Intussusception reduction: Effect of air vs. liquid enema on radiation dose.
Kaplan, Summer L; Magill, Dennise; Felice, Marc A; Edgar, J Christopher; Anupindi, Sudha A; Zhu, Xiaowei
2017-10-01
Both air and radiopaque liquid contrast are used to reduce ileocolic intussusception under fluoroscopy. Some suggest air lowers radiation dose due to shorter procedure times. However, air enema likely lowers radiation dose regardless of fluoroscopy time due to less density over the automatic exposure control cells. We test the hypothesis that air enema reduction of ileocolic intussusception results in lower radiation dose than liquid contrast enema independent of fluoroscopy time. We describe a role for automatic exposure control in this dose difference. We retrospectively evaluated air and liquid intussusception reductions performed on a single digital fluoroscopic unit during a 26-month period. We compared patient age, weight, gender, exam time of day and year, performing radiologist(s), radiographic image acquisitions, grid and magnification use, fluoroscopy time and dose area product. We compared categorical and continuous variables statistically using chi-square and Mann-Whitney U tests, respectively. The mean dose area product was 2.7-fold lower for air enema, 1.3 ± 0.9 dGy·cm 2 , than for liquid, 3.5 ± 2.5 dGy·cm 2 (P<0.005). The mean fluoroscopy time was similar between techniques. The mean dose area product/min was 2.3-fold lower for air, 0.6 ± 0.2 dGy·cm 2 /min, than for liquid, 1.4 ± 0.5 dGy·cm 2 /min (P<0.001). No group differences were identified in other measured dose parameters. Fluoroscopic intussusception reduction using air enema uses less than half the radiation dose of liquid contrast enema. Dose savings are independent of fluoroscopy time and are likely due to automatic exposure control interaction.
Safety and dose modification for patients receiving niraparib.
Berek, J S; Matulonis, U A; Peen, U; Ghatage, P; Mahner, S; Redondo, A; Lesoin, A; Colombo, N; Vergote, I; Rosengarten, O; Ledermann, J; Pineda, M; Ellard, S; Sehouli, J; Gonzalez-Martin, A; Berton-Rigaud, D; Madry, R; Reinthaller, A; Hazard, S; Guo, W; Mirza, M R
2018-05-14
Niraparib is a poly(ADP-ribose) polymerase (PARP) inhibitor approved in the United States and Europe for maintenance treatment of adult patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer who are in complete or partial response to platinum-based chemotherapy. In the pivotal ENGOT-OV16/NOVA trial, the dose reduction rate due to TEAE was 68.9%, and the discontinuation rate due to TEAE was 14.7%, including 3.3% due to thrombocytopenia. A retrospective analysis was performed to identify clinical parameters that predict dose reductions. All analyses were performed on the safety population, comprising all patients who received at least one dose of study drug. Patients were analyzed according to the study drug consumed (ie, as treated). A predictive modeling method (decision trees) was used to identify important variables for predicting the likelihood of developing grade ≥3 thrombocytopenia within 30 days after the first dose of niraparib and determine cutoff points for chosen variables. Following dose modification, 200 mg was the most commonly administered dose in the ENGOT-OV16/NOVA trial. Baseline platelet count and baseline body weight were identified as risk factors for increased incidence of grade ≥3 thrombocytopenia. Patients with a baseline body weight <77 kg or a baseline platelet count <150,000/μL in effect received an average daily dose approximating 200 mg (median = 207 mg) due to dose interruption and reduction. Progression-free survival in patients who were dose reduced to either 200 mg or 100 mg was consistent with that of patients who remained at the 300 mg starting dose. The analysis presented suggests that patients with baseline body weight of < 77 kg or baseline platelets of < 150,000/μL may benefit from a starting dose of 200 mg per day. (ClinicalTrials.gov ID: NCT01847274).
Pharmacokinetics and Bioavailability of Inhaled Esketamine in Healthy Volunteers.
Jonkman, Kelly; Duma, Andreas; Olofsen, Erik; Henthorn, Thomas; van Velzen, Monique; Mooren, René; Siebers, Liesbeth; van den Beukel, Jojanneke; Aarts, Leon; Niesters, Marieke; Dahan, Albert
2017-10-01
Esketamine is traditionally administered via intravenous or intramuscular routes. In this study we developed a pharmacokinetic model of inhalation of nebulized esketamine with special emphasis on pulmonary absorption and bioavailability. Three increasing doses of inhaled esketamine (dose escalation from 25 to 100 mg) were applied followed by a single intravenous dose (20 mg) in 19 healthy volunteers using a nebulizer system and arterial concentrations of esketamine and esnorketamine were obtained. A multicompartmental pharmacokinetic model was developed using population nonlinear mixed-effects analyses. The pharmacokinetic model consisted of three esketamine, two esnorketamine disposition and three metabolism compartments. The inhalation data were best described by adding two absorption pathways, an immediate and a slower pathway, with rate constant 0.05 ± 0.01 min (median ± SE of the estimate). The amount of esketamine inhaled was reduced due to dose-independent and dose-dependent reduced bioavailability. The former was 70% ± 5%, and the latter was described by a sigmoid EMAX model characterized by the plasma concentration at which absorption was impaired by 50% (406 ± 46 ng/ml). Over the concentration range tested, up to 50% of inhaled esketamine is lost due to the reduced dose-independent and dose-dependent bioavailability. We successfully modeled the inhalation of nebulized esketamine in healthy volunteers. Nebulized esketamine is inhaled with a substantial reduction in bioavailability. Although the reduction in dose-independent bioavailability is best explained by retention of drug and particle exhalation, the reduction in dose-dependent bioavailability is probably due to sedation-related loss of drug into the air.
Effect of reduced agalsidase Beta dosage in fabry patients: the Australian experience.
Ghali, Joanna; Nicholls, Kathy; Denaro, Charles; Sillence, David; Chapman, Ian; Goldblatt, Jack; Thomas, Mark; Fletcher, Janice
2012-01-01
In Australia, enzyme replacement therapy (ERT) for Fabry Disease (FD), both Agalsidase alfa (Replagal, Shire HGT) and beta (Fabrazyme, Genzyme), is funded and monitored through a specific government program. Agalsidase beta supply has been rationed by Genzyme since 2009 due to manufacturing issues. Consequently, the Australian Fabry Disease Advisory Committee has treated patients on Agalsidase beta at 50% of their usual dose from mid-2009, with a further reduction to 30% for some patients from late 2009. To determine the clinical effect of Agalsidase beta dose reduction in the Australian FD patient cohort. A questionnaire assessing FD symptoms was administered to 40 patients on long-term ERT. Clinical data from The Fabry Registry for patients receiving Agalsidase alfa or beta, for at least 2 years prior to the time of enforced Agalsidase beta dose reduction, were reviewed. Disease burden and quality of life (QOL) were graded using the Disease Severity Scoring System, Mainz Severity Score Index, Brief Pain Inventory and Short Form 36 Health Survey at 2 years before dose reduction, at the time of dose reduction and at the most recent clinical review following dose reduction. Disease severity and QOL scores did not change between the ERT groups. Males on Agalsidase beta reported lower energy levels after dose reduction, while no change was reported by females on either product or by males on a stable dose of Agalsidase alfa. This study suggests that energy levels in male patients worsen after dose reduction of Agalsidase beta.
Efficacy of radiation safety glasses in interventional radiology.
van Rooijen, Bart D; de Haan, Michiel W; Das, Marco; Arnoldussen, Carsten W K P; de Graaf, R; van Zwam, Wim H; Backes, Walter H; Jeukens, Cécile R L P N
2014-10-01
This study was designed to evaluate the reduction of the eye lens dose when wearing protective eyewear in interventional radiology and to identify conditions that optimize the efficacy of radiation safety glasses. The dose reduction provided by different models of radiation safety glasses was measured on an anthropomorphic phantom head. The influence of the orientation of the phantom head on the dose reduction was studied in detail. The dose reduction in interventional radiological practice was assessed by dose measurements on radiologists wearing either leaded or no glasses or using a ceiling suspended screen. The different models of radiation safety glasses provided a dose reduction in the range of a factor of 7.9-10.0 for frontal exposure of the phantom. The dose reduction was strongly reduced when the head is turned to the side relative to the irradiated volume. The eye closest to the tube was better protected due to side shielding and eyewear curvature. In clinical practice, the mean dose reduction was a factor of 2.1. Using a ceiling suspended lead glass shield resulted in a mean dose reduction of a factor of 5.7. The efficacy of radiation protection glasses depends on the orientation of the operator's head relative to the irradiated volume. Glasses can offer good protection to the eye under clinically relevant conditions. However, the performance in clinical practice in our study was lower than expected. This is likely related to nonoptimized room geometry and training of the staff as well as measurement methodology.
125I eye plaque dose distribution including penumbra characteristics.
de la Zerda, A; Chiu-Tsao, S T; Lin, J; Boulay, L L; Kanna, I; Kim, J H; Tsao, H S
1996-03-01
The two main purposes of this work are (1) to determine the penumbra characteristics for 125I eye plaque and the relative influence of the plaque and eye-air interface on the dose distribution, and (2) to initiate development of a treatment planning algorithm for clinical dose calculations. Dose was measured in a newly designed solid water eye phantom for an 125I (6711) seed at the center of a 20 mm COMS eye plaque using thermoluminescent dosimeter (TLD) "cubes" and "minichips" inside and outside the eye, in the longitudinal and transverse central planes. TLD cubes were used in most locations, except for short distances from the seed and in the penumbra region. In the presence of both the plaque and the eye-air interface, the dose along the central axis was found to be reduced by 10% at 1 cm and up to 20% at 2.5 cm, relative to the bulk homogeneous phantom case. In addition, the overall dose reduction was greater for larger off-axis coordinates at a given depth. The penumbra characteristics due to the lip collimation were quantified, particularly the dependence of penumbra center and width on depth. Only small differences were observed between the profiles in the transverse and longitudinal planes. In the bulk geometry (without the eye-air interface), the dose reduction due to the presence of the plaque alone was found to be 7% at a depth of 2.5 cm. The additional reduction of 13% observed, with the presence of eye-air interface (20% combined), can be attributed to the lack of backscattering from the air in front of the eye. The dose-reduction effect due to the anterior air interface alone became unnoticeable at a depth of 1.1 cm (1.5 cm from the eye-air interface). An analytic fit to measured data was developed for clinical dose calculations for a centrally loaded seed. The central axis values of the dose rates multiplied by distance squared, Dr2, were fitted with a double exponential function of depth. The off-axis profile of Dr2, at a given depth, was parametrized by a modified Fermi-Dirac function to model both the penumbra characteristics due the plaque lip collimation and the effect of oblique filtration by silastic.
Radiation dose reduction in computed tomography: techniques and future perspective
Yu, Lifeng; Liu, Xin; Leng, Shuai; Kofler, James M; Ramirez-Giraldo, Juan C; Qu, Mingliang; Christner, Jodie; Fletcher, Joel G; McCollough, Cynthia H
2011-01-01
Despite universal consensus that computed tomography (CT) overwhelmingly benefits patients when used for appropriate indications, concerns have been raised regarding the potential risk of cancer induction from CT due to the exponentially increased use of CT in medicine. Keeping radiation dose as low as reasonably achievable, consistent with the diagnostic task, remains the most important strategy for decreasing this potential risk. This article summarizes the general technical strategies that are commonly used for radiation dose management in CT. Dose-management strategies for pediatric CT, cardiac CT, dual-energy CT, CT perfusion and interventional CT are specifically discussed, and future perspectives on CT dose reduction are presented. PMID:22308169
Shafirkin, A V
2015-01-01
Neutrons of the fission spectrum are characterized by relatively high values of linear energy transfer (LET). Data about their effects on biological objects are used to evaluate the risk of delayed effects of accelerated ions within the same LET range that serve as an experimental model of the nuclei component of galactic cosmic rays (GCR). Additionally, risks of delayed consequences to cosmonaut's health and average lifetime from certain GCR fluxes and secondary neutrons can be also prognosticated. The article deals with comparative analysis of the literature on reduction of average lifespan (ALS) of animals exposed to neutron reactor spectrum, 60-126 MeV protons, and X- and γ-rays in a broad range of radiation intensity and duration. It was shown that a minimal lifespan reduction by 5% occurs due to a brief exposure to neutrons with the absorbed dose of 5 cGy, whereas same lifespan reduction due to hard X- and γ-radiation occurs after absorption of a minimal dose of 100 cGy. Therefore, according to the estimated minimal ALS reduction in mice, neutron effectiveness is 20-fold higher. Biological effectiveness of protons as regards ALS reduction is virtually equal to that of standard types of radiation. Exposure to X- and γ-radiation with decreasing daily doses, and increasing number of fractions and duration gives rise to an apparent trend toward a less dramatic ALS reduction in mice; on the contrary, exposure to neutrons of varying duration had no effect on threshold doses for the specified ALS reductions. Factors of relative biological effectiveness of neutrons reached 40.
Method for inserting noise in digital mammography to simulate reduction in radiation dose
NASA Astrophysics Data System (ADS)
Borges, Lucas R.; de Oliveira, Helder C. R.; Nunes, Polyana F.; Vieira, Marcelo A. C.
2015-03-01
The quality of clinical x-ray images is closely related to the radiation dose used in the imaging study. The general principle for selecting the radiation is ALARA ("as low as reasonably achievable"). The practical optimization, however, remains challenging. It is well known that reducing the radiation dose increases the quantum noise, which could compromise the image quality. In order to conduct studies about dose reduction in mammography, it would be necessary to acquire repeated clinical images, from the same patient, with different dose levels. However, such practice would be unethical due to radiation related risks. One solution is to simulate the effects of dose reduction in clinical images. This work proposes a new method, based on the Anscombe transformation, which simulates dose reduction in digital mammography by inserting quantum noise into clinical mammograms acquired with the standard radiation dose. Thus, it is possible to simulate different levels of radiation doses without exposing the patient to new levels of radiation. Results showed that the achieved quality of simulated images generated with our method is the same as when using other methods found in the literature, with the novelty of using the Anscombe transformation for converting signal-independent Gaussian noise into signal-dependent quantum noise.
NASA Astrophysics Data System (ADS)
Sung, Jiwon; Baek, Tae Seong; Yoon, Myonggeun; Kim, Dong Wook; Kim, Dong Hyun
2014-09-01
This study evaluated the effect of a simple shielding method using a thin lead sheet on the imaging dose caused by cone-beam computed tomography (CBCT) in image-guided radiation therapy (IGRT). Reduction of secondary doses from CBCT was measured using a radio-photoluminescence glass dosimeter (RPLGD) placed inside an anthropomorphic phantom. The entire body, except for the region scanned by using CBCT, was shielded by wrapping it with a 2-mm lead sheet. Changes in secondary cancer risk due to shielding were calculated using BEIR VII models. Doses to out-of-field organs for head-and-neck, chest, and pelvis scans were decreased 15 ~ 100%, 23 ~ 90%, and 23 ~ 98%, respectively, and the average reductions in lifetime secondary cancer risk due to the 2-mm lead shielding were 1.6, 11.5, and 12.7 persons per 100,000, respectively. These findings suggest that a simple, thin-lead-sheet-based shielding method can effectively decrease secondary doses to out-of-field regions for CBCT, which reduces the lifetime cancer risk on average by 9 per 100,000 patients.
Pozzi, Marco; Pisano, Simone; Bertella, Silvana; Capuano, Annalisa; Rizzo, Renata; Antoniazzi, Stefania; Auricchio, Fabiana; Carnovale, Carla; Cattaneo, Dario; Ferrajolo, Carmen; Gentili, Marta; Guastella, Giuseppe; Mani, Elisa; Rafaniello, Concetta; Riccio, Maria Pia; Scuderi, Maria Grazia; Sperandeo, Serena; Sportiello, Liberata; Villa, Laura; Radice, Sonia; Clementi, Emilio; Rossi, Francesco; Pascotto, Antonio; Bernardini, Renato; Molteni, Massimo; Bravaccio, Carmela
2016-12-01
The practical effectiveness of second-generation antipsychotics in children and adolescents is an understudied issue. It is a crucial area of study, though, because such patients are often treated for long-lasting disorders. We carried out a 24-month (March 2012-March 2014) observational study on an unselected population of pediatric outpatients treated with risperidone, aripiprazole, olanzapine, or quetiapine aiming to (1) describe drug use, (2) compare post hoc the discontinuation rates due to specific causes and dose adjustments by Kaplan-Meier analyses between drugs, and (3) analyze predictors influencing these outcomes by Cox multivariate models. Among 184 pediatric patients, 77% patients were prescribed risperidone, and 18% were prescribed aripiprazole. Olanzapine or quetiapine were scantly used; therefore, they were excluded from analyses. Risperidone was prevalent in younger, male patients with disruptive behavioral disorders; aripiprazole, in patients with tic disorders. Overall, discontinuations occurred mostly in the first 6 months, and, at 24 months, the discontinuation numbers were similar between users of risperidone and aripiprazole (41.5% vs 39.4%). In univariate analyses, dose reduction was higher for aripiprazole (P = .033). Multivariate analyses yielded the following predictors: for all-cause discontinuation, baseline severity (hazard ratio [HR] = 1.48, P = .001) and dose increase (HR = 3.55, P = .001); for patient-decided discontinuation, dose change (increase: HR = 6.43, P = .004; reduction: HR = 7.89, P = .049) and the presence of concomitant drugs (HR = 4.03, P = .034), while autistic patients discontinued less (HR = 0.23, P = .050); for clinician-decided discontinuation due to adverse drug reactions, baseline severity (HR = 1.96, P = .005) and dose increase (HR = 5.09, P = .016); for clinician-decided discontinuation due to inefficacy, baseline severity (HR = 2.88, P = .014) and the use of aripiprazole (HR = 5.55, P = .013); for dose increase, none; for dose reduction, the occurrence of adverse drug reactions (HR = 4.74, P = .046), while dose reduction was less probable in autistic patients (HR = 0.22, P = .042). The findings of this study show a similarity between the overall effectiveness of risperidone and aripiprazole in a real-life pediatric outpatient setting. © Copyright 2016 Physicians Postgraduate Press, Inc.
Doval, H C; Nul, D R; Grancelli, H O; Perrone, S V; Bortman, G R; Curiel, R
1994-08-20
In severe heart failure many deaths are sudden and are presumed to be due to ventricular arrhythmias. The GESICA trial evaluated the effect of low-dose amiodarone on two-year mortality in patients with severe heart failure. Our prospective multicentre trial included 516 patients on optimal standard treatment for heart failure. Patients were randomised to 300 mg/day amiodarone (260) or to standard treatment (256). Intention-to-treat analysis showed 87 deaths in the amiodarone group (33.5%) compared with 106 in the control group (41.4%) (risk reduction 28%; 95% CI 4%-45%; log rank test p = 0.024). There were reductions in both sudden death (risk reduction 27%; p = 0.16) and death due to progressive heart failure (risk reduction 23%; p = 0.16). Fewer patients in the amiodarone group died or were admitted to hospital due to worsening heart failure (119 versus 149 in the control group; risk reduction 31%; 95% CI 13-46%; p = 0.0024). The decrease in mortality and hospital admission was present in all subgroups examined and independent of the presence of non-sustained ventricular tachycardia. Side-effects were reported in 17 patients (6.1%); amiodarone was withdrawn in 12. Low-dose amiodarone proved to be an effective and reliable treatment, reducing mortality and hospital admission in patients with severe heart failure independently of the presence of complex ventricular arrhythmias.
San-Miguel, Jesús F; Hungria, Vania T M; Yoon, Sung-Soo; Beksac, Meral; Dimopoulos, Meletios A; Elghandour, Ashraf; Jedrzejczak, Wieslaw W; Guenther, Andreas; Na Nakorn, Thanyaphong; Siritanaratkul, Noppadol; Schlossman, Robert L; Hou, Jian; Moreau, Philippe; Lonial, Sagar; Lee, Jae-Hoon; Einsele, Hermann; Salwender, Hans; Sopala, Monika; Redhu, Suman; Paul, Sofia; Corrado, Claudia; Richardson, Paul G
2017-10-01
Panobinostat in combination with bortezomib and dexamethasone demonstrated a significant and clinically meaningful progression-free survival benefit compared with placebo, bortezomib and dexamethasone in the phase 3 PANORAMA 1 (Panobinostat Oral in Multiple Myeloma 1) trial. Despite this benefit, patients in the panobinostat arm experienced higher rates of adverse events (AEs) and higher rates of discontinuation due to AEs. This PANORAMA 1 subanalysis examined AEs between 2 treatment phases of the study (TP1 and TP2), in which administration frequency of bortezomib and dexamethasone differed per protocol. The incidences of several key AEs were lower in both arms following the planned reduction of bortezomib dosing frequency in TP2. In the panobinostat arm, rates of thrombocytopenia (grade 3/4: TP1, 56·7%; TP2, 6·0%), diarrhoea (grade 3/4: TP1, 24·1%; TP2, 7·1%), and fatigue (grade 3/4: TP1, 16·3%; TP2, 1·8%) were lower in TP2 compared with TP1. Dose intensity analysis of panobinostat and bortezomib by cycle in the panobinostat arm showed reductions of both agent doses during cycles 1-4 due to dose adjustments for AEs. Exposure-adjusted analysis demonstrated a reduction in thrombocytopenia frequency in TP1 following dose adjustment. These results suggest that optimization of dosing with this regimen could improve tolerability, potentially leading to improved patient outcomes. © 2017 John Wiley & Sons Ltd.
SparseCT: interrupted-beam acquisition and sparse reconstruction for radiation dose reduction
NASA Astrophysics Data System (ADS)
Koesters, Thomas; Knoll, Florian; Sodickson, Aaron; Sodickson, Daniel K.; Otazo, Ricardo
2017-03-01
State-of-the-art low-dose CT methods reduce the x-ray tube current and use iterative reconstruction methods to denoise the resulting images. However, due to compromises between denoising and image quality, only moderate dose reductions up to 30-40% are accepted in clinical practice. An alternative approach is to reduce the number of x-ray projections and use compressed sensing to reconstruct the full-tube-current undersampled data. This idea was recognized in the early days of compressed sensing and proposals for CT dose reduction appeared soon afterwards. However, no practical means of undersampling has yet been demonstrated in the challenging environment of a rapidly rotating CT gantry. In this work, we propose a moving multislit collimator as a practical incoherent undersampling scheme for compressed sensing CT and evaluate its application for radiation dose reduction. The proposed collimator is composed of narrow slits and moves linearly along the slice dimension (z), to interrupt the incident beam in different slices for each x-ray tube angle (θ). The reduced projection dataset is then reconstructed using a sparse approach, where 3D image gradients are employed to enforce sparsity. The effects of the collimator slits on the beam profile were measured and represented as a continuous slice profile. SparseCT was tested using retrospective undersampling and compared against commercial current-reduction techniques on phantoms and in vivo studies. Initial results suggest that SparseCT may enable higher performance than current-reduction, particularly for high dose reduction factors.
An adaptive algorithm for the detection of microcalcifications in simulated low-dose mammography.
Treiber, O; Wanninger, F; Führ, H; Panzer, W; Regulla, D; Winkler, G
2003-02-21
This paper uses the task of microcalcification detection as a benchmark problem to assess the potential for dose reduction in x-ray mammography. We present the results of a newly developed algorithm for detection of microcalcifications as a case study for a typical commercial film-screen system (Kodak Min-R 2000/2190). The first part of the paper deals with the simulation of dose reduction for film-screen mammography based on a physical model of the imaging process. Use of a more sensitive film-screen system is expected to result in additional smoothing of the image. We introduce two different models of that behaviour, called moderate and strong smoothing. We then present an adaptive, model-based microcalcification detection algorithm. Comparing detection results with ground-truth images obtained under the supervision of an expert radiologist allows us to establish the soundness of the detection algorithm. We measure the performance on the dose-reduced images in order to assess the loss of information due to dose reduction. It turns out that the smoothing behaviour has a strong influence on detection rates. For moderate smoothing. a dose reduction by 25% has no serious influence on the detection results. whereas a dose reduction by 50% already entails a marked deterioration of the performance. Strong smoothing generally leads to an unacceptable loss of image quality. The test results emphasize the impact of the more sensitive film-screen system and its characteristics on the problem of assessing the potential for dose reduction in film-screen mammography. The general approach presented in the paper can be adapted to fully digital mammography.
An adaptive algorithm for the detection of microcalcifications in simulated low-dose mammography
NASA Astrophysics Data System (ADS)
Treiber, O.; Wanninger, F.; Führ, H.; Panzer, W.; Regulla, D.; Winkler, G.
2003-02-01
This paper uses the task of microcalcification detection as a benchmark problem to assess the potential for dose reduction in x-ray mammography. We present the results of a newly developed algorithm for detection of microcalcifications as a case study for a typical commercial film-screen system (Kodak Min-R 2000/2190). The first part of the paper deals with the simulation of dose reduction for film-screen mammography based on a physical model of the imaging process. Use of a more sensitive film-screen system is expected to result in additional smoothing of the image. We introduce two different models of that behaviour, called moderate and strong smoothing. We then present an adaptive, model-based microcalcification detection algorithm. Comparing detection results with ground-truth images obtained under the supervision of an expert radiologist allows us to establish the soundness of the detection algorithm. We measure the performance on the dose-reduced images in order to assess the loss of information due to dose reduction. It turns out that the smoothing behaviour has a strong influence on detection rates. For moderate smoothing, a dose reduction by 25% has no serious influence on the detection results, whereas a dose reduction by 50% already entails a marked deterioration of the performance. Strong smoothing generally leads to an unacceptable loss of image quality. The test results emphasize the impact of the more sensitive film-screen system and its characteristics on the problem of assessing the potential for dose reduction in film-screen mammography. The general approach presented in the paper can be adapted to fully digital mammography.
Costa, F; Teles, P; Nogueira, A; Barreto, A; Santos, A I; Carvalho, A; Martins, B; Oliveira, C; Gaspar, C; Barros, C; Neves, D; Costa, D; Rodrigues, E; Godinho, F; Alves, F; Cardoso, G; Cantinho, G; Conde, I; Vale, J; Santos, J; Isidoro, J; Pereira, J; Salgado, L; Rézio, M; Vieira, M; Simãozinho, P; Almeida, P; Castro, R; Parafita, R; Pintão, S; Lúcio, T; Reis, T; Vaz, P
2015-01-01
In 2009-2010 a Portuguese consortium was created to implement the methodologies proposed by the Dose Datamed II (DDM2) project, aiming to collect data from diagnostic X-ray and nuclear medicine (NM) procedures, in order to determine the most frequently prescribed exams and the associated ionizing radiation doses for the Portuguese population. The current study is the continuation of this work, although it focuses only on NM exams for the years 2011 and 2012. The annual frequency of each of the 28 selected NM exams and the average administered activity per procedure was obtained by means of a nationwide survey sent to the 35 NM centres in Portugal. The results show a reduction of the number of cardiac exams performed in the last two years compared with 2010, leading to a reduction of the annual average effective dose of Portuguese population due to NM exams from 0.08 mSv ± 0.017 mSv/caput to 0.059 ± 0.011 mSv/caput in 2011 and 0.054 ± 0.011 mSv/caput in 2012. Portuguese total annual average collective effective dose due to medical procedures was estimated to be 625.6 ± 110.9 manSv in 2011 and 565.1 ± 117.3 manSv in 2012, a reduction in comparison with 2010 (840.3 ± 183.8 manSv). The most frequent exams and the ones that contributed the most for total population dose were the cardiac and bone exams, although a decrease observed in 2011 and in 2012 was verified. The authors intend to perform this study periodically to identify trends in the annual Portuguese average effective dose and to help to raise awareness about the potential dose optimization. Copyright © 2014 Elsevier España, S.L.U. and SEMNIM. All rights reserved.
Sgouros, Joseph; Aravantinos, Gerasimos; Kouvatseas, George; Rapti, Anna; Stamoulis, George; Bisvikis, Anastasios; Res, Helen; Samantas, Epameinondas
2015-12-01
Most stage II or III colorectal cancer patients are receiving nowadays a 4 to 6-month course of adjuvant chemotherapy. However, delays between cycles, reductions in the doses of chemotherapy drugs, or even permanent omissions of chemotherapy cycles might take place due to side effects or patient's preference. We examined the impact of these treatment modifications on recurrence-free survival (RFS) and overall survival (OS). We retrospectively collected data from colorectal cancer patients who had received adjuvant chemotherapy in our Department. Patients were categorized in five groups based on whether they had or not delays between chemotherapy cycles, dose reductions, and permanent omissions of chemotherapy cycles. Three-year RFS and OS of the five different groups were compared using the log-rank test and the Sidak approach. Five hundred and eight patients received treatment. Twenty seven percent of the patients had the full course of chemotherapy; the others had delays, dose reductions, or early termination of the treatment. No statistically significant differences were observed in 3-year RFS and OS between the five groups. A trend for worse RFS was noticed with early termination of treatment. A similar trend was also noticed for OS but only for stage II patients. In colorectal cancer patients, receiving adjuvant chemotherapy, delays between chemotherapy cycles, dose reductions of chemotherapy drugs, or even early termination of the treatment course do not seem to have a negative impact in 3-year RFS and OS; however, due to the trend of worse RFS in patients receiving shorter courses of chemotherapy, further studies are needed.
Low-dose CT of postoperative pelvic fractures: a comparison with radiography.
Eriksson, Thomas; Berg, Per; Olerud, Claes; Shalabi, Adel; Hänni, Mari
2018-01-01
Background Computed tomography (CT) is superior to conventional radiography (CR) for assessing internal fixation of pelvic fractures, but with a higher radiation exposure. Low-dose CT (LDCT) could possibly have a sufficient diagnostic accuracy but with a lower radiation dose. Purpose To compare postoperative diagnostic accuracy of LDCT and CR after open reduction and internal fixation of pelvic fracture. Material and Methods Twenty-one patients were examined with LDCT and CR 0-9 days after surgery. The examinations were reviewed by two musculoskeletal radiologists. Hardware, degree of fracture reduction, image quality, and reviewing time were assessed, and effective radiation dose was calculated. Inter-reader agreement was calculated. Results LDCT was significantly better than CR in determining whether hardware positioning was assessable ( P < 0.001). Acetabular congruence was assessable in all fractured patients with LDCT. In 12 of the 32 assessments with CR of patients with an acetabular fracture, joint congruence was not assessable due to overlapping hardware ( P = 0.001). Image quality was significantly higher for LDCT. Median time to review was 240 s for LDCT compared to 180 s for CR. Effective dose was 0.79 mSv for LDCT compared to 0.32 mSv for CR ( P < 0.001). Conclusion LDCT is more reliable than CR in assessing hardware position and fracture reduction. Joint congruency is sometimes not possible to assess with CR, due to overlapping hardware. The image quality is higher, but also the effective dose, with LDCT than with CR.
Kilovoltage Imaging Doses in the Radiotherapy of Pediatric Cancer Patients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng Jun, E-mail: jun.deng@yale.edu; Chen Zhe; Roberts, Kenneth B.
Purpose: To investigate doses induced by kilovoltage cone-beam computed tomography (kVCBCT) to pediatric cancer patients undergoing radiotherapy, as well as strategies for dose reduction. Methods and Materials: An EGS4 Monte Carlo code was used to calculate three-dimensional dose deposition due to kVCBCT on 4 pediatric cancer patients. Absorbed doses to various organs were analyzed for both half-fan and full-fan modes. Clinical conditions, such as distance from organ at risk (OAR) to CBCT field border, kV peak energy, and testicular shielding, were studied. Results: The mean doses induced by one CBCT scan operated at 125 kV in half-fan mode to testes,more » liver, kidneys, femoral heads, spinal cord, brain, eyes, lens, and optical nerves were 2.9, 4.7, 7.7, 10.5, 8.8, 7.6, 7.7, 7.8, and 7.2 cGy, respectively. Increasing the distances from OARs to CBCT field border greatly reduced the doses to OARs, ranging from 33% reduction for spinal cord to 2300% reduction for testes. As photon beam energy increased from 60 to 125 kV, the dose increase due to kVCBCT ranged from 170% for lens to 460% for brain and spinal cord. A testicular shielding made of 1-cm cerrobend could reduce CBCT doses down to 31%, 51%, 68%, and 82%, respectively, for 60, 80, 100, and 125 kV when the testes lay within the CBCT field. Conclusions: Generally speaking, kVCBCT deposits much larger doses to critical structures in children than in adults, usually by a factor of 2 to 3. Increasing the distances from OARs to CBCT field border greatly reduces doses to OARs. Depending on OARs, kVCBCT-induced doses increase linearly or exponentially with photon beam energy. Testicular shielding works more efficiently at lower kV energies. On the basis of our study, it is essential to choose an appropriate scanning protocol when kVCBCT is applied to pediatric cancer patients routinely.« less
RADTRAD: A simplified model for RADionuclide Transport and Removal And Dose estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humphreys, S.L.; Miller, L.A.; Monroe, D.K.
1998-04-01
This report documents the RADTRAD computer code developed for the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Reactor Regulation (NRR) to estimate transport and removal of radionuclides and dose at selected receptors. The document includes a users` guide to the code, a description of the technical basis for the code, the quality assurance and code acceptance testing documentation, and a programmers` guide. The RADTRAD code can be used to estimate the containment release using either the NRC TID-14844 or NUREG-1465 source terms and assumptions, or a user-specified table. In addition, the code can account for a reduction in themore » quantity of radioactive material due to containment sprays, natural deposition, filters, and other natural and engineered safety features. The RADTRAD code uses a combination of tables and/or numerical models of source term reduction phenomena to determine the time-dependent dose at user-specified locations for a given accident scenario. The code system also provides the inventory, decay chain, and dose conversion factor tables needed for the dose calculation. The RADTRAD code can be used to assess occupational radiation exposures, typically in the control room; to estimate site boundary doses; and to estimate dose attenuation due to modification of a facility or accident sequence.« less
Stacked competitive networks for noise reduction in low-dose CT
Du, Wenchao; Chen, Hu; Wu, Zhihong; Sun, Huaiqiang; Liao, Peixi
2017-01-01
Since absorption of X-ray radiation has the possibility of inducing cancerous, genetic and other diseases to patients, researches usually attempt to reduce the radiation dose. However, reduction of the radiation dose associated with CT scans will unavoidably increase the severity of noise and artifacts, which can seriously affect diagnostic confidence. Due to the outstanding performance of deep neural networks in image processing, in this paper, we proposed a Stacked Competitive Network (SCN) approach to noise reduction, which stacks several successive Competitive Blocks (CB). The carefully handcrafted design of the competitive blocks was inspired by the idea of multi-scale processing and improvement the network’s capacity. Qualitative and quantitative evaluations demonstrate the competitive performance of the proposed method in noise suppression, structural preservation, and lesion detection. PMID:29267360
[ACE inhibitors and the kidney].
Hörl, W H
1996-01-01
Treatment with ACE inhibitors results in kidney protection due to reduction of systemic blood pressure, intraglomerular pressure, an antiproliferative effect, reduction of proteinuria and a lipid-lowering effect in proteinuric patients (secondary due to reduction of protein excretion). Elderly patients with diabetes melitus, coronary heart disease or peripheral vascular occlusion are at risk for deterioration of kidney function due to a high frequency of renal artery stenosis in these patients. In patients with renal insufficiency dose reduction of ACE inhibitors is necessary (exception: fosinopril) but more important is the risk for development of hyperkalemia. Patients at risk for renal artery stenosis and patients pretreated with diuretics should receive a low ACE inhibitor dosage initially ("start low - go slow"). For compliance reasons once daily ACE inhibitor dosage is recommended.
Xing, Jiajian; Liang, Heng; Cheng, Xiaoxiang; Yang, Haiyan; Xu, Daliang; Gan, Zhendong; Luo, Xinsheng; Zhu, Xuewu; Li, Guibai
2018-06-02
This study investigated the combined effects of coagulation and powdered activated carbon (PAC) adsorption on ultrafiltration (UF) membrane fouling control and subsequent disinfection efficiency through filtration performance, dissolved organic carbon (DOC) removal, fluorescence excitation-emission matrix (EEM) spectroscopy, and disinfectant curve. The fouling behavior of UF membrane was comprehensively analyzed especially in terms of pollutant removal and fouling reversibility to understand the mechanism of fouling accumulation and disinfectant dose reduction. Pre-coagulation with or without adsorption both achieved remarkable effect of fouling mitigation and disinfection dose reduction. The two pretreatments were effective in total fouling control and pre-coagulation combined with PAC adsorption even decreased hydraulically irreversible fouling notably. Besides, pre-coagulation decreased residual disinfectant decline due to the removal of hydrophobic components of natural organic matters (NOM). Pre-coagulation combined with adsorption had a synergistic effect on further disinfectant decline rate reduction and decreased total disinfectant consumption due to additional removal of hydrophilic NOM by PAC adsorption. The disinfectant demand was further reduced after membrane. These results show that membrane fouling and disinfectant dose can be reduced in UF coupled with pretreatment, which could lead to the avoidance of excessive operation cost disinfectant dose for drinking water supply.
Matsuda, Norihiro; Mikami, Satoshi; Sato, Tetsuro; Saito, Kimiaki
2017-01-01
Measurements of air dose rates for 192 houses in a less contaminated area (<0.5 μSv h -1 ) of the Fukushima Prefecture in Japan were conducted in both living rooms and/or bedrooms using optically stimulated luminescence (OSL) dosimeters and around the houses via a man-borne survey at intervals of several meters. The relation of the two air dose rates (inside and outside) for each house, including the background from natural radionuclides, was divided into several categories, determined by construction materials (light and heavy) and floor number, with the dose reduction factors being expressed as the ratio of the dose inside to that outside the house. For wooden and lightweight steel houses (classed as light), the dose rates inside and outside the houses showed a positive correlation and linear regression with a slope-intercept form due to the natural background, although the degree of correlation was not very high. The regression coefficient, i.e., the average dose reduction factor, was 0.38 on the first floor and 0.49 on the second floor. It was found that the contribution of natural radiation cannot be neglected when we consider dose reduction factors in less contaminated areas. The reductions in indoor dose rates are observed because a patch of ground under each house is not contaminated (this is the so-called uncontaminated effect) since the shielding capability of light construction materials is typically low. For reinforced steel-framed concrete houses (classed as heavy), the dose rates inside the houses did not show a correlation with those outside the houses due to the substantial shielding capability of these materials. The average indoor dose rates were slightly higher than the arithmetic mean value of the outdoor dose rates from the natural background because concrete acts as a source of natural radionuclides. The characteristics of the uncontaminated effect were clarified through Monte Carlo simulations. It was found that there is a great variation in air dose rates even within one house, depending on the height of the area and its closeness to the outside boundary. Measurements of outdoor dose rates required consideration of local variations depending on the environment surrounding each house. The representative value was obtained from detailed distributions of air dose rates around the house, as measured by a man-borne survey. Therefore, it is imperative to recognize that dose reduction factors fluctuate in response to various factors such as the size and shape of a house, construction materials acting as a shield and as sources, position (including height) within a room, floor number, total number of floors, and surrounding environment. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Dose comparison between conventional and quasi-monochromatic systems for diagnostic radiology
NASA Astrophysics Data System (ADS)
Baldelli, P.; Taibi, A.; Tuffanelli, A.; Gambaccini, M.
2004-09-01
Several techniques have been introduced in the last year to reduce the dose to the patient by minimizing the risk of tumour induced by radiation. In this work the radiological potential of dose reduction in quasi-monochromatic spectra produced via mosaic crystal Bragg diffraction has been evaluated, and a comparison with conventional spectra has been performed for four standard examinations: head, chest, abdomen and lumbar sacral spine. We have simulated quasi-monochromatic x-rays with the Shadow code, and conventional spectra with the Spectrum Processor. By means of the PCXMC software, we have simulated four examinations according to parameters established by the European Guidelines, and calculated absorbed dose for principal organs and the effective dose. Simulations of quasi-monochromatic laminar beams have been performed without anti-scatter grid, because of their inherent scatter geometry, and compared with simulations with conventional beams with anti-scatter grids. Results have shown that the dose reduction due to the introduction of quasi-monochromatic x-rays depends on different parameters related to the quality of the beam, the organ composition and the anti-scatter grid. With parameters chosen in this study a significant dose reduction can be achieved for two out of four kinds of examination.
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; ...
2016-10-07
We present measurements of the reduction of light output by plastic scintillators irradiated in the CMS detector during the 8 TeV run of the Large Hadron Collider and show that they indicate a strong dose rate effect. The damage for a given dose is larger for lower dose rate exposures. The results agree with previous measurements of dose rate effects, but are stronger due to the very low dose rates probed. Here, we show that the scaling with dose rate is consistent with that expected from diffusion effects.
Mateo-Carrasco, Hector; Serrano-Castro, Pedro Jesús; Molina-Cuadrado, Emilio; Goodwin, Mel; Nguyen, Timothy V; Kotecha, Primal N
2015-08-01
We discuss the case of a 5-year-old long-standing epileptic woman, who received oxcarbazepine 2.1 g/day, and levetiracetam 3 g/day (started in 2005 and up-titrated according to response). In October/2008, due to poor seizure control, patient consent was obtained and levetiracetam up-titrated to 6 g/day, remaining invariable for 72 months; zonisamide was added in July/2009 and up-titrated to 500 mg/day. This combination achieved seizure frequency reduction ≥50 %, however, the patient ultimately necessitated temporal lobectomy for complete remission. Occasional agitation and moderate depression were the main side effects. Three anti-epileptic drugs (including levetiracetam 6 g/day) achieved statistically-significant seizure frequency reduction ≥50 % compared with lower doses, but not seizure freedom. Low-dose risperidone was initiated due to transient dose-dependent agitation, although it did not lead to discontinuation. This report provides insightful information on the use of high-dose levetiracetam in focal refractory epilepsy. The concomitance of anti-epileptics may have contributed to both efficacy and toxicity. Therefore, the risk/benefit ratio must be individually weighed until larger studies are available.
Tornero Molina, Jesús; Ballina García, Francisco Javier; Calvo Alén, Jaime; Caracuel Ruiz, Miguel Ángel; Carbonell Abelló, Jordi; López Meseguer, Antonio; Moreno Muelas, José Vicente; Pérez Sandoval, Trinidad; Quijada Carrera, Jesús; Trenor Larraz, Pilar; Zea Mendoza, Antonio
2015-01-01
To describe the optimal therapeutic strategy for use of methotrexate in RA patients over the initial dose, route of administration, dose increase and decrease, patient monitoring, and use of folic/folinic acid. Eleven clinical experts proposed some questions to be solved. A systematic literature search was conducted. The contents were selected in a work session and subsequently validated via email to establish the level of agreement. The initial dose of methotrexate should not be <10mg/week, preferably orally, but considering the parenteral route as an alternative due to compliance, non effectiveness of treatment or gastrointestinal side effects, polypharmacy, obesity (if required doses are >20mg/week), patient preference, very active disease or to avoid administration errors. Changing to a parenteral administration is proposed when the oral route is not effective enough, gastrointestinal toxicity appears, there is non-compliance or due to cost-effectiveness reasons before using more expensive drugs. On the contrary, due to patient preferences, intolerance to injections, dose reduction <7.5mg/week, non effectiveness of the route, poor compliance or gastrointestinal side effects. There should be a rapid dose escalation if inadequate responses occurr up to 15-20 or even 25mg/week in about 8 weeks, with increments of 2.5-5mg. The reduction will be carried out according to the dose the patient had, with decreases of 2.5-5mg every 3-6 months. Patient monitoring should be performed every 1-1.5 months until stability and then every 1-3 months. This document pretends to solve some common clinical questions and facilitate decision-making in RA patients treated with methotrexate. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.
Craven, Meghan; Frank, Graeme R
2018-06-27
Congenital hypothyroidism (CH) is the most common preventable cause of intellectual disability. The recommended starting dose of levothyroxine (LT4) is between 10 and 15 μg/kg, an extremely wide range. We hypothesized that a sizable proportion of newborns treated for CH at the higher end of the dosage range become biochemically hyperthyroid at a follow-up visit. This study is a retrospective chart review of infants with CH between 2002 and 2012. Of the 104 patients included in this analysis, the average age at diagnosis was 11 days and the average starting dose of LT4 was 12±2.5 μg/kg. At follow-up, 36.5% required a dose reduction because of iatrogenic hyperthyroxinemia, 51% required no dose adjustment and 12.5% required a dose increase due to an elevated thyroid stimulating hormone (TSH). The starting doses of LT4 for those requiring a dose reduction, those not requiring an adjustment and those requiring an increase in the dose were 13.2±2.4, 11.5±2.1 and 10.3±2.6 μg/kg/day, respectively (p≤0.0001). Of the 34% of infants treated with an initial dose of >12.5 μg/day, 57.1% required a dose reduction at follow-up, compared to 26.1% of those whose initial starting dose was ≤12.5 μg/kg/day (p=0.007). Following the guidelines for initiating therapy for CH, 36.5% of the infants required a dose reduction for iatrogenic hyperthyroxinemia. These infants received a higher dose of LT4 than the infants who either required no adjustment or required an increase in the dose. A narrower range for initial dosing in CH may be appropriate.
Joint minimization of uplink and downlink whole-body exposure dose in indoor wireless networks.
Plets, D; Joseph, W; Vanhecke, K; Vermeeren, G; Wiart, J; Aerts, S; Varsier, N; Martens, L
2015-01-01
The total whole-body exposure dose in indoor wireless networks is minimized. For the first time, indoor wireless networks are designed and simulated for a minimal exposure dose, where both uplink and downlink are considered. The impact of the minimization is numerically assessed for four scenarios: two WiFi configurations with different throughputs, a Universal Mobile Telecommunications System (UMTS) configuration for phone call traffic, and a Long-Term Evolution (LTE) configuration with a high data rate. Also, the influence of the uplink usage on the total absorbed dose is characterized. Downlink dose reductions of at least 75% are observed when adding more base stations with a lower transmit power. Total dose reductions decrease with increasing uplink usage for WiFi due to the lack of uplink power control but are maintained for LTE and UMTS. Uplink doses become dominant over downlink doses for usages of only a few seconds for WiFi. For UMTS and LTE, an almost continuous uplink usage is required to have a significant effect on the total dose, thanks to the power control mechanism.
Joint Minimization of Uplink and Downlink Whole-Body Exposure Dose in Indoor Wireless Networks
Plets, D.; Joseph, W.; Vanhecke, K.; Vermeeren, G.; Wiart, J.; Aerts, S.; Varsier, N.; Martens, L.
2015-01-01
The total whole-body exposure dose in indoor wireless networks is minimized. For the first time, indoor wireless networks are designed and simulated for a minimal exposure dose, where both uplink and downlink are considered. The impact of the minimization is numerically assessed for four scenarios: two WiFi configurations with different throughputs, a Universal Mobile Telecommunications System (UMTS) configuration for phone call traffic, and a Long-Term Evolution (LTE) configuration with a high data rate. Also, the influence of the uplink usage on the total absorbed dose is characterized. Downlink dose reductions of at least 75% are observed when adding more base stations with a lower transmit power. Total dose reductions decrease with increasing uplink usage for WiFi due to the lack of uplink power control but are maintained for LTE and UMTS. Uplink doses become dominant over downlink doses for usages of only a few seconds for WiFi. For UMTS and LTE, an almost continuous uplink usage is required to have a significant effect on the total dose, thanks to the power control mechanism. PMID:25793213
Widmann, G; Dalla Torre, D; Hoermann, R; Schullian, P; Gassner, E M; Bale, R; Puelacher, W
2015-04-01
The influence of dose reductions on diagnostic quality using a series of high-resolution ultralow-dose computed tomography (CT) scans for computer-assisted planning and surgery including the most recent iterative reconstruction algorithms was evaluated and compared with the fracture detectability of a standard cranial emergency protocol. A human cadaver head including the mandible was artificially prepared with midfacial and orbital fractures and scanned using a 64-multislice CT scanner. The CT dose index volume (CTDIvol) and effective doses were calculated using application software. Noise was evaluated as the standard deviation in Hounsfield units within an identical region of interest in the posterior fossa. Diagnostic quality was assessed by consensus reading of a craniomaxillofacial surgeon and radiologist. Compared with the emergency protocol at CTDIvol 35.3 mGy and effective dose 3.6 mSv, low-dose protocols down to CTDIvol 1.0 mGy and 0.1 mSv (97% dose reduction) may be sufficient for the diagnosis of dislocated craniofacial fractures. Non-dislocated fractures may be detected at CTDIvol 2.6 mGy and 0.3 mSv (93% dose reduction). Adaptive statistical iterative reconstruction (ASIR) 50 and 100 reduced average noise by 30% and 56%, and model-based iterative reconstruction (MBIR) by 93%. However, the detection rate of fractures could not be improved due to smoothing effects. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Paediatric dose reduction with the introduction of digital fluorography.
Mooney, R B; McKinstry, J
2001-01-01
Fluoroscopy guided examinations in a paediatric X ray department were initially carried out on a unit that used a conventional screen-film combination for spot-films. A new fluoroscopy unit was installed with the facilities of digital fluorography and last image hold. Comparison of equipment performance showed that the dose per image for screen-film and digital fluorography was 3 microGy and 0.4 microGy, respectively. Although the screen-film had superior image quality, the department's radiologist confirmed that digital fluorography provided a diagnostic image. Patient dose measurements showed that introduction of the new unit caused doses to fall by an average of 70%, although fluoroscopy time had not changed significantly. The new unit produced 40% less air kerma during fluoroscopy. The remaining 30% reduction in dose was due to the introduction of digital fluorography and last image hold facilities. It is concluded that the use of digital fluorography can be an effective way of reducing paediatric dose.
Greer, Joseph A.; Pirl, William F.; Park, Elyse R.; Lynch, Thomas J.; Temel, Jennifer S.
2013-01-01
Objective Dose delays and reductions in chemotherapy due to hematologic toxicities are common among patients with advanced non-small-cell lung cancer (NSCLC). However, limited data exist on behavioral or psychological predictors of chemotherapy adherence. The goal of this study was to explore the frequency and clinical predictors of infusion dose delays and reductions in this patient population. Methods Fifty patients newly diagnosed with advanced NSCLC of high performance status (ECOG PS=0-1) completed baseline assessments on quality of life (FACT-L) and mood (HADS) within eight weeks of diagnosis. Participants were followed prospectively for six months. Chemotherapy dosing data came from medical chart review. Results All patients received chemotherapy during the course of the study, beginning with either a platinum-based doublet (74%), an oral epidermal growth factor receptor-tyrosine kinase inhibitor (14%), or a parenteral single agent (12%). Forty percent (N=20) of patients had either a dose delay (38%) and/or reduction (16%) in their scheduled infusions. Fisher’s exact tests showed that patients who experienced neutropenia, smoked at the time of diagnosis, or reported heightened baseline anxiety were significantly more likely to experience dose delays or reductions. There were no associations between chemotherapy adherence and patient demographics, performance status, or quality of life. Conclusion In this sample, over one-third of patients with advanced NSCLC experienced either a dose delay or reduction in prescribed chemotherapy regimens. Behavioral and psychological factors, such as tobacco use and anxiety symptoms, appear to play an important role in chemotherapy adherence, though further study is required to confirm these findings. PMID:19027443
Dosimetric effects of polyethylene glycol surface coatings on gold nanoparticle radiosensitization
NASA Astrophysics Data System (ADS)
Koger, B.; Kirkby, C.
2017-11-01
One of the main appeals of using gold nanoparticles (GNPs) as radiosensitizers is that their surface coatings can be altered to manipulate their pharmacokinetic properties. However, Monte Carlo studies of GNP dosimetry tend to neglect these coatings, potentially changing the dosimetric results. This study quantifies the dosimetric effects of including a polyethylene glycol (PEG) surface coating on GNPs over both nanoscopic and microscopic ranges. Two dosimetric scales were explored using PENELOPE Monte Carlo simulations. In microscopic simulations, 500-1000 GNPs, with and without coatings, were placed in cavities of side lengths 0.8-4 µm, and the reduction of dose deposited to surrounding medium within these volumes due to the coating was quantified. Including PEG surface coatings of up to 20 nm thickness resulted in reductions of up to 7.5%, 4.0%, and 2.0% for GNP diameters of 10, 20, and 50 nm, respectively. Nanoscopic simulations observed the dose falloff in the first 500 nm surrounding a single GNP both with and without surface coatings of various thicknesses. Over the first 500 nm surrounding a single GNP, the presence of a PEG surface coating reduced dose by 5-26%, 8-28%, 8-30%, and 8-34% for 2, 10, 20, and 50 nm diameter GNPs, respectively, for various energies and coating thicknesses. Reductions in dose enhancement due to the inclusion of a GNP surface coating are non-negligible and should be taken into consideration when investigating GNP dose enhancement. Further studies should be carried out to investigate the biological effects of these coatings.
Heggen, Kristin Livelten; Pedersen, Hans Kristian; Andersen, Hilde Kjernlie; Martinsen, Anne Catrine T
2016-01-01
Background Iterative reconstruction can reduce image noise and thereby facilitate dose reduction. Purpose To evaluate qualitative and quantitative image quality for full dose and dose reduced head computed tomography (CT) protocols reconstructed using filtered back projection (FBP) and adaptive statistical iterative reconstruction (ASIR). Material and Methods Fourteen patients undergoing follow-up head CT were included. All patients underwent full dose (FD) exam and subsequent 15% dose reduced (DR) exam, reconstructed using FBP and 30% ASIR. Qualitative image quality was assessed using visual grading characteristics. Quantitative image quality was assessed using ROI measurements in cerebrospinal fluid (CSF), white matter, peripheral and central gray matter. Additionally, quantitative image quality was measured in Catphan and vendor’s water phantom. Results There was no significant difference in qualitative image quality between FD FBP and DR ASIR. Comparing same scan FBP versus ASIR, a noise reduction of 28.6% in CSF and between −3.7 and 3.5% in brain parenchyma was observed. Comparing FD FBP versus DR ASIR, a noise reduction of 25.7% in CSF, and −7.5 and 6.3% in brain parenchyma was observed. Image contrast increased in ASIR reconstructions. Contrast-to-noise ratio was improved in DR ASIR compared to FD FBP. In phantoms, noise reduction was in the range of 3 to 28% with image content. Conclusion There was no significant difference in qualitative image quality between full dose FBP and dose reduced ASIR. CNR improved in DR ASIR compared to FD FBP mostly due to increased contrast, not reduced noise. Therefore, we recommend using caution if reducing dose and applying ASIR to maintain image quality. PMID:27583169
Østerås, Bjørn Helge; Heggen, Kristin Livelten; Pedersen, Hans Kristian; Andersen, Hilde Kjernlie; Martinsen, Anne Catrine T
2016-08-01
Iterative reconstruction can reduce image noise and thereby facilitate dose reduction. To evaluate qualitative and quantitative image quality for full dose and dose reduced head computed tomography (CT) protocols reconstructed using filtered back projection (FBP) and adaptive statistical iterative reconstruction (ASIR). Fourteen patients undergoing follow-up head CT were included. All patients underwent full dose (FD) exam and subsequent 15% dose reduced (DR) exam, reconstructed using FBP and 30% ASIR. Qualitative image quality was assessed using visual grading characteristics. Quantitative image quality was assessed using ROI measurements in cerebrospinal fluid (CSF), white matter, peripheral and central gray matter. Additionally, quantitative image quality was measured in Catphan and vendor's water phantom. There was no significant difference in qualitative image quality between FD FBP and DR ASIR. Comparing same scan FBP versus ASIR, a noise reduction of 28.6% in CSF and between -3.7 and 3.5% in brain parenchyma was observed. Comparing FD FBP versus DR ASIR, a noise reduction of 25.7% in CSF, and -7.5 and 6.3% in brain parenchyma was observed. Image contrast increased in ASIR reconstructions. Contrast-to-noise ratio was improved in DR ASIR compared to FD FBP. In phantoms, noise reduction was in the range of 3 to 28% with image content. There was no significant difference in qualitative image quality between full dose FBP and dose reduced ASIR. CNR improved in DR ASIR compared to FD FBP mostly due to increased contrast, not reduced noise. Therefore, we recommend using caution if reducing dose and applying ASIR to maintain image quality.
Hughes, Timothy P; Munhoz, Eduardo; Aurelio Salvino, Marco; Ong, Tee Chuan; Elhaddad, Alaa; Shortt, Jake; Quach, Hang; Pavlovsky, Carolina; Louw, Vernon J; Shih, Lee-Yung; Turkina, Anna G; Meillon, Luis; Jin, Yu; Acharya, Sandip; Dalal, Darshan; Lipton, Jeffrey H
2017-10-01
The Evaluating Nilotinib Efficacy and Safety in Clinical Trials-Extending Molecular Responses (ENESTxtnd) study was conducted to evaluate the kinetics of molecular response to nilotinib in patients with newly diagnosed chronic myeloid leukaemia in chronic phase and the impact of novel dose-optimization strategies on patient outcomes. The ENESTxtnd protocol allowed nilotinib dose escalation (from 300 to 400 mg twice daily) in the case of suboptimal response or treatment failure as well as dose re-escalation for patients with nilotinib dose reductions due to adverse events. Among 421 patients enrolled in ENESTxtnd, 70·8% (95% confidence interval, 66·2-75·1%) achieved major molecular response (BCR-ABL1 ≤ 0·1% on the International Scale) by 12 months (primary endpoint). By 24 months, 81·0% of patients achieved major molecular response, including 63·6% (56 of 88) of those with dose escalations for lack of efficacy and 74·3% (55 of 74) of those with dose reductions due to adverse events (including 43 of 54 patients with successful re-escalation). The safety profile of nilotinib was consistent with prior studies. The most common non-haematological adverse events were headache, rash, and nausea; cardiovascular events were reported in 4·5% of patients (grade 3/4, 3·1%). The study was registered at clinicaltrials.gov (NCT01254188). © 2017 The Authors. British Journal of Haematology published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamura, K; Araki, F; Ohno, T
Purpose: To investigate the difference of dose distributions with/without the effect of inter-seed attenuation and tissue compositions in prostate {sup 125}I brachytherapy dose calculations, using Monte Carlo simulations of Particle and Heavy Ion Transport code System (PHITS). Methods: The dose distributions in {sup 125}I prostate brachytherapy were calculated using PHITS for non-simultaneous and simultaneous alignments of STM1251 sources in water or prostate phantom for six patients. The PHITS input file was created from DICOM-RT file which includes source coordinates and structures for clinical target volume (CTV) and organs at risk (OARs) of urethra and rectum, using in-house Matlab software. Photonmore » and electron cutoff energies were set to 1 keV and 100 MeV, respectively. The dose distributions were calculated with the kerma approximation and the voxel size of 1 × 1 × 1 mm{sup 3}. The number of incident photon was set to be the statistical uncertainty (1σ) of less than 1%. The effect of inter-seed attenuation and prostate tissue compositions was evaluated from dose volume histograms (DVHs) for each structure, by comparing to results of the AAPM TG-43 dose calculation (without the effect of inter-seed attenuation and prostate tissue compositions). Results: The dose reduction due to the inter-seed attenuation by source capsules was approximately 2% for CTV and OARs compared to those of TG-43. In additions, by considering prostate tissue composition, the D{sub 90} and V{sub 100} of CTV reduced by 6% and 1%, respectively. Conclusion: It needs to consider the dose reduction due to the inter-seed attenuation and tissue composition in prostate {sup 125}I brachytherapy dose calculations.« less
NASA Astrophysics Data System (ADS)
Laguda, Edcer Jerecho
Purpose: Computed Tomography (CT) is one of the standard diagnostic imaging modalities for the evaluation of a patient's medical condition. In comparison to other imaging modalities such as Magnetic Resonance Imaging (MRI), CT is a fast acquisition imaging device with higher spatial resolution and higher contrast-to-noise ratio (CNR) for bony structures. CT images are presented through a gray scale of independent values in Hounsfield units (HU). High HU-valued materials represent higher density. High density materials, such as metal, tend to erroneously increase the HU values around it due to reconstruction software limitations. This problem of increased HU values due to metal presence is referred to as metal artefacts. Hip prostheses, dental fillings, aneurysm clips, and spinal clips are a few examples of metal objects that are of clinical relevance. These implants create artefacts such as beam hardening and photon starvation that distort CT images and degrade image quality. This is of great significance because the distortions may cause improper evaluation of images and inaccurate dose calculation in the treatment planning system. Different algorithms are being developed to reduce these artefacts for better image quality for both diagnostic and therapeutic purposes. However, very limited information is available about the effect of artefact correction on dose calculation accuracy. This research study evaluates the dosimetric effect of metal artefact reduction algorithms on severe artefacts on CT images. This study uses Gemstone Spectral Imaging (GSI)-based MAR algorithm, projection-based Metal Artefact Reduction (MAR) algorithm, and the Dual-Energy method. Materials and Methods: The Gemstone Spectral Imaging (GSI)-based and SMART Metal Artefact Reduction (MAR) algorithms are metal artefact reduction protocols embedded in two different CT scanner models by General Electric (GE), and the Dual-Energy Imaging Method was developed at Duke University. All three approaches were applied in this research for dosimetric evaluation on CT images with severe metal artefacts. The first part of the research used a water phantom with four iodine syringes. Two sets of plans, multi-arc plans and single-arc plans, using the Volumetric Modulated Arc therapy (VMAT) technique were designed to avoid or minimize influences from high-density objects. The second part of the research used projection-based MAR Algorithm and the Dual-Energy Method. Calculated Doses (Mean, Minimum, and Maximum Doses) to the planning treatment volume (PTV) were compared and homogeneity index (HI) calculated. Results: (1) Without the GSI-based MAR application, a percent error between mean dose and the absolute dose ranging from 3.4-5.7% per fraction was observed. In contrast, the error was decreased to a range of 0.09-2.3% per fraction with the GSI-based MAR algorithm. There was a percent difference ranging from 1.7-4.2% per fraction between with and without using the GSI-based MAR algorithm. (2) A range of 0.1-3.2% difference was observed for the maximum dose values, 1.5-10.4% for minimum dose difference, and 1.4-1.7% difference on the mean doses. Homogeneity indexes (HI) ranging from 0.068-0.065 for dual-energy method and 0.063-0.141 with projection-based MAR algorithm were also calculated. Conclusion: (1) Percent error without using the GSI-based MAR algorithm may deviate as high as 5.7%. This error invalidates the goal of Radiation Therapy to provide a more precise treatment. Thus, GSI-based MAR algorithm was desirable due to its better dose calculation accuracy. (2) Based on direct numerical observation, there was no apparent deviation between the mean doses of different techniques but deviation was evident on the maximum and minimum doses. The HI for the dual-energy method almost achieved the desirable null values. In conclusion, the Dual-Energy method gave better dose calculation accuracy to the planning treatment volume (PTV) for images with metal artefacts than with or without GE MAR Algorithm.
Pramanik, Biplob Kumar; Pramanik, Sagor Kumar; Suja, Fatihah
2015-01-01
Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are persistent organic pollutants in the environment and their occurrence causes toxicological effects on humans. We examined different conventional coagulant treatments such as alum, ferric chloride and polyaluminium chloride in removing these compounds. These were then compared with a natural coagulant (Moringa oleifera). We also investigated the powdered-activated carbon (PAC) and granular-activated carbon (GAC) for removing these compounds. At an initial dose of 5 mg/L, polyaluminium chloride led to a higher reduction of PFOS/PFOA compared with alum which in turn was higher than ferric. The removal efficiency increased with the increase in coagulant dose and decrease in pH. M. oleifera was very effective in reducing PFOS and PFOA than conventional coagulants, with a reduction efficiencies of 65% and 72%, respectively, at a dose of 30 mg/L. Both PAC and GAC were very effective in reducing these compounds than coagulations. PAC led to a higher reduction in PFOS and PFOA than GAC due to its greater surface area and shorter internal diffusion distances. The addition of PAC (10 min contact time) with coagulation (at 5 mg/L dosage) significantly increased the removal efficiency, and the maximum removal efficiency was for M. oleifera with 98% and 94% for PFOS and PFOA, respectively. The reduction efficiency of PFOS/PFOA was reduced with the increase in dissolved organic concentration due to the adsorption competition between organic molecules and PFOS/PFOA.
Yoshida-Ohuchi, Hiroko; Hosoda, Masahiro; Kanagami, Takashi; Uegaki, Masaki; Tashima, Hideo
2014-12-18
For estimation of residents' exposure dose after a nuclear accident, the reduction factor, which is the ratio of the indoor dose to the outdoor dose is essential, as most individuals spend a large portion of their time indoors. After the Fukushima nuclear accident, we evaluated the median reduction factor with an interquartile range of 0.43 (0.34-0.53) based on 522 survey results for 69 detached wooden houses in two evacuation zones, Iitate village and Odaka district. The results indicated no statistically significant difference in the median reduction factor to the representative value of 0.4 given in the International Atomic Energy Agency (IAEA)-TECDOC-225 and 1162. However, with regard to the representative range of the reduction factor, we recommend the wider range of 0.2 to 0.7 or at least 0.2 to 0.6, which covered 87.7% and 80.7% of the data, respectively, rather than 0.2 to 0.5 given in the IAEA document, which covered only 66.5% of the data. We found that the location of the room within the house and area topography, and the use of cement roof tiles had the greatest influence on the reduction factor.
A Highly Durable RNAi Therapeutic Inhibitor of PCSK9
Fitzgerald, Kevin; White, Suellen; Borodovsky, Anna; Bettencourt, Brian R.; Strahs, Andrew; Clausen, Valerie; Wijngaard, Peter; Horton, Jay D.; Taubel, Jorg; Brooks, Ashley; Fernando, Chamikara; Kauffman, Robert S.; Kallend, David; Vaishnaw, Akshay; Simon, Amy
2018-01-01
BACKGROUND Inclisiran (ALN-PCSsc) is a long-acting RNA interference (RNAi) therapeutic agent that inhibits the synthesis of proprotein convertase subtilisin–kexin type 9 (PCSK9), a target for the lowering of low-density lipoprotein (LDL) cholesterol. METHODS In this phase 1 trial, we randomly assigned healthy volunteers with an LDL cholesterol level of at least 100 mg per deciliter in a 3:1 ratio to receive a subcutaneous injection of inclisiran or placebo in either a single-ascending-dose phase (at a dose of 25, 100, 300, 500, or 800 mg) or a multiple-dose phase (125 mg weekly for four doses, 250 mg every other week for two doses, or 300 or 500 mg monthly for two doses, with or without concurrent statin therapy); each dose cohort included four to eight participants. Safety, the side-effect profile, and pharmacodynamic measures (PCSK9 level, LDL cholesterol level, and exploratory lipid variables) were evaluated. RESULTS The most common adverse events were cough, musculoskeletal pain, nasopharyngitis, headache, back pain, and diarrhea. All the adverse events were mild or moderate in severity. There were no serious adverse events or discontinuations due to adverse events. There was one grade 3 elevation in the γ-glutamyltransferase level, which was considered by the investigator to be related to statin therapy. In the single-dose phase, inclisiran doses of 300 mg or more reduced the PCSK9 level (up to a least-squares mean reduction of 74.5% from baseline to day 84), and doses of 100 mg or more reduced the LDL cholesterol level (up to a least-squares mean reduction of 50.6% from baseline). Reductions in the levels of PCSK9 and LDL cholesterol were maintained at day 180 for doses of 300 mg or more. All multiple-dose regimens reduced the levels of PCSK9 (up to a least-squares mean reduction of 83.8% from baseline to day 84) and LDL cholesterol (up to a least-squares mean reduction of 59.7% from baseline to day 84). CONCLUSIONS In this phase 1 trial, no serious adverse events were observed with inclisiran. Doses of 300 mg or more (in single or multiple doses) significantly reduced levels of PCSK9 and LDL cholesterol for at least 6 months. (Funded by Alnylam Pharmaceuticals and the Medicines Company; ClinicalTrials.gov number, NCT02314442.) PMID:27959715
Thyroid Dose During Neurointerventional Procedures: Does Lead Shielding Reduce the Dose?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shortt, C. P.; Fanning, N. F.; Malone, L.
2007-09-15
Purpose. To assess radiation dose to the thyroid in patients undergoing neurointerventional procedures and to evaluate dose reduction to the thyroid by lead shielding. Methods and Materials. A randomized patient study was undertaken to evaluate the dose reduction by thyroid lead shields and assess their practicality in a clinical setting. Sixty-five patients attending for endovascular treatment of arteriovenous malformations (AVMs) and aneurysms were randomized into one of 2 groups a) No Thyroid Shield and b) Thyroid Lead Shield. Two thermoluminescent dosimeters (TLDs) were placed over the thyroid gland (1 on each side) at constant positions on each patient in bothmore » groups. A thyroid lead shield (Pb eq. 0.5 mm) was placed around the neck of patients in the thyroid lead shield group after the neurointerventional radiologist had obtained satisfactory working access above the neck. The total dose-area-product (DAP) value, number and type of digital subtraction angiography (DSA) runs and fluoroscopy time were recorded for all patients. Results. Of the 72 patients who initially attended for neurointerventional procedures, 7 were excluded due to failure to consent or because of procedures involving access to the external carotid circulation. Of the remaining 65 who were randomized, a further 9 were excluded due to; procedureabandonment, unfeasible shield placement or shield interference with the procedure. Patient demographics included mean age of 47.9 yrs (15-74), F:M=1.4:1. Mean fluoroscopy time was 25.9 min. Mean DAP value was 13,134.8 cGy.cm{sup 2} and mean number of DSA runs was 13.4. The mean relative thyroid doses were significantly different (p< 0.001) between the unshielded (7.23 mSv/cGy2 x 105) and shielded groups (3.77 mSv/cGy2 x 105). A mean thyroid dose reduction of 48% was seen in the shielded group versus the unshielded group. Conclusion. Considerable doses to the thyroid are incurred during neurointerventional procedures, highlighting the need for increased awareness of patient radiation protection. Thyroid lead shielding yields significant radiation protection, is inexpensive and when not obscuring the field of view, should be used routinely.« less
Impact of x-ray dose on track formation and data analysis for CR-39-based proton diagnostics
NASA Astrophysics Data System (ADS)
Rinderknecht, H. G.; Rojas-Herrera, J.; Zylstra, A. B.; Frenje, J. A.; Gatu Johnson, M.; Sio, H.; Sinenian, N.; Rosenberg, M. J.; Li, C. K.; Séguin, F. H.; Petrasso, R. D.; Filkins, T.; Steidle, Jeffrey A.; Steidle, Jessica A.; Traynor, N.; Freeman, C.
2015-12-01
The nuclear track detector CR-39 is used extensively for charged particle diagnosis, in particular proton spectroscopy, at inertial confinement fusion facilities. These detectors can absorb x-ray doses from the experiments in the order of 1-100 Gy, the effects of which are not accounted for in the previous detector calibrations. X-ray dose absorbed in the CR-39 has previously been shown to affect the track size of alpha particles in the detector, primarily due to a measured reduction in the material bulk etch rate [Rojas-Herrera et al., Rev. Sci. Instrum. 86, 033501 (2015)]. Similar to the previous findings for alpha particles, protons with energies in the range 0.5-9.1 MeV are shown to produce tracks that are systematically smaller as a function of the absorbed x-ray dose in the CR-39. The reduction of track size due to x-ray dose is found to diminish with time between exposure and etching if the CR-39 is stored at ambient temperature, and complete recovery is observed after two weeks. The impact of this effect on the analysis of data from existing CR-39-based proton diagnostics on OMEGA and the National Ignition Facility is evaluated and best practices are proposed for cases in which the effect of x rays is significant.
Impact of x-ray dose on track formation and data analysis for CR-39-based proton diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rinderknecht, H. G.; Rojas-Herrera, J.; Zylstra, A. B.
The nuclear track detector CR-39 is used extensively for charged particle diagnosis, in particular proton spectroscopy, at inertial confinement fusion facilities. These detectors can absorb x-ray doses from the experiments in the order of 1–100 Gy, the effects of which are not accounted for in the previous detector calibrations. X-ray dose absorbed in the CR-39 has previously been shown to affect the track size of alpha particles in the detector, primarily due to a measured reduction in the material bulk etch rate [Rojas-Herrera et al., Rev. Sci. Instrum. 86, 033501 (2015)]. Similar to the previous findings for alpha particles, protonsmore » with energies in the range 0.5–9.1 MeV are shown to produce tracks that are systematically smaller as a function of the absorbed x-ray dose in the CR-39. The reduction of track size due to x-ray dose is found to diminish with time between exposure and etching if the CR-39 is stored at ambient temperature, and complete recovery is observed after two weeks. Furthermore, the impact of this effect on the analysis of data from existing CR-39-based proton diagnostics on OMEGA and the National Ignition Facility is evaluated and best practices are proposed for cases in which the effect of x rays is significant.« less
Impact of x-ray dose on track formation and data analysis for CR-39-based proton diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rinderknecht, H. G., E-mail: rinderknecht1@llnl.gov; Rojas-Herrera, J.; Zylstra, A. B.
The nuclear track detector CR-39 is used extensively for charged particle diagnosis, in particular proton spectroscopy, at inertial confinement fusion facilities. These detectors can absorb x-ray doses from the experiments in the order of 1–100 Gy, the effects of which are not accounted for in the previous detector calibrations. X-ray dose absorbed in the CR-39 has previously been shown to affect the track size of alpha particles in the detector, primarily due to a measured reduction in the material bulk etch rate [Rojas-Herrera et al., Rev. Sci. Instrum. 86, 033501 (2015)]. Similar to the previous findings for alpha particles, protonsmore » with energies in the range 0.5–9.1 MeV are shown to produce tracks that are systematically smaller as a function of the absorbed x-ray dose in the CR-39. The reduction of track size due to x-ray dose is found to diminish with time between exposure and etching if the CR-39 is stored at ambient temperature, and complete recovery is observed after two weeks. The impact of this effect on the analysis of data from existing CR-39-based proton diagnostics on OMEGA and the National Ignition Facility is evaluated and best practices are proposed for cases in which the effect of x rays is significant.« less
Impact of x-ray dose on track formation and data analysis for CR-39-based proton diagnostics
Rinderknecht, H. G.; Rojas-Herrera, J.; Zylstra, A. B.; ...
2015-12-23
The nuclear track detector CR-39 is used extensively for charged particle diagnosis, in particular proton spectroscopy, at inertial confinement fusion facilities. These detectors can absorb x-ray doses from the experiments in the order of 1–100 Gy, the effects of which are not accounted for in the previous detector calibrations. X-ray dose absorbed in the CR-39 has previously been shown to affect the track size of alpha particles in the detector, primarily due to a measured reduction in the material bulk etch rate [Rojas-Herrera et al., Rev. Sci. Instrum. 86, 033501 (2015)]. Similar to the previous findings for alpha particles, protonsmore » with energies in the range 0.5–9.1 MeV are shown to produce tracks that are systematically smaller as a function of the absorbed x-ray dose in the CR-39. The reduction of track size due to x-ray dose is found to diminish with time between exposure and etching if the CR-39 is stored at ambient temperature, and complete recovery is observed after two weeks. Furthermore, the impact of this effect on the analysis of data from existing CR-39-based proton diagnostics on OMEGA and the National Ignition Facility is evaluated and best practices are proposed for cases in which the effect of x rays is significant.« less
SU-F-T-325: On the Use of Bolus in Dosimetry and Dose Reduction for Pacemaker and Defibrillator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, W; Kenneth, R; Higgins, S
Purpose: Special attention is required in planning and administering radiation therapy to patients with cardiac implantable electronic devices (CIEDs), such as pacemaker and defibrillator. The range of dose to CIEDs that can induce malfunction is very large among CIEDs. Significant defects have been reported at dose as low as 0.15Gy. Failures causing discomfort have been reported at dose as low as 0.05Gy. Therefore, accurate estimation of dose to CIED and dose reduction are both important even if the dose is expected to be less than the often-used 2Gy limit. We investigate the use of bolus in in vivo dosimetry formore » CIEDs. Methods: In our clinic, high-energy beams (>10MV) are not used for patients with CIED due to neutron production. Solid water phantom measurements of out-of-field dose for a 6MV beam were performed using parallel plate chamber at different depth with and without 2cm bolus covering the chamber. In vivo dosimetry at skin surface above the pacemaker was performed with and without bolus for 3 patients with pacemaker <5cm from the field edge. Results: Chamber measured dose at depth ∼1 to 1.5cm below the skin surface, where the CIED is normally located, was reduced by ∼6% – 20% with bolus. The dose reduction became smaller at deeper depth. In vivo dosimetry at skin surface also yielded ∼20% – 60% lower dose when using bolus for the 3 patients. In general, TPS calculation underestimated the dose. The dose measured with bolus is closer to the dose at the depth of the pacemaker and less affected by contaminant electrons and linac head leakage. Conclusion: In vivo CIED dose measurements should be performed with 1 to 2cm bolus covering the dosimeter on the skin above the CIED for more accurate CIED dose estimation. The use of bolus also reduces the dose delivered to CIED.« less
NASA Astrophysics Data System (ADS)
Thalhofer, J. L.; Roque, H. S.; Rebello, W. F.; Correa, S. A.; Silva, A. X.; Souza, E. M.; Batita, D. V. S.; Sandrini, E. S.
2014-02-01
Photoneutron production occurs when high energy photons, greater than 6.7 MeV, interact with linear accelerator head structures. In Brazil, the National Cancer Institute, one of the centers of reference in cancer treatment, uses radiation at 4 angles (0°, 90°, 180° and 270°) as treatment protocol for prostate cancer. With the objective of minimizing the dose deposited in the patient due to photoneutrons, this study simulated radiotherapy treatment using MCNPX, considering the most realistic environment; simulating the radiotherapy room, the Linac 2300 head, the MAX phantom and the treatment protocol with the accelerator operating at 18 MV. In an attempt to reduce the dose deposited by photoneutrons, an external shielding was added to the Linac 2300. Results show that the equivalent dose due to photoneutrons deposited in the patient diminished. The biggest reduction was seen in bone structures, such as the tibia and fibula, and mandible, at approximately 75%. Besides that, organs such as the brain, pancreas, small intestine, lungs and thyroid revealed a reduction of approximately 60%. It can be concluded that the shielding developed by our research group is efficient in neutron shielding, reducing the dose for the patient, and thus, the risk of secondary cancer, and increasing patient survival rates.
Analysis of Radiation Transport Due to Activated Coolant in the ITER Neutral Beam Injection Cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Royston, Katherine; Wilson, Stephen C.; Risner, Joel M.
Detailed spatial distributions of the biological dose rate due to a variety of sources are required for the design of the ITER tokamak facility to ensure that all radiological zoning limits are met. During operation, water in the Integrated loop of Blanket, Edge-localized mode and vertical stabilization coils, and Divertor (IBED) cooling system will be activated by plasma neutrons and will flow out of the bioshield through a complex system of pipes and heat exchangers. This paper discusses the methods used to characterize the biological dose rate outside the tokamak complex due to 16N gamma radiation emitted by the activatedmore » coolant in the Neutral Beam Injection (NBI) cell of the tokamak building. Activated coolant will enter the NBI cell through the IBED Primary Heat Transfer System (PHTS), and the NBI PHTS will also become activated due to radiation streaming through the NBI system. To properly characterize these gamma sources, the production of 16N, the decay of 16N, and the flow of activated water through the coolant loops were modeled. The impact of conservative approximations on the solution was also examined. Once the source due to activated coolant was calculated, the resulting biological dose rate outside the north wall of the NBI cell was determined through the use of sophisticated variance reduction techniques. The AutomateD VAriaNce reducTion Generator (ADVANTG) software implements methods developed specifically to provide highly effective variance reduction for complex radiation transport simulations such as those encountered with ITER. Using ADVANTG with the Monte Carlo N-particle (MCNP) radiation transport code, radiation responses were calculated on a fine spatial mesh with a high degree of statistical accuracy. In conclusion, advanced visualization tools were also developed and used to determine pipe cell connectivity, to facilitate model checking, and to post-process the transport simulation results.« less
Analysis of Radiation Transport Due to Activated Coolant in the ITER Neutral Beam Injection Cell
Royston, Katherine; Wilson, Stephen C.; Risner, Joel M.; ...
2017-07-26
Detailed spatial distributions of the biological dose rate due to a variety of sources are required for the design of the ITER tokamak facility to ensure that all radiological zoning limits are met. During operation, water in the Integrated loop of Blanket, Edge-localized mode and vertical stabilization coils, and Divertor (IBED) cooling system will be activated by plasma neutrons and will flow out of the bioshield through a complex system of pipes and heat exchangers. This paper discusses the methods used to characterize the biological dose rate outside the tokamak complex due to 16N gamma radiation emitted by the activatedmore » coolant in the Neutral Beam Injection (NBI) cell of the tokamak building. Activated coolant will enter the NBI cell through the IBED Primary Heat Transfer System (PHTS), and the NBI PHTS will also become activated due to radiation streaming through the NBI system. To properly characterize these gamma sources, the production of 16N, the decay of 16N, and the flow of activated water through the coolant loops were modeled. The impact of conservative approximations on the solution was also examined. Once the source due to activated coolant was calculated, the resulting biological dose rate outside the north wall of the NBI cell was determined through the use of sophisticated variance reduction techniques. The AutomateD VAriaNce reducTion Generator (ADVANTG) software implements methods developed specifically to provide highly effective variance reduction for complex radiation transport simulations such as those encountered with ITER. Using ADVANTG with the Monte Carlo N-particle (MCNP) radiation transport code, radiation responses were calculated on a fine spatial mesh with a high degree of statistical accuracy. In conclusion, advanced visualization tools were also developed and used to determine pipe cell connectivity, to facilitate model checking, and to post-process the transport simulation results.« less
Lau, Michael; Young, Paul M; Traini, Daniela
2017-08-01
The aim of the study was to understand the impact of different concentrations of the additive material, magnesium stearate (MGST), and the active pharmaceutical ingredient (API), respectively, on the physicochemical properties and aerosol performance of comilled formulations for high-dose delivery. Initially, blends of API/lactose with different concentrations of MGST (1-7.5% w/w) were prepared and comilled by the jet-mill apparatus. The optimal concentration of MGST in comilled formulations was investigated, specifically for agglomerate structure and strength, particle size, uniformity of content, surface coverage, and aerosol performance. Secondly, comilled formulations with different API (1-40% w/w) concentrations were prepared and similarly analyzed. Comilled 5% MGST (w/w) formulation resulted in a significant improvement in in vitro aerosol performance due to the reduction in agglomerate size and strength compared to the formulation comilled without MGST. Higher concentrations of MGST (7.5% w/w) led to reduction in aerosol performance likely due to excessive surface coverage of the micronized particles by MGST, which led to failure in uniformity of content and an increase in agglomerate strength and size. Generally, comilled formulations with higher concentrations of API increased the agglomerate strength and size, which subsequently caused a reduction in aerosol performance. High-dose delivery was achieved at API concentration of >20% (w/w). The study provided a platform for the investigation of aerosol performance and physicochemical properties of other API and additive materials in comilled formulations for the emerging field of high-dose delivery by dry powder inhalation.
Wolever, T M; Jenkins, D J; Nineham, R; Alberti, K G
1979-05-01
1. The influence of the dose and the form in which guar gum was given on the degree of "flattening" of blood glucose curves was studied in five subjects using meals of bread and soup containing 5 or 10 g guar gum. 2. When 5 g guar gum was added to bread the peak increase of blood glucose was reduced by 41% (P less than 0.002), with 5 g guar in soup, the reduction was 54% (P less than 0.001) while a reduction of 68% (P less than 0.001) was seen with 10 g guar gum (5 g in bread and 5 g in soup). The corresponding reduction in insulin peak increases were 37% (P less than 0.002), 50% (P less than 0.001) and 65% (P less than 0.001) respectively. 3. The difference between the two 5 g doses was significant with respect to the reduction of the peak increases in blood glucose and serum insulin; however the difference between the 5 g dose in bread and the 10 g dose was significantly different (P less than 0.02 for glucose, P less than 0.01 for insulin). 4. The results indicate that as little as 5 g guar gum may reduce the glycaemia following a 45 g carbohydrate meal, but perhaps due to earlier and more complete mixing, guar gum is most effective when added to the liquid phase of the meal.
Evaluation of 2 possible further developments of the UK in-flight radiation warning meter for SSTS
NASA Technical Reports Server (NTRS)
Wilson, I. J.; Eustace, R. C.
1972-01-01
A mass reduction of the moderator and the response to the nucleon flux, responsible for the tissue-star component of the total-dose equivalent rate using a high atomic number material, are discussed. Radiation situations at SST cruising altitudes (approximately 20 km) due to solar proton flares were simulated in the stratosphere and on the ground. Actual stratospheric situations due to galactic cosmic radiation with a limited range of quality factor values (2-4) were encountered during slow ascents by balloons to 36 km. Synthetic situations obtained from high and low energy acclerator radiations were used to obtain radiation distributions having a larger range of quality factor values (11/2-9) than experienced in the stratosphere. The measurements made in these simulations related to the directly ionizing, neutron and tissue-star components of dose-equivalent rate. Due to the restricted range of neutron spectra encountered in the stratosphere, a significant mass reduction of the moderator by 4 kg was made, with the moderator clad with cadmium or some other slow neutron absorber.
Feasibility study of the neutron dose for real-time image-guided proton therapy: A Monte Carlo study
NASA Astrophysics Data System (ADS)
Kim, Jin Sung; Shin, Jung Suk; Kim, Daehyun; Shin, Eunhyuk; Chung, Kwangzoo; Cho, Sungkoo; Ahn, Sung Hwan; Ju, Sanggyu; Chung, Yoonsun; Jung, Sang Hoon; Han, Youngyih
2015-07-01
Two full rotating gantries with different nozzles (multipurpose nozzle with MLC, scanning dedicated nozzle) for a conventional cyclotron system are installed and being commissioned for various proton treatment options at Samsung Medical Center in Korea. The purpose of this study is to use Monte Carlo simulation to investigate the neutron dose equivalent per therapeutic dose, H/D, for X-ray imaging equipment under various treatment conditions. At first, we investigated the H/D for various modifications of the beamline devices (scattering, scanning, multi-leaf collimator, aperture, compensator) at the isocenter and at 20, 40 and 60 cm distances from the isocenter, and we compared our results with those of other research groups. Next, we investigated the neutron dose at the X-ray equipment used for real-time imaging under various treatment conditions. Our investigation showed doses of 0.07 ~ 0.19 mSv/Gy at the X-ray imaging equipment, depending on the treatment option and interestingly, the 50% neutron dose reduction was observed due to multileaf collimator during proton scanning treatment with the multipurpose nozzle. In future studies, we plan to measure the neutron dose experimentally and to validate the simulation data for X-ray imaging equipment for use as an additional neutron dose reduction method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmad, Syed Bilal
Purpose: To quantify and explain the backscatter dose effects for clinically relevant high atomic number materials being irradiated in the presence of a 1.5 T transverse magnetic field. Methods: Interface effects were investigated using Monte Carlo simulation techniques. We used GPUMCD (v5.1) and GEANT4 (v10.1) for this purpose. GPUMCD is a commercial software written for the Elekta AB, MRI linac. Dose was scored using GPUMCD in cubic voxels of side 1 and 0.5 mm, in two different virtual phantoms of dimensions 20 × 20 × 20 cm and 5 × 5 × 13.3 cm, respectively. A photon beam was generatedmore » from a point 143.5 cm away from the isocenter with energy distribution sampled from a histogram representing the true Elekta, MRI linac photon spectrum. A slab of variable thickness and position containing either bone, aluminum, titanium, stainless steel, or one of the two different dental filling materials was inserted as an inhomogeneity in the 20 × 20 × 20 cm phantom. The 5 × 5 × 13.3 cm phantom was used as a clinical test case in order to explain the dose perturbation effects for a head and neck cancer patient. The back scatter dose factor (BSDF) was defined as the ratio of the doses at a given depth with and without the presence of the inhomogeneity. Backscattered electron fluence was calculated at the inhomogeneity interface using GEANT4. A 1.5 T magnetic field was applied perpendicular to the direction of the beam in both phantoms, identical to the geometry in the Elekta MRI linac. Results: With the application of a 1.5 T magnetic field, all the BSDF’s were reduced by 12%–47%, compared to the no magnetic field case. The corresponding backscattered electron fluence at the interface was also reduced by 45%–64%. The reduction in the BSDF at the interface, due to the application of the magnetic field, is manifested in a different manner for each material. In the case of bone, the dose drops at the interface contrary to the expected increase when no magnetic field is applied. In the case of aluminum, the dose at the interface is the same with and without the presence of the aluminum. For all of the other materials the dose increases at the interface. Conclusions: The reduction in dose at the interface, in the presence of the magnetic field, is directly related to the reduction in backscattered electron fluence. This reduction occurs due to two different reasons. First, the electron spectrum hitting the interface is changed when the magnetic field is turned on, which results in changes in the electron scattering probability. Second, some electrons that have curved trajectories due to the presence of the magnetic field are absorbed by the higher density side of the interface and no longer contribute to the backscattered electron fluence.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGurk, R; Green, R; Lawrence, M
2015-06-15
Purpose: The dose-dependent nature of radiation therapy (RT)-induced lung injury following hypo-fractionated stereotactic RT is unclear. We herein report preliminary results of a prospective study assessing the magnitude of RT-induced reductions in regional lung perfusion following hypo-fractionated stereotactic RT. Methods: Four patients undergoing hypo-fractionated stereotactic lung RT (SBRT: 12 Gy x 4 fractions or 10 Gy x 5 fractions) had a pre-treatment SPECT (single-photon emission computed tomography) perfusion scan providing a 3D map of regional lung perfusion. Scans were repeated 3–6 months post-treatment. Pre- and post SPECT scans were registered to the planning CT scan (and hence the 3D dosemore » data). Changes in regional perfusion (counts per cc on the pre-post scans) were computed in regions of the lung exposed to different doses of radiation (in 5 Gy intervals), thus defining a dose-response function. SPECT scans were internally normalized to the regions receiving <5 Gy. Results: At 3 months post-RT, the changes in perfusion are highly variable. At 6 months, there is a consistent dose-dependent reduction in regional perfusion. The average percent decline in regional perfusion was 10% at 15–20 Gy, 20% at 20–25 Gy, and 30% at 25–30 Gy representing a relatively linear dose response with an approximate 2% reduction per Gray for doses in excess of 10 Gy. There was a subtle increase in perfusion in the lung receiving <10 Gy. Conclusion: Hypo-fractionated stereotactic RT appears to cause a dose-dependent reduction in regional lung perfusion. There appears to be a threshold effect with no apparent perfusion loss at doses <10 Gy, though this might be in part due to the normalization technique used. Additional data is needed from a larger number of patients to better assess this issue. This sort of data can be used to assist optimizing RT treatment plans that minimize the risk of lung injury. Partly supported by the NIH (CA69579) and the Lance Armstrong Foundation.« less
Baulac, Michel; Coulbaut, Safia; Doty, Pamela; McShea, Cindy; De Backer, Marc; Bartolomei, Fabrice; Vlaicu, Mihaela
2017-06-01
To evaluate the safety and effectiveness of lacosamide in a real-life setting with the use of a flexible dose titration schedule and individualised maintenance doses up to the maximum approved dose of 400 mg/day. Adults with a diagnosis of focal seizures, with or without secondary generalization, were enrolled in this open-label Phase IV trial (NCT01235403). Lacosamide was initiated at 100 mg/day (50 mg bid) and uptitrated over a 12-week period to 200, 300 or 400 mg/day, based on safety and seizure control. Although dose increases were to be in increments of 100 mg/day, intermediate doses were permitted at each escalation step for one week for patients known to be particularly sensitive to starting new AEDs. After receiving a stable, effective dose for three weeks, patients entered the 12-week maintenance period. Primary outcomes were incidence of treatment-emergent adverse events (TEAEs) and withdrawal due to TEAEs. Seizure outcomes, all secondary, were median focal seizure frequency, ≥50% reduction in focal seizure frequency, and seizure freedom. One hundred patients with a mean age of 44 years were enrolled and 74 completed the trial. The incidence of TEAEs was 64.0% (n=100), with the most frequently reported (≥5% of patients) being dizziness, headache, and asthenia. Fourteen patients withdrew due to TEAEs, most frequently due to dizziness (six patients; 6.0%), vomiting (two patients; 2%), and tremor (two patients; 2%). Among patients with baseline and maintenance phase seizure data (n=75), median reduction in focal seizure frequency from baseline was 69.7% and the ≥50% responder rate was 69.3%. Among 74 patients who completed the maintenance phase, 21 (28.4%) were seizure-free. Flexible lacosamide dosing in this open-label trial was associated with a favourable tolerability and safety profile; the nature of the TEAEs was consistent with that observed in previous pivotal trials. Treatment with lacosamide was also associated with effective seizure control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brady, S. L.; Yee, B. S.; Kaufman, R. A.
Purpose: This study demonstrates a means of implementing an adaptive statistical iterative reconstruction (ASiR Trade-Mark-Sign ) technique for dose reduction in computed tomography (CT) while maintaining similar noise levels in the reconstructed image. The effects of image quality and noise texture were assessed at all implementation levels of ASiR Trade-Mark-Sign . Empirically derived dose reduction limits were established for ASiR Trade-Mark-Sign for imaging of the trunk for a pediatric oncology population ranging from 1 yr old through adolescence/adulthood. Methods: Image quality was assessed using metrics established by the American College of Radiology (ACR) CT accreditation program. Each image quality metricmore » was tested using the ACR CT phantom with 0%-100% ASiR Trade-Mark-Sign blended with filtered back projection (FBP) reconstructed images. Additionally, the noise power spectrum (NPS) was calculated for three common reconstruction filters of the trunk. The empirically derived limitations on ASiR Trade-Mark-Sign implementation for dose reduction were assessed using (1, 5, 10) yr old and adolescent/adult anthropomorphic phantoms. To assess dose reduction limits, the phantoms were scanned in increments of increased noise index (decrementing mA using automatic tube current modulation) balanced with ASiR Trade-Mark-Sign reconstruction to maintain noise equivalence of the 0% ASiR Trade-Mark-Sign image. Results: The ASiR Trade-Mark-Sign algorithm did not produce any unfavorable effects on image quality as assessed by ACR criteria. Conversely, low-contrast resolution was found to improve due to the reduction of noise in the reconstructed images. NPS calculations demonstrated that images with lower frequency noise had lower noise variance and coarser graininess at progressively higher percentages of ASiR Trade-Mark-Sign reconstruction; and in spite of the similar magnitudes of noise, the image reconstructed with 50% or more ASiR Trade-Mark-Sign presented a more smoothed appearance than the pre-ASiR Trade-Mark-Sign 100% FBP image. Finally, relative to non-ASiR Trade-Mark-Sign images with 100% of standard dose across the pediatric phantom age spectrum, similar noise levels were obtained in the images at a dose reduction of 48% with 40% ASIR Trade-Mark-Sign and a dose reduction of 82% with 100% ASIR Trade-Mark-Sign . Conclusions: The authors' work was conducted to identify the dose reduction limits of ASiR Trade-Mark-Sign for a pediatric oncology population using automatic tube current modulation. Improvements in noise levels from ASiR Trade-Mark-Sign reconstruction were adapted to provide lower radiation exposure (i.e., lower mA) instead of improved image quality. We have demonstrated for the image quality standards required at our institution, a maximum dose reduction of 82% can be achieved using 100% ASiR Trade-Mark-Sign ; however, to negate changes in the appearance of reconstructed images using ASiR Trade-Mark-Sign with a medium to low frequency noise preserving reconstruction filter (i.e., standard), 40% ASiR Trade-Mark-Sign was implemented in our clinic for 42%-48% dose reduction at all pediatric ages without a visually perceptible change in image quality or image noise.« less
The causes and prevention of cancer: gaining perspective.
Ames, B N; Gold, L S
1997-01-01
Epidemiological studies have identified several factors that are likely to have a major effect on reducing rates of cancer: reduction of smoking, increased consumption of fruits and vegetables, and control of infections. Other factors include avoidance of intense sun exposure, increased physical activity, and reduced consumption of alcohol and possibly red meat. Risks of many types of cancer can already be reduced, and the potential for further reductions is great. In the United States, cancer death rates for all cancers combined are decreasing, if lung cancer (90% of which is due to smoking), is excluded from the analysis. We review the research on causes of cancer and show why much cancer is preventable. The idea that traces of synthetic chemicals, such as DDT, are major contributors to human cancer is not supported by the evidence, yet public concern and resource allocation for reduction of chemical pollution are very high, in part because standard risk assessment uses linear extrapolation from limited data in high-dose animal cancer tests. These tests are done at the maximum tolerated dose (MTD) and are typically misinterpreted to mean that low doses of synthetic chemicals and industrial pollutants are relevant to human cancer. About half the chemicals tested, whether synthetic or natural, are carcinogenic to rodents at such high doses. Almost all chemicals in the human diet are natural. For example, 99.99% of the pesticides we eat are naturally present in plants to ward off insects and other predators. Half of the natural pesticides that have been tested at the MTD are rodent carcinogens. Cooking food produces large numbers of natural dietary chemicals. Roasted coffee, for example, contains more than 1000 chemicals: of 27 tested, 19 are rodent carcinogens. Increasing evidence supports the idea that the high frequency of positive results in rodent bioassays is due to testing at the MTD, which frequently can cause chronic cell killing and consequent cell replacement-a risk factor for cancer that can be limited to high doses. Because default risk assessments use linear extrapolation, which ignores effects of the high dose itself, low-dose risks are often exaggerated. PMID:9255573
The causes and prevention of cancer: gaining perspective.
Ames, B N; Gold, L S
1997-06-01
Epidemiological studies have identified several factors that are likely to have a major effect on reducing rates of cancer: reduction of smoking, increased consumption of fruits and vegetables, and control of infections. Other factors include avoidance of intense sun exposure, increased physical activity, and reduced consumption of alcohol and possibly red meat. Risks of many types of cancer can already be reduced, and the potential for further reductions is great. In the United States, cancer death rates for all cancers combined are decreasing, if lung cancer (90% of which is due to smoking), is excluded from the analysis. We review the research on causes of cancer and show why much cancer is preventable. The idea that traces of synthetic chemicals, such as DDT, are major contributors to human cancer is not supported by the evidence, yet public concern and resource allocation for reduction of chemical pollution are very high, in part because standard risk assessment uses linear extrapolation from limited data in high-dose animal cancer tests. These tests are done at the maximum tolerated dose (MTD) and are typically misinterpreted to mean that low doses of synthetic chemicals and industrial pollutants are relevant to human cancer. About half the chemicals tested, whether synthetic or natural, are carcinogenic to rodents at such high doses. Almost all chemicals in the human diet are natural. For example, 99.99% of the pesticides we eat are naturally present in plants to ward off insects and other predators. Half of the natural pesticides that have been tested at the MTD are rodent carcinogens. Cooking food produces large numbers of natural dietary chemicals. Roasted coffee, for example, contains more than 1000 chemicals: of 27 tested, 19 are rodent carcinogens. Increasing evidence supports the idea that the high frequency of positive results in rodent bioassays is due to testing at the MTD, which frequently can cause chronic cell killing and consequent cell replacement-a risk factor for cancer that can be limited to high doses. Because default risk assessments use linear extrapolation, which ignores effects of the high dose itself, low-dose risks are often exaggerated.
Karaboyas, Angelo; Zee, Jarcy; Morgenstern, Hal; Nolen, Jacqueline G; Hakim, Raymond; Kalantar-Zadeh, Kamyar; Zager, Philip; Pisoni, Ronald L; Port, Friedrich K; Robinson, Bruce M
2015-10-07
Anemia management changed substantially among dialysis patients in the United States around the time of implementation of the new Centers for Medicare & Medicaid Services bundled payment system and erythropoiesis-stimulating agent (ESA) label change in 2011. Among these, average ferritin levels increased dramatically and have remained high since; this study sought to gain understanding of this sustained rise in ferritin levels. Trends in mean ferritin, hemoglobin, IV iron dose, and ESA dose from 2009 to 2013 were examined in 9735 patients from 91 United States Dialysis Outcomes and Practice Patterns Study facilities. Linear mixed models were used to assess the extent to which intravenous (IV) iron and ESA dose accounted for patients' changes in ferritin over time. Mean ESA dose and hemoglobin levels declined throughout the study. Mean IV iron dose increased from 210 mg/mo in 2009-2010 to a peak of 280 mg/mo in 2011, then declined back to 200 mg/mo and remained stable from 2012 to 2013. Mean ferritin increased from 601 ng/ml in the third quarter of 2009 to 887 ng/ml in the first quarter of 2012; models suggest that higher IV iron dosing was a primary determinant during 2011, but lower ESA doses contributed to the sustained high ferritin levels thereafter. In a subset of 17 facilities that decreased IV iron dose in 2011, mean ferritin rose by 120 ng/ml to 764 ng/ml, which appeared to be primarily due to ESA reduction. Together, changes in IV iron and ESA doses accounted for 46% of the increase in ferritin over the study period. In contrast to expectations, the rise in average IV iron dose did not persist beyond 2011. The sustained rise in ferritin levels in United States dialysis patients after policy changes in 2011, to average levels well in excess of 800 ng/ml, appeared to be partly due to reductions in ESA dosing and not solely IV iron dosing practices. The effect of these changes in ferritin on health outcomes requires further investigation. Copyright © 2015 by the American Society of Nephrology.
Zee, Jarcy; Morgenstern, Hal; Nolen, Jacqueline G.; Hakim, Raymond; Kalantar-Zadeh, Kamyar; Zager, Philip; Pisoni, Ronald L.; Port, Friedrich K.; Robinson, Bruce M.
2015-01-01
Background and objectives Anemia management changed substantially among dialysis patients in the United States around the time of implementation of the new Centers for Medicare & Medicaid Services bundled payment system and erythropoiesis-stimulating agent (ESA) label change in 2011. Among these, average ferritin levels increased dramatically and have remained high since; this study sought to gain understanding of this sustained rise in ferritin levels. Design, setting, participants, & measurements Trends in mean ferritin, hemoglobin, IV iron dose, and ESA dose from 2009 to 2013 were examined in 9735 patients from 91 United States Dialysis Outcomes and Practice Patterns Study facilities. Linear mixed models were used to assess the extent to which intravenous (IV) iron and ESA dose accounted for patients’ changes in ferritin over time. Results Mean ESA dose and hemoglobin levels declined throughout the study. Mean IV iron dose increased from 210 mg/mo in 2009–2010 to a peak of 280 mg/mo in 2011, then declined back to 200 mg/mo and remained stable from 2012 to 2013. Mean ferritin increased from 601 ng/ml in the third quarter of 2009 to 887 ng/ml in the first quarter of 2012; models suggest that higher IV iron dosing was a primary determinant during 2011, but lower ESA doses contributed to the sustained high ferritin levels thereafter. In a subset of 17 facilities that decreased IV iron dose in 2011, mean ferritin rose by 120 ng/ml to 764 ng/ml, which appeared to be primarily due to ESA reduction. Together, changes in IV iron and ESA doses accounted for 46% of the increase in ferritin over the study period. Conclusions In contrast to expectations, the rise in average IV iron dose did not persist beyond 2011. The sustained rise in ferritin levels in United States dialysis patients after policy changes in 2011, to average levels well in excess of 800 ng/ml, appeared to be partly due to reductions in ESA dosing and not solely IV iron dosing practices. The effect of these changes in ferritin on health outcomes requires further investigation. PMID:26286925
NASA Astrophysics Data System (ADS)
Kodaira, S.; Tolochek, R. V.; Ambrozova, I.; Kawashima, H.; Yasuda, N.; Kurano, M.; Kitamura, H.; Uchihori, Y.; Kobayashi, I.; Hakamada, H.; Suzuki, A.; Kartsev, I. S.; Yarmanova, E. N.; Nikolaev, I. V.; Shurshakov, V. A.
2014-01-01
The dose reduction effects for space radiation by installation of water shielding material ("protective curtain") of a stack board consisting of the hygienic wipes and towels have been experimentally evaluated in the International Space Station by using passive dosimeters. The averaged water thickness of the protective curtain was 6.3 g/cm2. The passive dosimeters consisted of a combination of thermoluminescent detectors (TLDs) and plastic nuclear track detectors (PNTDs). Totally 12 passive dosimeter packages were installed in the Russian Service Module during late 2010. Half of the packages were located at the protective curtain surface and the other half were at the crew cabin wall behind or aside the protective curtain. The mean absorbed dose and dose equivalent rates are measured to be 327 μGy/day and 821 μSv/day for the unprotected packages and 224 μGy/day and 575 μSv/day for the protected packages, respectively. The observed dose reduction rate with protective curtain was found to be 37 ± 7% in dose equivalent, which was consistent with the calculation in the spherical water phantom by PHITS. The contributions due to low and high LET particles were found to be comparable in observed dose reduction rate. The protective curtain would be effective shielding material for not only trapped particles (several 10 MeV) but also for low energy galactic cosmic rays (several 100 MeV/n). The properly utilized protective curtain will effectively reduce the radiation dose for crew living in space station and prolong long-term mission in the future.
Persistent changes in neuronal structure and synaptic plasticity caused by proton irradiation.
Parihar, Vipan K; Pasha, Junaid; Tran, Katherine K; Craver, Brianna M; Acharya, Munjal M; Limoli, Charles L
2015-03-01
Cranial radiotherapy is used routinely to control the growth of primary and secondary brain tumors, but often results in serious and debilitating cognitive dysfunction. In part due to the beneficial dose depth distributions that may spare normal tissue damage, the use of protons to treat CNS and other tumor types is rapidly gaining popularity. Astronauts exposed to lower doses of protons in the space radiation environment are also at risk for developing adverse CNS complications. To explore the consequences of whole body proton irradiation, mice were subjected to 0.1 and 1 Gy and analyzed for morphometric changes in hippocampal neurons 10 and 30 days following exposure. Significant dose-dependent reductions (~33 %) in dendritic complexity were found, when dendritic length, branching and area were analyzed 30 days after exposure. At equivalent doses and times, significant reductions in the number (~30 %) and density (50-75 %) of dendritic spines along hippocampal neurons of the dentate gyrus were also observed. Immature spines (filopodia, long) exhibited the greatest sensitivity (1.5- to 3-fold) to irradiation, while more mature spines (mushroom) were more resistant to changes over a 1-month post-irradiation timeframe. Irradiated granule cell neurons spanning the subfields of the dentate gyrus showed significant and dose-responsive reductions in synaptophysin expression, while the expression of postsynaptic density protein (PSD-95) was increased significantly. These findings corroborate our past work using photon irradiation, and demonstrate for the first time, dose-responsive changes in dendritic complexity, spine density and morphology and synaptic protein levels following exposure to low-dose whole body proton irradiation.
Effects of oversized solutes on radiation-induced segregation in austenitic stainless steels
NASA Astrophysics Data System (ADS)
Hackett, M. J.; Busby, J. T.; Miller, M. K.; Was, G. S.
2009-06-01
Zirconium or hafnium additions to austenitic stainless steels caused a reduction in grain boundary Cr depletion after proton irradiations for up to 3 dpa at 400 °C and 1 dpa at 500 °C. The predictions of a radiation-induced segregation (RIS) model were also consistent with experiments in showing greater effectiveness of Zr relative to Hf due to a larger binding energy. However, the experiments showed that the effectiveness of the solute additions disappeared above 3 dpa at 400 °C and above 1 dpa at 500 °C. The loss of solute effectiveness with increasing dose is attributed to a reduction in the amount of oversized solute from the matrix due to growth of carbide precipitates. Atom probe tomography measurements indicated a reduction in amount of oversized solute in solution as a function of irradiation dose. The observations were supported by diffusion analysis suggesting that significant solute diffusion by the vacancy flux to precipitate surfaces occurs on the time scales of proton irradiations. With a decrease in available solute in solution, improved agreement between the predictions of the RIS model and measurements were consistent with the solute-vacancy trapping process, as the mechanism for enhanced recombination and suppression of RIS.
[Thiazide diuretics in the treatment of hypertensive patients].
Rasmussen, Knud
2015-05-11
This Cochrane review had the objectives to determine the dose-related decrease in blood pressure due to thiazide diuretics compared with placebo control in the treatment of hypertensive patients. Hydrochlorothiazide has a dose-related blood pressure-lowering effect over the dose range 6.25, 12.5, 25 and 50 mg/day of 4/2, 6/3, 8/3 and 11/5 mmHg, respectively. This exceeds the mean 3 mmHg reduction achieved by angiotensin-converting-enzyme inhibitors and angiotensin receptor blockers as shown in other Cochrane reviews, which have compared these antihypertensive drugs with placebo having used similar inclusion/exclusion criteria.
Effect of staff training on radiation dose in pediatric CT.
Hojreh, Azadeh; Weber, Michael; Homolka, Peter
2015-08-01
To evaluate the efficacy of staff training on radiation doses applied in pediatric CT scans. Pediatric patient doses from five CT scanners before (1426 scans) and after staff training (2566 scans) were compared statistically. Examinations included cranial CT (CCT), thoracic, abdomen-pelvis, and trunk scans. Dose length products (DLPs) per series were extracted from CT dose reports archived in the PACS. A pooled analysis of non-traumatic scans revealed a statistically significant reduction in the dose for cranial, thoracic, and abdomen/pelvis scans (p<0.01). This trend could be demonstrated also for trunk scans, however, significance could not be established due to low patient frequencies (p>0.05). The percentage of scans performed with DLPs exceeding the German DRLs was reduced from 41% to 7% (CCT), 19% to 5% (thorax-CT), from 9% to zero (abdominal-pelvis CT), and 26% to zero (trunk; DRL taken as summed DRLs for thorax plus abdomen-pelvis, reduced by 20% accounting for overlap). Comparison with Austrian DRLs - available only for CCT and thorax CT - showed a reduction from 21% to 3% (CCT), and 15 to 2% (thorax CT). Staff training together with application of DRLs provide an efficient approach for optimizing radiation dose in pediatric CT practice. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Six steps to a successful dose-reduction strategy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, M.
1995-03-01
The increased importance of demonstrating achievement of the ALARA principle has helped produce a proliferation of dose-reduction ideas. Across a company there may be many dose-reduction items being pursued in a variety of areas. However, companies have a limited amount of resource and, therefore, to ensure funding is directed to those items which will produce the most benefit and that all areas apply a common policy, requires the presence of a dose-reduction strategy. Six steps were identified in formulating the dose-reduction strategy for Rolls-Royce and Associates (RRA): (1) collating the ideas; (2) quantitatively evaluating them on a common basis; (3)more » prioritizing the ideas in terms of cost benefit, (4) implementation of the highest priority items; (5) monitoring their success; (6) periodically reviewing the strategy. Inherent in producing the dose-reduction strategy has been a comprehensive dose database and the RRA-developed dose management computer code DOMAIN, which allows prediction of dose rates and dose. The database enabled high task dose items to be identified, assisted in evaluating dose benefits, and monitored dose trends once items had been implemented. The DOMAIN code was used both in quantifying some of the project dose benefits and its results, such as dose contours, used in some of the dose-reduction items themselves. In all, over fifty dose-reduction items were evaluated in the strategy process and the items which will give greatest benefit are being implemented. The strategy has been successful in giving renewed impetus and direction to dose-reduction management.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jannik, T.; Karapatakis, D.; Lee, P.
2010-08-06
Operations at the Savannah River Site (SRS) result in releases of small amounts of radioactive materials to the atmosphere and to the Savannah River. For regulatory compliance purposes, potential offsite radiological doses are estimated annually using computer models that follow U.S. Nuclear Regulatory Commission (NRC) Regulatory Guides. Within the regulatory guides, default values are provided for many of the dose model parameters but the use of site-specific values by the applicant is encouraged. A detailed survey of land and water use parameters was conducted in 1991 and is being updated here. These parameters include local characteristics of meat, milk andmore » vegetable production; river recreational activities; and meat, milk and vegetable consumption rates as well as other human usage parameters required in the SRS dosimetry models. In addition, the preferred elemental bioaccumulation factors and transfer factors to be used in human health exposure calculations at SRS are documented. Based on comparisons to the 2009 SRS environmental compliance doses, the following effects are expected in future SRS compliance dose calculations: (1) Aquatic all-pathway maximally exposed individual doses may go up about 10 percent due to changes in the aquatic bioaccumulation factors; (2) Aquatic all-pathway collective doses may go up about 5 percent due to changes in the aquatic bioaccumulation factors that offset the reduction in average individual water consumption rates; (3) Irrigation pathway doses to the maximally exposed individual may go up about 40 percent due to increases in the element-specific transfer factors; (4) Irrigation pathway collective doses may go down about 50 percent due to changes in food productivity and production within the 50-mile radius of SRS; (5) Air pathway doses to the maximally exposed individual may go down about 10 percent due to the changes in food productivity in the SRS area and to the changes in element-specific transfer factors; and (6) Air pathway collective doses may go down about 30 percent mainly due to the decrease in the inhalation rate assumed for the average individual.« less
Abe, Masanori; Okada, Kazuyoshi; Matsumoto, Koichi
2009-10-01
The goal of antihypertensive treatment is to reduce cardiovascular and cerebrovascular events associated with high blood pressure. A combination therapy with different antihypertensive agents is more successful than monotherapy in most hypertensive patients, with the added advantage of a better safety profile. Therefore, treatment of hypertensive patients with fixed-dose combination therapy consisting of the angiotensin II receptor blocker losartan along with hydrochlorothiazide (HCTZ) has several potential benefits over monotherapy with each individual component. It provides more effective blood pressure control, a reduction in the likelihood of adverse effects and facilitation of patient compliance due to a simple once-daily regimen. One of the advantages of the combination of losartan with HCTZ is the potential reduction in HCTZ-induced metabolic disorders; in particular, this combination can have attractive benefits for patients of hyperuricemia. Losartan plus HCTZ fixed-dose combination therapy is frequently recommended for the treatment of hypertension and lowers blood pressure in mild-to-moderate and even severe hypertensive patients to a level comparable with other classes of antihypertensive agents in combination with HCTZ. Fixed-dose combination therapy with losartan plus HCTZ is a logical choice as antihypertensive therapy for patients in whom combination therapy is necessary to achieve additional blood pressure reduction.
NASA Astrophysics Data System (ADS)
Xu, Jingyan; Fuld, Matthew K.; Fung, George S. K.; Tsui, Benjamin M. W.
2015-04-01
Iterative reconstruction (IR) methods for x-ray CT is a promising approach to improve image quality or reduce radiation dose to patients. The goal of this work was to use task based image quality measures and the channelized Hotelling observer (CHO) to evaluate both analytic and IR methods for clinical x-ray CT applications. We performed realistic computer simulations at five radiation dose levels, from a clinical reference low dose D0 to 25% D0. A fixed size and contrast lesion was inserted at different locations into the liver of the XCAT phantom to simulate a weak signal. The simulated data were reconstructed on a commercial CT scanner (SOMATOM Definition Flash; Siemens, Forchheim, Germany) using the vendor-provided analytic (WFBP) and IR (SAFIRE) methods. The reconstructed images were analyzed by CHOs with both rotationally symmetric (RS) and rotationally oriented (RO) channels, and with different numbers of lesion locations (5, 10, and 20) in a signal known exactly (SKE), background known exactly but variable (BKEV) detection task. The area under the receiver operating characteristic curve (AUC) was used as a summary measure to compare the IR and analytic methods; the AUC was also used as the equal performance criterion to derive the potential dose reduction factor of IR. In general, there was a good agreement in the relative AUC values of different reconstruction methods using CHOs with RS and RO channels, although the CHO with RO channels achieved higher AUCs than RS channels. The improvement of IR over analytic methods depends on the dose level. The reference dose level D0 was based on a clinical low dose protocol, lower than the standard dose due to the use of IR methods. At 75% D0, the performance improvement was statistically significant (p < 0.05). The potential dose reduction factor also depended on the detection task. For the SKE/BKEV task involving 10 lesion locations, a dose reduction of at least 25% from D0 was achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galavis, P; Barbee, D; Jozsef, G
2016-06-15
Purpose: Prone accelerated partial breast irradiation (APBI) results in dose reduction to the heart and lung. Flattening filter free beams (FFF) reduce out of field dose due to the reduced scatter from the removal of the flattening filter and reduce the buildup region. The aim of this work is to evaluate the dosimetric advantages of FFF beams to prone APBI target coverage and reduction in dose to organs at risk. Methods: Fifteen clinical prone APBI cases using flattened photon beams were retrospectively re-planned in Eclipse-TPS using FFF beams. FFF plans were designed to provide equivalent target coverage with similar hotspotsmore » using the same field arrangements, resulting in comparable target DVHs. Both plans were transferred to a prone breast phantom and delivered on Varian-Edge-Linac. GafChromic-film was placed in the coronal plane of the phantom, partially overlapping the treatment field and extending into OARs to compare dose profiles from both plans. Results: FFF plans were comparable to the clinical plans with maximum doses of (108.3±2.3)% and (109.2±2.4)% and mean doses of (104.5±1.0)% and (104.6±1.2)%, respectively. Similar mean dose doses to the heart and contralateral lungs were observed from both plans, whereas the mean dose to the contra-lateral breast was (2.79±1.18) cGy and (2.86±1.40) cGy for FFF and clinical plans respectively. However for both plans the error between calculated and measured doses at 4 cm from the field edge was 10%. Conclusion: The results showed that FFF beams in prone APBI provide dosimetrically equivalent target coverage and improved coverage in superficial target due to softer energy spectra. Film analysis showed that the TPS underestimates dose outside field edges for both cases. The FFF measured plans showed less dose outside the beam that might reduce the probability of secondary cancers in the contralateral breast.« less
Kim, Hyoung Jun; Kim, Tae Oh; Shin, Bong Chul; Woo, Jae Gon; Seo, Eun Hee; Joo, Hee Rin; Heo, Nae-Yun; Park, Jongha; Park, Seung Ha; Yang, Sung Yeon; Moon, Young Soo; Shin, Jin-Yong; Lee, Nae Young
2012-01-01
Currently, a split-dose of polyethylene glycol (PEG) is the mainstay of bowel preparation due to its tolerability, bowel-cleansing action, and safety. However, bowel preparation with PEG is suboptimal because residual fluid reduces the polyp detection rate and requires a more thorough colon inspection. The aim of our study was to demonstrate the efficacy of a sufficient dose of prokinetics on bowel cleansing together with split-dose PEG. A prospective endoscopist-blinded study was conducted. Patients were randomly allocated to two groups: prokinetic with split-dose PEG or split-dose PEG alone. A prokinetic [100 mg itopride (Itomed)], was administered twice simultaneously with each split-dose of PEG. Bowel-cleansing efficacy was measured by endoscopists using the Ottawa scale and the segmental fluidity scale score. Each participant completed a bowel preparation survey. Mean scores from the Ottawa scale, segmental fluid scale, and rate of poor preparation were compared between both groups. Patients in the prokinetics with split-dose PEG group showed significantly lower total Ottawa and segmental fluid scores compared with patients in the split-dose of PEG alone group. A sufficient dose of prokinetics with a split-dose of PEG showed efficacy in bowel cleansing for morning colonoscopy, largely due to the reduction in colonic fluid. Copyright © 2012 S. Karger AG, Basel.
Tetenev, F F; Cherniavskaia, G M
1989-01-01
A study was made of the action of inhalation of a single atrovent dose in 20 patients with chronic obstructive bronchitis. All the patients demonstrated a considerable abatement or disappearance of dyspnea, and a reduction of the number of dry rales. The vital capacity of the lungs, the volume of forced expiration, maximal pulmonary ventilation, MOCmax, MOC50, and MOC75 substantially increased. The respiratory work diminished on the average by 32.3% primarily due to the lessening of non-elastic lung resistance. The rise of pulmonary static extensibility and reduction of pulmonary elastic propulsion were recorded. In patients with and without clinical signs of bronchospasm, the action of atrovent was identical.
Dose tracking and dose auditing in a comprehensive computed tomography dose-reduction program.
Duong, Phuong-Anh; Little, Brent P
2014-08-01
Implementation of a comprehensive computed tomography (CT) radiation dose-reduction program is a complex undertaking, requiring an assessment of baseline doses, an understanding of dose-saving techniques, and an ongoing appraisal of results. We describe the role of dose tracking in planning and executing a dose-reduction program and discuss the use of the American College of Radiology CT Dose Index Registry at our institution. We review the basics of dose-related CT scan parameters, the components of the dose report, and the dose-reduction techniques, showing how an understanding of each technique is important in effective auditing of "outlier" doses identified by dose tracking. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Y
2016-06-15
Purpose: To test the impact of the use of apex optimization points for new vaginal cylinder (VC) applicators. Methods: New “ClickFit” single channel VC applicators (Varian) that have a different top thicknesses but the same diameters as the old VC applicators (2.3 cm diameter, 2.6 cm, 3.0 cm, and 3.5 cm) were compared using phantom studies. Old VC applicator plans without apex optimization points were also compared to the plans with the optimization points. The apex doses were monitored at 5 mm depth doses (8 points) where a prescription dose (Rx) of 6Gy was prescribed. VC surface doses (8 points)more » were also analyzed. Results: The new VC applicator plans without apex optimization points presented significantly lower 5mm depth doses than Rx (on average −31 ± 7%, p <0.00001) due to their thicker VC tops (3.4 ± 1.1 mm thicker with the range of 1.2 to 4.4 mm) than the old VC applicators. Old VC applicator plans also showed a statistically significant reduction (p <0.00001) due to Ir-192 source anisotropic effect at the apex region but the % reduction over Rx was only −7 ± 9%. However, by adding apex optimization points to the new VC applicator plans, the plans improved 5 mm depth doses (−7 ± 9% over Rx) that were not statistically different from old VC plans (p = 0.923), along with apex VC surface doses (−22 ± 10% over old VC versus −46 ± 7% without using apex optimization points). Conclusion: The use of apex optimization points are important in order to avoid significant additional cold doses (−24 ± 2%) at the prescription depth (5 mm) of apex, especially for the new VC applicators that have thicker tops.« less
Ultraviolet B radiation (UV-B) has increased globally over the last several decades due to reduction of stratospheric ozone. UV-B may also increase when climate change alters cloud cover, rainfall, and distributions of vegetation. In aquatic systems, these factors can also intera...
Mani, Karthick Raj; Upadhayay, Sagar; Das, K J Maria
2017-03-01
To Study the dosimetric advantage of the Jaw tracking technique in intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) for Head and Neck Cancers. We retrospectively selected 10 previously treated head and neck cancer patients stage (T1/T2, N1, M0) in this study. All the patients were planned for IMRT and VMAT with simultaneous integrated boost technique. IMRT and VMAT plans were performed with jaw tracking (JT) and with static jaw (SJ) technique by keeping the same constraints and priorities for a particular patient. Target conformity, dose to the critical structures and low dose volumes were recorded and analyzed for IMRT and VMAT plans with and without JT for all the patients. The conformity index average of all patients followed by standard deviation ([Formula: see text] ± [Formula: see text]) of the JT-IMRT, SJ-IMRT, JT-VMAT, and SJ-VMAT were 1.72 ± 0.56, 1.67 ± 0.57, 1.83 ± 0.65, and 1.85 ± 0.64, and homogeneity index were 0.059 ± 0.05, 0.064 ± 0.05, 0.064 ± 0.04, and 0.064 ± 0.05. JT-IMRT shows significant mean reduction in right parotid and left parotid shows of 7.64% (p < 0.001) and 7.45% (p < 0.001) compare to SJ-IMRT. JT-IMRT plans also shows considerable dose reduction to thyroid, inferior constrictors, spinal cord and brainstem compared to the SJ-IMRT plans. Significant dose reductions were observed for critical structure in the JT-IMRT compared to SJ-IMRT technique. In JT-VMAT plans dose reduction to the critical structure were not significant compared to the SJ-IMRT due to relatively lesser monitor units.
NASA Astrophysics Data System (ADS)
Kim, Myeong Seong; Choi, Jiwon; Kim, Sun Young; Kweon, Dae Cheol
2014-03-01
There is a concern regarding the adverse effects of increasing radiation doses due to repeated computed tomography (CT) scans, especially in radiosensitive organs and portions thereof, such as the lenses of the eyes. Bismuth shielding with an adaptive statistical iterative reconstruction (ASIR) algorithm was recently introduced in our clinic as a method to reduce the absorbed radiation dose. This technique was applied to the lens of the eye during CT scans. The purpose of this study was to evaluate the reduction in the absorbed radiation dose and to determine the noise level when using bismuth shielding and the ASIR algorithm with the GE DC 750 HD 64-channel CT scanner for CT of the head of a humanoid phantom. With the use of bismuth shielding, the noise level was higher in the beam-hardening artifact areas than in the revealed artifact areas. However, with the use of ASIR, the noise level was lower than that with the use of bismuth alone; it was also lower in the artifact areas. The reduction in the radiation dose with the use of bismuth was greatest at the surface of the phantom to a limited depth. In conclusion, it is possible to reduce the radiation level and slightly decrease the bismuth-induced noise level by using a combination of ASIR as an algorithm process and bismuth as an in-plane hardware-type shielding method.
Shih, Chia-Jen; Tarng, Der-Cherng; Yang, Wu-Chang; Yang, Chih-Yu
2014-07-01
Due to lifelong immunosuppression, renal transplant recipients (RTRs) are at risk of infectious complications such as pneumonia. Severe pneumonia results in respiratory failure and is life‑threatening. We aimed to examine the influence of immunosuppressant dose reduction on RTRs with bacterial pneumonia and respiratory failure. From January 2001 to January 2011, 33 of 1,146 RTRs at a single centre developed bacterial pneumonia with respiratory failure. All patients were treated using mechanical ventilation and aggressive therapies in the intensive care unit. Average time from kidney transplantation to pneumonia with respiratory failure was 6.8 years. In-hospital mortality rate was 45.5% despite intensive care and aggressive therapies. Logistic regression analysis indicated that a high serum creatinine level at the time of admission to the intensive care unit (odds ratio 1.77 per mg/dL, 95% confidence interval 1.01-3.09; p = 0.045) was a mortality determinant. Out of the 33 patients, immunosuppressive agents were reduced in 17 (51.5%). We found that although immunosuppressant dose reduction tended to improve in-hospital mortality, this was not statistically significant. Nevertheless, during a mean follow-up period of two years, none of the survivors (n = 18) developed acute rejection or allograft necrosis. In RTRs with bacterial pneumonia and respiratory failure, higher serum creatinine levels were a mortality determinant. Although temporary immunosuppressant dose reduction might not reduce mortality, it was associated with a minimal risk of acute rejection during the two-year follow-up. Our results suggest that early immunosuppressant reduction in RTRs with severe pneumonia of indeterminate microbiology may be safe even when pathogens are bacterial in nature.
beta- and gamma-Comparative dose estimates on Enewetak Atoll.
Crase, K W; Gudiksen, P H; Robison, W L
1982-05-01
Enewetak Atoll is one of the Pacific atolls used for atmospheric testing of U.S. nuclear weapons. Beta dose and gamma-ray exposure measurements were made on two islands of the Enewetak Atoll during July-August 1976 to determine the beta and low energy gamma-contribution to the total external radiation doses to the returning Marshallese. Measurements were made at numerous locations with thermoluminescent dosimeters (TLD), pressurized ionization chambers, portable NaI detectors, and thin-window pancake GM probes. Results of the TLD measurements with and without a beta-attenuator indicate that approx. 29% of the total dose rate at 1 m in air is due to beta- or low energy gamma-contribution. The contribution at any particular site, however, is somewhat dependent on ground cover, since a minimal amount of vegetation will reduce it significantly from that over bare soil, but thick stands of vegetation have little effect on any further reductions. Integral 30-yr external shallow dose estimates for future inhabitants were made and compared with external dose estimates of a previous large scale radiological survey (En73). Integral 30-yr shallow external dose estimates are 25-50% higher than whole body estimates. Due to the low penetrating ability of the beta's or low energy gamma's, however, several remedial actions can be taken to reduce the shallow dose contribution to the total external dose.
Measurement of radiation damage of water-based liquid scintillator and liquid scintillator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bignell, L. J.; Diwan, M. V.; Hans, S.
2015-10-19
Liquid scintillating phantoms have been proposed as a means to perform real-time 3D dosimetry for proton therapy treatment plan verification. We have studied what effect radiation damage to the scintillator will have upon this application. We have performed measurements of the degradation of the light yield and optical attenuation length of liquid scintillator and water-based liquid scintillator after irradiation by 201 MeV proton beams that deposited doses of approximately 52 Gy, 300 Gy, and 800 Gy in the scintillator. Liquid scintillator and water-based liquid scintillator (composed of 5% scintillating phase) exhibit light yield reductions of 1.74 ± 0.55 % andmore » 1.31 ± 0.59 % after ≈ 800 Gy of proton dose, respectively. Some increased optical attenuation was observed in the irradiated samples, the measured reduction to the light yield is also due to damage to the scintillation light production. Based on our results and conservative estimates of the expected dose in a clinical context, a scintillating phantom used for proton therapy treatment plan verification would exhibit a systematic light yield reduction of approximately 0.1% after a year of operation.« less
Gupta, Pankaj; Friberg, Lena E; Karlsson, Mats O; Krishnaswami, Sriram; French, Jonathan
2010-06-01
CP-690,550, a selective inhibitor of the Janus kinase family, is being developed as an oral disease-modifying antirheumatic drug for the treatment of rheumatoid arthritis (RA). A semi-mechanistic model was developed to characterize the time course of drug-induced absolute neutrophil count (ANC) reduction in a phase 2a study. Data from 264 RA patients receiving 6-week treatment (placebo, 5, 15, 30 mg bid) followed by a 6-week off-treatment period were analyzed. The model included a progenitor cell pool, a maturation chain comprising transit compartments, a circulation pool, and a feedback mechanism. The model was adequately described by system parameters (BASE(h), ktr(h), gamma, and k(circ)), disease effect parameters (DIS), and drug effect parameters (k(off) and k(D)). The disease manifested as an increase in baseline ANC and reduced maturation time due to increased demand from the inflammation site. The drug restored the perturbed system parameters to their normal values via an indirect mechanism. ANC reduction due to a direct myelosuppressive drug effect was not supported. The final model successfully described the dose- and time-dependent changes in ANC and predicted the incidence of neutropenia at different doses reasonably well.
Measles control strategies in India: position paper of Indian Academy of Pediatrics.
Vashishtha, V M; Choudhury, P; Bansal, C P; Gupta, S G
2013-06-08
Measles continues to be a major cause of childhood morbidity and mortality in India. Recent studies estimate that 80,000 Indian children die each year due to measles and its complications, amounting to 4% of under-5 deaths. Immunization against measles directly contributes to the reduction of under five child mortality and hence to the achievement of Millennium Development Goal 4 (MDG 4). The live attenuated measles vaccines are safe, effective and provide long lasting protection. The key strategies being followed globally for measles mortality reduction are high coverage of measles first dose, sensitive laboratory supported surveillance, appropriate case management, and providing second dose of measles vaccine. Prior to 2010, India was the only country in the world that had not introduced a second dose of measles vaccine in its National immunization program. We herein discuss the current status of measles vaccination along with the rationale and challenges of providing a second opportunity for measles vaccination, and the principles of measles catch-up campaigns.
Long-Term Dose-Dependent Agalsidase Effects on Kidney Histology in Fabry Disease.
Skrunes, Rannveig; Tøndel, Camilla; Leh, Sabine; Larsen, Kristin Kampevold; Houge, Gunnar; Davidsen, Einar Skulstad; Hollak, Carla; van Kuilenburg, André B P; Vaz, Frédéric M; Svarstad, Einar
2017-09-07
Dose-dependent clearing of podocyte globotriaosylceramide has previously been shown in patients with classic Fabry disease treated with enzyme replacement. Our study evaluates the dose-dependent effects of agalsidase therapy in serial kidney biopsies of patients treated for up to 14 years. Twenty patients with classic Fabry disease (12 men) started enzyme replacement therapy at a median age of 21 (range =7-62) years old. Agalsidase- α or - β was prescribed for a median of 9.4 (range =5-14) years. The lower fixed dose group received agalsidase 0.2 mg/kg every other week throughout the follow-up period. The higher dose group received a range of agalsidase doses (0.2-1.0 mg/kg every other week). Dose changes were made due to disease progression, suboptimal effect, or agalsidase- β shortage. Serial kidney biopsies were performed along with clinical assessment and biomarkers and scored according to recommendations from the International Study Group of Fabry Nephropathy. No statistical differences were found in baseline or final GFR or albuminuria. Kidney biopsies showed significant reduction of podocyte globotriaosylceramide in both the lower fixed dose group (-1.39 [SD=1.04]; P =0.004) and the higher dose group (-3.16 [SD=2.39]; P =0.002). Podocyte globotriaosylceramide (Gb3) reduction correlated with cumulative agalsidase dose ( r =0.69; P =0.001). Arterial/arteriolar intima Gb3 cleared significantly in the higher dose group, all seven patients with baseline intimal Gb3 cleared the intima, one patient gained intimal Gb3 inclusions ( P =0.03), and medial Gb3 did not change statistically in either group. Residual plasma globotriaosylsphingosine levels remained higher in the lower fixed dose group (20.1 nmol/L [SD=11.9]) compared with the higher dose group (10.4 nmol/L [SD=8.4]) and correlated with cumulative agalsidase dose in men ( r =0.71; P =0.01). Reduction of podocyte globotriaosylceramide was found in patients with classic Fabry disease treated with long-term agalsidase on different dosing regimens, correlating with cumulative dose. Limited clearing of arterial/arteriolar globotriaosylceramide raises concerns regarding long-term vascular effects of current therapy. Residual plasma globotriaosylsphingosine correlated with cumulative dose in men. Copyright © 2017 by the American Society of Nephrology.
ERIC Educational Resources Information Center
Stotts, Angela L.; Masuda, Akihiko; Wilson, Kelly
2009-01-01
Many clients who undergo methadone maintenance (MM) treatment for heroin and other opiate dependence prefer abstinence from methadone. Attempts at methadone detoxification are often unsuccessful, however, due to distressing physical as well as psychological symptoms. Outcomes from an MM client who voluntarily participated in an Acceptance and…
Dose reduction potential of iterative reconstruction algorithms in neck CTA-a simulation study.
Ellmann, Stephan; Kammerer, Ferdinand; Allmendinger, Thomas; Brand, Michael; Janka, Rolf; Hammon, Matthias; Lell, Michael M; Uder, Michael; Kramer, Manuel
2016-10-01
This study aimed to determine the degree of radiation dose reduction in neck CT angiography (CTA) achievable with Sinogram-affirmed iterative reconstruction (SAFIRE) algorithms. 10 consecutive patients scheduled for neck CTA were included in this study. CTA images of the external carotid arteries either were reconstructed with filtered back projection (FBP) at full radiation dose level or underwent simulated dose reduction by proprietary reconstruction software. The dose-reduced images were reconstructed using either SAFIRE 3 or SAFIRE 5 and compared with full-dose FBP images in terms of vessel definition. 5 observers performed a total of 3000 pairwise comparisons. SAFIRE allowed substantial radiation dose reductions in neck CTA while maintaining vessel definition. The possible levels of radiation dose reduction ranged from approximately 34 to approximately 90% and depended on the SAFIRE algorithm strength and the size of the vessel of interest. In general, larger vessels permitted higher degrees of radiation dose reduction, especially with higher SAFIRE strength levels. With small vessels, the superiority of SAFIRE 5 over SAFIRE 3 was lost. Neck CTA can be performed with substantially less radiation dose when SAFIRE is applied. The exact degree of radiation dose reduction should be adapted to the clinical question, in particular to the smallest vessel needing excellent definition.
Mullick, Adam E.; Fu, Wuxia; Graham, Mark J.; Lee, Richard G.; Witchell, Donna; Bell, Thomas A.; Whipple, Charles P.; Crooke, Rosanne M.
2011-01-01
Chronic elevations of plasma apolipoprotein B (apoB) are strongly associated with cardiovascular disease. We have previously demonstrated that inhibition of hepatic apoB mRNA using antisense oligonucleotides (ASO) results in reductions of apoB, VLDL, and LDL in several preclinical animal models and humans. In this study, we evaluated the anti-atherogenic effects of a murine-specific apoB ASO (ISIS 147764) in hypercholesterolemic LDLr deficient (LDLr−/−) mice. ISIS 147764 was administered weekly at 25-100 mg/kg for 10-12 weeks and produced dose-dependent reductions of hepatic apoB mRNA and plasma LDL by 60-90%. No effects on these parameters were seen in mice receiving control ASOs. ApoB ASO treatment also produced dose-dependent reductions of aortic en face and sinus atherosclerosis from 50-90%, with high-dose treatment displaying less disease than the saline-treated, chow-fed LDLr−/− mice. No changes in intestinal cholesterol absorption were seen with apoB ASO treatment, suggesting that the cholesterol-lowering pharmacology of 147764 was primarily due to inhibition of hepatic apoB synthesis and secretion. In summary, ASO-mediated suppression of apoB mRNA expression profoundly reduced plasma lipids and atherogenesis in LDLr−/− mice, leading to the hypothesis that apoB inhibition in humans with impaired LDLr activity may produce similar effects. PMID:21343632
Sharfo, Abdul Wahab M; Breedveld, Sebastiaan; Voet, Peter W J; Heijkoop, Sabrina T; Mens, Jan-Willem M; Hoogeman, Mischa S; Heijmen, Ben J M
2016-01-01
To develop and validate fully automated generation of VMAT plan-libraries for plan-of-the-day adaptive radiotherapy in locally-advanced cervical cancer. Our framework for fully automated treatment plan generation (Erasmus-iCycle) was adapted to create dual-arc VMAT treatment plan libraries for cervical cancer patients. For each of 34 patients, automatically generated VMAT plans (autoVMAT) were compared to manually generated, clinically delivered 9-beam IMRT plans (CLINICAL), and to dual-arc VMAT plans generated manually by an expert planner (manVMAT). Furthermore, all plans were benchmarked against 20-beam equi-angular IMRT plans (autoIMRT). For all plans, a PTV coverage of 99.5% by at least 95% of the prescribed dose (46 Gy) had the highest planning priority, followed by minimization of V45Gy for small bowel (SB). Other OARs considered were bladder, rectum, and sigmoid. All plans had a highly similar PTV coverage, within the clinical constraints (above). After plan normalizations for exactly equal median PTV doses in corresponding plans, all evaluated OAR parameters in autoVMAT plans were on average lower than in the CLINICAL plans with an average reduction in SB V45Gy of 34.6% (p<0.001). For 41/44 autoVMAT plans, SB V45Gy was lower than for manVMAT (p<0.001, average reduction 30.3%), while SB V15Gy increased by 2.3% (p = 0.011). AutoIMRT reduced SB V45Gy by another 2.7% compared to autoVMAT, while also resulting in a 9.0% reduction in SB V15Gy (p<0.001), but with a prolonged delivery time. Differences between manVMAT and autoVMAT in bladder, rectal and sigmoid doses were ≤ 1%. Improvements in SB dose delivery with autoVMAT instead of manVMAT were higher for empty bladder PTVs compared to full bladder PTVs, due to differences in concavity of the PTVs. Quality of automatically generated VMAT plans was superior to manually generated plans. Automatic VMAT plan generation for cervical cancer has been implemented in our clinical routine. Due to the achieved workload reduction, extension of plan libraries has become feasible.
Chan, C K; Abraham, P; Sarraf, D; Nuthi, A S D; Lin, S G; McCannel, C A
2015-01-01
Summary statement Intravitreal high dose (2 mg) ranibizumab may lead to quicker resolution of choroidal neovascularization (CNV) and associated retinal pigment epithelial detachment in eyes with exudative age-related macular degeneration, although it may possibly correlate with RPE tears in certain cases. Purpose This prospective study compared the outcomes of 0.5 vs 2.0 mg intravitreal ranibizumab injections (RI) for treating vascularized pigment epithelial detachment (vPED) due to age-related macular degeneration. Methods Patients with vPED were randomized to receive 2.0 vs 0.5 mg RI monthly for 12 months or for 4 months and then repeated on a pro-re nata basis. Optical coherence tomography, fundus photography, and fluorescein and indocyanine-green angiography were obtained at baseline and subsequent specific intervals. Outcome measures were best-corrected standardized visual acuities, central 1-mm thickness, surface area (SA), greatest linear diameter (GLD), heights (PED and CNV), and amount of subretinal fluid (SRF) and cystoid macular edema (CME). Results Both groups yielded reductions of the central 1-mm thickness, PED and CNV SA and PED height and GLD, SRF, and CME. Vision improvement and reduction in SRF and PED height occurred earlier for eyes receiving the 2.0 mg dose. Cataract progression was similar but RPE tears developed more often with the 2.0 mg dose. Conclusions There were similar visual and anatomical outcomes at the end of the study; however, the higher dose yielded more rapid reductions and more complete resolution of the PED, although there was possible increased tendency for an RPE tear with the higher dose. PMID:25277305
Regulation of steroid hormones and energy status with cysteamine and its effect on spermatogenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yandi
Although it is well known that cysteamine is a potent chemical for treating many diseases including cystinosis and it has many adverse effects, the effect of cysteamine on spermatogenesis is as yet unknown. Therefore the objective of this investigation was to explore the effects of cysteamine on spermatogenesis and the underlying mechanisms. Sheep were treated with vehicle control, 10 mg/kg or 20 mg/kg cysteamine for six months. After that, the semen samples were collected to determine the spermatozoa motility by computer-assisted sperm assay method. Blood samples were collected to detect the levels of hormones and the activity of enzymes. Spermatozoamore » and testis samples were collected to study the mechanism of cysteamine's actions. It was found that the effects of cysteamine on spermatogenesis were dose dependent. A low dose (10 mg/kg) cysteamine treatment increased ovine spermatozoa motility; however, a higher dose (20 mg/kg) decreased both spermatozoa concentration and motility. This decrease might be due to a reduction in steroid hormone production by the testis, a reduction in energy in the testis and spermatozoa, a disruption in the blood-testis barrier, or a breakdown in the vital signaling pathways involved in spermatogenesis. The inhibitory effects of cysteamine on sheep spermatogenesis may be used to model its effects on young male patients with cystinosis or other diseases that are treated with this drug. Further studies on spermatogenesis that focus on patients treated with cysteamine during the peripubertal stage are warranted. - Highlights: • Dose dependent effects of cysteamine on spermatogenesis • A low dose (10 mg/kg) increased spermatozoa motility. • A higher dose (20 mg/kg) decreased both concentration and motility of spermatozoa. • Disruption in the blood-testis barrier caused reduction in concentration and motility.« less
Chaikh, Abdulhamid; Calugaru, Valentin; Bondiau, Pierre-Yves; Thariat, Juliette; Balosso, Jacques
2018-06-07
The aim of this study is to evaluate the impact of normal tissue complication probability (NTCP)-based radiobiological models on the estimated risk for late radiation lung damages. The second goal is to propose a medical decision-making approach to select the eligible patient for particle therapy. 14 pediatric patients undergoing cranio-spinal irradiation were evaluated. For each patient, two treatment plans were generated using photon and proton therapy with the same dose prescriptions. Late radiation damage to lung was estimated using three NTCP concepts: the Lyman-Kutcher-Burman, the equivalent uniform dose (EUD) and the mean lung dose according to the quantitative analysis of normal tissue effects in the clinic QUANTEC review. Wilcoxon paired test was used to calculate p-value. Proton therapy achieved lower lung EUD (Gy). The average NTCP values were significantly lower with proton plans, p < 0.05, using the three NTCP concepts. However, applying the same TD 50/5 using radiobiological models to compare NTCP from proton and photon therapy, the ΔNTCP was not a convincing method to measure the potential benefit of proton therapy. Late radiation pneumonitis estimated from the mean lung dose model correlated with QUANTEC data better. treatment effectiveness assessed on NTCP reduction depends on radiobiological predictions and parameters used as inputs for in silico evaluation. Since estimates of absolute NTCP values from LKB and GN models are imprecise due to EUD ≪ TD 50/5 , a reduction of the EUD value with proton plans would better predict a reduction of dose/toxicity. The EUD concept appears as a robust radiobiological surrogate of the dose distribution to select the optimal patient's plan.
Holl, Katsiaryna; Sauboin, Christophe; Amodio, Emanuele; Bonanni, Paolo; Gabutti, Giovanni
2016-10-21
Varicella is a highly infectious disease with a significant public health and economic burden, which can be prevented with childhood routine varicella vaccination. Vaccination strategies differ by country. Some factors are known to play an important role (number of doses, coverage, dosing interval, efficacy and catch-up programmes), however, their relative impact on the reduction of varicella in the population remains unclear. This paper aims to help policy makers prioritise the critical factors to achieve the most successful vaccination programme with the available budget. Scenarios assessed the impact of different vaccination strategies on reduction of varicella disease in the population. A dynamic transmission model was used and adapted to fit Italian demographics and population mixing patterns. Inputs included coverage, number of doses, dosing intervals, first-dose efficacy and availability of catch-up programmes, based on strategies currently used or likely to be used in different countries. The time horizon was 30 years. Both one- and two-dose routine varicella vaccination strategies prevented a comparable number of varicella cases with complications, but two-doses provided broader protection due to prevention of a higher number of milder varicella cases. A catch-up programme in susceptible adolescents aged 10-14 years old reduced varicella cases by 27-43 % in older children, which are often more severe than in younger children. Coverage, for all strategies, sustained at high levels achieved the largest reduction in varicella. In general, a 20 % increase in coverage resulted in a further 27-31 % reduction in varicella cases. When high coverage is reached, the impact of dosing interval and first-dose vaccine efficacy had a relatively lower impact on disease prevention in the population. Compared to the long (11 years) dosing interval, the short (5 months) and medium (5 years) interval schedules reduced varicella cases by a further 5-13 % and 2-5 %, respectively. Similarly, a 10 % increase in first-dose efficacy (from 65 to 75 % efficacy) prevented 2-5 % more varicella cases, suggesting it is the least influential factor when considering routine varicella vaccination. Vaccination strategies can be implemented differently in each country depending on their needs, infrastructure and healthcare budget. However, ensuring high coverage remains the critical success factor for significant prevention of varicella when introducing varicella vaccination in the national immunisation programme.
Vardeny, Orly; Claggett, Brian; Packer, Milton; Zile, Michael R; Rouleau, Jean; Swedberg, Karl; Teerlink, John R; Desai, Akshay S; Lefkowitz, Martin; Shi, Victor; McMurray, John J V; Solomon, Scott D
2016-10-01
In this analysis, we utilized data from PARADIGM-HF to test the hypothesis that participants who exhibited any dose reduction during the trial would have similar benefits from lower doses of sacubitril/valsartan relative to lower doses of enalapril. In a post-hoc analysis from PARADIGM-HF, we characterized patients by whether they received the maximal dose (200 mg sacubitril/valsartan or 10 mg enalapril twice daily) throughout the trial or had any dose reduction to lower doses (100/50/0 mg sacubitril/valsartan or 5/2.5/0 mg enalapril twice daily). The treatment effect for the primary outcome was estimated, stratified by dose level using time-updated Cox regression models. In the two treatment arms, participants with a dose reduction (43% of those randomized to enalapril and 42% of those randomized to sacubitril/valsartan) had similar baseline characteristics and similar baseline predictors of the need for dose reduction. In a time-updated analysis, any dose reduction was associated with a higher subsequent risk of the primary event [hazard ratio (HR) 2.5, 95% confidence interval (CI) 2.2-2.7]. However, the treatment benefit of sacubitril/valsartan over enalapril following a dose reduction was similar (HR 0.80, 95% CI 0.70-0.93, P < 0.001) to that observed in patients who had not experienced any dose reduction (HR 0.79, 95% CI 0.71-0.88, P < 0.001). In PARADIGM-HF, study medication dose reduction identified patients at higher risk of a major cardiovascular event. The magnitude of benefit for patients on lower doses of sacubitril/valsartan relative to those on lower doses of enalapril was similar to that of patients who remained on target doses of both drugs. © 2016 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
NASA Astrophysics Data System (ADS)
Reinholds, I.; Kalkis, V.; Zicans, J.; Merijs Meri, R.; Bockovs, I.; Grigalovica, A.; Muizzemnieks, G.
2013-12-01
Poly(ethylene-1-octene) copolymer (POE) composites filled with nickel-zinc ferrite nanoparticles have been modified by exposure to an electron beam at doses up to 500 kGy. The influence of radiation dose and ferrite content on mechanical properties has been investigated. Thermomechanical properties - thermorelaxation stresses formed in thermal heating and thermo residual stresses resulting in the process of full setting and cooling of materials have been investigated for radiation cross-linked oriented (extended up to 100%) composite samples. Increase of concentration of ferrite particles and increase of radiation dose affects a notable increase of elastic modulus and reduces the deformability in comparison to entire elastomer. Improvement of thermomechanical properties especially at low irradiation doses (100-150 kGy) have been detected for composites with increase of ferrite filler content up to 5 wt. %. It was found that gel content of POE increased up to 85% for pristine POE material with increase of irradiation dose up to 500 kGy due to the formation of cross-linked structure, increase of filler concentration up to 5 wt. % affect reduction in gel fraction due to uniform dispersion in amorphous (ethylene and substituted with hexyl branches) POE phases.
Muneer, Sowbiya; Kim, Tae Hwan; Choi, Byung Chul; Lee, Beom Seon; Lee, Jeong Hyun
2013-01-01
A study was conducted to determine the effect of carbon monoxide (CO), nitroxide (NOx) and sulfur dioxide (SO2) on ROS production, photosynthesis and ascorbate–glutathione pathway in strawberry plants. The results showed that both singlet oxygen (O2−1) and hydrogen peroxide (H2O2) content increased in CO, NOx and SO2 treated strawberry leaves. A drastic reduction of primary metabolism of plants (photosynthesis), with the closure of stomata, resulted in a reduction of protein, carbohydrate and sucrose content due to production of reactive oxygen species (ROS) under prolonged exposure of gas stress. The resulting antioxidant enzymes were increased under a low dose of gas stress, whereas they were decreased due to a high dose of gas stress. Our results indicate that increased ROS may act as a signal to induce defense responses to CO, NOx and SO2 gas stress. The increased level of antioxidant enzymes plays a significant role in plant protection due to which strawberry plants can be used as a hyperaccumulator to maintain environmental pollution, however, the defense capacity cannot sufficiently alleviate oxidative damage under prolonged exposure of CO, NOx and SO2 stress. PMID:25460723
Acute Exposure to High Dose γ-Radiation Results in Transient Activation of Bone Lining Cells
Turner, Russell T.; Iwaniec, Urszula T.; Wong, Carmen P.; Lindenmaier, Laurence B.; Wagner, Lindsay A.; Branscum, Adam J.; Menn, Scott A.; Taylor, James; Zhang, Ye; Wu, Honglu; Sibonga, Jean D.
2014-01-01
The present studies investigated the cellular mechanisms for the detrimental effects of high dose whole body γ-irradiation on bone. In addition, radioadaptation and bone marrow transplantation were assessed as interventions to mitigate the skeletal complications of irradiation. Increased trabecular thickness and separation and reduced fractional cancellous bone volume, connectivity density, and trabecular number were detected in proximal tibia and lumbar vertebra 14 days following γ-irradiation with 6 Gy. To establish the cellular mechanism for the architectural changes, vertebrae were analyzed by histomorphometry 1, 3, and 14 days following irradiation. Marrow cell density decreased within 1 day (67% reduction, p<0.0001), reached a minimum value after 3 days (86% reduction, p<0.0001), and partially rebounded by 14 days (30% reduction, p=0.0025) following irradiation. In contrast, osteoblast-lined bone perimeter was increased by 290% (1 day, p=0.04), 1230% (3 days, p<0.0001), and 530% (14 days, p=0.003), respectively. There was a strong association between radiation-induced marrow cell death and activation of bone lining cells to express the osteoblast phenotype (Pearson correlation −0.85, p<0.0001). An increase (p=0.004) in osteoclast-lined bone perimeter was also detected with irradiation. A priming dose of γ-radiation (0.5 mGy), previously shown to reduce mortality, had minimal effect on the cellular responses to radiation and did not prevent detrimental changes in bone architecture. Bone marrow transplantation normalized marrow cell density, bone turnover, and most indices of bone architecture following irradiation. In summary, radiation-induced death of marrow cells is associated with 1) a transient increase in bone formation due, at least in part, to activation of bone lining cells, and 2) an increase in bone resorption due to increased osteoclast perimeter. Bone marrow transplantation is effective in mitigating the detrimental effects of acute exposure to high dose whole body γ-radiation on bone turnover. PMID:23954507
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, Y; Shahnazi, K; Wang, W
Purpose: Ion beams have an unavoidable lateral spread due to nuclear interactions interacting with the air and monitoring systems. To minimize this spread, the distance between the nozzle and the patient should be kept as small as possible.The purpose of this work was to determine the impact of the target-to-nozzle distance reduction on the secondary neutron dose equivalent in proton and carbon ion radiotherapy. Methods: In this study, abdominal and head phantoms were scanned with our CT scanner. Cubical targets with side lengths of 3 cm to 10 cm and 1 cm to 5 cm were drawn in the abdominalmore » and head phantoms respectively. Two intensity-modulated plans were made for each phantom and ion. The first of these plans placed the target at the isocenter while the other shifted the phantom 30 cm towards the nozzle. The plans at both phantom locations were optimized to provide identical dose coverage to the PTVs.Secondary neutron dose equivalent at 50 cm lateral to the center of target. Results: The neutron dose equivalent was higher for the larger field size from 0.25µSv per Gy (RBE) to 72µSv per Gy (RBE). The neutron dose equivalent was smaller when the phantom was placed at the upstream target location versus at the isocenter location by 8.9% to 10.4% and 11.0% to 22.1% for proton plans of the abdominal and head phantoms respectively. Differences for carbon plans with different target-to-nozzle locations were less than 3% for both phantoms. Conclusion: A reduction of target-to-nozzle distance can lead to benefits for proton radiotherapy. In this study, a reduction of secondary neutron dose equivalent was found for proton plans with a smaller target-to-nozzle distance. A greater impact was found for a head phantom with a smaller field size; however, a reduction of the target-to-nozzle distance had little effect for carbon therapy.« less
Shibata, Soichi; Takahashi, Harumi; Baba, Akiyasu; Takeshita, Kei; Atsuda, Koichiro; Matsubara, Hajime; Echizen, Hirotoshi
2017-05-01
Timely dose reduction of concomitant medications is important after withdrawal of rifampicin, a CYP inducer. However, little is known about the differences in the time course of deinduction for various CYP isoforms. To clarify the time courses of deinduction of CYP2C9 and -CYP3A activities after rifampicin withdrawal, we monitored these enzyme activities in 2 patients over time after discontinuing rifampicin. Two patients (aged 70 and 80 years) received warfarin and rifampicin for anticoagulation and antituberculosis therapy, respectively. Warfarin doses were increased due to rifampicin-induced CYP activity. Upon completion of antituberculosis therapy, rifampicin was discontinued and warfarin doses were titrated downward according to prothrombin time. We monitored CYP2C9 and CYP3A activities over their clinical courses by measuring the metabolic clearance of S-warfarin to S-7-hydroxywarfarin and that of cortisol to 6β-hydroxycortisol, respectively. In both patients, the time courses of CYP2C9 deinduction appeared to be delayed compared to CYP3A. Our findings suggest that a uniform dose reduction protocol for drugs metabolized by different CYP isoforms may be unsafe after rifampicin withdrawal. .
Yoon, Jihyung; Xie, Yibo; Zhang, Rui
2018-03-01
The purpose of this study was to evaluate a methodology to reduce scatter and leakage radiations to patients' surface and shallow depths during conventional and advanced external beam radiotherapy. Superflab boluses of different thicknesses were placed on top of a stack of solid water phantoms, and the bolus effect on surface and shallow depth doses for both open and intensity-modulated radiotherapy (IMRT) beams was evaluated using thermoluminescent dosimeters and ion chamber measurements. Contralateral breast dose reduction caused by the bolus was evaluated by delivering clinical postmastectomy radiotherapy (PMRT) plans to an anthropomorphic phantom. For the solid water phantom measurements, surface dose reduction caused by the Superflab bolus was achieved only in out-of-field area and on the incident side of the beam, and the dose reduction increased with bolus thickness. The dose reduction caused by the bolus was more significant at closer distances from the beam. Most of the dose reductions occurred in the first 2-cm depth and stopped at 4-cm depth. For clinical PMRT treatment plans, surface dose reductions using a 1-cm Superflab bolus were up to 31% and 62% for volumetric-modulated arc therapy and 4-field IMRT, respectively, but there was no dose reduction for Tomotherapy. A Superflab bolus can be used to reduce surface and shallow depth doses during external beam radiotherapy when it is placed out of the beam and on the incident side of the beam. Although we only validated this dose reduction strategy for PMRT treatments, it is applicable to any external beam radiotherapy and can potentially reduce patients' risk of developing radiation-induced side effects. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Prashanth, S.; Kumar, A. Anil; Madhu, B.; Rama, N.; Sagar, J. Vidya
2011-01-01
Aims: To find out the pharmacokinetic and pharmacodynamic drug interaction of carbamazepine, a protype drug used to treat painful diabetic neuropathy with glibenclamide in healthy albino Wistar rats following single and multiple dosage treatment. Materials and Methods: Therapeutic doses (TD) of glibenclamide and TD of carbamazepine were administered to the animals. The blood glucose levels were estimated by GOD/POD method and the plasma glibenclamide concentrations were estimated by a sensitive RP HPLC method to calculate pharmacokinetic parameters. Results: In single dose study the percentage reduction of blood glucose levels and glibenclamide concentrations of rats treated with both carbamazepine and glibenclamide were significantly increased when compared with glibenclamide alone treated rats and the mechanism behind this interaction may be due to inhibition of P-glycoprotein mediated transport of glibenclamide by carbamazepine, but in multiple dose study the percentage reduction of blood glucose levels and glibenclamide concentrations were reduced and it may be due to inhibition of P-glycoprotein mediated transport and induction of CYP2C9, the enzyme through which glibenclamide is metabolised. Conclusions: In the present study there is a pharmacokinetic and pharmacodynamic interaction between carbamazepine and glibenclamide was observed. The possible interaction involves both P-gp and CYP enzymes. To investigate this type of interactions pre-clinically are helpful to avoid drug-drug interactions in clinical situation. PMID:21701639
Assessment of female breast dose for thoracic cone-beam CT using MOSFET dosimeters.
Sun, Wenzhao; Wang, Bin; Qiu, Bo; Liang, Jian; Xie, Weihao; Deng, Xiaowu; Qi, Zhenyu
2017-03-21
To assess the breast dose during a routine thoracic cone-beam CT (CBCT) check with the efforts to explore the possible dose reduction strategy. Metal oxide semiconductor field-effect transistor (MOSFET) dosimeters were used to measure breast surface doses during a thorax kV CBCT scan in an anthropomorphic phantom. Breast doses for different scanning protocols and breast sizes were compared. Dose reduction was attempted by using partial arc CBCT scan with bowtie filter. The impact of this dose reduction strategy on image registration accuracy was investigated. The average breast surface doses were 20.02 mGy and 11.65 mGy for thoracic CBCT without filtration and with filtration, respectively. This indicates a dose reduction of 41.8% by use of bowtie filter. It was found 220° partial arc scanning significantly reduced the dose to contralateral breast (44.4% lower than ipsilateral breast), while the image registration accuracy was not compromised. Breast dose reduction can be achieved by using ipsilateral 220° partial arc scan with bowtie filter. This strategy also provides sufficient image quality for thorax image registration in daily patient positioning verification.
Flurbiprofen microgranules for relief of sore throat: a randomised, double-blind trial
Russo, Marc; Bloch, Mark; de Looze, Fred; Morris, Christopher; Shephard, Adrian
2013-01-01
Background Many people with sore throat seek, and are often inappropriately prescribed, antibiotics. Aim The objective of this study was to determine the analgesic efficacy of flurbiprofen 8.75 mg microgranules versus placebo. These microgranules are a possible alternative treatment for patients with sore throat due to upper respiratory tract infection (URTI). Design and setting Randomised, double-blind, placebo-controlled, multiple-dose study conducted at eight primary care sites in Australia. Method Participants with sore throat of onset within the past 4 days received either flurbiprofen 8.75 mg microgranules or non-medicated placebo microgranules. Throat soreness, difficulty in swallowing, sore throat pain intensity, sore throat relief, oral temperature, and treatment benefits were all assessed at regular intervals. Result Of 373 patients from eight centres, 186 received flurbiprofen 8.75 mg microgranules and 187 received placebo microgranules (intent-to-treat population). Throat soreness was significantly reduced over the first 2 hours after the first dose. Reductions in difficulty in swallowing were observed at all time points from 5 to 360 minutes after the first dose, after taking flurbiprofen microgranules versus placebo. Sore throat relief was also evident at 1 minute and lasted for at least 6 hours. The multiple-dose efficacy results showed reduction of difficulty in swallowing at the end of days 1–3 and sore throat relief at the end of day 1. Conclusion Microgranules containing flurbiprofen 8.75 mg provided fast and effective relief from sore throat due to URTI and represent an alternative treatment option to antibiotic therapy. PMID:23561694
John D. Podgwaite; Peter Rush; David Hall; Gerald S. Walton
1984-01-01
Neodiprion sertifer (Geoffroy) larval populations were treated with high and low doses of a nucleopolyhedrosis virus (NPV) product, Neochek-S. Larval population reduction due to Neochek-S was well over 90% in all sprayed plots 28 days after application, whereas overall protection of Pinus resinosa (Ait.) foliage was 94.0 ± 1.6%....
NASA Astrophysics Data System (ADS)
Lee, Boram; Lee, Sunyoung; Yang, Injeong; Yoon, Myeonggeun
2014-05-01
The purpose of this study is to evaluate the dose reduction when using the stepwise collimation method for scoliosis patients undergoing full spine radiography. A Monte Carlo simulation was carried out to acquire dose vs. volume data for organs at risk (OAR) in the human body. While the effective doses in full spine radiography were reduced by 8, 15, 27 and 44% by using four different sizes of the collimation, the doses to the skin were reduced by 31, 44, 55 and 66%, indicating that the reduction of the dose to the skin is higher than that to organs inside the body. Although the reduction rates were low for the gonad, being 9, 14, 18 and 23%, there was more than a 30% reduction in the dose to the heart, suggesting that the dose reduction depends significantly on the location of the OARs in the human body. The reduction rate of the secondary cancer risk based on the excess absolute risk (EAR) varied from 0.6 to 3.4 per 10,000 persons, depending on the size of the collimation. Our results suggest that the stepwise collimation method in full spine radiography can effectively reduce the patient dose and the radiation-induced secondary cancer risk.
NASA Astrophysics Data System (ADS)
Jechel, Christopher Alexander
In radiotherapy planning, computed tomography (CT) images are used to quantify the electron density of tissues and provide spatial anatomical information. Treatment planning systems use these data to calculate the expected spatial distribution of absorbed dose in a patient. CT imaging is complicated by the presence of metal implants which cause increased image noise, produce artifacts throughout the image and can exceed the available range of CT number values within the implant, perturbing electron density estimates in the image. Furthermore, current dose calculation algorithms do not accurately model radiation transport at metal-tissue interfaces. Combined, these issues adversely affect the accuracy of dose calculations in the vicinity of metal implants. As the number of patients with orthopedic and dental implants grows, so does the need to deliver safe and effective radiotherapy treatments in the presence of implants. The Medical Physics group at the Cancer Centre of Southeastern Ontario and Queen's University has developed a Cobalt-60 CT system that is relatively insensitive to metal artifacts due to the high energy, nearly monoenergetic Cobalt-60 photon beam. Kilovoltage CT (kVCT) images, including images corrected using a commercial metal artifact reduction tool, were compared to Cobalt-60 CT images throughout the treatment planning process, from initial imaging through to dose calculation. An effective metal artifact reduction algorithm was also implemented for the Cobalt-60 CT system. Electron density maps derived from the same kVCT and Cobalt-60 CT images indicated the impact of image artifacts on estimates of photon attenuation for treatment planning applications. Measurements showed that truncation of CT number data in kVCT images produced significant mischaracterization of the electron density of metals. Dose measurements downstream of metal inserts in a water phantom were compared to dose data calculated using CT images from kVCT and Cobalt-60 systems with and without artifact correction. The superior accuracy of electron density data derived from Cobalt-60 images compared to kVCT images produced calculated dose with far better agreement with measured results. These results indicated that dose calculation errors from metal image artifacts are primarily due to misrepresentation of electron density within metals rather than artifacts surrounding the implants.
Very low-dose adult whole-body tumor imaging with F-18 FDG PET/CT
NASA Astrophysics Data System (ADS)
Krol, Andrzej; Naveed, Muhammad; McGrath, Mary; Lisi, Michele; Lavalley, Cathy; Feiglin, David
2015-03-01
The aim of this study was to evaluate if effective radiation dose due to PET component in adult whole-body tumor imaging with time-of-flight F-18 FDG PET/CT could be significantly reduced. We retrospectively analyzed data for 10 patients with the body mass index ranging from 25 to 50. We simulated F-18 FDG dose reduction to 25% of the ACR recommended dose via reconstruction of simulated shorter acquisition time per bed position scans from the acquired list data. F-18 FDG whole-body scans were reconstructed using time-of-flight OSEM algorithm and advanced system modeling. Two groups of images were obtained: group A with a standard dose of F-18 FDG and standard reconstruction parameters and group B with simulated 25% dose and modified reconstruction parameters, respectively. Three nuclear medicine physicians blinded to the simulated activity independently reviewed the images and compared diagnostic quality of images. Based on the input from the physicians, we selected optimal modified reconstruction parameters for group B. In so obtained images, all the lesions observed in the group A were visible in the group B. The tumor SUV values were different in the group A, as compared to group B, respectively. However, no significant differences were reported in the final interpretation of the images from A and B groups. In conclusion, for a small number of patients, we have demonstrated that F-18 FDG dose reduction to 25% of the ACR recommended dose, accompanied by appropriate modification of the reconstruction parameters provided adequate diagnostic quality of PET images acquired on time-of-flight PET/CT.
NASA Astrophysics Data System (ADS)
Mani, Karthick Raj; Bhuiyan, Md. Anisuzzaman; Alam, Md. Mahbub; Ahmed, Sharif; Sumon, Mostafa Aziz; Sengupta, Ashim Kumar; Rahman, Md. Shakilur; Azharul Islam, Md. S. M.
2018-03-01
Aim: To compare the dosimetric advantage of stereotactic body radiotherapy (SBRT) for localized lung tumor between deep inspiration breath hold technique and free breathing technique. Materials and methods: We retrospectively included ten previously treated lung tumor patients in this dosimetric study. All the ten patients underwent CT simulation using 4D-CT free breathing (FB) and deep inspiration breath hold (DIBH) techniques. Plans were created using three coplanar full modulated arc using 6 MV flattening filter free (FFF) bream with a dose rate of 1400 MU/min. Same dose constraints for the target and the critical structures for a particular patient were used during the plan optimization process in DIBH and FB datasets. We intend to deliver 50 Gy in 5 fractions for all the patients. For standardization, all the plans were normalized at target mean of the planning target volume (PTV). Doses to the critical structures and targets were recorded from the dose volume histogram for evaluation. Results: The mean right and left lung volumes were inflated by 1.55 and 1.60 times in DIBH scans compared to the FB scans. The mean internal target volume (ITV) increased in the FB datasets by 1.45 times compared to the DIBH data sets. The mean dose followed by standard deviation (x¯ ± σx¯) of ipsilateral lung for DIBH-SBRT and FB-SBRT plans were 7.48 ± 3.57 (Gy) and 10.23 ± 4.58 (Gy) respectively, with a mean reduction of 36.84% in DIBH-SBRT plans. Ipsilateral lung were reduced to 36.84% in DIBH plans compared to FB plans. Conclusion: Significant dose reduction in ipsilateral lung due to the lung inflation and target motion restriction in DIBH-SBRT plans were observed compare to FB-SBRT. DIBH-SBRT plans demonstrate superior dose reduction to the normal tissues and other critical structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koger, Brandon; Kirkby, Charles
2016-08-15
Introduction: Gold nanoparticles (GNPs) can enhance radiation therapy within a tumour, increasing local energy deposition under irradiation, but experimental evidence suggests the enhancement is not as large as predicted by dose enhancement alone. Many studies neglect to account for surface coatings that are frequently used to optimize GNP uptake and biological distribution. This study uses Monte Carlo methods to investigate the consequences on local dose enhancement due to including these surface coatings. Methods: Using the PENELOPE Monte Carlo code system, GNP irradiation was simulated both with and without surface coatings of polyethylene glycol (PEG) of various molecular weights. Dose wasmore » scored to the gold, coating, and surrounding water, and the dosimetric differences between these scenarios were examined. Results: The simulated PEG coating absorbs a large portion of the energy that would otherwise be deposited in the medium. The mean dose to water was reduced by up to 2.5, 3.5, and 4.5% for GNPs of diameters 50, 20, and 10 nm, respectively. This effect was more pronounced for smaller GNPs, thicker coatings, and low photon source energies where the enhancement due to GNPs is the greatest. The molecular weight of the coating material did not have a significant impact on the dose. Conclusions: The inclusion of a coating material in GNP enhanced radiation may reduce the dose enhancement due to the nanoparticles. Both the composition and size of the coating play a role in the level of this reduction and should be considered carefully.« less
Assessment of female breast dose for thoracic cone-beam CT using MOSFET dosimeters
Qiu, Bo; Liang, Jian; Xie, Weihao; Deng, Xiaowu; Qi, Zhenyu
2017-01-01
Objective: To assess the breast dose during a routine thoracic cone-beam CT (CBCT) check with the efforts to explore the possible dose reduction strategy. Materials and Methods: Metal oxide semiconductor field-effect transistor (MOSFET) dosimeters were used to measure breast surface doses during a thorax kV CBCT scan in an anthropomorphic phantom. Breast doses for different scanning protocols and breast sizes were compared. Dose reduction was attempted by using partial arc CBCT scan with bowtie filter. The impact of this dose reduction strategy on image registration accuracy was investigated. Results: The average breast surface doses were 20.02 mGy and 11.65 mGy for thoracic CBCT without filtration and with filtration, respectively. This indicates a dose reduction of 41.8% by use of bowtie filter. It was found 220° partial arc scanning significantly reduced the dose to contralateral breast (44.4% lower than ipsilateral breast), while the image registration accuracy was not compromised. Conclusions: Breast dose reduction can be achieved by using ipsilateral 220° partial arc scan with bowtie filter. This strategy also provides sufficient image quality for thorax image registration in daily patient positioning verification. PMID:28423624
Progressive cone beam CT dose control in image-guided radiation therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan Hao; Cervino, Laura; Jiang, Steve B.
2013-06-15
Purpose: Cone beam CT (CBCT) in image-guided radiotherapy (IGRT) offers a tremendous advantage for treatment guidance. The associated imaging dose is a clinical concern. One unique feature of CBCT-based IGRT is that the same patient is repeatedly scanned during a treatment course, and the contents of CBCT images at different fractions are similar. The authors propose a progressive dose control (PDC) scheme to utilize this temporal correlation for imaging dose reduction. Methods: A dynamic CBCT scan protocol, as opposed to the static one in the current clinical practice, is proposed to gradually reduce the imaging dose in each treatment fraction.more » The CBCT image from each fraction is processed by a prior-image based nonlocal means (PINLM) module to enhance its quality. The increasing amount of prior information from previous CBCT images prevents degradation of image quality due to the reduced imaging dose. Two proof-of-principle experiments have been conducted using measured phantom data and Monte Carlo simulated patient data with deformation. Results: In the measured phantom case, utilizing a prior image acquired at 0.4 mAs, PINLM is able to improve the image quality of a CBCT acquired at 0.2 mAs by reducing the noise level from 34.95 to 12.45 HU. In the synthetic patient case, acceptable image quality is maintained at four consecutive fractions with gradually decreasing exposure levels of 0.4, 0.1, 0.07, and 0.05 mAs. When compared with the standard low-dose protocol of 0.4 mAs for each fraction, an overall imaging dose reduction of more than 60% is achieved. Conclusions: PINLM-PDC is able to reduce CBCT imaging dose in IGRT utilizing the temporal correlations among the sequence of CBCT images while maintaining the quality.« less
Doses and risks from the ingestion of Dounreay fuel fragments.
Darley, P J; Charles, M W; Fell, T P; Harrison, J D
2003-01-01
The radiological implications of ingestion of nuclear fuel fragments present in the marine environment around Dounreay have been reassessed by using the Monte Carlo code MCNP to obtain improved estimates of the doses to target cells in the walls of the lower large intestine resulting from the passage of a fragment. The approach takes account of the reduction in dose due to attenuation within the intestinal wall and self-absorption of radiation in the fuel fragment itself. In addition, dose is calculated on the basis of a realistic estimate of the anatomical volume of the lumen, rather than being based on the average mass of the contents, as in the current ICRP model. Our best estimates of doses from the ingestion of the largest Dounreay particles are at least a factor of 30 lower than those predicted using the current ICRP model. The new ICRP model will address the issues raised here and provide improved estimates of dose.
Radiation dose optimization in the decommissioning plan for Loviisa NPP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmberg, R.; Eurajoki, T.
1995-03-01
Finnish rules for nuclear power require a detailed decommissioning plan to be made and kept up to date already during plant operation. The main reasons for this {open_quotes}premature{close_quotes} plan, is, firstly, the need to demonstrate the feasibility of decommissioning, and, secondly, to make realistic cost estimates in order to fund money for this future operation. The decomissioning for Lovissa Nuclear Power Plant (NPP) (2{times}445 MW, PWR) was issued in 1987. It must be updated about every five years. One important aspect of the plant is an estimate of radiation doses to the decomissioning workers. The doses were recently re-estimated becausemore » of a need to decrease the total collective dose estimate in the original plan, 23 manSv. In the update, the dose was reduced by one-third. Part of the reduction was due to changes in the protection and procedures, in which ALARA considerations were taken into account, and partly because of re-estimation of the doses.« less
Al-Affan, I A M; Hugtenburg, R P; Bari, D S; Al-Saleh, W M; Piliero, M; Evans, S; Al-Hasan, M; Al-Zughul, B; Al-Kharouf, S; Ghaith, A
2015-02-01
This study explores the possibility of using lead to cover part of the radiation therapy facility maze walls in order to absorb low energy photons and reduce the total dose at the maze entrance of radiation therapy rooms. Experiments and Monte Carlo simulations were utilized to establish the possibility of using high-Z materials to cover the concrete walls of the maze in order to reduce the dose of the scattered photons at the maze entrance. The dose of the backscattered photons from a concrete wall was measured for various scattering angles. The dose was also calculated by the FLUKA and EGSnrc Monte Carlo codes. The FLUKA code was also used to simulate an existing radiotherapy room to study the effect of multiple scattering when adding lead to cover the concrete walls of the maze. Monoenergetic photons were used to represent the main components of the x ray spectrum up to 10 MV. It was observed that when the concrete wall was covered with just 2 mm of lead, the measured dose rate at all backscattering angles was reduced by 20% for photons of energy comparable to Co-60 emissions and 70% for Cs-137 emissions. The simulations with FLUKA and EGS showed that the reduction in the dose was potentially even higher when lead was added. One explanation for the reduction is the increased absorption of backscattered photons due to the photoelectric interaction in lead. The results also showed that adding 2 mm lead to the concrete walls and floor of the maze reduced the dose at the maze entrance by up to 90%. This novel proposal of covering part or the entire maze walls with a few millimeters of lead would have a direct implication for the design of radiation therapy facilities and would assist in upgrading the design of some mazes, especially those in facilities with limited space where the maze length cannot be extended to sufficiently reduce the dose. © 2015 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Affan, I. A. M., E-mail: info@medphys-environment.co.uk; Hugtenburg, R. P.; Piliero, M.
Purpose: This study explores the possibility of using lead to cover part of the radiation therapy facility maze walls in order to absorb low energy photons and reduce the total dose at the maze entrance of radiation therapy rooms. Methods: Experiments and Monte Carlo simulations were utilized to establish the possibility of using high-Z materials to cover the concrete walls of the maze in order to reduce the dose of the scattered photons at the maze entrance. The dose of the backscattered photons from a concrete wall was measured for various scattering angles. The dose was also calculated by themore » FLUKA and EGSnrc Monte Carlo codes. The FLUKA code was also used to simulate an existing radiotherapy room to study the effect of multiple scattering when adding lead to cover the concrete walls of the maze. Monoenergetic photons were used to represent the main components of the x ray spectrum up to 10 MV. Results: It was observed that when the concrete wall was covered with just 2 mm of lead, the measured dose rate at all backscattering angles was reduced by 20% for photons of energy comparable to Co-60 emissions and 70% for Cs-137 emissions. The simulations with FLUKA and EGS showed that the reduction in the dose was potentially even higher when lead was added. One explanation for the reduction is the increased absorption of backscattered photons due to the photoelectric interaction in lead. The results also showed that adding 2 mm lead to the concrete walls and floor of the maze reduced the dose at the maze entrance by up to 90%. Conclusions: This novel proposal of covering part or the entire maze walls with a few millimeters of lead would have a direct implication for the design of radiation therapy facilities and would assist in upgrading the design of some mazes, especially those in facilities with limited space where the maze length cannot be extended to sufficiently reduce the dose.« less
Monzen, Satoru; Hosoda, Masahiro; Osanai, Minoru; Tokonami, Shinji
2014-01-01
Numerous radionuclides were released from the Fukushima Daiichi Nuclear Power Station (F1-NPS) in Japan following the magnitude 9.0 earthquake and tsunami on March 11, 2011. Local residents have been eager to calculate their individual radiation exposure. Thus, absorbed dose rates in the indoor and outdoor air at evacuation sites in the Fukushima Prefecture were measured using a gamma-ray measuring devices, and individual radiation exposure was calculated by assessing the radiation dose reduction efficiency (defined as the ratio of absorbed dose rate in the indoor air to the absorbed dose rate in the outdoor air) of wood, aluminum, and reinforced concrete buildings. Between March 2011 and July 2011, dose reduction efficiencies of wood, aluminum, and reinforced concrete buildings were 0.55 ± 0.04, 0.15 ± 0.02, and 0.19 ± 0.04, respectively. The reduction efficiency of wood structures was 1.4 times higher than that reported by the International Atomic Energy Agency. The efficiency of reinforced concrete was similar to previously reported values, whereas that of aluminum structures has not been previously reported. Dose reduction efficiency increased in proportion to the distance from F1-NPS at 8 of the 18 evacuation sites. Time variations did not reflect dose reduction efficiencies at evacuation sites although absorbed dose rates in the outdoor air decreased. These data suggest that dose reduction efficiency depends on structure types, levels of contamination, and evacuee behaviors at evacuation sites.
Clinical assessment of the jaw-tracking function in IMRT for a brain tumor
NASA Astrophysics Data System (ADS)
Kim, Jin-Young; Kim, Shin-Wook; Choe, Bo-Young; Suh, Tae-Suk; Park, Sung-Kwang; Jo, Sun-Mi; Oh, Won-Yong; Shin, Jung-Wook; Cho, Gyu-Seok; Nam, Sang-Hee; Chung, Jin-Beom; Kim, Jung-Ki; Lee, Young-Kyu
2015-01-01
Intensity-modulated radiotherapy (IMRT) improves dose conformity and saves critical organs. IMRT is widely used in cases of head and neck, prostate, and brain cancer due to the close location of the targets to critical structures. However, because IMRT has a larger amount of radiation exposure than 3 dimensional-conformal radiation therapy (3D-CRT), it has disadvantages such as increases in the low dose irradiation to normal tissues and in the accumulated dose for the whole volume due to leakage and transmission of the multi-leaf collimator (MLC). The increased accumulated dose and the larger low dose may increase the occurrence of secondary malignant neoplasms. For these reasons, the jaw-tracking function of the TrueBeam (Varian Medical Systems, Palo Alto, CA) was developed to reduce the leakage and the transmission dose of the MLC with linear accelerators. However, the change in the superficial dose has not been verified with a quantitative analysis of the dose reduction in a brain tumor. Therefore, in the present study, we intended to verify the clinical possibility of utilizing the jaw-tracking function for a brain tumor by comparing treatment plans and superficial doses. To accomplish this, we made three types of original treatment plans using Eclipse11 (Varian Medical Systems, Palo Alto, CA): 1) farther than 2 cm from the organs at risk (OAR); 2) within 2 cm of the OAR; and 3) intersecting with the OAR. Jaw-tracking treatment plans were also made with copies of the original treatment plan using Smart LMC Version 11.0.31 (Varian Medical Systems, Palo Alto, CA). A comparison between the original treatment plans and jaw-tracking treatment plans was performed using the difference of the mean dose and maximum dose to the OARs in cumulative Dose Volume Histogram (DVH). In addition, the dependencies of the effects of transmission and the scattering doses according to jaw motion were assessed through the difference in the surface doses. In the DVH comparison, a maximum dose difference of 0.4% was observed between the planning methods in the case of over 2 cm distance, and the maximum dose of 0.6% was obtained for within the 2 cm distance. For the case intersecting with the OAR, the maximum dose difference of 2.3% was achieved. According to these results, the differences in the mean doses and the maximum doses to the OARs ware larger when the OARs and the planning target volume (PTV) were closer. In addition, small differences in the surface dose measurements were observed. In the case of the inside field, the differences were under 2% of the prescription dose while the difference was under 0.1% in the case of the outside field. Therefore, treatment plans with the jaw-tracking function consistently affected the dose reduction for a brain tumor, and the clinical possibility could be verified as the surface dose was not increased.
Iron-based radiochromic systems for UV dosimetry applications
NASA Astrophysics Data System (ADS)
Lee, Hannah J.; Alqathami, Mamdooh; Blencowe, Anton; Ibbott, Geoffrey
2018-01-01
Phototherapy treatment using ultraviolet (UV) A and B light sources has long existed as a treatment option for various skin conditions. Quality control for phototherapy treatment recommended by the British Association of Dermatologists and British Photodermatology Group generally focused on instrumentation-based dosimetry measurements. The purpose of this study was to present an alternative, easily prepared dosimeter system for the measurement of UV dose and as a simple quality assurance technique for phototherapy treatments. Five different UVA-sensitive radiochromic dosimeter formulations were investigated and responded with a measurable and visible optical change both in solution and in gel form. Iron(III) reduction reaction formulations were found to be more sensitive to UVA compared to iron(II) oxidation formulations. One iron(III) reduction formulation was found to be especially promising due to its sensitivity to UVA dose, ease of production, and linear response up to a saturation point.
Goren, AD; Prins, RD; Dauer, LT; Quinn, B; Al-Najjar, A; Faber, RD; Patchell, G; Branets, I; Colosi, DC
2013-01-01
Objectives: This study aims to demonstrate the effectiveness of leaded glasses in reducing the lens of eye dose and of lead thyroid collars in reducing the dose to the thyroid gland of an adult female from dental cone beam CT (CBCT). The effect of collimation on the radiation dose in head organs is also examined. Methods: Dose measurements were conducted by placing optically stimulated luminescent dosemeters in an anthropomorphic female phantom. Eye lens dose was measured by placing a dosemeter on the anterior surface of the phantom eye location. All exposures were performed on one commercially available dental CBCT machine, using selected collimation and exposure techniques. Each scan technique was performed without any lead shielding and then repeated with lead shielding in place. To calculate the percent reduction from lead shielding, the dose measured with lead shielding was divided by the dose measured without lead shielding. The percent reduction from collimation was calculated by comparing the dose measured with collimation to the dose measured without collimation. Results: The dose to the internal eye for one of the scans without leaded glasses or thyroid shield was 0.450 cGy and with glasses and thyroid shield was 0.116 cGy (a 74% reduction). The reduction to the lens of the eye was from 0.396 cGy to 0.153 cGy (a 61% reduction). Without glasses or thyroid shield, the thyroid dose was 0.158 cGy; and when both glasses and shield were used, the thyroid dose was reduced to 0.091 cGy (a 42% reduction). Conclusions: Collimation alone reduced the dose to the brain by up to 91%, with a similar reduction in other organs. Based on these data, leaded glasses, thyroid collars and collimation minimize the dose to organs outside the field of view. PMID:23412460
Hepatomegaly due to self-induced hyperinsulinism.
Asherov, J; Mimouni, M; Varsano, I; Lubin, E; Laron, Z
1979-01-01
Repeated hypoglycaemic attacks, associated with transient hepatomegaly, in a 12-year-old insulin-dependent diabetic girl continued despite reduction in dose and, later, complete discontinuance of insulin. The attacks ceased while she was in hospital, necessitating reinstitution of insulin. The hepatomegaly resolved when surreptitious additional insulin injections were discovered and stopped. Hepatomegaly in diabetics should arouse suspicion of overdosage with insulin. Images Figure PMID:444328
Anissi, H D; Geibel, M A
2014-08-01
The purpose of this study was to gain insight into the distribution and application of digital intraoral radiographic techniques within general dental practices and to compare these with film-based systems in terms of patient dose reduction. 1100 questionnaires were handed out to general dental practitioners. Data was analyzed with respect to the type of system by using descriptive statistics and nonparametric tests, i.e. Kruskal-Wallis, Mann-Whitney and chi-square test (SPSS 20). 64% of the questioned dentists still use film-based radiology, 23% utilize storage phosphor plate (SPP) systems and 13% use a charge-coupled device (CCD). A strong correlation between the number of dentists working in a practice and the use of digital dental imaging was observed. Almost 3/4 of the film users work with E- or F-speed film. 45% of them refuse to change to a digital system. The use of lead aprons was popular, while only a minority preferred thyroid shields and rectangular collimators. A fourfold reduction of exposure time from D-speed film to CCD systems was observed. Due to detector size and positioning errors, users of CCD systems take significantly more single-tooth radiographs in total. Considering the number of radiographs per patient, there is only a slight tendency towards more X-rays with CCD systems. Up to image generation, digital systems seem to be as or even more difficult to handle than film-based systems, while their handling was favored after radiographic exposure. Despite a slight increase of radiographs taken with CCD systems, there is a significant dosage reduction. Corresponding to the decrease in exposure time, the patient dose for SPP systems is reduced to one half compared to film. The main issues in CCD technology are positioning errors and the size of the X-ray detectors which are difficult to eliminate. The usage of radiation protection measures still needs to be improved. ► Responsible use of digital intraoral radiology results in a significant dose reduction in everyday practice. ► The ALARA principle is only achieved by strict implementation of dose-reducing methods. ► The efforts to use dose-reducing devices must be increased. © Georg Thieme Verlag KG Stuttgart · New York.
Wulff, Jorg; Keil, Boris; Auvanis, Diyala; Heverhagen, Johannes T; Klose, Klaus Jochen; Zink, Klemens
2008-01-01
The present study aims at the investigation of eye lens shielding of different composition for the use in computed tomography examinations. Measurements with thermo-luminescent dosimeters and a simple cylindrical waterfilled phantom were performed as well as Monte Carlo simulations with an equivalent geometry. Besides conventional shielding made of Bismuth coated latex, a new shielding with a mixture of metallic components was analyzed. This new material leads to an increased dose reduction compared to the Bismuth shielding. Measured and Monte Carlo simulated dose reductions are in good agreement and amount to 34% for the Bismuth shielding and 46% for the new material. For simulations the EGSnrc code system was used and a new application CTDOSPP was developed for the simulation of the computed tomography examination. The investigations show that a satisfying agreement between simulation and measurement with the chosen geometries of this study could only be achieved, when transport of secondary electrons was accounted for in the simulation. The amount of scattered radiation due to the protector by fluorescent photons was analyzed and is larger for the new material due to the smaller atomic number of the metallic components.
Prázný, Martin
2014-11-01
Irregular insulin dose is one of the main problems associated with insulin therapy in patients with type 2 diabetes; its extent is not known precisely. The aim of survey conducted in the Czech Republic in the international project GAPP2 - Global Attitudes of Patients and Physicians was to determine the incidence and the impact of irregular use of basal insulin analogues in patients with type 2 diabetes, to point out the reasons for these irregularities and to focus on how physicians discuss irregular application of insulin with patients. The project GAPP2 is an international cross-sectional study performed on-line via the Internet using a questionnaire filled by diabetic patients treated with insulin analogues and physicians who treat these patients. The survey was conducted in two steps in 17 countries; the first step included 6 countries and was completed in the beginning of 2012, the second step involved 11 other countries including the Czech Republic with termination in 2014. The survey was designed to obtain the views of patients and physicians on certain aspects of insulin treatment and persistent issues in this field in the real daily practice. Special focus was on the incidence and management of hypoglycaemia as well as on irregularities of insulin application. In the part dedicated to adherence to basal insulin application were observed three types of irregular insulin therapy: missed dose, time imprecision of dose (± 2 hours vs. the prescribed time) and dose reduction in all cases in the past 30 days before completing the questionnaire. In addition, it was investigated the attitude and relation of patients to these issues. The results have shown that irregular insulin dose in the Czech Republic is less frequent than in other countries involved in the GAPP2 research. Nevertheless, approximately one fifth of diabetic patients using insulin analogues in basal-bolus or only basal therapy regimen is related to this problem. The last irregular insulin application was due to missed dose in 13% of cases, time imprecision in 23% and reduction of dose in 61% of cases. The most commonly reported reason was risk reduction of hypoglycaemia and the recommendations of health professionals. Fear of missed dose is present in 40% Czech patients and 35% would feel guilty if their insulin dose is missed (up to 47% in patients with intensified insulin regimen). Only 60% patients are aware of negative impact on their long-term health after missed dose of basal insulin. Questioned doctors have suspected that the patients report lower number of missed doses during regular medical check because one third of patients doesn´t admit missed dose. However, this fact conceded only 11% of patients on basal insulin and 15% of patients on intensified insulin therapy. Quarter of prescribing doctors admit that they usually don´t discuss with patients irregularities in basal insulin treatment. Although, type 2 diabetes patients in the Czech Republic follow prescribed basal insulin therapy scheme more often than patients in other countries participating in the survey GAPP2 , missed dose, time imprecision and reduction of dose is quite common and it deserves more attention from medical side during regular medical check together with appropriate education of patients.
Ammonia Affects Astroglial Proliferation in Culture
Bodega, Guillermo; Segura, Berta; Ciordia, Sergio; Mena, María del Carmen; López-Fernández, Luis Andrés; García, María Isabel; Trabado, Isabel; Suárez, Isabel
2015-01-01
Primary cultures of rat astroglial cells were exposed to 1, 3 and 5 mM NH4Cl for up to 10 days. Dose- and time-dependent reductions in cell numbers were seen, plus an increase in the proportion of cells in the S phase. The DNA content was reduced in the treated cells, and BrdU incorporation diminished. However, neither ammonia nor ammonia plus glutamine had any effect on DNA polymerase activity. iTRAQ analysis showed that exposure to ammonia induced a significant reduction in histone and heterochromatin protein 1 expression. A reduction in cell viability was also noted. The ammonia-induced reduction of proliferative activity in these cultured astroglial cells seems to be due to a delay in the completion of the S phase provoked by the inhibition of chromatin protein synthesis. PMID:26421615
Chatterson, Leslie C; Leswick, David A; Fladeland, Derek A; Hunt, Megan M; Webster, Stephen; Lim, Hyun
2014-07-01
Custom bismuth-antimony shields were previously shown to reduce fetal dose by 53% on an 8DR (detector row) CT scanner without dynamic adaptive section collimation (DASC), automatic tube current modulation (ATCM) or adaptive statistical iterative reconstruction (ASiR). The purpose of this study is to compare the effective maternal and average fetal organ dose reduction both with and without bismuth-antimony shields on a 64DR CT scanner using DASC, ATCM and ASiR during maternal CTPA. A phantom with gravid prosthesis and a bismuth-antimony shield were used. Thermoluminescent dosimeters (TLDs) measured fetal radiation dose. The average fetal organ dose and effective maternal dose were determined using 100 kVp, scanning from the lung apices to the diaphragm utilizing DASC, ATCM and ASiR on a 64DR CT scanner with and without shielding in the first and third trimester. Isolated assessment of DASC was done via comparing a new 8DR scan without DASC to a similar scan on the 64DR with DASC. Average third trimester unshielded fetal dose was reduced from 0.22 mGy ± 0.02 on the 8DR to 0.13 mGy ± 0.03 with the conservative 64DR protocol that included 30% ASiR, DASC and ATCM (42% reduction, P<0.01). Use of a shield further reduced average third trimester fetal dose to 0.04 mGy ± 0.01 (69% reduction, P<0.01). The average fetal organ dose reduction attributable to DASC alone was modest (6% reduction from 0.17 mGy ± 0.02 to 0.16 mGy ± 0.02, P=0.014). First trimester fetal organ dose on the 8DR protocol was 0.07 mGy ± 0.03. This was reduced to 0.05 mGy ± 0.03 on the 64DR protocol without shielding (30% reduction, P=0.009). Shields further reduced this dose to below accurately detectable levels. Effective maternal dose was reduced from 4.0 mSv on the 8DR to 2.5 mSv on the 64DR scanner using the conservative protocol (38% dose reduction). ASiR, ATCM and DASC combined significantly reduce effective maternal and fetal organ dose during CTPA. Shields continue to be an effective means of fetal dose reduction. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Denis-Bacelar, Ana M.; Chittenden, Sarah J.; Murray, Iain; Divoli, Antigoni; McCready, V. Ralph; Dearnaley, David P.; O'Sullivan, Joe M.; Johnson, Bernadette; Flux, Glenn D.
2017-04-01
Skeletal tumour burden is a biomarker of prognosis and survival in cancer patients. This study proposes a novel method based on the linear quadratic model to predict the reduction in metastatic tumour burden as a function of the absorbed doses delivered from molecular radiotherapy treatments. The range of absorbed doses necessary to eradicate all the bone lesions and to reduce the metastatic burden was investigated in a cohort of 22 patients with bone metastases from castration-resistant prostate cancer. A metastatic burden reduction curve was generated for each patient, which predicts the reduction in metastatic burden as a function of the patient mean absorbed dose, defined as the mean of all the lesion absorbed doses in any given patient. In the patient cohort studied, the median of the patient mean absorbed dose predicted to reduce the metastatic burden by 50% was 89 Gy (interquartile range: 83-105 Gy), whilst a median of 183 Gy (interquartile range: 107-247 Gy) was found necessary to eradicate all metastases in a given patient. The absorbed dose required to eradicate all the lesions was strongly correlated with the variability of the absorbed doses delivered to multiple lesions in a given patient (r = 0.98, P < 0.0001). The metastatic burden reduction curves showed a potential large reduction in metastatic burden for a small increase in absorbed dose in 91% of patients. The results indicate the range of absorbed doses required to potentially obtain a significant survival benefit. The metastatic burden reduction method provides a simple tool that could be used in routine clinical practice for patient selection and to indicate the required administered activity to achieve a predicted patient mean absorbed dose and reduction in metastatic tumour burden.
Pedersen, Per Overgaard; Brodersen, Erling; Cecil, David
2013-01-01
This is an investigation of chemical disinfection, with peracetic acid (PAA), in a tertiary sand filter at a full scale activated sludge plant with nitrification/denitrification and P-removal. The reduction efficiency of Escherichia coli and intestinal enterococci in the sand filter is reported. E. coli log reductions of between 0.4 and 2.2 were found with contact times from 6 to 37 min and with dosing from 0 to 4.8 mg L(-1). The average log reduction was 1.3. The decomposition products, bromophenols, chlorophenols and formaldehyde and residual H2O2 were measured before and after the sand filter. The residual H2O2 concentration in the effluent was critical at short contact times and high dosages of PAA due to the discharge limit of 25 μg L(-1). The other three products could not be detected at 0.1 μg L(-1) levels. The chemical cost of PAA dosing is estimated to be 0.039 US$ m(-3) treated wastewater.
SU-F-T-671: Effects of Collimator Material On Proton Minibeams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, E; Sandison, G; Cao, N
2016-06-15
Purpose: To investigate the dosimetric effects of collimator material on spatially modulated proton minibeams (pMBRT). Methods: pMBRT holds promise to exhibit shallow depth normal-tissue sparing effects similar to synchrotron based microbeams while also retaining potential for uniform dose distributions for tumor targets. TOPAS Monte Carlo simulations were performed for a 5cm thick multislit collimator with 0.3mm slits and 1mm center-to-center spacing for a 50.5MeV proton minibeam while varying collimator material between brass, tungsten, and iron. The collimator was placed both “flush” at the water phantom surface and at 5cm distance to investigate the effects on surface dose, peak-to-valley-dose-ratio (PVDR) andmore » neutron contribution. Results: For flush placement, the neutron dose at the phantom surface for the tungsten collimator was approximately 20% higher than for brass and iron. This was not reflected in the overall surface dose, which was comparable for all materials due to the relatively low neutron contribution of <0.1%. When the collimator was retracted, the overall neutron contribution was essentially identical for all three collimators. Surface dose dropped by ∼40% for all collimator materials with air gap compared to being flush with the phantom surface. This surface dose reduction was at the cost of increase in valley dose for all collimator materials due to increased angular divergence of the mini-beams at the surface and their consequent geometric penumbra at depth. When the collimator was placed at distance from the phantom surface the PVDR decreased. The peak-to-entrance-dose ratio was highest for the iron collimator with 5cm air gap. Conclusion: The dosimetric difference between the collimator materials is minimal despite the relatively higher neutron contribution at the phantom surface for the tungsten collimator when placed flush. The air gap between the collimator and phantom surface strongly influences all dosimetry parameters due to the influence of scatter on the narrow spatial modulation.« less
NASA Astrophysics Data System (ADS)
Fan, Xuetong; Sokorai, Kimberly; Weidauer, André; Gotzmann, Gaby; Rögner, Frank-Holm; Koch, Eckhard
2017-01-01
Sprouts have frequently been implicated in outbreaks of foodborne illnesses, mostly due to contaminated seeds. Intervention technologies to decontaminate seeds without affecting sprout yield are needed. In the present study, we compared gamma rays with electron beam in inactivating E. coli artificially inoculated on three seeds (fenugreek, clover and mung bean) that differed in size and surface morphology. Furthermore, the germination and growth of irradiated seeds were evaluated. Results showed that the D10 values (dose required to achieve 1 log reduction) for E. coli K12 on mung bean, clover, and fenugreek were 1.11, 1.21 and 1.40 kGy, respectively. To achieve a minimum 5-log reduction of E. coli, higher doses were needed on fenugreek than on mung bean or clover. Electron beam treatment at doses up to 12 kGy could not completely inactivate E. coli inoculated on all seeds even though most of the seeds were E. coli-free after 4-12 kGy irradiation. Gamma irradiation at doses up to 6 kGy did not significantly affect the germination rate of clover and fenugreek seeds but reduced the germination rate of mung bean seeds. Doses of 2 kGy gamma irradiation did not influence the growth of seeds while higher doses of gamma irradiation reduced the growth rate. Electron beam treatment at doses up to 12 kGy did not have any significant effect on germination or growth of the seeds. SEM imaging indicated there were differences in surface morphology among the three seeds, and E. coli resided in cracks and openings of seeds, making surface decontamination of seeds with low energy electron beam a challenge due to the low penetration ability. Overall, our results suggested that gamma rays and electron beam had different effects on E. coli inactivation and germination or growth of seeds. Future efforts should focus on optimization of electron bean parameters to increase penetration to inactivate E. coli without causing damage to the seeds.
Favazza, Christopher P; Ferrero, Andrea; Yu, Lifeng; Leng, Shuai; McMillan, Kyle L; McCollough, Cynthia H
2017-07-01
The use of iterative reconstruction (IR) algorithms in CT generally decreases image noise and enables dose reduction. However, the amount of dose reduction possible using IR without sacrificing diagnostic performance is difficult to assess with conventional image quality metrics. Through this investigation, achievable dose reduction using a commercially available IR algorithm without loss of low contrast spatial resolution was determined with a channelized Hotelling observer (CHO) model and used to optimize a clinical abdomen/pelvis exam protocol. A phantom containing 21 low contrast disks-three different contrast levels and seven different diameters-was imaged at different dose levels. Images were created with filtered backprojection (FBP) and IR. The CHO was tasked with detecting the low contrast disks. CHO performance indicated dose could be reduced by 22% to 25% without compromising low contrast detectability (as compared to full-dose FBP images) whereas 50% or more dose reduction significantly reduced detection performance. Importantly, default settings for the scanner and protocol investigated reduced dose by upward of 75%. Subsequently, CHO-based protocol changes to the default protocol yielded images of higher quality and doses more consistent with values from a larger, dose-optimized scanner fleet. CHO assessment provided objective data to successfully optimize a clinical CT acquisition protocol.
Kakkar, Chandan; Sripathi, Smiti; Parakh, Anushri; Shrivastav, Rajendra
2016-01-01
Introduction Urolithiasis is one of the major, recurring problem in young individuals and CT being the commonest diagnostic modality used. In order to reduce the radiation dose to the patient who are young and as stone formation is a recurring process; one of the simplest way would be, low dose CT along with tube current modulation. Aim Aim of this study was to compare the sensitivity and specificity of low dose (70mAs) with standard dose (250mAs) protocol in detecting urolithiasis and to define the tube current and mean effective patient dose by these protocols. Materials and Methods A prospective study was conducted in 200 patients over a period of 2 years with acute flank pain presentation. CT was performed in 100 cases with standard dose and another 100 with low dose protocol using tube current modulation. Sensitivity and specificity for calculus detection, percentage reduction of dose and tube current with low dose protocol was calculated. Results Urolithiasis was detected in 138 patients, 67 were examined by high dose and 71 were by low dose protocol. Sensitivity and Specificity of low dose protocol was 97.1% and 96.4% with similar results found in high BMI patients. Tube current modulation resulted in reduction of effective tube current by 12.17%. The mean effective patient dose for standard dose was 10.33 mSv whereas 2.92 mSv for low dose with 51.13–53.8% reduction in low dose protocol. Conclusion The study has reinforced that low-dose CT with tube current modulation is appropriate for diagnosis of urolithiasis with significant reduction in tube current and patient effective dose. PMID:27437322
Koteshwar, Prakashini; Kakkar, Chandan; Sripathi, Smiti; Parakh, Anushri; Shrivastav, Rajendra
2016-05-01
Urolithiasis is one of the major, recurring problem in young individuals and CT being the commonest diagnostic modality used. In order to reduce the radiation dose to the patient who are young and as stone formation is a recurring process; one of the simplest way would be, low dose CT along with tube current modulation. Aim of this study was to compare the sensitivity and specificity of low dose (70mAs) with standard dose (250mAs) protocol in detecting urolithiasis and to define the tube current and mean effective patient dose by these protocols. A prospective study was conducted in 200 patients over a period of 2 years with acute flank pain presentation. CT was performed in 100 cases with standard dose and another 100 with low dose protocol using tube current modulation. Sensitivity and specificity for calculus detection, percentage reduction of dose and tube current with low dose protocol was calculated. Urolithiasis was detected in 138 patients, 67 were examined by high dose and 71 were by low dose protocol. Sensitivity and Specificity of low dose protocol was 97.1% and 96.4% with similar results found in high BMI patients. Tube current modulation resulted in reduction of effective tube current by 12.17%. The mean effective patient dose for standard dose was 10.33 mSv whereas 2.92 mSv for low dose with 51.13-53.8% reduction in low dose protocol. The study has reinforced that low-dose CT with tube current modulation is appropriate for diagnosis of urolithiasis with significant reduction in tube current and patient effective dose.
NASA Astrophysics Data System (ADS)
Lee, Hannah J.; Choi, Gye Won; Alqathami, Mamdooh; Kadbi, Mo; Ibbott, Geoffrey
2017-05-01
Image-guided radiation therapy (IGRT) using computed tomography (CT), cone-beam CT, MV on-board imager (OBI), and kV OBI systems have allowed for more accurate patient positioning prior to each treatment fraction. While these imaging modalities provide excellent bony anatomy image quality, MRI surpasses them in soft tissue image contrast for better visualization and tracking of soft tissue tumors with no additional radiation dose to the patient. A pre-clinical integrated 1.5 T magnetic resonance imaging and 7 MV linear accelerator system (MR-linac) allows for real-time tracking of soft tissues and adaptive treatment planning prior to each treatment fraction. However, due to the presence of a strong magnetic field from the MR component, there is a three dimensional (3D) change in dose deposited by the secondary electrons. Especially at nonhomogeneous anatomical sites with tissues of very different densities, dose enhancements and reductions can occur due to the Lorentz force influencing the trajectories of secondary electrons. These dose changes at tissue interfaces are called the electron return effect or ERE. This study investigated the ERE using 3D dosimeters.
NASA Astrophysics Data System (ADS)
Pasebani, Somayeh; Charit, Indrajit; Guria, Ankan; Wu, Yaqiao; Burns, Jatuporn; Butt, Darryl P.; Cole, James I.; Shao, Lin
2017-11-01
A nanostructured ferritic steel with nominal composition of Fe-14Cr-1Ti-0.3Mo-0.5La2O3 (wt.%) was irradiated with Fe+2 ions at 475 °C for 100, 200, 300 and 400 dpa. Grain coarsening was observed for the samples irradiated for 200-400 dpa resulting in an increase of the average grain size from 152 nm to 620 nm. Growth of submicron grains at higher radiation doses is due to decreased pinning effect imparted by Cr-O rich nanoparticles (NPs) that underwent coarsening via Ostwald ripening. Dislocation density consistently increased with increasing irradiation dose at 300 and 400 dpa. The mean radius of lanthanum-containing nanoclusters (NCs) decreased and their number density increased above 200 dpa, which is likely due to solutes ejection caused by ballistic dissolution and irradiation-enhanced diffusion. Chromium, titanium, oxygen and lanthanum content of nanoclusters irradiated at 200 dpa and higher got reduced by almost half the initial value. The reduction in size of the nanoclusters accompanied with their higher number density and higher dislocation density led to significant radiation hardening with increasing irradiation dose.
Oritani, Kenji; Okamoto, Shinichiro; Tauchi, Tetsuzo; Saito, Shigeki; Ohishi, Kohshi; Handa, Hiroshi; Takenaka, Katsuto; Gopalakrishna, Prashanth; Amagasaki, Taro; Ito, Kazuo; Akashi, Koichi
2015-03-01
Ruxolitinib is a potent Janus kinase (JAK) 1/JAK2 inhibitor that has demonstrated rapid and durable improvements in splenomegaly and symptoms and a survival benefit in 2 phase 3 trials in patients with myelofibrosis. Ruxolitinib was well tolerated and effectively reduced splenomegaly and symptom burden in Asian patients with myelofibrosis in the Asian multinational, phase 2 Study A2202. We present a subset analysis of Japanese patients (n = 30) in Study A2202. At data cutoff, 22 patients were ongoing; 8 discontinued, mainly due to adverse events (n = 4). At week 24, 33 % of patients achieved ≥35 % reduction from baseline in spleen volume; 56.0 % achieved ≥50 % reduction from baseline in total symptom score, as measured by the 7-day Myelofibrosis Symptom Assessment Form v2.0. The most common adverse events were anemia (63 %), thrombocytopenia (40 %), nasopharyngitis (37 %), decreased platelet counts (30 %), and diarrhea (30 %). Dose reductions or interruptions due to hemoglobin decreases were more frequent in Japanese patients; no loss of efficacy and no discontinuations due to hematologic abnormalities were observed. Ruxolitinib was well tolerated in Japanese patients and provided substantial reductions in splenomegaly and myelofibrosis-related symptoms similar to those observed in the overall Asian population and phase 3 COMFORT studies.
Davis, Stephen Jerome; Hurtado, Josephine; Nguyen, Rosemary; Huynh, Tran; Lindon, Ivan; Hudnall, Cedric; Bork, Sara
2017-01-01
Background: USP <797> regulatory requirements have mandated that pharmacies improve aseptic techniques and cleanliness of the medication preparation areas. In addition, the Institute for Safe Medication Practices (ISMP) recommends that technology and automation be used as much as possible for preparing and verifying compounded sterile products. Objective: To determine the benefits associated with the implementation of the workflow management system, such as reducing medication preparation and delivery errors, reducing quantity and frequency of medication errors, avoiding costs, and enhancing the organization's decision to move toward positive patient identification (PPID). Methods: At Texas Children's Hospital, data were collected and analyzed from January 2014 through August 2014 in the pharmacy areas in which the workflow management system would be implemented. Data were excluded for September 2014 during the workflow management system oral liquid implementation phase. Data were collected and analyzed from October 2014 through June 2015 to determine whether the implementation of the workflow management system reduced the quantity and frequency of reported medication errors. Data collected and analyzed during the study period included the quantity of doses prepared, number of incorrect medication scans, number of doses discontinued from the workflow management system queue, and the number of doses rejected. Data were collected and analyzed to identify patterns of incorrect medication scans, to determine reasons for rejected medication doses, and to determine the reduction in wasted medications. Results: During the 17-month study period, the pharmacy department dispensed 1,506,220 oral liquid and injectable medication doses. From October 2014 through June 2015, the pharmacy department dispensed 826,220 medication doses that were prepared and checked via the workflow management system. Of those 826,220 medication doses, there were 16 reported incorrect volume errors. The error rate after the implementation of the workflow management system averaged 8.4%, which was a 1.6% reduction. After the implementation of the workflow management system, the average number of reported oral liquid medication and injectable medication errors decreased to 0.4 and 0.2 times per week, respectively. Conclusion: The organization was able to achieve its purpose and goal of improving the provision of quality pharmacy care through optimal medication use and safety by reducing medication preparation errors. Error rates decreased and the workflow processes were streamlined, which has led to seamless operations within the pharmacy department. There has been significant cost avoidance and waste reduction and enhanced interdepartmental satisfaction due to the reduction of reported medication errors.
O'Malley, Lauren; Pignol, Jean-Philippe; Beachey, David J; Keller, Brian M; Presutti, Joseph; Sharpe, Michael
2006-05-21
Using efficient immobilization and dedicated beam collimation devices, stereotactic radiosurgery ensures highly conformal treatment of small tumours with limited microscopic extension. One contribution to normal tissue irradiation remains the radiological penumbra. This work aims at demonstrating that intermediate energy photons (IEP), above orthovoltage but below megavoltage, improve dose distribution for stereotactic radiosurgery for small irradiation field sizes due to a dramatic reduction of radiological penumbra. Two different simulation systems were used: (i) Monte Carlo simulation to investigate the dose distribution of monoenergetic IEP between 100 keV and 1 MeV in water phantom; (ii) the Pinnacle3 TPS including a virtual IEP unit to investigate the dosimetry benefit of treating with 11 non-coplanar beams a 2 cm tumour in the middle of a brain adjacent to a 1 mm critical structure. Radiological penumbrae below 300 microm are generated for field size below 2 x 2 cm2 using monoenergetic IEP beams between 200 and 400 keV. An 800 kV beam generated in a 0.5 mm tungsten target maximizes the photon intensity in this range. Pinnacle3 confirms the dramatic reduction in penumbra size. DVHs show for a constant dose distribution conformality, improved dose distribution homogeneity and better sparing of critical structures using a 800 kV beam compared to a 6 MV beam.
NASA Astrophysics Data System (ADS)
O'Malley, Lauren; Pignol, Jean-Philippe; Beachey, David J.; Keller, Brian M.; Presutti, Joseph; Sharpe, Michael
2006-05-01
Using efficient immobilization and dedicated beam collimation devices, stereotactic radiosurgery ensures highly conformal treatment of small tumours with limited microscopic extension. One contribution to normal tissue irradiation remains the radiological penumbra. This work aims at demonstrating that intermediate energy photons (IEP), above orthovoltage but below megavoltage, improve dose distribution for stereotactic radiosurgery for small irradiation field sizes due to a dramatic reduction of radiological penumbra. Two different simulation systems were used: (i) Monte Carlo simulation to investigate the dose distribution of monoenergetic IEP between 100 keV and 1 MeV in water phantom; (ii) the Pinnacle3 TPS including a virtual IEP unit to investigate the dosimetry benefit of treating with 11 non-coplanar beams a 2 cm tumour in the middle of a brain adjacent to a 1 mm critical structure. Radiological penumbrae below 300 µm are generated for field size below 2 × 2 cm2 using monoenergetic IEP beams between 200 and 400 keV. An 800 kV beam generated in a 0.5 mm tungsten target maximizes the photon intensity in this range. Pinnacle3 confirms the dramatic reduction in penumbra size. DVHs show for a constant dose distribution conformality, improved dose distribution homogeneity and better sparing of critical structures using a 800 kV beam compared to a 6 MV beam.
Breedveld, Sebastiaan; Voet, Peter W. J.; Heijkoop, Sabrina T.; Mens, Jan-Willem M.; Hoogeman, Mischa S.; Heijmen, Ben J. M.
2016-01-01
Purpose To develop and validate fully automated generation of VMAT plan-libraries for plan-of-the-day adaptive radiotherapy in locally-advanced cervical cancer. Material and Methods Our framework for fully automated treatment plan generation (Erasmus-iCycle) was adapted to create dual-arc VMAT treatment plan libraries for cervical cancer patients. For each of 34 patients, automatically generated VMAT plans (autoVMAT) were compared to manually generated, clinically delivered 9-beam IMRT plans (CLINICAL), and to dual-arc VMAT plans generated manually by an expert planner (manVMAT). Furthermore, all plans were benchmarked against 20-beam equi-angular IMRT plans (autoIMRT). For all plans, a PTV coverage of 99.5% by at least 95% of the prescribed dose (46 Gy) had the highest planning priority, followed by minimization of V45Gy for small bowel (SB). Other OARs considered were bladder, rectum, and sigmoid. Results All plans had a highly similar PTV coverage, within the clinical constraints (above). After plan normalizations for exactly equal median PTV doses in corresponding plans, all evaluated OAR parameters in autoVMAT plans were on average lower than in the CLINICAL plans with an average reduction in SB V45Gy of 34.6% (p<0.001). For 41/44 autoVMAT plans, SB V45Gy was lower than for manVMAT (p<0.001, average reduction 30.3%), while SB V15Gy increased by 2.3% (p = 0.011). AutoIMRT reduced SB V45Gy by another 2.7% compared to autoVMAT, while also resulting in a 9.0% reduction in SB V15Gy (p<0.001), but with a prolonged delivery time. Differences between manVMAT and autoVMAT in bladder, rectal and sigmoid doses were ≤ 1%. Improvements in SB dose delivery with autoVMAT instead of manVMAT were higher for empty bladder PTVs compared to full bladder PTVs, due to differences in concavity of the PTVs. Conclusions Quality of automatically generated VMAT plans was superior to manually generated plans. Automatic VMAT plan generation for cervical cancer has been implemented in our clinical routine. Due to the achieved workload reduction, extension of plan libraries has become feasible. PMID:28033342
Joshi, Anuja; Gislason-Lee, Amber J; Keeble, Claire; Sivananthan, Uduvil M
2017-01-01
Objective: The aim of this research was to quantify the reduction in radiation dose facilitated by image processing alone for percutaneous coronary intervention (PCI) patient angiograms, without reducing the perceived image quality required to confidently make a diagnosis. Methods: Incremental amounts of image noise were added to five PCI angiograms, simulating the angiogram as having been acquired at corresponding lower dose levels (10–89% dose reduction). 16 observers with relevant experience scored the image quality of these angiograms in 3 states—with no image processing and with 2 different modern image processing algorithms applied. These algorithms are used on state-of-the-art and previous generation cardiac interventional X-ray systems. Ordinal regression allowing for random effects and the delta method were used to quantify the dose reduction possible by the processing algorithms, for equivalent image quality scores. Results: Observers rated the quality of the images processed with the state-of-the-art and previous generation image processing with a 24.9% and 15.6% dose reduction, respectively, as equivalent in quality to the unenhanced images. The dose reduction facilitated by the state-of-the-art image processing relative to previous generation processing was 10.3%. Conclusion: Results demonstrate that statistically significant dose reduction can be facilitated with no loss in perceived image quality using modern image enhancement; the most recent processing algorithm was more effective in preserving image quality at lower doses. Advances in knowledge: Image enhancement was shown to maintain perceived image quality in coronary angiography at a reduced level of radiation dose using computer software to produce synthetic images from real angiograms simulating a reduction in dose. PMID:28124572
Efficacy and Tolerability of High-Dose Escitalopram in Posttraumatic Stress Disorder.
Qi, Wei; Gevonden, Martin; Shalev, Arieh
2017-02-01
Open-label trials suggest that escitalopram (up to 20 mg/d) is an effective treatment for some, but not all posttraumatic stress disorder (PTSD) patients. Higher doses of escitalopram effectively reduced major depression symptoms in patients who had not responded to regular doses. The current study examines the efficacy, tolerability, and adherence to high-dose escitalopram in PTSD. Forty-five PTSD patients received 12 weeks of gradually increasing doses of escitalopram reaching 40 mg daily at 4 weeks. Among those, 12 participants received regular doses of antidepressants at study onset including escitalopram (n = 7). The Clinician-Administered PTSD Scale (CAPS) evaluated PTSD symptoms severity before treatment, at 3 months (upon treatment termination), and at 6 months (maintenance effect). A 20% reduction in CAPS scores was deemed clinically significant. Adverse events and medication adherence were monitored at each clinical session. Linear mixed-models analysis showed a significant reduction of mean CAPS scores (11.5 ± 18.1 points) at 3 months and maintenance of gains by 6 months (F2,34.56 = 8.15, P = 0.001). Eleven participants (34.3%) showed clinically significant improvement at 3 months. Only 9 participants (20%) left the study. There were no serious adverse events and few mild ones with only 2 adverse events (diarrhea, 11.1%; drowsiness, 11.1%) reported by more than 10% of participants. High doses of escitalopram are tolerable and well adhered to in PTSD. Their beneficial effect at a group level is due to a particularly good response in a subset of patients.Variability in prior pharmacological treatment precludes a definite attribution of the results to high doses of escitalopram.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brady, S; Shulkin, B
Purpose: To develop ultra-low dose computed tomography (CT) attenuation correction (CTAC) acquisition protocols for pediatric positron emission tomography CT (PET CT). Methods: A GE Discovery 690 PET CT hybrid scanner was used to investigate the change to quantitative PET and CT measurements when operated at ultra-low doses (10–35 mAs). CT quantitation: noise, low-contrast resolution, and CT numbers for eleven tissue substitutes were analyzed in-phantom. CT quantitation was analyzed to a reduction of 90% CTDIvol (0.39/3.64; mGy) radiation dose from baseline. To minimize noise infiltration, 100% adaptive statistical iterative reconstruction (ASiR) was used for CT reconstruction. PET images were reconstructed withmore » the lower-dose CTAC iterations and analyzed for: maximum body weight standardized uptake value (SUVbw) of various diameter targets (range 8–37 mm), background uniformity, and spatial resolution. Radiation organ dose, as derived from patient exam size specific dose estimate (SSDE), was converted to effective dose using the standard ICRP report 103 method. Effective dose and CTAC noise magnitude were compared for 140 patient examinations (76 post-ASiR implementation) to determine relative patient population dose reduction and noise control. Results: CT numbers were constant to within 10% from the non-dose reduced CTAC image down to 90% dose reduction. No change in SUVbw, background percent uniformity, or spatial resolution for PET images reconstructed with CTAC protocols reconstructed with ASiR and down to 90% dose reduction. Patient population effective dose analysis demonstrated relative CTAC dose reductions between 62%–86% (3.2/8.3−0.9/6.2; mSv). Noise magnitude in dose-reduced patient images increased but was not statistically different from pre dose-reduced patient images. Conclusion: Using ASiR allowed for aggressive reduction in CTAC dose with no change in PET reconstructed images while maintaining sufficient image quality for co-localization of hybrid CT anatomy and PET radioisotope uptake.« less
Dose and risk in diagnostic radiology: How big How little Lecture Number 16
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webster, E.W.
1992-01-01
This lecture is divided into two parts: dose and risk. The dose segment is technical and noncontroversial since it deals with straightforward measurements or calculations which do not depend on unproven hypotheses. Some conflicting contributions of low dose epidemiological studies to the appraisal of risk are briefly presented. Attention is focused on the following: dose reduction in radiography; dose reduction in fluoroscopy; limitations of dose reduction; estimated radiation risks for diagnostic radiology examinations; excess breast cancer following X-ray examinations for scoliosis; dose-response relation for human mammary cancer; lung cancer from protracted X-irradiation; leukemia and diagnostic X-ray exposure; and thyroid cancermore » after diagnostic dose of I-131.« less
van Herwaarden, Noortje; van der Maas, Aatke; Minten, Michiel J M; van den Hoogen, Frank H J; Kievit, Wietske; van Vollenhoven, Ronald F; Bijlsma, Johannes W J; van den Bemt, Bart J F; den Broeder, Alfons A
2015-04-09
To evaluate whether a disease activity guided strategy of dose reduction of two tumour necrosis factor (TNF) inhibitors, adalimumab or etanercept, is non-inferior in maintaining disease control in patients with rheumatoid arthritis compared with usual care. Randomised controlled, open label, non-inferiority strategy trial. Two rheumatology outpatient clinics in the Netherlands, from December 2011 to May 2014. 180 patients with rheumatoid arthritis and low disease activity using adalimumab or etanercept; 121 allocated to the dose reduction strategy, 59 to usual care. Disease activity guided dose reduction (advice to stepwise increase the injection interval every three months, until flare of disease activity or discontinuation) or usual care (no dose reduction advice). Flare was defined as increase in DAS28-CRP (a composite score measuring disease activity) greater than 1.2, or increase greater than 0.6 and current score of at least 3.2. In the case of flare, TNF inhibitor use was restarted or escalated. Difference in proportions of patients with major flare (DAS28-CRP based flare longer than three months) between the two groups at 18 months, compared against a non-inferiority margin of 20%. Secondary outcomes included TNF inhibitor use at study end, functioning, quality of life, radiographic progression, and adverse events. Dose reduction of adalimumab or etanercept was non-inferior to usual care (proportion of patients with major flare at 18 months, 12% v 10%; difference 2%, 95% confidence interval -12% to 12%). In the dose reduction group, TNF inhibitor use could successfully be stopped in 20% (95% confidence interval 13% to 28%), the injection interval successfully increased in 43% (34% to 53%), but no dose reduction was possible in 37% (28% to 46%). Functional status, quality of life, relevant radiographic progression, and adverse events did not differ between the groups, although short lived flares (73% v 27%) and minimal radiographic progression (32% v 15%) were more frequent in dose reduction than usual care. A disease activity guided, dose reduction strategy of adalimumab or etanercept to treat rheumatoid arthritis is non-inferior to usual care with regard to major flaring, while resulting in the successful dose reduction or stopping in two thirds of patients.Trial registration Dutch trial register (www.trialregister.nl), NTR 3216. © van Herwaarden et al 2015.
A dose ranging study of ibuprofen suspension as an antipyretic.
Marriott, S C; Stephenson, T J; Hull, D; Pownall, R; Smith, C M; Butler, A
1991-01-01
A double blind trial was conducted to determine the dose of ibuprofen suspension, which is effective in reducing the body temperature. The principal measure of efficacy was a reduction in axillary temperature of 1 degree C or more three hours after dosing. A second objective of the trial was to compare the incidence and severity of side effects and the palatability of a range of ibuprofen doses. Ninety three children were included in the analysis. All four doses of ibuprofen studied (0.625 mg/kg-5 mg/kg) were associated with temperature reduction and only the lowest dose failed to satisfy the principal measure of efficacy. The influence of dose on the magnitude of the body temperature reduction was significant and the 5 mg/kg dose achieved the largest mean reduction in body temperature (2 degrees C). The tolerability and palatability of all doses studied were excellent. These findings suggest that ibuprofen is a good alternative to paracetamol as an antipyretic. PMID:1929509
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J; Chung, J
2015-06-15
Purpose: To verify delivered doses on the implanted cardiac pacemaker, predicted doses with and without dose reduction method were verified using the MOSFET detectors in terms of beam delivery and dose calculation techniques in intensity-modulated radiation therapy (IMRT). Methods: The pacemaker doses for a patient with a tongue cancer were predicted according to the beam delivery methods [step-and-shoot (SS) and sliding window (SW)], intensity levels for dose optimization, and dose calculation algorithms. Dosimetric effects on the pacemaker were calculated three dose engines: pencil-beam convolution (PBC), analytical anisotropic algorithm (AAA), and Acuros-XB. A lead shield of 2 mm thickness was designedmore » for minimizing irradiated doses to the pacemaker. Dose variations affected by the heterogeneous material properties of the pacemaker and effectiveness of the lead shield were predicted by the Acuros-XB. Dose prediction accuracy and the feasibility of the dose reduction strategy were verified based on the measured skin doses right above the pacemaker using mosfet detectors during the radiation treatment. Results: The Acuros-XB showed underestimated skin doses and overestimated doses by the lead-shield effect, even though the lower dose disagreement was observed. It led to improved dose prediction with higher intensity level of dose optimization in IMRT. The dedicated tertiary lead sheet effectively achieved reduction of pacemaker dose up to 60%. Conclusion: The current SS technique could deliver lower scattered doses than recommendation criteria, however, use of the lead sheet contributed to reduce scattered doses.Thin lead plate can be a useful tertiary shielder and it could not acuse malfunction or electrical damage of the implanted pacemaker in IMRT. It is required to estimate more accurate scattered doses of the patient with medical device to design proper dose reduction strategy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brady, Samuel L., E-mail: samuel.brady@stjude.org; Shulkin, Barry L.
2015-02-15
Purpose: To develop ultralow dose computed tomography (CT) attenuation correction (CTAC) acquisition protocols for pediatric positron emission tomography CT (PET CT). Methods: A GE Discovery 690 PET CT hybrid scanner was used to investigate the change to quantitative PET and CT measurements when operated at ultralow doses (10–35 mA s). CT quantitation: noise, low-contrast resolution, and CT numbers for 11 tissue substitutes were analyzed in-phantom. CT quantitation was analyzed to a reduction of 90% volume computed tomography dose index (0.39/3.64; mGy) from baseline. To minimize noise infiltration, 100% adaptive statistical iterative reconstruction (ASiR) was used for CT reconstruction. PET imagesmore » were reconstructed with the lower-dose CTAC iterations and analyzed for: maximum body weight standardized uptake value (SUV{sub bw}) of various diameter targets (range 8–37 mm), background uniformity, and spatial resolution. Radiation dose and CTAC noise magnitude were compared for 140 patient examinations (76 post-ASiR implementation) to determine relative dose reduction and noise control. Results: CT numbers were constant to within 10% from the nondose reduced CTAC image for 90% dose reduction. No change in SUV{sub bw}, background percent uniformity, or spatial resolution for PET images reconstructed with CTAC protocols was found down to 90% dose reduction. Patient population effective dose analysis demonstrated relative CTAC dose reductions between 62% and 86% (3.2/8.3–0.9/6.2). Noise magnitude in dose-reduced patient images increased but was not statistically different from predose-reduced patient images. Conclusions: Using ASiR allowed for aggressive reduction in CT dose with no change in PET reconstructed images while maintaining sufficient image quality for colocalization of hybrid CT anatomy and PET radioisotope uptake.« less
Brachytherapy devices and methods employing americium-241
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, L. A.
1985-04-16
Sources and methods for radiation therapy, particularly brachytherapy, employing americium-241 (60 keV gamma emission and 433 year half-life) provide major advantages for radiotherapy, including simplified radiation protection, dose reduction to healthy tissue, increased dose to tumor, and improved dose distributions. A number of apparent drawbacks and unfavorable considerations including low gamma factor, high self-absorption, increased activity required and alpha-particle generation leading to helium gas pressure buildup and potential neutron contamination in the generated radiation are all effectively dealt with and overcome through recognition of subtle favorable factors unique to americium-241 among brachytherapy sources and through suitable constructional techniques. Due tomore » an additional amount of radiation, in the order of 50%, provided primarily to nearby regions as a result of Compton scatter in tissue and water, higher dose rates occur than would be predicted by conventional calculations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Son, K; Lee, H; Kim, C
2016-06-15
Purpose: To reduce radiation dose to the patients, tube current modulation (TCM) method has been actively used in diagnostic CT systems. However, TCM method has not yet been applied to a kV-CBCT system on a LINAC machine. The purpose of this study is to investigate whether the use of TCM method is desirable in kV-CBCT system for IGRT. We have developed an attenuation-based tube current modulation (a-TCM) method using the prior knowledge of treatment CT image of a patient. Methods: Patients go through a diagnostic CT scan for RT planning; therefore, using this prior information of CT images, one canmore » estimate the total attenuation of an x-ray through the patient body in a CBCT setting for radiation therapy. We performed a numerical study incorporating major factors into account such as polychromatic x-ray, scatter, noise, and bow-tie filter to demonstrate that a-TCM method can produce equivalent quality of images at reduced imaging radiation doses. Using the CT projector program, 680 projection images of the pediatric XCAT phantom were obtained both in conventional scanning condition, i.e., without modulating the tube current, and in the proposed a-TCM scanning condition. FDK reconstruction algorithm was used for image reconstruction, and the organ dose due to imaging radiation has been calculated in both cases and compared using GATE/Geant4 simulation toolkit. Results: Reconstructed CT images in the a-TCM method showed similar SSIM values and noise properties to the reference images acquired by the conventional CBCT. In addition, reduction of organ doses ranged from 12% to 27%. Conclusion: We have successfully demonstrated the feasibility and dosimetric merit of the a-TCM method for kV-CBCT, and envision that it can be a useful option of CBCT scanning that provides patient dose reduction without degrading image quality.« less
Petraitiene, Ruta; Petraitis, Vidmantas; Groll, Andreas H.; Sein, Tin; Schaufele, Robert L.; Francesconi, Andrea; Bacher, John; Avila, Nilo A.; Walsh, Thomas J.
2002-01-01
The antifungal efficacy, pharmacokinetics, and safety of caspofungin (CAS) were investigated in the treatment and prophylaxis of invasive pulmonary aspergillosis due to Aspergillus fumigatus in persistently neutropenic rabbits. Antifungal therapy consisted of 1, 3, or 6 mg of CAS/kg of body weight/day (CAS1, CAS3, and CAS6, respectively) or 1 mg of deoxycholate amphotericin B (AMB)/kg/day intravenously for 12 days starting 24 h after endotracheal inoculation. Prophylaxis (CAS1) was initiated 4 days before endotracheal inoculation. Rabbits treated with CAS had significant improvement in survival and reduction in organism-mediated pulmonary injury (OMPI) measured by pulmonary infarct score and total lung weight (P < 0.01). However, animals treated with CAS demonstrated a paradoxical trend toward increased residual fungal burden (log CFU per gram) and increased serum galactomannan antigen index (GMI) despite improved survival. Rabbits receiving prophylactic CAS1 also showed significant improvement in survival and reduction in OMPI (P < 0.01), but there was no effect on residual fungal burden. In vitro tetrazolium salt hyphal damage assays and histologic studies demonstrated that CAS had concentration- and dose-dependent effects on hyphal structural integrity. In parallel with a decline in GMI, AMB significantly reduced the pulmonary tissue burden of A. fumigatus (P ≤ 0.01). The CAS1, CAS3, and CAS6 dose regimens demonstrated dose-proportional exposure and maintained drug levels in plasma above the MIC for the entire 24-h dosing interval at doses that were ≥3 mg/kg/day. As serial galactomannan antigen levels may be used for therapeutic monitoring, one should be aware that profoundly neutropenic patients receiving echinocandins for aspergillosis might have persistent galactomannan antigenemia despite clinical improvement. CAS improved survival, reduced pulmonary injury, and caused dose-dependent hyphal damage but with no reduction in residual fungal burden or galactomannan antigenemia in persistently neutropenic rabbits with invasive pulmonary aspergillosis. PMID:11751105
SU-F-J-16: Planar KV Imaging Dose Reduction Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gershkevitsh, E; Zolotuhhin, D
Purpose: IGRT has become an indispensable tool in modern radiotherapy with kV imaging used in many departments due to superior image quality and lower dose when compared to MV imaging. Many departments use manufacturer supplied protocols for imaging which are not always optimised between image quality and radiation dose (ALARA). Methods: Whole body phantom PBU-50 (Kyoto Kagaku ltd., Japan) for imaging in radiology has been imaged on Varian iX accelerator (Varian Medical Systems, USA) with OBI 1.5 system. Manufacturer’s default protocols were adapted by modifying kV and mAs values when imaging different anatomical regions of the phantom (head, thorax, abdomen,more » pelvis, extremities). Images with different settings were independently reviewed by two persons and their suitability for IGRT set-up correction protocols were evaluated. The suitable images with the lowest mAs were then selected. The entrance surface dose (ESD) for manufacturer’s default protocols and modified protocols were measured with RTI Black Piranha (RTI Group, Sweden) and compared. Image quality was also measured with kVQC phantom (Standard Imaging, USA) for different protocols. The modified protocols have been applied for clinical work. Results: For most cases optimized protocols reduced the ESD on average by a factor of 3(range 0.9–8.5). Further reduction in ESD has been observed by applying bow-tie filter designed for CBCT. The largest reduction in dose (12.2 times) was observed for Thorax lateral protocol. The dose was slightly increased (by 10%) for large pelvis AP protocol. Conclusion: Manufacturer’s default IGRT protocols could be optimised to reduce the ESD to the patient without losing the necessary image quality for patient set-up correction. For patient set-up with planar kV imaging the bony anatomy is mostly used and optimization should focus on this aspect. Therefore, the current approach with anthropomorphic phantom is more advantageous in optimization over standard kV quality control phantoms and SNR metrics.« less
Escalation to High Dose Defibrotide in Patients with Hepatic Veno-Occlusive Disease
Triplett, Brandon M.; Kuttab, Hani I.; Kang, Guolian; Leung, Wing
2015-01-01
Hepatic veno-occlusive disease (VOD) is a serious complication of high-dose chemotherapy regimens, such as those utilized in hematopoietic cell transplantation recipients. Defibrotide is considered a safe and effective treatment when dosed at 25 mg/kg/day. However, patients who develop VOD still have increased mortality despite the use of defibrotide. Data are limited on the use of doses above 60 mg/kg/day for persistent VOD. In this prospective clinical trial, 34 patients received escalating doses of defibrotide. For patients with persistent VOD despite doses of 60 mg/kg/day, doses were increased to a maximum of 110 mg/kg/day. There was no observed increase in toxicity until doses rose beyond 100 mg/kg/day. Patients receiving doses between 10–100 mg/kg/day experienced an average of 3 bleeding episodes per 100 days of treatment, while those receiving doses >100 mg/kg/day experienced 13.2 bleeding episodes per 100 days (p=0.008). Moreover, dose reductions due to toxicity were needed at doses of 110 mg/kg/day more often than at lower doses. Defibrotide may be safely escalated to doses well above the current standard without an increase in bleeding risk. However, the efficacy of this dose escalation strategy remains unclear, as outcomes were similar to published cohorts of patients receiving standard doses of defibrotide for VOD. PMID:26278046
García Rodríguez, Luis A; Soriano-Gabarró, Montse; Bromley, Susan; Lanas, Angel; Cea Soriano, Lucía
2017-09-07
Evidence from clinical trial populations suggests low-dose aspirin reduces the risk of colorectal cancer (CRC). Part of this reduction in risk might be due to protection against metastatic disease. We investigated the risk of CRC among new-users of low-dose aspirin (75-300 mg), including risk by stage at diagnosis. Using The Health Improvement Network, we conducted a cohort study with nested case-control analysis. Two cohorts (N = 170,336 each) aged 40-89 years from 2000 to 2009 and free of cancer were identified: i) new-users of low-dose aspirin, ii) non-users of low-dose aspirin, at start of follow-up, matched by age, sex and previous primary care practitioner visits. Patients were followed for up to 12 years to identify incident CRC. 10,000 frequency-matched controls were selected by incidence density sampling where the odds ratio is an unbiased estimator of the incidence rate ratio (RR). RRs with 95% confidence intervals were calculated. Low-dose aspirin use was classified 'as-treated' independent from baseline exposure status to account for changes in exposure during follow-up. Current users of low-dose aspirin (use on the index date or in the previous 90 days) had a significantly reduced risk of CRC, RR 0.66 (95% CI 0.60-0.74). The reduction in risk was apparent across all age groups, and was unrelated to dose, indication, gender, CRC location or case-fatality status. Reduced risks occurred throughout treatment duration and with all low-dose aspirin doses. RRs by aspirin indication were 0.71 (0·63-0·79) and 0.60 (0.53-0.68) for primary and secondary cardiovascular protection, respectively. Among cases with staging information (n = 1421), RRs for current use of low-dose aspirin were 0.94 (0.66-1.33) for Dukes Stage A CRC, 0.54 (0.42-0.68) for Dukes B, 0.71 (0.56-0.91) for Dukes C, and 0.60 (0.48-0.74) for Dukes D. After 5 years' therapy, the RR for Dukes Stage A CRC was 0.53 (0.24-1.19). Patients starting low-dose aspirin therapy have a reduced risk of Stages B-D CRC, suggesting a role for low-dose aspirin in the progression of established CRC; a substantial reduction in the risk of Dukes A CRC may occur after 5 years' therapy.
Radiation dose management in thoracic CT: an international survey.
Molinari, Francesco; Tack, Denis M; Boiselle, Philip; Ngo, Long; Mueller-Mang, Christina; Litmanovich, Diana; Bankier, Alexander A
2013-01-01
We aimed to examine current practice patterns of international thoracic radiologists regarding radiation dose management in adult thoracic computed tomography (CT) examinations. An electronic questionnaire was sent to 800 members of five thoracic radiology societies in North America, Europe, Asia, and Latin America addressing radiation dose training and education, standard kVp and mAs settings for thoracic CT, dose reduction practices, clinical scenarios, and demographics. Of the 800 radiologists, 146 responded to our survey. Nearly half (66/146, 45% [95% confidence interval, 37%-53%]) had no formal training in dose reduction, with "self-study of the literature" being the most common form of training (54/146, 37% [29%-45%]). One hundred and seventeen (80% [74%-87%]) had automatic exposure control, and 76 (65% [56%-74%]) used it in all patients. Notably, most respondents (89% [84%-94%]) used a 120 to 125 kVp standard setting, whereas none used 140 kVp. The most common average dose-length-product (DLP) value was 150 to 249 mGy.cm (75/146, 51% [43%-59%]), and 59% (51%-67%) delivered less than 250 mGy.cm in a 70 kg patient. There was a tendency towards higher DLP values with multidetector-row CT. Age, gender, and pregnancy were associated more with dose reduction than weight and clinical indication. Efforts for reducing patient radiation dose are highly prevalent among thoracic radiologists. Areas for improvement include reduction of default tube current settings, reduction of anatomical scan coverage, greater use of automatic exposure control, and eventually, reduction of current reference dose values. Our study emphasizes the need for international guidelines to foster greater conformity in dose reduction by thoracic radiologists.
Adjunctive low-dose docosahexaenoic acid (DHA) for major depression: An open-label pilot trial.
Smith, Deidre J; Sarris, Jerome; Dowling, Nathan; O'Connor, Manjula; Ng, Chee H
2018-04-01
Whilst the majority of evidence supports the adjunctive use of eicosapentaenoic acid (EPA) in improving mood, to date no study exists using low-dose docosahexaenoic acid (DHA) alone as an adjunctive treatment in patients with mild to moderate major depressive disorder (MDD). A naturalistic 8-week open-label pilot trial of low-dose DHA, (260 mg or 520 mg/day) in 28 patients with MDD who were non-responsive to medication or psychotherapy, with a Hamilton Depression Rating Scale (HAM-D) score of greater than 17, was conducted. Primary outcomes of depression, clinical severity, and daytime sleepiness were measured. After 8 weeks, 54% of patients had a ≥50% reduction on the HAM-D, and 45% were in remission (HAM-D ≤ 7). The eta-squared statistic (0.59) indicated a large effect size for the reduction of depression (equivalent to Cohen's d of 2.4). However confidence in this effect size is tempered due to the lack of a placebo. The mean score for the Clinical Global Impression Severity Scale was significantly improved by 1.28 points (P < 0.05). Despite a significant reduction in the HAM-D score for middle insomnia (P = 0.02), the reduction in excessive daytime somnolence on the total Epworth Sleepiness Scale (ESS) did not reach significance. No significant adverse reactions to DHA were found. Within the major limits of this open-label pilot study, the results suggest that DHA may provide additional adjunctive benefits in patients with mild- to -moderate depression.
Schiavo, M; Bagnara, M C; Pomposelli, E; Altrinetti, V; Calamia, I; Camerieri, L; Giusti, M; Pesce, G; Reitano, C; Bagnasco, M; Caputo, M
2013-09-01
Radioiodine is a common option for treatment of hyperfunctioning thyroid nodules. Due to the expected selective radioiodine uptake by adenoma, relatively high "fixed" activities are often used. Alternatively, the activity is individually calculated upon the prescription of a fixed value of target absorbed dose. We evaluated the use of an algorithm for personalized radioiodine activity calculation, which allows as a rule the administration of lower radioiodine activities. Seventy-five patients with single hyperfunctioning thyroid nodule eligible for 131I treatment were studied. The activities of 131I to be administered were estimated by the method described by Traino et al. and developed for Graves'disease, assuming selective and homogeneous 131I uptake by adenoma. The method takes into account 131I uptake and its effective half-life, target (adenoma) volume and its expected volume reduction during treatment. A comparison with the activities calculated by other dosimetric protocols, and the "fixed" activity method was performed. 131I uptake was measured by external counting, thyroid nodule volume by ultrasonography, thyroid hormones and TSH by ELISA. Remission of hyperthyroidism was observed in all but one patient; volume reduction of adenoma was closely similar to that assumed by our model. Effective half-life was highly variable in different patients, and critically affected dose calculation. The administered activities were clearly lower with respect to "fixed" activities and other protocols' prescription. The proposed algorithm proved to be effective also for single hyperfunctioning thyroid nodule treatment and allowed a significant reduction of administered 131I activities, without loss of clinical efficacy.
Novel treatment options for transfusional iron overload in patients with myelodysplastic syndromes.
Goldberg, Stuart L
2007-12-01
Red blood cell transfusion dependency is common in myelodysplastic syndromes and is associated with inferior survival. The use of parenteral deferoxamine therapy for transfusional iron overload has been sparse, in part due to cumbersome administration schedules. Deferasirox is an oral iron-chelating agent with favorable pharmacokinetics, including a long half-life allowing continuous 24-hour chelation with once-daily dosing. Deferasirox produces dose-dependent reductions in liver iron content and reduces cardiac iron levels. In-vitro studies with deferasirox suggest improved cardiomyocyte contractility potentially important in reducing excess cardiac mortality noted in transfusion-dependent MDS. Deferasirox has a manageable safety profile with favorable patient satisfaction reports.
[Examination of patient dose reduction in cardiovasucular X-ray systems with a metal filter].
Yasuda, Mitsuyoshi; Kato, Kyouichi; Tanabe, Nobuaki; Sakiyama, Koushi; Uchiyama, Yushi; Suzuki, Yoshiaki; Suzuki, Hiroshi; Nakazawa, Yasuo
2012-01-01
In interventional X-ray for cardiology of flat panel digital detector (FPD), the phenomenon that exposure dose was suddenly increased when a subject thickness was thickened was recognized. At that time, variable metal built-in filters in FPD were all off. Therefore, we examined whether dose reduction was possible without affecting a clinical image using metal filter (filter) which we have been conventionally using for dose reduction. About 45% dose reduction was achieved when we measured an exposure dose at 30 cm of acrylic thickness in the presence of a filter. In addition, we measured signal to noise ratio/contrast to noise ratio/a resolution limit by the visual evaluation, and there was no influence by filter usage. In the clinical examination, visual evaluation of image quality of coronary angiography (40 cases) using a 5-point evaluation scale by a physician was performed. As a result, filter usage did not influence the image quality (p=NS). Therefore, reduction of sudden increase of exposure dose was achieved without influencing an image quality by adding filter to FPD.
Inducible DNA-repair systems in yeast: competition for lesions.
Mitchel, R E; Morrison, D P
1987-03-01
DNA lesions may be recognized and repaired by more than one DNA-repair process. If two repair systems with different error frequencies have overlapping lesion specificity and one or both is inducible, the resulting variable competition for the lesions can change the biological consequences of these lesions. This concept was demonstrated by observing mutation in yeast cells (Saccharomyces cerevisiae) exposed to combinations of mutagens under conditions which influenced the induction of error-free recombinational repair or error-prone repair. Total mutation frequency was reduced in a manner proportional to the dose of 60Co-gamma- or 254 nm UV radiation delivered prior to or subsequent to an MNNG exposure. Suppression was greater per unit radiation dose in cells gamma-irradiated in O2 as compared to N2. A rad3 (excision-repair) mutant gave results similar to wild-type but mutation in a rad52 (rec-) mutant exposed to MNNG was not suppressed by radiation. Protein-synthesis inhibition with heat shock or cycloheximide indicated that it was the mutation due to MNNG and not that due to radiation which had changed. These results indicate that MNNG lesions are recognized by both the recombinational repair system and the inducible error-prone system, but that gamma-radiation induction of error-free recombinational repair resulted in increased competition for the lesions, thereby reducing mutation. Similarly, gamma-radiation exposure resulted in a radiation dose-dependent reduction in mutation due to MNU, EMS, ENU and 8-MOP + UVA, but no reduction in mutation due to MMS. These results suggest that the number of mutational MMS lesions recognizable by the recombinational repair system must be very small relative to those produced by the other agents. MNNG induction of the inducible error-prone systems however, did not alter mutation frequencies due to ENU or MMS exposure but, in contrast to radiation, increased the mutagenic effectiveness of EMS. These experiments demonstrate that in this lower eukaryote, mutagen exposure does not necessarily result in a fixed risk of mutation, but that the risk can be markedly influenced by a variety of external stimuli including heat shock or exposure to other mutagens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spadea, Maria Francesca, E-mail: mfspadea@unicz.it; Verburg, Joost Mathias; Seco, Joao
2014-01-15
Purpose: The aim of the study was to evaluate the dosimetric impact of low-Z and high-Z metallic implants on IMRT plans. Methods: Computed tomography (CT) scans of three patients were analyzed to study effects due to the presence of Titanium (low-Z), Platinum and Gold (high-Z) inserts. To eliminate artifacts in CT images, a sinogram-based metal artifact reduction algorithm was applied. IMRT dose calculations were performed on both the uncorrected and corrected images using a commercial planning system (convolution/superposition algorithm) and an in-house Monte Carlo platform. Dose differences between uncorrected and corrected datasets were computed and analyzed using gamma index (Pγ{submore » <1}) and setting 2 mm and 2% as distance to agreement and dose difference criteria, respectively. Beam specific depth dose profiles across the metal were also examined. Results: Dose discrepancies between corrected and uncorrected datasets were not significant for low-Z material. High-Z materials caused under-dosage of 20%–25% in the region surrounding the metal and over dosage of 10%–15% downstream of the hardware. Gamma index test yielded Pγ{sub <1}>99% for all low-Z cases; while for high-Z cases it returned 91% < Pγ{sub <1}< 99%. Analysis of the depth dose curve of a single beam for low-Z cases revealed that, although the dose attenuation is altered inside the metal, it does not differ downstream of the insert. However, for high-Z metal implants the dose is increased up to 10%–12% around the insert. In addition, Monte Carlo method was more sensitive to the presence of metal inserts than superposition/convolution algorithm. Conclusions: The reduction in terms of dose of metal artifacts in CT images is relevant for high-Z implants. In this case, dose distribution should be calculated using Monte Carlo algorithms, given their superior accuracy in dose modeling in and around the metal. In addition, the knowledge of the composition of metal inserts improves the accuracy of the Monte Carlo dose calculation significantly.« less
Grabowicz, W; Domienik-Andrzejewska, J; Masiarek, K; Górnik, T; Grycewicz, T; Brodecki, M; Lubiński, A
2017-09-01
The aim of the present study is to analyse quantitatively the potential reduction of doses to the eye lens and the hands of an operator and a nurse by the use of a pelvic lead blanket during coronary angiography (CA) and percutaneous transluminal coronary angioplasty (PTCA) procedures. Thermoluminescent dosimeters were used to assess dose levels to the left eye lens and fingers on both hands of both physician and nurses during single procedures performed with or without the lead blanket. The measurements were carried out at one medical centre and include dosimetric data from 100 procedures. Additional measurements including physician's and patient's doses were made on phantoms in the laboratory. In order to determine the reduction potential of the lead blanket, the doses normalized to DAP (Dose-Area Product) corresponding to the same position of dosimeter were compared against each other for both procedure categories (with and without protection). There was no statistically significant decrease observed in physicians' and nurses' eye lens doses, nor in doses normalized to DAP due to the use of the lead pelvic shield in clinic. However, some trend in reducing the eye lens doses by this shield can be observed. Regarding finger doses, the differences are statistically significant but only for physicians. The mean DAP-normalised doses to the eye lens and left and right finger of physicians, in the presence of a ceiling-suspended transparent lead shield, were 2.24e-5 ± 1.41e-5 mSv/μGym 2 , 2.31e-4 ± 1.21e-4 mSv/μGym 2 , and 2.60e-5 ± 1.57e-5 mSv/μGym 2 for standard procedures performed without the lead blanket, and 1.77e-5 ± 1.17e-5 mSv/μGym 2 , 1.70e-4 ± 1.01e-4 mSv/μGym 2 , and 1.86e-5 ± 1.13e-5 mSv/μGym 2 for procedures performed with it. A comparison of the results from the laboratory and the clinic shows that they are consistent regarding the eye lens, while for fingers it suggests that the dose reduction properties of the lead shield are related to the physician's work technique and both patient and lead blanket sizes or its positioning. The highest degree of reduction is observed for cranial and caudal projections together with the use of a patient-adjustable lead blanket; about a 2-fold decrease in finger doses is expected for optimum conditions. However, the laboratory measurements suggest that the use of lead blanket might slightly increase the patient dose, but only when specific projections are constantly used. This limitation should be considered by cardiologists during clinical work if this protection is used. In the light of the presented results, the ceiling-suspended transparent lead shield and the lead glasses seem to be the preferred way to reduce the doses to the eye lens, compared to the lead blanket.
Ameqrane, Ilhame; Ilhame, Ameqrane; Wattiez, Nicolas; Nicolas, Wattiez; Pouget, Pierre; Pierre, Pouget; Missal, Marcus; Marcus, Missal
2015-10-01
It has been shown that antagonism of the glutamatergic N-methyl-D-aspartate (NMDA) receptor with subanesthetic doses of ketamine perturbs the perception of elapsed time. Anticipatory eye movements are based on an internal representation of elapsed time. Therefore, the occurrence of anticipatory saccades could be a particularly sensitive indicator of abnormal time perception due to NMDA receptors blockade. The objective of this study was to determine whether the occurrence of anticipatory saccades could be selectively altered by a subanesthetic dose of ketamine. Three Rhesus monkeys were trained in a simple visually guided saccadic task with a variable delay. Monkeys were rewarded for making a visually guided saccade at the end of the delay. Premature anticipatory saccades to the future position of the eccentric target initiated before the end of the delay were not rewarded. A subanesthetic dose of ketamine (0.25 mg/kg) or a saline solution of the same volume was injected i.m. during the task. We found that the injected dose of ketamine did not induce sedation or abnormal behavior. However, in ∼4 min, ketamine induced a strong reduction of the occurrence of anticipatory saccades but did not reduce the occurrence of visually guided saccades. This unexpected reduction of anticipatory saccade occurrence could be interpreted as resulting from an altered use of the perception of elapsed time during the delay period induced by NMDA receptors antagonism.
Patients with Fabry Disease after Enzyme Replacement Therapy Dose Reduction Versus Treatment Switch
Krämer, Johannes; Duning, Thomas; Lenders, Malte; Canaan-Kühl, Sima; Krebs, Alice; González, Hans Guerrero; Sommer, Claudia; Üçeyler, Nurcan; Niemann, Markus; Störk, Stefan; Schelleckes, Michael; Reiermann, Stefanie; Stypmann, Jörg; Brand, Stefan-Martin; Wanner, Christoph; Brand, Eva
2014-01-01
Because of the shortage of agalsidase-beta in 2009, many patients with Fabry disease were treated with lower doses or were switched to agalsidase-alfa. This observational study assessed end-organ damage and clinical symptoms during dose reduction or switch to agalsidase-alfa. A total of 105 adult patients with Fabry disease who had received agalsidase-beta (1.0 mg/kg body weight) for ≥1 year were nonrandomly assigned to continue this treatment regimen (regular-dose group, n=38), receive a reduced dose of 0.3–0.5 mg/kg (dose-reduction group, n=29), or switch to 0.2 mg/kg agalsidase-alfa (switch group) and were followed prospectively for 1 year. We assessed clinical events (death, myocardial infarction, severe arrhythmia, stroke, progression to ESRD); changes in cardiac, renal, and neurologic function; and Fabry-related symptoms (neuropathic pain, hypohidrosis, diarrhea, and disease severity scores). Organ function and Fabry-related symptoms remained stable in the regular-dose group. In contrast, estimated GFR decreased by about 3 ml/min per 1.73 m2 (P=0.01) in the dose-reduction group, and the median albumin-to-creatinine ratio increased from 114 (0–606) mg/g to 216 (0–2062) mg/g (P=0.03) in the switch group. Furthermore, mean Mainz Severity Score Index scores and frequencies of pain attacks, chronic pain, gastrointestinal pain, and diarrhea increased significantly in the dose-reduction and switch groups. In conclusion, patients receiving regular agalsidase-beta dose had a stable disease course, but dose reduction led to worsening of renal function and symptoms. Switching to agalsidase-alfa is safe, but microalbuminuria may progress and Fabry-related symptoms may deteriorate. PMID:24556354
Patients with Fabry disease after enzyme replacement therapy dose reduction versus treatment switch.
Weidemann, Frank; Krämer, Johannes; Duning, Thomas; Lenders, Malte; Canaan-Kühl, Sima; Krebs, Alice; Guerrero González, Hans; Sommer, Claudia; Üçeyler, Nurcan; Niemann, Markus; Störk, Stefan; Schelleckes, Michael; Reiermann, Stefanie; Stypmann, Jörg; Brand, Stefan-Martin; Wanner, Christoph; Brand, Eva
2014-04-01
Because of the shortage of agalsidase-beta in 2009, many patients with Fabry disease were treated with lower doses or were switched to agalsidase-alfa. This observational study assessed end-organ damage and clinical symptoms during dose reduction or switch to agalsidase-alfa. A total of 105 adult patients with Fabry disease who had received agalsidase-beta (1.0 mg/kg body weight) for ≥1 year were nonrandomly assigned to continue this treatment regimen (regular-dose group, n=38), receive a reduced dose of 0.3-0.5 mg/kg (dose-reduction group, n=29), or switch to 0.2 mg/kg agalsidase-alfa (switch group) and were followed prospectively for 1 year. We assessed clinical events (death, myocardial infarction, severe arrhythmia, stroke, progression to ESRD); changes in cardiac, renal, and neurologic function; and Fabry-related symptoms (neuropathic pain, hypohidrosis, diarrhea, and disease severity scores). Organ function and Fabry-related symptoms remained stable in the regular-dose group. In contrast, estimated GFR decreased by about 3 ml/min per 1.73 m(2) (P=0.01) in the dose-reduction group, and the median albumin-to-creatinine ratio increased from 114 (0-606) mg/g to 216 (0-2062) mg/g (P=0.03) in the switch group. Furthermore, mean Mainz Severity Score Index scores and frequencies of pain attacks, chronic pain, gastrointestinal pain, and diarrhea increased significantly in the dose-reduction and switch groups. In conclusion, patients receiving regular agalsidase-beta dose had a stable disease course, but dose reduction led to worsening of renal function and symptoms. Switching to agalsidase-alfa is safe, but microalbuminuria may progress and Fabry-related symptoms may deteriorate.
Sakurai, T; Kawamata, R; Kozai, Y; Kaku, Y; Nakamura, K; Saito, M; Wakao, H; Kashima, I
2010-05-01
The aim of the study was to clarify the change in image quality upon X-ray dose reduction and to re-analyse the possibility of X-ray dose reduction in photostimulable phosphor luminescence (PSPL) X-ray imaging systems. In addition, the study attempted to verify the usefulness of multiobjective frequency processing (MFP) and flexible noise control (FNC) for X-ray dose reduction. Three PSPL X-ray imaging systems were used in this study. Modulation transfer function (MTF), noise equivalent number of quanta (NEQ) and detective quantum efficiency (DQE) were evaluated to compare the basic physical performance of each system. Subjective visual evaluation of diagnostic ability for normal anatomical structures was performed. The NEQ, DQE and diagnostic ability were evaluated at base X-ray dose, and 1/3, 1/10 and 1/20 of the base X-ray dose. The MTF of the systems did not differ significantly. The NEQ and DQE did not necessarily depend on the pixel size of the system. The images from all three systems had a higher diagnostic utility compared with conventional film images at the base and 1/3 X-ray doses. The subjective image quality was better at the base X-ray dose than at 1/3 of the base dose in all systems. The MFP and FNC-processed images had a higher diagnostic utility than the images without MFP and FNC. The use of PSPL imaging systems may allow a reduction in the X-ray dose to one-third of that required for conventional film. It is suggested that MFP and FNC are useful for radiation dose reduction.
Wilson, Sharon M; Prasan, Ananth M; Virdi, Amy; Lassere, Marissa; Ison, Glenn; Ramsay, David R; Weaver, James C
2016-10-10
The aim of this study was to evaluate whether a real-time (RT) colour pictorial radiation dose monitoring system reduces patient skin and total radiation dose during coronary angiography and intervention. Patient demographics, procedural variables and radiation parameters were recorded before and after institution of the RT skin dose recording system. Peak skin dose as well as traditionally available measures of procedural radiation dose were compared. A total of 1,077 consecutive patients underwent coronary angiography, of whom 460 also had PCI. Institution of the RT skin dose recording system resulted in a 22% reduction in peak skin dose after accounting for confounding variables. Radiation dose reduction was most pronounced in those having PCI but was also seen over a range of subgroups including those with prior coronary artery bypass surgery, high BMI, and with radial arterial access. This was associated with a significant reduction in the number of patients placed at risk of skin damage. Similar reductions in parameters reflective of total radiation dose were also demonstrated after institution of RT radiation monitoring. Institution of an RT skin dose recording reduced patient peak skin and total radiation dose during coronary angiography and intervention. Consideration should be given to widespread adoption of this technology.
Kourlaba, Georgia; Dimopoulos, Meletios A; Pectasides, Dimitrios; Skarlos, Dimosthenis V; Gogas, Helen; Pentheroudakis, George; Koutras, Angelos; Fountzilas, George; Maniadakis, Nikos
2015-07-01
The aim of this study was to compare the effectiveness of prophylactic single fixed dose of pegfilgrastim and daily administration of filgrastim on febrile neutropenia (FN), severe neutropenia, treatment delay, and dose reduction in patients with breast cancer receiving dose-dense adjuvant chemotherapy. A retrospective cohort study with 1058 breast cancer patients matched by age and chemotherapy was conducted. The primary endpoints were FN, severe (grade 3, 4) neutropenia, dose reduction (>10 % reduction of the dose planned), and treatment delay (dose given more than 2 days later). Eighteen episodes of FN (3.4%) in the filgrastim group and 23 (4.3%) in the pegfilgrastim group (p = 0.500) were recorded. More than half of the total episodes (27/41) occurred during the first 4 cycles of treatment. Patients who received filgrastim were almost three times more likely to experience a severe neutropenia episode and were significantly more likely to experience a dose reduction (18.5%) compared to those who received pegfilgrastim (10.8%) (p < 0.001). The percentage of patients, who received their planned dose on time, was significantly lower in patients receiving filgrastim (58%) compared to those receiving pegfilgrastim (72.4%, p < 0.001). No significant difference was detected on FN rate between daily administration of filgrastim and single administration of pegfilgrastim. However, patients receiving pegfilgrastim had a significantly lower rate of severe neutropenia, as well as dose reduction and treatment delay, thus, achieving a higher dose density.
Dose reduction and cost-benefit analysis at Japan`s Tokai No. 2 Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humamoto, Hisao; Suzuki, Seishiro; Taniguchi, Kazufumi
1995-03-01
In the Tokai No. 2 power plant of the Japan Atomic Power Company, about 80% of the annual dose equivalent is received during periodic maintenance outages. A project group for dose reduction was organized at the company`s headquarters in 1986; in 1988, they proposed a five-year program to reduce by half the collective dose of 4 person-Sv per normal outage work. To achieve the target dose value, some dose-reduction measures were undertaken, namely, permanent radiation shielding, decontamination, automatic, operating machines, and ALARA organization. As the result, the collective dose from normal outage work was 1.6 person-Sv in 1992, which wasmore » less than the initial target value.« less
Patino, Manuel; Fuentes, Jorge M; Hayano, Koichi; Kambadakone, Avinash R; Uyeda, Jennifer W; Sahani, Dushyant V
2015-02-01
OBJECTIVE. The objective of our study was to compare the performance of three hybrid iterative reconstruction techniques (IRTs) (ASiR, iDose4, SAFIRE) and their respective strengths for image noise reduction on low-dose CT examinations using filtered back projection (FBP) as the standard reference. Also, we compared the performance of these three hybrid IRTs with two model-based IRTs (Veo and IMR) for image noise reduction on low-dose examinations. MATERIALS AND METHODS. An anthropomorphic abdomen phantom was scanned at 100 and 120 kVp and different tube current-exposure time products (25-100 mAs) on three CT systems (for ASiR and Veo, Discovery CT750 HD; for iDose4 and IMR, Brilliance iCT; and for SAFIRE, Somatom Definition Flash). Images were reconstructed using FBP and using IRTs at various strengths. Nine noise measurements (mean ROI size, 423 mm(2)) on extracolonic fat for the different strengths of IRTs were recorded and compared with FBP using ANOVA. Radiation dose, which was measured as the volume CT dose index and dose-length product, was also compared. RESULTS. There were no significant differences in radiation dose and image noise among the scanners when FBP was used (p > 0.05). Gradual image noise reduction was observed with each increasing increment of hybrid IRT strength, with a maximum noise suppression of approximately 50% (48.2-53.9%). Similar noise reduction was achieved on the scanners by applying specific hybrid IRT strengths. Maximum noise reduction was higher on model-based IRTs (68.3-81.1%) than hybrid IRTs (48.2-53.9%) (p < 0.05). CONCLUSION. When constant scanning parameters are used, radiation dose and image noise on FBP are similar for CT scanners made by different manufacturers. Significant image noise reduction is achieved on low-dose CT examinations rendered with IRTs. The image noise on various scanners can be matched by applying specific hybrid IRT strengths. Model-based IRTs attain substantially higher noise reduction than hybrid IRTs irrespective of the radiation dose.
Initial apixaban dosing in patients with atrial fibrillation.
Buchholz, Alexander; Ueberham, Laura; Gorczynska, Kaja; Dinov, Borislav; Hilbert, Sebastian; Dagres, Nikolaos; Husser, Daniela; Hindricks, Gerhard; Bollmann, Andreas
2018-05-01
Apixaban is a non-vitamin K oral anticoagulant approved for prevention of stroke and systemic embolism in patients with nonvalvular atrial fibrillation (AF). Current labeling recommends dose reduction based on patient age, weight, and renal function. The aim of this study was to analyze adherence to current labeling instructions concerning initial apixaban dosing in clinical practice and identify factors associated with inappropriate dose reduction. Patients with AF initiated on apixaban in 2016 were identified in the Heart Center Leipzig database. Records were screened to identify patient characteristics, prescribed apixaban dose, renal function, and further dosing-relevant secondary diagnoses and co-medication. We identified 569 consecutive patients with AF initiated on apixaban. In 301 (52.9%) patients, apixaban was prescribed in standard dose (5 mg b.i.d.) and in 268 (47.1%) in a reduced dose (2.5 mg b.i.d.). Of 268 patients receiving a reduced dose, 163 (60.8%) did not meet labeling criteria for dose reduction. In univariate and multivariate regression analysis, age (OR: 0.736, 95% CI: 0.664-0.816, P < 0.0001), patient weight (OR: 1.120, 95% CI: 1.076-1.166, P < 0.0001), and serum creatinine level (OR: 0.910, 95% CI: 0.881-0.940, P < 0.0001) were independent predictors for apixaban underdosage. In clinical practice, apixaban dosing is frequently inconsistent with labeling. Factors associated with inappropriate dose reduction are age, patient weight, and serum creatinine level, the same factors used as criteria for dose adjustment. However, in underdosed patients, the 3 factors did not meet the criteria for dose reduction. © 2018 Wiley Periodicals, Inc.
Impact of Genetic Ancestry on Outcomes in ECOG-ACRIN-E5103
Schneider, Bryan P.; Shen, Fei; Jiang, Guanglong; O'Neill, Anne; Radovich, Milan; Li, Lang; Gardner, Laura; Lai, Dongbing; Foroud, Tatiana; Sparano, Joseph A.; Sledge, George W.; Miller, Kathy D.
2017-01-01
Purpose Racial disparity in breast cancer outcomes exists between African American and Caucasian women in the United States. We have evaluated the impact of genetically determined ancestry on disparity in efficacy and therapy-induced toxicity for breast cancer patients in the context of a randomized, phase III adjuvant trial. Patients and Methods This study compared outcomes between 386 patients of African ancestry (AA) and 2473 patients of European ancestry (EA) in a randomized, phase III breast cancer trial; ECOG-ACRIN-E5103. The primary efficacy endpoint, invasive disease free survival (DFS) and clinically significant toxicities were compared including: anthracycline-induced congestive heart failure (CHF), taxane-induced peripheral neuropathy (TIPN), and bevacizumab-induced hypertension. Results Overall, AAs had significantly inferior DFS (p=0.002; HR=1.5) compared with EAs. This was significant in the estrogen receptor-positive subgroup (p=0.03); with a similar, non-significant trend for those who had triple negative breast cancer (TNBC; p=0.12). AAs also had significantly more grade 3-4 TIPN (OR=2.9; p=2.4 ×10-11) and grade 3-4 bevacizumab-induced hypertension (OR=1.6; p=0.02), with a trend for more CHF (OR=1.8; p=0.08). AAs had significantly more dose reductions for paclitaxel (p=6.6 ×10-6). In AAs, dose reductions in paclitaxel had a significant negative impact on DFS (p=0.03); whereas in EAs, dose reductions did not impact outcome (p=0.35). Conclusion AAs had inferior DFS with more clinically important toxicities in ECOG-ACRIN-E5103. The altered risk to benefit ratio for adjuvant breast cancer chemotherapy should lead to additional research with the focus centered on the impact of genetic ancestry on both efficacy and toxicity. Strategies to minimize dose reductions for paclitaxel, especially due to TIPN, are warranted for this population. PMID:29333527
Jayasinghe, Sanjay; Menzies, Rob; Chiu, Clayton; Toms, Cindy; Blyth, Christopher C; Krause, Vicki; McIntyre, Peter
2017-01-15
Australia introduced universal 7-valent pneumococcal conjugate vaccine (PCV7) from 2005, replaced by 13-valent PCV (PCV13) in 2011, uniquely among high-income countries giving doses at 2, 4, and 6 months (3 + 0 schedule). Data on impact of a timely 3 + 0 PCV schedule with high coverage are sparse, with none for PCV13. We used national surveillance of invasive pneumococcal disease (IPD) from 2002 for baseline and appropriate later comparison periods to calculate incidence rate ratios (IRRs) by serotype and age using a Poisson model. PCV coverage was assessed from the Australian Childhood Immunisation Register. After 9 years of timely 3-dose PCV coverage of >92%, all-age IPD in Australia almost halved (IRR, 0.53; 95% confidence interval [CI], .50-.57), but differed by PCV era. Reductions in IPD due to vaccine serotypes from PCV7 (IRR, 0.20; CI, .17-.22) were about 2-fold greater than for IPD due to extra serotypes in PCV13 (13v-non7v) in a similar period (IRR, 0.58; CI, .51-.66). Post-PCV13 declines in serotype 19A IPD in persons aged <2 years (IRR, 0.23; CI, .13-.35) and ≥2 years (IRR, 0.35; CI, .28-.44) differed from other 13v-non7v IPD (IRR, 0.73; CI, .35-1.48 for those aged <2 years and IRR, 0.96; CI, .81-1.15 for those ≥2 years). Meningitis due to vaccine serotypes nearly disappeared in children eligible for 3 PCV13 doses. IPD due to non-PCV13 serotypes increased by 30% compared with 76% for non-PCV7 serotypes in equivalent period of vaccine use. Reductions in vaccine-type IPD post-PCV13 were inferior to Australian experience with PCV7 and reports from high-income countries giving a PCV booster dose. Applicability of findings to other settings would depend on age of IPD onset, serotype profile, and timeliness of vaccination. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, X; Kantor, M; Zhu, X
2014-06-01
Purpose: To evaluate the dosimetric accuracy for proton therapy patients with metal implants in CT using metal deletion technique (MDT) artifacts reduction. Methods: Proton dose accuracies under CT metal artifacts were first evaluated using a water phantom with cylindrical inserts of different materials (titanium and steel). Ranges and dose profiles along different beam angles were calculated using treatment planning system (Eclipse version 8.9) on uncorrected CT, MDT CT, and manually-corrected CT, where true Hounsfield units (water) were assigned to the streak artifacts. In patient studies, the treatment plans were developed on manually-corrected CTs, then recalculated on MDT and uncorrected CTs.more » DVH indices were compared between the dose distributions on all the CTs. Results: For water phantom study with 1/2 inch titanium insert, the proton range differences estimated by MDT CT were with 1% for all beam angles, while the range error can be up to 2.6% for uncorrected CT. For the study with 1 inch stainless steel insert, the maximum range error calculated by MDT CT was 1.09% among all the beam angles compared with maximum range error with 4.7% for uncorrected CT. The dose profiles calculated on MDT CTs for both titanium and steel inserts showed very good agreements with the ones calculated on manually-corrected CTs, while large dose discrepancies calculated using uncorrected CTs were observed in the distal end region of the proton beam. The patient study showed similar dose distribution and DVHs for organs near the metal artifacts recalculated on MDT CT compared with the ones calculated on manually-corrected CT, while the differences between uncorrected and corrected CTs were much pronounced. Conclusion: In proton therapy, large dose error could occur due to metal artifact. The MDT CT can be used for proton dose calculation to achieve similar dose accuracy as the current clinical practice using manual correction.« less
NASA Astrophysics Data System (ADS)
Fu, Wanyi; Sturgeon, Gregory M.; Agasthya, Greeshma; Segars, W. Paul; Kapadia, Anuj J.; Samei, Ehsan
2017-03-01
This study aimed to estimate the organ dose reduction potential for organ-dose-based tube current modulated (ODM) thoracic CT with wide dose reduction arc. Twenty-one computational anthropomorphic phantoms (XCAT, age range: 27- 75 years, weight range: 52.0-105.8 kg) were used to create a virtual patient population with clinical anatomic variations. For each phantom, two breast tissue compositions were simulated: 50/50 and 20/80 (glandular-to-adipose ratio). A validated Monte Carlo program was used to estimate the organ dose for standard tube current modulation (TCM) (SmartmA, GE Healthcare) and ODM (GE Healthcare) for a commercial CT scanner (Revolution, GE Healthcare) with explicitly modeled tube current modulation profile, scanner geometry, bowtie filtration, and source spectrum. Organ dose was determined using a typical clinical thoracic CT protocol. Both organ dose and CTDIvol-to-organ dose conversion coefficients (h factors) were compared between TCM and ODM. ODM significantly reduced all radiosensitive organ doses (p<0.01). The breast dose was reduced by 30+/-2%. For h factors, organs in the anterior region (e.g. thyroid, stomach) exhibited substantial decreases, and the medial, distributed, and posterior region either saw an increase or no significant change. The organ-dose-based tube current modulation significantly reduced organ doses especially for radiosensitive superficial anterior organs such as the breasts.
Low vs. higher-dose dark chocolate and blood pressure in cardiovascular high-risk patients.
Desch, Steffen; Kobler, Daniela; Schmidt, Johanna; Sonnabend, Melanie; Adams, Volker; Sareban, Mahdi; Eitel, Ingo; Blüher, Matthias; Schuler, Gerhard; Thiele, Holger
2010-06-01
Dark chocolate may have blood pressure-lowering properties. We conducted a prospective randomized open-label blinded end-point design trial to study a potential dose dependency of the presumed antihypertensive effect of dark chocolate by directly comparing low vs. higher doses of dark chocolate over the course of 3 months. We enrolled a total of 102 patients with prehypertension/stage 1 hypertension and established cardiovascular end-organ damage or diabetes mellitus. Patients were randomly assigned to receive either 6 or 25 g/day of flavanol-rich dark chocolate for 3 months. The difference in 24-h mean blood pressure between groups was defined as the primary outcome measure. Significant reductions in mean ambulatory 24-h blood pressure were observed between baseline and follow-up in both groups (6 g/day: -2.3 mm Hg, 95% confidence interval -4.1 to -0.4; 25 g/day: -1.9 mm Hg, 95% confidence interval -3.6 to -0.2). There were no significant differences in blood pressure changes between groups. In the higher-dose group, a slight increase in body weight was noted (0.8 kg, 95% confidence interval 0.06 to 1.6). The findings are consistent with the hypothesis that dark chocolate may be associated with a reduction in blood pressure (BP). However, due to the lack of a control group, confounding may be possible and the results should be interpreted with caution.
Phenanthrene binding by humic acid-protein complexes as studied by passive dosing technique.
Zhao, Jian; Wang, Zhenyu; Ghosh, Saikat; Xing, Baoshan
2014-01-01
This work investigated the binding behavior of phenanthrene by humic acids (HA-2 and HA-5), proteins (bovine serum albumin (BSA)), lysozyme and pepsin), and their complexes using a passive dosing technique. All sorption isotherms were fitted well with Freundlich model and the binding capability followed an order of HA-5 > HA-2 > BSA > pepsin > lysozyme. In NaCl solution, phenanthrene binding to HA-BSA complexes was much higher than the sum of binding to individual HA and BSA, while there was no enhancement for HA-pepsin. Positively charged lysozyme slightly lowered phenanthrene binding on both HAs due to strong aggregation of HA-lysozyme complexes, leading to reduction in the number of binding sites. The binding enhancement by HA-BSA was observed under all tested ion species and ionic strengths. This enhancement can be explained by unfolding of protein, reduction of aggregate size and formation of HA-BSA complexes with favorable conformations for binding phenanthrene. Copyright © 2013 Elsevier Ltd. All rights reserved.
Growth and quality of soybean sprouts (Glycine max L. Merrill) as affected by gamma irradiation
NASA Astrophysics Data System (ADS)
Yun, Juan; Li, Xihong; Fan, Xuetong; Li, Weili; Jiang, Yuqian
2013-01-01
In this study, soybean seeds and sprouts (Glycine max L. Merrill) were exposed to radiation doses up to 3.0 kGy. The irradiated and non-irradiated seeds were germinated, and then germination rate, sprouts length, vitamin C content, antioxidants and visual and olfactory quality were determined after irradiation. Results indicated that there was no significant difference in the germination rate and sprouts length between the control and 0.3 kGy treated soybeans, however, the reductions in sprouts length of the 1.0 kGy and 3.0 kGy treated samples were quite significant with reductions of 20.4% and 58.8%, respectively. Irradiated sprouts had similar visual and olfactory quality as the non-irradiated one. Therefore, irradiation of seeds alone would have limited value in terms of commercial use due to reduced germination and length of sprouts. However, irradiation of sprouts at doses up to 3.0 kGy was feasible to enhance microbial safety of sprouts.
Radiation dose-reduction strategies in thoracic CT.
Moser, J B; Sheard, S L; Edyvean, S; Vlahos, I
2017-05-01
Modern computed tomography (CT) machines have the capability to perform thoracic CT for a range of clinical indications at increasingly low radiation doses. This article reviews several factors, both technical and patient-related, that can affect radiation dose and discusses current dose-reduction methods relevant to thoracic imaging through a review of current techniques in CT acquisition and image reconstruction. The fine balance between low radiation dose and high image quality is considered throughout, with an emphasis on obtaining diagnostic quality imaging at the lowest achievable radiation dose. The risks of excessive radiation dose reduction are also considered. Inappropriately low dose may result in suboptimal or non-diagnostic imaging that may reduce diagnostic confidence, impair diagnosis, or result in repeat examinations incurring incremental ionising radiation exposure. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Harris, Andrew C.; Pentel, Paul R.; LeSage, Mark G.
2013-01-01
Rationale The ability of tobacco harm reduction strategies to produce significant reductions in toxin exposure is limited by compensatory increases in smoking behavior. Characterizing factors contributing to the marked individual variability in compensation may be useful for understanding this phenomenon and assessing the feasibility of harm reduction interventions. Objective To use an animal model of human compensatory smoking that involves a decrease in unit dose supporting nicotine self-administration (NSA) to examine potential contributors to individual differences in compensation. Methods Rats were trained for NSA during daily 23 hr sessions at a unit dose of 0.06 mg/kg/inf until responding was stable. The unit dose was then reduced to 0.03 mg/kg/inf for at least 10 sessions. Following reacquisition of NSA at the training dose and extinction, single-dose nicotine pharmacokinetic parameters were determined. Results Decreases in nicotine intake following dose reduction were proportionally less than the decrease in unit dose, indicating partial compensation. Compensatory increases in infusion rates were observed across the course of the 23 hr sessions. The magnitude of compensation differed considerably between rats. Rats exhibiting the highest baseline infusion rates exhibited the lowest levels of compensation. Nicotine pharmacokinetic parameters were not significantly correlated with compensation. Infusion rates immediately returned to pre-reduction levels when baseline conditions were restored. Conclusions These findings provide initial insights into correlates of individual differences in compensation following a reduction in nicotine unit dose. The present assay may be useful for characterizing mechanisms and potential consequences of the marked individual differences in compensatory smoking observed in humans. PMID:19475400
Escalation to High-Dose Defibrotide in Patients with Hepatic Veno-Occlusive Disease.
Triplett, Brandon M; Kuttab, Hani I; Kang, Guolian; Leung, Wing
2015-12-01
Hepatic veno-occlusive disease (VOD) is a serious complication of high-dose chemotherapy regimens, such as those used in hematopoietic cell transplantation recipients. Defibrotide is considered a safe and effective treatment when dosed at 25 mg/kg/day. However, patients who develop VOD still have increased mortality despite the use of defibrotide. Data are limited on the use of doses above 60 mg/kg/day for persistent VOD. In this prospective clinical trial 34 patients received escalating doses of defibrotide. For patients with persistent VOD despite doses of 60 mg/kg/day, doses were increased to a maximum of 110 mg/kg/day. Increased toxicity was not observed until doses rose beyond 100 mg/kg/day. Patients receiving doses between 10 and 100 mg/kg/day experienced an average of 3 bleeding episodes per 100 days of treatment, whereas those receiving doses >100 mg/kg/day experienced 13.2 bleeding episodes per 100 days (P = .008). Moreover, dose reductions due to toxicity were needed at doses of 110 mg/kg/day more often than at lower doses. Defibrotide may be safely escalated to doses well above the current standard without an increase in bleeding risk. However, the efficacy of this dose-escalation strategy remains unclear, because outcomes were similar to published cohorts of patients receiving standard doses of defibrotide for VOD. Copyright © 2015 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Zeng, Yaohui; Singh, Sachinkumar; Wang, Kai
2017-01-01
Abstract Pharmacodynamic studies that use methacholine challenge to assess bioequivalence of generic and innovator albuterol formulations are generally designed per published Food and Drug Administration guidance, with 3 reference doses and 1 test dose (3‐by‐1 design). These studies are challenging and expensive to conduct, typically requiring large sample sizes. We proposed 14 modified study designs as alternatives to the Food and Drug Administration–recommended 3‐by‐1 design, hypothesizing that adding reference and/or test doses would reduce sample size and cost. We used Monte Carlo simulation to estimate sample size. Simulation inputs were selected based on published studies and our own experience with this type of trial. We also estimated effects of these modified study designs on study cost. Most of these altered designs reduced sample size and cost relative to the 3‐by‐1 design, some decreasing cost by more than 40%. The most effective single study dose to add was 180 μg of test formulation, which resulted in an estimated 30% relative cost reduction. Adding a single test dose of 90 μg was less effective, producing only a 13% cost reduction. Adding a lone reference dose of either 180, 270, or 360 μg yielded little benefit (less than 10% cost reduction), whereas adding 720 μg resulted in a 19% cost reduction. Of the 14 study design modifications we evaluated, the most effective was addition of both a 90‐μg test dose and a 720‐μg reference dose (42% cost reduction). Combining a 180‐μg test dose and a 720‐μg reference dose produced an estimated 36% cost reduction. PMID:29281130
Wang, Gang; Zhang, Yao; Zhang, Sheng; Chen, Huijing; Xu, Zaifeng; Schottenfeld, Richard S; Hao, Wei; Chawarski, Marek Cezary
2016-03-01
We evaluated tolerability and efficacy of aripiprazole and risperidone for treatment of methamphetamine (METH) associated psychotic symptoms in China. Patients with acute METH-associated psychotic symptoms (N=42) and with Positive and Negative Syndrome Scale (PANSS) total score between 60 and 120 were randomized to aripiprazole (initial dose 5-10mg per day followed by flexible doses 5-15 mg per day) or risperidone (initial dose 2-4 mg per day followed by flexible doses 4-6 mg per day) from day 3 to 25 of inpatient hospital stay. Outcome measures included PANSS and Clinical Global Impressions-Severity of Illness scale (CGI-S), METH craving Visual Analogue Scale (VAS), Simpson Angus Scale (SAS), Barnes Assessments Akathasia Rating Scale (BARS), and self-reported adverse effects evaluated during treatment. Retention was evaluated using Kaplan-Meier survival analysis and the MIXED models procedure was used to compare the groups on measures of psychotic and extra-pyramidal symptoms. Patients in both aripiprazole and risperidone groups showed statistically significant reductions in psychotic symptomatology from baseline during treatment (p<0.001) with no statistically significant differences between the treatment groups (p=0.73 and p=0.15, respectively). Risperidone-treated patients reported significantly greater METH craving reductions (p<0.001). Overall, 71% of patients completed the entire study, but the aripiprazole group had a significantly lower retention than the risperidone group (p=0.007), primarily due to medication related adverse effects. Aripiprazole-treated patients also had significantly more akathisia (p=0.03) and agitation (p=0.02) than risperidone-treated patients. Patients in both groups who tolerated their medications and completed the entire study achieved comparable reductions of psychotic symptoms. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Heng, E-mail: hengli@mdanderson.org; Zhu, X. Ronald; Zhang, Xiaodong
Purpose: To develop and validate a novel delivery strategy for reducing the respiratory motion–induced dose uncertainty of spot-scanning proton therapy. Methods and Materials: The spot delivery sequence was optimized to reduce dose uncertainty. The effectiveness of the delivery sequence optimization was evaluated using measurements and patient simulation. One hundred ninety-one 2-dimensional measurements using different delivery sequences of a single-layer uniform pattern were obtained with a detector array on a 1-dimensional moving platform. Intensity modulated proton therapy plans were generated for 10 lung cancer patients, and dose uncertainties for different delivery sequences were evaluated by simulation. Results: Without delivery sequence optimization,more » the maximum absolute dose error can be up to 97.2% in a single measurement, whereas the optimized delivery sequence results in a maximum absolute dose error of ≤11.8%. In patient simulation, the optimized delivery sequence reduces the mean of fractional maximum absolute dose error compared with the regular delivery sequence by 3.3% to 10.6% (32.5-68.0% relative reduction) for different patients. Conclusions: Optimizing the delivery sequence can reduce dose uncertainty due to respiratory motion in spot-scanning proton therapy, assuming the 4-dimensional CT is a true representation of the patients' breathing patterns.« less
Kim, Soo Hyun; Jung, Seung Eun; Oh, Sang Hoon; Park, Kyu Nam; Youn, Chun Song
2011-11-03
Severely injured trauma patients are exposed to clinically significant radiation doses from computed tomography (CT) imaging in the emergency department. Moreover, this radiation exposure is associated with an increased risk of cancer. The purpose of this study was to determine some effects of a radiation dose reduction strategy for CT in severely injured trauma patients in the emergency department. We implemented the radiation dose reduction strategy in May 2009. A prospective observational study design was used to collect data from patients who met the inclusion criteria during this one year study (intervention group) from May 2009 to April 2010. The prospective data were compared with data collected retrospectively for one year prior to the implementation of the radiation dose reduction strategy (control group). By comparison of the cumulative effective dose and the number of CT examinations in the two groups, we evaluated effects of a radiation dose reduction strategy. All the patients met the institutional adult trauma team activation criteria. The radiation doses calculated by the CT scanner were converted to effective doses by multiplication by a conversion coefficient. A total of 118 patients were included in this study. Among them, 33 were admitted before May 2009 (control group), and 85 were admitted after May 2009 (intervention group). There were no significant differences between the two groups regarding baseline characteristics, such as injury severity and mortality. Additionally, there was no difference between the two groups in the mean number of total CT examinations per patient (4.8 vs. 4.5, respectively; p = 0.227). However, the mean effective dose of the total CT examinations per patient significantly decreased from 78.71 mSv to 29.50 mSv (p < 0.001). The radiation dose reduction strategy for CT in severely injured trauma patients effectively decreased the cumulative effective dose of the total CT examinations in the emergency department. But not effectively decreased the number of CT examinations.
NASA Astrophysics Data System (ADS)
Morgan, Ashraf
The need for an accurate and reliable way for measuring patient dose in multi-row detector computed tomography (MDCT) has increased significantly. This research was focusing on the possibility of measuring CT dose in air to estimate Computed Tomography Dose Index (CTDI) for routine quality control purposes. New elliptic CTDI phantom that better represent human geometry was manufactured for investigating the effect of the subject shape on measured CTDI. Monte Carlo simulation was utilized in order to determine the dose distribution in comparison to the traditional cylindrical CTDI phantom. This research also investigated the effect of Siemens health care newly developed iMAR (iterative metal artifact reduction) algorithm, arthroplasty phantom was designed and manufactured that purpose. The design of new phantoms was part of the research as they mimic the human geometry more than the existing CTDI phantom. The standard CTDI phantom is a right cylinder that does not adequately represent the geometry of the majority of the patient population. Any dose reduction algorithm that is used during patient scan will not be utilized when scanning the CTDI phantom, so a better-designed phantom will allow the use of dose reduction algorithms when measuring dose, which leads to better dose estimation and/or better understanding of dose delivery. Doses from a standard CTDI phantom and the newly-designed phantoms were compared to doses measured in air. Iterative reconstruction is a promising technique in MDCT dose reduction and artifacts correction. Iterative reconstruction algorithms have been developed to address specific imaging tasks as is the case with Iterative Metal Artifact Reduction or iMAR which was developed by Siemens and is to be in use with the companys future computed tomography platform. The goal of iMAR is to reduce metal artifact when imaging patients with metal implants and recover CT number of tissues adjacent to the implant. This research evaluated iMAR capability of recovering CT numbers and reducing noise. Also, the use of iMAR should allow using lower tube voltage instead of 140 KVp which is used frequently to image patients with shoulder implants. The evaluations of image quality and dose reduction were carried out using an arthroplasty phantom.
Landes, Reid D.; Lensing, Shelly Y.; Kodell, Ralph L.; Hauer-Jensen, Martin
2014-01-01
The dose of a substance that causes death in P% of a population is called an LDP, where LD stands for lethal dose. In radiation research, a common LDP of interest is the radiation dose that kills 50% of the population by a specified time, i.e., lethal dose 50 or LD50. When comparing LD50 between two populations, relative potency is the parameter of interest. In radiation research, this is commonly known as the dose reduction factor (DRF). Unfortunately, statistical inference on dose reduction factor is seldom reported. We illustrate how to calculate confidence intervals for dose reduction factor, which may then be used for statistical inference. Further, most dose reduction factor experiments use hundreds, rather than tens of animals. Through better dosing strategies and the use of a recently available sample size formula, we also show how animal numbers may be reduced while maintaining high statistical power. The illustrations center on realistic examples comparing LD50 values between a radiation countermeasure group and a radiation-only control. We also provide easy-to-use spreadsheets for sample size calculations and confidence interval calculations, as well as SAS® and R code for the latter. PMID:24164553
Influence of dose on particle size and optical properties of colloidal platinum nanoparticles.
Gharibshahi, Elham; Saion, Elias
2012-11-12
Attempts to produce colloidal platinum nanoparticles by using steady absorption spectra with various chemical-based reduction methods often resulted in the fast disappearance of the absorption maxima leaving reduced platinum nanoparticles with little information on their optical properties. We synthesized colloidal platinum nanoparticles in an aqueous solution of polyvinyl pyrrolidone by gamma radiolytic reduction method, which produced steady absorption spectra of fully reduced and highly pure platinum nanoparticles free from by-product impurities or reducing agent contamination. The average particle size was found to be in the range of 3.4–5.3 nm and decreased with increasing dose due to the domination of nucleation over ion association in the formation of metal nanoparticles by the gamma radiolytic reduction method. The platinum nanoparticles exhibit optical absorption spectra with two absorption peaks centered at about 216 and 264 nm and the peaks blue shifted to lower wavelengths with decreasing particle size. The absorption spectra of platinum nanoparticles were also calculated using quantum mechanical treatment and coincidently a good agreement was obtained between the calculated and measured absorption peaks at various particle sizes. This indicates that the 216 and 264-nm absorption peaks of platinum nanoparticles conceivably originated from the intra-band transitions of conduction electrons of (n = 5, l = 2) and (n = 6, l = 0) energy states respectively to higher energy states. The absorption energies, i.e., conduction band energies of platinum nanoparticles derived from the absorption peaks increased with increasing dose and decreased with increasing particle size.
Influence of Dose on Particle Size and Optical Properties of Colloidal Platinum Nanoparticles
Gharibshahi, Elham; Saion, Elias
2012-01-01
Attempts to produce colloidal platinum nanoparticles by using steady absorption spectra with various chemical-based reduction methods often resulted in the fast disappearance of the absorption maxima leaving reduced platinum nanoparticles with little information on their optical properties. We synthesized colloidal platinum nanoparticles in an aqueous solution of polyvinyl pyrrolidone by gamma radiolytic reduction method, which produced steady absorption spectra of fully reduced and highly pure platinum nanoparticles free from by-product impurities or reducing agent contamination. The average particle size was found to be in the range of 3.4–5.3 nm and decreased with increasing dose due to the domination of nucleation over ion association in the formation of metal nanoparticles by the gamma radiolytic reduction method. The platinum nanoparticles exhibit optical absorption spectra with two absorption peaks centered at about 216 and 264 nm and the peaks blue shifted to lower wavelengths with decreasing particle size. The absorption spectra of platinum nanoparticles were also calculated using quantum mechanical treatment and coincidently a good agreement was obtained between the calculated and measured absorption peaks at various particle sizes. This indicates that the 216 and 264-nm absorption peaks of platinum nanoparticles conceivably originated from the intra-band transitions of conduction electrons of (n = 5, l = 2) and (n = 6, l = 0) energy states respectively to higher energy states. The absorption energies, i.e., conduction band energies of platinum nanoparticles derived from the absorption peaks increased with increasing dose and decreased with increasing particle size. PMID:23203091
Naito, Wataru; Uesaka, Motoki; Yamada, Chie; Kurosawa, Tadahiro; Yasutaka, Tetsuo; Ishii, Hideki
2016-01-01
The accident at Fukushima Daiichi Nuclear Power Plant on March 11, 2011, released radioactive material into the atmosphere and contaminated the land in Fukushima and several neighboring prefectures. Five years after the nuclear disaster, the radiation levels have greatly decreased due to physical decay, weathering, and decontamination operations in Fukushima. The populations of 12 communities were forced to evacuate after the accident; as of March 2016, the evacuation order has been lifted in only a limited area, and permanent habitation is still prohibited in most of the areas. In order for the government to lift the evacuation order and for individuals to return to their original residential areas, it is important to assess current and future realistic individual external doses. Here, we used personal dosimeters along with the Global Positioning System and Geographic Information System to understand realistic individual external doses and to relate individual external doses, ambient doses, and activity-patterns of individuals in the affected areas in Fukushima. The results showed that the additional individual external doses were well correlated to the additional ambient doses based on the airborne monitoring survey. The results of linear regression analysis suggested that the additional individual external doses were on average about one-fifth that of the additional ambient doses. The reduction factors, which are defined as the ratios of the additional individual external doses to the additional ambient doses, were calculated to be on average 0.14 and 0.32 for time spent at home and outdoors, respectively. Analysis of the contribution of various activity patterns to the total individual external dose demonstrated good agreement with the average fraction of time spent daily in each activity, but the contribution due to being outdoors varied widely. These results are a valuable contribution to understanding realistic individual external doses and the corresponding airborne monitoring-based ambient doses and time-activity patterns of individuals. Moreover, the results provide important information for predicting future cumulative doses after the return of residents to evacuation order areas in Fukushima.
Kurosawa, Tadahiro; Yasutaka, Tetsuo; Ishii, Hideki
2016-01-01
The accident at Fukushima Daiichi Nuclear Power Plant on March 11, 2011, released radioactive material into the atmosphere and contaminated the land in Fukushima and several neighboring prefectures. Five years after the nuclear disaster, the radiation levels have greatly decreased due to physical decay, weathering, and decontamination operations in Fukushima. The populations of 12 communities were forced to evacuate after the accident; as of March 2016, the evacuation order has been lifted in only a limited area, and permanent habitation is still prohibited in most of the areas. In order for the government to lift the evacuation order and for individuals to return to their original residential areas, it is important to assess current and future realistic individual external doses. Here, we used personal dosimeters along with the Global Positioning System and Geographic Information System to understand realistic individual external doses and to relate individual external doses, ambient doses, and activity-patterns of individuals in the affected areas in Fukushima. The results showed that the additional individual external doses were well correlated to the additional ambient doses based on the airborne monitoring survey. The results of linear regression analysis suggested that the additional individual external doses were on average about one-fifth that of the additional ambient doses. The reduction factors, which are defined as the ratios of the additional individual external doses to the additional ambient doses, were calculated to be on average 0.14 and 0.32 for time spent at home and outdoors, respectively. Analysis of the contribution of various activity patterns to the total individual external dose demonstrated good agreement with the average fraction of time spent daily in each activity, but the contribution due to being outdoors varied widely. These results are a valuable contribution to understanding realistic individual external doses and the corresponding airborne monitoring-based ambient doses and time-activity patterns of individuals. Moreover, the results provide important information for predicting future cumulative doses after the return of residents to evacuation order areas in Fukushima. PMID:27494021
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, J; Followill, D; Howell, R
2015-06-15
Purpose: To investigate two strategies for reducing dose calculation errors near metal implants: use of CT metal artifact reduction methods and implementation of metal-based energy deposition kernels in the convolution/superposition (C/S) method. Methods: Radiochromic film was used to measure the dose upstream and downstream of titanium and Cerrobend implants. To assess the dosimetric impact of metal artifact reduction methods, dose calculations were performed using baseline, uncorrected images and metal artifact reduction Methods: Philips O-MAR, GE’s monochromatic gemstone spectral imaging (GSI) using dual-energy CT, and GSI imaging with metal artifact reduction software applied (MARs).To assess the impact of metal kernels, titaniummore » and silver kernels were implemented into a commercial collapsed cone C/S algorithm. Results: The CT artifact reduction methods were more successful for titanium than Cerrobend. Interestingly, for beams traversing the metal implant, we found that errors in the dimensions of the metal in the CT images were more important for dose calculation accuracy than reduction of imaging artifacts. The MARs algorithm caused a distortion in the shape of the titanium implant that substantially worsened the calculation accuracy. In comparison to water kernel dose calculations, metal kernels resulted in better modeling of the increased backscatter dose at the upstream interface but decreased accuracy directly downstream of the metal. We also found that the success of metal kernels was dependent on dose grid size, with smaller calculation voxels giving better accuracy. Conclusion: Our study yielded mixed results, with neither the metal artifact reduction methods nor the metal kernels being globally effective at improving dose calculation accuracy. However, some successes were observed. The MARs algorithm decreased errors downstream of Cerrobend by a factor of two, and metal kernels resulted in more accurate backscatter dose upstream of metals. Thus, these two strategies do have the potential to improve accuracy for patients with metal implants in certain scenarios. This work was supported by Public Health Service grants CA 180803 and CA 10953 awarded by the National Cancer Institute, United States of Health and Human Services, and in part by Mobius Medical Systems.« less
Smith, Daniel L.; Robertson, Henry; Desmond, Renee; Nagy, Tim R.; Allison, David B.
2010-01-01
Objective The health and longevity effects of body weight reduction resulting from exercise and caloric restriction in rodents are well known, but less is known about whether similar effects occur with weight reduction from the use of a pharmaceutical agent such as sibutramine, a serotonin-norepinephrine reuptake inhibitor. Results & Conclusion Using data from a two-year toxicology study of sibutramine in CD rats and CD-1 mice, despite a dose-dependent reduction in food intake and body weight in rats compared to controls, and a body weight reduction in mice at the highest dose, there was no compelling evidence for reductions in mortality rate. PMID:21079617
DOE Office of Scientific and Technical Information (OSTI.GOV)
Podonsky, Glenn S.
The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2012 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protectionmore » of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. Over the past 5-year period, the occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site. As an indicator of the overall amount of radiation dose received during the conduct of operations at DOE, the report includes information on collective total effective dose (TED). The TED is comprised of the effective dose (ED) from external sources, which includes neutron and photon radiation, and the internal committed effective dose (CED), which results from the intake of radioactive material into the body. The collective ED from photon exposure decreased by 23% between 2011 and 2012, while the neutron dose increased by 5%. The internal dose components of the collective TED decreased by 7%. Over the past 5-year period, 99.99% of the individuals receiving measurable TED have received doses below the 2 roentgen equivalent in man (rems) (20 millisievert [mSv]) TED administrative control level (ACL), which is well below the DOE regulatory limit of 5 rems (50 mSv) TED annually. The occupational radiation exposure records show that in 2012, DOE facilities continued to comply with DOE dose limits and ACLs and worked to minimize exposure to individuals. The DOE collective TED decreased 17.1% from 2011 to 2012. The collective TED decreased at three of the five sites with the largest collective TED. u Idaho Site – Collective dose reductions were achieved as a result of continuing improvements at the Advanced Mixed Waste Treatment Project (AMWTP) through the planning of drum movements that reduced the number of times a container is handled; placement of waste containers that created highradiation areas in a centralized location; and increased worker awareness of high-dose rate areas. In addition, Idaho had the largest decrease in the total number of workers with measurable TED (1,143 fewer workers). u Hanford Site (Hanford) – An overall reduction of decontamination and decommissioning (D&D) activities at the Plutonium Finishing Plant (PFP) and Transuranic (TRU) retrieval activities resulted in collective dose reductions. u Savannah River Site (SRS) – Reductions were achieved through ALARA initiatives employed site wide. The Solid Waste Management Facility used extended specialty tools, cameras and lead shield walls to facilitate removal of drums. These tools and techniques reduce exposure time through improved efficiency, increase distance from the source of radiation by remote monitoring, shield the workers to lower the dose rate, and reduce the potential for contamination and release of material through repacking of waste. Overall, from 2011 to 2012, there was a 19% decrease in the number of workers with measurable dose. Furthermore, due to a slight decrease in both the DOE workforce (7%) and monitored workers (10%), the ratio of workers with measurable doses to monitored workers decreased to 13%. Another primary indicator of the level of radiation exposure covered in this report is the average measurable dose, which normalizes the collective dose over the population of workers who actually received a measurable dose. The average measurable TED increased by 3% from 2011 to 2012. Additional analyses show that the dose distribution in 2012 was similar to the distribution in 2011. In 2012, 13% of the monitored workers received a measurable TED and the average measurable TED, 0.069 rem, was less than 2% of the DOE limit. From 2011 to 2012, the collective TED and the number of individuals with measurable TED decreased 17.1% and 19%, respectively. These decreases were mainly due to an overall reduction of D&D activities at the PFP and TRU retrieval activities at Hanford; a 78% decrease in the number of targeted waste drums that were processed at the Idaho Site’s Accelerated Retrieval Project (ARP) from 5,566 drums in 2011 to a total of 1,211 drums processed in 2012; and ALARA initiatives employed site wide at SRS. In addition, the decreases were the result of decreased American Recovery and Reinvestment Act (ARRA) activities and continuing D&D, particularly at the DOE sites that comprise the majority of DOE collective dose. Over the past 5 years, the size of the monitored workforce has remained at a fairly stable level (within 12%), while the collective dose has varied up to 37%. No reported doses exceeded the DOE occupational limit of 5 rems TED in 2012 and no reported doses exceeded the DOE ACL of 2 rems TED.« less
Sources of deactivation during glycerol conversion on Ni/γ-Al 2 O 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chimentão, R. J.; Miranda, B. C.; Szanyi, J.
Hydrogenolysis of glycerol was studied using a diluted aqueous solution of glycerol in gas phase and atmospheric pressure on Ni/γ-Al2O3 catalyst. The catalytic transformation of glycerol generates products derived from dehydration, dehydrogenation, hydrogenolysis and condensation reactions. Deep hydrogenolysis route to produce CH4 prevails in the first few hours of reaction. As the reaction time progress, dehydration-dehydrogenation products start to appear. Here, a description of the deactivation sources and its effects on the catalytic performance of Ni catalyst was proposed. The catalyst was characterized before and after the catalytic reaction by high-resolution transmission electron microscopy (HRTEM) and by employing Fourier transformedmore » infrared spectroscopy (FTIR) of adsorbed CO. A source of deactivation was due to carbonaceous deposition. FTIR at low CO dosing pressure reveal bands assignments species essentially due to linear and bridge carbonyls, whereas high pressure CO dosing produces a complex spectra due to polycarbonyls. X-ray absorption near edge structure (XANES) analysis was employed to reveal the initial degree of reduction of the fresh catalyst. The oxidation of metallic Ni in the course of reaction may also be considered as a source of deactivation. Ni oxide species promote dehydration routes. Alumina support facilitates nickel species to be more active toward interacting with glycerol. Dehydration, which takes place on the acid sites, is the mainly route related to the generation of carbon deposition and to the observed catalyst deactivation. Another source of deactivation was due to carbiding of Ni to form Ni3C. The regeneration of used Ni catalyst was achieved by oxidation-reduction steps at 723 K.« less
NASA Astrophysics Data System (ADS)
Liu, Junchi; Zarshenas, Amin; Qadir, Ammar; Wei, Zheng; Yang, Limin; Fajardo, Laurie; Suzuki, Kenji
2018-03-01
To reduce cumulative radiation exposure and lifetime risks for radiation-induced cancer from breast cancer screening, we developed a deep-learning-based supervised image-processing technique called neural network convolution (NNC) for radiation dose reduction in DBT. NNC employed patched-based neural network regression in a convolutional manner to convert lower-dose (LD) to higher-dose (HD) tomosynthesis images. We trained our NNC with quarter-dose (25% of the standard dose: 12 mAs at 32 kVp) raw projection images and corresponding "teaching" higher-dose (HD) images (200% of the standard dose: 99 mAs at 32 kVp) of a breast cadaver phantom acquired with a DBT system (Selenia Dimensions, Hologic, CA). Once trained, NNC no longer requires HD images. It converts new LD images to images that look like HD images; thus the term "virtual" HD (VHD) images. We reconstructed tomosynthesis slices on a research DBT system. To determine a dose reduction rate, we acquired 4 studies of another test phantom at 4 different radiation doses (1.35, 2.7, 4.04, and 5.39 mGy entrance dose). Structural SIMilarity (SSIM) index was used to evaluate the image quality. For testing, we collected half-dose (50% of the standard dose: 32+/-14 mAs at 33+/-5 kVp) and full-dose (standard dose: 68+/-23 mAs at 33+/-5 kvp) images of 10 clinical cases with the DBT system at University of Iowa Hospitals and Clinics. NNC converted half-dose DBT images of 10 clinical cases to VHD DBT images that were equivalent to full dose DBT images. Our cadaver phantom experiment demonstrated 79% dose reduction.
Testosterone Dose Dependently Prevents Bone and Muscle Loss in Rodents after Spinal Cord Injury
Conover, Christine F.; Beggs, Luke A.; Beck, Darren T.; Otzel, Dana M.; Balaez, Alexander; Combs, Sarah M.; Miller, Julie R.; Ye, Fan; Aguirre, J. Ignacio; Neuville, Kathleen G.; Williams, Alyssa A.; Conrad, Bryan P.; Gregory, Chris M.; Wronski, Thomas J.; Bose, Prodip K.; Borst, Stephen E.
2014-01-01
Abstract Androgen administration protects against musculoskeletal deficits in models of sex-steroid deficiency and injury/disuse. It remains unknown, however, whether testosterone prevents bone loss accompanying spinal cord injury (SCI), a condition that results in a near universal occurrence of osteoporosis. Our primary purpose was to determine whether testosterone-enanthate (TE) attenuates hindlimb bone loss in a rodent moderate/severe contusion SCI model. Forty (n=10/group), 14 week old male Sprague-Dawley rats were randomized to receive: (1) Sham surgery (T9 laminectomy), (2) moderate/severe (250 kdyne) SCI, (3) SCI+Low-dose TE (2.0 mg/week), or (4) SCI+High-dose TE (7.0 mg/week). Twenty-one days post-injury, SCI animals exhibited a 77–85% reduction in hindlimb cancellous bone volume at the distal femur (measured via μCT) and proximal tibia (measured via histomorphometry), characterized by a >70% reduction in trabecular number, 13–27% reduction in trabecular thickness, and increased trabecular separation. A 57% reduction in cancellous volumetric bone mineral density (vBMD) at the distal femur and a 20% reduction in vBMD at the femoral neck were also observed. TE dose dependently prevented hindlimb bone loss after SCI, with high-dose TE fully preserving cancellous bone structural characteristics and vBMD at all skeletal sites examined. Animals receiving SCI also exhibited a 35% reduction in hindlimb weight bearing (triceps surae) muscle mass and a 22% reduction in sublesional non-weight bearing (levator ani/bulbocavernosus [LABC]) muscle mass, and reduced prostate mass. Both TE doses fully preserved LABC mass, while only high-dose TE ameliorated hindlimb muscle losses. TE also dose dependently increased prostate mass. Our findings provide the first evidence indicating that high-dose TE fully prevents hindlimb cancellous bone loss and concomitantly ameliorates muscle loss after SCI, while low-dose TE produces much less profound musculoskeletal benefit. Testosterone-induced prostate enlargement, however, represents a potential barrier to the clinical implementation of high-dose TE as a means of preserving musculoskeletal tissue after SCI. PMID:24378197
NASA Astrophysics Data System (ADS)
Kumar Dixit, Amit; Kumar, Vineet; Rani, Anita; Manjaya, J. G.; Bhatnagar, Deepak
2011-04-01
Three soybean genotypes Kalitur, Hara soya and NRC37 with black, green and yellow seed coat color, respectively, were gamma irradiated at 0.5, 2.0 and 5.0 kGy and tested for antinutritional and nutritional factors. Gamma irradiation at all doses reduced the level of lipoxygenase isomers, trypsin inhibitor (TI) and ascorbic acid in all the 3 soybean genotypes as compared to the unirradiated control. However, irradiation dose of 5.0 kGy increased the sucrose content of the soybean genotypes. No significant change was observed in oil, protein fatty acids and total tocopherol content of the 3 genotypes at any irradiation dose. It is suggested that inhibition of lipoxygenase, reduction in TI and ascorbic acid may be due to the breakage or oxidation of protein structure by the gamma irradiation. Similarly, gamma irradiation at higher doses may break glycosidic linkages in oligosaccharides to produce more sucrose and decrease the content of flatulence causing oligosaccharides.
SU-F-J-132: Evaluation of CTV-To-PTV Expansion for Whole Breast Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgdorf, B; Freedman, G; Teo, B
2016-06-15
Purpose: The current standard CTV-to-PTV expansion for whole breast radiotherapy (WBRT) is 7mm, as recommended by RTOG-1005.This expansion is derived from the uncertainty due to patient positioning (±5mm) and respiratory motion (±5mm). We evaluated the expansion needed for respiratory motion uncertainty using 4DCT. After determining the appropriate expansion margins, RT plans were generated to evaluate the reduction in heart and lung dose. Methods: 4DCT images were acquired during treatment simulation and retrospectively analyzed for 34 WBRT patients. Breast CTVs were contoured on the maximum inhale and exhale phase. Breast CTV displacement was measured in the L-R, A-P, and SUP-INF directionsmore » using rigid registration between phase images. Averaging over the 34 patients, we determined the margin due to respiratory motion. Plans were generated for 10 left-sided cases comparing the new expansion with the 7mm PTV expansion. Results: The results for respiratory motion uncertainty are shown in Table 1. Drawing on previous work by White et al at Princess Margaret Hospital (1) (see supporting document for reference) which studied the uncertainty due to patient positioning, we concluded that, in total, a 5mm expansion was sufficient. The results for our suggested PTV margin are shown in Table 2, combining the patient positioning results from White et al with our respiratory motion results. The planning results demonstrating the heart and lung dose differences in the 5mm CTV-to-PTV expanded plan compared to the 7mm plan are shown in Table 3. Conclusion: Our work evaluating the expansion needed for respiratory motion along with previous work evaluating the expansion needed for setup uncertainty shows that a CTV-to-PTV expansion of 5mm is acceptable and conservative. By reducing the PTV expansion, significant dose reduction to the heart and lung are achievable.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez-Ovalle, S. A.; Barquero, R.; Gomez-Ros, J. M.
Purpose: To calculate absorbed doses due to neutrons in 87 organs/tissues for anthropomorphic phantoms, irradiated in position supine (head first into the gantry) with orientations anteroposterior (AP) and right-left (RLAT) with a 18 MV accelerator. Conversion factors from monitor units to {mu}Gy per neutron in organs, equivalent doses in organs/tissues, and effective doses, which permit to quantify stochastic risks, are estimated. Methods: MAX06 and FAX06 phantoms were modeled with MCNPX and irradiated with a 18 MV Varian Clinac 2100C/D accelerator whose geometry included a multileaf collimator. Two actual fields of a pelvic treatment were simulated using electron-photon-neutron coupled transport. Absorbedmore » doses due to neutrons were estimated from kerma. Equivalent doses were estimated using the radiation weighting factor corresponding to an average incident neutron energy 0.47 MeV. Statistical uncertainties associated to absorbed doses, as calculated by MCNPX, were also obtained. Results: Largest doses were absorbed in shallowest (with respect to the neutron pathway) organs. In {mu}GyMU{sup -1}, values of 2.66 (for penis) and 2.33 (for testes) were found in MAX06, and 1.68 (for breasts), 1.05 (for lenses of eyes), and 0.94 (for sublingual salivary glands) in FAX06, in AP orientation. In RLAT, the largest doses were found for bone tissues (leg) just at the entrance of the beam in the body (right side in our case). Values, in {mu}GyMU{sup -1}, of 1.09 in upper leg bone right spongiosa, for MAX06, and 0.63 in mandible spongiosa, for FAX06, were found. Except for gonads, liver, and stomach wall, equivalent doses found for FAX06 were, in both orientations, higher than for MAX06. Equivalent doses in AP are higher than in RLAT for all organs/tissues other than brain and liver. Effective doses of 12.6 and 4.1 {mu}SvMU{sup -1} were found for AP and RLAT, respectively. The organs/tissues with larger relative contributions to the effective dose were testes and breasts, in AP, and breasts and red marrow, in RLAT. Equivalent and effective doses obtained for MAX06/FAX06 were smaller (between 2 and 20 times) than those quoted for the mathematical phantoms ADAM/EVA in ICRP-74. Conclusions: The new calculations of conversion coefficients for neutron irradiation in AP and RLAT irradiation geometries show a reduction in the values of effective dose by factors 7 (AP) and 6 (RLAT) with respect to the old data obtained with mathematical phantoms. The existence of tissues or anatomical regions with maximum absorbed doses, such as penis, lens of eyes, fascia (part of connective tissue), etc., organs/tissues that classic mathematical phantoms did not include because they were not considered for the study of stochastic effects, has been revealed. Absorbed doses due to photons, obtained following the same simulation methodology, are larger than those due to neutrons, reaching values 100 times larger as the primary beam is approached. However, for organs far from the treated volume, absorbed photon doses can be up to three times smaller than neutron ones. Calculations using voxel phantoms permitted to know the organ dose conversion coefficients per MU due to secondary neutrons in the complete anatomy of a patient.« less
Chihara, Kazuo; Shimatsu, Akira; Kato, Yuzuru; Kohno, Hitoshi; Tanaka, Toshiaki; Takano, Kazue; Irie, Minoru
2006-12-01
Both Japanese and Caucasian adults with GH deficiency (GHD) have pronounced abdominal obesity, which is associated with increased risk of cardiovascular complications. We investigated the effects of GH treatment in 27 adult Japanese GHD patients, 15 with adult onset (AO) and 12 with childhood onset (CO) GHD. Patients initially received GH titrated to 0.012 mg/kg/day for 24 weeks in a double-blind design and the dose was then individualized for each patient according to IGF-I for a further 24 weeks. Dual-energy x-ray absorptiometry (DXA) data were evaluated for percentages of trunk fat, total body fat and lean body mass. Serum IGF-I and lipid concentrations were determined at a central laboratory. There were 25 patients who completed 48 weeks of treatment, with 7, 6 and 12 patients then receiving GH at 0.003, 0.006 and 0.012 mg/kg/day, respectively. With the reductions in dose when individualized between weeks 24 and 48, mean serum IGF-I level was reduced and excessively high values, observed in AO patients on the fixed GH dose, were no longer seen. The decrease from baseline in trunk fat was similar at week 24 (-3.8 +/- 3.3%, p<0.001) and week 48 (-3.1 +/- 3.7%, p<0.001), and the difference between changes was not significant. Total cholesterol was decreased from baseline by -24 +/- 28 mg/dl (p<0.001) at week 24 and -17 +/- 28 mg/dl (p = 0.007) at week 48. Two patients had elevated HbA1c levels: one continued GH treatment after a dose reduction and the other discontinued due to persistent impaired glucose tolerance. Therefore, excessively high IGF-I levels can be avoided by individualized dosing during long-term GH treatment. Individualized dosing maintains the decrease in abdominal fat in adult Japanese GHD patients and should reduce the cardiovascular risk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fourkal, E; Hossain, M; Veltchev, I
2014-06-01
Purpose: The linear-quadratic model is the most prevalent model for planning dose fractionation in radiation therapy in the low dose per fraction regimens. However for high-dose fractions, used in SRS/SBRT/HDR treatments the LQ model does not yield accurate predictions, due to neglecting the reduction in the number of sublethal lesions as a result of their conversion to lethal lesions with subsequent irradiation. Proper accounting for this reduction in the number of sublethally damaged lesions leads to the dependence of the survival fraction on the temporal structure of the dose. The main objective of this work is to show that themore » functional dependence of the dose rate on time in each voxel is an important additional factor that can significantly influence the TCP. Methods: Two SBRT lung plans have been used to calculate the TCPs for the same patient. One plan is a 3D conformal plan and the other is an IMRT plan. Both plans are normalized so that 99.5% of PTV volume receives the same prescription dose of 50 Gy in 5 fractions. The dose rate in each individual voxel is calculated as a function of treatment time and subsequently used in the calculation of TCP. Results: The calculated TCPs show that shorter delivery times lead to greater TCP, despite all delivery times being short compared to the repair half-time for sublethal lesions. Furthermore, calculated TCP(IMRT) =0.308 for the IMRT plan is smaller than TCP(3D) =0.425 for 3D conformal, even though it shows greater tumor hot spots and equal PTV coverage. The calculated TCPs are considerably lower compared to those based on the LQ model for which TCP=1 for both plans. Conclusion: The functional dependence of the voxel-by-voxel dose rate on time may be an important factor in predicting the treatment outcome and cannot be neglected in radiobiological modeling.« less
Noël, Peter B; Engels, Stephan; Köhler, Thomas; Muenzel, Daniela; Franz, Daniela; Rasper, Michael; Rummeny, Ernst J; Dobritz, Martin; Fingerle, Alexander A
2018-01-01
Background The explosive growth of computer tomography (CT) has led to a growing public health concern about patient and population radiation dose. A recently introduced technique for dose reduction, which can be combined with tube-current modulation, over-beam reduction, and organ-specific dose reduction, is iterative reconstruction (IR). Purpose To evaluate the quality, at different radiation dose levels, of three reconstruction algorithms for diagnostics of patients with proven liver metastases under tumor follow-up. Material and Methods A total of 40 thorax-abdomen-pelvis CT examinations acquired from 20 patients in a tumor follow-up were included. All patients were imaged using the standard-dose and a specific low-dose CT protocol. Reconstructed slices were generated by using three different reconstruction algorithms: a classical filtered back projection (FBP); a first-generation iterative noise-reduction algorithm (iDose4); and a next generation model-based IR algorithm (IMR). Results The overall detection of liver lesions tended to be higher with the IMR algorithm than with FBP or iDose4. The IMR dataset at standard dose yielded the highest overall detectability, while the low-dose FBP dataset showed the lowest detectability. For the low-dose protocols, a significantly improved detectability of the liver lesion can be reported compared to FBP or iDose 4 ( P = 0.01). The radiation dose decreased by an approximate factor of 5 between the standard-dose and the low-dose protocol. Conclusion The latest generation of IR algorithms significantly improved the diagnostic image quality and provided virtually noise-free images for ultra-low-dose CT imaging.
Analysis of esophageal-sparing treatment plans for patients with high-grade esophagitis.
Niedzielski, Joshua; Bluett, Jaques B; Williamson, Ryan T; Liao, Zhongxing; Gomez, Daniel R; Court, Laurence E
2013-07-08
We retrospectively generated IMRT plans for 14 NSCLC patients who had experienced grade 2 or 3 esophagitis (CTCAE version 3.0). We generated 11-beam and reduced esophagus dose plan types to compare changes in the volume and length of esophagus receiving doses of 50, 55, 60, 65, and 70 Gy. Changes in planning target volume (PTV) dose coverage were also compared. If necessary, plans were renormalized to restore 95% PTV coverage. The critical organ doses examined were mean lung dose, mean heart dose, and volume of spinal cord receiving 50 Gy. The effect of interfractional motion was determined by applying a three-dimensional rigid shift to the dose grid. For the esophagus plan, the mean reduction in esophagus V50, V55, V60, V65, and V70 Gy was 2.8, 4.1, 5.9, 7.3, and 9.5 cm(3), respectively, compared with the clinical plan. The mean reductions in LE50, LE55, LE60, LE65, and LE70 Gy were 2.0, 3.0, 3.8, 4.0, and 4.6 cm, respectively. The mean heart and lung dose decreased 3.0 Gy and 2.4 Gy, respectively. The mean decreases in 90% and 95% PTV coverage were 1.7 Gy and 2.8 Gy, respectively. The normalized plans' mean reduction of esophagus V50, V55, V60, V65, and V70 Gy were 1.6, 2.0, 2.9, 3.9, and 5.5 cm(3), respectively, compared with the clinical plans. The normalized plans' mean reductions in LE50, LE55, LE60, LE65, and LE70 Gy were 4.9, 5.2, 5.4, 4.9, and 4.8 cm, respectively. The mean reduction in maximum esophagus dose with simulated interfractional motion was 3.0 Gy and 1.4 Gy for the clinical plan type and the esophagus plan type, respectively. In many cases, the esophagus dose can be greatly reduced while maintaining critical structure dose constraints. PTV coverage can be restored by increasing beam output, while still obtaining a dose reduction to the esophagus and maintaining dose constraints.
Analysis of esophageal‐sparing treatment plans for patients with high‐grade esophagitis
Bluett, Jaques B.; Williamson, Ryan T.; Liao, Zhongxing; Gomez, Daniel R.; Court, Laurence E.
2013-01-01
We retrospectively generated IMRT plans for 14 NSCLC patients who had experienced grade 2 or 3 esophagitis (CTCAE version 3.0). We generated 11‐beam and reduced esophagus dose plan types to compare changes in the volume and length of esophagus receiving doses of 50, 55, 60, 65, and 70 Gy. Changes in planning target volume (PTV) dose coverage were also compared. If necessary, plans were renormalized to restore 95% PTV coverage. The critical organ doses examined were mean lung dose, mean heart dose, and volume of spinal cord receiving 50 Gy. The effect of interfractional motion was determined by applying a three‐dimensional rigid shift to the dose grid. For the esophagus plan, the mean reduction in esophagus V50, V55, V60, V65, and V70 Gy was 2.8, 4.1, 5.9, 7.3, and 9.5 cm3, respectively, compared with the clinical plan. The mean reductions in LE50, LE55, LE60, LE65, and LE70 Gy were 2.0, 3.0, 3.8, 4.0, and 4.6 cm, respectively. The mean heart and lung dose decreased 3.0 Gy and 2.4 Gy, respectively. The mean decreases in 90% and 95% PTV coverage were 1.7 Gy and 2.8 Gy, respectively. The normalized plans’ mean reduction of esophagus V50, V55, V60, V65, and V70 Gy were 1.6, 2.0, 2.9, 3.9, and 5.5 cm3, respectively, compared with the clinical plans. The normalized plans’ mean reductions in LE50, LE55, LE60, LE65, and LE70 Gy were 4.9, 5.2, 5.4, 4.9, and 4.8 cm, respectively. The mean reduction in maximum esophagus dose with simulated interfractional motion was 3.0 Gy and 1.4 Gy for the clinical plan type and the esophagus plan type, respectively. In many cases, the esophagus dose can be greatly reduced while maintaining critical structure dose constraints. PTV coverage can be restored by increasing beam output, while still obtaining a dose reduction to the esophagus and maintaining dose constraints. PACS number: 87.53 Tf PMID:23835390
NASA Astrophysics Data System (ADS)
Omar, Artur; Benmakhlouf, Hamza; Marteinsdottir, Maria; Bujila, Robert; Nowik, Patrik; Andreo, Pedro
2014-03-01
Complex interventional and diagnostic x-ray angiographic (XA) procedures may yield patient skin doses exceeding the threshold for radiation induced skin injuries. Skin dose is conventionally determined by converting the incident air kerma free-in-air into entrance surface air kerma, a process that requires the use of backscatter factors. Subsequently, the entrance surface air kerma is converted into skin kerma using mass energy-absorption coefficient ratios tissue-to-air, which for the photon energies used in XA is identical to the skin dose. The purpose of this work was to investigate how the cranial bone affects backscatter factors for the dosimetry of interventional neuroradiology procedures. The PENELOPE Monte Carlo system was used to calculate backscatter factors at the entrance surface of a spherical and a cubic water phantom that includes a cranial bone layer. The simulations were performed for different clinical x-ray spectra, field sizes, and thicknesses of the bone layer. The results show a reduction of up to 15% when a cranial bone layer is included in the simulations, compared with conventional backscatter factors calculated for a homogeneous water phantom. The reduction increases for thicker bone layers, softer incident beam qualities, and larger field sizes, indicating that, due to the increased photoelectric crosssection of cranial bone compared to water, the bone layer acts primarily as an absorber of low-energy photons. For neurointerventional radiology procedures, backscatter factors calculated at the entrance surface of a water phantom containing a cranial bone layer increase the accuracy of the skin dose determination.
Method for simulating dose reduction in digital mammography using the Anscombe transformation.
Borges, Lucas R; Oliveira, Helder C R de; Nunes, Polyana F; Bakic, Predrag R; Maidment, Andrew D A; Vieira, Marcelo A C
2016-06-01
This work proposes an accurate method for simulating dose reduction in digital mammography starting from a clinical image acquired with a standard dose. The method developed in this work consists of scaling a mammogram acquired at the standard radiation dose and adding signal-dependent noise. The algorithm accounts for specific issues relevant in digital mammography images, such as anisotropic noise, spatial variations in pixel gain, and the effect of dose reduction on the detective quantum efficiency. The scaling process takes into account the linearity of the system and the offset of the detector elements. The inserted noise is obtained by acquiring images of a flat-field phantom at the standard radiation dose and at the simulated dose. Using the Anscombe transformation, a relationship is created between the calculated noise mask and the scaled image, resulting in a clinical mammogram with the same noise and gray level characteristics as an image acquired at the lower-radiation dose. The performance of the proposed algorithm was validated using real images acquired with an anthropomorphic breast phantom at four different doses, with five exposures for each dose and 256 nonoverlapping ROIs extracted from each image and with uniform images. The authors simulated lower-dose images and compared these with the real images. The authors evaluated the similarity between the normalized noise power spectrum (NNPS) and power spectrum (PS) of simulated images and real images acquired with the same dose. The maximum relative error was less than 2.5% for every ROI. The added noise was also evaluated by measuring the local variance in the real and simulated images. The relative average error for the local variance was smaller than 1%. A new method is proposed for simulating dose reduction in clinical mammograms. In this method, the dependency between image noise and image signal is addressed using a novel application of the Anscombe transformation. NNPS, PS, and local noise metrics confirm that this method is capable of precisely simulating various dose reductions.
Varrassi, Giustino; Hanna, Magdi; Macheras, Giorgos; Montero, Antonio; Montes Perez, Antonio; Meissner, Winfried; Perrot, Serge; Scarpignato, Carmelo
2017-06-01
Untreated and under-treated pain represent one of the most pervasive health problems, which is worsening as the population ages and accrues risk for pain. Multiple treatment options are available, most of which have one mechanism of action, and cannot be prescribed at unlimited doses due to the ceiling of efficacy and/or safety concerns. Another limitation of single-agent analgesia is that, in general, pain is due to multiple causes. Combining drugs from different classes, with different and complementary mechanism(s) of action, provides a better opportunity for effective analgesia at reduced doses of individual agents. Therefore, there is a potential reduction of adverse events, often dose-related. Analgesic combinations are recommended by several organizations and are used in clinical practice. Provided the two agents are combined in a fixed-dose ratio, the resulting medication may offer advantages over extemporaneous combinations. Dexketoprofen/tramadol (25 mg/75 mg) is a new oral fixed-dose combination offering a comprehensive multimodal approach to moderate-to-severe acute pain that encompasses central analgesic action, peripheral analgesic effect and anti-inflammatory activity, together with a good tolerability profile. The analgesic efficacy of dexketoprofen/tramadol combination is complemented by a favorable pharmacokinetic and pharmacodynamic profile, characterized by rapid onset and long duration of action. This has been well documented in both somatic- and visceral-pain human models. This review discusses the available clinical evidence and the future possible applications of dexketoprofen/tramadol fixed-dose combination that may play an important role in the management of moderate-to-severe acute pain.
NASA Astrophysics Data System (ADS)
Zhao, Cong; Zhong, Yuncheng; Duan, Xinhui; Zhang, You; Huang, Xiaokun; Wang, Jing; Jin, Mingwu
2018-06-01
Four-dimensional (4D) x-ray cone-beam computed tomography (CBCT) is important for a precise radiation therapy for lung cancer. Due to the repeated use and 4D acquisition over a course of radiotherapy, the radiation dose becomes a concern. Meanwhile, the scatter contamination in CBCT deteriorates image quality for treatment tasks. In this work, we propose the use of a moving blocker (MB) during the 4D CBCT acquisition (‘4D MB’) and to combine motion-compensated reconstruction to address these two issues simultaneously. In 4D MB CBCT, the moving blocker reduces the x-ray flux passing through the patient and collects the scatter information in the blocked region at the same time. The scatter signal is estimated from the blocked region for correction. Even though the number of projection views and projection data in each view are not complete for conventional reconstruction, 4D reconstruction with a total-variation (TV) constraint and a motion-compensated temporal constraint can utilize both spatial gradient sparsity and temporal correlations among different phases to overcome the missing data problem. The feasibility simulation studies using the 4D NCAT phantom showed that 4D MB with motion-compensated reconstruction with 1/3 imaging dose reduction could produce satisfactory images and achieve 37% improvement on structural similarity (SSIM) index and 55% improvement on root mean square error (RMSE), compared to 4D reconstruction at the regular imaging dose without scatter correction. For the same 4D MB data, 4D reconstruction outperformed 3D TV reconstruction by 28% on SSIM and 34% on RMSE. A study of synthetic patient data also demonstrated the potential of 4D MB to reduce the radiation dose by 1/3 without compromising the image quality. This work paves the way for more comprehensive studies to investigate the dose reduction limit offered by this novel 4D MB method using physical phantom experiments and real patient data based on clinical relevant metrics.
Zhao, Cong; Zhong, Yuncheng; Duan, Xinhui; Zhang, You; Huang, Xiaokun; Wang, Jing; Jin, Mingwu
2018-05-03
Four-dimensional (4D) X-ray cone-beam computed tomography (CBCT) is important for a precise radiation therapy for lung cancer. Due to the repeated use and 4D acquisition over a course of radiotherapy, the radiation dose becomes a concern. Meanwhile, the scatter contamination in CBCT deteriorates image quality for treatment tasks. In this work, we propose to use a moving blocker (MB) during the 4D CBCT acquisition ("4D MB") and to combine motion-compensated reconstruction to address these two issues simultaneously. In 4D MB CBCT, the moving blocker reduces the X-ray flux passing through the patient and collects the scatter information in the blocked region at the same time. The scatter signal is estimated from the blocked region for correction. Even though the number of projection views and projection data in each view are not complete for conventional reconstruction, 4D reconstruction with a total-variation (TV) constraint and a motion-compensated temporal constraint can utilize both spatial gradient sparsity and temporal correlations among different phases to overcome the missing data problem. The feasibility simulation studies using the 4D NCAT phantom showed that 4D MB with motion-compensated reconstruction with 1/3 imaging dose reduction could produce satisfactory images and achieve 37% improvement on structural similarity (SSIM) index and 55% improvement on root mean square error (RMSE), compared to 4D reconstruction at the regular imaging dose without scatter correction. For the same 4D MB data, 4D reconstruction outperformed 3D TV reconstruction by 28% on SSIM and 34% on RMSE. A study of synthetic patient data also demonstrated the potential of 4D MB to reduce the radiation dose by 1/3 without compromising the image quality. This work paves the way for more comprehensive studies to investigate the dose reduction limit offered by this novel 4D MB method using physical phantom experiments and real patient data based on clinical relevant metrics. © 2018 Institute of Physics and Engineering in Medicine.
Brady, Samuel L; Moore, Bria M; Yee, Brian S; Kaufman, Robert A
2014-01-01
To determine a comprehensive method for the implementation of adaptive statistical iterative reconstruction (ASIR) for maximal radiation dose reduction in pediatric computed tomography (CT) without changing the magnitude of noise in the reconstructed image or the contrast-to-noise ratio (CNR) in the patient. The institutional review board waived the need to obtain informed consent for this HIPAA-compliant quality analysis. Chest and abdominopelvic CT images obtained before ASIR implementation (183 patient examinations; mean patient age, 8.8 years ± 6.2 [standard deviation]; range, 1 month to 27 years) were analyzed for image noise and CNR. These measurements were used in conjunction with noise models derived from anthropomorphic phantoms to establish new beam current-modulated CT parameters to implement 40% ASIR at 120 and 100 kVp without changing noise texture or magnitude. Image noise was assessed in images obtained after ASIR implementation (492 patient examinations; mean patient age, 7.6 years ± 5.4; range, 2 months to 28 years) the same way it was assessed in the pre-ASIR analysis. Dose reduction was determined by comparing size-specific dose estimates in the pre- and post-ASIR patient cohorts. Data were analyzed with paired t tests. With 40% ASIR implementation, the average relative dose reduction for chest CT was 39% (2.7/4.4 mGy), with a maximum reduction of 72% (5.3/18.8 mGy). The average relative dose reduction for abdominopelvic CT was 29% (4.8/6.8 mGy), with a maximum reduction of 64% (7.6/20.9 mGy). Beam current modulation was unnecessary for patients weighing 40 kg or less. The difference between 0% and 40% ASIR noise magnitude was less than 1 HU, with statistically nonsignificant increases in patient CNR at 100 kVp of 8% (15.3/14.2; P = .41) for chest CT and 13% (7.8/6.8; P = .40) for abdominopelvic CT. Radiation dose reduction at pediatric CT was achieved when 40% ASIR was implemented as a dose reduction tool only; no net change to the magnitude of noise in the reconstructed image or the patient CNR occurred. © RSNA, 2013.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, H; Alqathami, M; Wang, J
Purpose: To compare novel radiation reporting systems utilizing ferric ion (Fe{sup 3+}) reduction versus ferrous ion (Fe{sup 2+}) oxidation in gelatin matrixes for 3D and 4D (3D+time) MR-guided radiation therapy dosimetry. Methods: Dosimeters were irradiated using an integrated 1.5T MRI and 7MV linear accelerator (MR-Linac). Dosimeters were read-out with both a spectrophotometer and the MRI component of the MR-Linac immediately after irradiation. Changes in optical density (OD) were measured using a spectrophotometer; changes in MR signal intensity due to the paramagnetic differences in the iron ions were measured using the MR-Linac in real-time during irradiation (balanced-FFE sequences) and immediately aftermore » irradiation (T{sub 1}-weighted and inversion recovery sequences). Results: Irradiation of Fe{sup 3+} reduction dosimeters resulted in a stable red color with an absorbance peak at 512 nm. The change in OD relative to dose exhibited a linear response up to 100 Gy (R{sup 2}=1.00). T{sub 1}-weighted-MR signal intensity (SI) changed minimally after irradiation with increases of 8.0% for 17 Gy and 9.7% after escalation to 35 Gy compared to the un-irradiated region. Irradiation of Fe{sup 2+} oxidation dosimeters resulted in a stable purple color with absorbance peaks at 440 and 585 nm. The changes in OD, T{sub 1}-weighted-MR SI, and R{sub 1} relative to dose exhibited a linear response up to at least 8 Gy (R{sup 2}=1.00, 0.98, and 0.99) with OD saturation above 40 Gy. The T{sub 1}-weighted-MR SI increased 50.3% for 17 Gy compared to the un-irradiated region. The change in SI was observed in both 2D+time and 4D (3D+time) acquisitions post-irradiation and in real-time during irradiation with a linear increase with respect to dose (R{sup 2}>0.93). Conclusion: The Fe{sup 2+} oxidation-based system was superior as 4D dosimeters for MR-guided radiation therapy due to its higher sensitivity in both optical and MR signal readout and feasibility for real-time 4D dose readout. The Fe{sup 3+} reduction system is recommended for high dose applications. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. LH-102SPS.« less
Singh, Aditya Abha; Agrawal, S B; Shahi, J P; Agrawal, Madhoolika
2014-02-01
Rapid industrialization and economic developments have increased the tropospheric ozone (O3) budget since preindustrial times, and presently, it is supposed to be a major threat to crop productivity. Maize (Zea mays L.), a C4 plant is the third most important staple crop at global level with a great deal of economic importance. The present study was conducted to evaluate the performance of two maize cultivars [HQPM1: quality protein maize (QPM)] and [DHM117: nonquality protein maize (NQPM)] to variable O3 doses. Experimental setup included filtered chambers, nonfiltered chambers (NFC), and two elevated doses of O3 viz. NFC+15 ppb O3 (NFC+15) and NFC+30 ppb O3 (NFC+30). During initial growth period, both QPM and NQPM plants showed hormetic effect that is beneficial due to exposure of low doses of a toxicant (NFC and NFC+15 ppb O3), but at later stages, growth attributes were negatively affected by O3. Growth indices showed the variable pattern of photosynthate translocation under O3 stress. Foliar injury in the form of interveinal chlorosis and reddening of leaves due to increased production of anthocyanin pigments was observed at higher concentrations of O3. One-dimensional gel electrophoresis of leaves taken from NFC+30 showed reductions of major photosynthetic proteins, and differential response was observed between the two test cultivars. Decline in the number of male flowers at elevated O3 doses suggested damaging effect of O3 on reproductive structures which might be a cause of productivity losses. Variable carbon allocation pattern particularly to husk leaves, foliar injury, and damage of photosynthetic proteins led to significant reductions in economic yield at higher O3 doses. PCA showed that both the cultivars responded more or less similarly to O3 stress in their respective groupings of growth and yield parameters, but magnitude of their response was variable. It is further supported by difference in the significance of correlations between variables of yield and AOT40. Cultivar response reflects that QPM performed better than NQPM against elevated O3.
Dwivedi, Kshama; Kumar, Girjesh
2015-01-01
We have performed the present piece of work to evaluate the effect of synthetic food coloring azo dye (sunset yellow) on actively dividing root tip cells of Brassica campestris L. Three doses of azo dye were administered for the treatment of actively dividing root tip cells, namely, 1%, 3%, and 5%, for 6-hour duration along with control. Mitotic analysis clearly revealed the azo dye induced endpoint deviation like reduction in the frequency of normal divisions in a dose dependent manner. Mitotic divisions in the control sets were found to be perfectly normal while dose based reduction in MI was registered in the treated sets. Azo dye has induced several chromosomal aberrations (genotoxic effect) at various stages of cell cycle such as stickiness of chromosomes, micronuclei formation, precocious migration of chromosome, unorientation, forward movement of chromosome, laggards, and chromatin bridge. Among all, stickiness of chromosomes was present in the highest frequency followed by partial genome elimination as micronuclei. The present study suggests that extensive use of synthetic dye should be forbidden due to genotoxic and cytotoxic impacts on living cells. Thus, there is an urgent need to assess potential hazardous effects of these dyes on other test systems like human and nonhuman biota for better scrutiny.
Dwivedi, Kshama; Kumar, Girjesh
2015-01-01
We have performed the present piece of work to evaluate the effect of synthetic food coloring azo dye (sunset yellow) on actively dividing root tip cells of Brassica campestris L. Three doses of azo dye were administered for the treatment of actively dividing root tip cells, namely, 1%, 3%, and 5%, for 6-hour duration along with control. Mitotic analysis clearly revealed the azo dye induced endpoint deviation like reduction in the frequency of normal divisions in a dose dependent manner. Mitotic divisions in the control sets were found to be perfectly normal while dose based reduction in MI was registered in the treated sets. Azo dye has induced several chromosomal aberrations (genotoxic effect) at various stages of cell cycle such as stickiness of chromosomes, micronuclei formation, precocious migration of chromosome, unorientation, forward movement of chromosome, laggards, and chromatin bridge. Among all, stickiness of chromosomes was present in the highest frequency followed by partial genome elimination as micronuclei. The present study suggests that extensive use of synthetic dye should be forbidden due to genotoxic and cytotoxic impacts on living cells. Thus, there is an urgent need to assess potential hazardous effects of these dyes on other test systems like human and nonhuman biota for better scrutiny. PMID:25954313
ANI/MAELU engineering inspection criteria 8.3 ALARA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, L.
1995-03-01
The purpose of this criteria section is to provide guidelines for programs whose intent is to achieve occupational doses and doses to members of the public that are as low as is reasonably achievable (ALARA). The success that has been achieved by applying ALARA concepts at nuclear power plants is clearly illustrated by the major reductions in the annual cumulative dose to workers at many sites over the last few years. This success is the combined result of the general maturity of the nuclear industry, the intensive study of dose reduction practices by industry groups, and the successful sharing ofmore » experience and practices among plants. Source term reduction should be used as a primary ALARA mechanism. Methods which should be considered include: satellite and cobalt reduction, chemistry control, decontamination, submicron filters, zinc addition, hot spot reduction and permanent or temporary shielding.« less
Zeng, Yaohui; Singh, Sachinkumar; Wang, Kai; Ahrens, Richard C
2018-04-01
Pharmacodynamic studies that use methacholine challenge to assess bioequivalence of generic and innovator albuterol formulations are generally designed per published Food and Drug Administration guidance, with 3 reference doses and 1 test dose (3-by-1 design). These studies are challenging and expensive to conduct, typically requiring large sample sizes. We proposed 14 modified study designs as alternatives to the Food and Drug Administration-recommended 3-by-1 design, hypothesizing that adding reference and/or test doses would reduce sample size and cost. We used Monte Carlo simulation to estimate sample size. Simulation inputs were selected based on published studies and our own experience with this type of trial. We also estimated effects of these modified study designs on study cost. Most of these altered designs reduced sample size and cost relative to the 3-by-1 design, some decreasing cost by more than 40%. The most effective single study dose to add was 180 μg of test formulation, which resulted in an estimated 30% relative cost reduction. Adding a single test dose of 90 μg was less effective, producing only a 13% cost reduction. Adding a lone reference dose of either 180, 270, or 360 μg yielded little benefit (less than 10% cost reduction), whereas adding 720 μg resulted in a 19% cost reduction. Of the 14 study design modifications we evaluated, the most effective was addition of both a 90-μg test dose and a 720-μg reference dose (42% cost reduction). Combining a 180-μg test dose and a 720-μg reference dose produced an estimated 36% cost reduction. © 2017, The Authors. The Journal of Clinical Pharmacology published by Wiley Periodicals, Inc. on behalf of American College of Clinical Pharmacology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Taeho; Reardon, Kelli; Sukovich, Kaitlyn
Purpose: A 7.4% increase in major coronary events per 1 Gy increase in mean heart dose has been reported from the population-based analysis of radiation-induced cardiac toxicity following treatment of left sided breast cancer. Deep inhalation breath-hold (DIBH) is clinically utilized to reduce radiation dose to heart and left anterior descending artery (LAD). We investigated the correlation of dose sparing in heart and LAD with internal DIBH amplitude to develop a quantitative predictive model for expected dose to heart and LAD based on internal breath hold amplitude. Methods: A treatment planning study (Prescription Dose = 50 Gy) was performed onmore » 50 left breast cancer patients underwent DIBH whole breast radiotherapy. Two CT datasets, free breathing (FB) and DIBH, were utilized for treatment planning and for determination of the internal anatomy DIBH amplitude (difference between sternum position at FB and DIBH). The heart and LAD dose between FB and DIBH plans was compared and dose to the heart and LAD as a function of breath hold amplitude was determined. Results: Average DIBH amplitude using internal anatomy was 13.9±4.2 mm. The DIBH amplitude-mean dose reduction correlation is 20%/5mm (0.3 Gy/5mm) for the heart and 18%/5mm (1.1 Gy/5mm) for LAD. The correlation with max dose reduction is 12%/5mm (3.8 Gy/5mm) for the heart and 16%/5mm (3.2 Gy/5mm) for LAD. We found that average dose reductions to LAD from 6.0±6.5 Gy to 2.0±1.6 Gy with DIBH (4.0 Gy reduction: -67%, p < 0.001) and average dose reduction to the heart from 1.3±0.7 Gy to 0.7±0.2 Gy with DIBH (0.6 Gy reduction: -46%, p < 0.001). That suggests using DIBH may reduce the risk of the major coronary event for left sided breast cancer patients. Conclusion: The correlation between breath hold amplitude and dosimetric sparing suggests that dose sparing linearly increases with internal DIBH amplitude.« less
Gatidis, Sergios; Würslin, Christian; Seith, Ferdinand; Schäfer, Jürgen F; la Fougère, Christian; Nikolaou, Konstantin; Schwenzer, Nina F; Schmidt, Holger
2016-01-01
Optimization of tracer dose regimes in positron emission tomography (PET) imaging is a trade-off between diagnostic image quality and radiation exposure. The challenge lies in defining minimal tracer doses that still result in sufficient diagnostic image quality. In order to find such minimal doses, it would be useful to simulate tracer dose reduction as this would enable to study the effects of tracer dose reduction on image quality in single patients without repeated injections of different amounts of tracer. The aim of our study was to introduce and validate a method for simulation of low-dose PET images enabling direct comparison of different tracer doses in single patients and under constant influencing factors. (18)F-fluoride PET data were acquired on a combined PET/magnetic resonance imaging (MRI) scanner. PET data were stored together with the temporal information of the occurrence of single events (list-mode format). A predefined proportion of PET events were then randomly deleted resulting in undersampled PET data. These data sets were subsequently reconstructed resulting in simulated low-dose PET images (retrospective undersampling of list-mode data). This approach was validated in phantom experiments by visual inspection and by comparison of PET quality metrics contrast recovery coefficient (CRC), background-variability (BV) and signal-to-noise ratio (SNR) of measured and simulated PET images for different activity concentrations. In addition, reduced-dose PET images of a clinical (18)F-FDG PET dataset were simulated using the proposed approach. (18)F-PET image quality degraded with decreasing activity concentrations with comparable visual image characteristics in measured and in corresponding simulated PET images. This result was confirmed by quantification of image quality metrics. CRC, SNR and BV showed concordant behavior with decreasing activity concentrations for measured and for corresponding simulated PET images. Simulation of dose-reduced datasets based on clinical (18)F-FDG PET data demonstrated the clinical applicability of the proposed data. Simulation of PET tracer dose reduction is possible with retrospective undersampling of list-mode data. Resulting simulated low-dose images have equivalent characteristics with PET images actually measured at lower doses and can be used to derive optimal tracer dose regimes.
Han, Jeonghoon; Won, Eun-Ji; Lee, Bo-Young; Hwang, Un-Ki; Kim, Il-Chan; Yim, Joung Han; Leung, Kenneth Mei Yee; Lee, Yong Sung; Lee, Jae-Seong
2014-07-01
Nuclear radioisotope accidents are potentially ecologically devastating due to their impact on marine organisms. To examine the effects of exposure of a marine organism to radioisotopes, we irradiated the intertidal copepod Tigriopus japonicus with several doses of gamma radiation and analyzed the effects on mortality, fecundity, and molting by assessing antioxidant enzyme activities and gene expression patterns. No mortality was observed at 96h, even in response to exposure to a high dose (800Gy) of radiation, but mortality rate was significantly increased 120h (5 days) after exposure to 600 or 800Gy gamma ray radiation. We observed a dose-dependent reduction in fecundity of ovigerous females; even the group irradiated with 50Gy showed a significant reduction in fecundity, suggesting that gamma rays are likely to have a population level effect. In addition, we observed growth retardation, particularly at the nauplius stage, in individuals after gamma irradiation. In fact, nauplii irradiated with more than 200Gy, though able to molt to copepodite stage 1, did not develop into adults. Upon gamma radiation, T. japonicus showed a dose-dependent increase in reactive oxygen species (ROS) levels, the activities of several antioxidant enzymes, and expression of double-stranded DNA break damage genes (e.g. DNA-PK, Ku70, Ku80). At a low level (sub-lethal dose) of gamma irradiation, we found dose-dependent upregulation of p53, implying cellular damage in T. japonicus in response to sub-lethal doses of gamma irradiation, suggesting that T. japonicus is not susceptible to sub-lethal doses of gamma irradiation. Additionally, antioxidant genes, phase II enzyme (e.g. GSTs), and cellular chaperone genes (e.g. Hsps) that are involved in cellular defense mechanisms also showed the same expression patterns for sublethal doses of gamma irradiation (50-200Gy). These findings indicate that sublethal doses of gamma radiation can induce oxidative stress-mediated DNA damage and increase the expression of antioxidant enzymes and proteins with chaperone-related functions, thereby significantly affecting life history parameters such as fecundity and molting in the copepod T. japonicus. Copyright © 2014 Elsevier B.V. All rights reserved.
The effect of a paraffin screen on the neutron dose at the maze door of a 15 MV linear accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krmar, M.; Kuzmanović, A.; Nikolić, D.
2013-08-15
Purpose: The purpose of this study was to explore the effects of a paraffin screen located at various positions in the maze on the neutron dose equivalent at the maze door.Methods: The neutron dose equivalent was measured at the maze door of a room containing a 15 MV linear accelerator for x-ray therapy. Measurements were performed for several positions of the paraffin screen covering only 27.5% of the cross-sectional area of the maze. The neutron dose equivalent was also measured at all screen positions. Two simple models of the neutron source were considered in which the first assumed that themore » source was the cross-sectional area at the inner entrance of the maze, radiating neutrons in an isotropic manner. In the second model the reduction in the neutron dose equivalent at the maze door due to the paraffin screen was considered to be a function of the mean values of the neutron fluence and energy at the screen.Results: The results of this study indicate that the equivalent dose at the maze door was reduced by a factor of 3 through the use of a paraffin screen that was placed inside the maze. It was also determined that the contributions to the dosage from areas that were not covered by the paraffin screen as viewed from the dosimeter, were 2.5 times higher than the contributions from the covered areas. This study also concluded that the contributions of the maze walls, ceiling, and floor to the total neutron dose equivalent were an order of magnitude lower than those from the surface at the far end of the maze.Conclusions: This study demonstrated that a paraffin screen could be used to reduce the neutron dose equivalent at the maze door by a factor of 3. This paper also found that the reduction of the neutron dose equivalent was a linear function of the area covered by the maze screen and that the decrease in the dose at the maze door could be modeled as an exponential function of the product φ·E at the screen.« less
Segovia, Javier; Gerosa, Gino; Almenar, Luis; Livi, Ugolino; Viganò, Mario; Arizón, Jose Maria; Yonan, Nizar; Di Salvo, Thomas G; Renlund, Dale G; Kobashigawa, Jon A
2008-01-01
Mycophenolic acid (MPA) dose reduction is associated with increased risk of rejection and graft loss in renal transplantation. This analysis investigated the impact of MPA dose changes with enteric-coated mycophenolate sodium (EC-MPS) or mycophenolate mofetil (MMF) in de novo heart transplant recipients. In a 12-month, single-blind trial, 154 patients (EC-MPS, 78; MMF, 76) were randomized to either EC-MPS (1080 mg bid) or MMF (1500 mg bid) in combination with cyclosporine and steroids. The primary efficacy variable was the incidence of treatment failure, comprising a composite of biopsy-proven (BPAR) and treated acute rejection, graft loss or death. Significantly fewer patients receiving EC-MPS required > or =2 dose reductions than patients on MMF (26.9% vs. 42.1% of patients, p = 0.048). Accordingly, the average daily dose of EC-MPS as a percentage of the recommended dose was significantly higher than for MMF (88.4% vs. 79.0%, p = 0.016). Among patients requiring > or =1 dose reduction, the incidence of treated BPAR grade > or =3A was significantly lower with EC-MPS compared with MMF (23.4% vs. 44.0%, p = 0.032). These data suggest that EC-MPS-treated heart transplant patients are less likely to require multiple dose reductions than those on MMF which may be associated with a significantly lower risk of treated BPAR > or =3A.
SU-F-J-48: Effect of Scan Length On Magnitude of Imaging Dose in KV CBCT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deshpande, S; Naidu, S; Sutar, A
Purpose: To study effect of scan length on magnitude of imaging dose deposition in Varian kV CBCT for head & neck and pelvis CBCT. Methods: To study effect of scan length we measured imaging dose at depth of 8 cm for head and neck Cone Beam Computed Tomography (CBCT) acquisition ( X ray beam energy is used 100kV and 200 degree of gantry rotation) and at 16 cm depth for pelvis CBCT acquisition ( X ray beam energy used is 125 kV and 360 degree of gantry rotation) in specially designed phantom. We used farmer chamber which was calibrated inmore » kV X ray range for measurements .Dose was measured with default field size, and reducing field size along y direction to 10 cm and 5 cm. Results: As the energy of the beam decreases the scattered radiation increases and this contributes significantly to the dose deposited in the patient. By reducing the scan length to 10 Cm from default 20.6 cm we found a dose reduction of 14% for head and neck CBCT protocol and a reduction of 26% for pelvis CBCT protocol. Similarly for a scan length of 5cm compared to default the dose reduction in head and neck CBCT protocol is 36% while in the pelvis CBCT protocol the dose reduction is 50%. Conclusion: By limiting the scan length we can control the scatter radiation generated and hence the dose to the patient. However the variation in dose reduction for same length used in two protocols is because of the scan geometry. The pelvis CBCT protocol uses a full rotation and head and neck CBCT protocol uses partial rotation.« less
Gariani, Joanna; Martin, Steve P; Botsikas, Diomidis; Becker, Christoph D; Montet, Xavier
2018-06-14
To compare radiation dose and image quality of thoracoabdominal scans obtained with a high-pitch protocol (pitch 3.2) and iterative reconstruction (Sinogram Affirmed Iterative Reconstruction) in comparison to standard pitch reconstructed with filtered back projection (FBP) using dual source CT. 114 CT scans (Somatom Definition Flash, Siemens Healthineers, Erlangen, Germany), 39 thoracic scans, 54 thoracoabdominal scans and 21 abdominal scans were performed. Analysis of three protocols was undertaken; pitch of 1 reconstructed with FBP, pitch of 3.2 reconstructed with SAFIRE, pitch of 3.2 with stellar detectors reconstructed with SAFIRE. Objective and subjective image analysis were performed. Dose differences of the protocols used were compared. Dose was reduced when comparing scans with a pitch of 1 reconstructed with FBP to high-pitch scans with a pitch of 3.2 reconstructed with SAFIRE with a reduction of volume CT dose index of 75% for thoracic scans, 64% for thoracoabdominal scans and 67% for abdominal scans. There was a further reduction after the implementation of stellar detectors reflected in a reduction of 36% of the dose-length product for thoracic scans. This was not at the detriment of image quality, contrast-to-noise ratio, signal-to-noise ratio and the qualitative image analysis revealed a superior image quality in the high-pitch protocols. The combination of a high pitch protocol with iterative reconstruction allows significant dose reduction in routine chest and abdominal scans whilst maintaining or improving diagnostic image quality, with a further reduction in thoracic scans with stellar detectors. Advances in knowledge: High pitch imaging with iterative reconstruction is a tool that can be used to reduce dose without sacrificing image quality.
Lethal activity of individual and mixed monoterpenoids of geranium essential oil on Musca domestica.
Gallardo, Anabella; Picollo, María Inés; Mougabure-Cueto, Gastón
2015-03-01
Plant essential oils and its constituent molecules have been suggested as an alternative to control insect. The contribution of the constituents to the effect of the oil is determined by the interactions occurring between them. Synergistic interactions would improve the insecticide efficacy of the compounds due to the utilization of lower doses. We evaluated the insecticidal activity of geranium (Geranium maculatum L.) oil and its major constituents against Musca domestica L. and studied the toxic interactions in artificial mixtures of those constituents in the natural ratio. While synergistic interactions were determined in house fly in this study, these were of low intensity evidencing that the effect of each constituent was slightly modified by the other constituents present in the mixtures. The search for synergism between components is a strategy to improve the insecticide activity of natural compounds. The synergism helps to reduce the environmental and toxicological impact due to the reduction of the dose of use.
Gielkens, H A; van den Biggelaar, A; Vecht, J; Onkenhout, W; Lamers, C B; Masclee, A A
1999-02-01
Patients on total parenteral nutrition have an increased risk of developing gallstones because of gall bladder hypomotility. High dose amino acids may prevent biliary stasis by stimulating gall bladder emptying. To investigate whether intravenous amino acids also influence antroduodenal motility. Eight healthy volunteers received, on three separate occasions, intravenous saline (control), low dose amino acids (LDA), or high dose amino acids (HDA). Antroduodenal motility was recorded by perfusion manometry and duodenocaecal transit time (DCTT) using the lactulose breath hydrogen test. DCTT was significantly prolonged during LDA and HDA treatment compared with control. The interdigestive motor pattern was maintained and migrating motor complex (MMC) cycle length was significantly reduced during HDA compared with control and LDA due to a significant reduction in phase II duration. Significantly fewer phase IIIs originated in the gastric antrum during LDA and HDA compared with control. Duodenal phase II motility index was significantly reduced during HDA, but not during LDA, compared with control. Separate intravenous infusion of high doses of amino acids in healthy volunteers: (1) modulates interdigestive antroduodenal motility; (2) shortens MMC cycle length due to a reduced duration of phase II with a lower contractile incidence both in the antrum and duodenum (phase I remains unchanged whereas the effect on phase III is diverse: in the antrum phase III is suppressed and in the duodenum the frequency is increased); and (3) prolongs interdigestive DCTT.
NASA Astrophysics Data System (ADS)
Kaur, Harminder; Avasthi, D. K.; Pujari, Geetanjali; Sarma, Asitikantha
2013-07-01
Noble metal nanoparticles have received considerable attention in biotechnology for their role in bio sensing due to surface plasmon resonance, medical diagnostics due to better imaging contrast and therapy. The radiosensitization effect of gold nanoparticles (AuNP) has been gaining popularity in radiation therapy of cancer cells. The better depth dose profile of energetic ion beam proves its superiority over gamma radiation for fighting against cancer. In the present work, the glucose capped gold nanoparticles (Glu-AuNP) were synthesised and internalized in the HeLa cells. Transmission electron microscopic analysis of ultrathin sections of Glu-AuNP treated HeLa cells confirmed the internalization of Glu-AuNPs. Control HeLa cells and Glu-AuNp treated HeLa cells were irradiated at different doses of 62 MeV 12C ion beam (LET - 290keV/μm) at BIO beam line of using 15UD Pelletron accelerator at Inter University Accelerator Centre, New Delhi, India. The survival fraction was assessed by colony forming assay which revealed that the dose of carbon ion for 90% cell killing in Glu-AuNP treated HeLa cells and control HeLa cells are 2.3 and 3.2 Gy respectively. This observation shows ˜ 28% reduction of 12C6+ ion dose for Glu-AuNP treated HeLa cells as compared to control HeLa cells.
Khan, M M; Sharma, S; Tripathi, B; Alvarez, F P
2017-01-01
To conduct a budget impact analysis (BIA) of introducing the immunization recommendations of India Expert Advisory Group (IEAG) for the years 2015-2017. The recommendations include introduction of one inactivated poliomyelitis vaccine (IPV) dose in the regular child immunization programme along with reductions in oral polio vaccine (OPV) doses in supplemental programmes. This is a national level analysis of budget impact of new polio immunization recommendations. Since the states of India vary widely in terms of size, vaccine coverage and supplemental vaccine needs, the study estimated the budget impact for each of the states of India separately to derive the national level budget impact. Based on the recommendations of IEAG, the BIA assumes that all children in India will get an IPV dose at 14 weeks of age in addition to the OPV and DPT (or Pentavalent-3) doses. Cost of introducing the IPV dose was estimated by considering vaccine price and vaccine delivery and administration costs. The cost savings associated with the reduction in number of doses of OPV in supplemental immunization were also estimated. The analysis used India-specific or international cost parameters to estimate the budget impact. Introduction of one IPV dose will increase the cost of vaccines in the regular immunization programme from $20 million to $47 million. Since IEAG recommends lower intensity of supplemental OPV vaccination, polio vaccine cost of supplemental programme is expected to decline from $72 million to $53 million. Cost of administering polio vaccines will also decline from $124 million to $105 million mainly due to the significantly lower intensity of supplemental polio vaccination. The net effect of adopting IEAG's recommendations on polio immunization turns out to be cost saving for India, reducing total polio immunization cost by $6 million. Additional savings could be achieved if India adopts the new policy regarding the handling of multi-dose vials after opening. Introduction of three doses of IPV with the existing polio immunization schedule will increase the budget requirement by $102 million but replacing OPV doses with IPV will increase the budget by about $59 million. Discontinuation of supplemental OPV immunization with replacement of OPV by IPV will reduce the Government of India's (GOI) polio immunization budget by $99 million. Although the overall cost of polio programme will decline with the adoption of IEAG's recommendations, state-level costs will vary widely. In states like Kerala, Karnataka, Uttar Pradesh and Andhra Pradesh, cost of polio immunization will increase while in Punjab and Jharkhand the costs will remain more or less constant. Significant cost reductions will happen in states with high intensity of supplemental polio immunizations (Bihar, Haryana and Delhi). The cost of procuring polio vaccines will more than double from $20 million to about $47 million requiring allocation of additional foreign exchanges. In some states (like Bihar), the decline in polio-related employment will be very high requiring reallocation of personnel from polio to other programmes. Copyright © 2016 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
Technological advances in hybrid imaging and impact on dose.
Mattsson, Sören; Andersson, Martin; Söderberg, Marcus
2015-07-01
New imaging technologies utilising X-rays and radiopharmaceuticals have developed rapidly. Clinical application of computed tomography (CT) has revolutionised medical imaging and plays an enormous role in medical care. Due to technical improvements, spatial, contrast and temporal resolutions have continuously improved. In spite of significant reduction of CT doses during recent years, CT is still a dominating source of radiation exposure to the population. Combinations with single photon emission computed tomography (SPECT) and positron emission tomography (PET) and especially the use of SPECT/CT and PET/CT, provide important additional information about physiology as well as cellular and molecular events. However, significant dose contributions from SPECT and PET occur, making PET/CT and SPECT/CT truly high dose procedures. More research should be done to find optimal activities of radiopharmaceuticals for various patient groups and investigations. The implementation of simple protocol adjustments, including individually based administration, encouraged hydration, forced diuresis and use of optimised voiding intervals, laxatives, etc., can reduce the radiation exposure to the patients. New data about staff doses to fingers, hands and eye lenses indicate that finger doses could be a problem, but not doses to the eye lenses and to the whole body. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eaton, David J., E-mail: davideaton@nhs.net; Best, Bronagh; Brew-Graves, Chris
Purpose: In vivo dosimetry provides an independent check of delivered dose and gives confidence in the introduction or consistency of radiotherapy techniques. Single-fraction intraoperative radiotherapy of the breast can be performed with the Intrabeam compact, mobile 50 kV x-ray source (Carl Zeiss Surgical, Oberkochen, Germany). Thermoluminescent dosimeters (TLDs) can be used to estimate skin doses during these treatments. Methods and Materials: Measurements of skin doses were taken using TLDs for 72 patients over 3 years of clinical treatments. Phantom studies were also undertaken to assess the uncertainties resulting from changes in beam quality and backscatter conditions in vivo. Results: Themore » mean measured skin dose was 2.9 {+-} 1.6 Gy, with 11% of readings higher than the prescription dose of 6 Gy, but none of these patients showed increased complications. Uncertainties due to beam hardening and backscatter reduction were small compared with overall accuracy. Conclusions: TLDs are a useful and effective method to measure in vivo skin doses in intraoperative radiotherapy and are recommended for the initial validation or any modification to the delivery of this technique. They are also an effective tool to show consistent and safe delivery on a more frequent basis or to determine doses to other critical structures as required.« less
Clozapine-induced dysphagia with secondary substantial weight loss.
Osman, Mugtaba; Devadas, Vekneswaran
2016-08-19
Dysphagia is listed as a 'rare' side effect following clozapine treatment. In this case report, we describe how significant clozapine-induced dysphagia has led to significant reduction of nutritional intake with subsequent substantial weight loss. An 18-year-old single man with an established diagnosis of treatment-resistant paranoid schizophrenia recovered well on a therapeutic dose of clozapine. However, he was noted to lose weight significantly (up to 20% of his original weight) as the dose was uptitrated. This was brought about by development of dysphagia, likely to be due to clozapine. Addition of nutritional supplementary liquids and initiation of a modified behavioural dietary/swallowing programme, while repeatedly mastering the Mendelsohn manoeuvre technique, alleviated the swallowing difficulties and restored his weight. 2016 BMJ Publishing Group Ltd.
Effect of gamma-ray irradiation on the device process-induced defects in 4H-SiC epilayers
NASA Astrophysics Data System (ADS)
Miyazaki, T.; Makino, T.; Takeyama, A.; Onoda, S.; Ohshima, T.; Tanaka, Y.; Kandori, M.; Yoshie, T.; Hijikata, Y.
2016-11-01
We investigated the gamma-ray irradiation effect on 4H-SiC device process-induced defects by photoluminescence (PL) imaging and deep level transient spectroscopy (DLTS). We found that basal plane dislocations (BPDs) that were present before the irradiation were eliminated by gamma-ray irradiation of 1 MGy. The reduction mechanism of BPD was discussed in terms of BPD-threading edge dislocation (TED) transformation and shrinkage of stacking faults. In addition, the entire PL image was gradually darkened with increasing absorbed dose, which is presumably due to the point defects generated by gamma-ray irradiation. We obtained DLTS peaks that could be assigned to complex defects, termed RD series, and found that the peaks increased with absorbed dose.
A proposed performance index for galactic cosmic ray shielding materials
NASA Technical Reports Server (NTRS)
Wilson, John W.; Wood, J. S.; Shinn, Judy L.; Cucinotta, Francis A.; Nealy, John E.
1993-01-01
In past studies, the reductions in absorbed dose and dose equivalent due to choice of material composition have been used to indicate shield effectiveness against exposure to galactic cosmic rays. However, these quantities are highly inaccurate in assessing shield effectiveness for protection against the biological effects of long-term exposure to the galactic heavy ions. A new quantity for shield performance is defined that correlates well with cell killing and cell transformation behind various shield thicknesses and materials. In addition, a relative performance index is identified that is inversely related to biological injury for different materials at a fixed shield mass and is directly related to the ratio of the fourth- and the second-order linear energy transfer (LET) moments.
Low-voltage chest CT: another way to reduce the radiation dose in asbestos-exposed patients.
Macía-Suárez, D; Sánchez-Rodríguez, E; Lopez-Calviño, B; Diego, C; Pombar, M
2017-09-01
To assess whether low voltage chest computed tomography (CT) can be used to successfully diagnose disease in patients with asbestos exposure. Fifty-six former employees of the shipbuilding industry, who were candidates to receive a standard-dose chest CT due to their occupational exposure to asbestos, underwent a routine CT. Immediately after this initial CT, they underwent a second acquisition using low-dose chest CT parameters, based on a low potential (80 kV) and limited tube current. The findings of the two CT protocols were compared based on typical diseases associated with asbestos exposure. The kappa coefficient for each parameter and for an overall rating (grouping them based on mediastinal, pleural, and pulmonary findings) were calculated in order to test for correlations between the two protocols. A good correlation between routine and low-dose CT was demonstrated for most parameters with a mean radiation dose reduction of up to 83% of the effective dose based on the dose-length product between protocols. Low-dose chest CT, based on a limited tube potential, is useful for patients with an asbestos exposure background. Low-dose chest CT can be successfully used to minimise the radiation dose received by patients, as this protocol produced an estimated mean effective dose similar to that of an abdominal or pelvis plain film. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
REDUCTION OF DOSES IN DIAGNOSTIC USES OF RADIOISOTOPES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosain, F.
1960-03-01
> A moderately low-level counting technique with anticoincidence gas- flow counter was developed for use in metabolic and diagnostic tracer studies with radioisotopes. Several important experiments and results were reported which have been carried out with reduced doses of tracer isotopes. A reduction of the tracer dose of ahout 1/30th of the present conventional doses was achieved which helps to minimize the chances of radiation hazards. (auth)
NASA Astrophysics Data System (ADS)
Asie, Erina Riak; Rumbang, Nyahu; Winarti, Sih; Sinaga, Soaloon
2018-02-01
The objective of the study was to assess the effectiveness of P fertilizer reduction and the addition of fish pond sludge waste on the growth and yield of soybean crop in peatland. Research used Complete Randomized Design factorial with two factors. The first factor was the reduction of P fertilizer from the dose of 150 kg.ha-1 consisting of 4 levels, namely P0: 100% (2.944 g/polybag), P1: 75% (2.208 g/polybag), P2: 50% (1.472 g/polybag), and P3: 25% (0.736 g/polybag). The second factor was the addition of fish pond mud waste (L) from the dose of 15 ton.ha-1 consisting of 4 levels, namely L0: 25% (73.595 g/polybag), L1: 50% (147.19 g/polybag), L2: 75% (220.78 g/polybag), and L3: 100% (294.38 g/polybag). Each treatment combination was replicated 3 times to obtain 48 experimental units. The results showed that (1) fish pond mud waste was effective to reduce the use of P fertilizer, (2) the reduction of P fertilizer up to 50% from recommendation dosage by addition of fish pond sludge waste at 75% dose of 15 ton/ha was the best combination due to providing the best plant growth and the highest P concentration of plant tissue. The highest number of pods and weight of seed obtained in the combination were 60.33 pods/plant and 7.30 g/plant, respectively.
Takeuchi, Hiroyoshi; Suzuki, Takefumi; Bies, Robert R; Remington, Gary; Watanabe, Koichiro; Mimura, Masaru; Uchida, Hiroyuki
2014-11-01
While acute-phase antipsychotic response has been attributed to 65%-80% dopamine D₂ receptor blockade, the degree of occupancy for relapse prevention in the maintenance treatment of schizophrenia remains unknown. In this secondary study of an open-label, 28-week, randomized, controlled trial conducted between April 2009 and August 2011, clinically stable patients with schizophrenia (DSM-IV) treated with risperidone or olanzapine were randomly assigned to the reduction group (dose reduced by 50%) or maintenance group (dose kept constant). Plasma antipsychotic concentrations at peak and trough before and after dose reduction were estimated with population pharmacokinetic techniques, using 2 collected plasma samples. Corresponding dopamine D₂ occupancy levels were then estimated using the model we developed. Relapse was defined as worsening in 4 Positive and Negative Syndrome Scale-Positive subscale items: delusion, conceptual disorganization, hallucinatory behavior, and suspiciousness. Plasma antipsychotic concentrations were available for 16 and 15 patients in the reduction and maintenance groups, respectively. Estimated dopamine D₂ occupancy (mean ± SD) decreased following dose reduction from 75.6% ± 4.9% to 66.8% ± 6.4% at peak and 72.3% ± 5.7% to 62.0% ± 6.8% at trough. In the reduction group, 10 patients (62.5%) did not demonstrate continuous D₂ receptor blockade above 65% (ie, < 65% at trough) after dose reduction; furthermore, 7 patients (43.8%) did not achieve a threshold of 65% occupancy even at peak. Nonetheless, only 1 patient met our relapse criteria after dose reduction during the 6 months of the study. The results suggest that the therapeutic threshold regarding dopamine D₂ occupancy may be lower for those who are stable in antipsychotic maintenance versus acute-phase treatment. Positron emission tomography studies are warranted to further test our preliminary findings. UMIN Clinical Trials Registry identifier: UMIN000001834. © Copyright 2014 Physicians Postgraduate Press, Inc.
Fioroni, Federica; Grassi, Elisa; Giorgia, Cavatorta; Sara, Rubagotti; Piccagli, Vando; Filice, Angelina; Mostacci, Domiziano; Versari, Annibale; Iori, Mauro
2016-10-01
When handling Y-labelled and Lu-labelled radiopharmaceuticals, skin exposure is mainly due to β-particles. This study aimed to investigate the equivalent dose saving of the staff when changing from an essentially manual radiolabelling procedure to an automatic dose dispenser (ADD). The chemist and physician were asked to wear thermoluminescence dosimeters on their fingertips to evaluate the quantity of Hp(0.07) on the skin. Data collected were divided into two groups: before introducing ADD (no ADD) and after introducing ADD. For the chemist, the mean values (95th percentile) of Hp(0.07) for no ADD and ADD are 0.030 (0.099) and 0.019 (0.076) mSv/GBq, respectively, for Y, and 0.022 (0.037) and 0.007 (0.023) mSv/GBq, respectively, for Lu. The reduction for ADD was significant (t-test with P<0.05) for both isotopes. The relative differences before and after ADD collected for every finger were treated using the Wilcoxon test, proving a significantly higher reduction in extremity dose to each fingertip for Lu than for Y (P<0.05). For the medical staff, the mean values of Hp(0.07) (95th percentile) for no ADD and ADD are 0.021 (0.0762) and 0.0143 (0.0565) mSv/GBq, respectively, for Y, and 0.0011 (0.00196) and 0.0009 (0.00263) mSv/GBq, respectively, for Lu. The t-test provided a P-value less than 0.05 for both isotopes, making the difference between ADD and no ADD significant. ADD positively affects the dose saving of the chemist in handling both isotopes. For the medical staff not directly involved with the introduction of the ADD system, the analysis shows a learning curve of the workers over a 5-year period. Specific devices and procedures allow staff skin dose to be limited.
Abnormal emotional learning in a rat model of autism exposed to valproic acid in utero
Banerjee, Anwesha; Engineer, Crystal T.; Sauls, Bethany L.; Morales, Anna A.; Kilgard, Michael P.; Ploski, Jonathan E.
2014-01-01
Autism Spectrum Disorders (ASD) are complex neurodevelopmental disorders characterized by repetitive behavior and impaired social communication and interactions. Apart from these core symptoms, a significant number of ASD individuals display higher levels of anxiety and some ASD individuals exhibit impaired emotional learning. We therefore sought to further examine anxiety and emotional learning in an environmentally induced animal model of ASD that utilizes the administration of the known teratogen, valproic acid (VPA) during gestation. Specifically we exposed dams to one of two different doses of VPA (500 and 600 mg/kg) or vehicle on day 12.5 of gestation and examined the resultant progeny. Our data indicate that animals exposed to VPA in utero exhibit enhanced anxiety in the open field test and normal object recognition memory compared to control animals. Animals exposed to 500 mg/kg of VPA displayed normal acquisition of auditory fear conditioning, and exhibited reduced extinction of fear memory and normal litter survival rates as compared to control animals. We observed that animals exposed to 600 mg/kg of VPA exhibited a significant reduction in the acquisition of fear conditioning, a significant reduction in social interaction and a significant reduction in litter survival rates as compared to control animals. VPA (600 mg/kg) exposed animals exhibited similar shock sensitivity and hearing as compared to control animals indicating the fear conditioning deficit observed in these animals was not likely due to sensory deficits, but rather due to deficits in learning or memory retrieval. In conclusion, considering that progeny from dams exposed to rather similar doses of VPA exhibit striking differences in emotional learning, the VPA model may serve as a useful tool to explore the molecular and cellular mechanisms that contribute to not only ASD, but also emotional learning. PMID:25429264
Omori, Yasutaka; Wakamatsu, Hiroaki; Sorimachi, Atsuyuki; Ishikawa, Tetsuo
2016-01-01
Abstract This study was conducted on the Fukushima Medical University (FMU) premises (in Fukushima City, Fukushima Prefecture) about four years after the Fukushima Daiichi Nuclear Power Plant accident. Its objectives were (1) to create a map of the ambient gamma dose rate (air-kerma rate) distribution, (2) to evaluate the air-kerma rate originating from natural radionuclides, and (3) to investigate the effects of snow cover on changes in the air-kerma rate. This man-borne survey revealed that the air-kerma rate varies widely, ranging from 0.038 μGy h-1 to 0.520 μGy h-1, and is higher on grass than on the other investigated surface types, such as soil, asphalt, and bricks. In this area, the mean air-kerma rate from natural radiation was evaluated to be 0.03 ± 0.01 μGy h-1, which is close to 0.04 μGy h-1, which was measured in central Fukushima City by a local authority.Furthermore, snowfall was found to reduce the air-kerma rate by 5%-30%. This reduction was attributed to attenuation of the primary radiation while passing through the snow cover, and the measured contribution of scattered radiation to the air-kerma rate reduction was small. The reduction rate was found to depend on the initial snow depth but to maintain a similar value for a couple of days, after the snow had partially melted and its depth had decreased. Finally, analysis of the daily dose due to external exposure received on the FMU premises revealed that no further health effects due to chronic radiation exposure at this site are to be expected. PMID:26911302
Omori, Yasutaka; Wakamatsu, Hiroaki; Sorimachi, Atsuyuki; Ishikawa, Tetsuo
2016-06-08
This study was conducted on the Fukushima Medical University (FMU) premises (in Fukushima City, Fukushima Prefecture) about four years after the Fukushima Daiichi Nuclear Power Plant accident. Its objectives were (1) to create a map of the ambient gamma dose rate (air-kerma rate) distribution, (2) to evaluate the air-kerma rate originating from natural radionuclides, and (3) to investigate the effects of snow cover on changes in the air-kerma rate. This man-borne survey revealed that the air-kerma rate varies widely, ranging from 0.038 μGy h(-1) to 0.520 μGy h(-1), and is higher on grass than on the other investigated surface types, such as soil, asphalt, and bricks. In this area, the mean air-kerma rate from natural radiation was evaluated to be 0.03 ± 0.01 μGy h(-1), which is close to 0.04 μGy h(-1), which was measured in central Fukushima City by a local authority.Furthermore, snowfall was found to reduce the air-kerma rate by 5%-30%. This reduction was attributed to attenuation of the primary radiation while passing through the snow cover, and the measured contribution of scattered radiation to the air-kerma rate reduction was small. The reduction rate was found to depend on the initial snow depth but to maintain a similar value for a couple of days, after the snow had partially melted and its depth had decreased. Finally, analysis of the daily dose due to external exposure received on the FMU premises revealed that no further health effects due to chronic radiation exposure at this site are to be expected.
Helke, C J; Phillips, E T; O'Neill, J T
1987-07-01
Regional central nervous system and peripheral hemodynamic effects of the intrathecal (i.t.) administration of a substance P (SP) receptor antagonist, [D-Arg1, D-Pro2, D-Trp7,9, Leu11]-substance P ([D-Arg]-SP), were studied in anesthetized rats. It was found that [D-Arg]-SP (3.3 nmol i.t.) reduced mean arterial pressure and cardiac output due to a reduction in stroke volume. Total peripheral resistance was not altered. Whereas most vascular beds showed no alterations in vascular resistance, a renal vasoconstriction was noted. The hypotensive effect of [D-Arg]-SP was blocked by phentolamine (10 mg/kg i.v.) but not by propranolol (1 mg/kg i.v.). In the absence of changes in vascular arterial resistance due to [D-Arg]-SP, it appears that a change in venous return may contribute to the [D-Arg]-SP-induced reduction in stroke volume. These data provide evidence that a spinal cord SP system may tonically affect sympathetic neurons controlling venous, but not arterial, vasomotor tone. [D-Arg]-SP (i.t.) did not alter brain blood flow but significantly decreased blood flow in the thoracolumbar spinal cord 15 to 20 min after administration. The reduction in spinal cord flow did not appear to be responsible for the [D-Arg]-SP-induced hypotension because kainic acid (i.t.), an agent that interacts with glutamate receptors, produced similar pressor responses in the presence and absence of [D-Arg]-SP. In addition, whereas the pressor effect of low doses of a SP agonist [pGlu5, MePhe8, MeGly9]-substance P (5-11) were blocked by [D-Arg]-SP, a higher dose produced the typical pressor effect.(ABSTRACT TRUNCATED AT 250 WORDS)
Theophilus, Eugenia H; Coggins, Christopher R E; Chen, Peter; Schmidt, Eckhardt; Borgerding, Michael F
2015-03-01
Tobacco toxicant-related exposure reduction is an important tool in harm reduction. Cigarette per day reduction (CPDR) occurs as smokers migrate from smoking cigarettes to using alternative tobacco/nicotine products, or quit smoking. Few reports characterize the dose-response relationships between CPDR and effects on exposure biomarkers, especially at the low end of CPD exposure (e.g., 5 CPD). We present data on CPDR by characterizing magnitudes of biomarker reductions. We present data from a well-controlled, one-week clinical confinement study in healthy smokers who were switched from smoking 19-25 CPD to smoking 20, 10, 5 or 0 CPD. Biomarkers were measured in blood, plasma, urine, and breath, and included smoke-related toxicants, urine mutagenicity, smoked cigarette filter analyses (mouth level exposure), and vital signs. Many of the biomarkers (e.g., plasma nicotine) showed strong CPDR dose-response reductions, while others (e.g., plasma thiocyanate) showed weaker dose-response reductions. Factors that lead to lower biomarker reductions include non-CPD related contributors to the measured response (e.g., other exposure sources from environment, life style, occupation; inter-individual variability). This study confirms CPDR dose-responsive biomarkers and suggests that a one-week design is appropriate for characterizing exposure reductions when smokers switch from cigarettes to new tobacco products. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Power, S; Mirza, M; Thakorlal, A; Ganai, B; Gavagan, L D; Given, M F; Lee, M J
2015-06-01
This prospective pilot study was undertaken to evaluate the feasibility and effectiveness of using a radiation absorbing shield to reduce operator dose from scatter during lower limb endovascular procedures. A commercially available bismuth shield system (RADPAD) was used. Sixty consecutive patients undergoing lower limb angioplasty were included. Thirty procedures were performed without the RADPAD (control group) and thirty with the RADPAD (study group). Two separate methods were used to measure dose to a single operator. Thermoluminescent dosimeter (TLD) badges were used to measure hand, eye, and unshielded body dose. A direct dosimeter with digital readout was also used to measure eye and unshielded body dose. To allow for variation between control and study groups, dose per unit time was calculated. TLD results demonstrated a significant reduction in median body dose per unit time for the study group compared with controls (p = 0.001), corresponding to a mean dose reduction rate of 65 %. Median eye and hand dose per unit time were also reduced in the study group compared with control group, however, this was not statistically significant (p = 0.081 for eye, p = 0.628 for hand). Direct dosimeter readings also showed statistically significant reduction in median unshielded body dose rate for the study group compared with controls (p = 0.037). Eye dose rate was reduced for the study group but this was not statistically significant (p = 0.142). Initial results are encouraging. Use of the shield resulted in a statistically significant reduction in unshielded dose to the operator's body. Measured dose to the eye and hand of operator were also reduced but did not reach statistical significance in this pilot study.
NASA Astrophysics Data System (ADS)
Fahmi, Rachid; Eck, Brendan L.; Vembar, Mani; Bezerra, Hiram G.; Wilson, David L.
2014-03-01
We investigated the use of an advanced hybrid iterative reconstruction (IR) technique (iDose4, Philips Health- care) for low dose dynamic myocardial CT perfusion (CTP) imaging. A porcine model was created to mimic coronary stenosis through partial occlusion of the left anterior descending (LAD) artery with a balloon catheter. The severity of LAD occlusion was adjusted with FFR measurements. Dynamic CT images were acquired at end-systole (45% R-R) using a multi-detector CT (MDCT) scanner. Various corrections were applied to the acquired scans to reduce motion and imaging artifacts. Absolute myocardial blood flow (MBF) was computed with a deconvolution-based approach using singular value decomposition (SVD). We compared a high and a low dose radiation protocol corresponding to two different tube-voltage/tube-current combinations (80kV p/100mAs and 120kV p/150mAs). The corresponding radiation doses for these protocols are 7.8mSv and 34.3mSV , respectively. The images were reconstructed using conventional FBP and three noise-reduction strengths of the IR method, iDose. Flow contrast-to-noise ratio, CNRf, as obtained from MBF maps, was used to quantitatively evaluate the effect of reconstruction on contrast between normal and ischemic myocardial tissue. Preliminary results showed that the use of iDose to reconstruct low dose images provide better or comparable CNRf to that of high dose images reconstructed with FBP, suggesting significant dose savings. CNRf was improved with the three used levels of iDose compared to FBP for both protocols. When using the entire 4D dynamic sequence for MBF computation, a 77% dose reduction was achieved, while considering only half the scans (i.e., every other heart cycle) allowed even further dose reduction while maintaining relatively higher CNRf.
Method for simulating dose reduction in digital mammography using the Anscombe transformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borges, Lucas R., E-mail: lucas.rodrigues.borges@usp.br; Oliveira, Helder C. R. de; Nunes, Polyana F.
2016-06-15
Purpose: This work proposes an accurate method for simulating dose reduction in digital mammography starting from a clinical image acquired with a standard dose. Methods: The method developed in this work consists of scaling a mammogram acquired at the standard radiation dose and adding signal-dependent noise. The algorithm accounts for specific issues relevant in digital mammography images, such as anisotropic noise, spatial variations in pixel gain, and the effect of dose reduction on the detective quantum efficiency. The scaling process takes into account the linearity of the system and the offset of the detector elements. The inserted noise is obtainedmore » by acquiring images of a flat-field phantom at the standard radiation dose and at the simulated dose. Using the Anscombe transformation, a relationship is created between the calculated noise mask and the scaled image, resulting in a clinical mammogram with the same noise and gray level characteristics as an image acquired at the lower-radiation dose. Results: The performance of the proposed algorithm was validated using real images acquired with an anthropomorphic breast phantom at four different doses, with five exposures for each dose and 256 nonoverlapping ROIs extracted from each image and with uniform images. The authors simulated lower-dose images and compared these with the real images. The authors evaluated the similarity between the normalized noise power spectrum (NNPS) and power spectrum (PS) of simulated images and real images acquired with the same dose. The maximum relative error was less than 2.5% for every ROI. The added noise was also evaluated by measuring the local variance in the real and simulated images. The relative average error for the local variance was smaller than 1%. Conclusions: A new method is proposed for simulating dose reduction in clinical mammograms. In this method, the dependency between image noise and image signal is addressed using a novel application of the Anscombe transformation. NNPS, PS, and local noise metrics confirm that this method is capable of precisely simulating various dose reductions.« less
Method for simulating dose reduction in digital mammography using the Anscombe transformation
Borges, Lucas R.; de Oliveira, Helder C. R.; Nunes, Polyana F.; Bakic, Predrag R.; Maidment, Andrew D. A.; Vieira, Marcelo A. C.
2016-01-01
Purpose: This work proposes an accurate method for simulating dose reduction in digital mammography starting from a clinical image acquired with a standard dose. Methods: The method developed in this work consists of scaling a mammogram acquired at the standard radiation dose and adding signal-dependent noise. The algorithm accounts for specific issues relevant in digital mammography images, such as anisotropic noise, spatial variations in pixel gain, and the effect of dose reduction on the detective quantum efficiency. The scaling process takes into account the linearity of the system and the offset of the detector elements. The inserted noise is obtained by acquiring images of a flat-field phantom at the standard radiation dose and at the simulated dose. Using the Anscombe transformation, a relationship is created between the calculated noise mask and the scaled image, resulting in a clinical mammogram with the same noise and gray level characteristics as an image acquired at the lower-radiation dose. Results: The performance of the proposed algorithm was validated using real images acquired with an anthropomorphic breast phantom at four different doses, with five exposures for each dose and 256 nonoverlapping ROIs extracted from each image and with uniform images. The authors simulated lower-dose images and compared these with the real images. The authors evaluated the similarity between the normalized noise power spectrum (NNPS) and power spectrum (PS) of simulated images and real images acquired with the same dose. The maximum relative error was less than 2.5% for every ROI. The added noise was also evaluated by measuring the local variance in the real and simulated images. The relative average error for the local variance was smaller than 1%. Conclusions: A new method is proposed for simulating dose reduction in clinical mammograms. In this method, the dependency between image noise and image signal is addressed using a novel application of the Anscombe transformation. NNPS, PS, and local noise metrics confirm that this method is capable of precisely simulating various dose reductions. PMID:27277017
Li, Xi; Wiesen, Eric; Diorditsa, Sergey; Toda, Kohei; Duong, Thi Hong; Nguyen, Lien Huong; Nguyen, Van Cuong; Nguyen, Tran Hien
2016-02-03
Adverse Events Following Immunization in Viet Nam in 2013 led to substantial reductions in hepatitis B vaccination coverage (both the birth dose and the three-dose series). In order to estimate the impact of the reduction in vaccination coverage on hepatitis B transmission and future mortality, a widely-used mathematical model was applied to the data from Viet Nam. Using the model, we estimated the number of chronic infections and deaths that are expected to occur in the birth cohort in 2013 and the number of excessive infections and deaths attributable to the drop in immunization coverage in 2013. An excess of 90,137 chronic infections and 17,456 future deaths were estimated to occur in the 2013 birth cohort due to the drop in vaccination coverage. This analysis highlights the importance of maintaining high vaccination coverage and swiftly responding to reported Adverse Events Following Immunization in order to regain consumer confidence in the hepatitis B vaccine. Copyright © 2015 World Health Organization; licensee Elsevier. Published by Elsevier Ltd.. All rights reserved.
Vitale, F; Barbieri, M; Dirodi, B; Vitali Rosati, G; Franco, E
2013-01-01
Vaccination of all healthy children against rotavirus (RV) has been recommended, since the availability of vaccines, both in Europe (PIDJ) and Italy (pediatricians). The aims of universal vaccination against RV include the protection of children against moderate/severe gastroenteritis forms by RV (GARV), prevent hospitalizations, reduce the severity and duration of the disease, and reduce morbidity and socioeconomic costs. Payers need to informed regarding the efficacy and the healthcare utilization related to RV vaccination in order to decide in favour of its extensive implementation. The aim of this paper is to assess the clinical and financial impact of the extensive vaccination aganist RV both at National and Regional level. Particular attention, compared to the previous analysis (Standaert et al, 2008) has been given to the influence of herd immunity (HI) on cost-utility results of vaccination against-RV. Methods. The analysis was conducted with the Markovian model previously used by Standaert B et al and updated for comparing costs and benefits associated with a situation of vaccination anti-RV that includes efficacy data due to HI, with a situation without vaccination. For the base case is assumed an annual coverage of 90%, where the effect of HI is present in the population at risk (0-5 years) and extended to children who have not been vaccinated, adding as conservative assumption, a further 10% to the efficacy of the vaccine, compared to 15% determined by several published studies. Two analysis have been made based on this model: a cost-utility analysis that compared vaccination with two doses of RIX441410 administered at 2 and 3 months after birth compared with no vaccination from National Health Service and Society perspective; a budget impact analysis at National and Regional level. The evaluation has as its main element the reduction of cases of infection through universal vaccination and consequent reduction of Garv events and nosocomial infections. Results. From the NHS perspective, in a cohort of 555,791 born in Italy in 2011, the annual number of hospitalizations due to RV infections in the absence of vaccination is estimated to be 14,550 units. Assuming that 90% of newborns receive two doses of the vaccine, and including an additional effect of HI to the efficacy of the vaccine, vaccination would lead to a reduction of 71% of cases of Garv (176,804 cases in less) and a 86% of hospitalizations due to Garv (12,913 fewer cases), with an impact on quality of life and mortality as a consequence of vaccination. The introduction of the vaccine would lead to a gain of 0.0014 QALYs and 0.0022 life-years gained per child compared to a situation without vaccination (assuming a discount rate of 3% on future benefits). The reduction of GARV also would lead to a strong economic impact. The introduction of the vaccine would lead to a saving of € 25.41 per child or a saving of more than € 14 million for the whole population included in the analysis. Cost reduction increase significantly from the perspective of society and introducing the indirect costs due to lost productivity. In this case, the savings due to the introduction of vaccination would increase to € 67,747,654 in the total cohort, or € 121.89 per child. In an alternative scenario, where HI is excluded, RIX4414 remains dominant (0.0013 QALYs gained and € 22.14 per child saved). The budget impact analysis shows that, as early as the second year, the additional cost of the vaccine is more than offset by a reduction in costs of the disease, which leads to savings for the NHS, which increases from year 3. In a time horizon of 5 years (without the discount rate), the savings for the NHS amount to € 34,440,314. These savings would amount to a cost reduction of € 4.64 per child over 5 years (€ 0.93 per year). The savings due to the introduction of the vaccine were mainly due to a reduction in costs associated with hospitalizations. The budget impact analysis at regional level, has taken a vaccine cost of € 30.00 per dose. Cases of diarrhoea before after vaccination are reduced in each region, based on the number of births, ranging from a minimum of 399 cases avoided for Valle d'Aosta to a maximum of 31,116 cases avoided in Lombardy. In a similar way, the number of hospitalizations due to GARV are reduced considerably, from a minimum of 36 cases in Valle d'Aosta to a maximum of 3,096 in Lombardy. Obviously, these reductions are greater in regions with 30,000 or more births per year. Conclusions. This study suggests that a universal vaccination anti-RV with 2 doses of RIX4414 brings significant clinical and economic benefits both at National and Regional level. The indirect effects of the vaccine (HI) could generate protection even in unvaccinated children with health gain and a number of cases by GARV much less than those that would vaccinating small groups of children and with a cost of illness, for NHS, which would be reduced significantly, despite the additional costs of the vaccine as early as the second year of vaccination. Productivity losses due to absence from work of a parent, as well as all other costs included in the model, show that is precisely the society to pay the consequences, from economic and social point of view. Considering the citizen in the role of private payer, we must stress as for him, the savings generated by vaccination, whether universal or with demand for cost-sharing by the health service, prove significant with a major health gain for the population under study.
Tan, J S P; Tan, K-L; Lee, J C L; Wan, C-M; Leong, J-L; Chan, L-L
2009-02-01
To our knowledge, there has been no study that compares the radiation dose delivered to the eye lens by 16- and 64-section multidetector CT (MDCT) for standard clinical neuroimaging protocols. Our aim was to assess radiation-dose differences between 16- and 64-section MDCT from the same manufacturer, by using near-identical neuroimaging protocols. Three cadaveric heads were scanned on 16- and 64-section MDCT by using standard neuroimaging CT protocols. Eye lens dose was measured by using thermoluminescent dosimeters (TLD), and each scanning was repeated to reduce random error. The dose-length product, volume CT dose index (CTDI(vol)), and TLD readings for each imaging protocol were averaged and compared between scanners and protocols, by using the paired Student t test. Statistical significance was defined at P < .05. The radiation dose delivered and eye lens doses were lower by 28.1%-45.7% (P < .000) on the 64-section MDCT for near-identical imaging protocols. On the 16-section MDCT, lens dose reduction was greatest (81.1%) on a tilted axial mode, compared with a nontilted helical mode for CT brain scans. Among the protocols studied, CT of the temporal bone delivered the greatest radiation dose to the eye lens. Eye lens radiation doses delivered by the 64-section MDCT are significantly lower, partly due to improvements in automatic tube current modulation technology. However, where applicable, protection of the eyes from the radiation beam by either repositioning the head or tilting the gantry remains the best way to reduce eye lens dose.
Demb, Joshua; Chu, Philip; Nelson, Thomas; Hall, David; Seibert, Anthony; Lamba, Ramit; Boone, John; Krishnam, Mayil; Cagnon, Christopher; Bostani, Maryam; Gould, Robert; Miglioretti, Diana; Smith-Bindman, Rebecca
2017-06-01
Radiation doses for computed tomography (CT) vary substantially across institutions. To assess the impact of institutional-level audit and collaborative efforts to share best practices on CT radiation doses across 5 University of California (UC) medical centers. In this before/after interventional study, we prospectively collected radiation dose metrics on all diagnostic CT examinations performed between October 1, 2013, and December 31, 2014, at 5 medical centers. Using data from January to March (baseline), we created audit reports detailing the distribution of radiation dose metrics for chest, abdomen, and head CT scans. In April, we shared reports with the medical centers and invited radiology professionals from the centers to a 1.5-day in-person meeting to review reports and share best practices. We calculated changes in mean effective dose 12 weeks before and after the audits and meeting, excluding a 12-week implementation period when medical centers could make changes. We compared proportions of examinations exceeding previously published benchmarks at baseline and following the audit and meeting, and calculated changes in proportion of examinations exceeding benchmarks. Of 158 274 diagnostic CT scans performed in the study period, 29 594 CT scans were performed in the 3 months before and 32 839 CT scans were performed 12 to 24 weeks after the audit and meeting. Reductions in mean effective dose were considerable for chest and abdomen. Mean effective dose for chest CT decreased from 13.2 to 10.7 mSv (18.9% reduction; 95% CI, 18.0%-19.8%). Reductions at individual medical centers ranged from 3.8% to 23.5%. The mean effective dose for abdominal CT decreased from 20.0 to 15.0 mSv (25.0% reduction; 95% CI, 24.3%-25.8%). Reductions at individual medical centers ranged from 10.8% to 34.7%. The number of CT scans that had an effective dose measurement that exceeded benchmarks was reduced considerably by 48% and 54% for chest and abdomen, respectively. After the audit and meeting, head CT doses varied less, although some institutions increased and some decreased mean head CT doses and the proportion above benchmarks. Reviewing institutional doses and sharing dose-optimization best practices resulted in lower radiation doses for chest and abdominal CT and more consistent doses for head CT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipnharski, I; Carranza, C; Quails, N
Purpose: To optimize adult head CT protocol by reducing dose to an appropriate level while providing CT images of diagnostic quality. Methods: Five cadavers were scanned from the skull base to the vertex using a routine adult head CT protocol (120 kVp, 270 mA, 0.75 s rotation, 0.5 mm × 32 detectors, 70.8 mGy CTDIvol) followed by seven reduced-dose protocols with varying combinations of reduced tube current, reduced rotation time, and increased detectors with CTDIvol ranging from 38.2 to 65.6 mGy. Organ doses were directly measured with 21 OSL dosimeters placed on the surface and implanted in the head bymore » a neurosurgeon. Two neuroradiologists assessed grey-white matter differentiation, fluid space, ventricular size, midline shift, brain mass, edema, ischemia, and skull fractures on a three point scale: (1) Unacceptable, (2) Borderline Acceptable, and (3) Acceptable. Results: For the standard scan, doses to the skin, lens of the eye, salivary glands, thyroid, and brain were 37.55 mGy, 49.65 mGy, 40.67 mGy, 4.63 mGy, and 27.33 mGy, respectively. Two cadavers had cerebral edema due to changing dynamics of postmortem effects, causing the grey-white matter differentiation to appear less distinct. Two cadavers with preserved grey-white matter received acceptable scores for all image quality features for the protocol with a CTDIvol of 57.3 mGy, allowing organ dose savings ranging from 34% to 45%. One cadaver allowed for greater dose reduction for the protocol with a CTDIvol of 42 mGy. Conclusion: Efforts to optimize scan protocol should consider both dose and clinical image quality. This is made possible with postmortem subjects, whose brains are similar to patients, allowing for an investigation of ideal scan parameters. Radiologists at our institution accepted scan protocols acquired with lower scan parameters, with CTDIvol values closer to the American College of Radiology’s (ACR) Achievable Dose level of 57 mGy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerreiro, F; Janssens, G; Seravalli, E
Purpose: To investigate the dosimetric impact of daily changes in patient’s diameter, due to weight gain/loss and air in the bowel, based on CBCT information during radiotherapy treatment of pediatric abdominal tumors. Methods: 10 pediatric patients with neuroblastoma (n=6) and Wilms’ (n=4) tumors were included. Available CBCTs were affinely registered to the planning CT for daily set-up variations corrections. A density override approach assigning air-density to the random air pockets and water-density to the remaining anatomy was used to determine the CBCT and CT dose. Clinical VMAT plans, with a PTV prescribed dose ranging between (14.4- 36) Gy, were re-optimizedmore » on the density override CT and re-calculated on each CBCT. Dose-volume statistics of the PTV and kidneys, delineated on each CBCT, were used to compare the daily and cumulative CBCT dose with the reference CT dose. Results: The average patient diameter variation was (0.5 ± 0.7) cm (maximum daily difference of 2.3 cm). The average PTV mean dose difference (MDD) between the CT and the cumulative CBCT plans was (0.1 ± 1.1) % (maximum daily MDD of 2%). A reduction in target coverage up to 3% and 7% was observed for the cumulative and daily CBCT plans, respectively. The average kidneys’ cumulative MDD was (−2.7 ± 3.6) % (maximum daily MDD of −12%), corresponding to an overdosage. Conclusion: Due to patient’s diameter changes, a target underdosage was assessed. Given the high local tumor control of neuroblastoma and Wilms’ diseases, the need of re-planning might be discarded. However, the assessed kidneys overdosage could represent a problem when the normal tissue tolerance is reached. The necessity of re-planning should then be considered to reduce the risk of long-term renal complications. Due to the poor softtissue contrast on CBCT, MRI-guidance is required to obtain a better assessment of the accumulated dose on the remaining OARs.« less
Is sympathetic neural vasoconstriction blunted in the vascular bed of exercising human muscle?
Tschakovsky, Michael E; Sujirattanawimol, Kittiphong; Ruble, Stephen B; Valic, Zoran; Joyner, Michael J
2002-06-01
Sympathetic vasoconstriction of muscle vascular beds is important in the regulation of systemic blood pressure. However, vasoconstriction during exercise can also compromise blood flow support of muscle metabolism. This study tested the hypothesis that local factors in exercising muscle blunt vessel responsiveness to sympathetic vasoconstriction. We performed selective infusions of three doses of tyramine into the brachial artery (n = 8) to evoke endogenous release of noradrenaline (norepinephrine) at rest and during moderate and heavy rhythmic handgrip exercise. In separate experiments, tyramine was administered during two doses of adenosine infusion (n = 7) and two doses of sodium nitroprusside (SNP) infusion (n = 8). Vasoconstrictor effectiveness across conditions was assessed as the percentage reduction in forearm vascular conductance (FVC), calculated from invasive blood pressure and non-invasive Doppler ultrasound blood flow measurements at the brachial artery. Tyramine evoked a similar dose-dependent vasoconstriction at rest in all three groups, with the highest dose resulting in a 42-46 % reduction in FVC. This vasoconstriction was blunted with increasing exercise intensity (e.g. tyramine high dose percentage reduction in FVC; rest -43.4 +/- 3.7 %, moderate exercise -27.5 +/- 2.3 %, heavy exercise -16.7 +/- 3.6 %; P < 0.05). In contrast, tyramine infusion resulted in a greater percentage reduction in FVC during both doses of adenosine vs. rest (P < 0.05). Finally, percentage change in FVC was greater during low dose SNP infusion vs. rest (P < 0.05), but not different from rest at the high dose of SNP infusion (P = 0.507). A blunted percentage reduction in FVC during endogenous noradrenaline release in exercise but not vasodilator infusion indicates that sympathetic vasoconstriction is blunted in exercising muscle. This blunting appears to be exercise intensity-dependent.
Fentahun, Selamawit; Makonnen, Eyasu; Awas, Tesfaye; Giday, Mirutse
2017-01-05
Malaria is a major public health problem in the world which is responsible for death of millions particularly in sub-Saharan Africa. Today, the control of malaria has become gradually more complex due to the spread of drug-resistant parasites. Medicinal plants are the unquestionable source of effective antimalarials. The present study aimed to evaluate antiplasmodial activity and acute toxicity of the plant Strychnos mitis in Plasmodium berghei infected mice. Standard procedures were employed to investigate acute toxicity and 4-day suppressive effect of crude aqueous and hydro-methanolic extracts of the leaves of Strychnos mitis against P. berghei in Swiss albino mice. Water, n-hexane and chloroform fractions, obtained from crude hydro-methanolic extract, were also tested for their suppressive effect against P. berghei. All crude extracts revealed no obvious acute toxicity in mice up to the highest dose administered (2000 mg/kg). All crude and solvent fractions of the leaves of Strychnos mitis inhibited parasitaemia significantly (p < 0.01). At the highest dose of 600 mg/kg, both aqueous and hydro-methanolic extracts demonstrated higher performance with 95.5 and 93.97% parasitaemia suppression, respectively. All doses of crude extracts and fractions of leaves of Strychnos mitis prolonged survival time of infected mice dose dependently. The highest two doses of the crude aqueous and hydro-methanolic extracts, and chloroform and aqueous fractions prevented weight loss in a dose dependent manner. Whereas, all doses of n-hexane fraction prevented loss of body weight but not in a dose dependent manner. The crude aqueous extract at the doses of 400 mg/kg and 600 mg/kg and hydro-methanolic extract at all dose levels significantly (p < 0.01) prevented packed cell volume reduction. Crude aqueous extract at a dose of 600 mg/kg and hydro-methanolic extract at all dose levels significantly prevented temperature reduction. Phytochemical screening of the crude aqueous and hydro-methanolic extracts revealed the presence of alkaloids, anthraquinones, glycosides, terpenoids, saponins, tannins and phenols. The results of this study provide support the traditional therapeutic use of Strychnos mitis for treatment of malaria. However, further in-depth study is needed to evaluate the potential of the plant towards the development of new antimalarial agent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saini, Amarjit S.; Zhang, Geoffrey G., E-mail: geoffrey.zhang@moffitt.org; Finkelstein, Steven E.
2011-07-15
Purpose: Vaginal balloon packing is a means to displace organs at risk during high dose rate brachytherapy of the uterine cervix. We tested the hypothesis that contrast-filled vaginal balloon packing reduces radiation dose to organs at risk, such as the bladder and rectum, in comparison to water- or air-filled balloons. Methods and Materials: In a phantom study, semispherical vaginal packing balloons were filled with air, saline solution, and contrast agents. A high dose rate iridium-192 source was placed on the anterior surface of the balloon, and the diode detector was placed on the posterior surface. Dose ratios were taken withmore » each material in the balloon. Monte Carlo (MC) simulations, by use of the MC computer program DOSXYZnrc, were performed to study dose reduction vs. balloon size and contrast material, including commercially available iodine- and gadolinium-based contrast agents. Results: Measured dose ratios on the phantom with the balloon radius of 3.4 cm were 0.922 {+-} 0.002 for contrast/saline solution and 0.808 {+-} 0.001 for contrast/air. The corresponding ratios by MC simulations were 0.895 {+-} 0.010 and 0.781 {+-} 0.010. The iodine concentration in the contrast was 23.3% by weight. The dose reduction of contrast-filled balloon ranges from 6% to 15% compared with water-filled balloon and 11% to 26% compared with air-filled balloon, with a balloon size range between 1.4 and 3.8 cm, and iodine concentration in contrast of 24.9%. The dose reduction was proportional to the contrast agent concentration. The gadolinium-based contrast agents showed less dose reduction because of much lower concentrations in their solutions. Conclusions: The dose to the posterior wall of the bladder and the anterior wall of the rectum can be reduced if the vaginal balloon is filled with contrast agent in comparison to vaginal balloons filled with saline solution or air.« less
Brady, Samuel L.; Moore, Bria M.; Yee, Brian S.; Kaufman, Robert A.
2015-01-01
Purpose To determine a comprehensive method for the implementation of adaptive statistical iterative reconstruction (ASIR) for maximal radiation dose reduction in pediatric computed tomography (CT) without changing the magnitude of noise in the reconstructed image or the contrast-to-noise ratio (CNR) in the patient. Materials and Methods The institutional review board waived the need to obtain informed consent for this HIPAA-compliant quality analysis. Chest and abdominopelvic CT images obtained before ASIR implementation (183 patient examinations; mean patient age, 8.8 years ± 6.2 [standard deviation]; range, 1 month to 27 years) were analyzed for image noise and CNR. These measurements were used in conjunction with noise models derived from anthropomorphic phantoms to establish new beam current–modulated CT parameters to implement 40% ASIR at 120 and 100 kVp without changing noise texture or magnitude. Image noise was assessed in images obtained after ASIR implementation (492 patient examinations; mean patient age, 7.6 years ± 5.4; range, 2 months to 28 years) the same way it was assessed in the pre-ASIR analysis. Dose reduction was determined by comparing size-specific dose estimates in the pre- and post-ASIR patient cohorts. Data were analyzed with paired t tests. Results With 40% ASIR implementation, the average relative dose reduction for chest CT was 39% (2.7/4.4 mGy), with a maximum reduction of 72% (5.3/18.8 mGy). The average relative dose reduction for abdominopelvic CT was 29% (4.8/6.8 mGy), with a maximum reduction of 64% (7.6/20.9 mGy). Beam current modulation was unnecessary for patients weighing 40 kg or less. The difference between 0% and 40% ASIR noise magnitude was less than 1 HU, with statistically nonsignificant increases in patient CNR at 100 kVp of 8% (15.3/14.2; P = .41) for chest CT and 13% (7.8/6.8; P = .40) for abdominopelvic CT. Conclusion Radiation dose reduction at pediatric CT was achieved when 40% ASIR was implemented as a dose reduction tool only; no net change to the magnitude of noise in the reconstructed image or the patient CNR occurred. PMID:23901128
Ultralow Dose MSCT Imaging in Dental Implantology
Widmann, Gerlig; Al-Ekrish, Asma'a A.
2018-01-01
Introduction: The Council Directive 2013/59 Euratom has a clear commitment for keeping medical radiation exposure as low as reasonably achievable and demands a regular review and use of diagnostic reference levels. Methods: In dental implantology, the range of effective doses for cone beam computed tomography (CBCT) shows a broad overlap with multislice computed tomography (MSCT). More recently, ultralow dose imaging with new generations of MSCT scanners may impart radiation doses equal to or lower than CBCT. Dose reductions in MSCT have been further facilitated by the introduction of iterative image reconstruction technology (IRT), which provides substantial noise reduction over the current standard of filtered backward projection (FBP). Aim: The aim of this article is to review the available literature on ultralow dose CT imaging and IRTs in dental implantology imaging and to summarize their influence on spatial and contrast resolution, image noise, tissue density measurements, and validity of linear measurements of the jaws. Conclusion: Application of ultralow dose MSCT with IRT technology in dental implantology offers the potential for very large dose reductions compared with standard dose imaging. Yet, evaluation of various diagnostic tasks related to dental implantology is still needed to confirm the results obtained with various IRTs and ultra-low doses so far. PMID:29492174
Yates, James W T; Ashton, Susan; Cross, Darren; Mellor, Martine J; Powell, Steve J; Ballard, Peter
2016-10-01
Osimertinib (AZD9291) is a potent, selective, irreversible inhibitor of EGFR-sensitizing (exon 19 and L858R) and T790M-resistant mutation. In vivo, in the mouse, it is metabolized to an active des-methyl metabolite, AZ5104. To understand the therapeutic potential in patients, this study aimed to assess the relationship between osimertinib pharmacokinetics, the pharmacokinetics of the active metabolite, the pharmacodynamics of phosphorylated EGFR reduction, and efficacy in mouse xenograft models of EGFR-driven cancers, including two NSCLC lines. Osimertinib was dosed in xenografted models of EGFR-driven cancers. In one set of experiments, changes in phosphorylated EGFR were measured to confirm target engagement. In a second set of efficacy studies, the resulting changes in tumor volume over time after repeat dosing of osimertinib were observed. To account for the contributions of both molecules, a mathematical modeling approach was taken to integrate the resulting datasets. The model was able to describe the pharmacokinetics, pharmacodynamics, and efficacy in A431, PC9, and NCI-H1975 xenografts, with the differences in sensitivity described by the varying potency against wild-type, sensitizing, and T790M-mutant EGFR and the phosphorylated EGFR reduction required to reduce tumor volume. It was inferred that recovery of pEGFR is slower after chronic dosing due to reduced resynthesis. It was predicted and further demonstrated that although inhibition is irreversible, the resynthesis of EGFR is such that infrequent intermittent dosing is not as efficacious as once daily dosing. Mol Cancer Ther; 15(10); 2378-87. ©2016 AACR. ©2016 American Association for Cancer Research.
Low-dose dual-energy electronic cleansing for fecal-tagging CT Colonography
NASA Astrophysics Data System (ADS)
Cai, Wenli; Zhang, Da; Lee, June-Goo; Yoshida, Hiroyuki
2013-03-01
Dual-energy electronic cleansing (DE-EC) provides a promising means for cleansing the tagged fecal materials in fecaltagging CT colonography (CTC). However, the increased radiation dose due to the double exposures in dual-energy CTC (DE-CTC) scanning is a major limitation for the use of DE-EC in clinical practice. The purpose of this study was to develop and evaluate a low-dose DE-EC scheme in fecal-tagging DE-CTC. In this study, a custom-made anthropomorphic colon phantom, which was filled with simulated tagged materials by non-ionic iodinated contrast agent (Omnipaque iohexol, GE Healthcare), was scanned by a dual-source CT scanner (SOMATON Definition Flash, Siemens Healthcare) at two photon energies: 80 kVp and 140 kVp with nine different tube current settings ranging from 12 to 74 mAs for 140 kVp, and then reconstructed by soft-tissue reconstruction kernel (B30f). The DE-CTC images were subjected to a low-dose DE-EC scheme. First, our image-space DE-CTC denoising filter was applied for reduction of image noise. Then, the noise-reduced images were processed by a virtual lumen tagging method for reduction of partial volume effect and tagging inhomogeneity. The results were compared with the registered CTC images of native phantom without fillings. Preliminary results showed that our low-dose DE-EC scheme achieved the cleansing ratios, defined by the proportion of the cleansed voxels in the tagging mask, between 93.18% (12 mAs) and 96.62% (74 mAs). Also, the soft-tissue preservation ratios, defined by the proportion of the persevered voxels in the soft-tissue mask, were maintained in the range between 94.67% and 96.41%.
Miéville, Frédéric A; Gudinchet, François; Rizzo, Elena; Ou, Phalla; Brunelle, Francis; Bochud, François O; Verdun, Francis R
2011-09-01
Radiation dose exposure is of particular concern in children due to the possible harmful effects of ionizing radiation. The adaptive statistical iterative reconstruction (ASIR) method is a promising new technique that reduces image noise and produces better overall image quality compared with routine-dose contrast-enhanced methods. To assess the benefits of ASIR on the diagnostic image quality in paediatric cardiac CT examinations. Four paediatric radiologists based at two major hospitals evaluated ten low-dose paediatric cardiac examinations (80 kVp, CTDI(vol) 4.8-7.9 mGy, DLP 37.1-178.9 mGy·cm). The average age of the cohort studied was 2.6 years (range 1 day to 7 years). Acquisitions were performed on a 64-MDCT scanner. All images were reconstructed at various ASIR percentages (0-100%). For each examination, radiologists scored 19 anatomical structures using the relative visual grading analysis method. To estimate the potential for dose reduction, acquisitions were also performed on a Catphan phantom and a paediatric phantom. The best image quality for all clinical images was obtained with 20% and 40% ASIR (p < 0.001) whereas with ASIR above 50%, image quality significantly decreased (p < 0.001). With 100% ASIR, a strong noise-free appearance of the structures reduced image conspicuity. A potential for dose reduction of about 36% is predicted for a 2- to 3-year-old child when using 40% ASIR rather than the standard filtered back-projection method. Reconstruction including 20% to 40% ASIR slightly improved the conspicuity of various paediatric cardiac structures in newborns and children with respect to conventional reconstruction (filtered back-projection) alone.
Michot, Jean-Marie; Mazeron, Renaud; Danu, Alina; Lazarovici, Julien; Ghez, David; Antosikova, Anna; Willekens, Christophe; Chamseddine, Ali N; Minard, Veronique; Dartigues, Peggy; Bosq, Jacques; Carde, Patrice; Koscielny, Serge; De Botton, Stéphane; Ferme, Christophe; Girinsky, Theodore; Ribrag, Vincent
2015-11-01
Radiation combined with chemotherapy has recently been proposed to treat patients with localised extranodal natural killer (NK)/T lymphoma (ENKTL), nasal type. However, the modalities of the chemoradiotherapy combination and drug choices remain a matter of debate. We conducted a concurrent chemoradiotherapy (CCRT) study with the ESHAP (Etoposide, Steroid, High-dose Ara-C and Platinum) regimen. An induction phase with two upfront courses of CCRT delivering a 40Gy dose of radiation concurrently with two cycles of the ESHAP chemotherapy regimen, followed by a consolidation phase with 2-3 cycles of ESHAP chemotherapy alone. Thirteen patients with localised ENKTL nasal type were enrolled between January 2005 and December 2014. The median age was 62years. Ten and three patients had Ann Arbor stage IE and IIE disease, respectively. They all completed the induction CCRT phase. A median of two consolidation ESHAP cycles were delivered. During consolidation, 8/13 (62%) patients had a reduction in the number of chemotherapy cycles or reduced chemotherapy doses, due to haematologically adverse events. The other five patients (38%) received the full number of ESHAP cycles of chemotherapy scheduled without a dose reduction. All but one patient (92%) experienced grade 3-4 haematological toxicity. The main non-haematological grade 3-4 toxicity was mucositis in 6/13 (46%) patients. All but one patient (92%) achieved a complete remission. Two-year overall survival was 72%. With optimal management of the specific toxicities induced by this treatment modality, CCRT with the ESHAP regimen yielded high efficacy against localised ENKTL, nasal type. Copyright © 2015 Elsevier Ltd. All rights reserved.
Freudenberg, Robert; Wendisch, Maria; Runge, Roswitha; Wunderlich, Gerd; Kotzerke, Jörg
2012-12-01
Cellular radionuclide uptake increases the heterogeneity of absorbed dose to biological structures. Dose increase depends on uptake yield and emission characteristics of radioisotopes. We used an in vitro model to compare the impact of cellular uptake of (188)Re-perrhenate and (99m)Tc-pertechnetate on cellular survival. Rat thyroid PC Cl3 cells in culture were incubated with (188)Re or (99m)Tc in the presence or absence of perchlorate for 1 hour. Clonogenic cell survival was measured by colony formation. In addition, intracellular radionuclide uptake was quantified. Dose effect curves were established for (188)Re and (99m)Tc for various extra- and intracellular distributions of the radioactivity. In the presence of perchlorate, no uptake of radionuclides was detected and (188)Re reduced cell survival more efficiently than (99m)Tc. A(37), the activity that is necessary to yield 37% cell survival was 14 MBq/ml for (188)Re and 480 MBq/ml for (99m)Tc. In the absence of perchlorate, both radionuclides showed similar uptakes; however, A(37) was reduced by 30% for the beta-emitter and by 95% for (99m)Tc. The dose D(37) that yields 37% cell survival was between 2.3 and 2.8 Gy for both radionuclides. Uptake of (188)Re and (99m)Tc decreased cell survival. Intracellular (99m)Tc yielded a dose increase that was higher compared to (188)Re due to emitted Auger and internal conversion-electrons. Up to 5 Gy there was no difference in radiotoxicity of (188)Re and (99m)Tc. At doses higher than 5 Gy intracellular (99m)Tc became less radiotoxic than (188)Re, probably due to a non-uniform lognormal radionuclide uptake.
Biermans, Geert; Horemans, Nele; Vanhoudt, Nathalie; Vandenhove, Hildegarde; Saenen, Eline; Van Hees, May; Wannijn, Jean; Vangronsveld, Jaco; Cuypers, Ann
2015-11-01
Human activity has led to an increasing amount of radionuclides in the environment and subsequently to an increased risk of exposure of the biosphere to ionising radiation. Due to their high linear energy transfer, α-emitters form a threat to biota when absorbed or integrated in living tissue. Among these, (241)Am is of major concern due to high affinity for organic matter and high specific activity. This study examines the dose-dependent biological effects of α-radiation delivered by (241)Am at the morphological, physiological and molecular level in 14-day old seedlings of Arabidopsis thaliana after hydroponic exposure for 4 or 7 days. Our results show that (241)Am has high transfer to the roots but low translocation to the shoots. In the roots, we observed a transcriptional response of reactive oxygen species scavenging and DNA repair pathways. At the physiological and morphological level this resulted in a response which evolved from redox balance control and stable biomass at low dose rates to growth reduction, reduced transfer and redox balance decline at higher dose rates. This situation was also reflected in the shoots where, despite the absence of a transcriptional response, the control of photosynthesis performance and redox balance declined with increasing dose rate. The data further suggest that the effects in both organs were initiated in the roots, where the highest dose rates occurred, ultimately affecting photosynthesis performance and carbon assimilation. Though further detailed study of nutrient balance and (241)Am localisation is necessary, it is clear that radionuclide uptake and distribution is a major parameter in the global exposure effects on plant performance and health. Copyright © 2015 Elsevier Ltd. All rights reserved.
In vivo dose verification method in catheter based high dose rate brachytherapy.
Jaselskė, Evelina; Adlienė, Diana; Rudžianskas, Viktoras; Urbonavičius, Benas Gabrielis; Inčiūra, Arturas
2017-12-01
In vivo dosimetry is a powerful tool for dose verification in radiotherapy. Its application in high dose rate (HDR) brachytherapy is usually limited to the estimation of gross errors, due to inability of the dosimetry system/ method to record non-uniform dose distribution in steep dose gradient fields close to the radioactive source. In vivo dose verification in interstitial catheter based HDR brachytherapy is crucial since the treatment is performed inserting radioactive source at the certain positions within the catheters that are pre-implanted into the tumour. We propose in vivo dose verification method for this type of brachytherapy treatment which is based on the comparison between experimentally measured and theoretical dose values calculated at well-defined locations corresponding dosemeter positions in the catheter. Dose measurements were performed using TLD 100-H rods (6 mm long, 1 mm diameter) inserted in a certain sequences into additionally pre-implanted dosimetry catheter. The adjustment of dosemeter positioning in the catheter was performed using reconstructed CT scans of patient with pre-implanted catheters. Doses to three Head&Neck and one Breast cancer patient have been measured during several randomly selected treatment fractions. It was found that the average experimental dose error varied from 4.02% to 12.93% during independent in vivo dosimetry control measurements for selected Head&Neck cancer patients and from 7.17% to 8.63% - for Breast cancer patient. Average experimental dose error was below the AAPM recommended margin of 20% and did not exceed the measurement uncertainty of 17.87% estimated for this type of dosemeters. Tendency of slightly increasing average dose error was observed in every following treatment fraction of the same patient. It was linked to the changes of theoretically estimated dosemeter positions due to the possible patient's organ movement between different treatment fractions, since catheter reconstruction was performed for the first treatment fraction only. These findings indicate potential for further average dose error reduction in catheter based brachytherapy by at least 2-3% in the case that catheter locations will be adjusted before each following treatment fraction, however it requires more detailed investigation. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merritt, Z; Dave, J; Eschelman, D
Purpose: To investigate the effects of image receptor technology and dose reduction software on radiation dose estimates for most frequently performed fluoroscopically-guided interventional (FGI) procedures at a tertiary health care center. Methods: IRB approval was obtained for retrospective analysis of FGI procedures performed in the interventional radiology suites between January-2011 and December-2015. This included procedures performed using image-intensifier (II) based systems which were subsequently replaced, flat-panel-detector (FPD) based systems which were later upgraded with ClarityIQ dose reduction software (Philips Healthcare) and relatively new FPD system already equipped with ClarityIQ. Post procedure, technologists entered system-reported cumulative air kerma (CAK) and kerma-areamore » product (KAP; only KAP for II based systems) in RIS; these values were analyzed. Data pre-processing included correcting typographical errors and cross-verifying CAK and KAP. The most frequent high and low dose FGI procedures were identified and corresponding CAK and KAP values were compared. Results: Out of 27,251 procedures within this time period, most frequent high and low dose procedures were chemo/immuno-embolization (n=1967) and abscess drainage (n=1821). Mean KAP for embolization and abscess drainage procedures were 260,657, 310,304 and 94,908 mGycm{sup 2}, and 14,497, 15,040 and 6307 mGycm{sup 2} using II-, FPD- and FPD with ClarityIQ- based systems, respectively. Statistically significant differences were observed in KAP values for embolization procedures with respect to different systems but for abscess drainage procedures significant differences were only noted between systems with FPD and FPD with ClarityIQ (p<0.05). Mean CAK reduced significantly from 823 to 308 mGy and from 43 to 21 mGy for embolization and abscess drainage procedures, respectively, in transitioning to FPD systems with ClarityIQ (p<0.05). Conclusion: While transitioning from II- to FPD- based systems was not associated with dose reduction for the most frequently performed FGI procedures, substantial dose reduction was noted with relatively newer systems and dose reduction software.« less
Ellmann, Stephan; Kammerer, Ferdinand; Brand, Michael; Allmendinger, Thomas; May, Matthias S; Uder, Michael; Lell, Michael M; Kramer, Manuel
2016-05-01
The aim of this study was to determine the dose reduction potential of iterative reconstruction (IR) algorithms in computed tomography angiography (CTA) of the circle of Willis using a novel method of evaluating the quality of radiation dose-reduced images. This study relied on ReconCT, a proprietary reconstruction software that allows simulating CT scans acquired with reduced radiation dose based on the raw data of true scans. To evaluate the performance of ReconCT in this regard, a phantom study was performed to compare the image noise of true and simulated scans within simulated vessels of a head phantom. That followed, 10 patients scheduled for CTA of the circle of Willis were scanned according to our institute's standard protocol (100 kV, 145 reference mAs). Subsequently, CTA images of these patients were reconstructed as either a full-dose weighted filtered back projection or with radiation dose reductions down to 10% of the full-dose level and Sinogram-Affirmed Iterative Reconstruction (SAFIRE) with either strength 3 or 5. Images were marked with arrows pointing on vessels of different sizes, and image pairs were presented to observers. Five readers assessed image quality with 2-alternative forced choice comparisons. In the phantom study, no significant differences were observed between the noise levels of simulated and true scans in filtered back projection, SAFIRE 3, and SAFIRE 5 reconstructions.The dose reduction potential for patient scans showed a strong dependence on IR strength as well as on the size of the vessel of interest. Thus, the potential radiation dose reductions ranged from 84.4% for the evaluation of great vessels reconstructed with SAFIRE 5 to 40.9% for the evaluation of small vessels reconstructed with SAFIRE 3. This study provides a novel image quality evaluation method based on 2-alternative forced choice comparisons. In CTA of the circle of Willis, higher IR strengths and greater vessel sizes allowed higher degrees of radiation dose reduction.
Low Dose of Doxorubicin Potentiates the Effect of Temozolomide in Glioblastoma Cells.
Villodre, Emilly Schlee; Kipper, Franciele Cristina; Silva, Andrew Oliveira; Lenz, Guido; Lopez, Patrícia Luciana da Costa
2018-05-01
Glioblastoma (GBM) is an aggressive brain tumor with temozolomide (TMZ)-based chemotherapy as the main therapeutic strategy. Doxorubicin (DOX) is not used in gliomas due to its low bioavailability in the brain; however, new delivery strategies and low doses may be effective in the long term, especially as part of a drug cocktail. Our aim was to evaluate the chronic effects of low doses of DOX and TMZ in GBM. Human U87-ATCC cells and a primary GBM culture were chronically treated with TMZ (5 μM) and DOX (1 and 10 nM) alone or combined. DOX resulted in a reduction in the number of cells over a period of 35 days and delayed the cell regrowth. In addition, DOX induced cell senescence and reduced tumor sphere formation and the proportion of NANOG- and OCT4-positive cells after 7 days. Low doses of TMZ potentiated the effects of DOX on senescence and sphere formation. This combined response using low doses of DOX may pave the way for its use in glioma therapy, with new technologies to overcome its low blood-brain barrier permeability.
Thomadsen, Bruce; Nath, Ravinder; Bateman, Fred B; Farr, Jonathan; Glisson, Cal; Islam, Mohammad K; LaFrance, Terry; Moore, Mary E; George Xu, X; Yudelev, Mark
2014-11-01
External-beam radiation therapy mostly uses high-energy photons (x-rays) produced by medical accelerators, but many facilities now use proton beams, and a few use fast-neutron beams. High-energy photons offer several advantages over lower-energy photons in terms of better dose distributions for deep-seated tumors, lower skin dose, less sensitivity to tissue heterogeneities, etc. However, for beams operating at or above 10 MV, some of the materials in the accelerator room and the radiotherapy patient become radioactive due primarily to photonuclear reactions and neutron capture, exposing therapy staff and patients to unwanted radiation dose. Some recent advances in radiotherapy technology require treatments using a higher number of monitor units and monitor-unit rates for the same delivered dose, and compared to the conventional treatment techniques and fractionation schemes, the activation dose to personnel can be substantially higher. Radiotherapy treatments with proton and neutron beams all result in activated materials in the treatment room. In this report, the authors review critically the published literature on radiation exposures from induced radioactivity in radiotherapy. They conclude that the additional exposure to the patient due to induced radioactivity is negligible compared to the overall radiation exposure as a part of the treatment. The additional exposure to the staff due to induced activity from photon beams is small at an estimated level of about 1 to 2 mSv y. This is well below the allowed occupational exposure limits. Therefore, the potential hazard to staff from induced radioactivity in the use of high-energy x-rays is considered to be low, and no specific actions are considered necessary or mandatory. However, in the spirit of the "As Low as Reasonably Achievable (ALARA)" program, some reasonable steps are recommended that can be taken to reduce this small exposure to an even lower level. The dose reduction strategies suggested should be followed only if these actions are considered reasonable and practical in the individual clinics. Therapists working with proton beam and neutron beam units handle treatment devices that do become radioactive, and they should wear extremity monitors and make handling apertures and boluses their last task upon entering the room following treatment. Personnel doses from neutron-beam units can approach regulatory limits depending on the number of patients and beams, and strategies to reduce doses should be followed.
NASA Astrophysics Data System (ADS)
Angel, Erin; Yaghmai, Nazanin; Matilda Jude, Cecilia; DeMarco, John J.; Cagnon, Christopher H.; Goldin, Jonathan G.; Primak, Andrew N.; Stevens, Donna M.; Cody, Dianna D.; McCollough, Cynthia H.; McNitt-Gray, Michael F.
2009-02-01
Tube current modulation was designed to reduce radiation dose in CT imaging while maintaining overall image quality. This study aims to develop a method for evaluating the effects of tube current modulation (TCM) on organ dose in CT exams of actual patient anatomy. This method was validated by simulating a TCM and a fixed tube current chest CT exam on 30 voxelized patient models and estimating the radiation dose to each patient's glandular breast tissue. This new method for estimating organ dose was compared with other conventional estimates of dose reduction. Thirty detailed voxelized models of patient anatomy were created based on image data from female patients who had previously undergone clinically indicated CT scans including the chest area. As an indicator of patient size, the perimeter of the patient was measured on the image containing at least one nipple using a semi-automated technique. The breasts were contoured on each image set by a radiologist and glandular tissue was semi-automatically segmented from this region. Previously validated Monte Carlo models of two multidetector CT scanners were used, taking into account details about the source spectra, filtration, collimation and geometry of the scanner. TCM data were obtained from each patient's clinical scan and factored into the model to simulate the effects of TCM. For each patient model, two exams were simulated: a fixed tube current chest CT and a tube current modulated chest CT. X-ray photons were transported through the anatomy of the voxelized patient models, and radiation dose was tallied in the glandular breast tissue. The resulting doses from the tube current modulated simulations were compared to the results obtained from simulations performed using a fixed mA value. The average radiation dose to the glandular breast tissue from a fixed tube current scan across all patient models was 19 mGy. The average reduction in breast dose using the tube current modulated scan was 17%. Results were size dependent with smaller patients getting better dose reduction (up to 64% reduction) and larger patients getting a smaller reduction, and in some cases the dose actually increased when using tube current modulation (up to 41% increase). The results indicate that radiation dose to glandular breast tissue generally decreases with the use of tube current modulated CT acquisition, but that patient size (and in some cases patient positioning) may affect dose reduction.
Pearson, Glen J; Francis, Gordon A; Romney, Jacques S; Gilchrist, Dawna M; Opgenorth, Andrea; Gyenes, Gabor T
2006-01-01
INTRODUCTION Ezetimibe (EZ) is a selective cholesterol absorption inhibitor approved for use in Canada. The effect and tolerability of EZ among patients was evaluated in the clinical setting of a specialty cardiovascular risk reduction clinic at the University of Alberta Hospital, Edmonton, Alberta. PATIENTS AND METHODS All patients 18 years of age or older who were prescribed EZ were included, unless they failed to take EZ for a minimum of two weeks, did not have baseline and on-EZ low-density lipoprotein cholesterol (LDL-C) levels, or had concomitant lipid-lowering drugs or dosages changed within one month of starting EZ. RESULTS Eighty-four patients (mean age 57.9 years) were included. By Framingham risk calculation, 71.4% were found to be high-risk patients, 13.1% moderate-risk patients and 15.5% low-risk patients; 66.7% of patients had prior cardiovascular events. On EZ, the mean reductions were: total cholesterol level 1.11 mmol/L (16.5%); LDL-C level 1.01 mmol/L (22.3%); high-density lipoprotein cholesterol level 0.06 mmol/L (4.6%); and ratio of total cholesterol level to high-density lipoprotein cholesterol level 0.68 mmol/L (12.8%); all were statistically significant (P<0.001). Results were similar when stratified by primary (n=28) versus secondary (n=56) prevention. Patients on EZ monotherapy (n=34) had mean LDL-C reductions of 1.03 mmol/L (20.5%) compared with 1.19 mmol/L (30.1%) or 0.95 mmol/L (22.5%), where EZ was added to low-dose or high-dose statins (P<0.01 for all). On EZ, 30 patients (35.7%) achieved previously unattainable target LDL-C levels. Four patients discontinued the drug due to side effects. CONCLUSIONS EZ is safe and effective in high-risk patients treated in the clinical setting of a cardiovascular risk reduction clinic. A mean LDL-C reduction of 1 mmol/L (20% to 30%) in all patient subgroups is consistent with previous clinical trial results. The significant reduction in LDL-C (mean 22.5%) observed in the EZ plus high-dose statin subgroup provides clinical evidence for use of this medication beyond published studies. PMID:16971979
Kim, Hyun Gi; Lee, Young Han; Choi, Jin-Young; Park, Mi-Suk; Kim, Myeong-Jin; Kim, Ki Whang
2015-01-01
Purpose To investigate the optimal blending percentage of adaptive statistical iterative reconstruction (ASIR) in a reduced radiation dose while preserving a degree of image quality and texture that is similar to that of standard-dose computed tomography (CT). Materials and Methods The CT performance phantom was scanned with standard and dose reduction protocols including reduced mAs or kVp. Image quality parameters including noise, spatial, and low-contrast resolution, as well as image texture, were quantitatively evaluated after applying various blending percentages of ASIR. The optimal blending percentage of ASIR that preserved image quality and texture compared to standard dose CT was investigated in each radiation dose reduction protocol. Results As the percentage of ASIR increased, noise and spatial-resolution decreased, whereas low-contrast resolution increased. In the texture analysis, an increasing percentage of ASIR resulted in an increase of angular second moment, inverse difference moment, and correlation and in a decrease of contrast and entropy. The 20% and 40% dose reduction protocols with 20% and 40% ASIR blending, respectively, resulted in an optimal quality of images with preservation of the image texture. Conclusion Blending the 40% ASIR to the 40% reduced tube-current product can maximize radiation dose reduction and preserve adequate image quality and texture. PMID:25510772
Genotoxicity testing of peptides: Folate deprivation as a marker of exaggerated pharmacology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guérard, Melanie, E-mail: melanie.guerard@roche.com; Zeller, Andreas; Festag, Matthias
2014-09-15
The incidence of micronucleated-cells is considered to be a marker of a genotoxic event and can be caused by direct- or indirect-DNA reactive mechanisms. In particular, small increases in the incidence of micronuclei, which are not associated with toxicity in the target tissue or any structurally altering properties of the compound, trigger the suspicion that an indirect mechanism could be at play. In a bone marrow micronucleus test of a synthetic peptide (a dual agonist of the GLP-1 and GIP receptors) that had been integrated into a regulatory 13-week repeat-dose toxicity study in the rat, small increases in the incidencemore » of micronuclei had been observed, together with pronounced reductions in food intake and body weight gain. Because it is well established that folate plays a crucial role in maintaining genomic integrity and pronounced reductions in food intake and body weight gain were observed, folate levels were determined from plasma samples initially collected for toxicokinetic analytics. A dose-dependent decrease in plasma folate levels was evident after 4 weeks of treatment at the mid and high dose levels, persisted until the end of the treatment duration of 13-weeks and returned to baseline levels during the recovery period of 4 weeks. Based on these properties, and the fact that the compound tested (peptide) per se is not expected to reach the nucleus and cause DNA damage, the rationale is supported that the elevated incidence of micronucleated polychromatic erythrocytes is directly linked to the exaggerated pharmacology of the compound resulting in a decreased folate level. - Highlights: • A synthetic peptide has been evaluated for potential genotoxicity • Small increases in an integrated (13-weeks) micronucleus test were observed • Further, animals had a pronounced reductions in food intake and body weight gain • A dose-dependent decrease in plasma folate levels was evident from week 4 onwards • Elevated micronuclei-incidence due to the exaggerated pharmacology.« less
Marzuoli, Riccardo; Finco, Angelo; Chiesa, Maria; Gerosa, Giacomo
2017-12-01
The present study investigated the response to ozone (O 3 ) of two cultivars (cv.'Romana' and cv. 'Canasta') of irrigated lettuce grown in an open-top chamber (OTC) experiment in Mediterranean conditions. Two different levels of O 3 were applied, ambient O 3 in non-filtered OTCs (NF-OTCs) and -40% of ambient O 3 in charcoal-filtered OTCs (CF-OTCs), during four consecutive growing cycles. At the end of each growing cycle, the marketable yield (fresh biomass) was assessed while during the growing periods, measurements of the stomatal conductance at leaf level were performed and used to define a stomatal conductance model for calculation of the phytotoxic ozone dose (POD) absorbed by the plants.Results showed that O 3 caused statistically significant yield reductions in the first and in the last growing cycle. In general, the marketable yield of the NF-OTC plants was always lower than the CF-OTC plants for both cultivars, with mean reductions of -18.5 and -14.5% for 'Romana' and 'Canasta', respectively. On the contrary, there was no statistically significant difference in marketable yield due to the cultivar factor or to the interaction between O 3 and cultivar in any of the growing cycle performed.Dose-response relationships for the marketable relative yield based on the POD values were calculated according to different flux threshold values (Y). The best regression fit was obtained using an instantaneous flux threshold of 6 nmol O 3 m -2 s -1 (POD 6 ); the same value was obtained also for other crops. According to the generic lettuce dose-response relationship, an O 3 critical level of 1 mmol O 3 m -2 of POD 6 for a 15% of marketable yield loss was found.
Improving IMRT delivery efficiency using intensity limits during inverse planning.
Coselmon, Martha M; Moran, Jean M; Radawski, Jeffrey D; Fraass, Benedick A
2005-05-01
Inverse planned intensity modulated radiotherapy (IMRT) fields can be highly modulated due to the large number of degrees of freedom involved in the inverse planning process. Additional modulation typically results in a more optimal plan, although the clinical rewards may be small or offset by additional delivery complexity and/or increased dose from transmission and leakage. Increasing modulation decreases delivery efficiency, and may lead to plans that are more sensitive to geometrical uncertainties. The purpose of this work is to assess the use of maximum intensity limits in inverse IMRT planning as a simple way to increase delivery efficiency without significantly affecting plan quality. Nine clinical cases (three each for brain, prostate, and head/neck) were used to evaluate advantages and disadvantages of limiting maximum intensity to increase delivery efficiency. IMRT plans were generated using in-house protocol-based constraints and objectives for the brain and head/neck, and RTOG 9406 dose volume objectives in the prostate. Each case was optimized at a series of maximum intensity ratios (the product of the maximum intensity and the number of beams divided by the prescribed dose to the target volume), and evaluated in terms of clinical metrics, dose-volume histograms, monitor units (MU) required per fraction (SMLC and DMLC delivery), and intensity map variation (a measure of the beam modulation). In each site tested, it was possible to reduce total monitor units by constraining the maximum allowed intensity without compromising the clinical acceptability of the plan. Monitor unit reductions up to 38% were observed for SMLC delivery, while reductions up to 29% were achieved for DMLC delivery. In general, complicated geometries saw a smaller reduction in monitor units for both delivery types, although DMLC delivery required significantly more monitor units in all cases. Constraining the maximum intensity in an inverse IMRT plan is a simple way to improve delivery efficiency without compromising plan objectives.
Grebenstein, Patricia; Burroughs, Danielle; Zhang, Yan; LeSage, Mark G
2013-12-01
Reducing the nicotine content in tobacco products is being considered by the FDA as a policy to reduce the addictiveness of tobacco products. Understanding individual differences in response to nicotine reduction will be critical to developing safe and effective policy. Animal and human research demonstrating sex differences in the reinforcing effects of nicotine suggests that males and females may respond differently to nicotine-reduction policies. However, no studies have directly examined sex differences in the effects of nicotine unit-dose reduction on nicotine self-administration (NSA) in animals. The purpose of the present study was to examine this issue in a rodent self-administration model. Male and female rats were trained to self-administer nicotine (0.06mg/kg) under an FR 3 schedule during daily 23h sessions. Rats were then exposed to saline extinction and reacquisition of NSA, followed by weekly reductions in the unit dose (0.03 to 0.00025mg/kg) until extinction levels of responding were achieved. Males and females were compared with respect to baseline levels of intake, resistance to extinction, degree of compensatory increases in responding during dose reduction, and the threshold reinforcing unit dose of nicotine. Exponential demand-curve analysis was also conducted to compare the sensitivity of males and females to increases in the unit price (FR/unit dose) of nicotine (i.e., elasticity of demand or reinforcing efficacy). Females exhibited significantly higher baseline intake and less compensation than males. However, there were no sex differences in the reinforcement threshold or elasticity of demand. Dose-response relationships were very well described by the exponential demand function (r(2) values>0.96 for individual subjects). These findings suggest that females may exhibit less compensatory smoking in response to nicotine reduction policies, even though their nicotine reinforcement threshold and elasticity of demand may not differ from males. Copyright © 2013 Elsevier Inc. All rights reserved.
Hypopituitarism possibly due to lymphocytic hypophysitis in a patient with type 1 diabetes.
Matoba, Keiichiro; Mitsuishi, Sumie; Hayashida, Satoshi; Yamazaki, Hiroyuki
2014-01-01
Hypopituitarism often develops insidiously, and undiagnosed hypopituitarism can influence the glycemic profile of patients with type 1 diabetes. We herein report the case of a 49-year-old man with type 1 diabetes and Hashimoto's thyroiditis who experienced an unexplained improvement in his glycemic level and recurrent severe hypoglycemia, despite a reduction in the dose of insulin. Based on the patient's endocrinological findings, he was diagnosed with hypopituitarism possibly due to lymphocytic hypophysitis, as supported by positive results for human leukocyte antigen A24 and Cw3. Following the administration of hydrocortisone replacement therapy, his insulin requirement increased to a premorbid level, and the severe hypoglycemia resolved.
Dose and scatter characteristics of a novel cone beam CT system for musculoskeletal extremities
NASA Astrophysics Data System (ADS)
Zbijewski, W.; Sisniega, A.; Vaquero, J. J.; Muhit, A.; Packard, N.; Senn, R.; Yang, D.; Yorkston, J.; Carrino, J. A.; Siewerdsen, J. H.
2012-03-01
A novel cone-beam CT (CBCT) system has been developed with promising capabilities for musculoskeletal imaging (e.g., weight-bearing extremities and combined radiographic / volumetric imaging). The prototype system demonstrates diagnostic-quality imaging performance, while the compact geometry and short scan orbit raise new considerations for scatter management and dose characterization that challenge conventional methods. The compact geometry leads to elevated, heterogeneous x-ray scatter distributions - even for small anatomical sites (e.g., knee or wrist), and the short scan orbit results in a non-uniform dose distribution. These complex dose and scatter distributions were investigated via experimental measurements and GPU-accelerated Monte Carlo (MC) simulation. The combination provided a powerful basis for characterizing dose distributions in patient-specific anatomy, investigating the benefits of an antiscatter grid, and examining distinct contributions of coherent and incoherent scatter in artifact correction. Measurements with a 16 cm CTDI phantom show that the dose from the short-scan orbit (0.09 mGy/mAs at isocenter) varies from 0.16 to 0.05 mGy/mAs at various locations on the periphery (all obtained at 80 kVp). MC estimation agreed with dose measurements within 10-15%. Dose distribution in patient-specific anatomy was computed with MC, confirming such heterogeneity and highlighting the elevated energy deposition in bone (factor of ~5-10) compared to soft-tissue. Scatter-to-primary ratio (SPR) up to ~1.5-2 was evident in some regions of the knee. A 10:1 antiscatter grid was found earlier to result in significant improvement in soft-tissue imaging performance without increase in dose. The results of MC simulations elucidated the mechanism behind scatter reduction in the presence of a grid. A ~3-fold reduction in average SPR was found in the MC simulations; however, a linear grid was found to impart additional heterogeneity in the scatter distribution, mainly due to the increase in the contribution of coherent scatter with increased spatial variation. Scatter correction using MC-generated scatter distributions demonstrated significant improvement in cupping and streaks. Physical experimentation combined with GPU-accelerated MC simulation provided a sophisticated, yet practical approach in identifying low-dose acquisition techniques, optimizing scatter correction methods, and evaluating patientspecific dose.
de Arruda, Aline; Cardoso, Claudia Andrea L; Vieira, Maria do Carmo; Arena, Arielle Cristina
2016-01-01
Hibiscus sabdariffa L. (Malvaceae) is a species widely used in folk medicine for the treatment of some disorders. This study evaluated the effects of H. sabdariffa (HS) on the development of the male reproductive tract in rats following in utero exposure. Pregnant rats received 250 or 500 mg/kg of HS extract or vehicle from gestational day 12 until day 21 of lactation. Both doses of HS increased the body weight of male offspring at weaning, without compromising the puberty onset parameters. At puberty, there was a significant increase in the vas deferens absolute weight and a significant reduction in the relative weight of kidney at higher dose. These animals also presented a significant reduction in the sperm number in the caput/corpus of epididymis after exposure to both doses and a reduction in the sperm number in the cauda epididymis for the lower dose. At adulthood, the highest dose significantly reduced the sperm production in relation to controls and both doses provoked a reduction in the relative sperm number in the epididymis without affecting the sperm morphology. These findings demonstrated that maternal exposure to H. sabdariffa can adversely influence the male reproductive system in rats.
Oshima, Shunji; Haseba, Takeshi; Masuda, Chiaki; Kakimi, Ema; Kitagawa, Yasushi; Ohno, Youkichi
2013-06-01
It is said that blood alcohol concentrations (BAG) are higher in female than in male due to the smaller distribution volume of alcohol in female, whereas the rate of alcohol metabolism is faster in female than in males due to a higher activity of liver alcohol dehydrogenase (ADH) in female. However, it is also known that alcohol metabolism varies depending on drinking conditions. In this study, we evaluated the dose effect of alcohol on sex differences in alcohol metabolism in daily drinking conditions, where young adults (16 males, 15 females) with ALDH2*1/1 genotype drunk beer at a dose of 0.32g or 1.0g ethanol/kg body weight with a test meal (460kcal). This study was conducted using a randomized cross-over design. In the considerable drinking condition (1.0g/kg), BAG was significantly higher in females than in males, whereas the rate of alcohol metabolism (beta) was higher in female than in male. In the moderate drinking condition (0.32g/kg), however, no sex differences in alcohol metabolism including BAG were seen. These results suggest that an increased first pass metabolism through liver ADH in female, which may be caused by the reduction of gastric emptying rate due to the meal intake, contribute to the vanishing of sex difference in BAC in the moderate drinking condition.
NASA Astrophysics Data System (ADS)
Chung, Jin-Beom; Kim, Jae-Sung; Kim, In-Ah; Lee, Jeong-Woo
2012-10-01
This study is intended to investigate the effects of surface dose from air gaps under the bolus in clinically used oblique photon beams by using a Markus parallel-plate chamber and a metal-oxide semiconductor field-effect transistor (MOSFET) dosimeter. To evaluate the performances of the two detectors, the percentage surface doses of the MOSFET dosimeters in without an air gap under the bolus material were measured and compared with those of the Markus parallel-plate chamber. MOSFET dosimeters at the surface provided results mostly in good agreement with the parallelplate chamber. The MOSFET dosimeters seemed suitable for surface dose measurements having excellent accuracy for clinical used photon beams. The relative surface doses were measured with air gaps (2, 5, 10 mm) and without an air gap under 3 different bolus setups: (1) unbolused (no bolus), (2) 5-mm bolus, and (3) 10-mm bolus. The reductions in the surface dose substantially increased with small field size, thick bolus, and large air gap. The absolute difference in the reductions of the surface dose between the MOSFET dosimeter and the Markus parallel-plate chamber was less than 1.1%. Results at oblique angles of incidence showed larger reductions in surface dose with increasing angle of incidence. The largest reduction in surface dose was recorded for a 6 × 6 cm2 field at a 60° angle of incidence with an 10-mm air gap under a 10-mm bolus. When a 10-mm bolus was used, a reduction in the surface dose with an air gap of up to 10.5% could be achieved by varying the field size and the incident angle. Therefore, air gaps under the bolus should be avoided in radiotherapy treatment, especially for photon beam with highly oblique angles of incidence.
CT breast dose reduction with the use of breast positioning and organ-based tube current modulation.
Fu, Wanyi; Tian, Xiaoyu; Sturgeon, Gregory M; Agasthya, Greeshma; Segars, William Paul; Goodsitt, Mitchell M; Kazerooni, Ella A; Samei, Ehsan
2017-02-01
This study aimed to investigate the breast dose reduction potential of a breast-positioning (BP) technique for thoracic CT examinations with organ-based tube current modulation (OTCM). This study included 13 female anthropomorphic computational phantoms (XCAT, age range: 27-65 y.o., weight range: 52-105.8 kg). Each phantom was modified to simulate three breast sizes in standard supine geometry. The modeled breasts were then morphed to emulate BP that constrained the majority of the breast tissue inside the 120° anterior tube current (mA) reduction zone. The OTCM mA value was modeled using a ray-tracing program, which reduced the mA to 20% in the anterior region with a corresponding increase to the posterior region. The organ doses were estimated by a validated Monte Carlo program for a typical clinical CT system (SOMATOM Definition Flash, Siemens Healthcare). The simulated organ doses and organ doses normalized by CTDI vol were used to compare three CT protocols: attenuation-based tube current modulation (ATCM), OTCM, and OTCM with BP (OTCM BP ). On average, compared to ATCM, OTCM reduced breast dose by 19.3 ± 4.5%, whereas OTCM BP reduced breast dose by 38.6 ± 8.1% (an additional 23.8 ± 9.4%). The dose saving of OTCM BP was more significant for larger breasts (on average 33, 38, and 44% reduction for 0.5, 1, and 2 kg breasts, respectively). Compared to ATCM, OTCM BP also reduced thymus and heart dose by 15.1 ± 7.4% and 15.9 ± 6.2% respectively. In thoracic CT examinations, OTCM with a breast-positioning technique can markedly reduce unnecessary exposure to radiosensitive organs in anterior chest wall, specifically breast tissue. The breast dose reduction is more notable for women with larger breasts. © 2016 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, S; Kim, K; Jung, H
Purpose: This study evaluated usability of Multileaf collimator (MLC) for diagnostic radiation in cephalometric exposure using optical stimulated luminance dosimeters (OSLDs) Methods: The MLC material was made alloy tool steel (SKD-11) and the density of it is 7.89g/m3 that is similar to it of steel (Fe, 7.85 g/m3) and the MLC was attached to general radiography unit (Rex-650R, Listem Inc, Korea) for cephalometric exposure. The OSLDs that used were nanoDotTM Dosimeter (Landauer Inc, Glenwood, USA) and we read out OSLDs with micro star system (Landauer Inc, Glenwood, USA). The Optical annealing system contained fluorescent lamps (Osram lumilux, 24 W, 280more » ∼780 nm). To measure absorbed dose using OSLDs, was carried out dosimetric characteristics of OSLDs. Based on these, we evaluated dose reduction of critical organ (Eyes, Thyroids) with MLC in cephalometric exposure Results: The dosimetric characteristics were following that batch homogeneity was 1.21% and reproducibility was 0.96% of the coefficient of variation The linearity was that the correlation of between dose and count was fitted by linear function (dose,mGy = 0.00029 × Count, R2 =0.997). The range of angular dependence was from −3.6% to 3.7% variation when each degree was normalized by zero degree. The organ dose of Rt. eye, Lt eye, thyroids were 77.8 μGy, 337.0 μGy, 323.1μGy, respectively in open field and the dose reduction of organ dose was 10.6%(8.3μGy), 12.4 %(42 μGy), 87.1%(281.4μGy) with MLC Conclusion: We certified dose reduction of organ dose in cephalometric exposure. The dose reduction of Eye was 11% because of reduction of field size and it of thyroids was 87% by primary beam shielding.« less
Lubner, Meghan G.; Pickhardt, Perry J.; Kim, David H.; Tang, Jie; Munoz del Rio, Alejandro; Chen, Guang-Hong
2014-01-01
Purpose To prospectively study CT dose reduction using the “prior image constrained compressed sensing” (PICCS) reconstruction technique. Methods Immediately following routine standard dose (SD) abdominal MDCT, 50 patients (mean age, 57.7 years; mean BMI, 28.8) underwent a second reduced-dose (RD) scan (targeted dose reduction, 70-90%). DLP, CTDIvol and SSDE were compared. Several reconstruction algorithms (FBP, ASIR, and PICCS) were applied to the RD series. SD images with FBP served as reference standard. Two blinded readers evaluated each series for subjective image quality and focal lesion detection. Results Mean DLP, CTDIvol, and SSDE for RD series was 140.3 mGy*cm (median 79.4), 3.7 mGy (median 1.8), and 4.2 mGy (median 2.3) compared with 493.7 mGy*cm (median 345.8), 12.9 mGy (median 7.9 mGy) and 14.6 mGy (median 10.1) for SD series, respectively. Mean effective patient diameter was 30.1 cm (median 30), which translates to a mean SSDE reduction of 72% (p<0.001). RD-PICCS image quality score was 2.8±0.5, improved over the RD-FBP (1.7±0.7) and RD-ASIR(1.9±0.8)(p<0.001), but lower than SD (3.5±0.5)(p<0.001). Readers detected 81% (184/228) of focal lesions on RD-PICCS series, versus 67% (153/228) and 65% (149/228) for RD-FBP and RD-ASIR, respectively. Mean image noise was significantly reduced on RD-PICCS series (13.9 HU) compared with RD-FBP (57.2) and RD-ASIR (44.1) (p<0.001). Conclusion PICCS allows for marked dose reduction at abdominal CT with improved image quality and diagnostic performance over reduced-dose FBP and ASIR. Further study is needed to determine indication-specific dose reduction levels that preserve acceptable diagnostic accuracy relative to higher-dose protocols. PMID:24943136
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Rachel; Ng, Angela; Constine, Louis S.
Purpose: Survivors of pediatric Hodgkin lymphoma (HL) are recognized to have an increased risk of delayed adverse health outcomes related to radiation therapy (RT). However, the necessary latency required to observe these late effects means that the estimated risks apply to outdated treatments. We sought to compare the normal tissue dose received by children treated for HL and enrolled in the Childhood Cancer Survivor Study (CCSS) (diagnosed 1970-1986) with that of patients treated in recent Children's Oncology Group (COG) trials (enrolled 2002-2012). Methods and Materials: RT planning data were obtained for 50 HL survivors randomly sampled from the CCSS cohortmore » and applied to computed tomography planning data sets to reconstruct the normal tissue dosimetry. For comparison, the normal tissue dosimetry data were obtained for all 191 patients with full computed tomography–based volumetric RT planning on COG protocols AHOD0031 and AHOD0831. Results: For early-stage patients, the mean female breast dose in the COG patients was on average 83.5% lower than that for CCSS patients, with an absolute reduction of 15.5 Gy. For advanced-stage patients, the mean breast dose was decreased on average by 70% (11.6 Gy average absolute dose reduction). The mean heart dose decreased on average by 22.9 Gy (68.6%) and 17.6 Gy (56.8%) for early- and advanced-stage patients, respectively. All dose comparisons for breast, heart, lung, and thyroid were significantly lower for patients in the COG trials than for the CCSS participants. Reductions in the prescribed dose were a major contributor to these dose reductions. Conclusions: These are the first data quantifying the significant reduction in the normal tissue dose using actual, rather than hypothetical, treatment plans for children with HL. These findings provide useful information when counseling families regarding the risks of contemporary RT.« less
Zhou, Yanling; Li, Guannan; Li, Dan; Cui, Hongmei; Ning, Yuping
2018-05-01
The long-term effects of dose reduction of atypical antipsychotics on cognitive function and symptomatology in stable patients with schizophrenia remain unclear. We sought to determine the change in cognitive function and symptomatology after reducing risperidone or olanzapine dosage in stable schizophrenic patients. Seventy-five stabilized schizophrenic patients prescribed risperidone (≥4 mg/day) or olanzapine (≥10 mg/day) were randomly divided into a dose-reduction group ( n=37) and a maintenance group ( n=38). For the dose-reduction group, the dose of antipsychotics was reduced by 50%; for the maintenance group, the dose remained unchanged throughout the whole study. The Positive and Negative Syndrome Scale, Negative Symptom Assessment-16, Rating Scale for Extrapyramidal Side Effects, and Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) Consensus Cognitive Battery were measured at baseline, 12, 28, and 52 weeks. Linear mixed models were performed to compare the Positive and Negative Syndrome Scale, Negative Symptom Assessment-16, Rating Scale for Extrapyramidal Side Effects and MATRICS Consensus Cognitive Battery scores between groups. The linear mixed model showed significant time by group interactions on the Positive and Negative Syndrome Scale negative symptoms, Negative Symptom Assessment-16, Rating Scale for Extrapyramidal Side Effects, speed of processing, attention/vigilance, working memory and total score of MATRICS Consensus Cognitive Battery (all p<0.05). Post hoc analyses showed significant improvement in Positive and Negative Syndrome Scale negative subscale, Negative Symptom Assessment-16, Rating Scale for Extrapyramidal Side Effects, speed of processing, working memory and total score of MATRICS Consensus Cognitive Battery for the dose reduction group compared with those for the maintenance group (all p<0.05). This study indicated that a risperidone or olanzapine dose reduction of 50% may not lead to more severe symptomatology but can improve speed of processing, working memory and negative symptoms in patients with stabilized schizophrenia.
Meschke, J S; Sobsey, M D
2003-01-01
Norwalk-like viruses (NLVs) are important agents of waterborne illness and have been linked to several groundwater-related outbreaks. The presence of human enteric viruses, in particular the presence of NLVs, is difficult to detect in the environment. Consequently, surrogate organisms are typically used as indicators of viruses from faecal contamination. Whether traditional bacterial indicators are reliable indicators for viral pathogens remains uncertain. Few studies have directly compared mobility and reduction of bacterial indicators (e.g. coliforms, Escherichia coli) and other surrogate indicators (coliphages) with pathogenic human viruses in soil systems. In this study the mobility and comparative reduction of the prototype NLV, Norwalk Virus (NV), was compared to poliovirus 1 (PV1), a bacterial indicator (E coli, EC) and a viral indicator (coliphage MS2) through miniature soil columns. Replicate, 10 cm deep, miniature columns were prepared using three soils representing a range of soil textures (sand, organic muck, and clay). Columns were initially conditioned, then incubated at 10-14 degrees C, dosed twice weekly for 8 weeks with one column pore volume of virus-seeded groundwater per dose, followed by 8 weeks of dosing with one column pore volume per dose of unseeded, simulated rainwater. Columns were allowed to drain after each dosing until an effluent volume equivalent to an applied dose was collected. Column effluents and doses were assayed for all viruses and EC. Rapid mobility with minimal reduction was observed for all organisms in the sand. Similar reductions were observed in organic muck for most organisms but NV showed a greater reduction. No organisms were shown to pass through the clay columns. Elution of viruses, in particular PV1, from the columns was gradual. After cessation of microbe dosing, E. coli was less detectable than viruses in column effluents and, therefore, unreliable as a virus indicator.
Konoplev, A; Golosov, V; Wakiyama, Y; Takase, T; Yoschenko, V; Yoshihara, T; Parenyuk, O; Cresswell, A; Ivanov, M; Carradine, M; Nanba, K; Onda, Y
2018-06-01
Processes of vertical and lateral migration lead to gradual reduction in contamination of catchment soil, particularly its top layer. The reduction can be considered as natural attenuation. This, in turn, results in a gradual decrease of radiocesium activity concentrations in the surface runoff and river water, in both dissolved and particulate forms. The purpose of this research is to study the dynamics of Fukushima-derived radiocesium in undisturbed soils and floodplain deposits exposed to erosion and sedimentation during floods. Combined observations of radiocesium vertical distribution in soil and sediment deposition on artificial lawn-grass mats on the Niida River floodplain allowed us to estimate both annual mean sediment accumulation rates and maximum sedimentation rates corresponding to an extreme flood event during Tropical Storm Etau, 6-11 September 2015. Dose rates were reduced considerably for floodplain sections with high sedimentation because the top soil layer with high radionuclide contamination was eroded and/or buried under cleaner fresh sediments produced mostly due to bank erosion and sediments movements. Rate constants of natural attenuation on the sites of the Takase River and floodplain of Niida River was found to be in range 0.2-0.4 year -1 . For the site in the lower reach of the Niida River, collimated shield dose readings from soil surfaces slightly increased during the period of observation from February to July 2016. Generally, due to more precipitation, steeper slopes, higher temperatures and increased biological activities in soils, self-purification of radioactive contamination in Fukushima associated with vertical and lateral radionuclide migration is faster than in Chernobyl. In many cases, monitored natural attenuation along with appropriate restrictions seems to be optimal option for water remediation in Fukushima contaminated areas. Copyright © 2017. Published by Elsevier Ltd.
Togashi, Yosuke; Masago, Katsuhiro; Hamatani, Yasuhiro; Sakamori, Yuichi; Nagai, Hiroki; Kim, Young Hak; Mishima, Michiaki
2012-08-01
The most serious adverse reaction associated with treatment with epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) is drug-induced interstitial lung disease (ILD). Because EGFR-TKIs are key drugs for patients with non-small cell lung cancer who have somatic activating mutations of the epidermal growth factor receptor gene (EGFR mutations), several cases of retreatment with EGFR-TKIs after ILD induced by these drugs have been reported. Here, we present a 68-year-old man with lung adenocarcinoma and leptomeningeal metastases having an EGFR mutation who was retreated with erlotinib after erlotinib-induced ILD. He suffered no ILD recurrence and his leptomeningeal metastases dramatically improved. In addition to the present case, reports of nine patients who were retreated with EGFR-TKIs after ILD were found in the literature. Only one patient had recurrence of ILD (although seven were retreated at a reduced dose of EGFR-TKIs, including the patient with recurrence). In contrast, three patients had no recurrence of ILD even without dose-reduction. These reports suggest that dose-reduction plays a limited role in preventing recurrence. Many patients received corticosteroids during retreatment, but not the one with recurrence of ILD. This may suggest that corticosteroids can prevent recurrence due to their antiinflammatory properties. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Investigation of ultra low-dose scans in the context of quantum-counting clinical CT
NASA Astrophysics Data System (ADS)
Weidinger, T.; Buzug, T. M.; Flohr, T.; Fung, G. S. K.; Kappler, S.; Stierstorfer, K.; Tsui, B. M. W.
2012-03-01
In clinical computed tomography (CT), images from patient examinations taken with conventional scanners exhibit noise characteristics governed by electronics noise, when scanning strongly attenuating obese patients or with an ultra-low X-ray dose. Unlike CT systems based on energy integrating detectors, a system with a quantum counting detector does not suffer from this drawback. Instead, the noise from the electronics mainly affects the spectral resolution of these detectors. Therefore, it does not contribute to the image noise in spectrally non-resolved CT images. This promises improved image quality due to image noise reduction in scans obtained from clinical CT examinations with lowest X-ray tube currents or obese patients. To quantify the benefits of quantum counting detectors in clinical CT we have carried out an extensive simulation study of the complete scanning and reconstruction process for both kinds of detectors. The simulation chain encompasses modeling of the X-ray source, beam attenuation in the patient, and calculation of the detector response. Moreover, in each case the subsequent image preprocessing and reconstruction is modeled as well. The simulation-based, theoretical evaluation is validated by experiments with a novel prototype quantum counting system and a Siemens Definition Flash scanner with a conventional energy integrating CT detector. We demonstrate and quantify the improvement from image noise reduction achievable with quantum counting techniques in CT examinations with ultra-low X-ray dose and strong attenuation.
Bender, B; Schabel, C; Fenchel, M; Ernemann, U; Korn, A
2015-01-01
Objective: With further increase of CT numbers and their dominant contribution to medical exposure, there is a recent quest for more effective dose control. While reintroduction of iterative reconstruction (IR) has proved its potential in many applications, a novel focus is placed on more noise efficient detectors. Our purpose was to assess the potential of IR in combination with an integrated circuit detector (ICD) for aggressive dose reduction in head CT. Methods: Non-contrast low-dose head CT [190 mAs; weighted volume CT dose index (CTDIvol), 33.2 mGy] was performed in 50 consecutive patients, using a new noise efficient detector and IR. Images were assessed in terms of quantitative and qualitative image quality and compared with standard dose acquisitions (320 mAs; CTDIvol, 59.7 mGy) using a conventional detector and filtered back projection. Results: By combining ICD and IR in low-dose examinations, the signal to noise was improved by about 13% above the baseline level in the standard-dose control group. Both, contrast-to-noise ratio (2.02 ± 0.6 vs 1.88 ± 0.4; p = 0.18) and objective measurements of image sharpness (695 ± 84 vs 705 ± 151 change in Hounsfield units per pixel; p = 0.79) were fully preserved in the low-dose group. Likewise, there was no significant difference in the grading of several subjective image quality parameters when both noise-reducing strategies were used in low-dose examinations. Conclusion: Combination of noise efficient detector with IR allows for meaningful dose reduction in head CT without compromise of standard image quality. Advances in knowledge: Our study demonstrates the feasibility of almost 50% dose reduction in head CT dose (1.1 mSv per scan) through combination of novel dose-reducing strategies. PMID:25827204
Shao, Kan; Small, Mitchell J
2011-10-01
A methodology is presented for assessing the information value of an additional dosage experiment in existing bioassay studies. The analysis demonstrates the potential reduction in the uncertainty of toxicity metrics derived from expanded studies, providing insights for future studies. Bayesian methods are used to fit alternative dose-response models using Markov chain Monte Carlo (MCMC) simulation for parameter estimation and Bayesian model averaging (BMA) is used to compare and combine the alternative models. BMA predictions for benchmark dose (BMD) are developed, with uncertainty in these predictions used to derive the lower bound BMDL. The MCMC and BMA results provide a basis for a subsequent Monte Carlo analysis that backcasts the dosage where an additional test group would have been most beneficial in reducing the uncertainty in the BMD prediction, along with the magnitude of the expected uncertainty reduction. Uncertainty reductions are measured in terms of reduced interval widths of predicted BMD values and increases in BMDL values that occur as a result of this reduced uncertainty. The methodology is illustrated using two existing data sets for TCDD carcinogenicity, fitted with two alternative dose-response models (logistic and quantal-linear). The example shows that an additional dose at a relatively high value would have been most effective for reducing the uncertainty in BMA BMD estimates, with predicted reductions in the widths of uncertainty intervals of approximately 30%, and expected increases in BMDL values of 5-10%. The results demonstrate that dose selection for studies that subsequently inform dose-response models can benefit from consideration of how these models will be fit, combined, and interpreted. © 2011 Society for Risk Analysis.
Lenders, Malte; Canaan-Kühl, Sima; Krämer, Johannes; Duning, Thomas; Reiermann, Stefanie; Sommer, Claudia; Stypmann, Jörg; Blaschke, Daniela; Üçeyler, Nurcan; Hense, Hans-Werner; Brand, Stefan-Martin; Wanner, Christoph; Weidemann, Frank; Brand, Eva
2016-03-01
Because of the shortage of agalsidase-β supply between 2009 and 2012, patients with Fabry disease either were treated with reduced doses or were switched to agalsidase-α. In this observational study, we assessed end organ damage and clinical symptoms with special focus on renal outcome after 2 years of dose-reduction and/or switch to agalsidase-α. A total of 89 adult patients with Fabry disease who had received agalsidase-β (1.0 mg/kg body wt) for >1 year were nonrandomly assigned to continue this treatment regimen (regular-dose group, n=24), to receive a reduced dose of 0.3-0.5 mg/kg and a subsequent switch to 0.2 mg/kg agalsidase-α (dose-reduction-switch group, n=28), or to directly switch to 0.2 mg/kg agalsidase-α (switch group, n=37) and were followed-up for 2 years. We assessed clinical events (death, myocardial infarction, severe arrhythmia, stroke, progression to ESRD), changes in cardiac and renal function, Fabry-related symptoms (pain, hypohidrosis, diarrhea), and disease severity scores. Determination of renal function by creatinine and cystatin C-based eGFR revealed decreasing eGFRs in the dose-reduction-switch group and the switch group. The Mainz Severity Score Index increased significantly in these two groups (P=0.02 and P<0.001, respectively), and higher frequencies of gastrointestinal pain occurred during follow-up. In conclusion, after 2 years of observation, all groups showed a stable clinical disease course with respect to serious clinical events. However, patients under agalsidase-β dose-reduction and switch or a direct switch to agalsidase-α showed a decline of renal function independent of the eGFR formula used. Copyright © 2016 by the American Society of Nephrology.
Lenders, Malte; Canaan-Kühl, Sima; Krämer, Johannes; Duning, Thomas; Reiermann, Stefanie; Sommer, Claudia; Stypmann, Jörg; Blaschke, Daniela; Üçeyler, Nurcan; Hense, Hans-Werner; Brand, Stefan-Martin; Wanner, Christoph; Weidemann, Frank
2016-01-01
Because of the shortage of agalsidase-β supply between 2009 and 2012, patients with Fabry disease either were treated with reduced doses or were switched to agalsidase-α. In this observational study, we assessed end organ damage and clinical symptoms with special focus on renal outcome after 2 years of dose-reduction and/or switch to agalsidase-α. A total of 89 adult patients with Fabry disease who had received agalsidase-β (1.0 mg/kg body wt) for >1 year were nonrandomly assigned to continue this treatment regimen (regular-dose group, n=24), to receive a reduced dose of 0.3–0.5 mg/kg and a subsequent switch to 0.2 mg/kg agalsidase-α (dose-reduction-switch group, n=28), or to directly switch to 0.2 mg/kg agalsidase-α (switch group, n=37) and were followed-up for 2 years. We assessed clinical events (death, myocardial infarction, severe arrhythmia, stroke, progression to ESRD), changes in cardiac and renal function, Fabry-related symptoms (pain, hypohidrosis, diarrhea), and disease severity scores. Determination of renal function by creatinine and cystatin C–based eGFR revealed decreasing eGFRs in the dose-reduction-switch group and the switch group. The Mainz Severity Score Index increased significantly in these two groups (P=0.02 and P<0.001, respectively), and higher frequencies of gastrointestinal pain occurred during follow-up. In conclusion, after 2 years of observation, all groups showed a stable clinical disease course with respect to serious clinical events. However, patients under agalsidase-β dose-reduction and switch or a direct switch to agalsidase-α showed a decline of renal function independent of the eGFR formula used. PMID:26185201
Hansmann, Jan; Henzler, Thomas; Gaba, Ron C; Morelli, John N
2017-01-01
We aimed to quantify and compare awareness regarding radiation dose reduction within the interventional radiology and diagnostic radiology communities. Abstracts accepted to the annual meetings of the Society of Interventional Radiology (SIR), the Cardiovascular and Interventional Radiological Society of Europe (CIRSE), the Radiological Society of North America (RSNA), and the European Congress of Radiology (ECR) between 2005 and 2015 were analyzed using the search terms "interventional/computed tomography" and "radiation dose/radiation dose reduction." A PubMed query using the above-mentioned search terms for the years of 2005-2015 was performed. Between 2005 and 2015, a total of 14 520 abstracts (mean, 660±297 abstracts) and 80 614 abstracts (mean, 3664±1025 abstracts) were presented at interventional and diagnostic radiology meetings, respectively. Significantly fewer abstracts related to radiation dose were presented at the interventional radiology meetings compared with the diagnostic radiology meetings (162 abstracts [1% of total] vs. 2706 [3% of total]; P < 0.001). On average 15±7 interventional radiology abstracts (range, 6-27) and 246±105 diagnostic radiology abstracts (range, 112-389) pertaining to radiation dose were presented at each meeting. The PubMed query revealed an average of 124±39 publications (range, 79-187) and 1205±307 publications (range, 829-1672) related to interventional and diagnostic radiology dose reduction per year, respectively (P < 0.001). The observed increase in the number of abstracts regarding radiation dose reduction in the interventional radiology community over the past 10 years has not mirrored the increased volume seen within diagnostic radiology, suggesting that increased education and discussion about this topic may be warranted.
Hansmann, Jan; Henzler, Thomas; Gaba, Ron C.; Morelli, John N.
2017-01-01
PURPOSE We aimed to quantify and compare awareness regarding radiation dose reduction within the interventional radiology and diagnostic radiology communities. METHODS Abstracts accepted to the annual meetings of the Society of Interventional Radiology (SIR), the Cardiovascular and Interventional Radiological Society of Europe (CIRSE), the Radiological Society of North America (RSNA), and the European Congress of Radiology (ECR) between 2005 and 2015 were analyzed using the search terms “interventional/computed tomography” and “radiation dose/radiation dose reduction.” A PubMed query using the above-mentioned search terms for the years of 2005–2015 was performed. RESULTS Between 2005 and 2015, a total of 14 520 abstracts (mean, 660±297 abstracts) and 80 614 abstracts (mean, 3664±1025 abstracts) were presented at interventional and diagnostic radiology meetings, respectively. Significantly fewer abstracts related to radiation dose were presented at the interventional radiology meetings compared with the diagnostic radiology meetings (162 abstracts [1% of total] vs. 2706 [3% of total]; P < 0.001). On average 15±7 interventional radiology abstracts (range, 6–27) and 246±105 diagnostic radiology abstracts (range, 112–389) pertaining to radiation dose were presented at each meeting. The PubMed query revealed an average of 124±39 publications (range, 79–187) and 1205±307 publications (range, 829–1672) related to interventional and diagnostic radiology dose reduction per year, respectively (P < 0.001). CONCLUSION The observed increase in the number of abstracts regarding radiation dose reduction in the interventional radiology community over the past 10 years has not mirrored the increased volume seen within diagnostic radiology, suggesting that increased education and discussion about this topic may be warranted. PMID:28287072
The response characteristics of tetrazolium violet solutions to gamma irradiation
NASA Astrophysics Data System (ADS)
Emi-Reynolds, G.; Kovács, András; Fletcher, J. J.
2007-08-01
The dosimetry characteristics of various solutions of tetrazolium violet, TV, (2,5-diphenyl-3-(1-naphthyl)-2H-tetrazolium chloride) to gamma irradiation are reported. The optical absorption spectra of these solutions show peaks between 400 and 600 nm with a shoulder at around 550 nm. The dose response of the optical absorbance values of aqueous and aqueous-alcoholic solutions containing different concentrations of TV was measured in the 250 Gy up to 75 kGy dose range. The formation of formazan product was observed due to radiolytic reduction in both solutions. Its formation was found more pronounced in N 2-saturated as well as in alkaline solutions. The results indicate that the 1 mM TV solution can be used for food irradiation and medical sterilization dosimetry at gamma irradiation facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherjee, S; Farr, J; Merchant, T
Purpose: To study the effect of total-variation based noise reduction algorithms to improve the image registration of low-dose CBCT for patient positioning in radiation therapy. Methods: In low-dose CBCT, the reconstructed image is degraded by excessive quantum noise. In this study, we developed a total-variation based noise reduction algorithm and studied the effect of the algorithm on noise reduction and image registration accuracy. To study the effect of noise reduction, we have calculated the peak signal-to-noise ratio (PSNR). To study the improvement of image registration, we performed image registration between volumetric CT and MV- CBCT images of different head-and-neck patientsmore » and calculated the mutual information (MI) and Pearson correlation coefficient (PCC) as a similarity metric. The PSNR, MI and PCC were calculated for both the noisy and noise-reduced CBCT images. Results: The algorithms were shown to be effective in reducing the noise level and improving the MI and PCC for the low-dose CBCT images tested. For the different head-and-neck patients, a maximum improvement of PSNR of 10 dB with respect to the noisy image was calculated. The improvement of MI and PCC was 9% and 2% respectively. Conclusion: Total-variation based noise reduction algorithm was studied to improve the image registration between CT and low-dose CBCT. The algorithm had shown promising results in reducing the noise from low-dose CBCT images and improving the similarity metric in terms of MI and PCC.« less
Sud, Shivani; Roth, Toni
2018-01-01
Purpose Intra-vaginal packing is used to fix the applicator and displace organs at risk (OAR) during high-dose-rate intracavitary tandem and ovoid brachytherapy (HDR-ICB). We retain the speculum from applicator placement as a dual-function bladder and rectum retractor during treatment. Our objective is to review salient techniques for OAR displacement, share our packing technique, and determine the reduction in dose to OAR and inter-fraction variability of dose to OAR, associated with speculum-based vaginal packing (SBVP) in comparison to conventional gauze packing during HDR-ICB. Material and methods We reviewed HDR-ICB treatment plans for 45 patients, including 10 who underwent both conventional gauze packing and SBVP. Due to institutional inter-provider practice differences, patients non-selectively received either packing procedure. Packing was performed under conscious sedation, followed by cone beam computed tomography used for dosimetric planning. Maximum absolute and percent-of-prescription dose to the International Commission of Radiation Units bladder and rectal points in addition to D0.1cc, D1.0cc, and D2.0cc volumes of the bladder and rectum were analyzed and compared for each packing method using an independent sample t-test. Results Of the 179 fractions included, 73% and 27% used SBVP and gauze packing, respectively. For patients prescribed 6 Gy to point A, SBVP was associated with reduced mean D0.1cc bladder dose, inter-fraction variability in D0.1cc bladder dose by 9.3% (p = 0.026) and 9.0%, respectively, and statistically equivalent rectal D0.1cc, D1.0cc, and D2.0cc. Patients prescribed 5.5 Gy or 5 Gy to point A after dose optimization, were less likely to benefit from SBVP. In the intra-patient comparison, 80% of patients had reduction in at least one rectum or bladder parameter. Conclusions In patients with conducive anatomy, SBVP is a cost-efficient packing method that is associated with improved bladder sparing and comparable rectal sparing relative to gauze packing during HDR-ICB without general anesthesia. PMID:29619054
Hale, Martin E; Nalamachu, Srinivas R; Khan, Arif; Kutch, Michael
2013-01-01
Purpose To describe the efficacy and safety of hydromorphone extended-release tablets (OROS hydromorphone ER) during dose conversion and titration. Patients and methods A total of 459 opioid-tolerant adults with chronic moderate to severe low back pain participated in an open-label, 2- to 4-week conversion/titration phase of a double-blind, placebo-controlled, randomized withdrawal trial, conducted at 70 centers in the United States. Patients were converted to once-daily OROS hydromorphone ER at 75% of the equianalgesic dose of their prior total daily opioid dose (5:1 conversion ratio), and titrated as frequently as every 3 days to a maximum dose of 64 mg/day. The primary outcome measure was change in pain intensity numeric rating scale; additional assessments included the Patient Global Assessment and the Roland–Morris Disability Questionnaire scores. Safety assessments were performed at each visit and consisted of recording and monitoring all adverse events (AEs) and serious AEs. Results Mean (standard deviation) final daily dose of OROS hydromorphone ER was 37.5 (17.8) mg. Mean (standard error of the mean [SEM]) numeric rating scale scores decreased from 6.6 (0.1) at screening to 4.3 (0.1) at the final titration visit (mean [SEM] change, −2.3 [0.1], representing a 34.8% reduction). Mean (SEM) change in Patient Global Assessment was −0.6 (0.1), and mean change (SEM) in the Roland–Morris Disability Questionnaire was −2.8 (0.3). Patients achieving a stable dose showed greater improvement than patients who discontinued during titration for each of these measures (P < 0.001). Almost 80% of patients achieving a stable dose (213/268) had a ≥30% reduction in pain. Commonly reported AEs were constipation (15.4%), nausea (11.9%), somnolence (8.7%), headache (7.8%), and vomiting (6.5%); 13.0% discontinued from the study due to AEs. Conclusion The majority of opioid-tolerant patients with chronic low back pain were successfully converted to effective doses of OROS hydromorphone ER within 2 to 4 weeks. PMID:23658495
Dynamic intensity-weighted region of interest imaging for conebeam CT
Pearson, Erik; Pan, Xiaochuan; Pelizzari, Charles
2017-01-01
BACKGROUND Patient dose from image guidance in radiotherapy is small compared to the treatment dose. However, the imaging beam is untargeted and deposits dose equally in tumor and healthy tissues. It is desirable to minimize imaging dose while maintaining efficacy. OBJECTIVE Image guidance typically does not require full image quality throughout the patient. Dynamic filtration of the kV beam allows local control of CT image noise for high quality around the target volume and lower quality elsewhere, with substantial dose sparing and reduced scatter fluence on the detector. METHODS The dynamic Intensity-Weighted Region of Interest (dIWROI) technique spatially varies beam intensity during acquisition with copper filter collimation. Fluence is reduced by 95% under the filters with the aperture conformed dynamically to the ROI during cone-beam CT scanning. Preprocessing to account for physical effects of the collimator before reconstruction is described. RESULTS Reconstructions show image quality comparable to a standard scan in the ROI, with higher noise and streak artifacts in the outer region but still adequate quality for patient localization. Monte Carlo modeling shows dose reduction by 10–15% in the ROI due to reduced scatter, and up to 75% outside. CONCLUSIONS The presented technique offers a method to reduce imaging dose by accepting increased image noise outside the ROI, while maintaining full image quality inside the ROI. PMID:27257875
Tallett, A J; Blundell, J E; Rodgers, R J
2009-03-17
The serotonin and noradrenaline reuptake inhibitor sibutramine has been licensed as an anti-obesity treatment for more than a decade. However, while inhibitory effects on food intake and weight gain are well documented, surprisingly little published detail exists regarding its influence on feeding and related behaviours. The present study was therefore designed to assess the effects of acute sibutramine treatment on food intake, the behavioural satiety sequence (BSS) and post-treatment weight gain. Subjects were 10 non-deprived adult male Lister hooded rats, tested with 0.5-3.0 mg/kg sibutramine hydrochloride during 1-h DVD-recorded test sessions with palatable mash. Our results show that sibutramine dose-dependently reduced food intake, an effect significant at all doses tested. Ethological analysis revealed very few behavioural effects, except for a dose-dependent reduction in time spent feeding and an increase in the frequency of resting. Behavioural specificity was further supported by time-bin analysis which confirmed both the structural integrity and dose-dependent acceleration of the BSS. Single dosing with sibutramine (3.0 mg/kg) also suppressed daily weight gain over the 24-72 h period post-dosing. Current data support the conclusion that the acute anorectic and weight loss efficacy of sibutramine in adult male rats is not secondary to behavioural disruption but, instead, is due largely to an acceleration in behavioural satiety.
Paediatric x-ray radiation dose reduction and image quality analysis.
Martin, L; Ruddlesden, R; Makepeace, C; Robinson, L; Mistry, T; Starritt, H
2013-09-01
Collaboration of multiple staff groups has resulted in significant reduction in the risk of radiation-induced cancer from radiographic x-ray exposure during childhood. In this study at an acute NHS hospital trust, a preliminary audit identified initial exposure factors. These were compared with European and UK guidance, leading to the introduction of new factors that were in compliance with European guidance on x-ray tube potentials. Image quality was assessed using standard anatomical criteria scoring, and visual grading characteristics analysis assessed the impact on image quality of changes in exposure factors. This analysis determined the acceptability of gradual radiation dose reduction below the European and UK guidance levels. Chest and pelvis exposures were optimised, achieving dose reduction for each age group, with 7%-55% decrease in critical organ dose. Clinicians confirmed diagnostic image quality throughout the iterative process. Analysis of images acquired with preliminary and final exposure factors indicated an average visual grading analysis result of 0.5, demonstrating equivalent image quality. The optimisation process and final radiation doses are reported for Carestream computed radiography to aid other hospitals in minimising radiation risks to children.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papadakis, Antonios E.; Perisinakis, Kostas; Damilakis, John
2007-07-15
The purpose of this study was to assess the potential of angular on-line tube current modulation on dose reduction in pediatric and adult patients undergoing multidetector computed tomography (MDCT) examinations. Five physical anthropomorphic phantoms that simulate the average individual as neonate, 1-year-old, 5-year-old, 10-year-old, and adult were employed in the current study. Phantoms were scanned with the use of on-line tube current modulation (TCM). Percent dose reduction (%DR) factors achieved by applying TCM, were determined for standard protocols used for head and neck, shoulder, thorax, thorax and abdomen, abdomen, abdomen and pelvis, pelvis, and whole body examinations. A preliminary studymore » on the application of TCM in MDCT examinations of adult patients was performed to validate the results obtained in anthropomorphic phantoms. Dose reduction was estimated as the percentage difference of the modulated milliamperes for each scan and the preset milliamperes prescribed by the scan protocol. The dose reduction in children was found to be much lower than the corresponding reduction achieved for adults. For helical scans the %DR factors, ranged between 1.6% and 7.4% for the neonate, 2.9% and 8.7% for the 1-year old, 2% and 6% for the 5-year-old, 5% and 10.9% for the 10-year-old, and 10.4% and 20.7% for the adult individual. For sequential scans the corresponding %DR factors ranged between 1.3% and 6.7%, 4.5% and 11%, 4.2% and 6.6%, 6.4% and 12.3%, and 8.9% and 23.3%, respectively. Broader beam collimations are associated with decreased %DR factors, when other scanning parameters are held constant. TCM did not impair image noise. In adult patients, the %DR values were found to be in good agreement with the corresponding results obtained in the anthropomorphic adult phantom. In conclusion, on-line TCM may be considered as a valuable tool for reducing dose in routine CT examinations of pediatric and adult patients. However, the dose reduction achieved with TCM in neonates and young children was found to be lower than that obtained for adults. Therefore, on-line TCM should work as an additional means to reduce dose and should not replace other conventional means of reducing dose, especially in neonates and young children.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Jia; Duan Xinhui; Christner, Jodie A.
2011-11-15
Purpose: The purpose of this work was to evaluate dose performance and image quality in thoracic CT using three techniques to reduce dose to the breast: bismuth shielding, organ-based tube current modulation (TCM) and global tube current reduction. Methods: Semi-anthropomorphic thorax phantoms of four different sizes (15, 30, 35, and 40 cm lateral width) were used for dose measurement and image quality assessment. Four scans were performed on each phantom using 100 or 120 kV with a clinical CT scanner: (1) reference scan; (2) scan with bismuth breast shield of an appropriate thickness; (3) scan with organ-based TCM; and (4)more » scan with a global reduction in tube current chosen to match the dose reduction from bismuth shielding. Dose to the breast was measured with an ion chamber on the surface of the phantom. Image quality was evaluated by measuring the mean and standard deviation of CT numbers within the lung and heart regions. Results: Compared to the reference scan, dose to the breast region was decreased by about 21% for the 15-cm phantom with a pediatric (2-ply) shield and by about 37% for the 30, 35, and 40-cm phantoms with adult (4-ply) shields. Organ-based TCM decreased the dose by 12% for the 15-cm phantom, and 34-39% for the 30, 35, and 40-cm phantoms. Global lowering of the tube current reduced breast dose by 23% for the 15-cm phantom and 39% for the 30, 35, and 40-cm phantoms. In phantoms of all four sizes, image noise was increased in both the lung and heart regions with bismuth shielding. No significant increase in noise was observed with organ-based TCM. Decreasing tube current globally led to similar noise increases as bismuth shielding. Streak and beam hardening artifacts, and a resulting artifactual increase in CT numbers, were observed for scans with bismuth shields, but not for organ-based TCM or global tube current reduction. Conclusions: Organ-based TCM produces dose reduction to the breast similar to that achieved with bismuth shielding for both pediatric and adult phantoms. However, organ-based TCM does not affect image noise or CT number accuracy, both of which are adversely affected by bismuth shielding. Alternatively, globally decreasing the tube current can produce the same dose reduction to the breast as bismuth shielding, with a similar noise increase, yet without the streak artifacts and CT number errors caused by the bismuth shields. Moreover, globally decreasing the tube current reduces the dose to all tissues scanned, not simply to the breast.« less
NASA Astrophysics Data System (ADS)
Renger, Bernhard; Rummeny, Ernst J.; Noël, Peter B.
2013-03-01
During the last decades, the reduction of radiation exposure especially in diagnostic computed tomography is one of the most explored topics. In the same time, it seems challenging to quantify the long-term clinical dose reduction with regard to new hardware as well as software solutions. To overcome this challenge, we developed a Dose Monitoring System (DMS), which collects information from PACS, RIS, MPPS and structured reports. The integration of all sources overcomes the weaknesses of single systems. To gather all possible information, we integrated an optical character recognition system to extract, for example, information from the CT-dose-report. All collected data are transferred to a database for further evaluation, e.g., for calculations of effective as well as organ doses. The DMS provides a single database for tracking all essential study and patient specific information across different modality as well as different vendors. As an initial study, we longitudinally investigated the dose reduction in CT examination when employing a noise-suppressing reconstruction algorithm. For this examination type a significant long-term reduction in radiation exposure is reported, when comparing to a CT-system with standard reconstruction. In summary our DMS tool not only enables us to track radiation exposure on daily bases but further enables to analyses the long term effect of new dose saving strategies. In the future the statistical analyses of all retrospective data, which are available in a modern imaging department, will provide a unique overview of advances in reduction of radiation exposure.
Efficacy of apolipoprotein B synthesis inhibition in subjects with mild-to-moderate hyperlipidaemia.
Akdim, Fatima; Tribble, Diane L; Flaim, JoAnn D; Yu, Rosie; Su, John; Geary, Richard S; Baker, Brenda F; Fuhr, Rainard; Wedel, Mark K; Kastelein, John J P
2011-11-01
Mipomersen, an apolipoprotein (apo) B synthesis inhibitor, has been shown to produce potent reductions in apoB and LDL-cholesterol levels in animal models as well as healthy human volunteers. A randomized, double-blind, placebo-controlled, dose-escalation study was designed to evaluate the efficacy and safety of mipomersen monotherapy with or without dose loading in subjects with mild-to-moderate hyperlipidaemia. Fifty subjects with LDL-cholesterol levels between 119 and 266 mg/dL were enrolled into five cohorts at a 4:1 randomization ratio of active to placebo. Two 13-week dose regimens were evaluated at doses ranging from 50 to 400 mg/week. Mipomersen produced dose-dependent reductions in all apoB containing lipoproteins. In the 200 and 300 mg/week dose cohorts, mean reductions from baseline in LDL cholesterol were -45 ± 10% (P= 0.000) and -61 ± 8% (P= 0.000), corresponding to a -46 ± 11% (P= 0.000) and -61 ± 7% (P= 0.000) decrease in apoB levels. Triglyceride levels were also lowered with median reductions up to 53% (P= 0.021). The most common adverse events were injection site reactions. Seven of 40 subjects (18%) showed consecutive transaminase elevations >3× upper limit of normal. Five of these subjects received 400 mg/week, four of whom had apoB levels below the limit of detection. As a consequence, the 400 mg/week cohort was discontinued. Mipomersen administered as monotherapy in subjects with mild-to-moderate hyperlipidaemia produced potent reductions in all apoB-containing lipoproteins. Higher doses were associated with hepatic transaminase increases.
Scherthan, Harry; Sotnik, Natalia; Peper, Michel; Schrock, Gerrit; Azizova, Tamara; Abend, Michael
2016-06-01
Telomeres consist of GC-rich DNA repeats and the "shelterin" protein complex that together protect chromosome ends from fusion and degradation. Telomeres shorten with age due to incomplete end replication and upon exposure to environmental and intrinsic stressors. Exposure to ionizing radiation is known to modulate telomere length. However, the response of telomere length in humans chronically exposed to radiation is poorly understood. Here, we studied relative telomere length (RTL) by IQ-FISH to leukocyte nuclei in a group of 100 workers from the plutonium production facility at the Mayak Production Association (PA) who were chronically exposed to alpha-emitting ((239)Pu) radiation and/or gamma (photon) radiation, and 51 local residents serving as controls, with a similar mean age of about 80 years. We applied generalized linear statistical models adjusted for age at biosampling and the second exposure type on a linear scale and observed an age-dependent telomere length reduction. In those individuals with the lowest exposure, a significant reduction of about 20% RTL was observed, both for external gamma radiation (≤1 Gy) and internal alpha radiation (≤0.05-0.1 Gy to the red bone marrow). In highly exposed individuals (>0.1 Gy alpha, 1-1.5 Gy gamma), the RTL was similar to control. Stratification by gender revealed a significant (∼30%) telomere reduction in low-dose-exposed males, which was absent in females. While the gender differences in RTL may reflect different working conditions, lifestyle and/or telomere biology, absence of a dose response in the highly exposed individuals may reflect selection against cells with short telomeres or induction of telomere-protective effects. Our observations suggest that chronic systemic exposure to radiation leads to variable dose-dependent effects on telomere length.
Pressler, Ronit M; Boylan, Geraldine B; Marlow, Neil; Blennow, Mats; Chiron, Catherine; Cross, J Helen; de Vries, Linda S; Hallberg, Boubou; Hellström-Westas, Lena; Jullien, Vincent; Livingstone, Vicki; Mangum, Barry; Murphy, Brendan; Murray, Deirdre; Pons, Gerard; Rennie, Janet; Swarte, Renate; Toet, Mona C; Vanhatalo, Sampsa; Zohar, Sarah
2015-05-01
Preclinical data suggest that the loop-diuretic bumetanide might be an effective treatment for neonatal seizures. We aimed to assess dose and feasibility of intravenous bumetanide as an add-on to phenobarbital for treatment of neonatal seizures. In this open-label, dose finding, and feasibility phase 1/2 trial, we recruited full-term infants younger than 48 h who had hypoxic ischaemic encephalopathy and electrographic seizures not responding to a loading-dose of phenobarbital from eight neonatal intensive care units across Europe. Newborn babies were allocated to receive an additional dose of phenobarbital and one of four bumetanide dose levels by use of a bivariate Bayesian sequential dose-escalation design to assess safety and efficacy. We assessed adverse events, pharmacokinetics, and seizure burden during 48 h continuous electroencephalogram (EEG) monitoring. The primary efficacy endpoint was a reduction in electrographic seizure burden of more than 80% without the need for rescue antiepileptic drugs in more than 50% of infants. The trial is registered with ClinicalTrials.gov, number NCT01434225. Between Sept 1, 2011, and Sept 28, 2013, we screened 30 infants who had electrographic seizures due to hypoxic ischaemic encephalopathy. 14 of these infants (10 boys) were included in the study (dose allocation: 0·05 mg/kg, n=4; 0·1 mg/kg, n=3; 0·2 mg/kg, n=6; 0·3 mg/kg, n=1). All babies received at least one dose of bumetanide with the second dose of phenobarbital; three were withdrawn for reasons unrelated to bumetanide, and one because of dehydration. All but one infant also received aminoglycosides. Five infants met EEG criteria for seizure reduction (one on 0·05 mg/kg, one on 0·1 mg/kg and three on 0·2 mg/kg), and only two did not need rescue antiepileptic drugs (ie, met rescue criteria; one on 0·05 mg/kg and one on 0·3 mg/kg). We recorded no short-term dose-limiting toxic effects, but three of 11 surviving infants had hearing impairment confirmed on auditory testing between 17 and 108 days of age. The most common non-serious adverse reactions were moderate dehydration in one, mild hypotension in seven, and mild to moderate electrolyte disturbances in 12 infants. The trial was stopped early because of serious adverse reactions and limited evidence for seizure reduction. Our findings suggest that bumetanide as an add-on to phenobarbital does not improve seizure control in newborn infants who have hypoxic ischaemic encephalopathy and might increase the risk of hearing loss, highlighting the risks associated with the off-label use of drugs in newborn infants before safety assessment in controlled trials. European Community's Seventh Framework Programme. Copyright © 2015 Elsevier Ltd. All rights reserved.
New flux based dose-response relationships for ozone for European forest tree species.
Büker, P; Feng, Z; Uddling, J; Briolat, A; Alonso, R; Braun, S; Elvira, S; Gerosa, G; Karlsson, P E; Le Thiec, D; Marzuoli, R; Mills, G; Oksanen, E; Wieser, G; Wilkinson, M; Emberson, L D
2015-11-01
To derive O3 dose-response relationships (DRR) for five European forest trees species and broadleaf deciduous and needleleaf tree plant functional types (PFTs), phytotoxic O3 doses (PODy) were related to biomass reductions. PODy was calculated using a stomatal flux model with a range of cut-off thresholds (y) indicative of varying detoxification capacities. Linear regression analysis showed that DRR for PFT and individual tree species differed in their robustness. A simplified parameterisation of the flux model was tested and showed that for most non-Mediterranean tree species, this simplified model led to similarly robust DRR as compared to a species- and climate region-specific parameterisation. Experimentally induced soil water stress was not found to substantially reduce PODy, mainly due to the short duration of soil water stress periods. This study validates the stomatal O3 flux concept and represents a step forward in predicting O3 damage to forests in a spatially and temporally varying climate. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Power, S.; Mirza, M.; Thakorlal, A.
PurposeThis prospective pilot study was undertaken to evaluate the feasibility and effectiveness of using a radiation absorbing shield to reduce operator dose from scatter during lower limb endovascular procedures.Materials and MethodsA commercially available bismuth shield system (RADPAD) was used. Sixty consecutive patients undergoing lower limb angioplasty were included. Thirty procedures were performed without the RADPAD (control group) and thirty with the RADPAD (study group). Two separate methods were used to measure dose to a single operator. Thermoluminescent dosimeter (TLD) badges were used to measure hand, eye, and unshielded body dose. A direct dosimeter with digital readout was also used tomore » measure eye and unshielded body dose. To allow for variation between control and study groups, dose per unit time was calculated.ResultsTLD results demonstrated a significant reduction in median body dose per unit time for the study group compared with controls (p = 0.001), corresponding to a mean dose reduction rate of 65 %. Median eye and hand dose per unit time were also reduced in the study group compared with control group, however, this was not statistically significant (p = 0.081 for eye, p = 0.628 for hand). Direct dosimeter readings also showed statistically significant reduction in median unshielded body dose rate for the study group compared with controls (p = 0.037). Eye dose rate was reduced for the study group but this was not statistically significant (p = 0.142).ConclusionInitial results are encouraging. Use of the shield resulted in a statistically significant reduction in unshielded dose to the operator’s body. Measured dose to the eye and hand of operator were also reduced but did not reach statistical significance in this pilot study.« less
Kakamu, Takeyasu; Kanda, Hideyuki; Tsuji, Masayoshi; Kobayashi, Daisuke; Miyake, Masao; Hayakawa, Takehito; Katsuda, Shin-ichiro; Mori, Yayoi; Okouchi, Toshiyasu; Hazama, Akihiro; Fukushima, Tetsuhito
2013-01-01
After the Great East Japan Earthquake on 11 March 2011, the environmental radiation dose in Fukushima City increased. On 11 April, 1 mo after the earthquake, the environmental radiation dose rate at various surfaces in the same area differed greatly by surface property. Environmental radiation measurements continue in order to determine the estimated time to 50% reduction in environmental radiation dose rates by surface property in order to make suggestions for decontamination in Fukushima. The measurements were carried out from 11 April to 11 November 2011. Forty-eight (48) measurement points were selected, including four kinds of ground surface properties: grass (13), soil (5), artificial turf (7), and asphalt (23). Environmental radiation dose rate was measured at heights of 100 cm above the ground surface. Time to 50% reduction of environmental radiation dose rates was estimated for each ground surface property. Radiation dose rates on 11 November had decreased significantly compared with those on 11 April for all surface properties. Artificial turf showed the longest time to 50% reduction (544.32 d, standard error: 96.86), and soil showed the shortest (213.20 d, standard error: 35.88). The authors found the environmental radiation dose rate on artificial materials to have a longer 50% reduction time than that on natural materials. These results contribute to determining an order of priority for decontamination after nuclear disasters.
A study on the indirect urea dosing method in the Selective Catalytic Reduction system
NASA Astrophysics Data System (ADS)
Brzeżański, M.; Sala, R.
2016-09-01
This article presents the results of studies on concept solution of dosing urea in a gas phase in a selective catalytic reduction system. The idea of the concept was to heat-up and evaporate the water urea solution before introducing it into the exhaust gas stream. The aim was to enhance the processes of urea converting into ammonia, what is the target reductant for nitrogen oxides treatment. The study was conducted on a medium-duty Euro 5 diesel engine with exhaust line consisting of DOC catalyst, DPF filter and an SCR system with a changeable setup allowing to dose the urea in liquid phase (regular solution) and to dose it in a gas phase (concept solution). The main criteria was to assess the effect of physical state of urea dosed on the NOx conversion ratio in the SCR catalyst. In order to compare both urea dosing methods a special test procedure was developed which consisted of six test steps covering a wide temperature range of exhaust gas generated at steady state engine operation condition. Tests were conducted for different urea dosing quantities defined by the a equivalence ratio. Based on the obtained results, a remarkable improvement in NOx reduction was found for gas urea application in comparison to the standard liquid urea dosing. Measured results indicate a high potential to increase an efficiency of the SCR catalyst by using a gas phase urea and provide the basis for further scientific research on this type of concept.
Yasaka, Koichiro; Katsura, Masaki; Akahane, Masaaki; Sato, Jiro; Matsuda, Izuru; Ohtomo, Kuni
2013-12-01
To evaluate dose reduction and image quality of abdominopelvic computed tomography (CT) reconstructed with model-based iterative reconstruction (MBIR) compared to adaptive statistical iterative reconstruction (ASIR). In this prospective study, 85 patients underwent referential-, low-, and ultralow-dose unenhanced abdominopelvic CT. Images were reconstructed with ASIR for low-dose (L-ASIR) and ultralow-dose CT (UL-ASIR), and with MBIR for ultralow-dose CT (UL-MBIR). Image noise was measured in the abdominal aorta and iliopsoas muscle. Subjective image analyses and a lesion detection study (adrenal nodules) were conducted by two blinded radiologists. A reference standard was established by a consensus panel of two different radiologists using referential-dose CT reconstructed with filtered back projection. Compared to low-dose CT, there was a 63% decrease in dose-length product with ultralow-dose CT. UL-MBIR had significantly lower image noise than L-ASIR and UL-ASIR (all p<0.01). UL-MBIR was significantly better for subjective image noise and streak artifacts than L-ASIR and UL-ASIR (all p<0.01). There were no significant differences between UL-MBIR and L-ASIR in diagnostic acceptability (p>0.65), or diagnostic performance for adrenal nodules (p>0.87). MBIR significantly improves image noise and streak artifacts compared to ASIR, and can achieve radiation dose reduction without severely compromising image quality.
CT Fluoroscopy Shielding: Decreases in Scattered Radiation for the Patient and Operator
Neeman, Ziv; Dromi, Sergio A.; Sarin, Shawn; Wood, Bradford J.
2008-01-01
PURPOSE High-radiation exposure occurs during computed tomographic (CT) fluoroscopy. Patient and operator doses during thoracic and abdominal interventional procedures were studied in the present experiment, and a novel shielding device to reduce exposure to the patient and operator was evaluated. MATERIALS AND METHODS With a 16-slice CT scanner in CT fluoroscopy mode (120 kVp, 30 mA), surface dosimetry was performed on adult and pediatric phantoms. The shielding was composed of tungsten antimony in the form of a lightweight polymer sheet. Doses to the patient were measured with and without shielding for thoracic and abdominal procedures. Doses to the operator were recorded with and without phantom, gantry, and table shielding in place. Double-layer lead-free gloves were used by the operator during the procedures. RESULTS Tungsten antimony shielding adjacent to the scan plane resulted in a maximum dose reduction of 92.3% to the patient. Maximum 85.6%, 93.3%, and 85.1% dose reductions were observed for the operator’s torso, gonads, and hands, respectively. The use of double-layer lead-free gloves resulted in a maximum radiation dose reduction of 97%. CONCLUSIONS Methods to reduce exposure during CT fluoroscopy are effective and should be searched for. Significant reduction in radiation doses to the patient and operator can be accomplished with tungsten antimony shielding. PMID:17185699
Effects of dose reduction on bone strength prediction using finite element analysis
NASA Astrophysics Data System (ADS)
Anitha, D.; Subburaj, Karupppasamy; Mei, Kai; Kopp, Felix K.; Foehr, Peter; Noel, Peter B.; Kirschke, Jan S.; Baum, Thomas
2016-12-01
This study aimed to evaluate the effect of dose reduction, by means of tube exposure reduction, on bone strength prediction from finite-element (FE) analysis. Fresh thoracic mid-vertebrae specimens (n = 11) were imaged, using multi-detector computed tomography (MDCT), at different intensities of X-ray tube exposures (80, 150, 220 and 500 mAs). Bone mineral density (BMD) was estimated from the mid-slice of each specimen from MDCT images. Differences in image quality and geometry of each specimen were measured. FE analysis was performed on all specimens to predict fracture load. Paired t-tests were used to compare the results obtained, using the highest CT dose (500 mAs) as reference. Dose reduction had no significant impact on FE-predicted fracture loads, with significant correlations obtained with reference to 500 mAs, for 80 mAs (R2 = 0.997, p < 0.001), 150 mAs (R2 = 0.998, p < 0.001) and 220 mAs (R2 = 0.987, p < 0.001). There were no significant differences in volume quantification between the different doses examined. CT imaging radiation dose could be reduced substantially to 64% with no impact on strength estimates obtained from FE analysis. Reduced CT dose will enable early diagnosis and advanced monitoring of osteoporosis and associated fracture risk.
Khosravi, H; Hashemi, B; Mahdavi, S R; Hejazi, P
2015-03-01
Gel polymers are considered as new dosimeters for determining radiotherapy dose distribution in three dimensions. The ability of a new formulation of MAGIC-f polymer gel was assessed by experimental measurement and Monte Carlo (MC) method for studying the effect of gold nanoparticles (GNPs) in prostate dose distributions under the internal Ir-192 and external 18MV radiotherapy practices. A Plexiglas phantom was made representing human pelvis. The GNP shaving 15 nm in diameter and 0.1 mM concentration were synthesized using chemical reduction method. Then, a new formulation of MAGIC-f gel was synthesized. The fabricated gel was poured in the tubes located at the prostate (with and without the GNPs) and bladder locations of the phantom. The phantom was irradiated to an Ir-192 source and 18 MV beam of a Varian linac separately based on common radiotherapy procedures used for prostate cancer. After 24 hours, the irradiated gels were read using a Siemens 1.5 Tesla MRI scanner. The absolute doses at the reference points and isodose curves resulted from the experimental measurement of the gels and MC simulations following the internal and external radiotherapy practices were compared. The mean absorbed doses measured with the gel in the presence of the GNPs in prostate were 15% and 8 % higher than the corresponding values without the GNPs under the internal and external radiation therapies, respectively. MC simulations also indicated a dose increase of 14 % and 7 % due to presence of the GNPs, for the same experimental internal and external radiotherapy practices, respectively. There was a good agreement between the dose enhancement factors (DEFs) estimated with MC simulations and experiment gel measurements due to the GNPs. The results indicated that the polymer gel dosimetry method as developed and used in this study, can be recommended as a reliable method for investigating the DEF of GNPs in internal and external radiotherapy practices.
Cosnier, D; Hache, J; Labrid, C; Streichenberger, G
1975-01-01
The pharmacological properties of 2-(2-chloro-p-toluidino)-2-imidazoline-nitrate (tolonidine) a new synthetic derivative of imidazoline are reported in a series of three successive articles. This compound has been shown to possess hypotensive and antihypertensive properties. After i.v. administration, the hypotensive phase was preceded by hypertension related to the potent direct alpha-sympatheticomimetic properties of the product. This pressor response, which was not seen after oral administration, was accompanied by a marked decrease in cardiac output and a significant increase in peripheral vascular resistance. The hypotensive action of the product was due to a drop in cardiac output probably reinforced by a decrease in vasoconstrictor sympathetic tone due to a central action. Whatever the route of administration, tolonidine slowed heart rate independently of blood pressure variations, due essentially to an increase in vagal tone. In studies of diuresis, liquid and salt loss were observed in the cat, not in the dog. At doses which induce a drop in blood pressure tolonidine did not produce a reduction in pilocarpine-induced salivary secretion and only partially inhibited gastric secretion. In the central nervous system, tolonidine produced a sedation which first appeared at doses having an antihypertensive effect but which was only fully apparent with increased doses. A decrease in the release of cerebral amines, serotonin and noradrenaline by tolonidine is proposed. Tolonidine was compared with three other antihypertensive agents: clonidine, which is structurally related, and guanethidine and mecamylamine, which are structurally unrelated and have a different mode of action. A close resemblance of the pharmacological properties of tolonidine and clonidine was established due to the chemical relationship between the two substances.
Sellers, Edward M; Schoedel, Kerri; Bartlett, Cindy; Romach, Myroslava; Russo, Ethan B; Stott, Colin G; Wright, Stephen; White, Linda; Duncombe, Paul; Chen, Chien-Feng
2013-07-01
Delta-9-tetrahydrocannabinol (THC)/cannabidiol (CBD) oromucosal spray has proved efficacious in the treatment of spasticity in multiple sclerosis and chronic pain. A thorough QT/QTc study was performed to investigate the effects of THC/CBD spray on electrocardiogram (ECG) parameters in compliance with regulatory requirements, evaluating the effect of a recommended daily dose (8 sprays/day) and supratherapeutic doses (24 or 36 sprays/day) of THC/CBD spray on the QT/QTc interval in 258 healthy volunteers. The safety, tolerability, and pharmacokinetic profile of THC/CBD spray were also evaluated. Therapeutic and supratherapeutic doses of THC/CBD spray had no effect on cardiac repolarization with primary and secondary endpoints of QTcI and QTcF/QTcB, respectively, showing similar results. There was no indication of any effect on heart rate, atrioventricular conduction, or cardiac depolarization and no new clinically relevant morphological changes were observed. Overall, 19 subjects (25.0%) in the supratherapeutic (24/36 daily sprays of THC/CBD spray) dose group and one (1.6%) in the moxifloxacin group withdrew early due to intolerable AEs. Four psychiatric serious adverse events (AEs) in the highest dose group resulted in a reduction in the surpatherapeutic dose to 24 sprays/day. In conclusion, THC/CBD spray does not significantly affect ECG parameters. Additionally, THC/CBD spray is well tolerated at therapeutic doses with an AE profile similar to previous clinical studies. © The Author(s) 2013.
Method to monitor HC-SCR catalyst NOx reduction performance for lean exhaust applications
Viola, Michael B [Macomb Township, MI; Schmieg, Steven J [Troy, MI; Sloane, Thompson M [Oxford, MI; Hilden, David L [Shelby Township, MI; Mulawa, Patricia A [Clinton Township, MI; Lee, Jong H [Rochester Hills, MI; Cheng, Shi-Wai S [Troy, MI
2012-05-29
A method for initiating a regeneration mode in selective catalytic reduction device utilizing hydrocarbons as a reductant includes monitoring a temperature within the aftertreatment system, monitoring a fuel dosing rate to the selective catalytic reduction device, monitoring an initial conversion efficiency, selecting a determined equation to estimate changes in a conversion efficiency of the selective catalytic reduction device based upon the monitored temperature and the monitored fuel dosing rate, estimating changes in the conversion efficiency based upon the determined equation and the initial conversion efficiency, and initiating a regeneration mode for the selective catalytic reduction device based upon the estimated changes in conversion efficiency.
Yoo, Song Jae; Jang, Han-Ki; Lee, Jai-Ki; Noh, Siwan; Cho, Gyuseong
2013-01-01
For the assessment of external doses due to contaminated environment, the dose-rate conversion factors (DCFs) prescribed in Federal Guidance Report 12 (FGR 12) and FGR 13 have been widely used. Recently, there were significant changes in dosimetric models and parameters, which include the use of the Reference Male and Female Phantoms and the revised tissue weighting factors, as well as the updated decay data of radionuclides. In this study, the DCFs for effective and equivalent doses were calculated for three exposure settings: skyshine, groundshine and water immersion. Doses to the Reference Phantoms were calculated by Monte Carlo simulations with the MCNPX 2.7.0 radiation transport code for 26 mono-energy photons between 0.01 and 10 MeV. The transport calculations were performed for the source volume within the cut-off distances practically contributing to the dose rates, which were determined by a simplified calculation model. For small tissues for which the reduction of variances are difficult, the equivalent dose ratios to a larger tissue (with lower statistical errors) nearby were employed to make the calculation efficient. Empirical response functions relating photon energies, and the organ equivalent doses or the effective doses were then derived by the use of cubic-spline fitting of the resulting doses for 26 energy points. The DCFs for all radionuclides considered important were evaluated by combining the photon emission data of the radionuclide and the empirical response functions. Finally, contributions of accompanied beta particles to the skin equivalent doses and the effective doses were calculated separately and added to the DCFs. For radionuclides considered in this study, the new DCFs for the three exposure settings were within ±10 % when compared with DCFs in FGR 13.
Impact of the Amount of Liquid Intake on the Dose Rate of Patients Treated with Radioiodine.
Haghighatafshar, Mahdi; Banani, Aida; Zeinali-Rafsanjani, Banafsheh; Etemadi, Zahra; Ghaedian, Tahereh
2018-01-01
Despite therapeutic effects of radioiodine in patients with differentiated thyroid cancer, there are some disadvantages due to harmful radiation to other tissues. According to the current guidelines, patients are recommended to drink lots of water and frequent voiding to reduce the amount of 131 I in the body. This study was designed to assess the impact of the amount of liquid intake on reduction of the measured dose rate of radioiodine-treated patients. A total of 42 patients with differentiated thyroid cancer without metastasis who had undergone total thyroidectomy and had been treated with radioiodine were selected. The patients were divided into two groups according to the amount of their fluid intake which was measured during the first 48 h after 131 I administration. In all patients, the dose rate was measured immediately and 48 h after iodine administration. Each group included 21 patients. Dose rate ratio (the ratio of the second dose rate to the first dose rate) and dose rate difference ratio (the ratio of the difference between the two measured dose rates to the first dose rate) were calculated for each patient. Despite the significant difference in the amount of the liquid drunk, no statistically significant difference was seen between the different groups in parameters of dose-rate ratio and dose-rate difference ratio. Higher fluid intake (>60 ml/h in our study) alone would not effectively reduce the patient's radiation dose rate at least not more than a well-hydrated state. It seems that other interfering factors in the thyroidectomized patients may also have some impacts on this physiologic process.
Yoo, Song Jae; Jang, Han-Ki; Lee, Jai-Ki; Noh, Siwan; Cho, Gyuseong
2013-01-01
For the assessment of external doses due to contaminated environment, the dose-rate conversion factors (DCFs) prescribed in Federal Guidance Report 12 (FGR 12) and FGR 13 have been widely used. Recently, there were significant changes in dosimetric models and parameters, which include the use of the Reference Male and Female Phantoms and the revised tissue weighting factors, as well as the updated decay data of radionuclides. In this study, the DCFs for effective and equivalent doses were calculated for three exposure settings: skyshine, groundshine and water immersion. Doses to the Reference Phantoms were calculated by Monte Carlo simulations with the MCNPX 2.7.0 radiation transport code for 26 mono-energy photons between 0.01 and 10 MeV. The transport calculations were performed for the source volume within the cut-off distances practically contributing to the dose rates, which were determined by a simplified calculation model. For small tissues for which the reduction of variances are difficult, the equivalent dose ratios to a larger tissue (with lower statistical errors) nearby were employed to make the calculation efficient. Empirical response functions relating photon energies, and the organ equivalent doses or the effective doses were then derived by the use of cubic-spline fitting of the resulting doses for 26 energy points. The DCFs for all radionuclides considered important were evaluated by combining the photon emission data of the radionuclide and the empirical response functions. Finally, contributions of accompanied beta particles to the skin equivalent doses and the effective doses were calculated separately and added to the DCFs. For radionuclides considered in this study, the new DCFs for the three exposure settings were within ±10 % when compared with DCFs in FGR 13. PMID:23542764
NASA Astrophysics Data System (ADS)
Londt, John H.; Shreter, Uri; Vass, Melissa; Hsieh, Jiang; Ge, Zhanyu; Adda, Olivier; Dowe, David A.; Sabllayrolles, Jean-Louis
2007-03-01
We present the results of dose and image quality performance evaluation of a novel, prospective ECG-gated Coronary CT Angiography acquisition mode (SnapShot Pulse, LightSpeed VCT-XT scanner, GE Healthcare, Waukesha, WI), and compare it to conventional retrospective ECG gated helical acquisition in clinical and phantom studies. Image quality phantoms were used to measure noise, slice sensitivity profile, in-plane resolution, low contrast detectability and dose, using the two acquisition modes. Clinical image quality and diagnostic confidence were evaluated in a study of 31 patients scanned with the two acquisition modes. Radiation dose reduction in clinical practice was evaluated by tracking 120 consecutive patients scanned with the prospectively gated scan mode. In the phantom measurements, the prospectively gated mode resulted in equivalent or better image quality measures at dose reductions of up to 89% compared to non-ECG modulated conventional helical scans. In the clinical study, image quality was rated excellent by expert radiologist reviewing the cases, with pathology being identical using the two acquisition modes. The average dose to patients in the clinical practice study was 5.6 mSv, representing 50% reduction compared to a similar patient population scanned with the conventional helical mode.
NASA Astrophysics Data System (ADS)
Setlur Nagesh, S. V.; Khobragade, P.; Ionita, C.; Bednarek, D. R.; Rudin, S.
2015-03-01
Because x-ray based image-guided vascular interventions are minimally invasive they are currently the most preferred method of treating disorders such as stroke, arterial stenosis, and aneurysms; however, the x-ray exposure to the patient during long image-guided interventional procedures could cause harmful effects such as cancer in the long run and even tissue damage in the short term. ROI fluoroscopy reduces patient dose by differentially attenuating the incident x-rays outside the region-of-interest. To reduce the noise in the dose-reduced regions previously recursive temporal filtering was successfully demonstrated for neurovascular interventions. However, in cardiac interventions, anatomical motion is significant and excessive recursive filtering could cause blur. In this work the effects of three noise-reduction schemes, including recursive temporal filtering, spatial mean filtering, and a combination of spatial and recursive temporal filtering, were investigated in a simulated ROI dose-reduced cardiac intervention. First a model to simulate the aortic arch and its movement was built. A coronary stent was used to simulate a bioprosthetic valve used in TAVR procedures and was deployed under dose-reduced ROI fluoroscopy during the simulated heart motion. The images were then retrospectively processed for noise reduction in the periphery, using recursive temporal filtering, spatial filtering and a combination of both. Quantitative metrics for all three noise reduction schemes are calculated and are presented as results. From these it can be concluded that with significant anatomical motion, a combination of spatial and recursive temporal filtering scheme is best suited for reducing the excess quantum noise in the periphery. This new noise-reduction technique in combination with ROI fluoroscopy has the potential for substantial patient-dose savings in cardiac interventions.
Kalra, Mannudeep K; Maher, Michael M; Blake, Michael A; Lucey, Brian C; Karau, Kelly; Toth, Thomas L; Avinash, Gopal; Halpern, Elkan F; Saini, Sanjay
2004-09-01
To assess the effect of noise reduction filters on detection and characterization of lesions on low-radiation-dose abdominal computed tomographic (CT) images. Low-dose CT images of abdominal lesions in 19 consecutive patients (11 women, eight men; age range, 32-78 years) were obtained at reduced tube currents (120-144 mAs). These baseline low-dose CT images were postprocessed with six noise reduction filters; the resulting postprocessed images were then randomly assorted with baseline images. Three radiologists performed independent evaluation of randomized images for presence, number, margins, attenuation, conspicuity, calcification, and enhancement of lesions, as well as image noise. Side-by-side comparison of baseline images with postprocessed images was performed by using a five-point scale for assessing lesion conspicuity and margins, image noise, beam hardening, and diagnostic acceptability. Quantitative noise and contrast-to-noise ratio were obtained for all liver lesions. Statistical analysis was performed by using the Wilcoxon signed rank test, Student t test, and kappa test of agreement. Significant reduction of noise was observed in images postprocessed with filter F compared with the noise in baseline nonfiltered images (P =.004). Although the number of lesions seen on baseline images and that seen on postprocessed images were identical, lesions were less conspicuous on postprocessed images than on baseline images. A decrease in quantitative image noise and contrast-to-noise ratio for liver lesions was noted with all noise reduction filters. There was good interobserver agreement (kappa = 0.7). Although the use of currently available noise reduction filters improves image noise and ameliorates beam-hardening artifacts at low-dose CT, such filters are limited by a compromise in lesion conspicuity and appearance in comparison with lesion conspicuity and appearance on baseline low-dose CT images. Copyright RSNA, 2004
Siochi, R Alfredo; Kim, Yusung; Bhatia, Sudershan
2014-10-16
We studied the feasibility of evaluating tumor control probability (TCP) reductions for tumor motion beyond planned gated radiotherapy margins. Tumor motion was determined from cone-beam CT projections acquired for patient setup, intrafraction respiratory traces, and 4D CTs for five non-small cell lung cancer (NSCLC) patients treated with gated radiotherapy. Tumors were subdivided into 1 mm sections whose positions and doses were determined for each beam-on time point. (The dose calculation model was verified with motion phantom measurements.) The calculated dose distributions were used to generate the treatment TCPs for each patient. The plan TCPs were calculated from the treatment planning dose distributions. The treatment TCPs were compared to the plan TCPs for various models and parameters. Calculated doses matched phantom measurements within 0.3% for up to 3 cm of motion. TCP reductions for excess motion greater than 5mm ranged from 1.7% to 11.9%, depending on model parameters, and were as high as 48.6% for model parameters that simulated an individual patient. Repeating the worst case motion for all fractions increased TCP reductions by a factor of 2 to 3, while hypofractionation decreased these reductions by as much as a factor of 3. Treatment motion exceeding gating margins by more than 5 mm can lead to considerable TCP reductions. Appropriate margins for excess motion are recommended, unless applying daily tumor motion verification and adjusting thegating window.
Bi, Jian
2010-01-01
As the desire to promote health increases, reductions of certain ingredients, for example, sodium, sugar, and fat in food products, are widely requested. However, the reduction is not risk free in sensory and marketing aspects. Over reduction may change the taste and influence the flavor of a product and lead to a decrease in consumer's overall liking or purchase intent for the product. This article uses the benchmark dose (BMD) methodology to determine an appropriate reduction. Calculations of BMD and one-sided lower confidence limit of BMD are illustrated. The article also discusses how to calculate BMD and BMDL for over dispersed binary data in replicated testing based on a corrected beta-binomial model. USEPA Benchmark Dose Software (BMDS) were used and S-Plus programs were developed. The method discussed in the article is originally used to determine an appropriate reduction of certain ingredients, for example, sodium, sugar, and fat in food products, considering both health reason and sensory or marketing risk.
Cattaneo, Carlo; Ferla, R La; Bonizzoni, Erminio; Sardina, Marco
2015-01-01
Safinamide is a novel α-aminoamide with dopaminergic and non-dopaminergic properties developed as adjunctive therapy for patients with PD. Results from a 24-month double-blind controlled study suggested that as add-on to levodopa (and other PD medications) the benefits of safinamide on dyskinesia may be related to severity of dyskinesia at baseline. This post-hoc analysis further characterized the effects of safinamide on dyskinesia in mid- to late-stage PD patients. Patients were stratified by the presence or absence of dyskinesia at baseline, and by whether or not the dose of levodopa had been changed during the 24-month treatment period. Differences between safinamide and placebo were evaluated using the Wilcoxon rank-sum test. For the overall treated population (with or without baseline dyskinesia), safinamide 100 mg/day significantly improved the dyskinesia rating scale score, compared with placebo, in the subgroup of patients with no change in levodopa dose (p = 0.0488). For patients with baseline dyskinesia, improvements over placebo were also significant (p = 0.0153) in patients with or without changes in levodopa dose, and nearly significant (p = 0.0546) in patients with no change in levodopa dose, suggesting that these improvements were not due to levodopa dose reductions. While no statistically significant difference in mean DRS scores was seen between safinamide and placebo in the original study population, the present post-hoc analysis helps to provide a meaningful interpretation of the long-term effects of safinamide on dyskinesia. These results may be related to safinamide state- and use-dependent inhibition of sodium channels and stimulated glutamate release, and are unlikely due to reduced dopaminergic stimulation.
Cattaneo, Carlo; Ferla, R. La; Bonizzoni, Erminio; Sardina, Marco
2015-01-01
Abstract Background: Safinamide is a novel α-aminoamide with dopaminergic and non-dopaminergic properties developed as adjunctive therapy for patients with PD. Results from a 24-month double-blind controlled study suggested that as add-on to levodopa (and other PD medications) the benefits of safinamide on dyskinesia may be related to severity of dyskinesia at baseline. Objective: This post-hoc analysis further characterized the effects of safinamide on dyskinesia in mid- to late-stage PD patients. Methods: Patients were stratified by the presence or absence of dyskinesia at baseline, and by whether or not the dose of levodopa had been changed during the 24-month treatment period. Differences between safinamide and placebo were evaluated using the Wilcoxon rank-sum test. Results: For the overall treated population (with or without baseline dyskinesia), safinamide 100 mg/day significantly improved the dyskinesia rating scale score, compared with placebo, in the subgroup of patients with no change in levodopa dose (p = 0.0488). For patients with baseline dyskinesia, improvements over placebo were also significant (p = 0.0153) in patients with or without changes in levodopa dose, and nearly significant (p = 0.0546) in patients with no change in levodopa dose, suggesting that these improvements were not due to levodopa dose reductions. Conclusions: While no statistically significant difference in mean DRS scores was seen between safinamide and placebo in the original study population, the present post-hoc analysis helps to provide a meaningful interpretation of the long-term effects of safinamide on dyskinesia. These results may be related to safinamide state- and use-dependent inhibition of sodium channels and stimulated glutamate release, and are unlikely due to reduced dopaminergic stimulation. PMID:26406127
Effect of hemodialysis on leflunomide plasma concentrations.
Beaman, Jasmine M; Hackett, L Peter; Luxton, Grant; Illett, Kenneth F
2002-01-01
To report on the influence of hemodialysis on the disposition of leflunomide in a woman with end-stage renal disease. A 65-year-old white woman with a history of diabetes, end-stage renal disease, rheumatoid arthritis, vasculitis, and leg ulcers was admitted to the hospital with a flare in the symptoms of joint pain and vasculitis. Prior to admission, she had been treated for rheumatoid arthritis with methotrexate 7.5 mg once a week. Due to adverse effects from methotrexate and continuing painful joints, leflunomide was considered as a therapeutic alternative. A loading dose of 100 mg was followed two days later by a daily dose of 10 mg. The active metabolite of leflunomide (A771726) was measured before and after hemodialysis and between hemodialysis sessions over a period of 80 days. Pre- and post-hemodialysis concentrations were compared for 17 sessions during this time. Based on the initial measured concentrations, the leflunomide dose was increased to 20 mg/d for several weeks before being reduced to 15 mg due to elevated liver enzymes. Although renal pathways are responsible in part for excretion of A771726, the concentrations achieved in this patient at doses of 10-20 mg/d were at the low end of the range reported in the literature. It was shown that pre- and post-hemodialysis concentrations of A771726 did not differ significantly. Thus, the low concentrations of A771726 were not a result of the hemodialysis. Steady-state concentrations of A771726 in plasma were not affected by hemodialysis or renal impairment. Reduction of the dose of leflunomide in patients with chronic renal failure undergoing hemodialysis does not appear to be required.
Low radiation dose in computed tomography: the role of iodine
Aschoff, Andrik J; Catalano, Carlo; Krix, Martin; Albrecht, Thomas
2017-01-01
Recent approaches to reducing radiation exposure during CT examinations typically utilize automated dose modulation strategies on the basis of lower tube voltage combined with iterative reconstruction and other dose-saving techniques. Less clearly appreciated is the potentially substantial role that iodinated contrast media (CM) can play in low-radiation-dose CT examinations. Herein we discuss the role of iodinated CM in low-radiation-dose examinations and describe approaches for the optimization of CM administration protocols to further reduce radiation dose and/or CM dose while maintaining image quality for accurate diagnosis. Similar to the higher iodine attenuation obtained at low-tube-voltage settings, high-iodine-signal protocols may permit radiation dose reduction by permitting a lowering of mAs while maintaining the signal-to-noise ratio. This is particularly feasible in first pass examinations where high iodine signal can be achieved by injecting iodine more rapidly. The combination of low kV and IR can also be used to reduce the iodine dose. Here, in optimum contrast injection protocols, the volume of CM administered rather than the iodine concentration should be reduced, since with high-iodine-concentration CM further reductions of iodine dose are achievable for modern first pass examinations. Moreover, higher concentrations of CM more readily allow reductions of both flow rate and volume, thereby improving the tolerability of contrast administration. PMID:28471242
Younger, Jarred; Noor, Noorulain; McCue, Rebecca; Mackey, Sean
2013-02-01
To determine whether low dosages (4.5 mg/day) of naltrexone reduce fibromyalgia severity as compared with the nonspecific effects of placebo. In this replication and extension study of a previous clinical trial, we tested the impact of low-dose naltrexone on daily self-reported pain. Secondary outcomes included general satisfaction with life, positive mood, sleep quality, and fatigue. Thirty-one women with fibromyalgia participated in the randomized, double-blind, placebo-controlled, counterbalanced, crossover study. During the active drug phase, participants received 4.5 mg of oral naltrexone daily. An intensive longitudinal design was used to measure daily levels of pain. When contrasting the condition end points, we observed a significantly greater reduction of baseline pain in those taking low-dose naltrexone than in those taking placebo (28.8% reduction versus 18.0% reduction; P = 0.016). Low-dose naltrexone was also associated with improved general satisfaction with life (P = 0.045) and with improved mood (P = 0.039), but not improved fatigue or sleep. Thirty-two percent of participants met the criteria for response (defined as a significant reduction in pain plus a significant reduction in either fatigue or sleep problems) during low-dose naltrexone therapy, as contrasted with an 11% response rate during placebo therapy (P = 0.05). Low-dose naltrexone was rated equally tolerable as placebo, and no serious side effects were reported. The preliminary evidence continues to show that low-dose naltrexone has a specific and clinically beneficial impact on fibromyalgia pain. The medication is widely available, inexpensive, safe, and well-tolerated. Parallel-group randomized controlled trials are needed to fully determine the efficacy of the medication. Copyright © 2013 by the American College of Rheumatology.
Sutherland, J G H; Miksys, N; Furutani, K M; Thomson, R M
2014-01-01
To investigate methods of generating accurate patient-specific computational phantoms for the Monte Carlo calculation of lung brachytherapy patient dose distributions. Four metallic artifact mitigation methods are applied to six lung brachytherapy patient computed tomography (CT) images: simple threshold replacement (STR) identifies high CT values in the vicinity of the seeds and replaces them with estimated true values; fan beam virtual sinogram replaces artifact-affected values in a virtual sinogram and performs a filtered back-projection to generate a corrected image; 3D median filter replaces voxel values that differ from the median value in a region of interest surrounding the voxel and then applies a second filter to reduce noise; and a combination of fan beam virtual sinogram and STR. Computational phantoms are generated from artifact-corrected and uncorrected images using several tissue assignment schemes: both lung-contour constrained and unconstrained global schemes are considered. Voxel mass densities are assigned based on voxel CT number or using the nominal tissue mass densities. Dose distributions are calculated using the EGSnrc user-code BrachyDose for (125)I, (103)Pd, and (131)Cs seeds and are compared directly as well as through dose volume histograms and dose metrics for target volumes surrounding surgical sutures. Metallic artifact mitigation techniques vary in ability to reduce artifacts while preserving tissue detail. Notably, images corrected with the fan beam virtual sinogram have reduced artifacts but residual artifacts near sources remain requiring additional use of STR; the 3D median filter removes artifacts but simultaneously removes detail in lung and bone. Doses vary considerably between computational phantoms with the largest differences arising from artifact-affected voxels assigned to bone in the vicinity of the seeds. Consequently, when metallic artifact reduction and constrained tissue assignment within lung contours are employed in generated phantoms, this erroneous assignment is reduced, generally resulting in higher doses. Lung-constrained tissue assignment also results in increased doses in regions of interest due to a reduction in the erroneous assignment of adipose to voxels within lung contours. Differences in dose metrics calculated for different computational phantoms are sensitive to radionuclide photon spectra with the largest differences for (103)Pd seeds and smallest but still considerable differences for (131)Cs seeds. Despite producing differences in CT images, dose metrics calculated using the STR, fan beam + STR, and 3D median filter techniques produce similar dose metrics. Results suggest that the accuracy of dose distributions for permanent implant lung brachytherapy is improved by applying lung-constrained tissue assignment schemes to metallic artifact corrected images.
Grebenstein, Patricia; Burroughs, Danielle; Zhang, Yan; LeSage, Mark G.
2013-01-01
Reducing the nicotine content in tobacco products is being considered by the FDA as a policy to reduce the addictiveness of tobacco products. Understanding individual differences in response to nicotine reduction will be critical to developing safe and effective policy. Animal and human research demonstrating sex differences in the reinforcing effects of nicotine suggests that males and females may respond differently to nicotine-reduction policies. However, no studies have directly examined sex differences in the effects of nicotine unit-dose reduction on nicotine self-administration (NSA) in animals. The purpose of the present study was to examine this issue in a rodent self-administration model. Male and female rats were trained to self-administer nicotine (0.06 mg/kg) under an FR 3 schedule during daily 23 h sessions. Rats were then exposed to saline extinction and reacquisition of NSA, followed by weekly reductions in the unit dose (0.03 to 0.00025 mg/kg) until extinction levels of responding were achieved. Males and females were compared with respect to baseline levels of intake, resistance to extinction, degree of compensatory increases in responding during dose reduction, and the threshold reinforcing unit dose of nicotine. Exponential demand-curve analysis was also conducted to compare the sensitivity of males and females to increases in the unit price (FR/unit dose) of nicotine (i.e., elasticity of demand or reinforcing efficacy). Females exhibited significantly higher baseline intake and less compensation than males. However, there were no sex differences in the reinforcement threshold or elasticity of demand. Dose–response relationships were very well described by the exponential demand function (r2 values > 0.96 for individual subjects). These findings suggest that females may exhibit less compensatory smoking in response to nicotine reduction policies, even though their nicotine reinforcement threshold and elasticity of demand may not differ from males. PMID:24201048
T Cell Activation Thresholds are Affected by Gravitational
NASA Technical Reports Server (NTRS)
Adams, Charley; Gonzalez, M.; Nelman-Gonzalez, M.
1999-01-01
T cells stimulated in space flight by various mitogenic signals show a dramatic reduction in proliferation and expression of early activation markers. Similar results are also obtained in a ground based model of microgravity, clinorotation, which provides a vector-averaged reduction of the apparent gravity on cells without significant shear force. Here we demonstrate that T cell inhibition is due to an increase in the required threshold for activation. Dose response curves indicate that cells activated during clinorotation require higher stimulation to achieve the same level of activation, as measured by CD69 expression. Interleukin 2 receptor expression, and DNA synthesis. The amount of stimulation necessary for 50% activation is 5 fold in the clinostat relative to static. Correlation of TCR internalization with activation also exhibit a dramatic right shift in clinorotation, demonstrating unequivocally that signal transduction mechanism independent of TCR triggering account for the increased activation threshold. Previous results from space flight experiments are consistent with the dose response curves obtained for clinorotation. Activation thresholds are important aspects of T cell memory, autoimmunity and tolerance Clinorotation is a useful, noninvasive tool for the study of cellular and biochemical event regulating T cell activation threshold and the effects of gravitation forces on these systems.
Gandhi, Diksha; Crotty, Dominic J; Stevens, Grant M; Schmidt, Taly Gilat
2015-11-01
This technical note quantifies the dose and image quality performance of a clinically available organ-dose-based tube current modulation (ODM) technique, using experimental and simulation phantom studies. The investigated ODM implementation reduces the tube current for the anterior source positions, without increasing current for posterior positions, although such an approach was also evaluated for comparison. Axial CT scans at 120 kV were performed on head and chest phantoms on an ODM-equipped scanner (Optima CT660, GE Healthcare, Chalfont St. Giles, England). Dosimeters quantified dose to breast, lung, heart, spine, eye lens, and brain regions for ODM and 3D-modulation (SmartmA) settings. Monte Carlo simulations, validated with experimental data, were performed on 28 voxelized head phantoms and 10 chest phantoms to quantify organ dose and noise standard deviation. The dose and noise effects of increasing the posterior tube current were also investigated. ODM reduced the dose for all experimental dosimeters with respect to SmartmA, with average dose reductions across dosimeters of 31% (breast), 21% (lung), 24% (heart), 6% (spine), 19% (eye lens), and 11% (brain), with similar results for the simulation validation study. In the phantom library study, the average dose reduction across all phantoms was 34% (breast), 20% (lung), 8% (spine), 20% (eye lens), and 8% (brain). ODM increased the noise standard deviation in reconstructed images by 6%-20%, with generally greater noise increases in anterior regions. Increasing the posterior tube current provided similar dose reduction as ODM for breast and eye lens, increased dose to the spine, with noise effects ranging from 2% noise reduction to 16% noise increase. At noise equal to SmartmA, ODM increased the estimated effective dose by 4% and 8% for chest and head scans, respectively. Increasing the posterior tube current further increased the effective dose by 15% (chest) and 18% (head) relative to SmartmA. ODM reduced dose in all experimental and simulation studies over a range of phantoms, while increasing noise. The results suggest a net dose/noise benefit for breast and eye lens for all studied phantoms, negligible lung dose effects for two phantoms, increased lung dose and/or noise for eight phantoms, and increased dose and/or noise for brain and spine for all studied phantoms compared to the reference protocol.
van den Haak, R F F; Hamans, B C; Zuurmond, K; Verhoeven, B A N; Koning, O H J
2015-10-01
To prospectively quantify radiation dose change in aortoiliac endovascular procedures in the hybrid operating room (OR) for patients and medical staff with a novel X-ray imaging technology (ClarityIQ technology), and to assess whether procedure or fluoroscopy time or dose of iodinated contrast was affected. A prospective study including 138 patients was performed to compare radiation dose before and after installation of a novel X-ray imaging technology. Endovascular aneurysm repair (EVAR) was performed in 37 patients and an endovascular procedure for aortoiliac occlusive disease (AIOD) in 101. Patient radiation dose in air kerma (AK) and dose area product (DAP), patient demographics, and procedural data were recorded. Staff radiation dose was measured with real time personal dosimetry measurements. In both the EVAR and AIOD groups the reference system, ALX (AlluraXper FD20; Philips Healthcare, Best, the Netherlands), was compared with the upgraded X-ray system, CIQ (AlluraClarity FD20; Philips Healthcare). Procedure time, fluoroscopy time, and iodinated contrast dose were recorded. Patient radiation dose reduction in the EVAR group, in median AK, was 56% (ALX = 1,262.5 mGy; CIQ = 556.0 mGy [p < .01]); and in median DAP it was 57% (ALX = 224.4 Gycm(2) and CIQ = 95.8 Gycm(2) [p < .01]). Patient radiation dose reduction in the AIOD group, in median AK, was 76% (ALX = 1,011.0 mGy; CIQ = 248.0 mGy [p < .01]); and in median DAP it was 73% (ALX = 138.1 Gycm(2); CIQ = 38.0 Gycm(2) [p < .01]). Staff dose reduction in the EVAR group was 16% (ALX = 70.1 μSv; CIQ = 59.2 μSv [p = .43]) and in the AIOD group it was 69% (ALX = 96.2 μSv; CIQ = 30.1 μSv [p < .01]). There was no statistically significant difference between patient demographics, procedure time, fluoroscopy time, and iodinated contrast medium use in the two treatment groups before and after installation. A novel X-ray imaging technology in the hybrid OR suite resulted in a significant reduction of patient and staff radiation dose without affecting procedure length, fluoroscopy time, or use of contrast. Copyright © 2015 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.
Greffier, Joël; Pereira, Fabricio; Macri, Francesco; Beregi, Jean-Paul; Larbi, Ahmed
2016-04-01
To evaluate the impact of Automatic Exposure Control (AEC) on radiation dose and image quality in paediatric chest scans (MDCT), with or without iterative reconstruction (IR). Three anthropomorphic phantoms representing children aged one, five and 10-year-old were explored using AEC system (CARE Dose 4D) with five modulation strength options. For each phantom, six acquisitions were carried out: one with fixed mAs (without AEC) and five each with different modulation strength. Raw data were reconstructed with Filtered Back Projection (FBP) and with two distinct levels of IR using soft and strong kernels. Dose reduction and image quality indices (Noise, SNR, CNR) were measured in lung and soft tissues. Noise Power Spectrum (NPS) was evaluated with a Catphan 600 phantom. The use of AEC produced a significant dose reduction (p<0.01) for all anthropomorphic sizes employed. According to the modulation strength applied, dose delivered was reduced from 43% to 91%. This pattern led to significantly increased noise (p<0.01) and reduced SNR and CNR (p<0.01). However, IR was able to improve these indices. The use of AEC/IR preserved image quality indices with a lower dose delivered. Doses were reduced from 39% to 58% for the one-year-old phantom, from 46% to 63% for the five-year-old phantom, and from 58% to 74% for the 10-year-old phantom. In addition, AEC/IR changed the patterns of NPS curves in amplitude and in spatial frequency. In chest paediatric MDCT, the use of AEC with IR allows one to obtain a significant dose reduction while maintaining constant image quality indices. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Influence of different treatment techniques on radiation dose to the LAD coronary artery
Nieder, Carsten; Schill, Sabine; Kneschaurek, Peter; Molls, Michael
2007-01-01
Background The purpose of this proof-of-principle study was to test the ability of an intensity-modulated radiotherapy (IMRT) technique to reduce the radiation dose to the heart plus the left ventricle and a coronary artery. Radiation-induced heart disease might be a serious complication in long-term cancer survivors. Methods Planning CT scans from 6 female patients were available. They were part of a previous study of mediastinal IMRT for target volumes used in lymphoma treatment that included 8 patients and represent all cases where the left anterior descending coronary artery (LAD) could be contoured. We compared 6 MV AP/PA opposed fields to a 3D conformal 4-field technique and an optimised 7-field step-and-shoot IMRT technique and evaluated DVH's for several structures. The planning system was BrainSCAN 5.21 (BrainLAB, Heimstetten, Germany). Results IMRT maintained target volume coverage but resulted in better dose reduction to the heart, left ventricle and LAD than the other techniques. Selective dose reduction could be accomplished, although not to the degree initially attempted. The median LAD dose was approximately 50% lower with IMRT. In 5 out of 6 patients, IMRT was the best technique with regard to heart sparing. Conclusion IMRT techniques are able to reduce the radiation dose to the heart. In addition to dose reduction to whole heart, individualised dose distributions can be created, which spare, e.g., one ventricle plus one of the coronary arteries. Certain patients with well-defined vessel pathology might profit from an approach of general heart sparing with further selective dose reduction, accounting for the individual aspects of pre-existing damage. PMID:17547777
Generative Adversarial Networks for Noise Reduction in Low-Dose CT.
Wolterink, Jelmer M; Leiner, Tim; Viergever, Max A; Isgum, Ivana
2017-12-01
Noise is inherent to low-dose CT acquisition. We propose to train a convolutional neural network (CNN) jointly with an adversarial CNN to estimate routine-dose CT images from low-dose CT images and hence reduce noise. A generator CNN was trained to transform low-dose CT images into routine-dose CT images using voxelwise loss minimization. An adversarial discriminator CNN was simultaneously trained to distinguish the output of the generator from routine-dose CT images. The performance of this discriminator was used as an adversarial loss for the generator. Experiments were performed using CT images of an anthropomorphic phantom containing calcium inserts, as well as patient non-contrast-enhanced cardiac CT images. The phantom and patients were scanned at 20% and 100% routine clinical dose. Three training strategies were compared: the first used only voxelwise loss, the second combined voxelwise loss and adversarial loss, and the third used only adversarial loss. The results showed that training with only voxelwise loss resulted in the highest peak signal-to-noise ratio with respect to reference routine-dose images. However, CNNs trained with adversarial loss captured image statistics of routine-dose images better. Noise reduction improved quantification of low-density calcified inserts in phantom CT images and allowed coronary calcium scoring in low-dose patient CT images with high noise levels. Testing took less than 10 s per CT volume. CNN-based low-dose CT noise reduction in the image domain is feasible. Training with an adversarial network improves the CNNs ability to generate images with an appearance similar to that of reference routine-dose CT images.
Decloedt, Eric H.; Maartens, Gary; Smith, Peter; Merry, Concepta; Bango, Funeka; McIlleron, Helen
2012-01-01
Objective Rifampicin co-administration dramatically reduces plasma lopinavir concentrations. Studies in healthy volunteers and HIV-infected patients showed that doubling the dose of lopinavir/ritonavir (LPV/r) or adding additional ritonavir offsets this interaction. However, high rates of hepatotoxicity were observed in healthy volunteers. We evaluated the safety, effectiveness and pre-dose concentrations of adjusted doses of LPV/r in HIV infected adults treated with rifampicin-based tuberculosis treatment. Methods Adult patients on a LPV/r-based antiretroviral regimen and rifampicin-based tuberculosis therapy were enrolled. Doubled doses of LPV/r or an additional 300 mg of ritonavir were used to overcome the inducing effect of rifampicin. Steady-state lopinavir pre-dose concentrations were evaluated every second month. Results 18 patients were enrolled with a total of 79 patient months of observation. 11/18 patients were followed up until tuberculosis treatment completion. During tuberculosis treatment, the median (IQR) pre-dose lopinavir concentration was 6.8 (1.1–9.2) mg/L and 36/47 (77%) were above the recommended trough concentration of 1 mg/L. Treatment was generally well tolerated with no grade 3 or 4 toxicity: 8 patients developed grade 1 or 2 transaminase elevation, 1 patient defaulted additional ritonavir due to nausea and 1 patient developed diarrhea requiring dose reduction. Viral loads after tuberculosis treatment were available for 11 patients and 10 were undetectable. Conclusion Once established on treatment, adjusted doses of LPV/r co-administered with rifampicin-based tuberculosis treatment were tolerated and LPV pre-dose concentrations were adequate. PMID:22412856
Cooper, Jennifer N; Lodwick, Daniel L; Adler, Brent; Lee, Choonsik; Minneci, Peter C; Deans, Katherine J
2017-06-01
Computed tomography (CT) is a widely used diagnostic tool in pediatric medicine. However, due to concerns regarding radiation exposure, it is essential to identify patient characteristics associated with higher radiation burden from CT imaging, in order to more effectively target efforts towards dose reduction. Our objective was to identify the effects of various demographic and clinical patient characteristics on radiation exposure from single abdomen/pelvis CT scans in children. CT scans performed at our institution between January 2013 and August 2015 in patients under 16 years of age were processed using a software tool that estimates patient-specific organ and effective doses and merges these estimates with data from the electronic health record and billing record. Quantile regression models at the 50th, 75th, and 90th percentiles were used to estimate the effects of patients' demographic and clinical characteristics on effective dose. 2390 abdomen/pelvis CT scans (median effective dose 1.52mSv) were included. Of all characteristics examined, only older age, female gender, higher BMI, and whether the scan was a multiphase exam or an exam that required repeating for movement were significant predictors of higher effective dose at each quantile examined (all p<0.05). The effects of obesity and multiphase or repeat scanning on effective dose were magnified in higher dose scans. Older age, female gender, obesity, and multiphase or repeat scanning are all associated with increased effective dose from abdomen/pelvis CT. Targeted efforts to reduce dose from abdominal CT in these groups should be undertaken. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, D.W.
1987-01-01
Regional brain glucose utilization (rCMRglc) was measured in rats during steady-state levels of intravenous anesthesia to determine if alterations in brain function due to anesthesia could provide information on the mechanisms of anesthesia. Intravenous anesthetics from three different chemical classes were studied: etomidate, ketamine and thiopental. All rCMRglc experiments were conducted in freely moving rats in isolation chambers, with the use of (6-/sup 14/C) glucose and guantitative autoradiography. Etomidate caused a rostral-to-caudal gradient of depression of rCMRglc. The four doses of etomidate did not differ in their effects on energy metabolism. Sub-anesthetic (5 mg kg/sup -1/) and anesthetic (30 mgmore » kg /sup -1/) doses of ketamine produced markedly different patterns of behavior. Brain energy metabolism during the sub-anesthetic dose was stimulated in most regions, while the anesthetic dose selectively stimulated the hippocampus, leaving most brain regions unaffected. Thiopental produced a dose-dependent reduction of rCMRglc in all gray matter regions. No brain region was selectively affected. Comparison of the drug-specific alterations of cerebral energy metabolism suggests these anesthetics do not act through a common mechanism. The hypothesis that each acts by binding to specific cell membrane receptors is consistent with these observations.« less
Monte Carlo dose calculation in dental amalgam phantom
Aziz, Mohd. Zahri Abdul; Yusoff, A. L.; Osman, N. D.; Abdullah, R.; Rabaie, N. A.; Salikin, M. S.
2015-01-01
It has become a great challenge in the modern radiation treatment to ensure the accuracy of treatment delivery in electron beam therapy. Tissue inhomogeneity has become one of the factors for accurate dose calculation, and this requires complex algorithm calculation like Monte Carlo (MC). On the other hand, computed tomography (CT) images used in treatment planning system need to be trustful as they are the input in radiotherapy treatment. However, with the presence of metal amalgam in treatment volume, the CT images input showed prominent streak artefact, thus, contributed sources of error. Hence, metal amalgam phantom often creates streak artifacts, which cause an error in the dose calculation. Thus, a streak artifact reduction technique was applied to correct the images, and as a result, better images were observed in terms of structure delineation and density assigning. Furthermore, the amalgam density data were corrected to provide amalgam voxel with accurate density value. As for the errors of dose uncertainties due to metal amalgam, they were reduced from 46% to as low as 2% at d80 (depth of the 80% dose beyond Zmax) using the presented strategies. Considering the number of vital and radiosensitive organs in the head and the neck regions, this correction strategy is suggested in reducing calculation uncertainties through MC calculation. PMID:26500401
Pain and anxiety and their relationship with medication doses in the intensive care unit.
Park, Sunyoung; Na, Se Hee; Oh, Jooyoung; Lee, Jong Seok; Oh, Seung-Taek; Kim, Jae-Jin; Park, Jin Young
2018-06-02
Pain and anxiety are understudied despite their importance to the general medical condition. The aim of the present study was to examine the effects of pain and anxiety and their relationship to the doses of opioids and anxiolytics administered in intensive care unit (ICU) patients. The subjects included 1349 conscious, critically ill patients admitted to an ICU. Psychiatrists evaluated the patients daily for pain and anxiety. Data regarding the doses of opioids and benzodiazepines administered were gathered. Linear mixed model was used for analysis. The pain and anxiety experienced by patients in the ICU were significantly correlated. Pain had significant main effects on the dose of opioids administered. No significant effects of anxiety on the daily dose of anxiolytics or opioids given were detected. Due to their closely linked relationship, pain and anxiety, can affect one another, and one can influence the other to appear more severe. In addition, anxiety can be underestimated in ICU patients. The present study suggests the need for precise evaluation and a comprehensive approach to the management of pain and anxiety. In addition, this study implies that management of anxiety may affect pain reduction, given the close correlation between the two. Copyright © 2018 Elsevier Inc. All rights reserved.
Mustard, Julie A; Wright, Geraldine A; Edgar, Elaina A; Mazade, Reece E.; Wu, Chen; Lillvis, Joshua L
2008-01-01
Invertebrates are valuable models for increasing our understanding of the effects of ethanol on the nervous system, but most studies on invertebrates and ethanol have focused on the effects of ethanol on locomotor behavior. In this work we investigate the influence of an acute dose of ethanol on appetitive olfactory learning in the honey bee (Apis mellifera), a model system for learning and memory. Adult worker honey bees were fed a range of doses (2.5, 5, 10 or 25%) of ethanol and then conditioned to associate an odor with a sucrose reward using either a simple or differential conditioning paradigm. Consumption of ethanol before conditioning significantly reduced both the rate of acquisition and the asymptotic strength of the association. Honey bees also exhibited a dose dependent reduction in arousal/attention during conditioning. Consumption of ethanol after conditioning did not affect recall 24 h later. The observed deficits in acquisition were not due to the affect of ethanol on gustatory sensitivity or motor function. However, honey bees given higher doses of ethanol had difficulty discriminating amongst different odors suggesting that ethanol consumption influences olfactory processing. Taken together, these results demonstrate that an acute dose of ethanol affects appetitive learning and olfactory perception in the honey bee. PMID:18723103
Radiation dose reduction in computed tomography perfusion using spatial-temporal Bayesian methods
NASA Astrophysics Data System (ADS)
Fang, Ruogu; Raj, Ashish; Chen, Tsuhan; Sanelli, Pina C.
2012-03-01
In current computed tomography (CT) examinations, the associated X-ray radiation dose is of significant concern to patients and operators, especially CT perfusion (CTP) imaging that has higher radiation dose due to its cine scanning technique. A simple and cost-effective means to perform the examinations is to lower the milliampere-seconds (mAs) parameter as low as reasonably achievable in data acquisition. However, lowering the mAs parameter will unavoidably increase data noise and degrade CT perfusion maps greatly if no adequate noise control is applied during image reconstruction. To capture the essential dynamics of CT perfusion, a simple spatial-temporal Bayesian method that uses a piecewise parametric model of the residual function is used, and then the model parameters are estimated from a Bayesian formulation of prior smoothness constraints on perfusion parameters. From the fitted residual function, reliable CTP parameter maps are obtained from low dose CT data. The merit of this scheme exists in the combination of analytical piecewise residual function with Bayesian framework using a simpler prior spatial constrain for CT perfusion application. On a dataset of 22 patients, this dynamic spatial-temporal Bayesian model yielded an increase in signal-tonoise-ratio (SNR) of 78% and a decrease in mean-square-error (MSE) of 40% at low dose radiation of 43mA.
[Continued Use of Rotigotine Transdermal Patches for Parkinson Disease].
Yasutaka, Yuki; Fujioka, Shinsuke; Shibaguchi, Hirotomo; Imakyure, Osamu; Washiyama, Atsushi; Tsuboi, Yoshio; Futagami, Koujiro
2016-06-01
Transdermal patches containing rotigotine, a dopamine agonist (DA) for treatment of Parkinson disease, continuously exert stable effects when applied once daily. Therefore, they are expected to reduce the patient burdens due to complications such as wearing-off and dysphagia. However, dosing is occasionally reduced or discontinued after application because of several reasons such as skin reactions or unsatisfactory efficacy. To identify the risk factors involved in the reduced or discontinued use of rotigotine patches, a retrospective study was conducted with reference to the medical records of patients with Parkinson disease who received rotigotine patches in our hospital. 85 patients were involved in this study. Dosing of rotigotine was reduced or discontinued in 53 patients during the study period. The factors associated with charges in treatment included combination therapy with clonazepam and oral administration of another DA before the application of rotigotine. The reduction or discontinuation rate of rotigotine patches in patients who reduced the equivalent dose of DA on the introduction of rotigotine patches was 94.7%, showing a significantly higher rate compared with 61.3% in the increased dose group. To improve adherence to rotigotine patch therapy, physicians need to carefully consider concomitant drugs and total dose of DAs. (Received December 7, 2015; Accepted February 22, 2016; Published June 1, 2016).
Non-Malignant Thyroid Diseases Following a Wide Range of Radiation Exposures
Ron, Elaine; Brenner, Alina
2013-01-01
Background The thyroid gland is one of the most radiosensitive human organs. While it is well known that radiation exposure increases the risk of thyroid cancer, less is known about its effects in relation to non-malignant thyroid diseases. Objectives The aim of this review is to evaluate the effects of high and low dose radiation on benign structural and functional diseases of the thyroid. Methods We examined the results of major studies from cancer patients treated with high-dose radiotherapy or thyrotoxicosis patients treated with high doses of iodine-131, patients treated with moderate to high dose radiotherapy for benign diseases, persons exposed to low doses from environmental radiation and survivors of the atomic bombings who were exposed to a range of doses. We evaluated radiation effects on structural (tumors, nodules), functional (hyper- and hypothyroidism), and autoimmune thyroid diseases. Results Following a wide range of doses of ionizing radiation, an increased risk of thyroid adenomas and nodules was observed in a variety of populations and settings. The dose response appeared to be linear at low to moderate doses, but in one study there was some suggestion of a reduction in risk above 5 Gy. The elevated risk for benign tumors continues for decades following exposure. Considerably less consistent findings are available regarding functional thyroid diseases including autoimmune diseases. In general, associations for these outcomes were fairly weak and significant radiation effects were most often observed following high doses, particularly for hypothyroidism. Conclusions A significant radiation dose-response relation was demonstrated for benign nodules and follicular adenomas. The effects of radiation on functional thyroid diseases are less clear, partly due to the greater difficulties studying these diseases. PMID:21128812
Foley, Shane J; McEntee, Mark F; Achenbach, Stephan; Brennan, Patrick C; Rainford, Louise S; Dodd, Jonathan D
2011-08-01
The purpose of this study was to prospectively evaluate the effect of cranial breast displacement and lead shielding on in vivo breast surface radiation dose in women undergoing coronary CT angiography. Fifty-four women (mean age, 59.2 ± 9.8 years) prospectively underwent coronary 64-MDCT angiography for evaluation of chest pain. The patients were randomly assigned to a control group (n = 16), breast displacement group (n = 22), or breast displacement plus lead shielding group (n = 16). Thermoluminescent dosimeters (TLDs) were placed superficially on each breast quadrant and the areolar region of both breasts. Breast surface radiation doses, the degree of breast displacement, and coronary image quality were compared between groups. A phantom dose study was conducted to compare breast doses with z-axis positioning on the chest wall. A total of 1620 TLD dose measurements were recorded. Compared with control values, the mean breast surface dose was reduced 23% in the breast displacement group (24.3 vs 18.6 mGy, p = 0.015) and 36% in the displacement plus lead shielding group (24.3 vs 15.6 mGy, p = 0.0001). Surface dose reductions were greatest in the upper outer (displacement alone, 66%; displacement plus shielding, 63%), upper inner (65%, 58%), and areolar quadrants (44%, 53%). The smallest surface dose reductions were recorded for A-cup breasts: 7% for the displacement group and 3% for the displacement plus lead group (p = 0.741). Larger reductions in surface dose were recorded for B-cup (25% and 56%, p = 0.273), C-cup (38% and 60%, p = 0.001), and D-cup (31% and 25%, p = 0.095) sizes. Most of the patients (79%) had either good (< 50% of breast above scan range) or excellent (< 75% of breast above the scan range) breast displacement. No significant difference in coronary image quality was detected between groups. The phantom dose study showed that surface TLD measurements were underestimates of absorbed tissue dose by a mean of 9% and that a strong negative correlation exists between the amount of cranial displacement and breast dose. Use of breast displacement during coronary CTA substantially reduces the radiation dose to the breast surface.
Träger, Karl; Schütz, Christian; Fischer, Günther; Schröder, Janpeter; Skrabal, Christian; Liebold, Andreas; Reinelt, Helmut
2016-01-01
A 45-year-old male was admitted to our hospital with a small bowel obstruction due to torsion and was immediately scheduled for surgical intervention. At anesthesia induction, the patient aspirated and subsequently developed a severe SIRS with ARDS and multiple organ failure requiring the use of ECMO, CRRT, antibiotics, and low dose steroids. Due to a rapid deterioration in clinical status and a concurrent surge in inflammatory biomarkers, an extracorporeal cytokine adsorber (CytoSorb) was added to the CRRT blood circuit. The combined treatment resulted in a rapid and significant reduction in the levels of circulating inflammatory mediators. This decrease was paralleled by marked clinical stabilization of the patient including a significant improvement in hemodynamic stability and a reduced need for norepinephrine and improved respiratory function as measured by PaO2/FIO2, ventilator parameters, lung mechanics, and indirect measures of capillary leak syndrome. The patient could be discharged to a respiratory weaning unit where successful respiratory weaning could be achieved later on. We attribute the clinical improvement to the rapid control of the hyperinflammatory response and the reduction of inflammatory mediators using a combination of CytoSorb and these other therapies. CytoSorb treatment was safe and well tolerated, with no device-related adverse effects observed.
Träger, Karl; Schütz, Christian; Fischer, Günther; Schröder, Janpeter; Skrabal, Christian; Liebold, Andreas; Reinelt, Helmut
2016-01-01
A 45-year-old male was admitted to our hospital with a small bowel obstruction due to torsion and was immediately scheduled for surgical intervention. At anesthesia induction, the patient aspirated and subsequently developed a severe SIRS with ARDS and multiple organ failure requiring the use of ECMO, CRRT, antibiotics, and low dose steroids. Due to a rapid deterioration in clinical status and a concurrent surge in inflammatory biomarkers, an extracorporeal cytokine adsorber (CytoSorb) was added to the CRRT blood circuit. The combined treatment resulted in a rapid and significant reduction in the levels of circulating inflammatory mediators. This decrease was paralleled by marked clinical stabilization of the patient including a significant improvement in hemodynamic stability and a reduced need for norepinephrine and improved respiratory function as measured by PaO2/FIO2, ventilator parameters, lung mechanics, and indirect measures of capillary leak syndrome. The patient could be discharged to a respiratory weaning unit where successful respiratory weaning could be achieved later on. We attribute the clinical improvement to the rapid control of the hyperinflammatory response and the reduction of inflammatory mediators using a combination of CytoSorb and these other therapies. CytoSorb treatment was safe and well tolerated, with no device-related adverse effects observed. PMID:26885411
Nebivolol/valsartan: Fixed-dose combination for treatment of hypertension.
Paton, D M
2017-01-01
Clinical trials demonstrated that a fixed-dose combination (FDC) of the beta-blocker nebivolol (5 mg) and the angiotensin II antagonist valsartan (80 mg) produced a significant reduction of both diastolic and systolic blood pressure in patients with hypertension. Both nebivolol and valsartan contributed to this effect, partial additivity of 86.6% and 82.2% being observed for diastolic and systolic blood pressure, respectively. These values are very similar to the additivity ratios of other recently approved FDCs for hypertension. Use of the FDC nebivolol 5 mg/valsartan 80 mg formulation was associated with a low incidence of treatment-related adverse effects and of serious adverse effects. There was no evidence of adverse effects due to beta2-adrenoceptor blockade. The FDC (Byvalson) was approved and launched in 2016 in the U.S. for the treatment of hypertension. Copyright 2017 Clarivate Analytics.
NASA Astrophysics Data System (ADS)
Ostrovtsova, Svetlana A.; Volodenkov, Alexander P.; Maskevich, Alexander A.; Artsukevich, Irina M.; Anufrik, Slavomir S.; Makarchikov, Alexander F.; Chernikevich, Ivan P.; Stepuro, Vitali I.
1998-05-01
Three enzymes differing in their structural composition were irradiated by UV lasers to study the effect of temperature, protein concentration and addition of small molecules on their sensitivity to radiation exposure. The laser-induced effects were due to the structural complexity of the protein molecules and depended on the dose applied, the wavelength and the density of irradiation. The multi-enzyme 2- oxoglutarate dehydrogenase complex was subjected to pronounced irradiation-induced changes whereas the response of the two other enzymes was less significant. Reduction of the protein levels in irradiated samples was important under the XeCl laser coercion and the effects depended on the doses applied. The laser irradiation effects are suggested to be realized by means of conformational changes in the protein molecules and intermolecular association- dissociation processes.
Toward computer-assisted image-guided congenital heart defect repair: an initial phantom analysis.
Kwartowitz, David M; Mefleh, Fuad N; Baker, G Hamilton
2017-10-01
Radiation exposure in interventional cardiology is an important consideration, due to risk of cancer and other morbidity to the patient and clinical staff. Cardiac catheterizations rely heavily on fluoroscopic imaging exposing both patient and clinician to ionizing radiation. An image-guided surgery system capable of facilitating cardiac catheterizations was developed and tested to evaluate dose reduction. Several electromagnetically tracked tools were constructed specifically a 7-Fr catheter with five 5-degree-of-freedom magnetic seeds. Catheter guidance was accomplished using our image guidance system Kit for Navigation by Image-Focused Exploration and fluoroscopy alone. A cardiac phantom was designed and 3D printed to validate the image guidance procedure. In mock procedures, an expert clinician guided and deployed an occluder across the septal defect of the phantom heart. The image guidance method resulted in a dose of 1.26 mSv of radiation dose per procedure, while traditional guidance resulted in a dose of 3.33 mSv. Average overall dose savings for the image-guided method was nearly 2.07 mSv or 62 %. The work showed significant ([Formula: see text]) decrease in radiation dose with use of image guidance methods at the expense of a modest increase in procedure time. This study lays the groundwork for further exploration of image guidance applications in pediatric cardiology.
Thomas, P; Hayton, A; Beveridge, T; Marks, P; Wallace, A
2015-09-01
To assess the influence and significance of the use of iterative reconstruction (IR) algorithms on patient dose in CT in Australia. We examined survey data submitted to the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) National Diagnostic Reference Level Service (NDRLS) during 2013 and 2014. We compared median survey dose metrics with categorization by scan region and use of IR. The use of IR results in a reduction in volume CT dose index of between 17% and 44% and a reduction in dose-length product of between 14% and 34% depending on the specific scan region. The reduction was highly significant (p < 0.001, Wilcoxon rank-sum test) for all six scan regions included in the NDRLS. Overall, 69% (806/1167) of surveys included in the analysis used IR. The use of IR in CT is achieving dose savings of 20-30% in routine practice in Australia. IR appears to be widely used by participants in the ARPANSA NDRLS with approximately 70% of surveys submitted employing this technique. This study examines the impact of the use of IR on patient dose in CT on a national scale.
Perez, Alfonso; Cao, Charlie
2017-03-01
In this phase 2, multicenter, parallel-group, double-blind, dose-ranging study, hypertensive adults (n=449) were randomized to receive one of five doses of a capsule formulation of azilsartan medoxomil (AZL-M; 5, 10, 20, 40, 80 mg), olmesartan medoxomil (OLM) 20 mg, or placebo once daily. The primary endpoint was change in trough clinic diastolic blood pressure (DBP) at week 8. AZL-M provided rapid statistically and clinically significant reductions in DBP and systolic blood pressure (SBP) vs placebo at all doses except 5 mg. Placebo-subtracted changes were greatest with the 40 mg dose (DBP, -5.7 mm Hg; SBP, -12.3 mm Hg). Clinic changes with AZL-M (all doses) were statistically indistinguishable vs OLM, although there were greater reductions with AZL-M 40 mg using 24-hour ambulatory blood pressure. Adverse event frequency was similar in the AZL-M and placebo groups. Based on these and other findings, subsequent trials investigated the commercial AZL-M tablet in the dose range of 20 to 80 mg/d. ©2016 Wiley Periodicals, Inc.
Digital radiography: optimization of image quality and dose using multi-frequency software.
Precht, H; Gerke, O; Rosendahl, K; Tingberg, A; Waaler, D
2012-09-01
New developments in processing of digital radiographs (DR), including multi-frequency processing (MFP), allow optimization of image quality and radiation dose. This is particularly promising in children as they are believed to be more sensitive to ionizing radiation than adults. To examine whether the use of MFP software reduces the radiation dose without compromising quality at DR of the femur in 5-year-old-equivalent anthropomorphic and technical phantoms. A total of 110 images of an anthropomorphic phantom were imaged on a DR system (Canon DR with CXDI-50 C detector and MLT[S] software) and analyzed by three pediatric radiologists using Visual Grading Analysis. In addition, 3,500 images taken of a technical contrast-detail phantom (CDRAD 2.0) provide an objective image-quality assessment. Optimal image-quality was maintained at a dose reduction of 61% with MLT(S) optimized images. Even for images of diagnostic quality, MLT(S) provided a dose reduction of 88% as compared to the reference image. Software impact on image quality was found significant for dose (mAs), dynamic range dark region and frequency band. By optimizing image processing parameters, a significant dose reduction is possible without significant loss of image quality.
Multi-Case Knowledge-Based IMRT Treatment Planning in Head and Neck Cancer
NASA Astrophysics Data System (ADS)
Grzetic, Shelby Mariah
Head and neck cancer (HNC) IMRT treatment planning is a challenging process that relies heavily on the planner's experience. Previously, we used the single, best match from a library of manually planned cases to semi-automatically generate IMRT plans for a new patient. The current multi-case Knowledge Based Radiation Therapy (MC-KBRT) study utilized different matching cases for each of six individual organs-at-risk (OARs), then combined those six cases to create the new treatment plan. From a database of 103 patient plans created by experienced planners, MC-KBRT plans were created for 40 (17 unilateral and 23 bilateral) HNC "query" patients. For each case, 2D beam's-eye-view images were used to find similar geometric "match" patients separately for each of 6 OARs. Dose distributions for each OAR from the 6 matching cases were combined and then warped to suit the query case's geometry. The dose-volume constraints were used to create the new query treatment plan without the need for human decision-making throughout the IMRT optimization. The optimized MC-KBRT plans were compared against the clinically approved plans and Version 1 (previous KBRT using only one matching case with dose warping) using the dose metrics: mean, median, and maximum (brainstem and cord+5mm) doses. Compared to Version 1, MC-KBRT had no significant reduction of the dose to any of the OARs in either unilateral or bilateral cases. Compared to the manually planned unilateral cases, there was significant reduction of the oral cavity mean/median dose (>2Gy) at the expense of the contralateral parotid. Compared to the manually planned bilateral cases, reduction of dose was significant in the ipsilateral parotid, larynx, and oral cavity (>3Gy mean/median) while maintaining PTV coverage. MC-KBRT planning in head and neck cancer generates IMRT plans with better dose sparing than manually created plans. MC-KBRT using multiple case matches does not show significant dose reduction compared to using a single match case with dose warping.
SU-C-12A-07: Effect of Vertical Position On Dose Reduction Using X-Care
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silosky, M; Marsh, R
Purpose: Reduction of absorbed dose to radiosensitive tissues is an important goal in diagnostic radiology. Siemens Medical has introduced a technique (X-CARE) to lower CT dose to anterior anatomy by reducing the tube current during 80° of rotation over radiosensitive tissues. Phantom studies have shown 30-40% dose reduction when phantoms are positioned at isocenter. However, for CT face and sinus exams, the center of the head is commonly positioned below isocenter. This work investigated the effects of vertical patient positioning on dose reduction using X-CARE. Methods: A 16cm Computed Tomography Dose Index phantom was scanned on a Siemens Definition Flashmore » CT scanner using a routine head protocol, with the phantom positioned at scanner isocenter. Optically stimulated luminescent dosimeters were placed on the anterior and posterior sides of the phantom. The phantom was lowered in increments of 2cm and rescanned, up to 8cm below isocenter. The experiment was then repeated using the same scan parameters but adding the X-CARE technique. The mean dosimeter counts were determined for each phantom position, and the difference between XCARE and routine scans was plotted as a function of distance from isocenter. Results: With the phantom positioned at isocenter, using XCARE reduced dose to the anterior side of the phantom by 40%, compared to dose when X-CARE was not used. Positioned below isocenter, anterior dose was reduced by only 20-27%. Additionally, using X-CARE at isocenter reduced dose to the anterior portion of the phantom by 45.6% compared to scans performed without X-CARE 8cm below isocenter. Conclusion: While using X-CARE substantially reduced dose to the anterior side of the phantom, this effect was diminished when the phantom was positioned below isocenter, simulating common practice for face and sinus scans. This indicates that centering the head in the gantry will maximize the effect of X-CARE.« less
Proton therapy to the subdiaphragmatic region in the management of patients with Hodgkin lymphoma.
Sachsman, Suzanne; Hoppe, Bradford S; Mendenhall, Nancy P; Holtzman, Adam; Li, Zuofeng; Slayton, William; Joyce, Mike; Sandler, Eric; Flampouri, Stella
2015-07-01
Twelve consecutive patients with classical Hodgkin lymphoma (HL) involving diaphragmatic or subdiaphragmatic regions were treated on an institutional review board-approved outcomes tracking protocol. All patients underwent treatment with proton therapy following chemotherapy and had comparative three-dimensional conformal photon radiotherapy (3DCRT) and intensity-modulated radiotherapy (IMRT) plans to evaluate differences in dose to organs at risk (OARs). Among the cohort, stomach doses with 3DCRT, IMRT and proton therapy were 21 Gy (median), 14 Gy and 6 Gy, respectively. Median dose reductions with proton therapy compared with 3DCRT and IMRT were 13 Gy (p = 0.0022) and 8 Gy (p = 0.0022) for the stomach. Additionally, there was significant dose reduction using proton therapy for the liver, pancreas, bowel, left kidney and right kidney. Proton therapy reduces the dose to the stomach, liver, pancreas, small bowel and kidneys compared with 3DCRT or IMRT in patients with HL requiring abdominal radiotherapy. These dose reductions are expected to translate into lower risks of secondary cancers and other late toxicities in survivors of HL.
Pyrogenicity of interferon and its inducer in rabbits.
Won, S J; Lin, M T
1988-03-01
The effects of intracerebral administration of interferon (IFN) or its inducer polyriboinosinic acid-polyribocytidylic acid (poly I:C) on thermoregulatory responses were assessed in conscious rabbits. Administration of IFN (10(2)-10(6) IU) or poly I:C (0.012-12 micrograms) into the preoptic anterior hypothalamus or the third cerebral ventricle caused a dose-dependent fever in rabbits at three ambient temperatures (Ta) tested. In the cold (Ta = 8 degrees C), the fever was due to increased metabolism, whereas in the heat (Ta = 32 degrees C) the fever was due to a reduction in respiratory evaporative heat loss and ear skin blood flow. At the moderate environmental temperature (Ta = 22 degrees C), the fever was due to increased metabolism and cutaneous vasoconstriction. Compared with the febrile responses induced by cerebroventricular route injection of IFN or poly I:C, the hypothalamic route of injection required a much lower dose of IFN or poly I:C to produce a similar fever. Furthermore, the fever induced by intrahypothalamic injection of IFN or poly I:C was reduced by pretreatment of animals with a systemic dose of indomethacin (an inhibitor of all prostaglandins formation) or cycloheximide (an inhibitor of protein synthesis). The data indicate that IFN or its inducer may act through the endogenous release of a prostaglandin or a protein factor of an unknown chemical nature in the preoptic anterior hypothalamic region to induce fever in rabbits. The fever induced by IFN or its inducer is brought about by a decrease in heat loss and/or an increase in heat production in rabbits.
Approaches to reducing photon dose calculation errors near metal implants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Jessie Y.; Followill, David S.; Howell, Reb
Purpose: Dose calculation errors near metal implants are caused by limitations of the dose calculation algorithm in modeling tissue/metal interface effects as well as density assignment errors caused by imaging artifacts. The purpose of this study was to investigate two strategies for reducing dose calculation errors near metal implants: implementation of metal-based energy deposition kernels in the convolution/superposition (C/S) dose calculation method and use of metal artifact reduction methods for computed tomography (CT) imaging. Methods: Both error reduction strategies were investigated using a simple geometric slab phantom with a rectangular metal insert (composed of titanium or Cerrobend), as well asmore » two anthropomorphic phantoms (one with spinal hardware and one with dental fillings), designed to mimic relevant clinical scenarios. To assess the dosimetric impact of metal kernels, the authors implemented titanium and silver kernels in a commercial collapsed cone C/S algorithm. To assess the impact of CT metal artifact reduction methods, the authors performed dose calculations using baseline imaging techniques (uncorrected 120 kVp imaging) and three commercial metal artifact reduction methods: Philips Healthcare’s O-MAR, GE Healthcare’s monochromatic gemstone spectral imaging (GSI) using dual-energy CT, and GSI with metal artifact reduction software (MARS) applied. For the simple geometric phantom, radiochromic film was used to measure dose upstream and downstream of metal inserts. For the anthropomorphic phantoms, ion chambers and radiochromic film were used to quantify the benefit of the error reduction strategies. Results: Metal kernels did not universally improve accuracy but rather resulted in better accuracy upstream of metal implants and decreased accuracy directly downstream. For the clinical cases (spinal hardware and dental fillings), metal kernels had very little impact on the dose calculation accuracy (<1.0%). Of the commercial CT artifact reduction methods investigated, the authors found that O-MAR was the most consistent method, resulting in either improved dose calculation accuracy (dental case) or little impact on calculation accuracy (spine case). GSI was unsuccessful at reducing the severe artifacts caused by dental fillings and had very little impact on calculation accuracy. GSI with MARS on the other hand gave mixed results, sometimes introducing metal distortion and increasing calculation errors (titanium rectangular implant and titanium spinal hardware) but other times very successfully reducing artifacts (Cerrobend rectangular implant and dental fillings). Conclusions: Though successful at improving dose calculation accuracy upstream of metal implants, metal kernels were not found to substantially improve accuracy for clinical cases. Of the commercial artifact reduction methods investigated, O-MAR was found to be the most consistent candidate for all-purpose CT simulation imaging. The MARS algorithm for GSI should be used with caution for titanium implants, larger implants, and implants located near heterogeneities as it can distort the size and shape of implants and increase calculation errors.« less
Marín-Martinez, Raúl; Veloz-García, Rafael; Veloz-Rodríguez, Rafael; Guzmán-Maldonado, Salvador H; Loarca-Pina, Guadalupe; Cardador-Martinez, Anabertha; Guevara-Olvera, Lorenzo; Miranda-López, Rita; Torres-Pacheco, Irineo; Pérez, Cristina Pérez; Herrera-Hernández, Guadalupe; Villaseñor-Ortega, Francisco; González-Chavira, Mario; Guevara-Gonzalez, Ramón G
2009-01-01
Quebracho extracts are used in tannery due to their high concentration of phenolics. The Mexican tannery industry uses around 450 kg/m(3) of which, 150 kg/m(3) remains in wastewaters and are discharged in drain pipe systems or rivers. The quebracho phenolics recovered from tannery wastewater (QPTW) was characterized by HPLC. The antimutagenic and antioxidant activities as well as the microbiological quality were evaluated. Total phenolic content of QPTW was 621mg catechin equivalent/g sample. Gallic and protocatechuic acids were the major components characterized by HPLC. QPTW showed an inhibition range on aflatoxin B(1) mutagenicity from 16 to 60% and was dose-dependent. Antioxidant activity (defined as beta-carotene bleaching) of QPTW (64.4%) at a dose of 12.3mg/mL was similar to that of BHT (68.7%) at a dose of 0.33 mg/mL, but lower than Trolox (90.8% at a dose of 2.5mg/mL); meanwhile antiradical activity (measured as reduction of DPPH) (60.8%) was higher than that of BHT (50.8%) and Trolox (34.2%). Quebracho residues were demonstrated to be an outstanding source of phenolic acids and for research and industrial uses.
Tomić, Maja A; Vucković, Sonja M; Stepanović-Petrović, Radica M; Ugresić, Nenad D; Paranos, Sonja Lj; Prostran, Milica S; Bosković, Bogdan
2007-11-01
We studied whether peripheral alpha2-adrenergic receptors are involved in the antihyperalgesic effects of oxcarbazepine by examining the effects of yohimbine (selective alpha2-adrenoceptor antagonist), BRL 44408 (selective alpha(2A)-adrenoceptor antagonist), MK-912 (selective alpha2C-adrenoceptor antagonist), and clonidine (alpha2-adrenoceptor agonist) on the antihyperalgesic effect of oxcarbazepine in the rat model of inflammatory pain. Rats were intraplantarly (i.pl.) injected with the proinflammatory compound concanavalin A (Con A). A paw-pressure test was used to determine: 1) the development of hyperalgesia induced by Con A; 2) the effects of oxcarbazepine (i.pl.) on Con A-induced hyperalgesia; and 3) the effects of i.pl. yohimbine, BRL 44408, MK-912 and clonidine on the oxcarbazepine antihyperalgesia. Both oxcarbazepine (1000-3000 nmol/paw; i.pl.) and clonidine (1.9-7.5 nmol/paw; i.pl.) produced a significant dose-dependent reduction of the paw inflammatory hyperalgesia induced by Con A. Yohimbine (260 and 520 nmol/paw; i.pl.), BRL 44408 (100 and 200 nmol/paw; i.pl.) and MK-912 (10 and 20 nmol/paw; i.pl.) significantly depressed the antihyperalgesic effects of oxcarbazepine (2000 nmol/paw; i.pl.) in a dose-dependent manner. The effects of antagonists were due to local effects since they were not observed after administration into the contralateral hindpaw. Oxcarbazepine and clonidine administered jointly in fixed-dose fractions of the ED(50) (1/4, 1/2, and 3/4) caused significant and dose-dependent reduction of hyperalgesia induced by Con A. Isobolographic analysis revealed an additive antihyperalgesic effect. Our results indicate that the peripheral alpha2A and alpha2C adrenoceptors could be involved in the antihyperalgesic effects of oxcarbazepine in a rat model of inflammatory hyperalgesia.
Culman, Juraj; Jacob, Toni; Schuster, Sven O; Brolund-Spaether, Kjell; Brolund, Leonie; Cascorbi, Ingolf; Zhao, Yi; Gohlke, Peter
2017-09-01
The present study conducted in rats defines the requirements for neuroprotective effects of systemically administered AT1 receptor blockers (ARBs) in acute ischaemic stroke. The inhibition of central effects to angiotensin II (ANG II) after intravenous (i.v.) treatment with candesartan (0.3 and 3 mg/kg) or irbesartan and losartan (3 and 30 mg/kg) was employed to study the penetration of these ARBs across the blood-brain barrier. Verapamil and probenecid were used to assess the role of the transporters, P-glycoprotein and the multidrug resistance-related protein 2, in the entry of losartan and irbesartan into the brain. Neuroprotective effects of i.v. treatment with the ARBs were investigated after transient middle cerebral artery occlusion (MCAO) for 90 min. The treatment with the ARBs was initiated 3 h after the onset of MCAO and continued for two consecutive days. Blood pressure was continuously recorded before and during MCAO until 5.5 h after the onset of reperfusion. The higher dose of candesartan completely abolished, and the lower dose of candesartan and higher doses of irbesartan and losartan partially inhibited the drinking response to intracerebroventricular ANG II. Only 0.3 mg/kg candesartan improved the recovery from ischaemic stroke, and 3 mg/kg candesartan did not exert neuroprotective effects due to marked blood pressure reduction during reperfusion. Both doses of irbesartan and losartan had not any effect on the stroke outcome. An effective, long-lasting blockade of brain AT1 receptors after systemic treatment with ARBs without extensive blood pressure reductions is the prerequisite for neuroprotective effects in ischaemic stroke.
Gan, Xiaoliang; Lin, Haotian; Chen, Jingjing; Lin, Zhuoling; Lin, Yiquan; Chen, Weirong
2016-06-01
It is a challenge to rescue ophthalmology examinations performed in children in the sedation room after initial chloral hydrate failure. Intranasal dexmedetomidine can be used in rescue sedation in children undergoing computed tomography. The present study aimed to assess the efficacy and tolerability of intranasal dexmedetomidine use in children undergoing ophthalmic examination after chloral hydrate failure. Sixty uncooperative pediatric patients with cataract (aged 5-36 months; weight, 7-15 kg) presented for follow-up ophthalmic examination. Patients who experienced chloral hydrate failure were randomized to 1 of 2 groups to receive intranasal dexmedetomidine 1 or 2 μg/kg for rescue sedation. Each group contained 30 patients. The primary outcome was the rate of a successful ophthalmic examination. Secondary outcomes included sedation onset time, recovery time, duration of examination, discharge time, and adverse events, including percentage of heart rate reduction, respiratory depression, vomiting, and postsedative agitation. A successful ophthalmic examination was achieved in 93.3% (28/30) of patients in the 2-μg/kg dose group and in 66.7% (20/30) of patients in the 1-μg/kg dose group (P = 0.021). The onset time, recovery time, and discharge time did not significantly differ between the 2 groups. None of the patients required clinical intervention due to heart rate reduction, and none of the patients in either group experienced vomiting, respiratory depression, or agitation after the administration of dexmedetomidine. In children undergoing ophthalmic examination, intranasal dexmedetomidine can be administered in the sedation room for rescue sedation after chloral hydrate failure, with the 2-μg/kg dose being more efficacious than the 1-μg/kg dose, as measured by success rate. ClinicalTrials.gov identifier: NCT02077712. Copyright © 2016 Elsevier HS Journals, Inc. All rights reserved.
Sludge reduction by ozone: Insights and modeling of the dose-response effects.
Fall, C; Silva-Hernández, B C; Hooijmans, C M; Lopez-Vazquez, C M; Esparza-Soto, M; Lucero-Chávez, M; van Loosdrecht, M C M
2018-01-15
Applying ozone to the return flow in an activated sludge (AS) process is a way for reducing the residual solids production. To be able to extend the activated sludge models to the ozone-AS process, adequate prediction of the tri-atoms effects on the particulate COD fractions is needed. In this study, the biomass inactivation, COD mineralization, and solids dissolution were quantified in batch tests and dose-response models were developed as a function of the reacted ozone doses (ROD). Three kinds of model-sludge were used. S1 was a lab-cultivated synthetic sludge with two components (heterotrophs X H and X P ). S2 was a digestate of S1 almost made by the endogenous residues, X P . S3 was from a municipal activated sludge plant. The specific ozone uptake rate (SO 3 UR, mgO 3 /gCOD.h) was determined as a tool for characterizing the reactivity of the sludges. SO 3 UR increased with the X H fraction and decreased with more X P . Biomass inactivation was exponential (e -β.ROD ) as a function of the ROD doses. The percentage of solids reduction was predictable through a linear model (C Miner + Y sol ROD), with a fixed part due to mineralization (C Miner ) and a variable part from the solubilization process. The parameters of the models, i.e. the inactivation and the dissolution yields (β, 0.008-0.029 (mgO 3 /mgCOD ini ) -1 vs Y sol , 0.5-2.8 mg COD sol /mgO 3 ) varied in magnitude, depending on the intensity of the scavenging reactions and potentially the compactness of the flocs for each sludge. Copyright © 2017 Elsevier Ltd. All rights reserved.
Corbanie, E A; Vervaet, C; van Eck, J H H; Remon, J P; Landman, W J M
2008-08-18
Vaccination of chickens with dispersable dry powder vaccines was compared with commercial liquid vaccines. A Clone 30 Newcastle disease vaccine virus was spray dried with mannitol or with a mixture of trehalose, polyvinylpyrrolidone and bovine serum albumin. A coarse (+/-30 microm) and fine (+/-7 microm) powder were produced with both formulations. A commercial reconstituted Clone 30 vaccine was applied as coarse liquid spray (+/-222 microm) or fine liquid aerosol (+/-24 microm). Reduction of virus concentration in the air after dispersion/nebulization was monitored by air sampling and was explained by sedimentation of coarse particles/droplets and evaporation of fine droplets. The vaccine formulations induced high haemagglutination inhibition antibody titres in the serum of 4-week-old broilers (2(7) at 4 weeks post-vaccination). The good serum antibody response with the fine liquid aerosol despite extensive inactivation of virus due to evaporation of droplets, suggested that powder formulations (without inactivation due to evaporation) might allow a significant reduction of vaccine dose, thereby offering new options for fine aerosol vaccination with low-titre vaccines.
Schäfer, M-L; Lüdemann, L; Böning, G; Kahn, J; Fuchs, S; Hamm, B; Streitparth, F
2016-05-01
To compare the radiation dose and image quality of 64-row chest computed tomography (CT) in patients with bronchial carcinoma or intrapulmonary metastases using full-dose CT reconstructed with filtered back projection (FBP) at baseline and reduced dose with 40% adaptive statistical iterative reconstruction (ASIR) at follow-up. The chest CT images of patients who underwent FBP and ASIR studies were reviewed. Dose-length products (DLP), effective dose, and size-specific dose estimates (SSDEs) were obtained. Image quality was analysed quantitatively by signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) measurement. In addition, image quality was assessed by two blinded radiologists evaluating images for noise, contrast, artefacts, visibility of small structures, and diagnostic acceptability using a five-point scale. The ASIR studies showed 36% reduction in effective dose compared with the FBP studies. The qualitative and quantitative image quality was good to excellent in both protocols, without significant differences. There were also no significant differences for SNR except for the SNR of lung surrounding the tumour (FBP: 35±17, ASIR: 39±22). A protocol with 40% ASIR can provide approximately 36% dose reduction in chest CT of patients with bronchial carcinoma or intrapulmonary metastases while maintaining excellent image quality. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Repeated restraint stress lowers the threshold for response to third ventricle CRF administration.
Harris, Ruth B S
2017-03-01
Rats and mice exposed to repeated stress or a single severe stress exhibit a sustained increase in energetic, endocrine, and behavioral response to subsequent novel mild stress. This study tested whether the hyper-responsiveness was due to a lowered threshold of response to corticotropin releasing factor (CRF) or an exaggerated response to a standard dose of CRF. Male Sprague-Dawley rats were subjected to 3h of restraint on each of 3 consecutive days (RRS) or were non-restrained controls. RRS caused a temporary hypophagia but a sustained reduction in body weight. Eight days after the end of restraint, rats received increasing third ventricle doses of CRF (0-3.0μg). The lowest dose of CRF (0.25μg) increased corticosterone release in RRS, but not control rats. Higher doses caused the same stimulation of corticosterone in the two groups of rats. Fifteen days after the end of restraint, rats were food deprived during the light period and received increasing third ventricle doses of CRF at the start of the dark period. The lowest dose of CRF inhibited food intake during the first hour following infusion in RRS, but not control rats. All other doses of CRF inhibited food intake to the same degree in both RRS and control rats. The lowered threshold of response to central CRF is consistent with the chronic hyper-responsiveness to CRF and mild stress in RRS rats during the post-restraint period. Copyright © 2016 Elsevier Inc. All rights reserved.
Mateos, María-Victoria; Granell, Miguel; Oriol, Albert; Martinez-Lopez, Joaquin; Blade, Joan; Hernandez, Miguel T; Martín, Jesus; Gironella, Mercedes; Lynch, Mark; Bleickardt, Eric; Paliwal, Prashni; Singhal, Anil; San-Miguel, Jesus
2016-11-01
Elotuzumab is an immunostimulatory, humanized immunoglobulin G1 monoclonal antibody that selectively targets and kills signalling lymphocytic activation molecule family member 7-expressing myeloma cells. We evaluated the safety and tolerability of elotuzumab 10 mg/kg combined with thalidomide 50-200 mg and dexamethasone 40 mg (with/without cyclophosphamide 50 mg) in patients with relapsed/refractory multiple myeloma (RRMM). The primary endpoint was the proportion of grade ≥3 non-haematological adverse events (AEs); other endpoints included the number of dose reductions/discontinuations and efficacy. Forty patients were treated, who had a median of three previous therapies, including bortezomib (98%) and lenalidomide (73%). Grade ≥3 non-haematological AEs were reported in 63% of patients, most commonly asthenia (35%) and peripheral oedema (25%). Six (15%) patients had an infusion reaction. Twenty-six (65%) patients had ≥1 dose reduction/discontinuation due to an AE, none related to elotuzumab. Overall response rate was 38%; median progression-free survival was 3·9 months. Median overall survival was 16·3 months and the 1-year survival rate was 63%. Minimal incremental toxicity was observed with addition of elotuzumab to thalidomide/dexamethasone with or without cyclophosphamide, and efficacy data suggest clinical benefit in a highly pre-treated population. Elotuzumab combined with thalidomide may provide an additional treatment option for patients with RRMM. © 2016 John Wiley & Sons Ltd.
Soltani, Z; Ziaie, F; Ghaffari, M; Beigzadeh, A M
2017-02-01
In the present work, thermal properties of low density polyethylene (LDPE) and its nano composites are investigated. For this purpose LDPE reinforced with different weight percents of hydroxyapatite (HAP) powder which was synthesized via hydrolysis method are produced. The samples were irradiated with 10MeV electron beam at doses of 75 to 250kGy. Specific heat capacity measurement have been carried out at different temperatures, i.e. 25, 50, 75 and 100°C using modulated temperature differential scanning calorimetry (MTDSC) apparatus and the effect of three parameters include of temperature, irradiation dose and the amount of HAP nano particles as additives on the specific heat capacity of PE/HAP have been investigated precisely. The MTDSC results indicate that the specific heat capacity have decreased by addition of nano sized HAP as reinforcement for LDPE. On the other hand, the effect of radiation dose is reduction in the specific heat capacity in all materials including LDPE and its nano composites. The HAP nano particles along with cross-link junctions due to radiation restrain the movement of the polymer chains in the vicinity of each particle and improve the immobility of polymer chains and consequently lead to reduction in specific heat capacity. Also, the obtained results confirm that the radiation effect on the specific heat capacity is more efficient than the reinforcing effect of nano-sized hydroxyapatite. Copyright © 2016 Elsevier B.V. All rights reserved.
The Characterization and Treatment of Aggressive Breast Cancer
2005-05-01
of a cycle for over 7 days, the carboplatin dose will be decreased by 25% for subsequent cycles. For a second episode of febrile neutropenia , G-CSF...should be given with the next cycle. For an episode of febrile neutropenia despite dose reduction and G-CSF, protocol treatment should be discontinued... neutropenia despite a dose reduction in the previous course. G-CSF may also be used as clinically indicated for neutropenic infection. 4.2.4 The use of
Pediatric CT and radiation: our responsibility
NASA Astrophysics Data System (ADS)
Frush, Donald P.
2009-02-01
In order to discuss the cost-benefit ratio of CT examinations in children, one must be familiar with the reasons why CT can provide a high collective or individual dose. The reasons include increasing CT use as well as lack of attention to dose reduction strategies. While those have been substantial efforts for dose reduction, additional work is necessary to prevent unnecessary radiation exposure. This responsibility is shared between science and medicine, industry, regulatory agencies, and patients as well.
Effectiveness of disinfectant treatments for inactivating Piscirickettsia salmonis.
Muniesa, A; Escobar-Dodero, J; Silva, N; Henríquez, P; Bustos, P; Perez, A M; Mardones, F O
2018-03-08
This short communication investigated in vitro differences between commercial disinfectants types (n = 36), doses of application, and time of action in the elimination of Piscirickettsia salmonis, the most important bacterium affecting farmed salmon in Chile. Seven different treatments were examined, including active and inactive chlorine dioxides, glutaraldehyde, hypochlorite disinfectants and detergents, peracetic acid, peroxides and other miscellaneous methods A 3 replicate set of each of the sample groups was stored at 20 °C and 95% relative humidity and retested after 1, 5 and 30 min with varying doses (low, recommended and high doses). Multiple comparison tests were performed for the mean log CFU/ml among different disinfectant types, dose (ppm) and time of exposure (minutes) on the reduction of P. salmonis. Overall, disinfection using peracetic acid, peroxides, and both active and inactive chlorine dioxides caused significantly higher reduction of >7.5 log CFU/ml in samples, compared to other tested sanitizers. The lowest reduction was obtained after disinfection with hypochlorite detergents. As expected, as doses and time of action increase, there was a significant reduction of the overall counts of P. salmonis. However, at lowest doses, only use of paracetic acids resulted in zero counts. Implementation of effective protocols, making use of adequate disinfectants, may enhance biosecurity, and ultimately, mitigate the impact of P. salmonis in farmed salmon. Copyright © 2018. Published by Elsevier B.V.
An evaluation of in vivo models for toxicokinetics of hexavalent chromium in the stomach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sasso, A.F., E-mail: sasso.alan@epa.gov; Schlosser, P.M., E-mail: schlosser.paul@epa.gov
Hexavalent chromium (Cr6) is a drinking water contaminant that has been detected in most of the water systems throughout the United States. In 2-year drinking water bioassays, the National Toxicology Program (NTP) found clear evidence of carcinogenic activity in male and female rats and mice. Because reduction of Cr6 to trivalent chromium (Cr3) is an important detoxifying step in the gastrointestinal (GI) tract prior to systemic absorption, models have been developed to estimate the extent of reduction in humans and animals. The objective of this work was to use a revised model of ex vivo Cr6 reduction kinetics in gastricmore » juice to analyze the potential reduction kinetics under in vivo conditions for mice, rats and humans. A published physiologically-based pharmacokinetic (PBPK) model was adapted to incorporate the new reduction model. This paper focuses on the toxicokinetics of Cr6 in the stomach compartment, where most of the extracellular Cr6 reduction is believed to occur in humans. Within the range of doses administered by the NTP bioassays, neither the original nor revised models predict saturation of stomach reducing capacity to occur in vivo if applying default parameters. However, both models still indicate that mice exhibit the lowest extent of reduction in the stomach, meaning that a higher percentage of the Cr6 dose may escape stomach reduction in that species. Similarly, both models predict that humans exhibit the highest extent of reduction at low doses. - Highlights: • We outline a new in vivo model for hexavalent chromium reduction in the stomach. • We examine in vivo reduction for mice, rats, and humans under varying conditions. • Species differences in toxicokinetics may explain susceptibility. • We show that a simplified stomach reduction model is adequate for extrapolation. • Internal dose uncertainties still exist.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butson, M; Carroll, S; Whitaker, M
2015-06-15
Purpose: Tangential breast irradiation is a standard treatment technique for breast cancer therapy. One aspect of dose delivery includes dose delivered to the skin caused by electron contamination. This effect is especially important for highly oblique beams used on the medical tangent where the electron contamination deposits dose on the contralateral breast side. This work aims to investigate and predict as well as define a method to reduce this dose during tangential breast radiotherapy. Methods: Analysis and calculation of breast skin and subcutaneous dose is performed using a Varian Eclipse planning system, AAA algorithm for 6MV x-ray treatments. Measurements weremore » made using EBT3 Gafchromic film to verify the accuracy of planning data. Various materials were tested to assess their ability to remove electron contamination on the contralateral breast. Results: Results showed that the Varian Eclipse AAA algorithm could accurately estimate contralateral breast dose in the build-up region at depths of 2mm or deeper. Surface dose was underestimated by the AAA algorithm. Doses up to 12% of applied dose were seen on the contralateral breast surface and up to 9 % at 2mm depth. Due to the nature of this radiation, being mainly low energy electron contamination, a bolus material could be used to reduce this dose to less than 3%. This is accomplished by 10 mm of superflab bolus or by 1 mm of lead. Conclusion: Contralateral breast skin and subcutaneous dose is present for tangential breast treatment and has been measured to be up to 12% of applied dose from the medial tangent beam. This dose is deposited at shallow depths and is accurately calculated by the Eclipse AAA algorithm at depths of 2mm or greater. Bolus material placed over the contralateral can be used to effectively reduce this skin dose.« less
Dooley, Andrew J; Gupta, Avinash; Middleton, Mark R
2016-08-01
The selective BRAF inhibitors vemurafenib and dabrafenib yield high response rates and improved overall survival in patients with BRAF V600E-mutant metastatic melanoma. Treatment traditionally continues until disease progression or the development of unacceptable toxicity. Acquired drug resistance and toxicity are key challenges with the use of these drugs. Resistance to vemurafenib usually develops within 6-8 months. Management of drug toxicity typically involves stopping vemurafenib until resolution, before restarting at a lower dose, or permanently ceasing vemurafenib therapy. We have recently considered whether intermittent dosing could be used as an alternative to dose reduction/termination in the management of vemurafenib toxicity. One patient treated with intermittent vemurafenib was an 89-year-old woman with metastatic melanoma, who initially showed a good response to continuous dosing. Recurrent toxicity meant that the continuous vemurafenib dosage was repeatedly ceased before restarting at a lower dose. Ten months after vemurafenib was first begun, an intermittent dosing regimen was introduced in an attempt to control toxicity. This continued for 2 months, before cessation due to continued unacceptable toxicity. A further 24 months later, the patient remains fit and well in complete clinical remission, with no recurrence of her previous melanoma and no new primary malignancies. To the best of our knowledge, a continued response after the cessation of selective BRAF inhibitors has never before been described in melanoma. Induction of an immune response and/or epigenetic changes could explain continued disease response after cessation of vemurafenib therapy. Care should be taken when extrapolating the findings from the continued response after vemurafenib cessation to other tumour types. We recommend the collection and analysis of data to investigate the clinical responses seen after cessation of vemurafenib due to intolerable toxicities, which could help further explain vemurafenib's mechanism of action.
Sabra, R; Zeinoun, N; Sharaf, L H; Ghali, R; Beshara, G; Serhal, H
2001-04-01
The mechanisms responsible for amphotericin B nephrotoxicity remain incompletely understood, but clearly involve reduction in renal blood flow and glomerular filtration rate. Both direct effects of amphotericin B on contractile vascular cells, and indirect effects, due to humoural mediators, have been proposed. This study examines the role of nitric oxide, endothelin and angiotensin II in the acute nephrotoxic effects of amphotericin B in rats, and compares the anti-fungal and nephrotoxic effects of liposomal amphotericin B and amphotericin B-deoxycholate. Anaesthetized rats were given infusions of amphotericin B-deoxycholate in the presence or absence of N-nitro-L-arginine, PD 145065, a non-specific endothelin receptor antagonist, and L-158809, an angiotensin II type I receptor antagonist, or increasing doses of liposomal amphotericin B. Amphotericin B-deoxycholate (0.03 mg/kg/min intravenously) caused a significant 44% reduction in glomerular filtration rate and 65% maximal fall in renal blood flow. N-Nitro-L-arginine-treated rats had a lower renal blood flow and glomerular filtration rate at baseline, but sustained similar reduction of 53% and 75% in these parameters, respectively. PD145065 and L-158809 did not modify these effects either. Increasing doses of liposomal amphotericin B (from 0.01 up to 0.50 mg/kg/min.) induced no change in either glomerular filtration rate or renal blood flow. In vitro susceptibility tests revealed similar potency for liposomal amphotericin B and amphotericin B-deoxycholate in their fungistatic effects and slightly higher potency for amphotericin B-deoxycholate in their fungicidal effect. These results suggest that endogenous endothelin, angiotensin II or nitric oxide systems are not involved in the nephrotoxic effects of amphotericin B. The liposomal amphotericin B results suggest that amphotericin B nephrotoxicity is due to a direct interaction of amphotericin B with renal cells that is prevented by its encapsulation in liposomes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taura, Junki; Takeda, Tomoki; Fujii, Misaki
The effect of 2,3,4,7,8-pentachlorodibenzofuran (PnCDF) on the fetal pituitary–gonad axis was compared with that produced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in Wistar rats. Maternal treatment at gestational day (GD) 15 with PnCDF and TCDD reduced the fetal expression at GD20 of pituitary luteinizing hormone (LH) and the testicular proteins necessary for steroidogenesis. The relative potencies of PnCDF ranged from 1/42nd to 1/63rd of the TCDD effect. While PnCDF, at a dose sufficient to cause a reduction in fetal LH, provoked defects in sexual behavior at adulthood, a dose less than the ED{sub 50} failed to produce any abnormality. There was a lossmore » of fetal body weight following in utero exposure to PnCDF, and the effect of PnCDF was also much less than that of TCDD. The disturbance in fetal growth was suggested to be due to a reduction in the level of fetal growth hormone (GH) by dioxins. The disorder caused by PnCDF/TCDD in the fetal pituitary–gonad axis occurred at doses less than those needed to cause wasting syndrome in pubertal rats. The harmful effect of PnCDF relative to TCDD was more pronounced in fetal rats than in pubertal rats. These lines of evidence suggest that: 1) PnCDF as well as TCDD imprints defects in sexual behavior by disrupting the fetal pituitary–gonad axis; 2) these dioxins hinder fetal growth by reducing the expression of fetal GH; and 3) the fetal effects of PnCDF/TCDD are more sensitive than sub-acute toxicity during puberty, and the relative effect of PnCDF varies markedly depending on the indices used. - Highlights: • 2,3,4,7,8-Pentachlorodibenzofuran (PnCDF) lowers gonadal steroidogenesis in fetuses. • PnCDF exerts the above effect through an initial attenuation in gonadotropin level. • PnCDF imprints sexual immaturity by transiently disrupting the pituitary–gonad axis. • PnCDF also disturbs pup growth probably due to a reduction in growth hormone level. • The above effects are far lesser in PnCDF than 2,3,7,8-tetrachlorodibenzo-p-dioxin.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jani, S
Purpose: CT simulation for patients with metal implants can often be challenging due to artifacts that obscure tumor/target delineation and normal organ definition. Our objective was to evaluate the effectiveness of Orthopedic Metal Artifact Reduction (OMAR), a commercially available software, in reducing metal-induced artifacts and its effect on computed dose during treatment planning. Methods: CT images of water surrounding metallic cylindrical rods made of aluminum, copper and iron were studied in terms of Hounsfield Units (HU) spread. Metal-induced artifacts were characterized in terms of HU/Volume Histogram (HVH) using the Pinnacle treatment planning system. Effects of OMAR on enhancing our abilitymore » to delineate organs on CT and subsequent dose computation were examined in nine (9) patients with hip implants and two (2) patients with breast tissue expanders. Results: Our study characterized water at 1000 HU with a standard deviation (SD) of about 20 HU. The HVHs allowed us to evaluate how the presence of metal changed the HU spread. For example, introducing a 2.54 cm diameter copper rod in water increased the SD in HU of the surrounding water from 20 to 209, representing an increase in artifacts. Subsequent use of OMAR brought the SD down to 78. Aluminum produced least artifacts whereas Iron showed largest amount of artifacts. In general, an increase in kVp and mA during CT scanning showed better effectiveness of OMAR in reducing artifacts. Our dose analysis showed that some isodose contours shifted by several mm with OMAR but infrequently and were nonsignificant in planning process. Computed volumes of various dose levels showed <2% change. Conclusions: In our experience, OMAR software greatly reduced the metal-induced CT artifacts for the majority of patients with implants, thereby improving our ability to delineate tumor and surrounding organs. OMAR had a clinically negligible effect on computed dose within tissues. Partially funded by unrestricted educational grant from Philips.« less
Drappatz, Jan; de Groot, John; Prados, Michael D; Reardon, David A; Schiff, David; Chamberlain, Marc; Mikkelsen, Tom; Desjardins, Annick; Holland, Jaymes; Ping, Jerry; Weitzman, Ron; Cloughesy, Timothy F
2018-01-01
Abstract Background Cabozantinib is a tyrosine kinase inhibitor with activity against vascular endothelial growth factor receptor 2 (VEGFR2) and MET that has demonstrated clinical activity in advanced solid tumors. This open-label, phase II trial evaluated cabozantinib in patients with recurrent or refractory glioblastoma (GBM). Methods Patients were initially enrolled at a starting dose of 140 mg/day, but the starting dose was amended to 100 mg/day because of toxicity. Treatment continued until disease progression or unacceptable toxicity. The primary endpoint was objective response rate assessed by an independent radiology facility using modified Response Assessment in Neuro-Oncology criteria. Additional endpoints included duration of response, 6-month and median progression-free survival, overall survival, and safety. Results Among 152 patients naive to prior antiangiogenic therapy, the objective response rate was 17.6% and 14.5% in the 140 mg/day and 100 mg/day groups, respectively, which did not meet the predefined statistical target for success. The proportions of patients alive and progression free at 6 months were 22.3% and 27.8%, respectively. Median progression-free survival was 3.7 months in both groups, and median overall survival was 7.7 months and 10.4 months, respectively. The incidence of grade 3/4 adverse events (AEs) was 79.4% and 84.7% in the 140 mg/day and 100 mg/day groups, respectively, and dose reductions due to AEs were experienced by 61.8% and 72.0%, respectively. Common grade 3/4 AEs included fatigue, diarrhea, and palmar-plantar erythrodysesthesia syndrome. Conclusions Cabozantinib showed evidence of clinical activity in patients with recurrent GBM naive to antiangiogenic therapy, although the predefined statistical target for success was not met. At the starting doses assessed, AEs were frequently managed with dose reductions. Clinical Trials Registration Number NCT00704288 (https://www.clinicaltrials.gov/ct2/show/NCT00704288) PMID:29016998
Poulsen, Per Rugaard; Worm, Esben Schjødt; Hansen, Rune; Larsen, Lars Peter; Grau, Cai; Høyer, Morten
2015-01-01
Intrafraction motion may compromise the target dose in stereotactic body radiation therapy (SBRT) of tumors in the liver. Respiratory gating can improve the treatment delivery, but gating based on an external surrogate signal may be inaccurate. This is the first paper reporting on respiratory gating based on internal electromagnetic monitoring during liver SBRT. Two patients with solitary liver metastases were treated with respiratory-gated SBRT guided by three implanted electromagnetic transponders. The treatment was delivered in end-exhale with beam-on when the centroid of the three transponders deviated less than 3 mm [left-right (LR) and anterior-posterior (AP) directions] and 4mm [cranio-caudal (CC)] from the planned position. For each treatment fraction, log files were used to determine the transponder motion during beam-on in the actual gated treatments and in simulated treatments without gating. The motion was used to reconstruct the dose to the clinical target volume (CTV) with and without gating. The reduction in D95 (minimum dose to 95% of the CTV) relative to the plan was calculated for both treatment courses. With gating the maximum course mean (standard deviation) geometrical error in any direction was 1.2 mm (1.8 mm). Without gating the course mean error would mainly increase for Patient 1 [to -2.8 mm (1.6 mm) (LR), 7.1 mm (5.8 mm) (CC), -2.6 mm (2.8mm) (AP)] due to a large systematic cranial baseline drift at each fraction. The errors without gating increased only slightly for Patient 2. The reduction in CTV D95 was 0.5% (gating) and 12.1% (non-gating) for Patient 1 and 0.3% (gating) and 1.7% (non-gating) for Patient 2. The mean duty cycle was 55%. Respiratory gating based on internal electromagnetic motion monitoring was performed for two liver SBRT patients. The gating added robustness to the dose delivery and ensured a high CTV dose even in the presence of large intrafraction motion.
RADIATION PROTECTION CABIN FOR CATHETER-DIRECTED LIVER INTERVENTIONS: OPERATOR DOSE ASSESSMENT.
Maleux, Geert; Bergans, Niki; Bosmans, Hilde; Bogaerts, Ria
2016-09-01
The number and complexity of interventional radiological procedures and in particular catheter-directed liver interventions have increased substantially. The current study investigates the reduction of personal doses when using a dedicated radiation protection cabin (RPC) for these procedures. Operator and assistant doses were assessed for 3 series of 20 chemoinfusion/chemoembolisation interventions, including an equal number of procedures with and without RPC. Whole body doses, finger doses and doses at the level of knees and eyes were evaluated with different types of TLD-100 Harshaw dosemeters. Dosemeters were also attached on the three walls of the RPC. The operator doses were significantly reduced by the RPC, but also without RPC, the doses appear to be limited as a result of thorough optimisation with existing radiation protection tools. The added value of the RPC should thus be determined by the outcome of balancing dose reduction and other aspects such as ergonomic benefits. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Roessler, Ann-Christin; Hupfer, Martin; Kolditz, Daniel; Jost, Gregor; Pietsch, Hubertus; Kalender, Willi A
2016-04-01
Spectral optimization of x-ray computed tomography (CT) has led to substantial radiation dose reduction in contrast-enhanced CT studies using standard iodinated contrast media. The purpose of this study was to analyze the potential for further dose reduction using high-atomic-number elements such as hafnium and tungsten. As in previous studies, spectra were determined for which the patient dose necessary to provide a given contrast-to-noise ratio (CNR) is minimized. We used 2 different quasi-anthropomorphic phantoms representing the liver cross-section of a normal adult and an obese adult patient with the lateral widths of 360 and 460 mm and anterior-posterior heights of 200 and 300 mm, respectively. We simulated and measured on 2 different scanners with x-ray spectra from 80 to 140 kV and from 70 to 150 kV, respectively. We determined the contrast for iodine-, hafnium-, and tungsten-based contrast media, the noise, and 3-dimensional dose distributions at all available tube voltages by measurements and by simulations. The dose-weighted CNR was determined as optimization parameter. Simulations and measurements were in good agreement regarding their dependence on energy for all parameters investigated. Hafnium provided the best performance for normal and for obese patient phantoms, indicating a dose reduction potential of 30% for normal and 50% for obese patients at 120 kV compared with iodine; this advantage increased further with higher kV values. Dose-weighted CNR values for tungsten were always slightly below the hafnium results. Iodine proved to be the superior choice at voltage values of 80 kV and below. Hafnium and tungsten both seem to be candidates for contrast-medium-enhanced CT of normal and obese adult patients with strongly reduced radiation dose at unimpaired image quality. Computed tomography examinations of obese patients will decrease in dose for higher kV values.
SU-G-IeP2-10: Lens Dose Reduction by Patient Position Modification During Neck CT Exams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mosher, E; Lee, C; Butman, J
Purpose: Irradiation of the lens during a neck CT may increase a patient’s risk of developing cataracts later in life. Radiologists and technologists at the National Institutes of Health Clinical Center (NIHCC) have developed new CT imaging protocols that include a reduction in scan range and modifying neck positioning using a head tilt. This study will evaluate the efficacy of this protocol in the reduction of lens dose. Methods: We retrieved CT images of five male patients who had two sets of CT images: before and after the implementation of the new protocol. The lens doses before the new protocolmore » were calculated using an in-house CT dose calculator, National Cancer Institute dosimetry system for CT (NCICT), where computational human phantoms with no head tilt are included. We also calculated the lens dose for the patient CT conducted after the new protocol by using an adult male computational phantom with the neck position deformed to match the angle of the head tilt. We also calculated the doses to other radiosensitive organs including the globes of the eye, brain, pituitary gland and salivary glands before and after head tilt. Results: Our dose calculations demonstrated that modifying neck position reduced dose to the lens by 89% on average (range: 86–96%). Globe, brain, pituitary and salivary gland doses also decreased by an average of 65% (51–95%), 38% (−8–66%), 34% (−43–84%) and 14% (13–14%), respectively. The new protocol resulted in a nearly ten-fold decrease in lens dose. Conclusion: The use of a head tilt and scan range reduction is an easy and effective method to reduce radiation exposure to the lens and other radiosensitive organs, while still allowing for the inclusion of critical neck structures in the CT image. We are expanding our study to a total of 10 males and 10 females.« less
Effects of Low-Dose Mindfulness-Based Stress Reduction (MBSR-ld) on Working Adults
ERIC Educational Resources Information Center
Klatt, Maryanna D.; Buckworth, Janet; Malarkey, William B.
2009-01-01
Mindfulness-based stress reduction (MBSR) has produced behavioral, psychological, and physiological benefits, but these programs typically require a substantial time commitment from the participants. This study assessed the effects of a shortened (low-dose [ld]) work-site MBSR intervention (MBSR-ld) on indicators of stress in healthy working…
Shi, Chengyu; Guo, Bingqi; Cheng, Chih-Yao; Eng, Tony; Papanikolaou, Nikos
2010-09-21
A low-energy electronic brachytherapy source (EBS), the model S700 Axxent x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V(100) reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as compared to 95.2% in water phantoms without RBE enhancement (planned BED). About 10% increase in the source output is required to raise BED PTV V(100) to 95%. As a conclusion, the composite effect of dose reduction in the target due to heterogeneities and RBE enhancement results in a net effect of 5.3% target BED coverage loss for electronic brachytherapy. Therefore, it is suggested that about 10% increase in the source output may be necessary to achieve sufficient target coverage higher than 95%.
NASA Astrophysics Data System (ADS)
Shi, Chengyu; Guo, Bingqi; Cheng, Chih-Yao; Eng, Tony; Papanikolaou, Nikos
2010-09-01
A low-energy electronic brachytherapy source (EBS), the model S700 Axxent™ x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V100 reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as compared to 95.2% in water phantoms without RBE enhancement (planned BED). About 10% increase in the source output is required to raise BED PTV V100 to 95%. As a conclusion, the composite effect of dose reduction in the target due to heterogeneities and RBE enhancement results in a net effect of 5.3% target BED coverage loss for electronic brachytherapy. Therefore, it is suggested that about 10% increase in the source output may be necessary to achieve sufficient target coverage higher than 95%.
Ardley, Nicholas D; Lau, Ken K; Buchan, Kevin
2013-12-01
Cervical spine injuries occur in 4-8 % of adults with head trauma. Dual acquisition technique has been traditionally used for the CT scanning of brain and cervical spine. The purpose of this study was to determine the efficacy of radiation dose reduction by using a single acquisition technique that incorporated both anatomical regions with a dedicated neck detection algorithm. Thirty trauma patients for brain and cervical spine CT were included and were scanned with the single acquisition technique. The radiation doses from the single CT acquisition technique with the neck detection algorithm, which allowed appropriate independent dose administration relevant to brain and cervical spine regions, were recorded. Comparison was made both to the doses calculated from the simulation of the traditional dual acquisitions with matching parameters, and to the doses of retrospective dual acquisition legacy technique with the same sample size. The mean simulated dose for the traditional dual acquisition technique was 3.99 mSv, comparable to the average dose of 4.2 mSv from 30 previous patients who had CT of brain and cervical spine as dual acquisitions. The mean dose from the single acquisition technique was 3.35 mSv, resulting in a 16 % overall dose reduction. The images from the single acquisition technique were of excellent diagnostic quality. The new single acquisition CT technique incorporating the neck detection algorithm for brain and cervical spine significantly reduces the overall radiation dose by eliminating the unavoidable overlapping range between 2 anatomical regions which occurs with the traditional dual acquisition technique.
Millar, W T; Davidson, S E
2013-01-01
Objective: To consider the implications of the use of biphasic rather than monophasic repair in calculations of biologically-equivalent doses for pulsed-dose-rate brachytherapy of cervix carcinoma. Methods: Calculations are presented of pulsed-dose-rate (PDR) doses equivalent to former low-dose-rate (LDR) doses, using biphasic vs monophasic repair kinetics, both for cervical carcinoma and for the organ at risk (OAR), namely the rectum. The linear-quadratic modelling calculations included effects due to varying the dose per PDR cycle, the dose reduction factor for the OAR compared with Point A, the repair kinetics and the source strength. Results: When using the recommended 1 Gy per hourly PDR cycle, different LDR-equivalent PDR rectal doses were calculated depending on the choice of monophasic or biphasic repair kinetics pertaining to the rodent central nervous and skin systems. These differences virtually disappeared when the dose per hourly cycle was increased to 1.7 Gy. This made the LDR-equivalent PDR doses more robust and independent of the choice of repair kinetics and α/β ratios as a consequence of the described concept of extended equivalence. Conclusion: The use of biphasic and monophasic repair kinetics for optimised modelling of the effects on the OAR in PDR brachytherapy suggests that an optimised PDR protocol with the dose per hourly cycle nearest to 1.7 Gy could be used. Hence, the durations of the new PDR treatments would be similar to those of the former LDR treatments and not longer as currently prescribed. Advances in knowledge: Modelling calculations indicate that equivalent PDR protocols can be developed which are less dependent on the different α/β ratios and monophasic/biphasic kinetics usually attributed to normal and tumour tissues for treatment of cervical carcinoma. PMID:23934965
Adaptive radiation therapy of prostate cancer
NASA Astrophysics Data System (ADS)
Wen, Ning
ART is a close-loop feedback algorithm which evaluates the organ deformation and motion right before the treatment and takes into account dose delivery variation daily to compensate for the difference between planned and delivered dose. It also has potential to allow further dose escalation and margin reduction to improve the clinical outcome. This retrospective study evaluated ART for prostate cancer treatment and radiobiological consequences. An IRB approved protocol has been used to evaluate actual dose delivery of patients with prostate cancer undergoing treatment with daily CBCT. The dose from CBCT was measured in phantom using TLD and ion chamber techniques in the pelvic scan setting. There were two major findings from the measurements of CBCT dose: (1) the lateral dose distribution was not symmetrical, with Lt Lat being ˜40% higher than Rt Lat and (2) AP skin dose varies with patient size, ranging 3.2--6.1 cGy for patient's AP separation of 20--33 cm (the larger the separation, the less the skin dose) but lateral skin doses depend little on separations. Dose was recalculated on each CBCT set under the same treatment plan. DIR was performed between SIM-CT and evaluated for each CT sets. Dose was reconstructed and accumulated to reflect the actual dose delivered to the patient. Then the adaptive plans were compared to the original plan to evaluate tumor control and normal tissue complication using radiobiological model. Different PTV margins were also studied to access margin reduction techniques. If the actual dose delivered to the PTV deviated significantly from the prescription dose for the given fractions or the OAR received higher dose than expected, the treatment plan would be re-optimized based on the previously delivered dose. The optimal schedule was compared based on the balance of PTV dose coverage and inhomogeneity, OAR dose constraints and labor involved. DIR was validated using fiducial marker position, visual comparison and UE. The mean and standard deviation of markers after rigid registration in L-R direction was 0 and 1 mm. But the mean was 2--4 mm in the A-P and S-I direction and standard deviation was about 2 mm. After DIR, the mean in all three directions became 0 and standard deviation was within sub millimeter. UE images were generated for each CT set and carefully reviewed in the prostate region. DIR provided accurate transformation matrix to be used for dose reconstruction. The delivered dose was evaluated with radiobiological models. TCP for the CTV was calculated to evaluate tumor control in different margin settings. TCP calculated from the reconstructed dose agreed within 5% of the value in the plan for all patients with three different margins. EUD and NTCP were calculated to evaluate reaction of rectum to radiation. Similar biological evaluation was performed for bladder. EUD of actual dose was 3%--9% higher than that of planned dose of patient 1--3, 11%--20% higher of patient 4--5. Smaller margins could not reduce late GU toxicity effectively since bladder complication was directly related to Dmax which was at the same magnitude in the bladder no matter which margin was applied. Re-optimization was performed at the 10th, 20th , 30th, and 40th fraction to evaluate the effectiveness to limit OAR dose while maintaining the target coverage. Reconstructed dose was added to dose from remaining fractions after optimization to show the total dose patient would receive. It showed that if the plan was re-optimized at 10th or 20th fraction, total dose to rectum and bladder were very similar to planned dose with minor deviations. If the plan was re-optimized at the 30th fraction, since there was a large deviation between reconstructed dose and planned dose to OAR, optimization could not limit the OAR dose to the original plan with only 12 fractions left. If the re-optimization was done at the 40th fraction, it was impossible to compensate in the last 2 fractions. Large deviations of total dose to bladder and rectum still existed while dose inhomogeneity to PTV was significantly increased due to hard constraints set in the optimization to reduce OAR dose. In summary, ART did not show improvements in TCP if the patient was setup with CBCT. However, EUD of rectum and bladder was increased significantly due to tissue deformation which varied daily. With the power of ART, margins added to the CTV could be further reduced to preserve critical organs surrounding the target. (Abstract shortened by UMI.)
Landstedt-Hallin, Lena
2015-08-01
Insulin degludec, a basal insulin with an ultra-long duration of action, became available in Sweden from July 2013. The diabetes team at Danderyd Hospital decided to perform a clinical follow-up of patients with type 1 diabetes switching to insulin degludec to evaluate its clinical performance, using a simple form and available measures, thereby indirectly assessing cost-effectiveness. This was a prospective, open-label, single-arm, observational, clinical follow-up from August 2013 to February 2015 of consecutive patients who switched to insulin degludec according to predefined indications (i.e., currently administering basal insulin twice daily, unacceptable HbA1c, repeated hypoglycemic events and/or unstable glucose, difficulty with fixed-time administration) in conjunction with professional judgment and patient wishes. Information about HbA1c, insulin dose and frequency of hypoglycemia (self-reported by patient recall) was collected at baseline and repeated after 4-6 months. In February 2015, data were available on 357 patients. Median time to follow-up was 20 weeks. Mean (SD) HbA1c decreased from 68.9 (15.7) to 65.8 (14.3) mmol/mol, p < 0.0001, and this improvement was achieved despite less insulin. Median reduction of the total insulin dose (basal + prandial) was 12% (interquartile range [IQR] -20% to -3%). The mean (SD) number of self-reported hypoglycemic events in the previous 4 weeks decreased from 8.2 (8.9) to 6.4 (7.6) events, p < 0.0001, and nocturnal hypoglycemic events were reduced from 1.6 (2.9) to 0.7 (2.0) events, p < 0.0001. Due to improvement in glycemic control, reduction of hypoglycemic events and reduction of insulin dose, we concluded that insulin degludec was clinically useful and economically justifiable for our patients with type 1 diabetes. Not every patient may benefit to the same degree after switching to insulin degludec. Controlled studies are needed to confirm these benefits in a larger sample of real-world patients.
Jasim, Sina; Iniguez-Ariza, Nicole M; Hilger, Crystal R; Chintakuntlawar, Ashish V; Ryder, Mabel M; Morris, John C; Bible, Keith C
2017-10-01
Lenvatinib is approved for use in advanced radioactive iodine-resistant differentiated thyroid cancers (RAIR-DTCs). Its efficacy is indisputable, but toxicities are great, creating daunting challenges for patients and providers. Few data regarding early adverse events and impact on quality of life (QOL) exist; we sought to clarify these issues by analyzing our initial postapproval lenvatinib experience. Standardized patient education was implemented, providing detailed instructions and expert provider contacts to facilitate timely reporting of toxicities and guide responsive actions. Early adverse events, QOL outcomes, and response data from 25 consecutively treated DTC patients (02/2015 and 05/2016) were retrospectively analyzed. The median age was 55 years (range 27-81); 52% were female. Fourteen (56%) were on antihypertensive medication(s) at baseline. Most patients (21/25, 84%) developed adverse events during the first month of therapy. Hypertension arose in 16/25 (64%), requiring antihypertensive dose adjustment/addition in 6 (24%)/12 (48%) patients, respectively, during the first month of therapy. Dose reduction was required in 11 (44%) due to multiple adverse events; the median time to first dose reduction was 33 days (range 11-84); 8 (32%) required multiple dose reductions. Therapy interruption >3 weeks occurred in 4 (16%). The median change in patient-reported fatigue score was +2 (worsening, range -2 to +10, P<.007; 0-10 scales), but the median QOL change was 0 (range +4 to -9, P = .57). The mean duration of lenvatinib therapy was 6.5 months (range 1-12); median overall and progression-free survival have not yet been reached. Lenvatinib was discontinued in 7 (28%) patients; among 20 patients with available RECIST (Response Evaluation Criteria In Solid Tumors) measurements, 10 (50%) achieved partial response. Lenvatinib has promising efficacy in RAIR-DTC, but toxicities require frequent early interventions. QOL can be maintained on lenvatinib therapy. DTC = differentiated thyroid cancer; LASA = linear analog self-assessment; PR = partial response; QOL = quality of life; RAI = radioactive iodine; RAIR = RAI-resistant; RECIST = Response Evaluation Criteria In Solid Tumors; Tg = thyroglobulin; VEGFR = vascular endothelial growth factor receptor.
Rosado, Jorge L
2016-09-01
The most common problem limiting milk consumption worldwide is lactose intolerance (LI), which is defined as the experience of gastrointestinal symptoms due to the intake of lactose-containing food. When symptoms ensue the intake of milk, the condition is referred as milk intolerance, and it may or may not be due to LI. The most common cause of LI is primary lactase deficiency which occurs in 30% of Mexican adults when one glass of milk is consumed (12-18 g of lactose). LI occurs in less than 15% of adults after the intake of this dose of lactose. Another cause of lactose intolerance is due to secondary lactase deficiency, which occurs because lactase is reduced due to diseases that affect the intestinal mucosa. Lactose intolerance can be eliminated or significantly reduced by elimination or reduction of the intake of milk and milk containing products. Recent studies demonstrate that when β-casein-A1 contained in milk is hydrolyzed it produces β-casomorphine-7 which is an opioid associated with milk intolerance.
Pontes, Caridad; Gratacós, Jordi; Torres, Ferran; Avendaño, Cristina; Sanz, Jesús; Vallano, Antoni; Juanola, Xavier; de Miguel, Eugenio; Sanmartí, Raimon; Calvo, Gonzalo
2015-08-20
Dose reduction schedules of tumor necrosis factor antagonists (anti-TNF) as maintenance therapy in patients with spondyloarthritis are used empirically in clinical practice, despite the lack of clinical trials providing evidence for this practice. To address this issue the Spanish Society of Rheumatology (SER) and Spanish Society of Clinical Pharmacology (SEFC) designed a 3-year multicenter, randomized, open-label, controlled clinical trial (2 years for inclusion and 1 year of follow-up). The study is expected to include 190 patients with axial spondyloarthritis on stable maintenance treatment (≥4 months) with any anti-TNF agent at doses recommended in the summary of product characteristics. Patients will be randomized to either a dose reduction arm or maintenance of the dosing regimen as per the official labelling recommendations. Randomization will be stratified according to the anti-TNF agent received before study inclusion. Patient follow-up, visit schedule, and examinations will be maintained as per normal clinical practice recommendations according to SER guidelines. The study aims to test the hypothesis of noninferiority of the dose reduction strategy compared with standard treatment. The first patients were recruited in July 2012, and study completion is scheduled for the end of April 2015. The REDES-TNF study is a pragmatic clinical trial that aims to provide evidence to support a medical decision now made empirically. The study results may help inform clinical decisions relevant to both patients and healthcare decision makers. EudraCT 2011-005871-18 (21 December 2011).
Mirro, Amy E.; Brady, Samuel L.; Kaufman, Robert. A.
2016-01-01
Purpose To implement the maximum level of statistical iterative reconstruction that can be used to establish dose-reduced head CT protocols in a primarily pediatric population. Methods Select head examinations (brain, orbits, sinus, maxilla and temporal bones) were investigated. Dose-reduced head protocols using an adaptive statistical iterative reconstruction (ASiR) were compared for image quality with the original filtered back projection (FBP) reconstructed protocols in phantom using the following metrics: image noise frequency (change in perceived appearance of noise texture), image noise magnitude, contrast-to-noise ratio (CNR), and spatial resolution. Dose reduction estimates were based on computed tomography dose index (CTDIvol) values. Patient CTDIvol and image noise magnitude were assessed in 737 pre and post dose reduced examinations. Results Image noise texture was acceptable up to 60% ASiR for Soft reconstruction kernel (at both 100 and 120 kVp), and up to 40% ASiR for Standard reconstruction kernel. Implementation of 40% and 60% ASiR led to an average reduction in CTDIvol of 43% for brain, 41% for orbits, 30% maxilla, 43% for sinus, and 42% for temporal bone protocols for patients between 1 month and 26 years, while maintaining an average noise magnitude difference of 0.1% (range: −3% to 5%), improving CNR of low contrast soft tissue targets, and improving spatial resolution of high contrast bony anatomy, as compared to FBP. Conclusion The methodology in this study demonstrates a methodology for maximizing patient dose reduction and maintaining image quality using statistical iterative reconstruction for a primarily pediatric population undergoing head CT examination. PMID:27056425
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gandhi, Diksha; Schmidt, Taly Gilat, E-mail: taly.gilat-schmidt@marquette.edu; Crotty, Dominic J.
Purpose: This technical note quantifies the dose and image quality performance of a clinically available organ-dose-based tube current modulation (ODM) technique, using experimental and simulation phantom studies. The investigated ODM implementation reduces the tube current for the anterior source positions, without increasing current for posterior positions, although such an approach was also evaluated for comparison. Methods: Axial CT scans at 120 kV were performed on head and chest phantoms on an ODM-equipped scanner (Optima CT660, GE Healthcare, Chalfont St. Giles, England). Dosimeters quantified dose to breast, lung, heart, spine, eye lens, and brain regions for ODM and 3D-modulation (SmartmA) settings.more » Monte Carlo simulations, validated with experimental data, were performed on 28 voxelized head phantoms and 10 chest phantoms to quantify organ dose and noise standard deviation. The dose and noise effects of increasing the posterior tube current were also investigated. Results: ODM reduced the dose for all experimental dosimeters with respect to SmartmA, with average dose reductions across dosimeters of 31% (breast), 21% (lung), 24% (heart), 6% (spine), 19% (eye lens), and 11% (brain), with similar results for the simulation validation study. In the phantom library study, the average dose reduction across all phantoms was 34% (breast), 20% (lung), 8% (spine), 20% (eye lens), and 8% (brain). ODM increased the noise standard deviation in reconstructed images by 6%–20%, with generally greater noise increases in anterior regions. Increasing the posterior tube current provided similar dose reduction as ODM for breast and eye lens, increased dose to the spine, with noise effects ranging from 2% noise reduction to 16% noise increase. At noise equal to SmartmA, ODM increased the estimated effective dose by 4% and 8% for chest and head scans, respectively. Increasing the posterior tube current further increased the effective dose by 15% (chest) and 18% (head) relative to SmartmA. Conclusions: ODM reduced dose in all experimental and simulation studies over a range of phantoms, while increasing noise. The results suggest a net dose/noise benefit for breast and eye lens for all studied phantoms, negligible lung dose effects for two phantoms, increased lung dose and/or noise for eight phantoms, and increased dose and/or noise for brain and spine for all studied phantoms compared to the reference protocol.« less
Von Korff, Michael; Walker, Rod L; Saunders, Kathleen; Shortreed, Susan M; Thakral, Manu; Parchman, Michael; Hansen, Ryan N; Ludman, Evette; Sherman, Karen J; Dublin, Sascha
2017-08-01
No studies have assessed the comparative effectiveness of guideline-recommended interventions to reduce risk of prescription opioid use disorder among chronic opioid therapy (COT) patients. We compared the prevalence of prescription opioid use disorder among COT patients from intervention clinics that had implemented opioid dose and risk reduction initiatives for more than 4 years relative to control clinics that had not. After a healthcare system in Washington State implemented interventions to reduce opioid dose and risks, we surveyed 1588 adult primary care COT patients to compare the prevalence of prescription opioid use disorder among COT patients from the intervention and control clinics. Intervention clinics managed COT patients at lower COT doses and with more consistent use of risk reduction practices. Control clinics cared for similar COT patients but prescribed higher opioid doses and used COT risk reduction practices inconsistently. Prescription opioid use disorder was assessed with the Psychiatric Research Interview for Substance and Mental Disorders. The prevalence of prescription opioid use disorder was 21.5% (95% CI=18.9% to 24.4%) among COT patients in the intervention clinics and 23.9% (95% CI=20.5% to 27.6%) among COT patients in the control clinics. The adjusted relative risk of prescription opioid use disorder was 1.08 (95% CI=0.89, 1.32) among the control clinic patients relative to the intervention clinic patients. Long-term implementation of opioid dose and risk reduction initiatives was not associated with lower rates of prescription opioid use disorder among prevalent COT patients. Extreme caution should be exercised by clinicians considering COT for patients with chronic non-cancer pain until benefits of this treatment and attendant risks are clarified. Copyright © 2017 Elsevier B.V. All rights reserved.
Leuker, G; Hingst, V
1992-10-01
Using three UV-plants of different technical designs for water disinfection, we studied the conformity between experimental germ reduction using standard test organisms and calculated UV-doses under various water flow conditions. Taking into consideration the style of construction of the UV-plants, the irradiation area and the layer thickness were used as constant parameters for dose calculations. This was also employed for the irradiation intensity, since the experiments were performed for a relatively short period compared of the life span of the UV-irradiators. Both exposure time and water transmission were employed as variable parameters in the dose calculations and experimental procedures respectively. The calculated UV-dose and experimentally obtained germ reduction values were comparatively the same for two of the three UV-plants studied. However, no correlation was observed between the reduction of E. coli and the corresponding calculated UV-dose values. Therefore, the calculated UV-dose values for any given UV-plant should be considered to be relative and by no means absolute values. We are of the opinion that within a certain range of water flow rate and transmission, antimicrobial effectiveness of different UV-plants should be demonstrated independent of dose values, technical and other construction characteristics. The applicability of the UV-plants studied is discussed.
Amores, Raquel; Alou, Luis; Giménez, María José; Sevillano, David; Gómez-Lus, María Luisa; Aguilar, Lorenzo; Prieto, José
2004-07-01
The in vitro effect that the presence of components of non-specific immunity (serum plus polymorphonuclear neutrophils) has on the bactericidal activity of co-amoxiclav was explored against Streptococcus pneumoniae strains exhibiting an amoxicillin MIC > or =4 mg/L. Eight penicillin-resistant clinical isolates non-susceptible to co-amoxiclav with MICs of 4 (two strains), 8 (four strains) and 16 mg/L (two strains) were used. Values of MBC were identical to MIC values in all cases. Time-kill curves were performed with co-amoxiclav concentrations achievable in serum after a single oral dose administration of the new 2000/125 mg sustained-release formulation. Results were expressed as percentage of reduction of initial inocula after 3 h incubation. Control curves showed growth with no reduction of initial inocula. Against strains with MIC of 4 and 8 mg/L, the results obtained with the antibiotic alone or with the presence of factors of non-specific immunity were similar, with a weak combined effect due to the intrinsic activity of co-amoxiclav (reductions of initial inocula ranging from 70 to 99.16%). Against strains with MIC of 16 mg/L, the addition of PMN in the presence of serum increased the reduction of bacterial load provided by the aminopenicillin, even at sub-inhibitory concentrations (25.8% versus 51.1% at 0.5 x MIC concentration--8/0.5 mg/L). This combined activity against strains with an amoxicillin MIC of 16 mg/L which decreased the bacterial load may be important in preventing bacterial proliferation within the host and the transmission of resistant clones to others.
Patino, Manuel; Fuentes, Jorge M; Singh, Sarabjeet; Hahn, Peter F; Sahani, Dushyant V
2015-07-01
This article discusses the clinical challenge of low-radiation-dose examinations, the commonly used approaches for dose optimization, and their effect on image quality. We emphasize practical aspects of the different iterative reconstruction techniques, along with their benefits, pitfalls, and clinical implementation. The widespread use of CT has raised concerns about potential radiation risks, motivating diverse strategies to reduce the radiation dose associated with CT. CT manufacturers have developed alternative reconstruction algorithms intended to improve image quality on dose-optimized CT studies, mainly through noise and artifact reduction. Iterative reconstruction techniques take unique approaches to noise reduction and provide distinct strength levels or settings.
Efficiency and Safety of Prolonged Levosimendan Infusion in Patients with Acute Heart Failure
Aidonidis, Georgios; Kanonidis, Ioannis; Koutsimanis, Vasileios; Neumann, Till; Erbel, Raimund; Sakadamis, Georgios
2011-01-01
Background. Levosimendan is an inotropic drug with unique pharmacological advantages in patients with acute heart failure. Scope of this study is to determine whether longer infusion patterns without the hypotension-inducing loading dose could justify an effective and safe alternative approach. Methods. 70 patients admitted to the emergencies with decompensated chronic heart failure received intravenously levosimendan without a loading dose up to 72 hours. Clinical parameters, BNP (Brain Natriuretic Peptide) and signal-averaged-ECG data (SAECG) were recorded up to 72 hours. Results. The 48-hour group demonstrated a statistically significant BNP decrease (P < .001) after 48 hours, which also maintained after 72 hours. The 72-hour group demonstrated a bordeline decrease of BNP after 48 hours (P = .039), necessitating an additional 24-hour infusion to achieve significant reduction after 72 hours (P < .004). SAECG data demonstrated a statistically significant decrease after 72 hours (P < .04). Apart from two deaths due to advanced heart failure, no major complications were observed. Conclusion. Prolonged infusion of levosimendan without a loading dose is associated with an acceptable clinical and neurohumoral response. PMID:21559263
How to Improve Adherence to Life-saving Heart Failure Treatments with Potassium Binders
2017-01-01
Medications that affect the renin–angiotensin–aldosterone system (RAAS) form the mainstay of current heart failure (HF) therapy in patients with reduced ejection fraction. Concerns about the risk of hyperkalaemia have created a significant barrier to optimal RAAS inhibitor therapy in patients with HF, however, and many patients are discontinuing or receiving suboptimal doses of these lifesaving therapies. This has serious health and economic implications due to adverse renal and cardiovascular events. There is therefore an important unmet need for novel therapeutic options for the long-term management of patients with, and at risk for, hyperkalaemia. Two new potassium-binding agents, patiromer and ZS-9, have been shown to be effective and safe for the treatment of hyperkalaemia, as well as the maintenance of normokalaemia, without dose reduction or discontinuation of RAAS inhibitors. In addition, the fast onset of ZS-9 action suggests that it may be useful in the treatment of acute hyperkalaemia. These agents may allow for dose optimisation of RAAS inhibitors for the long-term maintenance and protection of the renal and cardiovascular system. PMID:28785473
Tanaka, Yoichi; Manabe, Atsushi; Nakadate, Hisaya; Kondoh, Kensuke; Nakamura, Kozue; Koh, Katsuyoshi; Kikuchi, Akira; Komiyama, Takako
2014-05-01
Abstract The aim of this study was to investigate the influence of daily 6-mercaptopurine (6-MP) and low-dose weekly methotrexate (MTX) combination treatment and methylenetetrahydrofolate reductase (MTHFR) haplotypes on toxicity during maintenance therapy in Japanese childhood acute lymphoblastic leukemia (ALL). We retrospectively analyzed the MTHFR C677T and A1298C polymorphisms and influence of haplotypes on toxicity in 73 patients. Patients with the MTHFR 677TT and 677CT + 1298AC were associated with severe liver toxicity (p = 0.014, odds ratio [OR] = 3.82, 95% confidence interval [CI] = 1.27-11.46) and more rapid onset of liver toxicity (p = 0.010). Patients with MTHFR 677TT and 677CT + 1298AC were associated with lower frequency of 6-MP and MTX dose reduction due to leukopenia (p < 0.05). No difference was observed in average drug doses in the MTHFR genotypes. In conclusion, the MTHFR C677T and A1298C haplotypes might be useful for monitoring adverse effects in childhood ALL maintenance therapy in Japanese patients.
Patel, Samir J; Kuten, Samantha A; Knight, Richard J; Hong, Dana M; Gaber, A Osama
2014-01-01
Ganciclovir-resistant cytomegalovirus (CMV) is associated with significant morbidity in solid organ transplant recipients. Management of ganciclovir-resistant CMV may be complicated by nephrotoxicity which is commonly observed with recommended therapies and/or rejection induced by "indirect" viral effects or reduction of immunosuppression. Herein, we report a series of four high serologic risk (donor CMV positive/recipient CMV negative) kidney transplant patients diagnosed with ganciclovir-resistant CMV disease. All patients initially developed "breakthrough" viremia while still receiving valganciclovir prophylaxis after transplant and were later confirmed to exhibit UL97 mutations after failing to eradicate virus on adequate dosages of valganciclovir. The patients were subsequently and successfully treated with reduced-dose (1-2 mg/kg) cidofovir and CMV-hyperimmune globulin, given in 2-week intervals. In addition, all patients exhibited stable renal function after completion of therapy, and none experienced acute rejection. The combination of reduced-dose cidofovir and CMV-hyperimmune globulin appeared to be a safe and effective regimen in patients with mild disease due to ganciclovir-resistant CMV.
Cihan, Yasemin Benderli
2016-11-01
Olmińska and colleagues' study, Olmińska et al. (2016) was interesting to read [1]. While prasining the authors for their great work, I want to emphasize e few points. In the recent years, with the development of new device technology, Intensity Modulated Radiotherapy (IMRT) and complex treatment modalities such as stereotactic radiosurgery and helical tomotherapy were started to be implemented. Thus, due to increased local control of tumor growth and reduction of dose received by surrounding critical organs, serious complications were avoided. In this new treatment modality, while calculating appropriate dose, all the parameters such as patient anatomy and characteristics of radiation should be taken into account. Besides, during conformal radiotherapy, if hip prosthesis is located around or in the clinical target volume (CTV), type, thickness and density of biomaterial should be considered to avoid dose differences. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
[Can nitrates lead to indirect toxicity?].
Hamon, M
2007-09-01
For many years, nitrates have been used, at low dosages, as an additive in salted food. New laws have been promulgated to limit their concentration in water due to increased levels found in soils, rivers and even the aquifer. Although nitrate ions themselves have not toxic properties, bacterial reduction into nitrite ions (occurring even in aqueous medium) can lead to nitrous anhydride, which in turn generates nitrosonium ions. Nitrosium ions react with secondary amine to give nitrosamines, many of which are cancer-inducing agents at very low doses. Opinions on this toxicity are clear-cut and difficult to reconcile. In fact, increased levels are due, in a large part, to the use of nitrates as fertiliéers but also to bacterial transformation of human and animal nitrogenous wastes such as urea.
Does Iterative Reconstruction Lower CT Radiation Dose: Evaluation of 15,000 Examinations
Noël, Peter B.; Renger, Bernhard; Fiebich, Martin; Münzel, Daniela; Fingerle, Alexander A.; Rummeny, Ernst J.; Dobritz, Martin
2013-01-01
Purpose Evaluation of 15,000 computed tomography (CT) examinations to investigate if iterative reconstruction (IR) reduces sustainably radiation exposure. Method and Materials Information from 15,000 CT examinations was collected, including all aspects of the exams such as scan parameter, patient information, and reconstruction instructions. The examinations were acquired between January 2010 and December 2012, while after 15 months a first generation IR algorithm was installed. To collect the necessary information from PACS, RIS, MPPS and structured reports a Dose Monitoring System was developed. To harvest all possible information an optical character recognition system was integrated, for example to collect information from the screenshot CT-dose report. The tool transfers all data to a database for further processing such as the calculation of effective dose and organ doses. To evaluate if IR provides a sustainable dose reduction, the effective dose values were statistically analyzed with respect to protocol type, diagnostic indication, and patient population. Results IR has the potential to reduce radiation dose significantly. Before clinical introduction of IR the average effective dose was 10.1±7.8mSv and with IR 8.9±7.1mSv (p*=0.01). Especially in CTA, with the possibility to use kV reduction protocols, such as in aortic CTAs (before IR: average14.2±7.8mSv; median11.4mSv /with IR:average9.9±7.4mSv; median7.4mSv), or pulmonary CTAs (before IR: average9.7±6.2mSV; median7.7mSv /with IR: average6.4±4.7mSv; median4.8mSv) the dose reduction effect is significant(p*=0.01). On the contrary for unenhanced low-dose scans of the cranial (for example sinuses) the reduction is not significant (before IR:average6.6±5.8mSv; median3.9mSv/with IR:average6.0±3.1mSV; median3.2mSv). Conclusion The dose aspect remains a priority in CT research. Iterative reconstruction algorithms reduce sustainably and significantly radiation dose in the clinical routine. Our results illustrate that not only in studies with a limited number of patients but also in the clinical routine, IRs provide long-term dose saving. PMID:24303035
Does iterative reconstruction lower CT radiation dose: evaluation of 15,000 examinations.
Noël, Peter B; Renger, Bernhard; Fiebich, Martin; Münzel, Daniela; Fingerle, Alexander A; Rummeny, Ernst J; Dobritz, Martin
2013-01-01
Evaluation of 15,000 computed tomography (CT) examinations to investigate if iterative reconstruction (IR) reduces sustainably radiation exposure. Information from 15,000 CT examinations was collected, including all aspects of the exams such as scan parameter, patient information, and reconstruction instructions. The examinations were acquired between January 2010 and December 2012, while after 15 months a first generation IR algorithm was installed. To collect the necessary information from PACS, RIS, MPPS and structured reports a Dose Monitoring System was developed. To harvest all possible information an optical character recognition system was integrated, for example to collect information from the screenshot CT-dose report. The tool transfers all data to a database for further processing such as the calculation of effective dose and organ doses. To evaluate if IR provides a sustainable dose reduction, the effective dose values were statistically analyzed with respect to protocol type, diagnostic indication, and patient population. IR has the potential to reduce radiation dose significantly. Before clinical introduction of IR the average effective dose was 10.1±7.8mSv and with IR 8.9±7.1mSv (p*=0.01). Especially in CTA, with the possibility to use kV reduction protocols, such as in aortic CTAs (before IR: average14.2±7.8mSv; median11.4mSv /with IR:average9.9±7.4mSv; median7.4mSv), or pulmonary CTAs (before IR: average9.7±6.2mSV; median7.7mSv /with IR: average6.4±4.7mSv; median4.8mSv) the dose reduction effect is significant(p*=0.01). On the contrary for unenhanced low-dose scans of the cranial (for example sinuses) the reduction is not significant (before IR:average6.6±5.8mSv; median3.9mSv/with IR:average6.0±3.1mSV; median3.2mSv). The dose aspect remains a priority in CT research. Iterative reconstruction algorithms reduce sustainably and significantly radiation dose in the clinical routine. Our results illustrate that not only in studies with a limited number of patients but also in the clinical routine, IRs provide long-term dose saving.
Benefits of adaptive radiation therapy in lung cancer as a function of replanning frequency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dial, Christian; Weiss, Elisabeth; Hugo, Geoffrey D., E-mail: gdhugo@vcu.edu
Purpose: To quantify the potential benefit associated with daily replanning in lung cancer in terms of normal tissue dose sparing and to characterize the tradeoff between adaptive benefit and replanning frequency. Methods: A set of synthetic images and contours, derived from weekly active breathing control images of 12 patients who underwent radiation therapy treatment for nonsmall cell lung cancer, is generated for each fraction of treatment using principal component analysis in a way that preserves temporal anatomical trends (e.g., tumor regression). Daily synthetic images and contours are used to simulate four different treatment scenarios: (1) a “no-adapt” scenario that simulatesmore » delivery of an initial plan throughout treatment, (2) a “midadapt” scenario that implements a single replan for fraction 18, (3) a “weekly adapt” scenario that simulates weekly adaptations, and (4) a “full-adapt” scenario that simulates daily replanning. An initial intensity modulated radiation therapy plan is created for each patient and replanning is carried out in an automated fashion by reoptimizing beam apertures and weights. Dose is calculated on each image and accumulated to the first in the series using deformable mappings utilized in synthetic image creation for comparison between simulated treatments. Results: Target coverage was maintained and cord tolerance was not exceeded for any of the adaptive simulations. Average reductions in mean lung dose (MLD) and volume of lung receiving 20 Gy or more (V20{sub lung}) were 65 ± 49 cGy (p = 0.000 01) and 1.1% ± 1.2% (p = 0.0006), respectively, for all patients. The largest reduction in MLD for a single patient was 162 cGy, which allowed an isotoxic escalation of the target dose of 1668 cGy. Average reductions in cord max dose, mean esophageal dose (MED), dose received by 66% of the heart (D66{sub heart}), and dose received by 33% of the heart (D33{sub heart}), were 158 ± 280, 117 ± 121, 37 ± 77, and 99 ± 120 cGy, respectively. Average incremental reductions in MLD for the midadapt, weekly adapt, and full-adapt treatments were 38, 18, and 8 cGy, respectively. Incremental reductions in MED for the same treatments were 57, 37, and 23 cGy. Reductions in MLD and MED for the full-adapt treatment were correlated with the absolute decrease in the planning target volume (r = 0.34 and r = 0.26). Conclusions: Adaptive radiation therapy for lung cancer yields clinically relevant reductions in normal tissue doses for frequencies of adaptation ranging from a single replan up to daily replanning. Increased frequencies of adaptation result in additional benefit while magnitude of benefit decreases.« less
Peng, Shiwen; Lyford-Pike, Sofia; Akpeng, Belinda; Wu, Annie; Hung, Chien-Fu; Hannaman, Drew; Saunders, John R.; Wu, T.-C.
2012-01-01
Although therapeutic HPV vaccines are able to elicit systemic HPV-specific immunity, clinical responses have not always correlated with levels of vaccine-induced CD8+ T cells in human clinical trials. This observed discrepancy may be attributable to an immunosuppressive tumor microenvironment in which the CD8+ T cells are recruited. Regulatory T cells (Tregs) are cells that can dampen cytotoxic CD8+ T-cell function. Cyclophosphamide (CTX) is a systemic chemotherapeutic agent, which can eradicate immune cells, including inhibitory Tregs. The optimal dose and schedule of CTX administration in combination with immunotherapy to eliminate the Treg population without adversely affecting vaccine-induced T-cell responses is unknown. Therefore, we investigated various dosing and administration schedules of CTX in combination with a therapeutic HPV vaccine in a preclinical tumor model. HPV tumor-bearing mice received either a single preconditioning dose or a daily dose of CTX in combination with the pNGVL4a-CRT/E7(detox) DNA vaccine. Both single and daily dosing of CTX in combination with vaccine had a synergistic anti-tumor effect as compared to monotherapy alone. The potent antitumor responses were attributed to the reduction in Treg frequency and increased infiltration of HPV16 E7-specific CD8+ T cells, which led to higher ratios of CD8+/Treg and CD8+/CD11b+Gr-1+ myeloid-derived suppressor cells (MDSCs). There was an observed trend toward decreased vaccine-induced CD8+ T-cell frequency with daily dosing of CTX. We recommend a single, preconditioning dose of CTX prior to vaccination due to its efficacy, ease of administration, and reduced cumulative adverse effect on vaccine-induced T cells. PMID:23011589
Simultaneously optimizing dose and schedule of a new cytotoxic agent.
Braun, Thomas M; Thall, Peter F; Nguyen, Hoang; de Lima, Marcos
2007-01-01
Traditionally, phase I clinical trial designs are based upon one predefined course of treatment while varying among patients the dose given at each administration. In actual medical practice, patients receive a schedule comprised of several courses of treatment, and some patients may receive one or more dose reductions or delays during treatment. Consequently, the overall risk of toxicity for each patient is a function of both actual schedule of treatment and the differing doses used at each adminstration. Our goal is to provide a practical phase I clinical trial design that more accurately reflects actual medical practice by accounting for both dose per administration and schedule. We propose an outcome-adaptive Bayesian design that simultaneously optimizes both dose and schedule in terms of the overall risk of toxicity, based on time-to-toxicity outcomes. We use computer simulation as a tool to calibrate design parameters. We describe a phase I trial in allogeneic bone marrow transplantation that was designed and is currently being conducted using our new method. Our computer simulations demonstrate that our method outperforms any method that searches for an optimal dose but does not allow schedule to vary, both in terms of the probability of identifying optimal (dose, schedule) combinations, and the numbers of patients assigned to those combinations in the trial. Our design requires greater sample sizes than those seen in traditional phase I studies due to the larger number of treatment combinations examined. Our design also assumes that the effects of multiple administrations are independent of each other and that the hazard of toxicity is the same for all administrations. Our design is the first for phase I clinical trials that is sufficiently flexible and practical to truly reflect clinical practice by varying both dose and the timing and number of administrations given to each patient.
Role of CT in Congenital Heart Disease.
Rajiah, Prabhakar; Saboo, Sachin S; Abbara, Suhny
2017-01-01
Congenital heart diseases (CHD) are being increasingly encountered in cardiac imaging due to improved outcomes from surgical and interventional techniques. Imaging plays an important role in the evaluation of CHD, both prior to and after surgeries and interventions. Computed tomography (CT) has several advantages in the evaluation of these disorders, particularly its high spatial resolution, multi-planar reconstruction capabilities at sub-millimeter isotropic resolution, good temporal resolution, wide field of view, and rapid turnaround time, which minimizes the need for sedation and anesthesia in young children or children with disabilities. With modern scanners, images can be acquired as fast as within one heartbeat. Although there is a risk of ionizing radiation, the radiation dose can be minimized by using several dose reduction strategies. There is a risk of contrast nephrotoxicity in patients with renal dysfunction. In this article, we will review the role of CT in the evaluation of several congenital heart diseases, both in children and adults.
Trisubstituted Pyrimidines as Efficacious and Fast-Acting Antimalarials
2016-01-01
In this paper we describe the optimization of a phenotypic hit against Plasmodium falciparum, based on a trisubstituted pyrimidine scaffold. This led to compounds with good pharmacokinetics and oral activity in a P. berghei mouse model of malaria. The most promising compound (13) showed a reduction in parasitemia of 96% when dosed at 30 mg/kg orally once a day for 4 days in the P. berghei mouse model of malaria. It also demonstrated a rapid rate of clearance of the erythrocytic stage of P. falciparum in the SCID mouse model with an ED90 of 11.7 mg/kg when dosed orally. Unfortunately, the compound is a potent inhibitor of cytochrome P450 enzymes, probably due to a 4-pyridyl substituent. Nevertheless, this is a lead molecule with a potentially useful antimalarial profile, which could either be further optimized or be used for target hunting. PMID:27314305
Use of multi-dose activated charcoal in phenytoin toxicity secondary to genetic polymorphism.
Chan, Betty S H; Sellors, Kate; Chiew, Angela L; Buckley, Nicholas A
2015-02-01
Phenytoin is metabolised in the liver by cytochrome (CYP)2C9 and 2C19 enzymes. Due to saturation of enzyme capacity, the elimination half-life is prolonged at supratherapeutic levels. Genetic polymorphisms of CYP2C9 and 2C19 are reasonably common and further prolong the elimination of phenytoin. There are conflicting reports regarding whether multiple-dose activated charcoal (MDAC) significantly increases the clearance of phenytoin in poisoning. We present 3 patients with phenytoin toxicity and very slow elimination secondary to reduced CYP enzyme function from genetic polymorphisms. MDAC was used in two patients and led to rapid and large reductions in the measured elimination half-lives. This is contrasted with very prolonged elimination in a third patient who did not receive MDAC. MDAC may play a role in the management of chronic phenytoin toxicity, especially in those with very slow endogenous elimination secondary to genetic polymorphisms.
From BPA to its analogues: Is it a safe journey?
Usman, Afia; Ahmad, Masood
2016-09-01
Bisphenol-A (BPA) is one of the most abundant synthetic chemicals in the world due to its uses in plastics. Its widespread exposure vis-a-vis low dose effects led to a reduction in its safety dose and imposition of ban on its use in infant feeding bottles. This restriction paved the way for the gradual market entry of its analogues. However, their structural similarity to BPA has put them under surveillance for endocrine disrupting potential. The application of these analogues is increasing and so are the studies reporting their toxicity. This review highlights the reasons which led to the ban of BPA and also reports the exposure and toxicological data available on its analogues. Hence, this compilation is expected to answer in a better way whether the replacement of BPA by these analogues is safer or more harmful? Copyright © 2016. Published by Elsevier Ltd.
Häfner, D.; Beume, R.; Kilian, U.; Krasznai, G.; Lachmann, B.
1995-01-01
1. We have examined the effects of five different lung surfactant factor (LSF) preparations in the rat lung lavage model. In this model repetitive lung lavage leads to lung injury with some similarities to adult respiratory distress syndrome with poor gas exchange and protein leakage into the alveolar spaces. These pathological sequelae can be reversed by LSF instillation soon after lavage. 2. The tested LSF preparations were: two bovine: Survanta and Alveofact: two synthetic: Exosurf and a protein-free phospholipid based LSF (PL-LSF) and one Recombinant LSF at doses of 25, 50 and 100 mg kg-1 body weight and an untreated control group. 3. Tracheotomized rats (10-12 per dose) were pressure-controlled ventilated (Siemens Servo Ventilator 900C) with 100% oxygen at a respiratory rate of 30 breaths min-1, inspiration expiration ratio of 1:2, peak inspiratory pressure (PIP) of 28 cmH2O at positive end-expiratory pressure (PEEP) of 8 cmH2O. Two hours after LSF administration, PEEP and in parallel PIP was reduced from 8 to 6 (1st reduction), from 6 to 3 (2nd reduction) and from 3 to 0 cmH2O (3rd reduction). 4. Partial arterial oxygen pressure (PaO2, mmHg) at 5 min and 120 min after LSF administration and during the 2nd PEEP reduction (PaO2(PEEP23/3)) were used for statistical comparison. All LSF preparations caused a dose-dependent increase for the PaO2(120'), whereas during the 2nd PEEP reduction only bovine and recombinant LSF exhibited dose-dependency. Exosurf did not increase PaO2 after administration of the highest dose. At the highest dose Exosurf exerted no further improvement but rather a tendency to relapse.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 2 Figure 3 Figure 4 PMID:7582456
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmad, S; Sarfehnia, A; Kim, A
Purpose: To investigate and explain the interface effects for clinically relevant materials being irradiated in the presence of a 1.5 T transverse magnetic field. Methods: Interface effects were investigated using Geant4.10.1 both with (B-On) and without (B-Off) a magnetic field for an Elekta MRI-Linac. A slab of thickness 8 cm, representing inhomogeneity, was placed at a depth of 4 cm in a 20×20×20 cm water phantom. Backscattered electron fluence was calculated through a 20×20 cm plane aligned with the surface of the inhomogeneity. Inhomogeneities investigated were lung, bone, aluminum, titanium, stainless steel, and dental filling. A photon beam with fieldmore » size of 2×2 cm at the isocenter and SAD of 143.5 cm was generated from a point source with energy distribution sampled from a histogram representing the true Elekta MRI-Linac photon spectrum. Results: In the B-On case, if the heterogeneity is a low Z{sub eff} material, such as lung, the backscattered electron fluence is increased considerably, i.e. by 54 %, and the corresponding dose is expected to be higher near the interface compared to the B-Off case. On the contrary, if the heterogeneity is a high Z{sub eff} material then the backscattered electron fluence is reduced in the B-On electron fluence is reduced in the B-On case. This reduction leads to a lower dose deposition at the interface compared to the B-Off case. Conclusion: The reduction in dose at the interface, in the B-On case, is directly related to the reduction in backscattered electron fluence. The reduction in backscattered electron fluence occurs due to two different reasons. First, the electron energy spectrum hitting the interface is changed for the B-On case which changes the electron scattering probability. Second, some electrons that are looping under the influence of the magnetic field are captured by the higher density side of the interface and no longer contribute to the backscattered electron stream. Funding support for this study was provided by ElektaTM.« less
Parsai, E Ishmael; Zhang, Zhengdong; Feldmeier, John J
2009-01-01
The commercially available brachytherapy treatment-planning systems today, usually neglects the attenuation effect from stainless steel (SS) tube when Fletcher-Suit-Delclos (FSD) is used in treatment of cervical and endometrial cancers. This could lead to potential inaccuracies in computing dwell times and dose distribution. A more accurate analysis quantifying the level of attenuation for high-dose-rate (HDR) iridium 192 radionuclide ((192)Ir) source is presented through Monte Carlo simulation verified by measurement. In this investigation a general Monte Carlo N-Particles (MCNP) transport code was used to construct a typical geometry of FSD through simulation and compare the doses delivered to point A in Manchester System with and without the SS tubing. A quantitative assessment of inaccuracies in delivered dose vs. the computed dose is presented. In addition, this investigation expanded to examine the attenuation-corrected radial and anisotropy dose functions in a form parallel to the updated AAPM Task Group No. 43 Report (AAPM TG-43) formalism. This will delineate quantitatively the inaccuracies in dose distributions in three-dimensional space. The changes in dose deposition and distribution caused by increased attenuation coefficient resulted from presence of SS are quantified using MCNP Monte Carlo simulations in coupled photon/electron transport. The source geometry was that of the Vari Source wire model VS2000. The FSD was that of the Varian medical system. In this model, the bending angles of tandem and colpostats are 15 degrees and 120 degrees , respectively. We assigned 10 dwell positions to the tandem and 4 dwell positions to right and left colpostats or ovoids to represent a typical treatment case. Typical dose delivered to point A was determined according to Manchester dosimetry system. Based on our computations, the reduction of dose to point A was shown to be at least 3%. So this effect presented by SS-FSD systems on patient dose is of concern.
Oxytocin Reduces Ethanol Self-Administration in Mice.
King, Courtney E; Griffin, William C; Luderman, Lauryn N; Kates, Malcolm M; McGinty, Jacqueline F; Becker, Howard C
2017-05-01
Excessive ethanol (EtOH) consumption remains an important health concern and effective treatments are lacking. The central oxytocin system has emerged as a potentially important therapeutic target for alcohol and drug addiction. These studies tested the hypothesis that oxytocin reduces EtOH consumption. Male C57BL/6J mice were given access to EtOH (20% v/v) using a model of binge-like drinking ("drinking in the dark") that also included the use of lickometer circuits to evaluate the temporal pattern of intake as well as 2-bottle choice drinking in the home cage. In addition, EtOH (12% v/v) and sucrose (5% w/v) self-administration on fixed- and progressive-ratio schedules were also evaluated. A wide range of systemically administered oxytocin doses were tested (0 to 10 mg/kg) in these models. Oxytocin (0, 0.3, 1, 3, or 10 mg/kg) dose dependently reduced EtOH consumption (maximal 45% reduction) in the binge drinking model, with lower effective doses having minimal effects on general locomotor activity. Oxytocin's effect was blocked by pretreatment with an oxytocin receptor antagonist, and the pattern of contacts (licks) at the EtOH bottle suggested a reduction in motivation to drink EtOH. Oxytocin decreased 2-bottle choice drinking without altering general fluid intake. Oxytocin also reduced operant responding for EtOH and sucrose in a dose-related manner. However, oxytocin decreased responding and motivation (breakpoint values) for EtOH at doses that did not alter responding for sucrose. These results indicate that oxytocin reduces EtOH consumption in different models of self-administration. The effects are not likely due to a general sedative effect of the neuropeptide. Further, oxytocin reduces motivation for EtOH at doses that do not alter responding for a natural reward (sucrose). While some evidence supports a role for oxytocin receptors in mediating these effects, additional studies are needed to further elucidate underlying mechanisms. Nevertheless, these results support the therapeutic potential of oxytocin as a treatment for alcohol use disorder. Copyright © 2017 by the Research Society on Alcoholism.
ERIC Educational Resources Information Center
Blaakman, Susan; Tremblay, Paul J.; Halterman, Jill S.; Fagnano, Maria; Borrelli, Belinda
2013-01-01
Many children, including those with asthma, remain exposed to secondhand smoke. This manuscript evaluates the process of implementing a secondhand smoke reduction counseling intervention using motivational interviewing (MI) for caregivers of urban children with asthma, including reach, dose delivered, dose received and fidelity. Challenges,…
Buza, Joram; Mpolya, Emmanuel A.; Angelo, Teckla; Kinung'hi, Safari M.
2017-01-01
Administering more than one treatment may increase Praziquantel cure and egg reduction rates, thereby hastening achievement of schistosomiasis transmission control. A total of 431 S. mansoni-infected schoolchildren were randomized to receive either a single or repeated 40 mg/kg Praziquantel dose. Heights, weights, and haemoglobin levels were determined using a stadiometer, weighing scale, and HemoCue, respectively. At 8 weeks, cure rate was higher on repeated dose (93.10%) compared to single dose (68.68%) (p < 0.001). The egg reduction rate was higher on repeated dose (97.54%) compared to single dose (87.27%) (p = 0.0062). Geometric mean egg intensity was lower among those on repeated dose (1.30 epg) compared to single dose (3.18 epg) (p = 0.036) but not at 5 (p > 0.05) and 8 (p > 0.05) months with no difference in reinfection rate. No difference in the prevalence of stunting was observed between the two treatment regimens (p > 0.05) at 8 months, but there was an increase in the prevalence of wasting among those on repeated dose (p < 0.001). There was an increase in the mean haemoglobin levels at 8 months with no difference between the two arms (p > 0.05). To achieve reduction of transmission intensity and disease control in highly endemic areas, repeated treatments alone may not be sufficient. This trial was registered with PACTR201601001416338. PMID:29094048
Dose perturbation effect of metallic spinal implants in proton beam therapy.
Jia, Yingcui; Zhao, Li; Cheng, Chee-Wai; McDonald, Mark W; Das, Indra J
2015-09-08
The purpose of this study was to investigate the effect of dose perturbations for two metallic spinal screw implants in proton beam therapy in the perpendicular and parallel beam geometry. A 5.5 mm (diameter) by 45 mm (length) stainless steel (SS) screw and a 5.5 mm by 35 mm titanium (Ti) screw commonly used for spinal fixation were CT-scanned in a hybrid phantom of water and solid water. The CT data were processed with an orthopedic metal artifact reduction (O-MAR) algorithm. Treatment plans were generated for each metal screw with a proton beam oriented, first parallel and then perpendicular, to the longitudinal axis of the screw. The calculated dose profiles were compared with measured results from a plane-parallel ion chamber and Gafchromic EBT2 films. For the perpendicular setup, the measured dose immediately downstream from the screw exhibited dose enhancement up to 12% for SS and 8% for Ti, respectively, but such dose perturbation was not observed outside the lateral edges of the screws. The TPS showed 5% and 2% dose reductions immediately at the interface for the SS nd Ti screws, respectively, and up to 9% dose enhancements within 1 cm outside of the lateral edges of the screws. The measured dose enhancement was only observed within 5 mm from the interface along the beam path. At deeper depths, the lateral dose profiles appeared to be similar between the measurement and TPS, with dose reduction in the screw shadow region and dose enhancement within 1-2 cm outside of the lateral edges of the metals. For the parallel setup, no significant dose perturbation was detected at lateral distance beyond 3 mm away from both screws. Significant dose discrepancies exist between TPS calculations and ion chamber and film measurements in close proximity of high-Z inhomogeneities. The observed dose enhancement effect with proton therapy is not correctly modeled by TPS. An extra measure of caution should be taken when evaluating dosimetry with spinal metallic implants.
How I do it-optimizing radiofrequency ablation in spinal metastases using iCT and navigation.
Kavakebi, Pujan; Freyschlag, C F; Thomé, C
2017-10-01
Exact positioning of the radiofrequency ablation (RFA) probe for tumor treatment under fluoroscopic guidance can be difficult because of potentially small inaccessible lesions and the radiation dose to the medical staff in RFA. In addition, vertebroplasty (VP) can be significantly high. Description and workflow of RFA in spinal metastasis using iCT (intraoperative computed tomography) and 3D-navigation-based probe placement followed by VP. RFA and VP can be successfully combined with iCT-based navigation, which leads to a reduction of radiation to the staff and optimal probe positioning due to 3D navigation.
Vyas, Shilpa; Le, Yi; Zhang, Zhe; Armour, Woody
2015-01-01
Purpose Several robotic delivery systems for prostate brachytherapy are under development or in pre-clinical testing. One of the features of robotic brachytherapy is the ability to vary spacing of needles at non-fixed intervals. This feature may play an important role in prostate brachytherapy, which is traditionally template-based with fixed needle spacing of 0.5 cm. We sought to quantify potential reductions in the dose to urethra and rectum by utilizing variable needle spacing, as compared to fixed needle spacing. Material and methods Transrectal ultrasound images from 10 patients were used by 3 experienced planners to create 120 treatment plans. Each planner created 4 plan variations per patient with respect to needle positions: 125I fixed spacing, 125I variable spacing, 103Pd fixed spacing, and 103Pd variable spacing. The primary planning objective was to achieve a prostate V100 of 100% while minimizing dose to urethra and rectum. Results All plans met the objective of achieving prostate V100 of 100%. Combined results for all plans show statistically significant improvements in all assessed dosimetric variables for urethra (Umax, Umean, D30, D5) and rectum (Rmax, Rmean, RV100) when using variable spacing. The dose reductions for mean and maximum urethra dose using variable spacing had p values of 0.011 and 0.024 with 103Pd, and 0.007 and 0.029 with 125I plans. Similarly dose reductions for mean and maximum rectal dose using variable spacing had p values of 0.007 and 0.052 with 103Pd, and 0.012 and 0.037 with 125I plans. Conclusions The variable needle spacing achievable by the use of robotics in prostate brachytherapy allows for reductions in both urethral and rectal planned doses while maintaining prostate dose coverage. Such dosimetric advantages have the potential in translating to significant clinical benefits with the use of robotic brachytherapy. PMID:26622227
Yeaman, Fiona; Meek, Robert; Egerton-Warburton, Diana; Rosengarten, Pamela; Graudins, Andis
2014-06-01
There are currently no studies assessing effectiveness of sub-dissociative intranasal (IN) ketamine as the initial analgesic for adult patients in the ED. The study aims to examine the effectiveness of sub-dissociative IN ketamine as a primary analgesic agent for adult patients in the ED. This is a prospective, observational study of adult ED patients presenting with severe pain (≥6 on 11-point scale at triage). IN ketamine dose was 0.7 mg/kg, with secondary dose of 0.5 mg/kg at 15 min if pain did not improve. After 6 months, initial dose was increased to 1.0 mg/kg with the same optional secondary dose. The primary outcomes are change in VAS rating at 30 min; percentage of patients reporting clinically significant reduction in VAS (≥20 mm) at 30 min; dose resulting in clinically significant pain reduction. Of the 72 patients available for analysis, median age was 34.5 years and 64% were men. Median initial VAS rating was 76 mm (interquartile range [IQR]: 65-82). Median total dose of IN ketamine for all patients was 0.98 mg/kg (IQR: 0.75-1.15, range: 0.59-1.57). Median reduction in VAS rating at 30 min was 24 mm (IQR: 2-45). Forty (56%, 95% CI: 44.0-66.7) reported VAS reduction ≥20 mm, these patients having had a total median ketamine dose of 0.94 mg/kg (IQR: 0.72-1.04). IN ketamine, at a dose of about 1 mg/kg, was an effective analgesic agent in 56% of study patients. The place of IN ketamine in analgesic guidelines for adults requires further investigation. © 2014 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.
Ikeda, S; Takano, Y; Cynshi, O; Tanaka, R; Christ, A D; Boerlin, V; Beyer, U; Beck, A; Ciorciaro, C; Meyer, M; Kadowaki, T
2015-10-01
To assess the efficacy, safety and tolerability of different doses of tofogliflozin, a novel, highly selective sodium-glucose cotransporter 2 (SGLT2) inhibitor, in patients with type 2 diabetes mellitus (T2DM). In a 12-week, multicentre, multinational, randomized, double-blind, parallel-group, placebo-controlled, dose-finding study, patients with inadequate glycaemic control from diet and exercise alone, or from diet and exercise plus a stable dose of metformin, were randomized to one of five doses of tofogliflozin (2.5, 5, 10, 20, or 40 mg) or placebo. The primary efficacy endpoint was absolute change at week 12 from baseline in glycated haemoglobin (HbA1c), minus the change in the placebo group. Statistically significant dose-dependent reductions in HbA1c were shown in all treated groups except the 2.5-mg dose group, with a maximum reduction of 0.56% (placebo-subtracted) at the 40-mg dose, along with increased urinary glucose excretion. Metformin treatment had no substantial influence on tofogliflozin efficacy. Dose-dependent reductions in fasting plasma glucose and body weight were observed, and glucose intolerance was improved, with a trend towards blood pressure reduction. Slight increases were observed for mean ketone bodies with no abnormal change in ketone body ratio. No deaths or treatment-related serious adverse events were reported. The incidence of adverse events was similar in the placebo (37.9%) to that in the tofogliflozin group (35.9-46.3%). Withdrawal because of adverse events was rare (≤2 patients per treatment group), with similar rates of withdrawal in the placebo and tofogliflozin groups. A once-daily dose of tofogliflozin for 12 weeks was an effective, safe and well-tolerated treatment for T2DM. © 2015 John Wiley & Sons Ltd.
Vyas, Shilpa; Le, Yi; Zhang, Zhe; Armour, Woody; Song, Daniel Y
2015-08-01
Several robotic delivery systems for prostate brachytherapy are under development or in pre-clinical testing. One of the features of robotic brachytherapy is the ability to vary spacing of needles at non-fixed intervals. This feature may play an important role in prostate brachytherapy, which is traditionally template-based with fixed needle spacing of 0.5 cm. We sought to quantify potential reductions in the dose to urethra and rectum by utilizing variable needle spacing, as compared to fixed needle spacing. Transrectal ultrasound images from 10 patients were used by 3 experienced planners to create 120 treatment plans. Each planner created 4 plan variations per patient with respect to needle positions: (125)I fixed spacing, (125)I variable spacing, (103)Pd fixed spacing, and (103)Pd variable spacing. The primary planning objective was to achieve a prostate V100 of 100% while minimizing dose to urethra and rectum. All plans met the objective of achieving prostate V100 of 100%. Combined results for all plans show statistically significant improvements in all assessed dosimetric variables for urethra (Umax, Umean, D30, D5) and rectum (Rmax, Rmean, RV100) when using variable spacing. The dose reductions for mean and maximum urethra dose using variable spacing had p values of 0.011 and 0.024 with (103)Pd, and 0.007 and 0.029 with (125)I plans. Similarly dose reductions for mean and maximum rectal dose using variable spacing had p values of 0.007 and 0.052 with (103)Pd, and 0.012 and 0.037 with (125)I plans. The variable needle spacing achievable by the use of robotics in prostate brachytherapy allows for reductions in both urethral and rectal planned doses while maintaining prostate dose coverage. Such dosimetric advantages have the potential in translating to significant clinical benefits with the use of robotic brachytherapy.
Proschek, Dirk; Kafchitsas, K.; Rauschmann, M. A.; Kurth, A. A.; Vogl, T. J.
2008-01-01
Interventional procedures are associated with high radiation doses for both patients and surgeons. To reduce the risk from ionizing radiation, it is essential to minimize radiation dose. This prospective study was performed to evaluate the effectiveness in reducing radiation dose during facet joint injection in the lumbar spine and to evaluate the feasibility and possibilities of the new real time image guidance system SabreSource™. A total of 60 patients, treated with a standardized injection therapy of the facet joints L4–L5 or L5–S1, were included in this study. A total of 30 patients were treated by fluoroscopy guidance alone, the following 30 patients were treated using the new SabreSource™ system. Thus a total of 120 injections to the facet joints were performed. Pain, according to the visual analogue scale (VAS), was documented before and 6 h after the intervention. Radiation dose, time of radiation and the number of exposures needed to place the needle were recorded. No significant differences concerning age (mean age 60.5 years, range 51–69), body mass index (mean BMI 26.2, range 22.2–29.9) and preoperative pain (VAS 7.9, range 6–10) were found between the two groups. There was no difference in pain reduction between the two groups (60 vs. 61.5%; P = 0.001) but the radiation dose was significantly smaller with the new SabreSource™ system (reduction of radiation dose 32.7%, P = 0.01; reduction of mean entrance surface dose 32.3%, P = 0.01). The SabreSource™ System significantly reduced the radiation dose received during the injection therapy of the lumbar facet joints. With minimal effort for the setup at the beginning of a session, the system is easy to handle and can be helpful for other injection therapies (e.g. nerve root block therapies). PMID:19082641
Yeung, Rosanna; Conroy, Leigh; Long, Karen; Walrath, Daphne; Li, Haocheng; Smith, Wendy; Hudson, Alana; Phan, Tien
2015-09-22
Deep inspiration breath hold (DIBH) reduces heart and left anterior descending artery (LAD) dose during left-sided breast radiation therapy (RT); however there is limited information about which patients derive the most benefit from DIBH. The primary objective of this study was to determine which patients benefit the most from DIBH by comparing percent reduction in mean cardiac dose conferred by DIBH for patients treated with whole breast RT ± boost (WBRT) versus those receiving breast/chest wall plus regional nodal irradiation, including internal mammary chain (IMC) nodes (B/CWRT + RNI) using a modified wide tangent technique. A secondary objective was to determine if DIBH was required to meet a proposed heart dose constraint of Dmean < 4 Gy in these two cohorts. Twenty consecutive patients underwent CT simulation both free breathing (FB) and DIBH. Patients were grouped into two cohorts: WBRT (n = 11) and B/CWRT + RNI (n = 9). 3D-conformal plans were developed and FB was compared to DIBH for each cohort using Wilcoxon signed-rank tests for continuous variables and McNemar's test for discrete variables. The percent relative reduction conferred by DIBH in mean heart and LAD dose, as well as lung V20 were compared between the two cohorts using Wilcox rank-sum testing. The significance level was set at 0.05 with Bonferroni correction for multiple testing. All patients had comparable target coverage on DIBH and FB. DIBH statistically significantly reduced mean heart and LAD dose for both cohorts. Percent reduction in mean heart and LAD dose with DIBH was significantly larger in the B/CWRT + RNI cohort compared to WBRT group (relative reduction in mean heart and LAD dose: 55.9 % and 72.1 % versus 29.2 % and 43.5 %, p < 0.02). All patients in the WBRT group and five patients (56 %) in the B/CWBRT + RNI group met heart Dmean <4 Gy with FB. All patients met this constraint with DIBH. All patients receiving WBRT met Dmean Heart < 4 Gy on FB, while only slightly over half of patients receiving B/CWRT + RNI were able to meet this constraint in FB. DIBH allowed a greater reduction in mean heart and LAD dose in patients receiving B/CWRT + RNI, including IMC nodes than patients receiving WBRT. These findings suggest greatest benefit from DIBH treatment for patients receiving regional nodal irradiation.
Hafezi, Ladan; Arianezhad, S Marjan; Hosseini Pooya, Seyed Mahdi
2018-04-25
The value for the use of thyroid shield is one of the issues in radiation protection of patients in dental panoramic imaging. The objective of this research is to investigate the attenuation characteristics of some models of thyroid shielding in dental panoramic examinations. The effects of five different types of lead and lead-free (Pb-equivalent) shields on dose reduction of thyroid gland were investigated using implanted Thermoluminescence Dosemeters (TLDs) in head-neck parts of a Rando phantom. The results show that frontal lead and Pb-equivalent shields can reduce the thyroid dose around 50% and 19%, respectively. It can be concluded that the effective shielding area is an important parameter in thyroid gland dose reduction. Lead frontal collars with large effective shielding areas (>~300 cm 2 but not necessarily very large) are appropriate for an optimized thyroid gland dose reduction particularly for the critical patients in dental panoramic imaging. Regardless of the shape and thickness, using the Pb-equivalent shields is not justifiable in dental panoramic imaging.
Akhlaghi, Parisa; Hoseinian-Azghadi, Elie; Miri-Hakimabad, Hashem; Rafat-Motavalli, Laleh
2016-01-01
A method for minimizing organ dose during computed tomography examinations is the use of shielding to protect superficial organs. There are some scientific reports that usage of shielding technique reduces the surface dose to patients with no appreciable loss in diagnostic quality. Therefore, in this Monte Carlo study based on the phantom of a 11-year-old Iranian boy, the effect of using an optimized shield on dose reduction to body organs was quantified. Based on the impact of shield on image quality, lead shields with thicknesses of 0.2 and 0.4 mm were considered for organs exposed directly and indirectly in the scan range, respectively. The results showed that there is 50%–62% reduction in amounts of dose for organs located fully or partly in the scan range at different tube voltages and modeling the true location of all organs in human anatomy, especially the ones located at the border of the scan, range affects the results up to 49%. PMID:28144117
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakajima, Y; Kadoya, N; Kabus, S
Purpose: To test the hypothesis: 4D-CT ventilation imaging can show the known effects of radiotherapy on lung function: (1) radiation-induced ventilation reductions, and (2) ventilation increases caused by tumor regression. Methods: Repeat 4D-CT scans (pre-, mid- and/or post-treatment) were acquired prospectively for 11 thoracic cancer patients in an IRB-approved clinical trial. A ventilation image for each time point was created using deformable image registration and the Hounsfield unit (HU)-based or Jacobian-based metric. The 11 patients were divided into two subgroups based on tumor volume reduction using a threshold of 5 cm{sup 3}. To quantify radiation-induced ventilation reduction, six patients whomore » showed a small tumor volume reduction (<5 cm{sup 3}) were analyzed for dose-response relationships. To investigate ventilation increase caused by tumor regression, two of the other five patients were analyzed to compare ventilation changes in the lung lobes affected and unaffected by the tumor. The remaining three patients were excluded because there were no unaffected lobes. Results: Dose-dependent reductions of HU-based ventilation were observed in a majority of the patient-specific dose-response curves and in the population-based dose-response curve, whereas no clear relationship was seen for Jacobian-based ventilation. The post-treatment population-based dose-response curve of HU-based ventilation demonstrated the average ventilation reductions of 20.9±7.0% at 35–40 Gy (equivalent dose in 2-Gy fractions, EQD2), and 40.6±22.9% at 75–80 Gy EQD2. Remarkable ventilation increases in the affected lobes were observed for the two patients who showed an average tumor volume reduction of 37.1 cm{sup 3} and re-opening airways. The mid-treatment increase in HU-based ventilation of patient 3 was 100.4% in the affected lobes, which was considerably greater than 7.8% in the unaffected lobes. Conclusion: This study has demonstrated that 4D-CT ventilation imaging shows the known effects of radiotherapy on lung function: radiation-induced ventilation reduction and ventilation increase caused by tumor regression, providing validation for 4D-CT ventilation imaging. This study was supported in part by a National Lung Cancer Partnership Young Investigator Research grant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutherland, J. G. H.; Miksys, N.; Thomson, R. M., E-mail: rthomson@physics.carleton.ca
2014-01-15
Purpose: To investigate methods of generating accurate patient-specific computational phantoms for the Monte Carlo calculation of lung brachytherapy patient dose distributions. Methods: Four metallic artifact mitigation methods are applied to six lung brachytherapy patient computed tomography (CT) images: simple threshold replacement (STR) identifies high CT values in the vicinity of the seeds and replaces them with estimated true values; fan beam virtual sinogram replaces artifact-affected values in a virtual sinogram and performs a filtered back-projection to generate a corrected image; 3D median filter replaces voxel values that differ from the median value in a region of interest surrounding the voxelmore » and then applies a second filter to reduce noise; and a combination of fan beam virtual sinogram and STR. Computational phantoms are generated from artifact-corrected and uncorrected images using several tissue assignment schemes: both lung-contour constrained and unconstrained global schemes are considered. Voxel mass densities are assigned based on voxel CT number or using the nominal tissue mass densities. Dose distributions are calculated using the EGSnrc user-code BrachyDose for{sup 125}I, {sup 103}Pd, and {sup 131}Cs seeds and are compared directly as well as through dose volume histograms and dose metrics for target volumes surrounding surgical sutures. Results: Metallic artifact mitigation techniques vary in ability to reduce artifacts while preserving tissue detail. Notably, images corrected with the fan beam virtual sinogram have reduced artifacts but residual artifacts near sources remain requiring additional use of STR; the 3D median filter removes artifacts but simultaneously removes detail in lung and bone. Doses vary considerably between computational phantoms with the largest differences arising from artifact-affected voxels assigned to bone in the vicinity of the seeds. Consequently, when metallic artifact reduction and constrained tissue assignment within lung contours are employed in generated phantoms, this erroneous assignment is reduced, generally resulting in higher doses. Lung-constrained tissue assignment also results in increased doses in regions of interest due to a reduction in the erroneous assignment of adipose to voxels within lung contours. Differences in dose metrics calculated for different computational phantoms are sensitive to radionuclide photon spectra with the largest differences for{sup 103}Pd seeds and smallest but still considerable differences for {sup 131}Cs seeds. Conclusions: Despite producing differences in CT images, dose metrics calculated using the STR, fan beam + STR, and 3D median filter techniques produce similar dose metrics. Results suggest that the accuracy of dose distributions for permanent implant lung brachytherapy is improved by applying lung-constrained tissue assignment schemes to metallic artifact corrected images.« less
Ettienne, Earl B; Chapman, Edwin; Maneno, Mary; Ofoegbu, Adaku; Wilson, Bradford; Settles-Reaves, Beverlyn; Clarke, Melissa; Dunston, Georgia; Rosenblatt, Kevin
2017-12-01
Opioid use disorder (OUD) is characterized by a problematic pattern of opioid use leading to clinically-significant impairment or distress. Opioid agonist treatment is an integral component of OUD management, and buprenorphine is often utilized in OUD management due to strong clinical evidence for efficacy. However, interindividual genetic differences in buprenorphine metabolism may result in variable treatment response, leaving some patients undertreated and at increased risk for relapse. Clinical pharmacogenomics studies the effect that inherited genetic variations have on drug response. Our objective is to demonstrate the impact of pharmacogenetic testing on OUD management outcomes. We analyzed a patient who reported discomfort at daily buprenorphine dose of 24 mg, which was a mandated daily maximum by the pharmacy benefits manager. Regular urine screenings were conducted to detect the presence of unauthorized substances, and pharmacogenetic testing was used to determine the appropriate dose of buprenorphine for OUD management. At the 24 mg buprenorphine daily dose, the patient had multiple relapses with unauthorized substances. Pharmacogenetic testing revealed that the patient exhibited a cytochrome P450 3A4 ultrarapid metabolizer phenotype, which necessitated a higher than recommended daily dose of buprenorphine (32 mg) for adequate OUD management. The patient exhibited a reduction in the number of relapses on the pharmacogenetic-based dose recommendation compared to standard dosing. Pharmacogenomic testing as clinical decision support helped to individualize OUD management. Collaboration by key stakeholders is essential to establishing pharmacogenetic testing as standard of care in OUD management.
Hartmann, Josefin; Distler, Florian A; Baumueller, Martin; Guni, Ewald; Pahernik, Sascha A; Wucherer, Michael
2018-06-14
Due to new radiobiological data, the ICRP recommends a dose limit of 20mSv per year to the eye lens. Therefore, the IAEA International Basic Safety Standard and the EU council directive 2013/59/EURATOM requires a reduction of the annual dose limit from 150mSv to 20mSv. Urologists are exposed to an elevated radiation exposure in the head region during fluoroscopic interventions, due to the commonly used overtable X-ray tubes and the rarely used radiation protection for the head. Aim of the study was to analyze real radiation exposure to the eye lens of the urologist during various interventions during which the patient is in the lithotomy position. The partial body doses (forehead and apron collar) of the urologists and surgical staff were measured over a period of two months. 95 interventions were performed on Uroskop Omnia Max workplaces (Siemens Healthineers, Erlangen, Germany). Interventions were class-divided in less (stage I) and more complex (stage II) interventions. Two dosimeter-types were applied: well-calibrated electronic personal dosimeter EPD Mk2 and self-calibrated TLD-100H (both Thermo Fisher Scientific, Waltham, USA). The radiation exposure parameters were documented using the dose area product (DAP) and the fluoroscopy time (FT). The correlation between DAP and the apron dose of the urologist was in average 0.07µSv per 1µGym². The more experienced urologists yielded a mean DAP of 166µGym² for stage I and 415µGym² for stage II procedures. The interventionist was exposed with 10µSv in mean outside the lead apron collar. The mean dose value of the eye lenses per intervention was ascertained to 20µSv (mean DAP: 233µGym²). The study setup allows a differentiated and time-resolved measurement of the radiation exposure, which was found heterogeneous depending on intervention and surgeon. In this setting, approximately 1000 interventions can be performed until the annual eye lens dose limit is achieved.
Poi, Ming J.; Hofmeister, Craig C.; Johnston, Jeffrey S.; Edwards, Ryan B.; Jansak, Buffy S.; Lucas, David M.; Farag, Sherif S.; Dalton, James T.; Devine, Steven M.; Grever, Michael R.; Phelps, Mitch A.
2013-01-01
Background and Objective Pentostatin is an irreversible inhibitor of adenosine deaminase and has been used to prevent graft-versus-host disease (GVHD) and to treat both acute and chronic GVHD. Dose reduction equations for patients with renal insufficiency are based on few patients with limited pharmacokinetic and clinical results. This phase II study (NCT00201786) was conducted to assess pentostatin efficacy and infectious complications seen from our previous phase I study in steroid-refractory acute GVHD (aGVHD). Patients and Methods Hospitalized patients with steroid-refractory aGVHD were given pentostatin 1.5 mg/m2/day intravenously on days 1–3 of each 14 day cycle. Prior to each dose, dose modifications were based on Cockcroft-Gault estimated creatinine clearance (eCrCL) with 30–50 ml/min/1.73m2 leading to a 50% dose reduction and eCrCL< 30 ml/min/1.73m2 leading to study removal. Plasma pentostatin area under the concentration-time curve (AUC) and incidence of infectious complications were evaluated. Results Two of the eight patients treated demonstrated excessive pentostatin exposure as determined by measurement of AUC. One of these patients had renal impairment while the other patient demonstrated borderline renal function. Despite dose reduction to 0.75 mg/m2, AUCs were significantly increased compared to the other patients in this study. Seven of eight patients treated with pentostatin had cytomegalovirus (CMV) viremia after pentostatin treatment; however none developed proven CMV disease. Conclusion A 50% dose reduction in patients with eCrCL 30–50 ml/min/1.73m2 seems reasonable. However, the eCrCL should be interpreted with extreme cautions in patients who are critically ill and/or with poor performance status. Renal function assessment based on the Cockcroft-Gault method could be significantly overestimated thus risking pentostatin over-dosing. These results imply a need to closely monitor pentostatin exposure in patients with renal insufficiency. PMID:23588536
A Review of Update Clinical Results of Carbon Ion Radiotherapy
Tsujii, Hirohiko; Kamada, Tadashi
2012-01-01
Among various types of ion species, carbon ions are considered to have the most balanced, optimal properties in terms of possessing physically and biologically effective dose localization in the body. This is due to the fact that when compared with photon beams, carbon ion beams offer improved dose distribution, leading to the concentration of the sufficient dose within a target volume while minimizing the dose in the surrounding normal tissues. In addition, carbon ions, being heavier than protons, provide a higher biological effectiveness, which increases with depth, reaching the maximum at the end of the beam's range. This is practically an ideal property from the standpoint of cancer radiotherapy. Clinical studies have been carried out in the world to confirm the efficacy of carbon ions against a variety of tumors as well as to develop effective techniques for delivering an efficient dose to the tumor. Through clinical experiences of carbon ion radiotherapy at the National Institute of Radiological Sciences and Gesellschaft für Schwerionenforschung, a significant reduction in the overall treatment time with acceptable toxicities has been obtained in almost all types of tumors. This means that carbon ion radiotherapy has meanwhile achieved for itself a solid place in general practice. This review describes clinical results of carbon ion radiotherapy together with physical, biological and technological aspects of carbon ions. PMID:22798685
Transitional polytherapy: tricks of the trade for monotherapy to monotherapy AED conversions.
Garnett, William R; St Louis, Erik K; Henry, Thomas R; Bramley, Thomas
2009-06-01
The goal of epilepsy therapy is to help patients achieve seizure freedom without adverse effects. While monotherapy is preferable in epilepsy treatment, many patients fail a first drug due to lack of efficacy or failure to tolerate an initial medication, necessitating an alteration in therapy. Sudden changes between monotherapies are rarely feasible and sometimes deleterious given potential hazards of acute seizure exacerbation or intolerable adverse effects. The preferred method for converting between monotherapies is transitional polytherapy, a process involving initiation of a new antiepileptic drug (AED) and adjusting it toward a target dose while maintaining or reducing the dose of the baseline medication. A fixed-dose titration strategy of maintaining the baseline drug dose while titrating the new medication is preferable when breakthrough seizures are occurring and no adverse effects are present. However, a flexible titration strategy involving reduction of the baseline drug dose to ensure adequate tolerability of the new adjunctive medication is preferred when patients are already experiencing adverse effects. This article reviews pharmacokinetic considerations pertinent for ensuring successful transitional polytherapy with the standard and newer antiepileptic drugs. Practical consensus recommendations "from an expect panel (SPECTRA, Study by a Panel of Experts Considerations for Therapy Replacement and Antiepileptics) for a successful monotherapy" AED conversions are then summarized. Transitional polytherapy is most successful when clinicians appropriately manage the titration strategy and consider pharmacokinetic factors germane to the baseline and new adjunctive medication.
What we need to know about the effect of lithium on the kidney.
Gong, Rujun; Wang, Pei; Dworkin, Lance
2016-12-01
Lithium has been a valuable treatment for bipolar affective disorders for decades. Clinical use of lithium, however, has been problematic due to its narrow therapeutic index and concerns for its toxicity in various organ systems. Renal side effects associated with lithium include polyuria, nephrogenic diabetes insipidus, proteinuria, distal renal tubular acidosis, and reduction in glomerular filtration rate. Histologically, chronic lithium nephrotoxicity is characterized by interstitial nephritis with microcyst formation and occasional focal segmental glomerulosclerosis. Nevertheless, this type of toxicity is uncommon, with the strongest risk factors being high serum levels of lithium and longer time on lithium therapy. In contrast, in experimental models of acute kidney injury and glomerular disease, lithium has antiproteinuric, kidney protective, and reparative effects. This paradox may be partially explained by lower lithium doses and short duration of therapy. While long-term exposure to higher psychiatric doses of lithium may be nephrotoxic, short-term low dose of lithium may be beneficial and ameliorate kidney and podocyte injury. Mechanistically, lithium targets glycogen synthase kinase-3β, a ubiquitously expressed serine/threonine protein kinase implicated in the processes of tissue injury, repair, and regeneration in multiple organ systems, including the kidney. Future studies are warranted to discover the exact "kidney-protective dose" of lithium and test the effects of low-dose lithium on acute and chronic kidney disease in humans. Copyright © 2016 the American Physiological Society.
Lee, Seung Hyun; Kim, Myung-Joon; Yoon, Choon-Sik; Lee, Mi-Jung
2012-09-01
To retrospectively compare radiation dose and image quality of pediatric chest CT using a routine dose protocol reconstructed with filtered back projection (FBP) (the Routine study) and a low-dose protocol with 50% adaptive statistical iterative reconstruction (ASIR) (the ASIR study). We retrospectively reviewed chest CT performed in pediatric patients who underwent both the Routine study and the ASIR study on different days between January 2010 and August 2011. Volume CT dose indices (CTDIvol), dose length products (DLP), and effective doses were obtained to estimate radiation dose. The image quality was evaluated objectively as noise measured in the descending aorta and paraspinal muscle, and subjectively by three radiologists for noise, sharpness, artifacts, and diagnostic acceptability using a four-point scale. The paired Student's t-test and the Wilcoxon signed-rank test were used for statistical analysis. Twenty-six patients (M:F=13:13, mean age 11.7) were enrolled. The ASIR studies showed 60.3%, 56.2%, and 55.2% reductions in CTDIvol (from 18.73 to 7.43 mGy, P<0.001), DLP (from 307.42 to 134.51 mGy×cm, P<0.001), and effective dose (from 4.12 to 1.84 mSv, P<0.001), respectively, compared with the Routine studies. The objective noise was higher in the paraspinal muscle of the ASIR studies (20.81 vs. 16.67, P=0.004), but was not different in the aorta (18.23 vs. 18.72, P=0.726). The subjective image quality demonstrated no difference between the two studies. A low-dose protocol with 50% ASIR allows radiation dose reduction in pediatric chest CT by more than 55% while maintaining image quality. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Stocker, Gertraud; Hacker, Ulrich T; Fiteni, Frédéric; John Mahachie, Jestinah; Roth, Arnaud D; Van Cutsem, Eric; Peeters, Marc; Lordick, Florian; Mauer, Murielle
2018-06-12
Dose reduction in obese cancer patients has been replaced by fully weight-based dosing recommendations. No data, however, are available on the effects of dose reduction in obese stage III colon cancer patients undergoing adjuvant chemotherapy. Survival outcomes and toxicity data of obese (body mass index [BMI] ≥30 kg/m 2 ), stage III colon cancer patients treated within the phase III PETACC 3 trial comparing leucovorin, 5-FU (LV5FU2) with LV5FU2 plus irinotecan were analysed retrospectively according to chemotherapy dosing at first infusion (i.e. fully weight-based dosed - versus dose-reduced group). Multivariate analyses on relapse free survival (RFS) and overall survival (OS) were conducted to adjust for baseline prognostic factors using Cox regression model. 13.4% (280 of 2094 patients) had a BMI ≥ 30 kg/m 2 , and 5.3% had both a BMI ≥ 30 kg/m 2 and a body surface area (BSA) ≥2 m 2 . Dose reductions occurred in 16.1% of patients with a BMI ≥ 30 kg/m 2 and 32.4% with BMI ≥ 30 kg/m 2 and BSA ≥ 2 m 2 , respectively. In patients with BMI ≥ 30 kg/m 2 , multivariate analysis demonstrated a trend towards better RFS in the fully dosed compared to the dose-reduced group (Hazard ratio (HR): 0.69, 95% CI: 0.43-1.09; p = 0.11); however, there was no statistically significant difference in OS. In patients with BMI ≥ 30 kg/m 2 and BSA ≥ 2 m 2 , multivariate analysis demonstrated better RFS in fully dosed compared with dose-reduced patients (HR: 0.48, 95% CI: 0.27-0.85; p = 0.01) and a strong trend towards better OS (HR: 0.53, 95% CI: 0.28-1.01; p = 0.052). This group comprised predominantly of men. Data support the recommendation of using fully dosed chemotherapy for the adjuvant treatment in obese patients with colon cancer. Copyright © 2018 Elsevier Ltd. All rights reserved.
Siegel, Michael P.; Kruse, Shane E.; Knowels, Gary; Salmon, Adam; Beyer, Richard; Xie, Hui; Van Remmen, Holly; Smith, Steven R.; Marcinek, David J.
2011-01-01
Oxidative stress and mitochondrial function are at the core of many degenerative conditions. However, the interaction between oxidative stress and in vivo mitochondrial function is unclear. We used both pharmacological (2 week paraquat (PQ) treatment of wild type mice) and transgenic (mice lacking Cu, Zn-superoxide dismutase (SOD1−/−)) models to test the effect of oxidative stress on in vivo mitochondrial function in skeletal muscle. Magnetic resonance and optical spectroscopy were used to measure mitochondrial ATP and oxygen fluxes and cell energetic state. In both models of oxidative stress, coupling of oxidative phosphorylation was significantly lower (lower P/O) at rest in vivo in skeletal muscle and was dose-dependent in the PQ model. Despite this reduction in efficiency, in vivo mitochondrial phosphorylation capacity (ATPmax) was maintained in both models, and ex vivo mitochondrial respiration in permeabilized muscle fibers was unchanged following PQ treatment. In association with the reduced P/O, PQ treatment led to a dose-dependent reduction in PCr/ATP ratio and increased phosphorylation of AMPK. These results indicate that oxidative stress uncouples oxidative phosphorylation in vivo and results in energetic stress in the absence of defects in the mitochondrial electron transport chain. PMID:22132085
NASA Astrophysics Data System (ADS)
Stratis, Andreas; Zhang, Guozhi; Jacobs, Reinhilde; Bogaerts, Ria; Bosmans, Hilde
2015-03-01
The aim of this work was to investigate the influence of backscatter radiation from the orbital bone and the intraorbital fat on the eye lens dose in the dental CBCT energy range. To this end we conducted three different yet interrelated studies; A preliminary simulation study was conducted to examine the impact of a bony layer situated underneath a soft tissue layer on the amount of backscatter radiation. We compared the Percentage Depth Dose (PDD) curves in soft tissue with and without the bone layer and we estimated the depth in tissue where the decrease in backscatter caused by the presence of the bone is noticeable. In a supplementary study, an eye voxel phantom was designed with the DOSxyznrc code. Simulations were performed exposing the phantom at different x-ray energies sequentially in air, in fat tissue and in realistic anatomy with the incident beam perpendicular to the phantom. Finally, a virtual head phantom was implemented into a validated hybrid Monte Carlo (MC) framework to simulate a large Field of View protocol of a real CBCT scanner and examine the influence of scattered dose to the eye lens during the whole rotation of the paired tube-detector system. The results indicated an increase in the dose to the lens due to the fatty tissue in the surrounding anatomy. There is a noticeable dose reduction close to the bone-tissue interface which weakens with increasing distance from the interface, such that the impact of the orbital bone in the eye lens dose becomes small.
Rothenberg, Stephen J; Rothenberg, Jesse C
2005-09-01
Statistical evaluation of the dose-response function in lead epidemiology is rarely attempted. Economic evaluation of health benefits of lead reduction usually assumes a linear dose-response function, regardless of the outcome measure used. We reanalyzed a previously published study, an international pooled data set combining data from seven prospective lead studies examining contemporaneous blood lead effect on IQ (intelligence quotient) of 7-year-old children (n = 1,333). We constructed alternative linear multiple regression models with linear blood lead terms (linear-linear dose response) and natural-log-transformed blood lead terms (log-linear dose response). We tested the two lead specifications for nonlinearity in the models, compared the two lead specifications for significantly better fit to the data, and examined the effects of possible residual confounding on the functional form of the dose-response relationship. We found that a log-linear lead-IQ relationship was a significantly better fit than was a linear-linear relationship for IQ (p = 0.009), with little evidence of residual confounding of included model variables. We substituted the log-linear lead-IQ effect in a previously published health benefits model and found that the economic savings due to U.S. population lead decrease between 1976 and 1999 (from 17.1 microg/dL to 2.0 microg/dL) was 2.2 times (319 billion dollars) that calculated using a linear-linear dose-response function (149 billion dollars). The Centers for Disease Control and Prevention action limit of 10 microg/dL for children fails to protect against most damage and economic cost attributable to lead exposure.
Cost-effectiveness of rotavirus vaccination in peru.
Clark, Andrew D; Walker, Damian G; Mosqueira, N Rocio; Penny, Mary E; Lanata, Claudio F; Fox-Rushby, Julia; Sanderson, Colin F B
2009-11-01
There are plans to introduce the oral rotavirus vaccine Rotarix (GlaxoSmithKline), 1 of 2 recently developed vaccines against rotavirus, in Peru. We modeled the cost-effectiveness of adding a rotavirus vaccine to the Peruvian immunization program under 3 scenarios for the timing of vaccination: (1) strictly according to schedule, at 2 and 4 months of age (on time); (2) distributed around the target ages in the same way as the actual timings in the program (flexible); and (3) flexible but assuming vaccination is not initiated for infants >12 weeks of age (restricted). We assumed an introductory price of US $7.50 per dose, and varied the annual rate of price decrease in sensitivity analyses. The discounted cost per disability-adjusted life-year averted for restricted, flexible, and on-time schedules was $621, $615, and $581, respectively. For each of the 3 scenarios, the percentage reduction in deaths due to rotavirus infection was 53%, 66%, and 69%, respectively. The cost per disability-adjusted life-year averted for alternative "what-if" scenarios ranged from $229 (assuming a 1-dose schedule, administered on time) to $1491 (assuming a 2-dose schedule, with half the baseline vaccine efficacy rates and a restricted timing policy). On the basis of current World Health Organization guidelines, rotavirus vaccination represents a highly cost-effective intervention in Peru. Withholding the vaccine from children who present for their first dose after 12 weeks of age would reduce the number of deaths averted by approximately 20%. A single dose may be more cost-effective than 2 doses, but more evidence on the protection conferred by a single dose is required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baum, J.W.
1990-01-01
Implementation of the As Low As Reasonably Achievable (ALARA) principle at nuclear power plants presents a continuing challenge for health physicists at utility corporate and plant levels, for plant designers, and for regulatory agencies. The relatively large collective doses at some plants are being addressed though a variety of dose reduction techniques. It is planned that this report will include material on historical aspects, management, valuation of dose reduction, quantitative and qualitative aspects of optimization, design, operational considerations, and training. The status of this work is summarized in this report. 30 refs., 1 fig., 6 tabs.
Radiation Dose Reduction by Indication-Directed Focused z-Direction Coverage for Neck CT.
Parikh, A K; Shah, C C
2016-06-01
The American College of Radiology-American Society of Neuroradiology-Society for Pediatric Radiology Practice Parameter for a neck CT suggests that coverage should be from the sella to the aortic arch. It also recommends using CT scans judiciously to achieve the clinical objective. Our purpose was to analyze the potential dose reduction by decreasing the scan length of a neck CT and to assess for any clinically relevant information that might be missed from this modified approach. This retrospective study included 126 children who underwent a neck CT between August 1, 2013, and September 30, 2014. Alteration of the scan length for the modified CT was suggested on the topographic image on the basis of the indication of the study, with the reader blinded to the images and the report. The CT dose index volume of the original scan was multiplied by the new scan length to calculate the dose-length product of the modified study. The effective dose was calculated for the original and modified studies by using age-based conversion factors from the American Association of Physicists in Medicine Report No. 96. Decreasing the scan length resulted in an average estimated dose reduction of 47%. The average reduction in scan length was 10.4 cm, decreasing the overall coverage by 48%. The change in scan length did not result in any missed findings that altered management. Of the 27 abscesses in this study, none extended to the mediastinum. All of the lesions in question were completely covered. Decreasing the scan length of a neck CT according to the indication provides a significant savings in radiation dose, while not altering diagnostic ability or management. © 2016 by American Journal of Neuroradiology.
Finamor, Isabela A; Ourique, Giovana M; Pês, Tanise S; Saccol, Etiane M H; Bressan, Caroline A; Scheid, Taína; Baldisserotto, Bernardo; Llesuy, Susana F; Partata, Wânia A; Pavanato, Maria A
2014-09-01
Long-term intake of aspartame at the acceptable daily dose causes oxidative stress in rodent brain mainly due to the dysregulation of glutathione (GSH) homeostasis. N-Acetylcysteine provides the cysteine that is required for the production of GSH, being effective in treating disorders associated with oxidative stress. We investigated the effects of N-acetylcysteine treatment (150 mg kg(-1), i.p.) on oxidative stress biomarkers in rat brain after chronic aspartame administration by gavage (40 mg kg(-1)). N-Acetylcysteine led to a reduction in the thiobarbituric acid reactive substances, lipid hydroperoxides, and carbonyl protein levels, which were increased due to aspartame administration. N-Acetylcysteine also resulted in an elevation of superoxide dismutase, glutathione peroxidase, glutathione reductase activities, as well as non-protein thiols, and total reactive antioxidant potential levels, which were decreased after aspartame exposure. However, N-acetylcysteine was unable to reduce serum glucose levels, which were increased as a result of aspartame administration. Furthermore, catalase and glutathione S-transferase, whose activities were reduced due to aspartame treatment, remained decreased even after N-acetylcysteine exposure. In conclusion, N-acetylcysteine treatment may exert a protective effect against the oxidative damage in the brain, which was caused by the long-term consumption of the acceptable daily dose of aspartame by rats.
Nie, Yafeng; Qiang, Zhimin; Ben, Weiwei; Liu, Junxin
2014-06-01
Sludge ozonation is considered as a promising technology to achieve a complete reduction of excess sludge, but as yet its effects on the removal of endocrine-disrupting chemicals (EDCs) and conventional pollutants (i.e., COD, N and P) in the activated sludge process are still unclear. In this study, two lab-scale continuous-operating activated sludge treatment systems were established: one was operated in conjunction with ozonation for excess sludge reduction, and the other was operated under normal conditions as control. The results indicate that an ozone dose of 100 mg O₃ g(-1)SS led to a zero yield of excess sludge in the sludge-reduction system during a continuous-operating period of 45d. Although ozonation gave a relatively lower specific oxygen uptake rate of activated sludge, it had little effect on the system's removal performance of COD and nitrogen substances. As a plus, sludge ozonation contributed a little more removal of target EDCs (estrone, 17β-estrodiol, estriol, 17α-ethinylestradiol, bisphenol A, and 4-nonylphenol). However, the total phosphorus removal declined notably due to its accumulation in the sludge-reduction system, which necessitates phosphorus recovery for the activated sludge process. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badkul, R; Pokhrel, D; Jiang, H
2016-06-15
Purpose: Intra-fractional tumor motion due to respiration may potentially compromise dose delivery for SBRT of lung tumors. Even sufficient margins are used to ensure there is no geometric miss of target volume, there is potential dose blurring effect may present due to motion and could impact the tumor coverage if motions are larger. In this study we investigated dose blurring effect of open fields as well as Lung SBRT patients planned using 2 non-coplanar dynamic conformal arcs(NCDCA) and few conformal beams(CB) calculated with Monte Carlo (MC) based algorithm utilizing phantom with 2D-diode array(MapCheck) and ion-chamber. Methods: SBRT lung patients weremore » planned on Brainlab-iPlan system using 4D-CT scan and ITV were contoured on MIP image set and verified on all breathing phase image sets to account for breathing motion and then 5mm margin was applied to generate PTV. Plans were created using two NCDCA and 4-5 CB 6MV photon calculated using XVMC MC-algorithm. 3 SBRT patients plans were transferred to phantom with MapCheck and 0.125cc ion-chamber inserted in the middle of phantom to calculate dose. Also open field 3×3, 5×5 and 10×10 were calculated on this phantom. Phantom was placed on motion platform with varying motion from 5, 10, 20 and 30 mm with duty cycle of 4 second. Measurements were carried out for open fields as well 3 patients plans at static and various degree of motions. MapCheck planar dose and ion-chamber reading were collected and compared with static measurements and computed values to evaluate the dosimetric effect on tumor coverage due to motion. Results: To eliminate complexity of patients plan 3 simple open fields were also measured to see the dose blurring effect with the introduction of motion. All motion measured ionchamber values were normalized to corresponding static value. For open fields 5×5 and 10×10 normalized central axis ion-chamber values were 1.00 for all motions but for 3×3 they were 1 up to 10mm motion and 0.97 and 0.87 for 20 and 30mm motion respectively. For SBRT plans central axis dose values were within 1% upto 10mm motions but decreased to average of 5% for 20mm and 8% for 30mm motion. Mapcheck comparison with static showed penumbra enlargement due to motion blurring at the edges of the field for 3×3,5×5,10×10 pass rates were 88% to 12%, 100% to 43% and 100% to 63% respectively as motion increased from 5 to 30mm. For SBRT plans MapCheck mean pass rate were decreased from 73.8% to 39.5% as motion increased from 5mm to 30mm. Conclusion: Dose blurring effect has been seen in open fields as well as SBRT lung plans using NCDCA with CB which worsens with increasing respiratory motion and decreasing field size(tumor size). To reduce this effect larger margins and appropriate motion reduction techniques should be utilized.« less
Rapid Acute Dose Assessment Using MCNP6
NASA Astrophysics Data System (ADS)
Owens, Andrew Steven
Acute radiation doses due to physical contact with a high-activity radioactive source have proven to be an occupational hazard. Multiple radiation injuries have been reported due to manipulating a radioactive source with bare hands or by placing a radioactive source inside a shirt or pants pocket. An effort to reconstruct the radiation dose must be performed to properly assess and medically manage the potential biological effects from such doses. Using the reference computational phantoms defined by the International Commission on Radiological Protection (ICRP) and the Monte Carlo N-Particle transport code (MCNP6), dose rate coefficients are calculated to assess doses for common acute doses due to beta and photon radiation sources. The research investigates doses due to having a radioactive source in either a breast pocket or pants back pocket. The dose rate coefficients are calculated for discrete energies and can be used to interpolate for any given energy of photon or beta emission. The dose rate coefficients allow for quick calculation of whole-body dose, organ dose, and/or skin dose if the source, activity, and time of exposure are known. Doses are calculated with the dose rate coefficients and compared to results from the International Atomic Energy Agency (IAEA) reports from accidents that occurred in Gilan, Iran and Yanango, Peru. Skin and organ doses calculated with the dose rate coefficients appear to agree, but there is a large discrepancy when comparing whole-body doses assessed using biodosimetry and whole-body doses assessed using the dose rate coefficients.
Phosphorus-defect interactions during thermal annealing of ion implanted silicon
NASA Astrophysics Data System (ADS)
Keys, Patrick Henry
Ion implantation of dopant atoms into silicon generates nonequilibrium levels of crystal defects that can lead to the detrimental effects of transient enhanced diffusion (TED), incomplete dopant activation, and p-n junction leakage. In order to control these effects, it is vital to have a clear understanding of dopant-defect interactions and develop models that account for these interactions. This research focuses on experimentally investigating and modeling the clustering of phosphorus dopant atoms with silicon interstitials. Damage recovery of 40keV Si+ implants in phosphorus doped wells is experimentally analyzed. The effects of background phosphorus concentration, self implant dose, and anneal temperature are investigated. Phosphorus concentrations ranging from 2.0 x 1017 to 4.0 x 1019 cm-3 and Si+ doses ranging from 5.0 x 1013 cm-2 to 2.0 x 1014 cm-2 are studied during 650-800°C anneals. A dramatic reduction in the number of interstitials bound in {311} defects with increasing phosphorus background concentration is observed. It is suggested that the reduction of interstitials in {311} defects at high phosphorus concentrations is due to the formation of phosphorus-interstitial clusters (PICs). The critical concentration for clustering (approximately 1.0 x 1019 cm-3 at 750°C) is strongly temperature dependent and in close agreement with the kink concentration of phosphorus diffusion. Information gained from these "well experiments" is applied to the study of direct phosphorus implantation. An experimental study is conducted on 40keV phosphorus implanted to a dose of 1.0 x 1014 cm-2 during 650-800°C anneals. Electrically inactive PICs are shown to form at concentrations below the solid solubility limit due to high interstitial supersaturations. Data useful for developing a model to accurately predict phosphorus diffusion under nonequilibrium conditions are extracted from the experimental results. A cluster-mediated diffusion model is developed using the Florida Object Oriented Process Simulator (FLOOPS). The nucleation of defects is controlled by the diffusion-limited competition for excess interstitials between PICs and {311} clusters. The release of interstitials is driven by cluster dissolution. Modeling results show a strong correlation to those experimentally observed over a wide temporal and thermal domain using a single set of parameters. Improvements in process simulator accuracy are demonstrated with respect to dopant activation, TED, and dose loss.
Perchlorate as an emerging contaminant in soil, water and food.
Kumarathilaka, Prasanna; Oze, Christopher; Indraratne, S P; Vithanage, Meththika
2016-05-01
Perchlorate ( [Formula: see text] ) is a strong oxidizer and has gained significant attention due to its reactivity, occurrence, and persistence in surface water, groundwater, soil and food. Stable isotope techniques (i.e., ((18)O/(16)O and (17)O/(16)O) and (37)Cl/(35)Cl) facilitate the differentiation of naturally occurring perchlorate from anthropogenic perchlorate. At high enough concentrations, perchlorate can inhibit proper function of the thyroid gland. Dietary reference dose (RfD) for perchlorate exposure from both food and water is set at 0.7 μg kg(-1) body weight/day which translates to a drinking water level of 24.5 μg L(-1). Chromatographic techniques (i.e., ion chromatography and liquid chromatography mass spectrometry) can be successfully used to detect trace level of perchlorate in environmental samples. Perchlorate can be effectively removed by wide variety of remediation techniques such as bio-reduction, chemical reduction, adsorption, membrane filtration, ion exchange and electro-reduction. Bio-reduction is appropriate for large scale treatment plants whereas ion exchange is suitable for removing trace level of perchlorate in aqueous medium. The environmental occurrence of perchlorate, toxicity, analytical techniques, removal technologies are presented. Copyright © 2016 Elsevier Ltd. All rights reserved.
Can reduction of uncertainties in cervix cancer brachytherapy potentially improve clinical outcome?
Nesvacil, Nicole; Tanderup, Kari; Lindegaard, Jacob C; Pötter, Richard; Kirisits, Christian
2016-09-01
The aim of this study was to quantify the impact of different types and magnitudes of dosimetric uncertainties in cervix cancer brachytherapy (BT) on tumour control probability (TCP) and normal tissue complication probability (NTCP) curves. A dose-response simulation study was based on systematic and random dose uncertainties and TCP/NTCP models for CTV and rectum. Large patient cohorts were simulated assuming different levels of dosimetric uncertainties. TCP and NTCP were computed, based on the planned doses, the simulated dose uncertainty, and an underlying TCP/NTCP model. Systematic uncertainties of 3-20% and random uncertainties with a 5-30% standard deviation per BT fraction were analysed. Systematic dose uncertainties of 5% lead to a 1% decrease/increase of TCP/NTCP, while random uncertainties of 10% had negligible impact on the dose-response curve at clinically relevant dose levels for target and OAR. Random OAR dose uncertainties of 30% resulted in an NTCP increase of 3-4% for planned doses of 70-80Gy EQD2. TCP is robust to dosimetric uncertainties when dose prescription is in the more flat region of the dose-response curve at doses >75Gy. For OARs, improved clinical outcome is expected by reduction of uncertainties via sophisticated dose delivery and treatment verification. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Purpose of the meeting was to provide a record of experience at nuclear facilities, other than TMI-2, of events and incidents which have required decontamination and dose reduction activities, and to furnish GPU and others involved in the TMI-2 cleanup with the results of that decontamination and dose reduction technology. Separate abstracts were prepared for 24 of the 25 papers; the remaining paper had been previously abstracted. (DLC)
Nieradko-Iwanicka, Barbara; Borzęcki, Andrzej
2016-04-01
Fenpropathrin (Fen) is a pyrethroid (Pyr) insecticide. Pyrs are used in veterinary medicine, in agriculture and for domestic purposes. As their use increases, new questions about their side effects and mode of action in non-target organisms arise. The objective of this work was to characterize dose-response relationship for in vivo motor function and memory in mice exposed to Fen for 28 days and to assess its influence on activity of antioxidant enzymes in mice brains. The experiment was performed using 64 female mice. Fen at the dose of 11.9mg/kg of body mass, 5.95mg/kg or 2.38mg/kg was administered ip to the mice for 28 consecutive days. Motor function and spatial working memory were tested on days 7, 14 and 28. On day 29, the animals were sacrificed and brains were used to determine activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx). Fen significantly decreased locomotor activity in mice receiving the highest dose at every stage of the experiment. Lower doses reduced locomotion on days 7 and 14. Fen did not produce memory impairment. A decrease in activities of SOD and GPx was recorded in mice brains. The decrease of SOD activity in mice brains results from direct inhibition of the enzyme by Fen and/or increased utilization due to excessive free radical formation in conditions of Fen-induced oxidative stress. The reduction in GPx activity is probably due to limited glutathione availability. The reduced locomotor activity is a behavioral demonstration of Fen-induced damage in the dopaminergic system. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Ultra-high spatial resolution multi-energy CT using photon counting detector technology
NASA Astrophysics Data System (ADS)
Leng, S.; Gutjahr, R.; Ferrero, A.; Kappler, S.; Henning, A.; Halaweish, A.; Zhou, W.; Montoya, J.; McCollough, C.
2017-03-01
Two ultra-high-resolution (UHR) imaging modes, each with two energy thresholds, were implemented on a research, whole-body photon-counting-detector (PCD) CT scanner, referred to as sharp and UHR, respectively. The UHR mode has a pixel size of 0.25 mm at iso-center for both energy thresholds, with a collimation of 32 × 0.25 mm. The sharp mode has a 0.25 mm pixel for the low-energy threshold and 0.5 mm for the high-energy threshold, with a collimation of 48 × 0.25 mm. Kidney stones with mixed mineral composition and lung nodules with different shapes were scanned using both modes, and with the standard imaging mode, referred to as macro mode (0.5 mm pixel and 32 × 0.5 mm collimation). Evaluation and comparison of the three modes focused on the ability to accurately delineate anatomic structures using the high-spatial resolution capability and the ability to quantify stone composition using the multi-energy capability. The low-energy threshold images of the sharp and UHR modes showed better shape and texture information due to the achieved higher spatial resolution, although noise was also higher. No noticeable benefit was shown in multi-energy analysis using UHR compared to standard resolution (macro mode) when standard doses were used. This was due to excessive noise in the higher resolution images. However, UHR scans at higher dose showed improvement in multi-energy analysis over macro mode with regular dose. To fully take advantage of the higher spatial resolution in multi-energy analysis, either increased radiation dose, or application of noise reduction techniques, is needed.
Becker, Debbie L; Chit, Ayman; DiazGranados, Carlos A; Maschio, Michael; Yau, Eddy; Drummond, Michael
2016-12-01
Seasonal influenza infects approximately 10-20% of Canadians each year, causing an estimated 12,200 hospitalizations and 3,500 deaths annually, mostly occurring in adults ≥65 years old (seniors). A 32,000-participant, randomized controlled clinical trial (FIM12; Clinicaltrials.gov NCT01427309) showed that high-dose inactivated influenza vaccine (IIV-HD) is superior to standard-dose vaccine (SD) in preventing laboratory-confirmed influenza illness in seniors. In this study, we performed a cost-utility analysis (CUA) of IIV-HD versus SD in FIM12 participants from a Canadian perspective. Healthcare resource utilization data collected in FIM12 included: medications, non-routine/urgent care and emergency room visits, and hospitalizations. Unit costs were applied using standard Canadian cost sources to estimate the mean direct medical and societal costs associated with each vaccine (2014 CAD). Clinical illness data from the trial were mapped to quality-of-life data from the literature to estimate differences in effectiveness between vaccines. Time horizon was one influenza season, however, quality-adjusted life-years (QALYs) lost due to death during the study were captured over a lifetime. A probabilistic sensitivity analysis (PSA) was also performed. Average per-participant medical costs were $47 lower and societal costs $60 lower in the IIV-HD arm. Hospitalizations contributed 91% of the total cost and were less frequent in the IIV-HD arm. IIV-HD provided a gain in QALYs and, due to cost savings, dominated SD in the CUA. The PSA indicated that IIV-HD is 89% likely to be cost saving. In Canada, IIV-HD is expected to be a less costly and more effective alternative to SD, driven by a reduction in hospitalizations.
Vivianite as an important iron phosphate precipitate in sewage treatment plants.
Wilfert, P; Mandalidis, A; Dugulan, A I; Goubitz, K; Korving, L; Temmink, H; Witkamp, G J; Van Loosdrecht, M C M
2016-11-01
Iron is an important element for modern sewage treatment, inter alia to remove phosphorus from sewage. However, phosphorus recovery from iron phosphorus containing sewage sludge, without incineration, is not yet economical. We believe, increasing the knowledge about iron-phosphorus speciation in sewage sludge can help to identify new routes for phosphorus recovery. Surplus and digested sludge of two sewage treatment plants was investigated. The plants relied either solely on iron based phosphorus removal or on biological phosphorus removal supported by iron dosing. Mössbauer spectroscopy showed that vivianite and pyrite were the dominating iron compounds in the surplus and anaerobically digested sludge solids in both plants. Mössbauer spectroscopy and XRD suggested that vivianite bound phosphorus made up between 10 and 30% (in the plant relying mainly on biological removal) and between 40 and 50% of total phosphorus (in the plant that relies on iron based phosphorus removal). Furthermore, Mössbauer spectroscopy indicated that none of the samples contained a significant amount of Fe(III), even though aerated treatment stages existed and although besides Fe(II) also Fe(III) was dosed. We hypothesize that chemical/microbial Fe(III) reduction in the treatment lines is relatively quick and triggers vivianite formation. Once formed, vivianite may endure oxygenated treatment zones due to slow oxidation kinetics and due to oxygen diffusion limitations into sludge flocs. These results indicate that vivianite is the major iron phosphorus compound in sewage treatment plants with moderate iron dosing. We hypothesize that vivianite is dominating in most plants where iron is dosed for phosphorus removal which could offer new routes for phosphorus recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ushakov, I B; Grigoriev, Yu G; Shafirkin, A V; Shurshakov, V A
2016-01-01
Review of the data of experimental radiobiology and epidemiological follow-up of large groups of people subjected to radiation exposures on Earth has been undertaken to substantiate dose limits for critical organs of cosmonauts in order to ensure good performance and vitality while on long-duration orbital missions. The career dose limits for cosmonauts and astronauts established earlier in the USSR and USA amounted to nothing more but banning the risk of cancer death increase to 3%. To apply more rigorous criteria of delayed radiation risks, the Russian limits for cosmonauts were revised to substantiate a 4-fold reduction of the average tissue equivalent dose maximum to 1 Sv. The total of cancer and non-cancer radiation risks over lifetime and probable reduction of mean life expectancy (MLE) were calculated using the model of radiation-induced mortality for mammals and taken as the main damage to health. The established dose limit is equal to the career dose for nuclear industry personnel set forth by Russian standard document NRB 99/2009. For better agreement of admissible threshold doses to critical human organs (bone marrow, lens and skin) in the revised radiation limits for long-duration space missions and radiation safety limits on Earth, reduction of dose limits for the critical organs were substantiated additionally; these limits comply with those for planned over-exposure on Earth in document NRB 99/2009.
Angstman, Nicholas B.; Kiessling, Maren C.; Frank, Hans-Georg; Schmitz, Christoph
2015-01-01
In blast-related mild traumatic brain injury (br-mTBI) little is known about the connections between initial trauma and expression of individual clinical symptoms. Partly due to limitations of current in vitro and in vivo models of br-mTBI, reliable prediction of individual short- and long-term symptoms based on known blast input has not yet been possible. Here we demonstrate a dose-dependent effect of shock wave exposure on C. elegans using shock waves that share physical characteristics with those hypothesized to induce br-mTBI in humans. Increased exposure to shock waves resulted in decreased mean speed of movement while increasing the proportion of worms rendered paralyzed. Recovery of these two behavioral symptoms was observed during increasing post-traumatic waiting periods. Although effects were observed on a population-wide basis, large interindividual variability was present between organisms exposed to the same highly controlled conditions. Reduction of cavitation by exposing worms to shock waves in polyvinyl alcohol resulted in reduced effect, implicating primary blast effects as damaging components in shock wave induced trauma. Growing worms on NGM agar plates led to the same general results in initial shock wave effect in a standard medium, namely dose-dependence and high interindividual variability, as raising worms in liquid cultures. Taken together, these data indicate that reliable prediction of individual clinical symptoms based on known blast input as well as drawing conclusions on blast input from individual clinical symptoms is not feasible in br-mTBI. PMID:25705183
Wagner, Lars; Turpin, Brian; Nagarajan, Rajaram; Weiss, Brian; Cripe, Timothy; Geller, James
2013-09-01
The combination of vincristine, oral irinotecan, and temozolomide (VOIT regimen) has shown antitumor activity in a pediatric Phase I trial. To further potentiate synergy, we assessed the safety and feasibility of adding bevacizumab to VOIT for children and young adults with recurrent tumors. Patients received vincristine (1.5 mg/m(2) on day 1), oral irinotecan (90 mg/m(2) on days 1-5), temozolomide (100-150 mg/m(2) on days 1-5), and bevacizumab (15 mg/kg on day 1) in 3-week cycles, which were repeated for up to six cycles. Cefixime prophylaxis was used to reduce irinotecan-associated diarrhea. Thirteen patients received 36 total cycles. Six of the first 10 patients required dose reductions due to toxicity during the first cycle (n = 3) or subsequent cycles (n = 3), and these grade 3 side effects included prolonged nausea, dehydration, anorexia, neuropathy, diarrhea, and abdominal pain, as well as prolonged grade 4 neutropenia. After reducing daily temozolomide to 100 mg/m(2) , three additional patients tolerated therapy well without the need for dose reductions. Toxicities attributed to bevacizumab were limited to grade 1 epistaxis (1) and grade 2 proteinuria (1). Tumor responses were seen in both patients with Ewing sarcoma. Reducing temozolomide from 150 to 100 mg/m(2) /day improved tolerability, and treatment with this lower temozolomide dose was feasible and convenient as outpatient therapy. Although responses were seen in Ewing sarcoma, the benefit of adding bevacizumab remains unclear. Copyright © 2013 Wiley Periodicals, Inc.
Minic, Zeljka; Zhang, Yanhua; Mao, Guangzhao; Goshgarian, Harry G
2016-03-23
Respiratory complications in patients with spinal cord injury (SCI) are common and have a negative impact on the quality of patients' lives. Systemic administration of drugs that improve respiratory function often cause deleterious side effects. The present study examines the applicability of a novel nanotechnology-based drug delivery system, which induces recovery of diaphragm function after SCI in the adult rat model. We developed a protein-coupled nanoconjugate to selectively deliver by transsynaptic transport small therapeutic amounts of an A1 adenosine receptor antagonist to the respiratory centers. A single administration of the nanoconjugate restored 75% of the respiratory drive at 0.1% of the systemic therapeutic drug dose. The reduction of the systemic dose may obviate the side effects. The recovery lasted for 4 weeks (the longest period studied). These findings have translational implications for patients with respiratory dysfunction after SCI. The leading causes of death in humans following SCI are respiratory complications secondary to paralysis of respiratory muscles. Systemic administration of methylxantines improves respiratory function but also leads to the development of deleterious side effects due to actions of the drug on nonrespiratory sites. The importance of the present study lies in the novel drug delivery approach that uses nanotechnology to selectively deliver recovery-inducing drugs to the respiratory centers exclusively. This strategy allows for a reduction in the therapeutic drug dose, which may reduce harmful side effects and markedly improve the quality of life for SCI patients. Copyright © 2016 the authors 0270-6474/16/363441-12$15.00/0.
Anaerobic oxidation of ethene coupled to sulfate reduction in microcosms and enrichment cultures.
Fullerton, Heather; Crawford, Michael; Bakenne, Ademola; Freedman, David L; Zinder, Stephen H
2013-01-01
Ethene is considered recalcitrant under anaerobic conditions, but biological reduction to ethane and oxidation to CO2 have been reported; however, little is known about these processes or the organisms carrying them out. In this report we describe sulfate dependent ethene consumption in microcosms prepared with sediments from a freshwater canal. A first dose of 0.6 mmol/L ethene was consumed within 77 days, and a second dose was largely consumed twelve days later. Material from this microcosm was transferred into growth medium with ethene as the only electron donor (except for trace amounts of vitamins) and sulfate as the electron acceptor. Four doses of ethene were consumed at increasing rates, and the cultures have been transferred at least eight times in this medium. Conversion of [(14)C]ethene primarily to (14)CO2 was demonstrated in fifth and sixth generation cultures, as well as production of sulfide in other cultures, confirming the ethene/sulfate couple. Ovoid cells 1-2 μm in diameter were found in cultures containing ethene and sulfate, and quantitative PCR showed large increases in bacterial 16S rRNA gene copy number. Over half of a 16S rRNA gene clone library from a sixth-generation culture was a phylotype with a sequence ca. 90% identical with a clade of Deltaproteobacteria that includes Desulfovirga adipica and several Syntrophobacter spp. These studies have solidified the concept that deficits in mass balances for chloroethene fate in sulfate reducing zones of contaminated groundwater sites may be due to ethene oxidation, and suggest a unique phylotype is involved in this process.
Gastrointestinal acute radiation syndrome in Göttingen minipigs (Sus scrofa domestica).
Elliott, Thomas B; Deutz, Nicolaas E; Gulani, Jatinder; Koch, Amory; Olsen, Cara H; Christensen, Christine; Chappell, Mark; Whitnall, Mark H; Moroni, Maria
2014-12-01
In the absence of supportive care, exposing Göttingen minipigs to γ-radiation doses of less than 2 Gy achieves lethality due to hematopoietic acute radiation syndrome. Doses of 2 to 5 Gy are associated with an accelerated hematopoietic syndrome, characterized by villus blunting and fusion, the beginning of sepsis, and a mild transient reduction in plasma citrulline concentration. We exposed male Göttingen minipigs (age, 5 mo; weight, 9 to 11 kg) to γ-radiation doses of 5 to 12 Gy (total body; (60)Co, 0.6 Gy/min) to test whether these animals exhibit classic gastrointestinal acute radiation syndrome (GI-ARS). After exposure, the minipigs were monitored for 10 d by using clinical signs, CBC counts, and parameters associated with the development of the gastrointestinal syndrome. Göttingen minipigs exposed to γ radiation of 5 to 12 Gy demonstrate a dose-dependent occurrence of all parameters classically associated with acute GI-ARS. These results suggest that Göttingen minipigs may be a suitable model for studying GI-ARS after total body irradiation, but the use of supportive care to extend survival beyond 10 d is recommended. This study is the first step toward determining the feasibility of using Göttingen minipigs in testing the efficacy of candidate drugs for the treatment of GI-ARS after total body irradiation.
Radiation Damage in Si Diodes from Short, Intense Ion Pulses
NASA Astrophysics Data System (ADS)
de Leon, S. J.; Ludewigt, B. A.; Persaud, A.; Seidl, P. A.; Schenkel, T.
2017-10-01
The Neutralized Drift Compression Experiment (NDCX-II) at Berkeley Lab is an induction accelerator studying the effects that concentrated ion beams have on various materials. Charged particle radiation damage was the focus of this research - we have characterized a series of Si diodes using an electrometer and calibrated the diodes response using an 241Am alpha source, both before and after exposing the diodes to 1 MeV He ions in the accelerator. The key part here is that the high intensity pulses from NDCX-II (>1010 ions/cm2 per pulse in <20 ns) enabled a systematic study of dose-rate effects. An example of a dose-rate effect in Si diodes is increased accumulation of defects due to damage from ions that bombard them in a short pulse. This accumulated damage leads to a reduction in the charge collection efficiency and an increase in leakage current. Testing dose-rate effects in Si diodes and other semiconductors is a crucial step in designing sustainable instruments that can encounter high doses of radiation, such as high intensity accelerators, fusion energy experiments and space applications and results from short pulses can inform models of radiation damage evolution. This work was supported by the Office of Science of the US Department of Energy under contract DE-AC0205CH11231.
Tam, Tina Sc; Wu, May Hy; Masson, Sarah C; Tsang, Matthew P; Stabler, Sarah N; Kinkade, Angus; Tung, Anthony; Tejani, Aaron M
2017-02-28
Eplerenone is an aldosterone receptor blocker that is chemically derived from spironolactone. In Canada, it is indicated for use as adjunctive therapy to reduce mortality for heart failure patients with New York Heart Association (NYHA) class II systolic chronic heart failure and left ventricular systolic dysfunction. It is also used as adjunctive therapy for patients with heart failure following myocardial infarction. Additionally, it is indicated for the treatment of mild and moderate essential hypertension for patients who cannot be treated adequately with other agents. It is important to determine the clinical impact of all antihypertensive medications, including aldosterone antagonists, to support their continued use in essential hypertension. No previous systematic reviews have evaluated the effect of eplerenone on cardiovascular morbidity, mortality, and magnitude of blood pressure lowering in patients with hypertension. To assess the effects of eplerenone monotherapy versus placebo for primary hypertension in adults. Outcomes of interest were all-cause mortality, cardiovascular events (fatal or non-fatal myocardial infarction), cerebrovascular events (fatal or non fatal strokes), adverse events or withdrawals due to adverse events, and systolic and diastolic blood pressure. We searched the Cochrane Hypertension Specialised Register, CENTRAL, MEDLINE, Embase, and two trials registers up to 3 March 2016. We handsearched references from retrieved studies to identify any studies missed in the initial search. We also searched for unpublished data by contacting the corresponding authors of the included studies and pharmaceutical companies involved in conducting studies on eplerenone monotherapy in primary hypertension. The search had no language restrictions. We selected randomized placebo-controlled trials studying adult patients with primary hypertension. We excluded studies in people with secondary or gestational hypertension and studies where participants were receiving multiple antihypertensives. Three review authors independently reviewed the search results for studies meeting our criteria. Three review authors independently extracted data and assessed trial quality using a standardized data extraction form. A fourth independent review author resolved discrepancies or disagreements. We performed data extraction and synthesis using a standardized format on Covidence. We conducted data analysis using Review Manager 5. A total of 1437 adult patients participated in the five randomized parallel group studies, with treatment durations ranging from 8 to 16 weeks. The daily doses of eplerenone ranged from 25 mg to 400 mg daily. Meta-analysis of these studies showed a reduction in systolic blood pressure of 9.21 mmHg (95% CI -11.08 to -7.34; I 2 = 58%) and a reduction of diastolic pressure of 4.18 mmHg (95% CI -5.03 to -3.33; I 2 = 0%) (moderate quality evidence).There may be a dose response effect for eplerenone in the reduction in systolic blood pressure at doses of 400 mg/day. However, this finding is uncertain, as it is based on a single included study with low quality evidence. Overall there does not appear to be a clinically important dose response in lowering systolic or diastolic blood pressure at eplerenone doses of 50 mg to 400 mg daily. There did not appear to be any differences in the number of patients who withdrew due to adverse events or the number of patients with at least one adverse event in the eplerenone group compared to placebo. However, only three of the five included studies reported adverse events. Most of the included studies were of moderate quality, as we judged multiple domains as being at unclear risk in the 'Risk of bias' assessment. Eplerenone 50 to 200 mg/day lowers blood pressure in people with primary hypertension by 9.21 mmHg systolic and 4.18 mmHg diastolic compared to placebo, with no difference of effect between doses of 50 mg/day to 200 mg/day. A dose of 25 mg/day did not produce a statistically significant reduction in systolic or diastolic blood pressure and there is insufficient evidence for doses above 200 mg/day. There is currently no available evidence to determine the effect of eplerenone on clinically meaningful outcomes such as mortality or morbidity in hypertensive patients. The evidence available on side effects is insufficient and of low quality, which makes it impossible to draw conclusions about potential harm associated with eplerenone treatment in hypertensive patients.
Ruff, Christian T; Giugliano, Robert P; Braunwald, Eugene; Morrow, David A; Murphy, Sabina A; Kuder, Julia F; Deenadayalu, Naveen; Jarolim, Petr; Betcher, Joshua; Shi, Minggao; Brown, Karen; Patel, Indravadan; Mercuri, Michele; Antman, Elliott M
2015-06-06
New oral anticoagulants for stroke prevention in atrial fibrillation were developed to be given in fixed doses without the need for the routine monitoring that has hindered usage and acceptance of vitamin K antagonists. A concern has emerged, however, that measurement of drug concentration or anticoagulant activity might be needed to prevent excess drug concentrations, which significantly increase bleeding risk. In the ENGAGE AF-TIMI 48 trial, higher-dose and lower-dose edoxaban were compared with warfarin in patients with atrial fibrillation. Each regimen incorporated a 50% dose reduction in patients with clinical features known to increase edoxaban drug exposure. We aim to assess whether adjustment of edoxaban dose in this trial prevented excess drug concentration and the risk of bleeding events. We analysed data from the randomised, double-blind ENGAGE AF-TIMI 48 trial. We correlated edoxaban dose, plasma concentration, and anti-Factor Xa (FXa) activity and compared efficacy and safety outcomes with warfarin stratified by dose reduction status. Patients with atrial fibrillation and at moderate to high risk of stroke were randomly assigned in a 1:1:1 ratio to receive warfarin, dose adjusted to an international normalised ratio of 2·0-3·0, higher-dose edoxaban (60 mg once daily), or lower-dose edoxaban (30 mg once daily). Randomisation was done with use of a central, 24 h, interactive, computerised response system. International normalised ratio was measured using an encrypted point-of-care device. To maintain masking, sham international normalised ratio values were generated for patients assigned to edoxaban. Edoxaban (or placebo-edoxaban in warfarin group) doses were halved at randomisation or during the trial if patients had creatinine clearance 30-50 mL/min, bodyweight 60 kg or less, or concomitant medication with potent P-glycoprotein interaction. Efficacy outcomes included the primary endpoint of all-cause stroke or systemic embolism, ischaemic stroke, and all-cause mortality. Safety outcomes included the primary safety endpoint of major bleeding, fatal bleeding, intracranial haemorrhage, and gastrointestinal bleeding. This trial is registered with ClinicalTrials.gov, number NCT00781391. Between Nov 19, 2008 and Nov 22, 2010, 21 105 patients were recruited. Patients who met clinical criteria for dose reduction at randomisation (n=5356) had higher rates of stroke, bleeding, and death compared with those who did not have a dose reduction (n=15 749). Edoxaban dose ranged from 15 mg to 60 mg, resulting in a two-fold to three fold gradient of mean trough drug exposure (16·0-48·5 ng/mL in 6780 patients with data available) and mean trough anti-FXa activity (0·35-0·85 IU/mL in 2865 patients). Dose reduction decreased mean exposure by 29% (from 48·5 ng/mL [SD 45·8] to 34·6 ng/mL [30·9]) and 35% (from 24·5 ng/mL [22·7] to 16·0 ng/mL [14·5]) and mean anti-FXa activity by 25% (from 0·85 IU/mL [0·76] to 0·64 IU/mL [0·54]) and 20% (from 0·44 IU/mL [0·37] to 0·35 IU/mL [0·28]) in the higher-dose and lower-dose regimens, respectively. Despite the lower anti-FXa activity, dose reduction preserved the efficacy of edoxaban compared with warfarin (stroke or systemic embolic event: higher dose pinteraction=0·85, lower dose pinteraction=0·99) and provided even greater safety (major bleeding: higher dose pinteraction 0·02, lower dose pinteraction=0·002). These findings validate the strategy that tailoring of the dose of edoxaban on the basis of clinical factors alone achieves the dual goal of preventing excess drug concentrations and helps to optimise an individual patient's risk of ischaemic and bleeding events and show that the therapeutic window for edoxaban is narrower for major bleeding than thromboembolism. Daiichi-Sankyo Pharma Development. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wallace, Adam N; Vyhmeister, Ross; Bagade, Swapnil; Chatterjee, Arindam; Hicks, Brandon; Ramirez-Giraldo, Juan Carlos; McKinstry, Robert C
2015-06-01
Cerebrospinal fluid shunts are primarily used for the treatment of hydrocephalus. Shunt complications may necessitate multiple non-contrast head CT scans resulting in potentially high levels of radiation dose starting at an early age. A new head CT protocol using automatic exposure control and automated tube potential selection has been implemented at our institution to reduce radiation exposure. The purpose of this study was to evaluate the reduction in radiation dose achieved by this protocol compared with a protocol with fixed parameters. A retrospective sample of 60 non-contrast head CT scans assessing for cerebrospinal fluid shunt malfunction was identified, 30 of which were performed with each protocol. The radiation doses of the two protocols were compared using the volume CT dose index and dose length product. The diagnostic acceptability and quality of each scan were evaluated by three independent readers. The new protocol lowered the average volume CT dose index from 15.2 to 9.2 mGy representing a 39 % reduction (P < 0.01; 95 % CI 35-44 %) and lowered the dose length product from 259.5 to 151.2 mGy/cm representing a 42 % reduction (P < 0.01; 95 % CI 34-50 %). The new protocol produced diagnostically acceptable scans with comparable image quality to the fixed parameter protocol. A pediatric shunt non-contrast head CT protocol using automatic exposure control and automated tube potential selection reduced patient radiation dose compared with a fixed parameter protocol while producing diagnostic images of comparable quality.
NASA Astrophysics Data System (ADS)
Lang, Stephanie; Hrbacek, Jan; Leong, Aidan; Klöck, Stephan
2012-05-01
Recently, there has been an increased interest in flattening-filter-free (FFF) linear accelerators. Removal of the filter results in available dose rates up to 24 Gy min-1 (for nominal energy 10 MV in depth of maximum dose, a source-surface distance of 100 cm and a field size of 10×10 cm2). To guarantee accurate relative and reference dosimetry for the FFF beams, we investigated the charge collection efficiency of multiple air-vented and one liquid ionization chamber for dose rates up to 31.9 Gy min-1. For flattened beams, the ion-collection efficiency of all air-vented ionization chambers (except for the PinPoint chamber) was above 0.995. By removing the flattening filter, we found a reduction in collection efficiency of approximately 0.5-0.9% for a 10 MV beam. For FFF beams, the Markus chamber showed the largest collection efficiency of 0.994. The observed collection efficiencies were dependent on dose per pulse, but independent of the pulse repetition frequency. Using the liquid ionization chamber, the ion-collection efficiency for flattened beams was above 0.990 for all dose rates. However, this chamber showed a low collection efficiency of 0.940 for the FFF 10 MV beam at a dose rate of 31.9 Gy min-1. All investigated air-vented ionization chambers can be reliably used for relative dosimetry of FFF beams. The order of correction for reference dosimetry is given in the manuscript. Due to their increased saturation in high dose rate FFF beams, liquid ionization chambers appear to be unsuitable for dosimetry within these contexts.
Tsuji, Masayoshi; Kanda, Hideyuki; Kakamu, Takeyasu; Kobayashi, Daisuke; Miyake, Masao; Hayakawa, Takehito; Mori, Yayoi; Okochi, Toshiyasu; Hazama, Akihiro; Fukushima, Tetsuhito
2012-03-01
On 11 March 2011, the Great East Japan Earthquake occurred. Due to this earthquake and subsequent tsunami, malfunctions occurred at the Fukushima Daiichi nuclear power plant. Radioactive material even reached the investigated educational institution despite being 57.8 km away from the power station. With the goal of ensuring the safety of our students, we decided to carry out a risk assessment of the premises of this educational institution by measuring radiation doses at certain locations, making it possible to calculate estimated radiation accumulation. Systematic sampling was carried out at measurement points spaced at regular intervals for a total of 24 indoor and outdoor areas, with 137 measurements at heights of 1 cm and 100 cm above the ground surface. Radiation survey meters were used to measure environmental radiation doses. Radiation dose rates and count rates were higher outdoors than indoors, and higher 1 cm above the ground surface than at 100 cm. Radiation doses 1 cm above the ground surface were higher on grass and moss than on asphalt and soil. The estimated radiation exposure for a student spending an average of 11 h on site at this educational institution was 9.80 μSv. Environmental radiation doses at our educational institution 57.8 km away from the Fukushima Daiichi nuclear power plant 1 month after the accident were lower than the national regulation dose for schools (3.8 μSv/h) at most points. Differences in radiation doses depending on outdoor surface properties are important to note for risk reduction.
NASA Astrophysics Data System (ADS)
Angel, E.; Wellnitz, C.; Goodsitt, M.; DeMarco, J.; Cagnon, C.; Ghatali, M.; Cody, D.; Stevens, D.; McCollough, C.; Primak, A.; McNitt-Gray, M.
2007-03-01
Pregnant women with shortness of breath are increasingly referred for CT Angiography to rule out Pulmonary Embolism (PE). While this exam is typically focused on the lungs, extending scan boundaries and overscan can add to the irradiated volume and have implications on fetal dose. The purpose of this work was to estimate radiation dose to the fetus when various levels of overscan were encountered. Two voxelized models of pregnant patients derived from actual patient anatomy were created based on image data. The models represent an early (< 7 weeks) and late term pregnancy (36 weeks). A previously validated Monte Carlo model of an MDCT scanner was used that takes into account physical details of the scanner. Simulated helical scans used 120 kVp, 4x5 mm beam collimation, pitch 1, and varying beam-off locations (edge of the irradiated volume) were used to represent different protocols plus overscan. Normalized dose (mGy/100mAs) was calculated for each fetus. For the early term and the late term pregnancy models, fetal dose estimates for a standard thoracic PE exam were estimated to be 0.05 and 0.3 mGy/100mAs, respectively, increasing to 9 mGy/100mAs when the beam-off location was extended to encompass the fetus. When performing PE exams to rule out PE in pregnant patients, the beam-off location may have a large effect on fetal dose, especially for late term pregnancies. Careful consideration of ending location of the x-ray beam - and not the end of image data - could result in significant reduction in radiation dose to the fetus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kieselmann, J; Bartzsch, S; Oelfke, U
Purpose: Microbeam Radiation Therapy is a preclinical method in radiation oncology that modulates radiation fields on a micrometre scale. Dose calculation is challenging due to arising dose gradients and therapeutically important dose ranges. Monte Carlo (MC) simulations, often used as gold standard, are computationally expensive and hence too slow for the optimisation of treatment parameters in future clinical applications. On the other hand, conventional kernel based dose calculation leads to inaccurate results close to material interfaces. The purpose of this work is to overcome these inaccuracies while keeping computation times low. Methods: A point kernel superposition algorithm is modified tomore » account for tissue inhomogeneities. Instead of conventional ray tracing approaches, methods from differential geometry are applied and the space around the primary photon interaction is locally warped. The performance of this approach is compared to MC simulations and a simple convolution algorithm (CA) for two different phantoms and photon spectra. Results: While peak doses of all dose calculation methods agreed within less than 4% deviations, the proposed approach surpassed a simple convolution algorithm in accuracy by a factor of up to 3 in the scatter dose. In a treatment geometry similar to possible future clinical situations differences between Monte Carlo and the differential geometry algorithm were less than 3%. At the same time the calculation time did not exceed 15 minutes. Conclusion: With the developed method it was possible to improve the dose calculation based on the CA method with respect to accuracy especially at sharp tissue boundaries. While the calculation is more extensive than for the CA method and depends on field size, the typical calculation time for a 20×20 mm{sup 2} field on a 3.4 GHz and 8 GByte RAM processor remained below 15 minutes. Parallelisation and optimisation of the algorithm could lead to further significant calculation time reductions.« less
Mietelski, J W; Grabowska, S; Nowak, T; Bogacz, J; Gaca, P; Bartyzel, M; Budzanowski, M
2005-01-01
We present here measurements of the 131I concentration for both: gaseous and aerosol fraction of 131I in the air above the septic tank containing wastes from medical application of this isotope. Aerosols were collected using air filters, whereas gaseous forms of iodine were trapped in KI impregnated charcoal double layer cartridge. Besides an active method (pumping of the air through system of filters) an attempt for using a passive method (charcoal traps) for monitoring of radio-iodine is described. For better characterisation of a site the external kerma was determined by means of G-M and TLD techniques as well as the activity kept in the septic tank was measured by gamma spectrometry. Results show that the activity of the aerosol fraction can be neglected compared to that of the gaseous fraction. He measured activity of air is low, on the level of 1 Bq m(-3), even during simulated failure of the ventilation system. Estimated inhalation dose for the serviceman of septic tanks is low ( approximately 10%) compared with external dose obtained by such person due to gamma radiation from the tank (on the level approximately 500 nSv h(-1)). Therefore, the concept of passive monitoring of the iodine in air was abandoned. Also estimated is the efficiency of 131I reduction by a charcoal filter of the ventilation system and 131I input to the environment by the ventilation chimney.
Disinfection of swine wastewater using chlorine, ultraviolet light and ozone.
Macauley, John J; Qiang, Zhimin; Adams, Craig D; Surampalli, Rao; Mormile, Melanie R
2006-06-01
Veterinary antibiotics are widely used at concentrated animal feeding operations (CAFOs) to prevent disease and promote growth of livestock. However, the majority of antibiotics are excreted from animals in urine, feces, and manure. Consequently, the lagoons used to store these wastes can act as reservoirs of antibiotics and antibiotic-resistant bacteria. There is currently no regulation or control of these systems to prevent the spread of these bacteria and their genes for antibiotic resistance into other environments. This study was conducted to determine the disinfection potential of chlorine, ultraviolet light and ozone against swine lagoon bacteria. Results indicate that a chlorine dose of 30 mg/L could achieve a 2.2-3.4 log bacteria reduction in lagoon samples. However, increasing the dose of chlorine did not significantly enhance the disinfection activity due to the presence of chlorine-resistant bacteria. The chlorine resistant bacteria were identified to be closely related to Bacillus subtilis and Bacillus licheniformis. A significant percentage of lagoon bacteria were not susceptible to the four selected antibiotics: chlortetracycline, lincomycin, sulfamethazine and tetracycline (TET). However, the presence of both chlorine and TET could inactivate all bacteria in one lagoon sample. The disinfection potential of UV irradiation and ozone was also examined. Ultraviolet light was an effective bacterial disinfectant, but was unlikely to be economically viable due to its high energy requirements. At an ozone dose of 100 mg/L, the bacteria inactivation efficiency could reach 3.3-3.9 log.
Sorenmo, Karin; Overley, B; Krick, E; Ferrara, T; LaBlanc, A; Shofer, F
2010-09-01
A dose-intensified/dose-dense chemotherapy protocol for canine lymphoma was designed and implemented at the Veterinary Hospital of the University of Pennsylvania. In this study, we describe the clinical characteristics, prognostic factors, efficacy and toxicity in 130 dogs treated with this protocol. The majority of the dogs had advanced stage disease (63.1% stage V) and sub-stage b (58.5%). The median time to progression (TTP) and lymphoma-specific survival were 219 and 323 days, respectively. These results are similar to previous less dose-intense protocols. Sub-stage was a significant negative prognostic factor for survival. The incidence of toxicity was high; 53.9 and 45% of the dogs needed dose reductions and treatment delays, respectively. Dogs that required dose reductions and treatment delays had significantly longer TTP and lymphoma-specific survival times. These results suggest that dose density is important, but likely relative, and needs to be adjusted according to the individual patient's toxicity for optimal outcome.
Den Harder, Annemarie M; Willemink, Martin J; van Hamersvelt, Robbert W; Vonken, Evert-Jan P A; Milles, Julien; Schilham, Arnold M R; Lammers, Jan-Willem; de Jong, Pim A; Leiner, Tim; Budde, Ricardo P J
2016-02-01
To evaluate the effect of radiation dose reduction and iterative reconstruction (IR) on the performance of computer-aided detection (CAD) for pulmonary nodules. In this prospective study twenty-five patients were included who were scanned for pulmonary nodule follow-up. Image acquisition was performed at routine dose and three reduced dose levels in a single session by decreasing mAs-values with 45%, 60% and 75%. Tube voltage was fixed at 120 kVp for patients ≥ 80 kg and 100 kVp for patients < 80 kg. Data were reconstructed with filtered back projection (FBP), iDose(4) (levels 1,4,6) and IMR (levels 1-3). All noncalcified solid pulmonary nodules ≥ 4 mm identified by two radiologists in consensus served as the reference standard. Subsequently, nodule volume was measured with CAD software and compared to the reference consensus. The numbers of true-positives, false-positives and missed pulmonary nodules were evaluated as well as the sensitivity. Median effective radiation dose was 2.2 mSv at routine dose and 1.2, 0.9 and 0.6 mSv at respectively 45%, 60% and 75% reduced dose. A total of 28 pulmonary nodules were included. With FBP at routine dose, 89% (25/28) of the nodules were correctly identified by CAD. This was similar at reduced dose levels with FBP, iDose(4) and IMR. CAD resulted in a median number of false-positives findings of 11 per scan with FBP at routine dose (93% of the CAD marks) increasing to 15 per scan with iDose(4) (95% of the CAD marks) and 26 per scan (96% of the CAD marks) with IMR at the lowest dose level. CAD can identify pulmonary nodules at submillisievert dose levels with FBP, hybrid and model-based IR. However, the number of false-positive findings increased using hybrid and especially model-based IR at submillisievert dose while dose reduction did not affect the number of false-positives with FBP. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
SU-E-T-558: Assessing the Effect of Inter-Fractional Motion in Esophageal Sparing Plans.
Williamson, R; Bluett, J; Niedzielski, J; Liao, Z; Gomez, D; Court, L
2012-06-01
To compare esophageal dose distributions in esophageal sparing IMRT plans with predicted dose distributions which include the effect of inter-fraction motion. Seven lung cancer patients were used, each with a standard and an esophageal sparing plan (74Gy, 2Gy fractions). The average max dose to esophagus was 8351cGy and 7758cGy for the standard and sparing plans, respectively. The average length of esophagus for which the total circumference was treated above 60Gy (LETT60) was 9.4cm in the standard plans and 5.8cm in the sparing plans. In order to simulate inter-fractional motion, a three-dimensional rigid shift was applied to the calculated dose field. A simulated course of treatment consisted of a single systematic shift applied throughout the treatment as well a random shift for each of the 37 fractions. Both systematic and random shifts were generated from Gaussian distributions of 3mm and 5mm standard deviation. Each treatment course was simulated 1000 times to obtain an expected distribution of the delivered dose. Simulated treatment dose received by the esophagus was less than dose seen in the treatment plan. The average reduction in maximum esophageal dose for the standard plans was 234cGy and 386cGY for the 3mm and 5mm Gaussian distributions, respectively. The average reduction in LETT60 was 0.6cm and 1.7cm, for the 3mm and 5mm distributions respectively. For the esophageal sparing plans, the average reduction in maximum esophageal dose was 94cGy and 202cGy for 3mm and 5mm Gaussian distributions, respectively. The average change in LETT60 for the esophageal sparing plans was smaller, at 0.1cm (increase) and 0.6cm (reduction), for the 3mm and 5mm distributions, respectively. Interfraction motion consistently reduced the maximum doses to the esophagus for both standard and esophageal sparing plans. © 2012 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Lee, Ju-Woon; Seo, Ji-Hyun; Kim, Jae-Hun; Lee, Soo-Young; Byun, Myung-Woo
2007-05-01
The study was conducted to compare the radiation types of a gamma ray and an electron beam for the inhibition and reduction of a food allergy. OVA (2 mg/ml) were irradiated at 3, 5, 7 and 10 kGy. Patterns detected by the SDS-PAGE and an immunoblot showed that the intact OVA band disappeared and that it was dependant upon the radiation doses regardless of the radiation types. Binding abilities of the irradiated OVA against the monoclonal IgG and the egg allergic patients' IgE decreased due to a conformational change of the epitope, but differences from using the two different radiation types were not observed. The results indicate that both the radiation types can be used for an inhibition and a reduction of a food allergy regardless of the radiation types.
Hydroxyurea therapy requires HbF induction for clinical benefit in a sickle cell mouse model
Lebensburger, Jeffrey D.; Pestina, Tamara I.; Ware, Russell E.; Boyd, Kelli L.; Persons, Derek A.
2010-01-01
Hydroxyurea has proven clinical efficacy in patients with sickle cell disease. Potential mechanisms for the beneficial effects include fetal hemoglobin induction and the reduction of cell adhesive properties, inflammation and hypercoagulability. Using a murine model of sickle cell disease in which fetal hemoglobin induction does not occur, we evaluated whether hydroxyurea administration would still yield improvements in hematologic parameters and reduce end-organ damage. Animals given a maximally tolerated dose of hydroxyurea that resulted in significant reductions in the neutrophil and platelet counts showed no improvement in hemolytic anemia and end-organ damage compared to control mice. In contrast, animals having high levels of fetal hemoglobin due to gene transfer with a γ-globin lentiviral vector showed correction of anemia and organ damage. These data suggest that induction of fetal hemoglobin by hydroxyurea is an essential mechanism for its clinical benefits. PMID:20378564
Simon, M K; Ajanusi, O J; Abubakar, M S; Idris, A L; Suleiman, M M
2012-06-08
The aqueous methanol extract from the stem-bark of Combretum molle was evaluated for anthelmintic activity in lambs infected with Haemonchus contortus using faecal egg count (FEC) reduction assay. The extract showed a dose-dependent reduction in FEC in infected animals. At doses of 500, 1000 and 2000 mg kg(-1), the extract caused FEC reduction of 63%, 69.25% and 96.23%, respectively. Similarly, the standard anthelmintic (albendazole) at a dose of 200 mg kg(-1) produced FEC reduction of 99.24%. FEC reduction produced by the extract at doses of 500 and 1000 mg kg(-1) is below the minimum standard of 90% FEC recommended by the World Association for the Advancement of Veterinary Parasitology (WAAVP). However, there was no significant (P>0.05) difference between the means of groups treated with 1000 mg kg(-1) and 2000 mg kg(-1) compared to that of albendazole. In this study, C. molle has shown a promising anthelmintic activity against experimental haemonchosis. Nonetheless, further studies to evaluate its detailed toxicity are required for the plant extract to be developed into a useful anthelmintic drug. There is also the need to evaluate other parts of the plant (root, leaves, fruits, etc.) for the same effect. Copyright © 2012 Elsevier B.V. All rights reserved.
Jurado-Román, Alfonso; Sánchez-Pérez, Ignacio; Lozano Ruíz-Poveda, Fernando; López-Lluva, María T; Pinilla-Echeverri, Natalia; Moreno Arciniegas, Andrea; Agudo-Quilez, Pilar; Gil Agudo, Antonio
2016-01-01
A reduction in radiation doses at the catheterization laboratory, maintaining the quality of procedures is essential. Our objective was to analyze the results of a simple radiation reduction protocol at a high-volume interventional cardiology unit. We analyzed 1160 consecutive procedures: 580 performed before the implementation of the protocol and 580 after it. The protocol consisted in: the reduction of the number of ventriculographies and aortographies, the optimization of the collimation and the geometry of the X ray tube-patient-receptor, the use of low dose-rate fluoroscopy and the reduction of the number of cine sequences using the software "last fluoroscopy hold". There were no significant differences in clinical baseline features or in the procedural characteristics with the exception of a higher percentage of radial approach (30.7% vs 69.6%; p<0.001) and of percutaneous coronary interventions of chronic total occlusions after the implementation of the protocol (2.1% vs 6.7%; p=0,001). Angiographic success was similar during both periods (98.3% vs 99.2%; p=0.2). There were no significant differences between both periods regarding the overall duration of the procedures (26.9 vs 29.6min; p=0.14), or the fluoroscopy time (13.3 vs 13.2min; p=0.8). We observed a reduction in the percentage of procedures with ventriculography (80.9% vs 7.1%; p<0.0001) or aortography (15.4% vs 4.4%; p<0.0001), the cine runs (21.8 vs 6.9; p<0.0001) and the dose-area product (165 vs 71 Gyxcm(2); p<0.0001). With the implementation of a simple radiation reduction protocol, a 57% reduction of dose-area product was observed without a reduction in the quality or the complexity of procedures. Copyright © 2016 Elsevier Inc. All rights reserved.
Liu, Yu; Leng, Shuai; Michalak, Gregory J; Vrieze, Thomas J; Duan, Xinhui; Qu, Mingliang; Shiung, Maria M; McCollough, Cynthia H; Fletcher, Joel G
2014-01-01
To investigate whether the integrated circuit (IC) detector results in reduced noise in computed tomography (CT) colonography (CTC). Three hundred sixty-six consecutive patients underwent clinically indicated CTC using the same CT scanner system, except for a difference in CT detectors (IC or conventional). Image noise, patient size, and scanner radiation output (volume CT dose index) were quantitatively compared between patient cohorts using each detector system, with separate comparisons for the abdomen and pelvis. For the abdomen and pelvis, despite significantly larger patient sizes in the IC detector cohort (both P < 0.001), image noise was significantly lower (both P < 0.001), whereas volume CT dose index was unchanged (both P > 0.18). Based on the observed image noise reduction, radiation dose could alternatively be reduced by approximately 20% to result in similar levels of image noise. Computed tomography colonography images acquired using the IC detector had significantly lower noise than images acquired using the conventional detector. This noise reduction can permit further radiation dose reduction in CTC.
Utilizing placebo mechanisms for dose reduction in pharmacotherapy.
Doering, Bettina K; Rief, Winfried
2012-03-01
The knowledge and systematic application of the placebo effect remains limited, although its importance to the treatment of various medical conditions has increasingly been recognized. A possible application of the placebo effect to pharmacotherapy is seen in conditioning processes that aim at a placebo-controlled dose reduction of drugs while maintaining the efficacy of the medical treatment. The pairing of a placebo and a pharmacological agent may achieve satisfactory treatment outcomes in combination with a lower dose of medication. This procedure includes classic and instrumental conditioning processes that involve both conscious and non-conscious information processing. Although recent studies have gathered preliminary evidence for the efficacy of placebo-controlled dose reduction (e.g. in psoriasis and attention deficit hyperactivity disorder [ADHD]), they have also illustrated the difficulties that are inherent to this approach. We critically review previous approaches and discuss designs for clinical trials that seem appropriate to the investigation of conditioned placebo effects in pharmacotherapy. Copyright © 2011 Elsevier Ltd. All rights reserved.
An evaluation of in vivo models for toxicokinetics of hexavalent chromium in the stomach.
Sasso, A F; Schlosser, P M
2015-09-15
Hexavalent chromium (Cr6) is a drinking water contaminant that has been detected in most of the water systems throughout the United States. In 2-year drinking water bioassays, the National Toxicology Program (NTP) found clear evidence of carcinogenic activity in male and female rats and mice. Because reduction of Cr6 to trivalent chromium (Cr3) is an important detoxifying step in the gastrointestinal (GI) tract prior to systemic absorption, models have been developed to estimate the extent of reduction in humans and animals. The objective of this work was to use a revised model of ex vivo Cr6 reduction kinetics in gastric juice to analyze the potential reduction kinetics under in vivo conditions for mice, rats and humans. A published physiologically-based pharmacokinetic (PBPK) model was adapted to incorporate the new reduction model. This paper focuses on the toxicokinetics of Cr6 in the stomach compartment, where most of the extracellular Cr6 reduction is believed to occur in humans. Within the range of doses administered by the NTP bioassays, neither the original nor revised models predict saturation of stomach reducing capacity to occur in vivo if applying default parameters. However, both models still indicate that mice exhibit the lowest extent of reduction in the stomach, meaning that a higher percentage of the Cr6 dose may escape stomach reduction in that species. Similarly, both models predict that humans exhibit the highest extent of reduction at low doses. Published by Elsevier Inc.
Efficacy of alternate day versus daily dosing of rosuvastatin
Dulay, Daisy; LaHaye, Stephen A; Lahey, Karen A; Day, Andrew G
2009-01-01
BACKGROUND: Compared with other statins, rosuvastatin has a relatively long half-life, which may allow for the administration of this medication on an alternate day basis. OBJECTIVE: To compare the efficacy of administering rosuvastatin on a daily basis versus on an alternate day basis for the treatment of dyslipidemia. METHODS: In the present crossover study, 45 patients with documented hypercholesterolemia requiring pharmacotherapy were administered either 20 mg of rosuvastatin on alternate days or 10 mg of rosuvastatin daily for six weeks. After a four-week washout period, patients were then switched to the other regimen for another six weeks. The primary end point was the percentage reduction of low-density lipoprotein cholesterol (LDL-C). RESULTS: LDL-C decreased by 48.5% versus 40.9% with daily and alternate day dosing, respectively. This represented an additional absolute reduction of LDL-C of 7.6% (95% CI 1.8% to 13.4%, P=0.012) with the daily dosing regimen. Both dosing regimens provided similar improvements in high-density lipoprotein cholesterol and triglycerides. CONCLUSIONS: Compared with alternate day dosing, daily dosing of rosuvastatin provides a statistically significant advantage in LDL-C reduction. However, the alternate day regimen may be a viable option for those patients in whom cost is a limitation to compliance. PMID:19214297
Kloeze, C; Klompenhouwer, E G; Brands, P J M; van Sambeek, M R H M; Cuypers, P W M; Teijink, J A W
2014-03-01
Because of the increasing number of interventional endovascular procedures with fluoroscopy and the corresponding high annual dose for interventionalists, additional dose-protecting measures are desirable. The purpose of this study was to evaluate the effect of disposable radiation-absorbing surgical drapes in reducing scatter radiation exposure for interventionalists and supporting staff during an endovascular aneurysm repair (EVAR) procedure. This was a randomized control trial in which 36 EVAR procedures were randomized between execution with and without disposable radiation-absorbing surgical drapes (Radpad: Worldwide Innovations & Technologies, Inc., Kansas City, US, type 5511A). Dosimetric measurements were performed on the interventionalist (hand and chest) and theatre nurse (chest) with and without the use of the drapes to obtain the dose reduction and effect on the annual dose caused by the drapes. Use of disposable radiation-absorbing surgical drapes resulted in dose reductions of 49%, 55%, and 48%, respectively, measured on the hand and chest of the interventionalist and the chest of the theatre nurse. The use of disposable radiation-absorbing surgical drapes significantly reduces scatter radiation exposure for both the interventionalist and the supporting staff during EVAR procedures. Copyright © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.
Jankowski, M; Angielski, S; Szczepańska-Konkel, M
2008-03-01
Previous studies from our laboratory have reported a marked reduction in glomerular filtration rate (GFR) and sodium reabsorption in renal proximal tubule during intravenous infusion of P(1),P(4)-diadenosine tetraphosphate (Ap(4)A) at dose of 1.0 micromol/kg + 10 nmol/kg/min (i.v., injection followed by infusion) in anaesthetized Wistar rats. In the present study, the changes of GFR and urine sodium excretion were investigated in response to systemic infusion of Ap(4)A at different doses. Ap(4)A at dose of 0.1 micromol/kg + 1.0 nmol/kg/min did not change GFR and sodium urinary excretion whereas 2-fold higher dose produced significant (3.4-fold) increase in sodium excretion without changes in GFR. Significant but transient reduction in GFR by approximately 21% was observed during infusion of Ap(4)A at dose of 0.5 micromol/kg + 5.0 nmol/kg/min. Higher doses of Ap(4)A (1.0 micromol/kg + 10 nmol/kg/min and 2.0 micromol/kg + 20 nmol/kg/min) reduction in GFR and marked natriuresis. Our results suggest that tubular sodium transport systems are more sensitive to Ap(4)A than systems involved in GFR regulation.
A new shielding calculation method for X-ray computed tomography regarding scattered radiation.
Watanabe, Hiroshi; Noto, Kimiya; Shohji, Tomokazu; Ogawa, Yasuyoshi; Fujibuchi, Toshioh; Yamaguchi, Ichiro; Hiraki, Hitoshi; Kida, Tetsuo; Sasanuma, Kazutoshi; Katsunuma, Yasushi; Nakano, Takurou; Horitsugi, Genki; Hosono, Makoto
2017-06-01
The goal of this study is to develop a more appropriate shielding calculation method for computed tomography (CT) in comparison with the Japanese conventional (JC) method and the National Council on Radiation Protection and Measurements (NCRP)-dose length product (DLP) method. Scattered dose distributions were measured in a CT room with 18 scanners (16 scanners in the case of the JC method) for one week during routine clinical use. The radiation doses were calculated for the same period using the JC and NCRP-DLP methods. The mean (NCRP-DLP-calculated dose)/(measured dose) ratios in each direction ranged from 1.7 ± 0.6 to 55 ± 24 (mean ± standard deviation). The NCRP-DLP method underestimated the dose at 3.4% in fewer shielding directions without the gantry and a subject, and the minimum (NCRP-DLP-calculated dose)/(measured dose) ratio was 0.6. The reduction factors were 0.036 ± 0.014 and 0.24 ± 0.061 for the gantry and couch directions, respectively. The (JC-calculated dose)/(measured dose) ratios ranged from 11 ± 8.7 to 404 ± 340. The air kerma scatter factor κ is expected to be twice as high as that calculated with the NCRP-DLP method and the reduction factors are expected to be 0.1 and 0.4 for the gantry and couch directions, respectively. We, therefore, propose a more appropriate method, the Japanese-DLP method, which resolves the issues of possible underestimation of the scattered radiation and overestimation of the reduction factors in the gantry and couch directions.
Hyperhidrosis in association with efavirenz.
Fuertes, Aurelio; Martín, Aurelio Fuertes; Cabrera, Salvador; Figueroa, Salvador Cabrera; Valverde, Maria de la Paz; Merino, María de la Paz Valverde; Domínguez-Gil, Alfonso; Hurléé, Alfonso Domínguez-Gil
2009-03-01
Hyperhidrosis may be an adverse drug event (ADE) induced by the effect on any of the components of human thermoregulation. Some of our efavirenz (EFV)-treated patients have reported excessive nocturnal sweating that resolved after dose reduction. A representative clinical case of a male patient being treated with a night-time 600-mg dose of EFV who reported severe nocturnal sweating is reported here. His EFV plasma concentrations were always above normal and he was homozygous for a deficient function-allele of CYP2D6; for this reason, his EFV dose was reduced to 400mg=d. Simultaneous with this reduction, the patient described a progressive decrease in nocturnal sweating until its complete disappearance 15-20 days after this new drug dosage. The mechanism explaining sweating could be similar to the one suggested for hyperhidrosis related to serotonin uptake inhibitors, because this hyperhidrosis is episodic, nocturnal, and dose dependent. Hyperhidrosis could correspond to a dose-dependent ADE induced by EFV, therefore, a reduction of EFV from 600 to 400mg/d seems to control it. EFV crosses the hematoencephalic barrier and reaches a mean concentration in the cerebroespinal fluid equivalent to 0.69% of the plasma concentration. The ability of EFV to accessing the central nervous system (CNS) could explain an effect on thermoregulation. Hyperhydrosis is not easily discovered through a routine anamnesis because it is not noted on the EFV package insert, so its incidence may be higher than expected. Additionally, hyperhidrosis may be an indicator of elevated EFV plasma concentrations and hence may be controlled through a reduction of dose.
McDonald, Samantha M; Liu, Jihong; Wilcox, Sara; Lau, Erica Y; Archer, Edward
2016-04-01
The purpose of this review was to examine the relationship between exercise dose and reductions in weight gain during pregnancy in exercise interventions. Systematic literature review. Four electronic research databases (PubMed, Web of Science, CINAHL, and Academic Search Premiere) were used to identify exercise interventions conducted with pregnant women. Eligible articles must have satisfied the following criteria: inclusion of a control condition, exercise as a major intervention component, weight gain measured and reported for each experimental condition, description of exercise dose (frequency, intensity and duration), and utilized an adequate number of control conditions to assess independent effects of exercise on weight gain. The literature search identified 4837 articles. Of these, 174 abstracts were screened and 21 intervention studies (18 exercise-only, 3 exercise/diet) were eligible for review. Only 38% of the interventions achieved statistically significant reductions in gestational weight gain. Successful interventions possessed higher adherence and lower attrition rates and were predominantly conducted among normal weight populations. No clear patterns or consistencies of exercise dose and reductions in weight gain were evident. An exercise dose associated with reductions in weight gain was unquantifiable among these interventions. Adherence and retention rates were strong contributors to the success of exercise interventions on gestational weight gain. It is strongly suggested that future researchers investigate methods to increase adherence and compliance, especially among overweight and obese women, and utilize objective measurement tools to accurately evaluate exercise dose performed by the participants and the impact on body composition and weight gain. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cifter, F; Dhou, S; Lewis, J
2015-06-15
Purpose: To calculate the effect of lack of backscatter from air and attenuation of bone on dose distributions in brachytherapy surface treatment of head. Existing treatment planning systems based on TG43 do not account for heterogeneities, and thus may overestimate the dose to the brain. While brachytherapy generally has rapid dose falloff, the dose to the deeper tissues (in this case, the brain) can become significant when treating large curved surfaces. Methods: Applicator geometries representing a range of clinical cases were simulated in MCNP5. An Ir-192 source was modeled using the energy spectrum presented by TG-43. The head phantom wasmore » modeled as a 7.5-cm radius water sphere, with a 7 -mm thick skull embedded 5-mm beneath the surface. Dose values were calculated at 20 points inside the head, in which 10 of them were on the central axis and the other 10 on the axis connecting the central of the phantom with the second to last source from the applicator edge. Results: Central and peripheral dose distributions for a range of applicator and head sizes are presented. The distance along the central axis at which the dose falls to 80% of the prescribed dose (D80) was 7 mm for a representative small applicator and 9 mm for a large applicator. Corresponding D50 and D30 for the same small applicator were 17 mm and 32 mm respectively. D50 and D30 for the larger applicator were 32 mm and 60 mm respectively. These results reflect the slower falloff expected for larger applicators on a curved surface. Conclusion: Our results can provide guidance for clinicians to calculate the dose reduction effect due to bone attenuation and the lack of backscatter from air to estimate the brain dose for the HDR treatments of surface lesions.« less
In vivo real-time rectal wall dosimetry for prostate radiotherapy
Hardcastle, Nicholas; Cutajar, Dean L.; Metcalfe, Peter E.; Lerch, Michael L. F.; Perevertaylo, Vladimir L.; Tomé, Wolfgang A.; Rosenfeld, Anatoly B.
2010-01-01
Rectal balloons are used in external beam prostate radiotherapy to provide reproducible anatomy and rectal dose reductions. This is an investigation into the combination of a MOSFET radiation detector with a rectal balloon for real time in vivo rectal wall dosimetry. The MOSFET used in the study is a radiation detector that provides a water equivalent depth of measurement of 70μm. Two MOSFETs were combined in a face-to-face orientation. The reproducibility, sensitivity and angular dependence were measured for the dual MOSFET in a 6MV photon beam. The dual MOSFET was combined with a rectal balloon and irradiated with hypothetical prostate treatments in a phantom. The anterior rectal wall dose was measured in real time and compared with the planning system calculated dose. The dual MOSFET showed angular dependence within ± 2.5% in the azimuth and +2.5%/-4% in the polar axes. When compared with an ion chamber measurement in a phantom, the dual MOSFET agreed within 2.5% for a range of radiation path lengths and incident angles. The dual MOSFET had reproducible sensitivity for fraction sizes of 2-10Gy. For the hypothetical prostate treatments the measured anterior rectal wall dose was 2.6% and 3.2% lower than the calculated dose for 3DCRT and IMRT plans. This was expected due to limitations of the dose calculation method used at the balloon cavity interface. A dual MOSFET combined with a commercial rectal balloon was shown to provide reproducible measurements of the anterior rectal wall dose in real time. The measured anterior rectal wall dose agreed with the expected dose from the treatment plan for 3DCRT and IMRT plans. The dual MOSFET could be read out in real time during the irradiation, providing capability for real time dose monitoring of the rectal wall dose during treatment. PMID:20571209
Boockvar, John A; Tsiouris, Apostolos J; Hofstetter, Christoph P; Kovanlikaya, Ilhami; Fralin, Sherese; Kesavabhotla, Kartik; Seedial, Stephen M; Pannullo, Susan C; Schwartz, Theodore H; Stieg, Philip; Zimmerman, Robert D; Knopman, Jared; Scheff, Ronald J; Christos, Paul; Vallabhajosula, Shankar; Riina, Howard A
2011-03-01
The authors assessed the safety and maximum tolerated dose of superselective intraarterial cerebral infusion (SIACI) of bevacizumab after osmotic disruption of the blood-brain barrier (BBB) with mannitol in patients with recurrent malignant glioma. A total of 30 patients with recurrent malignant glioma were included in the current study. The authors report no dose-limiting toxicity from a single dose of SIACI of bevacizumab up to 15 mg/kg after osmotic BBB disruption with mannitol. Two groups of patients were studied; those without prior bevacizumab exposure (naïve patients; Group I) and those who had received previous intravenous bevacizumab (exposed patients; Group II). Radiographic changes demonstrated on MR imaging were assessed at 1 month postprocedure. In Group I patients, MR imaging at 1 month showed a median reduction in the area of tumor enhancement of 34.7%, a median reduction in the volume of tumor enhancement of 46.9%, a median MR perfusion (MRP) reduction of 32.14%, and a T2-weighted/FLAIR signal decrease in 9 (47.4%) of 19 patients. In Group II patients, MR imaging at 1 month showed a median reduction in the area of tumor enhancement of 15.2%, a median volume reduction of 8.3%, a median MRP reduction of 25.5%, and a T2-weighted FLAIR decrease in 0 (0%) of 11 patients. The authors conclude that SIACI of mannitol followed by bevacizumab (up to 15 mg/kg) for recurrent malignant glioma is safe and well tolerated. Magnetic resonance imaging shows that SIACI treatment with bevacizumab can lead to reduction in tumor area, volume, perfusion, and T2-weighted/FLAIR signal.