and around the houses via a man-borne survey at intervals of several meters. The relation of the two air dose rates (inside and outside) for each house, including the background from natural radionuclides, was divided into several categories, determined by construction materials (light and heavy) and floor number, with the dose reduction factors being expressed as the ratio of the dose inside to that outside the house. For wooden and lightweight steel houses (classed as light), the dose rates inside and outside the houses showed a positive correlation and linear regression with a slope-intercept form due to the natural background, although the degree of correlation was not very high. The regression coefficient, i.e., the average dose reduction factor, was 0.38 on the first floor and 0.49 on the second floor. It was found that the contribution of natural radiation cannot be neglected when we consider dose reduction factors in less contaminated areas. The reductions in indoor dose rates are observed because a patch of ground under each house is not contaminated (this is the so-called uncontaminated effect) since the shielding capability of light construction materials is typically low. For reinforced steel-framed concrete houses (classed as heavy), the dose rates inside the houses did not show a correlation with those outside the houses due to the substantial shielding capability of these materials. The average indoor dose rates were slightly higher than the arithmetic mean value of the outdoor dose rates from the natural background because concrete acts as a source of natural radionuclides. The characteristics of the uncontaminated effect were clarified through Monte Carlo simulations. It was found that there is a great variation in air dose rates even within one house, depending on the height of the area and its closeness to the outside boundary. Measurements of outdoor dose rates required consideration of local variations depending on the environment surrounding each house. The representative value was obtained from detailed distributions of air dose rates around the house, as measured by a man-borne survey. Therefore, it is imperative to recognize that dose reduction factors fluctuate in response to various factors such as the size and shape of a house, construction materials acting as a shield and as sources, position (including height) within a room, floor number, total number of floors, and surrounding environment. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Simulation of internal contamination screening with dose rate meters
NASA Astrophysics Data System (ADS)
Fonseca, T. C. F.; Mendes, B. M.; Hunt, J. G.
2017-11-01
Assessing the intake of radionuclides after an accident in a nuclear power plant or after the intentional release of radionuclides in public places allows dose calculations and triage actions to be carried out for members of the public and for emergency response teams. Gamma emitters in the lung, thyroid or the whole body may be detected and quantified by making dose rate measurements at the surface of the internally contaminated person. In an accident scenario, quick measurements made with readily available portable equipment are a key factor for success. In this paper, the Monte Carlo program Visual Monte Carlo (VMC) and MCNPx code are used in conjunction with voxel phantoms to calculate the dose rate at the surface of a contaminated person due to internally deposited radionuclides. A whole body contamination with 137Cs and a thyroid contamination with 131I were simulated and the calibration factors in kBq per μSv/h were calculated. The calculated calibration factors were compared with real data obtained from the Goiania accident in the case of 137Cs and the Chernobyl accident in terms of the 131I. The close comparison of the calculated and real measurements indicates that the method may be applied to other radionuclides. Minimum detectable activities are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Pei-Jan P., E-mail: Pei-Jan.Lin@vcuhealth.org; Schueler, Beth A.; Balter, Stephen
2015-12-15
Due to the proliferation of disciplines employing fluoroscopy as their primary imaging tool and the prolonged extensive use of fluoroscopy in interventional and cardiovascular angiography procedures, “dose-area-product” (DAP) meters were installed to monitor and record the radiation dose delivered to patients. In some cases, the radiation dose or the output value is calculated, rather than measured, using the pertinent radiological parameters and geometrical information. The AAPM Task Group 190 (TG-190) was established to evaluate the accuracy of the DAP meter in 2008. Since then, the term “DAP-meter” has been revised to air kerma-area product (KAP) meter. The charge of TGmore » 190 (Accuracy and Calibration of Integrated Radiation Output Indicators in Diagnostic Radiology) has also been realigned to investigate the “Accuracy and Calibration of Integrated Radiation Output Indicators” which is reflected in the title of the task group, to include situations where the KAP may be acquired with or without the presence of a physical “meter.” To accomplish this goal, validation test protocols were developed to compare the displayed radiation output value to an external measurement. These test protocols were applied to a number of clinical systems to collect information on the accuracy of dose display values in the field.« less
Beresford, N A; Barnett, C L; Gashchak, S; Maksimenko, A; Guliaichenko, E; Wood, M D; Izquierdo, M
2018-02-27
This study addresses a significant data deficiency in the developing environmental protection framework of the International Commission on Radiological Protection, namely a lack of radionuclide transfer data for some of the Reference Animals and Plants (RAPs). It is also the first study that has sampled such a wide range of species (invertebrates, plants, amphibians and small mammals) from a single terrestrial site in the Chernobyl Exclusion Zone (CEZ). Samples were collected in 2014 from the 0.4 km 2 sampling site, located 5 km west of the Chernobyl Nuclear Power complex. We report radionuclide ( 137 Cs, 90 Sr, 241 Am and Pu-isotopes) and stable element concentrations in wildlife and soil samples and use these to determine whole organism-soil concentration ratios and absorbed dose rates. Increasingly, stable element analyses are used to provide transfer parameters for radiological models. The study described here found that for both Cs and Sr the transfer of the stable element tended to be lower than that of the radionuclide; this is the first time that this has been demonstrated for Sr, though it is in agreement with limited evidence previously reported for Cs. Studies reporting radiation effects on wildlife in the CEZ generally relate observations to ambient dose rates determined using handheld dose meters. For the first time, we demonstrate that ambient dose rates may underestimate the actual dose rate for some organisms by more than an order of magnitude. When reporting effects studies from the CEZ, it has previously been suggested that the area has comparatively low natural background dose rates. However, on the basis of data reported here, dose rates to wildlife from natural background radionuclides within the CEZ are similar to those in many areas of Europe. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Hu, Zhimeng; Zhong, Guoqiang; Ge, Lijian; Du, Tengfei; Peng, Xingyu; Chen, Zhongjing; Xie, Xufei; Yuan, Xi; Zhang, Yimo; Sun, Jiaqi; Fan, Tieshuan; Zhou, Ruijie; Xiao, Min; Li, Kai; Hu, Liqun; Chen, Jun; Zhang, Hui; Gorini, Giuseppe; Nocente, Massimo; Tardocchi, Marco; Li, Xiangqing; Chen, Jinxiang; Zhang, Guohui
2018-07-01
The neutron field measurement was performed in the Experimental Advanced Superconducting Tokamak (EAST) experimental hall using a Bonner sphere spectrometer (BSS) based on a 3He thermal neutron counter. The measured spectra and the corresponding integrated neutron fluence and dose values deduced from the spectra at two exposed positions were compared to the calculated results obtained by a general Monte Carlo code MCNP5, and good agreements were found. The applicability of a homemade dose survey meter installed at EAST was also verified with the comparison of the ambient dose equivalent H*(10) values measured by the meter and BSS.
NEUTRON CHARACTERIZATION OF ENSA-DPT TYPE SPENT FUEL CASK AT TRILLO NUCLEAR POWER PLANT.
Méndez-Villafañe, Roberto; Campo-Blanco, Xandra; Embid, Miguel; Yéboles, César A; Morales, Ramón; Novo, Manuel; Sanz, Javier
2018-04-23
The Neutron Standards Laboratory of CIEMAT has conducted the characterization of the independent spent fuel storage installation at the Trillo Nuclear Power Plant. At this facility, the spent fuel assemblies are stored in ENSA-DPT type dual purpose casks. Neutron characterization was performed by dosimetry measurements with a neutron survey meter (LB6411) inside the facility, around an individual cask and between stored casks, and outside the facility. Spectra measurements were also performed with a Bonner sphere system in order to determine the integral quantities and validate the use of the neutron monitor at the different positions. Inside the facility, measured neutron spectra and neutron ambient dose equivalent rate are consistent with the casks spatial distribution and neutron emission rates, and measurements with both instruments are consistent with each other. Outside the facility, measured neutron ambient dose equivalent rates are well below the 0.5 μSv/h limit established by the nuclear regulatory authority.
Low dose creatine supplementation enhances sprint phase of 400 meters swimming performance.
Anomasiri, Wilai; Sanguanrungsirikul, Sompol; Saichandee, Pisut
2004-09-01
This study demonstrated the effect of low dose creatine supplement (10 g. per day) on the sprinting time in the last 50 meters of 400 meters swimming competition, as well as the effect on exertion. Nineteen swimmers in the experimental group received creatine monohydrate 5 g with orange solution 15 g, twice per day for 7 days and nineteen swimmers in the control group received the same quantity of orange solution. The results showed that the swimmers who received creatine supplement lessened the sprinting time in the last 50 meters of 400 meters swimming competition than the control group. (p<0.05). The results of Wingate test (anaerobic power, anaerobic capacity and fatigue index) compared between pre and post supplementation. There was significant difference at p<0.05 in the control group from training effect whereas there was significant difference at p<0.000 from training effect and creatine supplement in the experiment group. Therefore, the creatine supplement in amateur swimmers in the present study enhanced the physical performance up to the maximum capacity.
CHARACTERIZATION OF CLYC SCINTILLATOR COUPLED WITH PHOTOMULTIPLIERS AND A LARGE SIPM ARRAY.
Dinar, N; Celeste, D; Puzo, P; Silari, M
2017-09-29
CERN Radiation Protection group has recently developed a novel radiation survey meter called B-RAD able to operate in the presence of a strong magnetic field. The B-RAD will be equipped with a series of probes for gamma dose rate, gamma spectrometry and surface contamination measurements. The feasibility of developing a probe for neutron dose rate and possibly spectral measurements is being investigated. The determination of the breakdown voltage of the SiPM as well as its uniformity between the pixels was performed. The energy resolution of the Cs2LiYCl6:Ce (CLYC) scintillator was measured with the SiPM and compared with two different PMT models: Bialkali and Superbialkali. The temperature sensitivity of the system CLYC + SiPM was measured from -10 to + 40°C. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Zargan, S.; Ghafarian, P.; Shabestani Monfared, A.; Sharafi, A.A.; Bakhshayeshkaram, M.; Ay, M.R.
2017-01-01
Background: PET/CT imaging using [18F]-FDG is utilized in clinical oncology for tumor detecting, staging and responding to therapy procedures. Essential consideration must be taken for radiation staff due to high gamma radiation in PET/CT and cyclotron center. The aim of this study was to assess the staff exposure regarding whole body and organ dose and to evaluate environment dose in PET/CT and cyclotron center. Materials and Methods: 80 patients participated in this study. Thermoluminescence, electronic personal dosimeter and Geiger-Muller dosimeter were also utilized for measurement purpose. Results: The mean annual equivalent organ dose for scanning operator with regard to lens of eyes, thyroid, breast and finger according to mean±SD value, were 0.262±0.044, 0.256±0.046, 0.257±0.040 and 0.316±0.118, respectively. The maximum and minimum estimated annual whole body doses were observed for injector and the chemist group with values of (3.98±0.021) mSv/yr and (1.64±0.014) mSv/yr, respectively. The observed dose rates were 5.67 µSv/h in uptake room at the distance of 0.5 meter from the patient whereas the value 4.94 and 3.08 µSv/h were recorded close to patient’s head in PET/CT room and 3.5 meter from the reception desk. Conclusion: In this study, the injector staff and scanning operator received the first high level and second high level of radiation. This study confirmed that low levels of radiation dose were received by all radiation staff during PET/CT procedure using 18F-FDG due to efficient shielding and using trained radiation staff in PET/CT and cyclotron center of Masih Daneshvari hospital. PMID:28451574
Grid-Connected Distributed Generation: Compensation Mechanism Basics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aznar, Alexandra Y; Zinaman, Owen R
2017-10-02
This short report defines compensation mechanisms for grid-connected, behind-the-meter distributed generation (DG) systems as instruments that comprise three core elements: (1) metering and billing arrangements, (2) sell rate design, and (3) retail rate design. This report describes metering and billing arrangements, with some limited discussion of sell rate design. We detail the three possible arrangements for metering and billing of DG: net energy metering (NEM); buy all, sell all; and net billing.
Canbaz, Buket; Cam, N Füsun; Yaprak, Günseli; Candan, Osman
2010-09-01
The surveys of natural gamma-emitting radionuclides in rocks and soils from the Ezine plutonic area were conducted during 2007. Direct dose measurement using a survey meter was carried out simultaneously. The present study, which is part of the survey, analysed the activity concentrations of (238)U, (232)Th and (40)K in granitoid samples from all over the region by HPGe gamma spectrometry. The activity concentrations of (226)Ra ranged from 94 to 637 Bq kg(-1), those of (232)Th ranged from 120 to 601 Bq kg(-1)and those of (40)K ranged from 1074 to 1527 Bq kg(-1) in the analysed rock samples from different parts of the pluton. To evaluate the radiological hazard of the natural radioactivity in the samples, the absorbed dose rate (D), the annual effective dose rate, the radium equivalent activity (Ra(eq)) and the external (H(ex)) hazard index were calculated according to the UNSCEAR 2000 report. The thorium-to-uranium concentration ratios were also estimated.
Bolch, Wesley E.; Hurtado, Jorge L.; Lee, Choonsik; Manger, Ryan; Hertel, Nolan; Dickerson, William
2013-01-01
In June of 2006, the Radiation Studies Branch of the Centers for Disease Control and Prevention held a workshop to explore rapid methods of facilitating radiological triage of large numbers of potentially contaminated individuals following detonation of a radiological dispersal device. Two options were discussed. The first was the use of traditional gamma-cameras in nuclear medicine departments operated as make-shift whole-body counters. Guidance on this approach is currently available from the CDC. This approach is feasible if a manageable number of individuals were involved, transportation to the relevant hospitals was quickly provided, and the medical staff at each facility had been previously trained in this non-traditional use of their radiopharmaceutical imaging devices. If, however, substantially large numbers of individuals (100s to 1000s) needed radiological screening, other options must be given to first responders, first receivers, and health physicists providing medical management. In this study, the second option of the workshop was investigated – the use of commercially available portable survey meters (either NaI or GM based) for assessing potential ranges of effective dose (<50, 50–250, 250–500, and >500 mSv). Two hybrid computational phantoms were used to model an adult male and an adult female subject internally contaminated with either 241Am, 60Cs, 137Cs, 131I, and 192Ir following an acute inhalation or ingestion intake. As a function of time following the exposure, the net count rates corresponding to committed effective doses of 50, 250, and 500 mSv were estimated via Monte Carlo radiation transport simulation for each of four different detectors types, positions, and screening distances. Measured count rates can be compared to these values and an assignment of one of four possible effective dose ranges could be made. The method implicitly assumes that all external contamination has been removed prior to screening, and that the measurements be conducted in a low-background, and possibly mobile, facility positioned at the triage location. Net count rate data are provided in both tabular and graphical format within a series of eight handbooks available at the CDC website http://emergency.cdc.gov/radiation. PMID:22420020
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolch, W.E.; Hurtado, J.L.; Lee, C.
2012-01-01
In June 2006, the Radiation Studies Branch of the Centers for Disease Control and Prevention held a workshop to explore rapid methods of facilitating radiological triage of large numbers of potentially contaminated individuals following detonation of a radiological dispersal device. Two options were discussed. The first was the use of traditional gamma cameras in nuclear medicine departments operated as makeshift wholebody counters. Guidance on this approach is currently available from the CDC. This approach would be feasible if a manageable number of individuals were involved, transportation to the relevant hospitals was quickly provided, and the medical staff at each facilitymore » had been previously trained in this non-traditional use of their radiopharmaceutical imaging devices. If, however, substantially larger numbers of individuals (100 s to 1,000 s) needed radiological screening, other options must be given to first responders, first receivers, and health physicists providing medical management. In this study, the second option of the workshop was investigated by the use of commercially available portable survey meters (either NaI or GM based) for assessing potential ranges of effective dose (G50, 50Y250, 250Y500, and 9500 mSv). Two hybrid computational phantoms were used to model an adult male and an adult female subject internally contaminated with 241Am, 60Cs, 137Cs, 131I, or 192Ir following an acute inhalation or ingestion intake. As a function of time following the exposure, the net count rates corresponding to committed effective doses of 50, 250, and 500 mSv were estimated via Monte Carlo radiation transport simulation for each of four different detector types, positions, and screening distances. Measured net count rates can be compared to these values, and an assignment of one of four possible effective dose ranges could be made. The method implicitly assumes that all external contamination has been removed prior to screening and that the measurements be conducted in a low background, and possibly mobile, facility positioned at the triage location. Net count rate data are provided in both tabular and graphical format within a series of eight handbooks available at the CDC website (http://www.bt.cdc.gov/radiation/clinicians/evaluation).« less
Iimoto, T; Fujii, H; Oda, S; Nakamura, T; Hayashi, R; Kuroda, R; Furusawa, M; Umekage, T; Ohkubo, Y
2012-11-01
The accident of the Fukushima Dai-ichi nuclear power plant of Tokyo Electric Power Cooperation (TEPCO) after the great east Japan earthquake (11 March 2011) elevated the background level of environmental radiation in Eastern Japan. Around the Tokyo metropolitan area, especially around Kashiwa and Nagareyama cities, the ambient dose equivalent rate has been significantly increased after the accident. Responding to strong requests from citizens, the local governments started to monitor the ambient dose equivalent rate precisely and officially, about 3 months after the accident had occurred. The two cities in cooperation with each other also organised a local forum supported by three radiation specialists. In this article, the activities of the local governments are introduced, with main focus on radiation monitoring and measurements. Topics are standardisation of environmental radiation measurements for ambient dose rate, dose mapping activity, investigation of foodstuff and drinking water, lending survey meters to citizens, etc. Based on the data and facts mainly gained by radiation monitoring, risk management and relating activity have been organised. 'Small consultation meetings in kindergartens', 'health consultation service for citizens', 'education meeting on radiation protection for teachers, medical staffs, local government staffs, and leaders of active volunteer parties' and 'decontamination activity', etc. are present key activities of the risk management and restoration around the Tokyo metropolitan area.
Papadopoulou, D; Yakoumakis, Em; Sandilos, P; Thanopoulos, V; Makri, Tr; Gialousis, G; Houndas, D; Yakoumakis, N; Georgiou, Ev
2005-01-01
The purpose of this study was to estimate the radiation exposure of children, during cardiac catheterisations for the diagnosis or treatment of congenital heart disease. Radiation doses were estimated for 45 children aged from 1 d to 13 y old. Thermoluminescent dosemeters (TLDs) were used to estimate the posterior entrance dose (DP), the lateral entrance dose (DLAT), the thyroid dose and the gonads dose. A dose-area product (DAP) meter was also attached externally to the tube of the angiographic system and gave a direct value in mGy cm2 for each procedure. Posterior and lateral entrance dose values during cardiac catheterisations ranged from 1 to 197 mGy and from 1.1 to 250.3 mGy, respectively. Radiation exposure to the thyroid and the gonads ranged from 0.3 to 8.4 mGy to 0.1 and 0.7 mGy, respectively. Finally, the DAP meter values ranged between 360 and 33,200 mGy cm2. Radiation doses measured in this study are comparable with those reported to previous studies. Moreover, strong correlation was found between the DAP values and the entrance radiation dose measured with TLDs.
Calibration methodology application of kerma area product meters in situ: Preliminary results
NASA Astrophysics Data System (ADS)
Costa, N. A.; Potiens, M. P. A.
2014-11-01
The kerma-area product (KAP) is a useful quantity to establish the reference levels of conventional X-ray examinations. It can be obtained by measurements carried out with a KAP meter on a plane parallel transmission ionization chamber mounted on the X-ray system. A KAP meter can be calibrated in laboratory or in situ, where it is used. It is important to use one reference KAP meter in order to obtain reliable quantity of doses on the patient. The Patient Dose Calibrator (PDC) is a new equipment from Radcal that measures KAP. It was manufactured following the IEC 60580 recommendations, an international standard for KAP meters. This study had the aim to calibrate KAP meters using the PDC in situ. Previous studies and the quality control program of the PDC have shown that it has good function in characterization tests of dosimeters with ionization chamber and it also has low energy dependence. Three types of KAP meters were calibrated in four different diagnostic X-ray equipments. The voltages used in the two first calibrations were 50 kV, 70 kV, 100 kV and 120 kV. The other two used 50 kV, 70 kV and 90 kV. This was related to the equipments limitations. The field sizes used for the calibration were 10 cm, 20 cm and 30 cm. The calibrations were done in three different cities with the purpose to analyze the reproducibility of the PDC. The results gave the calibration coefficient for each KAP meter and showed that the PDC can be used as a reference instrument to calibrate clinical KAP meters.
Treatment adherence among low-income, African American children with persistent asthma.
Celano, Marianne P; Linzer, Jeffrey F; Demi, Alice; Bakeman, Roger; Smith, Chaundrissa Oyeshiku; Croft, Shannon; Kobrynski, Lisa J
2010-04-01
The study aims to assess medication adherence and asthma management behaviors and their modifiable predictors in low-income children with persistent asthma. The authors conducted a cohort study of 143 children ages 6 to 11 prescribed a daily inhaled controller medicine that could be electronically monitored. Children were recruited from clinics or the emergency department of an urban children's hospital. Data were collected at baseline (T1) and 1 year later (T2). Outcome measures were adherence to controller medications as measured by electronic monitoring devices, observed metered-dose inhaler and spacer technique, exposure to environmental tobacco smoke, and attendance at appointments with primary health care provider. Medication adherence rates varied across medications, with higher rates for montelukast than for fluticasone. Eleven percent to 15% of children demonstrated metered dose inhaler and spacer technique suggesting no drug delivery, and few (5% to 6%) evidenced significant exposure to environmental tobacco smoke. Less than half of recommended health care visits were attended over the study interval. Few psychosocial variables were associated with adherence at T1 or in the longitudinal analyses. Fluticasone adherence at T2 was predicted by caregiver asthma knowledge. A substantial number of low-income children with persistent asthma receive less than half of their prescribed inhaled controller agent. Patients without Medicaid, with low levels of caregiver asthma knowledge, or with caregivers who began childrearing at a young age may be at highest risk for poor medication adherence.
Identification and Development of Biological Markers of Human Exposure to the Insecticide Permethrin
2008-04-01
following occupational exposure (Angerer and Ritter, 1997) or healthy volunteers using a shampoo for head lice (Tomalik-Scharte et al., 2005) was subjected...discrepancy is likely due to the inaccuracy and inefficiency of the survey meter. However, the survey meter did provide useful information during the...individual treatments. No adverse effects were reported during the one-week period of the study. Table 3. Dosing procedure monitoring by survey meter
Lewis, D A; Young, P M; Buttini, F; Church, T; Colombo, P; Forbes, B; Haghi, M; Johnson, R; O'Shea, H; Salama, R; Traini, D
2014-01-01
A series of semi-empirical equations were utilised to design two solution based pressurised metered dose inhaler (pMDI) formulations, with equivalent aerosol performance but different physicochemical properties. Both inhaler formulations contained the drug, beclomethasone dipropionate (BDP), a volatile mixture of ethanol co-solvent and propellant (hydrofluoroalkane-HFA). However, one formulation was designed such that the emitted aerosol particles contained BDP and glycerol, a common inhalation particle modifying excipient, in a 1:1 mass ratio. By modifying the formulation parameters, including actuator orifice, HFA and metering volumes, it was possible to produce two formulations (glycerol-free and glycerol-containing) which had identical mass median aerodynamic diameters (2.4μm±0.1 and 2.5μm±0.2), fine particle dose (⩽5μm; 66μg±6 and 68μg±2) and fine particle fractions (28%±2% and 30%±1%), respectively. These observations demonstrate that it is possible to engineer formulations that generate aerosol particles with very different compositions to have similar emitted dose and in vitro deposition profiles, thus making them equivalent in terms of aerosol performance. Analysis of the physicochemical properties of each formulation identified significant differences in terms of morphology, thermal properties and drug dissolution of emitted particles. The particles produced from both formulations were amorphous; however, the formulation containing glycerol generated particles with a porous structure, while the glycerol-free formulation generated particles with a primarily spherical morphology. Furthermore, the glycerol-containing particles had a significantly lower dissolution rate (7.8%±2.1%, over 180min) compared to the glycerol-free particles (58.0%±2.9%, over 60min) when measured using a Franz diffusion cell. It is hypothesised that the presence of glycerol in the emitted aerosol particles altered solubility and drug transport, which may have implications for BDP pharmacokinetics after deposition in the respiratory tract. Copyright © 2013 Elsevier B.V. All rights reserved.
Anti-Adhesion Elastomer Seal Coatings for Ultraviolet and Atomic Oxygen Protection
NASA Technical Reports Server (NTRS)
De Groh, Henry C., III; Puleo, Bernadette J.; Waters, Deborah L.; Miller, Sharon K.
2015-01-01
Radiation blocking sunscreen coatings have been developed for the protection of elastomer seals used in low-Earth-orbit (LEO). The coatings protect the seals from ultraviolet (UV) radiation and atomic oxygen (AO) damage. The coatings were developed for use on NASA docking seals. Docking seal damage from the UV and AO present in LEO can constrain mission time-line, flight mode options, and increases risk. A low level of adhesion is also required for docking seals so undocking push-off forces can be low. The coatings presented also mitigate this unwanted adhesion. Greases with low collected volatile condensable materials (CVCM) and low total mass loss (TML) were mixed with slippery and/or UV blocking powders to create the protective coatings. Coatings were applied at rates up to 2 milligrams per square centimeter. Coated seals were exposed to AO and UV in the NUV (near-UV) and UV-C wavelength ranges (300 to 400 nanometers and 254 nanometers, respectively). Ground based ashers were used to simulate the AO of space. The Sun's UV energy was mimicked assuming a nose forward flight mode, resulting in an exposure rate of 2.5 megajoules per square meter per day. Exposures between 0 and 147 megajoules per square meter (UV-C) and 245 megajoules per square meter (NUV) were accomplished. The protective coatings were durable, providing protection from UV after a simulated docking and undocking cycle. The level of protection begins to decline at coverage rates less than 0.9 milligrams per square centimeter. The leakage of seals coated with Braycote plus 20 percent Z-cote ZnO sunscreen increased by a factor of 40 after moderate AO exposure; indicating that this coating might not be suitable due to AO intolerance. Seals coated with DC-7-16.4 percent Z-cote ZnO sunscreen were not significantly affected by combined doses of 2 x 10 (sup 21) atoms per square AO with 73 megajoules per square meter UV-C. Unprotected seals were significantly damaged at UV-C exposures of 0.3 megajoules per square meter and DC-7-16.4 percent Z-cote coated seals were undamaged at all exposures up to the limits tested thus far which were 147 megajoules per square meter UV-C and 245 megajoules per square meter NUV. The coatings decreased adhesion sufficiently for docking seals at temperatures equal to or greater than -8 degrees Centigrade thus offer a simple and inexpensive way to mitigate adhesion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damilakis, J; Perisinakis, K; Solomou, G
Purpose: The aim of this method was to provide dosimetric data on conceptus dose for the pregnant employee who participates in fluoroscopically-guided interventional procedures. Methods: Scattered air-kerma dose rates were obtained for 17 fluoroscopic projections involved in interventional procedures. These projections were simulated on an anthropomorphic phantom placed on the examination table supine. The operating theater was divided into two grids relative to the long table sides. Each grid consisted of 33 cells spaced 0.50 m apart. During the simulated exposures, at each cell, scatter air-kerma rate was measured at 110 cm from the floor i.e. at the height ofmore » the waist of the pregnant worker. Air-kerma rates were divided by the dose area product (DAP) rate of each exposure to obtain normalized data. For each projection, measurements were performed for 3 kVp and 3 filtration values i.e. for 9 different x-ray spectra. All measurements were performed by using a modern C-arm angiographic system (Siemens Axiom Artis, Siemens, Germany) and a radiation meter equipped with an ionization chamber. Results: The results consist of 153 iso-dose maps, which show the spatial distribution of DAP-normalized scattered air-kerma doses at the waist level of a pregnant worker. Conceptus dose estimation is possible using air-kerma to embryo/fetal dose conversion coefficients published in a previous study (J Cardiovasc Electrophysiol, Vol. 16, pp. 1–8, July 2005). Using these maps, occupationally exposed pregnant personnel may select a working position for a certain projection that keeps abdominal dose as low as reasonably achievable. Taking into consideration the regulatory conceptus dose limit for occupational exposure, determination of the maximum workload allowed for the pregnant personnel is also possible. Conclusion: Data produced in this work allow for the anticipation of conceptus dose and the determination of the maximum workload for a pregnant worker from any fluoroscopically-guided interventional procedure. This study was supported by the Greek Ministry of Education and Religious Affairs, General Secretariat for Research and Technology, Operational Program ‘Education and Lifelong Learning’, ARISTIA (Research project: CONCERT)« less
Rapid response radiation sensors for homeland security applications
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Sanjoy; Maurer, Richard; Guss, Paul
2014-09-01
The National Security Technologies, LLC, Remote Sensing Laboratory is developing a rapid response radiation detection system for homeland security field applications. The intelligence-driven system is deployed only when non-radiological information about the target is verifiable. The survey area is often limited, so the detection range is small; in most cases covering a distance of 10 meters or less suffices. Definitive response is required in no more than 3 seconds and should minimize false negative alarms, but can err on the side of positive false alarms. The detection system is rapidly reconfigurable in terms of size, shape, and outer appearance; it is a plug-and-play system. Multiple radiation detection components (viz., two or more sodium iodide scintillators) are used to independently "over-determine" the existence of the threat object. Rapid response electronic dose rate meters are also included in the equipment suite. Carefully studied threat signatures are the basis of the decision making. The use of Rad-Detect predictive modeling provides information on the nature of the threat object. Rad-Detect provides accurate dose rate from heavily shielded large sources; for example those lost in Mexico were Category 1 radiation sources (~3,000 Ci of 60Co), the most dangerous of five categories defined by the International Atomic Energy Agency. Taken out of their shielding containers, Category 1 sources can kill anyone who is exposed to them at close range for a few minutes to an hour. Whenever possible sub-second data acquisition will be attempted, and, when deployed, the system will be characterized for false alarm rates. Although the radiation detection materials selected are fast (viz., faster scintillators), their speed is secondary to sensitivity, which is of primary importance. Results from these efforts will be discussed and demonstrated.
Carli, V; Menu-Bouaouiche, L; Cardinael, P; Benissan, L; Coquerel, G
2018-07-01
The objective of this work is to show the feasibility of manufacturing from a spray drying process particles containing immunoglobulin G capable of being administered by inhalation via a pressurized metered dose inhaler. Spray drying were made from aqueous solutions containing IgG and two types of excipients, mannitol and trehalose, with two ratios: 25% w/w and 75%w/w. The physicochemical and aerodynamic properties of the powders obtained were characterized just after manufacturing and after 1 month of storage at 40°C/75% RH according to criteria defined as needed to satisfy an inhaled formulation with a pressurized metered dose inhaler. Maintain of the biological activity and the structure of IgG after atomization was also tested by slot blot and circular dichroism. All spray-dried powders presented a median diameter lower than 5μm. The powders atomized with trehalose showed a solid state more stable than those atomized with mannitol. All atomized powders were in the form of wrinkled particles regardless the nature and the ratios of excipients. The results showed that the aerosolisation properties were compliant with the target, independently of the excipient used at a ratio of 25% w/w IgG-excipient. Moreover, the addition of excipient during the atomization process the denaturation of IgG was limited. This study showed that the use of trehalose as excipient could satisfy the requirements of an inhaled formulation with a pressurized metered dose inhaler. Copyright © 2018 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.
Understanding pressurized metered dose inhaler performance.
Ivey, James W; Vehring, Reinhard; Finlay, Warren H
2015-06-01
Deepening the current understanding of the factors governing the performance of the pressurized metered dose inhaler (pMDI) has the potential to benefit patients by providing improved drugs for current indications as well as by enabling new areas of therapy. Although a great deal of work has been conducted to this end, our knowledge of the physical mechanisms that drive pMDI performance remains incomplete. This review focuses on research into the influence of device and formulation variables on pMDI performance metrics. Literature in the areas of dose metering, atomization and aerosol evolution and deposition is covered, with an emphasis on studies of a more fundamental nature. Simple models which may be of use to those developing pMDI products are summarized. Although researchers have had good success utilizing an empirically developed knowledge base to predict pMDI performance, such knowledge may not be applicable when pursuing innovations in device or formulation technology. Developing a better understanding of the underlying mechanisms is a worthwhile investment for those working to enable the next generation of pMDI products.
Nickoloff, Edward Lee
2011-01-01
This article reviews the design and operation of both flat-panel detector (FPD) and image intensifier fluoroscopy systems. The different components of each imaging chain and their functions are explained and compared. FPD systems have multiple advantages such as a smaller size, extended dynamic range, no spatial distortion, and greater stability. However, FPD systems typically have the same spatial resolution for all fields of view (FOVs) and are prone to ghosting. Image intensifier systems have better spatial resolution with the use of smaller FOVs (magnification modes) and tend to be less expensive. However, the spatial resolution of image intensifier systems is limited by the television system to which they are coupled. Moreover, image intensifier systems are degraded by glare, vignetting, spatial distortions, and defocusing effects. FPD systems do not have these problems. Some recent innovations to fluoroscopy systems include automated filtration, pulsed fluoroscopy, automatic positioning, dose-area product meters, and improved automatic dose rate control programs. Operator-selectable features may affect both the patient radiation dose and image quality; these selectable features include dose level setting, the FOV employed, fluoroscopic pulse rates, geometric factors, display software settings, and methods to reduce the imaging time. © RSNA, 2011.
Equivalent Noise Dose Obtained through Hearing Aids in the Classrooms of Hearing-Impaired Children.
ERIC Educational Resources Information Center
Wilde, Ronald A.
1990-01-01
A commercial noise dose meter was used to estimate the equivalent noise dose received through high-gain hearing aids worn in four classrooms in a school for deaf children. There were no significant differences among nominal saturation sound pressure level (SSPL) settings, and all SSPL settings produced very high equivalent noise doses. (Author/JDD)
Goldberg, J; Freund, E; Beckers, B; Hinzmann, R
2001-02-01
Asthma can be effectively treated by the use of bronchodilator therapies administered by inhalation. The objective of this study was to describe the dose-response relationship of combined doses of fenoterol hydrobromide (F) and ipratropium bromide (I) (F/I) delivered via Respimat, a soft mist inhaler, and to establish the Respimat dose which is as efficacious and as safe as the standard marketed dose of F/I (100/40 microg) which is delivered via a conventional metered dose inhaler (MDI). In a double-blind (within device) cross-over study with a balanced incomplete block design, 62 patients with stable bronchial asthma (mean forced expiratory volume in one second (FEV1) 63% predicted) were randomized at five study centres to receive five out of eight possible treatments: placebo, F/I 12.5/5, 25/10, 50/20, 100/40 or 200/80 microg delivered via Respimat; F/I 50/20 or 100/40 microg delivered via MDI. Pulmonary function results were based on the per-protocol dataset, comprising 47 patients. All F/I doses produced greater increases in FEV1 than placebo. A log-linear dose-response was obtained for the average increase in FEV1 up to 6 h (AUC0-6 h) and peak FEV1 across the dose range administered by Respimat. Statistically, therapeutic equivalence was not demonstrated between any F/I dose administered by Respimat compared with the MDI. However 12.5/5 and 25/10 microg F/I administered via Respimat were closest (slightly superior) to the F/I dose of 100/40 microg delivered via MDI. Pharmacokinetic data from 34 patients indicated a two-fold greater systemic availability of both drugs following inhalation by Respimat compared to MDI. In general, the active treatments were well tolerated and safe with regard to vital signs, electrocardiography, laboratory parameters and adverse events. In conclusion, combined administration of fenoterol hydrobromide and ipratropium bromide via Respimat, is as effective and as safe as higher doses given via a metered dose inhaler.
Lee, Sang Min; Chang, Yoon-Seok; Kim, Cheol-Woo; Kim, Tae-Bum; Kim, Sang-Heon; Kwon, Yong-Eun; Lee, Jong-Myung; Lee, Soo-Keol; Jeong, Jae-Won; Park, Jung-Won; Cho, Sang-Heon; Moon, Hee-Bom
2011-01-01
Purpose The objective of this study was to evaluate skills in handling inhalers and factors associated with these skills among patients with asthma who had undergone treatment at special asthma and allergy clinics in Korea. Methods We enrolled 78 subjects who used Turbuhaler and 145 who used Diskus for asthma control at special clinics in 10 university hospitals and visually assessed their skills in handling these inhalers. We also evaluated skills in 137 subjects who had used pressurized metered-dose inhalers (pMDIs) for symptom relief. Age, sex, duration of asthma and inhaler use, smoking status, monthly income, highest grade completed in school and previous instruction for handling inhalers were also measured to evaluate their association with overall inhaler skills. Results Performance grade was inadequate for 12.8% of participants using Turbuhaler, 6.2% for Diskus, and 23.4% for pMDIs. The success rates for each step in handling the inhalers were relatively high except for the "exhale slowly to residual volume" step, in which success rates ranged from 24.2% to 28.5%. Older age, male sex, lower educational grade, and absence of previous instruction for handling inhalers were associated with inadequate inhaler technique in univariate analysis; however, only older age and absence of previous instruction remained significant independent risk factors in multivariate analysis. Conclusions Among Korean asthmatic patients in special asthma and allergy clinics, skills in handling their inhalers were mostly excellent; meanwhile, older age and absence of previous instruction for handling inhalers were associated with inadequate techniques. PMID:21217925
Measurement of neutron dose equivalent outside and inside of the treatment vault of GRID therapy.
Wang, Xudong; Charlton, Michael A; Esquivel, Carlos; Eng, Tony Y; Li, Ying; Papanikolaou, Nikos
2013-09-01
To evaluate the neutron and photon dose equivalent rates at the treatment vault entrance (Hn,D and HG), and to study the secondary radiation to the patient in GRID therapy. The radiation activation on the grid was studied. A Varian Clinac 23EX accelerator was working at 18 MV mode with a grid manufactured by .decimal, Inc. The Hn,D and HG were measured using an Andersson-Braun neutron REM meter, and a Geiger Müller counter. The radiation activation on the grid was measured after the irradiation with an ion chamber γ-ray survey meter. The secondary radiation dose equivalent to patient was evaluated by etched track detectors and OSL detectors on a RANDO(®) phantom. Within the measurement uncertainty, there is no significant difference between the Hn,D and HG with and without a grid. However, the neutron dose equivalent to the patient with the grid is, on average, 35.3% lower than that without the grid when using the same field size and the same amount of monitor unit. The photon dose equivalent to the patient with the grid is, on average, 44.9% lower. The measured average half-life of the radiation activation in the grid is 12.0 (± 0.9) min. The activation can be categorized into a fast decay component and a slow decay component with half-lives of 3.4 (± 1.6) min and 15.3 (± 4.0) min, respectively. There was no detectable radioactive contamination found on the surface of the grid through a wipe test. This work indicates that there is no significant change of the Hn,D and HG in GRID therapy, compared with a conventional external beam therapy. However, the neutron and scattered photon dose equivalent to the patient decrease dramatically with the grid and can be clinical irrelevant. Meanwhile, the users of a grid should be aware of the possible high dose to the radiation worker from the radiation activation on the surface of the grid. A delay in handling the grid after the beam delivery is suggested.
The effects of vertical motion on the performance of current meters
Thibodeaux, K.G.; Futrell, J. C.
1987-01-01
A series of tests to determine the correction coefficients for Price type AA and Price type OAA current meters, when subjected to vertical motion in a towing tank, have been conducted. During these tests, the meters were subjected to vertical travel that ranged from 1.0 to 4.0 ft and vertical rates of travel that ranged from 0.33 to 1.20 ft/sec while being towed through the water at speeds ranging from 0 to 8 ft/sec. The tests show that type AA and type OAA current meters are affected adversely by the rate of vertical motion and the distance of vertical travel. In addition, the tests indicate that when current meters are moved vertically, correction coefficients must be applied to the observed meter velocities to correct for the registration errors that are induced by the vertical motion. The type OAA current meter under-registers and the type AA current meter over-registers in observed meter velocity. These coefficients for the type OAA current meter range from 0.99 to 1.49 and for the type AA current meter range from 0.33 to 1.07. When making current meter measurements from a boat or a cableway, errors in observed current meter velocity will occur when the bobbing of a boat or cableway places the current meter into vertical motion. These errors will be significant when flowing water is < 2 ft/sec and the rate of vertical motion is > 0.3 ft/sec. (Author 's abstract)
Tsuji, Masayoshi; Kanda, Hideyuki; Kakamu, Takeyasu; Kobayashi, Daisuke; Miyake, Masao; Hayakawa, Takehito; Mori, Yayoi; Okochi, Toshiyasu; Hazama, Akihiro; Fukushima, Tetsuhito
2012-03-01
On 11 March 2011, the Great East Japan Earthquake occurred. Due to this earthquake and subsequent tsunami, malfunctions occurred at the Fukushima Daiichi nuclear power plant. Radioactive material even reached the investigated educational institution despite being 57.8 km away from the power station. With the goal of ensuring the safety of our students, we decided to carry out a risk assessment of the premises of this educational institution by measuring radiation doses at certain locations, making it possible to calculate estimated radiation accumulation. Systematic sampling was carried out at measurement points spaced at regular intervals for a total of 24 indoor and outdoor areas, with 137 measurements at heights of 1 cm and 100 cm above the ground surface. Radiation survey meters were used to measure environmental radiation doses. Radiation dose rates and count rates were higher outdoors than indoors, and higher 1 cm above the ground surface than at 100 cm. Radiation doses 1 cm above the ground surface were higher on grass and moss than on asphalt and soil. The estimated radiation exposure for a student spending an average of 11 h on site at this educational institution was 9.80 μSv. Environmental radiation doses at our educational institution 57.8 km away from the Fukushima Daiichi nuclear power plant 1 month after the accident were lower than the national regulation dose for schools (3.8 μSv/h) at most points. Differences in radiation doses depending on outdoor surface properties are important to note for risk reduction.
Murray, Louis C.
2009-01-01
Water-use data collected between 1992 and 2006 at eight municipal water-supply utilities in east-central and northeast Florida were analyzed to identify seasonal trends in use and to quantify monthly variations. Regression analyses were applied to identify significant correlations between water use and selected meteorological parameters and drought indices. Selected parameters and indices include precipitation (P), air temperature (T), potential evapotranspiration (PET), available water (P-PET), monthly changes in these parameters (Delta P, Delta T, Delta PET, Delta(P-PET), the Palmer Drought Severity Index (PDSI), and the Standardized Precipitation Index (SPI). Selected utilities include the City of Daytona Beach (Daytona), the City of Eustis (Eustis), Gainesville Regional Utilities (GRU), Jacksonville Electric Authority (JEA), Orange County Utilities (OCU), Orlando Utilities Commission (OUC), Seminole County Utilities (SCU), and the City of St. Augustine (St. Augustine). Water-use rates at these utilities in 2006 ranged from about 3.2 million gallons per day at Eustis to about 131 million gallons per day at JEA. Total water-use rates increased at all utilities throughout the 15-year period of record, ranging from about 4 percent at Daytona to greater than 200 percent at OCU and SCU. Metered rates, however, decreased at six of the eight utilities, ranging from about 2 percent at OCU and OUC to about 17 percent at Eustis. Decreases in metered rates occurred because the number of metered connections increased at a greater rate than did total water use, suggesting that factors other than just population growth may play important roles in water-use dynamics. Given the absence of a concurrent trend in precipitation, these decreases can likely be attributed to changes in non-climatic factors such as water-use type, usage of reclaimed water, water-use restrictions, demographics, and so forth. When averaged for the eight utilities, metered water-use rates depict a clear seasonal pattern in which rates were lowest in the winter and greatest in the late spring. Averaged water-use rates ranged from about 9 percent below the 15-year daily mean in January to about 11 percent above the daily mean in May. Water-use rates were found to be statistically correlated to meteorological parameters and drought indices, and to be influenced by system memory. Metered rates (in gallons per day per active metered connection) were consistently found to be influenced by P, T, PET, and P-PET and changes in these parameters that occurred in prior months. In the single-variant analyses, best correlations were obtained by fitting polynomial functions to plots of metered rates versus moving-averaged values of selected parameters (R2 values greater than 0.50 at three of eight sites). Overall, metered water-use rates were best correlated with the 3- to 4-month moving average of Delta T or Delta PET (R2 values up to 0.66), whereas the full suite of meteorological parameters was best correlated with metered rates at Daytona and least correlated with rates at St. Augustine. Similarly, metered rates were substantially better correlated with moving-averaged values of precipitation (significant at all eight sites) than with single (current) monthly values (significant at only three sites). Total and metered water-use rates were positively correlated with T, PET, Delta P, Delta T, and Delta PET, and negatively correlated with P, P-PET, Delta (P-PET), PDSI, and SPI. The drought indices were better correlated with total water-use rates than with metered rates, whereas metered rates were better correlated with meteorological parameters. Multivariant analyses produced fits of the data that explained a greater degree of the variance in metered rates than did the single-variant analyses. Adjusted R2 values for the 'best' models ranged from 0.79 at JEA to 0.29 at St. Augustine and exceeded 0.60 at five of eight sites. The amount of available water (P-PET) was the si
Gamma greenhouse: A chronic facility for crops improvement and agrobiotechnology
NASA Astrophysics Data System (ADS)
Azhar, M.; Ahsanulkhaliqin, A. W.
2014-02-01
Gamma irradiation is one of the most common procedures in plant mutagenesis and agrobiotechnology activities. The procedures consist of chronic and acute gamma radiation. Generally, 60Co and 137Cs are gamma radiation sources for radiation processing with relatively high energy (half-life 5.27 years for 60Co and 30.1 years for 137Cs). The energy associated with gamma radiation is high enough to break the molecular bonds and ionize atoms without affecting structure of the atomic nucleus (avoiding induction of radioactivity). The Gamma Green House (GGH) is the only chronic irradiation facility in Malaysia, located at Malaysian Nuclear Agency (Nuclear Malaysia). GGH is used for induction of mutation in plants and other biological samples at low dose radiation over period of time depending on the nature and sensitivity of the plant species. The GGH consist of circular green house with 30 meters radius, control room and irradiator with interlock system. The irradiator produces low dose gamma radiation derived from Caesium-137 radioactive source. The biological samples can be exposed to low dose radiation in days, weeks, months or years. The current irradiation rate for GGH is 2.67 Gy/hr at 1 meter from the source. Chronic gamma irradiation produces a wider mutation spectrum and useful for minimizing radiation damages towards obtaining new improved traits for research and commercial values. The prospect of the gamma greenhouse is its uses in research, educations and services on induced mutation techniques for the improvement of plant varieties and microbes. In generating awareness and attract users to the facility, Nuclear Malaysia provides wide range of irradiation services for plant species and mutagenesis consultancies to academicians, students scientists, and plant breeders, from local universities, other research institutes, and growers. Charges for irradiation and consultancy services are at nominal rates. The utilization activities of the gamma greenhouse mainly cover Research and Development, Research Collaboration, Exchange of Information, Irradiation Services, Training Programs, Education, Exchange of Scientists and Seminars/ Conferences.
Pressurised metered dose inhaler-spacer technique in young children improves with video instruction.
Shaw, Nicole; Le Souëf, Peter; Turkovic, Lidija; McCahon, Lucy; Kicic, Anthony; Sly, Peter D; Devadason, Sunalene; Schultz, André
2016-07-01
The importance of good device technique to maximise delivery of aerosolised medications is widely recognised. Pressurised metered dose inhaler (pMDI)-spacer technique was investigated in 122 children, aged 2-7 years, with asthma. Eight individual steps of device technique were evaluated before and after viewing an instructional video for correct device technique. Video measurements were repeated every three months for nine months. Device technique improved directly after video instruction at the baseline study visit (p < 0.001) but had no immediate effect at subsequent visits. Additionally, pMDI-spacer technique improved with successive visits over one year for the group overall as evidenced by increases in the proportion of children scoring maximal (p = 0.02) and near-maximal (p = 0.04) scores. Repeated video instruction over time improves inhaler technique in young children. • Correct device technique is considered essential for sufficient delivery of inhaled medication. • Poor inhaler use is common in young asthmatic children using pressurised metered dose inhalers and spacers. What is New: • Video instruction could be used as a strategy to improve device technique in young children.
A direct reading exposure monitor for radiation processing
NASA Astrophysics Data System (ADS)
Kantz, A. D.; Humpherys, K. C.
Various plastic films have been utilized to measure radiation fields. In general such films are rugged, easily handled, small enough to cause neligible perturbation on the radiation fields, and relatively inexpensive. The radiachromic materials have been shown to have advantages over other plastic fabrications in stability, reproducibility, equivalent response to electron and gamma ray processing fields, dose rate independence, and ready availability of calibration standards. Using a nylon matrix radiachromic detector, a system of direct read-out of absorbed dose has been developed to facilitate monitoring in the megarad region. When an exposed detector is inserted into the reader, the optical transmission signal is processed through an analog to digital converter. The digitized signal addresses a memory bank where the standard response curve is stored. The corresponding absorbed dose is displayed on a digital panel meter. The variation of relative sensitivity of detectors, the background of unirradiated detectors, environmental parameters, and the capacity of the memory bank are contributing factors to the total precision of the read-out system.
NASA Astrophysics Data System (ADS)
Darghouth, Naim Richard
Net metering has become a widespread policy mechanism in the U.S. for supporting customer adoption of distributed photovoltaics (PV), allowing customers with PV systems to reduce their electric bills by offsetting their consumption with PV generation, independent of the timing of the generation relative to consumption. Although net metering is one of the principal drivers for the residential PV market in the U.S., the academic literature on this policy has been sparse and this dissertation contributes to this emerging body of literature. This dissertation explores the linkages between the availability of net metering, wholesale electricity market conditions, retail rates, and the residential bill savings from behind-the-meter PV systems. First, I examine the value of the bill savings that customers receive under net metering and alternatives to net metering, and the associated role of retail rate design, based on current rates and a sample of approximately two hundred residential customers of California's two largest electric utilities. I find that the bill savings per kWh of PV electricity generated varies greatly, largely attributable to the increasing block structure of the California utilities' residential retail rates. I also find that net metering provides significantly greater bill savings than alternative compensation mechanisms based on avoided costs. However, retail electricity rates may shift as wholesale electricity market conditions change. I then investigate a potential change in market conditions -- increased solar PV penetrations -- on wholesale prices in the short-term based on the merit-order effect. This demonstrates the potential price effects of changes in market conditions, but also points to a number of methodological shortcomings of this method, motivating my usage of a long-term capacity investment and economic dispatch model to examine wholesale price effects of various wholesale market scenarios in the subsequent analysis. By developing three types of retail rates (a flat rate, a time-of-use rate, and real-time pricing) from these wholesale price profiles, I examine bill savings from PV generation for the ten wholesale market scenarios under net metering and an alternative to net metering where hourly excess PV generation is compensated at the wholesale price. Most generally, I challenge the common assertion that PV compensation is likely to stay constant (or rise) due to constant (or rising) retail rates, and find that future electricity market scenarios can drive substantial changes in residential retail rates and that these changes, in concert with variations in retail rate structures and PV compensation mechanisms, interact to place substantial uncertainty on the future value of bill savings from residential PV.
Integrating seepage heterogeneity with the use of ganged seepage meters
Rosenberry, D.O.
2005-01-01
The usefulness of standard half-barrel seepage meters for measurement of fluxes between groundwater, and surface water is limited by the small bed area that each measurement represents and the relatively large associated labor costs. Standard half-barrel cylinders were ganged together to allow one measurement of the summed seepage through all of the meters, reducing labor cost and increasing the representative area of measurement. Comparisons of ganged versus individual-meter measurements at two lakes, under both inseepage and outseepage conditions, indicate little loss of efficiency resulting from routing seepage water through the ganging system. Differences between summed and ganged seepage rates were not significant for all but the fastest rates of seepage. At flow rates greater than about 250 mL min-1, ganged values were as low as 80% of summed values. Ganged-meter head losses also were calculated to determine their significance relative to hydraulic-head gradients measured at the field sites. The calculated reduction in hydraulic gradient beneath the seepage meters was significant only for the largest measured seepage rates. A calibration tank was used to determine single-meter and ganged-meter efficiencies compared to known seepage rates. Single-cylinder seepage meters required an average correction factor of 1.05 to convert measured to actual values, whereas the ganged measurements made in the tank required a larger correction factor of 1.14. Although manual measurements were used in these tests, the concept of ganging seepage cylinders also would be useful when used in conjunction with automated flowmeters. ?? 2005, by the American Society of Limnology and Oceanography, Inc.
NASA Astrophysics Data System (ADS)
Adziz, M. I. Abdul; Khoo, K. S.
2018-01-01
The process of natural decay of radionuclides that emit gamma rays can infect humans and other living things. In this study, soil samples were taken at various locations which have been identified around the Long Term Storage Facility (LTSF) in Bukit Kledang, Perak. In addition, the respective dose rates in the sampling sites were measured at 5cm and 1m above the ground using a survey meter with Geiger Muller (GM) detector. Soil samples were taken using a hand Auger and then brought back to the laboratory for sample prepreparation process. The measuring of radioactivity concentration in soil samples were carried out using gamma spectrometer counting system equipped with HPGe detector. The obtained results show, the radioactivity concentration ranged from 11.98 - 29.93 Bq/kg for Radium-226 (226Ra), 20.97 - 41.45 Bq/kg for Thorium-232 (232Th) and 5.73 - 59.41 Bq/kg for Potassium-40 (40K), with mean values of 20.83 ± 5.88 Bq/kg, 32.87 ± 5.88 Bq/kg and 21.50 ± 2.79 Bq/kg, respectively. To assess the radiological hazards of natural radioactivity, radium equivalent activity (Raeq), the rate of absorption dose (D), the annual effective dose and external hazard index (Hex) was calculated and compared to the world average values.
Sedimentation History of Lago Dos Bocas, Puerto Rico, 1942-2005
Soler-López, Luis R.
2007-01-01
The Lago Dos Bocas Dam, located in the municipality of Utuado in north central Puerto Rico, was constructed in 1942 for hydroelectric power generation. The reservoir had an original storage capacity of 37.50 million cubic meters and a drainage area of 440 square kilometers. In 1948, the construction of the Lago Caonillas Dam on the Rio Caonillas branch of Lago Dos Bocas reduced the natural sediment-contributing drainage area to 310 square kilometers; therefore, the Lago Caonillas Dam is considered an effective sediment trap. Sedimentation in Lago Dos Bocas reservoir has reduced the storage capacity from 37.50 million cubic meters in 1942 to 17.26 million cubic meters in 2005, which represents a storage loss of about 54 percent. The long-term annual water-storage capacity loss rate remained nearly constant at about 320,000 cubic meters per year to about 1997. The inter-survey sedimentation rate between 1997 and 1999, however, is higher than the long-term rate at about 1.09 million cubic meters per year. Between 1999 and 2005 the rate is lower than the long-term rate at about 0.13 million cubic meters per year. The Lago Dos Bocas effective sediment-contributing drainage area had an average sediment yield of about 1,400 cubic meters per square kilometer per year between 1942 and 1997. This rate increased substantially by 1999 to about 4,600 cubic meters per square kilometer per year, probably resulting from the historical magnitude floods caused by Hurricane Georges in 1998. Recent data indicate that the Lago Dos Bocas drainage area sediment yield decreased substantially to about 570 cubic meters per square kilometer per year, which is much lower than the 1942-1997 area normalized sedimentation rate of 1,235 cubic meters per square kilometer per year. The impact of Hurricane Georges on the basin sediment yield could have been the cause of this change, since the magnitude of the floods could have nearly depleted the Lago Dos Bocas drainage area of easily erodible and transportable bed sediment. This report summarizes the historical change in water-storage capacity of Lago Dos Bocas between 1942 and 2005.
A glucose meter evaluation co-designed with both health professional and consumer input.
Thompson, Harmony; Chan, Huan; Logan, Florence J; Heenan, Helen F; Taylor, Lynne; Murray, Chris; Florkowski, Christopher M; Frampton, Christopher M A; Lunt, Helen
2013-11-22
Health consumer's input into assessment of medical device safety is traditionally given either as part of study outcome (trial participants) or during post marketing surveillance. Direct consumer input into the methodological design of device assessment is less common. We discuss the difference in requirements for assessment of a measuring device from the consumer and clinician perspectives, using the example of hand held glucose meters. Around 80,000 New Zealanders with diabetes recently changed their glucose meter system, to enable ongoing access to PHARMAC subsidised meters and strips. Consumers were most interested in a direct comparison of their 'old' meter system (Accu-Chek Performa) with their 'new' meter system (CareSens brand, including the CareSens N POP), rather than comparisons against a laboratory standard. This direct comparison of meter/strip systems showed that the CareSens N POP meter read around 0.6 mmol/L higher than the Performa system. Whilst this difference is unlikely to result in major errors in clinical decision making such as major insulin dosing errors, this information is nevertheless of interest to consumers who switched meters so that they could maintain access to PHARMAC subsidised meters and strips. We recommend that when practical, the consumer perspective be incorporated into study design related to medical device assessment.
2 MeV linear accelerator for industrial applications
NASA Astrophysics Data System (ADS)
Smith, Richard R.; Farrell, Sherman R.
1997-02-01
RPC Industries has developed a high average power scanned electron beam linac system for medium energy industrial processing, such as in-line sterilization. The parameters are: electron energy 2 MeV; average beam current 5.0 mA; and scanned width 0.5 meters. The control system features data logging and a Man-Machine Interface system. The accelerator is vertically mounted, the system height above the floor is 3.4 m, and the footprint is 0.9×1.2 meter2. The typical processing cell inside dimensions are 3.0 m by 3.5 m by 4.2 m high with concrete side walls 0.5 m thick above ground level. The equal exit depth dose is 0.73 gm cm-2. Additional topics that will be reported are: throughput, measurements of dose vs depth, dose uniformity across the web, and beam power by calorimeter and magnetic deflection of the beam.
Design and construction of portable survey meter
NASA Astrophysics Data System (ADS)
Singseeta, W.; Thong-aram, D.; Pencharee, S.
2017-09-01
This work was aimed to design and construction of portable survey meter for radiation dose measuring. The designed system consists of 4 main parts consisting of low voltage power supply, radiation detection, radiation measurement and data display part on android phone. The test results show that the ripple voltage of low voltage power supply is less than 1%, the maximum integral counts are found to be 104 counts per second and the maximum distance of wireless commination between the server and the client is about 10 meter. It was found that the developed system had small size and light weight for portable instrument.
Radiation Dose Assessments for Shore-Based Individuals in Operation Tomodachi, Revision 1
2012-12-31
meter (m2) gallon (gal, U.S. liquid) 3.785 412 × 10–3 cubic meter (m3) cubic foot (ft3) 2.831 685 × 10–2 cubic meter (m3) Mass /Density pound (lb...4.535 924 × 10–1 kilogram (kg) atomic mass unit (AMU) 1.660 539 × 10–27 kilogram (kg) pound- mass per cubic foot (lb ft–3) 1.601 846 × 101 kilogram...Ridge, Inc., who provided peer review. • Dr. Mondher Chehata of SAIC who provided technical consultation and critical reviews of environmental
Measurement of 238U and 232Th radionuclides in ilmenite and synthetic rutile
NASA Astrophysics Data System (ADS)
Idris, M. I.; Siong, K. K.; Fadzil, S. M.
2018-01-01
The only factory that currently processes ilmenite to produce synthetic rutile is Tor Minerals in Ipoh, Perak, Malaysia. These two minerals contain radioactive elements such as uranium and thorium. Furthermore, this factory was built close to the residential areas. Thus, the primary issues are radiation exposure attributed to the decay of the radionuclides. Hence, the objectives of this study are to measure the dose and to evaluate activity levels of uranium and thorium. Dose rates from surrounding area of factory indicate the normal range for both on the surface and 1 meter above the ground (0.3-0.7 μSv/hr) lower than the global range of 0.5-1.3 μSv/hr set by UNSCEAR. The mean activity levels of uranium and thorium for ilmenite are 235 Bq/kg and 503 Bq/kg while for synthetic rutile are 980 Bq/kg and 401 Bq/kg, respectively. The result shows that uranium activity levels of synthetic rutile is 4 times higher than ilmenite but it is still lower than the regulatory exemption limit of 1000 Bq/kg set by IAEA Basic Safety Standards. Even though the dose rates at the factory and the activity levels are within safe limits, safety precautions must be followed by the factory management to prevent any unwanted accident to occur.
Evaluation of 2 possible further developments of the UK in-flight radiation warning meter for SSTS
NASA Technical Reports Server (NTRS)
Wilson, I. J.; Eustace, R. C.
1972-01-01
A mass reduction of the moderator and the response to the nucleon flux, responsible for the tissue-star component of the total-dose equivalent rate using a high atomic number material, are discussed. Radiation situations at SST cruising altitudes (approximately 20 km) due to solar proton flares were simulated in the stratosphere and on the ground. Actual stratospheric situations due to galactic cosmic radiation with a limited range of quality factor values (2-4) were encountered during slow ascents by balloons to 36 km. Synthetic situations obtained from high and low energy acclerator radiations were used to obtain radiation distributions having a larger range of quality factor values (11/2-9) than experienced in the stratosphere. The measurements made in these simulations related to the directly ionizing, neutron and tissue-star components of dose-equivalent rate. Due to the restricted range of neutron spectra encountered in the stratosphere, a significant mass reduction of the moderator by 4 kg was made, with the moderator clad with cadmium or some other slow neutron absorber.
Pilcher, Janine; Holliday, Mark; Ebmeier, Stefan; McKinstry, Steve; Messaoudi, Fatiha; Weatherall, Mark; Beasley, Richard
2016-01-01
The SmartTouch Ventolin monitor (Adherium, Auckland, New Zealand) is an electronic monitor for use with a Ventolin metered dose inhaler, which records the date and time of inhaler actuations. This technology has the potential to allow in-depth analysis of patterns of inhaler use in clinical trial settings. The aim of this study was to determine the accuracy of the SmartTouch Ventolin monitor in recording Ventolin actuations. 20 SmartTouch Ventolin monitors were attached to Ventolin metered dose inhalers. Bench testing was performed over a 10-week period, to reflect the potential time frame between visits in a clinical trial. Inhaler actuations were recorded in a paper diary, which was compared with data uploaded from the monitors. 2560 actuations were performed during the 10-week study period. Monitor sensitivity for diary-recorded actuations was 99.9% with a lower 97.5% confidence bound of 99.7%. The positive predictive value for diary-recorded actuations was 100% with a 97.5% lower confidence bound of 99.9%. The SmartTouch Ventolin monitor is highly accurate in recording and retaining electronic data. It can be recommended for use in clinical trial settings in which training and quality control systems are incorporated into study protocols to ensure accurate data acquisition.
Pilcher, Janine; Holliday, Mark; Ebmeier, Stefan; McKinstry, Steve; Messaoudi, Fatiha; Weatherall, Mark; Beasley, Richard
2016-01-01
Background The SmartTouch Ventolin monitor (Adherium, Auckland, New Zealand) is an electronic monitor for use with a Ventolin metered dose inhaler, which records the date and time of inhaler actuations. This technology has the potential to allow in-depth analysis of patterns of inhaler use in clinical trial settings. The aim of this study was to determine the accuracy of the SmartTouch Ventolin monitor in recording Ventolin actuations. Methods 20 SmartTouch Ventolin monitors were attached to Ventolin metered dose inhalers. Bench testing was performed over a 10-week period, to reflect the potential time frame between visits in a clinical trial. Inhaler actuations were recorded in a paper diary, which was compared with data uploaded from the monitors. Results 2560 actuations were performed during the 10-week study period. Monitor sensitivity for diary-recorded actuations was 99.9% with a lower 97.5% confidence bound of 99.7%. The positive predictive value for diary-recorded actuations was 100% with a 97.5% lower confidence bound of 99.9%. Conclusions The SmartTouch Ventolin monitor is highly accurate in recording and retaining electronic data. It can be recommended for use in clinical trial settings in which training and quality control systems are incorporated into study protocols to ensure accurate data acquisition. PMID:27026805
N-nitrosamines as "special case" leachables in a metered dose inhaler drug product.
Norwood, Daniel L; Mullis, James O; Feinberg, Thomas N; Davis, Letha K
2009-01-01
N-nitrosamines are chemical entities, some of which are considered to be possible human carcinogens, which can be found at trace levels in some types of foods, tobacco smoke, certain cosmetics, and certain types of rubber. N-nitrosamines are of regulatory concern as leachables in inhalation drug products, particularly metered dose inhalers, which incorporate rubber seals into their container closure systems. The United States Food and Drug Administration considers N-nitrosamines (along with polycyclic aromatic hydrocarbons and 2-mercaptobenzothiazole) to be "special case" leachables in inhalation drug products, meaning that there are no recognized safety or analytical thresholds and these compounds must therefore be identified and quantitated at the lowest practical level. This report presents the development of a quantitative analytical method for target volatile N-nitrosamines in a metered dose inhaler drug product, Atrovent HFA. The method incorporates a target analyte recovery procedure from the drug product matrix with analysis by gas chromatography/thermal energy analysis detection. The capability of the method was investigated with respect to specificity, linearity/range, accuracy (linearity of recovery), precision (repeatability, intermediate precision), limits of quantitation, standard/sample stability, and system suitability. Sample analyses showed that Atrovent HFA contains no target N-nitrosamines at the trace level of 1 ng/canister.
Offshore multiphase meter nears acceptable accuracy level
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaisford, S.; Amdal, J.; Berentsen, H.
1993-05-17
Companies worldwide are looking for new production methods for offshore oil fields. In many areas, undeveloped smaller fields cannot bear the cost of dedicated production facilities. Multiphase transportation to existing production facilities can extend the distance over which unseparated oil, water, and gas streams can be transported, from a limit of several kilometers today to perhaps 200 km in the future. An encouraging multiphase meter test was sponsored by Saga Petroleum AS and carried out by Den norske stats oljeselskap AS (Statoil) on the Gullfaks B platform, Norwegian sector of the North Sea. The complete multiphase meter has two separatemore » meters. One is the composition meter for measuring the instantaneous volume or mass fractions of oil, water, and gas in the sensor. The other is a velocity meter for determining the speed of the mixture through the sensor. An instantaneous volume or mass production rate for each component is calculated by combining the outputs from the two meters. The paper describes the multiphase meter; measurements; limitations; the test setup; calibration; test results for the composition meter, velocity meter, and production rates; and future plans.« less
NASA Technical Reports Server (NTRS)
Walthall, Harry G.; Reay, William G.
1993-01-01
Instrument measures seepage of groundwater into inland or coastal body of water. Positioned at depth as great as 40 meters, and measures flow at low rate and low pressure differential. Auxiliary pressure meter provides data for correlation of flow of groundwater with tides and sea states. Seepage meter operates independently for several weeks. Its sampling rate adjusted to suit hydrologic conditions; to measure more frequently when conditions changing rapidly. Used in water-quality management and for biological and geological research. Potential industrial uses include measurement of seepage of caustic and corrosive liquids.
Dalby, R N
1992-05-01
Several potential replacements for chlorofluorocarbons (CFCs) in metered-dose inhalers (MDIs) are flammable. The flammability hazard associated with their use was assessed using a range of MDIs containing 0-100% (w/w) n-butane (flammable) in HFC-134a (non-flammable) fitted with either 25-, 63-, or 100-microliters metering valves or continuous valves. In flame projection tests each MDI was fired horizontally into a flame, and the ignited flume length emitted from the MDI was measured. Flame projections of greater than or equal to 60 cm were produced by all formulations fitted with continuous valves which contained greater than or equal to 40% (w/w) n-butane in HFC-134a. Using metering valves the maximum flame projection obtained was 30 cm. This was observed with a formulation containing 90% (w/w) n-butane in HFC-134a and a 100-microliters valve. For a particular formulation, smaller metering valves produced shorter flame projections. Because many MDIs are used in conjunction with extension devices, the likelihood of accidental propellant vapor ignition was determined in Nebuhaler and Inspirease reservoirs and a Breathancer spacer. Ignition was predictable based on propellant composition, metered volume, number of actuations, and spacer capacity. Calculated n-butane concentrations in excess of the lower flammability limit [LFL; 1.9% (v/v)] but below the upper flammability limit [UFL; 8.5% (v/v)] were usually predictive of flammability following ignition by a glowing nichrome wire mounted inside the extension device. No ignition was predicted or observed following one or two 25-microliters actuations of 100% n-butane into large volume Nebuhaler (750 ml) or Inspirease (660 ml) devices.(ABSTRACT TRUNCATED AT 250 WORDS)
Kosaka, Ryo; Fukuda, Kyohei; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi
2013-01-01
In order to monitor the condition of a patient using a left ventricular assist system (LVAS), blood flow should be measured. However, the reliable determination of blood-flow rate has not been established. The purpose of the present study is to develop a noninvasive blood-flow meter using a curved cannula with zero compensation for an axial flow blood pump. The flow meter uses the centrifugal force generated by the flow rate in the curved cannula. Two strain gauges served as sensors. The first gauges were attached to the curved area to measure static pressure and centrifugal force, and the second gauges were attached to straight area to measure static pressure. The flow rate was determined by the differences in output from the two gauges. The zero compensation was constructed based on the consideration that the flow rate could be estimated during the initial driving condition and the ventricular suction condition without using the flow meter. A mock circulation loop was constructed in order to evaluate the measurement performance of the developed flow meter with zero compensation. As a result, the zero compensation worked effectively for the initial calibration and the zero-drift of the measured flow rate. We confirmed that the developed flow meter using a curved cannula with zero compensation was able to accurately measure the flow rate continuously and noninvasively.
NASA Astrophysics Data System (ADS)
Voronov, V. N.; Yegoshina, O. V.; Bolshakova, N. A.; Yarovoi, V. O.; Latt, Aie Min
2016-12-01
Typical disturbances in the dynamics of a corrective reagent dosing system under unsteady-state conditions during the unsatisfactory operation of a chemical control system with some water chemistry upsets at thermal and nuclear power stations are considered. An experimental setup representing a physical model for the water chemistry control system is described. The two disturbances, which are most frequently encountered in water chemistry control practice, such as a breakdown or shutdown of temperature compensation during pH measurement and an increase in the heat-transfer fluid flow rate, have been modeled in the process of study. The study of the effect produced by the response characteristics of chemical control analyzers on the operation of a reagent dosing system under unsteady-state conditions is important for the operative control of a water chemistry regime state. The effect of temperature compensation during pH measurement on the dynamics of an ammonia-dosing system in the manual and automatic cycle chemistry control modes has been studied. It has been demonstrated that the reading settling time of a pH meter in the manual ammonia- dosing mode grows with a breakdown in temperature compensation and a simultaneous increase in the temperature of a heat-transfer fluid sample. To improve the efficiency of water chemistry control, some systems for the quality control of a heat-transfer fluid by a chemical parameter with the obligatory compensation of a disturbance in its flow rate have been proposed for use. Experimental results will possibly differ from industrial data due to a great length of sampling lines. For this reason, corrective reagent dosing systems must be adapted to the conditions of a certain power-generating unit in the process of their implementation.
NASA Astrophysics Data System (ADS)
Hsu, Fang-Yuh; Hsu, Shih-Ming; Chao, Jiunn-Hsing
2017-11-01
The subject of this study is the on-site visits and inspections of facilities commissioned by the Atomic Energy Council (AEC) in Taiwan. This research was conducted to evaluate the possible dose and dose rate of cabinet-type X-ray equipment with nominal voltages of 30-150 kV and open-beam (portable or handheld) equipment, taking both normal operation and possibly abnormal operation conditions into account. Doses and dose rates were measured using a plastic scintillation survey meter and an electronic personal dosimeter. In total, 401 X-ray machines were inspected, including 139 units with nominal voltages of 30-50 kV X-ray equipment, 140 units with nominal voltages of 50-150 kV, and 122 open-beam (portable or handheld) X-ray equipment. The investigated doses for radiation workers and non-radiation workers operating cabinet-type X-ray equipment under normal safety conditions were all at the background dose level. Several investigated dose rates at the position of 10 cm away from the surface of open-beam (portable or handheld) X-ray equipment were very high, such X-ray machines are used by aeronautical police for the detection of suspected explosives, radiation workers are far away (at least 10 m away) from the X-ray machine during its operation. The doses per operation in X-ray equipment with a 30-50 kV nominal voltage were less than 1 mSv in all cases of abnormal use. Some doses were higher than 1 mSv per operation for X-ray equipment of 50-150 kV nominal voltage X-ray. The maximum dose rates at the beam exit have a very wide range, mostly less than 100 μSv/s and the largest value is about 3.92 mSv/s for open-beam (portable or handheld) X-ray devices. The risk induced by operating X-ray devices with nominal voltages of 30-50 kV is extremely low. The 11.5 mSv dose due to one operation at nominal voltage of 50-150 kV X-ray device is equivalent to the exposure of taking 575 chest X-rays. In the abnormal use of open-beam (portable or handheld) X-ray equipment, the effective dose of 3.92 mSv/s is equivalent to taking 196 chest radiographs within 1 s. This work assessed the annual doses (equivalent and effective doses) and risks of X-ray operator staff as reasonably as possible. The results of this research are helpful to the AEC (competent authority of ionization radiation) to improve the management and perform the safe control of X-ray equipment.
Righi, Serena; Lucialli, Patrizia; Pollini, Elisa
2014-03-01
This paper presents the results of a study of radiological impacts related to the shipment of fertilisers to and from the commercial port of Ravenna (NE Italy). In particular, the effective doses to the port workers and members of the population surrounding the port area have been estimated. The study has included different types of measurement and assessment. First, the natural radioactivity of different fertilisers moving through the port has been determined: (40)K, (226)Ra, (210)Pb, (228)Ra and (228)Th concentrations have been analysed using γ-ray spectrometry, while (238)U and (232)Th concentrations have been determined by ICP-MS. At the same time, a dose rate meter and electret ion chambers were used to measure the external irradiation and the radon concentrations, respectively. Then, air pollutant dispersion models have been applied in order to assess particulate matter concentration in the port site and the surrounding residential areas, and consequently the inhalation doses. Finally, the annual effective doses to workers and local residents have been estimated. The effective doses to workers and the population have been estimated to be 0.9 mSv yr(-1) and 0.07 μSv yr(-1), respectively.
A Tube Seepage Meter for In Situ Measurement of Seepage Rate and Groundwater Sampling.
Solder, John E; Gilmore, Troy E; Genereux, David P; Solomon, D Kip
2016-07-01
We designed and evaluated a "tube seepage meter" for point measurements of vertical seepage rates (q), collecting groundwater samples, and estimating vertical hydraulic conductivity (K) in streambeds. Laboratory testing in artificial streambeds show that seepage rates from the tube seepage meter agreed well with expected values. Results of field testing of the tube seepage meter in a sandy-bottom stream with a mean seepage rate of about 0.5 m/day agreed well with Darcian estimates (vertical hydraulic conductivity times head gradient) when averaged over multiple measurements. The uncertainties in q and K were evaluated with a Monte Carlo method and are typically 20% and 60%, respectively, for field data, and depend on the magnitude of the hydraulic gradient and the uncertainty in head measurements. The primary advantages of the tube seepage meter are its small footprint, concurrent and colocated assessments of q and K, and that it can also be configured as a self-purging groundwater-sampling device. © 2015, National Ground Water Association.
Shield Design for Lunar Surface Applications
NASA Astrophysics Data System (ADS)
Johnson, Gregory A.
2006-01-01
A shielding concept for lunar surface applications of nuclear power is presented herein. The reactor, primary shield, reactor equipment and power generation module are placed in a cavity in the lunar surface. Support structure and heat rejection radiator panels are on the surface, outside the cavity. The reactor power of 1,320 kWt was sized to deliver 50 kWe from a thermoelectric power conversion subsystem. The dose rate on the surface is less than 0.6 mRem/hr at 100 meters from the reactor. Unoptimized shield mass is 1,020 kg which is much lighter than a comparable 4π shield weighing in at 17,000 kg.
Bernhardsson, C; Rääf, C L; Mattsson, S
2015-11-01
Radionuclides from the 1986 Chernobyl accident were released and dispersed during a limited period of time, but under widely varying weather conditions. As a result, there was a high geographical variation in the deposited radioactive fallout per unit area over Europe, depending on the released composition of fission products and the weather during the 10 days of releases. If the plume from Chernobyl coincided with rain, then the radionuclides were unevenly distributed on the ground. However, large variations in the initial fallout also occurred locally or even on a meter scale. Over the ensuing years the initial deposition may have been altered further by different weathering processes or human activities such as agriculture, gardening, and decontamination measures. Using measurements taken more than two decades after the accident, we report on the inhomogeneous distribution of the ground deposition of the fission product (137)Cs and its influence on the dose rate 1 m above ground, on both large and small scales (10ths of km(2) - 1 m(2)), in the Gomel-Bryansk area close to the border between Belarus and Russia. The dose rate from the deposition was observed to vary by one order of magnitude depending on the size of the area considered, whether human processes were applied to the surface or not, and on location specific properties (e.g. radionuclide migration in soil). Copyright © 2015 Elsevier Ltd. All rights reserved.
Radiation Measurement Systems and Experiences in Japan after the Fukushima Accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
In the approximately 4 years since the March 2011 earthquake and subsequent Tsunami damaged the three Dai-Ichi nuclear power plants, the AREVA and Canberra team have deployed a variety of different radiation measurement machines in Japan. These measurement projects or instruments include: - Dose-rate mapping of the close-in areas on the damaged reactor site using the stored output of dose rate meters carried by workers planning for the installing of a water processing unit; - Spectroscopic on-line measurements of the first water processing unit on the site, where these nuclide-specific measurements at multiple points allowed remote users to determine themore » optimum processing parameters - General purpose food measurement units, both high precision HPGe systems and low cost NaI systems, which were used throughout the country for food quality measurements; - In-vivo measurement systems, both fixed and mobile whole body counting units, that were used on at least 500,000 people, demonstrating to them that internal doses were very low; - In-vivo measurements with special high-sensitivity whole body counters on babies and children, demonstrating to the parents of these children that internal doses are very low; - Automatic systems for high throughput assay of bags of rice that are part of the consumer confidence plan to prove to customers that Fukushima Prefecture rice is safe; - High sensitivity automatic system to assay boxes of special semi-dry persimmons and to report the activity of each individual item within the box meets the regulatory limit; - System to assay soil on a conveyor belt and sort the output according to level of radioactivity, which would then reduce the volume of material that must be treated as radioactive; - System to assay a truck loaded with 1 cubic meter sacks of soil and vegetation, and report the results of each individual sack. - On-line water measurement system for SrY90 at levels that are suitable for release to the environment; - Mobile system to prove that rolls of grass harvested for animal feed meet the regulatory requirements. This document briefly describes the purpose of each measurement project, describes the instruments and assay method that used, and discusses some of the operational experiences from each of these projects. (authors)« less
Mims, Alice S; Mishra, Anjali; Orwick, Shelley; Blachly, James; Klisovic, Rebecca B; Garzon, Ramiro; Walker, Alison R; Devine, Steven M; Walsh, Katherine J; Vasu, Sumithira; Whitman, Susan; Marcucci, Guido; Jones, Daniel; Heerema, Nyla A; Lozanski, Gerard; Caligiuri, Michael A; Bloomfield, Clara D; Byrd, John C; Piekarz, Richard; Grever, Michael R; Blum, William
2018-06-01
KMT2A partial tandem duplication occurs in approximately 5-10% of patients with acute myeloid leukemia and is associated with adverse prognosis. KMT2A wild type is epigenetically silenced in KMT2A partial tandem duplication; re-expression can be induced with DNA methyltransferase and/or histone deacetylase inhibitors in vitro , sensitizing myeloid blasts to chemotherapy. We hypothesized that epigenetic silencing of KMT2A wildtype contributes to KMT2A partial tandem duplication-associated leukemogenesis and pharmacologic re-expression activates apoptotic mechanisms important for chemoresponse. We developed a regimen for this unique molecular subset, but due to relatively low frequency of KMT2A partial tandem duplication, this dose finding study was conducted in relapsed/refractory disease regardless of molecular subtype. Seventeen adults (< age 60) with relapsed/refractory acute myeloid leukemia were treated on study. Patients received decitabine 20 milligrams/meter 2 daily on days 1-10 and vorinostat 400 milligrams daily on days 5-10. Cytarabine was dose-escalated from 1.5 grams/meter 2 every 12 hours to 3 grams/meter 2 every 12 hours on days 12, 14 and 16. Two patients experienced dose limiting toxicities at dose level 1 due to prolonged myelosuppression. However, as both patients achieved complete remission after Day 42, the protocol was amended to adjust the definition of hematologic dose limiting toxicity. No further dose limiting toxicities were found. Six of 17 patients achieved complete remission including 2 of 4 patients with KMT2A partial tandem duplication. Combination therapy with decitabine, vorinostat and cytarabine was tolerated in younger relapsed/refractory acute myeloid leukemia and should be explored further focusing on the KMT2A partial tandem duplication subset. ( clinicaltrials.gov identifier 01130506 ). Copyright © 2018 Ferrata Storti Foundation.
[Adhesion loss of syrups in a metering glass which consists of a low surface free energy material].
Yamamoto, Yoshihisa; Suzuki, Toyofumi; Hashizaki, Kaname; Ogura, Masao; Umeda, Yukiko; Hidaka, Shinji; Fukami, Toshiro; Tomono, Kazuo
2010-08-01
We previously reported a strong positive correlation between syrup viscosity and the rate of syrup loss due to adhesion to a glass metering device. In this study, we examined differences in the surface free energies of metering devices made of different polymeric materials, since reducing adhesion loss to metering devices could improve the efficiency of drug preparation involving highly viscous syrups. Among metering devices made of glass only, glass with a silicone coating (SLC), polypropylene (PP), and polymethylpentene (PMP) the surface free energy of the glass-only metering device was the highest (49.2 mN/m). The adhesion loss obtained for highly viscous syrups in the PP and PMP metering devices was significantly lower than that of the glass metering device. Measurements of syrup contact angles suggested that in metering devices made of PP and PMP, which have low surface free energies, a decrease in the spreading wetting of syrups was a factor in reducing the rate of adhesion loss. Thus irrespective of the syrup viscosity being measured, metering devices produced from materials with low surface free energies can reduce the time required to prepare prescriptions without compromising the accuracy of drug preparation.
Bruza, Petr; Gollub, Sarah L; Andreozzi, Jacqueline M; Tendler, Irwin I; Williams, Benjamin B; Jarvis, Lesley A; Gladstone, David J; Pogue, Brian W
2018-05-02
The purpose of this study was to measure surface dose by remote time-gated imaging of plastic scintillators. A novel technique for time-gated, intensified camera imaging of scintillator emission was demonstrated, and key parameters influencing the signal were analyzed, including distance, angle and thickness. A set of scintillator samples was calibrated by using thermo-luminescence detector response as reference. Examples of use in total skin electron therapy are described. The data showed excellent room light rejection (signal-to-noise ratio of scintillation SNR ≈ 470), ideal scintillation dose response linearity, and 2% dose rate error. Individual sample scintillation response varied by 7% due to sample preparation. Inverse square distance dependence correction and lens throughput error (8% per meter) correction were needed. At scintillator-to-source angle and observation angle <50°, the radiant energy fluence error was smaller than 1%. The achieved standard error of the scintillator cumulative dose measurement compared to the TLD dose was 5%. The results from this proof-of-concept study documented the first use of small scintillator targets for remote surface dosimetry in ambient room lighting. The measured dose accuracy renders our method to be comparable to thermo-luminescent detector dosimetry, with the ultimate realization of accuracy likely to be better than shown here. Once optimized, this approach to remote dosimetry may substantially reduce the time and effort required for surface dosimetry.
NASA Astrophysics Data System (ADS)
Bruza, Petr; Gollub, Sarah L.; Andreozzi, Jacqueline M.; Tendler, Irwin I.; Williams, Benjamin B.; Jarvis, Lesley A.; Gladstone, David J.; Pogue, Brian W.
2018-05-01
The purpose of this study was to measure surface dose by remote time-gated imaging of plastic scintillators. A novel technique for time-gated, intensified camera imaging of scintillator emission was demonstrated, and key parameters influencing the signal were analyzed, including distance, angle and thickness. A set of scintillator samples was calibrated by using thermo-luminescence detector response as reference. Examples of use in total skin electron therapy are described. The data showed excellent room light rejection (signal-to-noise ratio of scintillation SNR ≈ 470), ideal scintillation dose response linearity, and 2% dose rate error. Individual sample scintillation response varied by 7% due to sample preparation. Inverse square distance dependence correction and lens throughput error (8% per meter) correction were needed. At scintillator-to-source angle and observation angle <50°, the radiant energy fluence error was smaller than 1%. The achieved standard error of the scintillator cumulative dose measurement compared to the TLD dose was 5%. The results from this proof-of-concept study documented the first use of small scintillator targets for remote surface dosimetry in ambient room lighting. The measured dose accuracy renders our method to be comparable to thermo-luminescent detector dosimetry, with the ultimate realization of accuracy likely to be better than shown here. Once optimized, this approach to remote dosimetry may substantially reduce the time and effort required for surface dosimetry.
Kirby, S. M.; Smith, J.; Ventresca, G. P.
1995-01-01
BACKGROUND--Metered dose inhalers for the treatment of asthma use chlorofluorocarbons as propellants. These face an international ban due to their effect on the ozone layer. Salmeterol has been reformulated using the non-chlorinated propellant Glaxo inhalation grade HFA134a. METHODS--The safety, tolerability and systemic pharmacodynamic activity of the salmeterol/HFA134a inhaler, the current salmeterol inhaler, and placebo (HFA134a) were compared in 12 healthy volunteers in a double blind, randomised crossover study using a cumulative dosing design. RESULTS--Safety and tolerability were similar and the response was related to the dose over the range used (50-400 micrograms) with both salmeterol inhalers. The salmeterol/HFA134a inhaler showed no differences from the current inhaler for pulse rate, blood pressure, tremor, QTc interval, and plasma glucose levels. The salmeterol/HFA134a inhaler had significantly less effect on plasma potassium levels. CONCLUSIONS--In healthy volunteers the salmeterol/HFA134a inhaler is at least as safe and well tolerated as the current salmeterol inhaler, and has similar systemic pharmacodynamic activity. PMID:7638815
Ferguson, Gary T; Tashkin, Donald P; Skärby, Tor; Jorup, Carin; Sandin, Kristina; Greenwood, Michael; Pemberton, Kristine; Trudo, Frank
2017-11-01
Prevention of exacerbations is a primary goal for chronic obstructive pulmonary disease (COPD) therapy. This randomized, double-blind, double-dummy, parallel-group, multicenter study evaluated the effect of budesonide/formoterol pressurized metered-dose inhaler (pMDI) versus formoterol dry powder inhaler (DPI) on reducing COPD exacerbations. 1219 patients aged ≥40 years with moderate-to-very-severe COPD (per lung function) and a history of ≥1 COPD exacerbation received budesonide/formoterol pMDI 320/9 μg twice daily (BID) during a 4-week run-in. Patients were then randomized 1:1 to receive budesonide/formoterol pMDI 320/9 μg BID (n = 606) or formoterol DPI 9 μg BID (n = 613) for 26 weeks. Exacerbations were identified using predefined criteria for symptom worsening and treatment with systemic corticosteroids and/or antibiotics and/or hospitalization. The primary endpoint was annual rate of exacerbations. Budesonide/formoterol pMDI resulted in a 24% reduction in annual rate of exacerbations (0.85 vs 1.12; rate ratio: 0.76 [95% CI: 0.62, 0.92]; P = 0.006), and a significant risk reduction for time to first exacerbation (hazard ratio: 0.78 [95% CI: 0.64, 0.96]; P = 0.016) versus formoterol DPI. The most commonly reported adverse events (AEs; ≥3%) in budesonide/formoterol and formoterol groups were COPD (4.5% vs 8.6%) and nasopharyngitis (5.0% vs 5.2%). Pneumonia AEs were reported in 0.5% and 1.0% of budesonide/formoterol-treated and formoterol-treated patients, respectively. Budesonide/formoterol pMDI is an effective treatment option for reducing exacerbation rates in COPD patients with moderate-to-very-severe airflow limitation and history of exacerbations. No increase in pneumonia was observed with budesonide/formoterol; safety data were consistent with its established profile. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
... Living with Asthma > Managing Asthma Measuring Your Peak Flow Rate Download Instructions A peak flow meter is ... to use. Who Benefits from Using a Peak Flow Meter? Many healthcare providers believe that people who ...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-26
... leases in depths less than 400 meters with an initial period longer than 5 years, royalty rates, minimum... $25.00 per acre or fraction thereof for blocks in water depths of less than 400 meters. $100.00 per acre or fraction thereof for blocks in water depths of 400 meters or deeper. Rental Rates Annual rental...
Sedimentation survey of Lago Cerrillos, Ponce, Puerto Rico, April-May 2008
Soler-López, Luis R.
2011-01-01
Lago Cerrillos dam, located in the municipality of Ponce in southern Puerto Rico, was constructed in 1991 as part of the multipurpose Rio Portugues and Bucana Project. This project provides flood protection, water supply, and recreation facilities for the municipio of Ponce. The reservoir had an original storage capacity of 38.03 million cubic meters at maximum conservation pool elevation of 174.65 meters above mean sea level and a drainage area of 45.32 square kilometers. Sedimentation in Lago Cerrillos reservoir has reduced the storage capacity from 38.03 million cubic meters in 1991 to 37.26 million cubic meters in 2008, which represents a total storage loss of about 2 percent. During July 29 to August 23, 2002, 8,492 cubic meters of sediment were removed from the Rio Cerrillos mouth of the reservoir. Taking into account this removed material, the total water-storage loss as of 2008 is 778,492 cubic meters, and the long-term annual water-storage capacity loss rate is about 45,794 cubic meters per year or about 0.12 percent per year. The Lago Cerrillos net sediment-contributing drainage area has an average sediment yield of about 1,069 cubic meters per square kilometer per year. Sediment accumulation in Lago Cerrillos is not uniformly distributed and averages about 3 meters in thickness. This represents a sediment deposition rate of about 18 centimeters per year. On the basis of the 2008 reservoir storage capacity of 37.26 million cubic meters per year and a long-term sedimentation rate of 45,794 cubic meters per year, Lago Cerrillos is estimated to have a useful life of about 814 years or until the year 2822.
Salem, Y A; Shaldam, M A; El-Sherbiny, D T; El-Wasseef, D R; El-Ashry, S M
2017-11-01
A simple, accurate and valid ion-pairing chromatographic method was developed for the simultaneous determination of formoterol fumarate (FF) and budesonide (BUD) epimers in metered dose inhaler. The separation was performed on C-18 column using mobile phase consisting of acetonitrile:0.05 M sodium acetate buffer (40:60% v/v) containing 0.03% sodium dodecyl sulfate adjusted to pH 3.1 using increasing volumes of either TEA or orthophosphoric acid isocratically eluted at 1.0 mL/min. Quantitation was achieved with UV detection at 214 nm. The retention times were 3.22, 6.41 and 6.91 min for formoterol fumarate, budesonide epimers B and A, respectively. The linearity range was 0.05-5.0 μg/mL for formoterol fumarate and 0.5-50.0 μg/mL for budesonide. The method was validated for, linearity; lower limit of quantification, lower limit of detection accuracy and precision. The proposed method is rapid (7 min), reproducible (RSD < 2.0%) and achieves satisfactory resolution between FF and BUD B (resolution factor = 12.07). The mean recoveries of the analytes in metered dose inhaler (99.97 and 99.83% for FF and BUD, respectively) were satisfactory. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
van Rensburg, Lyné; van Zyl, Johann M; Smith, Johan
2018-01-01
Background Previous studies in our laboratory demonstrated that a synthetic peptide containing lung surfactant enhances the permeability of chemical compounds through bronchial epithelium. The purpose of this study was to test two formulations of Synsurf® combined with linezolid as respirable compounds using a pressurized metered dose inhaler (pMDI). Methods Aerosolization efficiency of the surfactant-drug microparticles onto Calu-3 monolayers as an air interface culture was analyzed using a Next Generation Impactor™. Results The delivered particles and drug dose showed a high dependency from the preparation that was aerosolized. Scanning electron microscopy imaging allowed for visualization of the deposited particles, establishing them as liposomal-type structures (diameter 500 nm to 2 μm) with filamentous features. Conclusion The different surfactant drug combinations allow for an evaluation of the significance of the experimental model system, as well as assessment of the formulations providing a possible noninvasive, site-specific, delivery model via pMDI. PMID:29765201
Weinstein, Y.; Shalem, Y.; Burnett, W.C.; Swarzenski, P.W.; Herut, B.
2007-01-01
Seep meter data from Dor Bay, Israel, showed a steady decrease in submarine groundwater discharge (SGD) rates between March and July 2006 (averages of 34, 10.4 and 1.5 cm d-1 in March, May and July, respectively), while estimates based on radon time series showed remarkably uniform averages (8 cm d-1). The May seep meter data show a rough positive correlation with sea level, unlike the negative correlation shown by the Rn-calculated rates. Smaller-size meters, deployed in July adjacent to the regular-size ones, showed significantly higher rates (10 cm d-1), which negatively correlated with salinity. It is suggested that the decreased rates documented by the seep meters are the result of an increased shallow seawater recharge in the bay (due to decreasing hydraulic gradients). This is not captured by the radon, since recharging water is radon-poor. The positive correlation of discharge with sea level is due to increased seawater recycling in times of high sea stand. Copyright ?? 2007 IAHS Press.
Metered dose inhaler use - slideshow
... Duplication for commercial use must be authorized in writing by ADAM Health Solutions. About MedlinePlus Site Map FAQs Customer Support Get email updates Subscribe to RSS Follow us Disclaimers Copyright ...
SIMPLIFIED PRACTICAL TEST METHOD FOR PORTABLE DOSE METERS USING SEVERAL SEALED RADIOACTIVE SOURCES.
Mikamoto, Takahiro; Yamada, Takahiro; Kurosawa, Tadahiro
2016-09-01
Sealed radioactive sources which have small activity were employed for the determination of response and tests for non-linearity and energy dependence of detector responses. Close source-to-detector geometry (at 0.3 m or less) was employed to practical tests for portable dose meters to accumulate statistically sufficient ionizing currents. Difference between response in the present experimentally studied field and in the reference field complied with ISO 4037 due to non-uniformity of radiation fluence at close geometry was corrected by use of Monte Carlo simulation. As a consequence, corrected results were consistent with the results obtained in the ISO 4037 reference field within their uncertainties. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Henry, J.J.
1961-09-01
A linear count-rate meter is designed to provide a highly linear output while receiving counting rates from one cycle per second to 100,000 cycles per second. Input pulses enter a linear discriminator and then are fed to a trigger circuit which produces positive pulses of uniform width and amplitude. The trigger circuit is connected to a one-shot multivibrator. The multivibrator output pulses have a selected width. Feedback means are provided for preventing transistor saturation in the multivibrator which improves the rise and decay times of the output pulses. The multivibrator is connected to a diode-switched, constant current metering circuit. A selected constant current is switched to an averaging circuit for each pulse received, and for a time determined by the received pulse width. The average output meter current is proportional to the product of the counting rate, the constant current, and the multivibrator output pulse width.
Advanced Metering Infrastructure based on Smart Meters
NASA Astrophysics Data System (ADS)
Suzuki, Hiroshi
By specifically designating penetrations rates of advanced meters and communication technologies, devices and systems, this paper introduces that the penetration of advanced metering is important for the future development of electric power system infrastructure. It examines the state of the technology and the economical benefits of advanced metering. One result of the survey is that advanced metering currently has a penetration of about six percent of total installed electric meters in the United States. Applications to the infrastructure differ by type of organization. Being integrated with emerging communication technologies, smart meters enable several kinds of features such as, not only automatic meter reading but also distribution management control, outage management, remote switching, etc.
SU-D-209-01: Can Fluoroscopic Air-Kerma Rates Be Reliably Measured with Solid-State Meters?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, C; Thai, L; Wagner, L
Purpose: Ionization chambers remain the standard for calibration of air-kerma rate measuring devices. Despite their strong energy-dependent response, solid state radiation detectors are increasingly used, primarily due to their efficiency in making standardized measurements. To test the reliability of these devices in measuring air-kerma rates, we compared ion chambers measurements with solid-state measurements for various mobile fluoroscopes operated at different beam qualities and air-kerma rates. Methods: Six mobile fluoroscopes (GE OEC models 9800 and 9900) were used to generate test beams. Using various field sizes and dose rate controls, copper attenuators and a lead attenuator were placed at the imagemore » receptor in varying combinations to generate a range of air-kerma rates. Air-kerma rates at 30 centimeters from the image receptors were measured using two 6-cm{sup 3} ion chambers with electrometers (Radcal, models 1015 and 9015) and two with solid state detectors (Unfors Xi and Raysafe X2). No error messages occurred during measurements. However, about two months later, one solid-state device stopped working and was replaced by the manufacturer. Two out of six mobile fluoroscopic units were retested with the replacement unit. Results: Generally, solid state and ionization chambers agreed favorably well, with two exceptions. Before replacement of the detector, the Xi meter when set in the “RF High” mode deviated from ion chamber readings by factors of 2 and 10 with no message indicating error in measurement. When set in the “RF Low” mode, readings were within −4% to +3%. The replacement Xi detector displayed messages alerting the user when settings were not compatible with air-kerma rates. Conclusion: Air-kerma rates can be measured favorably well using solid-state devices, but users must be aware of the possibility that readings can be grossly in error with no discernible indication for the deviation.« less
MO-DE-BRA-04: Hands-On Fluoroscopy Safety Training with Real-Time Patient and Staff Dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanderhoek, M; Bevins, N
Purpose: Fluoroscopically guided interventions (FGI) are routinely performed across many different hospital departments. However, many involved staff members have minimal training regarding safe and optimal use of fluoroscopy systems. We developed and taught a hands-on fluoroscopy safety class incorporating real-time patient and staff dosimetry in order to promote safer and more optimal use of fluoroscopy during FGI. Methods: The hands-on fluoroscopy safety class is taught in an FGI suite, unique to each department. A patient equivalent phantom is set on the patient table with an ion chamber positioned at the x-ray beam entrance to the phantom. This provides a surrogatemore » measure of patient entrance dose. Multiple solid state dosimeters (RaySafe i2 dosimetry systemTM) are deployed at different distances from the phantom (0.1, 1, 3 meters), which provide surrogate measures of staff dose. Instructors direct participating clinical staff to operate the fluoroscopy system as they view live fluoroscopic images, patient entrance dose, and staff doses in real-time. During class, instructors work with clinical staff to investigate how patient entrance dose, staff doses, and image quality are affected by different parameters, including pulse rate, magnification, collimation, beam angulation, imaging mode, system geometry, distance, and shielding. Results: Real-time dose visualization enables clinical staff to directly see and learn how to optimize their use of their own fluoroscopy system to minimize patient and staff dose, yet maintain sufficient image quality for FGI. As a direct result of the class, multiple hospital departments have implemented changes to their imaging protocols, including reduction of the default fluoroscopy pulse rate and increased use of collimation and lower dose fluoroscopy modes. Conclusion: Hands-on fluoroscopy safety training substantially benefits from real-time patient and staff dosimetry incorporated into the class. Real-time dose display helps clinical staff visualize, internalize, and ultimately utilize the safety techniques learned during the training. RaySafe/Unfors/Fluke lent us a portable version of their RaySafe i2 Dosimetry System for 6 months.« less
Takeishi, Minoru; Shibamichi, Masaru; Malins, Alex; Kurikami, Hiroshi; Murakami, Mitsuhiro; Saegusa, Jun; Yoneya, Masayuki
2017-10-01
In response to the accident at Tokyo Electric Power Company's Fukushima Dai-ichi Nuclear Power Plant (FDNPP), vehicle-borne monitoring was used to map radiation levels for radiological protection of the public. By convention measurements from vehicle-borne surveys are converted to the ambient dose equivalent rate at 1 m height in the absence of the vehicle. This allows for comparison with results from other types of survey, including surveys with hand-held or airborne instruments. To improve the accuracy of the converted results from vehicle-borne surveys, we investigated combining measurements from two detectors mounted on the vehicle at different heights above the ground. A dual-detector setup was added to a JAEA monitoring car and compared against hand-held survey meter measurements in Fukushima Prefecture. The results obtained by combining measurements from two detectors were within ±20% of the hand-held reference measurements. The mean absolute percentage deviation from the reference measurements was 7.2%. The combined results from the two detectors were more accurate than those from either the roof-mounted detector, or the detector inside the vehicle, taken alone. One issue with vehicle-borne surveys is that ambient dose equivalent rates above roads are not necessarily representative of adjacent areas. This is because radiocesium is often deficient on asphalt surfaces, as it is easily scrubbed off by rain, wind and vehicle tires. To tackle this issue, we investigated mounting heights for vehicle-borne detectors using Monte Carlo gamma-ray simulations. When radiocesium is deficient on a road compared to the adjacent land, mounting detectors high on vehicles yields results closer to the values adjacent to the road. The ratio of ambient dose equivalent rates reported by detectors mounted at different heights in a dual-detector setup indicates whether radiocesium is deficient on the road compared to the adjacent land. Copyright © 2017 Elsevier Ltd. All rights reserved.
Intravenous fluid flow meter concept for zero gravity environment
NASA Technical Reports Server (NTRS)
Miller, C. G.
1972-01-01
Measuring chamber, included in infusion-set tubing, and peristaltic flow meter concept can be incorporated into flow meter that measures fluid flow rates between 100 and 600 cu cm per hour and at the same time maintains sterilization.
... metered – dose inhaler (MDI), which uses a chemical propellant to push the medication out of the inhaler. ... powder inhalers (DPIs) deliver medication without using chemical propellants, but they require a strong and fast inhalation. ...
NASA Astrophysics Data System (ADS)
Yamakawa, Emi; Yoshimoto, Masahiro; Kinsho, Michikazu
At the injection area of the RCS ring in the J-PARC, residual gamma dose at the rectangular ceramic ducts, especially immediately downstream of the charge-exchanged foil, has increased with the output beam power. In order to investigate the cause of high residual activities, residual gamma dose and radioactive sources produced at the exterior surface of the ducts have been measured by a GM survey meter and a handy type of Germanium (Ge) semiconductor detector in the case of 181 MeV injected proton beam energy. With these measurements, it is revealed that the radioactive sources produced by nuclear reactions cause the high activities at the injection area. For a better understanding of phenomena in the injection area, various simulations have been done with the PHITS Monte Carlo code. The distribution of radioactive sources and residual gamma dose rate obtained by the calculations are consistent with the measurement results. With this consistency, secondary neutrons and protons derived from nuclear reactions at the charge-exchanged foil are the dominant cause to high residual gamma dose at the ceramic ducts in the injection area. These measurements and calculations are unique approaches to reveal the cause of high residual dose around the foil. This study is essential for the future of high-intensity proton accelerators using a stripping foil.
Relative accuracy of the BD Logic and FreeStyle blood glucose meters.
2007-04-01
The BD Logic((R)) (Becton, Dickinson and Co., Franklin Lakes, NJ) and FreeStyle((R)) (Abbott Diabetes Care, Alameda, CA) meters are used to transmit data directly to insulin pumps for calculation of insulin doses and to calibrate continuous glucose sensors as well as to monitor blood glucose levels. The accuracy of the two meters was evaluated in two inpatient studies conducted by the Diabetes Research in Children Network (DirecNet). In both studies, meter glucose measurements made with either venous or capillary blood were compared with reference glucose measurements made by the DirecNet Central Laboratory at the University of Minnesota using a hexokinase enzymatic method. The BD Logic tended to read lower than the laboratory reference regardless of whether venous (median difference = -9 mg/dL) or capillary blood (median difference = -7 mg/dL) was used. This resulted in lower accuracy of the BD Logic compared with the FreeStyle meter based on the median relative absolute difference (RAD) for both venous blood (median RAD, 9% vs. 5%, P < 0.001) and capillary blood (median RAD, 11% vs. 6%, P = 0.008). The greatest discrepancy in the performance of the two meters was at higher reference glucose values. Accuracy was not significantly different when the reference was < or = 70 mg/dL. The BD Logic meter is less accurate than the FreeStyle meter.
Quantifying exchange between groundwater and surface water in rarely measured organic sediments
NASA Astrophysics Data System (ADS)
Rosenberry, D. O.; Cavas, M.; Keith, D.; Gefell, M. J.; Jones, P. M.
2016-12-01
Transfer of water and chemicals between poorly competent organic sediments and surface water in low-energy riverine and lentic settings depends on several factors, including rate and direction of flow, redox state, number and type of benthic invertebrates, and chemical gradients at and near the sediment-water interface. In spite of their commonly large areal extent, direct measurements of flow in soft, organic sediments are rarely made and little is known about flux direction, rate, or heterogeneity. Commonly used monitoring wells are difficult to install and suffer from slow response to changing hydraulic head due to the low permeability of these sediments. Seepage meters can directly quantify seepage flux if several challenges can be overcome. Meters are difficult to install and operate where water is deep, visibility is poor, and the position of the sediment-water interface is not readily apparent. Soft, easily eroded sediment can be displaced during meter installation, creating bypass flow beneath the bottom of the seepage cylinder. Poorly competent sediments often cannot support the weight of the meters; they slowly sink into the bed and displace water inside the seepage cylinder, which leads to the interpretation of large upward flow. Decaying organic material within the sediment generates gas that can displace water and corrupt seepage-meter measurements. Several inexpensive modifications to a standard seepage meter, as well as precautions during installation and operation, can minimize these sources of error. Underwater video cameras can be mounted to the meter to remotely observe sediment disturbance during sensor installation and monitor the stability of the meter insertion depth during the period of deployment. Anchor rods can be driven a meter or more into the sediment until refusal, firmly anchoring the seepage meter at a constant sediment insertion depth. Data collected from modified seepage meters installed in Minnesota and New York demonstrate the importance of quantifying flows in these challenging settings where biogeochemistry is complex and seepage rates commonly have been assumed to be insignificantly small.
Progress in high-dose radiation dosimetry. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ettinger, K.V.; Nam, J.W.; McLaughlin, W.L.
1981-01-01
The last decade has witnessed a deluge of new high-dose dosimetry techniques and expended applications of methods developed earlier. Many of the principal systems are calibrated by means of calorimetry, although production of heat is not always the final radiation effect of interest. Requirements for a stable and reliable transfer dose meters have led to further developments of several important high-dose systems: thermoluminescent materials, radiochromic dyes, ceric-cerous solutions analyzed by high-frequency oscillometry. A number of other prospective dosimeters are also treated in this review. In addition, an IAEA program of high-dose intercomparison and standardization for industrial radiation processing is described.
Progress in high-dose radiation dosimetry. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ettinger, K.V.; Nam, J.W.; McLaughlin, W.L.
1981-01-01
The last decade has witnessed a deluge of new high-dose dosimetry techniques and expended applications of methods developed earlier. Many of the principal systems are calibrated by means of calorimetry, although production of heat is not always the final radiation effect of interest. Requirements for a stable and reliable transfer dose meters have led to further developments of several important high-dose systems: thermoluminescent materials, radiochromic dyes, ceric-cerous solutions analyzed by high-frequency oscillometry. A number of other prospective dosimeters also treated in this review. In addition, an IAEA programme of high-dose intercomparison and standardization for industrial radiation processing is described.
In Situ Soil Venting - Full Scale Test, Hill AFB, Guidance Document. Volume 2
1991-08-01
oxidizer. Another system was connected to the existing air scrubber of a building (Reference 23). The self-contained unit reported by Rippberger...devices on the market for flow rate measurement. Some of the more common devices are orifice meters, venturi meters, rotameters, pitot tubes, hot-wire...Notes on how to size and construct orifice meters can be found in Reference 41. * Venturi Meter - A venturi meter works basically on the same
Sedimentation survey of Lago Caonillas, Utuado, Puerto Rico, September–November 2012
Soler-Lopez, Luis R.
2016-11-09
During September–November 2012, the U.S. Geological Survey, in cooperation with the Puerto Rico Aqueduct and Sewer Authority, conducted a sedimentation survey of Lago Caonillas to estimate current (2012) reservoir storage capacity and the recent (2000–2012) reservoir sedimentation rate by comparing the 2012 bathymetric survey data with the February 2000 data. The Lago Caonillas storage capacity, which was 42.27 million cubic meters in February 2000, decreased to 39.55 million cubic meters by September–November 2012. The intersurvey (2000–2012) storage capacity loss was about 6 percent, corresponding to a decrease of about 0.5 percent per year; this loss represents a reservoir sedimentation rate of about 226,670 cubic meters per year between 2000 and 2012. On a long-term basis, however, the sedimentation rate has remained nearly constant, decreasing from about 257,500 to 251,720 cubic meters per year during 1948–2000 and 1948–2012, respectively. Most of the sediment accumulation and associated storage capacity loss of Lago Caonillas has occurred within the eastern and Río Caonillas branches of the reservoir. In the vicinity of the Caonillas Dam, minor sediment deposition and scour have occurred. The Lago Caonillas drainage area sediment yield has decreased by about 2 percent since the previous survey, from 1,266 cubic meters per square kilometer per year in 2000 to 1,237 cubic meters per square kilometer per year in 2012. If the long-term sedimentation rate of 251,720 cubic meters per year remains constant, the useful life of Lago Caonillas may end in about 2169.
Fuel supply device for supplying fuel to an engine combustor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindsay, M.H.; Kerr, W.B.
1990-05-29
This patent describes a variable flow rate fuel supply device for supplying fuel to an engine combustor. It comprises: fuel metering means having a fuel valve means for controlling the flow rate of fuel to the combustor; piston means for dividing a first cooling fluid chamber from a second cooling fluid chamber; coupling means for coupling the piston means to the fuel valve means; and cooling fluid supply means in communication with the first and second cooling fluid chamber for producing a first pressure differential across the piston means for actuating the fuel valve means in a first direction, andmore » for producing a second pressure differential across the piston means for actuating the valve means in a second direction opposite the first direction, to control the flow rate of the fuel through the fuel metering means and into the engine combustor; and means for positioning the fuel metering means within the second cooling air chamber enabling the cooling air supply means to both cool the fuel metering means and control the fuel supply rate of fuel supplied by the fuel metering means to the combustor.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Energy and Resources Group, University of California, Berkeley; Darghouth, Naim R.; Barbose, Galen
2011-06-01
Net metering has become a widespread mechanism in the U.S. for supporting customer adoption of distributed photovoltaics (PV), but has faced challenges as PV installations grow to a larger share of generation in a number of states. This paper examines the value of the bill savings that customers receive under net metering, and the associated role of retail rate design, based on a sample of approximately two hundred residential customers of California's two largest electric utilities. We find that the bill savings per kWh of PV electricity generated varies by more than a factor of four across the customers inmore » the sample, which is largely attributable to the inclining block structure of the utilities' residential retail rates. We also compare the bill savings under net metering to that received under three potential alternative compensation mechanisms, based on California's Market Price Referent (MPR). We find that net metering provides significantly greater bill savings than a full MPR-based feed-in tariff, but only modestly greater savings than alternative mechanisms under which hourly or monthly net excess generation is compensated at the MPR rate.« less
Analgesic and anti-inflammatory activities of Piper nigrum L.
Tasleem, Farhana; Azhar, Iqbal; Ali, Syed Nawazish; Perveen, Shaista; Mahmood, Zafar Alam
2014-09-01
To evaluate and compare the analgesic and anti-inflammatory activity of pure compound, piperine along with hexane and ethanol extracts of Piper nigrum L. fruit in mice and rats. The analgesic activity was determined by tail immersion method, analgesy-meter, hot plate and acetic acid induced writhing test. While the anti-inflammatory activity was evaluated by carrageenan-induced paw inflammation in rats. Piperine at a dose of 5 mg/kg and ethanol extract at a dose of 15 mg/kg after 120 min and hexane extract at a dose of 10 mg/kg after 60 min exhibited significant (P<0.05) analgesic activity by tail immersion method, in comparison to ethanol extract at a dose of 10 mg/kg using analgesy-meter in rats. However, with hotplate method, piperine produced significant (P<0.05) analgesic activity at lower doses (5 and 10 mg/kg) after 120 min. A similar analgesic activity was noted with hexane extract at 15 mg/kg. However, in writhing test, ethanol extract significantly (P<0.05) stopped the number of writhes at a dose of 15 mg/kg, while piperine at a dose of 10 mg/kg completely terminated the writhes in mice. In the evaluation of anti-inflammatory effect using plethysmometer, piperine at doses of 10 and 15 mg/kg started producing anti-inflammatory effect after 30 min, which lasted till 60 min, whereas hexane and ethanol extracts also produced a similar activity at a slightly low dose (10 mg/kg) but lasted for 120 min. It is concluded from the present study that Piper nigrum L possesses potent analgesic and anti-inflammatory activities. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
20-meter underwater wireless optical communication link with 1.5 Gbps data rate.
Shen, Chao; Guo, Yujian; Oubei, Hassan M; Ng, Tien Khee; Liu, Guangyu; Park, Ki-Hong; Ho, Kang-Ting; Alouini, Mohamed-Slim; Ooi, Boon S
2016-10-31
The video streaming, data transmission, and remote control in underwater call for high speed (Gbps) communication link with a long channel length (~10 meters). We present a compact and low power consumption underwater wireless optical communication (UWOC) system utilizing a 450-nm laser diode (LD) and a Si avalanche photodetector. With the LD operating at a driving current of 80 mA with an optical power of 51.3 mW, we demonstrated a high-speed UWOC link offering a data rate up to 2 Gbps over a 12-meter-long, and 1.5 Gbps over a record 20-meter-long underwater channel. The measured bit-error rate (BER) are 2.8 × 10-5, and 3.0 × 10-3, respectively, which pass well the forward error correction (FEC) criterion.
NASA Astrophysics Data System (ADS)
Mukherjee, Bhaskar; Ronningen, Reginald M.; Grivins, Peter; Rossi, Paul
2001-12-01
The air-scattered radiation (Skyshine) is commonly a primary contributor to the public radiation exposure at distant locations form a high-energy particle accelerator facility. We have reported the results of the first series of measurement of skyshine from neutrons, using superheated bubble dosimeters. We have continued our measurements of skyshine, produced during "typical" operational condition at the National Superconducting Cyclotron Laboratory (NSCL). The measurements were carried out using the BD-100R Bubble Dosimeters with sensitivities of 470 nSv and 220 nSv per bubble at 20 °C, with an accuracy of ±20% when calibrated using the 241AmBe neutron spectrum. The dosimeters were placed at 25 and 50 meters from a point on the shielding roof of the NSCL's Analysis Hall, and 75, 100, and 115 meters from this point but about one to two meters above the floor of the NSCL facility at these distances. The skyshine neutron dose equivalents were measured for the 4He2+, 13C+4, and 20Ne6+ beams at the energy of 140 MeV/A, 100 MeV/A and 100 MeV/A respectively.
Measuring Pulse Rate Variability using Long-Range, Non-Contact Imaging Photoplethysmography
2016-08-20
subject distances. In this study, video was recorded from 19 participants, while at rest, at a distance of 25 meters from the imaging sensor. A...subject distances of no more than 3 meters . This study demonstrates that pulse rates of less than one beat-per-minute error can be obtained when the...be achieved at long imager-to-subject distances. In this study, video was recorded from 19 participants, while at rest, at a distance of 25 meters
Icing Characteristics of Low Altitude, Supercooled Layer Clouds. Revision
1980-05-01
Droplet Size Distribution 5. Icing Rate Meters C. Accuracy and Sources of Error in the Measurements from the Period 1944-1950 11 1. Rotating...whether currently available LWC meters and icing rate detectors will give re- liable results when flown on helicopters. Concerning the forecasting...Max Dia. Size Distrib. Meter Samples 4 1944 MSP DP -- Al .... 4 6 1946 OR 2,4RC 2,4RHC Al 4RMC -- 3 7 1946-47 NEMO, 4RMC 4RMC AI 4RMC - 31 TN,OH, IN
Linear-log counting-rate meter uses transconductance characteristics of a silicon planar transistor
NASA Technical Reports Server (NTRS)
Eichholz, J. J.
1969-01-01
Counting rate meter compresses a wide range of data values, or decades of current. Silicon planar transistor, operating in the zero collector-base voltage mode, is used as a feedback element in an operational amplifier to obtain the log response.
A tube seepage meter for in situ measurement of seepage rate and groundwater sampling
Solder, John; Gilmore, Troy E.; Genereux, David P.; Solomon, D. Kip
2016-01-01
We designed and evaluated a “tube seepage meter” for point measurements of vertical seepage rates (q), collecting groundwater samples, and estimating vertical hydraulic conductivity (K) in streambeds. Laboratory testing in artificial streambeds show that seepage rates from the tube seepage meter agreed well with expected values. Results of field testing of the tube seepage meter in a sandy-bottom stream with a mean seepage rate of about 0.5 m/day agreed well with Darcian estimates (vertical hydraulic conductivity times head gradient) when averaged over multiple measurements. The uncertainties in q and K were evaluated with a Monte Carlo method and are typically 20% and 60%, respectively, for field data, and depend on the magnitude of the hydraulic gradient and the uncertainty in head measurements. The primary advantages of the tube seepage meter are its small footprint, concurrent and colocated assessments of q and K, and that it can also be configured as a self-purging groundwater-sampling device.
Farr, S. J.; Rowe, A. M.; Rubsamen, R.; Taylor, G.
1995-01-01
BACKGROUND--Gamma scintigraphy was employed to assess the deposition of aerosols emitted from a pressurised metered dose inhaler (MDI) contained in a microprocessor controlled device (SmartMist), a system which analyses an inspiratory flow profile and automatically actuates the MDI when predefined conditions of flow rate and cumulative inspired volume coincide. METHODS--Micronised salbutamol particles contained in a commercial MDI (Ventolin) were labelled with 99m-technetium using a method validated by the determination of (1) aerosol size characteristics of the drug and radiotracer following actuation into an eight stage cascade impactor and (2) shot potencies of these non-volatile components as a function of actuation number. Using nine healthy volunteers in a randomised factorial interaction design the effect of inspiratory flow rate (slow, 30 l/min; medium, 90 l/min; fast, 270 l/min) combined with cumulative inspired volume (early, 300 ml; late, 3000 ml) was determined on total and regional aerosol lung deposition using the technique of gamma scintigraphy. RESULTS--The SmartMist firing at the medium/early setting (medium flow and early in the cumulative inspired volume) resulted in the highest lung deposition at 18.6 (1.42)%. The slow/early setting gave the second highest deposition at 14.1 (2.06)% with the fast/late setting resulting in the lowest (7.6 (1.15)%). Peripheral lung deposition obtained for the medium/early (9.1 (0.9)%) and slow/early (7.5 (1.06)%) settings were equivalent but higher than those obtained with the other treatments. This reflected the lower total lung deposition at these other settings as no difference in regional deposition, expressed as a volume corrected central zone:peripheral zone ratio, was apparent for all modes of inhalation studied. CONCLUSIONS--The SmartMist device allowed reproducible actuation of an MDI at a preprogrammed point during inspiration. The extent of aerosol deposition in the lung is affected by a change in firing point and is promoted by an inhaled flow rate of up to 90 l/min-that is, the slow and medium setting used in these studies. PMID:7638806
Anigstein, Robert; Erdman, Michael C.; Ansari, Armin
2017-01-01
The detonation of a radiological dispersion device or other radiological incidents could result in the dispersion of radioactive materials and intakes of radionuclides by affected individuals. Transportable radiation monitoring instruments could be used to measure photon radiation from radionuclides in the body for triaging individuals and assigning priorities to their bioassay samples for further assessments. Computer simulations and experimental measurements are required for these instruments to be used for assessing intakes of radionuclides. Count rates from calibrated sources of 60Co, 137Cs, and 241Am were measured on three instruments: a survey meter containing a 2.54 × 2.54-cm NaI(Tl) crystal, a thyroid probe using a 5.08 × 5.08-cm NaI(Tl) crystal, and a portal monitor incorporating two 3.81 × 7.62 × 182.9-cm polyvinyltoluene plastic scintillators. Computer models of the instruments and of the calibration sources were constructed, using engineering drawings and other data provided by the manufacturers. Count rates on the instruments were simulated using the Monte Carlo radiation transport code MCNPX. The computer simulations were within 16% of the measured count rates for all 20 measurements without using empirical radionuclide-dependent scaling factors, as reported by others. The weighted root-mean-square deviations (differences between measured and simulated count rates, added in quadrature and weighted by the variance of the difference) were 10.9% for the survey meter, 4.2% for the thyroid probe, and 0.9% for the portal monitor. These results validate earlier MCNPX models of these instruments that were used to develop calibration factors that enable these instruments to be used for assessing intakes and committed doses from several gamma-emitting radionuclides. PMID:27115229
Anigstein, Robert; Erdman, Michael C; Ansari, Armin
2016-06-01
The detonation of a radiological dispersion device or other radiological incidents could result in the dispersion of radioactive materials and intakes of radionuclides by affected individuals. Transportable radiation monitoring instruments could be used to measure photon radiation from radionuclides in the body for triaging individuals and assigning priorities to their bioassay samples for further assessments. Computer simulations and experimental measurements are required for these instruments to be used for assessing intakes of radionuclides. Count rates from calibrated sources of Co, Cs, and Am were measured on three instruments: a survey meter containing a 2.54 × 2.54-cm NaI(Tl) crystal, a thyroid probe using a 5.08 × 5.08-cm NaI(Tl) crystal, and a portal monitor incorporating two 3.81 × 7.62 × 182.9-cm polyvinyltoluene plastic scintillators. Computer models of the instruments and of the calibration sources were constructed, using engineering drawings and other data provided by the manufacturers. Count rates on the instruments were simulated using the Monte Carlo radiation transport code MCNPX. The computer simulations were within 16% of the measured count rates for all 20 measurements without using empirical radionuclide-dependent scaling factors, as reported by others. The weighted root-mean-square deviations (differences between measured and simulated count rates, added in quadrature and weighted by the variance of the difference) were 10.9% for the survey meter, 4.2% for the thyroid probe, and 0.9% for the portal monitor. These results validate earlier MCNPX models of these instruments that were used to develop calibration factors that enable these instruments to be used for assessing intakes and committed doses from several gamma-emitting radionuclides.
Data system for multiplexed water-current meters
NASA Technical Reports Server (NTRS)
Ramsey, C. R.
1977-01-01
Flow rates at 32 flood plain locations are measured simultaneously by single digital logic unit with high noise immunity. Water flowing through pygmy current meters rotates element that closes electrical contact once every resolution, so flow rate is measured by counting number of closures in time interval.
Regional deposition of mometasone furoate nasal spray suspension in humans.
Shah, Samir A; Berger, Robert L; McDermott, John; Gupta, Pranav; Monteith, David; Connor, Alyson; Lin, Wu
2015-01-01
Nasal deposition studies can demonstrate whether nasal sprays treating allergic rhinitis and polyposis reach the ciliated posterior nasal cavity, where turbinate inflammation and other pathology occurs. However, quantifying nasal deposition is challenging, because in vitro tests do not correlate to human nasal deposition; gamma scintigraphy studies are thus used. For valid data, the radiolabel must distribute, as the drug, into different-sized droplets, remain associated with the drug in the formulation after administration, and not alter its deposition. Some nasal deposition studies have demonstrated this using homogenous solutions. However, most commercial nasal sprays are heterogeneous suspensions. Using mometasone furoate nasal suspension (MFS), we developed a technique to validate radiolabel deposition as a surrogate for nasal cavity drug deposition and characterized regional deposition and nasal clearance in humans. Mometasone furoate (MF) formulation was spiked with diethylene triamine pentacaetic acid. Both unlabeled and radiolabeled formulations (n = 3) were sprayed into a regionally divided nasal cast. Drug deposition was quantified by high pressure liquid chromatography within each region; radiolabel deposition was determined by gamma camera. Healthy subjects (n = 12) were dosed and imaged for six hours. Scintigraphic images were coregistered with magnetic resonance imaging scans to quantify anterior and posterior nasal cavity deposition and mucociliary clearance. The ratio of radiolabel to unlabeled drug was 1.05 in the nasal cast and regionally appeared to match, indicating that in vivo radiolabel deposition could represent drug deposition. In humans, MFS delivered 86% (9.2) of metered dose to the nasal cavity, approximately 60% (9.1) of metered dose to the posterior nasal cavity. After 15 minutes, mucociliary clearance removed 59% of the initial radiolabel in the nasal cavity, consistent with clearance rates from the ciliated posterior surface. MFS deposited significant drug into the posterior nasal cavity. Both nasal cast validation and mucociliary clearance confirm the radiolabel deposition distribution method accurately represented corticosteroid nasal deposition.
Regional deposition of mometasone furoate nasal spray suspension in humans.
Shah, S A; Berger, R L; McDermott, J; Gupta, P; Monteith, D; Connor, A; Lin, W
2014-11-21
Nasal deposition studies can demonstrate whether nasal sprays treating allergic rhinitis and polyposis reach the ciliated posterior nasal cavity, where turbinate inflammation and other pathology occurs. However, quantifying nasal deposition is challenging, because in vitro tests do not correlate to human nasal deposition; gamma scintigraphy studies are thus used. For valid data, the radiolabel must distribute, as the drug, into different-sized droplets, remain associated with the drug in the formulation after administration, and not alter its deposition. Some nasal deposition studies have demonstrated this using homogenous solutions. However, most commercial nasal sprays are heterogeneous suspensions. Using mometasone furoate nasal suspension (MFS), we developed a technique to validate radiolabel deposition as a surrogate for nasal cavity drug deposition and characterized regional deposition and nasal clearance in humans. Mometasone furoate (MF) formulation was spiked with diethylene triamine pentacaetic acid. Both unlabeled and radiolabeled formulations (n = 3) were sprayed into a regionally divided nasal cast. Drug deposition was quantified by high pressure liquid chromatography within each region; radiolabel deposition was determined by gamma camera. Healthy subjects (n = 12) were dosed and imaged for six hours. Scintigraphic images were coregistered with magnetic resonance imaging scans to quantify anterior and posterior nasal cavity deposition and mucociliary clearance. The ratio of radiolabel to unlabeled drug was 1.05 in the nasal cast and regionally appeared to match, indicating that in vivo radiolabel deposition could represent drug deposition. In humans, MFS delivered 86% (9.2) of metered dose to the nasal cavity, approximately 60% (9.1) of metered dose to the posterior nasal cavity. After 15 minutes, mucociliary clearance removed 59% of the initial radiolabel in the nasal cavity, consistent with clearance rates from the ciliated posterior surface. MFS deposited significant drug into the posterior nasal cavity. Both nasal cast validation and mucociliary clearance confirm the radiolabel deposition distribution method accurately represented corticosteroid nasal deposition.
46 CFR 108.463 - Foam rate: Protein.
Code of Federal Regulations, 2012 CFR
2012-10-01
... least 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot) of area... rate at each outlet must be at least 4.07 liters per minute for each square meter (.1 gallon per minute for each square foot) of liquid surface in the tank. ...
46 CFR 108.463 - Foam rate: Protein.
Code of Federal Regulations, 2010 CFR
2010-10-01
... least 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot) of area... rate at each outlet must be at least 4.07 liters per minute for each square meter (.1 gallon per minute for each square foot) of liquid surface in the tank. ...
46 CFR 108.463 - Foam rate: Protein.
Code of Federal Regulations, 2011 CFR
2011-10-01
... least 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot) of area... rate at each outlet must be at least 4.07 liters per minute for each square meter (.1 gallon per minute for each square foot) of liquid surface in the tank. ...
46 CFR 108.463 - Foam rate: Protein.
Code of Federal Regulations, 2013 CFR
2013-10-01
... least 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot) of area... rate at each outlet must be at least 4.07 liters per minute for each square meter (.1 gallon per minute for each square foot) of liquid surface in the tank. ...
46 CFR 108.463 - Foam rate: Protein.
Code of Federal Regulations, 2014 CFR
2014-10-01
... least 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot) of area... rate at each outlet must be at least 4.07 liters per minute for each square meter (.1 gallon per minute for each square foot) of liquid surface in the tank. ...
Impact of ground speed and varying seeding rates on meter performance
USDA-ARS?s Scientific Manuscript database
Achieving optimum planter performance is an important requirement for obtaining higher crop yields. Planter performance depends on several factors but meter speed is an important one which is a function of ground speed, seeding rate and row spacing. A study was conducted to evaluate the influence of...
Bauer, K G; Kaik, B; Sertl, K; Kaik, G A
1993-01-01
1. The airway and tremor response and cardiovascular and hypokalaemic effects of single and cumulative doses of fenoterol given by dry powder capsules (DPC) and by metered dose inhaler (MDI) were studied in asthmatics in two randomized, crossover trials. 2. Single doses of fenoterol DPC and MDI (0.2 mg, 0.4 mg), investigated in 24 subjects, produced similar, dose-dependent increases in FEV1. Fenoterol DPC caused less tremor response and less hypokalaemic effects than fenoterol MDI. 3. Cumulative doses of fenoterol DPC and MDI (0.2, 0.6, 1.4, 3.0, 6.2 mg), investigated in 12 subjects, produced a comparable bronchodilatation (mean maximum increase in FEV1 was 0.53 +/- 0.06/0.52 +/- 0.081 for DPC/MDI) and a similar, dose-dependent rise in heart rate (35 +/- 3.81/41 +/- 2.25 beats min(-1)). The rise in tremor and the fall in plasma potassium were smaller after DPC than after MDI. The mean maximum changes were 51.58 +/- 6.41/95.83 +/- 6.75 cm s(-2) for tremor and -0.68 +/- 0.09/-0.96 +/- 0.10 mmol l(-1) for potassium. 4. Our findings may result from a difference in the pharmacokinetics of the dry powder and the aerosol formulation, particularly differences in distribution and absorption. 5. In conclusion, fenoterol DPC used in low therapeutic doses (0.2,0.4 mg), is preferable to the MDI. Fenoterol DPC used as rescue medication in high cumulative doses, do not suggest a greater safety margin than the MDI and the same restrictions should be considered for the fenoterol dry powder formulation as suggested for the MDI. PMID:12959305
Performance of a GM tube based environmental dose rate monitor operating in the Time-To-Count mode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zickefoose, J.; Kulkarni, T.; Martinson, T.
The events at the Fukushima Daiichi power plant in the aftermath of a natural disaster underline the importance of a large array of networked environmental monitors to cover areas around nuclear power plants. These monitors should meet a few basic criteria: have a uniform response over a wide range of gamma energies, have a uniform response over a wide range of incident angles, and have a large dynamic range. Many of these criteria are met if the probe is qualified to the international standard IEC 60532 (Radiation protection instrumentation - Installed dose rate meters, warning assemblies and monitors - Xmore » and gamma radiation of energy between 50 keV and 7 MeV), which specifically deals with energy response, angle of incidence, dynamic range, response time, and a number of environmental characteristics. EcoGamma is a dual GM tube environmental gamma radiation monitor designed specifically to meet the requirements of IEC 60532 and operate in the most extreme conditions. EcoGamma utilizes two energy compensated GM tubes operating with a Time-To-Count (TTC) collection algorithm. The TTC algorithm extends the lifetime and range of a GM tube significantly and allows the dual GM tube probe to achieve linearity over approximately 10 decades of gamma dose rate (from the Sv/hr range to 100 Sv/hr). In the TTC mode of operation, the GM tube is not maintained in a biased condition continuously. This is different from a traditional counting system where the GM tube is held at a constant bias continuously and the total number of strikes that the tube registers are counted. The traditional approach allows for good sensitivity, but does not lend itself to a long lifetime of the tube and is susceptible to linearity issues at high count rates. TTC on the other hand only biases the tube for short periods of time and in effect measures the time between events, which is statistically representative of the total strike rate. Since the tube is not continually biased, the life of the tube is extended and the linearity is greatly improved. Testing has been performed at Pacific Northwest National Laboratory (PNNL) in the USA and confirms compliance to IEC 60532 as well as linearity (± 10%) up to 100 Sv/hr. Furthermore, a network of EcoGamma probes may be linked through available supervisory software to provide a dose rate map of an area. This allows for real time monitoring of dose rates from one (or multiple) remote locations. (authors)« less
Soler-López, Luis R.; Santos, Carlos R.
2010-01-01
Laguna Grande is a 50-hectare lagoon in the municipio of Fajardo, located in the northeasternmost part of Puerto Rico. Hydrologic, water-quality, and biological data were collected in the lagoon between March 2007 and February 2009 to establish baseline conditions and determine the health of Laguna Grande on the basis of preestablished standards. In addition, a core of bottom material was obtained at one site within the lagoon to establish sediment depositional rates. Water-quality properties measured onsite (temperature, pH, dissolved oxygen, specific conductance, and water transparency) varied temporally rather than areally. All physical properties were in compliance with current regulatory standards established for Puerto Rico. Nutrient concentrations were very low and in compliance with current regulatory standards (less than 5.0 and 1.0 milligrams per liter for total nitrogen and total phosphorus, respectively). The average total nitrogen concentration was 0.28 milligram per liter, and the average total phosphorus concentration was 0.02 milligram per liter. Chlorophyll a was the predominant form of photosynthetic pigment in the water. The average chlorophyll-a concentration was 6.2 micrograms per liter. Bottom sediment accumulation rates were determined in sediment cores by modeling the downcore activities of lead-210 and cesium-137. Results indicated a sediment depositional rate of about 0.44 centimeter per year. At this rate of sediment accretion, the lagoon may become a marshland in about 700 to 900 years. About 86 percent of the community primary productivity in Laguna Grande was generated by periphyton, primarily algal mats and seagrasses, and the remaining 14 percent was generated by phytoplankton in the water column. Based on the diel studies the total average net community productivity equaled 5.7 grams of oxygen per cubic meter per day (2.1 grams of carbon per cubic meter per day). Most of this productivity was ascribed to periphyton and macrophytes, which produced 4.9 grams of oxygen per cubic meter per day (1.8 grams of carbon per cubic meter per day). Phytoplankton, the plant and algal component of plankton, produced about 0.8 gram of oxygen per cubic meter per day (0.3 gram of carbon per cubic meter per day). The total diel community respiration rate was 23.4 grams of oxygen per cubic meter per day. The respiration rate ascribed to plankton, which consists of all free floating and swimming organisms in the water column, composed 10 percent of this rate (2.9 grams of oxygen per cubic meter per day); respiration by all other organisms composed the remaining 90 percent (20.5 grams of oxygen per cubic meter per day). Plankton gross productivity was 3.7 grams of oxygen per cubic meter per day, equivalent to about 13 percent of the average gross productivity for the entire community (29.1 grams of oxygen per cubic meter per day). The average phytoplankton biomass values in Laguna Grande ranged from 6.0 to 13.6 milligrams per liter. During the study, Laguna Grande contained a phytoplankton standing crop of approximately 5.8 metric tons. Phytoplankton community had a turnover (renewal) rate of about 153 times per year, or roughly about once every 2.5 days. Fecal indicator bacteria concentrations ranged from 160 to 60,000 colonies per 100 milliliters. Concentrations generally were greatest in areas near residential and commercial establishments, and frequently exceeded current regulatory standards established for Puerto Rico.
Comparing Geant4 hadronic models for the WENDI-II rem meter response function.
Vanaudenhove, T; Dubus, A; Pauly, N
2013-01-01
The WENDI-II rem meter is one of the most popular neutron dosemeters used to assess a useful quantity of radiation protection, namely the ambient dose equivalent. This is due to its high sensitivity and its energy response that approximately follows the conversion function between neutron fluence and ambient dose equivalent in the range of thermal to 5 GeV. The simulation of the WENDI-II response function with the Geant4 toolkit is then perfectly suited to compare low- and high-energy hadronic models provided by this Monte Carlo code. The results showed that the thermal treatment of hydrogen in polyethylene for neutron <4 eV has a great influence over the whole detector range. Above 19 MeV, both Bertini Cascade and Binary Cascade models show a good correlation with the results found in the literature, while low-energy parameterised models are not suitable for this application.
An Investigation of Slurry Fuel Combustion.
1981-01-01
tit Lil’ sitas wtae f).4 mm ap.art. w w =Q L-1~ rAn Li w > 0 0- - q The propane gas flow rate was metered withi a Matlieson Model 604 rotameter and...controlled by a Harris Model 2515 pressure regulator with an output capacity of 0-0.69 MPa. The flow rate of the iydrog’en gas was metered with a...propane 3nd hydrogen flows were calibrated with a Precision Scientific Companv wet-test meter (2.83 ml/rev). The fuel drops were mounted with a
Regulation Catches Up to Reality.
Edelman, Steven V
2017-01-01
The FDA recently conducted an Advisory Panel meeting to evaluate the safety, efficacy, and benefits of granting a nonadjunctive label claim for the DEXCOM G5 Mobile continuous glucose monitoring (CGM) system. If approved, this claim will allow users to make day-to-day treatment decisions, including insulin dosing directly from the glucose values and rate of changes arrows generated by the CGM device, without the requirement of a confirmatory measurement with a self-monitoring blood glucose (SMBG) meter. Sporadic SMBG testing gives limited data, while CGM gives a value every 5 minutes and has alerts, alarms, trending information and allows caregivers to follow the user in real time 24/7. This indication will lead to more wide spread use of CGM and improve overall care with protection of hypoglycemia.
Radiological survey of the covered and uncovered drilling mud depository.
Jónás, Jácint; Somlai, János; Csordás, Anita; Tóth-Bodrogi, Edit; Kovács, Tibor
2018-08-01
In petroleum engineering, the produced drilling mud sometimes contains elevated amounts of natural radioactivity. In this study, a remediated Hungarian drilling mud depository was investigated from a radiological perspective. The depository was monitored before and after a clay layer was applied as covering. In this study, the ambient dose equivalent rate H*(10) of the depository has been measured by a Scintillator Probe (6150AD-b Dose Rate Meter). Outdoor radon concentration, radon concentration in soil gas, and in situ field radon exhalation measurements were carried out using a pulse-type ionization chamber (AlphaGUARD radon monitor). Soil gas permeability (k) measurements were carried out using the permeameter (RADON-JOK) in situ device. Geogenic radon potentials were calculated. The radionuclide content of the drilling mud and cover layer sample has been determined with an HPGe gamma-spectrometer. The gamma dose rate was estimated from the measured radionuclide concentrations and the results were compared with the measured ambient dose equivalent rate. Based on the measured results before and after covering, the ambient dose equivalent rates were 76 (67-85) nSv/h before and 86 (83-89) nSv/h after covering, radon exhalation was 9 (6-12) mBq/m 2 s before and 14 (5-28) mBq/m 2 s after covering, the outdoor radon concentrations were 11 (9-16) before and 13 (10-22) Bq/m 3 after covering and the soil gas radon concentrations were 6 (3-8) before and 24 (14-40) kBq/m 3 after covering. Soil gas permeability measurements were 1E-11 (7E-12-1E-11) and 1E-12 (5E-13-1E-12) m 2 and the calculated geogenic radon potential values were 6 (3-8) and 12 (6-21) before and after the covering. The main radionuclide concentrations of the drilling mud were C U-238 12 (10-15) Bq/kg, C Ra-226 31 (18-40) Bq/kg, C Th-232 35 (33-39) Bq/kg and C K-40 502 (356-673) Bq/kg. The same radionuclide concentrations in the clay were C U-238 31 (29-34) Bq/kg, C Ra-226 45 (40-51) Bq/kg, C Th-232 58 (55-60) Bq/kg and C K-40 651 (620-671) Bq/kg. According to our results, the drilling mud depository exhibits no radiological risk from any radiological aspects (radon, radon exhalation, gamma dose, etc.); therefore, long term monitoring activity is not necessary from the radiological point of view. Copyright © 2017 Elsevier Ltd. All rights reserved.
Automatic remote-integration metering center. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Philippidis, P.A.; Weinreb, M.; de Gil, B.F.
1988-11-01
The report documents a multi-phase program for the development and demonstration of a unique automatic and remote metering system. The system consists of a solid-state meter module to provide electrical consumption data, tamper detection, and load control functions; a central master station to interrogate the meter modules for their data and also to transmit load control signals; and a data display module to be accessible to tenants wishing to obtain their meter readings. The system has the capability to measure and allocate demand and to process time of use rates. It also has a meter accuracy self-test feature. The systemmore » is suitable for both direct metering of multi-family buildings and the sub-metering of master-metered apartment buildings. In addition to describing the system, the report documents the results of a 371-point field trial at Scott Tower, a cooperative apartment building in the Bronx, New York.« less
Hypoglycemia in glyburide-treated gestational diabetes: is it dose-dependent?
Brustman, Lois; Langer, Oded; Scarpelli, Sophia; El Daouk, Manal; Fuchs, Anna; Rosenn, Barak
2011-02-01
To estimate whether there is a relationship between glyburide dose and the rate of hypoglycemic episodes in women with gestational diabetes mellitus (GDM). We studied 674 women with GDM who were treated with glyburide and diagnosed from 2000 to 2009. Glucose data were downloaded from memory-based meters at each visit and analyzed to estimate the incidence of recorded episodes of hypoglycemia and the association with concurrent dose of glyburide therapy (2.5, 5, 10, 15, or 20 mg). Hypoglycemia was defined as a blood glucose of less than 50 mg/dL, further classified as "severe hypoglycemia" if the event required the assistance of another person for resuscitation, "symptomatic hypoglycemia" if it was associated with typical neurogenic symptoms, or "asymptomatic hypoglycemia" if the biochemical reading was less than 50 mg/dL with no symptoms or accompanied by mild symptoms that did not impair the patient's ability to function. Patients recorded a mean of 272 glucose values. Sixty-seven percent of the patients experienced no blood glucose values in the hypoglycemic range. 33% had 1-7% of their total blood glucose values within the hypoglycemic range. All recordings of hypoglycemic episodes were asymptomatic; no patient reported a severe or symptomatic hypoglycemic episode. A significant association was found between the incidence of asymptomatic hypoglycemia and mean blood glucose (P<.001). No association was found between glyburide dose and incidence of asymptomatic hypoglycemia. No association between glyburide dose or mean blood glucose value and the incidence of neonatal hypoglycemia was found. Incremental increases in glyburide dose are not associated with an increase in the incidence of hypoglycemic episodes. II.
The Anti-RFI Design of Intelligent Electric Energy Meters with UHF RFID
NASA Astrophysics Data System (ADS)
Chen, Xiangqun; Huang, Rui; Shen, Liman; chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Xu, Renheng
2018-03-01
In order to solve the existing artificial meter reading watt-hour meter industry is still slow and inventory of common problems, using the uhf radio frequency identification (RFID) technology and intelligent watt-hour meter depth fusion, which has a one-time read multiple tags, identification distance, high transmission rate, high reliability, etc, while retaining the original asset management functions, in order to ensure the uhf RFID and minimum impact on the operation of the intelligent watt-hour meter, proposed to improve the stability of the electric meter system while working at the same time, this paper designs the uhf RFID intelligent watt-hour meter radio frequency interference resistance, put forward to improve intelligent watt-hour meter electromagnetic compatibility design train of thought, and introduced its power and the hardware circuit design of printed circuit board, etc.
Jibiri, N N; Farai, I P; Alausa, S K
2007-01-01
Soils and food crops from a former tin mining location in a high background radiation area on the Jos-Plateau, Nigeria were collected and analyzed by gamma spectrometry to measure their contents of 40K, 238U and 232Th. As well as collecting samples, in situ dose rates on farms were measured using a precalibrated survey meter. Activity concentrations determined in food crops were compared with the local food derivatives or diets to investigate the possible removal or addition of radionuclides during food preparation by cooking or other means. Potassium-40 was found to contribute the highest activity in all the food products. The activity concentration of 40K, 238U and 232Th in local prepared diets ranged between 60 and 494 Bq kg-1, between BDL and 48 Bq kg-1 and between BDL and 17 Bq kg-1, respectively. The internal effective dose to individuals from the consumption of the food types was estimated on the basis of the measured radionuclide contents in the food crops. It ranged between 0.2 microSv y-1 (beans) and 2164 microSv y-1 (yam) while the annual external gamma effective dose in the farms due to soil radioactivity ranged between 228 microSv and 4065 microSv.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darghouth, Naim; Barbose, Galen; Wiser, Ryan
2010-03-30
Net metering has become a widespread policy in the U.S. for supporting distributed photovoltaics (PV) adoption. Though specific design details vary, net metering allows customers with PV to reduce their electric bills by offsetting their consumption with PV generation, independent of the timing of the generation relative to consumption - in effect, compensating the PV generation at retail electricity rates (Rose et al. 2009). While net metering has played an important role in jump-starting the residential PV market in the U.S., challenges to net metering policies have emerged in a number of states and contexts, and alternative compensation methods aremore » under consideration. Moreover, one inherent feature of net metering is that the value of the utility bill savings it provides to customers with PV depends heavily on the structure of the underlying retail electricity rate, as well as on the characteristics of the customer and PV system. Consequently, the value of net metering - and the impact of moving to alternative compensation mechanisms - can vary substantially from one customer to the next. For these reasons, it is important for policymakers and others that seek to support the development of distributed PV to understand both how the bill savings varies under net metering, and how the bill savings under net metering compares to other possible compensation mechanisms. To advance this understanding, we analyze the bill savings from PV for residential customers of California's two largest electric utilities, Pacific Gas and Electric (PG&E) and Southern California Edison (SCE). The analysis is based on hourly load data from a sample of 215 residential customers located in the service territories of the two utilities, matched with simulated hourly PV production for the same time period based on data from the nearest of 73 weather stations in the state.« less
Robust, non-invasive methods for metering groundwater well extraction in remote environments
NASA Astrophysics Data System (ADS)
Bulovic, Nevenka; Keir, Greg; McIntyre, Neil
2017-04-01
Quantifying the rate of extraction from groundwater wells can be essential for regional scale groundwater management and impact assessment. This is especially the case in regions heavily dependent on groundwater such as the semi-arid Surat and Bowen Basins in Queensland, Australia. Of the 30 000+ groundwater wells in this area, the majority of which are used for stock watering and domestic purposes, almost none have flow metering devices installed. As part of a research project to estimate regional groundwater extraction, we have undertaken a small scale flow metering program on a selected set of wells. Conventional in-line flow meters were unsuitable for our project, as both non-invasiveness and adaptability / suitability to a variety of discharge pipe characteristics was critical. We describe the use of two metering technologies not widely used in groundwater applications, non-invasive, clamp-on ultrasonic transit time flow meters and tipping bucket flow meters, as semi-permanent installations on discharge pipes of various artesian and sub-artesian groundwater wells. We present examples of detailed extraction rate time-series, which are of particular value in developing predictive models of water well extraction in data limited areas where water use dynamics and drivers are poorly understood. We conclude by discussing future project trajectories, which include expansion of the monitoring network through development of novel metering techniques and telemetry across large areas of poor connectivity.
Dismantling of Radium-226 Coal Level Gauges: Encountered Problems and How to Solve
DOE Office of Scientific and Technical Information (OSTI.GOV)
Punnachaiya, M.; Nuanjan, P.; Moombansao, K.
2006-07-01
This paper describes the techniques for dismantling of disused-sealed Radium-226 (Ra-226) coal level gauges which the source specifications and documents were not available, including problems occurred during dismantling stage and the decision making in solving all those obstacles. The 2 mCi (20 pieces), 6 mCi (20 pieces) and 6.6 mCi (30 pieces) of Ra-226 hemi-spherically-shaped with lead-filled coal level gauges were used in industrial applications for electric power generation. All sources needed to be dismantled for further conditioning as requested by the International Atomic Energy Agency (IAEA). One of the 2 mCi Ra-226 source was dismantled under the supervision ofmore » IAEA expert. Before conditioning period, each of the 6 mCi and 6.6 mCi sources were dismantled and inspected. It was found that coal level gauges had two different source types: the sealed cylindrical source (diameter 2 cm x 2 cm length) locked with spring in lead housing for 2 mCi and 6.6 mCi; while the 6 mCi was an embedded capsule inside source holder stud assembly in lead-filled housing. Dismantling Ra-226 coal level gauges comprised of 6 operational steps: confirmation of the surface dose rate on each source activity, calculation of working time within the effective occupational dose limit, cutting the weld of lead container by electrical blade, confirmation of the Ra-226 embedded capsule size using radiation scanning technique and gamma radiography, automatic sawing of the source holder stud assembly, and transferring the source to store in lead safe box. The embedded length of 6 mCi Ra-226 capsule in its diameter 2 cm x 14.7 cm length stud assembly was identified, the results from scanning technique and radiographic film revealed the embedded source length of about 2 cm, therefore all the 6 mCi sources were safely cut at 3 cm using the automatic saw. Another occurring problem was one of the 6.6 mCi spring type source stuck inside its housing because the spring was deformed and there was previously a leakage on inner source housing. Thus, during manufacturing the filled-lead for shielding passed through this small hole and fixed the deformed spring together with the source. The circular surface of inner hole was measured and slowly drilled at a diameter 2.2 cm behind shielding, till the spring and the fixed lead sheet were cut, therefore the source could be finally hammered out. The surface dose rate of coal level gauges before weld cutting was 10-15 mR/hr and the highest dose rate at the position of the weld cutter was 2.5 mR/hr. The total time for each weld cutting and automatic sawing was 2-3 minutes and 1 minute, respectively. The source was individually and safely transferred to store in lead safe box using a 1-meter length tong and a light container with 1 meter length handle. The total time for Ra-226 (70 pieces) dismantling, including the encountered problems and their troubles shooting took 4 days operation in which the total dose obtained by 18 operators were ranged from 1-38 {mu}Sv. The dismantling team safely completed the activities within the effective dose limit for occupational exposure of 20 mSv/year (80 {mu}Sv/day). (authors)« less
Khrutchinsky, Arkady; Drozdovitch, Vladimir; Kutsen, Semion; Minenko, Victor; Khrouch, Valeri; Luckyanov, Nickolas; Voillequé, Paul; Bouville, André
2012-01-01
This paper presents results of Monte Carlo modeling of the SRP-68-01 survey meter used to measure exposure rates near the thyroid glands of persons exposed to radioactivity following the Chernobyl accident. This device was not designed to measure radioactivity in humans. To estimate the uncertainty associated with the measurement results, a mathematical model of the SRP-68-01 survey meter was developed and verified. A Monte Carlo method of numerical simulation of radiation transport has been used to calculate the calibration factor for the device and evaluate its uncertainty. The SRP-68-01 survey meter scale coefficient, an important characteristic of the device, was also estimated in this study. The calibration factors of the survey meter were calculated for 131I, 132I, 133I, and 135I content in the thyroid gland for six age groups of population: newborns; children aged 1 yr, 5 yr, 10 yr, 15 yr; and adults. A realistic scenario of direct thyroid measurements with an “extended” neck was used to calculate the calibration factors for newborns and one-year-olds. Uncertainties in the device calibration factors due to variability of the device scale coefficient, variability in thyroid mass and statistical uncertainty of Monte Carlo method were evaluated. Relative uncertainties in the calibration factor estimates were found to be from 0.06 for children aged 1 yr to 0.1 for 10-yr and 15-yr children. The positioning errors of the detector during measurements deviate mainly in one direction from the estimated calibration factors. Deviations of the device position from the proper geometry of measurements were found to lead to overestimation of the calibration factor by up to 24 percent for adults and up to 60 percent for 1-yr children. The results of this study improve the estimates of 131I thyroidal content and, consequently, thyroid dose estimates that are derived from direct thyroid measurements performed in Belarus shortly after the Chernobyl accident. PMID:22245289
Water leakage management by district metered areas at water distribution networks.
Özdemir, Özgür
2018-03-01
The aim of this study is to design a district metered area (DMA) at water distribution network (WDN) for determination and reduction of water losses in the city of Malatya, Turkey. In the application area, a pilot DMA zone was built by analyzing the existing WDN, topographic map, length of pipes, number of customers, service connections, and valves. In the DMA, International Water Association standard water balance was calculated considering inflow rates and billing records. The ratio of water losses in DMAs was determined as 82%. Moreover, 3124 water meters of 2805 customers were examined while 50% of water meters were detected as faulty. This study revealed that DMA application is useful for the determination of water loss rate in WDNs and identify a cost-effective leakage reduction program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spriggs, G D
In a previous paper, the composite exposure rate conversion factor (ECF) for nuclear fallout was calculated using a simple theoretical photon-transport model. The theoretical model was used to fill in the gaps in the FGR-12 table generated by ORNL. The FGR-12 table contains the individual conversion factors for approximate 1000 radionuclides. However, in order to calculate the exposure rate during the first 30 minutes following a nuclear detonation, the conversion factors for approximately 2000 radionuclides are needed. From a human-effects standpoint, it is also necessary to have the dose rate conversion factors (DCFs) for all 2000 radionuclides. The DCFs aremore » used to predict the whole-body dose rates that would occur if a human were standing in a radiation field of known exposure rate. As calculated by ORNL, the whole-body dose rate (rem/hr) is approximately 70% of the exposure rate (R/hr) at one meter above the surface. Hence, the individual DCFs could be estimated by multiplying the individual ECFs by 0.7. Although this is a handy rule-of-thumb, a more consistent (and perhaps, more accurate) method of estimating the individual DCFs for the missing radionuclides in the FGR-12 table is to use the linear relationship between DCF and total gamma energy released per decay. This relationship is shown in Figure 1. The DCFs for individual organs in the body can also be estimated from the estimated whole-body DCF. Using the DCFs given FGR-12, the ratio of the organ-specific DCFs to the whole-body DCF were plotted as a function of the whole-body DCF. From these plots, the asymptotic ratios were obtained (see Table 1). Using these asymptotic ratios, the organ-specific DCFs can be estimated using the estimated whole-body DCF for each of the missing radionuclides in the FGR-12 table. Although this procedure for estimating the organ-specific DCFs may over-estimate the value for some low gamma-energy emitters, having a finite value for the organ-specific DCFs in the table is probably better than having no value at all. A summary of the complete ECF and DCF values are given in Table 2.« less
46 CFR 108.489 - Helicopter fueling facilities.
Code of Federal Regulations, 2010 CFR
2010-10-01
... the rate of 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot... for each square meter (.1 gallon per minute for each square foot) of area covered for five minutes. (3....87 square meters (300 square feet). (b) If the fire protection system required by § 108.487 of this...
46 CFR 108.489 - Helicopter fueling facilities.
Code of Federal Regulations, 2014 CFR
2014-10-01
... the rate of 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot... for each square meter (.1 gallon per minute for each square foot) of area covered for five minutes. (3....87 square meters (300 square feet). (b) If the fire protection system required by § 108.487 of this...
46 CFR 108.489 - Helicopter fueling facilities.
Code of Federal Regulations, 2012 CFR
2012-10-01
... the rate of 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot... for each square meter (.1 gallon per minute for each square foot) of area covered for five minutes. (3....87 square meters (300 square feet). (b) If the fire protection system required by § 108.487 of this...
46 CFR 108.489 - Helicopter fueling facilities.
Code of Federal Regulations, 2013 CFR
2013-10-01
... the rate of 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot... for each square meter (.1 gallon per minute for each square foot) of area covered for five minutes. (3....87 square meters (300 square feet). (b) If the fire protection system required by § 108.487 of this...
46 CFR 108.489 - Helicopter fueling facilities.
Code of Federal Regulations, 2011 CFR
2011-10-01
... the rate of 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot... for each square meter (.1 gallon per minute for each square foot) of area covered for five minutes. (3....87 square meters (300 square feet). (b) If the fire protection system required by § 108.487 of this...
NASA Astrophysics Data System (ADS)
Franzetti, M.; Garlan, T.; Le Roy, P.; Delacourt, C.; Cancouët, R.; Graindorge, D.; Deschamps, A.
2011-12-01
Marine sand dunes and sandbanks are mainly observed in continental tidal shelves (North Sea, South China Sea, North Atlantic America) and may be highly dynamic (for example up to 75 m/y in the Marsdiep inlet). So they may pose a potential risk to offshore installations and shipping. Multitemporal mapping of sandwaves, necessary to mitigate this hazard, is complicated by their dynamic character, which is still poorly understood especially in the offshore domain. In consequence, these structures are often defined as moribund at depths greater than 30 meters. The aim of this investigation is to study evolution of deeper (110 meters) complex set of sand bedforms : "Banc du Four" located in the Iroise Sea. The study area is exposed to strong tidal currents and storm waves at the junction of the Northeast Atlantic Ocean and the Western English Channel, conditions favorable to sediment dynamics. The bathymetric data, which form the basis of this study, are two Digital Terrain Modeling's (DTM's) derived from MultiBeam Echosounder (MBES) surveys : "Pourquoi-Pas?" oceanographic research vessel (R/V) in February 2009 (5 meters resolution DTM) and R/V "Albert Lucas" in August 2010 (2 meters resolution DTM). Sandwave parameters (water depth, shape, wavelength, height, symmetry index, ...) have been derived from the 2009 bathymetric data. The Banc du Four is characterized by a large sandbank (45 meters height and 2 km width) flanked by dune fields. The morphological characteristics of the dunes vary greatly (range 30 to 110 meters depth, 40 meters maximal height, 600 meters maximal width, symmetrical to asymmetrical, ...). However, this complexity can be explained by the involved sandwave dynamic (range 0 to 30 meters per year migration velocity). Spatial correlation method, applied on the two DTM's, are used to measure the migration rate. The high migration rates for deeper giant dunes bring to light the dynamic sandwave existence at depths exceeding 30-40 meters, contrary to previously accepted models. Dune asymmetry is proportional to migration rates and the lee side is always oriented towards the direction of movement. These relationships confirm the observations reported in the literature for shallower structures.
-of-Use rates are available in two variations: EV-TOU-2 bills home and vehicle electricity use on a single meter; and EV-TOU bills vehicle electricity use separately, requiring the installation of a second meter. Lower rates are also available to customers who own a natural gas vehicle and use a qualified
Dead-time compensation for a logarithmic display rate meter
Larson, John A.; Krueger, Frederick P.
1988-09-20
An improved circuit is provided for application to a radiation survey meter that uses a detector that is subject to dead time. The circuit compensates for dead time over a wide range of count rates by producing a dead-time pulse for each detected event, a live-time pulse that spans the interval between dead-time pulses, and circuits that average the value of these pulses over time. The logarithm of each of these values is obtained and the logarithms are subtracted to provide a signal that is proportional to a count rate that is corrected for the effects of dead time. The circuit produces a meter indication and is also capable of producing an audible indication of detected events.
Dead-time compensation for a logarithmic display rate meter
Larson, J.A.; Krueger, F.P.
1987-10-05
An improved circuit is provided for application to a radiation survey meter that uses a detector that is subject to dead time. The circuit compensates for dead time over a wide range of count rates by producing a dead-time pulse for each detected event, a live-time pulse that spans the interval between dead-time pulses, and circuits that average the value of these pulses over time. The logarithm of each of these values is obtained and the logarithms are subtracted to provide a signal that is proportional to a count rate that is corrected for the effects of dead time. The circuit produces a meter indication and is also capable of producing an audible indication of detected events. 5 figs.
DDT-treatment of rivers for eradication of Simuliidae
McMahon, J. P.
1957-01-01
This article describes how to estimate the discharge of water in rivers and streams by means of weirs, current meters and floats, and how to calculate and administer doses of DDT for the treatment of simuliid-infested waters. PMID:13472410
Research on data collection key technology of smart electric energy meters
NASA Astrophysics Data System (ADS)
Chen, Xiangqun; Huang, Rui; Shen, Liman; Chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Mouhailiu; Renheng, Xu
2018-02-01
In recent years, smart electric energy meters are demand at 70 million to 90 million with the strong smart grid construction every year in China. However, there are some issues in smart electric energy meters data collection such as the interference of environment, low collection efficiency and inability to work when the power is off. In order to solve these issues above, it uses the RFID communication technology to collect the numbers and electric energy information of smart electric energy meters on the basis of the existing smart electric energy meters, and the related data collection communication experiments were made. The experimental result shows that the electric information and other data batch collection of RFID smart electric energy meters are realized in power and power off. It improves the efficiency and the overall success rate is 99.2% within 2 meters. It provides a new method for smart electric energy meters data collection.
Low flow vortex shedding flowmeter
NASA Technical Reports Server (NTRS)
Waugaman, Charles J.
1989-01-01
The purpose was to continue a development project on a no moving parts vortex shedding flowmeter used for flow measurement of hypergols. The project involved the design and construction of a test loop to evaluate the meter for flow of Freon which simulates the hypergol fluids. Results were obtained on the output frequency characteristics of the flow meter as a function of flow rate. A family of flow meters for larger size lines and ranges of flow was sized based on the results of the tested meter.
Doub, William H; Shah, Vibhakar; Limb, Susan; Guo, Changning; Liu, Xiaofei; Ngo, Diem
2014-11-01
As a result of the Montreal Protocol on Substances that Deplete the Ozone Layer, manufacturers of metered dose inhalers began reformulating their products to use hydrofluoroalkanes (HFAs) as propellants in place of chlorofluorocarbons (CFCs). Although the new products are considered safe and efficacious by the US Food and Drug Administration (FDA), a large number of complaints have been registered via the FDA's Adverse Events Reporting System (FAERS)-more than 7000 as of May 2013. To develop a better understanding of the measurable parameters that may, in part, determine in vitro performance and thus patient compliance, we compared several CFC- and HFA-based products with respect to their aerodynamic performance in response to changes in actuator cleaning interval and interactuation delay interval. Comparison metrics examined in this study were: total drug delivered ex-actuator, fine particle dose (<5 μm), mass median aerodynamic diameter, plume width, plume temperature, plume impaction force, and actuator orifice diameter. Overall, no single metric or test condition distinguishes HFA products from CFC products, but, for individual products tested, there were a combination of metrics that differentiated one from another. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Primary Beam Air Kerma Dependence on Distance from Cargo and People Scanners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strom, Daniel J.; Cerra, Frank
The distance dependence of air kerma or dose rate of the primary radiation beam is not obvious for security scanners of cargo and people in which there is relative motion between a collimated source and the person or object being imaged. To study this problem, one fixed line source and three moving-source scan-geometry cases are considered, each characterized by radiation emanating perpendicular to an axis. The cases are 1) a stationary line source of radioactive material, e.g., contaminated solution in a pipe; 2) a moving, uncollimated point source of radiation that is shuttered or off when it is stationary; 3)more » a moving, collimated point source of radiation that is shuttered or off when it is stationary; and 4) a translating, narrow “pencil” beam emanating in a flying-spot, raster pattern. Each case is considered for short and long distances compared to the line source length or path traversed by a moving source. The short distance model pertains mostly to dose to objects being scanned and personnel associated with the screening operation. The long distance model pertains mostly to potential dose to bystanders. For radionuclide sources, the number of nuclear transitions that occur a) per unit length of a line source, or b) during the traversal of a point source, is a unifying concept. The “universal source strength” of air kerma rate at a meter from the source can be used to describe x-ray machine or radionuclide sources. For many cargo and people scanners with highly collimated fan or pencil beams, dose varies as the inverse of the distance from the source in the near field and with the inverse square of the distance beyond a critical radius. Ignoring the inverse square dependence and using inverse distance dependence is conservative in the sense of tending to overestimate dose.« less
Effect of sterilization irradiation on friction and wear of ultrahigh-molecular-weight polyethylene
NASA Technical Reports Server (NTRS)
Jones, W. R., Jr.; Hady, W. F.; Crugnola, A.
1979-01-01
The effect of sterilization gamma irradiation on the friction and wear properties of ultrahigh molecular weight polyethylene (UHMWPE) sliding against 316L stainless steel in dry air at 23 C was determined. A pin-on-disk apparatus was used. Experimental conditions included a 1-kilogram load, a 0.061- to 0.27-meter-per-second sliding velocity, and a 32000- to 578000-meter sliding distance. Although sterilization doses of 2.5 and 5.0 megarads greatly altered the average molecular weight and the molecular weight distribution, the friction and wear properties of the polymer were not significantly changed.
Li, Mengkai; Li, Wentao; Qiang, Zhimin; Blatchley, Ernest R
2017-07-18
At present, on-site fluence (distribution) determination and monitoring of an operating UV system represent a considerable challenge. The recently developed microfluorescent silica detector (MFSD) is able to measure the approximate true fluence rate (FR) at a fixed position in a UV reactor that can be compared with a FR model directly. Hence it has provided a connection between model calculation and real-time fluence determination. In this study, an on-site determination and monitoring method of fluence delivery for an operating UV reactor was developed. True FR detectors, a UV transmittance (UVT) meter, and a flow rate meter were used for fundamental measurements. The fluence distribution, as well as reduction equivalent fluence (REF), 10th percentile dose in the UV fluence distribution (F 10 ), minimum fluence (F min ), and mean fluence (F mean ) of a test reactor, was calculated in advance by the combined use of computational fluid dynamics and FR field modeling. A field test was carried out on the test reactor for disinfection of a secondary water supply. The estimated real-time REF, F 10 , F min , and F mean decreased 73.6%, 71.4%, 69.6%, and 72.9%, respectively, during a 6-month period, which was attributable to lamp output attenuation and sleeve fouling. The results were analyzed with synchronous data from a previously developed triparameter UV monitoring system and water temperature sensor. This study allowed demonstration of an accurate method for on-site, real-time fluence determination which could be used to enhance the security and public confidence of UV-based water treatment processes.
Dose of Prophylactic Platelet Transfusions and Prevention of Hemorrhage
Slichter, Sherrill J.; Kaufman, Richard M.; Assmann, Susan F.; McCullough, Jeffrey; Triulzi, Darrell J.; Strauss, Ronald G.; Gernsheimer, Terry B.; Ness, Paul M.; Brecher, Mark E.; Josephson, Cassandra D.; Konkle, Barbara A.; Woodson, Robert D.; Ortel, Thomas L.; Hillyer, Christopher D.; Skerrett, Donna L.; McCrae, Keith R.; Sloan, Steven R.; Uhl, Lynne; George, James N.; Aquino, Victor M.; Manno, Catherine S.; McFarland, Janice G.; Hess, John R.; Leissinger, Cindy; Granger, Suzanne
2010-01-01
BACKGROUND We conducted a trial of prophylactic platelet transfusions to evaluate the effect of platelet dose on bleeding in patients with hypoproliferative thrombocytopenia. METHODS We randomly assigned hospitalized patients undergoing hematopoietic stem-cell transplantation or chemotherapy for hematologic cancers or solid tumors to receive prophylactic platelet transfusions at a low dose, a medium dose, or a high dose (1.1×1011, 2.2×1011, or 4.4×1011 platelets per square meter of body-surface area, respectively), when morning platelet counts were 10,000 per cubic millimeter or lower. Clinical signs of bleeding were assessed daily. The primary end point was bleeding of grade 2 or higher (as defined on the basis of World Health Organization criteria). RESULTS In the 1272 patients who received at least one platelet transfusion, the primary end point was observed in 71%, 69%, and 70% of the patients in the low-dose group, the medium-dose group, and the high-dose group, respectively (differences were not significant). The incidences of higher grades of bleeding, and other adverse events, were similar among the three groups. The median number of platelets transfused was significantly lower in the low-dose group (9.25×1011) than in the medium-dose group (11.25×1011) or the high-dose group (19.63×1011) (P = 0.002 for low vs. medium, P<0.001 for high vs. low and high vs. medium), but the median number of platelet transfusions given was significantly higher in the low-dose group (five, vs. three in the medium-dose and three in the high-dose group; P<0.001 for low vs. medium and low vs. high). Bleeding occurred on 25% of the study days on which morning platelet counts were 5000 per cubic millimeter or lower, as compared with 17% of study days on which platelet counts were 6000 to 80,000 per cubic millimeter (P<0.001). CONCLUSIONS Low doses of platelets administered as a prophylactic transfusion led to a decreased number of platelets transfused per patient but an increased number of transfusions given. At doses between 1.1×1011 and 4.4×1011 platelets per square meter, the number of platelets in the prophylactic transfusion had no effect on the incidence of bleeding. (ClinicalTrials.gov number, NCT00128713.) PMID:20164484
The bacterial contamination rate of glucose meter test strips in the hospital setting
Al-Rubeaan, Khalid A.; Saeb, Amr T. M.; AlNaqeb, Dhekra M.; AlQumaidi, Hamed M.; AlMogbel, Turki A.
2016-01-01
Objectives: To assess the rate of bacterial contamination of the multi-use vial and single-use packed glucose meter strips, and to identify the type and frequency of various bacterial contamination in different hospital wards. Methods: This prospective observational study was conducted by a team from the Strategic Center for Diabetes Research in 7 general hospitals in the Central region of Saudi Arabia during the period from August to September 2014 to assess the bacterial contamination rate of the unused strips. A total of 10,447 strips were cultured using proper agar media and incubated both aerobically and anaerobically. Results: The total bacterial contamination rate for the multi-use vials glucose strips was 31.7%, while single-use packed strips were not contaminated at all. Ministry of Health hospitals had the highest contamination rates compared with other hospitals. Critical, obstetric, and surgical wards had the highest bacterial isolates number, where most were in the risk group 3 according to the National Institute of Health guidelines. Staphylococcus species were the most common bacteria found. Conclusion: Glucose meter strips should be recognized as a source of bacterial contamination that could be behind serious hospital acquired infections. The hospital infection control team should adopt proper measures to implement protocols for glucose meter cleaning and glucose strips handling. PMID:27570855
Balanced Flow Metering and Conditioning: Technology for Fluid Systems
NASA Technical Reports Server (NTRS)
Kelley, Anthony R.
2006-01-01
Revolutionary new technology that creates balanced conditions across the face of a multi-hole orifice plate has been developed, patented and exclusively licensed for commercialization. This balanced flow technology simultaneously measures mass flow rate, volumetric flow rate, and fluid density with little or no straight pipe run requirements. Initially, the balanced plate was a drop in replacement for a traditional orifice plate, but testing revealed substantially better performance as compared to the orifice plate such as, 10 times better accuracy, 2 times faster (shorter distance) pressure recovery, 15 times less acoustic noise energy generation, and 2.5 times less permanent pressure loss. During 2004 testing at MSFC, testing revealed several configurations of the balanced flow meter that match the accuracy of Venturi meters while having only slightly more permanent pressure loss. However, the balanced meter only requires a 0.25 inch plate and has no upstream or downstream straight pipe requirements. As a fluid conditioning device, the fluid usually reaches fully developed flow within 1 pipe diameter of the balanced conditioning plate. This paper will describe the basic balanced flow metering technology, provide performance details generated by testing to date and provide implementation details along with calculations required for differing degrees of flow metering accuracy.
1997-05-17
Environmental Health Specialist Jamie A. Keeley, of EG&G Florida Inc., uses an ion chamber dose rate meter to measure radiation levels in one of three radioisotope thermoelectric generators (RTGs) that will provide electrical power to the Cassini spacecraft on its mission to explore the Saturnian system. The three RTGs and one spare are being tested and mointored in the Radioisotope Thermoelectric Generator Storage Building in the KSC's Industrial Area. The RTGs use heat from the natural decay of plutonium to generate electric power. RTGs enable spacecraft to operate far from the Sun where solar power systems are not feasible. The RTGs on Cassini are of the same design as those flying on the already deployed Galileo and Ulysses spacecraft. The Cassini mission is targeted for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle.
NASA Astrophysics Data System (ADS)
Takeuchi, T.; Shibata, H.; Otsuka, N.; Uehara, T.; Tsuchiya, K.; Shibagaki, T.; Komanome, H.
2016-10-01
Several kinds of commercially available light emitting diodes (LED) and photo diodes (PD) were irradiated with 60Co gamma ray up to 1 MGy for development of a radiation-resistant in-water wireless transmission system using visible light. The lens parts of the LEDs turned brown by the irradiation and their colors became dark with the absorbed dose. The total luminous fluxes decreased with the absorbed dose and the LED with shorter emission wavelength had the higher decrease rate. Meanwhile, the current-voltage characteristics hardly changed. These results indicate that the decreases of the total luminous flux of the LEDs were mainly caused not by the degradation of the semiconductor parts but by the coloring of the lens parts by the irradiation. On the other hand, the light sensitivities of the PDs decreased with the absorbed dose. The PDs with the window part which turned a darker color had the higher decrease rate. These results indicate that the decreases of light sensitivities of the PDs were also mainly caused by the coloring of the resin parts by the irradiation. If the wireless transmission is performed using the candidate LED and PD between 5 meters in water, using a few LEDs and PDs, the PD's output current generated by the emission light of the LED is estimated to be detectable even considering the effects of the absorption of the light in water and the increased dark current by the irradiation. Therefore, a radiation resistant in-water transmission system can be constructed using commercially available LEDs and PDs in principle.
NASA Technical Reports Server (NTRS)
Janoudi, A.; Poff, K. L.
1990-01-01
The relationship between the amount of light and the amount of response for any photobiological process can be based on the number of incident quanta per unit time (fluence rate-response) or on the number of incident quanta during a given period of irradiation (fluence-response). Fluence-response and fluence rate-response relationships have been measured for second positive phototropism by seedlings of Arabidopsis thaliana. The fluence-response relationships exhibit a single limiting threshold at about 0.01 micromole per square meter when measured at fluence rates from 2.4 x 10(-5) to 6.5 x 10(-3) micromoles per square meter per second. The threshold values in the fluence rate-response curves decrease with increasing time of irradiation, but show a common fluence threshold at about 0.01 micromole per square meter. These thresholds are the same as the threshold of about 0.01 micromole per square meter measured for first positive phototropism. Based on these data, it is suggested that second positive curvature has a threshold in time of about 10 minutes. Moreover, if the times of irradiation exceed the time threshold, there is a single limiting fluence threshold at about 0.01 micromole per square meter. Thus, the limiting fluence threshold for second positive phototropism is the same as the fluence threshold for first positive phototropism. Based on these data, we suggest that this common fluence threshold for first positive and second positive phototropism is set by a single photoreceptor pigment system.
The pricing of water in a university town: An economic analysis of draining a cash cow
NASA Astrophysics Data System (ADS)
Joyce, B. Patrick; Merz, Thomas E.
1994-10-01
This paper analyzes some economic issues involved with the common practice of using metered water rate revenue to fund debt retirement associated with the provision of municipal water and wastewater services. We conclude that rather than simply raising the metered rate, city officials should seriously consider increasing the tax rate levied under the local property tax. There is an important trade-off in the choice of a price policy. An increased property tax rate can result in tax savings to some home owners, which lowers their net expenditure for water. However, a corresponding decrease in the metered rate may increase water consumption, which in turn raises operating cost. In order to do what is best for home owners, it might make sense to give other customers (e.g., a university) an easy ride, even if the latter, because of its low (inelastic) price elasticity of demand for water, is viewed by the municipality as a cash cow.
Chen, Yang; Young, Paul M; Murphy, Seamus; Fletcher, David F; Long, Edward; Lewis, David; Church, Tanya; Traini, Daniela
2017-04-01
The aim of this study is to investigate aerosol plume geometries of pressurised metered dose inhalers (pMDIs) using a high-speed laser image system with different actuator nozzle materials and designs. Actuators made from aluminium, PET and PTFE were manufactured with four different nozzle designs: cone, flat, curved cone and curved flat. Plume angles and spans generated using the designed actuator nozzles with four solution-based pMDI formulations were imaged using Oxford Lasers EnVision system and analysed using EnVision Patternate software. Reduced plume angles for all actuator materials and nozzle designs were observed with pMDI formulations containing drug with high co-solvent concentration (ethanol) due to the reduced vapour pressure. Significantly higher plume angles were observed with the PTFE flat nozzle across all formulations, which could be a result of the nozzle geometry and material's hydrophobicity. The plume geometry of pMDI aerosols can be influenced by the vapour pressure of the formulation, nozzle geometries and actuator material physiochemical properties.
Economics of "essential use exemptions" for metered-dose inhalers under the Montreal Protocol.
DeCanio, Stephen J; Norman, Catherine S
2007-10-01
The Montreal Protocol on Substances that Deplete the Ozone Layer has led to rapid reductions in the use of ozone-depleting substances worldwide. However, the Protocol provides for "essential use exemptions" (EUEs) if there are no "technically and economically feasible" alternatives. An application that might qualify as an "essential use" is CFC-powered medical metered-dose inhalers (MDIs) for the treatment of asthma and chronic obstructive pulmonary disease (COPD), and the US and other nations have applied for exemptions in this case. One concern is that exemptions are necessary to ensure access to medications for low-income uninsureds. We examine the consequences of granting or withholding such exemptions, and conclude that government policies and private-sector programs are available that make it economically feasible to phase out chlorofluorocarbons (CFCs) in this application, thereby furthering the global public health objectives of the Montreal Protocol without compromising the treatment of patients who currently receive medication by means of MDIs.
High fidelity, radiation tolerant analog-to-digital converters
NASA Technical Reports Server (NTRS)
Wang, Charles Chang-I (Inventor); Linscott, Ivan Richard (Inventor); Inan, Umran S. (Inventor)
2012-01-01
Techniques for an analog-to-digital converter (ADC) using pipeline architecture includes a linearization technique for a spurious-free dynamic range (SFDR) over 80 deciBels. In some embodiments, sampling rates exceed a megahertz. According to a second approach, a switched-capacitor circuit is configured for correct operation in a high radiation environment. In one embodiment, the combination yields high fidelity ADC (>88 deciBel SFDR) while sampling at 5 megahertz sampling rates and consuming <60 milliWatts. Furthermore, even though it is manufactured in a commercial 0.25-.mu.m CMOS technology (1 .mu.m=12.sup.-6 meters), it maintains this performance in harsh radiation environments. Specifically, the stated performance is sustained through a highest tested 2 megarad(Si) total dose, and the ADC displays no latchup up to a highest tested linear energy transfer of 63 million electron Volts square centimeters per milligram at elevated temperature (131 degrees C.) and supply (2.7 Volts, versus 2.5 Volts nominal).
A system for calibrating seepage meters used to measure flow between ground water and surface water
Rosenberry, Donald O.; Menheer, Michael A.
2006-01-01
The in-line flowmeter used with this system is incapable of measuring seepage rates below about 7 centimeters per day. Smaller seepage rates can be measured manually. The seepage- control system also can be modified for measuring slower seepage rates with the use of two flowmeters and a slightly different water-routing system, or a fluid-metering pump can be used to control flow through the flux tank instead of an adjustable-height reservoir.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darghouth, Naïm R.; Wiser, Ryan; Barbose, Galen
The substantial increase in deployment of customer-sited solar photovoltaics (PV) in the United States has been driven by a combination of steeply declining costs, financing innovations, and supportive policies. Among those supportive policies is net metering, which in most states effectively allows customers to receive compensation for distributed PV generation at the full retail electricity price. The current design of retail electricity rates and the presence of net metering have elicited concerns that the possible under-recovery of fixed utility costs from PV system owners may lead to a feedback loop of increasing retail prices that accelerate PV adoption and furthermore » rate increases. However, a separate and opposing feedback loop could offset this effect: increased PV deployment may lead to a shift in the timing of peak-period electricity prices that could reduce the bill savings received under net metering where time-varying retail electricity rates are used, thereby dampening further PV adoption. In this paper, we examine the impacts of these two competing feedback dynamics on U.S. distributed PV deployment through 2050 for both residential and commercial customers, across states. Our results indicate that, at the aggregate national level, the two feedback effects nearly offset one another and therefore produce a modest net effect, although their magnitude and direction vary by customer segment and by state. We also model aggregate PV deployment trends under various rate designs and net-metering rules, accounting for feedback dynamics. Our results demonstrate that future adoption of distributed PV is highly sensitive to retail rate structures. Whereas flat, time-invariant rates with net metering lead to higher aggregate national deployment levels than the current mix of rate structures (+5% in 2050), rate structures with higher monthly fixed customer charges or PV compensation at levels lower than the full retail rate can dramatically erode aggregate customer adoption of PV (from -14% to -61%, depending on the design). Moving towards time-varying rates, on the other hand, may accelerate near- and medium-term deployment (through 2030), but is found to slow adoption in the longer term (-22% in 2050).« less
Radiation exposure levels within timber industries in Calabar, Nigeria
Inyang, S. O.; Inyang, I. S.; Egbe, N. O.
2009-01-01
The UNSCEAR (2000) observed that there could be some exposure at work which would require regulatory control but is not really considered. This study was, therefore, set up to evaluate the effective dose in timber industries in Calabar, Nigeria to determine if the evaluated dose levels could lead to any radiological health effect in the workers, and also determine if the industries require regulatory control. The gamma ray exposure at four timber industries measured using an exposure meter were converted to effective dose and compared with the public and occupational values. The evaluated effective dose values in the timber industries were below public and occupational exposure limits and may not necessarily result in any radiological health hazard. Therefore, they may not require regulatory control. PMID:20098544
Aesthetic appreciation of poetry correlates with ease of processing in event-related potentials.
Obermeier, Christian; Kotz, Sonja A; Jessen, Sarah; Raettig, Tim; von Koppenfels, Martin; Menninghaus, Winfried
2016-04-01
Rhetorical theory suggests that rhythmic and metrical features of language substantially contribute to persuading, moving, and pleasing an audience. A potential explanation of these effects is offered by "cognitive fluency theory," which stipulates that recurring patterns (e.g., meter) enhance perceptual fluency and can lead to greater aesthetic appreciation. In this article, we explore these two assertions by investigating the effects of meter and rhyme in the reception of poetry by means of event-related brain potentials (ERPs). Participants listened to four versions of lyrical stanzas that varied in terms of meter and rhyme, and rated the stanzas for rhythmicity and aesthetic liking. The behavioral and ERP results were in accord with enhanced liking and rhythmicity ratings for metered and rhyming stanzas. The metered and rhyming stanzas elicited smaller N400/P600 ERP responses than their nonmetered, nonrhyming, or nonmetered and nonrhyming counterparts. In addition, the N400 and P600 effects for the lyrical stanzas correlated with aesthetic liking effects (metered-nonmetered), implying that modulation of the N400 and P600 has a direct bearing on the aesthetic appreciation of lyrical stanzas. We suggest that these effects are indicative of perceptual-fluency-enhanced aesthetic liking, as postulated by cognitive fluency theory.
The AGS Ggamma Meter and Calibrating the Gauss Clock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahrens, Leif
2014-03-31
During AGS Polarized Proton acceleration periods, one output from the AGS Ggamma Meter, namely the energy (or Ggamma) calculated from the magnetic field in the AGS main magnets and the beam radius- both measured in particular instant, is used to figure out the times in the AGS magnet acceleration cycle when the beam passes through a particular set of depolarizing resonances. The resonance set occur whenever a particle’s Ggamma (energy*(G/m) becomes nearly equal to n*Qx (i.e. any integer multiplied by the horizontal betatron tune). This deliverable is why the machinery is referred to as the ''Ggamma Meter'' rather than themore » AGS energy meter. The Ggamma Meter takes as inputs a set of measurements of frequency (F(t)), radius (r(t)), and gauss clock counts (GCC(t)). The other energy (GgammaBr) assumes the field when the gauss clock starts counting is known. The change in field to time t is given by the measured accumulated gauss clock counts multiplied by the gauss clock calibration (gauss/GCC). In order to deal with experimental data, this calibration factor gets an added ad hoc complication, namely a correction dependent on the rate of change the counting rate. The Ggamma meter takes GCC(t) and together with the past history for this cycle calculates B(t).« less
Trajectory control sensor engineering model detailed test objective
NASA Technical Reports Server (NTRS)
Dekome, Kent; Barr, Joseph Martin
1991-01-01
The concept employed in an existing Trajectory Control Sensor (TCS) breadboard is being developed into an engineering model to be considered for flight on the Shuttle as a Detailed Test Objective (DTO). The sensor design addresses the needs of Shuttle/SSF docking/berthing by providing relative range and range rate to 1500 meters as well as the perceived needs of AR&C by relative attitude measurement over the last 100 meters. Range measurement is determined using a four-tone ranging technique. The Doppler shift on the highest frequency tone will be used to provide direct measurement of range rate. Bearing rate and attitude rates will be determined through back differencing of bearing and attitude, respectively. The target consists of an isosceles triangle configuration of three optical retroreflectors, roughly one meter and one-half meter in size. After target acquisition, the sensor continually updates the positions of the three retros at a rate of about one hertz. The engineering model is expected to weigh about 25 pounds, consume 25-30 watts, and have an envelope of about 1.25 cubic feet. The following concerns were addressed during the presentation: are there any concerns with differentiating attitude and bearing to get attitude and bearing rates? Since the docking scenario has low data bandwidth, back differencing is a sufficient approximation of a perfect differentiator for this application. Could range data be obtained if there were no retroreflectors on the target vehicle? Possibly, but only at close range. It would be dependent on target characteristics.
Electromagnetic Flow Meter Having a Driver Circuit Including a Current Transducer
NASA Technical Reports Server (NTRS)
Patel, Sandeep K. (Inventor); Karon, David M. (Inventor); Cushing, Vincent (Inventor)
2014-01-01
An electromagnetic flow meter (EMFM) accurately measures both the complete flow rate and the dynamically fluctuating flow rate of a fluid by applying a unipolar DC voltage to excitation coils for a predetermined period of time, measuring the electric potential at a pair of electrodes, determining a complete flow rate and independently measuring the dynamic flow rate during the "on" cycle of the DC excitation, and correcting the measurements for errors resulting from galvanic drift and other effects on the electric potential. The EMFM can also correct for effects from the excitation circuit induced during operation of the EMFM.
Hydrogen consentration meter utilizing a diffusion tube composed of 2 1/4 C r
Roy, Prodyot; Sandusky, David W.; Hartle, Robert T.
1979-01-01
A diffusion tube hydrogen meter for improving the sensitivity and response time for the measurement of hydrogen in liquid sodium. The improved hydrogen meter has a composite membrane composed of pure nickel sleeve fitted, for example, over a 2 1/4 Cr-1 Mo steel or niobium diffusion tube. Since the hydrogen permeation rate through 2 1/4 Cr-1 Mo steels is a factor of four higher than pure nickel, and the permeation rate of hydrogen through niobium is two orders of magnitude greater than the 2 1/4 Cr-1 Mo steel, this results in a decrease in response time and an increase in the sensitivity.
Investigation of Workplace-like Calibration Fields via a Deuterium-Tritium (D-T) Neutron Generator.
Mozhayev, Andrey V; Piper, Roman K; Rathbone, Bruce A; McDonald, Joseph C
2017-04-01
Radiation survey meters and personal dosimeters are typically calibrated in reference neutron fields based on conventional radionuclide sources, such as americium-beryllium (Am-Be) or californium-252 (Cf), either unmodified or heavy-water moderated. However, these calibration neutron fields differ significantly from the workplace fields in which most of these survey meters and dosimeters are being used. Although some detectors are designed to yield an approximately dose-equivalent response over a particular neutron energy range, the response of other detectors is highly dependent upon neutron energy. This, in turn, can result in significant over- or underestimation of the intensity of neutron radiation and/or personal dose equivalent determined in the work environment. The use of simulated workplace neutron calibration fields that more closely match those present at the workplace could improve the accuracy of worker, and workplace, neutron dose assessment. This work provides an overview of the neutron fields found around nuclear power reactors and interim spent fuel storage installations based on available data. The feasibility of producing workplace-like calibration fields in an existing calibration facility has been investigated via Monte Carlo simulations. Several moderating assembly configurations, paired with a neutron generator using the deuterium tritium (D-T) fusion reaction, were explored.
Low Flow Vortex Shedding Flow Meter for Hypergolics/all Media
NASA Technical Reports Server (NTRS)
Thinh, Ngo Dinh
1991-01-01
A family of vortex shedding flow meters, for measurement of hypergol flows, was designed and fabricated. The test loops to evaluate the flow meters for water flow, as well as Freon -113 flow which simulates the hypergolic fluids, were modified and constructed to utilize a pump system which has an output capacity of 200 gpm. Test runs were conducted on the small 1/2 inch model with Freon 113 and on the larger models with water. Results showed that the linearity between the frequency of the vortices and the flow rate of the fluids was very close to that of the turbine flow meter. It is suggested that the vortex shedding flow meter is a possible replacement for the existing turbine type.
NASA Astrophysics Data System (ADS)
Mitani, Yusuke; Miyaji, Kousuke; Kaneko, Satoshi; Uekura, Takaharu; Momose, Hideya; Johguchi, Koh
2018-04-01
This paper presents a compact wearable perspiration meter system using a 180-nm CMOS technology. With custom chip and board design, the proposed perspiration meter, which can measure a qualitative sweating rate, is integrated into 15 × 20 mm2. From the experimental results, the capacitances of the humidity sensors with analog-to-digital converter and band-gap reference circuits can operate accurately without hysteresis. In addition, a demonstration with simulated human skin is carried out to investigate the sensor’s performance under real environments. The proposed perspiration meter can output values equivalent to a conventional meter. As a result, it is verified that the proposed system can be used as a human sweat sensor for wearable application.
NASA Technical Reports Server (NTRS)
Rowlette, J. J. (Inventor)
1985-01-01
A coulometer for accurately measuring the state-of-charge of an open-cell battery utilizing an aqueous electrolyte, includes a current meter for measuring the battery/discharge current and a flow meter for measuring the rate at which the battery produces gas during charge and discharge. Coupled to the flow meter is gas analyzer which measures the oxygen fraction of the battery gas. The outputs of the current meter, flow meter, and gas analyzer are coupled to a programmed microcomputer which includes a CPU and program and data memories. The microcomputer calculates that fraction of charge and discharge current consumed in the generation of gas so that the actual state-of-charge can be determined. The state-of-charge is then shown on a visual display.
Patterns and Controls of Erosion along the Elson Lagoon Coastline, Barrow, Alaska (2003-2016)
NASA Astrophysics Data System (ADS)
Tweedie, C. E.; Escarzaga, S. M.; Cody, R. P.; Manley, W. F.; Gaylord, A. G.; Aiken, Q.; Lopez, A. F.; Aguirre, A.; George, C.; Nelson, L.; Brown, J.
2016-12-01
With arctic warming and the combined effect of decreased summer sea ice extent, longer fetch for wave propagation, warmer sea surface and ground temperature, and longer periods of open water; the propensity for increased arctic coastal erosion rates and land-ocean sediment inputs to increase has been recognized for some time. In this study, we report on coastal erosion trends along a 11km stretch of coastline adjacent to the Barrow Environmental Observatory (BEO) where the position of the 2-4 meter high coastal bluff has been monitored annually with survey grade differential GPS (dGPS). Modern and historic erosion trends can be viewed through interactive web mapping applications at http://barrowmapped.org/. Rates of aerial and volumetric erosion losses averaged 0.7-2.8 meters and 0.8-3.5 cubic meters per meter of coast per year from 2003-2015 for each of the four coastal sections monitored. These losses equate to losses to the atmosphere and/or inputs to lagoon waters 53-220kgC per meter of coast per year. Such aerial losses are lower than from other areas of the Beaufort Sea coast that lack protective barrier islands, but 25-30% higher than historic decadal-scale change rates estimated for this section of coastline. However, regression analyses indicate no significant change to the rate of erosion during the past 13 years. Historic hotspots of erosion remained modern hotspots of erosion, and increases in modern erosion rates were greatest for sections of coast where historically high rates of erosion have been recorded. Regionally, the Elson Lagoon study area shows some of the highest rates of erosion for the Barrow Peninsula, which are generally 2-3 times mean annual erosion rates recorded for the Chukchi Sea Coastline near Barrow. Regression tree analysis used to isolate the relative importance of different biophysical controls of erosion differ between analyses run for aerial and volumetric losses along the Elson Lagoon Coast. These analyses also highlight key differences in controls between sampling periods with high/low wind-wave activity. In particular, analyses show the important influence of wave energy, land cover type, and landscape geomorphic history on modern coastal erosion dynamics.
Rutten, C J; Steeneveld, W; Inchaisri, C; Hogeveen, H
2014-11-01
The technical performance of activity meters for automated detection of estrus in dairy farming has been studied, and such meters are already used in practice. However, information on the economic consequences of using activity meters is lacking. The current study analyzes the economic benefits of a sensor system for detection of estrus and appraises the feasibility of an investment in such a system. A stochastic dynamic simulation model was used to simulate reproductive performance of a dairy herd. The number of cow places in this herd was fixed at 130. The model started with 130 randomly drawn cows (in a Monte Carlo process) and simulated calvings and replacement of these cows in subsequent years. Default herd characteristics were a conception rate of 50%, an 8-wk dry-off period, and an average milk production level of 8,310 kg per cow per 305 d. Model inputs were derived from real farm data and expertise. For the analysis, visual detection by the farmer ("without" situation) was compared with automated detection with activity meters ("with" situation). For visual estrus detection, an estrus detection rate of 50% and a specificity of 100% were assumed. For automated estrus detection, an estrus detection rate of 80% and a specificity of 95% were assumed. The results of the cow simulation model were used to estimate the difference between the annual net cash flows in the "with" and "without" situations (marginal financial effect) and the internal rate of return (IRR) as profitability indicators. The use of activity meters led to improved estrus detection and, therefore, to a decrease in the average calving interval and subsequent increase in annual milk production. For visual estrus detection, the average calving interval was 419 d and average annual milk production was 1,032,278 kg. For activity meters, the average calving interval was 403 d and the average annual milk production was 1,043,398 kg. It was estimated that the initial investment in activity meters would cost €17,728 for a herd of 130 cows, with an additional cost of €90 per year for the replacement of malfunctioning activity meters. Changes in annual net cash flows arising from using an activity meter included extra revenues from increased milk production and number of calves sold, increased costs from more inseminations, calvings, and feed consumption, and reduced costs from fewer culled cows and less labor for estrus detection. These changes in cash flows were caused mainly by changes in the technical results of the simulated dairy herds, which arose from differences in the estrus detection rate and specificity between the "with" and "without" situations. The average marginal financial effect in the "with" and "without" situations was €2,827 for the baseline scenario, with an average IRR of 11%. The IRR is a measure of the return on invested capital. Investment in activity meters was generally profitable. The most influential assumptions on the profitability of this investment were the assumed culling rules and the increase in sensitivity of estrus detection between the "without" and the "with" situation. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Discharge Measurements in Shallow Urban Streams Using a Hydroacoustic Current Meter
Fisher, G.T.; Morlock, S.E.; ,
2002-01-01
Hydroacoustic current-meter measurements were evaluated in small urban streams under a range of stages, velocities, and channel-bottom materials. Because flow in urban streams is often shallow, conventional mechanical current-meter measurements are difficult or impossible to make. The rotating-cup Price pygmy meter that is widely used by the U.S. Geological Survey and other agencies should not be used in depths below 0.20 ft and velocities less than 0.30 ft/s. The hydroacoustic device provides measurements at depths as shallow as 0.10 ft and velocities as low as 0.10 ft/s or less. Measurements using the hydroacoustic current meter were compared to conventional discharge measurements. Comparisons with Price-meter measurements were favorable within the range of flows for which the meters are rated. Based on laboratory and field tests, velocity measurements with the hydroacoustic cannot be validated below about 0.07 ft/s. However, the hydroacoustic meter provides valuable information on direction and magnitude of flow even at lower velocities, which otherwise could not be measured with conventional measurements.
Photogrammetric Data Set, 1957-2000, and Bathymetric Measurements for Columbia Glacier, Alaska
Krimmel, Robert M.
2001-01-01
Major changes in the length, speed, surface altitude, and calving rate of Columbia Glacier, Alaska have been recorded with stereo vertical photography acquired on 119 dates from 1957 to 2000. Photogrammetric analysis of this photographic record has resulted in precise measurement of these changes. From 1982 to 2000 Columbia Glacier retreated 12 kilometers, reduced its thickness by as much as 400 meters, increased its speed from about 5 to 30 meters per day, and increased its calving rate from 3 to 18 million cubic meters per day. All photogrammetric data for Columbia Glacier from 1957 to 2000 are included in this report, as well as supplemental data of ice-dammed lake surface levels, stagnant ice ablation rate, forebay bathymetry, ground control, and camera calibrations. These data are contained in 481 files, all preserved on a CD-ROM included with this report.
Rapid sea level rise in the aftermath of a Neoproterozoic snowball Earth
NASA Astrophysics Data System (ADS)
Myrow, P. M.; Lamb, M. P.; Ewing, R. C.
2018-05-01
Earth’s most severe climate changes occurred during global-scale “snowball Earth” glaciations, which profoundly altered the planet’s atmosphere, oceans, and biosphere. Extreme rates of glacioeustatic sea level rise are predicted by the snowball Earth hypothesis, but supporting geologic evidence has been lacking. We use paleohydraulic analysis of wave ripples and tidal laminae in the Elatina Formation, Australia—deposited after the Marinoan glaciation ~635 million years ago—to show that water depths of 9 to 16 meters remained nearly constant for ~100 years throughout 27 meters of sediment accumulation. This accumulation rate was too great to have been accommodated by subsidence and instead indicates an extraordinarily rapid rate of sea level rise (0.2 to 0.27 meters per year). Our results substantiate a fundamental prediction of snowball Earth models of rapid deglaciation during the early transition to a supergreenhouse climate.
Quantified Energy Dissipation Rates in the Terrestrial Bow Shock. 2; Waves and Dissipation
NASA Technical Reports Server (NTRS)
Wilson, L. B., III; Sibeck, D. G.; Breneman, A. W.; Le Contel, O.; Cully, C.; Turner, D. L.; Angelopoulos, V.; Malaspina, D. M.
2014-01-01
We present the first quantified measure of the energy dissipation rates, due to wave-particle interactions, in the transition region of the Earth's collision-less bow shock using data from the Time History of Events and Macro-Scale Interactions during Sub-Storms spacecraft. Our results show that wave-particle interactions can regulate the global structure and dominate the energy dissipation of collision-less shocks. In every bow shock crossing examined, we observed both low-frequency (less than 10 hertz) and high-frequency (approximately or greater than10 hertz) electromagnetic waves throughout the entire transition region and into the magnetosheath. The low-frequency waves were consistent with magnetosonic-whistler waves. The high-frequency waves were combinations of ion-acoustic waves, electron cyclotron drift instability driven waves, electrostatic solitary waves, and whistler mode waves. The high-frequency waves had the following: (1) peak amplitudes exceeding delta B approximately equal to 10 nanoteslas and delta E approximately equal to 300 millivolts per meter, though more typical values were delta B approximately equal to 0.1-1.0 nanoteslas and delta E approximately equal to 10-50 millivolts per meter (2) Poynting fluxes in excess of 2000 microWm(sup -2) (micro-waves per square meter) (typical values were approximately 1-10 microWm(sup -2) (micro-waves per square meter); (3) resistivities greater than 9000 omega meters; and (4) associated energy dissipation rates greater than 10 microWm(sup -3) (micro-waves per cubic meter). The dissipation rates due to wave-particle interactions exceeded rates necessary to explain the increase in entropy across the shock ramps for approximately 90 percent of the wave burst durations. For approximately 22 percent of these times, the wave-particle interactions needed to only be less than or equal to 0.1 percent efficient to balance the nonlinear wave steepening that produced the shock waves. These results show that wave-particle interactions have the capacity to regulate the global structure and dominate the energy dissipation of collision-less shocks.
Ullal-Gupta, Sangeeta; Hannon, Erin E.; Snyder, Joel S.
2014-01-01
Musical meters vary considerably across cultures, yet relatively little is known about how culture-specific experience influences metrical processing. In Experiment 1, we compared American and Indian listeners' synchronous tapping to slow sequences. Inter-tone intervals contained silence or to-be-ignored rhythms that were designed to induce a simple meter (familiar to Americans and Indians) or a complex meter (familiar only to Indians). A subset of trials contained an abrupt switch from one rhythm to another to assess the disruptive effects of contradicting the initially implied meter. In the unfilled condition, both groups tapped earlier than the target and showed large tap-tone asynchronies (measured in relative phase). When inter-tone intervals were filled with simple-meter rhythms, American listeners tapped later than targets, but their asynchronies were smaller and declined more rapidly. Likewise, asynchronies rose sharply following a switch away from simple-meter but not from complex-meter rhythm. By contrast, Indian listeners performed similarly across all rhythm types, with asynchronies rapidly declining over the course of complex- and simple-meter trials. For these listeners, a switch from either simple or complex meter increased asynchronies. Experiment 2 tested American listeners but doubled the duration of the synchronization phase prior to (and after) the switch. Here, compared with simple meters, complex-meter rhythms elicited larger asynchronies that declined at a slower rate, however, asynchronies increased after the switch for all conditions. Our results provide evidence that ease of meter processing depends to a great extent on the amount of experience with specific meters. PMID:25075514
Ambiguity effects of rhyme and meter.
Wallot, Sebastian; Menninghaus, Winfried
2018-04-23
Previous research has shown that rhyme and meter-although enhancing prosodic processing ease and memorability-also tend to make semantic processing more demanding. Using a set of rhymed and metered proverbs, as well as nonrhymed and nonmetered versions of these proverbs, the present study reveals this hitherto unspecified difficulty of comprehension to be specifically driven by perceived ambiguity. Roman Jakobson was the 1st to propose this hypothesis, in 1960. He suggested that "ambiguity is an intrinsic, inalienable feature" of "parallelistic" diction of which the combination of rhyme and meter is a pronounced example. Our results show that ambiguity indeed explains a substantial portion of the rhyme- and meter-driven difficulty of comprehension. Longer word-reading times differentially reflected ratings for ambiguity and comprehension difficulty. However, the ambiguity effect is not "inalienable." Rather, many rhymed and metered sentences turned out to be low in ambiguity. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Pharmaceutical Product Development: Intranasal Scopolamine (INSCOP) Metered Dose Spray
NASA Technical Reports Server (NTRS)
Putcha, Lakshmi; Crady, Camille; Putcha, Lakshmi
2012-01-01
Motion sickness (MS) has been a problem associated with space flight, the modern military and commercial air and water transportation for many years. Clinical studies have shown that scopolamine is the most effective medication for the prevention of motion sickness (Dornhoffer et al, 2004); however, the two most common methods of administration (transdermal and oral) have performance limitations that compromise its utility. Intranasal administration offers a noninvasive treatment modality, and has been shown to counter many of the problems associated with oral and transdermal administration. With the elimination of the first pass effect by the liver, intranasal delivery achieves higher and more reliable bioavailability than an equivalent oral dose. This allows for the potential of enhanced efficacy at a reduced dose, thus minimizing the occurrence of untoward side effects. An Intranasal scopolamine (INSCOP) gel formulation was prepared and tested in four ground-based clinical trials under an active Investigational New Drug (IND) application with the Food and Drug Administration (FDA). Although there were early indicators that the intranasal gel formulation was effective, there were aspects of formulation viscosity and the delivery system that were less desirable. The INSCOP gel formulation has since been reformulated into an aqueous spray dosage form packaged in a precise, metered dose delivery system; thereby enhancing dose uniformity, increased user satisfaction and palatability, and a potentially more rapid onset of action. Recent reports of new therapeutic indications for scopolamine has prompted a wide spread interest in new scopolamine dosage forms. The novel dosage form and delivery system of INSCOP spray shows promise as an effective treatment for motion sickness targeted at the armed forces, spaceflight, and commercial sea, air, and space travel markets, as well as prospective psychotherapy for mental and emotional disorders.
Remote Handled WIPP Canisters at Los Alamos National Laboratory Characterized for Retrieval
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffin, J.; Gonzales, W.
2007-07-01
The Los Alamos National Laboratory (LANL) is pursuing retrieval, transportation, and disposal of 16 remote handled transuranic waste canisters stored below ground in shafts since 1994. These canisters were retrievably stored in the shafts to await Nuclear Regulatory Commission certification of the Model Number RH-TRU 72B transportation cask and authorization of the Waste Isolation Pilot Plant (WIPP) to accept the canisters for disposal. Retrieval planning included radiological characterization and visual inspection of the canisters to confirm historical records, verify container integrity, determine proper personnel protection for the retrieval operations, provide radiological dose and exposure rate data for retrieval operations, andmore » to provide exterior radiological contamination data. The radiological characterization and visual inspection of the canisters was performed in May 2006. The effort required the development of remote techniques and equipment due to the potential for personnel exposure to radiological doses approaching 300 R/hr. Innovations included the use of two nested 1.5 meter (m) (5-feet [ft]) long concrete culvert pipes (1.1-m [42 inch (in.)] and 1.5-m [60-in] diameter, respectively) as radiological shielding and collapsible electrostatic dusting wands to collect radiological swipe samples from the annular space between the canister and shaft wall. Visual inspection indicated that the canisters are in good condition with little or no rust, the welded seams are intact, and ten of the canisters include hydrogen gas sampling equipment on the pintle that will have to be removed prior to retrieval. The visual inspection also provided six canister identification numbers that matched historical storage records. The exterior radiological data indicated alpha and beta contamination below LANL release criteria and radiological dose and exposure rates lower than expected based upon historical data and modeling of the canister contents. (authors)« less
The electrospray and its application to targeted drug inhalation.
Gomez, Alessandro
2002-12-01
This review explains the fundamentals of electrostatic spray (electrospray) atomization, with emphasis on operation in the so called cone-jet mode, which produces droplets with a very narrow size distribution. Since the control of droplet size is key to maximizing distal lung deposition, the electrospray should be well-suited to targeted drug inhalation. Electrospray droplets are a few micrometers in diameter, but they originate from a much larger nozzle, which allows nebulization of suspensions without clogging. Also discussed are: the physical principles of the break-up of the liquid ligament; droplet dispersion by Coulombic forces; and the most important scaling law linking the droplet size to liquid flow rate and liquid physical properties. The effects of the most critical of those properties may result in some restrictions on drug formulation. Droplets produced by electrospray are electrically charged, so to prevent electrostatic image forces from causing upper respiratory tract deposition. The charge is neutralized by generating a corona discharge of opposite polarity. Briefly discussed are the main differences between the laboratory systems (with which the electrospray has been quantitatively characterized during research in the past 10 years) and commercial electrospray inhalers under development at BattellePharma. Some remarkable miniaturization has incorporated liquid pump, power supply, breath activation, and dose counter into a palm-size portable device. The maximum flow rates dispersed from these devices are in the range of 8-16 microL/s, which makes them suitable for practical drug inhalation therapy. Fabrication is economically competitive with inexpensive nebulizers. Dramatic improvements in respirable dose efficiency (up to 78% by comparison with commercial metered-dose inhalers and dry powder inhalers) should ensure the commercialization of this promising technology for targeted drug inhalation.
Calibrating/testing meters in hot water test bench VM7
NASA Astrophysics Data System (ADS)
Kling, E.; Stolt, K.; Lau, P.; Mattiasson, K.
A Hot Water Test Bench, VM7, has been developed and constructed for the calibration and testing of volume and flowmeters, in a project at the National Volume Measurement Laboratory at the Swedish National Testing and Research Institute. The intended area of use includes use as a reference at audit measurements, e.g. for accredited laboratories, calibration of meters for the industry and for the testing of hot water meters. The objective of the project, which was initiated in 1989, was to design equipment with stable flow and with a minimal temperature drop even at very low flow rates. The principle of the design is a closed system with two pressure tanks at different pressures. The water is led from the high pressure tank through the test object and the volume standard, in the form of master meters or a piston prover alternatively, to the low pressure tank. Calibrations/tests are made comparing the indication of the test object to that of master meters covering the current flow rate. These are, in the same test cycle, calibrated to the piston prover. Alternatively, the test object can be calibrated directly to the piston prover.
A determination of the absolute radiant energy of a Robertson-Berger meter sunburn unit
NASA Astrophysics Data System (ADS)
DeLuisi, John J.; Harris, Joyce M.
Data from a Robertson-Berger (RB) sunburn meter were compared with concurrent measurements obtained with an ultraviolet double monochromator (DM), and the absolute energy of one sunburn unit measured by the RB-meter was determined. It was found that at a solar zenith angle of 30° one sunburn unit (SU) is equivalent to 35 ± 4 mJ cm -2, and at a solar zenith angle of 69°, one SU is equivalent to 20 ± 2 mJ cm -2 (relative to a wavelength of 297 nm), where the rate of change is non-linear. The deviation is due to the different response functions of the RB-meter and the DM system used to simulate the response of human skin to the incident u.v. solar spectrum. The average growth rate of the deviation with increasing solar zenith angle was found to be 1.2% per degree between solar zenith angles 30 and 50° and 2.3% per degree between solar zenith angles 50 and 70°. The deviations of response with solar zenith angle were found to be consistent with reported RB-meter characteristics.
Gruber, E; Salama, E; Rühm, W
2011-03-01
The active radon exposure meter developed recently at the German Research Center for Environmental Health (Helmholtz Zentrum München) was used to measure radon concentrations in 12 tombs located in the Valley of the Kings, Egypt. Radon concentrations in air between 50 ± 7 and 12 100 ± 600 Bq m(-3) were obtained. The device was also used to measure individual radon exposures of those persons working as safeguards inside the tombs. For a measurement time of 2-3 d, typical individual radon exposures ranged from 1800 ± 400 to 240 000 ± 13 000 Bq h m(-3), depending on the duration of measurement and radon concentration in the different tombs. Based on current ICRP dose conversion conventions for workers and on equilibrium factors published in the literature for these tombs, individual effective dose rates that range from 1.5 ± 0.3 to 860 ± 50 µSv d(-1) were estimated. If it is assumed that the climatic conditions present at the measurement campaign persist for about half a year, in this area, then effective doses up to ∼ 66 mSv could be estimated for half a year, for some of the safeguards of tombs where F-values were known. To reduce the exposure of the safeguards, some recommendations are proposed.
Fukushima, Chizu; Matsuse, Hiroto; Tomari, Shinya; Obase, Yasushi; Miyazaki, Yoshitsugu; Shimoda, Terufumi; Kohno, Shigeru
2003-06-01
Inhaled steroids such as fluticasone propionate and beclomethasone dipropionate play a central role in the treatment of bronchial asthma. Fluticasone exhibits excellent clinical effectiveness; however, oral adverse effects can occur. To compare the frequency of oral candidiasis in asthmatic patients treated with fluticasone and beclomethasone, to evaluate the effect of gargling with amphotericin B, and to measure the inhalation flow rate on candidiasis. The study consisted of 143 asthmatic patients who were treated with inhaled steroids, 11 asthmatic patients not treated with inhaled steroids, and 86 healthy volunteers. Quantitative fungal culture was performed by aseptically obtaining a retropharyngeal wall swab from these patients. Patients with positive results were treated with gargling using a 1:50 dilution amphotericin B solution. In asthmatic patients treated with fluticasone, the inhalation flow rate was measured using an inspiratory flow meter. The amount of Candida spp. was significantly greater in asthmatic patients taking inhaled steroids compared with those who were not. It was also significantly greater in patients with oral symptoms than asymptomatic patients and significantly greater in asthmatic patients treated with fluticasone than in those treated with beclomethasone. Although the presence of Candida did not correlate with the inhaled dose of beclomethasone, it did increase with the dose of fluticasone. Gargling with amphotericin B was effective in most asthmatic patients with candidiasis. Candidiasis was not due to inappropriate flow rates during inhalation of steroids. Fungal culture of a retropharyngeal wall swab may be useful for predicting the risk of developing oral candidiasis in asthmatic patients treated with inhaled steroids. The amount of isolated Candida was significantly greater in asthmatic patients treated with fluticasone than in those treated with beclomethasone. Attention to dosage is required as the amount of Candida increased with dose of fluticasone. Gargling with a 1:50 dilution of amphotericin B is effective in treating oral candidiasis of asthmatic patients treated with inhaled steroids.
Side effects of antimotion sickness drugs
NASA Technical Reports Server (NTRS)
Wood, C. D.; Manno, J. E.; Manno, B. R.; Redetzki, H. M.; Wood, M. D.; Vekovius, W. A.
1984-01-01
The effects on operational proficiency of the antimotion sickness drugs scopolamine, promethazine and d-amphetamine are tested using a computerized pursuit meter. Proficiency is not significantly affected by oral doses of 0.25 mg or 0.50 mg scopolamine but is descreased by oral or I.M. doses of 25 mg promethazine. The performance decrement associated with 25 mg oral promethazine is prevented when combined with 10 mg oral d-amphetamine. The combination of 25 mg I.M. promethazine, 25 mg oral promethazine and 10 mg d-amphetamine produces less performance decrement than oral or I.M. doses of promethazine alone, though more performance decrement than a placebo. I.M. promethazine is adsorbed slowly and consequently may provoke drowsiness.
NaK Plugging Meter Design for the Feasibility Test Loops
NASA Technical Reports Server (NTRS)
Pearson, J. Boise; Godfroy, Thomas J.; Reid, Robert S.; Polzin, Kurt A.
2008-01-01
The design and predicted performance of a plugging meter for use in the measurement of NaK impurity levels are presented. The plugging meter is incorporated into a Feasibility Test Loop (FTL), which is a small pumped-NaK loop designed to enable the rapid, small-scale evaluation of techniques such as in situ purification methods and to permit the measurement of bulk material transport effects (not mechanisms) under flow conditions that are representative of a fission surface power reactor. The FTL operates at temperatures similar to those found in a reactor, with a maximum hot side temperature of 900 K and a corresponding cold side temperature of 860 K. In the plugging meter a low flow rate bypass loop is cooled until various impurities (primarily oxides) precipitate out of solution. The temperatures at which these impurities precipitate are indicative of the level of impurities in the NaK. The precipitates incrementally plug a small orifice in the bypass loop, which is detected by monitoring changes in the liquid metal flow rate.
ADVANTG Shielding Analysis for Closure Operations in an Open-Mode Repository
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bevill, Aaron M; Radulescu, Georgeta; Scaglione, John M
2013-01-01
en-mode repository concepts could require worker entry into access drifts after placement of fuel casks in order to perform activities related to backfill, plug emplacement, routine maintenance, or performance confirmation. An ideal emplacement-drift shielding configuration would minimize dose to workers while maximizing airflow through the emplacement drifts. This paper presents a preliminary investigation of the feasibility and effectiveness of radiation shielding concepts that could be employed to facilitate worker operations in an open-mode repository. The repository model for this study includes pressurized-water reactor fuel assemblies (60 GWd/MTU burnup, 40 year post-irradiation cooldown) in packages of 32 assemblies. The closest fuelmore » packages are 5 meters from dosimetry voxels in the access drift. The unshielded dose to workers in the access drift is 73.7 rem/hour. Prior work suggests that open-mode repository concepts similar to this one would require 15 m3/s of ventilation airflow. Shielding concepts considered here include partial concrete plugs, labyrinthine shields, and stainless steel photon attenuator grids. Maximum dose to workers in the access drift was estimated for each shielding concept using MCNP5 with variance reduction parameters generated by ADVANTG. Because airflow through the shielding is important for open-mode repositories, a semi-empirical estimate of the head loss due to each shielding configuration was also calculated. Airflow and shielding performance vary widely among the proposed shielding configurations. Although the partial plug configuration had the best airflow performance, it allowed dose rates 1500 greater than the specified target. Labyrinthine shielding concepts yield doses on the order of 1 mrem/hour with configurations that impose 3 to 11 J/kg head loss. Adding 1 cm lead lining to the airflow channels of labyrinthine designs further reduces the worker dose by 65% to 95%. Photon-attenuator concepts may reduce worker dose to as low as 29 mrem/hour with head loss on the order of 1.9 J/kg.« less
Impact of a flattening filter free linear accelerator on structural shielding design.
Jank, Julia; Kragl, Gabriele; Georg, Dietmar
2014-03-01
The present study aimed to assess the effects of a flattening filter free medical accelerator on structural shielding demands of a treatment vault of a medical linear accelerator. We tried to answer the question, to what extent the required thickness of the shielding barriers can be reduced if instead of the standard flattened photon beams unflattened ones are used. We chose both an experimental as well as a theoretical approach. On the one hand we measured photon dose rates at protected places outside the treatment room and compared the obtained results for flattened and unflattened beams. On the other hand we complied with international guidelines for adequate treatment vault design and calculated the shielding barriers according to the therein given specifications. Measurements were performed with an Elekta Precise™ linac providing nominal photon energies of 6 and 10 MV. This machine underwent already earlier some modifications in order to be able to operate both with and without a flattening filter. Photon dose rates were measured with a LB133-1 dose rate meter manufactured by Berthold. To calculate the thickness of shielding barriers we referred to the Austrian standard ÖNORM S 5216 and to the US American NCRP Report No. 151. We determined a substantial photon dose rate reduction for all measurement points and photon energies. For unflattened 6 MV beams a reduction factor ranging from 1.4 to 1.8 was identified. The corresponding values for unflattened 10 MV beams were 2.1 and 3.2. The performed shielding calculations indicated the same tendency: For all relevant radiation components we found a reduction in shielding thickness when unflattened beams were used. The required thickness of primary barriers was reduced up to 8.0%, the thickness of secondary barriers up to 11.4%, respectively. For an adequate dimensioning of treatment vault shielding barriers it is by no means irrelevant if the accommodated linac operates with or without a flattening filter. The lower consumption of shielding space and material for new treatment vaults housing a FFF machine may reduce building costs, whereas for existing vaults one might benefit in terms of increased weekly workload. Also a more frequent use of monitor unit intense treatment techniques as well as aiming at reduced occupational exposure for staff is conceivable. Copyright © 2013. Published by Elsevier GmbH.
Sedimentation Survey of Lago Icacos, Puerto Rico, March 2004
Soler-López, Luis R.
2007-01-01
The Lago Icacos, a small reservoir built in 1930 and owned by the Puerto Rico Electric Power Authority, is part of the Rio Blanco Hydroelectric Power System. The reservoir is located in Naguabo, within the Caribbean National Forest in eastern Puerto Rico. The original storage capacity of the reservoir was 19,119 cubic meters in 1930. The bathymetric survey conducted by the U.S. Geological Survey in March 2004 indicates a storage capacity of 7,435 cubic meters or 39 percent of the original storage capacity, and a maximum depth of 5.3 meters. The reservoir has been dredged several times to restore lost storage capacity caused by high sediment loads and the frequent landslides that occur upstream from the dam, which have partially or completely filled the Lago Icacos. Because sediment removal activities have not been documented, sedimentation rates could not be determined using storage volume comparisons. A reservoir sedimentation rate was calculated using the daily sediment load data gathered at the U.S. Geological Survey Rio Icacos streamflow station upstream of the reservoir, the estimated Lago Icacos sediment trapping efficiency, and the estimated sediment yield of the Lago Icacos basin extrapolated from the Rio Icacos sediment load data. Using these properties, the Lago Icacos sedimentation rate was estimated as 71 cubic meters per year, equivalent to about 1 percent of the original storage capacity per year. The Lago Icacos 7.47-square-kilometer drainage area sediment yield was estimated as 7,126 tonnes per year or about 954 tonnes per square kilometer per year. Based on the current estimated sedimentation rate of 71 cubic meters per year, Lago Icacos has a useful life of about 105 years or to year 2109.
Jones, K P; Mullee, M A
1990-01-01
OBJECTIVE--To compare measurements of the peak expiratory flow rate taken by the mini Wright peak flow meter and the turbine spirometer. DESIGN--Pragmatic study with randomised order of use of recording instruments. Phase 1 compared a peak expiratory flow type expiration recorded by the mini Wright peak flow meter with an expiration to forced vital capacity recorded by the turbine spirometer. Phase 2 compared peak expiratory flow type expirations recorded by both meters. Reproducibility was assessed separately. SETTING--Routine surgeries at Aldermoor Health Centre, Southampton. SUBJECTS--212 Patients aged 4 to 78 presenting with asthma or obstructive airways disease. Each patient contributed only once to each phase (105 in phase 1, 107 in phase 2), but some entered both phases on separate occasions. Reproducibility was tested on a further 31 patients. MAIN OUTCOME MEASURE--95% Limits of agreement between measurements on the two meters. RESULTS--208 (98%) Of the readings taken by the mini Wright meter were higher than the corresponding readings taken by the turbine spirometer, but the 95% limits of agreement (mean difference (2 SD] were wide (1 to 173 l/min). Differences due to errors in reproducibility were not sufficient to predict this level of disagreement. Analysis by age, sex, order of use, and the type of expiration did not detect any significant differences. CONCLUSIONS--The two methods of measuring peak expiratory flow rate were not comparable. The mini Wright meter is likely to remain the preferred instrument in general practice. PMID:2142611
Survival and Hematopoietic Recovery in Mice after Wound Trauma and Whole-Body Irradiation
1982-01-01
approp- riate line transformation of doie to insure an increasing dose meta - meter. Chi square analysis for linearity and paralleliss of the data were made...conceivable that the splenic myeloproliferative response in wounded mice in the post-irradiation period could account for the enhancement of survival. Splenic
Rossetti, Paolo; Vehí, Josep; Revert, Ana; Calm, Remei; Bondia, Jorge
2012-01-01
Since the early 2000s, there has been an exponentially increasing development of new diabetes-applied technology, such as continuous glucose monitoring, bolus calculators, and “smart” pumps, with the expectation of partially overcoming clinical inertia and low patient compliance. However, its long-term efficacy in glucose control has not been unequivocally proven. In this issue of Journal of Diabetes Science and Technology, Sussman and colleagues evaluated a tool for the calculation of the prandial insulin dose. A total of 205 insulin-treated patients were asked to compute a bolus dose in two simulated conditions either manually or with the bolus calculator built into the FreeStyle InsuLinx meter, revealing the high frequency of wrong calculations when performed manually. Although the clinical impact of this study is limited, it highlights the potential implications of low diabetes-related numeracy in poor glycemic control. Educational programs aiming to increase patients’ empowerment and caregivers’ knowledge are needed in order to get full benefit of the technology. PMID:22538145
40 CFR Table 2 to Subpart D of... - TRE Parameters for NSPS Referencing Subpartsa
Code of Federal Regulations, 2011 CFR
2011-07-01
...? Net heating value(MJ/scm)b Vent stream flow rate (scm/min)c Values of terms for TRE equation: TRE=A... § 65.64(h). b MJ/scm = mega Joules per standard cubic meter. c scm/min = standard cubic meters per...
40 CFR Table 2 to Subpart D of... - TRE Parameters for NSPS Referencing Subpartsa
Code of Federal Regulations, 2010 CFR
2010-07-01
...? Net heating value(MJ/scm)b Vent stream flow rate (scm/min)c Values of terms for TRE equation: TRE=A... § 65.64(h). b MJ/scm = mega Joules per standard cubic meter. c scm/min = standard cubic meters per...
1983-09-28
approximately isokinetic sampling conditions. The blower motor for the hi-vol was separated from the filter holder unit by a one- meter length of flexible...bridge bulkhead about 15 m above sea level and within 3 meters of the ARCAS inlet. The flow rate through the 20 cm x 25 cm glass fiber filters was...materials, atmospheric pressure, soil moisture and vegetative cover (Larson and Bressan, 1980). Radon concentrations measured a few meters above
Occupational noise exposure and hearing levels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ambasankaran, M.; Brahmachari, D.; Chadda, V.K.
1981-07-01
A study was made at the Bhabha Atomic Research Center to measure the hearing levels of persons working in a noise environment. Two different workplaces, central air-conditioning plant and glass blowing shops, where a number of persons were exposed to noise levels exceeding 85 dB(A) were chosen. The occupational exposure to noise was determined using a sound level meter, an octave band filter and a personal noise dose meter. The hearing levels of persons exposed to these high levels of noise and a control group not exposed to occupational noise were measured by means of a pure-tone audiometer in amore » specially-built booth. These persons, aged between 20 to 60 years, were divided into four age groups for the study. The low ambient noise levels in the booth were measured using correlation technique since such low signals cannot be detected by an ordinary sound level meter. The audiometric findings and the results of the noise level survey are discussed in this paper.« less
Sethi, Sanjay; Fogarty, Charles; Hanania, Nicola A; Martinez, Fernando J; Rennard, Stephen; Fries, Michael; Orevillo, Chad; Darken, Patrick; St Rose, Earl; Strom, Shannon; Fischer, Tracy; Golden, Michael; Dwivedi, Sarvajna; Reisner, Colin
2016-11-17
Background: Co-Suspension™ Delivery Technology offers a novel pharmaceutical platform for inhaled drug therapy. This randomized, double-blind, placebo-controlled, single-dose study (NCT01349868) evaluated the efficacy of a range of doses for formoterol fumarate (FF) delivered using Co-Suspension delivery technology via a pressurized metered dose inhaler (MDI) versus placebo in patients with moderate-to-severe chronic obstructive pulmonary disease (COPD). Secondary objectives included determination of non-inferior efficacy and systemic exposure compared with open-label Foradil ® 12 μg (Foradil ® Aerolizer ® ; formoterol fumarate dry powder inhaler). Methods: Patients received each of the 6 study treatments (FF MDI [7.2, 9.6 and 19.2μg], placebo MDI and open-label Foradil ® [12 and 24µg]), separated by 3-10 days. Spirometry was performed 60 and 30 minutes prior to and at regular intervals up to 12 hours post-administration of study drug. The primary outcome measure was the change in forced expiratory volume in 1 second (FEV 1 ) area under the curve between 0 and 12 hours (AUC 0-12 ) relative to test day baseline. Results: A total of 50 patients were randomized to study treatment sequences. All doses of FF MDI demonstrated superiority to placebo ( p <0.0001) and non-inferiority to Foradil ® 12μg, on bronchodilator outcome measures. No serious adverse events were reported during the study. Conclusions: This study demonstrates non-inferiority of bronchodilator response and bioequivalent exposure of FF MDI 9.6μg to Foradil ® 12μg, with both agents exhibiting a similar safety profile in patients with moderate-to-severe COPD. This study supports the selection of FF MDI 9.6µg for further evaluation in Phase III trials.
The expanding role of aerosols in systemic drug delivery, gene therapy, and vaccination.
Laube, Beth L
2005-09-01
Aerosolized medications have been used for centuries to treat respiratory diseases. Until recently, inhalation therapy focused primarily on the treatment of asthma and chronic obstructive pulmonary disease, and the pressurized metered-dose inhaler was the delivery device of choice. However, the role of aerosol therapy is clearly expanding beyond that initial focus. This expansion has been driven by the Montreal protocol and the need to eliminate chlorofluorocarbons (CFCs) from traditional metered-dose inhalers, by the need for delivery devices and formulations that can efficiently and reproducibly target the systemic circulation for the delivery of proteins and peptides, and by developments in medicine that have made it possible to consider curing lung diseases with aerosolized gene therapy and preventing epidemics of influenza and measles with aerosolized vaccines. Each of these drivers has contributed to a decade or more of unprecedented research and innovation that has altered how we think about aerosol delivery and has expanded the role of aerosol therapy into the fields of systemic drug delivery, gene therapy, and vaccination. During this decade of innovation, we have witnessed the coming of age of dry powder inhalers, the development of new soft mist inhalers, and improved pressurized metered-dose inhaler delivery as a result of the replacement of CFC propellants with hydrofluoroalkane. The continued expansion of the role of aerosol therapy will probably depend on demonstration of the safety of this route of administration for drugs that have their targets outside the lung and are administered long term (eg, insulin aerosol), on the development of new drugs and drug carriers that can efficiently target hard-to-reach cell populations within the lungs of patients with disease (eg, patients with cystic fibrosis or lung cancer), and on the development of devices that improve aerosol delivery to infants, so that early intervention in disease processes with aerosol therapy has a high probability of success.
Araújo Lima, Alisson Menezes; Cordeiro Hirata, Fabiana de Campos; Sales de Bruin, Gabriela; Salani Mota, Rosa Maria; Bruin, Veralice Meireles Sales de
2012-01-01
The aim of this study is to evaluate the acute effect of playing games on executive function and motor ability in Parkinson's disease (PD). Consecutive cases with PD were studied with the Unified Parkinson Disease Rating Scale (UPDRS), Mini-Mental State examination (MMSE), Beck Depression Inventory (BDI), Stroop test, finger tapping and 14-meter walk test. After randomization, patients performed a game of dominoes and were tested before and after experiment being further categorized as control, winners or non-winners. Forty patients, 27 male (67.5%), aged 48 to 84 years (63.2 ± 8.5), Hoehn & Yahr I to III were included. Twenty-eight (70%) presented depressive symptoms (BDI > 10). Groups (Control N = 13; Winners = 14 and Non-winners = 13) were not different regarding age, disease duration, age at onset, BMI, MMSE scores, depressive symptoms, levodopa dose, and previous practice of games. Winners presented significantly better results on executive function (Stroop test, p = 0.002) and on motor activity (Finger tapping, p = 0.01). Non-winners showed a trend of better performance in the 14-meter-walk test. This study shows that the practice of a non-reward game acutely improved memory and motor skills in PD. Our results suggest a role for the reward system in the modulation of the dopaminergic function of the basal ganglia in these patients.
North Carolina | Midmarket Solar Policies in the United States | Solar
impose standby charges consistent with approved standby rates applicable to other customer-owned utilities without customer compensation. RECs: Utilities owns renewable energy certificates (RECs), unless customer chooses to net meter under a time of use tariff with demand charges. Meter aggregation: Not
Environmental Assessment for Selected Regions in the Mediterranean Sea
1992-01-01
derived from gravity and turbidity flows and include ash layers interbedded with hemipelagic mud. Sedimen- tation rates in these regions are on the order of...CURRENT METERS, ALBORAN I (PISTEK 1984)0& CURRENT METERS, ALBORAN III (PISTEK 1987) A DRIFTING CURRENT METERIS , ALBORAN 11 (PISTEK 1987) 0: CURRENT
Simulation of ground-water discharge to Biscayne Bay, southeastern Florida
Langevin, Christian David
2001-01-01
As part of the Place-Based Studies Program, the U.S. Geological Survey initiated a project in 1996, in cooperation with the U.S. Army Corps of Engineers, to quantify the rates and patterns of submarine ground-water discharge to Biscayne Bay. Project objectives were achieved through field investigations at three sites (Coconut Grove, Deering Estate, and Mowry Canal) along the coastline of Biscayne Bay and through the development and calibration of variable-density, ground-water flow models. Two-dimensional, vertical cross-sectional models were developed for steady-state conditions for the Coconut Grove and Deering Estate transects to quantify local-scale ground-water discharge patterns to Biscayne Bay. A larger regional-scale model was developed in three dimensions to simulate submarine ground-water discharge to the entire bay. The SEAWAT code, which is a combined version of MODFLOW and MT3D, was used to simulate the complex variable-density flow patterns. Field data suggest that ground-water discharge to Biscayne Bay relative to the shoreline is restricted to within 300 meters at Coconut Grove, 600 to 1,000 meters at Deering Estate, and 100 meters at Mowry Canal. The vertical cross-sectional models, which were calibrated to the field data using the assumption of steady state, tend to focus ground-water discharge to within 50 to 200 meters of the shoreline. With homogeneous distributions for aquifer parameters and a constant-concentration boundary for Biscayne Bay, the numerical models could not reproduce the lower ground-water salinities observed beneath the bay, which suggests that further research may be necessary to improve the accuracy of the numerical simulations. Results from the cross-sectional models, which were able to simulate the approximate position of the saltwater interface, suggest that longitudinal dispersivity ranges between 1 and 10 meters, and transverse dispersivity ranges from 0.1 to 1 meter for the Biscayne aquifer. The three-dimensional, regional-scale model was calibrated to ground-water heads, canal baseflow, and the general position of the saltwater interface for nearly a 10-year period from 1989 to 1998. The mean absolute error between observed and simulated head values is 0.15 meter. The mean absolute error between observed and simulated baseflow is 3 x 105 cubic meters per day. The position of the simulated saltwater interface generally matches the position observed in the field, except for areas north of the Miami Canal where the simulated saltwater interface is located about 5 kilometers inland of the observed saltwater interface. Results from the regional-scale model suggest that the average rate of fresh ground-water discharge to Biscayne Bay for the 10-year period (1989-98) is about 2 x 105 cubic meters per day for 100 kilometers of coastline. This simulated discharge rate is about 6 percent of the measured surface-water discharge to Biscayne Bay for the same period. The model also suggests that nearly 100 percent of the fresh ground-water discharge is to the northern half of Biscayne Bay, north of the Cutler Drain Canal. South of the Cutler Drain Canal, coastal lowlands prevent the water table from rising high enough to drive measurable quantities of ground water to Biscayne Bay. Annual variations in sea-level elevation, which can be as large as 0.3 meter, have a substantial effect on rates of ground-water discharge. During 1989-98, simulated rates of ground-water discharge to Biscayne Bay generally are highest when sea level is relatively low.
Shore erosion as a sediment source to the tidal Potomac River, Maryland and Virginia
Miller, Andrew J.
1987-01-01
The shoreline of the tidal Potomac River attained its present form as a result of the Holocene episode of sea-level rise; the drowned margins of the system are modified by wave activity in the shore zone and by slope processes on banks steepened by basal-wave erosion. Shore erosion leaves residual sand and gravel in shallow water and transports silt and clay offshore to form a measurable component of the suspended-sediment load of the tidal Potomac River. Erosion rates were measured by comparing digitized historical shoreline maps and modern maps, and by comparing stereopairs of aerial photographs taken at different points in time, with the aid of an interactive computer-graphics system and a digitizing stereoplotter. Cartographic comparisons encompassed 90 percent of the study reach and spanned periods of 38 to 109 years, with most measurements spanning at least 84 years. Photogrammetric comparisons encompassed 49 percent of the study reach and spanned 16 to 40 years. Field monitoring of erosion rates and processes at two sites, Swan Point Neck, Maryland, and Mason Neck, Virginia, spanned periods of 10 to 18 months. Estimated average recession rates of shoreline in the estuary, based on cartographic and photogrammetric measurements, were 0.42 to 0.52 meter per annum (Virginia shore) and 0.31 to 0.41 meter per annum (Maryland shore). Average recession rates of shoreline in the tidal river and transition zone were close to 0.15 meter per annum. Estimated average volume-erosion rates along the estuary were 1.20 to 1.87 cubic meters per meter of shoreline per annum (Virginia shore) and 0.56 to 0.73 cubic meter per meter of shoreline per annum (Maryland shore); estimated average volume-erosion rates along the shores of the tidal river and transition zone were 0.55 to 0.74 cubic meter per meter of shoreline per annum. Estimated total sediment contributed to the tidal Potomac River by shore erosion was 0.375 x 10 6 to 0.565 x 10 6 metric tons per annum; of this, the estimated amount of silt and clay ranged from 0.153x10 6 to 0.226x10 6 metric tons per annum. Between 49 and 60 percent of the sediment was derived from the Virginia shore of the estuary; 14 to 18 percent was derived from the Maryland shore of the estuary; and 23 to 36 percent was derived from the shores of the tidal river and transition zone. The adjusted modern estimate of sediment eroded from the shoreline of the estuary is about 55 percent of the historical estimate. Sediment eroded from the shoreline accounted for about 6 to 9 percent of the estimated total suspended load for the tidal Potomac River during water years 1979 through 1981 and for about 11 to 18 percent of the suspended load delivered to the estuary during the same period. Annual suspended-sediment loads derived from upland source areas fluctuated by about an order of magnitude during the 3 years of record (1979-81); shore erosion may have been a more important component of the sediment budget during periods of low flow than during periods of higher discharges. Prior to massive land clearance during the historical period of intensive agriculture in the 18th and 19th centuries, annual sediment loads from upland sources probably were smaller than they are at present; under these circumstances shore erosion would have been an important component of the sediment budget. At current rates of sediment supply, relative sea-level rise, and shoreline recession, the landward parts of the tidal Potomac River are rapidly being filled by sediment. If these rates were to remain constant over time, and no sediment were to escape into Chesapeake Bay, the tidal river and transition zone would be filled within 600 years, and the total system would be filled in less than 4,000 years. Given a slower rate of sediment supply, comparable to the measured rate during the low-flow 1981 water year, the volume of the tidal Potomac River might remain relatively stable or even increase over time. Changes in rates
Sedimentation Survey of Lago Toa Vaca, Puerto Rico, June-July 2002
Soler-López, Luis R.
2004-01-01
The Lago Toa Vaca dam is located in the municipality of Villalba in southern Puerto Rico, and is owned and operated by the Puerto Rico Aqueduct and Sewer Authority. Construction was completed in 1972 as the first phase of a multi-purpose project that contemplated four possible diversions from other basins to mitigate the rapid storage capacity loss of Lago Guayabal, located immediately downstream of the Toa Vaca dam. The latter phases of the intra-basin diversions were cancelled, and currently, the reservoir receives runoff from only 56.8 square kilometers of its drainage area. Lago Toa Vaca reservoir when constructed was to be used for irrigation of croplands in the southern coastal plain. The reservoir had an original storage capacity of 68.94 million cubic meters. Sedimentation has reduced the storage capacity by only 7 percent between 1972 and 2002 to 64.08 million cubic meters. This represents a long-term sedimentation rate of about 162,000 cubic meters per year. Based on the 2002 sedimentation survey, Lago Toa Vaca has a sediment trapping efficiency of about 98 percent and a drainage area-normalized sedimentation rate of about 3,086 cubic meters per square kilometer per year between 1972 and 2002. At the current long-term sedimentation rate the reservoir would lose its storage capacity by the year 2400.
NASA Astrophysics Data System (ADS)
Fang, Min; Xu, Ke-Jun; Zhu, Wen-Jiao; Shen, Zi-Wen
2016-01-01
Most of the ultrasonic gas flow-meters measure the gas flow rate by calculating the ultrasonic transmission time difference between the downstream and upstream. Ultrasonic energy attenuation occurs in the processes of the ultrasonic generation, conversion, transmission, and reception. Additionally, at the same time, the gas flow will also affect the ultrasonic propagation during the measurement, which results in the ultrasonic energy attenuation and the offset of ultrasonic propagation path. Thus, the ultrasonic energy received by the transducer is weaker. When the gas flow rate increases, this effect becomes more apparent. It leads to the measurement accuracy reduced, and the measurement range narrowed. An energy transfer model, where the ultrasonic gas flow-meter under without/with the gas flow, is established by adopting the statistical analysis and curve fitting based on a large amount of experimental data. The static sub model without the gas flow expresses the energy conversion efficiency of ultrasonic gas transducers, and the dynamic sub model with the gas flow reflects the energy attenuation pattern following the flow rate variations. The mathematical model can be used to determine the minimum energy of the excitation signal for meeting the requirement of specific measurement range, and predict the maximum measurable flow rate in the case of fixed energy of excitation signal. Based on the above studies, a method to enhance the excitation signal energy is proposed under the output power of the transmitting circuit being a finite value so as to extend the measurement rage of ultrasonic gas flow-meter.
Primary flow meter for calibrating a sniffer test leak artefact by a pressure rise method
NASA Astrophysics Data System (ADS)
Arai, Kenta; Yoshida, Hajime
2014-10-01
Sniffer tests are used to locate leaks in equipment during operation. The sensitivity of a sniffer leak detector must be calibrated against a known gas flow to atmospheric pressure generated by a sniffer test leak artefact. We have developed a primary flow meter for calibrating gas flows to atmospheric pressure through the leak artefact. The flow meter is based on a pressure rise method and two chambers are used to measure the pressure rise with small uncertainty even at atmospheric pressure. The calibration range of the flow rate is 5 × 10-7 Pa m3 s-1 to 7 × 10-4 Pa m3 s-1 to atmospheric pressure at 23.0 °C with a minimum uncertainty of 1.4% (k = 2), as well as 4 × 10-8 Pa m3 s-1 to 5 × 10-4 Pa m3 s-1 to a vacuum at 23.0 °C. The long term stability of the flow meter was determined as 0.41% by repeated measurements of the conductance of the leak artefact. In case of the flow rate into a vacuum, the flow meter was successfully linked to the international reference value of CCM.P-K12 by a lab-internal comparison.
Field Evaluation of Seepage Meters in the Coastal Marine Environment
NASA Astrophysics Data System (ADS)
Cable, J. E.; Burnett, W. C.; Chanton, J. P.; Corbett, D. R.; Cable, P. H.
1997-09-01
The response of seepage meters was evaluated in a nearshore marine environment where water motion effects are more pronounced than in lake settings, where these meters have been used traditionally. Temporal and spatial variations of seepage, as well as potential artifacts, were evaluated using empty and 1000-ml pre-filled bag measurements. Time-series measurements confirmed earlier observations that anomalously high fluxes occur during the early stages (≤10 min) of collection. As deployment times increased (30-60 min), measured flow rates stabilized at a level thought to represent the actual seepage flux. Pre-filling the plastic measurement bags effectively alleviated this anomalous, short-term influx. Reliable seepage measurements required deployment times sufficient to allow a net volume of at least 150 ml into the collection bag. Control experiments, designed by placing seepage meters inside sand-filled plastic swimming pools, served as indicators of external effects on these measurements, i.e. they served as seepage meter blanks. When winds were under 15 knots, little evidence was found that water motion caused artifacts in the seepage measurements. Tidal cycle influences on seepage rates were negligible in the present study area, but long-term temporal variations (weeks to months) proved substantial. Observed long-term changes in groundwater flux into the Gulf of Mexico correlated with water table elevation at a nearby monitoring well.
Sedimentation survey of Lago Loco, Puerto Rico, March 2000
Soler-López, Luis R.
2002-01-01
Lago Loco, a small reservoir property of the Puerto Rico Electric Power Authority and part of the Southwestern Puerto Rico Project, has lost 64 percent of its original storage capacity. In 1951, the original storage capacity was about 2.40 million cubic meters, decreasing to 1.43 million cubic meters in 1986 and to 0.87 million cubic meters in March 2000. The storage loss or longterm sedimentation rate increased from 27,714 cubic meters per year from the period of 1951 to 1986 to 31,224 cubic meters per year for the period of 1951 to 2000. This represents a capacity loss of about 1.1 percent per year for the period of 1951 to 1986 and 1.3 percent per year for 1951 to 2000. The trapping efficiency of the reservoir was about 92 percent in 1951, decreasing to about 87 percent in 1986, and to about 80 percent in March 2000. The sediment yield of the net sediment- contributing drainage area increased from 1,504 megagrams per square kilometer per year between 1951 and 1986 to 1,774 megagrams per square kilometer per year between 1951 and 2000, or about 18 percent. At the current sedimentation rate of the reservoir, the life expectancy of Lago Loco is about 28 more years or until the year 2028.
Effect of heavy back squats on repeated sprint performance in trained men.
Duncan, M J; Thurgood, G; Oxford, S W
2014-04-01
This study examined the impact of post activation potentiation on repeated sprint performance in trained Rugby Union players. Ten, male, professional Rugby Union players (mean age=25.2±5.02 years) performed 7, 30-meter sprints, separated by 25 seconds, 4 minutes following back squats (90% 1 repetition maximum) or a control condition performed in a counterbalanced order. Significant condition X sprint interactions for 10-meter (P=0.02) and 30-meter (P=0.05) indicated that times were significantly faster in the PAP condition for sprints 5, 6 and 7 across both distances. Fatigue rate was also significantly lower in the PAP condition for 10-meter (P=0.023) and 30-meter (P=0.006) sprint running speed. This study evidences that a heavy resistance exercise stimulus administered four minutes prior to repeated sprints can offset the decline in sprint performance seen during subsequent maximal sprinting over 10 and 30-meters in Rugby Union players.
Remote semi-continuous flow rate logging seepage meter
NASA Technical Reports Server (NTRS)
Reay, William G.; Walthall, Harry G.
1991-01-01
The movement of groundwater and its associated solutes from upland regions was implicated in the degradation of receiving surface water bodies. Current efforts to directly measure this influx of water incorporate manually operated seepage meters which are hindered by severe limitations. A prototype seepage meter was developed by NASA Langley Research Center and Virginia Polytechnic Institute and State University that will allow for the semi-continuous collection and data logging of seepage flux across the sediment water interface. The meter is designed to operate at depths to 40 meters, and alleviate or minimize all disadvantages associated with traditional methods while remaining cost effective. The unit was designed to operate independently for time periods on the order of weeks with adjustable sample sequences depending upon hydrologic conditions. When used in conjunction with commercially available pressure transducers, this seepage meter allows for correlations to be made between groundwater discharge and tidal/sea state conditions in coastal areas. Field data from the Chesapeake Bay and Florida Bay systems are presented.
Evaluation of In Vitro and In Vivo Flow Rate Dependency of Budesonide/Formoterol Easyhaler®
Malmberg, L. Pekka; Everard, Mark L.; Haikarainen, Jussi
2014-01-01
Abstract Background: The Easyhaler® (EH) device-metered dry powder inhaler containing budesonide and formoterol is being developed for asthma and chronic obstructive pulmonary disease (COPD). As a part of product optimization, a series of in vitro and in vivo studies on flow rate dependency were carried out. Methods: Inspiratory flow parameters via EH and Symbicort® Turbuhaler® (TH) inhalers were evaluated in 187 patients with asthma and COPD. The 10th, 50th, and 90th percentile flow rates achieved by patients were utilized to study in vitro flow rate dependency of budesonide/formoterol EH and Symbicort TH. In addition, an exploratory pharmacokinetic study on pulmonary deposition of active substances for budesonide/formoterol EH in healthy volunteers was performed. Results: Mean inspiratory flow rates through EH were 64 and 56 L/min in asthmatics and COPD patients, and through TH 79 and 72 L/min, respectively. Children with asthma had marginally lower PIF values than the adults. The inspiratory volumes were similar in all groups between the inhalers. Using weighted 10th, 50th, and 90th percentile flows the in vitro delivered doses (DDs) and fine particle doses (FPDs) for EH were rather independent of flow as 98% of the median flow DDs and 89%–93% of FPDs were delivered already at 10th percentile air flow. Using±15% limits, EH and TH had similar flow rate dependency profiles between 10th and 90th percentile flows. The pharmacokinetic study with budesonide/formoterol EH in healthy subjects (n=16) revealed a trend for a flow-dependent increase in lung deposition for both budesonide and formoterol. Conclusions: Comparable in vitro flow rate dependency between budesonide/formoterol EH and Symbicort TH was found using the range of clinically relevant flow rates. The results of the pharmacokinetic study were in accordance with the in vitro results showing only a trend of flow rate-dependant increase in lung deposition of active substances with EH. PMID:24978441
Energy Harvesting from Fluid Flow in Water Pipelines for Smart Metering Applications
NASA Astrophysics Data System (ADS)
Hoffmann, D.; Willmann, A.; Göpfert, R.; Becker, P.; Folkmer, B.; Manoli, Y.
2013-12-01
In this paper a rotational, radial-flux energy harvester incorporating a three-phase generation principle is presented for converting energy from water flow in domestic water pipelines. The energy harvester together with a power management circuit and energy storage is used to power a smart metering system installed underground making it independent from external power supplies or depleting batteries. The design of the radial-flux energy harvester is adapted to the housing of a conventional mechanical water flow meter enabling the use of standard components such as housing and impeller. The energy harvester is able to generate up to 720 mW when using a flow rate of 20 l/min (fully opened water tab). A minimum flow rate of 3 l/min is required to get the harvester started. In this case a power output of 2 mW is achievable. By further design optimization of the mechanical structure including the impeller and magnetic circuit the threshold flow rate can be further reduced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feimster, E.L.
An aerial radiological survey was performed from 24 July through 1 August 1980 over a 244-square-kilometer (95-square-mile) area centered on the Salem Nuclear Generating Station near Salem, New Jersey. All gamma ray data were collected by flying lines oriented north-south and spaced 152 meters (500 feet) apart, at an altitude of 91 meters (300 feet) above the ground. Processed data showed that all gamma rays detected within the survey area were those expected from naturally occurring terrestrial background emitters except directly over the site, where spectral analysis revealed the presence of /sup 60/Co. Count rates obtained from the aerial platformmore » were converted to exposure rates at 1 meter above the ground and are presented in the form of an exposure rate contour map. The resulting exposure rates varied between 5 and 55 microroentgens per hour (..mu..R/h). The river-shore areas ranged from 5 to 7 ..mu..R/h, inland areas showed 7 to 12 ..mu..R/h, and the site had a maximum exposure rate of 55 ..mu..R/h. These values include an estimated cosmic ray contribution of 4 ..mu..R/h. The exposure rates obtained from soil samples taken within the survey area displayed good agreement with the aerial data.« less
Ayres, J G; Frost, C D; Holmes, W F; Williams, D R R; Ward, S M
1998-01-01
Objective To evaluate the safety of a non-chlorofluorocarbon metered dose salbutamol inhaler. Design This was a postmarketing surveillance study, conducted under formal guidelines for company sponsored safety assessment of marketed medicines (SAMM). A non-randomised, non-interventional, observational design compared patients prescribed metered doses of salbutamol delivered by inhalers using either hydrofluoroalkane or chlorofluorocarbon as the propellant. Follow up was three months. Setting 646 general practices throughout the United Kingdom. Subjects 6614 patients with obstructive airways disease (1667 patient years of exposure). Main outcome measures Proportions of patients who were: admitted to hospital for respiratory diseases, reported adverse side effects, or withdrew because of adverse affects. Results There were no significant differences between the hydrofluoroalkane (HFA 134a) and chlorofluorocarbon inhaler groups in relation to the proportions of patients admitted to hospital for respiratory diseases (odds ratio 0.75; 95% confidence interval 0.51 to 1.08) or the proportions who reported adverse events (1.01; 0.88 to 1.17). However, more patients using the hydrofluoroalkane inhaler than the chlorofluorocarbon inhaler withdrew because of adverse events (3.8% and 0.9% respectively). Conclusion The hydrofluoroalkane inhaler was as safe as the chlorofluorocarbon inhaler when judged by hospital admissions and adverse affects. The study design successfully fulfilled the recommendations of the guidelines. Differences between postmarketing surveillance studies and randomised clinical trials in assessing safety were identified. These may lead to difficulties in the design of postmarketing surveillance studies. Key messagesCredibility of postmarketing surveillance studies is expected to increase after the introduction of guidelines covering their conduct The study design successfully fulfilled the requirements of these guidelines in terms of the number, rate, and geographical spread of patients recruitedSafety of salbutamol inhalers using hydrofluoroalkane and chlorofluorocarbon as propellants is similarImportant differences in study design/conduct and outcome between a postmarketing surveillance study and a randomised clinical trial merit further consideration. PMID:9756813
Janoudi, Abdul; Poff, Kenneth L.
1990-01-01
The relationship between the amount of light and the amount of response for any photobiological process can be based on the number of incident quanta per unit time (fluence rate-response) or on the number of incident quanta during a given period of irradiation (fluence-response). Fluence-response and fluence rate-response relationships have been measured for second positive phototropism by seedlings of Arabidopsis thaliana. The fluence-response relationships exhibit a single limiting threshold at about 0.01 micromole per square meter when measured at fluence rates from 2.4 × 10−5 to 6.5 × 10−3 micromoles per square meter per second. The threshold values in the fluence rateresponse curves decrease with increasing time of irradiation, but show a common fluence threshold at about 0.01 micromole per square meter. These thresholds are the same as the threshold of about 0.01 micromole per square meter measured for first positive phototropism. Based on these data, it is suggested that second positive curvature has a threshold in time of about 10 minutes. Moreover, if the times of irradiation exceed the time threshold, there is a single limiting fluence threshold at about 0.01 micromole per square meter. Thus, the limiting fluence threshold for second positive phototropism is the same as the fluence threshold for first positive phototropism. Based on these data, we suggest that this common fluence threshold for first positive and second positive phototropism is set by a single photoreceptor pigment system. PMID:11537470
Estimating pumping time and ground-water withdrawals using energy- consumption data
Hurr, R.T.; Litke, D.W.
1989-01-01
Evaluation of the hydrology of an aquifer requires knowledge about the volume of groundwater in storage and also about the volume of groundwater withdrawals. Totalizer flow meters may be installed at pumping plants to measure withdrawals; however, it generally is impractical to equip all pumping plants in an area with meters. A viable alternative is the use of rate-time methods. Rate-time methods may be used at individual pumping plants to decrease the data collection necessary for determining withdrawals. At sites where pumping-time measurement devices are not installed, pumping time may be determined on the basis of energy consumption and power demand. At pumping plants where energy consumption is metered, data acquired by reading of meters is used to estimate pumping time. Care needs to be taken to read these meters correctly. At pumping plants powered by electricity, the calculations need to be modified if transformers are present. At pumping plants powered by natural gas, the effects of the pressure-correction factor need to be included in the calculations. At pumping plants powered by gasoline, diesel oil, or liquid petroleum gas, the geometry of storage tanks needs to be analyzed as part of the calculations. The relation between power demand and pumping rate at a pumping plant can be described through the use of the power-consumption coefficient. Where equipment and hydrologic conditions are stable, this coefficient can be applied to total energy consumption at a site to estimate total groundwater withdrawals. Random sampling of power consumption coefficients can be used to estimate area-wide groundwater withdrawal. (USGS)
NASA Technical Reports Server (NTRS)
Marcin, Martin; Abramovici, Alexander
2008-01-01
The software of a commercially available digital radio receiver has been modified to make the receiver function as a two-channel low-noise phase meter. This phase meter is a prototype in the continuing development of a phase meter for a system in which radiofrequency (RF) signals in the two channels would be outputs of a spaceborne heterodyne laser interferometer for detecting gravitational waves. The frequencies of the signals could include a common Doppler-shift component of as much as 15 MHz. The phase meter is required to measure the relative phases of the signals in the two channels at a sampling rate of 10 Hz at a root power spectral density <5 microcycle/(Hz)1/2 and to be capable of determining the power spectral density of the phase difference over the frequency range from 1 mHz to 1 Hz. Such a phase meter could also be used on Earth to perform similar measurements in laser metrology of moving bodies. To illustrate part of the principle of operation of the phase meter, the figure includes a simplified block diagram of a basic singlechannel digital receiver. The input RF signal is first fed to the input terminal of an analog-to-digital converter (ADC). To prevent aliasing errors in the ADC, the sampling rate must be at least twice the input signal frequency. The sampling rate of the ADC is governed by a sampling clock, which also drives a digital local oscillator (DLO), which is a direct digital frequency synthesizer. The DLO produces samples of sine and cosine signals at a programmed tuning frequency. The sine and cosine samples are mixed with (that is, multiplied by) the samples from the ADC, then low-pass filtered to obtain in-phase (I) and quadrature (Q) signal components. A digital signal processor (DSP) computes the ratio between the Q and I components, computes the phase of the RF signal (relative to that of the DLO signal) as the arctangent of this ratio, and then averages successive such phase values over a time interval specified by the user.
Wahlen, M; Kunz, C O; Matuszek, J M; Mahoney, W E; Thompson, R C
1980-02-08
The transit of an air mass containing radioactive gas released from the Three Mile Island reactor was recorded in Albany, New York, by measuring xenon-133. These measurements provide an evaluation of Three Mile Island effluents to distances greater than 100 kilometers. Two independent techniques identified xenon-133 in ambient air at concentrations as high as 3900 picocuries per cubic meter. The local gamma-ray whole-body dose from the passing radioactivity amounted to 0.004 millirem, or 0.004 percent of the annual dose from natural sources.
McFarland, Andrew R.; Rodgers, John C.; Ortiz, Carlos A.; Nelson, David C.
1994-01-01
Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.
Gonad dose in AP pelvis radiography: Impact of anode heel orientation.
Mraity, H A A B; England, A; Hogg, P
2017-02-01
For antero posterior (AP) pelvis radiographic examination, determine the impact of anode heel orientation on female/male gonad dose. High sensitivity thermo-luminescent dosimeters (TLDs) were used with an ATOM dosimetry phantom; the phantom was positioned for AP pelvis. TLDs were placed into the testes and ovaries. Radiation dose received by these organs was measured with the feet toward anode and feet toward the cathode. kVp, mAs and SID were manipulated to generate a range of exposures. A dose profile was also generated using Unfors Mult-O-Meter 401 along the long axis of the phantom. A decrease in dose from the central ray toward the anode was noted, with a marked increase toward the cathode. A significant reduction in dose was received by the testes with feet towards the anode compared with feet towards cathode (P˂0.001). No difference was seen for ovarian dose (P˃0.05). kVp, mAs and SID all have an effect on male and female gonad dose. For male pelvis imaging, placing feet towards the anode can be used as a simple dose reduction method. Copyright © 2016 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.
Comparison of TID Effects in Space-Like Variable Dose Rates and Constant Dose Rates
NASA Technical Reports Server (NTRS)
Harris, Richard D.; McClure, Steven S.; Rax, Bernard G.; Evans, Robin W.; Jun, Insoo
2008-01-01
The degradation of the LM193 dual voltage comparator has been studied at different TID dose rate profiles, including several different constant dose rates and a variable dose rate that simulates the behavior of a solar flare. A comparison of results following constant dose rate vs. variable dose rates is made to explore how well the constant dose rates used for typical part testing predict the performance during a simulated space-like mission. Testing at a constant dose rate equal to the lowest dose rate seen during the simulated flare provides an extremely conservative estimate of the overall amount of degradation. A constant dose rate equal to the average dose rate is also more conservative than the variable rate. It appears that, for this part, weighting the dose rates by the amount of total dose received at each rate (rather than the amount of time at each dose rate) results in an average rate that produces an amount of degradation that is a reasonable approximation to that received by the variable rate.
NASA Astrophysics Data System (ADS)
Babkina, Elena; Khomutov, Artem; Leibman, Marina; Dvornikov, Yury; Kizyakov, Alexander; Babkin, Evgeny
2017-04-01
Gas-emission craters (GECs) found in the North of West Siberia in 2014 occur in an area of wide tabular ground ice (TGI) distribution. TGI observed in the GEC walls also provokes thermal denudation: a complex of processes responsible for formation of thermocirques (TCs). TCs are semi-circle shaped depressions resulting from TGI thaw and removal of detached material downslope. Shores of many lakes are terraced and have ancient to recent traces of thermal denudation activity. TCs are numerous in the GEC area giving reason to assume that GEC, TGI, TC, and lakes are interrelated. First found Yamal crater (GEC-1) expanded from initial 18 m wide deep hole in 2013 to an irregularly-shaped lake up to 85 meters wide in 2016. Expansion of the GEC was controlled by TGI thaw. This can be considered in terms of thermal denudation and analyzed on the basis of TC study in the adjacent area. In summer 2014 and 2015 (the lifetime of the GEC-1) its wall retreat covered the area of 1730 square meters, which gives 865 square meters per year. In 2016, which was the warmest for the period of observation at weather station Marre-Sale, retreat area increased to 2200 square meters per year. TC, which exposed TGI similar to that in the walls of GEC-1, is observed on the nearest lakeshore. TC activation probably started in 2012 as elsewhere on Yamal. In 2015 its area according to GPS survey reached 4400 square meters (a four-year average 1100 square meters). Since September 2015 and till October 2016 its area expanded by 2600 square meters, thus increased by 59%, and more than twice compared to previous annual average. Lake adjacent to GEC-1 in 2016 was separated from crater edge by only a 13 meter wide isthmus, most likely both GEC-1 lake and adjacent lake merge in few years. Therefore, single basis of erosion for thermal denudation appear. After lakes merge, it would become hard to determine what the initial process for the lake formation was if not for the occasional discovery of the GEC-1. Thus, the rate of thermal denudation measured as area expansion: (a) inside the GEC was between 865 square meters per year in 2014-2015, and 2200 square meters in 2016, (b) on the adjacent lakeshore thermal denudation expanded by 1100 square meters per year in 2012-2015 and was as high as 2600 square meters in 2016. In both landforms higher rates were observed in the warmest 2016 and were rather similar. Lower rate for the GEC-1 at its initial stage is due to it steep slopes and narrow hole with little sunshine reaching lower parts of the hole. Adjacent lake providing basis of erosion for both features expands towards the GEC-1 lake and outside into tundra by thermal denudation activity and determines formation of a new feature: merged lake with components having different origin. This research is supported by Russian Science Foundation Grant 16-17-10203.
AGE Bio Diesel Emissions Evaluation
2003-12-01
329 44 788 Vratd) Standard Meter Volume, m° 1.336 1.214 1.255 1,268 am Average Sampling Rate, dscfm 0786 0 714 0 739 0 746 P, Stack Pressure, inches...sat) Moisture (at saturation), % by volume 70864 248 8 36676 V.d Standard Water Vapor Volume, ft’ 2.198 1 624 1 911 1-B• Dry Mole Fraction 0 941 0946...Clock Meter Dry Gas Sample Time, Volume, Rotameter Meter Temp., Vacuum, Probe Time (min) (24-hr) (liter) Setting (OF) (in.Hg) jTpr, OF /o5 f / 52 / 6 14V_
Performance of Thermal Mass Flow Meters in a Variable Gravitational Environment
NASA Technical Reports Server (NTRS)
Brooker, John E.; Ruff, Gary A.
2004-01-01
The performance of five thermal mass flow meters, MKS Instruments 179A and 258C, Unit Instruments UFM-8100, Sierra Instruments 830L, and Hastings Instruments HFM-200, were tested on the KC-135 Reduced Gravity Aircraft in orthogonal, coparallel, and counterparallel orientations relative to gravity. Data was taken throughout the parabolic trajectory where the g-level varied from 0.01 to 1.8 times normal gravity. Each meter was calibrated in normal gravity in the orthogonal position prior to flight followed by ground testing at seven different flow conditions to establish a baseline operation. During the tests, the actual flow rate was measured independently using choked-flow orifices. Gravitational acceleration and attitude had a unique effect on the performance of each meter. All meters operated within acceptable limits at all gravity levels in the calibrated orthogonal position. However, when operated in other orientations, the deviations from the reference flow became substantial for several of the flow meters. Data analysis indicated that the greatest source of error was the effect of orientation, followed by the gravity level. This work emphasized that when operating thermal flow meters in a variable gravity environment, it is critical to orient the meter in the same direction relative to gravity in which it was calibrated. Unfortunately, there was no test in normal gravity that could predict the performance of a meter in reduced gravity. When operating in reduced gravity, all meters indicated within 5 percent of the full scale reading at all flow conditions and orientations.
Solid state recording current meter conversion
Cheng, Ralph T.; Wang, Lichen
1985-01-01
The authors describe the conversion of an Endeco-174 current meter to a solid-state recording current meter. A removable solid-state module was designed to fit in the space originally occupied by an 8-track tape cartridge. The module contains a CPU and 128 kilobytes of nonvolatile CMOS memory. The solid-state module communicates with any terminal or computer using an RS-232C interface at 4800 baud rate. A primary consideration for conversion was to keep modifications of the current meter to a minimum. The communication protocol was designed to emulate the Endeco tape translation unit, thus the need for a translation unit was eliminated and the original data reduction programs can be used without any modification. After conversion, the data recording section of the current meter contains no moving parts; the storage capacity of the module is equivalent to that of the original tape cartridge.
Fairfax, A J; Rehahn, M; Jones, D; O'Malley, B
1984-01-01
The time course of changes in plasma cyclic AMP, heart rate and bronchial tone after inhalation of fenoterol or isoprenaline from a dose-metered aerosol are reported in a group of normal subjects. After isoprenaline, plasma cyclic AMP increased rapidly reaching a peak by 10 min and returned to basal levels within 60 min. A rapid, transient rise in heart rate occurred that was maximal by 5 min and returned to a basal level by 45 min. After fenoterol, the changes in cyclic AMP and heart rate were of much longer duration. The rise in plasma cyclic AMP was slower in onset and of greater magnitude than for isoprenaline, reaching a peak by 20 min and remaining above basal level for more than 6 h. The maximum increase in heart rate after fenoterol was less than that observed with isoprenaline but an elevated rate persisted for 4 h after inhalation of fenoterol. Fenoterol is known to have a longer duration of action as a bronchodilator in comparison with isoprenaline. The prolonged rise in plasma cyclic AMP in normal subjects given inhaled fenoterol may reflect this long duration of action. The concomitant rise in heart rate, however, suggests that the duration of plasma cyclic AMP response may in part be due to the systemic effect of the fraction of inhaled fenoterol known to be absorbed via the buccal and intestinal routes. PMID:6322828
NASA Astrophysics Data System (ADS)
Hamdollahi, Hassan; Rahbar-Shahrouzi, Javad
2018-05-01
In this paper, a cantilever-type flow meter was fabricated to measure the rate of air flow in turbulent subsonic regimes such as purged gases. In the fabrication process, a piezoresistive material was coated on an interdigitated electric board as a substrate. The piezoresistive layer was a blend of latex as the polymeric matrix and graphene oxide as the sensing nanomaterial agent, which was reduced by solvothermal reduction method. The piezoresistive blend was dip-coated on a substrate with dotted pattern and was then reduced at 240 °C for 1 h in every coating step. When an air flow passed over the surface of the cantilever beam, the beam was bent in the downward direction, resulting in small variations in the resistance of the piezoresistive layer and a change in the bending angle of the cantilever which were measured simultaneously. The air flow rate was acquired via calibrating electrical resistance changes by Arduino and Wheatstone bridge circuit. The blending angle of the substrate caused by the interaction between the airflow and the cantilever and recorded by the camera and image processing was ultimately compared with the simulation results. The flow meter accuracy as a percentage of full scale (% FS) was calculated to be ±5.8%, and mean deviation was equal to 2.1 (% FS) with the appropriate response time of 0.70 s at the air flow range of 100‑240 m s‑1. Highlights • A cantilever-type flow meter was fabricated to measure the high-speed air flow rate. • The sensitive piezoresistive material was composed of GO and latex. • The dip-coating method was used to deposit the piezoresistive layer on the fiberglass substrate. • The impact of effective parameters on the performance of the flow meter was investigated. • A simulation study was performed and the results were compared with the experimental data.
46 CFR 34.20-5 - Quantity of foam required-T/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... to give primary protection to the spaces over the cargo tanks. (b) Rate of application. The water... liters/min per square meter of cargo tanks deck area, where cargo tanks deck area means the maximum.../min per square meter of the horizontal sectional area of the single tank having the largest such area...
Liquid-Spray Formulation Of Scopolamine
NASA Technical Reports Server (NTRS)
Putcha, Lakshmi; Cintron, Nitza M.
1992-01-01
Scopolamine, fast-acting anticholinergic drug, formulated into drops administered intranasally. Formulation very useful for people who need immediate relief from motion sickness, and they can administer it to themselves. Also used in other clinical situations in which fast-acting anticholinergic medication required. Modified into such other forms as gel preparation, aqueous-base ointment, or aerosol spray or mist; also dispensed in metered-dose delivery system.
Qureshi, Muhammad R A; Alfadhl, Yasir; Chen, Xiaodong; Peyman, Azadeh; Maslanyj, Myron; Mann, Simon
2018-04-01
Human body exposure to radiofrequency electromagnetic waves emitted from smart meters was assessed using various exposure configurations. Specific energy absorption rate distributions were determined using three anatomically realistic human models. Each model was assigned with age- and frequency-dependent dielectric properties representing a collection of age groups. Generalized exposure conditions involving standing and sleeping postures were assessed for a home area network operating at 868 and 2,450 MHz. The smart meter antenna was fed with 1 W power input which is an overestimation of what real devices typically emit (15 mW max limit). The highest observed whole body specific energy absorption rate value was 1.87 mW kg -1 , within the child model at a distance of 15 cm from a 2,450 MHz device. The higher values were attributed to differences in dimension and dielectric properties within the model. Specific absorption rate (SAR) values were also estimated based on power density levels derived from electric field strength measurements made at various distances from smart meter devices. All the calculated SAR values were found to be very small in comparison to International Commission on Non-Ionizing Radiation Protection limits for public exposure. Bioelectromagnetics. 39:200-216, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Ninbovorl, Jenjira; Sawatdee, Somchai; Srichana, Teerapol
2013-12-01
The aim of the study was to investigate the factors affecting the stability and performance of ipratropium bromide and fenoterol hydrobromide in a pressurized-metered dose inhaler (pMDI). A factorial design was applied to investigate the effects of three parameters (propellant, water, and ethanol) on the performance of 27 designed formulations of a solution-based pMDI. The formulations that contained a hydrofluoroalkane (HFA) propellant lower than 72% v/v and an ethanol concentration higher than 27% v/v remained as clear solutions. Nine formulations that contained the HFA propellant higher than 74% v/v precipitated. The results indicated that it was not only the HFA propellant content of the formulations that was related to the formulation instability but also ethanol content. Only six formulations from the 18 formulations, that did not precipitate, produced drug contents that were within the acceptable range (80-120%). These six formulations generated aerosols with mass median aerodynamic diameters (MMAD) of approximately 2 μm with a fine particle fraction (FPF; particle size, <6.4 μm) between 45% and 52%. The MMAD and FPF did not change significantly after 6 months of storage (P > 0.05).
Development of an Aerosol Surface Inoculation Method for Bacillus Spores ▿
Lee, Sang Don; Ryan, Shawn P.; Snyder, Emily Gibb
2011-01-01
A method was developed to deposit Bacillus subtilis spores via aerosolization onto various surface materials for biological agent decontamination and detection studies. This new method uses an apparatus coupled with a metered dose inhaler to reproducibly deposit spores onto various surfaces. A metered dose inhaler was loaded with Bacillus subtilis spores, a surrogate for Bacillus anthracis. Five different material surfaces (aluminum, galvanized steel, wood, carpet, and painted wallboard paper) were tested using this spore deposition method. This aerosolization method deposited spores at a concentration of more than 107 CFU per coupon (18-mm diameter) with less than a 50% coefficient of variation, showing that the aerosolization method developed in this study can deposit reproducible numbers of spores onto various surface coupons. Scanning electron microscopy was used to probe the spore deposition patterns on test coupons. The deposition patterns observed following aerosol impaction were compared to those of liquid inoculation. A physical difference in the spore deposition patterns was observed to result from the two different methods. The spore deposition method developed in this study will help prepare spore coupons via aerosolization fast and reproducibly for bench top decontamination and detection studies. PMID:21193670
Development of an aerosol surface inoculation method for bacillus spores.
Lee, Sang Don; Ryan, Shawn P; Snyder, Emily Gibb
2011-03-01
A method was developed to deposit Bacillus subtilis spores via aerosolization onto various surface materials for biological agent decontamination and detection studies. This new method uses an apparatus coupled with a metered dose inhaler to reproducibly deposit spores onto various surfaces. A metered dose inhaler was loaded with Bacillus subtilis spores, a surrogate for Bacillus anthracis. Five different material surfaces (aluminum, galvanized steel, wood, carpet, and painted wallboard paper) were tested using this spore deposition method. This aerosolization method deposited spores at a concentration of more than 10(7) CFU per coupon (18-mm diameter) with less than a 50% coefficient of variation, showing that the aerosolization method developed in this study can deposit reproducible numbers of spores onto various surface coupons. Scanning electron microscopy was used to probe the spore deposition patterns on test coupons. The deposition patterns observed following aerosol impaction were compared to those of liquid inoculation. A physical difference in the spore deposition patterns was observed to result from the two different methods. The spore deposition method developed in this study will help prepare spore coupons via aerosolization fast and reproducibly for bench top decontamination and detection studies.
Physical picture of immersed diode experiments on HERMES III and SABRE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, C.L.; Mazarakis, M.G.; Menge, P.R.
A needle-like, high-current, electron beam has been produced on the Hermes III and SABRE accelerators at SNL using inductive voltage adder (IVA) technology, and a diode consisting of a needle cathode and a planar anode/bremmstrahlung converter which are both fully immersed in a strong solenoidal magnetic field (12--50 T). Desired nominal parameters are 10 MV, 40 kA, 0.5 mm radius cathode, and 5--35 cm anode-cathode gaps. High dose and small x-ray spot size are required for radiography applications. Results are presented of initial experiments on Hermes III and SABRE, which have produced doses up to 1 kRad {at} 1 meter,more » and at lower doses, spot sizes as small as 1.7 mm diameter.« less
Eisenberg, Elon; Ogintz, Miri; Almog, Shlomo
2014-09-01
Chronic neuropathic pain is often refractory to standard pharmacological treatments. Although growing evidence supports the use of inhaled cannabis for neuropathic pain, the lack of standard inhaled dosing plays a major obstacle in cannabis becoming a "main stream" pharmacological treatment for neuropathic pain. The objective of this study was to explore the pharmacokinetics, safety, tolerability, efficacy, and ease of use of a novel portable thermal-metered-dose inhaler (tMDI) for cannabis in a cohort of eight patients suffering from chronic neuropathic pain and on a stable analgesic regimen including medicinal cannabis. In a single-dose, open-label study, patients inhaled a single 15.1 ± 0.1 mg dose of cannabis using the Syqe Inhaler device. Blood samples for Δ(9)-tetrahydrocannabinol (THC) and 11-hydroxy-Δ(9)-THC were taken at baseline and up to 120 minutes. Pain intensity (0-10 VAS), adverse events, and satisfaction score were monitored following the inhalation. A uniform pharmacokinetic profile was exhibited across all participants (Δ(9)-THC plasma Cmax ± SD was 38 ± 10 ng/mL, Tmax ± SD was 3 ± 1 minutes, AUC₀→infinity ± SD was 607 ± 200 ng·min/mL). Higher plasma Cmax increase per mg Δ(9)-THC administered (12.3 ng/mL/mg THC) and lower interindividual variability of Cmax (25.3%), compared with reported alternative modes of THC delivery, were measured. A significant 45% reduction in pain intensity was noted 20 minutes post inhalation (P = .001), turning back to baseline within 90 minutes. Tolerable, lightheadedness, lasting 15-30 minutes and requiring no intervention, was the only reported adverse event. This trial suggests the potential use of the Syqe Inhaler device as a smokeless delivery system of medicinal cannabis, producing a Δ(9)-THC pharmacokinetic profile with low interindividual variation of Cmax, achieving pharmaceutical standards for inhaled drugs.
Sawatdee, Somchai; Phetmung, Hirihattaya; Srichana, Teerapol
2013-10-15
Sildenafil is a selective phosphodiesterase-5 inhibitor used for the treatment of erectile dysfunction and pulmonary hypertension. Sildenafil citrate monohydrate was complexed with α-, hydroxypropyl-β- and γ-cyclodextrin (α-CD, HP-β-CD and γ-CD, respectively) to enhance its water solubility. The complexes of sildenafil citrate monohydrate with all types of CDs were characterized by phase solubility diagrams, (1)H and (13)C NMR, and dielectric constants. Sildenafil citrate monohydrate complexed with CDs was developed as nanosuspensions for use in a pressurized metered-dose inhaler (pMDI). Sildenafil citrate monohydrate pMDI formulations were prepared by a bottom-up process using dried ethanol as a solvent and HFA-134a as an antisolvent and propellant in order to form nanosuspensions. A 3×3 factorial design was applied for the contents of the dried ethanol and HFA-134a propellant. The phase solubility profiles of the sildenafil and cyclodextrins were described as AL type with a mole ratio 1:1. The piperazine moiety of sildenafil formed an inclusion in the cavity of the CDs. The particle diameters of the sildenafil citrate monohydrate suspensions in pMDIs were all within a nanosuspension size range. An assay of the sildenafil content showed that the formation of complexes with CDs was close to 100%. In the case of the formulations with CDs, the emitted doses varied within 97.4±10.8%, the fine particle fractions (FPFs) were in a range of 45-81%, the fine particle dose (FPD) was 12.6±2.0 μg and the mass median aerodynamic diameters (MMADs) were 1.86±0.41 μm. In contrast, the formulations without CDs produced a low emitted dose of sildenafil (<60%). Therefore, only sildenafil citrate monohydrate pMDI formulations containing CDs were suitable for use as aerosols. Copyright © 2013 Elsevier B.V. All rights reserved.
Kim, Kenneth T; Milgrom, Henry; Yoon, Y Kellie; Levy, Arden L; Matz, Paul; Welch, Michael J; Cahn, Anthony; Collins, David A; Kathman, Steven; Mehta, Rashmi; Su, Sheng-Fang; Kunka, Robert L
2008-01-01
The systemic exposure of fluticasone propionate with hydrofluoroalkane propellant compared with chlorofluoro-carbon propellant and the effect of fluticasone propionate hydrofluoroalkane on 24-hour urinary cortisol in children aged 4 to 11 years with asthma were evaluated. Study 1 was an open-label, 2-way crossover study in which 16 subjects were randomized to 7.5 days each of fluticasone propionate hydrofluoroalkane 88 mug twice a day or fluticasone propionate chlorofluorocarbon 88 mug twice a day. In study 2, 63 subjects received 13.5 days of placebo followed by 27.5 days of fluticasone propionate hydrofluoroalkane 88 mug twice a day. The main outcome measure for study 1 was the difference between fluticasone propionate hydrofluoroalkane and fluticasone propionate chlorofluorocarbon in fluticasone propionate AUC(last) (area under the plasma fluticasone propionate concentration-time curve from zero up to the last quantifiable plasma concentration), and for study 2, 24-hour overnight urinary cortisol excretion. In study 1, fluticasone propionate systemic exposure was significantly lower (55%) with hydrofluoroalkane metered dose inhaler compared with chlorofluorocarbon metered dose inhaler. Study 2 showed no statistically significant changes in 24-hour overnight urinary cortisol excretion and no relationship to fluticasone propionate systemic exposure at this dose. The results of these 2 studies showed that in children aged 4 to 11 years with asthma, fluticasone propionate hydrofluoroalkane has lower systemic exposure compared with chlorofluorocarbon and no hypothalamic-pituitary-adrenal axis effects as measured by 24-hour urinary cortisol excretion.
Gas flow meter and method for measuring gas flow rate
Robertson, Eric P.
2006-08-01
A gas flow rate meter includes an upstream line and two chambers having substantially equal, fixed volumes. An adjustable valve may direct the gas flow through the upstream line to either of the two chambers. A pressure monitoring device may be configured to prompt valve adjustments, directing the gas flow to an alternate chamber each time a pre-set pressure in the upstream line is reached. A method of measuring the gas flow rate measures the time required for the pressure in the upstream line to reach the pre-set pressure. The volume of the chamber and upstream line are known and fixed, thus the time required for the increase in pressure may be used to determine the flow rate of the gas. Another method of measuring the gas flow rate uses two pressure measurements of a fixed volume, taken at different times, to determine the flow rate of the gas.
The use of earthquake rate changes as a stress meter at Kilauea volcano.
Dieterich, J; Cayol, V; Okubo, P
2000-11-23
Stress changes in the Earth's crust are generally estimated from model calculations that use near-surface deformation as an observational constraint. But the widespread correlation of changes of earthquake activity with stress has led to suggestions that stress changes might be calculated from earthquake occurrence rates obtained from seismicity catalogues. Although this possibility has considerable appeal, because seismicity data are routinely collected and have good spatial and temporal resolution, the method has not yet proven successful, owing to the non-linearity of earthquake rate changes with respect to both stress and time. Here, however, we present two methods for inverting earthquake rate data to infer stress changes, using a formulation for the stress- and time-dependence of earthquake rates. Application of these methods at Kilauea volcano, in Hawaii, yields good agreement with independent estimates, indicating that earthquake rates can provide a practical remote-sensing stress meter.
Recent and relict topography of Boo Bee patch reef, Belize
Halley, R.B.; Shinn, E.A.; Hudson, J.H.; Lidz, B.; Taylor, D.L.
1977-01-01
Five core borings were taken on and around Boo Bee Patch Reef to better understand the origin of such shelf lagoon reefs. The cores reveal 4 stages of development: (1) subaerial exposure of a Pleistocene "high" having about 8 meters of relief, possibly a Pleistocene patch reef; (2) deposition of peat and impermeable terrigenous clay 3 meters thick around the high; (3) initiation of carbonate sediment production by corals and algae on the remaining 5 meters of hard Pleistocene topography and carbonate mud on the surrounding terrigenous clay; and (4) accelerated organic accumulation on the patch reef. Estimates of patch reef sedimentation rates (1.6 m/1000 years) are 3 to 4 times greater than off-reef sedimentation rates (0.4-0.5 m/1000 years). During periods of Pleistocene sedimentation on the Belize shelf, lagoon patch reefs may have grown above one another, stacking up to form reef accumulation of considerable thickness.
House, L.B.
1995-01-01
The mass of PCB's transported from the lake in streamflow during 1987-88 was calculated to be 110 kilograms annually. The PCB's transport rate decreased 50 percent from 1987 to 1988, for the period April through September. Transport of PCB's was greatest during April and May of each year. The average flux rate of PCB's into the water column from the bottom sediment in the lake was estimated to be 1.2 milligrams per square meter per day. The PCB's load seems to increase at river discharges greater than 212 cubic meters per second. This increase in PCB's load might be caused by resuspension of PCB's-contaminated bottom-sediment deposits. There was little variation in PCB's load at flows less than 170 cubic meters per second. The bottom sediments are a continuing source of PCB's to Little Lake Butte des Morts and the lower Fox River.
NASA Astrophysics Data System (ADS)
Bates, Alan
2015-12-01
Instruments or digital meters with data values visible on a seven-segment display can easily be found in the physics lab. Examples include multimeters, sound level meters, Geiger-Müller counters and electromagnetic field meters, where the display is used to show numerical data. Such instruments, without the ability to connect to computers or data loggers, can measure and display data at a particular instant in time. The user should be present to read the display and to record the data. Unlike these digital meters, the sensor-data logger system has the advantage of automatically measuring and recording data at selectable sample rates over a desired sample time. The process of adding data logging features to a digital meter with a seven-segment display can be achieved with Seven Segment Optical Character Recognition (SSOCR) software. One might ask, why not just purchase a field meter with data logging features? They are relatively inexpensive, reliable, available online, and can be delivered within a few days. But then there is the challenge of making your own instrument, the excitement of implementing a design, the pleasure of experiencing an entire process from concept to product, and the satisfaction of avoiding costs by taking advantage of available technology. This experiment makes use of an electromagnetic field meter with a seven-segment liquid crystal display to measure background electromagnetic field intensity. Images of the meter display are automatically captured with a camera and analyzed using SSOCR to produce a text file containing meter display values.
The development of a 6 to 7 MeV photon field for instrument calibration
NASA Astrophysics Data System (ADS)
Duvall, K. C.; Soares, C. G.; Heaton, H. T.; Seltzer, S. M.
1985-05-01
A photon source has been developed at the National Bureau of Standards to measure the response of radiological survey instruments to high-energy photons. The 19F(p, αγ) 16 O reaction has been used to produce a 6 to 7 MeV photon field with a fairly uniform photon flux density of approximately 3 × 10 3 cm -2 s -1 at one meter from the source. The photon flux density is obtained from measurements with a 3 × 3 inch 2 Nal detector whose absolute response has been determined by a Monte Carlo calculation. The spectral characteristics of the high-energy photons have been determined from measurements with a large volume high purity germanium detector. The absorbed dose rate to water was measured with LiF thermoluminescent dosimeters (TLDs) at several depths in a 30 × 30 × 30 cm 3 Lucite phantom. It is planned to compare absorbed dose determinations from the TLD measurements with those computed from spectral measurements. The response of six commercial radiological survey instruments has been measured behind various thicknesses of plastic absorber. The results indicate that approximately 2.5 cm of plastic in front of these instruments is sufficient to discriminate against the associated high-energy electron contamination.
Red emission phosphor for real-time skin dosimeter for fluoroscopy and interventional radiology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Masaaki, E-mail: QYJ05476@nifty.com; Chida, Koichi; Zuguchi, Masayuki
2014-10-15
Purpose: There are no effective real-time direct skin dosimeters for interventional radiology. Such a scintillation dosimeter would be available if there was a suitable red emission phosphor in the medical x-ray range, since the silicon photodiode is a highly efficient device for red light. However, it is unknown whether there is a suitable red emission phosphor. The purpose of this study is to find a suitable red emission phosphor that can be used in x-ray dosimeters. Methods: Five kinds of phosphors which emit red light when irradiated with electron beams or ultraviolet rays in practical devices were chosen. For themore » brightness measurement, phosphor was put into transparent plastic cells or coated onto plastic sheets. The phosphors were irradiated with medical range x-rays [60–120 kV(peak), maximum dose rate of 160 mGy min{sup −1}], and the emission was measured by a luminance meter. Several characteristics, such as brightness, dose rate dependence, tube voltage dependence, and brightness stability, were investigated. Results: The luminescence of Y V O{sub 4}:Eu, (Y,Gd,Eu) BO{sub 3}, and Y{sub 2}O{sub 3}:Eu significantly deteriorated by 5%–10% when irradiated with continuous 2 Gy x-rays. The 0.5MgF{sub 2}⋅3.5MgO⋅GeO{sub 2}:Mn phosphor did not emit enough. Only the Y{sub 2}O{sub 2}S:Eu,Sm phosphor had hardly any brightness deterioration, and it had a linear relationship so that the x-ray dose rate could be determined from the brightness with sufficient accuracy. For the tube voltage dependence of the Y{sub 2}O{sub 2}S:Eu,Sm phosphor, the brightness per unit dose rate with 120 kV(peak) x-rays was 30% higher than that with 60 kV(peak) x-rays. Conclusions: Five kinds of phosphors were chosen as an x-ray scintillator for a real-time direct skin dosimeter. The Y V O{sub 4}:Eu, (Y,Gd,Eu)BO{sub 3}, and Y{sub 2}O{sub 3}:Eu phosphors had brightness deterioration caused by the x-rays. Only the Y{sub 2}O{sub 2}S:Eu,Sm phosphor had hardly any brightness deterioration, and it is a candidate for an x-ray scintillator for such a skin dosimeter.« less
Advection within shallow pore waters of a coastal lagoon, Florida
Cable, J.E.; Martin, Jonathan B.; Swarzenski, Peter W.; Lindenberg, Mary K.; Steward, Joel
2004-01-01
Ground water sources can be a significant portion of a local water budget in estuarine environments, particularly in areas with high recharge rates, transmissive aquifers, and permeable marine sediments. However, field measurements of ground water discharge are often incongruent with ground water flow modeling results, leaving many scientists unsure which estimates are accurate. In this study, we find that both measurements and model results are reasonable. The difference between estimates apparently results from the sources of water being measured and not the techniques themselves. In two locations in the Indian River Lagoon estuarine system, we found seepage meter rates similar to rates calculated from the geochemical tracers 222Rn and 226Ra. Ground water discharge rates ranged from 4 to 9 cm/d using seepage meters and 3 to 20 cm/d using 222Rn and 226Ra. In contrast, in comparisons to other studies where finite element ground water flow modeling was used, much lower ground water discharge rates of ∼0.05 to 0.15 cm/d were estimated. These low rates probably represent discharge of meteoric ground water from land-recharged aquifers, while the much higher rates measured with seepage meters, 222Rn, and 226Ra likely include an additional source of surface waters that regularly flush shallow (< 1 m depth) sediments. This resultant total flow of mixed land-recharged water and recirculated surface waters contributes to the total biogeochemical loading in this shallow estuarine environment.
40 CFR 49.125 - Rule for limiting the emissions of particulate matter.
Code of Federal Regulations, 2010 CFR
2010-07-01
... used exclusively for space heating with a rated heat input capacity of less than 400,000 British... average of 0.23 grams per dry standard cubic meter (0.1 grains per dry standard cubic foot), corrected to... boiler stack must not exceed an average of 0.46 grams per dry standard cubic meter (0.2 grains per dry...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-03
... metered load settled using WACM hourly pricing with no using WACM hourly pricing with no penalty. penalty... metered load settled using pricing in no-penalty band. Customer WACM hourly pricing with a 25% penalty... or equal to 0.5 percent of its hourly average load, no Regulation Service charges will be assessed by...
NASA Astrophysics Data System (ADS)
Ohba, Takashi; Hasegawa, Arifumi; Kohayakawa, Yoshitaka; Kondo, Hisayoshi; Suzuki, Gen
2017-09-01
To reduce uncertainty in thyroid dose estimation, residents' radiation protection behavior should be reflected in the estimation. Screening data of body surface contamination provide information on exposure levels during evacuation. Our purpose is to estimate thyroid equivalent doses based on body surface contamination levels using a new methodology. We obtained a record of 7,539 residents/evacuees. Geiger-Mueller survey meter measurement value in cpm was translated into Bq/cm2 according to the nuclides densities obtained by measuring clothing from two persons by germanium γ-spectrometer. The measurement value of body surface contamination on head was adjusted by a natural removal rate of 15 hours and radionuclides' physical half-life. Thyroid equivalent dose of 1-year-old children by inhalation was estimated by two-dimensional Monte Carlo simulation. The proportions of evacuees/residents with measurement value in cpm of Namie and Minamisoma groups were higher than those of other groups during both periods (p<0.01, Kruskal-Wallis). During 12-14 March period, 50 and 95 percentiles of thyroid equivalent doses by inhalation were estimated as 2.7 and 86.0 mSv, respectively, for Namie group, and 4.2 and 17.2 mSv, respectively, for Minamisoma group, 0.1 and 1.0 mSv, respectively, for Tomioka/Okuma/Futaba/Naraha group, and 0.2 and 2.1 mSv, respectively, for the other group. During 15- 17 March period, 50 and 95 percentiles of thyroid equivalent doses by inhalation were 0.8 and 15.7 mSv, respectively, for Namie group, and 1.6 and 8.4 mSv, respectively, for Minamisoma group, 0.2 and 13.2 mSv, respectively, for Tomioka/Okuma/Futaba/Naraha group, and 1.2 and 12.7 mSv, respectively, for the other group. It was indicated that inhalation dose was generally higher in Namie and Minamisoma groups during 12-14 March than those during 15-17 March might reflect different self-protective behavior to radioactive plumes from other groups.
Dose-rate effects on the radiation-induced oxidation of electric cable used in nuclear power plants
NASA Astrophysics Data System (ADS)
Reynolds, A. B.; Bell, R. M.; Bryson, N. M. N.; Doyle, T. E.; Hall, M. B.; Mason, L. R.; Quintric, L.; Terwilliger, P. L.
1995-01-01
Dose-rate effects were measured for typical ethylene propylene rubber (EPR) and crosslinked polyethylene (XLPE) electric cable used in nuclear power plants. The radiation source was the 60Co Irradiation Facility at the University of Virginia. Dose rates were varied from 5 Gy/h to 2500 Gy/h. It was found that there is little or no dose-rate effect at low doses for four of the five EPR cable products tested from 2500 Gy/h down to dose rates of 5 Gy/h but perhaps a small dose-rate effect at high doses for dose rates above 340 Gy/h. A small dose-rate exists for the fifth EPR above 340 Gy/h at all doses. A dose-rate effect exists above 40 Gy/h for two of the three XLPE cable products tested, but there is no dose-rate for these XLPE's between 40 Gy/h and 5 Gy/h. These results indicate that the dose-rate effects observed are due to oxygen diffusion effects during heterogeneous aging and suggest that there is no dose-rate effect for either EPR or XLPE during homogeneous aging.
NASA Astrophysics Data System (ADS)
de Asmundis, Riccardo; Boiano, Alfonso; Ramaglia, Antonio
2008-06-01
Mobile-Dose has been designed for a very innovative use: the integration in a robotic machinery for automatic preparation of radioactive doses, to be injected to patients in Nuclear Medicine Departments, with real time measurement of the activity under preparation. Mobile-Dose gives a constant measurement of the dose during the filling of vials or syringes, triggering the end of the filling process based on a predefined dose limit. Several applications of Mobile-Dose have been delivered worldwide, from Italian hospitals and clinics to European and Japanese ones. The design of such an instrument and its integration in robotic machineries, was required by an Italian company specialised in radiation protection tools for nuclear applications, in the period 2001-2003. At the time of its design, apparently no commercial instruments with a suitable interfacing capability to the external world existed: we designed it in order to satisfy all the strict requirements coming from the medical aspects (precision within 10%, repeatability, stability, time response) and from the industrial conceiving principles that are mandatory to ensure a good reliability in such a complicated environment. The instrument is suitable to be used in standalone mode too, thanks to its portability and compactness and to the intelligent operator panel programmed for this purpose.
NASA Astrophysics Data System (ADS)
KrzyśCin, Janusz W.
1996-07-01
Monthly means of UV erythemal dose at ground level from the Robertson-Berger (RB) sunburn meter (1976-1992) and the UV-Biometer model 501 MED meter (1993-1994) located at Belsk (21°E, 52°N), Poland, are examined. The monthly means are calculated from all-sky daily means of UV erythemal dose. Ancillary measurements of column ozone (by Dobson spectrophotometer), sunshine duration (by Campbell-Stokes heliograph), and total (sun and sky) radiation (by a pyranometer) are considered to explain variations in the UV data. A multiple regression model is proposed to study trends in the UV data. The model accounts for the UV erythemal dose changes induced by total ozone, sunshine duration (surrogate for cloud cover variations), or total solar radiation (surrogate for combined cloud cover and atmospheric turbidity impact on the UV radiation), trends due to instrument drift, step changes in the data, and serial correlations. A strong relationship between monthly all-sky UV erythemal dose changes and total ozone (and total solar radiation) is found. Calculations show that an erythemal radiative amplification factor (RAF) due to ozone under all skies is close to its clear-sky value (about 1). However, the model gives evidence that the RAF due to ozone is smaller for cloudier (and/or more turbid) atmospheres than long-term reference. Total solar radiation change of 1% is associated with a change of 0.7% in the UV erythemal dose. Modeled trends in the Belsk's UV data, inferred from the model using ozone and total solar radiation as the UV forcing factors, are 2.3% ± 0.4% (1σ) per decade in the period 1976-1994. The large increase in the UV erythemal dose, of the order of 4% per decade due to ozone depletion (-3.2% per decade), is partially compensated by a decreasing tendency (-2.8% per decade) in total solar radiation. The model estimates the trend in the UV data of the order of 0.1% per decade (not statistically significant) due to superposition of the instrument drift and long-term effects related to other UV influencing factors (not parameterized by the model).
Rühm, Werner; Azizova, Tamara; Bouffler, Simon; Cullings, Harry M; Grosche, Bernd; Little, Mark P; Shore, Roy S; Walsh, Linda; Woloschak, Gayle E
2018-01-01
Abstract In order to quantify radiation risks at exposure scenarios relevant for radiation protection, often extrapolation of data obtained at high doses and high dose rates down to low doses and low dose rates is needed. Task Group TG91 on ‘Radiation Risk Inference at Low-dose and Low-dose Rate Exposure for Radiological Protection Purposes’ of the International Commission on Radiological Protection is currently reviewing the relevant cellular, animal and human studies that could be used for that purpose. This paper provides an overview of dose rates and doses typically used or present in those studies, and compares them with doses and dose rates typical of those received by the A-bomb survivors in Japan. PMID:29432579
Tuning time-frequency methods for the detection of metered HF speech
NASA Astrophysics Data System (ADS)
Nelson, Douglas J.; Smith, Lawrence H.
2002-12-01
Speech is metered if the stresses occur at a nearly regular rate. Metered speech is common in poetry, and it can occur naturally in speech, if the speaker is spelling a word or reciting words or numbers from a list. In radio communications, the CQ request, call sign and other codes are frequently metered. In tactical communications and air traffic control, location, heading and identification codes may be metered. Moreover metering may be expected to survive even in HF communications, which are corrupted by noise, interference and mistuning. For this environment, speech recognition and conventional machine-based methods are not effective. We describe Time-Frequency methods which have been adapted successfully to the problem of mitigation of HF signal conditions and detection of metered speech. These methods are based on modeled time and frequency correlation properties of nearly harmonic functions. We derive these properties and demonstrate a performance gain over conventional correlation and spectral methods. Finally, in addressing the problem of HF single sideband (SSB) communications, the problems of carrier mistuning, interfering signals, such as manual Morse, and fast automatic gain control (AGC) must be addressed. We demonstrate simple methods which may be used to blindly mitigate mistuning and narrowband interference, and effectively invert the fast automatic gain function.
Laser power meters as an X-ray power diagnostic for LCLS-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heimann, Philip; Moeller, Stefan; Carbajo, Sergio
For the LCLS-II X-ray instruments, laser power meters are being developed as compact X-ray power diagnostics to operate at soft and tender X-ray photon energies. These diagnostics can be installed at various locations along an X-ray free-electron laser (FEL) beamline in order to monitor the transmission of X-ray optics along the beam path. In addition, the power meters will be used to determine the absolute X-ray power at the endstations. Here, thermopile power meters, which measure average power, and have been chosen primarily for their compatibility with the high repetition rates at LCLS-II, are evaluated. Here, a number of characteristicsmore » in the soft X-ray range are presented including linearity, calibrations conducted with a photodiode and a gas monitor detector as well as ultra-high-vacuum compatibility tests using residual gas analysis. The application of these power meters for LCLS-II and other X-ray FEL sources is discussed.« less
Use of an Electromagnetic Seepage Meter to Investigate Temporal Variability in Lake Seepage
Rosenberry, D.O.; Morin, R.H.
2004-01-01
A commercially available electromagnetic flowmeter is attached to a seepage cylinder to create an electromagnetic seepage meter (ESM) for automating measurement of fluxes across the sediment/water interface between ground water and surface water. The ESM is evaluated through its application at two lakes in New England, one where water seeps into the lake and one where water seeps out of the lake. The electromagnetic flowmeter replaces the seepage-meter bag and provides a continuous series of measurements from which temporal seepage processes can be investigated. It provides flow measurements over a range of three orders of magnitude, and contains no protruding components or moving parts. The ESM was used to evaluate duration of seepage disturbance following meter installation and indicated natural seepage rates resumed approximately one hour following meter insertion in a sandy lakebed. Lakebed seepage also varied considerably in response to lakebed disturbances, near-shore waves, and rain-falls, indicating hydrologic processes are occurring in shallow lakebed settings at time scales that have largely gone unobserved.
McCarthy, David; Pulverer, Walter; Weinhaeusel, Andreas; Diago, Oscar R; Hogan, Daniel J; Ostertag, Derek; Hanna, Michelle M
2016-06-01
Development of a sensitive method for DNA methylation profiling and associated mutation detection in clinical samples. Formalin-fixed and paraffin-embedded tumors received by clinical laboratories often contain insufficient DNA for analysis with bisulfite or methylation sensitive restriction enzymes-based methods. To increase sensitivity, methyl-CpG DNA capture and Coupled Abscription PCR Signaling detection were combined in a new assay, MethylMeter(®). Gliomas were analyzed for MGMT methylation, glioma CpG island methylator phenotype and IDH1 R132H. MethylMeter had 100% assay success rate measuring all five biomarkers in formalin-fixed and paraffin-embedded tissue. MGMT methylation results were supported by survival and mRNA expression data. MethylMeter is a sensitive and quantitative method for multitarget DNA methylation profiling and associated mutation detection. The MethylMeter-based GliomaSTRAT assay measures methylation of four targets and one mutation to simultaneously grade gliomas and predict their response to temozolomide. This information is clinically valuable in management of gliomas.
Bilgen, H; Ince, Z; Ozek, E; Bekiroglu, N; Ors, R
1998-12-01
The effectiveness of two different non-invasive transcutaneous bilirubin measurement devices was compared with serum bilirubin levels in 96 healthy newborns. Transcutaneous measurements were obtained with the Minolta Air Shields jaundice meter and the Ingram icterometer and serum bilirubin levels were determined by a direct spectrophotometric method (Bilitron 444). A linear correlation existed between serum bilirubin values and the readings on both the Minolta jaundice meter (r = 0.83) and the Ingram icterometer (r = 0.78). The Kappa coefficient was 0.66. the sensitivity, specificity and positive and negative predictive values were 100%, 56%, 33% and 100% for the Minolta jaundice meter and 100%, 48%, 29% and 100% for the Ingram icterometer, respectively. The high sensitivity and negative predictive value of both devices render them suitable for screening neonatal hyperbilirubinaemia. However, because of its low cost, the Ingram icterometer is preferable to the more complex and expensive Minolta jaundice meter, especially in countries with a high birth rate, such as Turkey.
Sedimentation Survey of Lago El Guineo, Puerto Rico, October 2001
Soler-López, Luis R.
2003-01-01
Lago El Guineo has lost about 17.5 percent of its original storage capacity in 70 years because of sediment accumulation. The water volume has been reduced from 2.29 million cubic meters in 1931, to 2.03 million cubic meters in 1986, and to 1.89 million cubic meters in 2001. The average annual storage-capacity loss (equal to the sedimentation rate) of Lago El Guineo was 4,727 cubic meters for the period of 1931 to July 1986 (or 0.21 percent per year), increasing to 5,714 cubic meters for the period of 1931 to October 2001 (or 0.25 percent per year). Discrepancies that could lead to substantial errors in volume calculations in a small reservoir like Lago El Guineo, were found when transferring the field-collected data into the geographic information system data base 1:20,000 U.S. Geological Survey Jayuya, Puerto Rico quadrangle. After verification and validation of field data, the Lago El Guineo shoreline was rectified using digital aerial photographs and differential global positioning data.
Use of an electromagnetic seepage meter to investigate temporal variability in lake seepage.
Rosenberry, Donald O; Morin, Roger H
2004-01-01
A commercially available electromagnetic flowmeter is attached to a seepage cylinder to create an electromagnetic seepage meter (ESM) for automating measurement of fluxes across the sediment/water interface between ground water and surface water. The ESM is evaluated through its application at two lakes in New England, one where water seeps into the lake and one where water seeps out of the lake. The electromagnetic flowmeter replaces the seepage-meter bag and provides a continuous series of measurements from which temporal seepage processes can be investigated. It provides flow measurements over a range of three orders of magnitude, and contains no protruding components or moving parts. The ESM was used to evaluate duration of seepage disturbance following meter installation and indicated natural seepage rates resumed approximately one hour following meter insertion in a sandy lakebed. Lakebed seepage also varied considerably in response to lakebed disturbances, near-shore waves, and rainfalls, indicating hydrologic processes are occurring in shallow lakebed settings at time scales that have largely gone unobserved.
Laser power meters as an X-ray power diagnostic for LCLS-II.
Heimann, Philip; Moeller, Stefan; Carbajo, Sergio; Song, Sanghoon; Dakovski, Georgi; Nordlund, Dennis; Fritz, David
2018-01-01
For the LCLS-II X-ray instruments, laser power meters are being developed as compact X-ray power diagnostics to operate at soft and tender X-ray photon energies. These diagnostics can be installed at various locations along an X-ray free-electron laser (FEL) beamline in order to monitor the transmission of X-ray optics along the beam path. In addition, the power meters will be used to determine the absolute X-ray power at the endstations. Here, thermopile power meters, which measure average power, and have been chosen primarily for their compatibility with the high repetition rates at LCLS-II, are evaluated. A number of characteristics in the soft X-ray range are presented including linearity, calibrations conducted with a photodiode and a gas monitor detector as well as ultra-high-vacuum compatibility tests using residual gas analysis. The application of these power meters for LCLS-II and other X-ray FEL sources is discussed.
Laser power meters as an X-ray power diagnostic for LCLS-II
Heimann, Philip; Moeller, Stefan; Carbajo, Sergio; ...
2018-01-01
For the LCLS-II X-ray instruments, laser power meters are being developed as compact X-ray power diagnostics to operate at soft and tender X-ray photon energies. These diagnostics can be installed at various locations along an X-ray free-electron laser (FEL) beamline in order to monitor the transmission of X-ray optics along the beam path. In addition, the power meters will be used to determine the absolute X-ray power at the endstations. Here, thermopile power meters, which measure average power, and have been chosen primarily for their compatibility with the high repetition rates at LCLS-II, are evaluated. Here, a number of characteristicsmore » in the soft X-ray range are presented including linearity, calibrations conducted with a photodiode and a gas monitor detector as well as ultra-high-vacuum compatibility tests using residual gas analysis. The application of these power meters for LCLS-II and other X-ray FEL sources is discussed.« less
Sampling protocol recommendations for measuring soil organic carbon stocks in the tropics
NASA Astrophysics Data System (ADS)
van Straaten, Oliver; Veldkamp, Edzo; Corre, Marife D.
2013-04-01
In the tropics, there is an urgent need for cost effective sampling approaches to quantify soil organic carbon (SOC) changes associated with land-use change given the lack of reliable data. The tropics are especially important considering the high deforestation rates, the huge belowground carbon pool and the fast soil carbon turnover rates. In the framework of a pan-tropic (Peru, Cameroon and Indonesia) land-use change study, some highly relevant recommendations on the SOC stocks sampling approaches have emerged. In this study, where we focused on deeply weathered mineral soils, we quantified changes in SOC stock following land-use change (deforestation and subsequent establishment of other land-uses). We used a space-for-time substitution sampling approach, measured SOC stocks in the top three meters of soil and compared recently converted land-uses with adjacent reference forest plots. In each respective region we investigated the most predominant land-use trajectories. In total 157 plots were established across the three countries, where soil samples were taken to a depth of three meters from a central soil pit and from the topsoil (to 0.5m) from 12 pooled composite samples. Finding 1 - soil depth: despite the fact that the majority of SOC stock from the three meter profile is found below one meter depth (50 to 60 percent of total SOC stock), the significant changes in SOC were only measured in the top meter of soil, while the subsoil carbon stock remained relatively unchanged by the land-use conversion. The only exception was for older (>50 yrs) cacao plantations in Cameroon where significant decreases were found below one meter. Finding 2 - pooled composite samples taken across the plot provided more spatially representative estimates of SOC stocks than samples taken from the central soil pit.
Barak, Alan V; Elder, Peggy; Fraser, Ivich
2011-02-01
Ash (Fraxinus spp.) logs, infested with fully developed, cold-acclimated larval and prepupal emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), were fumigated with methyl bromide (MeBr) at 4.4 and 10.0 degrees C for 24 h. Concentrations X time dosages of MeBr obtained were 1579 and 1273 g-h/m3 (24-h exposure) at 4.4 and 10.0 degrees C after applied doses of 112 and 96 g/m3, respectively. MeBr concentrations were simultaneously measured with a ContainIR infrared monitor and Fumiscope thermal conductivity meter calibrated for MeBr to measure the effect of CO2 on Fumiscope concentration readings compared with the infrared (IR) instrument. The presence of CO2 caused false high MeBr readings. With the thermal conductivity meter, CO2 measured 11.36 g/m3 MeBr per 1% CO2 in clean air, whereas the gas-specific infrared ContainIR instrument measured 9.55% CO2 as 4.2 g/m3 MeBr (0.44 g/m3 per 1% CO2). The IR instrument was 0.4% as sensitive to CO2 as the thermal conductivity meter. After aeration, fumigated and control logs were held for 8 wk to capture emerging beetles. No A. planipennis adults emerged from any of the fumigated logs, whereas 262 emerged from control logs (139 and 123/m2 at 4.4 and 10.0 degrees C, respectively). An effective fumigation dose and minimum periodic MeBr concentrations are proposed. The use of a CO2 scrubber in conjunction with nonspecific thermal conductivity instruments is necessary to more accurately measure MeBr concentrations.
Effects of high-voltage transmission lines on honey bees
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenberg, B.; Bindokas, V.P.
1981-04-01
Data are reported on the effect of hive height and current distribution on honey bees hived under a 765 kV line (E-field ca. 7 kV/m). Hive height was standardized with adjustable collectors to 1 meter (59 ..mu..A total hive current) or 1.5 meter (85 ..mu..A) equivalents; controls were shielded. A 1.5 meter group with completely painted supers was included. After 8 or 16 weeks of exposure there was no effect on honey moisture content or weight of young workers in any group. Worker capped brood was not affected in 1 m hives but declined significantly in 1.5 m hives aftermore » 4 weeks of exposure and this was associated with queen loss, abnormal queen cell production, and colony failure. Weight gain was depressed in all hives after 2 weeks of exposure and was dose related, with the taller hives more severely affected. Only the exposed hives propolized entrances but the amount and time of onset were not dose related. The 1.5 m hives with painted interiors behaved like the 1 m hives with unpainted interiors in all respects, although their total hive current approximated the other group of 1.5 m hives. Reversal of treatments at midseason resulted in reversal of colony behavior, manifested most clearly with respect to hive weight, less with respect to brood. When first exposed, colonies exhibit pronounced but transient elevations in hive temperature. Bio-effects were more severe during the first period when hives had fewer bees. Total hive current was greater in wet than in dry periods. All these factors influence observed bioeffects.« less
Verification testing of the SUNTEC LPX200 UV Disinfection System to develop the UV delivered dose flow relationship was conducted at the Parsippany-Troy Hills wastewater treatment plant test site in Parsippany, New Jersey. Two lamp modules were mounted parallel in a 6.5-meter lon...
Soler-López, Luis R.; Gómez-Gómez, Fernando; Rodríguez-Martínez, Jesús
2005-01-01
The Laguna de Las Salinas is a shallow, 35-hectare, hypersaline lagoon (depth less than 1 meter) in the municipio of Ponce, located on the southern coastal plain of Puerto Rico. Hydrologic, water-quality, and biological data in the lagoon were collected between January 2003 and September 2004 to establish baseline conditions. During the study period, rainfall was about 1,130 millimeters, with much of the rain recorded during three distinct intense events. The lagoon is connected to the sea by a shallow, narrow channel. Subtle tidal changes, combined with low rainfall and high evaporation rates, kept the lagoon at salinities above that of the sea throughout most of the study. Water-quality properties measured on-site (temperature, pH, dissolved oxygen, specific conductance, and Secchi disk transparency) exhibited temporal rather than spatial variations and distribution. Although all physical parameters were in compliance with current regulatory standards for Puerto Rico, hyperthermic and hypoxic conditions were recorded during isolated occasions. Nutrient concentrations were relatively low and in compliance with current regulatory standards (less than 5.0 and 1.0 milligrams per liter for total nitrogen and total phosphorus, respectively). The average total nitrogen concentration was 1.9 milligrams per liter and the average total phosphorus concentration was 0.4 milligram per liter. Total organic carbon concentrations ranged from 12.0 to 19.0 milligrams per liter. Chlorophyll a was the predominant form of photosynthetic pigment in the water. The average chlorophyll a concentration was 13.4 micrograms per liter. Chlorophyll b was detected (detection limits 0.10 microgram per liter) only twice during the study. About 90 percent of the primary productivity in the Laguna de Las Salinas was generated by periphyton such as algal mats and macrophytes such as seagrasses. Of the average net productivity of 13.6 grams of oxygen per cubic meter per day derived from the diel study, the periphyton and macrophyes produced 12.3 grams per cubic meter per day; about 1.3 grams (about 10 percent) were produced by the phytoplankton (plant and algae component of plankton). The total respiration rate was 59.2 grams of oxygen per cubic meter per day. The respiration rate ascribed to the plankton (all organisms floating through the water column) averaged about 6.2 grams of oxygen per cubic meter per day (about 10 percent), whereas the respiration rate by all other organisms averaged 53.0 grams of oxygen per cubic meter per day (about 90 percent). Plankton gross productivity was 7.5 grams per cubic meter per day; the gross productivity of the entire community averaged 72.8 grams per cubic meter per day. Fecal coliform bacteria counts were generally less than 200 colonies per 100 milliliters; the highest concentration was 600 colonies per 100 milliliters.
Dose rate mapping of VMAT treatments
NASA Astrophysics Data System (ADS)
Podesta, Mark; Antoniu Popescu, I.; Verhaegen, Frank
2016-06-01
Human tissues exhibit a varying response to radiation dose depending on the dose rate and fractionation scheme used. Dose rate effects have been reported for different radiations, and tissue types. The literature indicates that there is not a significant difference in response for low-LET radiation when using dose rates between 1 Gy min-1 and 12 Gy min-1 but lower dose rates have an observable sparing effect on tissues and a differential effect between tissues. In intensity-modulated radiotherapy such as volumetric modulated arc therapy (VMAT) the dose can be delivered with a wide range of dose rates. In this work we developed a method based on time-resolved Monte Carlo simulations to quantify the dose rate frequency distribution for clinical VMAT treatments for three cancer sites, head and neck, lung, and pelvis within both planning target volumes (PTV) and normal tissues. The results show a wide range of dose rates are used to deliver dose in VMAT and up to 75% of the PTV can have its dose delivered with dose rates <1 Gy min-1. Pelvic plans on average have a lower mean dose rate within the PTV than lung or head and neck plans but a comparable mean dose rate within the organs at risk. Two VMAT plans that fulfil the same dose objectives and constraints may be delivered with different dose rate distributions, particularly when comparing single arcs to multiple arc plans. It is concluded that for dynamic plans, the dose rate range used varies to a larger degree than previously assumed. The effect of the dose rate range in VMAT on clinical outcome is unknown.
Kocher, David C; Apostoaei, A Iulian; Hoffman, F Owen; Trabalka, John R
2018-06-01
This paper presents an analysis to develop a subjective state-of-knowledge probability distribution of a dose and dose-rate effectiveness factor for use in estimating risks of solid cancers from exposure to low linear energy transfer radiation (photons or electrons) whenever linear dose responses from acute and chronic exposure are assumed. A dose and dose-rate effectiveness factor represents an assumption that the risk of a solid cancer per Gy at low acute doses or low dose rates of low linear energy transfer radiation, RL, differs from the risk per Gy at higher acute doses, RH; RL is estimated as RH divided by a dose and dose-rate effectiveness factor, where RH is estimated from analyses of dose responses in Japanese atomic-bomb survivors. A probability distribution to represent uncertainty in a dose and dose-rate effectiveness factor for solid cancers was developed from analyses of epidemiologic data on risks of incidence or mortality from all solid cancers as a group or all cancers excluding leukemias, including (1) analyses of possible nonlinearities in dose responses in atomic-bomb survivors, which give estimates of a low-dose effectiveness factor, and (2) comparisons of risks in radiation workers or members of the public from chronic exposure to low linear energy transfer radiation at low dose rates with risks in atomic-bomb survivors, which give estimates of a dose-rate effectiveness factor. Probability distributions of uncertain low-dose effectiveness factors and dose-rate effectiveness factors for solid cancer incidence and mortality were combined using assumptions about the relative weight that should be assigned to each estimate to represent its relevance to estimation of a dose and dose-rate effectiveness factor. The probability distribution of a dose and dose-rate effectiveness factor for solid cancers developed in this study has a median (50th percentile) and 90% subjective confidence interval of 1.3 (0.47, 3.6). The harmonic mean is 1.1, which implies that the arithmetic mean of an uncertain estimate of the risk of a solid cancer per Gy at low acute doses or low dose rates of low linear energy transfer radiation is only about 10% less than the mean risk per Gy at higher acute doses. Data were also evaluated to define a low acute dose or low dose rate of low linear energy transfer radiation, i.e., a dose or dose rate below which a dose and dose-rate effectiveness factor should be applied in estimating risks of solid cancers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Shaughnessy, Eric; Ardani, Kristen; Cutler, Dylan
Solar 'plus' refers to an emerging approach to distributed solar photovoltaic (PV) deployment that uses energy storage and controllable devices to optimize customer economics. The solar plus approach increases customer system value through technologies such as electric batteries, smart domestic water heaters, smart air-conditioner (AC) units, and electric vehicles We use an NREL optimization model to explore the customer-side economics of solar plus under various utility rate structures and net metering rates. We explore optimal solar plus applications in five case studies with different net metering rates and rate structures. The model deploys different configurations of PV, batteries, smart domesticmore » water heaters, and smart AC units in response to different rate structures and customer load profiles. The results indicate that solar plus improves the customer economics of PV and may mitigate some of the negative impacts of evolving rate structures on PV economics. Solar plus may become an increasingly viable model for optimizing PV customer economics in an evolving rate environment.« less
Solar Plus: A Holistic Approach to Distributed Solar PV
DOE Office of Scientific and Technical Information (OSTI.GOV)
OShaughnessy, Eric J.; Ardani, Kristen B.; Cutler, Dylan S.
Solar 'plus' refers to an emerging approach to distributed solar photovoltaic (PV) deployment that uses energy storage and controllable devices to optimize customer economics. The solar plus approach increases customer system value through technologies such as electric batteries, smart domestic water heaters, smart air-conditioner (AC) units, and electric vehicles We use an NREL optimization model to explore the customer-side economics of solar plus under various utility rate structures and net metering rates. We explore optimal solar plus applications in five case studies with different net metering rates and rate structures. The model deploys different configurations of PV, batteries, smart domesticmore » water heaters, and smart AC units in response to different rate structures and customer load profiles. The results indicate that solar plus improves the customer economics of PV and may mitigate some of the negative impacts of evolving rate structures on PV economics. Solar plus may become an increasingly viable model for optimizing PV customer economics in an evolving rate environment.« less
NASA Astrophysics Data System (ADS)
Khan, Muzafar; Heilemann, Gerd; Kuess, Peter; Georg, Dietmar; Berg, Andreas
2018-03-01
Recent developments in radiation therapy aimed at more precise dose delivery along with higher dose gradients (dose painting) and more efficient dose delivery with higher dose rates e.g. flattening filter free (FFF) irradiation. Magnetic-resonance-imaging based polymer gel dosimetry offers 3D information for precise dose delivery techniques. Many of the proposed polymer gels have been reported to exhibit a dose response, measured as relaxation rate ΔR2(D), which is dose rate dependent. A lack of or a reduced dose-rate sensitivity is very important for dosimetric accuracy, especially with regard to the increasing clinical use of FFF irradiation protocols with LINACs at high dose rates. Some commonly used polymer gels are based on Methacrylic-Acid-Gel-Initiated-by-Copper (MAGIC). Here, we report on the dose sensitivity (ΔR2/ΔD) of MAGIC-type gels with different oxygen scavenger concentration for their specific dependence on the applied dose rate in order to improve the dosimetric performance, especially for high dose rates. A preclinical x-ray machine (‘Yxlon’, E = 200 kV) was used for irradiation to cover a range of dose rates from low \\dot{D} min = 0.6 Gy min-1 to high \\dot{D} max = 18 Gy min-1. The dose response was evaluated using R2-imaging of the gel on a human high-field (7T) MR-scanner. The results indicate that all of the investigated dose rates had an impact on the dose response in polymer gel dosimeters, being strongest in the high dose region and less effective for low dose levels. The absolute dose rate dependence \\frac{(Δ R2/Δ D)}{Δ \\dot{D}} of the dose response in MAGIC-type gel is significantly reduced using higher concentrations of oxygen scavenger at the expense of reduced dose sensitivity. For quantitative dose evaluations the relative dose rate dependence of a polymer gel, normalized to its sensitivity is important. Based on this normalized sensitivity the dose rate sensitivity was reduced distinctly using an increased oxygen scavenger concentration with reference to standard MAGIC-type gel formulation at high dose rate levels. The proposed gel composition with high oxygen scavenger concentration exhibits a larger linear active dose response and might be used especially in FFF-radiation applications and preclinical dosimetry at high dose rates. We propose in general to use high dose rates for calibration and evaluation as the change in relative dose sensitivity is reduced at higher dose rates in all of the investigated gel types.
Yovich, John L; Alsbjerg, Birgit; Conceicao, Jason L; Hinchliffe, Peter M; Keane, Kevin N
2016-01-01
The first PIVET algorithm for individualized recombinant follicle stimulating hormone (rFSH) dosing in in vitro fertilization, reported in 2012, was based on age and antral follicle count grading with adjustments for anti-Müllerian hormone level, body mass index, day-2 FSH, and smoking history. In 2007, it was enabled by the introduction of a metered rFSH pen allowing small dosage increments of ~8.3 IU per click. In 2011, a second rFSH pen was introduced allowing more precise dosages of 12.5 IU per click, and both pens with their individual algorithms have been applied continuously at our clinic. The objective of this observational study was to validate the PIVET algorithms pertaining to the two rFSH pens with the aim of collecting ≤15 oocytes and minimizing the risk of ovarian hyperstimulation syndrome. The data set included 2,822 in vitro fertilization stimulations over a 6-year period until April 2014 applying either of the two individualized dosing algorithms and corresponding pens. The main outcome measures were mean oocytes retrieved and resultant embryos designated for transfer or cryopreservation permitted calculation of oocyte and embryo utilization rates. Ensuing pregnancies were tracked until live births, and live birth productivity rates embracing fresh and frozen transfers were calculated. Overall, the results showed that mean oocyte numbers were 10.0 for all women <40 years with 24% requiring rFSH dosages <150 IU. Applying both specific algorithms in our clinic meant that the starting dose was not altered for 79.1% of patients and for 30.1% of those receiving the very lowest rFSH dosages (≤75 IU). Only 0.3% patients were diagnosed with severe ovarian hyperstimulation syndrome, all deemed avoidable due to definable breaches from the protocols. The live birth productivity rates exceeded 50% for women <35 years and was 33.2% for the group aged 35-39 years. Routine use of both algorithms led to only 11.6% of women generating >15 oocytes, significantly lower than recently published data applying conventional dosages (38.2%; P<0.0001). When comparing both specific algorithms to each other, the outcomes were mainly comparable for pregnancy, live birth, and miscarriage rate. However, there were significant differences in relation to number of oocytes retrieved, but the mean for both the algorithms remained well below 15 oocytes. Consequently, application of both these algorithms in our in vitro fertilization clinic allows the use of both the rFSH products, with very similar results, and they can be considered validated on the basis of effectiveness and safety, clearly avoiding ovarian hyperstimulation syndrome.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leggett, R.B.; Borling, D.C.; Powers, B.S.
1998-02-01
A multiphase flowmeter (MPFM) installed in offshore Egypt has accurately measured three-phase flow in extremely gassy flow conditions. The meter is completely nonintrusive, with no moving parts, requires no flow mixing before measurement, and has no bypass loop to remove gas before multiphase measurement. Flow regimes observed during the field test of this meter ranged from severe slugging to annular flow caused by the dynamics of gas-lift gas in the production stream. Average gas-volume fraction ranged from 93 to 98% during tests conducted on seven wells. The meter was installed in the Gulf of Suez on a well protector platformmore » in the Gulf of Suez Petroleum Co. (Gupco) October field, and was placed in series with a test separator located on a nearby production platform. Wells were individually tested with flow conditions ranging from 1,300 to 4,700 B/D fluid, 2.4 to 3.9 MMscf/D of gas, and water cuts from 1 to 52%. The meter is capable of measuring water cuts up to 100%. Production was routed through both the MPFM and the test separator simultaneously as wells flowed with the assistance of gas-lift gas. The MPFM measured gas and liquid rates to within {+-} 10% of test-separator reference measurement flow rates, and accomplished this at gas-volume fractions from 93 to 96%. At higher gas-volume fractions up to 98%, accuracy deteriorated but the meter continued to provide repeatable results.« less
NASA Astrophysics Data System (ADS)
Manley, M.; Collins, P.; Gray, L.; O'Gorman, S.; McCavana, J.
2018-02-01
Daylight photodynamic therapy (dl-PDT) is as effective as conventional PDT (c-PDT) for treating actinic keratoses but has the advantage of reducing patient discomfort significantly. Topical dl-PDT and white light-PDT (wl-PDT) differ from c-PDT by way of light sources and methodology. We measured the variables associated with light dose delivery to skin surface and influence of geometry using a radiometer, a spectral radiometer and an illuminance meter. The associated errors of the measurement methods were assessed. The spectral and spatial distribution of the radiant energy from the LED white light source was evaluated in order to define the maximum treatment area, setup and treatment protocol for wl-PDT. We compared the data with two red LED light sources we use for c-PDT. The calculated effective light dose is the product of the normalised absorption spectrum of the photosensitizer, protoporphyrin IX (PpIX), the irradiance spectrum and the treatment time. The effective light dose from daylight ranged from 3 ± 0.4 to 44 ± 6 J cm-2due to varying weather conditions. The effective light dose for wl-PDT was reproducible for treatments but it varied across the treatment area between 4 ± 0.1 J cm-2 at the edge and 9 ± 0.1 J cm-2 centrally. The effective light dose for the red waveband (615-645 nm) was 0.42 ± 0.05 J cm-2 on a clear day, 0.05 ± 0.01 J cm-2 on an overcast day and 0.9 ± 0.01 J cm-2 using the white light. This compares with 0.95 ± 0.01 and 0.84 ± 0.01 J cm-2 for c-PDT devices. Estimated errors associated with indirect determination of daylight effective light dose were very significant, particularly for effective light doses less than 5 J cm-2 (up to 83% for irradiance calculations). The primary source of error is in establishment of the relationship between irradiance or illuminance and effective dose. Use of the O’Mahoney model is recommended using a calibrated logging illuminance meter with the detector in the plane of the treatment area.
46 CFR 175.600 - Incorporation by reference.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Vessels Under 61 Meters (200 feet) in Length, 1983 (“ABS Steel Vessel Rules (Meters)”) 177.300. Rules..., Standard Practice for Operating Salt Spray (Fog) Apparatus (“ASTM B 117”) 175.400. ASTM B 122/B 122M-95... (“ASTM D 93”) 175.400. ASTM D 635-97, Standard test Method for Rate of Burning and or Extent and Time of...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-13
... settled (minimum 4 MW) of metered load settled using WACM hourly pricing with no using WACM hourly pricing... than 7.5% (minimum pricing in no-penalty band. Customer 10 MW) of metered load settled using imbalance... or equal to 0.5 percent of its hourly average load, no Regulation Service charges will be assessed by...
Sedimentation History of Lago Guayabal, Puerto Rico, 1913-2001
Soler-López, Luis R.
2003-01-01
The Lago Guayabal dam, located in the municipality of Villalba in southern Puerto Rico, was constructed in 1913 for irrigation of croplands in the southern coastal plains and is owned and operated by the Puerto Rico Electric Power Authority. The reservoir had an original storage capacity of 11.82 million cubic meters and a drainage area upstream of the dam of 112 square kilometers. Sedimentation has reduced the storage capacity to 6.12 million cubic meters in 2001, which represents a storage loss of about 48 percent. However, the actual sediment accumulation in the reservoir during the 88 years is greater, because some sediment removal was conducted between 1940 and 1948 by dredging and sluicing. This report summarizes the historical data from a 1913 land survey and eight bathymetric surveys conducted between 1914 and 2001, and the relation of high sedimentation to agricultural land practices within the Lago Guayabal basin and six major hurricanes which made landfall on the island. The reservoir had an area-normalized sedimentation rate of about 1,863 cubic meters per square kilometer per year between 1913 and 1936 from a 112 square kilometer basin. In 1972, a new dam upstream along the Rio Toa Vaca impounded runoff from 57.5 square kilometers, and sediment transport to Lago Guayabal was reduced. A comparison of bathymetric survey results between 1972 and 2001 indicates an area-normalized sedimentation rate of 1,120 cubic meters per square kilometer per year or about 60 percent of the rate between 1913 and 1936. The significant reduction (almost half) of the sedimentation rate after the Toa Vaca dam was built may indicate that erosion susceptibility of the Rio Toa Vaca watershed is about twice that of the Rio Jacaguas watershed impounded by Lago Guayabal.
Effects of erosion control structures along a portion of the northern Chesapeake Bay shoreline
Zabawa, C.F.; Kerhin, R.T.; Bayley, S.
1981-01-01
A 6.500-meter reach of western Chesapeake Bay shoreline (lower Mayo Peninsula) lost about 1.1??106 cubic meters of sediment (equivalent to 170 cubic meters lost per meter of shoreline) between 1846 and 1932, when the first aerial photographs show the shoreline already substantially protected by a system of groins and intermittent bulkheading. These structures have eliminated the fastland as a source of erodable material, and have starved the supply of sand for littoral drift, thus limiting the extent of the beaches to the remaining groin fields. Volumes of sediment involved in these impacts are small in the overall sediment budget. Bulkheads produce no deficit in the budget since scouring of the beaches on their seaward sides makes up for the decreased erosion of protected fastland. Groins trap little of the potential littoral drift (computed to be about 104 cubic meters per meter of shoreline per year). The sand supply in the remaining beaches is nearly equivalent to the annual loss of sediment from the entire shoreline system due to the long-term rate of erosion of the shoreline and nearshore between 1846 and 1932. ?? 1981 Springer-Verlag New York Inc.
Objective Assessment of Patient Inhaler User Technique Using an Audio-Based Classification Approach.
Taylor, Terence E; Zigel, Yaniv; Egan, Clarice; Hughes, Fintan; Costello, Richard W; Reilly, Richard B
2018-02-01
Many patients make critical user technique errors when using pressurised metered dose inhalers (pMDIs) which reduce the clinical efficacy of respiratory medication. Such critical errors include poor actuation coordination (poor timing of medication release during inhalation) and inhaling too fast (peak inspiratory flow rate over 90 L/min). Here, we present a novel audio-based method that objectively assesses patient pMDI user technique. The Inhaler Compliance Assessment device was employed to record inhaler audio signals from 62 respiratory patients as they used a pMDI with an In-Check Flo-Tone device attached to the inhaler mouthpiece. Using a quadratic discriminant analysis approach, the audio-based method generated a total frame-by-frame accuracy of 88.2% in classifying sound events (actuation, inhalation and exhalation). The audio-based method estimated the peak inspiratory flow rate and volume of inhalations with an accuracy of 88.2% and 83.94% respectively. It was detected that 89% of patients made at least one critical user technique error even after tuition from an expert clinical reviewer. This method provides a more clinically accurate assessment of patient inhaler user technique than standard checklist methods.
HOT WATER DRILL FOR TEMPERATE ICE.
Taylor, Philip L.
1984-01-01
The development of a high-pressure hot-water drill is described, which has been used reliably in temperate ice to depths of 400 meters with an average drill rate of about 1. 5 meters per minute. One arrangement of the equipment weighs about 500 kilograms, and can be contained on two sleds, each about 3 meters long. Simplified performance equations are given, and experiments with nozzle design suggest a characteristic number describing the efficiency of each design, and a minimum bore-hole diameter very close to 6 centimeters for a hot water drill. Also discussed is field experience with cold weather, water supply, and contact with englacial cavities and the glacier bed.
Optical clocks and relativity.
Chou, C W; Hume, D B; Rosenband, T; Wineland, D J
2010-09-24
Observers in relative motion or at different gravitational potentials measure disparate clock rates. These predictions of relativity have previously been observed with atomic clocks at high velocities and with large changes in elevation. We observed time dilation from relative speeds of less than 10 meters per second by comparing two optical atomic clocks connected by a 75-meter length of optical fiber. We can now also detect time dilation due to a change in height near Earth's surface of less than 1 meter. This technique may be extended to the field of geodesy, with applications in geophysics and hydrology as well as in space-based tests of fundamental physics.
Evaluation of a metering, mixing, and dispensing system for mixing polysulfide adhesive
NASA Technical Reports Server (NTRS)
Evans, Kurt B.
1989-01-01
Tests were performed to evaluate whether a metered mixing system can mix PR-1221 polysulfide adhesive as well as or better than batch-mixed adhesive; also, to evaluate the quality of meter-mixed PR-1860 and PS-875 polysulfide adhesives. These adhesives are candidate replacements for PR-1221 which will not be manufactured in the future. The following material properties were evaluated: peel strength, specific gravity and adhesive components of mixed adhesives, Shore A hardness, tensile adhesion strength, and flow rate. Finally, a visual test called the butterfly test was performed to observe for bubbles and unmixed adhesive. The results of these tests are reported and discussed.
Vining, Kevin C.; Vecchia, Aldo V.
2008-01-01
Sedimentation has reduced water storage in Kajakai Reservoir. If current sedimentation rates continue, hypothetical future reservoir water volumes at the spillway elevation of 1,033.5 meters could be reduced about 22 percent from 2006 to 2057. Even if the spillway elevation is raised to 1,045 meters, a severe drought could result in large multiyear irrigation-supply deficits in which reservoir water levels remain below 1,022 meters for more than 4 years. Hypothetical climate change and sedimentation could result in greater water-supply deficits. The chance of having sufficient water supplies in Kajakai Reservoir during the worst month is about 47 percent.
Twentieth century arroyo changes in Chaco Culture National Historical Park
Gellis, Allen C.
2002-01-01
Chaco Wash arroyo channel changes in the 20th century have become a major concern of the National Park Service. Several archeologic and cultural sites are located in the Chaco Wash corridor; thus, increased erosional activity of Chaco Wash, such as channel incision and increased meandering, may affect these sites. Through field surveys, photogrammetric analyses, and reviews of existing reports and maps, arroyo changes at Chaco Culture National Historic Park were documented. Arroyo changes were documented for the inner active channel and the entire arroyo cross section. The inner channel of Chaco Wash evolved from a wide, braided channel in the 1930's to a narrower channel with a well-developed flood plain by the 1970's. From 1934 to 1973 the active channel narrowed an average of 26 meters, and from the 1970's to 2000 the channel narrowed an average of 9 meters. Overall from 1934 to 2000, the inner channel narrowed an average of 30 meters. From 1934 to 2000, the top of Chaco Wash widened at four cross sections, narrowed at one, and remained the same at another. The top of Chaco Wash widened at a rate of 0.4 meter per year from the 1970's to 2000 compared with 0.2 meter per year from 1934 to 1973. At 50-percent depth or halfway down the arroyo channel, four cross sections widened and two cross sections narrowed from 1934 to 2000. Rates of widening at 50-percent depth decreased from 0.2 meter per year from 1934 to 1973 to 0.1 meter per year from the 1970's to 2000. From 1934 to 2000, arroyo depth decreased at five of six cross sections and increased at one cross section. Arroyo depth between 1934 and 1973 decreased an average 1.4 meters from aggradation and between the 1970's and 2000 increased an average 0.4 meter from channel scour. From 1934 to 2000, arroyo cross-sectional area decreased at all six cross sections. Cross-sectional areas in Chaco Wash decreased from 1934 to 1973 as a result of sediment deposition and both decreased and increased from the 1970's to 2000. The cross-sectional area decreased by the 1970's due to channel narrowing and flood-plain formation. Increases in cross-sectional area are from channel scour and channel widening. Photogrammetric analyses of volumetric changes for a 1.7-kilometer reach of Chaco Wash showed sediment deposition from 1934 to 1973 of 64 square meters per unit length of channel over 1.7 kilometers to erosion from 1973 to 2000 of 7 square meters per unit length of channel. Chaco Wash evolved from a braided channel in the 1930's to a narrow, sinuous inner channel by the 1970's. Chaco Wash was widening in the 1930's, leading to sediment deposition and formation of an inner flood plain. Channel narrowing resulted from increased sediment deposition on the flood plain. Sediment deposition may be related to a decrease in peak flows, an increase in flood-plain vegetation, or an increase in the transport of fine-grained sediment. Increases in bankfull depth of Chaco Wash between the 1970's and 2000 were due to aggradation of the flood plain and channel scour. Thus, rates of aggradation and cross-sectional filling were greater from 1934 to the 1970's than from the 1970's to 2000.
Pflug, Anja; Gompf, Florian; Kell, Christian Alexander
2017-08-01
In bimanual multifrequency tapping, right-handers commonly use the right hand to tap the relatively higher rate and the left hand to tap the relatively lower rate. This could be due to hemispheric specializations for the processing of relative frequencies. An extension of the double-filtering-by-frequency theory to motor control proposes a left hemispheric specialization for the control of relatively high and a right hemispheric specialization for the control of relatively low tapping rates. We investigated timing variability and rhythmic accentuation in right handers tapping mono- and multifrequent bimanual rhythms to test the predictions of the double-filtering-by-frequency theory. Yet, hemispheric specializations for the processing of relative tapping rates could be masked by a left hemispheric dominance for the control of known sequences. Tapping was thus either performed in an overlearned quadruple meter (tap of the slow rhythm on the first auditory beat) or in a syncopated quadruple meter (tap of the slow rhythm on the fourth auditory beat). Independent of syncopation, the right hand outperformed the left hand in timing accuracy for fast tapping. A left hand timing benefit for slow tapping rates as predicted by the double-filtering-by-frequency theory was only found in the syncopated tapping group. This suggests a right hemisphere preference for the control of slow tapping rates when rhythms are not overlearned. Error rates indicate that overlearned rhythms represent hierarchically structured meters that are controlled by a single timer that could potentially reside in the left hemisphere. Copyright © 2017 Elsevier B.V. All rights reserved.
Detection of smoldering combustion of coal with an odor meter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, J.C.
1995-05-01
A commercially available odor meter was evaluated as a detector of smoldering coal combustion, and compared with incipient carbon monoxide (CO) and hydrogen sulfide (H{sub 2}S) detection and a commercially available ionization-type smoke detector. Ten smoldering coal combustion experiments were conducted. For eight of the experiments, Pittsburgh seam coal with an average particle diameter of approximately 5 cm was heated by embedded electrical strip heaters. For two of the experiments mine size Pittsburgh seam coal was heated. Heating rates of 0.5, 0.8, and 1.1. kw were selected to provide experimental conditions characteristic of very slow and moderately fast heating formore » coal sample mass between 3 and 10 kg. It was found that the odor meter and smoke detector alarm had a good correlation, with the odor meter alarm occurring prior to the smoke alarm in four of the ten experiments. The odor meter gave an increase in its output signal above ambient equivalent to detecting 1 ppm of H{sub 2}S (ten times the odor threshold of H{sub 2}S) as an alarm value. This observed odor meter response occurred prior to the electrochemical detection of H{sub 2}S for five of the six experiments for which it was evaluated. In all six experiments for which the smoke optical density was evaluated, it was less than 0.023 m{sup -1} prior to the odor meter reaching alarm. In each of the eight experiments with 5 cm diameter coal particles the CO exceeded 5 ppm at odor meter alarm, while for the two experiments with mine size coal the CO was less than 3 ppm at odor meter alarm. The odor meter, as tested, is not a significant improvement over smoke and CO detectors. Because the odor meter responds to a variety of chemical compounds, with suitable modification and increased sensitivity it may be useful for detection of mine fires and thereby enhance mine safety.« less
Radioactivity concentrations in soils in the Qingdao area, China.
Qu, Limei; Yao, De; Cong, Pifu; Xia, Ning
2008-10-01
The specific activity concentrations of radionuclides (238)U, (232)Th, and (40)K of 2300 sampling points in the Qingdao area were measured by an FD-3022 gamma-ray spectrometer. The radioactivity concentrations of (238)U, (232)Th, and (40)K ranged from 3.3 to 185.3, from 6.9 to 157.2, and from 115.8 to 7834.4 Bq kg(-1), respectively. The air-absorbed dose at 1 meter above ground, effective annual dose, external hazard index, and radium equivalent activity were also calculated to systematically evaluate the radiological hazards of the natural radioactivity in Qingdao. The air-absorbed dose, effective annual dose, external hazard index, and radium equivalent activity in the study area were 98.6 nGy h(-1), 0.12 mSv, 0.56, 197 Bq kg(-1), respectively. Compared with the worldwide value, the air-absorbed dose is slightly high, but the other factors are all lower than the recommended value. The natural external exposure will not pose significant radiological threat to the population. In conclusion, the Qingdao area is safe with regard to the radiological level and suitable for living.
NASA Astrophysics Data System (ADS)
Chen, Shi; Liao, Xu; Ma, Hongsheng; Zhou, Longquan; Wang, Xingzhou; Zhuang, Jiancang
2017-04-01
The relative gravimeter, which generally uses zero-length springs as the gravity senor, is still as the first choice in the field of terrestrial gravity measurement because of its efficiency and low-cost. Because the drift rate of instrument can be changed with the time and meter, it is necessary for estimating the drift rate to back to the base or known gravity value stations for repeated measurement at regular hour's interval during the practical survey. However, the campaigned gravity survey for the large-scale region, which the distance of stations is far away from serval or tens kilometers, the frequent back to close measurement will highly reduce the gravity survey efficiency and extremely time-consuming. In this paper, we proposed a new gravity data adjustment method for estimating the meter drift by means of Bayesian statistical interference. In our approach, we assumed the change of drift rate is a smooth function depend on the time-lapse. The trade-off parameters were be used to control the fitting residuals. We employed the Akaike's Bayesian Information Criterion (ABIC) for the estimated these trade-off parameters. The comparison and analysis of simulated data between the classical and Bayesian adjustment show that our method is robust and has self-adaptive ability for facing to the unregularly non-linear meter drift. At last, we used this novel approach to process the realistic campaigned gravity data at the North China. Our adjustment method is suitable to recover the time-varied drift rate function of each meter, and also to detect the meter abnormal drift during the gravity survey. We also defined an alternative error estimation for the inversed gravity value at the each station on the basis of the marginal distribution theory. Acknowledgment: This research is supported by Science Foundation Institute of Geophysics, CEA from the Ministry of Science and Technology of China (Nos. DQJB16A05; DQJB16B07), China National Special Fund for Earthquake Scientific Research in Public Interest (Nos. 201508006; 201508009).
The Evolution of Pressurized Metered-Dose Inhalers from Early to Modern Devices.
Roche, Nicolas; Dekhuijzen, P N Richard
2016-08-01
Pressurized metered-dose inhalers (pMDIs) are sometimes viewed as old-fashioned and as having been superseded by dry powder inhalers (DPIs). Here, we review the technological advances that characterize modern pMDIs, and consider how they can influence the effectiveness of drug delivery for patients with asthma and chronic obstructive pulmonary disease. Compared with old chlorofluorocarbon (CFC)-based inhalers, many hydrofluoroalkane (HFA)-driven pMDIs have more favorable plume characteristics such as a reduced velocity and a higher fine particle fraction; together, these advances have resulted in the development of pMDIs with reduced oropharyngeal deposition and increased lung deposition. In addition, the plume from many HFA-pMDIs is warmer, which may facilitate their use by patients; moreover, devices are equipped with dose counters, which improves their reliability. As well as reviewing the technological advances of pMDIs, we also discuss the importance of individualizing inhaler therapies to each patient by accounting for their personal preferences and natural breathing patterns. Because pMDIs and DPIs differ considerably in their handling characteristics, matching the right inhaler to the right patient is key to ensuring effective therapy and good compliance. Finally, the majority of patients can be trained successfully in the correct use of their pMDI; training and regular monitoring of inhalation technique are essential prerequisites for effective therapy. While the 'ideal inhaler' may not exist, pMDIs are an effective device option suitable for many patients. pMDIs, together with other types of devices, offer opportunities for the effective individualization of treatments.
Treatment of acute asthma: salbutamol via jet nebuliser vs spacer and metered dose inhaler.
Robertson, C F; Norden, M A; Fitzgerald, D A; Connor, F L; Van Asperen, P P; Cooper, P J; Francis, P W; Allen, H D
1998-04-01
To compare the efficacy of salbutamol delivered by jet nebuliser (JN) with salbutamol via a pressurised metered dose inhaler (PMDI) and a large volume spacer (Volumatic) for management of acute asthma. A total of 160 children aged from 4 to 12 years presenting to an Emergency Department with acute asthma. The study was of multicentre (n=5) randomised, double blind, parallel design. Children weighing less than 25 kg received salbutamol 2.5 mg via the JN or 600 microg (six puffs) from the PMDI. Children over 25 kg received salbutamol 5 mg via the JN or 1200 microg (12 puffs) via the PMDI. Clinical score (range 0-12) and PEF (over 7 years) were recorded at baseline and 15, 30, 45 and 60 mins post administration. The improvement from baseline at 30 min in the clinical score was 1.87 for JN and 1.43 for PMDI (P=0.09) and at 60 min was 2.15 for JN and 1.12 for PMDI (P=0.0001). The improvement in PEF at 30 min was 51 L min(-1) for JN and 27 L min(-1) for PMDI (P=0.0007) and at 60 min was 57 L min(-1) for JN and 31.5 L min(-1) for PMDI (P=0.001). Administration of salbutamol via a PMDI and a large volume spacer device provides effective relief in the management of acute asthma in children, but to a lesser extent than a jet nebuliser. This difference may represent a dose response effect.
Romero, A M; Saez-Vergara, J C; Rodriguez, R; Domínguez-Mompell, R
2004-01-01
CIEMAT, in close co-operation with Iberia Airlines, carried out an extensive programme of in-flight measurements, covering both hemispheres, during the years 2001 and 2002. Although the instrumentation onboard included different active devices, the results presented here were obtained from a polyethylene/tungsten-moderated rem meter (SWENDI2; Eberline) and an ionisation chamber (RSS-131; Reuter-Stokes) used for measuring the ambient dose equivalent due to the neutron and the non-neutron components of cosmic radiation, respectively. This paper presents a study of each of the dose components mentioned as a function of the vertical cut-off rigidity and the flight altitude. The ratio between the two components is also presented to determine the variations in cosmic radiation composition as a function of the aforementioned parameters. The experimental results have also been compared with those predicted by the code EPCARD3.2 for the non-neutron and the neutron components of the ambient dose equivalent.
Spectral and Polarimetric Imagery Collection Experiment
2011-12-01
Also melted snow liquid rate Optical rain gauge Rain rate Possibly snow rate Visibility meter Visibility Smoke, fog, haze Pyranometer Sun and sky...performance of the IR imagery due to thermal effect or possible inversion layer effects. Pyranometers measure total sun and sky radiation. If the direction
Radiation Internal Monitoring by In Vivo Scanning in Operation Tomodachi
2013-08-01
2 cubic meter (m3) Mass /Density pound (lb) 4.535 924 × 10–1 kilogram (kg) atomic mass unit (AMU) 1.660 539 × 10–27 kilogram (kg) pound- mass per...40 2.2.5. Critical Level and Minimum Detectable Activity ............................... 42 ii Section 3. Radiological Properties...operation quality assurance program. x Operation Tomodachi Dose Assessment and Recording Working Group members, who provided critical information
First demonstration of aerial gamma-ray imaging using drone for prompt radiation survey in Fukushima
NASA Astrophysics Data System (ADS)
Mochizuki, S.; Kataoka, J.; Tagawa, L.; Iwamoto, Y.; Okochi, H.; Katsumi, N.; Kinno, S.; Arimoto, M.; Maruhashi, T.; Fujieda, K.; Kurihara, T.; Ohsuka, S.
2017-11-01
Considerable amounts of radioactive substances (mainly 137Cs and 134Cs) were released into the environment after the Japanese nuclear disaster in 2011. Some restrictions on residence areas were lifted in April 2017, owing to the successive and effective decontamination operations. However, the distribution of radioactive substances in vast areas of mountain, forest and satoyama close to the city is still unknown; thus, decontamination operations in such areas are being hampered. In this paper, we report on the first aerial gamma-ray imaging of a schoolyard in Fukushima using a drone that carries a high sensitivity Compton camera. We show that the distribution of 137Cs in regions with a diameter of several tens to a hundred meters can be imaged with a typical resolution of 2-5 m within a 10-20 min flights duration. The aerial gamma-ray images taken 10 m and 20 m above the ground are qualitatively consistent with a dose map reconstructed from the ground-based measurements using a survey meter. Although further quantification is needed for the distance and air-absorption corrections to derive in situ dose map, such an aerial drone system can reduce measurement time by a factor of ten and is suitable for place where ground-based measurement are difficult.
Preliminary Thermal Design of Cryogenic Radiation Shielding
NASA Technical Reports Server (NTRS)
Li, Xiaoyi; Mustafi, Shuvo; Boutte, Alvin
2015-01-01
Cryogenic Hydrogen Radiation Shielding (CHRS) is the most mass efficient material radiation shielding strategy for human spaceflight beyond low Earth orbit (LEO). Future human space flight, mission beyond LEO could exceed one year in duration. Previous radiation studies showed that in order to protect the astronauts from space radiation with an annual allowable radiation dose less than 500 mSv, 140 kgm2 of polyethylene is necessary. For a typical crew module that is 4 meter in diameter and 8 meter in length. The mass of polyethylene radiation shielding required would be more than 17,500 kg. The same radiation study found that the required hydrogen shielding for the same allowable radiation dose is 40 kgm2, and the mass of hydrogen required would be 5, 000 kg. Cryogenic hydrogen has higher densities and can be stored in relatively small containment vessels. However, the CHRS system needs a sophisticated thermal system which prevents the cryogenic hydrogen from evaporating during the mission. This study designed a cryogenic thermal system that protects the CHRS from hydrogen evaporation for one to up to three year mission. The design also includes a ground based cooling system that can subcool and freeze liquid hydrogen. The final results show that the CHRS with its required thermal protection system is nearly half of the mass of polyethylene radiation shielding.
Chen, Yang; Young, Paul M; Fletcher, David F; Chan, Hak Kim; Long, Edward; Lewis, David; Church, Tanya; Traini, Daniela
2015-04-01
To investigate the influence of different actuator nozzle designs on aerosol electrostatic charges and aerosol performances for pressurised metered dose inhalers (pMDIs). Four actuator nozzle designs (flat, curved flat, cone and curved cone) were manufactured using insulating thermoplastics (PET and PTFE) and conducting metal (aluminium) materials. Aerosol electrostatic profiles of solution pMDI formulations containing propellant HFA 134a with different ethanol concentration and/or model drug beclomethasone dipropionate (BDP) were studied using a modified electrical low-pressure impactor (ELPI) for all actuator designs and materials. The mass of the deposited drug was analysed using high performance liquid chromatography (HPLC). Both curved nozzle designs for insulating PET and PTFE actuators significantly influenced aerosol electrostatics and aerosol performance compared with conducting aluminium actuator, where reversed charge polarity and higher throat deposition were observed with pMDI formulation containing BDP. Results are likely due to the changes in plume geometry caused by the curved edge nozzle designs and the bipolar charging nature of insulating materials. This study demonstrated that actuator nozzle designs could significantly influence the electrostatic charges profiles and aerosol drug deposition pattern of pMDI aerosols, especially when using insulating thermoplastic materials where bipolar charging is more dominant.
Tuning Aerosol Particle Size Distribution of Metered Dose Inhalers Using Cosolvents and Surfactants
Saleem, Imran Y.; Smyth, Hugh D. C.
2013-01-01
Objectives. The purpose of these studies was to understand the influence of cosolvent and surfactant contributions to particle size distributions emitted from solution metered dose inhalers (pMDIs) based on the propellant HFA 227. Methods. Two sets of formulations were prepared: (a) pMDIs-HFA 227 containing cosolvent (5–15% w/w ethanol) with constant surfactant (pluronic) concentration and (b) pMDIs-HFA 227 containing surfactant (0–5.45% w/w pluronic) with constant cosolvent concentration. Particle size distributions emitted from these pMDIs were analyzed using aerodynamic characterization (inertial impaction) and laser diffraction methods. Results. Both cosolvent and surfactant concentrations were positively correlated with median particle sizes; that is, drug particle size increased with increasing ethanol and pluronic concentrations. However, evaluation of particle size distributions showed that cosolvent caused reduction in the fine particle mode magnitude while the surfactant caused a shift in the mode position. These findings highlight the different mechanisms by which these components influence droplet formation and demonstrate the ability to utilize the different effects in formulations of pMDI-HFA 227 for independently modulating particle sizes in the respirable region. Conclusion. Potentially, the formulation design window generated using these excipients in combination could be used to match the particle size output of reformulated products to preexisting pMDI products. PMID:23984381
Portable wastewater flow meter
Hunter, Robert M.
1999-02-02
A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under fill pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.
Portable wastewater flow meter
Hunter, Robert M.
1990-01-01
A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under full pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.
Economic Analysis and Optimal Sizing for behind-the-meter Battery Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Di; Kintner-Meyer, Michael CW; Yang, Tao
This paper proposes methods to estimate the potential benefits and determine the optimal energy and power capacity for behind-the-meter BSS. In the proposed method, a linear programming is first formulated only using typical load profiles, energy/demand charge rates, and a set of battery parameters to determine the maximum saving in electric energy cost. The optimization formulation is then adapted to include battery cost as a function of its power and energy capacity in order to capture the trade-off between benefits and cost, and therefore to determine the most economic battery size. Using the proposed methods, economic analysis and optimal sizingmore » have been performed for a few commercial buildings and utility rate structures that are representative of those found in the various regions of the Continental United States. The key factors that affect the economic benefits and optimal size have been identified. The proposed methods and case study results cannot only help commercial and industrial customers or battery vendors to evaluate and size the storage system for behind-the-meter application, but can also assist utilities and policy makers to design electricity rate or subsidies to promote the development of energy storage.« less
NASA Astrophysics Data System (ADS)
Prakash, R.; Srinivasamoorthy, K.; Gopinath, S.; Saravanan, K.
2018-03-01
Submarine groundwater discharge (SGD) is described as submarine inflow of fresh and brackish groundwater from land into the sea. The release of sewages from point and non-point source pollutants from industries, agricultural and domestic activities gets discharged through groundwater to ocean creating natural disparity like decreasing flora fauna and phytoplankton blooms. Hence, to quantify fluxes of SGD in coastal regions is important. Quantification of SGD was attempted in Coleroon estuary, India, using three dissimilar methods like water budget, Darcy law and manual seepage meter. Three seepage meters were installed at two prominent litho units (alluvium and fluvio marine) at a distance of (0-14.7 km) away from Bay of Bengal. The water budget and Darcy law-quantified submarine seepage at a rate of 6.9 × 106 and 3.2 × 103 to 308.3 × 103 m3 year-1, respectively, and the seepage meter quantified seepage rate of 0.7024 m h-1 at an average. Larger seepage variations were isolated from three different techniques and the seepage rates were found to be influenced by hydrogeological characteristics of the litho units and distance from the coast.
A High-Pressure Bi-Directional Cycloid Rotor Flowmeter
Liu, Shuo; Ding, Fan; Ding, Chuan; Man, Zaipeng
2014-01-01
The measurement of the flow rate of various liquids and gases is critical in industrial automation. Rotary positive displacement meters (rotary PD meters) are highly accurate flowmeters that are widely employed in engineering applications, especially in custody transfer operations and hydraulic control systems. This paper presents a high pressure rotary PD meter containing a pair of internal cycloid rotors. It has the advantages of concise structure, low pressure loss, high accuracy and low noise. The curve of the internal rotor is designed as an equidistant curtate epicycloid curve with the external rotor curve as its conjugate. The calculation method used to determine the displacement of the cycloid rotor flowmeter is discussed. A prototype was fabricated, and experiments were performed to confirm measurements over a flow range of 1–100 L/min with relative errors of less than ±0.5%. The pressure loss through the flowmeter was about 3 bar at a flow rate of 100 L/min. PMID:25196162
Sedimentation survey of Lago Lucchetti, Yauco, Puerto Rico, September 2013–May 2014
Gómez-Fragoso, Julieta
2016-08-23
The U.S. Geological Survey conducted a sedimentation survey of Lago Lucchetti, Yauco, Puerto Rico, in 2013–14 in cooperation with the Puerto Rico Aqueduct and Sewer Authority. The survey updated a previous survey, conducted in 2000, and provided accurate information regarding reservoir storage capacity and sedimentation rate using bathymetric techniques and a global positioning system coupled with a depth sounder device. The results of the 2013–14 survey indicated a total storage capacity for Lago Lucchetti of 10.21 million cubic meters and a long-term sedimentation rate loss of 0.16 million cubic meters per year based on the original capacity in 1952. Sediment accumulation was about 10.14 million cubic meters over the life of the reservoir, which represents a storage decrease of about 50 percent of the original capacity in 1952. On the basis of a comparison between the 2013–14 and 2000 surveys, the useful life for Lago Lucchetti is projected to end in 2076.
Matsumura, Kenta; Yamakoshi, Takehiro
2013-12-01
Heart rate (HR) and normalized pulse volume (NPV) are physiological indices that have been used in a diversity of psychological studies. However, measuring these indices often requires laborious processes. We therefore developed a new smartphone program, named iPhysioMeter, that makes it possible to measure beat-by-beat HR and ln NPV using only a smartphone. We examined its accuracy against conventional laboratory measures. Mental stress tasks were used to alter HR and ln NPV in 12 participants. Bland-Altman analyses revealed negligible proportional bias for HR and ln NPV or for their change values, expressed as ΔHR and Δln NPV. However, a relatively large fixed bias did emerge for ln NPV, as well as a small one for Δln NPV, although both were within the limits of agreement. These findings suggest that iPhysioMeter can yield valid measures of the absolute level of HR and of relative changes in ln NPV.
Liquid fuel injection elements for rocket engines
NASA Technical Reports Server (NTRS)
Cox, George B., Jr. (Inventor)
1993-01-01
Thrust chambers for liquid propellant rocket engines include three principal components. One of these components is an injector which contains a plurality of injection elements to meter the flow of propellants at a predetermined rate, and fuel to oxidizer mixture ratio, to introduce the mixture into the combustion chamber, and to cause them to be atomized within the combustion chamber so that even combustion takes place. Evolving from these injectors are tube injectors. These tube injectors have injection elements for injecting the oxidizer into the combustion chamber. The oxidizer and fuel must be metered at predetermined rates and mixture ratios in order to mix them within the combustion chamber so that combustion takes place smoothly and completely. Hence tube injectors are subject to improvement. An injection element for a liquid propellant rocket engine of the bipropellant type is provided which includes tangential fuel metering orifices, and a plurality of oxidizer tube injection elements whose injection tubes are also provided with tangential oxidizer entry slots and internal reed valves.
Use of flumes in metering discharge at gaging stations
Kilpatrick, F.A.; Schneider, V.R.
1982-01-01
Flumes for metering discharge are usually of two general types--critical-flow flumes and supercritical-flow flumes. In this report the principles underlying the design of each are discussed, the most commonly used flumes of each of the two types are described, and discharge ratings for each are presented. Considerations in choosing and fitting the appropriate flume for a given situation are discussed along with construction techniques and operational experiences.
Airborne Laser Swath Mapping: Improved Penetration of Dense Vegetation Opens New Applications
NASA Astrophysics Data System (ADS)
Carter, W. E.; Shrestha, R. L.; Slatton, K. C.
2009-12-01
Historically, mapping structures and terrain obscured by dense forests has been problematical, because shadows limit or prevent the use of airborne photogrammetric techniques, and ground surveying techniques are slow, labor intensive, and too costly for many applications. Airborne laser swath mapping (ALSM) units with pulse rates of a few thousand to a few tens of thousands of pulses per second typically resulted in 1 or 2 points per square meter of terrain, which worked reasonably well in sparse to moderately forested areas. For example, data collected with a 30 kHz laser, provided sufficient returns from the ground in areas covered with redwood, mixed hardwoods, and conifer forests, to create 1 to 2 meter resolution bare earth digital elevation models (DEM). These DEMs were useful in studies of forest covered landslides, terraces, and fault lines. However, in dense semi-tropical areas of Florida, with primary and secondary canopies that include dense brush such as palmetto, the DEMs were significantly degraded, and in many areas it was not possible to derive bare earth DEMs that were reliable in height to better than 0.5 to 1.0 meter. In 2007 the UF purchased a second generation Optech ALSM unit that has decimeter accuracy ranging with pulse rates of 100 to 125 kHz. Flying at 600 meters AGL, 60 meters per second, and using a scan angle of ± 20 degrees and scan rate of 40 Hz, results in about 5 laser pulses per square meter within a single swath. In April 2009 a UF team collected ALSM observations covering approximately 2000 acres at Caracol, Belize, to support archaeological studies of the ancient (650 to 900AD) Mayan city, which is largely covered with dense jungle. By overlapping adjacent swaths by 50%, and flying the project area twice with orthogonal flight lines, an accumulated data set containing approximately 20 pulses per square meter, with a distribution of incident angles was realized. The Caracol area has been under study for 25 years and traditional mapping techniques involved cutting pathways through the jungle, typically at 50 meter intervals, and using transits, electronic distance measuring instruments and total stations to map visible features. Without completely clearing the vegetation, it was difficult for ground surveyors to identify and map all of the pertinent features, and preliminary analysis suggest that the ALSM data display areas of previously unmapped mounded settlement, as well as subtle features in the terrain, including shallow agricultural terraces. The ability to map structures and terrain in areas covered with semi-tropical and tropical forests and jungles opens new opportunities for archaeological studies, and promises to impact geological and geophysical studies in these difficult to map regions as well.
Acharya, Santhosh; Sanjeev, Ganesh; Bhat, Nagesh N; Narayana, Yerol
2010-03-01
The micronucleus assay in human peripheral blood lymphocytes is a sensitive indicator of radiation damage and could serve as a biological dosimeter in evaluating suspected overexposure to ionising radiation. Micronucleus (MN) frequency as a measure of chromosomal damage has also extensively been employed to quantify the effects of radiation dose rate on biological systems. Here we studied the effects of 8 MeV pulsed electron beam emitted by Microtron electron accelerator on MN induction at dose rates between 35 Gy min-1 and 352.5 Gy min-1. These dose rates were achieved by varying the pulse repetition rate (PRR). Fricke dosimeter was employed to measure the absorbed dose at different PRR and to ensure uniform dose distribution of the electron beam. To study the dose rate effect, blood samples were irradiated to an absorbed dose of (4.7+/-0.2) Gy at different rates and cytogenetic damage was quantified using the micronucleus assay. The obtained MN frequency showed no dose rate dependence within the studied dose rate range. Our earlier dose effect study using 8 MeV electrons revealed that the response of MN was linear-quadratic. Therefore, in the event of an accident, dose estimation can be made using linear-quadratic dose response parameters, without adding dose rate as a correction factor.
Environmental effects of large impacts on Mars.
Segura, Teresa L; Toon, Owen B; Colaprete, Anthony; Zahnle, Kevin
2002-12-06
The martian valley networks formed near the end of the period of heavy bombardment of the inner solar system, about 3.5 billion years ago. The largest impacts produced global blankets of very hot ejecta, ranging in thickness from meters to hundreds of meters. Our simulations indicated that the ejecta warmed the surface, keeping it above the freezing point of water for periods ranging from decades to millennia, depending on impactor size, and caused shallow subsurface or polar ice to evaporate or melt. Large impacts also injected steam into the atmosphere from the craters or from water innate to the impactors. From all sources, a typical 100-, 200-, or 250-kilometers asteroid injected about 2, 9, or 16 meters, respectively, of precipitable water into the atmosphere, which eventually rained out at a rate of about 2 meters per year. The rains from a large impact formed rivers and contributed to recharging aquifers.
NASA Technical Reports Server (NTRS)
Siry, J. W.
1972-01-01
A satellite-to-satellite tracking experiment is planned between ATS-F and GEOS-C with a range accuracy of 2-meters and a range rate accuracy of 0.035 centimeters per second for a 10-second integration time. This experiment is planned for 1974. It is anticipated that it will improve the spatial resolution of the satellite geoid by half an order of magnitude to about 6 degrees. Longer integration times should also permit a modest increase in the acceleration resolution. Satellite altimeter data will also be obtained by means of GEOS-C. An overall accuracy of 5-meters in altitude is the goal. The altimeter, per se, is expected to have an instrumental precision of about 2 meters, and an additional capability to observe with a precision of about 0.2 meters for limited periods.
40 CFR 1065.545 - Validation of proportional flow control for batch sampling.
Code of Federal Regulations, 2010 CFR
2010-07-01
... of the estimate, SEE, of the sample flow rate versus the total flow rate. For each test interval, demonstrate that SEE was less than or equal to 3.5% of the mean sample flow rate. (b) For any pair of flow meters, use recorded sample and total flow rates, where total flow rate means the raw exhaust flow rate...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-27
... percentage of metered generation, since there is no load. 2. Intermittent resources are exempt from the outer...--Western Area Lower Colorado Balancing Authority--Rate Order No. WAPA-151 AGENCY: Western Area Power... Services Formula Rates. SUMMARY: The Deputy Secretary of Energy has confirmed and approved Rate Order No...
Plug-In Electric Vehicle (PEV) Charging Rate Incentive - Xcel Energy Xcel Energy offers two rate options to qualified residential customers for charging PEVs. The Electric Vehicle (EV) Rate and the Time -of-Day Plan are optional and require a separate meter. For rate information, including how to qualify
Enhanced Low Dose Rate Sensitivity at Ultra-Low Dose Rates
NASA Technical Reports Server (NTRS)
Chen, Dakai; Pease, Ronald; Forney, James; Carts, Martin; Phan, Anthony; Cox, Stephen; Kruckmeyer, Kriby; Burns, Sam; Albarian, Rafi; Holcombe, Bruce;
2011-01-01
We have presented results of ultra-low dose rate irradiations (< or = 10 mrad(Si)/s) for a variety of radiation hardened and commercial linear bipolar devices. We observed low dose rate enhancement factors exceeding 1.5 in several parts. The worst case of dose rate enhancement resulted in functional failures, which occurred after 10 and 60 krad(Si), for devices irradiated at 0.5 and 10 mrad(Si)/s, respectively. Devices fabricated with radiation hardened processes and designs also displayed dose rate enhancement at below 10 mrad(Si)/s. Furthermore, the data indicated that these devices have not reached the damage saturation point. Therefore the degradation will likely continue to increase with increasing total dose, and the low dose rate enhancement will further magnify. The cases presented here, in addition to previous examples, illustrate the significance and pervasiveness of low dose rate enhancement at dose rates lower than 10 mrad(Si). These results present further challenges for radiation hardness assurance of bipolar linear circuits, and raise the question of whether the current standard test dose rate is conservative enough to bound degradations due to ELDRS.
The Effects of ELDRS at Ultra-Low Dose Rates
NASA Technical Reports Server (NTRS)
Chen, Dakai; Forney, James; Carts, Martin; Phan, Anthony; Pease, Ronald; Kruckmeyer, Kirby; Cox, Stephen; LaBel, Kenneth; Burns, Samuel; Albarian, Rafi;
2011-01-01
We present results on the effects on ELDRS at dose rates of 10, 5, 1, and 0.5 mrad(Si)/s for a variety of radiation hardened and commercial devices. We observed low dose rate enhancement below 10 mrad(Si)/s in several different parts. The magnitudes of the dose rate effects vary. The TL750L, a commercial voltage regulator, showed dose rate dependence in the functional failures, with initial failures occurring after 10 krad(Si) for the parts irradiated at 0.5 mrad(Si)/s. The RH1021 showed an increase in low dose rate enhancement by 2x at 5 mrad(Si)/s relative to 8 mrad(Si)/s and high dose rate, and parametric failure after 100 krad(Si). Additionally the ELDRS-free devices, such as the LM158 and LM117, showed evidence of dose rate sensitivity in parametric degradations. Several other parts also displayed dose rate enhancement, with relatively lower degradations up to approx.15 to 20 krad(Si). The magnitudes of the dose rate enhancement will likely increase in significance at higher total dose levels.
NASA Astrophysics Data System (ADS)
Li, Qing; Lin, Haibo; Xiu, Yu-Feng; Wang, Ruixue; Yi, Chuijie
The test platform of wheat precision seeding based on image processing techniques is designed to develop the wheat precision seed metering device with high efficiency and precision. Using image processing techniques, this platform gathers images of seeds (wheat) on the conveyer belt which are falling from seed metering device. Then these data are processed and analyzed to calculate the qualified rate, reseeding rate and leakage sowing rate, etc. This paper introduces the whole structure, design parameters of the platform and hardware & software of the image acquisition system were introduced, as well as the method of seed identification and seed-space measurement using image's threshold and counting the seed's center. By analyzing the experimental result, the measurement error is less than ± 1mm.
Pasternack, Jordan B.; Howell, Roger W.
2012-01-01
The temporal variations in absorbed dose rates to organs and tissues in the body are very large in diagnostic and therapeutic nuclear medicine. The response of biological endpoints of relevance to radiation safety and therapeutic efficacy are generally modulated by dose rate. Therefore, it is important to understand how the complex dose rate patterns encountered in nuclear medicine impact relevant biological responses. Accordingly, a graphical user interface (GUI) was created to control a cesium-137 irradiator to deliver such dose rate patterns. Methods Visual Basic 6.0 was used to create a user-friendly GUI to control the dose rate by varying the thickness of a mercury attenuator. The GUI facilitates the delivery of a number of dose rate patterns including constant, exponential increase or decrease, and multi-component exponential. Extensive visual feedback is provided by the GUI during both the planning and delivery stages. Results The GUI controlled irradiator can achieve a maximum dose rate of 40 cGy/hr and a minimum dose rate of 0.01 cGy/hr. Addition of machined lead blocks can be used to further reduce the minimum dose rate to 0.0001 cGy/hr. Measured dose rate patterns differed from programmed dose rate patterns in total dose by 3.2% to 8.4%. Conclusion The GUI controlled irradiator is able to accurately create dose rate patterns encountered in nuclear medicine and other related fields. This makes it an invaluable tool for studying the effects of chronic constant and variable low dose rates on biological tissues in the contexts of both radiation protection and clinical administration of internal radionuclides. PMID:23265668
Pasternack, Jordan B; Howell, Roger W
2013-02-01
The temporal variations in absorbed dose rates to organs and tissues in the body are very large in diagnostic and therapeutic nuclear medicine. The response of biological endpoints of relevance to radiation safety and therapeutic efficacy is generally modulated by dose rate. Therefore, it is important to understand how the complex dose rate patterns encountered in nuclear medicine impact relevant biological responses. Accordingly, a graphical user interface (GUI) was created to control a cesium-137 irradiator to deliver such dose rate patterns. Visual Basic 6.0 was used to create a user-friendly GUI to control the dose rate by varying the thickness of a mercury attenuator. The GUI facilitates the delivery of a number of dose rate patterns including constant, exponential increase or decrease, and multi-component exponential. Extensive visual feedback is provided by the GUI during both the planning and delivery stages. The GUI controlled irradiator can achieve a maximum dose rate of 40 cGy/h and a minimum dose rate of 0.01 cGy/h. Addition of machined lead blocks can be used to further reduce the minimum dose rate to 0.0001 cGy/h. Measured dose rate patterns differed from programmed dose rate patterns in total dose by 3.2% to 8.4%. The GUI controlled irradiator is able to accurately create dose rate patterns encountered in nuclear medicine and other related fields. This makes it an invaluable tool for studying the effects of chronic constant and variable low dose rates on biological tissues in the contexts of both radiation protection and clinical administration of internal radionuclides. Copyright © 2013 Elsevier Inc. All rights reserved.
McCarthy, David; Pulverer, Walter; Weinhaeusel, Andreas; Diago, Oscar R; Hogan, Daniel J; Ostertag, Derek; Hanna, Michelle M
2016-01-01
Aim: Development of a sensitive method for DNA methylation profiling and associated mutation detection in clinical samples. Materials & methods: Formalin-fixed and paraffin-embedded tumors received by clinical laboratories often contain insufficient DNA for analysis with bisulfite or methylation sensitive restriction enzymes-based methods. To increase sensitivity, methyl-CpG DNA capture and Coupled Abscription PCR Signaling detection were combined in a new assay, MethylMeter®. Gliomas were analyzed for MGMT methylation, glioma CpG island methylator phenotype and IDH1 R132H. Results: MethylMeter had 100% assay success rate measuring all five biomarkers in formalin-fixed and paraffin-embedded tissue. MGMT methylation results were supported by survival and mRNA expression data. Conclusion: MethylMeter is a sensitive and quantitative method for multitarget DNA methylation profiling and associated mutation detection. The MethylMeter-based GliomaSTRAT assay measures methylation of four targets and one mutation to simultaneously grade gliomas and predict their response to temozolomide. This information is clinically valuable in management of gliomas. PMID:27337298
Dose rate in brachytherapy using after-loading machine: pulsed or high-dose rate?
Hannoun-Lévi, J-M; Peiffert, D
2014-10-01
Since February 2014, it is no longer possible to use low-dose rate 192 iridium wires due to the end of industrial production of IRF1 and IRF2 sources. The Brachytherapy Group of the French society of radiation oncology (GC-SFRO) has recommended switching from iridium wires to after-loading machines. Two types of after-loading machines are currently available, based on the dose rate used: pulsed-dose rate or high-dose rate. In this article, we propose a comparative analysis between pulsed-dose rate and high-dose rate brachytherapy, based on biological, technological, organizational and financial considerations. Copyright © 2014 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.
Sedimentation Survey of Lago de Cidra, Puerto Rico, August 2007
Soler-López, Luis R.
2010-01-01
Lago de Cidra is a reservoir located on the confluence of Rio de Bayamon, Rio Sabana, and Quebrada Prieta, in the municipality of Cidra in east-central Puerto Rico, about 3.0 kilometers northeast of the town of Cidra. The dam is owned and operated by the Puerto Rico Aqueduct and Sewer Authority (PRASA), and was constructed in 1946 as a 6.54-million-cubic-meter supplemental water supply for the San Juan metropolitan area. The reservoir impounds the waters of Rio de Bayamon, Rio Sabana and Quebrada Prieta. The reservoir has a drainage area of 21.4 square kilometers. The dam is a concrete gravity and earthfill structure with a length of approximately 165 meters and a structural height of 24 meters. The spillway portion of the dam is an ungated ogee crest about 40 meters long with a crest elevation of 403.00 meters above mean sea level. Additional information and operational procedures are listed in Soler-Lopez (1999). During August 14-15, 2007, the U.S. Geological Survey (USGS), Caribbean Water Science Center (CWSC), in cooperation with the PRASA, conducted a bathymetric survey of Lago de Cidra to update the reservoir storage capacity and actualize the reservoir sedimentation rate by comparing the 2007 data with the previous 1997 bathymetric survey data. The purpose of this report is to describe and document the USGS sedimentation survey conducted at Lago de Cidra during August 2007, including the methods used to update the reservoir storage capacity, sedimentation rates, and areas of substantial sediment accumulation since 1997.
NASA Technical Reports Server (NTRS)
Bugbee, B. G.; Salisbury, F. B.
1988-01-01
The long-term vegetative and reproductive growth rates of a wheat crop (Triticum aestivum L.) were determined in three separate studies (24, 45, and 79 days) in response to a wide range of photosynthetic photon fluxes (PPF, 400-2080 micromoles per square meter per second; 22-150 moles per square meter per day; 16-20 hour photoperiod) in a near-optimum, controlled-environment. The CO2 concentration was elevated to 1200 micromoles per mole, and water and nutrients were supplied by liquid hydroponic culture. An unusually high plant density (2000 plants per square meter) was used to obtain high yields. Crop growth rate and grain yield reached 138 and 60 grams per square meter per day, respectively; both continued to increase up to the highest integrated daily PPF level, which was three times greater than a typical daily flux in the field. The conversion efficiency of photosynthesis (energy in biomass/energy in photosynthetic photons) was over 10% at low PPF but decreased to 7% as PPF increased. Harvest index increased from 41 to 44% as PPF increased. Yield components for primary, secondary, and tertiary culms were analyzed separately. Tillering produced up to 7000 heads per square meter at the highest PPF level. Primary and secondary culms were 10% more efficient (higher harvest index) than tertiary culms; hence cultural, environmental, or genetic changes that increase the percentage of primary and secondary culms might increase harvest index and thus grain yield. Wheat is physiologically and genetically capable of much higher productivity and photosynthetic efficiency than has been recorded in a field environment.
Assessing dose rate distributions in VMAT plans
NASA Astrophysics Data System (ADS)
Mackeprang, P.-H.; Volken, W.; Terribilini, D.; Frauchiger, D.; Zaugg, K.; Aebersold, D. M.; Fix, M. K.; Manser, P.
2016-04-01
Dose rate is an essential factor in radiobiology. As modern radiotherapy delivery techniques such as volumetric modulated arc therapy (VMAT) introduce dynamic modulation of the dose rate, it is important to assess the changes in dose rate. Both the rate of monitor units per minute (MU rate) and collimation are varied over the course of a fraction, leading to different dose rates in every voxel of the calculation volume at any point in time during dose delivery. Given the radiotherapy plan and machine specific limitations, a VMAT treatment plan can be split into arc sectors between Digital Imaging and Communications in Medicine control points (CPs) of constant and known MU rate. By calculating dose distributions in each of these arc sectors independently and multiplying them with the MU rate, the dose rate in every single voxel at every time point during the fraction can be calculated. Independently calculated and then summed dose distributions per arc sector were compared to the whole arc dose calculation for validation. Dose measurements and video analysis were performed to validate the calculated datasets. A clinical head and neck, cranial and liver case were analyzed using the tool developed. Measurement validation of synthetic test cases showed linac agreement to precalculated arc sector times within ±0.4 s and doses ±0.1 MU (one standard deviation). Two methods for the visualization of dose rate datasets were developed: the first method plots a two-dimensional (2D) histogram of the number of voxels receiving a given dose rate over the course of the arc treatment delivery. In similarity to treatment planning system display of dose, the second method displays the dose rate as color wash on top of the corresponding computed tomography image, allowing the user to scroll through the variation over time. Examining clinical cases showed dose rates spread over a continuous spectrum, with mean dose rates hardly exceeding 100 cGy min-1 for conventional fractionation. A tool to analyze dose rate distributions in VMAT plans with sub-second accuracy was successfully developed and validated. Dose rates encountered in clinical VMAT test cases show a continuous spectrum with a mean less than or near 100 cGy min-1 for conventional fractionation.
Proposed diagnostic reference levels for 3 common cardiac interventional procedures in Ireland
NASA Astrophysics Data System (ADS)
D'Helft, C.; McGee, A. M.; Rainford, L. A.; Mc Fadden, S. L.; Hughes, C. M.; Winder, R. J.; Brennan, P. C.
2007-03-01
Radiation doses for 3 common types of cardiac radiological examinations where investigated: coronary angiography (CA), percutaneous coronary intervention (PCI) and pacemaker insertions (PPI). 22 cardiac imaging suites participated in the study. Radiation dose was monitored for 1804 adult patients using dose area product (DAP) meters. Operational and examination details such as cardiologist grade, patient details and examination complexity were recorded for each examination. Both intra and inter-hospital variations where demonstrated by the results. Individual patient DAP values ranged from 136-23,101cGycm2, 475-41,038cGycm2 and 45- 17,192cGycm2 for CA, PCI and PPI respectively, with third quartile values of 4,173cGycm2, 8,836cGycm2 and 2,051cGycm2. Screening times varied from 0.22-27.6mins, 1.8-98mins and 0.33-54.5mins for CA, PCI and PPI respectively.
Boursier, Jérôme; Bertrais, Sandrine; Oberti, Frédéric; Gallois, Yves; Fouchard-Hubert, Isabelle; Rousselet, Marie-Christine; Zarski, Jean-Pierre; Calès, Paul
2011-11-30
Non-invasive tests have been constructed and evaluated mainly for binary diagnoses such as significant fibrosis. Recently, detailed fibrosis classifications for several non-invasive tests have been developed, but their accuracy has not been thoroughly evaluated in comparison to liver biopsy, especially in clinical practice and for Fibroscan. Therefore, the main aim of the present study was to evaluate the accuracy of detailed fibrosis classifications available for non-invasive tests and liver biopsy. The secondary aim was to validate these accuracies in independent populations. Four HCV populations provided 2,068 patients with liver biopsy, four different pathologist skill-levels and non-invasive tests. Results were expressed as percentages of correctly classified patients. In population #1 including 205 patients and comparing liver biopsy (reference: consensus reading by two experts) and blood tests, Metavir fibrosis (FM) stage accuracy was 64.4% in local pathologists vs. 82.2% (p < 10-3) in single expert pathologist. Significant discrepancy (≥ 2FM vs reference histological result) rates were: Fibrotest: 17.2%, FibroMeter2G: 5.6%, local pathologists: 4.9%, FibroMeter3G: 0.5%, expert pathologist: 0% (p < 10-3). In population #2 including 1,056 patients and comparing blood tests, the discrepancy scores, taking into account the error magnitude, of detailed fibrosis classification were significantly different between FibroMeter2G (0.30 ± 0.55) and FibroMeter3G (0.14 ± 0.37, p < 10-3) or Fibrotest (0.84 ± 0.80, p < 10-3). In population #3 (and #4) including 458 (359) patients and comparing blood tests and Fibroscan, accuracies of detailed fibrosis classification were, respectively: Fibrotest: 42.5% (33.5%), Fibroscan: 64.9% (50.7%), FibroMeter2G: 68.7% (68.2%), FibroMeter3G: 77.1% (83.4%), p < 10-3 (p < 10-3). Significant discrepancy (≥ 2 FM) rates were, respectively: Fibrotest: 21.3% (22.2%), Fibroscan: 12.9% (12.3%), FibroMeter2G: 5.7% (6.0%), FibroMeter3G: 0.9% (0.9%), p < 10-3 (p < 10-3). The accuracy in detailed fibrosis classification of the best-performing blood test outperforms liver biopsy read by a local pathologist, i.e., in clinical practice; however, the classification precision is apparently lesser. This detailed classification accuracy is much lower than that of significant fibrosis with Fibroscan and even Fibrotest but higher with FibroMeter3G. FibroMeter classification accuracy was significantly higher than those of other non-invasive tests. Finally, for hepatitis C evaluation in clinical practice, fibrosis degree can be evaluated using an accurate blood test.
2011-01-01
Background Non-invasive tests have been constructed and evaluated mainly for binary diagnoses such as significant fibrosis. Recently, detailed fibrosis classifications for several non-invasive tests have been developed, but their accuracy has not been thoroughly evaluated in comparison to liver biopsy, especially in clinical practice and for Fibroscan. Therefore, the main aim of the present study was to evaluate the accuracy of detailed fibrosis classifications available for non-invasive tests and liver biopsy. The secondary aim was to validate these accuracies in independent populations. Methods Four HCV populations provided 2,068 patients with liver biopsy, four different pathologist skill-levels and non-invasive tests. Results were expressed as percentages of correctly classified patients. Results In population #1 including 205 patients and comparing liver biopsy (reference: consensus reading by two experts) and blood tests, Metavir fibrosis (FM) stage accuracy was 64.4% in local pathologists vs. 82.2% (p < 10-3) in single expert pathologist. Significant discrepancy (≥ 2FM vs reference histological result) rates were: Fibrotest: 17.2%, FibroMeter2G: 5.6%, local pathologists: 4.9%, FibroMeter3G: 0.5%, expert pathologist: 0% (p < 10-3). In population #2 including 1,056 patients and comparing blood tests, the discrepancy scores, taking into account the error magnitude, of detailed fibrosis classification were significantly different between FibroMeter2G (0.30 ± 0.55) and FibroMeter3G (0.14 ± 0.37, p < 10-3) or Fibrotest (0.84 ± 0.80, p < 10-3). In population #3 (and #4) including 458 (359) patients and comparing blood tests and Fibroscan, accuracies of detailed fibrosis classification were, respectively: Fibrotest: 42.5% (33.5%), Fibroscan: 64.9% (50.7%), FibroMeter2G: 68.7% (68.2%), FibroMeter3G: 77.1% (83.4%), p < 10-3 (p < 10-3). Significant discrepancy (≥ 2 FM) rates were, respectively: Fibrotest: 21.3% (22.2%), Fibroscan: 12.9% (12.3%), FibroMeter2G: 5.7% (6.0%), FibroMeter3G: 0.9% (0.9%), p < 10-3 (p < 10-3). Conclusions The accuracy in detailed fibrosis classification of the best-performing blood test outperforms liver biopsy read by a local pathologist, i.e., in clinical practice; however, the classification precision is apparently lesser. This detailed classification accuracy is much lower than that of significant fibrosis with Fibroscan and even Fibrotest but higher with FibroMeter3G. FibroMeter classification accuracy was significantly higher than those of other non-invasive tests. Finally, for hepatitis C evaluation in clinical practice, fibrosis degree can be evaluated using an accurate blood test. PMID:22129438
Charging Rate Incentive - Georgia Power Georgia Power offers a Plug-in Electric Vehicle (PEV) time -of-use electricity rate for residential customers who own an electric or plug-in hybrid electric vehicle. The PEV rate is optional and does not require a separate meter. For more information, see the
Nair, Arun; Menzies, Daniel; Hopkinson, Pippa; McFarlane, Lesley; Lipworth, Brian J
2009-01-01
AIMS The systemic bioavailability of inhaled fluticasone propionate (FP) depends primarily on lung absorption and can be quantified by measuring suppression of overnight and early morning urinary cortisol/creatinine (OUCC and EMUCC, respectively). The aim of the study was to determine the relative bioavailability of hydrofluoroalkane (HFA) FP to the lungs via anti-static plastic (Zerostat-V and Aerochamber Max), metal (Nebuchamber) anti-static spacers and metered dose inhaler [Flixotide Evohaler (EH) (pMDI)]. METHODS A randomized, double-blind, double-dummy, four-way crossover design was used. Eighteen mild to moderate asthmatics received single doses of placebo/HFA-FP 2 mg via the 280-ml Zerostat-V (ZS); 250-ml Nebuchamber (NC); 197-ml Aerochamber Max (AC); and pMDI (EH). Measurements of OUCC and EMUCC were made at baseline and 10 h after each dose. RESULTS Significant suppression of OUCC and EMUCC occurred from baseline with all three spacers, but not Evohaler (geometric mean fold suppression, 95% confidence interval): ZS, 2.74 (1.75, 4.30), P < 0.001; NC, 3.31 (1.81, 6.06), P < 0.001; AC, 4.98 (3.39, 7.31), P < 0.001; and for EH this was 1.42 (0.92, 2.21), P = 0.169 (equating to a 64, 70, 80 and 30% fall in OUCC via the ZS, NC, AC and EH devices, respectively). There were significant differences between all three spacers vs. EH. When compared with the Evohaler, the Zerostat V resulted in 48% greater suppression (P = 0.009); the Nebuchamber 57% greater suppression (P = 0.001); and the Aerochamber Max 71% greater suppression of OUCC (P < 0.001). CONCLUSION All three antistatic spacers significantly increased the relative systemic bioavailability of HFA-FP compared with the standard pMDI. PMID:19220273
NO sub X Deposited in the Stratosphere by the Space Shuttle Solid Rocket Motors
NASA Technical Reports Server (NTRS)
Pergament, H. S.; Thorpe, R. D.; Hwang, B.
1975-01-01
The possible effects of the interaction of the plumes from the two solid rocket motors (SRM) from the space shuttles and mixing of the rocket exhaust products and ambient air in the base recirculation region on the total nitrous oxide deposition rate in the stratosphere were investigated. It was shown that these phenomena will not influence the total NOx deposition rate. It was also shown that uncertainties in the particle size of Al2O3, size distributions and particle/gas drag and heat transfer coefficients will not have a significant effect on the predicted NOx deposition rate. The final results show that the total mass flow of NOx leaving the plume at 30 km altitude is 4000 g./sec with a possible error factor of 3. For a vehicle velocity of 1140 meter/sec this yields an NOx deposition rate of about 3.5 g./meter. The corresponding HCl deposition rate at this altitude is about a factor of 500 greater than this value.
Ka-Band Parabolic Deployable Antenna (KaPDA) Enabling High Speed Data Communication for CubeSats
NASA Technical Reports Server (NTRS)
Sauder, Jonathan F.; Chahat, Nacer; Hodges, Richard; Thomson, Mark W.; Rahmat-Samii, Yahya
2015-01-01
CubeSats are at a very exciting point as their mission capabilities and launch opportunities are increasing. But as instruments become more advanced and operational distances between CubeSats and earth increase communication data rate becomes a mission-limiting factor. Improving data rate has become critical enough for NASA to sponsor the Cube Quest Centennial Challenge when: one of the key metrics is transmitting as much data as possible from the moon and beyond Currently, many CubeSats communicate on UHF bands and those that have high data rate abilities use S-band or X-band patch antennas. The CubeSat Aneas, which was launched in September 2012, pushed the envelope with a half-meter S-band dish which could achieve 100x the data rate of patch antennas. A half-meter parabolic antenna operating at Ka-band would increase data rates by over 100x that of the AMOS antenM and 10,000 that of X-band patch antennas.
Proper Use of the Metered Dose Inhaler in Children Utilizing a One-On-One Teaching Plan
1996-04-12
each stage of development, a child must accomplish certain tasks of cognition and social and emotional development in order to advance to the next stage...function is required for diagnosis (Janson-Bjerklie,1993). In asymptomatic patients, the physical examination may be normal, thus evidence of eczema ...rooms Smoi« primary or secondary from cigarettes, cigars, or pipes Nighttjme lying down tiredness accumulating mucus Emotions rea< anger
Sailer, Anna M; Vergoossen, Laura; Paulis, Leonie; van Zwam, Willem H; Das, Marco; Wildberger, Joachim E; Jeukens, Cécile R L P N
2017-11-01
Radiation safety and protection are a key component of fluoroscopy-guided interventions. We hypothesize that providing weekly personal dose feedback will increase radiation awareness and ultimately will lead to optimized behavior. Therefore, we designed and implemented a personalized feedback of procedure and personal doses for medical staff involved in fluoroscopy-guided interventions. Medical staff (physicians and technicians, n = 27) involved in fluoroscopy-guided interventions were equipped with electronic personal dose meters (PDMs). Procedure dose data including the dose area product and effective doses from PDMs were prospectively monitored for each consecutive procedure over an 8-month period (n = 1082). A personalized feedback form was designed displaying for each staff individually the personal dose per procedure, as well as relative and cumulative doses. This study consisted of two phases: (1) 1-5th months: Staff did not receive feedback (n = 701) and (2) 6-8th months: Staff received weekly individual dose feedback (n = 381). An anonymous evaluation was performed on the feedback and occupational dose. Personalized feedback was scored valuable by 76% of the staff and increased radiation dose awareness for 71%. 57 and 52% reported an increased feeling of occupational safety and changing their behavior because of personalized feedback, respectively. For technicians, the normalized dose was significantly lower in the feedback phase compared to the prefeedback phase: [median (IQR) normalized dose (phase 1) 0.12 (0.04-0.50) µSv/Gy cm 2 versus (phase 2) 0.08 (0.02-0.24) µSv/Gy cm 2 , p = 0.002]. Personalized dose feedback increases radiation awareness and safety and can be provided to staff involved in fluoroscopy-guided interventions.
Real-Time Patient and Staff Radiation Dose Monitoring in IR Practice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sailer, Anna M., E-mail: karmanna@stanford.edu; Paulis, Leonie, E-mail: leonie.paulis@mumc.nl; Vergoossen, Laura
PurposeKnowledge of medical radiation exposure permits application of radiation protection principles. In our center, the first dedicated real-time, automated patient and staff dose monitoring system (DoseWise Portal, Philips Healthcare) was installed. Aim of this study was to obtain insight in the procedural and occupational doses.Materials and MethodsAll interventional radiologists, vascular surgeons, and technicians wore personal dose meters (PDMs, DoseAware, Philips Healthcare). The dose monitoring system simultaneously registered for each procedure dose-related data as the dose area product (DAP) and effective staff dose (E) from PDMs. Use and type of shielding were recorded separately. All procedures were analyzed according to proceduremore » type; these included among others cerebral interventions (n = 112), iliac and/or caval venous recanalization procedures (n = 68), endovascular aortic repair procedures (n = 63), biliary duct interventions (n = 58), and percutaneous gastrostomy procedure (n = 28).ResultsMedian (±IQR) DAP doses ranged from 2.0 (0.8–3.1) (percutaneous gastrostomy) to 84 (53–147) Gy cm{sup 2} (aortic repair procedures). Median (±IQR) first operator doses ranged from 1.6 (1.1–5.0) μSv to 33.4 (12.1–125.0) for these procedures, respectively. The relative exposure, determined as first operator dose normalized to procedural DAP, ranged from 1.9 in biliary interventions to 0.1 μSv/Gy cm{sup 2} in cerebral interventions, indicating large variation in staff dose per unit DAP among the procedure types.ConclusionReal-time dose monitoring was able to identify the types of interventions with either an absolute or relatively high staff dose, and may allow for specific optimization of radiation protection.« less
ELDRS Characterization for a Very High Dose Mission
NASA Technical Reports Server (NTRS)
Harris, Richard D.; McClure, Steven S.; Rax, Bernard G.; Kenna, Aaron J.; Thorbourn, Dennis O.; Clark, Karla B.; Yan, Tsun-Yee
2010-01-01
Evaluation of bipolar linear parts which may have Enhanced Low Dose Rate Sensitivity (ELDRS) is problematic for missions that have very high dose radiation requirements. The accepted standards for evaluating parts that display ELDRS require testing at a very low dose rate which could be prohibitively long for very high dose missions. In this work, a methodology for ELDRS characterization of bipolar parts for mission doses up to 1 Mrad(Si) is evaluated. The procedure employs an initial dose rate of 0.01 rad(Si)/s to a total dose of 50 krad(Si) and then changes to 0.04 rad(Si)/s to a total dose of 1 Mrad(Si). This procedure appears to work well. No change in rate of degradation with dose has been observed when the dose rate is changed from 0.01 to 0.04 rad(Si)/s. This is taken as an indication that the degradation due to the higher dose rate is equivalent to that at the lower dose rate at the higher dose levels, at least for the parts studied to date. In several cases, significant parameter degradation or functional failure not observed at HDR was observed at fairly high total doses (50 to 250 krad(Si)) at LDR. This behavior calls into question the use of dose rate trend data and enhancement factors to predict LDR performance.
Long-range non-contact imaging photoplethysmography: cardiac pulse wave sensing at a distance
NASA Astrophysics Data System (ADS)
Blackford, Ethan B.; Estepp, Justin R.; Piasecki, Alyssa M.; Bowers, Margaret A.; Klosterman, Samantha L.
2016-03-01
Non-contact, imaging photoplethysmography uses photo-optical sensors to measure variations in light absorption, caused by blood volume pulsations, to assess cardiopulmonary parameters including pulse rate, pulse rate variability, and respiration rate. Recently, researchers have studied the applications and methodology of imaging photoplethysmography. Basic research has examined some of the variables affecting data quality and accuracy of imaging photoplethysmography including signal processing, imager parameters (e.g. frame rate and resolution), lighting conditions, subject motion, and subject skin tone. This technology may be beneficial for long term or continuous monitoring where contact measurements may be harmful (e.g. skin sensitivities) or where imperceptible or unobtrusive measurements are desirable. Using previously validated signal processing methods, we examined the effects of imager-to-subject distance on one-minute, windowed estimates of pulse rate. High-resolution video of 22, stationary participants was collected using an enthusiast-grade, mirrorless, digital camera equipped with a fully-manual, super-telephoto lens at distances of 25, 50, and 100 meters with simultaneous contact measurements of electrocardiography, and fingertip photoplethysmography. By comparison, previous studies have usually been conducted with imager-to-subject distances of up to only a few meters. Mean absolute error for one-minute, windowed, pulse rate estimates (compared to those derived from gold-standard electrocardiography) were 2.0, 4.1, and 10.9 beats per minute at distances of 25, 50, and 100 meters, respectively. Long-range imaging presents several unique challenges among which include decreased, observed light reflectance and smaller regions of interest. Nevertheless, these results demonstrate that accurate pulse rate measurements can be obtained from over long imager-to-participant distances given these constraints.
Plotting Rates of Photosynthesis as a Function of Light Quantity.
ERIC Educational Resources Information Center
Dean, Rob L.
1996-01-01
Discusses methods for plotting rates of photosynthesis as a function of light quantity. Presents evidence that suggests that empirically derived conversion factors, which are used to convert foot candles to photon fluence rates, should be used with extreme caution. Suggests how rate data are best plotted when any kind of light meter is not…
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; ...
2016-10-07
We present measurements of the reduction of light output by plastic scintillators irradiated in the CMS detector during the 8 TeV run of the Large Hadron Collider and show that they indicate a strong dose rate effect. The damage for a given dose is larger for lower dose rate exposures. The results agree with previous measurements of dose rate effects, but are stronger due to the very low dose rates probed. Here, we show that the scaling with dose rate is consistent with that expected from diffusion effects.
Bidlake, William R.; Josberger, Edward G.; Savoca, Mark E.
2010-01-01
Winter snow accumulation and summer snow and ice ablation were measured at South Cascade Glacier, Washington, to estimate glacier mass balance quantities for balance years 2006 and 2007. Mass balances were computed with assistance from a new model that was based on the works of other glacier researchers. The model, which was developed for mass balance practitioners, coupled selected meteorological and glaciological data to systematically estimate daily mass balance at selected glacier sites. The North Cascade Range in the vicinity of South Cascade Glacier accumulated approximately average to above average winter snow packs during 2006 and 2007. Correspondingly, the balance years 2006 and 2007 maximum winter snow mass balances of South Cascade Glacier, 2.61 and 3.41 meters water equivalent, respectively, were approximately equal to or more positive (larger) than the average of such balances since 1959. The 2006 glacier summer balance, -4.20 meters water equivalent, was among the four most negative since 1959. The 2007 glacier summer balance, -3.63 meters water equivalent, was among the 14 most negative since 1959. The glacier continued to lose mass during 2006 and 2007, as it commonly has since 1953, but the loss was much smaller during 2007 than during 2006. The 2006 glacier net balance, -1.59 meters water equivalent, was 1.02 meters water equivalent more negative (smaller) than the average during 1953-2005. The 2007 glacier net balance, -0.22 meters water equivalent, was 0.37 meters water equivalent less negative (larger) than the average during 1953-2006. The 2006 accumulation area ratio was less than 0.10, owing to isolated patches of accumulated snow that endured the 2006 summer season. The 2006 equilibrium line altitude was higher than the glacier. The 2007 accumulation area ratio and equilibrium line altitude were 0.60 and 1,880 meters, respectively. Accompanying the glacier mass losses were retreat of the terminus and reduction of total glacier area. The terminus retreated at a rate of about 13 meters per year during balance year 2006 and at a rate of about 8 meters per year during balance year 2007. Glacier area near the end of balance years 2006 and 2007 was 1.74 and 1.73 square kilometers, respectively. Runoff from the basin containing the glacier and from an adjacent nonglacierized basin was gaged during all or parts of water years 2006 and 2007. Air temperature, wind speed, precipitation, and incoming solar radiation were measured at selected locations on and near the glacier. Air-temperature over the glacier at a height of 2 meters generally was less than at the same altitude in the air mass away from the glacier. Cooling of the air by the glacier increased systematically with increasing ambient air temperature. Empirically based equations were developed to estimate 2-meter-height air temperature over the glacier at five sites from site altitude and temperature at a non-glacier reference site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagen, E. C.; Lowe, D. R.; O'Brien, R.
Dense Plasma Focus (DPF) machines are in use worldwide or a wide variety of applications; one of these is to produce intense, short bursts of fusion via r-Z pinch heating and compression of a working gas. We have designed and constructed a series of these, ranging from portable to a maximum energy storage capacity of 2 MJ. Fusion rates from 5 DPF pulsed fusion generators have been measured in a single laboratory using calibrated activation detectors. Measured rates range from ~ 1015 to more than 1019 fusions per second have been measured. Fusion rates from the intense short (20 –more » 50 ns) periods of production were inferred from measurement of neutron production using both calibrated activation detectors and scintillator-PMT neutron time of flight (NTOF) detectors. The NTOF detectors are arranged to measure neutrons versus time over flight paths of 30 Meters. Fusion rate scaling versus energy and current will be discussed. Data showing observed fusion cutoff at D-D fusion yield levels of approximately 1*1012, and corresponding tube currents of ~ 3 MA will be shown. Energy asymmetry of product neutrons will also be discussed. Data from the NTOF lines of sight have been used to measure energy asymmetries of the fusion neutrons. From this, center of mass energies for the D(d,n)3He reaction are inferred. A novel re-entrant chamber that allows extremely high single pulse neutron doses (> 109 neutrons/cm2 in 50 ns) to be supplied to samples will be described. Machine characteristics and detector types will be discussed.« less
Taylor, R G; Maclagan, J; Cook, D G
1989-01-01
1. A pharmacology practical class for preclinical medical students was designed as a placebo-controlled, double-blind trial of two bronchodilator drugs. 2. Fenoterol hydrobromide (800 micrograms), ipratropium bromide (80 micrograms) and placebo (propellant only) were given by metered dose inhaler to 79 non-asthmatic volunteers. Their effects on FEV1, heart rate and tremor (assessed by the time taken to thread five sewing needles) were compared. 3. Both drugs caused a significant increase in FEV1: the largest group mean increase was 77 ml, recorded 15 min after fenoterol, and 103 ml, recorded 60 min after ipratropium. 4. Fenoterol also caused a mean increase of 8.7 beats min-1 in heart rate, 5 min after inhalation. This effect was still apparent after 60 min. 5. Fenoterol appeared to prolong needle threading time in some individuals. 6. In subjects who inhaled fenoterol, there were no correlations between the increase in FEV1, the increase in heart rate, or the development of tremor. 7. It is concluded that inhaled fenoterol and ipratropium both cause bronchodilation in normal subjects. Systemic absorption of fenoterol is indicated by the rapid increase in heart rate. The bronchodilator effect of ipratropium suggests that resting airway calibre is governed partly by parasympathetic tone in normal subjects. 8. The bronchodilator and systemic effects of these drugs can be used to demonstrate pharmacological, therapeutic and statistical principles to medical students. PMID:2532922
NASA Technical Reports Server (NTRS)
Robinson, John E.
2014-01-01
The Federal Aviation Administration's Next Generation Air Transportation System will combine advanced air traffic management technologies, performance-based procedures, and state-of-the-art avionics to maintain efficient operations throughout the entire arrival phase of flight. Flight deck Interval Management (FIM) operations are expected to use sophisticated airborne spacing capabilities to meet precise in-trail spacing from top-of-descent to touchdown. Recent human-in-the-loop simulations by the National Aeronautics and Space Administration have found that selection of the assigned spacing goal using the runway schedule can lead to premature interruptions of the FIM operation during periods of high traffic demand. This study compares three methods for calculating the assigned spacing goal for a FIM operation that is also subject to time-based metering constraints. The particular paradigms investigated include: one based upon the desired runway spacing interval, one based upon the desired meter fix spacing interval, and a composite method that combines both intervals. These three paradigms are evaluated for the primary arrival procedures to Phoenix Sky Harbor International Airport using the entire set of Rapid Update Cycle wind forecasts from 2011. For typical meter fix and runway spacing intervals, the runway- and meter fix-based paradigms exhibit moderate FIM interruption rates due to their inability to consider multiple metering constraints. The addition of larger separation buffers decreases the FIM interruption rate but also significantly reduces the achievable runway throughput. The composite paradigm causes no FIM interruptions, and maintains higher runway throughput more often than the other paradigms. A key implication of the results with respect to time-based metering is that FIM operations using a single assigned spacing goal will not allow reduction of the arrival schedule's excess spacing buffer. Alternative solutions for conducting the FIM operation in a manner more compatible with the arrival schedule are discussed in detail.
Dosimetry during intramedullary nailing of the tibia.
Kirousis, George; Delis, Harry; Megas, Panagiotis; Lambiris, Elias; Panayiotakis, George
2009-10-01
Intramedullary nailing under fluoroscopic guidance is a common operation. We studied the intraoperative radiation dose received by both the patient and the personnel. 25 intramedullary nailing procedures of the tibia were studied. All patients suffered from tibial fractures and were treated using the Grosse-Kempf intramedullary nail, with free-hand technique for fixation of the distal screws, under fluoroscopic guidance. The exposure, at selected positions, was recorded using an ion chamber, while the dose area product (DAP) was measured with a DAP meter, attached to the tube head. Thermoluminescent dosimeters (TLDs) were used to derive the occupational dose to the personnel, and also to monitor the surface dose on the gonads of some of the patients. The mean operation time was 101 (48-240) min, with a mean fluoroscopic time of 72 seconds and a mean DAP value of 75 cGy x cm(2). The surface dose to the gonads of the patients was less than 8.8 mGy during any procedure, and thus cannot be considered to be a contraindication for the use of this technique. Occupational dose differed substantially between members of the operating personnel, the maximum dose recorded being to the operator of the fluoroscopic equipment (0.11 mSv). Our findings underscore the care required by the primary operator not to exceed the dose constraint of 10 mSv per year. The rest of the operating personnel, although they do not receive very high doses, should focus on the dose optimization of the technique.
Geohydrology of the Englishtown Formation in the northern Coastal Plain of New Jersey
Nichols, W.D.
1977-01-01
The Englishtown Formation of the Matawan Group of Late Cretaceous age is exposed in the western part of the New Jeresy Coastal Plain along a northeast-southwest trending zone extending from Raritan Bay to Delaware Bay. In outcrop, in the northern part of the Coastal Plain, the Englishtown typically consists of a series of thin, cross-stratified, fine- to medium-grained lignitic quartz sand beds intercalated with thin beds of sandy silty clay and clayey silt, ranging in total thickness from about 140 feet (43 meters) near Raritan Bay to about 50 feet (15 meters) near Trenton. In the subsurface of the northern part of the Coastal Plain, the formation retains most of the lithologic characteristics displayed in outcrop. In northern and eastern Ocean County the Englishtown can be subdivided into three distinct lithologic units; upper and lower units of quartz sand with thin interbeds of dark sandy silt, separated by a thick sequence of sandy and clayey lignitic silt. The confined part of the aquifer in the Englishtown Formation is utilized as a source of water over an area of about 1,100 square miles (2,849 square kilometers) of the New Jersey Coastal Plain and is an important source of supply in Monmouth and northern Ocean Counties. The annual average rate of withdrawal from the aquifer in the two-county area increased from 5.5 million gallons per day (0.24 cubic meters per second) in 1959 to 9.5 million gallons per day (0.4 cubic meters per second) in 1970. Water levels in parts of this area were declining 8 to 12 feet (2.4 to 3.6 meters) per year as of 1970 and they declined as much as 140 feet (43 meters) between 1959 and 1970 near pumping centers. The aquifer transmissivity ranges from 2,400 square feet per day to 650 square feet per day (223 square meters per day to 60 square meters per day); the estimated hydraulic conductivity ranges from about 11 feet per day to 20 feet per day (3.3 meters per day to 6.1 meters per day); and the storage coefficient ranges from 8 x 10-5 to 3 x 10-4. The underlying and overlying confining beds, which have an average thickness of 200 feet (61 meters) and 40 feet (12 meters), respectively, have vertical hydraulic conductivities on the order of 1 x 10-5 feet per day (3 x 10-6 meters per day) and specific storage on the order of 8 x 10-5 ft-1 (2.4 x 10-5 m-1). The Englishtown aquifer is an integral part of the complex multi- aquifer system of the New Jersey Coastal Plain. The withdrawal of water from the Englishtown aquifer has had a marked effect on the water level in the overlying Moutn Laurel aquifer, and these effects will continue so long as the water level in the Englishtown continues to decline. Any increase in the development of the Mount Laurel aquifer that reduces the volume of leakage to the Englishtown will cause an increase in the rate of water-level decline in the Englishtown even with no increase in direct withdrawals. The interrelationship and interdependency between pumping stresses in individual aquifers within the complex Coastal Plain aquifer sytem must be recognized and appreciated, and the hydrodynamics of all parts of the system must be considered if reliable predictions of aquifer response to these stresses are to be made. Such predictions generally require a simulation model analysis of the system.
Brooks, Antone L.; Hoel, David G.; Preston, R. Julian
2016-01-01
Abstract Purpose: This review evaluates the role of dose rate on cell and molecular responses. It focuses on the influence of dose rate on key events in critical pathways in the development of cancer. This approach is similar to that used by the U.S. EPA and others to evaluate risk from chemicals. It provides a mechanistic method to account for the influence of the dose rate from low-LET radiation, especially in the low-dose region on cancer risk assessment. Molecular, cellular, and tissues changes are observed in many key events and change as a function of dose rate. The magnitude and direction of change can be used to help establish an appropriate dose rate effectiveness factor (DREF). Conclusions: Extensive data on key events suggest that exposure to low dose-rates are less effective in producing changes than high dose rates. Most of these data at the molecular and cellular level support a large (2–30) DREF. In addition, some evidence suggests that doses delivered at a low dose rate decrease damage to levels below that observed in the controls. However, there are some data human and mechanistic data that support a dose-rate effectiveness factor of 1. In summary, a review of the available molecular, cellular and tissue data indicates that not only is dose rate an important variable in understanding radiation risk but it also supports the selection of a DREF greater than one as currently recommended by ICRP (2007) and BEIR VII (NRC/NAS 2006). PMID:27266588
An Approach to the Quantitative Study of Sea Floor Topography.
1980-01-01
Basement in the Pacific Ocean MAGNETIC TOTAL RMS ANOMALY SPREADING RELIEF MEAN RMS RIDGE WINDOW RATE (cm/yr) (meters) RELIEF (meters) Nazca-Cocos 0-2’ 6 104...investigation. V. CONCLUSIONS The sea floor and the lithologic boundaries below it can generally be thought of as interfaces of acoustic impedance mismatch... Magnetic Anomalies , and Plate Tectonic History of the Mouth of the Gulf of California. Geol. Soc. Am. Bull., v. 83, p. 3345-3360. Luyendyk, B. P
40 CFR 1066.1005 - Symbols, abbreviations, acronyms, and units of measure.
Code of Federal Regulations, 2014 CFR
2014-07-01
... joule per kelvin J/K J · K−1 C v heat capacity at constant volume joule per kelvin J/K J · K−1 d... m3 Q flow rate cubic feet per minute or cubic meter per second ft3/min or m3/s m3/s r mass density... · s−1 V volume cubic meter m3 m3 VP volume percent x concentration of emission over a test interval...
The Cardiovascular Function Profile and Physical Fitness in Overweight Subjects
NASA Astrophysics Data System (ADS)
Megawati, E. R.; Lubis, L. D.; Harahap, F. Y.
2017-03-01
Obesity in children and young adult is associated with cardiovascular risk in short term and long term. The aim of this study was to describe the profile of the cardiovascular functions parameters and physical fitness in overweight. This is an analytical observational study with cross sectional approach. The samples of this study were 85 randomly selected subjects aged 18 to 24 years with normoweight and body mass index <40. The parameters measures were body mass index (BMI), waist circumference (WC), waist-hip ratio (WHR), cardiovascular function parameters (resting pulse, blood pressure, and peak flow meter) and physical fitness parameters (VO2max dengan McArdle step test). The mean BMI was 24,53±4,929. The WC and WHR mean were 86,7±14,10 cms and 0,89±0,073 cm respectively. The mean of resting pulses were higher in normoweight subject (p=0,0209). The mean systole were lower in normoweight subject (p=0,0026). No differences VO2 max between groups (p=0,3888). The peak flow meter was higher in normoweight (p=0,0274). The result of this study indicate that heart rate, systole and peak flow meter are signifantly different between groups. The heart rate and the peak flow meter in the overweight subjects were lower meanwhile the systole blood pressure was higher compared to normoweight subjects.
Anatomy Of The ‘LuSi’ Mud Eruption, East Java
NASA Astrophysics Data System (ADS)
Tingay, M. R.
2009-12-01
Early in the morning of the 29th of May 2006, hot mud started erupting from the ground in the densely populated Porong District of Sidoarjo, East Java. With initial flow rates of ~5000 cubic meters per day, the mud quickly inundated neighbouring villages. Over two years later and the ‘Lusi’ eruption has increased in strength, expelling over 90 million cubic meters of mud at an average rate of approximately 100000 cubic meters per day. The mud flow has now covered over 700 hectares of land to depths of over 25 meters, engulfing a dozen villages and displacing approximately 40000 people. In addition to the inundated areas, other areas are also at risk from subsidence and distant eruptions of gas. However, efforts to stem the mud flow or monitor its evolution are hampered by our overall lack of knowledge and consensus on the subsurface anatomy of the Lusi mud volcanic system. In particular, the largest and most significant uncertainties are the source of the erupted water (shales versus deep carbonates), the fluid flow pathways (purely fractures versus mixed fracture and wellbore) and disputes over the subsurface geology (nature of deep carbonates, lithology of rocks between shale and carbonates). This study will present and overview of the anatomy of the Lusi mud volcanic system with particular emphasis on these critical uncertainties and their influence on the likely evolution of disaster.
Evaluating the risk of decompression sickness for a yo-yo dive using a rat model.
Ofir, Dror; Yanir, Yoav; Abramovich, Amir; Bar, Ronen; Arieli, Yehuda
2016-01-01
The frequent ascents made during yo-yo diving may contribute to gas bubble clearance but paradoxically may also increase the risk of central nervous system decompression illness (DCI). We evaluated the risk of DCI due to yo-yo dives with very short surface intervals, using a controlled animal model. Dives were conducted on air to a depth of 90 meters (10 atmospheres absolute) for 32 minutes of bottom time, at a descent/ascent rate of 10 meters/ minute. Sprague-Dawley rats weighing ~ 300 grams were divided randomly into three groups. Group A performed a square dive protocol without any surface intervals, Group B conducted a protocol that included two surface intervals during the dive, and Group C performed a protocol with three surface intervals. Ascent/descent rate for surface intervals, each lasting one minute, was also 10 meters/minute. Manifestations of DCI were observed in 13 of 16 animals in Group A (81.3%), six of 12 in Group B (58.3%), and two of 12 in Group C (16.7%). Mortality rates were similar in all groups. Surface intervals during dives breathing air significantly reduced DCI risk in the rat. Further studies are required using a larger animal model to reinforce the results of the present investigation.
McLain, Michael Lee; Sheridan, Timothy J.; Hjalmarson, Harold Paul; ...
2014-11-11
This paper investigates the effects of high dose rate ionizing radiation and total ionizing dose (TID) on tantalum oxide (TaO x) memristors. Transient data were obtained during the pulsed exposures for dose rates ranging from approximately 5.0 ×10 7 rad(Si)/s to 4.7 ×10 8 rad(Si)/s and for pulse widths ranging from 50 ns to 50 μs. The cumulative dose in these tests did not appear to impact the observed dose rate response. Static dose rate upset tests were also performed at a dose rate of ~3.0 ×10 8 rad(Si)/s. This is the first dose rate study on any type ofmore » memristive memory technology. In addition to assessing the tolerance of TaO x memristors to high dose rate ionizing radiation, we also evaluated their susceptibility to TID. The data indicate that it is possible for the devices to switch from a high resistance off-state to a low resistance on-state in both dose rate and TID environments. The observed radiation-induced switching is dependent on the irradiation conditions and bias configuration. Furthermore, the dose rate or ionizing dose level at which a device switches resistance states varies from device to device; the enhanced susceptibility observed in some devices is still under investigation. As a result, numerical simulations are used to qualitatively capture the observed transient radiation response and provide insight into the physics of the induced current/voltages.« less
Cryogenic flow rate measurement with a laser Doppler velocimetry standard
NASA Astrophysics Data System (ADS)
Maury, R.; Strzelecki, A.; Auclercq, C.; Lehot, Y.; Loubat, S.; Chevalier, J.; Ben Rayana, F.
2018-03-01
A very promising alternative to the state-of-the-art static volume measurements for liquefied natural gas (LNG) custody transfer processes is the dynamic principle of flow metering. As the Designated Institute (DI) of the LNE (‘Laboratoire National de métrologie et d’Essais’, being the French National Metrology Institute) for high-pressure gas flow metering, Cesame-Exadebit is involved in various research and development programs. Within the framework of the first (2010-2013) and second (2014-2017) EURAMET Joint Research Project (JRP), named ‘Metrological support for LNG custody transfer and transport fuel applications’, Cesame-Exadebit explored a novel cryogenic flow metering technology using laser Doppler velocimetry (LDV) as an alternative to ultrasonic and Coriolis flow metering. Cesame-Exadebit is trying to develop this technique as a primary standard for cryogenic flow meters. Currently, cryogenic flow meters are calibrated at ambient temperatures with water. Results are then extrapolated to be in the Reynolds number range of real applications. The LDV standard offers a unique capability to perform online calibration of cryogenic flow meters in real conditions (temperature, pressure, piping and real flow disturbances). The primary reference has been tested on an industrial process in a LNG terminal during truck refuelling. The reference can calibrate Coriolis flow meters being used daily with all the real environmental constraints, and its utilisation is transparent for LNG terminal operators. The standard is traceable to Standard International units and the combined extended uncertainties have been determined and estimated to be lower than 0.6% (an ongoing improvement to reducing the correlation function uncertainty, which has a major impact in the uncertainty estimation).
BLAST for Behind-the-Meter Applications Lite Tool | Transportation Research
provided by NREL's PV Watts calculator. A generic utility rate structure framework makes it possible to the BLAST documentation for proper CSV formatting. Rate structure values Define demand charges and energy costs to best represent your utility rate structure of interest. Demand charges and energy costs
NASA Astrophysics Data System (ADS)
Bilguun, Amarsaikhan; Nakaso, Tetsushi; Harigai, Toru; Suda, Yoshiyuki; Takikawa, Hirofumi; Tanoue, Hideto
2016-02-01
In recent years, greenhouse automatic-control, based on the measurement of solar irradiance, has been attracting attention. This control is an effective method for improving crop production. In the agricultural field, it is necessary to measure Photon Flux Density (PFD), which is an important parameter in the promotion of plant growth. In particular, the PFD of Photosynthetically Active Radiation (PAR, 400-700 nm) and Plant Biologically Active Radiation (PBAR, 300-800 nm) have been discussed in agricultural plant science. The commercial quantum meter (QM, PAR meter) can only measure Photosynthetically Photon Flux Density (PPFD) which is the integrated PFD quantity on the PAR wavelength. In this research, a band-spectral pyranometer or quantum meter using PVs with optical bandpass filters for dividing the PBAR wavelength into 100 nm bands (five independent channels) was developed. Before field testing, calibration of the instruments was carried out using a solar simulator. Next, a field test was conducted in three differing weather conditions such as clear, partly cloudy and cloudy skies. As a result, it was found that the response rate of the developed pyranometer was faster by four seconds compared with the response rate of the commercial pyranometer. Moreover, the outputs of each channel in the developed pyranometer were very similar to the integrated outputs of the commercial spectroradiometer. It was confirmed that the solar irradiance could be measured in each band separately using the developed band-spectral pyranometer. It was indicated that the developed band-spectral pyranometer could also be used as a PV band-spectral quantum meter which is obtained by converting the band irradiance into band PFD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bilguun, Amarsaikhan, E-mail: bilguun@pes.ee.tut.ac.jp; Nakaso, Tetsushi; Harigai, Toru
In recent years, greenhouse automatic-control, based on the measurement of solar irradiance, has been attracting attention. This control is an effective method for improving crop production. In the agricultural field, it is necessary to measure Photon Flux Density (PFD), which is an important parameter in the promotion of plant growth. In particular, the PFD of Photosynthetically Active Radiation (PAR, 400-700 nm) and Plant Biologically Active Radiation (PBAR, 300-800 nm) have been discussed in agricultural plant science. The commercial quantum meter (QM, PAR meter) can only measure Photosynthetically Photon Flux Density (PPFD) which is the integrated PFD quantity on the PAR wavelength. Inmore » this research, a band-spectral pyranometer or quantum meter using PVs with optical bandpass filters for dividing the PBAR wavelength into 100 nm bands (five independent channels) was developed. Before field testing, calibration of the instruments was carried out using a solar simulator. Next, a field test was conducted in three differing weather conditions such as clear, partly cloudy and cloudy skies. As a result, it was found that the response rate of the developed pyranometer was faster by four seconds compared with the response rate of the commercial pyranometer. Moreover, the outputs of each channel in the developed pyranometer were very similar to the integrated outputs of the commercial spectroradiometer. It was confirmed that the solar irradiance could be measured in each band separately using the developed band-spectral pyranometer. It was indicated that the developed band-spectral pyranometer could also be used as a PV band-spectral quantum meter which is obtained by converting the band irradiance into band PFD.« less
Sedimentation Survey of Lago Patillas, Puerto Rico, March 2007
Soler-López, Luis R.
2010-01-01
Lago Patillas is a reservoir located on the confluence of Rio Grande de Patillas and Rio Marin, in the municipality of Patillas in southern Puerto Rico, about 3 kilometers north of the town of Patillas and about 8 kilometers northeast of the town of Arroyo (fig. 1). The dam is owned and operated by the Puerto Rico Electric Power Authority (PREPA) and was constructed in 1914 for the irrigation of croplands in the southern coastal plains of Puerto Rico along the towns of Arroyo, Guayama, Patillas, and Salinas. Irrigation releases are made through the outlet works into the Patillas Irrigation Canal that extends 32.2 kilometers from the Patillas dam to Rio Salinas. The dam is a semi-hydraulic earthfill with a structural height of 44.80 meters, a top width of 4.57 meters, a base width of 190.49 meters, and a crest length of 325.21 meters. The spillway structure is physically separated from the earthfill dam, has an elevation of 58.21 meters above mean sea level, and has three radial arm gates (Puerto Rico Electric Power Authority, 1979). The reservoir impounds the waters of the Rio Grande de Patillas and Rio Marin. The reservoir has a drainage area of 66.3 square kilometers. Additional information and operational procedures are listed in Soler-Lopez and others (1999). During March 14-15, 2007, the U.S. Geological Survey (USGS), Caribbean Water Science Center (CWSC), in cooperation with the PREPA conducted a bathymetric survey of Lago Patillas to update the reservoir storage capacity and update the reservoir sedimentation rate by comparing the 2007 bathymetric survey data with previous 1997 data. The purpose of this report is to update the reservoir storage capacity, sedimentation rates, and areas of substantial sediment accumulation since April 1997.
Storage capacity and sedimentation trends of Lago Garzas, Puerto Rico, 1996-2007
Soler-Lopez, L.R.
2012-01-01
Lago Garzas is located in west-central Puerto Rico, about 3.5 kilometers southwest of the town of Adjuntas, in the confluence of the Río Vacas and three other unnamed tributaries (fig. 1). The dam is owned and operated by the Puerto Rico Electric Power Authority (PREPA), and was constructed in 1943 for hydroelectric power generation and municipal water use along the southern coast. The dam is a semi-hydraulic earthfill embankment lined with boulders, and has a height of 61.57 meters, a top width of 9.14 meters, a base width of 365.76 meters, and a crest length of 227.37 meters; State Road PR-518 crosses the top of the dam. A morning-glory-type spillway is located near the west abutment of the dam at an elevation of 736.12 meters above mean sea level (Puerto Rico Water Resources Authority, 1969). Figure 2 shows an aerial photograph of the Lago Garzas earthfill dam and the morning-glory spillway section. Additional information and operational procedures are provided in Soler-López and others (1999). During July 17-18, 2007, the U.S. Geological Survey (USGS) Caribbean Water Science Center, in cooperation with the Puerto Rico Aqueduct and Sewer Authority, conducted a bathymetric survey of Lago Garzas to update the reservoir storage capacity and update the reservoir sedimentation rate by comparing the 2007 data with the previous 1996 bathymetric survey results. The purpose of this report is to describe and document the USGS sedimentation survey conducted at Lago Garzas during July 2007, including the methods used to update the reservoir storage capacity, sedimentation rates, and areas of substantial sediment accumulation since 1996.
[Brachytherapy for head and neck cancers].
Peiffert, D; Coche-Dequéant, B; Lapeyre, M; Renard, S
2018-05-29
The main indications of the brachytherapy of head and neck cancers are the limited tumours of the lip, the nose, the oral cavity and the oropharynx. Nasopharynx tumours are nowadays treated by intensity-modulated radiotherapy. This technique can be exclusive, associated with external radiotherapy or postoperative. It can also be a salvage treatment for the second primaries in previously irradiated areas. If the low dose rate brachytherapy rules remain the reference, the pulse dose rate technique allows the prescription of the dose rate and the optimisation of the dose distribution. Results of high dose rate brachytherapy are now published. This paper reports the recommendations of the Gec-ESTRO, published in 2017, and takes into account the data of the historical low dose rate series, and is upgraded with the pulsed-dose rate and high dose rate series. Copyright © 2018. Published by Elsevier SAS.
BLOND, a building-level office environment dataset of typical electrical appliances.
Kriechbaumer, Thomas; Jacobsen, Hans-Arno
2018-03-27
Energy metering has gained popularity as conventional meters are replaced by electronic smart meters that promise energy savings and higher comfort levels for occupants. Achieving these goals requires a deeper understanding of consumption patterns to reduce the energy footprint: load profile forecasting, power disaggregation, appliance identification, startup event detection, etc. Publicly available datasets are used to test, verify, and benchmark possible solutions to these problems. For this purpose, we present the BLOND dataset: continuous energy measurements of a typical office environment at high sampling rates with common appliances and load profiles. We provide voltage and current readings for aggregated circuits and matching fully-labeled ground truth data (individual appliance measurements). The dataset contains 53 appliances (16 classes) in a 3-phase power grid. BLOND-50 contains 213 days of measurements sampled at 50kSps (aggregate) and 6.4kSps (individual appliances). BLOND-250 consists of the same setup: 50 days, 250kSps (aggregate), 50kSps (individual appliances). These are the longest continuous measurements at such high sampling rates and fully-labeled ground truth we are aware of.
BLOND, a building-level office environment dataset of typical electrical appliances
NASA Astrophysics Data System (ADS)
Kriechbaumer, Thomas; Jacobsen, Hans-Arno
2018-03-01
Energy metering has gained popularity as conventional meters are replaced by electronic smart meters that promise energy savings and higher comfort levels for occupants. Achieving these goals requires a deeper understanding of consumption patterns to reduce the energy footprint: load profile forecasting, power disaggregation, appliance identification, startup event detection, etc. Publicly available datasets are used to test, verify, and benchmark possible solutions to these problems. For this purpose, we present the BLOND dataset: continuous energy measurements of a typical office environment at high sampling rates with common appliances and load profiles. We provide voltage and current readings for aggregated circuits and matching fully-labeled ground truth data (individual appliance measurements). The dataset contains 53 appliances (16 classes) in a 3-phase power grid. BLOND-50 contains 213 days of measurements sampled at 50kSps (aggregate) and 6.4kSps (individual appliances). BLOND-250 consists of the same setup: 50 days, 250kSps (aggregate), 50kSps (individual appliances). These are the longest continuous measurements at such high sampling rates and fully-labeled ground truth we are aware of.
BLOND, a building-level office environment dataset of typical electrical appliances
Kriechbaumer, Thomas; Jacobsen, Hans-Arno
2018-01-01
Energy metering has gained popularity as conventional meters are replaced by electronic smart meters that promise energy savings and higher comfort levels for occupants. Achieving these goals requires a deeper understanding of consumption patterns to reduce the energy footprint: load profile forecasting, power disaggregation, appliance identification, startup event detection, etc. Publicly available datasets are used to test, verify, and benchmark possible solutions to these problems. For this purpose, we present the BLOND dataset: continuous energy measurements of a typical office environment at high sampling rates with common appliances and load profiles. We provide voltage and current readings for aggregated circuits and matching fully-labeled ground truth data (individual appliance measurements). The dataset contains 53 appliances (16 classes) in a 3-phase power grid. BLOND-50 contains 213 days of measurements sampled at 50kSps (aggregate) and 6.4kSps (individual appliances). BLOND-250 consists of the same setup: 50 days, 250kSps (aggregate), 50kSps (individual appliances). These are the longest continuous measurements at such high sampling rates and fully-labeled ground truth we are aware of. PMID:29583141
Making The Most Of Flaring M Dwarfs
NASA Astrophysics Data System (ADS)
Hunt-Walker, Nicholas; Hilton, E.; Kowalski, A.; Hawley, S.; Matthews, J.; Holtzman, J.
2011-01-01
We present observations of flare activity using the Microvariability and Oscillations of Stars (MOST) satellite in conjunction with simultaneous spectroscopic and photometric observations from the ARC 3.5-meter, NMSU 1.0-meter, and ARCSAT 0.5-meter telescopes at the Apache Point Observatory. The MOST observations enable unprecedented completeness with regard to observing frequent, low-energy flares on the well-known dMe flare star AD Leo with broadband photometry. The observations span approximately one week with a 60-second cadence and are sensitive to flares as small as 0.01-magnitudes. The time-resolved, ground-based spectroscopy gives measurements of Hα and other important chromospheric emission lines, whereas the Johnson U-, SDSS u-, and SDSS g-band photometry provide color information during the flare events and allow us to relate the MOST observations to decades of previous broadband observations. Understanding the rates and energetics of flare events on M dwarfs will help characterize this source of variability in large time-domain surveys such as LSST and Pan-STARRS. Flare rates are also of interest to astrobiology, since flares affect the habitability of exoplanets orbiting M dwarfs.
Abrisham, Seyed Mohammad J.; Bouzarjomehri, Fathollah; Nafisi-Moghadam, Reza; Sobhan, Mohammad R.; Gadimi, Mahdie; Omidvar, Fereshte
2017-01-01
Background: This study has aimed to measure the patient dose in entire spine radiography by EOS system in comparison with the digital radiography. Methods: EOS stereo-radiography was used for frontal and lateral view spine imaging in 41 patients in a prospective analytical study. A calibrated dose area product (DAP) meter was used for calibration of the DAP in EOS system. The accuracy and precision of the system was confirmed according to the acceptance testing. The same procedure was used for 18 patients referred for lumbar spine digital radiology (overall 36 images). Results: Although radiation fields in the EOS were almost twice of that in digital radiology, and the average peak tube voltage (kVp), current supply to the tube (mA), and the average size and age of the patients referred for EOS imaging were greater than digital radiology, however, the average DAP in EOS was 1/5 of that in digital radiology system. Also, the average dose in the EOS was about 1/20 of that in digital radiology. Conclusion: The patient dose in EOS imaging system was lower in comparison with digital radiology (1/20). PMID:28656161
Abrisham, Seyed Mohammad J; Bouzarjomehri, Fathollah; Nafisi-Moghadam, Reza; Sobhan, Mohammad R; Gadimi, Mahdie; Omidvar, Fereshte
2017-05-01
This study has aimed to measure the patient dose in entire spine radiography by EOS system in comparison with the digital radiography. EOS stereo-radiography was used for frontal and lateral view spine imaging in 41 patients in a prospective analytical study. A calibrated dose area product (DAP) meter was used for calibration of the DAP in EOS system. The accuracy and precision of the system was confirmed according to the acceptance testing. The same procedure was used for 18 patients referred for lumbar spine digital radiology (overall 36 images). Although radiation fields in the EOS were almost twice of that in digital radiology, and the average peak tube voltage (kV p ), current supply to the tube (mA), and the average size and age of the patients referred for EOS imaging were greater than digital radiology, however, the average DAP in EOS was 1/5 of that in digital radiology system. Also, the average dose in the EOS was about 1/20 of that in digital radiology. The patient dose in EOS imaging system was lower in comparison with digital radiology (1/20).
Drobyshev, S G; Benghin, V V
2015-01-01
Parametric analysis of absorbed radiation dose to the cosmonaut working in the Service module (SM) of the International space station (ISS) was made with allowance for anisotropy of the radiation field of the South Atlantic Anomaly. Calculation data show that in weakly shielded SM compartments the radiation dose to poorly shielded viscera may depend essentially on cosmonaut's location and orientation relative to the ISS shell. Difference of the lens absorbed dose can be as high as 5 times depending on orientation of the cosmonaut and the ISS. The effect is less pronounced on the deep seated hematopoietic system; however, it may increase up to 2.5 times during the extravehicular activities. When the cosmonaut is outside on the ISS SM side presented eastward, the absorbed dose can be affected noticeably by remoteness from the SM. At a distance less than 1.5 meters away from the SM east side in the course of ascending circuits, the calculated lens dose is approximately half as compared with the situation when the cosmonaut is not shielded by the ISS material.
Identifying the Jaramillo Subchron in cave sediments using ESR
NASA Astrophysics Data System (ADS)
Pares, J. M.; Moreno, D.; Duval, M.
2017-12-01
The Jaramillo Subchron is represented by marine isotope stages 31 to 28, a period that embodies a fundamental shift in the Earth's climate known as the Early-Middle Pleistocene transition (EMPT). Also, this time interval is a critical period in human evolution and therefore identifying the Jaramillo provides an invaluable timeline. The correlation of magnetic chrons to the GPTS in sediments is typically hampered by the lack of a tie-point, as radiometric methods are rarely appropriate. In this study we combine Electron Spin Resonance (ESR) results from quartz grains, and paleomagnetism to identify the Jaramillo Subchron in cave sediments that include artifact-bearing layers. The ESR age estimate is basically derived from the determination of the equivalent dose, which is the laboratory estimate of the total dose absorbed by the sample since the ESR signal has been last reset to zero by sunlight exposure, and the dose rate, which is an estimation of the mean dose annually absorbed by the sample. The magnetostratigraphic study, based on more than 140 specimens over 20 meters-thick sedimentary sequence, results in three major reversals, which are interpreted from top to bottom as the Matuyama-Brunhes boundary and the Jaramillo Subchron. Both sediments and speleothems generally carry stable remanent magnetization directions mostly residing in magnetite, as supported by progressive alternating field (AF) demagnetization and rock magnetism. ESR dating on quartz grains from an 80 cm-thick stratigraphic layer that displays normal polarity gives an age of 0.84±0.12 Ma, consistent within the error with the current ages of the Jaramillo Subchron. Documenting the Jaramillo in fossiliferous sediments is important because it saw the EMPT and associated faunal turnover, as well as the expansion of hominins outside Africa. Also, this study highlights the potential of ESR dating on quartz grains from cave sediments to interpret magnetostratigraphic records.
PRD3000: A novel Personnel Radiation Detector with Radiation Exposure Monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fallu-Labruyere, A.; Micou, C.; Schulcz, F.
PRD3000{sup TM} is a novel Personal Radiation Detector (PRD) with personnel radiation dose exposure monitoring. It is intended for First Responders, Law Enforcement, Customs Inspectors protecting critical infrastructures for detecting unexpected radioactive sources, who also need real time Hp(10) dose equivalent information. Traditional PRD devices use scintillator materials instrumented through either a photomultiplier tube or a photodiode photodetector. While the former is bulky and sensitive to magnetic fields, the latter has to compromise radiation sensitivity and energy threshold given its current noise per unit of photo-detection surface. Recently, solid state photodetectors (SiPM), based on arrays of Geiger operated diodes, havemore » emerged as a scalable digital photodetector for photon counting. Their strong breakdown voltage temperature dependence (on the order of tens of milli-volts per K) has however limited their use for portable instruments where strong temperature gradients can be experienced, and limited power is available to temperature stabilize. The PRD3000 is based on the industry standard DMC3000 active dosimeter that complies with IEC 61526 Ed. 3 and ANSI 42.20 for direct reading personal dose equivalent meters and active personnel radiation monitors. An extension module is based on a CsI(Tl) scintillator readout by a temperature compensated SiPM. Preliminary nuclear tests combined with a measured continuous operation in excess of 240 hours from a single AAA battery cell indicate that the PRD3000 complies with the IEC 62401 Ed.2 and ANSI 42.32 without sacrificing battery life time. We present a summary of the device test results, starting with performance stability over a temperature range of - 20 deg. C to 50 deg. C, false alarm rates and dynamic response time. (authors)« less
The influence of antiorthostatic unloading and long gamma-irradiation on rat bone marrow (MSCs)
NASA Astrophysics Data System (ADS)
Roe, Maria; Bobyleva, Polina; Shtemberg, Andrey; Buravkova, Ludmila
With the prospect of long interplanetary spaceflight becoming a real possibility there are some important questions that need to be answered regarding the combined effects of microgravity and long gamma-irradiation.The aim of this study was to evaluate the effects of synchronous antiorthostatic unloading and fractional gamma-irradiation on the functional characteristics of rat bone marrow multipotent stromal cells (MSCs).This experiment was carried out following all rules laid out by the Commission on Bioethics at the SSC RF - IBMP RAS. In this experiment the Wistar rats were kept in an unloaded position for a duration of 30 days. They were also subjected to 6 doses of gamma-radiation on the “GOBO-60” with a source of (137) Cs. The dose rate set to 1 meter 50 sGr / H (Total dose of 3 Gr).The study revealed a significant reduction in the number of colonies (CFU-F) in all cultures from the experimental groups when compared to the control groups. The most significant reduction was observed in the group, which had been subject to combined unloading, and radiation. This result was confirmed by examination of cell cultures during 10 days of growth.We found that the CD45 expression was increased in the groups exposed to radiation. At the same time a reduction in the expression of CD90 was observed during combination of radiation and unloading we found.The experimental groups also differed from the control group showing smaller lipid inclusions and decreased expression of alkaline phosphates in the MSCs. This experiment concluded that the bone marrow MSCs after a combination of unloading and multiple radiation sessions, showed a decrease in proliferation and differentiation potential which could reduce the adaption and reparative capacity of the organism.
NASA Astrophysics Data System (ADS)
Nishizawa, Yukiyasu; Sugita, Takeshi; Sanada, Yukihisa; Torii, Tatsuo
2015-04-01
Since 2011, MEXT (Ministry of Education, Culture, Sports, Science and Technology, Japan) have been conducting aerial monitoring to investigate the distribution of radioactive cesium dispersed into the atmosphere after the accident at the Fukushima Dai-ichi Nuclear Power Plant (FDNPP), Tokyo Electric Power Company. Distribution maps of the air dose-rate at 1 m above the ground and the radioactive cesium deposition concentration on the ground are prepared using spectrum obtained by aerial monitoring. The radioactive cesium deposition is derived from its dose rate, which is calculated by excluding the dose rate of the background radiation due to natural radionuclides from the air dose-rate at 1 m above the ground. The first step of the current method of calculating the dose rate due to natural radionuclides is calculate the ratio of the total count rate of areas where no radioactive cesium is detected and the count rate of regions with energy levels of 1,400 keV or higher (BG-Index). Next, calculate the air dose rate of radioactive cesium by multiplying the BG-Index and the integrated count rate of 1,400 keV or higher for the area where the radioactive cesium is distributed. In high dose-rate areas, however, the count rate of the 1,365-keV peak of Cs-134, though small, is included in the integrated count rate of 1,400 keV or higher, which could cause an overestimation of the air dose rate of natural radionuclides. We developed a method for accurately evaluating the distribution maps of natural air dose-rate by excluding the effect of radioactive cesium, even in contaminated areas, and obtained the accurate air dose-rate map attributed the radioactive cesium deposition on the ground. Furthermore, the natural dose-rate distribution throughout Japan has been obtained by this method.
Aerocapture Performance Analysis of A Venus Exploration Mission
NASA Technical Reports Server (NTRS)
Starr, Brett R.; Westhelle, Carlos H.
2005-01-01
A performance analysis of a Discovery Class Venus Exploration Mission in which aerocapture is used to capture a spacecraft into a 300km polar orbit for a two year science mission has been conducted to quantify its performance. A preliminary performance assessment determined that a high heritage 70 sphere-cone rigid aeroshell with a 0.25 lift to drag ratio has adequate control authority to provide an entry flight path angle corridor large enough for the mission s aerocapture maneuver. A 114 kilograms per square meter ballistic coefficient reference vehicle was developed from the science requirements and the preliminary assessment s heating indicators and deceleration loads. Performance analyses were conducted for the reference vehicle and for sensitivity studies on vehicle ballistic coefficient and maximum bank rate. The performance analyses used a high fidelity flight simulation within a Monte Carlo executive to define the aerocapture heating environment and deceleration loads and to determine mission success statistics. The simulation utilized the Program to Optimize Simulated Trajectories (POST) that was modified to include Venus specific atmospheric and planet models, aerodynamic characteristics, and interplanetary trajectory models. In addition to Venus specific models, an autonomous guidance system, HYPAS, and a pseudo flight controller were incorporated in the simulation. The Monte Carlo analyses incorporated a reference set of approach trajectory delivery errors, aerodynamic uncertainties, and atmospheric density variations. The reference performance analysis determined the reference vehicle achieves 100% successful capture and has a 99.87% probability of attaining the science orbit with a 90 meters per second delta V budget for post aerocapture orbital adjustments. A ballistic coefficient trade study conducted with reference uncertainties determined that the 0.25 L/D vehicle can achieve 100% successful capture with a ballistic coefficient of 228 kilograms per square meter and that the increased ballistic coefficient increases post aerocapture V budget to 134 meters per second for a 99.87% probability of attaining the science orbit. A trade study on vehicle bank rate determined that the 0.25 L/D vehicle can achieve 100% successful capture when the maximum bank rate is decreased from 30 deg/s to 20 deg/s. The decreased bank rate increases post aerocapture delta V budget to 102 meters per second for a 99.87% probability of attaining the science orbit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taneja, S; Bartol, L; Culberson, W
2015-06-15
Purpose: The calibration of radiation protection instrumentation including ionization chambers, scintillators, and Geiger Mueller (GM) counters used as survey meters are often done using {sup 137}Cs irradiators. During calibration, irradiators use a combination of attenuators with various thicknesses to modulate the beam to a known air-kerma rate. The variations in energy spectra as a result of these attenuators are not accounted for and may play a role in the energy-dependent response of survey meters. This study uses an experimentally validated irradiator geometry modeled in the MCNP5 transport code to characterize the effects of attenuation on the energy spectrum. Methods: Amore » Hopewell Designs G-10 {sup 137}Cs irradiator with lead attenuators of thicknesses of 0.635, 1.22, 2.22, and 4.32 cm, was used in this study. The irradiator geometry was modeled in MCNP5 and validated by comparing measured and simulated percent depth dose (PDD) and cross-field profiles. Variations in MCNP5 simulated spectra with increasing amounts of attenuation were characterized using the relative intensity of the 662 keV peak and the average energy. Results: Simulated and measured PDDs and profiles agreed within the associated uncertainty. The relative intensity of the 662 keV peak for simulated spectra normalized to the intensity of the unattenuated spectra ranged from 0.16% to 100% based on attenuation thickness. The average energy for simulated spectra for attenuators ranged from 582 keV with no attenuation to 653 keV with 5.54 cm of attenuation. Statistical uncertainty for MCNP5 simulations ranged from 0.11% to 3.69%. Conclusion: This study successfully used MCNP5 to validate a {sup 137}Cs irradiator geometry and characterize variations in energy spectra between different amounts of attenuation. Variations in the average energy of up to 12% were determined through simulations, and future work will aim to determine the effects of these differences on survey meter response and calibration.« less
Leuco-crystal-violet micelle gel dosimeters: Component effects on dose-rate dependence
NASA Astrophysics Data System (ADS)
Xie, J. C.; Katz, E. A. B.; Alexander, K. M.; Schreiner, L. J.; McAuley, K. B.
2017-05-01
Designed experiments were performed to produce empirical models for the dose sensitivity, initial absorbance, and dose-rate dependence respectively for leucocrystal violet (LCV) micelle gel dosimeters containing cetyltrimethylammonium bromide (CTAB) and 2,2,2-trichloroethanol (TCE). Previous gels of this type showed dose-rate dependent behaviour, producing an ˜18% increase in dose sensitivity between dose rates of 100 and 600 cGy min-1. Our models predict that the dose rate dependence can be reduced by increasing the concentration of TCE, CTAB and LCV. Increasing concentrations of LCV and CTAB produces a significant increase in dose sensitivity with a corresponding increase in initial absorbance. An optimization procedure was used to determine a nearly dose-rate independent gel which maintained high sensitivity and low initial absorbance. This gel which contains 33 mM CTAB, 1.25 mM LCV, and 96 mM TCE in 25 mM trichloroacetic acid and 4 wt% gelatin showed an increase in dose sensitivity of only 4% between dose rates of 100 and 600 cGy min-1, and provides an 80% greater dose sensitivity compared to Jordan’s standard gels with similar initial absorbance.
Dose and dose rate effects of whole-body gamma-irradiation: I. Lymphocytes and lymphoid organs
NASA Technical Reports Server (NTRS)
Pecaut, M. J.; Nelson, G. A.; Gridley, D. S.
2001-01-01
The major goal of part I of this study was to compare varying doses and dose rates of whole-body gamma-radiation on lymphoid cells and organs. C57BL/6 mice (n = 75) were exposed to 0, 0.5, 1.5, and 3.0 Gy gamma-rays (60Co) at 1 cGy/min (low-dose rate, LDR) and 80 cGy/min (high-dose rate, HDR) and euthanized 4 days later. A significant dose-dependent loss of spleen mass was observed with both LDR and HDR irradiation; for the thymus this was true only with HDR. Decreasing leukocyte and lymphocyte numbers occurred with increasing dose in blood and spleen at both dose rates. The numbers (not percentages) of CD3+ T lymphocytes decreased in the blood in a dose-dependent manner at both HDR and LDR. Splenic T cell counts decreased with dose only in HDR groups; percentages increased with dose at both dose rates. Dose-dependent decreases occurred in CD4+ T helper and CD8+ T cytotoxic cell counts at HDR and LDR. In the blood the percentages of CD4+ cells increased with increasing dose at both dose rates, whereas in the spleen the counts decreased only in the HDR groups. The percentages of the CD8+ population remained stable in both blood and spleen. CD19+ B cell counts and percentages in both compartments declined markedly with increasing HDR and LDR radiation. NK1.1+ natural killer cell numbers and proportions remained relatively stable. Overall, these data indicate that the observed changes were highly dependent on the dose, but not dose rate, and that cells in the spleen are more affected by dose rate than those in blood. The results also suggest that the response of lymphocytes in different body compartments may be variable.
Estimation of the Dose and Dose Rate Effectiveness Factor
NASA Technical Reports Server (NTRS)
Chappell, L.; Cucinotta, F. A.
2013-01-01
Current models to estimate radiation risk use the Life Span Study (LSS) cohort that received high doses and high dose rates of radiation. Transferring risks from these high dose rates to the low doses and dose rates received by astronauts in space is a source of uncertainty in our risk calculations. The solid cancer models recommended by BEIR VII [1], UNSCEAR [2], and Preston et al [3] is fitted adequately by a linear dose response model, which implies that low doses and dose rates would be estimated the same as high doses and dose rates. However animal and cell experiments imply there should be curvature in the dose response curve for tumor induction. Furthermore animal experiments that directly compare acute to chronic exposures show lower increases in tumor induction than acute exposures. A dose and dose rate effectiveness factor (DDREF) has been estimated and applied to transfer risks from the high doses and dose rates of the LSS cohort to low doses and dose rates such as from missions in space. The BEIR VII committee [1] combined DDREF estimates using the LSS cohort and animal experiments using Bayesian methods for their recommendation for a DDREF value of 1.5 with uncertainty. We reexamined the animal data considered by BEIR VII and included more animal data and human chromosome aberration data to improve the estimate for DDREF. Several experiments chosen by BEIR VII were deemed inappropriate for application to human risk models of solid cancer risk. Animal tumor experiments performed by Ullrich et al [4], Alpen et al [5], and Grahn et al [6] were analyzed to estimate the DDREF. Human chromosome aberration experiments performed on a sample of astronauts within NASA were also available to estimate the DDREF. The LSS cohort results reported by BEIR VII were combined with the new radiobiology results using Bayesian methods.
Recovery to resting metabolic state after walking.
Frankenfield, David C; Coleman, Abigail
2009-11-01
Metabolic rate is usually measured in a resting state. To achieve this, a period of up to 30 minutes is given to recover from walking prior to the test. A work group from the American Dietetic Association recommends that 10 to 20 minutes is sufficient to achieve rest, but supporting data are limited. The purpose of this prospective observational study then was to determine how much time is needed for adults to recover to rest after walking 300 meters. Each participant's metabolic rate was measured with indirect calorimetry for 30 minutes after a 30-minute rest. The participant then walked 300 meters on a measured course, and metabolic rate was measured again for 30 minutes. Recovery to rest was considered to have occurred when the measured metabolic rate returned to a level of less than 6% above the resting measurement. Forty healthy ambulatory adults completed this study. Analysis of variance indicated that after a 300-meter walk, resting level of metabolic rate was achieved by the 10th minute of rest. However, it took 20 minutes for 95% of all participants to meet the 6% threshold (the remaining 5% who did not reach the threshold were observed to be moving during the measurement). The results of this study indicate that if a person lies still, recovery to rest after walking occurs by 20 minutes, validating the recommendation made by the expert panel of the American Dietetic Association's work group on indirect calorimetry. Rest periods of 30 minutes are not required, but the person should be observed for movement.
McDonald, M.G.
1981-01-01
Muskegon County, Michigan, disposes of waste water by spray irrigating farmland on its waste-disposal site. Buried drains in the highly permeable unconfined aquifer at the site control the level of the water table. Hydraulic conductivity of the aquifer and drain-leakance, the reciprocal of resistance to flow into the drains, was determined at a representative irrigation circle while calibrating a model of the ground-water flow system. Hydraulic conductivity is 0.00055 meter per second in the north zone of the circle and 0.00039 meter per second in the south zone. Drain leakance is low in both zones: 2.9 x 10-6 meters per second in the north and 9.5 x 10-6 meters per second in the south. Low drain leakance is responsible for waterlogging when irrigation rates are maintained at design levels. The capacity of the study circle to accept waste water is 35 percent less than design capacity.
Dose Rate Effects in Linear Bipolar Transistors
NASA Technical Reports Server (NTRS)
Johnston, Allan; Swimm, Randall; Harris, R. D.; Thorbourn, Dennis
2011-01-01
Dose rate effects are examined in linear bipolar transistors at high and low dose rates. At high dose rates, approximately 50% of the damage anneals at room temperature, even though these devices exhibit enhanced damage at low dose rate. The unexpected recovery of a significant fraction of the damage after tests at high dose rate requires changes in existing test standards. Tests at low temperature with a one-second radiation pulse width show that damage continues to increase for more than 3000 seconds afterward, consistent with predictions of the CTRW model for oxides with a thickness of 700 nm.
A comparison of selected models for estimating cable icing
NASA Astrophysics Data System (ADS)
McComber, Pierre; Druez, Jacques; Laflamme, Jean
In many cold climate countries, it is becoming increasingly important to monitor transmission line icing. Indeed, by knowing in advance of localized danger for icing overloads, electric utilities can take measures in time to prevent generalized failure of the power transmission network. Recently in Canada, a study was made to compare the estimation of a few icing models working from meteorological data in estimating ice loads for freezing rain events. The models tested were using only standard meteorological parameters, i.e. wind speed and direction, temperature and precipitation rate. This study has shown that standard meteorological parameters can only achieve very limited accuracy, especially for longer icing events. However, with the help of an additional instrument monitoring the icing rate intensity, a significant improvement in model prediction might be achieved. The icing rate meter (IRM) which counts icing and de-icing cycles per unit time on a standard probe can be used to estimate the icing intensity. A cable icing estimation is then made by taking into consideration the accretion size, temperature, wind speed and direction, and precipitation rate. In this paper, a comparison is made between the predictions of two previously tested models (one obtained and the other reconstructed from their description in the public literature) and of a model based on the icing rate meter readings. The models are tested against nineteen events recorded on an icing test line at Mt. Valin, Canada, during the winter season 1991-1992. These events are mostly rime resulting from in-cloud icing. However, freezing rain and wet snow events were also recorded. Results indicate that a significant improvement in the estimation is attained by using the icing rate meter data together with the other standard meteorological parameters.
Customizing inhaled therapy to meet the needs of COPD patients.
Fromer, Leonard; Goodwin, Elizabeth; Walsh, John
2010-03-01
Chronic obstructive pulmonary disease (COPD) is a progressive disease characterized by airflow limitation resulting from emphysema and chronic bronchitis. Inhaled therapy is the major therapeutic approach for treating COPD. Multiple inhaler medications are available in the United States and are delivered by a variety of different devices: metered-dose inhalers, dry powdered inhalers, and nebulizers. Each inhaler device has unique requirements for use that must be correctly performed by the patient for successful drug delivery. Patients with COPD represent a medically diverse population, with each patient having distinct characteristics, such as lung function, comorbidities, cognitive functions, hand strength, and lifestyle. These characteristics impact the patient's ability to properly use specific inhaler devices and therefore affect adherence to therapy, therapeutic outcomes, and quality of life. It is estimated that between 28% to 68% of patients do not use metered-dose inhalers or dry powder inhalers correctly. Worsening symptoms or increased frequency of exacerbations may not always indicate disease progression but may indicate a patient's inability to use their inhaler device properly. This review discusses the patient- and device-specific factors to be considered when choosing an inhaled therapy, which will be concordant with the patient's medical needs, preferences, and lifestyle. The review also considers how the ideas underlying the patient-centered medical home model can be incorporated into the choice and use of inhaler device for a given patient with COPD to improve treatment outcomes.
Aesthetic and Emotional Effects of Meter and Rhyme in Poetry
Obermeier, Christian; Menninghaus, Winfried; von Koppenfels, Martin; Raettig, Tim; Schmidt-Kassow, Maren; Otterbein, Sascha; Kotz, Sonja A.
2013-01-01
Metrical patterning and rhyme are frequently employed in poetry but also in infant-directed speech, play, rites, and festive events. Drawing on four line-stanzas from nineteenth and twentieth German poetry that feature end rhyme and regular meter, the present study tested the hypothesis that meter and rhyme have an impact on aesthetic liking, emotional involvement, and affective valence attributions. Hypotheses that postulate such effects have been advocated ever since ancient rhetoric and poetics, yet they have barely been empirically tested. More recently, in the field of cognitive poetics, these traditional assumptions have been readopted into a general cognitive framework. In the present experiment, we tested the influence of meter and rhyme as well as their interaction with lexicality in the aesthetic and emotional perception of poetry. Participants listened to stanzas that were systematically modified with regard to meter and rhyme and rated them. Both rhyme and regular meter led to enhanced aesthetic appreciation, higher intensity in processing, and more positively perceived and felt emotions, with the latter finding being mediated by lexicality. Together these findings clearly show that both features significantly contribute to the aesthetic and emotional perception of poetry and thus confirm assumptions about their impact put forward by cognitive poetics. The present results are explained within the theoretical framework of cognitive fluency, which links structural features of poetry with aesthetic and emotional appraisal. PMID:23386837
Thermoluminescence measurements of neutron dose around a medical linac.
Barquero, R; Méndez, R; Iñiguez, M P; Vega, H R; Voytchev, M
2002-01-01
The photoncutron ambient dose around a 18 MV medical electron lineal accelerator has been measured with LiF:Mg,Ti chips of 3 x 3 x 1 mm inside moderating spheres. During the measurements a water phantom was irradiated in a field of 40 x 40 cm2. Two methods have been considered for comparison. In the first, a TLD-600/TLD-700 pair at the centre of a 25 cm diameter paraffine sphere was used, with the system behaving as a rem meter. In the second method, TLD-600/TLD-700 pairs, bare and at the centre of 7.6, 12.7, 20.3, 25.4, and 30.5 cm diameter polyethylene Bonner spheres were used to obtain the neutron spectrum. This was unfolded using the BUNKIUT code with the SPUNIT algorithm and the UTA4 and ARKI response functions. The neutron dose was followed by multiplying the unfolded neutron spectrum by the ambient dose equivalent to neutron fluence conversion factors. Both methods result in 0.5 mSv x Gy(-1) m away from the isocentre.
Sonawane, A U; Shirva, V K; Pradhan, A S
2010-02-01
Skin entrance doses (SEDs) were estimated by carrying out measurements of air kerma from 101 X-ray machines installed in 45 major and selected hospitals in the country by using a silicon detector-based dose Test-O-Meter. 1209 number of air kerma measurements of diagnostic projections for adults have been analysed for seven types of common diagnostic examinations, viz. chest (AP, PA, LAT), lumbar spine (AP, LAT), thoracic spine (AP, LAT), abdomen (AP), pelvis (AP), hip joints (AP) and skull (PA, LAT) for different film-screen combinations. The values of estimated diagnostic reference levels (DRLs) (third quartile values of SEDs) were compared with guidance levels/DRLs of doses published by the IAEA-BSS-Safety Series No. 115, 1996; HPA (NRPB) (2000 and 2005), UK; CRCPD/CDRH (USA), European Commission and other national values. The values of DRLs obtained in this study are comparable with the values published by the IAEA-BSS-115 (1996); HPA (NRPB) (2000 and 2005) UK; EC and CRCPD/CDRH, USA including values obtained in previous studies in India.
March, Rod S.
2003-01-01
The 1996 measured winter snow, maximum winter snow, net, and annual balances in the Gulkana Glacier Basin were evaluated on the basis of meteorological, hydrological, and glaciological data. Averaged over the glacier, the measured winter snow balance was 0.87 meter on April 18, 1996, 1.1 standard deviation below the long-term average; the maximum winter snow balance, 1.06 meters, was reached on May 28, 1996; and the net balance (from August 30, 1995, to August 24, 1996) was -0.53 meter, 0.53 standard deviation below the long-term average. The annual balance (October 1, 1995, to September 30, 1996) was -0.37 meter. Area-averaged balances were reported using both the 1967 and 1993 area altitude distributions (the numbers previously given in this abstract use the 1993 area altitude distribution). Net balance was about 25 percent less negative using the 1993 area altitude distribution than the 1967 distribution. Annual average air temperature was 0.9 degree Celsius warmer than that recorded with the analog sensor used since 1966. Total precipitation catch for the year was 0.78 meter, 0.8 standard deviations below normal. The annual average wind speed was 3.5 meters per second in the first year of measuring wind speed. Annual runoff averaged 1.50 meters over the basin, 1.0 standard deviation below the long-term average. Glacier-surface altitude and ice-motion changes measured at three index sites document seasonal ice-speed and glacier-thickness changes. Both showed a continuation of a slowing and thinning trend present in the 1990s. The glacier terminus and lower ablation area were defined for 1996 with a handheld Global Positioning System survey of 126 locations spread out over about 4 kilometers on the lower glacier margin. From 1949 to 1996, the terminus retreated about 1,650 meters for an average retreat rate of 35 meters per year.
Calès, Paul; Halfon, Philippe; Batisse, Dominique; Carrat, Fabrice; Perré, Philippe; Penaranda, Guillaume; Guyader, Dominique; d'Alteroche, Louis; Fouchard-Hubert, Isabelle; Michelet, Christian; Veillon, Pascal; Lambert, Jérôme; Weiss, Laurence; Salmon, Dominique; Cacoub, Patrice
2010-08-01
We compared 5 non-specific and 2 specific blood tests for liver fibrosis in HCV/HIV co-infection. Four hundred and sixty-seven patients were included into derivation (n=183) or validation (n=284) populations. Within these populations, the diagnostic target, significant fibrosis (Metavir F > or = 2), was found in 66% and 72% of the patients, respectively. Two new fibrosis tests, FibroMeter HICV and HICV test, were constructed in the derivation population. Unadjusted AUROCs in the derivation population were: APRI: 0.716, Fib-4: 0.722, Fibrotest: 0.778, Hepascore: 0.779, FibroMeter: 0.783, HICV test: 0.822, FibroMeter HICV: 0.828. AUROCs adjusted on classification and distribution of fibrosis stages in a reference population showed similar values in both populations. FibroMeter, FibroMeter HICV and HICV test had the highest correct classification rates in F0/1 and F3/4 (which account for high predictive values): 77-79% vs. 70-72% in the other tests (p=0.002). Reliable individual diagnosis based on predictive values > or = 90% distinguished three test categories: poorly reliable: Fib-4 (2.4% of patients), APRI (8.9%); moderately reliable: Fibrotest (25.4%), FibroMeter (26.6%), Hepascore (30.2%); acceptably reliable: HICV test (40.2%), FibroMeter HICV (45.6%) (p<10(-3) between tests). FibroMeter HICV classified all patients into four reliable diagnosis intervals (< or =F1, F1+/-1, > or =F1, > or =F2) with an overall accuracy of 93% vs. 79% (p<10(-3)) for a binary diagnosis of significant fibrosis. Tests designed for HCV infections are less effective in HIV/HCV infections. A specific test, like FibroMeter HICV, was the most interesting test for diagnostic accuracy, correct classification profile, and a reliable diagnosis. With reliable diagnosis intervals, liver biopsy can therefore be avoided in all patients. Copyright 2010 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Leonard, B E; Lucas, A C
2009-02-01
Examined here are the possible effects of the "inverse" dose rate effect (IDRE) on low dose rate (LDR) brachytherapy. The hyper-radiosensitivity and induced radioresistance (HRS/IRR) effect benefits cell killing in radiotherapy, and IDRE and HRS/IRR seem to be generated from the same radioprotective mechanisms. We have computed the IDRE excess cell killing experienced in LDR brachytherapy using permanent seed implants. We conclude, firstly, that IDRE is a dose rate-dependent manifestation of HRS/IRR. Secondly, the presence of HRS/IRR or IDRE in a cell species or tissue must be determined by direct dose-response measurements. Thirdly, a reasonable estimate is that 50-80% of human adjoining connective and organ tissues experience IDRE from permanent implanted LDR brachytherapy. If IDRE occurs for tissues at point A for cervical cancer, the excess cell killing will be about a factor of 3.5-4.0 if the initial dose rate is 50-70 cGy h(-1). It is greater for adjacent tissues at lower dose rates and higher for lower initial dose rates at point A. Finally, higher post-treatment complications are observed in LDR brachytherapy, often for unknown reasons. Some of these are probably a result of IDRE excess cell killing. Measurements of IDRE need be performed for connective and adjacent organ tissues, i.e. bladder, rectum, urinary tract and small bowels. The measured dose rate-dependent dose responses should extended to <10 cGy h(-1) and involve multiple patients to detect patient variability. Results may suggest a preference for high dose rate brachytherapy or LDR brachytherapy without permanent retention of the implant seeds (hence the dose rates in peripheral tissues and organs remain above IDRE thresholds).
Rapid Acute Dose Assessment Using MCNP6
NASA Astrophysics Data System (ADS)
Owens, Andrew Steven
Acute radiation doses due to physical contact with a high-activity radioactive source have proven to be an occupational hazard. Multiple radiation injuries have been reported due to manipulating a radioactive source with bare hands or by placing a radioactive source inside a shirt or pants pocket. An effort to reconstruct the radiation dose must be performed to properly assess and medically manage the potential biological effects from such doses. Using the reference computational phantoms defined by the International Commission on Radiological Protection (ICRP) and the Monte Carlo N-Particle transport code (MCNP6), dose rate coefficients are calculated to assess doses for common acute doses due to beta and photon radiation sources. The research investigates doses due to having a radioactive source in either a breast pocket or pants back pocket. The dose rate coefficients are calculated for discrete energies and can be used to interpolate for any given energy of photon or beta emission. The dose rate coefficients allow for quick calculation of whole-body dose, organ dose, and/or skin dose if the source, activity, and time of exposure are known. Doses are calculated with the dose rate coefficients and compared to results from the International Atomic Energy Agency (IAEA) reports from accidents that occurred in Gilan, Iran and Yanango, Peru. Skin and organ doses calculated with the dose rate coefficients appear to agree, but there is a large discrepancy when comparing whole-body doses assessed using biodosimetry and whole-body doses assessed using the dose rate coefficients.
Manning, F.W.; Groothuis, S.E.; Lykins, J.H.; Papke, D.M.
1962-06-12
S>An improved area radiation dose monitor is designed which is adapted to compensate continuously for background radiation below a threshold dose rate and to give warning when the dose integral of the dose rate of an above-threshold radiation excursion exceeds a selected value. This is accomplished by providing means for continuously charging an ionization chamber. The chamber provides a first current proportional to the incident radiation dose rate. Means are provided for generating a second current including means for nulling out the first current with the second current at all values of the first current corresponding to dose rates below a selected threshold dose rate value. The second current has a maximum value corresponding to that of the first current at the threshold dose rate. The excess of the first current over the second current, which occurs above the threshold, is integrated and an alarm is given at a selected integrated value of the excess corresponding to a selected radiation dose. (AEC)
Horn, Kevin M.
2013-07-09
A method reconstructs the charge collection from regions beneath opaque metallization of a semiconductor device, as determined from focused laser charge collection response images, and thereby derives a dose-rate dependent correction factor for subsequent broad-area, dose-rate equivalent, laser measurements. The position- and dose-rate dependencies of the charge-collection magnitude of the device are determined empirically and can be combined with a digital reconstruction methodology to derive an accurate metal-correction factor that permits subsequent absolute dose-rate response measurements to be derived from laser measurements alone. Broad-area laser dose-rate testing can thereby be used to accurately determine the peak transient current, dose-rate response of semiconductor devices to penetrating electron, gamma- and x-ray irradiation.
Spin Rate Diversity Amongst Ten-meter Class Near Earth Asteroids
NASA Astrophysics Data System (ADS)
Ryan, William; Ryan, Eileen V.
2016-10-01
The spin rates of small asteroids can provide insight into their mechanical structure, origin, and subsequent evolution. This is of more than just scientific interest since these are also the objects that will hit the Earth most frequently. Early statistics [Pravec and Harris, 2000] for Near Earth Asteroids (NEAs) with diameters of ~100 meters or less had resulted in the conclusion that many are rotating more rapidly than feasible for a gravitationally bound system of constituent components (i.e, 'rubble piles'). However, more recent studies [Holsapple, 2007; Scheeres et al. 2010] have focused on how non-gravitational cohesion mechanisms do not necessarily rule out a rubble pile structure for fast spin rate bodies. To further study this issue, we will report on the recent spin rate results for the smallest asteroids observed as part of our ongoing NEA target-of-opportunity characterization research [Ryan and Ryan, 2016] conducted using the Magdalena Ridge Observatory's 2.4-meter telescope.Spin rates determined by this program plus results from the current lightcurve database [Warner et al. 2016] indicate that the very smallest NEAs with H>29 rotate with periods of minutes or less. This implies that these objects possess significant strength, hinting that they are likely examples of truly monolithic fragments. However, our observations also show a great diversity in rotation periods for asteroids that are only slightly larger. In particular, the H~28.6 asteroids 2016 CC136 and 2016 CG18 were observed to rotate with periods approaching or exceeding ~2 hours, with the latter showing a tumbling behavior. In a subset of our database that includes 22 asteroids with H~27.5 (~10 meters) or greater, a full range of periods from less than a minute to greater than 2 hours (close to the minimal period of a self-gravitating system), have been identified. Moreover, at least three of these are in a tumbling state with multiple periods clearly identified, implying constraints on their ages. The overall diversity in the observed spins in our database will be discussed in the context of better understanding internal body strengths required for the smallest asteroids.
Peginterferon alfa-2a and ribavirin in Latino and non-Latino whites with hepatitis C.
Rodriguez-Torres, Maribel; Jeffers, Lennox J; Sheikh, Muhammad Y; Rossaro, Lorenzo; Ankoma-Sey, Victor; Hamzeh, Fayez M; Martin, Paul
2009-01-15
Race has been shown to be a factor in the response to therapy for hepatitis C virus (HCV) infection, and limited data suggest that ethnic group may be as well; however, Latinos and other ethnic subpopulations have been underrepresented in clinical trials. We evaluated the effect of Latino ethnic background on the response to treatment with peginterferon alfa-2a and ribavirin in patients infected with HCV genotype 1 who had not been treated previously. In a multicenter, open-label, nonrandomized, prospective study, 269 Latino and 300 non-Latino whites with HCV infection received peginterferon alfa-2a, at a dose of 180 microg per week, and ribavirin, at a dose of 1000 or 1200 mg per day, for 48 weeks, and were followed through 72 weeks. The primary end point was a sustained virologic response. We enrolled Latinos whose parents and grandparents spoke Spanish as their primary language; nonwhite Latinos were excluded. Baseline characteristics were similar in the Latino and non-Latino groups, although higher proportions of Latino patients were 40 years of age or younger, had a body-mass index (BMI, the weight in kilograms divided by the square of the height in meters) of more than 27 or more than 30, and had cirrhosis. The rate of sustained virologic response was higher among non-Latino whites than among Latinos (49% vs. 34%, P<0.001). The absence of HCV RNA in serum was more frequent in non-Latino whites at week 4 (P=0.045) and throughout the treatment period (P<0.001 for all other comparisons). Latino or non-Latino background was an independent predictor of the rate of sustained virologic response in an analysis adjusted for baseline differences in BMI, cirrhosis, and other characteristics. Adherence to treatment did not differ significantly between the two groups. The numbers of patients with adverse events and dose modifications were similar in the two groups, but fewer Latino patients discontinued therapy because of adverse events. Treatment with peginterferon alfa-2a and ribavirin for 48 weeks resulted in rates of sustained virologic response among patients infected with HCV genotype 1 that were lower among Latino whites than among non-Latino whites. Strategies to improve the sustained virologic response in Latinos are needed. (ClinicalTrials.gov number, NCT00107653.) 2009 Massachusetts Medical Society
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagnon, Pieter; Sigrin, Ben; Gleason, Mike
Net energy metering (NEM) is a billing mechanism that has historically compensated owners of distributed generation systems at retail rates for any electricity that they export back to the grid rather than consume on-site. NEM can significantly enhance the financial performance of distributed generation systems from the owner’s perspective. The following analysis was designed to illustrate the potential impact of NEM policy and tariff changes implemented in early 2016 in Nevada.
Impact of the Amount of Liquid Intake on the Dose Rate of Patients Treated with Radioiodine.
Haghighatafshar, Mahdi; Banani, Aida; Zeinali-Rafsanjani, Banafsheh; Etemadi, Zahra; Ghaedian, Tahereh
2018-01-01
Despite therapeutic effects of radioiodine in patients with differentiated thyroid cancer, there are some disadvantages due to harmful radiation to other tissues. According to the current guidelines, patients are recommended to drink lots of water and frequent voiding to reduce the amount of 131 I in the body. This study was designed to assess the impact of the amount of liquid intake on reduction of the measured dose rate of radioiodine-treated patients. A total of 42 patients with differentiated thyroid cancer without metastasis who had undergone total thyroidectomy and had been treated with radioiodine were selected. The patients were divided into two groups according to the amount of their fluid intake which was measured during the first 48 h after 131 I administration. In all patients, the dose rate was measured immediately and 48 h after iodine administration. Each group included 21 patients. Dose rate ratio (the ratio of the second dose rate to the first dose rate) and dose rate difference ratio (the ratio of the difference between the two measured dose rates to the first dose rate) were calculated for each patient. Despite the significant difference in the amount of the liquid drunk, no statistically significant difference was seen between the different groups in parameters of dose-rate ratio and dose-rate difference ratio. Higher fluid intake (>60 ml/h in our study) alone would not effectively reduce the patient's radiation dose rate at least not more than a well-hydrated state. It seems that other interfering factors in the thyroidectomized patients may also have some impacts on this physiologic process.
USDA-ARS?s Scientific Manuscript database
Improvements to reduce chemical waste and environmental pollution for variable-rate sprayers used in orchards and ornamental nurseries require inline injection techniques. A microprocessor controlled premixing inline injection system implementing a ceramic piston chemical metering pump and two small...
Recommended de minimis radiation dose rates for Canada. Report No. INFO-0355
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-01-01
A de minimis dose or dose rate as used in this report represents a level of risk which is generally accepted as being of no significance to an individual, or in the case of a population, of no significance to society. The report describes the risk of biological effects from radiation; radiation from natural and man-made sources; normal incidences of cancer and genetic defects; initiatives by other agencies in the U.S., the U.K. and internationally; the importance of collective dose and dose rate; assigning values to the de minimis dose rates; and application of the de minimis dose rates.
Sedimentation Survey of Lago Guerrero, Puerto Rico, May 2001
Soler-López, Luis R.
2002-01-01
Lago Guerrero, a small reservoir owned by the Puerto Rico Electric Power Authority, is part of the Isabela Hydroelectric System and is located in Aguadilla, in northwestern Puerto Rico. The reservoir had a storage capacity of about 127,376 cubic meters in May 2001 and a maximum depth of about 5.8 meters. Records on dam construction and original topography and storage capacity were not available; therefore, sedimentation rates could not be determined. However, Lago Guerrero resumably was constructed during the 1930?s because it receives water from lago Guajataca, which was constructed in 1928. The May 2001 bathymetric survey of Lago Guerrero established baseline data that are essential to calculate sedimentation rates, sediment yields, storage loss, and sediment deposition sites within the reservoir.
Towards metering tap water by Lorentz force velocimetry
NASA Astrophysics Data System (ADS)
Vasilyan, Suren; Ebert, Reschad; Weidner, Markus; Rivero, Michel; Halbedel, Bernd; Resagk, Christian; Fröhlich, Thomas
2015-11-01
In this paper, we present enhanced flow rate measurement by applying the contactless Lorentz Force Velocimetry (LFV) technique. Particularly, we show that the LFV is a feasible technique for metering the flow rate of salt water in a rectangular channel. The measurements of the Lorentz forces as a function of the flow rate are presented for different electrical conductivities of the salt water. The smallest value of conductivity is achieved at 0.06 S·m-1, which corresponds to the typical value of tap water. In comparison with previous results, the performance of LFV is improved by approximately 2 orders of magnitude by means of a high-precision differential force measurement setup. Furthermore, the sensitivity curve and the calibration factor of the flowmeter are provided based on extensive measurements for the flow velocities ranging from 0.2 to 2.5 m·s-1 and conductivities ranging from 0.06 to 10 S·m-1.
Study of the dose rate effect of 180 nm nMOSFETs
NASA Astrophysics Data System (ADS)
He, Bao-Ping; Yao, Zhi-Bin; Sheng, Jiang-Kun; Wang, Zu-Jun; Huang, Shao-Yan; Liu, Min-Bo; Xiao, Zhi-Gang
2015-01-01
Radiation induced offstate leakage in the shallow trench isolation regions of SIMC 0.18 μm nMOSFETs is studied as a function of dose rate. A “true” dose rate effect (TDRE) is observed. Increased damage is observed at low dose rate (LDR) than at high dose rate (HDR) when annealing is taken into account. A new method of simulating radiation induced degradation in shallow trench isolation (STI) is presented. A comparison of radiation induced offstate leakage current in test nMOSFETs between total dose irradiation experiments and simulation results exhibits excellent agreement. The investigation results imply that the enhancement of the leakage current may be worse for the dose rate encountered in the environment of space.
Anigstein, Robert; Olsher, Richard H; Loomis, Donald A; Ansari, Armin
2016-12-01
The detonation of a radiological dispersion device or other radiological incidents could result in widespread releases of radioactive materials and intakes of radionuclides by affected individuals. Transportable radiation monitoring instruments could be used to measure radiation from gamma-emitting radionuclides in the body for triaging individuals and assigning priorities to their bioassay samples for in vitro assessments. The present study derived sets of calibration factors for four instruments: the Ludlum Model 44-2 gamma scintillator, a survey meter containing a 2.54 × 2.54-cm NaI(Tl) crystal; the Captus 3000 thyroid uptake probe, which contains a 5.08 × 5.08-cm NaI(Tl) crystal; the Transportable Portal Monitor Model TPM-903B, which contains two 3.81 × 7.62 × 182.9-cm polyvinyltoluene plastic scintillators; and a generic instrument, such as an ionization chamber, that measures exposure rates. The calibration factors enable these instruments to be used for assessing inhaled or ingested intakes of any of four radionuclides: Co, I, Cs, and Ir. The derivations used biokinetic models embodied in the DCAL computer software system developed by the Oak Ridge National Laboratory and Monte Carlo simulations using the MCNPX radiation transport code. The three physical instruments were represented by MCNP models that were developed previously. The affected individuals comprised children of five ages who were represented by the revised Oak Ridge National Laboratory pediatric phantoms, and adult men and adult women represented by the Adult Reference Computational Phantoms described in Publication 110 of the International Commission on Radiological Protection. These calibration factors can be used to calculate intakes; the intakes can be converted to committed doses by the use of tabulated dose coefficients. These calibration factors also constitute input data to the ICAT computer program, an interactive Microsoft Windows-based software package that estimates intakes of radionuclides and cumulative and committed effective doses, based on measurements made with these instruments. This program constitutes a convenient tool for assessing intakes and doses without consulting tabulated calibration factors and dose coefficients.
Anigstein, Robert; Olsher, Richard H.; Loomis, Donald A.; Ansari, Armin
2017-01-01
The detonation of a radiological dispersion device or other radiological incidents could result in widespread releases of radioactive materials and intakes of radionuclides by affected individuals. Transportable radiation monitoring instruments could be used to measure radiation from gamma-emitting radionuclides in the body for triaging individuals and assigning priorities to their bioassay samples for in vitro assessments. The present study derived sets of calibration factors for four instruments: the Ludlum Model 44-2 gamma scintillator, a survey meter containing a 2.54 × 2.54-cm NaI(Tl) crystal; the Captus 3000 thyroid uptake probe, which contains a 5.08 × 5.08-cm NaI(Tl) crystal; the Transportable Portal Monitor Model TPM-903B, which contains two 3.81 × 7.62 × 182.9-cm polyvinyltoluene plastic scintillators; and a generic instrument, such as an ionization chamber, that measures exposure rates. The calibration factors enable these instruments to be used for assessing inhaled or ingested intakes of any of four radionuclides: 60Co, 131I, 137Cs, and 192Ir. The derivations used biokinetic models embodied in the DCAL computer software system developed by the Oak Ridge National Laboratory and Monte Carlo simulations using the MCNPX radiation transport code. The three physical instruments were represented by MCNP models that were developed previously. The affected individuals comprised children of five ages who were represented by the revised Oak Ridge National Laboratory pediatric phantoms, and adult men and adult women represented by the Adult Reference Computational Phantoms described in Publication 110 of the International Commission on Radiological Protection. These calibration factors can be used to calculate intakes; the intakes can be converted to committed doses by the use of tabulated dose coefficients. These calibration factors also constitute input data to the ICAT computer program, an interactive Microsoft Windows-based software package that estimates intakes of radionuclides and cumulative and committed effective doses, based on measurements made with these instruments. This program constitutes a convenient tool for assessing intakes and doses without consulting tabulated calibration factors and dose coefficients. PMID:27798478
Ikehara, M.E.; Phillips, S.P.
1994-01-01
A large-scale, land-subsidence monitoring network for Antelope Valley, California, was established, and positions and elevations for 85 stations were measured using Global Positioning System geodetic surveying in spring 1992. The 95-percent confidence (2@) level of accuracy for the elevations calculated for a multiple-constraint adjustment generally ranged from +0.010 meter (0.032 foot) to +0.024 meter (0.078 foot). The magnitudes and rates of land subsidence as of 1992 were calculated for several periods for 218 bench marks throughout Antelope Valley. The maximum measured magnitude of land subsidence that occurred between 1926 and 1992 was 6.0 feet (1.83 meters) at BM 474 near Avenue I and Sierra Highway. Measured or estimated subsidence of 2-7 feet (.61-2.l3 meters) had occurred in a 210- square-mile (542-square-kilometer) area of Antelope Valley, generally bounded by Avenue K, Avenue A, 90th Street West, and 120th Street East, during the same period. Land subsidence in Antelope Valley is caused by aquifer-system compaction, which is related to ground-water-level declines and the presence of fine-grained, compressible sediments. Comparison of potentiomethric-surface, water-level decline, and subsidence-rate maps for several periods indicated a general correlation between water-level declines and the distribution and rate of subsidence in the Lancaster ground-water subbasin. A conservative estimate of the amount of the reduction in storage capacity of the aquifer system in the Lancaster subbasin is about 50,000 acre-feet in the area that has been affected by more than one foot (.30 meters) of subsidence as of 1992. Information on the history of ground-water levels and the distribution and thickness of fine-grained compressible sediments can be used to mitigate continued land subsidence. Future monitoring of ground-water levels and land-surface elevations in subsidence-sensitive regions of Antelope Valley may be an effective means to manage land subsidence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calabrese, Edward J., E-mail: edwardc@schoolph.uma
This paper assesses the discovery of the dose-rate effect in radiation genetics and how it challenged fundamental tenets of the linear non-threshold (LNT) dose response model, including the assumptions that all mutational damage is cumulative and irreversible and that the dose-response is linear at low doses. Newly uncovered historical information also describes how a key 1964 report by the International Commission for Radiological Protection (ICRP) addressed the effects of dose rate in the assessment of genetic risk. This unique story involves assessments by two leading radiation geneticists, Hermann J. Muller and William L. Russell, who independently argued that the report'smore » Genetic Summary Section on dose rate was incorrect while simultaneously offering vastly different views as to what the report's summary should have contained. This paper reveals occurrences of scientific disagreements, how conflicts were resolved, which view(s) prevailed and why. During this process the Nobel Laureate, Muller, provided incorrect information to the ICRP in what appears to have been an attempt to manipulate the decision-making process and to prevent the dose-rate concept from being adopted into risk assessment practices. - Highlights: • The discovery of radiation dose rate challenged the scientific basis of LNT. • Radiation dose rate occurred in males and females. • The dose rate concept supported a threshold dose-response for radiation.« less
Magma supply rate at kilauea volcano, 1952-1971.
Swanson, D A
1972-01-14
The three longest Kilauea eruptions since 1952 produced lava at an overall constant rate of about 9 x 10(6) cubic meters per month (vesicle-free). This is considered to represent the rate of magma supply from a deep source, probably the mantle, because little or no summit deformation indicating high-level storage accompanied any of the three eruptions.
40 CFR 98.154 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the concentrations of the process samples. (b) The mass flow of the product stream containing the HFC... concentration and volumetric flow rate determined by measurement of volumetric flow rate using EPA Method 2, 2A... volumetric flow rate at the inlet or by a metering device for HFC-23 sent to the device. Determine a new...
Closed-Loop Control of Chemical Injection Rate for a Direct Nozzle Injection System.
Cai, Xiang; Walgenbach, Martin; Doerpmond, Malte; Schulze Lammers, Peter; Sun, Yurui
2016-01-20
To realize site-specific and variable-rate application of agricultural pesticides, accurately metering and controlling the chemical injection rate is necessary. This study presents a prototype of a direct nozzle injection system (DNIS) by which chemical concentration transport lag was greatly reduced. In this system, a rapid-reacting solenoid valve (RRV) was utilized for injecting chemicals, driven by a pulse-width modulation (PWM) signal at 100 Hz, so with varying pulse width the chemical injection rate could be adjusted. Meanwhile, a closed-loop control strategy, proportional-integral-derivative (PID) method, was applied for metering and stabilizing the chemical injection rate. In order to measure chemical flow rates and input them into the controller as a feedback in real-time, a thermodynamic flowmeter that was independent of chemical viscosity was used. Laboratory tests were conducted to assess the performance of DNIS and PID control strategy. Due to the nonlinear input-output characteristics of the RRV, a two-phase PID control process obtained better effects as compared with single PID control strategy. Test results also indicated that the set-point chemical flow rate could be achieved within less than 4 s, and the output stability was improved compared to the case without control strategy.
Dosimetry during intramedullary nailing of the tibia
2009-01-01
Background Intramedullary nailing under fluoroscopic guidance is a common operation. We studied the intraoperative radiation dose received by both the patient and the personnel. Patients and methods 25 intramedullary nailing procedures of the tibia were studied. All patients suffered from tibial fractures and were treated using the Grosse-Kempf intramedullary nail, with free-hand technique for fixation of the distal screws, under fluoroscopic guidance. The exposure, at selected positions, was recorded using an ion chamber, while the dose area product (DAP) was measured with a DAP meter, attached to the tube head. Thermoluminescent dosimeters (TLDs) were used to derive the occupational dose to the personnel, and also to monitor the surface dose on the gonads of some of the patients. Results The mean operation time was 101 (48–240) min, with a mean fluoroscopic time of 72 seconds and a mean DAP value of 75 cGy·cm2. The surface dose to the gonads of the patients was less than 8.8 mGy during any procedure, and thus cannot be considered to be a contraindication for the use of this technique. Occupational dose differed substantially between members of the operating personnel, the maximum dose recorded being to the operator of the fluoroscopic equipment (0.11 mSv). Interpretation Our findings underscore the care required by the primary operator not to exceed the dose constraint of 10 mSv per year. The rest of the operating personnel, although they do not receive very high doses, should focus on the dose optimization of the technique. PMID:19916691
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bosio, J.; Wilcox, P.; Sembsmoen, O.
A joint-venture, high-pressure, large-flow-rate facility to test, qualify, and research new natural-gas metering systems has been built by Den Norske Stats Oljeselskap A.S. (Statoil) and Total Marine Norsk A.S. Located near Haugesund in the Stavanger area, the lab, designated the Karsto Metering and Technology Laboratory, or K-Lab, is adjacent to Norway's first natural-gas-processing plant. It receives natural gas from across the Norwegian Trench from the Statfjord complex and after processing it sends it on to Emden, West Germany. The gas, which is produced in the North Sea, is transported to United Kingdom and the European continent through a high-pressure pipelinemore » network. The importance of gas-metering technology has been emphasized by oil and gas companies as well as by national regulatory authorities.« less
Metabolic rate meter and method
NASA Technical Reports Server (NTRS)
Taylor, T. I.; Ruderman, I. W. (Inventor)
1968-01-01
A method is described for measuring the dynamic metabolic rate of a human or animal. The ratio of the exhaled carbon dioxide to a known amount of C(13)02 introduced into the exhalation is determined by mass spectrometry. This provides an instantaneous measurement of the carbon dioxide generated.
49 CFR 575.103 - Truck-camper loading.
Code of Federal Regulations, 2013 CFR
2013-10-01
... weight ratings and the longitudinal limits within which the center of gravity for the cargo weight rating.... (______ lbs.) of bottled gas, and ______ cubic meters (______ cubic ft.) refrigerator (or icebox with... recommends a cargo center of gravity zone that will contain the camper's center of gravity when it is...
49 CFR 575.103 - Truck-camper loading.
Code of Federal Regulations, 2014 CFR
2014-10-01
... weight ratings and the longitudinal limits within which the center of gravity for the cargo weight rating.... (______ lbs.) of bottled gas, and ______ cubic meters (______ cubic ft.) refrigerator (or icebox with... recommends a cargo center of gravity zone that will contain the camper's center of gravity when it is...
49 CFR 575.103 - Truck-camper loading.
Code of Federal Regulations, 2010 CFR
2010-10-01
... weight ratings and the longitudinal limits within which the center of gravity for the cargo weight rating.... (______ lbs.) of bottled gas, and ______ cubic meters (______ cubic ft.) refrigerator (or icebox with... recommends a cargo center of gravity zone that will contain the camper's center of gravity when it is...
49 CFR 575.103 - Truck-camper loading.
Code of Federal Regulations, 2012 CFR
2012-10-01
... weight ratings and the longitudinal limits within which the center of gravity for the cargo weight rating.... (______ lbs.) of bottled gas, and ______ cubic meters (______ cubic ft.) refrigerator (or icebox with... recommends a cargo center of gravity zone that will contain the camper's center of gravity when it is...
49 CFR 575.103 - Truck-camper loading.
Code of Federal Regulations, 2011 CFR
2011-10-01
... weight ratings and the longitudinal limits within which the center of gravity for the cargo weight rating.... (______ lbs.) of bottled gas, and ______ cubic meters (______ cubic ft.) refrigerator (or icebox with... recommends a cargo center of gravity zone that will contain the camper's center of gravity when it is...
Comparison in vivo Study of Genotoxic Action of High- Versus Very Low Dose-Rate γ-Irradiation
Osipov, A. N.; Klokov, D. Y.; Elakov, A. L.; Rozanova, O. M.; Zaichkina, S. I.; Aptikaeva, G. F.; Akhmadieva, A. Kh.
2004-01-01
The aim of the present study was to compare genotoxicity induced by high- versus very low dose-rate exposure of mice to γ-radiation within a dose range of 5 to 61 cGy using the single-cell gel electrophoresis (comet) assay and the micronucleus test. CBA/lac male mice were irradiated at a dose rate of 28.2 Gy/h (high dose rate) or 0.07 mGy/h (very low dose rate). The comet assay study on spleen lymphocytes showed that very low dose-rate irradiation resulted in a statistically significant increase in nucleoid relaxation (DNA breaks), starting from a dose of 20 cGy. Further prolongation of exposure time and, hence, increase of a total dose did not, however, lead to further increase in the extent of nucleoid relaxation. Doses of 20 and 61 cGy were equal in inducing DNA breaks in mouse spleen lymphocytes as assayed by the comet assay. Of note, the level of DNA damage by 20–61 cGy doses of chronic irradiation (0.07 mGy/h) was similar to that an induced by an acute (28.2 Gy/h) dose of 14 cGy. The bone marrow micronucleus test revealed that an increase in polychromatic erythrocytes with micronuclei over a background level was induced by very low-level γ-irradiation with a dose of 61 cGy only, with the extent of the cytogenetic effect being similar to that of 10 cGy high-dose-rate exposure. In summary, presented results support the hypothesis of the nonlinear threshold nature of mutagenic action of chronic low dose-rate irradiation. PMID:19330145
The estimation of galactic cosmic ray penetration and dose rates
NASA Technical Reports Server (NTRS)
Burrell, M. O.; Wright, J. J.
1972-01-01
This study is concerned with approximation methods that can be readily applied to estimate the absorbed dose rate from cosmic rays in rads - tissue or rems inside simple geometries of aluminum. The present work is limited to finding the dose rate at the center of spherical shells or behind plane slabs. The dose rate is calculated at tissue-point detectors or for thin layers of tissue. This study considers cosmic-rays dose rates for both free-space and earth-orbiting missions.
24 CFR 241.560 - Agreed interest rate.
Code of Federal Regulations, 2010 CFR
2010-04-01
... SUPPLEMENTARY FINANCING FOR INSURED PROJECT MORTGAGES Eligibility Requirements-Supplemental Loans To Finance... Meters in Multifamily Projects Without a HUD-Insured or HUD-Held Mortgage Eligible Security Instruments...
Nagamine, Shuji; Fujibuchi, Toshioh; Umezu, Yoshiyuki; Himuro, Kazuhiko; Awamoto, Shinichi; Tsutsui, Yuji; Nakamura, Yasuhiko
2017-03-01
In this study, we estimated the ambient dose equivalent rate (hereafter "dose rate") in the fluoro-2-deoxy-D-glucose (FDG) administration room in our hospital using Monte Carlo simulations, and examined the appropriate medical-personnel locations and a shielding method to reduce the dose rate during FDG injection using a lead glass shield. The line source was assumed to be the FDG feed tube and the patient a cube source. The dose rate distribution was calculated with a composite source that combines the line and cube sources. The dose rate distribution was also calculated when a lead glass shield was placed in the rear section of the lead-acrylic shield. The dose rate behind the automatic administration device decreased by 87 % with respect to that behind the lead-acrylic shield. Upon positioning a 2.8-cm-thick lead glass shield, the dose rate behind the lead-acrylic shield decreased by 67 %.
Hiller, Mauritius; Dewji, Shaheen Azim
2017-02-16
Dose rate coefficients computed using the International Commission on Radiological Protection (ICRP) reference adult female voxel phantom were compared with values computed using the Oak Ridge National Laboratory (ORNL) adult female stylized phantom in an air submersion exposure geometry. This is a continuation of previous work comparing monoenergetic organ dose rate coefficients for the male adult phantoms. With both the male and female data computed, effective dose rate as defined by ICRP Publication 103 was compared for both phantoms. Organ dose rate coefficients for the female phantom and ratios of organ dose rates for the voxel and stylized phantoms aremore » provided in the energy range from 30 to 5 MeV. Analysis of the contribution of the organs to effective dose is also provided. Lastly, comparison of effective dose rates between the voxel and stylized phantoms was within 8% at 100 keV and is <5% between 200 and 5000 keV.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiller, Mauritius; Dewji, Shaheen Azim
Dose rate coefficients computed using the International Commission on Radiological Protection (ICRP) reference adult female voxel phantom were compared with values computed using the Oak Ridge National Laboratory (ORNL) adult female stylized phantom in an air submersion exposure geometry. This is a continuation of previous work comparing monoenergetic organ dose rate coefficients for the male adult phantoms. With both the male and female data computed, effective dose rate as defined by ICRP Publication 103 was compared for both phantoms. Organ dose rate coefficients for the female phantom and ratios of organ dose rates for the voxel and stylized phantoms aremore » provided in the energy range from 30 to 5 MeV. Analysis of the contribution of the organs to effective dose is also provided. Lastly, comparison of effective dose rates between the voxel and stylized phantoms was within 8% at 100 keV and is <5% between 200 and 5000 keV.« less
Naval Undersea Warfare Center Division Newport utilities metering, Phase 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carroll, D.M.
Pacific Northwest Laboratory developed this report for the US Navy`s Naval Undersea Warfare Center Division Newport, Rhode Island (NUWC). The purpose of the report was to review options for metering electricity and steam used in the NUWC compound, and to make recommendations to NUWC for implementation under a follow-on project. An additional NUWC concern is a proposed rate change by the servicing utility, Newport Electric, which would make a significant shift from consumption to demand billing, and what effect that rate change would have on the NUWC utility budget. Automated, remote reading meters are available which would allow NUWC tomore » monitor its actual utility consumption and demand for both the entire NUWC compound and by end-use in individual buildings. Technology is available to perform the meter reads and manipulate the data using a personal computer with minimal staff requirement. This is not meant to mislead the reader into assuming that there is no requirement for routine preventive maintenance. All equipment requires routine maintenance to maintain its accuracy. While PNL reviewed the data collected during the site visit, however, it became obvious that significant opportunities exist for reducing the utility costs other than accounting for actual consumption and demand. Unit costs for both steam and electricity are unnecessarily high, and options are presented in this report for reducing them. Additionally, NUWC has an opportunity to undertake a comprehensive energy resource management program to significantly reduce its energy demand, consumption, and costs.« less
Naval Undersea Warfare Center Division Newport utilities metering, Phase 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carroll, D.M.
Pacific Northwest Laboratory developed this report for the US Navy's Naval Undersea Warfare Center Division Newport, Rhode Island (NUWC). The purpose of the report was to review options for metering electricity and steam used in the NUWC compound, and to make recommendations to NUWC for implementation under a follow-on project. An additional NUWC concern is a proposed rate change by the servicing utility, Newport Electric, which would make a significant shift from consumption to demand billing, and what effect that rate change would have on the NUWC utility budget. Automated, remote reading meters are available which would allow NUWC tomore » monitor its actual utility consumption and demand for both the entire NUWC compound and by end-use in individual buildings. Technology is available to perform the meter reads and manipulate the data using a personal computer with minimal staff requirement. This is not meant to mislead the reader into assuming that there is no requirement for routine preventive maintenance. All equipment requires routine maintenance to maintain its accuracy. While PNL reviewed the data collected during the site visit, however, it became obvious that significant opportunities exist for reducing the utility costs other than accounting for actual consumption and demand. Unit costs for both steam and electricity are unnecessarily high, and options are presented in this report for reducing them. Additionally, NUWC has an opportunity to undertake a comprehensive energy resource management program to significantly reduce its energy demand, consumption, and costs.« less
Mwashote, B.M.; Burnett, W.C.; Chanton, J.; Santos, I.R.; Dimova, N.; Swarzenski, P.W.
2010-01-01
Submarine groundwater discharge (SGD) assessments were conducted both in the laboratory and at a field site in the northeastern Gulf of Mexico, using a continuous heat-type automated seepage meter (seepmeter). The functioning of the seepmeter is based on measurements of a temperature gradient in the water between downstream and upstream positions in its flow pipe. The device has the potential of providing long-term, high-resolution measurements of SGD. Using a simple inexpensive laboratory set-up, we have shown that connecting an extension cable to the seepmeter has a negligible effect on its measuring capability. Similarly, the observed influence of very low temperature (???3 ??C) on seepmeter measurements can be accounted for by conducting calibrations at such temperatures prior to field deployments. Compared to manual volumetric measurements, calibration experiments showed that at higher water flow rates (>28 cm day-1 or cm3 cm-2 day-1) an analog flowmeter overestimated flow rates by ???7%. This was apparently due to flow resistance, turbulence and formation of air bubbles in the seepmeter water flow tubes. Salinity had no significant effect on the performance of the seepmeter. Calibration results from fresh water and sea water showed close agreement at a 95% confidence level significance between the data sets from the two media (R2 = 0.98). Comparatively, the seepmeter SGD measurements provided data that are comparable to manually-operated seepage meters, the radon geochemical tracer approach, and an electromagnetic (EM) seepage meter. ?? 2009 Elsevier Ltd.
Sedimentation survey of Lago de Matrullas, Puerto Rico, December 2001
Soler-López, Luis R.
2003-01-01
Lago de Matrullas reservoir, constructed in 1934, is located at an altitude of approximately 730 meters above mean sea level in the municipality of Orocovis in central Puerto Rico, and has a drainage area of 11.45 square kilometers. The reservoir is part of the Puerto Rico Electric Power Authority Toro Negro Hydroelectric Project, which also includes the Lago El Guineo reservoir and a hydroelectric plant to the south of the insular hydrographic divide. Historically, the drainage area had been protected from soil erosion by dense vegetation and the lack of basin development. However, transportation, potable water, and electric power infrastructure construction has facilitated development in rural areas resulting in the clearing of land. This trend in land-use changes is impacting the useful life of Lago de Matrullas. The reservoir storage capacity has been reduced from 3.71 million cubic meters in 1934 to 3.08 million cubic meters in 2001. This represents a total storage-capacity loss of 0.63 million cubic meters by 2001 (17 percent), or a long-term annual storage loss of 0.25 percent per year. The sediment trapping efficiency of Lago de Matrullas has been estimated at approximately 90 percent. If the current long-term sedimentation rate continues, Lago de Matrullas would fill by the year 2328. However, this life expectancy could be reduced at a faster than predicted rate as a result of rural development in the Lago de Matrullas basin and the high sediment trapping efficiency of the reservoir.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viel, Francis; Duzenli, Cheryl; British Columbia Cancer Agency, Department of Medical Physics, Vancouver Centre
2014-08-15
Introduction: Radiation detector responses can be affected by dose rate. Due to higher dose per pulse and wider range of mu rates in FFF beams, detector responses should be characterized prior to implementation of QA protocols for FFF beams. During VMAT delivery, the MU rate may also vary dramatically within a treatment fraction. This study looks at the dose per pulse variation throughout a 3D volume for typical VMAT plans and the response characteristics for a variety of detectors, and makes recommendations on the design of QA protocols for FFF VMAT QA. Materials and Methods: Linac log file data andmore » a simplified dose calculation algorithm are used to calculate dose per pulse for a variety of clinical VMAT plans, on a voxel by voxel basis, as a function of time in a cylindrical phantom. Diode and ion chamber array responses are characterized over the relevant range of dose per pulse and dose rate. Results: Dose per pulse ranges from <0.1 mGy/pulse to 1.5 mGy/pulse in a typical VMAT treatment delivery using the 10XFFF beam. Diode detector arrays demonstrate increased sensitivity to dose (+./− 3%) with increasing dose per pulse over this range. Ion chamber arrays demonstrate decreased sensitivity to dose (+/− 1%) with increasing dose rate over this range. Conclusions: QA protocols should be designed taking into consideration inherent changes in detector sensitivity with dose rate. Neglecting to account for changes in detector response with dose per pulse can lead to skewed QA results.« less
Acute changes in the central nervous system of monkeys exposed to protons.
NASA Technical Reports Server (NTRS)
Haymaker, W.; Ibrahim, M. Z. M.; Miquel, J.; Call, N.; Noden, P.; Ashley, W.; Ballinger, E. R.; Ghidoni, J.; Lindsay, I. R.; Behar, A. J.
1972-01-01
Study of the changes occurring in simian brain exposed to protons of varied energy, given in wide dose and dose-rate ranges. Results show that inflammatory reaction and glycogen accumulation in astrocytes occurred practically in all animals. Cerebral cortical necrosis, granule cell pyknosis, and inflammatory reaction occurred at doses far lower than effective for high-energy gamma radiation given other series of monkeys at comparable dose rates. Metallic impregnation, carried out in virtually all the animals tested, revealed a wide variation in glial response even at equal doses and dose rates in the same proton energy series. Proton energy effect, dose effect, dose-time effect, and dose-rate effect were evident in the various morphological categories investigated, but inconsistencies were encountered.
NASA Technical Reports Server (NTRS)
Long, Edward R., Jr.; Long, Sheila Ann T.; Gray, Stephanie L.; Collins, William D.
1989-01-01
The threshold values of total absorbed dose for causing changes in tensile properties of a polyetherimide film and the limitations of the absorbed dose rate for accelerated-exposure evaluation of the effects of electron radiation in geosynchronous orbit were studied. Total absorbed doses from 1 kGy to 100 MGy and absorbed dose rates from 0.01 MGy/hr to 100 MGy/hr were investigated, where 1 Gy equals 100 rads. Total doses less than 2.5 MGy did not significantly change the tensile properties of the film whereas doses higher than 2.5 MGy significantly reduced elongation-to-failure. There was no measurable effect of the dose rate on the tensile properties for accelerated electron exposures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, S; Department of Biomedical Engineering, University of North Carolina- Chapel Hill/ North Carolina State University, Chapel Hill, North Carolina; Lineberger Clinical Cancer Center, University of North Carolina, Chapel Hill, NC
Purpose: Ultrahigh dose-rate radiation at >40Gy/s has demonstrated astonishing normal-tissue sparing and tumor control in recent preclinical naive and tumor-bearing rodent studies when compared to the same radiation dose at a conventional dose-rate. The working mechanism of this fascinating dose-rate effect is currently under investigation. The aims of this work include investigating 1) whether LINAC FFF mode radiation at approximately 1Gy/s also has an improved therapeutic ratio compared to the same radiation dose at the conventional dose-rate of 0.05Gy/s, and 2) the dose-rate effect’s potential working mechanism by studying the expression of the P53 gene, linked to tumor suppression andmore » cell regulation after radiation damage. Methods: We used mouse model C57BL/6J, the same as that used in the ultrahigh dose-rate studies, and exposed them to total body irradiation (TBI) using the Elekta Versa accelerator 10MV photons. Mice (N=20) were given a total dose of 12Gy in both the high dose-rate group (n=10) using the FFF-mode and the conventional dose-rate group (n=10) using the conventional does rate mode. The FFF-mode treatment setup consisted of a 15cm×15cm field size setting at 53.2cm SSD while the conventional-mode set-up consisted of a 10cm×10cm field size at 100SSD. Post-radiation, animals were monitored daily for survival analysis and signs of moribundity requiring euthanasia. In addition, mouse spleens were harvested for P53 analysis at different time points. Results: For 12Gy TBI, the 1.3Gy/s FFF-mode high dose-rate produced a statistically significant (p=0.02) improvement in mouse survival compared to the 0.05Gy/s conventional dose-rate. An initial P53 study at the time of death time-point indicates that high dose-rate radiation induced a stronger expression of P53 than conventional dose-rate radiation. Conclusion: Our pilot study indicates that the FFF-mode high dose-rate radiation, which has been used largely to improve clinical throughput, may provide the added clinical benefit of improving treatment therapeutic ratio. Animal Studies were performed within the LCCC Animal Studies Core Facility at the University of North Carolina at Chapel Hill. The LCCC Animal Studies Core is supported in part by an NCI Center Core Support Grant (CA16086) to the UNC Lineberger Comprehensive Cancer Center.« less
Acharya, Santhosh; Bhat, N N; Joseph, Praveen; Sanjeev, Ganesh; Sreedevi, B; Narayana, Y
2011-05-01
The effects of single pulses and multiple pulses of 7 MV electrons on micronuclei (MN) induction in cytokinesis-blocked human peripheral blood lymphocytes (PBLs) were investigated over a wide range of dose rates per pulse (instantaneous dose rate). PBLs were exposed to graded doses of 2, 3, 4, 6, and 8 Gy of single electron pulses of varying pulse widths at different dose rates per pulse, ranging from 1 × 10(6) Gy s(-1) to 3.2 × 10(8) Gy s(-1). Different dose rates per pulse were achieved by changing the dose per electron pulse by adjusting the beam current and pulse width. MN yields per unit absorbed dose after irradiation with single electron pulses were compared with those of multiple pulses of electrons. A significant decrease in the MN yield with increasing dose rates per pulse was observed, when dose was delivered by a single electron pulse. However, no reduction in the MN yield was observed when dose was delivered by multiple pulses of electrons. The decrease in the yield at high dose rates per pulse suggests possible radical recombination, which leads to decreased biological damage. Cellular response to the presence of very large numbers of chromosomal breaks may also alter the damage.
NASA Astrophysics Data System (ADS)
Leuschner, Albrecht; Asano, Yoshihiro; Klett, Alfred
2017-09-01
At the ring cyclotron facility of the Research Center for Nuclear Physics (RCNP) Osaka University, Osaka, Japan a series of measurement campaigns had been continued with quasi mono-energetic neutron beams in November 2014. A 7Li target was bombarded with 100 and 300 MeV protons and the generated neutron beams were directed into a long time-of-flight tunnel at 0 and 25 degrees deflection angle with respect to the proton beam. At a distance of 41 m the cross section of the neutron beam was large enough for the illumination of square meter sized objects like extended range rem-counters. The research institutes SPring-8/RIKEN, Japan, and DESY, Germany, participated in this campaign for the calibration of 4 different types of active ambient dose rate monitors: LB 6411, LB 6411-Pb, LB 6419 and LB 6420. The measurements of their responses are reported and compared with the calculated values.
NASA Astrophysics Data System (ADS)
Wiemker, Rafael; Rogalla, Patrik; Opfer, Roland; Ekin, Ahmet; Romano, Valentina; Bülow, Thomas
2006-03-01
The performance of computer aided lung nodule detection (CAD) and computer aided nodule volumetry is compared between standard-dose (70-100 mAs) and ultra-low-dose CT images (5-10 mAs). A direct quantitative performance comparison was possible, since for each patient both an ultra-low-dose and a standard-dose CT scan were acquired within the same examination session. The data sets were recorded with a multi-slice CT scanner at the Charite university hospital Berlin with 1 mm slice thickness. Our computer aided nodule detection and segmentation algorithms were deployed on both ultra-low-dose and standard-dose CT data without any dose-specific fine-tuning or preprocessing. As a reference standard 292 nodules from 20 patients were visually identified, each nodule both in ultra-low-dose and standard-dose data sets. The CAD performance was analyzed by virtue of multiple FROC curves for different lower thresholds of the nodule diameter. For nodules with a volume-equivalent diameter equal or larger than 4 mm (149 nodules pairs), we observed a detection rate of 88% at a median false positive rate of 2 per patient in standard-dose images, and 86% detection rate in ultra-low-dose images, also at 2 FPs per patient. Including even smaller nodules equal or larger than 2 mm (272 nodules pairs), we observed a detection rate of 86% in standard-dose images, and 84% detection rate in ultra-low-dose images, both at a rate of 5 FPs per patient. Moreover, we observed a correlation of 94% between the volume-equivalent nodule diameter as automatically measured on ultra-low-dose versus on standard-dose images, indicating that ultra-low-dose CT is also feasible for growth-rate assessment in follow-up examinations. The comparable performance of lung nodule CAD in ultra-low-dose and standard-dose images is of particular interest with respect to lung cancer screening of asymptomatic patients.
Murray, J.R.; Segall, P.
2005-01-01
In 1993 several baselines of the two-color electronic distance meter (EDM) network at Parkfield, California, deviated from their long-term rates, coincident with anomalous observations from nearby strain meters and a creep meter, as well as an increase in microseismicity. Between October 1992 and December 1994, three M ??? 4.5 earthquakes occurred beneath Middle Mountain, near the hypocenter of the 1934 and 1966 Parkfield M6 events. We analyzed the two-color EDM data using a Kalman-filtering based technique to image the spatiotemporal evolution of slip on the fault at Parkfield between the mid-1980s and 2003. This method accounts for localized random walk motion of the geodetic monuments and a prominent seasonal signal that affects many baselines. We find that a slip rate increase occurred between January 1993 and July 1996 on the upper 8 km of the fault near Middle Mountain. The peak estimated slip rate during this time was 49 mm/yr, which exceeds the long-term geologic rate of ???35 mm/yr. The slip rate evolution appears episodic, with an initial modest increase after the M4.3 earthquake and a much larger jump following the shallower M4.7 event in December 1994. This temporal correlation between inferred slip and seismicity suggests that the moderate earthquakes triggered the aseismic fault slip. The EDM data cannot resolve whether transient slip propagated across the nucleation zone of the 1934 and 1966 M6 Parkfield earthquakes. However, transient slip and its associated stress release in the hypocentral area of previous Parkfield events is consistent with the nucleation of the 2004 M6 Parkfield earthquake elsewhere on the fault. Copyright 2005 by the American Geophysical Union.
Field calibration of orifice meters for natural gas flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ting, V.C.; Shen, J.J.S.
1989-03-01
This paper presents the orifice calibration results for nominal 15.24, 10.16, and 5.08-cm (6,4,2-in.) orifice meters conducted at the Chevron's Sand Hills natural gas flow measurement facility in Crane, Texas. Over 200 test runs were collected in a field environment to study the accuracy of the orifice meters. Data were obtained at beta ratios ranging from 0.12 to 0.74 at the nominal conditions of 4576 kPa and 27{sup 0}C (650 psig and 80{sup 0}F) with a 0.57 specific gravity processed, pipeline quality natural gas. A bank of critical flow nozzles was used as the flow rate proving device to calibratemore » the orifice meters. Orifice discharge coefficients were computed with ANSI/API 2530-1985 (AGA3) and ISO 5167/ASME MFC-3M-1984 equations for every set of data points. With the orifice bore Reynolds numbers ranging from 1 to 9 million, the Sand Hills calibration data bridge the gap between the Ohio State water data at low Reynolds numbers and Chevron's high Reynolds number test data taken at a large test facility in Venice, Louisiana. The test results also successfully demonstrate that orifice meters can be accurately proved with critical flow nozzles under realistic field conditions.« less
Ground Motion Analysis of Co-Located DAS and Seismometer Sensors
NASA Astrophysics Data System (ADS)
Wang, H. F.; Fratta, D.; Lord, N. E.; Lancelle, C.; Thurber, C. H.; Zeng, X.; Parker, L.; Chalari, A.; Miller, D.; Feigl, K. L.; Team, P.
2016-12-01
The PoroTomo research team deployed 8700-meters of Distributed Acoustic Sensing (DAS) cable in a shallow trench and 400-meters in a borehole at Brady Hot Springs, Nevada in March 2016 together with an array of 246, three-component geophones. The seismic sensors occupied a natural laboratory 1500 x 500 x 400 meters overlying the Brady geothermal field. The DAS cable was laid out in three parallel zig-zag lines with line segments approximately 100-meters in length and geophones were spaced at approximately 50-m intervals. In several line segments, geophones were co-located within one meter of the DAS cable. Both DAS and the conventional geophones recorded continuously over 15 days. A large Vibroseis truck (T-Rex) provided the seismic source at approximately 250 locations outside and within the array. The Vibroseis protocol called for excitation in one vertical and two orthogonal horizontal directions at each location. For each mode, three, 5-to-80-Hz upsweeps were made over 20 seconds. In addition, a moderate-sized earthquake with a local magnitude of 4.3 was recorded on March 21, 2016. Its epicenter was approximately 150-km away. Several DAS line segments with co-located geophone stations were used to test relationships between the strain rate recorded by DAS and ground velocity recorded by the geophones.
Calès, Paul; Boursier, Jérôme; Oberti, Frédéric; Moal, Valérie; Fouchard Hubert, Isabelle; Bertrais, Sandrine; Hunault, Gilles; Rousselet, Marie Christine
2018-04-01
Fibrosis blood tests are usually developed using significant fibrosis, which is a unique diagnostic target; however, these tests are employed for other diagnostic targets, such as cirrhosis. We aimed to improve fibrosis staging accuracy by simultaneously targeting biomarkers for several diagnostic targets. A total of 3,809 patients were included, comprising 1,012 individuals with chronic hepatitis C (CHC) into a derivation population and 2,797 individuals into validation populations of different etiologies (CHC, chronic hepatitis B, human immunodeficiency virus/CHC, nonalcoholic fatty liver disease, alcohol) using Metavir fibrosis stages as reference. FibroMeter biomarkers were targeted for different fibrosis-stage combinations into classical scores by logistic regression. Independent scores were combined into a single score reflecting Metavir stages by linear regression and called Multi-FibroMeter Version Second Generation (V2G). The primary objective was to combine the advantages of a test targeted for significant fibrosis (FibroMeter V2G ) with those of a test targeted for cirrhosis (CirrhoMeter V2G ). In the derivation CHC population, we first compared Multi-FibroMeter V2G to FibroMeter V2G and observed significant increases in the cirrhosis area under the receiver operating characteristic curve (AUROC), Obuchowski index (reflecting all fibrosis-stage AUROCs), and classification metric (six classes expressed as a correctly classified percentage) and a nonsignificant increase in significant fibrosis AUROC. Thereafter, we compared it to CirroMeter V2G and observed a nonsignificant increase in the cirrhosis AUROC. In all 3,809 patients, respective accuracies for Multi-FibroMeter V2G and FibroMeter V2G were the following: cirrhosis AUROC, 0.906 versus 0.878 ( P < 0.001; versus CirroMeter V2G , 0.897, P = 0.014); Obuchowski index, 0.795 versus 0.791 ( P = 0.059); classification, 86.0% versus 82.1% ( P < 0.001); significant fibrosis AUROC, 0.833 versus 0.832 ( P = 0.366). Multi-FibroMeter V2G had the highest correlation with the area of portoseptal fibrosis and the highest reproducibility over time. Correct classification rates of Multi-FibroMeter with hyaluronate (V2G, 86.0%) or without (V3G, 86.1%) did not differ ( P = 0.938). Conclusion: Multitargeting biomarkers significantly improves fibrosis staging and especially cirrhosis diagnosis compared to classical single-targeted blood tests. ( Hepatology Communications 2018;2:455-466).