Science.gov

Sample records for dose simox process

  1. Control of the buried SiO 2 layer thickness and Si defect density in SIMOX substrates — structural investigation and process optimisation

    NASA Astrophysics Data System (ADS)

    Marsh, C. D.; Nejim, A.; Li, Y.; Booker, G. R.; Hemment, P. L. F.; Chater, R. J.; Kilner, J. A.

    1993-04-01

    The microstructure of SIMOX structures implanted at 200 keV with doses between 0.55 × 10 18 O +/cm 2 and 1.8 × 10 18 O +/cm 2, as-implanted and annealed in N 2 or Ar + {1}/{2%}O2, have been investigated by TEM, SIMS and RBS. Structur buried oxide layers thicknesses from 100 to 420 nm, Si layer thicknesses from 250 to 430 nm and threading dislocation densities from < 10 5/cm 2 to 10 8/cm 2 have been formed. The presence of damage at the wafer surface after implantation is critical role in determining the threading dislocation density after annealing. The influence of background heating compared to beam only heating upon the as-implanted and annealed microstructure along with the two different anneal treatments are discussed. The experimentally determined values of layer thicknesses and critical doses are compared with values calculated from two process models and processing conditions to produce SIMOX substrates with a low dislocation density (< 10 5/cm 2) and a thin continuous oxide layer are identified. It is found that the optimum dose is close to the minimum dose that forms a continuous buried layer after annealing.

  2. Dopants diffusion in a thin film SIMOX structure and its computer simulation

    NASA Astrophysics Data System (ADS)

    Zuoyu, Shi; Chenglu, Lin; Wenhua, Zhu; Shichang, Zou; Hemment, P. L. F.

    1994-02-01

    Oxygen ions with energy 90 or 200 keV and doses of 1.2 or 1.8×10 18 O +/cm 2 respectively were implanted into p-type (100) single crystal wafers followed by annealing at 1300°C for 5 h in a nitrogen environment to form a SIMOX (Separation by IMplanted OXygen) structure. During implantation the substrates were heated and the temperature was maintained at 650°C. 50 and 100 keV As + ions with doses ranging from 10 14 to 10 16/cm 2 were implanted into the SIMOX substrates. After implantation the samples were annealed at 900°C for 30 min or at 1100 or 1200°C for 15 or 20 s. Secondary ion mass spectroscopy (SIMS), Rutherford backscattering and channeling (RBS/C), automatic spreading resistance (ASR), and stripping Hall measurement were used to characterize the electrical properties of the SIMOX samples and the diffusion behavior of the arsenic atoms during the anneal. A computer program simulating dopant diffusion in SIMOX (SODDIS) was implemented, this being based upon the well-known SUPREM III program. Computer simulation and experiment showed (i) the buried SiO 2 layer in SIMOX acts as a very good barrier to dopant diffusion, (ii) the diffusion of arsenic in SIMOX is more rapid than in bulk silicon, and (iii) the electrical activity of the dopant in thin film SIMOX samples is dependent upon the implantation and anneal conditions, and also upon the defects present in the SIMOX material.

  3. Oxygen implanter for simox

    NASA Astrophysics Data System (ADS)

    Guerra, M.; Benveniste, V.; Ryding, G.; Douglas-Hamilton, D. H.; Reed, M.; Gagne, G.; Armstrong, A.; Mack, M.

    1985-01-01

    Interest in silicon or) insulator (SOI) technology has led to the development of several alternatives to silicon on sapphire. One of the most promising techniques makes use of an ion implanter to form a buried oxide layer directly in the silicon substrate. To have useful single crystalline silicon on top of the oxide layer, it is necessary to do the implant at high wafer temperatures and rely on solid phase epitaxy to maintain surface structure. A high current, 160 keV, Nova ion implanter has been adapted to provide the ability to perform oxygen implants at elevated temperatures. The operator is free to choose any temperature in the range between 400°C and 600°C. The system then preheats the wafers to the selected temperature before the implant begins. A novel technique for providing both heating and cooling capability to the end station is employed. An infrared signal from the wafers is monitored by a room temperature lead salt detector. This signal is then used by a servo-loop to control the heating of the end station and to maintain the wafer temperature to within ± 20°C during the implant. High doses of the type necessary to form a silicon dioxide buried layer require long lived, high current oxygen sources. An oxygen source has been specially developed, which provides as much as 10 mA of ion current. At a 6 mA output, source lifetimes in excess of 40 hours have been achieved. The implanter uses a specifically designed high temperature disk, which holds ten wafers, each of four inch diameter. A variety of implant angles lying between 0° and 15° is available. The beam is scanned mechanically and an electron flood gun can be used to prevent wafer charging. Special thermal barriers have been employed to protect the apparatus from extreme temperatures and to make the heating sequence more efficient and more rapid. Every effort has been made to avoid contamination of the implant. The implant disk, for example, is overcoated with silicon monoxide. Silicon

  4. DETECTORS AND EXPERIMENTAL METHODS: Radiation response of pseudo-MOS transistors fabricated in hardened fully-depleted SIMOX SOI wafers

    NASA Astrophysics Data System (ADS)

    Bi, Da-Wei; Zhang, Zheng-Xuan; Zhang, Shuai; Chen, Ming; Yu, Wen-Jie; Wang, Ru; Tian, Hao; Liu, Zhang-Li

    2009-10-01

    The total dose radiation response of pseudo-MOS transistors fabricated in hardened and unhardened FD (fully-depleted) SIMOX (Separation by Implanted Oxygen) SOI (Silicon-on-insulator) wafers is presented. At 1 Mrad(Si) radiation dose, the threshold voltage shift of the pseudo-MOS transistor is reduced from -115.5 to -1.9 V by the hardening procedure. The centroid location of the net positive charge trapped in BOX, the hole-trap density and the hole capture fraction of BOX are also shown. The results suggest that hardened FD SIMOX SOI wafers can perform well in a radiation environment.

  5. Fabrication of ultrathin SOI by SIMOX water bonding (SWB)

    NASA Astrophysics Data System (ADS)

    Tong, Q.-Y.; Gösele, U.

    1993-07-01

    Ultrathin silicon-on-insulator (SOI) layers of separation by implantation of oxygen (SIMOX) wafers have been transferred onto thermally oxidized silicon wafers by wafer bonding technology. Due to the technical availability and the complementary nature of SIMOX and wafer bonding approaches, SIMOX wafer bonding (SWB) solves some of the respective major difficulties faced by both SIMOX and wafer bonding for device quality ultrathin SOI mass production: the preparation of adequate buried oxide (including its interfaces) in SIMOX and the uniformly thinning one of the bonded wafers to less than 0.1 μm in wafer bonding. The effect of positive charges in the oxide on bondability of ultrathin SOI films and possible applications of SWB will also be outlined.

  6. Rutherford backscattering and channelling studies of erbium implanted SIMOX **

    SIMOX: separation by implanted oxygen.

    structures

    NASA Astrophysics Data System (ADS)

    Zhang, Jingping; Tang, Y. S.; Hemment, P. L. F.; Sealy, B. J.

    1990-04-01

    The behaviour of 250 keV 166Er + implanted into SIMOX structures has been investigated by Rutherford backscattering and channelling analysis. The implantation doses were 1.5 ×10 14 cm -2 and 1.5 × 10 15 cm -2. Both conventional furnace and rapid therm annealing were carried out in the temperature range 600°C-1100°C. Regrowth of the amorphized silicon and redistribution of the erbium were found to be strongly influenced by the status of the damaged layer. Different regrowth processes of the completely damaged silicon overlayer were suggested respectively for conventional furnace and rapid thermal annealing. It is found that the regrowth rate increases rapidly when the temperature is higher than 900° C in both cases. The redistribution of the erbium atoms was controlled by the regrowth boundary between the damaged and the recrystallized silicon.

  7. Advanced manufacturing of SIMOX for low power electronics

    NASA Astrophysics Data System (ADS)

    Alles, Michael; Krull, Wade

    1996-04-01

    Silicon-on-insulator (SOI) has emerged as a key technology for low power electronics. The merits of SOI technology have been demonstrated, and are gaining acceptance in the semiconductor industry. In order for the SOI approach to be viable, several factors must converge, including the availability of SOI substrates in sufficient quantity, of acceptable quality, and at a competitive price. This work describes developments in SIMOX manufacturing technology and summarizes progress in each of these areas.

  8. Dose estimates of alternative plutonium pyrochemical processes.

    SciTech Connect

    Kornreich, D. E.; Jackson, J. W.; Boerigter, S. T.; Averill, W. A.; Fasel, J. H.

    2002-01-01

    We have coupled our dose calculation tool Pandemonium with a discrete-event, object-oriented, process-modeling system ProMosO to analyze a set of alternatives for plutonium purification operations. The results follow expected trends and indicate, from a dose perspective, that an experimental flowsheet may warrant further research to see if it can be scaled to industrial levels. Flowsheets that include fluoride processes resulted in the largest doses.

  9. A MOS switched-capacitor ladder filter in SIMOX technology for high temperature applications up to 300 C

    SciTech Connect

    Verbeck, M.; Zimmermann, C.; Fiedler, H.L.

    1996-07-01

    The need for electronic devices and integrated circuits suitable for temperatures beyond the 125 C limit increases steadily. Typical applications for high temperature microelectronics can be found in the automotive industry, in avionics and space exploration, as well as in the oil drilling industry, geothermal exploration, and industrial measurement and control systems. This paper describes techniques and methods used to realize a seventh order switched-capacitor low pass filter in SIMOX technology. The filter has Bessel characteristic and a 3 dB-bandwidth of 20 Hz at a clock frequency of 100 kHz. Special design of transistors and transmission gates results in drastically reduced leakage currents at high temperatures. The power supply voltage of the switched-capacitor filter is 10 V. The temperature range is extended up to 300 C. Experimental results of the transistors, the transmission gates, the operational amplifier, and the complete filter are presented.

  10. Improvement of total-dose irradiation hardness of silicon-on-insulator materials by modifying the buried oxide layer with ion implantation

    NASA Astrophysics Data System (ADS)

    Zhang, En-Xia; Qian, Cong; Zhang, Zheng-Xuan; Lin, Cheng-Lu; Wang, Xi; Wang, Ying-Min; Wang, Xiao-He; Zhao, Gui-Ru; En, Yun-Fei; Luo, Hong-Wei; Shi, Qian

    2006-04-01

    The hardening of the buried oxide (BOX) layer of separation by implanted oxygen (SIMOX) silicon-on-insulator (SOI) wafers against total-dose irradiation was investigated by implanting ions into the BOX layers. The tolerance to total-dose irradiation of the BOX layers was characterized by the comparison of the transfer characteristics of SOI NMOS transistors before and after irradiation to a total dose of 2.7 Mrad(SiO2). The experimental results show that the implantation of silicon ions into the BOX layer can improve the tolerance of the BOX layers to total-dose irradiation. The investigation of the mechanism of the improvement suggests that the deep electron traps introduced by silicon implantation play an important role in the remarkable improvement in radiation hardness of SIMOX SOI wafers.

  11. A method to evaluate dose errors introduced by dose mapping processes for mass conserving deformations

    SciTech Connect

    Yan, C.; Hugo, G.; Salguero, F. J.; Saleh-Sayah, N.; Weiss, E.; Sleeman, W. C.; Siebers, J. V.

    2012-04-15

    Purpose: To present a method to evaluate the dose mapping error introduced by the dose mapping process. In addition, apply the method to evaluate the dose mapping error introduced by the 4D dose calculation process implemented in a research version of commercial treatment planning system for a patient case. Methods: The average dose accumulated in a finite volume should be unchanged when the dose delivered to one anatomic instance of that volume is mapped to a different anatomic instance--provided that the tissue deformation between the anatomic instances is mass conserving. The average dose to a finite volume on image S is defined as d{sub S}=e{sub s}/m{sub S}, where e{sub S} is the energy deposited in the mass m{sub S} contained in the volume. Since mass and energy should be conserved, when d{sub S} is mapped to an image R(d{sub S{yields}R}=d{sub R}), the mean dose mapping error is defined as {Delta}d{sub m}=|d{sub R}-d{sub S}|=|e{sub R}/m{sub R}-e{sub S}/m{sub S}|, where the e{sub R} and e{sub S} are integral doses (energy deposited), and m{sub R} and m{sub S} are the masses within the region of interest (ROI) on image R and the corresponding ROI on image S, where R and S are the two anatomic instances from the same patient. Alternatively, application of simple differential propagation yields the differential dose mapping error, {Delta}d{sub d}=|({partial_derivative}d/{partial_derivative}e)*{Delta}e+({partial_derivative}d/{partial_derivative}m)*{Delta}m|=|((e{sub S}-e{sub R})/m{sub R})-((m{sub S}-m{sub R})/m{sub R}{sup 2})*e{sub R}|={alpha}|d{sub R}-d{sub S}| with {alpha}=m{sub S}/m{sub R}. A 4D treatment plan on a ten-phase 4D-CT lung patient is used to demonstrate the dose mapping error evaluations for a patient case, in which the accumulated dose, D{sub R}={Sigma}{sub S=0}{sup 9}d{sub S{yields}R}, and associated error values ({Delta}D{sub m} and {Delta}D{sub d}) are calculated for a uniformly spaced set of ROIs. Results: For the single sample patient dose

  12. A method to evaluate dose errors introduced by dose mapping processes for mass conserving deformations

    PubMed Central

    Yan, C.; Hugo, G.; Salguero, F. J.; Saleh-Sayah, N.; Weiss, E.; Sleeman, W. C.; Siebers, J. V.

    2012-01-01

    Purpose: To present a method to evaluate the dose mapping error introduced by the dose mapping process. In addition, apply the method to evaluate the dose mapping error introduced by the 4D dose calculation process implemented in a research version of commercial treatment planning system for a patient case. Methods: The average dose accumulated in a finite volume should be unchanged when the dose delivered to one anatomic instance of that volume is mapped to a different anatomic instance—provided that the tissue deformation between the anatomic instances is mass conserving. The average dose to a finite volume on image S is defined as dS¯=es/mS, where eS is the energy deposited in the mass mS contained in the volume. Since mass and energy should be conserved, when dS¯ is mapped to an image R(dS→R¯=dR¯), the mean dose mapping error is defined as Δdm¯=|dR¯-dS¯|=|eR/mR-eS/mS|, where the eR and eS are integral doses (energy deposited), and mR and mS are the masses within the region of interest (ROI) on image R and the corresponding ROI on image S, where R and S are the two anatomic instances from the same patient. Alternatively, application of simple differential propagation yields the differential dose mapping error, Δdd¯=|∂d¯∂e*Δe+∂d¯∂m*Δm|=|(eS-eR)mR-(mS-mR)mR2*eR|=α|dR¯-dS¯| with α=mS/mR. A 4D treatment plan on a ten-phase 4D-CT lung patient is used to demonstrate the dose mapping error evaluations for a patient case, in which the accumulated dose, DR¯=∑S=09dS→R¯, and associated error values (ΔDm¯ and ΔDd¯) are calculated for a uniformly spaced set of ROIs. Results: For the single sample patient dose distribution, the average accumulated differential dose mapping error is 4.3%, the average absolute differential dose mapping error is 10.8%, and the average accumulated mean dose mapping error is 5.0%. Accumulated differential dose mapping errors within the gross tumor volume (GTV) and planning target volume (PTV) are lower, 0

  13. A method to evaluate dose errors introduced by dose mapping processes for mass conserving deformations.

    PubMed

    Yan, C; Hugo, G; Salguero, F J; Saleh-Sayah, N; Weiss, E; Sleeman, W C; Siebers, J V

    2012-04-01

    To present a method to evaluate the dose mapping error introduced by the dose mapping process. In addition, apply the method to evaluate the dose mapping error introduced by the 4D dose calculation process implemented in a research version of commercial treatment planning system for a patient case. The average dose accumulated in a finite volume should be unchanged when the dose delivered to one anatomic instance of that volume is mapped to a different anatomic instance-provided that the tissue deformation between the anatomic instances is mass conserving. The average dose to a finite volume on image S is defined as d(S)=e(s)/m(S), where e(S) is the energy deposited in the mass m(S) contained in the volume. Since mass and energy should be conserved, when d(S) is mapped to an image R(d(S→R)=d(R)), the mean dose mapping error is defined as Δd(m)=|d(R)-d(S)|=|e(R)/m(R)-e(S)/m(S)|, where the e(R) and e(S) are integral doses (energy deposited), and m(R) and m(S) are the masses within the region of interest (ROI) on image R and the corresponding ROI on image S, where R and S are the two anatomic instances from the same patient. Alternatively, application of simple differential propagation yields the differential dose mapping error, Δd(d)=|∂d∂e*Δe+∂d∂m*Δm|=|(e(S)-e(R))m(R)-(m(S)-m(R))m(R) (2)*e(R)|=α|d(R)-d(S)| with α=m(S)/m(R). A 4D treatment plan on a ten-phase 4D-CT lung patient is used to demonstrate the dose mapping error evaluations for a patient case, in which the accumulated dose, D(R)=∑(S=0) (9)d(S→R), and associated error values (ΔD(m) and ΔD(d)) are calculated for a uniformly spaced set of ROIs. For the single sample patient dose distribution, the average accumulated differential dose mapping error is 4.3%, the average absolute differential dose mapping error is 10.8%, and the average accumulated mean dose mapping error is 5.0%. Accumulated differential dose mapping errors within the gross tumor volume (GTV) and planning target volume (PTV

  14. Object-oriented process dose modeling for glovebox operations

    SciTech Connect

    Boerigter, S.T.; Fasel, J.H.; Kornreich, D.E.

    1999-06-01

    The Plutonium Facility at Los Alamos National Laboratory supports several defense and nondefense-related missions for the country by performing fabrication, surveillance, and research and development for materials and components that contain plutonium. Most operations occur in rooms with one or more arrays of gloveboxes connected to each other via trolley gloveboxes. Minimizing the effective dose equivalent (EDE) is a growing concern as a result of steadily declining allowable dose limits being imposed and a growing general awareness of safety in the workplace. In general, the authors discriminate three components of a worker`s total EDE: the primary EDE, the secondary EDE, and background EDE. A particular background source of interest is the nuclear materials vault. The distinction between sources inside and outside of a particular room is arbitrary with the underlying assumption that building walls and floors provide significant shielding to justify including sources in other rooms in the background category. Los Alamos has developed the Process Modeling System (ProMoS) primarily for performing process analyses of nuclear operations. ProMoS is an object-oriented, discrete-event simulation package that has been used to analyze operations at Los Alamos and proposed facilities such as the new fabrication facilities for the Complex-21 effort. In the past, crude estimates of the process dose (the EDE received when a particular process occurred), room dose (the EDE received when a particular process occurred in a given room), and facility dose (the EDE received when a particular process occurred in the facility) were used to obtain an integrated EDE for a given process. Modifications to the ProMoS package were made to utilize secondary dose information to use dose modeling to enhance the process modeling efforts.

  15. SEMICONDUCTOR TECHNOLOGY: Influence of nitrogen dose on the charge density of nitrogen-implanted buried oxide in SOI wafers

    NASA Astrophysics Data System (ADS)

    Zhongshan, Zheng; Zhongli, Liu; Ning, Li; Guohua, Li; Enxia, Zhang

    2010-02-01

    To harden silicon-on-insulator (SOI) wafers fabricated using separation by implanted oxygen (SIMOX) to total-dose irradiation, the technique of nitrogen implantation into the buried oxide (BOX) layer of SIMOX wafers can be used. However, in this work, it has been found that all the nitrogen-implanted BOX layers reveal greater initial positive charge densities, which increased with increasing nitrogen implantation dose. Also, the results indicate that excessively large nitrogen implantation dose reduced the radiation tolerance of BOX for its high initial positive charge density. The bigger initial positive charge densities can be ascribed to the accumulation of implanted nitrogen near the Si-BOX interface after annealing. On the other hand, in our work, it has also been observed that, unlike nitrogen-implanted BOX, all the fluorine-implanted BOX layers show a negative charge density. To obtain the initial charge densities of the BOX layers, the tested samples were fabricated with a metal-BOX-silicon (MBS) structure based on SIMOX wafers for high-frequency capacitance-voltage (C-V) analysis.

  16. Dose errors in the treatment planning process of cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Myint, W. Kenji

    This thesis reports on the examination of specific dose errors in the treatment planning process. This process begins with the acquisition of the treatment planning CT (computed tomography) dataset and ends with the calculation of dose in the patient. The treatment planning CT is a Hounsfield unit (HU) representation of the patient that is converted to relative electron density in the treatment planning system. The treatment planning system utilizes a dose calculation algorithm to predict the dose based on the relative electron density distribution of the patient. The sources of dose error investigated in this thesis can be categorized as: (i) errors in the HU representation of the patient; (ii) errors in the relative electron density distribution of the patient; and (iii) errors in the dose calculation algorithm. Errors in the dose calculation algorithms were examined in Chapter 3, where the accuracy of the Theraplan Plus treatment planning system's implementation of the pencil beam and collapsed cone convolution algorithms were investigated in lung-equivalent material. Both algorithms had difficulty modeling the broadening of the beam in the lung-equivalent material but the collapsed cone convolution algorithm generally showed consistently smaller dose errors than the pencil beam algorithm. As expected, the pencil beam model could not model any lateral electron transport and the largest dose errors were observed near lateral lung-acrylic interfaces. In chapter 4, objects present during dose delivery but not accounted for in the treatment planning CT dataset were investigated. These can be categorized as errors in the HU representation of the patient. One such example is the treatment tabletop present during delivery, but replaced with a different table during the CT scan. In this study, the attenuation of the beam by a carbon fiber treatment tabletop was quantified and a practical solution to account for the tabletop was proposed. It was determined that

  17. A normal tissue dose response model of dynamic repair processes

    NASA Astrophysics Data System (ADS)

    Alber, Markus; Belka, Claus

    2006-01-01

    A model is presented for serial, critical element complication mechanisms for irradiated volumes from length scales of a few millimetres up to the entire organ. The central element of the model is the description of radiation complication as the failure of a dynamic repair process. The nature of the repair process is seen as reestablishing the structural organization of the tissue, rather than mere replenishment of lost cells. The interactions between the cells, such as migration, involved in the repair process are assumed to have finite ranges, which limits the repair capacity and is the defining property of a finite-sized reconstruction unit. Since the details of the repair processes are largely unknown, the development aims to make the most general assumptions about them. The model employs analogies and methods from thermodynamics and statistical physics. An explicit analytical form of the dose response of the reconstruction unit for total, partial and inhomogeneous irradiation is derived. The use of the model is demonstrated with data from animal spinal cord experiments and clinical data about heart, lung and rectum. The three-parameter model lends a new perspective to the equivalent uniform dose formalism and the established serial and parallel complication models. Its implications for dose optimization are discussed.

  18. Non linear processes modulated by low doses of radiation exposure

    NASA Astrophysics Data System (ADS)

    Mariotti, Luca; Ottolenghi, Andrea; Alloni, Daniele; Babini, Gabriele; Morini, Jacopo; Baiocco, Giorgio

    The perturbation induced by radiation impinging on biological targets can stimulate the activation of several different pathways, spanning from the DNA damage processing to intra/extra -cellular signalling. In the mechanistic investigation of radiobiological damage this complex “system” response (e.g. omics, signalling networks, micro-environmental modifications, etc.) has to be taken into account, shifting from a focus on the DNA molecule solely to a systemic/collective view. An additional complication comes from the finding that the individual response of each of the involved processes is often not linear as a function of the dose. In this context, a systems biology approach to investigate the effects of low dose irradiations on intra/extra-cellular signalling will be presented, where low doses of radiation act as a mild perturbation of a robustly interconnected network. Results obtained through a multi-level investigation of both DNA damage repair processes (e.g. gamma-H2AX response) and of the activation kinetics for intra/extra cellular signalling pathways (e.g. NFkB activation) show that the overall cell response is dominated by non-linear processes - such as negative feedbacks - leading to possible non equilibrium steady states and to a poor signal-to-noise ratio. Together with experimental data of radiation perturbed pathways, different modelling approaches will be also discussed.

  19. Simulating total-dose and dose-rate effects on digital microelectronics timing delays using VHDL

    SciTech Connect

    Brothers, C.P. Jr.; Pugh, R.D.

    1995-12-01

    This paper describes a fast timing simulator based on Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL) for simulating the timing of digital microelectronics in pre-irradiation, total dose, and dose-rate radiation environments. The goal of this research is the rapid and accurate timing simulation of radiation-hardened microelectronic circuits before, during, and after exposure to ionizing radiation. The results of this research effort were the development of VHDL compatible models capable of rapid and accurate simulation of the effect of radiation on the timing performance of microelectronic circuits. The effects of radiation for total dose at 1 Mrad(Si) and dose rates up to 2 {times} 10{sup 12} rads(Si) per second were modeled for a variety of Separation by IMplantion of OXygen (SIMOX) circuits. In all cases tested, the VHDL simulations ran at least 600 times faster than SPICE while maintaining a timing accuracy to within 15% of SPICE values.

  20. Technical Basis for Expedited Processing of Radiation Dose Assessments for NTPR Hiroshima and Nagasaki Participants

    DTIC Science & Technology

    2015-11-01

    expedited processing of Radiation Dose Assessments (RDAs) for Hiroshima and Nagasaki (H&N) veterans in the Nuclear Test Personnel Review (NTPR) Program...Expedited processing of Nuclear Test Personnel Review program radiation dose assessments (RDAs) is an option for certain claims from the Department...Agency), 2015a. Expedited Processing of Radiation Dose Assessments for Atmospheric Nuclear Weapons Testing Veterans, NTPR Standard Operating

  1. Comparing greenhouse sprayers: the dose-transfer process.

    PubMed

    Ebert, Timothy A; Derksen, Richard C; Downer, Roger A; Krause, Charles R

    2004-05-01

    Three sprayers were evaluated for their affect on retention and efficacy: a carbon dioxide powered high-volume sprayer, a DRAMM coldfogger, and an Electrostatic Spraying Systems (ESS) sprayer with air-assistance. The active ingredients used were spinosad and azadirachtin. The plant canopy was constructed in the greenhouse using potted soybeans (Glycine max (L) Merrill cr Pioneer 9392). Application efficacy with spinosad was assessed using thrips [Western flower thrips, Frankliniella occidentalis (Pergande)] and mite (two-spotted spider mite, Tetranychus urticae Koch) abundance on shoots and leaves. Application efficacy with azadirachtin was assessed using thrips and aphid (soybean aphid, Aphis glycines Matsumura) abundance on shoots and leaves. The atomization characteristics of each sprayer were measured using an Aerometrics phase/Doppler particle analyzer (PDPA) 100-1D. The results of four tests are presented. Two tests used each sprayer according to manufacturer recommendations. These are 'recommended volume' tests that confound differences in toxicant distribution caused by the sprayer with differences caused by changes in application volume. The other two tests were 'constant volume' tests in which all three sprayers were used to deliver the same application volume. Both types of test gave differences between sprayers in retention of toxicant, but only the recommended volume tests showed significant effects of the sprayers on pest abundance. We attribute this difference to the role played by changing application volumes in the dose-transfer process. The constant-volume tests showed that application equipment influences efficacy.

  2. Assessment of patient dose in medical processes by in-vivo dose measuring devices: A review

    NASA Astrophysics Data System (ADS)

    Tuncel, Nina

    2016-11-01

    In-vivo dosimetry (IVD) in medicine especially in radiation therapy is a well-established and recommended procedure for the estimation of the dose delivered to a patient during the radiation treatment. It became even more important with the emerging use of new and more complex radiotherapy techniques such as intensity-modulated or image-guided radiation therapy. While IVD has been used in brachytherapy for decades and the initial motivation for performing was mainly to assess doses to organs at risk by direct measurements, it is now possible to calculate 3D for detection of deviations or errors. In-vivo dosimeters can be divided into real-time and passive detectors that need some finite time following irradiation for their analysis. They require a calibration against a calibrated ionization chamber in a known radiation field. Most of these detectors have a response that is energy and/or dose rate dependent and consequently require adjustments of the response to account for changes in the actual radiation conditions compared to the calibration situation. Correction factors are therefore necessary to take. Today, the most common dosimeters for patients' dose verification through in-vivo measurements are semiconductor diodes, thermo-luminescent dosimeters, optically stimulated luminescence dosimeters, metal-oxide-semiconductor field-effect transistors and plastic scintillator detectors with small outer diameters.

  3. High-dose processing and application to Korean space foods

    NASA Astrophysics Data System (ADS)

    Song, Beom-Seok; Park, Jin-Gyu; Park, Jae-Nam; Han, In-Jun; Choi, Jong-il; Kim, Jae-Hun; Byun, Myung-Woo; Kang, Sang-Wook; Choi, Gi-Hyuk; Lee, Ju-Woon

    2009-07-01

    Nutrition bar, Ramen (ready-to-cook noodle), and two Korean traditional foods ( Kimchi, fermented vegetable; Sujeonggwa, cinnamon beverage) have been developed as space foods using high-dose gamma irradiation. Addition of calcium lactate and vitamin C, a mild heating, deep-freezing, and gamma irradiation at 25 kGy were conducted to prepare Kimchi as a ready-to-eat space food. Sterilization of Space Kimchi (SK) was confirmed by a microbiological test. The hardness of the Space Kimchi was lower than the untreated Kimchi (CON), but higher than the irradiated only Kimchi. Sensory attributes of the SK were similar to CON, and maintained during preservation at 35 °C for 30 days. The optimal doses for eliminating the contaminated microbes and maintaining the qualities of the Nutrition bars, Ramen, and Sujeonggwa were determined at 15, 10 and 6 kGy, respectively. All the Korean space food were certificated for use in space flight conditions of 30 days by the Russian Institute for Biomedical Problems.

  4. Review of the Reference Dose and Reference Concentration Processes Document

    EPA Pesticide Factsheets

    Summarizes the review and deliberations of the Risk Assessment Forum’s RfD/RfC Technical Panel and its recommendations for improvements in oral referencedose/inhalation reference concentration (RfD/RfC) process.

  5. Ocular Allergy Modulation to Hi-Dose Antigen Sensitization Is a Treg-Dependent Process

    PubMed Central

    Lee, Hyun Soo; Schlereth, Simona; Khandelwal, Payal; Saban, Daniel R.

    2013-01-01

    A reproducible method to inhibit allergic immune responses is accomplished with hi-dose Ag sensitization, via intraperitoneal (IP) injection. However, the role of CD4+ CD25+ FoxP3+ T regulatory cells (Treg) in this process is unknown, as is whether such modulation extends to ocular allergy. We therefore determined herein whether hi-dose sensitization modulates ocular allergy, and whether CD4+ CD25+ FoxP3+ Treg are involved. C57BL/6 mice were IP sensitized via low-dose (100 µg) versus hi-dose (1000 µg) ovalbumin (OVA), in aluminum hydroxide (1 mg) and pertussis-toxin (300 ng). Other mice received anti-CD25 Ab (PC61) to ablate Treg during sensitization. In another experiment, Treg from hi-dose sensitized mice were adoptively transferred into low-dose sensitized mice. Once daily OVA challenges were administered. Clinical signs, IgE, T cell cytokines, and eosinophils were assessed. Data revealed that hi-dose, but not low-dose, sensitization led to allergy modulation, indicated by decreased clinical signs, serum IgE levels, Th2 recall responses, and eosinophil recruitment. T cells from hi-dose sensitized mice showed a robust increase in TGF-b production, and Treg from these mice were able to efficiently suppress effector T cell proliferation in vitro. In addition, in vivo Treg ablation in hi-dose sensitized mice revoked allergy modulation. Lastly, Treg from hi-dose sensitized mice were able to adoptively transfer allergy modulation to their low-dose sensitized counterparts. Collectively, these findings indicate that modulation to hi-dose sensitization, which is extended to ocular allergy, occurs in a Treg-dependent manner. In addition, our data suggest that hi-dose sensitization may henceforth facilitate the further examination of CD4+ CD25+ FoxP3+ Treg in allergic disease. PMID:24086630

  6. Ocular allergy modulation to hi-dose antigen sensitization is a Treg-dependent process.

    PubMed

    Lee, Hyun Soo; Schlereth, Simona; Khandelwal, Payal; Saban, Daniel R

    2013-01-01

    A reproducible method to inhibit allergic immune responses is accomplished with hi-dose Ag sensitization, via intraperitoneal (IP) injection. However, the role of CD4+ CD25+ FoxP3+ T regulatory cells (Treg) in this process is unknown, as is whether such modulation extends to ocular allergy. We therefore determined herein whether hi-dose sensitization modulates ocular allergy, and whether CD4+ CD25+ FoxP3+ Treg are involved. C57BL/6 mice were IP sensitized via low-dose (100 µg) versus hi-dose (1000 µg) ovalbumin (OVA), in aluminum hydroxide (1 mg) and pertussis-toxin (300 ng). Other mice received anti-CD25 Ab (PC61) to ablate Treg during sensitization. In another experiment, Treg from hi-dose sensitized mice were adoptively transferred into low-dose sensitized mice. Once daily OVA challenges were administered. Clinical signs, IgE, T cell cytokines, and eosinophils were assessed. Data revealed that hi-dose, but not low-dose, sensitization led to allergy modulation, indicated by decreased clinical signs, serum IgE levels, Th2 recall responses, and eosinophil recruitment. T cells from hi-dose sensitized mice showed a robust increase in TGF-b production, and Treg from these mice were able to efficiently suppress effector T cell proliferation in vitro. In addition, in vivo Treg ablation in hi-dose sensitized mice revoked allergy modulation. Lastly, Treg from hi-dose sensitized mice were able to adoptively transfer allergy modulation to their low-dose sensitized counterparts. Collectively, these findings indicate that modulation to hi-dose sensitization, which is extended to ocular allergy, occurs in a Treg-dependent manner. In addition, our data suggest that hi-dose sensitization may henceforth facilitate the further examination of CD4+ CD25+ FoxP3+ Treg in allergic disease.

  7. New image-processing and noise-reduction software reduces radiation dose during complex endovascular procedures.

    PubMed

    Kirkwood, Melissa L; Guild, Jeffrey B; Arbique, Gary M; Tsai, Shirling; Modrall, J Gregory; Anderson, Jon A; Rectenwald, John; Timaran, Carlos

    2016-11-01

    A new proprietary image-processing system known as AlluraClarity, developed by Philips Healthcare (Best, The Netherlands) for radiation-based interventional procedures, claims to lower radiation dose while preserving image quality using noise-reduction algorithms. This study determined whether the surgeon and patient radiation dose during complex endovascular procedures (CEPs) is decreased after the implementation of this new operating system. Radiation dose to operators, procedure type, reference air kerma, kerma area product, and patient body mass index were recorded during CEPs on two Philips Allura FD 20 fluoroscopy systems with and without Clarity. Operator dose during CEPs was measured using optically stimulable, luminescent nanoDot (Landauer Inc, Glenwood, Ill) detectors placed outside the lead apron at the left upper chest position. nanoDots were read using a microStar ii (Landauer Inc) medical dosimetry system. For the CEPs in the Clarity group, the radiation dose to surgeons was also measured by the DoseAware (Philips Healthcare) personal dosimetry system. Side-by-side measurements of DoseAware and nanoDots allowed for cross-calibration between systems. Operator effective dose was determined using a modified Niklason algorithm. To control for patient size and case complexity, the average fluoroscopy dose rate and the dose per radiographic frame were adjusted for body mass index differences and then compared between the groups with and without Clarity by procedure. Additional factors, for example, physician practice patterns, that may have affected operator dose were inferred by comparing the ratio of the operator dose to procedural kerma area product with and without Clarity. A one-sided Wilcoxon rank sum test was used to compare groups for radiation doses, reference air kermas, and operating practices for each procedure type. The analysis included 234 CEPs; 95 performed without Clarity and 139 with Clarity. Practice patterns of operators during

  8. Stochastic process pharmacodynamics: dose timing in neonatal gentamicin therapy as an example.

    PubMed

    Radivoyevitch, Tomas; Siranart, Nopphon; Hlatky, Lynn; Sachs, Rainer

    2015-03-01

    We consider dosing regimens designed to cure patients by eradicating colony forming units (CFU) such as bacteria. In the field of "population" pharmaco-kinetics/dynamics (PK/PD), inter-individual variability (IIV) of patients is estimated using model parameter statistical distributions. We consider a more probabilistic approach to IIV called stochastic process theory, motivated by the fact that tumor treatment planning uses both approaches. Stochastic process PD can supply additional insights and suggest different dosing regimens due to its emphasis on the probability of complete CFU eradication and its predictions on "pure chance" fluctuations of CFU number per patient when treatment has reduced this integer to less than ~100. To exemplify the contrast between stochastic process PD models and standard deterministic PD models, which track only average CFU number, we analyze, neglecting immune responses, neonatal intravenous gentamicin dosing regimens directed against Escherichia coli. Our stochastic calculations predict that the first dose is crucial for CFU eradication. For example, a single 6 mg/kg dose is predicted to have a higher eradication probability than four daily 4 mg/kg doses. We conclude: (1) neonatal gentamicin dosing regimens with larger first doses but smaller total doses deserve investigation; (2) in general, if standard PK/PD models predict average CFU number drops substantially below 100, the models should be modified to incorporate stochastic effects more accurately, and will then usually make more favorable, or less unfavorable, predictions for front boosting ("hit hard early"). Various caveats against over-interpreting the calculations are given.

  9. Effective dose in the manufacturing process of rutile covered welding electrodes.

    PubMed

    Herranz, M; Rozas, S; Pérez, C; Idoeta, R; Núñez-Lagos, R; Legarda, F

    2013-03-01

    Shielded metal arc welding using covered electrodes is the most common welding process. Sometimes the covering contains naturally occurring radioactive materials (NORMs). In Spain the most used electrodes are those covered with rutile mixed with other materials. Rutile contains some detectable natural radionuclides, so it can be considered a NORM. This paper mainly focuses on the use of MCNP (Monte Carlo N-Particle Transport Code) as a predictive tool to obtain doses in a factory which produces this type of electrode and assess the radiological impact in a specific facility after estimating the internal dose.To do this, in the facility, areas of highest radiation and positions of workers were identified, radioactive content of rutile and rutile covered electrodes was measured, and, considering a worst possible scenario, external dose at working points has been calculated using MCNP. This procedure has been validated comparing the results obtained with those from a pressurised ionisation chamber and TLD dosimeters. The internal dose has been calculated using DCAL (dose and risk calculation). The doses range between 8.8 and 394 μSv yr(-1), always lower than the effective dose limit for the public, 1 mSv yr(-1). The highest dose corresponds to the mixing area.

  10. Improving abdomen tumor low-dose CT images using a fast dictionary learning based processing

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Yin, Xindao; Shi, Luyao; Shu, Huazhong; Luo, Limin; Coatrieux, Jean-Louis; Toumoulin, Christine

    2013-08-01

    In abdomen computed tomography (CT), repeated radiation exposures are often inevitable for cancer patients who receive surgery or radiotherapy guided by CT images. Low-dose scans should thus be considered in order to avoid the harm of accumulative x-ray radiation. This work is aimed at improving abdomen tumor CT images from low-dose scans by using a fast dictionary learning (DL) based processing. Stemming from sparse representation theory, the proposed patch-based DL approach allows effective suppression of both mottled noise and streak artifacts. The experiments carried out on clinical data show that the proposed method brings encouraging improvements in abdomen low-dose CT images with tumors.

  11. The Research of Improving the Particleboard Glue Dosing Process Based on TRIZ Analysis

    NASA Astrophysics Data System (ADS)

    Yu, Huiling; Fan, Delin; Zhang, Yizhuo

    This research creates a design methodology by synthesizing the Theory of Inventive Problem Solving (TRIZ) and cascade control based on Smith predictor. The particleboard glue supplying and dosing system case study defines the problem and the solution using the methodology proposed in the paper. Status difference existing in the gluing dosing process of particleboard production usually causes gluing volume inaccurately. In order to solve the problem above, we applied the TRIZ technical contradiction and inventive principle to improve the key process of particleboard production. The improving method mapped inaccurate problem to TRIZ technical contradiction, the prior action proposed Smith predictor as the control algorithm in the glue dosing system. This research examines the usefulness of a TRIZ based problem-solving process designed to improve the problem-solving ability of users in addressing difficult or reoccurring problems and also testify TRIZ is practicality and validity. Several suggestions are presented on how to approach this problem.

  12. Value of increasing film processing time to reduce radiation dose during mammography

    SciTech Connect

    Skubic, S.E.; Yagan, R.; Oravec, D.; Shah, Z. )

    1990-12-01

    We systematically tested the effects on radiation dose and image quality of increasing the mammographic film processing time from the standard 90 sec to 3 min. Hurter and Driffield curves were obtained for a Kodak Min-R-OM1-SO177 screen-film combination processed with Kodak chemistry. Image contrast and radiation dose were measured for two tissue-equivalent breast phantoms. We also compared sequential pairs of mammograms, one processed at 90 sec and one at 3 min, from 44 patients on the basis of nine categories of image quality. Increased processing time reduced breast radiation dose by 30%, increased contrast by 11%, and produced slight overall gains in image quality. Simple modifications can convert a 90-sec processor to a 3-min unit. We recommend that implementation of extended processing be considered, especially by those centers that obtain a large number of screening mammograms. Three-minute film processing can reduce breast radiation dose by 30% and increase contrast by 11% without compromising image quality.

  13. Image quality and dose differences caused by vendor-specific image processing of neonatal radiographs.

    PubMed

    Sensakovic, William F; O'Dell, M Cody; Letter, Haley; Kohler, Nathan; Rop, Baiywo; Cook, Jane; Logsdon, Gregory; Varich, Laura

    2016-10-01

    Image processing plays an important role in optimizing image quality and radiation dose in projection radiography. Unfortunately commercial algorithms are black boxes that are often left at or near vendor default settings rather than being optimized. We hypothesize that different commercial image-processing systems, when left at or near default settings, create significant differences in image quality. We further hypothesize that image-quality differences can be exploited to produce images of equivalent quality but lower radiation dose. We used a portable radiography system to acquire images on a neonatal chest phantom and recorded the entrance surface air kerma (ESAK). We applied two image-processing systems (Optima XR220amx, by GE Healthcare, Waukesha, WI; and MUSICA(2) by Agfa HealthCare, Mortsel, Belgium) to the images. Seven observers (attending pediatric radiologists and radiology residents) independently assessed image quality using two methods: rating and matching. Image-quality ratings were independently assessed by each observer on a 10-point scale. Matching consisted of each observer matching GE-processed images and Agfa-processed images with equivalent image quality. A total of 210 rating tasks and 42 matching tasks were performed and effective dose was estimated. Median Agfa-processed image-quality ratings were higher than GE-processed ratings. Non-diagnostic ratings were seen over a wider range of doses for GE-processed images than for Agfa-processed images. During matching tasks, observers matched image quality between GE-processed images and Agfa-processed images acquired at a lower effective dose (11 ± 9 μSv; P < 0.0001). Image-processing methods significantly impact perceived image quality. These image-quality differences can be exploited to alter protocols and produce images of equivalent image quality but lower doses. Those purchasing projection radiography systems or third-party image-processing software should be aware that image

  14. Mixed-effects Gaussian process functional regression models with application to dose-response curve prediction.

    PubMed

    Shi, J Q; Wang, B; Will, E J; West, R M

    2012-11-20

    We propose a new semiparametric model for functional regression analysis, combining a parametric mixed-effects model with a nonparametric Gaussian process regression model, namely a mixed-effects Gaussian process functional regression model. The parametric component can provide explanatory information between the response and the covariates, whereas the nonparametric component can add nonlinearity. We can model the mean and covariance structures simultaneously, combining the information borrowed from other subjects with the information collected from each individual subject. We apply the model to dose-response curves that describe changes in the responses of subjects for differing levels of the dose of a drug or agent and have a wide application in many areas. We illustrate the method for the management of renal anaemia. An individual dose-response curve is improved when more information is included by this mechanism from the subject/patient over time, enabling a patient-specific treatment regime.

  15. Estimation of the absorbed dose in radiation-processed food. 4. EPR measurements on eggshell

    SciTech Connect

    Desrosiers, M.F.; Le, F.G. ); Harewood, P.M.; Josephson, E.S. ); Montesalvo, M. )

    1993-09-01

    Fresh whole eggs treated with ionizing radiation for Salmonellae control testing. The eggshell was then removed and examined by electron paramagnetic resonance (EPR) spectroscopy to determine if EPR could be used to (1) distinguish irradiated from unirradiated eggs and (2) assess the absorbed dose. No EPR signals were detected in unirradiated eggs, while strong signals were measurable for more than 200 days after irradiation. Although a number of EPR signals were measured, the most intense resonance (g = 2.0019) was used for dosimetry throughout the study. This signal was observed to increase linearly with dose (up to [approximately]6 kGy), which decayed [approximately]20% within the first 5 days after irradiation and remained relatively constant thereafter. The standard added-dose method was used to assess, retrospectively, the dose to eggs processed at 0.2, 0.7, and 1.4 kGy. Relatively good results were obtained when measurement was made on the day the shell was reirradiated; with this procedure estimates were better for shell processed at the lower doses.

  16. Low Doses of Traditional Nanophytomedicines for Clinical Treatment: Manufacturing Processes and Nonlinear Response Patterns.

    PubMed

    Bell, Iris R; Sarter, Barbara; Standish, Leanna J; Banerji, Prasanta; Banerji, Pratip

    2015-06-01

    The purpose of the present paper is to (a) summarize evidence for the nanoparticle nature and biological effects of traditional homeopathically-prepared medicines at low and ultralow doses; (b) provide details of historically-based homeopathic green manufacturing materials and methods, relating them to top-down mechanical attrition and plant-based biosynthetic processes in modern nanotechnology; (c) outline the potential roles of nonlinear dose-responses and dynamical interactions with complex adaptive systems in generating endogenous amplification processes during low dose treatment. Possible mechanisms of low dose effects, for which there is evidence involving nanoparticles and/or homeopathically-manufactured medicines, include hormesis, time-dependent sensitization, and stochastic resonance. All of the proposed mechanisms depend upon endogenous nonlinear amplification processes in the recipient organism in interaction with the salient, albeit weak signal properties of the medicine. Conventional ligand-receptor mechanisms relevant to higher doses are less likely involved. Effects, especially for homeopathically-prepared nanophytomedicines, include bidirectional host state-dependent changes in function. Homeopathic clinicians report successful treatment of serious infections and cancers. Preclinical biological evidence is consistent with such claims. Controlled biological data on homeopathically-prepared medicines indicate modulation of gene expression and biological signaling pathways regulating cell cycles, immune reactions, and central nervous system function from studies on cells, animals, and human subjects. As a 200-year old system of traditional medicine used by millions of people worldwide, homeopathy offers a pulsed low dose treatment strategy and strong safety record to facilitate progress in translational nanomedicine with plants and other natural products. In turn, modern nanotechnology methods can improve homeopathic manufacturing procedures

  17. Increased radiation dose at mammography due to prolonged exposure, delayed processing, and increased film darkening

    SciTech Connect

    Kimme-Smith, C.; Bassett, L.W.; Gold, R.H.; Chow, S. )

    1991-02-01

    Four single-emulsion films introduced over the past 2 years--Du Pont Microvision, Fuji MiMa, Konica CM, and Eastman Kodak OM--were compared with Eastman Kodak OM SO-177 (Min-RE) film to evaluate their varying effects on mean glandular dose of reciprocity law failure due to prolonged exposure, delayed processing, and increased film darkening as a result of increased radiation exposure to improve penetration of glandular tissue. Exposures over 1.3 seconds led to increased radiation doses of 20%-30%. Delays in processing of 6 hours decreased processing speed by 11%-32% for all films except Du Pont Microvision. Optical density increases of 0.40 required 20%-30% more skin exposure for all five films. Optimal viewing densities were also evaluated and found to be different for each of the five films. Mammographers need to be aware of these differences in mammographic films to achieve maximum contrast at mammography.

  18. Increased radiation dose at mammography due to prolonged exposure, delayed processing, and increased film darkening.

    PubMed

    Kimme-Smith, C; Bassett, L W; Gold, R H; Chow, S

    1991-02-01

    Four single-emulsion films introduced over the past 2 years--Du Pont Microvision, Fuji MiMa, Konica CM, and Eastman Kodak OM--were compared with Eastman Kodak OM SO-177 (Min-RE) film to evaluate their varying effects on mean glandular dose of reciprocity law failure due to prolonged exposure, delayed processing, and increased film darkening as a result of increased radiation exposure to improve penetration of glandular tissue. Exposures over 1.3 seconds led to increased radiation doses of 20%-30%. Delays in processing of 6 hours decreased processing speed by 11%-32% for all films except Du Pont Microvision. Optical density increases of 0.40 required 20%-30% more skin exposure for all five films. Optimal viewing densities were also evaluated and found to be different for each of the five films. Mammographers need to be aware of these differences in mammographic films to achieve maximum contrast at mammography.

  19. Effects of irradiation source and dose level on quality characteristics of processed meat products

    NASA Astrophysics Data System (ADS)

    Ham, Youn-Kyung; Kim, Hyun-Wook; Hwang, Ko-Eun; Song, Dong-Heon; Kim, Yong-Jae; Choi, Yun-Sang; Song, Beom-Seok; Park, Jong-Heum; Kim, Cheon-Jei

    2017-01-01

    The effect of irradiation source (gamma-ray, electron-beam, and X-ray) and dose levels on the physicochemical, organoleptic and microbial properties of cooked beef patties and pork sausages was studied, during 10 days of storage at 30±1 °C. The processed meat products were irradiated at 0, 2.5, 5, 7.5, and 10 kGy by three different irradiation sources. The pH of cooked beef patties and pork sausages was unaffected by irradiation sources or their doses. The redness of beef patties linearly decreased with increasing dose level (P<0.05), obviously by e-beam irradiation compared to gamma-ray and X-ray (P<0.05). The redness of pork sausages was increased by gamma-ray irradiation, whereas it decreased by e-beam irradiation depending on absorbed dose level. No significant changes in overall acceptability were observed for pork sausages regardless of irradiation source (P>0.05), while gamma-ray irradiated beef patties showed significantly decreased overall acceptability in a dose-dependent manner (P<0.05). Lipid oxidation of samples was accelerated by irradiation depending on irradiation sources and dose levels during storage at 30 °C. E-beam reduced total aerobic bacteria of beef patties more effectively, while gamma-ray considerably decreased microbes in pork sausages as irradiation dose increased. The results of this study indicate that quality attributes of meat products, in particular color, lipid oxidation, and microbial properties are significantly influenced by the irradiation sources.

  20. Different dosing regimens of repeated ketamine administration have opposite effects on novelty processing in rats.

    PubMed

    Schumacher, Anett; Sivanandan, Brindan; Tolledo, Edgor Cole; Woldegabriel, Jacob; Ito, Rutsuko

    2016-08-01

    Repeated exposure to sub-anesthetic doses of ketamine in rats has been shown to induce cognitive deficits, as well as behavioral changes akin to the negative symptoms of schizophrenia, giving much face validity to the use of ketamine administration as a pharmacological model of schizophrenia. This study sought to further characterize the behavioral effects of two different ketamine pre-treatment regimens, focusing primarily on the effects of repeated ketamine administration on novelty processing, a capacity that is disrupted in schizophrenia. Rats received 5 or 14 intra-peritoneal injections of 30mg/kg ketamine or saline across 5 or 7days, respectively. They were then tested in an associative mismatch detection task to examine their ability to detect novel configurations of familiar audio-visual sequences. Furthermore, rats underwent a sequential novel object and novel object location exploration task. Subsequently, rats were also tested on the delayed matching to place T-maze task, sucrose preference task and locomotor tests involving administering a challenge dose of amphetamine (AMPH). The high-dose ketamine pre-treatment regimen elicited impairments in mismatch detection and working memory. In contrast, the low-dose ketamine pre-treatment regimen improved performance of novelty detection. In addition, low-dose ketamine pre-treated rats showed locomotor sensitization following an AMPH challenge, while the high-dose ketamine pre-treated rats showed an attenuated locomotor response to AMPH, compared to control rats. These findings demonstrate that different regimens of repeated ketamine administration induce alterations in novelty processing in opposite directions, and that differential neural adaptations occurring in the mesolimbic dopamine system may underlie these effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Effective dose in SMAW and FCAW welding processes using rutile consumables.

    PubMed

    Herranz, M; Rozas, S; Idoeta, R; Alegría, N

    2014-03-01

    The shielded metal arc welding (SMAW) and flux cored arc welding (FCAW) processes use covered electrodes and flux cored wire as consumables. Among these consumables, ones containing rutile are the most widely used, and since they have a considerable natural radioactive content, they can be considered as NORM (naturally occurring radioactive material). To calculate the effective dose on workers during their use in a conservative situation, samples of slag and aerosols and particles emitted or deposited during welding were taken and measured by gamma, alpha and beta spectrometry. An analytical method was also developed for estimating the activity concentration of radionuclides in the inhaled air. (222)Rn activity concentration was also assessed. With all these data, internal and external doses were calculated. The results show that external doses are negligible in comparison with internal ones, which do not exceed 1 mSv yr(-1), either in this conservative situation or in any other more favourable one. Radionuclides after Rn in the radioactive natural series are emitted at the same activity concentration to the atmosphere, this being around 17 times higher than that corresponding to radionuclides before Rn. Taking into account these conclusions and the analytical method developed, it can be concluded that one way to assess the activity concentration of natural radionuclides in inhaled air and hence effective doses could be the early gamma-ray spectrometry of aerosols and particles sampled during the welding process.

  2. Validation of radiation dose received by frozen unprocessed and processed bone during terminal sterilisation.

    PubMed

    Eagle, M J; Rooney, P; Lomas, R; Kearney, J N

    2005-01-01

    Fresh frozen femoral heads (FH) and frozen processed bone (FP) are widely used as a source of allograft bone. The FP bone and some of the FH are terminally sterilised by the National Blood Service Tissue Services (NSBTS), via application of a minimum 25 kGy gamma radiation dose. To comply with the Guidelines for the Blood Transfusion Services in the United Kingdom (2002), frozen musculoskeletal tissue must be maintained below -40 degrees C during storage and transit. In practice, NBSTS stores bone long-term in -80 degrees C freezers. During transport for irradiation, a temperature of circa -79 degrees C is maintained by packing the bone in dry ice. An evaluation of the radiation dose received by bone has previously been made via dosimeters located within the tissue and dry ice, however, some evidence suggests that low temperature can influence the accuracy of the dosimeter readings. The aim of this study was to determine the actual radiation dose received by FH and FP bone during the irradiation process. This was accomplished by comparing radiation dose readings from dosimeters placed in dry ice with dosimeters placed in a dry ice substitute of similar dimensions and density i.e., polytetrafluoroethylene (PTFE) at ambient temperature. New packing formats were developed for both FH and FP bone such that 15 FH or 3 kg of FP bone could be irradiated in one transport box at any given time in a standardised fashion. The data show that low temperature consistently increased dosimeter readings 10--27%, and that radiation dose always fell within the range of 25--40 kGy (FH=25.1--35.7 kGy; FP bone=25.2--32.4 kGy).

  3. Effects of low dose tryptophan depletion on emotional processing in dieters.

    PubMed

    Pringle, A; Cooper, M J; Browning, M; Harmer, C J

    2012-04-01

    Biased processing of ED-relevant stimuli (eg Fairburn, Shafran, & Cooper, 1999) and 5-HT function (Kaye, Fudge, & Paulus, 2009) are implicated in vulnerability to and the maintenance of eating disorders (EDs), but it is not known if these findings are connected: Could manipulating 5-HT function affect the processing of ED-relevant stimuli? To address this question we assessed emotional processing in female dieters (T+n=12, T-n=14) following acute low dose tryptophan depletion. ATD increased interference in the masked condition of the emotional Stroop to all negative emotional stimuli, in the absence of any other differences in emotional processing. These results suggest that ATD affects the processing of some negative (including ED-relevant) stimuli, and that reduced 5-HT function may be involved in some aspects of psychological vulnerability to EDs.

  4. Documents containing operating data for Hanford separations processes, 1944--1972. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Gydesen, S.P.

    1992-09-01

    The purpose of this letter report is to identify documents that record batch, daily, or selected monthly separations processes operating information at the Hanford Site for the years 1944-1972. The information found in these documents is needed to develop the source terms necessary to make dose estimates. The documents have been identified, located, declassified if necessary, evaluated, and made available to the HEDR Project in general, the HEDR Task 03 (Source Terms) in particular, and the public. Complete bibliographic citations and some sample pages from the Hanford separations processes documents are included.

  5. Quality Control of High-Dose-Rate Brachytherapy: Treatment Delivery Analysis Using Statistical Process Control

    SciTech Connect

    Able, Charles M.; Bright, Megan; Frizzell, Bart

    2013-03-01

    Purpose: Statistical process control (SPC) is a quality control method used to ensure that a process is well controlled and operates with little variation. This study determined whether SPC was a viable technique for evaluating the proper operation of a high-dose-rate (HDR) brachytherapy treatment delivery system. Methods and Materials: A surrogate prostate patient was developed using Vyse ordnance gelatin. A total of 10 metal oxide semiconductor field-effect transistors (MOSFETs) were placed from prostate base to apex. Computed tomography guidance was used to accurately position the first detector in each train at the base. The plan consisted of 12 needles with 129 dwell positions delivering a prescribed peripheral dose of 200 cGy. Sixteen accurate treatment trials were delivered as planned. Subsequently, a number of treatments were delivered with errors introduced, including wrong patient, wrong source calibration, wrong connection sequence, single needle displaced inferiorly 5 mm, and entire implant displaced 2 mm and 4 mm inferiorly. Two process behavior charts (PBC), an individual and a moving range chart, were developed for each dosimeter location. Results: There were 4 false positives resulting from 160 measurements from 16 accurately delivered treatments. For the inaccurately delivered treatments, the PBC indicated that measurements made at the periphery and apex (regions of high-dose gradient) were much more sensitive to treatment delivery errors. All errors introduced were correctly identified by either the individual or the moving range PBC in the apex region. Measurements at the urethra and base were less sensitive to errors. Conclusions: SPC is a viable method for assessing the quality of HDR treatment delivery. Further development is necessary to determine the most effective dose sampling, to ensure reproducible evaluation of treatment delivery accuracy.

  6. Quality control of high-dose-rate brachytherapy: treatment delivery analysis using statistical process control.

    PubMed

    Able, Charles M; Bright, Megan; Frizzell, Bart

    2013-03-01

    Statistical process control (SPC) is a quality control method used to ensure that a process is well controlled and operates with little variation. This study determined whether SPC was a viable technique for evaluating the proper operation of a high-dose-rate (HDR) brachytherapy treatment delivery system. A surrogate prostate patient was developed using Vyse ordnance gelatin. A total of 10 metal oxide semiconductor field-effect transistors (MOSFETs) were placed from prostate base to apex. Computed tomography guidance was used to accurately position the first detector in each train at the base. The plan consisted of 12 needles with 129 dwell positions delivering a prescribed peripheral dose of 200 cGy. Sixteen accurate treatment trials were delivered as planned. Subsequently, a number of treatments were delivered with errors introduced, including wrong patient, wrong source calibration, wrong connection sequence, single needle displaced inferiorly 5 mm, and entire implant displaced 2 mm and 4 mm inferiorly. Two process behavior charts (PBC), an individual and a moving range chart, were developed for each dosimeter location. There were 4 false positives resulting from 160 measurements from 16 accurately delivered treatments. For the inaccurately delivered treatments, the PBC indicated that measurements made at the periphery and apex (regions of high-dose gradient) were much more sensitive to treatment delivery errors. All errors introduced were correctly identified by either the individual or the moving range PBC in the apex region. Measurements at the urethra and base were less sensitive to errors. SPC is a viable method for assessing the quality of HDR treatment delivery. Further development is necessary to determine the most effective dose sampling, to ensure reproducible evaluation of treatment delivery accuracy. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Radiation dose reduction in digital radiography using wavelet-based image processing methods

    NASA Astrophysics Data System (ADS)

    Watanabe, Haruyuki; Tsai, Du-Yih; Lee, Yongbum; Matsuyama, Eri; Kojima, Katsuyuki

    2011-03-01

    In this paper, we investigate the effect of the use of wavelet transform for image processing on radiation dose reduction in computed radiography (CR), by measuring various physical characteristics of the wavelet-transformed images. Moreover, we propose a wavelet-based method for offering a possibility to reduce radiation dose while maintaining a clinically acceptable image quality. The proposed method integrates the advantages of a previously proposed technique, i.e., sigmoid-type transfer curve for wavelet coefficient weighting adjustment technique, as well as a wavelet soft-thresholding technique. The former can improve contrast and spatial resolution of CR images, the latter is able to improve the performance of image noise. In the investigation of physical characteristics, modulation transfer function, noise power spectrum, and contrast-to-noise ratio of CR images processed by the proposed method and other different methods were measured and compared. Furthermore, visual evaluation was performed using Scheffe's pair comparison method. Experimental results showed that the proposed method could improve overall image quality as compared to other methods. Our visual evaluation showed that an approximately 40% reduction in exposure dose might be achieved in hip joint radiography by using the proposed method.

  8. 7-OH-DPAT effects on latent inhibition: low dose facilitation but high dose blockade: implications for dopamine receptor involvement in attentional processes.

    PubMed

    Chagas-Martinich, Ligia; Carey, Robert J; Carrera, Marinete Pinheiro

    2007-03-01

    7-OH-DPAT is a dopamine D2/D3 agonist, which at low doses acts preferentially on D3 receptors but at high doses it acts on D2 and D3 receptors. The present study investigated the contribution of D3 and D2 receptors on latent inhibition (LI) by using two dose levels of 7-OH-DPAT: a low dose, 0.1 mg/kg (D3 receptor activation) and a high dose, 1.0 mg/kg, (D2/D3 receptor activation) in a conditioned emotional response (CER) paradigm. The LI Protocols included CS pre-exposure (10 or 40 CS alone trials), CER induction and a non-drug CER test phase. Additionally, the drug effects upon CER acquisition without LI were assessed using the same treatments and test environment pre-exposure protocols but without the tone CS. The effects of 7-OH-DPAT on crossing, rearing and grooming were also measured in an open field 1 day after the CER test phase. The results showed that the low dose 7-OH-DPAT treatment potentiated LI at 10 but not at 40 CS pre-exposures. The high dose 7-OH-DPAT treatment blocked LI at both the 10 and 40 stimulus pre-exposures; and it also induced hyperactivity. Thus, D3 stimulation induced by a low dose of 7-OH-DPAT can facilitate LI but these effects are contingent upon and are specific to the number of stimulus presentations. Altogether, these findings indicate that D3 stimulation can enhance attentional processes, but D2 stimulation can impair attentional processes.

  9. A modelling study on the dose rate effect on the efficiency of the EBDS-process (ES-Verfahren)

    NASA Astrophysics Data System (ADS)

    Gentry, J. W.; Paur, H.-R.; Mätzing, H.; Baumann, W.

    Electrons penetrating gas create inhomogeneous dose distributions by their interaction with gas molecules. This behaviour becomes more pronounced for decreasing electron energies. Thus, according to dose rate measurements for electrons from 300 kV scanners, dose rates up to 150 Mrad/sec may occur. A computer model of the homogeneous gas phase reactions of the electron beam dry scrubbing (EBDS) process has been developed. The model is capable of handling dose distributions which involve high dose rates. This is accomplished by a modulation of the dose rate between zero and a preset maximum, while keeping the total applied dose constant. Extensions of this model allow the treatment of 3-dimensional dose distributions. The calculations show that radical concentrations are correlated both to dose and dose rate. With increased dose, more NO x is removed from the flue gas, while the dose rate has no effect on removal efficiencies calculated with a system of homogeneous gas phase reactions. A similar result is obtained for the radiation induced SO 2-H 2SO 4 conversion.

  10. Raman spectroscopy for the process analysis of the manufacturing of a suspension metered dose inhaler.

    PubMed

    Butz, James; de la Cruz, Luis; DiTonno, Jason; DeBoyace, Kevin; Ewing, Gary; Donovan, Brent; Medendorp, Joseph

    2011-04-05

    The purpose of this research was to demonstrate the utility of Raman spectroscopy for process analysis of a suspension metered dose inhaler manufacturing process. Chemometric models were constructed for the quantification of ethanol and active pharmaceutical ingredient such that both could be monitored in real-time during the compounding and filling operations via tank measurements and recirculation line flow-cell measurements. Different spectral preprocessing techniques were used to delineate the effects of mixing speed and temperature changes from actual concentration effects. Raman spectroscopy offers advantages in time savings and quality of information over the standard methods of analysis for respiratory formulations, such as a drug content assay via HPLC and ethanol testing via GC. The successful implementation of this work will allow formulation scientists to quantitatively assess both the formulation (e.g., the concentration of active pharmaceutical ingredient (API) and ethanol), as well as the manufacturing process (e.g., determination of mixing endpoints) in real-time.

  11. Comparison of low shear, high shear, and fluid bed granulation during low dose tablet process development.

    PubMed

    Hausman, Debra S

    2004-03-01

    Three processing methods were compared to develop a low dose (0.1%) immediate release tablet. Similar formulations were used to evaluate low shear, high shear, and fluid bed granulation methods. For each granulation process, the drug was dissolved or suspended in the granulating fluid and sprayed into the granulator. Both water and methanol were evaluated as granulating fluids. The low shear granulation was performed in a Patterson-Kelley V-Blender with I-bar. The high shear granulation was performed in a GRAL (top entry impeller) and a Diosna (bottom mounted impeller). Fluid bed granulation was also performed using top-spray. Acceptable content uniformity was obtained using each technology. The type of granulator and granulating solvent affected the granulation particle size distributions and bulk/tap densities. However, the addition of extragranular microcrystalline cellulose minimized the effect of variable granulation properties and allowed similar tablets to be produced from each granulation process.

  12. The use of natural language processing on narrative medication schedules to compute average weekly dose.

    PubMed

    Lu, Chao-Chin; Leng, Jianwei; Cannon, Grant W; Zhou, Xi; Egger, Marlene; South, Brett; Burningham, Zach; Zeng, Qing; Sauer, Brian C

    2016-12-01

    Medications with non-standard dosing and unstandardized units of measurement make the estimation of prescribed dose difficult from pharmacy dispensing data. A natural language processing tool named the SIG extractor was developed to identify and extract elements from narrative medication instructions to compute average weekly doses (AWDs) for disease-modifying antirheumatic drugs. The goal of this paper is to evaluate the performance of the SIG extractor. This agreement study utilized Veterans Health Affairs pharmacy data from 2008 to 2012. The SIG extractor was designed to extract key elements from narrative medication schedules (SIGs) for 17 select medications to calculate AWD, and these medications were categorized by generic name and route of administration. The SIG extractor was evaluated against an annotator-derived reference standard for accuracy, which is the fraction of AWDs accurately computed. The overall accuracy was 89% [95% confidence interval (CI) 88%, 90%]. The accuracy was ≥85% for all medications and route combinations, except for cyclophosphamide (oral) and cyclosporine (oral), which were 79% (95%CI 72%, 85%) and 66% (95%CI 58%, 73%), respectively. The SIG extractor performed well on the majority of medications, indicating that AWD calculated by the SIG extractor can be used to improve estimation of AWD when dispensed quantity or days' supply is questionable or improbable. The working model for annotating SIGs and the SIG extractor are generalized and can easily be applied to other medications. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Challenges in validating the sterilisation dose for processed human amniotic membranes

    NASA Astrophysics Data System (ADS)

    Yusof, Norimah; Hassan, Asnah; Firdaus Abd Rahman, M. N.; Hamid, Suzina A.

    2007-11-01

    Most of the tissue banks in the Asia Pacific region have been using ionising radiation at 25 kGy to sterilise human tissues for save clinical usage. Under tissue banking quality system, any dose employed for sterilisation has to be validated and the validation exercise has to be a part of quality document. Tissue grafts, unlike medical items, are not produced in large number per each processing batch and tissues relatively have a different microbial population. A Code of Practice established by the International Atomic Energy Agency (IAEA) in 2004 offers several validation methods using smaller number of samples compared to ISO 11137 (1995), which is meant for medical products. The methods emphasise on bioburden determination, followed by sterility test on samples after they were exposed to verification dose for attaining of sterility assurance level (SAL) of 10 -1. This paper describes our experience in using the IAEA Code of Practice in conducting the validation exercise for substantiating 25 kGy as sterilisation dose for both air-dried amnion and those preserved in 99% glycerol.

  14. Dose assessment from chronic exposure to industrial NORM in iron ore processing.

    PubMed

    Dal Molin, Franck; Fisher, Raymond; Frost, David; Anderson, David R; Read, David

    2017-09-05

    Radiological exposures due to naturally occurring radioactive material (NORM) can occur during a wide range of work-related activities in the mineral processing and chemical industries. However, evaluation of such exposures in industrial settings remains a difficult exercise owing inter alia to the large number of personnel, operations and plants affected; assumptions that often have to be made concerning the actual duration and frequency of exposures; the complex chemistry and radioactive disequilibria involved and typically, the paucity of historical data. In our study, the challenges associated with assessing chronic exposure to fugitive dust enriched in 210Pb and 210Po and the determination of the associated internal dose by inhalation and ingestion are described by reference to a case study undertaken at an iron ore sintering plant between June 2013 and July 2015. The applicability of default dose coefficients and biokinetic models provided by the International Commission for Radiological Protection (ICRP) was verified by combining air and dust monitoring with information on the characteristics of the aerosols and in-vitro solubility experiments. The disparity between particulate matter 100 microns or less in diameter (PM100), particulate matter 10 microns or less in diameter (PM10) and 210Pb/210Po activity concentrations observed over the different monitoring campaigns and sampling locations confirmed that use of positional short-term monitoring surveys to extrapolate intake over a year was not appropriate and could lead to unrealistic intake and dose figures. Personal air sampling is more appropriate for estimating the dose in such situations, though it is not always practical and may collect insufficient quantities of material for radiochemical analysis; this is an important constraint when dealing with low specific activity materials. © 2017 IOP Publishing Ltd.

  15. Dose assessment from chronic exposure to industrial NORM in iron ore processing.

    PubMed

    Dal-Molin, Franck; Fisher, Raymond; Frost, David; Anderson, David R; Read, David

    2017-06-26

    Radiological exposures due to naturally occurring radioactive material (NORM) can occur during a wide range of work-related activities in the mineral processing and chemical industries. However, evaluation of such exposures in industrial settings remains a difficult exercise owing inter alia to the large number of personnel, operations and plants affected; assumptions that often have to be made concerning the actual duration and frequency of exposures; the complex chemistry and radioactive disequilibria involved and typically, the paucity of historical data. In our study, the challenges associated with assessing chronic exposure to fugitive dust enriched in (210)Pb and (210)Po and the determination of the associated internal dose by inhalation and ingestion are described by reference to a case study undertaken at an iron ore sintering plant between June 2013 and July 2015. The applicability of default dose coefficients and biokinetic models provided by the International Commission for Radiological Protection was verified by combining air and dust monitoring with information on the characteristics of the aerosols and in-vitro solubility experiments. The disparity between particulate matter 100 microns or less in diameter (PM100), particulate matter 10 microns or less in diameter (PM10) and (210)Pb/(210)Po activity concentrations observed over the different monitoring campaigns and sampling locations confirmed that use positional short-term monitoring surveys to extrapolate intake over a year was not appropriate and could lead to unrealistic intake and dose figures. Personal air sampling is more appropriate for estimating the dose in such situations, though it is not always practical and may collect insufficient quantities of material for radiochemical analysis; this is an important constraint when dealing with low specific activity materials.

  16. 42 CFR 82.32 - How will NIOSH make changes in scientific elements underlying the dose reconstruction process...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false How will NIOSH make changes in scientific elements underlying the dose reconstruction process, based on scientific progress? 82.32 Section 82.32 Public Health... AND RELATED ACTIVITIES METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER THE ENERGY EMPLOYEES...

  17. 42 CFR 82.32 - How will NIOSH make changes in scientific elements underlying the dose reconstruction process...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false How will NIOSH make changes in scientific elements underlying the dose reconstruction process, based on scientific progress? 82.32 Section 82.32 Public Health... AND RELATED ACTIVITIES METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER THE ENERGY EMPLOYEES...

  18. 42 CFR 82.32 - How will NIOSH make changes in scientific elements underlying the dose reconstruction process...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false How will NIOSH make changes in scientific elements underlying the dose reconstruction process, based on scientific progress? 82.32 Section 82.32 Public Health... AND RELATED ACTIVITIES METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER THE ENERGY EMPLOYEES...

  19. 42 CFR 82.32 - How will NIOSH make changes in scientific elements underlying the dose reconstruction process...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false How will NIOSH make changes in scientific elements underlying the dose reconstruction process, based on scientific progress? 82.32 Section 82.32 Public Health... AND RELATED ACTIVITIES METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER THE ENERGY EMPLOYEES...

  20. 42 CFR 82.32 - How will NIOSH make changes in scientific elements underlying the dose reconstruction process...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false How will NIOSH make changes in scientific elements underlying the dose reconstruction process, based on scientific progress? 82.32 Section 82.32 Public Health... AND RELATED ACTIVITIES METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER THE ENERGY EMPLOYEES...

  1. Spatial analysis of ambient gamma dose equivalent rate data by means of digital image processing techniques.

    PubMed

    Szabó, Katalin Zsuzsanna; Jordan, Gyozo; Petrik, Attila; Horváth, Ákos; Szabó, Csaba

    2017-01-01

    A detailed ambient gamma dose equivalent rate mapping based on field measurements at ground level and at 1 m height was carried out at 142 sites in 80 × 90 km area in Pest County, Hungary. Detailed digital image processing analysis was carried out to identify and characterise spatial features such as outlying points, anomalous zones and linear edges in a smoothed TIN interpolated surface. The applied method proceeds from the simple shaded relief model and digital cross-sections to the more complex gradient magnitude and gradient direction maps, 2nd derivative profile curvature map, relief map and lineament density map. Each map is analysed for statistical characteristics and histogram-based image segmentation is used to delineate areas homogeneous with respect to the parameter values in these maps. Assessment of spatial anisotropy is implemented by 2D autocorrelogram and directional variogram analyses. The identified spatial features are related to underlying geological and tectonic conditions using GIS technology. Results show that detailed digital image processing is efficient in revealing the pattern present in field-measured ambient gamma dose equivalent rates and they are related to regional scale tectonic zones and surface sedimentary lithological conditions in the study area. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. CT Radiation Dose Management: A Comprehensive Optimization Process for Improving Patient Safety.

    PubMed

    Parakh, Anushri; Kortesniemi, Mika; Schindera, Sebastian T

    2016-09-01

    Rising concerns of radiation exposure from computed tomography have caused various advances in dose reduction technologies. While proper justification and optimization of scans has been the main focus to address increasing doses, the value of dose management has been largely overlooked. The purpose of this article is to explain the importance of dose management, provide an overview of the available options for dose tracking, and discuss the importance of a dedicated dose team. The authors also describe how a digital radiation tracking software can be used for analyzing the big data on doses for auditing patient safety, scanner utilization, and productivity, all of which have enormous personal and institutional implications. (©) RSNA, 2016.

  3. Application of a hot-melt granulation process to enhance fenofibrate solid dose manufacturing.

    PubMed

    Chaudhary, Rakesh Singh; Amankwaa, Edward; Kumar, Sandeep; Hu, Tom; Chan, Mohamed; Sanghvi, Pradeep

    2016-01-01

    Evaluation of hot-melt granulation of fenofibrate and croscarmellose sodium and its cooling time for the molten mass in a ratio of 55:45 was conducted to assess the manufacturing process capability to produce an acceptable granulation which flows well on Korsch PH300 tablet compression machine. The formation of the drug-polymer eutectic mixture was investigated by differential scanning calorimetry, scanning electron microscopy and X-ray powder diffraction. The physical properties of the hot-melt was determined by examining the milled blocks after solidification and milling after cooling periods of 10, 20 and 30 d. The milled material was assessed for the effect of hold time of the blend on the solid dose compression characteristics. The impact of cooling on the processing of the blocks was assessed after 10, 20 and 30 d of cooling. The study suggests that after the hot-melt formed the fenofibrate crystallized independently and a solid solution with croscarmellose sodium was not formed. The age of the blocks determined the hardness of the crystals, changing the processing nature of the granules with respect to compression and powder flow characteristics. The blocks processed after 20 d and beyond produced granules with a characteristic suitable for holding the blend for 14 d in the bin with no impact on flow properties and compressibility of the blend. There was no chipping, capping, sticking or picking observed and a higher compression speed was achieved.

  4. Fast Neutron Dose Evaluation Using CR39 by Coincidence Counting Process

    SciTech Connect

    Vilela, Eudice; Freitas, F. F. de; Brandao, J. O. C.; Santos, J. A. L.

    2008-08-07

    The solid state nuclear tracks detection (SSNTD) technique is widely used in the area of radiation dosimetry. Different materials can be used applying this technique as glass and the most used in the dosimetry field that are the polycarbonates, CR39 and Makrofol-DE. Both are very rich in hydrogenous, that enables the SSNTD to detect fast neutrons through recoils of protons in the own detector material, without need of converters. The low reproducibility of its backgroundhas often been the major drawback in the assessment of low fluences of fast neutrons with SSNTDs. This problem can be effectively solved by counting coincidence of tracks in two detectors foils irradiated in close contact. After processing and counting only tracks produced by the same recoil nuclei on the surfaces of both detectors are considered as a track. This procedure enables the reduction of the background counts in the response of the detectors. In this work a preliminary study on the application of the coincidence technique for neutron dosimetry is presented. The CR39 material was investigated aiming to achieve the personal dose equivalent for fast neutrons. Using this method of analysis a significant reduction on the lower detectable dose was observed resulting even one order of magnitude smaller value. Reading, however, needs to be automated due to the large areas necessary to achieve a satisfactory number of tracks for statistical significance of results.

  5. A Markov decision process approach to temporal modulation of dose fractions in radiation therapy planning.

    PubMed

    Kim, M; Ghate, A; Phillips, M H

    2009-07-21

    The current state of the art in cancer treatment by radiation optimizes beam intensity spatially such that tumors receive high dose radiation whereas damage to nearby healthy tissues is minimized. It is common practice to deliver the radiation over several weeks, where the daily dose is a small constant fraction of the total planned. Such a 'fractionation schedule' is based on traditional models of radiobiological response where normal tissue cells possess the ability to repair sublethal damage done by radiation. This capability is significantly less prominent in tumors. Recent advances in quantitative functional imaging and biological markers are providing new opportunities to measure patient response to radiation over the treatment course. This opens the door for designing fractionation schedules that take into account the patient's cumulative response to radiation up to a particular treatment day in determining the fraction on that day. We propose a novel approach that, for the first time, mathematically explores the benefits of such fractionation schemes. This is achieved by building a stylistic Markov decision process (MDP) model, which incorporates some key features of the problem through intuitive choices of state and action spaces, as well as transition probability and reward functions. The structure of optimal policies for this MDP model is explored through several simple numerical examples.

  6. Web-based training course for evaluating radiological dose assessment in NRC's license termination process.

    PubMed

    Lepoire, D; Richmond, P; Cheng, J-J; Kamboj, S; Arnish, J; Chen, S Y; Barr, C; McKenney, C

    2008-08-01

    As part of the requirement for terminating the licenses of nuclear power plants or other nuclear facilities, license termination plans or decommissioning plans are submitted by the licensee to the U.S. Nuclear Regulatory Commission (NRC) for review and approval. Decommissioning plans generally refer to the decommissioning of nonreactor facilities, while license termination plans specifically refer to the decommissioning of nuclear reactor facilities. To provide a uniform and consistent review of dose modeling aspects of these plans and to address NRC-wide knowledge management issues, the NRC, in 2006, commissioned Argonne National Laboratory to develop a Web-based training course on reviewing radiological dose assessments for license termination. The course, which had first been developed in 2005 to target specific aspects of the review processes for license termination plans and decommissioning plans, evolved from a live classroom course into a Web-based training course in 2006. The objective of the Web-based training course is to train NRC staff members (who have various relevant job functions and are located at headquarters, regional offices, and site locations) to conduct an effective review of dose modeling in accordance with the latest NRC guidance, including NUREG-1757, Volumes 1 and 2. The exact size of the staff population who will receive the training has not yet been accurately determined but will depend on various factors such as the decommissioning activities at the NRC. This Web-based training course is designed to give NRC staff members modern, flexible access to training. To this end, the course is divided into 16 modules: 9 core modules that deal with basic topics, and 7 advanced modules that deal with complex issues or job-specific topics. The core and advanced modules are tailored to various NRC staff members with different job functions. The Web-based system uses the commercially available software Articulate, which incorporates audio, video

  7. [Dose reduction and image quality in MDCT of the upper abdomen: potential of an adaptive post-processing filter].

    PubMed

    Kröpil, P; Lanzman, R S; Walther, C; Röhlen, S; Godehardt, E; Mödder, U; Cohnen, M

    2010-03-01

    To evaluate the effects of a 2D non-linear adaptive post-processing filter (2D-NLAF) on image quality in dose-reduced multi-detector CT (MDCT) of the upper abdomen. MDCT of the upper abdomen was simulated on a 64-slice scanner using a multi-modal anthropomorphic phantom (CIRS, Norfolk, USA). While keeping the collimation (64 x 0.6 mm) and pitch (p = 1) unchanged, the tube current (100 - 500 mAs) and tube potential (80 - 140 kVp) were varied to perform MDCT as high dose (CTDI > 20), middle dose (CTDI 10 - 20) and low dose (CTDI < 10) level protocols. Four independent blinded radiologists evaluated axial images with a thickness of 7 and 3 mm with respect to the presentation of "mesenteric low contrast lesions", "liver veins", "liver cysts", "renal cysts" and "big vessels". The subjective image quality of original data and post-processed images using a 2D-NLAF (SharpViewCT, Linköping, Sweden) was graded on a 5-point scale (from "1" not visible to "5" excellent) and statistically analyzed. The effective dose (E) was estimated using commercial software (CT-EXPO). For all protocol groups, 2D-NLAF led to a significant improvement in subjective image quality for all examined lesions (p < 0.01), particularly at the protocols of middle dose (E: 5 - 8 mSv) and low dose level (E: 1 - 5 mSv). A maximum effect was seen in middle dose protocols for "low contrast lesions" (score "3.3" with filter versus "2.5" without) and "liver veins" ("4.5" versus "3.9"). The phantom study indicates a potential dose reduction of up to 50 % in MDCT of the upper abdomen by use of a 2D-NLAF, which should be further examined in clinical trails. Georg Thieme Verlag KG Stuttgart New York.

  8. Improving abdomen tumor low-dose CT images using dictionary learning based patch processing and unsharp filtering.

    PubMed

    Chen, Yang; Yu, Fei; Luo, Limin; Toumoulin, Christine

    2013-01-01

    Reducing patient radiation dose, while maintaining a high-quality image, is a major challenge in Computed Tomography (CT). The purpose of this work is to improve abdomen tumor low-dose CT (LDCT) image quality by using a two-step strategy: a first patch-wise non linear processing is first applied to suppress the noise and artifacts, that is based on a sparsity prior in term of a learned dictionary, then an unsharp filtering aiming to enhance the contrast of tissues and compensate the contrast loss caused by the DL processing. Preliminary results show that the proposed method is effective in suppressing mottled noise as well as improving tumor detectability.

  9. Modeling dose-dependent neural processing responses using mixed effects spline models: with application to a PET study of ethanol.

    PubMed

    Guo, Ying; Bowman, F DuBois

    2008-04-01

    For functional neuroimaging studies that involve experimental stimuli measuring dose levels, e.g. of an anesthetic agent, typical statistical techniques include correlation analysis, analysis of variance or polynomial regression models. These standard approaches have limitations: correlation analysis only provides a crude estimate of the linear relationship between dose levels and brain activity; ANOVA is designed to accommodate a few specified dose levels; polynomial regression models have limited capacity to model varying patterns of association between dose levels and measured activity across the brain. These shortcomings prompt the need to develop methods that more effectively capture dose-dependent neural processing responses. We propose a class of mixed effects spline models that analyze the dose-dependent effect using either regression or smoothing splines. Our method offers flexible accommodation of different response patterns across various brain regions, controls for potential confounding factors, and accounts for subject variability in brain function. The estimates from the mixed effects spline model can be readily incorporated into secondary analyses, for instance, targeting spatial classifications of brain regions according to their modeled response profiles. The proposed spline models are also extended to incorporate interaction effects between the dose-dependent response function and other factors. We illustrate our proposed statistical methodology using data from a PET study of the effect of ethanol on brain function. A simulation study is conducted to compare the performance of the proposed mixed effects spline models and a polynomial regression model. Results show that the proposed spline models more accurately capture varying response patterns across voxels, especially at voxels with complex response shapes. Finally, the proposed spline models can be used in more general settings as a flexible modeling tool for investigating the effects of any

  10. The dose rate effect with radiation processing of water—an interpretative approach

    NASA Astrophysics Data System (ADS)

    Gehringer, Peter; Eschweiler, Helmut

    2002-11-01

    Hydrogen peroxide, nitrous oxide and oxygen as well were added before irradiation to tap water contaminated with trace amounts of perchloroethylene (PCE) to study their impact to the existing dose rate effect recorded with radiation-induced PCE decomposition. Hydrogen peroxide and oxygen addition as well had almost no effect at all to PCE decomposition; addition of nitrous oxide resulted in some improvement but one order of magnitude less than adequate ozone addition brought about. At present there is no alternative for ozone to eliminate the disadvantage caused by the dose rate effect.

  11. Rapid Automated Treatment Planning Process to Select Breast Cancer Patients for Active Breathing Control to Achieve Cardiac Dose Reduction

    SciTech Connect

    Wang Wei; Purdie, Thomas G.; Rahman, Mohammad; Marshall, Andrea; Liu Feifei; Fyles, Anthony

    2012-01-01

    Purpose: To evaluate a rapid automated treatment planning process for the selection of patients with left-sided breast cancer for a moderate deep inspiration breath-hold (mDIBH) technique using active breathing control (ABC); and to determine the dose reduction to the left anterior descending coronary artery (LAD) and the heart using mDIBH. Method and Materials: Treatment plans were generated using an automated method for patients undergoing left-sided breast radiotherapy (n = 53) with two-field tangential intensity-modulated radiotherapy. All patients with unfavorable cardiac anatomy, defined as having >10 cm{sup 3} of the heart receiving 50% of the prescribed dose (V{sub 50}) on the free-breathing automated treatment plan, underwent repeat scanning on a protocol using a mDIBH technique and ABC. The doses to the LAD and heart were compared between the free-breathing and mDIBH plans. Results: The automated planning process required approximately 9 min to generate a breast intensity-modulated radiotherapy plan. Using the dose-volume criteria, 20 of the 53 patients were selected for ABC. Significant differences were found between the free-breathing and mDIBH plans for the heart V{sub 50} (29.9 vs. 3.7 cm{sup 3}), mean heart dose (317 vs. 132 cGy), mean LAD dose (2,047 vs. 594 cGy), and maximal dose to 0.2 cm{sup 3} of the LAD (4,155 vs. 1,507 cGy, all p <.001). Of the 17 patients who had a breath-hold threshold of {>=}0.8 L, 14 achieved a {>=}90% reduction in the heart V{sub 50} using the mDIBH technique. The 3 patients who had had a breath-hold threshold <0.8 L achieved a lower, but still significant, reduction in the heart V{sub 50}. Conclusions: A rapid automated treatment planning process can be used to select patients who will benefit most from mDIBH. For selected patients with unfavorable cardiac anatomy, the mDIBH technique using ABC can significantly reduce the dose to the LAD and heart, potentially reducing the cardiac risks.

  12. SU-D-209-03: Radiation Dose Reduction Using Real-Time Image Processing in Interventional Radiology

    SciTech Connect

    Kanal, K; Moirano, J; Zamora, D; Stewart, B

    2016-06-15

    Purpose: To characterize changes in radiation dose after introducing a new real-time image processing technology in interventional radiology systems. Methods: Interventional radiology (IR) procedures are increasingly complex, at times requiring substantial time and radiation dose. The risk of inducing tissue reactions as well as long-term stochastic effects such as radiation-induced cancer is not trivial. To reduce this risk, IR systems are increasingly equipped with dose reduction technologies.Recently, ClarityIQ (Philips Healthcare) technology was installed in our existing neuroradiology IR (NIR) and vascular IR (VIR) suites respectively. ClarityIQ includes real-time image processing that reduces noise/artifacts, enhances images, and sharpens edges while also reducing radiation dose rates. We reviewed 412 NIR (175 pre- and 237 post-ClarityIQ) procedures and 329 VIR (156 preand 173 post-ClarityIQ) procedures performed at our institution pre- and post-ClarityIQ implementation. NIR procedures were primarily classified as interventional or diagnostic. VIR procedures included drain port, drain placement, tube change, mesenteric, and implanted venous procedures. Air Kerma (AK in units of mGy) was documented for all the cases using a commercial radiation exposure management system. Results: When considering all NIR procedures, median AK decreased from 1194 mGy to 561 mGy. When considering all VIR procedures, median AK decreased from 49 to 14 mGy. Both NIR and VIR exhibited a decrease in AK exceeding 50% after ClarityIQ implementation, a statistically significant (p<0.05) difference. Of the 5 most common VIR procedures, all median AK values decreased, but significance (p<0.05) was only reached in venous access (N=53), angio mesenteric (N=41), and drain placement procedures (N=31). Conclusion: ClarityIQ can reduce dose significantly for both NIR and VIR procedures. Image quality was not assessed in conjunction with the dose reduction.

  13. Inducible protective processes in animal systems: adaptive response to a low dose of methyl methanesulfonate in mouse bone marrow cells.

    PubMed

    Mahmood, R; Vasudev, V; Harish, S K; Guruprasad, K P

    1996-06-01

    To investigate the induction of adaptive response (inducible protective processes) in mitotic cells of Swiss albino mouse, a monofunctional alkylating agent methyl methanesulfonate (MMS) was employed. When the animals treated with a low dose of 50 mg/kg body weight were challenged with a subsequent high (challenging) dose of 150 mg/kg body weight, after different time lags (2,5,8 or 10 hr), the yield of chromosomal aberrations in bone marrow cells was found to be significantly reduced compared to the additive effects of both conditioning and challenging doses. It seems, therefore, that the low dose of MMS employed has made the cells less sensitive against further clastogenic effect of challenge dose of MMS. The data clearly suggest that the phenomenon of adaptive response to methylating agents can be encountered in in vivo mammalian cells. Furthermore, it is also observed that ethylating agent EMS is a poor inducer of adaptive response than its corresponding methylating agent MMS in the bone marrow cells of mouse.

  14. Contamination dose from photoneutron processes in bodily tissues during therapeutic radiation delivery.

    PubMed

    Difilippo, F; Papiez, L; Moskvin, V; Peplow, D; DesRosiers, C; Johnson, J; Timmerman, R; Randall, M; Lillie, R

    2003-10-01

    Dose to the total body from induced radiation resulting from primary exposure to radiotherapeutic beams is not detailed in routine treatment planning though this information is potentially important for better estimates of health risks including secondary cancers. This information can also allow better management of patient treatment logistics, suggesting better timing, sequencing, and conduct of treatment. Monte Carlo simulations capable of taking into account all interactions contributing to the dose to the total body, including neutron scattering and induced radioactivity, provide the most versatile and accurate tool for investigating these effects. MCNPX code version 2.2.6 with full IAEA library of photoneutron cross sections is particularly suited to trace not only photoneutrons but also protons and heavy ion particles that result from photoneutron interactions. Specifically, the MCNPX code is applied here to the problem of dose calculations in traditional (non-IMRT) photon beam therapy. Points of calculation are located in the head, where the primary irradiation has been directed, but also in the superior portion of the torso of the ORNL Mathematical Human Phantom. We calculated dose contributions from neutrons, protons, deutrons, tritons and He-3 that are produced at the time of photoneutron interactions in the body and that would not have been accounted for by conventional radiation oncology dosimetry.

  15. 42 CFR 82.10 - Overview of the dose reconstruction process.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER THE... information in the possession of NIOSH, from radiation safety programs, research, medical screening programs... the period from the initial date of potential exposure at a covered facility until the date the cancer...

  16. Radiation processing to ensure safety of minimally processed carrot (Daucus carota) and cucumber (Cucumis sativus): optimization of dose for the elimination of Salmonella Typhimurium and Listeria monocytogenes.

    PubMed

    Dhokane, V S; Hajare, S; Shashidhar, R; Sharma, A; Bandekar, J R

    2006-02-01

    Minimally processed vegetables are in demand, because they offer convenience to consumers. However, these products are often unsafe because of possible contamination with pathogens, such as Salmonella, Escherichia coli O157:H7, and Shigella species. Therefore, this study was carried out to optimize the radiation dose necessary to ensure the safety of precut carrot and cucumber. Decimal reduction doses (D-values) of Salmonella Typhimurium MTCC 98 were ca. 0.164 kGy in carrot samples and 0.178 kGy in cucumber samples. D-values of Listeria monocytogenes were determined to be 0.312 and 0.345 kGy in carrot and cucumber samples, respectively. Studies of inoculated, packaged, minimally processed carrot and cucumber samples showed that treatment with a 1-kGy dose of gamma radiation eliminated up to 4 log CFU/g of Salmonella Typhimurium and 3 log CFU/g of L. monocytogenes. However, treatment with a 2-kGy dose was necessary to eliminate these pathogens by 5 log CFU/g. Storage studies showed that both Salmonella Typhimurium and L. monocytogenes were able to grow at 10 degrees C in inoculated control samples. Neither of these pathogens could be recovered from radiation-processed samples after storage for up to 8 days.

  17. Biological monitoring to determine worker dose in a butadiene processing plant

    SciTech Connect

    Bechtold, W.E.; Hayes, R.B.

    1995-12-01

    Butadiene (BD) is a reactive gas used extensively in the rubber industry and is also found in combustion products. Although BD is genotoxic and acts as an animal carcinogen, the evidence for carcinogenicity in humans is limited. Extrapolation from animal studies on BD carcinogenicity to risk in humans has been controversial because of uncertainties regarding relative biologic exposure and related effects in humans vs. experimental animals. To reduce this uncertainty, a study was designed to characterize exposure to BD at a polymer production facility and to relate this exposure to mutational and cytogenetic effects. Biological monitoring was used to better assess the internal dose of BD received by the workers. Measurement of 1,2-dihydroxy-4-(N-acetylcysteinyl) butane (M1) in urine served as the biomarker in this study. M1 has been shown to correlate with area monitoring in previous studies. Most studies that relate exposure to a toxic chemical with its biological effects rely on exposure concentration as the dose metric; however, exposure concentration may or may not reflect the actual internal dose of the chemical.

  18. Red Meat and Processed Meat Consumption and Nasopharyngeal Carcinoma Risk: A Dose-response Meta-analysis of Observational Studies.

    PubMed

    Li, Fuqin; Duan, Fujiao; Zhao, Xia; Song, Chunhua; Cui, Shuli; Dai, Liping

    2016-01-01

    The purpose of this study is to clarify and quantify the potential dose-response association between the intake of total red and total processed meat and risk of nasopharyngeal carcinoma (NPC). Relevant studies were identified by searching PubMed, EMBASE, and Chinese databases (CNKI and Wanfang). The summary relative risk (RR) with 95% confidence interval (95%CI) was calculated. A total of 15 independent studies with 12,735 subjects were identified. Compared with the low-rank intake, the summary RR of NPC was 1.35 (95%CI, 1.21-1.51) for total red meat and 1.46 (95%CI, 1.34-1.64) for total processed meat. For the moderate-rank intake, the summary RR of NPC was 1.54 (95%CI, 1.36-1.79) for total red meat and 1.59 (95%CI, 1.3-1.90) for total processed meat. The summary RR for high-rank intake was 1.71 (95%CI, 1.14-2.55) for total red meat and 2.11 (95%CI, 1.31-3.42) for total processed meat. The combined estimates showed obvious evidence of statistically significant association between total red and total processed meat consumption dose and risk of NPC (Ptrend< 0.01). In conclusion, our data suggest that a high intake of total red or total processed meat is associated with a significantly increased risk of NPC.

  19. Excess processing of oxidative damaged bases causes hypersensitivity to oxidative stress and low dose rate irradiation.

    PubMed

    Yoshikawa, Y; Yamasaki, A; Takatori, K; Suzuki, M; Kobayashi, J; Takao, M; Zhang-Akiyama, Q-M

    2015-10-01

    Ionizing radiations such as X-ray and γ-ray can directly or indirectly produce clustered or multiple damages in DNA. Previous studies have reported that overexpression of DNA glycosylases in Escherichia coli (E. coli) and human lymphoblast cells caused increased sensitivity to γ-ray and X-ray irradiation. However, the effects and the mechanisms of other radiation, such as low dose rate radiation, heavy-ion beams, or hydrogen peroxide (H2O2), are still poorly understood. In the present study, we constructed a stable HeLaS3 cell line overexpressing human 8-oxoguanine DNA N-glycosylase 1 (hOGG1) protein. We determined the survival of HeLaS3 and HeLaS3/hOGG1 cells exposed to UV, heavy-ion beams, γ-rays, and H2O2. The results showed that HeLaS3 cells overexpressing hOGG1 were more sensitive to γ-rays, OH(•), and H2O2, but not to UV or heavy-ion beams, than control HeLaS3. We further determined the levels of 8-oxoG foci and of chromosomal double-strand breaks (DSBs) by detecting γ-H2AX foci formation in DNA. The results demonstrated that both γ-rays and H2O2 induced 8-oxoguanine (8-oxoG) foci formation in HeLaS3 cells. hOGG1-overexpressing cells had increased amounts of γ-H2AX foci and decreased amounts of 8-oxoG foci compared with HeLaS3 control cells. These results suggest that excess hOGG1 removes the oxidatively damaged 8-oxoG in DNA more efficiently and therefore generates more DSBs. Micronucleus formation also supported this conclusion. Low dose-rate γ-ray effects were also investigated. We first found that overexpression of hOGG1 also caused increased sensitivity to low dose rate γ-ray irradiation. The rate of micronucleus formation supported the notion that low dose rate irradiation increased genome instability.

  20. Solid mining residues from ni extraction applied as nutrients supplier to anaerobic process: optimal dose approach through Taguchi's methodology.

    PubMed

    Pereda, I; Irusta, R; Montalvo, S; del Valle, J L

    2006-01-01

    The use of solid mining residues (Cola) which contain a certain amount of Ni, Fe and Co, to stimulate anaerobic processes was evaluated. The effect over methane production and chemical oxygen demand (COD) removal efficiency was analysed. The studies were carried out in discontinuous reactors at lab scale under mesophilic conditions until exhausted. 0, 3, 5 and 7 mg Cola l(-1) doses were applied to synthetic wastewater. Volatile fatty acids (VFA) and sucrose were used as substrate, sulphur and nitrogen concentration, being the noise variable. Cola addition at dose around 5 mg I(-1), turned out to be stimulating for the anaerobic process. It was the factor that most influenced on methane production rate together with VFA and high content of volatile suspended solids. In the case of methane yield, pH was the control factor of strongest influence. Higher values of COD removal efficiency were obtained when the reactors were operated with sucrose at relatively low pH and at the smallest concentration of nitrogen and sulphur. Solid residues dose and the type of substrate were the factors that had most influence on COD removal efficiency.

  1. The Aurora-A inhibitor MLN8237 affects multiple mitotic processes and induces dose-dependent mitotic abnormalities and aneuploidy.

    PubMed

    Asteriti, Italia Anna; Di Cesare, Erica; De Mattia, Fabiola; Hilsenstein, Volker; Neumann, Beate; Cundari, Enrico; Lavia, Patrizia; Guarguaglini, Giulia

    2014-08-15

    Inhibition of Aurora kinase activity by small molecules is being actively investigated as a potential anti-cancer strategy. A successful therapeutic use of Aurora inhibitors relies on a comprehensive understanding of the effects of inactivating Aurora kinases on cell division, a challenging aim given the pleiotropic roles of those kinases during mitosis. Here we have used the Aurora-A inhibitor MLN8237, currently under phase-I/III clinical trials, in dose-response assays in U2OS human cancer cells synchronously proceeding towards mitosis. By following the behaviour and fate of single Aurora-inhibited cells in mitosis by live microscopy, we show that MLN8237 treatment affects multiple processes that are differentially sensitive to the loss of Aurora-A function. A role of Aurora-A in controlling the orientation of cell division emerges. MLN8237 treatment, even in high doses, fails to induce efficient elimination of dividing cells, or of their progeny, while inducing significant aneuploidy in daughter cells. The results of single-cell analyses show a complex cellular response to MLN8237 and evidence that its effects are strongly dose-dependent: these issues deserve consideration in the light of the design of strategies to kill cancer cells via inhibition of Aurora kinases.

  2. The Aurora-A inhibitor MLN8237 affects multiple mitotic processes and induces dose-dependent mitotic abnormalities and aneuploidy

    PubMed Central

    Asteriti, Italia Anna; Cesare, Erica Di; Mattia, Fabiola De; Hilsenstein, Volker; Neumann, Beate; Cundari, Enrico; Lavia, Patrizia; Guarguaglini, Giulia

    2014-01-01

    Inhibition of Aurora kinase activity by small molecules is being actively investigated as a potential anti-cancer strategy. A successful therapeutic use of Aurora inhibitors relies on a comprehensive understanding of the effects of inactivating Aurora kinases on cell division, a challenging aim given the pleiotropic roles of those kinases during mitosis. Here we have used the Aurora-A inhibitor MLN8237, currently under phase-I/III clinical trials, in dose-response assays in U2OS human cancer cells synchronously proceeding towards mitosis. By following the behaviour and fate of single Aurora-inhibited cells in mitosis by live microscopy, we show that MLN8237 treatment affects multiple processes that are differentially sensitive to the loss of Aurora-A function. A role of Aurora-A in controlling the orientation of cell division emerges. MLN8237 treatment, even in high doses, fails to induce efficient elimination of dividing cells, or of their progeny, while inducing significant aneuploidy in daughter cells. The results of single-cell analyses show a complex cellular response to MLN8237 and evidence that its effects are strongly dose-dependent: these issues deserve consideration in the light of the design of strategies to kill cancer cells via inhibition of Aurora kinases. PMID:25153724

  3. Applications of nonlocal means algorithm in low-dose X-ray CT image processing and reconstruction: A review.

    PubMed

    Zhang, Hao; Zeng, Dong; Zhang, Hua; Wang, Jing; Liang, Zhengrong; Ma, Jianhua

    2017-03-01

    Low-dose X-ray computed tomography (LDCT) imaging is highly recommended for use in the clinic because of growing concerns over excessive radiation exposure. However, the CT images reconstructed by the conventional filtered back-projection (FBP) method from low-dose acquisitions may be severely degraded with noise and streak artifacts due to excessive X-ray quantum noise, or with view-aliasing artifacts due to insufficient angular sampling. In 2005, the nonlocal means (NLM) algorithm was introduced as a non-iterative edge-preserving filter to denoise natural images corrupted by additive Gaussian noise, and showed superior performance. It has since been adapted and applied to many other image types and various inverse problems. This paper specifically reviews the applications of the NLM algorithm in LDCT image processing and reconstruction, and explicitly demonstrates its improving effects on the reconstructed CT image quality from low-dose acquisitions. The effectiveness of these applications on LDCT and their relative performance are described in detail.

  4. Control-oriented modeling and real-time control for the ozone dosing process of drinking water treatment.

    PubMed

    Wang, Dongsheng; Li, Shihua; Zhou, Xingpeng

    2013-03-05

    Ozonation is one of the most important steps during drinking water treatment. To improve the efficiency of ozonation and to stabilize the quality of the treated water, control-oriented modeling and a real-time control method for the ozone dosing process are developed in this study. Compared with existing ozonation models developed by bench-scale and pilot-scale batch experiments, the model reported herein is control-oriented and based on plant-scale batch experiments. A real-time control strategy for maintaining a constant ozone exposure is attempted to meet primary disinfection requirements. An internal model control scheme is proposed to maintain a constant ozone exposure by adjusting the ozone dosage. The proposed real-time control method can cope with changing water quality, water flow rate, and process operational conditions. Both simulations and experimental studies have been carried out and implemented for the ozone dosing process control system, and the results demonstrate the effectiveness and practicality of this real-time control method.

  5. Optimized Parallelization for Nonlocal Means Based Low Dose CT Image Processing

    PubMed Central

    Zhang, Libo; Yang, Benqiang; Zhuang, Zhikun; Hu, Yining; Chen, Yang; Luo, Limin; Shu, Huazhong

    2015-01-01

    Low dose CT (LDCT) images are often significantly degraded by severely increased mottled noise/artifacts, which can lead to lowered diagnostic accuracy in clinic. The nonlocal means (NLM) filtering can effectively remove mottled noise/artifacts by utilizing large-scale patch similarity information in LDCT images. But the NLM filtering application in LDCT imaging also requires high computation cost because intensive patch similarity calculation within a large searching window is often required to be used to include enough structure-similarity information for noise/artifact suppression. To improve its clinical feasibility, in this study we further optimize the parallelization of NLM filtering by avoiding the repeated computation with the row-wise intensity calculation and the symmetry weight calculation. The shared memory with fast I/O speed is also used in row-wise intensity calculation for the proposed method. Quantitative experiment demonstrates that significant acceleration can be achieved with respect to the traditional straight pixel-wise parallelization. PMID:26078781

  6. Red and processed meat consumption and risk of ovarian cancer: a dose-response meta-analysis of prospective studies

    PubMed Central

    Wallin, A; Orsini, N; Wolk, A

    2011-01-01

    Background: During the last decade, the epidemiological evidence on consumption of meat and risk of ovarian cancer has accumulated. Methods: We assessed the relationship between red and processed meat consumption and risk of ovarian cancer with a dose-response meta-analysis. Relevant prospective cohort studies were identified by searching the PubMed and EMBASE databases through 21 January 2011, and by reviewing the reference lists of retrieved articles. Study-specific relative risk (RR) estimates were combined using a random-effects model. Results: Eight cohort studies were included in the meta-analysis. The summary RR for an intake increment of 100 g per week was 1.02 (95% confidence interval (CI), 0.99–1.04) for red meat and 1.05 (95% CI, 0.98–1.14) for processed meat. For an intake increment of four servings per week, the summary RR of ovarian cancer was 1.07 (95% CI, 0.97–1.19) for red meat (100 g per serving) and 1.07 (95% CI, 0.97–1.17) for processed meat (30 g per serving). Conclusion: Results from this dose-response meta-analysis suggest that red and processed meat consumption is not associated with risk of ovarian cancer. Although a lower consumption of red and processed meat may offer protection against other types of cancer, other interventions are needed to reduce the risk of ovarian cancer. PMID:21343939

  7. Temporal processes that contribute to nonlinearity in vegetation responses to ozone exposure and dose

    Treesearch

    Robert L. Heath; Allen S. Lefohn; Robert C. Musselman

    2009-01-01

    Ozone interacts with plant tissue through distinct temporal processes. Sequentially, plants are exposed to ambient O3 hat (1) moves through the leaf boundary layer, (2) is taken up into plant tissue primarily through stomata, and (3) undergoes chemical interaction within plant tissue, first by initiating alterations and then as part of plant...

  8. Process-oriented dose assessment model for 14C due to releases during normal operation of a nuclear power plant.

    PubMed

    Aquilonius, Karin; Hallberg, Bengt

    2005-01-01

    Swedish nuclear utility companies are required to assess doses due to releases of radionuclides during normal operation. In 2001, calculation methods used earlier were updated due to new authority regulations. The isotope (14)C is of special interest in dose assessments due to the role of carbon in the metabolism of all life forms. Earlier, factors expressing the ratio between concentration of (14)C in air and in various plants were used. In order to extend the possibility to take local conditions into account, a process-oriented assessment model for uptake of carbon and doses from releases of (14)C to air was developed (POM(14)C). The model uses part of DAISY which has been developed to model the turnover of carbon in crops. [Hansen, S., Jensen, H.E., Nielsen, N.E., Svendsen, H., 1993. Description of the Soil Plant System Model DAISY, Basic Principles and Modelling Approach. Simulation Model for Transformation and Transport of Energy and Matter in the Soil Plant Atmosphere System. Jordbruksförlaget, The Royal Veterinary and Agricultural University, Copenhagen, Denmark]. The main objectives were to test model performance of the former method, and to investigate if taking site specific parameters into account to a greater degree would lead to major differences in the results. Several exposure pathways were considered: direct consumption of locally grown cereals, vegetables, and root vegetables, as well as consumption of milk and meat from cows having eaten fodder cereals and green fodder from the area around the nuclear plant. The total dose of the earlier model was compared with that of POM(14)C. The result of the former was shown to be slightly higher than the latter, but POM(14)C confirmed that the earlier results were of a reasonable magnitude. When full account of local conditions was taken, e.g. as regards solar radiation, temperature, and concentration of (14)C in air at various places in the surroundings of each nuclear plant, a difference in dose between

  9. Secretory process in Brunner's glands during recovery from stimulation with a single dose of pilocarpine

    SciTech Connect

    Scott, C.A.; Flickinger, C.J.

    1983-07-01

    The secretory pathway and kinetics of the secretory process were studied in Brunner's glands of mice after stimulation of secretion with a parasympathomimetic drug. Adult male mice were injected with pilocarpine. The animals were subsequently administered an intravenous injection of /sup 3/H-threonine, and tissue was prepared for electron microscope autoradiography at intervals ranging from 5 minutes to 2 hours after injection of the radioactive precursor. Stimulation with pilocarpine resulted in discharge of secretory granules, which was reflected in a significantly lower percentage of the cell volume occupied by granules. In both control and stimulated mice, at 5 minutes after injection of /sup 3/H-threonine, the highest percentage of silver grains was found over the rough endoplasmic reticulum. The proportion of silver grains over the rough endoplasmic reticulum declined at later intervals, and a peak of labeling was observed over the Golgi apparatus at 1 hour. Labeling of the secretory granules increased in the 1- and 2-hour samples from both control and stimulated mice, although the relative concentration of radioactivity in both Golgi-associated and apical secretory granules was greater in stimulated than control glands at 1 hour. The results suggest that the secretory protein produced by Brunner's glands was synthesized by the rough endoplasmic reticulum and transported to the Golgi apparatus where secretory granules were formed in both stimulated and control glands. Depletion of secretory granules by prior stimulation resulted in no change in the kinetics of arrival of radioactivity in the cell organelles involved in the secretory process. However, the drainage of the radioactive label from the rough endoplasmic reticulum was significantly slower in the stimulated glands than in the controls.

  10. Influence of different sources on the processing and biopharmaceutical properties of high-dose ibuprofen formulations.

    PubMed

    Romero, A J; Lukas, G; Rhodes, C T

    1991-01-01

    It is known that depending on the manufacturing and synthetic processes, drugs may exist as different forms. As a result, physicochemical properties, compression characteristics, intrinsic dissolution and bioavailability may vary substantially. The purpose of this study was to investigate the effect of different sources of ibuprofen on the processing of tablets and on their properties. Another emphasis of this work was to rationalize one or several key characteristics of the raw material as directly related to wet granulation parameters and to the behavior of final tablets. Commercially available ibuprofen was obtained from different manufacturers and a preformulation program, including X-ray crystallography, differential scanning calorimetry, scanning electron microscopy, determination of particle size distribution and flowability, was performed to characterize the raw material. Granules were prepared with a planetary mixer and liquid requirements for the end point were obtained by monitoring power consumption. Tablets were manufactured on Stokes rotary and single punch instrumented presses. Data acquisition interfaces produced compression data for each formulation. Granules and final tablets were analyzed for hardness, dissolution profiles and content uniformity. Statistical evaluations using analysis of variance and multiple comparison procedures were performed on the results to determine the significance of the variability between independent parameters. The ibuprofen tested was found to be a unique polymorphic form with some differences in the external crystallinity. The particle size characteristics of the material also allowed a differentiation between sources and although there was no differences in dissolution patterns or content uniformity, particle size was found to account for 50% of the variability in tablet hardness. Two sources of ibuprofen with lower mean particle size showed significant variations in end point liquid requirements resulting in

  11. Leakage Current Measurements in SOI Devices

    DTIC Science & Technology

    1991-12-01

    Total dose response of both NMOS and PMOS FETs fabrication on SOI substrates were studied. Back channel leakage currents were studied. Two types of...dose of the back channel and front channel of SIMOX and ZMR SOI substrates are reported. Some preliminary reports on the buried oxide leakage current are also provided. Bach channel leakage, SIMOX, ZMR, Total Dose Response .

  12. Process Mapping and Time Study to Improve Efficiency of New Procedure Implementation for High-Dose Rate Prostate Brachytherapy.

    PubMed

    Doyle, Laura A; Yondorf, Menachem; Peng, Cheng; Harrison, Amy S; Den, Robert B

    2016-11-01

    New technologies and procedures have the potential to improve outcomes; however, initial implementation is often associated with a steep learning curve, decreased efficiency, and patient safety implications. Implementation of a real-time, ultrasound-based prostate high-dose rate brachytherapy procedure involved a multidisciplinary team composed of approximately 6-8 team members and numerous complex tasks. To characterize time spent on various aspects of the procedure and improve efficiency, the team developed a detailed process map, time study, and team debriefings. A benchmark was created based on an experienced institution which has performed >100 procedures annually. The process map was analyzed based on clinical tasks and treatment planning tasks. Over the course of 17 cases at a single institution, total procedure time ranged from 222 to 107 minutes. Implementation of the process map resulted in a reduction of total time by 52%. The implementation of a new procedure benefits from the integration and utilization of a process map. We were able to reduce procedure time significantly, which resulted in decreased time under general anesthesia, reduced risk of deep vein thrombosis, improved overall patient safety, patient throughput, and decreases in staffing demands.

  13. Optimisation of an oak chips-grape mix maceration process. Influence of chip dose and maceration time.

    PubMed

    Gordillo, Belén; Baca-Bocanegra, Berta; Rodriguez-Pulído, Francisco J; González-Miret, M Lourdes; García Estévez, Ignacio; Quijada-Morín, Natalia; Heredia, Francisco J; Escribano-Bailón, M Teresa

    2016-09-01

    Oak chips-related phenolics are able to modify the composition of red wine and modulate the colour stability. In this study, the effect of two maceration techniques, traditional and oak chips-grape mix process, on the phenolic composition and colour of Syrah red wines from warm climate was studied. Two doses of oak chips (3 and 6g/L) at two maceration times (5 and 10days) during fermentation was considered. Changes on phenolic composition (HPLC-DAD-MS), copigmentation/polymerisation (spectrophotometry), and colour (Tristimulus and Differential Colorimetry) were assessed by multivariate statistical techniques. The addition of oak chips at shorter maceration times enhanced phenolic extraction, colour and its stabilisation in comparison to the traditional maceration. On contrast, increasing chip dose in extended maceration time resulted in wines with lighter and less stable colour. Results open the possibility of optimise alternative technological applications to traditional grape maceration for avoiding the common loss of colour of wines from warm climate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Processing of DNA damage after exposure to a single dose of fission spectrum neutrons takes 40 hours to complete

    SciTech Connect

    Peak, J.G.; Peak, M.J.

    1996-11-01

    We have examined the time course over a period of days of repair of chromosomal single-strand breaks (SSB) induced by a single dose of JANUS fission-spectrum neutrons in the DNA of human P3 epithelial teratocarcinoma cells. When the cells are allowed a period of repair incubation the breaks are totally sealed by 7 hours. But then following these initial repair the DNA is dismantled as evidenced by the reappearance of SSBs. This secondary breakage is almost as extensive as that caused by the original neutron exposure, with a maximum at 16-18 hours. Finally, the DNA is rejoined, regaining its original size by 40 hours after irradiation. The secondary repair phenomenon may have an editing function, or it many represent the processing of residual damage left unrepaired during the initial rejoining of the backbone breaks.

  15. Short-term, low-dose varenicline administration enhances information processing speed in methamphetamine-dependent users.

    PubMed

    Kalechstein, Ari D; Mahoney, James J; Verrico, Christopher D; De La Garza, Richard

    2014-10-01

    Long-term, high-dose methamphetamine (METH) use is associated with decrements in neurocognition and, given the association between impaired neurocognition and poorer treatment outcomes in individuals dependent on alcohol and drugs, it is considered to be a neglected area of critical concern. The objective of this study was to determine whether varenicline, a partial agonist at α4β2- and a full agonist at α7-nicotinic acetylcholine receptors, enhances attention/information processing speed, episodic memory, and working memory in non-treatment seeking METH-dependent participants. Twenty-six participants were randomly assigned to receive oral placebo or oral varenicline (titrated up to 1 mg) over 5 days during three separate inpatient phases, and 17 completed each inpatient phase. Participants were predominately male (71%) and Caucasian (71%). Varenicline significantly improved reaction time on the n-back for visual stimuli (F(1,47)=5.369, p=0.025, η2=0.103), and a trend was observed for improvement in reaction time for auditory stimuli (F(1,47)=3.141, p=0.083, η2=0.063). For those study participants whose reaction time was in the lower half of the distribution at baseline, the effect was even more pronounced for auditory (F(1,22)=5.287, p=0.031, η2=0.194) and visual (F(1,22)=11.981, p=0.002, η2=0.353) stimuli relative to placebo. In contrast, varenicline did not modulate mean or maximum span of working memory or performance on tests of episodic memory or attention (p's>0.05). Given the potential importance of this finding, it should be replicated in a larger sample over a longer treatment period with a higher dose of varenicline (2 mg). clinicalTrials.gov Identifier NCT01571167. Copyright © 2014. Published by Elsevier Ltd.

  16. Adaptive Iterative Dose Reduction Using Three Dimensional Processing (AIDR3D) Improves Chest CT Image Quality and Reduces Radiation Exposure

    PubMed Central

    Yamashiro, Tsuneo; Miyara, Tetsuhiro; Honda, Osamu; Kamiya, Hisashi; Murata, Kiyoshi; Ohno, Yoshiharu; Tomiyama, Noriyuki; Moriya, Hiroshi; Koyama, Mitsuhiro; Noma, Satoshi; Kamiya, Ayano; Tanaka, Yuko; Murayama, Sadayuki

    2014-01-01

    Objective To assess the advantages of Adaptive Iterative Dose Reduction using Three Dimensional Processing (AIDR3D) for image quality improvement and dose reduction for chest computed tomography (CT). Methods Institutional Review Boards approved this study and informed consent was obtained. Eighty-eight subjects underwent chest CT at five institutions using identical scanners and protocols. During a single visit, each subject was scanned using different tube currents: 240, 120, and 60 mA. Scan data were converted to images using AIDR3D and a conventional reconstruction mode (without AIDR3D). Using a 5-point scale from 1 (non-diagnostic) to 5 (excellent), three blinded observers independently evaluated image quality for three lung zones, four patterns of lung disease (nodule/mass, emphysema, bronchiolitis, and diffuse lung disease), and three mediastinal measurements (small structure visibility, streak artifacts, and shoulder artifacts). Differences in these scores were assessed by Scheffe's test. Results At each tube current, scans using AIDR3D had higher scores than those without AIDR3D, which were significant for lung zones (p<0.0001) and all mediastinal measurements (p<0.01). For lung diseases, significant improvements with AIDR3D were frequently observed at 120 and 60 mA. Scans with AIDR3D at 120 mA had significantly higher scores than those without AIDR3D at 240 mA for lung zones and mediastinal streak artifacts (p<0.0001), and slightly higher or equal scores for all other measurements. Scans with AIDR3D at 60 mA were also judged superior or equivalent to those without AIDR3D at 120 mA. Conclusion For chest CT, AIDR3D provides better image quality and can reduce radiation exposure by 50%. PMID:25153797

  17. Examining reach, dose, and fidelity of the "Girls on the Move" after-school physical activity club: a process evaluation.

    PubMed

    Robbins, Lorraine B; Ling, Jiying; Toruner, Ebru Kilicarslan; Bourne, Kelly A; Pfeiffer, Karin A

    2016-07-30

    After-school programs represent a promising opportunity to assist adolescent girls' in attaining adequate physical activity. Although evaluating the process of intervention implementation is important for determining if an intervention was delivered and received as intended, comprehensive information about process evaluation methods and results are rarely reported. The purpose of this article was to evaluate the reach, dose, and fidelity of a 90-minute after-school physical activity club offered 3 days a week. The club is 1 of 3 components included in a 17-week intervention designed for 5th-8th grade girls, the majority of whom were of minority and/or low socioeconomic status. A total of 24 schools (12 intervention; 12 control) and 56-67 girls per school (total N = 1519 girls) were included in the Girls on the Move group randomized controlled trial. At the beginning of each of 3 academic years (2012-2015), 8 schools per year were randomized to receive either the intervention (n = 4) or control condition (n = 4). To evaluate the club, data collected via surveys from girls, club coaches and managers, and process evaluators were analyzed. To evaluate the opportunity for physical activity provided by the coaches and managers, process evaluators used an observation tool based on the System for Observing Fitness Instruction Time and Academic Learning Time - Physical Education. Girls wore accelerometers every other week during the club time. Mean attendance was 41 % with the average attendance in year 3 being higher than rates for years 1 or 2. Mean moderate-to-vigorous physical activity time was 21.85 minutes measured via accelerometry and 21.81 minutes observed by process evaluators. Satisfaction with the intervention was high. For the most part, process evaluators perceived the club was delivered as planned and reflected constructs of the Health Promotion Model and Self-Determination Theory. Areas contributing to success included using incentives and

  18. [Evaluation of the repair process in mechanically injured rat bone stimulated by sodium fluoride with non-toxic doses].

    PubMed

    Białecki, P

    1999-01-01

    The influence of sodium fluoride on the course of repair process in the mechanically injured rat bone was studied. Thirty six male Wistar rats aged 5 months, weighing 460-540 g were investigated. The animals lived under standard conditions and were fed ad libidum with the standard LSM food including 0.7 mg/kg of fluorine on the average. The animals randomly divided into 3 groups that comprised study and control groups, 6 rats each. The rats in the first group were given water with 20 mg (1.05 mmol) of sodium fluoride per kg of body weight for 24 h over a period of 2 weeks--group Ia. In the second group--IIa--animals were given water with sodium fluoride at a dose of 1.5 mmol/kg b.w./24 h for a period of 4 weeks. In the third group--IIIa--the animals were given sodium fluoride in a dose of 1.5 mmol/kg b.w./24 h for a period of 6 weeks. The rats from the control groups I, II and III were given water without sodium fluoride for the period of 2, 4 and 6 weeks, respectively. At the beginning of the experiment a hole was drilled in both femoral bones in rat under barbiturate anaesthesia. According to the protocol the rats underwent ether euthanasia after 2, 4 and 6 weeks after surgery and the following samples were collected: blood from the heart for biochemical studies and both femoral bones for biochemical and histological studies. The following parameters were evaluated in blood serum: fluorine, calcium, magnesium contents, serum concentrations of urea, creatinine, bilirubin and activity levels of enzymes: aspartate aminotransferase, alanine aminotransferase, cholinesterase, base phosphatase. Fluorine, calcium magnesium and zinc contents were estimated in bone samples. The concentration of fluorine ions in animal serum after 2, 4 and 6 weeks of experiment increased significantly as compared with the corresponding controls. The highest fluorine concentrations were observed in serum of rats supplemented with NaF for 6 weeks. The fluorine concentrations in the bone

  19. AXAIR: A Computer Code for SAR Assessment of Plume-Exposure Doses from Potential Process-Accident Releases to Atmosphere

    SciTech Connect

    Pillinger, W.L.

    2001-05-17

    This report describes the AXAIR computer code which is available to terminal users for evaluating the doses to man from exposure to the atmospheric plume from postulated stack or building-vent releases at the Savannah River Plant. The emphasis herein is on documentation of the methodology only. The total-body doses evaluated are those that would be exceeded only 0.5 percent of the time based on worst-sector, worst-case meteorological probability analysis. The associated doses to other body organs are given in the dose breakdowns by radionuclide, body organ and pathway.

  20. Processing of DNA damage after exposure to a single dose of fission spectrum neutrons takes 40 hours to complete

    SciTech Connect

    Peak, J.G.; Peak, M.J.

    1994-01-01

    The authors have examined the long-term (days) fate of breaks induced in the DNA of human P3 epithelial teratocarcinoma cells by a single dose of JANUS fission-spectrum neutrons (mean energy 0.85 MeV). We used alkaline-filter elution methods that assay totality of single- and double-strand breaks, generally referred to as single-strand breaks (SSBs). When the cells are allowed a period of repair incubation, these breaks are totally sealed by 7 hours after the original exposure, but following the initial repair the DNA is dismantled, as revealed by the reappearance of SSBS. This secondary breakage is almost as extensive as that caused by the original neutron exposure, with a maximum at 16-18 hours after irradiation. Finally, the DNA is once again rejoined, regaining its original size by 40 hours after irradiation. The secondary repair phenomenon may have an editing function, or it may represent the processing of residual damage left unrepaired during the initial rejoining of the backbone breaks.

  1. Application of Natural Language Processing and Network Analysis Techniques to Post-market Reports for the Evaluation of Dose-related Anti-Thymocyte Globulin Safety Patterns.

    PubMed

    Botsis, Taxiarchis; Foster, Matthew; Arya, Nina; Kreimeyer, Kory; Pandey, Abhishek; Arya, Deepa

    2017-04-26

    To evaluate the feasibility of automated dose and adverse event information retrieval in supporting the identification of safety patterns. We extracted all rabbit Anti-Thymocyte Globulin (rATG) reports submitted to the United States Food and Drug Administration Adverse Event Reporting System (FAERS) from the product's initial licensure in April 16, 1984 through February 8, 2016. We processed the narratives using the Medication Extraction (MedEx) and the Event-based Text-mining of Health Electronic Records (ETHER) systems and retrieved the appropriate medication, clinical, and temporal information. When necessary, the extracted information was manually curated. This process resulted in a high quality dataset that was analyzed with the Pattern-based and Advanced Network Analyzer for Clinical Evaluation and Assessment (PANACEA) to explore the association of rATG dosing with post-transplant lymphoproliferative disorder (PTLD). Although manual curation was necessary to improve the data quality, MedEx and ETHER supported the extraction of the appropriate information. We created a final dataset of 1,380 cases with complete information for rATG dosing and date of administration. Analysis in PANACEA found that PTLD was associated with cumulative doses of rATG >8 mg/kg, even in periods where most of the submissions to FAERS reported low doses of rATG. We demonstrated the feasibility of investigating a dose-related safety pattern for a particular product in FAERS using a set of automated tools.

  2. Standardized process used in the emergency department for pediatric oncology patients with fever and neutropenia improves time to the first dose of antibiotics.

    PubMed

    Cash, Thomas; Deloach, Traci; Graham, James; Shirm, Steven; Mian, Amir

    2014-02-01

    This study aimed to evaluate the effect of a standardized process on time to the first dose of antibiotics in pediatric oncology patients presenting to the emergency department (ED) with fever and neutropenia (F-N). A standardized process and order set were created to be used on all pediatric febrile neutropenic patients who presented to the ED of a large academic children's hospital. The order set was used for patients with a known oncologic diagnosis, a fever greater than 38.3°C, and who were presumed or known to be neutropenic. A retrospective chart review was then performed for the 18 months before and the 6 months after implementation of the new process to evaluate if the time to the first dose of antibiotics was significantly reduced. A total of 130 occurrences of F-N were analyzed. This included 100 episodes before the implementation of the new process and 30 episodes afterward. The time to antibiotics being ordered was reduced by over half, with a median time of 72 minutes preprocess and 27 minutes postprocess implementation (P = 0.04). Median time from the arrival in the ED to the administration of the first dose of antibiotics was reduced by almost an hour, taking 154 minutes before the new process compared with 95 minutes after its implementation (P = 0.0001). The use of a standardized process that uses a standardized order set can reduce the time to the first dose of antibiotics in pediatric oncology patients with F-N.

  3. Image processing techniques revealing the relationship between the field-measured ambient gamma dose equivalent rate and geological conditions at a granitic area, Velence Mountains, Hungary

    NASA Astrophysics Data System (ADS)

    Beltran Torres, Silvana; Petrik, Attila; Zsuzsanna Szabó, Katalin; Jordan, Gyozo; Szabó, Csaba

    2017-04-01

    In order to estimate the annual dose that the public receive from natural radioactivity, the identification of the potential risk areas is required which, in turn, necessitates understanding the relationship between the spatial distribution of natural radioactivity and the geogenic risk factors (e.g., rock types, dykes, faults, soil conditions, etc.). A detailed spatial analysis of ambient gamma dose equivalent rate was performed in the western side of Velence Mountains, the largest outcropped granitic area in Hungary. In order to assess the role of local geology in the spatial distribution of ambient gamma dose rates, field measurements were carried out at ground level at 300 sites along a 250 m x 250 m regular grid in a total surface of 14.7 km2. Digital image processing methods were applied to identify anomalies, heterogeneities and spatial patterns in the measured gamma dose rates, including local maxima and minima determination, digital cross sections, gradient magnitude and gradient direction, second derivative profile curvature, local variability, lineament density, 2D autocorrelation and directional variogram analyses. Statistical inference showed that different gamma dose rate levels are associated with the rock types (i.e., Carboniferous granite, Pleistocene colluvial, proluvial, deluvial sediments and talus, and Pannonian sand and pebble), with the highest level on the Carboniferous granite including outlying values. Moreover, digital image processing revealed that linear gamma dose rate spatial features are parallel to the SW-NE dyke system and possibly to the NW-SE main fractures. The results of this study underline the importance of understanding the role of geogenic risk factors influencing the ambient gamma dose rate received by public. The study also demonstrates the power of the image processing techniques for the identification of spatial pattern in field-measured geogenic radiation.

  4. Evaluation of three reagent dosing strategies in a photo-Fenton process for the decolorization of azo dye mixtures.

    PubMed

    Prato-Garcia, D; Buitrón, Germán

    2012-05-30

    Three reagent dosing strategies used in the solar photo-assisted decolorization of a mixture of sulfonated dyes consisting of acid blue 113, acid orange 7 and acid red 151 were evaluated. Results demonstrated that the dosing strategy influenced both reagent consumption and the biodegradability and toxicity of the effluent. In one strategy (E(1)), the Fenton's reactants were dosed in a punctual mode, while in the other two strategies (E(2) an E(3)), the reactants were dosed continuously. In the E(2) strategy the reactants were dosed by varying the duration of the injection time. In the E(3) strategy, the reactants were dosed during 60 min at a constant rate, but with different concentrations. All cases showed that feeding the reactor between 40% and 60% of the maximal dose was sufficient to decolorize more than 90% of the mixture of azo dyes. The E(1) strategy was less effective for aromatic content reduction. Conversely, the continuous addition of the reagents (E(2) and E(3) strategies) improved the aromatic content removal. E(3) strategy was substantially more appropriate than E(1) strategy due to improved the effluent quality in two key areas: toxicity and biodegradability.

  5. Acute hemolytic vascular inflammatory processes are prevented by nitric oxide replacement or a single dose of hydroxyurea.

    PubMed

    Almeida, Camila Bononi; Souza, Lucas Eduardo Botelho; Leonardo, Flavia Costa; Costa, Fabio Trindade Maranhão; Werneck, Claudio C; Covas, Dimas Tadeu; Costa, Fernando Ferreira; Conran, Nicola

    2015-08-06

    Hemolysis and consequent release of cell-free hemoglobin (CFHb) impair vascular nitric oxide (NO) bioavailability and cause oxidative and inflammatory processes. Hydroxyurea (HU), a common therapy for sickle cell disease (SCD), induces fetal Hb production and can act as an NO donor. We evaluated the acute inflammatory effects of intravenous water-induced hemolysis in C57BL/6 mice and determined the abilities of an NO donor, diethylamine NONOate (DEANO), and a single dose of HU to modulate this inflammation. Intravenous water induced acute hemolysis in C57BL/6 mice, attaining plasma Hb levels comparable to those observed in chimeric SCD mice. This hemolysis resulted in significant and rapid systemic inflammation and vascular leukocyte recruitment within 15 minutes, accompanied by NO metabolite generation. Administration of another potent NO scavenger (2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) to C57BL/6 mice induced similar alterations in leukocyte recruitment, whereas hemin-induced inflammation occurred over a longer time frame. Importantly, the acute inflammatory effects of water-induced hemolysis were abolished by the simultaneous administration of DEANO or HU, without altering CFHb, in an NO pathway-mediated manner. In vitro, HU partially reversed the Hb-mediated induction of endothelial proinflammatory cytokine secretion and adhesion molecule expression. In summary, pathophysiological levels of hemolysis trigger an immediate inflammatory response, possibly mediated by vascular NO consumption. HU presents beneficial anti-inflammatory effects by inhibiting rapid-onset hemolytic inflammation via an NO-dependent mechanism, independently of fetal Hb elevation. Data provide novel insights into mechanisms of hemolytic inflammation and further support perspectives for the use of HU as an acute treatment for SCD and other hemolytic disorders.

  6. Kinetic Modeling Reveals the Roles of Reactive Oxygen Species Scavenging and DNA Repair Processes in Shaping the Dose-Response Curve of KBrO₃-Induced DNA Damage.

    PubMed

    Spassova, Maria A; Miller, David J; Nikolov, Alexander S

    2015-01-01

    We have developed a kinetic model to investigate how DNA repair processes and scavengers of reactive oxygen species (ROS) can affect the dose-response shape of prooxidant induced DNA damage. We used as an example chemical KBrO3 which is activated by glutathione and forms reactive intermediates that directly interact with DNA to form 8-hydroxy-2-deoxyguanosine DNA adducts (8-OH-dG). The single strand breaks (SSB) that can result from failed base excision repair of these adducts were considered as an effect downstream from 8-OH-dG. We previously demonstrated that, in the presence of effective base excision repair, 8-OH-dG can exhibit threshold-like dose-response dependence, while the downstream SSB can still exhibit a linear dose-response. Here we demonstrate that this result holds for a variety of conditions, including low levels of GSH, the presence of additional SSB repair mechanisms, or a scavenger. It has been shown that melatonin, a terminal scavenger, inhibits KBrO3-caused oxidative damage. Our modeling revealed that sustained exposure to KBrO3 can lead to fast scavenger exhaustion, in which case the dose-response shapes for both endpoints are not substantially affected. The results are important to consider when forming conclusions on a chemical's toxicity dose dependence based on the dose-response of early genotoxic events.

  7. Use of a graphics processing unit (GPU) to facilitate real-time 3D graphic presentation of the patient skin-dose distribution during fluoroscopic interventional procedures

    PubMed Central

    Rana, Vijay; Rudin, Stephen; Bednarek, Daniel R.

    2012-01-01

    We have developed a dose-tracking system (DTS) that calculates the radiation dose to the patient’s skin in real-time by acquiring exposure parameters and imaging-system-geometry from the digital bus on a Toshiba Infinix C-arm unit. The cumulative dose values are then displayed as a color map on an OpenGL-based 3D graphic of the patient for immediate feedback to the interventionalist. Determination of those elements on the surface of the patient 3D-graphic that intersect the beam and calculation of the dose for these elements in real time demands fast computation. Reducing the size of the elements results in more computation load on the computer processor and therefore a tradeoff occurs between the resolution of the patient graphic and the real-time performance of the DTS. The speed of the DTS for calculating dose to the skin is limited by the central processing unit (CPU) and can be improved by using the parallel processing power of a graphics processing unit (GPU). Here, we compare the performance speed of GPU-based DTS software to that of the current CPU-based software as a function of the resolution of the patient graphics. Results show a tremendous improvement in speed using the GPU. While an increase in the spatial resolution of the patient graphics resulted in slowing down the computational speed of the DTS on the CPU, the speed of the GPU-based DTS was hardly affected. This GPU-based DTS can be a powerful tool for providing accurate, real-time feedback about patient skin-dose to physicians while performing interventional procedures. PMID:24027616

  8. Use of a graphics processing unit (GPU) to facilitate real-time 3D graphic presentation of the patient skin-dose distribution during fluoroscopic interventional procedures.

    PubMed

    Rana, Vijay; Rudin, Stephen; Bednarek, Daniel R

    2012-02-23

    We have developed a dose-tracking system (DTS) that calculates the radiation dose to the patient's skin in real-time by acquiring exposure parameters and imaging-system-geometry from the digital bus on a Toshiba Infinix C-arm unit. The cumulative dose values are then displayed as a color map on an OpenGL-based 3D graphic of the patient for immediate feedback to the interventionalist. Determination of those elements on the surface of the patient 3D-graphic that intersect the beam and calculation of the dose for these elements in real time demands fast computation. Reducing the size of the elements results in more computation load on the computer processor and therefore a tradeoff occurs between the resolution of the patient graphic and the real-time performance of the DTS. The speed of the DTS for calculating dose to the skin is limited by the central processing unit (CPU) and can be improved by using the parallel processing power of a graphics processing unit (GPU). Here, we compare the performance speed of GPU-based DTS software to that of the current CPU-based software as a function of the resolution of the patient graphics. Results show a tremendous improvement in speed using the GPU. While an increase in the spatial resolution of the patient graphics resulted in slowing down the computational speed of the DTS on the CPU, the speed of the GPU-based DTS was hardly affected. This GPU-based DTS can be a powerful tool for providing accurate, real-time feedback about patient skin-dose to physicians while performing interventional procedures.

  9. Use of a graphics processing unit (GPU) to facilitate real-time 3D graphic presentation of the patient skin-dose distribution during fluoroscopic interventional procedures

    NASA Astrophysics Data System (ADS)

    Rana, Vijay; Rudin, Stephen; Bednarek, Daniel R.

    2012-03-01

    We have developed a dose-tracking system (DTS) that calculates the radiation dose to the patient's skin in realtime by acquiring exposure parameters and imaging-system-geometry from the digital bus on a Toshiba Infinix C-arm unit. The cumulative dose values are then displayed as a color map on an OpenGL-based 3D graphic of the patient for immediate feedback to the interventionalist. Determination of those elements on the surface of the patient 3D-graphic that intersect the beam and calculation of the dose for these elements in real time demands fast computation. Reducing the size of the elements results in more computation load on the computer processor and therefore a tradeoff occurs between the resolution of the patient graphic and the real-time performance of the DTS. The speed of the DTS for calculating dose to the skin is limited by the central processing unit (CPU) and can be improved by using the parallel processing power of a graphics processing unit (GPU). Here, we compare the performance speed of GPU-based DTS software to that of the current CPU-based software as a function of the resolution of the patient graphics. Results show a tremendous improvement in speed using the GPU. While an increase in the spatial resolution of the patient graphics resulted in slowing down the computational speed of the DTS on the CPU, the speed of the GPU-based DTS was hardly affected. This GPU-based DTS can be a powerful tool for providing accurate, real-time feedback about patient skin-dose to physicians while performing interventional procedures.

  10. Co-extrusion as a processing technique to manufacture a dual sustained release fixed-dose combination product.

    PubMed

    Vynckier, An-Katrien; Voorspoels, Jody; Remon, Jean Paul; Vervaet, Chris

    2016-05-01

    This study aimed to design a fixed-dose combination dosage form which provides a sustained release profile for both the freely water-soluble metformin HCl and the poorly soluble gliclazide, two antidiabetic compounds used to treat diabetes mellitus. Hot-melt co-extrusion was used as an innovative manufacturing technique for a pharmaceutical fixed-dose combination product. In this way, a matrix formulation that sustained metformin release could be developed, despite the high drug load in the formulation and the freely soluble nature of the drug. It was clear that co-extrusion was perfectly suited to produce a fixed-dose combination product with adequate properties for each of the incorporated APIs. A coat layer, containing at least 30% CAPA(®) 6506 as a hydrophobic polymer, was necessary to adequately sustain the release of the highly dosed freely soluble drug from the 70% metformin HCl-loaded CAPA(®) 6506 core of the co-extrudate. To obtain a complete gliclazide release over 24-h solubilization in Kollidon(®) VA, added as a second polymer to the CAPA(®) 6506 in the coat, was needed. Both active pharmaceutical ingredients (APIs), which have different physicochemical characteristics, were formulated in a single dosage form, using co-extrusion. © 2016 Royal Pharmaceutical Society, Journal of Pharmacy and Pharmacology.

  11. Dose-dependent action of glucose on memory processes in women: effect on serial position and recall priority.

    PubMed

    Messier, C; Pierre, J; Desrochers, A; Gravel, M

    1998-10-01

    Previous research has shown that glucose can enhance memory in animals and humans. In humans, the facilitative effect of glucose is best observed with declarative memory tasks in older subjects. While the memory-enhancing action of glucose is well established, the underlying physiological mechanisms and the specific aspects of memory that are modulated by glucose in humans are not well understood. The present study sought to examine the effects of glucose on memory in young women using a memory paradigm sensitive to specific encoding and retrieval strategies. The glucose dose was adjusted for the weight of each participant in order to generate a dose response curve covering most doses used in previous studies. The results showed that 300 mg/kg glucose enhanced the primacy effect as defined by the recall of the first five items of the lists. However, none of the doses of glucose produced changes in the recall priority given to primacy items. The effect of glucose appears to be localized on the recall primacy effect, suggesting that glucose acts on precise memory operations. This improvement, however, is independent of the order in which subjects recalled the words. Cholinergic drugs have been shown to alter the recall of the primacy part of word lists and this observation is consistent with the hypothesis that glucose acts on memory through an interaction with brain cholinergic systems. Copyright 1998 Elsevier Science B.V.

  12. Red and processed meat consumption and the risk of lung cancer: a dose-response meta-analysis of 33 published studies.

    PubMed

    Xue, Xiu-Juan; Gao, Qing; Qiao, Jian-Hong; Zhang, Jie; Xu, Cui-Ping; Liu, Ju

    2014-01-01

    This meta-analysis was to summarize the published studies about the association between red/processed meat consumption and the risk of lung cancer. 5 databases were systematically reviewed, and random-effect model was used to pool the study results and to assess dose-response relationships. Results shown that six cohort studies and twenty eight case-control studies were included in this meat-analysis. The pooled Risk Radios (RR) for total red meat and processed meat were 1.44 (95% CI, 1.29-1.61) and 1.23 (95% CI, 1.10-1.37), respectively. Dose-response analysis revealed that for every increment of 120 grams red meat per day the risk of lung cancer increases 35% and for every increment of 50 grams red meat per day the risk of lung cancer increases 20%. The present dose-response meta-analysis suggested that both red and processed meat consumption showed a positive effect on lung cancer risk.

  13. Red and processed meat consumption and the risk of lung cancer: a dose-response meta-analysis of 33 published studies

    PubMed Central

    Xue, Xiu-Juan; Gao, Qing; Qiao, Jian-Hong; Zhang, Jie; Xu, Cui-Ping; Liu, Ju

    2014-01-01

    This meta-analysis was to summarize the published studies about the association between red/processed meat consumption and the risk of lung cancer. 5 databases were systematically reviewed, and random-effect model was used to pool the study results and to assess dose-response relationships. Results shown that six cohort studies and twenty eight case-control studies were included in this meat-analysis. The pooled Risk Radios (RR) for total red meat and processed meat were 1.44 (95% CI, 1.29-1.61) and 1.23 (95% CI, 1.10-1.37), respectively. Dose-response analysis revealed that for every increment of 120 grams red meat per day the risk of lung cancer increases 35% and for every increment of 50 grams red meat per day the risk of lung cancer increases 20%. The present dose-response meta-analysis suggested that both red and processed meat consumption showed a positive effect on lung cancer risk. PMID:25035778

  14. New generation of nuclear fuels: Stability of different stearates under high doses gamma irradiation in the manufacturing process

    NASA Astrophysics Data System (ADS)

    Lebeau, D.; Esnouf, S.; Gracia, J.; Audubert, F.; Ferry, M.

    2017-07-01

    In the future reactors, the pellets radioactivity will increase due to the modification of the plutonium concentration. The stability of the organic additive used as lubricating/deagglomerating agent has thus to be evaluated. Up to now, zinc stearate is employed, but new additives are tested in this study and compared to zinc stearate. In a first part of this paper, the order of magnitude of the dose deposited in the stearates has been estimated. Afterward, three different stearates have been irradiated, using gamma-rays at doses as high as 2000 kGy. Two atmospheres of irradiation were tested, i.e. inert atmosphere and air. Samples were characterized using the following analytical tools: mass spectrometry, thermogravimetry and infrared spectroscopy. The objective is the evaluation of the ageing of these materials. In the nuclear fuel pellets manufacturing context, the candidate which could replace zinc stearate, if this one is too degraded to fulfill its role of lubricant in the pellets of the future manufacturing, has been determined.

  15. RADIATION SENSITIVITY & PROCESSING OF DNA DAMAGE FOLLOWING LOW DOSES OF GAMMA-RAY ALPHA PARTICLES & HZE IRRADIATION OF NORMAL DSB REPAIR DEFICIENT CELLS

    SciTech Connect

    O'Neil, Peter

    2009-05-15

    Non-homologous end joining (NHEJ) predominates in the repair of DNA double strand breaks (DSB) over homologous recombination (HR). NHEJ occurs throughout the cell cycle whereas HR occurs in late S/G2 due to the requirement of a sister chromatid (Rothkamm et al, Mol Cell Biol 23 5706-15 [2003]). To date evidence obtained with DSB repair deficient cells using pulsed-field gel electrophoresis has revealed the major pathway throughout all phases of the cell cycle for processing high dose induced DSBs is NHEJ (Wang et al, Oncogene 20 2212-24 (2001); Pluth et al, Cancer Res. 61 2649-55 [2001]). These findings however were obtained at high doses when on average >> 20-30 DSBs are formed per cell. The contribution of the repair pathways (NHEJ and HR) induced in response to DNA damage during the various phases of the cell cycle may depend upon the dose (the level of initial DSBs) especially since low levels of DSBs are induced at low dose. To date, low dose studies using NHEJ and HR deficient mutants have not been carried out to address this important question with radiations of different quality. The work presented here leads us to suggest that HR plays a relatively minor role in the repair of radiation-induced prompt DSBs. SSBs lead to the induction of DSBs which are associated specifically with S-phase cells consistent with the idea that they are formed at stalled replication forks in which HR plays a major role in repair. That DNA-PKcs is in some way involved in the repair of the precursors to replication-induced DSB remains an open question. Persistent non-DSB oxidative damage also leads to an increase in RAD51 positive DSBs. Both simple and complex non-DSB DNA damage may therefore contribute to indirect DSBs induced by ionising radiation at replication forks.

  16. Effect of H2O2 dosing strategy on sludge pretreatment by microwave-H2O2 advanced oxidation process.

    PubMed

    Wang, Yawei; Wei, Yuansong; Liu, Junxin

    2009-09-30

    Considering characteristics of breaking down H(2)O(2) into water and molecular oxygen by catalase in waste activated sludge (WAS), the effect of H(2)O(2) dosing strategy on sludge pretreatment by the advanced oxidation process (AOP) of microwave-H(2)O(2) was investigated by batch experiments for optimizing H(2)O(2) dosage. Results showed that the catalase in sludge was active at the low temperature range between 15 degrees C and 45 degrees C, and gradually lost activity from 60 degrees C to 80 degrees C. Therefore, the H(2)O(2) was dosed at 80 degrees C, to which the waste activated sludge was first heated by the microwave (MW), and then the sludge dosed with H(2)O(2) was continuously heated till 100 degrees C by the microwave. Results at different H(2)O(2) dosages showed that the higher the H(2)O(2) dosing ratio was, the more the SCOD and total organic carbon (TOC) were released into the supernatant, and the optimum range of H(2)O(2)/TCOD ratio should be between 0.1 and 1.0. The percentages of consumed H(2)O(2) in the AOP of microwave and H(2)O(2) treating the WAS were 25.38%, 22.53%, 14.82%, 13.61% and 19.63% at different H(2)O(2)/TCOD dosing ratios of 0.1, 0.5, 1, 2, 4, respectively. Along with the increasing H(2)O(2)/TCOD ratio, the contents of TCOD on particles, soluble substances and mineralization increased and the TCOD distribution on solids decreased.

  17. Near Real-Time Assessment of Anatomic and Dosimetric Variations for Head and Neck Radiation Therapy via Graphics Processing Unit–based Dose Deformation Framework

    SciTech Connect

    Qi, X. Sharon; Santhanam, Anand; Neylon, John; Min, Yugang; Armstrong, Tess; Sheng, Ke; Staton, Robert J.; Pukala, Jason; Pham, Andrew; Low, Daniel A.; Lee, Steve P.; Steinberg, Michael; Manon, Rafael; Chen, Allen M.; Kupelian, Patrick

    2015-06-01

    Purpose: The purpose of this study was to systematically monitor anatomic variations and their dosimetric consequences during intensity modulated radiation therapy (IMRT) for head and neck (H&N) cancer by using a graphics processing unit (GPU)-based deformable image registration (DIR) framework. Methods and Materials: Eleven IMRT H&N patients undergoing IMRT with daily megavoltage computed tomography (CT) and weekly kilovoltage CT (kVCT) scans were included in this analysis. Pretreatment kVCTs were automatically registered with their corresponding planning CTs through a GPU-based DIR framework. The deformation of each contoured structure in the H&N region was computed to account for nonrigid change in the patient setup. The Jacobian determinant of the planning target volumes and the surrounding critical structures were used to quantify anatomical volume changes. The actual delivered dose was calculated accounting for the organ deformation. The dose distribution uncertainties due to registration errors were estimated using a landmark-based gamma evaluation. Results: Dramatic interfractional anatomic changes were observed. During the treatment course of 6 to 7 weeks, the parotid gland volumes changed up to 34.7%, and the center-of-mass displacement of the 2 parotid glands varied in the range of 0.9 to 8.8 mm. For the primary treatment volume, the cumulative minimum and mean and equivalent uniform doses assessed by the weekly kVCTs were lower than the planned doses by up to 14.9% (P=.14), 2% (P=.39), and 7.3% (P=.05), respectively. The cumulative mean doses were significantly higher than the planned dose for the left parotid (P=.03) and right parotid glands (P=.006). The computation including DIR and dose accumulation was ultrafast (∼45 seconds) with registration accuracy at the subvoxel level. Conclusions: A systematic analysis of anatomic variations in the H&N region and their dosimetric consequences is critical in improving treatment efficacy. Nearly real

  18. Near Real-Time Assessment of Anatomic and Dosimetric Variations for Head and Neck Radiation Therapy via Graphics Processing Unit-based Dose Deformation Framework.

    PubMed

    Qi, X Sharon; Santhanam, Anand; Neylon, John; Min, Yugang; Armstrong, Tess; Sheng, Ke; Staton, Robert J; Pukala, Jason; Pham, Andrew; Low, Daniel A; Lee, Steve P; Steinberg, Michael; Manon, Rafael; Chen, Allen M; Kupelian, Patrick

    2015-06-01

    The purpose of this study was to systematically monitor anatomic variations and their dosimetric consequences during intensity modulated radiation therapy (IMRT) for head and neck (H&N) cancer by using a graphics processing unit (GPU)-based deformable image registration (DIR) framework. Eleven IMRT H&N patients undergoing IMRT with daily megavoltage computed tomography (CT) and weekly kilovoltage CT (kVCT) scans were included in this analysis. Pretreatment kVCTs were automatically registered with their corresponding planning CTs through a GPU-based DIR framework. The deformation of each contoured structure in the H&N region was computed to account for nonrigid change in the patient setup. The Jacobian determinant of the planning target volumes and the surrounding critical structures were used to quantify anatomical volume changes. The actual delivered dose was calculated accounting for the organ deformation. The dose distribution uncertainties due to registration errors were estimated using a landmark-based gamma evaluation. Dramatic interfractional anatomic changes were observed. During the treatment course of 6 to 7 weeks, the parotid gland volumes changed up to 34.7%, and the center-of-mass displacement of the 2 parotid glands varied in the range of 0.9 to 8.8 mm. For the primary treatment volume, the cumulative minimum and mean and equivalent uniform doses assessed by the weekly kVCTs were lower than the planned doses by up to 14.9% (P=.14), 2% (P=.39), and 7.3% (P=.05), respectively. The cumulative mean doses were significantly higher than the planned dose for the left parotid (P=.03) and right parotid glands (P=.006). The computation including DIR and dose accumulation was ultrafast (∼45 seconds) with registration accuracy at the subvoxel level. A systematic analysis of anatomic variations in the H&N region and their dosimetric consequences is critical in improving treatment efficacy. Nearly real-time assessment of anatomic and dosimetric variations is

  19. SU-E-I-12: Characterization of Edge Effects in a Commercial Low-Dose Image Processing System

    SciTech Connect

    Marsh, R; Silosky, M

    2014-06-01

    Purpose: Minimizing radiation dose while preserving image quality is critical in fluoroscopic imaging. One recent development is a noise reduction system (Allura Clarity) offered by Philips. Others have reported approximately 50% reduction in air kerma when using Clarity. These studies, however, provide only a cursory look at how the Clarity system affects image quality. The purpose of this work was to evaluate the effect of Clarity on the appearance of high-frequency image information. Methods: A lead attenuator with a smooth edge was imaged on two Philips Allura FD20 detectors: one with Clarity and one without. The edge was positioned in the center of the field of view and images were obtained under the following conditions: 40cm and 11cm fields of view, single shot and continuous fluoroscopy modes, and using abdomen and cardiac protocols, for a total of sixteen imaging conditions. Profiles were drawn perpendicular to the edge across 80% of its length, averaged to reduce noise, normalized to the maximum pixel value, and plotted as a function of distance. Results: For all single-shot acquisitions and most fluoroscopic images, overshoot of the edge was observed. This effect was more substantial for single-shot acquisitions (∼20%) than for fluoroscopic images (∼50%). For fluoroscopic acquisition, the overshoot decayed more quickly with the Clarity system. However, the system with Clarity introduced a ringing effect for both single-shot and fluoroscopic images that is not present on the non-Clarity system. Conclusion: Previous reports have demonstrated a substantial dose reduction when using Clarity but the impact this has on image appearance has not been characterized. One demonstrated difference is the change in appearance of high-frequency image information. It remains to be determined whether this effect may impact clinical images adversely.

  20. High-NA optical CD metrology on small in-cell targets enabling improved higher order dose control and process control for logic

    NASA Astrophysics Data System (ADS)

    Cramer, Hugo; Mc Namara, Elliott; van Laarhoven, Rik; Jaganatharaja, Ram; de la Fuente, Isabel; Hsu, Sharon; Belletti, Filippo; Popadic, Milos; Tu, Ward; Huang, Wade

    2017-03-01

    The logic manufacturing process requires small in-device metrology targets to exploit the full dose correction potential of the modern scanners and process tools. A high-NA angular resolved scatterometer (YieldStar S-1250D) was modified to demonstrate the possibility of OCD measurements on 5x5µm2 targets. The results obtained on test wafers in a logic manufacturing environment, measured after litho and after core etch, showed a good correlation to larger reference targets and AEI to ADI intra-field CDU correlation, thereby demonstrating the feasibility of OCD on such small targets. The data was used to determine a reduction potential of 55% for the intra-field CD variation, using 145 points per field on a few inner fields, and 33% of the process induced across wafer CD variation using 16 points per field full wafer. In addition, the OCD measurements reveal valuable information on wafer-to-wafer layer height variations within a lot.

  1. Hollow Fiber Membrane Bioreactor Systems for Wastewater Processing: Effects of Environmental Stresses Including Dormancy Cycling and Antibiotic Dosing

    NASA Technical Reports Server (NTRS)

    Coutts, Janelle L.; Hummerick, Mary E.; Lunn, Griffin M.; Larson, Brian D.; Spencer, LaShelle E.; Kosiba, Michael L.; Khodadad, Christina L.; Catechis, John A.; Birmele, Michele N.; Wheeler, Raymond M.

    2016-01-01

    Membrane-aerated biofilm reactors (MABRs) have been studied for a number of years as an alternate approach for treating wastewater streams during space exploration. While the technology provides a promising pre-treatment for lowering organic carbon and nitrogen content without the need for harsh stabilization chemicals, several challenges must be addressed before adoption of the technology in future missions. One challenge is the transportation of bioreactors containing intact, active biofilms as a means for rapid start-up on the International Space Station or beyond. Similarly, there could be a need for placing these biological systems into a dormant state for extended periods when the system is not in use, along with the ability for rapid restart. Previous studies indicated that there was little influence of storage condition (4 or 25 C, with or without bulk fluid) on recovery of bioreactors with immature biofilms (48 days old), but that an extensive recovery time was required (20+ days). Bioreactors with fully established biofilms (13 months) were able to recover from a 7-month dormancy within 4 days (approximately 1 residence). Further dormancy and recovery testing is presented here that examines the role of biofilm age on recovery requirements, repeated dormancy cycle capabilities, and effects of long-duration dormancy cycles (8-9 months) on HFMB systems. Another challenge that must be addressed is the possibility of antibiotics entering the wastewater stream. Currently, for most laboratory tests of biological water processors, donors providing urine may not contribute to the study when taking antibiotics because the effects on the system are yet uncharacterized. A simulated urinary tract infection event, where an opportunistic, pathogenic organism, E. coli, was introduced to the HFMBs followed by dosing with an antibiotic, ciprofloxacin, was completed to study the effect of the antibiotic on reactor performance and to also examine the development of

  2. Workflow efficiency for the treatment planning process in CT-guided high-dose-rate brachytherapy for cervical cancer.

    PubMed

    Michaud, Anthony L; Benedict, Stanley; Montemayor, Eliseo; Hunt, Jon Paul; Wright, Cari; Mathai, Mathew; Mayadev, Jyoti S

    2016-01-01

    To investigate process efficiency, we present a prospective investigation of the treatment planning phase of image-guided brachytherapy (BT) for cervical cancer using a specific checklist. From October 2012 to January 2014, 76 BT procedures were consecutively performed. Prospective data on the CT-based treatment planning process was collected using a specific checklist which details the following steps: (1) dosimetry planning, (2) physician review start, (3) physician review time, (4) dosimetry processing, (5) physics review start, (6) physics review, and (7) procedural pause. Variables examined included the use of a pre-BT MRI, clinic duty conflicts, resident teaching, and the use of specific BT planners. Analysis was performed using descriptive statistics, t-test, and analysis of variance. Seventy-five prospectively gathered checklists comprised this analysis. The mean time for treatment planning was 95 minutes (med 94, std 18). The mean intervals in the above steps were (1) = 42, (2) = 5, (3) = 19, (4) = 10, (5) = 6, (6) = 13, and (7) = 26 minutes. There was no statistical difference in patients who had a pre-BT MRI. Resident teaching did not influence time, p = 0.17. Treatment planning time was decreased with a specific planner, p = 0.0015. A skillful team approach is required for treatment planning efficiency in image-guided BT. We have found that the specific BT planners can have a significant effect on the overall planning efficiency. We continue to examine clinical and workflow-related factors that will enhance our safety and workflow process with BT. Published by Elsevier Inc.

  3. SU-C-18C-06: Radiation Dose Reduction in Body Interventional Radiology: Clinical Results Utilizing a New Imaging Acquisition and Processing Platform

    SciTech Connect

    Kohlbrenner, R; Kolli, KP; Taylor, A; Kohi, M; Fidelman, N; LaBerge, J; Kerlan, R; Gould, R

    2014-06-01

    Purpose: To quantify the patient radiation dose reduction achieved during transarterial chemoembolization (TACE) procedures performed in a body interventional radiology suite equipped with the Philips Allura Clarity imaging acquisition and processing platform, compared to TACE procedures performed in the same suite equipped with the Philips Allura Xper platform. Methods: Total fluoroscopy time, cumulative dose area product, and cumulative air kerma were recorded for the first 25 TACE procedures performed to treat hepatocellular carcinoma (HCC) in a Philips body interventional radiology suite equipped with Philips Allura Clarity. The same data were collected for the prior 85 TACE procedures performed to treat HCC in the same suite equipped with Philips Allura Xper. Mean values from these cohorts were compared using two-tailed t tests. Results: Following installation of the Philips Allura Clarity platform, a 42.8% reduction in mean cumulative dose area product (3033.2 versus 1733.6 mGycm∧2, p < 0.0001) and a 31.2% reduction in mean cumulative air kerma (1445.4 versus 994.2 mGy, p < 0.001) was achieved compared to similar procedures performed in the same suite equipped with the Philips Allura Xper platform. Mean total fluoroscopy time was not significantly different between the two cohorts (1679.3 versus 1791.3 seconds, p = 0.41). Conclusion: This study demonstrates a significant patient radiation dose reduction during TACE procedures performed to treat HCC after a body interventional radiology suite was converted to the Philips Allura Clarity platform from the Philips Allura Xper platform. Future work will focus on evaluation of patient dose reduction in a larger cohort of patients across a broader range of procedures and in specific populations, including obese patients and pediatric patients, and comparison of image quality between the two platforms. Funding for this study was provided by Philips Healthcare, with 5% salary support provided to authors K. Pallav

  4. Calculation of the dose load during dismantling of large components in the process of decommissioning of nuclear installations

    SciTech Connect

    Hornacek, Martin; Necas, Vladimir; Bezak, Peter

    2013-07-01

    The paper is focused on the decommissioning process from the point of view of steam generator dismantling. A brief description of the steam generator (used in nuclear power plants with VVER 440 type reactor) and used computer code VISIPLAN 3D ALARA are given. The main part deals with the created model and dismantling strategy together with variable input parameters - decay time and decontamination. The obtained results - external exposure of workers and the influence of time and pre-dismantling decontamination - are studied. Also detailed analyses of every dismantling step considered are presented. (authors)

  5. Influence of process parameters on content uniformity of a low dose active pharmaceutical ingredient in a tablet formulation according to GMP.

    PubMed

    Muselík, Jan; Franc, Aleš; Doležel, Petr; Goněc, Roman; Krondlová, Anna; Lukášová, Ivana

    2014-09-01

    The article describes the development and production of tablets using direct compression of powder mixtures. The aim was to describe the impact of filler particle size and the time of lubricant addition during mixing on content uniformity according to the Good Manufacturing Practice (GMP) process validation requirements. Processes are regulated by complex directives, forcing the producers to validate, using sophisticated methods, the content uniformity of intermediates as well as final products. Cutting down of production time and material, shortening of analyses, and fast and reliable statistic evaluation of results can reduce the final price without affecting product quality. The manufacturing process of directly compressed tablets containing the low dose active pharmaceutical ingredient (API) warfarin, with content uniformity passing validation criteria, is used as a model example. Statistic methods have proved that the manufacturing process is reproducible. Methods suitable for elucidation of various properties of the final blend, e.g., measurement of electrostatic charge by Faraday pail and evaluation of mutual influences of researched variables by partial least square (PLS) regression, were used. Using these methods, it was proved that the filler with higher particle size increased the content uniformity of both blends and the ensuing tablets. Addition of the lubricant, magnesium stearate, during the blending process improved the content uniformity of blends containing the filler with larger particles. This seems to be caused by reduced sampling error due to the suppression of electrostatic charge.

  6. Effects of low doses of mifepristone on human embryo implantation process in a three-dimensional human endometrial in vitro co-culture system.

    PubMed

    Boggavarapu, N R; Berger, C; von Grothusen, C; Menezes, J; Gemzell-Danielsson, K; Lalitkumar, P G L

    2016-08-01

    We wanted to explore the effects of two different low doses (0.5μM and 0.05μM) of mifepristone, exposed during the receptive period, on the human embryo implantation process, using a well-established three-dimensional in vitro cell culture model, specifically developed to study this process. An in vitro three-dimensional cell culture model was constructed using human endometrial cells isolated from the endometrium of proven fertile women, collected on cycle day LH+4. After 5 days of culture, supernumerary human embryos were added and cultured for another 5 days with mifepristone 0.5μM (n=8) or 0.05μM (n=10) or vehicle as control (n=10). The cultures were checked for embryo attachment and terminated. We studied the expression of 16 reported endometrial receptivity markers in the endometrial constructs using real-time polymerase chain reaction. None of the embryos in 0.5μM of mifepristone attached to the endometrial constructs (p=.004), whereas 4 out of 10 in 0.05μM (p=.3698) and 7 out of 10 embryos in the control group attached to the cultures. We found that most of the studied receptivity markers were significantly altered with mifepristone exposure in a similar direction in both treatment groups. Only IL6 was significantly differentially expressed between the treatment groups (p=.017). We report for the first time that exposure to a low concentration (0.5μM) of mifepristone during the receptive period successfully inhibits human embryo implantation process in vitro. Further, we observed a dose-dependent effect of mifepristone on endometrial receptivity at the functional level. This study contributes new knowledge that low dose of mifepristone during the short period of receptive phase can inhibit endometrial receptivity, which further promotes mifepristone as a contraceptive agent. This could give women a treatment choice to avoid unwanted pregnancy with high efficacy and minimal side effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Pregnenolone sulfate enhances post-training memory processes when injected in very low doses into limbic system structures: the amygdala is by far the most sensitive.

    PubMed

    Flood, J F; Morley, J E; Roberts, E

    1995-11-07

    Immediate post-training, stereotactically guided, intraparenchymal administration of pregnenolone sulfate (PS) into the amygdala, septum, mammillary bodies, or caudate nucleus and of PS, dehydroepiandrosterone sulfate, and corticosterone into the hippocampus was performed in mice that had been weakly trained in a foot-shock active avoidance paradigm. Intrahippocampal injection of PS resulted in memory enhancement (ME) at a lower dose than was found with dehydroepiandrosterone sulfate and corticosterone. Intraamygdally administered PS was approximately 10(4) times more potent on a molar basis in producing ME than when PS was injected into the hippocampus and approximately 10(5) times more potent than when injected into the septum or mammillary bodies. ME did not occur on injection of PS into the caudate nucleus over the range of doses tested in the other brain structures. The finding that fewer than 150 molecules of PS significantly enhanced post-training memory processes when injected into the amygdala establishes PS as the most potent memory enhancer yet reported and the amygdala as the most sensitive brain region for ME by any substance yet tested.

  8. Pregnenolone sulfate enhances post-training memory processes when injected in very low doses into limbic system structures: the amygdala is by far the most sensitive.

    PubMed Central

    Flood, J F; Morley, J E; Roberts, E

    1995-01-01

    Immediate post-training, stereotactically guided, intraparenchymal administration of pregnenolone sulfate (PS) into the amygdala, septum, mammillary bodies, or caudate nucleus and of PS, dehydroepiandrosterone sulfate, and corticosterone into the hippocampus was performed in mice that had been weakly trained in a foot-shock active avoidance paradigm. Intrahippocampal injection of PS resulted in memory enhancement (ME) at a lower dose than was found with dehydroepiandrosterone sulfate and corticosterone. Intraamygdally administered PS was approximately 10(4) times more potent on a molar basis in producing ME than when PS was injected into the hippocampus and approximately 10(5) times more potent than when injected into the septum or mammillary bodies. ME did not occur on injection of PS into the caudate nucleus over the range of doses tested in the other brain structures. The finding that fewer than 150 molecules of PS significantly enhanced post-training memory processes when injected into the amygdala establishes PS as the most potent memory enhancer yet reported and the amygdala as the most sensitive brain region for ME by any substance yet tested. PMID:7479888

  9. Dose-dependent effects of polyphenolic extracts from green tea, blue-berried honeysuckle, and chokeberry on rat caecal fermentation processes.

    PubMed

    Frejnagel, Slawomir; Juskiewicz, Jerzy

    2011-06-01

    The physiological status of the colon or ceacum is known to be very important for the host organism. Therefore, the aim of this study was to estimate the influence of high doses of polyphenolic extracts from chokeberry (CH), blue-berried honeysuckle (H), and green tea (GT) on fermentation processes in the caecum and caecal parameters of rats fed casein diets. In a 4-week experiment, 35-day-old rats were fed diets containing 0.4, 0.8, and 1.2 % of pure polyphenols. The greatest weight of digesta was recorded in rats fed 1.2 % of GT extract, and these animals were also characterised by having the lowest content of dry matter. Supplementation of diets with the extracts of interest caused a reduction in pH values and ammonia concentrations in caecal digesta in comparison to control animals. The results of a two-way analysis of variance indicated dose-dependent (except for 0.4 % supplementation) inhibition of enzymatic activity compared to control animals. Introduction of CH and H extracts significantly reduced the activity of β-glucuronidase compared to rats fed tea diets. Two-way analysis of variance showed a significant decrease in volatile fatty acids concentration in rats fed diets supplemented with H and CH extracts in comparison to control and tea-fed rats. The obtained results showed that the extracts tested can distinctly influence caecal parameters and metabolism. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Effect of iron salt counter ion in dose-response curves for inactivation of Fusarium solani in water through solar driven Fenton-like processes

    NASA Astrophysics Data System (ADS)

    Aurioles-López, Verónica; Polo-López, M. Inmaculada; Fernández-Ibáñez, Pilar; López-Malo, Aurelio; Bandala, Erick R.

    2016-02-01

    The inactivation of Fusarium solani in water was assessed by solar driven Fenton-like processes using three different iron salts: ferric acetylacetonate (Fe(acac)3), ferric chloride (FeCl3) and ferrous sulfate (FeSO4). The experimental conditions tested were [Fe] ≈ 5 mg L-1, [H2O2] ≈ 10 mg L-1 and [Fe] ≈ 10 mg L-1; [H2O2] ≈ 20 mg L-1 mild and high, respectively, and pH 3.0 and 5.0, under solar radiation. The highest inactivation rates were observed at high reaction conditions for the three iron salts tested at pH 5.0 with less than 3.0 kJ L-1 of accumulate energy (QUV) to achieve over 99.9% of F. solani inactivation. Fe(acac)3 was the best iron salt to accomplishing F. solani inactivation. The modified Fermi equation was used to fix the experimental inactivation, data showed it was helpful for modeling the process, adequately describing dose-response curves. Inactivation process using FeSO4 at pH 3.0 was modeled fairly with r2 = 0.98 and 0.99 (mild and high concentration, respectively). Fe(acac)3, FeCl3 and FeSO4 at high concentration (i.e. [Fe] ≈ 10 mg L-1; [H2O2] ≈ 20 mg L-1) and pH 5.0 showed the highest fitting values (r2 = 0.99). Iron salt type showed a remarkable influence on the Fenton-like inactivation process.

  11. Non-clinical studies in the process of new drug development - Part II: Good laboratory practice, metabolism, pharmacokinetics, safety and dose translation to clinical studies.

    PubMed

    Andrade, E L; Bento, A F; Cavalli, J; Oliveira, S K; Schwanke, R C; Siqueira, J M; Freitas, C S; Marcon, R; Calixto, J B

    2016-12-12

    The process of drug development involves non-clinical and clinical studies. Non-clinical studies are conducted using different protocols including animal studies, which mostly follow the Good Laboratory Practice (GLP) regulations. During the early pre-clinical development process, also known as Go/No-Go decision, a drug candidate needs to pass through several steps, such as determination of drug availability (studies on pharmacokinetics), absorption, distribution, metabolism and elimination (ADME) and preliminary studies that aim to investigate the candidate safety including genotoxicity, mutagenicity, safety pharmacology and general toxicology. These preliminary studies generally do not need to comply with GLP regulations. These studies aim at investigating the drug safety to obtain the first information about its tolerability in different systems that are relevant for further decisions. There are, however, other studies that should be performed according to GLP standards and are mandatory for the safe exposure to humans, such as repeated dose toxicity, genotoxicity and safety pharmacology. These studies must be conducted before the Investigational New Drug (IND) application. The package of non-clinical studies should cover all information needed for the safe transposition of drugs from animals to humans, generally based on the non-observed adverse effect level (NOAEL) obtained from general toxicity studies. After IND approval, other GLP experiments for the evaluation of chronic toxicity, reproductive and developmental toxicity, carcinogenicity and genotoxicity, are carried out during the clinical phase of development. However, the necessity of performing such studies depends on the new drug clinical application purpose.

  12. Non-clinical studies in the process of new drug development - Part II: Good laboratory practice, metabolism, pharmacokinetics, safety and dose translation to clinical studies

    PubMed Central

    Andrade, E.L.; Bento, A.F.; Cavalli, J.; Oliveira, S.K.; Schwanke, R.C.; Siqueira, J.M.; Freitas, C.S.; Marcon, R.; Calixto, J.B.

    2016-01-01

    The process of drug development involves non-clinical and clinical studies. Non-clinical studies are conducted using different protocols including animal studies, which mostly follow the Good Laboratory Practice (GLP) regulations. During the early pre-clinical development process, also known as Go/No-Go decision, a drug candidate needs to pass through several steps, such as determination of drug availability (studies on pharmacokinetics), absorption, distribution, metabolism and elimination (ADME) and preliminary studies that aim to investigate the candidate safety including genotoxicity, mutagenicity, safety pharmacology and general toxicology. These preliminary studies generally do not need to comply with GLP regulations. These studies aim at investigating the drug safety to obtain the first information about its tolerability in different systems that are relevant for further decisions. There are, however, other studies that should be performed according to GLP standards and are mandatory for the safe exposure to humans, such as repeated dose toxicity, genotoxicity and safety pharmacology. These studies must be conducted before the Investigational New Drug (IND) application. The package of non-clinical studies should cover all information needed for the safe transposition of drugs from animals to humans, generally based on the non-observed adverse effect level (NOAEL) obtained from general toxicity studies. After IND approval, other GLP experiments for the evaluation of chronic toxicity, reproductive and developmental toxicity, carcinogenicity and genotoxicity, are carried out during the clinical phase of development. However, the necessity of performing such studies depends on the new drug clinical application purpose. PMID:27982281

  13. Development of enteric-coated fixed dose combinations of amorphous solid dispersions of ezetimibe and lovastatin: Investigation of formulation and process parameters.

    PubMed

    Riekes, Manoela K; Dereymaker, Aswin; Berben, Philippe; Augustijns, Patrick; Stulzer, Hellen K; Van den Mooter, Guy

    2017-03-30

    Enteric-coated fixed-dose combinations of ezetimibe and lovastatin were prepared by fluid bed coating aiming to avoid the acidic conversion of lovastatin to its hydroxyacid derivative. In a two-step process, sucrose beads were layered with a glass solution of ezetimibe, lovastatin and Soluplus(®), top-coated with an enteric layer. The impact of different bead size, enteric polymers (Eudragit L100(®) and Eudragit L100-55(®)) and coating time was investigated. Samples were evaluated by X-ray diffraction, scanning electron microscopy, laser diffraction and in vitro studies in 0.1M HCl and phosphate buffer pH 6.8. Results showed that smaller beads tend to agglomerate and release was jeopardized in acidic conditions, most likely due to irregular coating layer. Eudragit L100-55(®) required longer processing, but thinner coating layers provided lower drug release. Both polymers showed low drug release in acidic environment and fast release at pH 6.8. The off-line measurement of the coating thickness determined the ideal coating time as 15 and 30min for Eudragit L100-55(®) and Eudragit L100(®)-based samples, respectively. Both compounds were molecularly dispersed in Soluplus(®), and Eudragit L100(®) formulations showed concave pores on the surface, presenting higher drug release in acidic conditions. Stability studies after 6 months showed unaltered physical properties and drug release.

  14. Very-long-chain aldehydes promote in vitro prepenetration processes of Blumeria graminis in a dose- and chain length-dependent manner.

    PubMed

    Hansjakob, Anton; Bischof, Sebastian; Bringmann, Gerhard; Riederer, Markus; Hildebrandt, Ulrich

    2010-12-01

    Surface properties of aerial plant organs have been shown to affect the interaction of fungal plant pathogens and their hosts. Conidial germination and differentiation - the so-called prepenetration processes - of the barley powdery mildew fungus (Blumeria graminis f. sp. hordei) are known to be triggered by n-hexacosanal (C(26)-aldehyde), a minor constituent of barley leaf wax. In order to analyze the differentiation-inducing capabilities of typical aldehyde wax constituents on conidia of wheat and barley powdery mildew, synthetic even-numbered very-long-chain aldehydes (C(22)-C(30)) were assayed, applying an in vitro system based on Formvar(®)/n-hexacosane-coated glass slides. n-Hexacosanal was the most effective aldehyde tested. Germination and differentiation rates of powdery mildew conidia increased with increasing concentrations of very-long-chain aldehydes. Relative to n-hexacosanal, the other aldehyde compounds showed a gradual decrease in germination- and differentiation-inducing capabilities with both decreasing and increasing chain length. In addition to n-hexacosanal, several other ubiquitous very-long-chain aldehyde wax constituents were capable of effectively stimulating B. graminis prepenetration processes in a dose- and chain length-dependent manner. Other wax constituents, such as n-alkanes, primary alcohols (with the exception of n-hexacosanol), fatty acids and alkyl esters, did not affect fungal prepenetration. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).

  15. Processing method for forming dislocation-free SOI and other materials for semiconductor use

    DOEpatents

    Holland, Orin Wayne; Thomas, Darrell Keith; Zhou, Dashun

    1997-01-01

    A method for preparing a silicon-on-insulator material having a relatively defect-free Si overlayer involves the implanting of oxygen ions within a silicon body and the interruption of the oxygen-implanting step to implant Si ions within the silicon body. The implanting of the oxygen ions develops an oxide layer beneath the surface of the silicon body, and the Si ions introduced by the Si ion-implanting step relieves strain which is developed in the Si overlayer during the implanting step without the need for any intervening annealing step. By relieving the strain in this manner, the likelihood of the formation of strain-induced defects in the Si overlayer is reduced. In addition, the method can be carried out at lower processing temperatures than have heretofore been used with SIMOX processes of the prior art. The principles of the invention can also be used to relieve negative strain which has been induced in a silicon body of relatively ordered lattice structure.

  16. Acute, low-dose methamphetamine administration improves attention/information processing speed and working memory in methamphetamine-dependent individuals displaying poorer cognitive performance at baseline.

    PubMed

    Mahoney, James J; Jackson, Brian J; Kalechstein, Ari D; De La Garza, Richard; Newton, Thomas F

    2011-03-30

    Abstinent methamphetamine (Meth) dependent individuals demonstrate poorer performance on tests sensitive to attention/information processing speed, learning and memory, and working memory when compared to non-Meth dependent individuals. The poorer performance on these tests may contribute to the morbidity associated with Meth-dependence. In light of this, we sought to determine the effects of acute, low-dose Meth administration on attention, working memory, and verbal learning and memory in 19 non-treatment seeking, Meth-dependent individuals. Participants were predominantly male (89%), Caucasian (63%), and cigarette smokers (63%). Following a four day, drug-free washout period, participants were given a single-blind intravenous infusion of saline, followed the next day by 30 mg of Meth. A battery of neurocognitive tasks was administered before and after each infusion, and performance on measures of accuracy and reaction time were compared between conditions. While acute Meth exposure did not affect test performance for the entire sample, participants who demonstrated relatively poor performance on these tests at baseline, identified using a median split on each test, showed significant improvement on measures of attention/information processing speed and working memory when administered Meth. Improved performance was seen on the following measures of working memory: choice reaction time task (p≤0.04), a 1-back task (p≤0.01), and a 2-back task (p≤0.04). In addition, those participants demonstrating high neurocognitive performance at baseline experienced similar or decreased performance following Meth exposure. These findings suggest that acute administration of Meth may temporarily improve Meth-associated neurocognitive performance in those individuals experiencing lower cognitive performance at baseline. As a result, stimulants may serve as a successful treatment for improving cognitive functioning in those Meth-dependent individuals experiencing

  17. Process evaluation for a school-based physical activity intervention for 6th- and 7th-grade boys: reach, dose, and fidelity.

    PubMed

    Robbins, Lorraine B; Pfeiffer, Karin Allor; Wesolek, Stacey M; Lo, Yun-Jia

    2014-02-01

    The purpose was to evaluate the reach, dose, and fidelity of Guys Only Activity for Life (G.O.A.L.), a 7-week pilot intervention conducted from February to March 2011 to increase 6th and 7th grade boys' moderate-to-vigorous physical activity (MVPA). One middle school was randomly assigned to the G.O.A.L. intervention and another from the same urban school district in the Midwestern U.S. to a comparison condition. Thirty boys, ages 10-14 years, participated in each school. The intervention, guided by the Health Promotion Model (HPM) and Self-Determination Theory (SDT), consisted of a 90-min after-school physical activity club 4 days/week and one motivational interviewing session with a registered (school) nurse. Data were gathered via attendance records, club observations, heart rate monitors, audio-taping of motivational interviewing sessions, and surveys. On average boys attended the club 2.11 days/week (SD=.86). A trained independent process evaluator reported that the physical activity club instructors provided the boys with the opportunity for a mean of 25.8 min/day of MVPA. Using a four-point Likert scale (1=disagree a lot; 4=agree a lot), the process evaluator perceived that the club was delivered with high fidelity and adherence to the underlying theories (M=3.48; SD=0.39). Sessions with the nurse lasted an average of 13 min, 29 s. All boys attended. Two trained independent coders indicated that the nurse demonstrated at least beginning proficiency for all tasks associated with motivational interviewing, with the exception of using sufficient open- as opposed to closed-ended questions and reflections compared to questions. Fidelity related to session delivery and adherence to the theories was high (M=3.83; SD=0.19). The process evaluation data indicated that strategies are needed to increase attendance and boys' MVPA during the club time. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Factors associated with the rapid implementation process of the fixed-dose combination RHZE tuberculosis regimen in brazil: an ecological study

    PubMed Central

    2013-01-01

    Background The Brazilian National Tuberculosis Control Program (NTCP) recommended the fixed-dose four-drug combination (FDC-RHZE) regimen to treat new tuberculosis cases in December 2009, expecting to increase adherence and avoid resistance. We evaluated factors associated with the speed of the new regimen implementation process in this continent-sized country. Methods We conducted an ecological study based on the Brazilian Case Notification Database (SINAN) having the Brazilian municipalities as the analytical unit. Municipalities with at least one case reported from December 2009 to March 2011 were considered eligible. The association of rapid (≤ 3 months) implementation of the new regimen with demographic, epidemiological and operational health service characteristics, such as compliance with NTCP recommendations (supervised treatment, bacteriological confirmation of the diagnosis and monthly bacteriological monitoring), was analyzed. We used the adjusted odds ratios (OR) and their 95% confidence interval (CI) to assess the association of independent variables with the outcome in a multiple logistic regression model. Results Rapid implementation of the new regimen in municipalities was associated with small populations (OR=25.5, 95% CI= 19.1-34.1), low population density (OR=2.3, 95% CI= 1.9–2.9), low tuberculosis incidence rates (OR=8.8, 95% CI= 6.7–11.4) and good compliance with other NTCP recommendations. Conclusions We showed that SINAN secondary data analysis is feasible and useful to learn lessons from. Municipalities with high tuberculosis burden and large populations need special attention for implementing new recommendations. This is particularly important considering the Global Alliance pipeline for new tuberculosis treatment regimens. PMID:23570579

  19. Kinetic Modeling Reveals the Roles of Reactive Oxygen Species Scavenging and DNA Repair Processes in Shaping the Dose-Response Curve of KBrO3-Induced DNA Damage

    PubMed Central

    Spassova, Maria A.; Miller, David J.; Nikolov, Alexander S.

    2015-01-01

    We have developed a kinetic model to investigate how DNA repair processes and scavengers of reactive oxygen species (ROS) can affect the dose-response shape of prooxidant induced DNA damage. We used as an example chemical KBrO3 which is activated by glutathione and forms reactive intermediates that directly interact with DNA to form 8-hydroxy-2-deoxyguanosine DNA adducts (8-OH-dG). The single strand breaks (SSB) that can result from failed base excision repair of these adducts were considered as an effect downstream from 8-OH-dG. We previously demonstrated that, in the presence of effective base excision repair, 8-OH-dG can exhibit threshold-like dose-response dependence, while the downstream SSB can still exhibit a linear dose-response. Here we demonstrate that this result holds for a variety of conditions, including low levels of GSH, the presence of additional SSB repair mechanisms, or a scavenger. It has been shown that melatonin, a terminal scavenger, inhibits KBrO3-caused oxidative damage. Our modeling revealed that sustained exposure to KBrO3 can lead to fast scavenger exhaustion, in which case the dose-response shapes for both endpoints are not substantially affected. The results are important to consider when forming conclusions on a chemical's toxicity dose dependence based on the dose-response of early genotoxic events. PMID:26448819

  20. Iodine-131 Releases from Radioactive Lanthanum Processing at the X-10 Site in Oak Ridge, Tennessee (1944-1956)- An Assessment of Quantities released, Off-Site Radiation Doses, and Potential Excess Risks of Thyroid Cancer, Volume 1

    SciTech Connect

    Apostoaei, A.I.; Burns, R.E.; Hoffman, F.O.; Ijaz, T.; Lewis, C.J.; Nair, S.K.; Widner, T.E.

    1999-07-01

    In the early 1990s, concern about the Oak Ridge Reservation's past releases of contaminants to the environment prompted Tennessee's public health officials to pursue an in-depth study of potential off-site health effects at Oak Ridge. This study, the Oak Ridge dose reconstruction, was supported by an agreement between the U.S. Department of Energy (DOE) and the State of Tennessee, and was overseen by a 12-member panel appointed by Tennessee's Commissioner of Health. One of the major contaminants studied in the dose reconstruction was radioactive iodine, which was released to the air by X-10 (now called Oak Ridge National Laboratory) as it processed spent nuclear reactor fuel from 1944 through 1956. The process recovered radioactive lanthanum for use in weapons development. Iodine concentrates in the thyroid gland so health concerns include various diseases of the thyroid, such as thyroid cancer. The large report, ''Iodine-131 Releases from Radioactive Lanthanum Processing at the X-10 Site in Oak Ridge, Tennessee (1944-1956) - An Assessment of Quantities Released, Off-site Radiation Doses, and Potential Excess Risks of Thyroid Cancer,'' is in two volumes. Volume 1 is the main body of the report, and Volume 1A, which has the same title, consists of 22 supporting appendices. Together, these reports serve the following purposes: (1) describe the methodologies used to estimate the amount of iodine-131 (I-131) released; (2) evaluate I-131's pathway from air to vegetation to food to humans; (3) estimate doses received by human thyroids; (4) estimate excess risk of acquiring a thyroid cancer during ones lifetime; and (5) provide equations, examples of historical documents used, and tables of calculated values. Results indicate that females born in 1952 who consumed milk from a goat pastured a few miles east of X-10 received the highest doses from I-131 and would have had the highest risks of contracting thyroid cancer. Doses from cow's milk are considerably less . Detailed

  1. [The effect of steroid hormone doses after ovariectomy on the peripheral hormone processes and uterine development in gilts. 2. Effects on gilts during early pregnancy].

    PubMed

    Lampe, B; Schneider, F; Brüssow, K P; Blödow, G; Wollenhaupt, K; Spitschak, K; Hühn, U

    1990-01-01

    Experimental studies were conducted into ovariectomized pregnant gilts to establish effects of exogenic hormone administration, with endogenic ovarian steroids excluded, upon uterus and fetus development as well as on hormone levels in blood plasma, endometrium, and allantoic fluid. Hormone concentrations in blood plasma were found to depend clearly on hormone doses applied after ovariectomy to preserve pregnancy. 2 to 3 weeks of smooth gravidity, following ovariectomy, were ensured on the 6th or 14th day after KB1 by daily application of very low doses of progesterone only (80 mg) or in combination with estrogens, the ratio being 480:1.

  2. Utirik Atoll Dose Assessment

    SciTech Connect

    Robison, W.L.; Conrado, C.L.; Bogen, K.T

    1999-10-06

    radionuclides. However, we continually see {sup 137}Cs in the groundwater at all contaminated atolls; the turnover time of the groundwater is about 5 y. The {sup 137}Cs can only get to the groundwater by leaching through the soil column when a portion of the soluble fraction of {sup 137}Cs inventory in the soil is transported to the groundwater when rainfall is heavy enough to cause recharge of the aquifer. This process is causing a loss of {sup 137}Cs out of the root zone of the plants that provides an environmental loss constant ({lambda}{sub env}) in addition to radiological decay {lambda}{sub rad}. Consequently, there is an effective rate of loss, {lambda}{sub eff} = {lambda}{sub rad} + {lambda}{sub env} that is the sum of the radiological and environmental-loss decay constants. We have had, and continue to have, a vigorous program to determine the rate of the environmental loss process. What we do know at this time is that the loss of {sup 137}Cs over time is greater than the estimate based on radiological decay only, and that the actual dose received by the Utirik people over 30-, 50-, or 70-y will be less than those presented in this report.

  3. Behavioural effect of low-dose BPA on male zebrafish: Tuning of male mating competition and female mating preference during courtship process.

    PubMed

    Li, Xiang; Guo, Jia-Yu; Li, Xu; Zhou, Hai-Jun; Zhang, Shu-Hui; Liu, Xiao-Dong; Chen, Dong-Yan; Fang, Yong-Chun; Feng, Xi-Zeng

    2017-02-01

    The ubiquity of environmental pollution by endocrine disrupting chemicals (EDCs) such as bisphenol A (BPA) is progressively considered as a major threat to aquatic ecosystems worldwide. Numerous toxicological studies have proved that BPA are hazardous to aquatic environment, along with alterations in the development and physiology of aquatic vertebrates. However, generally, there is a paucity in knowledge of behavioural and physiological effects of BPA with low concentration, for example, 0.22 nM (50 ng/L) and 2.2 nM (500 ng/L). Here we show that treatment of adult male zebrafish (Danio rerio) with 7 weeks low-dose (0.22 nM-2.2 nM) BPA, resulted in alteration in histological structure of testis tissue and abnormality in expression levels of genes involved in testicular steroidogenesis. Furthermore, low-dose BPA treatment decreased the male locomotion during courtship; and was associated with less courtship behaviours to female but more aggressive behaviours to mating competitor. Interestingly, during the courtship test, we observed that female preferred control male to male under low-dose BPA exposure. Subsequently, we found that the ability of female to chose optimal mating male through socially mutual interaction and dynamics of male zebrafish, which was based on visual discrimination. In sum, our results shed light on the potential behavioural and physiological effect of low-dose BPA exposure on courtship behaviours of zebrafish, which could exert profound consequences on natural zebrafish populations.

  4. Blood phenylalanine concentrations in patients with PAH-deficient hyperphenylalaninaemia off diet without and with three different single oral doses of tetrahydrobiopterin: assessing responsiveness in a model of statistical process control.

    PubMed

    Lindner, M; Gramer, G; Garbade, S F; Burgard, P

    2009-08-01

    Tetrahydrobiopterin (BH(4)) cofactor loading is a standard procedure to differentiate defects of BH(4) metabolism from phenylalanine hydroxylase (PAH) deficiency. BH(4) responsiveness also exists in PAH-deficient patients with high residual PAH activity. Unexpectedly, single cases with presumed nil residual PAH activity have been reported to be BH(4) responsive, too. BH(4) responsiveness has been defined either by a >or=30% reduction of blood Phe concentration after a single BH(4) dose or by a decline greater than the individual circadian Phe level variation. Since both methods have methodological disadvantages, we present a model of statistical process control (SPC) to assess BH(4) responsiveness. Phe levels in 17 adult PKU patients of three phenotypic groups off diet were compared without and with three different single oral dosages of BH(4) applied in a double-blind randomized cross-over design. Results are compared for >or=30% reduction and SPC. The effect of BH(4) by >or=30% reduction was significant for groups (p < 0.01) but not for dose (p = 0.064), with no interaction of group with dose (p = 0.24). SPC revealed significant effects for group (p < 0.01) and the interaction for group with dose (p < 0.05) but not for dose alone (p = 0.87). After one or more loadings, seven patients would be judged to be BH(4) responsive either by the 30% criterion or by the SPC model, but only three by both. Results for patients with identical PAH genotype were not very consistent within (for different BH(4) doses) and between the two models. We conclude that a comparison of protein loadings without and with BH(4) combined with a standardized procedure for data analysis and decision would increase the reliability of diagnostic results.

  5. A dose error evaluation study for 4D dose calculations

    NASA Astrophysics Data System (ADS)

    Milz, Stefan; Wilkens, Jan J.; Ullrich, Wolfgang

    2014-10-01

    Previous studies have shown that respiration induced motion is not negligible for Stereotactic Body Radiation Therapy. The intrafractional breathing induced motion influences the delivered dose distribution on the underlying patient geometry such as the lung or the abdomen. If a static geometry is used, a planning process for these indications does not represent the entire dynamic process. The quality of a full 4D dose calculation approach depends on the dose coordinate transformation process between deformable geometries. This article provides an evaluation study that introduces an advanced method to verify the quality of numerical dose transformation generated by four different algorithms. The used transformation metric value is based on the deviation of the dose mass histogram (DMH) and the mean dose throughout dose transformation. The study compares the results of four algorithms. In general, two elementary approaches are used: dose mapping and energy transformation. Dose interpolation (DIM) and an advanced concept, so called divergent dose mapping model (dDMM), are used for dose mapping. The algorithms are compared to the basic energy transformation model (bETM) and the energy mass congruent mapping (EMCM). For evaluation 900 small sample regions of interest (ROI) are generated inside an exemplary lung geometry (4DCT). A homogeneous fluence distribution is assumed for dose calculation inside the ROIs. The dose transformations are performed with the four different algorithms. The study investigates the DMH-metric and the mean dose metric for different scenarios (voxel sizes: 8 mm, 4 mm, 2 mm, 1 mm 9 different breathing phases). dDMM achieves the best transformation accuracy in all measured test cases with 3-5% lower errors than the other models. The results of dDMM are reasonable and most efficient in this study, although the model is simple and easy to implement. The EMCM model also achieved suitable results, but the approach requires a more complex

  6. Chemical Dosing and First-Order Kinetics

    ERIC Educational Resources Information Center

    Hladky, Paul W.

    2011-01-01

    College students encounter a variety of first-order phenomena in their mathematics and science courses. Introductory chemistry textbooks that discuss first-order processes, usually in conjunction with chemical kinetics or radioactive decay, stop at single, discrete dose events. Although single-dose situations are important, multiple-dose events,…

  7. Chemical Dosing and First-Order Kinetics

    ERIC Educational Resources Information Center

    Hladky, Paul W.

    2011-01-01

    College students encounter a variety of first-order phenomena in their mathematics and science courses. Introductory chemistry textbooks that discuss first-order processes, usually in conjunction with chemical kinetics or radioactive decay, stop at single, discrete dose events. Although single-dose situations are important, multiple-dose events,…

  8. Radiological assessment of water treatment processes in a water treatment plant in Saudi Arabia: Water and sludge radium content, radon air concentrations and dose rates.

    PubMed

    Al-Jaseem, Q Kh; Almasoud, Fahad I; Ababneh, Anas M; Al-Hobaib, A S

    2016-09-01

    There is an increase demand for clean water sources in Saudi Arabia and, yet, renewable water resources are very limited. This has forced the authorities to explore deep groundwater which is known to contain large concentrations of radionuclides, mainly radium isotopes. Lately, there has been an increase in the number of water treatment plants (WTPs) around the country. In this study, a radiological assessment of a WTP in Saudi Arabia was performed. Raw water was found to have total radium activity of 0.23Bq/L, which exceeds the international limit of 0.185Bq/L (5pCi/L). The WTP investigated uses three stages of treatment: flocculation/sedimentation, sand filtration and reverse osmosis. The radium removal efficiency was evaluated for each stage and the respective values were 33%, 22% and 98%. Moreover, the activity of radium in the solid waste generated from the WTP in the sedimentation and sand filtrations stages were measured and found to be 4490 and 6750Bq/kg, respectively, which exceed the national limit of 1000Bq/kg for radioactive waste. A radiological assessment of the air inside the WTP was also performed by measuring the radon concentrations and dose rates and were found in the ranges of 2-18Bq/m(3) and 70-1000nSv/h, respectively. The annual effective dose was calculated and the average values was found to be 0.3mSv which is below the 1mSv limit. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Bryostatin-1 vs. TPPB: dose-dependent APP processing and PKC-α, -δ, and -ε isoform activation in SH-SY5Y neuronal cells.

    PubMed

    Yi, P; Schrott, L; Castor, T P; Alexander, J S

    2012-09-01

    Activation of the α-secretase processing pathway of amyloid precursor protein (APP) is recognized as an important mechanism which diverts APP processing from production of beta-amyloid (Aβ) to non toxic sAPPα, decreasing Alzheimer's disease (AD) plaque formation and AD-associated cognitive deficits. Two potent classes of PKC modulators can activate the α-secretase pathway, the benzo/indolactams and bryostatin/bryologues. While both modulate PKC-dependent APP processing, no direct comparisons of their relative pharmacological potencies have been accomplished which could assist in the development of AD therapies. In this study, we measured the activation of α-secretase APP processing and PKC-α, -δ, and -ε induced by the benzolactam-APP modulator TPPB and bryostatin-1 in the neuroblastoma cell line SH-SY5Y which expresses APP and α- and β-secretase processing mechanisms. Bryostatin-1 produced a more rapid, potent, and sustained activation of α-secretase APP processing than TPPB and selectively activated PKC-δ and PKC-ε. Although TPPB also activated α-secretase, its potency was approximately 10- to 100-fold lower, possibly reflecting lower PKC-δ and -ε activation. Because bryostatin-1 is a highly potent PKC-δ and -ε activator which activates α-secretase APP processing, further characterization of bryostatin-1/bryologues may help refine their use as important tools for the clinical management of AD.

  10. Acoustic dose and acoustic dose-rate.

    PubMed

    Duck, Francis

    2009-10-01

    Acoustic dose is defined as the energy deposited by absorption of an acoustic wave per unit mass of the medium supporting the wave. Expressions for acoustic dose and acoustic dose-rate are given for plane-wave conditions, including temporal and frequency dependencies of energy deposition. The relationship between the acoustic dose-rate and the resulting temperature increase is explored, as is the relationship between acoustic dose-rate and radiation force. Energy transfer from the wave to the medium by means of acoustic cavitation is considered, and an approach is proposed in principle that could allow cavitation to be included within the proposed definitions of acoustic dose and acoustic dose-rate.

  11. Absorbed Dose and Dose Equivalent Calculations for Modeling Effective Dose

    NASA Technical Reports Server (NTRS)

    Welton, Andrew; Lee, Kerry

    2010-01-01

    While in orbit, Astronauts are exposed to a much higher dose of ionizing radiation than when on the ground. It is important to model how shielding designs on spacecraft reduce radiation effective dose pre-flight, and determine whether or not a danger to humans is presented. However, in order to calculate effective dose, dose equivalent calculations are needed. Dose equivalent takes into account an absorbed dose of radiation and the biological effectiveness of ionizing radiation. This is important in preventing long-term, stochastic radiation effects in humans spending time in space. Monte carlo simulations run with the particle transport code FLUKA, give absorbed and equivalent dose data for relevant shielding. The shielding geometry used in the dose calculations is a layered slab design, consisting of aluminum, polyethylene, and water. Water is used to simulate the soft tissues that compose the human body. The results obtained will provide information on how the shielding performs with many thicknesses of each material in the slab. This allows them to be directly applicable to modern spacecraft shielding geometries.

  12. BENCHMARK DOSE TECHNICAL GUIDANCE DOCUMENT ...

    EPA Pesticide Factsheets

    The U.S. EPA conducts risk assessments for an array of health effects that may result from exposure to environmental agents, and that require an analysis of the relationship between exposure and health-related outcomes. The dose-response assessment is essentially a two-step process, the first being the definition of a point of departure (POD), and the second extrapolation from the POD to low environmentally-relevant exposure levels. The benchmark dose (BMD) approach provides a more quantitative alternative to the first step in the dose-response assessment than the current NOAEL/LOAEL process for noncancer health effects, and is similar to that for determining the POD proposed for cancer endpoints. As the Agency moves toward harmonization of approaches for human health risk assessment, the dichotomy between cancer and noncancer health effects is being replaced by consideration of mode of action and whether the effects of concern are likely to be linear or nonlinear at low doses. Thus, the purpose of this project is to provide guidance for the Agency and the outside community on the application of the BMD approach in determining the POD for all types of health effects data, whether a linear or nonlinear low dose extrapolation is used. A guidance document is being developed under the auspices of EPA's Risk Assessment Forum. The purpose of this project is to provide guidance for the Agency and the outside community on the application of the benchmark dose (BMD) appr

  13. Weldon Spring historical dose estimate

    SciTech Connect

    Meshkov, N.; Benioff, P.; Wang, J.; Yuan, Y.

    1986-07-01

    This study was conducted to determine the estimated radiation doses that individuals in five nearby population groups and the general population in the surrounding area may have received as a consequence of activities at a uranium processing plant in Weldon Spring, Missouri. The study is retrospective and encompasses plant operations (1957-1966), cleanup (1967-1969), and maintenance (1969-1982). The dose estimates for members of the nearby population groups are as follows. Of the three periods considered, the largest doses to the general population in the surrounding area would have occurred during the plant operations period (1957-1966). Dose estimates for the cleanup (1967-1969) and maintenance (1969-1982) periods are negligible in comparison. Based on the monitoring data, if there was a person residing continually in a dwelling 1.2 km (0.75 mi) north of the plant, this person is estimated to have received an average of about 96 mrem/yr (ranging from 50 to 160 mrem/yr) above background during plant operations, whereas the dose to a nearby resident during later years is estimated to have been about 0.4 mrem/yr during cleanup and about 0.2 mrem/yr during the maintenance period. These values may be compared with the background dose in Missouri of 120 mrem/yr.

  14. Development, validation and transfer of a near infrared method to determine in-line the end point of a fluidised drying process for commercial production batches of an approved oral solid dose pharmaceutical product.

    PubMed

    Peinado, Antonio; Hammond, Jonathan; Scott, Andrew

    2011-01-05

    Pharmaceutical companies are progressively adopting and introducing the principles of Quality by Design with the main purpose of assurance and built-in quality throughout the whole manufacturing process. Within this framework, a Partial Least Square (PLS) model, based on Near Infrared (NIR) spectra and humidity determinations, was built in order to determine in-line the drying end point of a fluidized bed process. The in-process method was successfully validated following the principles described within The International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use - ICH Q2 (r1) - Validation of Analytical Procedures: Text and Methodology. However, in some aspects, the cited guidelines were not appropriate to in-process methods developed and validated exclusively with in-line samples and implemented in dynamic systems, such as drying processes. In this work, a customized interpretation of guidelines has been adopted which provided the framework of evidence to support a validated application. The application has been submitted to the United States Food and Drug Administration (FDA) and The European Medicines Agency (EMA) during applications for grant of licences. Representatives from these Regulatory Authorities have specifically reviewed this novel application during on-site inspections, and have subsequently approved both the product and this application. Currently, the NIR method is implemented as a primary in-line method to control the drying end point in real-time (to below a control limit of not greater than 1.2% w/w) for commercial production batches of an approved, solid, oral-dose medicine. The implementation of this in-process method allows real-time control with benefits including a reduction in operation time and labour; sample handling and waste generation; and a reduced risk to product quality in further unit operations due to improved consistency of intermediate output at this stage. To date

  15. Aged Lewis rats exposed to low and moderate doses of rotenone are a good model for studying the process of protein aggregation and its effects upon central nervous system cell physiology.

    PubMed

    Almeida, Michael F; Silva, Carolliny M; D'Unhao, Aline M; Ferrari, Merari F R

    2016-09-01

    Cell physiology is impaired before protein aggregation and this may be more relevant than inclusions themselves for neurodegeneration. The present study aimed to characterize an animal model to enable the analysis of the cell biology before and after protein aggregation. Ten-month-old Lewis rats were exposed either to 1 or 2 mg/kg/day of rotenone, delivered subcutaneously through mini-pumps, for one month. Hyperphosphorylated TAU, alpha-synuclein, amyloid-beta peptide and protein carbonylation (indicative of oxidative stress) were evaluated in the hippocampus, substantia nigra and locus coeruleus through immunohistochemistry or western blot. It was found that 2 mg/kg/day rotenone increased amyloid-beta peptide, hyperphosphorylation of TAU and alpha-synuclein. Rotenone at 1mg/kg/day did not alter protein levels. Protein carbonylation remained unchanged. This study demonstrated that aged Lewis rats exposed to a low dose of rotenone is a useful model to study cellular processes before protein aggregation, while the higher dose makes a good model to study the effects of protein inclusions.

  16. Dose optimization tool

    NASA Astrophysics Data System (ADS)

    Amir, Ornit; Braunstein, David; Altman, Ami

    2003-05-01

    A dose optimization tool for CT scanners is presented using patient raw data to calculate noise. The tool uses a single patient image which is modified for various lower doses. Dose optimization is carried out without extra measurements by interactively visualizing the dose-induced changes in this image. This tool can be used either off line, on existing image(s) or, as a pre - requisite for dose optimization for the specific patient, during the patient clinical study. The algorithm of low-dose simulation consists of reconstruction of two images from a single measurement and uses those images to create the various lower dose images. This algorithm enables fast simulation of various low dose (mAs) images on a real patient image.

  17. The use of multiple oxygen implants for fabrication of bipolar silicon-on-insulator integrated circuits

    NASA Astrophysics Data System (ADS)

    Platteter, Dale G.; Cheek, Tom F., Jr.

    1988-12-01

    A description is given of the radiation improvements obtained by fabricating bipolar integrated circuits on oxygen-implanted silicon-on-insulator substrates that were manufactured with multiple (low-dose) implants. Bipolar 74ALSOO gates fabricated on these substrates showed an improvement in total dose and dose-rate radiation response over identical circuits fabricated in bulk silicon. Defects in SIMOX material were reduced by over four orders of magnitude. The results demonstrate that bipolar devices, fabricated on multiple-implant SIMOX substrates, can compete with conventional dielectric isolation for many radiation-hardened system applications.

  18. A new method for the continuous production of single dosed controlled release matrix systems based on hot-melt extruded starch: analysis of relevant process parameters and implementation of an in-process control.

    PubMed

    Kipping, Thomas; Rein, Hubert

    2013-05-01

    In the present study, we evaluated a novel processing technique for the continuous production of hot-melt extruded controlled release matrix systems. A cutting technique derived from plastics industry, where it is widely used for cutting of cables and wires was adapted into the production line. Extruded strands were shaped by a rotary fly cutter. Special focus is laid on the development of a process analytical technology by evaluating signals obtained from the servo control of the rotary fly cutter. The intention is to provide a better insight into the production process and to offer the ability to detect small variations in process-variables. A co-rotating twin-screw extruder ZSE 27 HP-PH from Leistritz (Nürnberg, Germany) was used to plasticize the starch; critical extrusion parameters were recorded. Still elastic strands were shaped by a rotary fly-cutter type Dynamat 20 from Metzner (Neu-Ulm, Germany). Properties of the final products were analyzed via digital image analysis to point out critical parameters influencing the quality. Important aspects were uniformity of diameter, height, roundness, weight, and variations in the cutting angle. Stability of the products was measured by friability tests and by determining the crushing strength of the final products. Drug loading studies up to 70% were performed to evaluate the capacity of the matrix and to prove the technological feasibility. Changes in viscosities during API addition were analyzed by a Haake Minilab capillary rheometer. X-ray studies were performed to investigate molecular structures of the matrices. External shapes of the products were highly affected by die-swelling of the melt. Reliable reproducibility concerning uniformity of mass could be achieved even for high production rates (>2500cuts/min). Both mechanical strength and die-swelling of the products could be linked to the ratio of amylose to amylopectin. Formulations containing up to 70% of API could still be processed. Viscosity

  19. AGING FACILITY WORKER DOSE ASSESSMENT

    SciTech Connect

    R.L. Thacker

    2005-03-24

    The purpose of this calculation is to estimate radiation doses received by personnel working in the Aging Facility performing operations to transfer aging casks to the aging pads for thermal and logistical management, stage empty aging casks, and retrieve aging casks from the aging pads for further processing in other site facilities. Doses received by workers due to aging cask surveillance and maintenance operations are also included. The specific scope of work contained in this calculation covers both collective doses and individual worker group doses on an annual basis, and includes the contributions due to external and internal radiation from normal operation. There are no Category 1 event sequences associated with the Aging Facility (BSC 2004 [DIRS 167268], Section 7.2.1). The results of this calculation will be used to support the design of the Aging Facility and to provide occupational dose estimates for the License Application. The calculations contained in this document were developed by Environmental and Nuclear Engineering of the Design and Engineering Organization and are intended solely for the use of the Design and Engineering Organization in its work regarding facility operation. Yucca Mountain Project personnel from the Environmental and Nuclear Engineering should be consulted before use of the calculations for purposes other than those stated herein or use by individuals other than authorized personnel in Environmental and Nuclear Engineering.

  20. A CONCEPTUAL FRAMEWORK FOR MANAGING RADIATION DOSE TO PATIENTS IN DIAGNOSTIC RADIOLOGY USING REFERENCE DOSE LEVELS.

    PubMed

    Almén, Anja; Båth, Magnus

    2016-06-01

    The overall aim of the present work was to develop a conceptual framework for managing radiation dose in diagnostic radiology with the intention to support optimisation. An optimisation process was first derived. The framework for managing radiation dose, based on the derived optimisation process, was then outlined. The outset of the optimisation process is four stages: providing equipment, establishing methodology, performing examinations and ensuring quality. The optimisation process comprises a series of activities and actions at these stages. The current system of diagnostic reference levels is an activity in the last stage, ensuring quality. The system becomes a reactive activity only to a certain extent engaging the core activity in the radiology department, performing examinations. Three reference dose levels-possible, expected and established-were assigned to the three stages in the optimisation process, excluding ensuring quality. A reasonably achievable dose range is also derived, indicating an acceptable deviation from the established dose level. A reasonable radiation dose for a single patient is within this range. The suggested framework for managing radiation dose should be regarded as one part of the optimisation process. The optimisation process constitutes a variety of complementary activities, where managing radiation dose is only one part. This emphasises the need to take a holistic approach integrating the optimisation process in different clinical activities.

  1. An investigation into the effects of excipient particle size, blending techniques and processing parameters on the homogeneity and content uniformity of a blend containing low-dose model drug

    PubMed Central

    Alyami, Hamad; Dahmash, Eman; Bowen, James

    2017-01-01

    Powder blend homogeneity is a critical attribute in formulation development of low dose and potent active pharmaceutical ingredients (API) yet a complex process with multiple contributing factors. Excipient characteristics play key role in efficient blending process and final product quality. In this work the effect of excipient type and properties, blending technique and processing time on content uniformity was investigated. Powder characteristics for three commonly used excipients (starch, pregelatinised starch and microcrystalline cellulose) were initially explored using laser diffraction particle size analyser, angle of repose for flowability, followed by thorough evaluations of surface topography employing scanning electron microscopy and interferometry. Blend homogeneity was evaluated based on content uniformity analysis of the model API, ergocalciferol, using a validated analytical technique. Flowability of powders were directly related to particle size and shape, while surface topography results revealed the relationship between surface roughness and ability of excipient with high surface roughness to lodge fine API particles within surface groves resulting in superior uniformity of content. Of the two blending techniques, geometric blending confirmed the ability to produce homogeneous blends at low dilution when processed for longer durations, whereas manual ordered blending failed to achieve compendial requirement for content uniformity despite mixing for 32 minutes. Employing the novel dry powder hybrid mixer device, developed at Aston University laboratory, results revealed the superiority of the device and enabled the production of homogenous blend irrespective of excipient type and particle size. Lower dilutions of the API (1% and 0.5% w/w) were examined using non-sieved excipients and the dry powder hybrid mixing device enabled the development of successful blends within compendial requirements and low relative standard deviation. PMID:28609454

  2. An investigation into the effects of excipient particle size, blending techniques and processing parameters on the homogeneity and content uniformity of a blend containing low-dose model drug.

    PubMed

    Alyami, Hamad; Dahmash, Eman; Bowen, James; Mohammed, Afzal R

    2017-01-01

    Powder blend homogeneity is a critical attribute in formulation development of low dose and potent active pharmaceutical ingredients (API) yet a complex process with multiple contributing factors. Excipient characteristics play key role in efficient blending process and final product quality. In this work the effect of excipient type and properties, blending technique and processing time on content uniformity was investigated. Powder characteristics for three commonly used excipients (starch, pregelatinised starch and microcrystalline cellulose) were initially explored using laser diffraction particle size analyser, angle of repose for flowability, followed by thorough evaluations of surface topography employing scanning electron microscopy and interferometry. Blend homogeneity was evaluated based on content uniformity analysis of the model API, ergocalciferol, using a validated analytical technique. Flowability of powders were directly related to particle size and shape, while surface topography results revealed the relationship between surface roughness and ability of excipient with high surface roughness to lodge fine API particles within surface groves resulting in superior uniformity of content. Of the two blending techniques, geometric blending confirmed the ability to produce homogeneous blends at low dilution when processed for longer durations, whereas manual ordered blending failed to achieve compendial requirement for content uniformity despite mixing for 32 minutes. Employing the novel dry powder hybrid mixer device, developed at Aston University laboratory, results revealed the superiority of the device and enabled the production of homogenous blend irrespective of excipient type and particle size. Lower dilutions of the API (1% and 0.5% w/w) were examined using non-sieved excipients and the dry powder hybrid mixing device enabled the development of successful blends within compendial requirements and low relative standard deviation.

  3. Effects of chronic cerebral hypoperfusion and low-dose progesterone treatment on apoptotic processes, expression and subcellular localization of key elements within Akt and Erk signaling pathways in rat hippocampus.

    PubMed

    Stanojlović, M; Guševac, I; Grković, I; Zlatković, J; Mitrović, N; Zarić, M; Horvat, A; Drakulić, D

    2015-12-17

    The present study attempted to investigate how chronic cerebral hypoperfusion (CCH) and repeated low-dose progesterone (P) treatment affect gene and protein expression, subcellular distribution of key apoptotic elements within protein kinase B (Akt) and extracellular signal-regulated kinases (Erk) signal transduction pathways, as well as neurodegenerative processes and behavior. The results revealed the absence of Erk activation in CCH in cytosolic and synaptosomal fractions, indicating a lower threshold of Akt activation in brain ischemia, while P increased their levels above control values. CCH induced an increase in caspase 3 (Casp 3) and poly (ADP-ribose) polymerase (PARP) gene and protein expression. However, P restored expression of examined molecules in all observed fractions, except for the levels of Casp 3 in synapses which highlighted its possible non-apoptotic or even protective function. Our study showed the absence of nuclear factor kappa-light-chain-enhancer of activated b cells (NF-κB) response to this type of ischemic condition and its strong activation under the influence of P. Further, the initial increase in the number of apoptotic cells and amount of DNA fragmentation induced by CCH was significantly reduced by P. Finally, P reversed the CCH-induced reduction in locomotor activity, while promoting a substantial decrease in anxiety-related behavior. Our findings support the concept that repeated low-dose post-ischemic P treatment reduces CCH-induced neurodegeneration in the hippocampus. Neuroprotection is initiated through the activation of investigated kinases and regulation of their downstream molecules in subcellular specific manner, indicating that this treatment may be a promising therapy for alleviation of CCH-induced pathologies.

  4. Neutron dose equivalent meter

    DOEpatents

    Olsher, Richard H.; Hsu, Hsiao-Hua; Casson, William H.; Vasilik, Dennis G.; Kleck, Jeffrey H.; Beverding, Anthony

    1996-01-01

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  5. High to Low Dose Extrapolation of Experimental Animal Carcinogenesis Studies,

    DTIC Science & Technology

    with its inherent limitations. A number of commonly used mathematical models of dose - response necessary for this extrapolation, will be discussed...thresholds; incorporation of background, or spontaneous responses; modification of the dose - response by pharmacokinetic processes. (Author)

  6. Automated Gamma Knife dose planning

    NASA Astrophysics Data System (ADS)

    Leichtman, Gregg S.; Aita, Anthony L.; Goldman, H. W.

    1998-06-01

    The Gamma Knife (Elekta Instruments, Inc., Atlanta, GA), a neurosurgical, highly focused radiation delivery device, is used to eradicate deep-seated anomalous tissue within the human brain by delivering a lethal dose of radiation to target tissue. This dose is the accumulated result of delivering sequential `shots' of radiation to the target where each shot is approximately 3D Gaussian in shape. The size and intensity of each shot can be adjusted by varying the time of radiation exposure and by using one of four collimator sizes ranging from 4 - 18 mm. Current dose planning requires that the dose plan be developed manually to cover the target, and only the target, with a desired minimum radiation intensity using a minimum number of shots. This is a laborious and subjective process which typically leads to suboptimal conformal target coverage by the dose. We have used adaptive simulated annealing/quenching followed by Nelder-Mead simplex optimization to automate the selection and placement of Gaussian-based `shots' to form a simulated dose plane. In order to make the computation of the problem tractable, the algorithm, based upon contouring and polygon clipping, takes a 2 1/2-D approach to defining the cost function. Several experiments have been performed where the optimizers have been given the freedom to vary the number of shots and the weight, collimator size, and 3D location of each shot. To data best results have been obtained by forcing the optimizers to use a fixed number of unweighted shots with each optimizer set free to vary the 3D location and collimator size of each shot. Our preliminary results indicate that this technology will radically decrease planning time while significantly increasing accuracy of conformal target coverage and reproducibility over current manual methods.

  7. A review of uncertainties in radiotherapy dose reconstruction and their impacts on dose-response relationships.

    PubMed

    Vũ Bezin, Jérémi; Allodji, Rodrigue S; Mège, Jean-Pierre; Beldjoudi, Guillaume; Saunier, Fleur; Chavaudra, Jean; Deutsch, Eric; de Vathaire, Florent; Bernier, Valérie; Carrie, Christian; Lefkopoulos, Dimitri; Diallo, Ibrahima

    2017-03-20

    Proper understanding of the risk of radiation-induced late effects for patients receiving external photon beam radiotherapy requires the determination of reliable dose-response relationships. Although significant efforts have been devoted to improving dose estimates for the study of late effects, the most often questioned explanatory variable is still the dose. In this work, based on a literature review, we provide an in-depth description of the radiotherapy dose reconstruction process for the study of late effects. In particular, we focus on the identification of the main sources of dose uncertainty involved in this process and summarise their impacts on the dose-response relationship for radiotherapy late effects. We provide a number of recommendations for making progress in estimating the uncertainties in current studies of radiotherapy late effects and reducing these uncertainties in future studies.

  8. Calculation of effective dose.

    PubMed

    McCollough, C H; Schueler, B A

    2000-05-01

    The concept of "effective dose" was introduced in 1975 to provide a mechanism for assessing the radiation detriment from partial body irradiations in terms of data derived from whole body irradiations. The effective dose is the mean absorbed dose from a uniform whole-body irradiation that results in the same total radiation detriment as from the nonuniform, partial-body irradiation in question. The effective dose is calculated as the weighted average of the mean absorbed dose to the various body organs and tissues, where the weighting factor is the radiation detriment for a given organ (from a whole-body irradiation) as a fraction of the total radiation detriment. In this review, effective dose equivalent and effective dose, as established by the International Commission on Radiological Protection in 1977 and 1990, respectively, are defined and various methods of calculating these quantities are presented for radionuclides, radiography, fluoroscopy, computed tomography and mammography. In order to calculate either quantity, it is first necessary to estimate the radiation dose to individual organs. One common method of determining organ doses is through Monte Carlo simulations of photon interactions within a simplified mathematical model of the human body. Several groups have performed these calculations and published their results in the form of data tables of organ dose per unit activity or exposure. These data tables are specified according to particular examination parameters, such as radiopharmaceutical, x-ray projection, x-ray beam energy spectra or patient size. Sources of these organ dose conversion coefficients are presented and differences between them are examined. The estimates of effective dose equivalent or effective dose calculated using these data, although not intended to describe the dose to an individual, can be used as a relative measure of stochastic radiation detriment. The calculated values, in units of sievert (or rem), indicate the amount of

  9. Dose refinement. ARAC's role

    SciTech Connect

    Ellis, J. S.; Sullivan, T. J.; Baskett, R. L.

    1998-06-01

    The Atmospheric Release Advisory Capability (ARAC), located at the Lawrence Livermore National Laboratory, since the late 1970's has been involved in assessing consequences from nuclear and other hazardous material releases into the atmosphere. ARAC's primary role has been emergency response. However, after the emergency phase, there is still a significant role for dispersion modeling. This work usually involves refining the source term and, hence, the dose to the populations affected as additional information becomes available in the form of source term estimates release rates, mix of material, and release geometry and any measurements from passage of the plume and deposition on the ground. Many of the ARAC responses have been documented elsewhere. 1 Some of the more notable radiological releases that ARAC has participated in the post-emergency phase have been the 1979 Three Mile Island nuclear power plant (NPP) accident outside Harrisburg, PA, the 1986 Chernobyl NPP accident in the Ukraine, and the 1996 Japan Tokai nuclear processing plant explosion. ARAC has also done post-emergency phase analyses for the 1978 Russian satellite COSMOS 954 reentry and subsequent partial burn up of its on board nuclear reactor depositing radioactive materials on the ground in Canada, the 1986 uranium hexafluoride spill in Gore, OK, the 1993 Russian Tomsk-7 nuclear waste tank explosion, and lesser releases of mostly tritium. In addition, ARAC has performed a key role in the contingency planning for possible accidental releases during the launch of spacecraft with radioisotope thermoelectric generators (RTGs) on board (i.e. Galileo, Ulysses, Mars-Pathfinder, and Cassini), and routinely exercises with the Federal Radiological Monitoring and Assessment Center (FRMAC) in preparation for offsite consequences of radiological releases from NPPs and nuclear weapon accidents or incidents. Several accident post-emergency phase assessments are discussed in this paper in order to illustrate

  10. There is no safe dose of prions.

    PubMed

    Fryer, Helen R; McLean, Angela R

    2011-01-01

    Understanding the circumstances under which exposure to transmissible spongiform encephalopathies (TSEs) leads to infection is important for managing risks to public health. Based upon ideas in toxicology and radiology, it is plausible that exposure to harmful agents, including TSEs, is completely safe if the dose is low enough. However, the existence of a threshold, below which infection probability is zero has never been demonstrated experimentally. Here we explore this question by combining data and mathematical models that describe scrapie infections in mice following experimental challenge over a broad range of doses. We analyse data from 4338 mice inoculated at doses ranging over ten orders of magnitude. These data are compared to results from a within-host model in which prions accumulate according to a stochastic birth-death process. Crucially, this model assumes no threshold on the dose required for infection. Our data reveal that infection is possible at the very low dose of a 1000 fold dilution of the dose that infects half the challenged animals (ID50). Furthermore, the dose response curve closely matches that predicted by the model. These findings imply that there is no safe dose of prions and that assessments of the risk from low dose exposure are right to assume a linear relationship between dose and probability of infection. We also refine two common perceptions about TSE incubation periods: that their mean values decrease linearly with logarithmic decreases in dose and that they are highly reproducible between hosts. The model and data both show that the linear decrease in incubation period holds only for doses above the ID50. Furthermore, variability in incubation periods is greater than predicted by the model, not smaller. This result poses new questions about the sources of variability in prion incubation periods. It also provides insight into the limitations of the incubation period assay.

  11. [Psychedelic effects of subanesthetic doses of ketamine].

    PubMed

    Zou, Liang; Tian, Shou-Yuan; Quan, Xiang; Ye, Tie-Hu

    2009-02-01

    To study the psychedelic effects in healthy volunteers when given subanesthetic dose of ketamine. Thirteen male healthy volunteers aged 24-39 years were enrolled. All subjects received subanesthetic doses of ketamine using target control infusion. A stepwise series of target plasma concentrations (0, 100, 200, and 300 ng/ml) were maintained for 20 minutes each. Visual analogue scale (VAS) of mechanical pain by von Frey hair was evaluated, and then the volunteers completed a VAS rating of 13 symptom scales. Pictures were shown to them at the same time. Heart rate, mean blood pressure, and SpO2 were monitored throughout the infusion. During the process of analgesia, ketamine produced dose-related analgesic effects. With the increase of ketamine dose, some psychedelic effects became more obvious and the memory impairment became worse stepwisely. Target control infusion of subanesthetic doses of ketamine produce obvious psychedelic effects in healthy volunteers.

  12. Atmospheric radiation flight dose rates

    NASA Astrophysics Data System (ADS)

    Tobiska, W. K.

    2015-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.

  13. Acetaminophen dosing for children

    MedlinePlus

    ... this page: //medlineplus.gov/ency/patientinstructions/000783.htm Acetaminophen dosing for children To use the sharing features ... much of this medicine can be harmful. How Acetaminophen Can Help Your Child Acetaminophen is used to ...

  14. Electron beam dose calculations.

    PubMed

    Hogstrom, K R; Mills, M D; Almond, P R

    1981-05-01

    Electron beam dose distributions in the presence of inhomogeneous tissue are calculated by an algorithm that sums the dose distribution of individual pencil beams. The off-axis dependence of the pencil beam dose distribution is described by the Fermi-Eyges theory of thick-target multiple Coulomb scattering. Measured square-field depth-dose data serve as input for the calculations. Air gap corrections are incorporated and use data from'in-air' measurements in the penumbra of the beam. The effective depth, used to evaluate depth-dose, and the sigma of the off-axis Gaussian spread against depth are calculated by recursion relations from a CT data matrix for the material underlying individual pencil beams. The correlation of CT number with relative linear stopping power and relative linear scattering power for various tissues is shown. The results of calculations are verified by comparison with measurements in a 17 MeV electron beam from the Therac 20 linear accelerator. Calculated isodose lines agree nominally to within 2 mm of measurements in a water phantom. Similar agreement is observed in cork slabs simulating lung. Calculations beneath a bone substitute illustrate a weakness in the calculation. Finally a case of carcinoma in the maxillary antrum is studied. The theory suggests an alternative method for the calculation of depth-dose of rectangular fields.

  15. Radiation dose optimization in thoracic imaging.

    PubMed

    Tack, D

    2010-01-01

    Guidelines for reduction of CT radiation dose were introduced in 1997 and are now more than 12 years old. The process initiated by the European Regulatory authorities to reduce the excess of radiation from CT has however not produced the expected results. Reference diagnostic levels (DRL) from surveys are still twice as high as needed in most European countries and were not significantly reduced as compared to the initial European ones. Many factors may at least explain partially the lack of dose reduction. One of them is the complexity of the dose optimization process while maintaining image quality at a diagnostically acceptable level. Chest is an anatomical region where radiation dose could be substantially reduced because of high natural contrasts between structures, such as air in the lungs and fat in the mediastinum. In this article, the concept of CT radiation dose optimization and the factors that contribute to maintain global excess in radiation dose are reviewed and a brief summary of results from research in the field of chest CT radiation dose is given.

  16. User instructions for the CIDER Dose Code

    SciTech Connect

    Eslinger, P.W.; Lessor, K.S.; Ouderkirk, S.J.

    1994-05-01

    This document provides user instructions for the CIDER (Calculation of Individual Doses from Environmental Radionuclides) computer code. The CIDER code computes estimates of annual doses estimated for both reference individuals with a known residence and food consumption history. This document also provides user instructions for four utility codes used to build input data libraries for CIDER. These utility codes are ENVFAC (environmental factors), FOOFAC (food factors), LIFFAC (lifestyle factors), and ORGFAC (organ factors). Finally, this document provides user instructions for the EXPAND utility code. The EXPAND code processes a result file from CIDER and extracts a summary of the dose information for reporting or plotting purposes.

  17. Formation of SIMOX-SOI structure by high-temperature oxygen implantation

    NASA Astrophysics Data System (ADS)

    Hoshino, Yasushi; Kamikawa, Tomohiro; Nakata, Jyoji

    2015-12-01

    We have performed oxygen ion implantation in silicon at very high substrate-temperatures (⩽1000 °C) for the purpose of forming silicon-on-insulator (SOI) structure. We have expected that the high-temperature implantation can effectively avoids ion-beam-induced damages in the SOI layer and simultaneously stabilizes the buried oxide (BOX) and SOI-Si layer. Such a high-temperature implantation makes it possible to reduce the post-implantation annealing temperature. In the present study, oxygen ions with 180 keV are incident on Si(0 0 1) substrates at various temperatures from room temperature (RT) up to 1000 °C. The ion-fluencies are in order of 1017-1018 ions/cm2. Samples have been analyzed by atomic force microscope, Rutherford backscattering, and micro-Raman spectroscopy. It is found in the AFM analysis that the surface roughness of the samples implanted at 500 °C or below are significantly small with mean roughness of less than 1 nm, and gradually increased for the 800 °C-implanted sample. On the other hand, a lot of dents are observed for the 1000 °C-implanted sample. RBS analysis has revealed that stoichiometric SOI-Si and BOX-SiO2 layers are formed by oxygen implantation at the substrate temperatures of RT, 500, and 800 °C. However, SiO2-BOX layer has been desorbed during the implantation. Raman spectra shows that the ion-beam-induced damages are fairly suppressed by such a high-temperatures implantation.

  18. Iodine-131 Releases from Radioactive Lanthanum Processing at the X-10 Site in Oak Ridge, Tennessee (1944-1956)- An Assessment of Quantities released, Off-Site Radiation Doses, and Potential Excess Risks of Thyroid Cancer- APPENDICES Appendices-Volume 1A

    SciTech Connect

    Apostoaei, A.I.; Burns, R.E.; Hoffman, F.O.; Ijaz, T.; Lewis, C.J.; Nair, S.K.; Widner, T.E.

    1999-07-01

    This report consists of all the appendices for the report described below: In the early 1990s, concern about the Oak Ridge Reservation's past releases of contaminants to the environment prompted Tennessee's public health officials to pursue an in-depth study of potential off-site health effects at Oak Ridge. This study, the Oak Ridge dose reconstruction, was supported by an agreement between the U.S. Department of Energy (DOE) and the State of Tennessee, and was overseen by a 12-member panel appointed by Tennessee's Commissioner of Health. One of the major contaminants studied in the dose reconstruction was radioactive iodine, which was released to the air by X-10 (now called Oak Ridge National Laboratory) as it processed spent nuclear reactor fuel from 1944 through 1956. The process recovered radioactive lanthanum for use in weapons development. Iodine concentrates in the thyroid gland so health concerns include various diseases of the thyroid, such as thyroid cancer. The large report, ''Iodine-131 Releases from Radioactive Lanthanum Processing at the X-10 Site in Oak Ridge, Tennessee (1944-1956) - An Assessment of Quantities Released, Off-site Radiation Doses, and Potential Excess Risks of Thyroid Cancer,'' is in two volumes. Volume 1 is the main body of the report, and Volume 1A, which has the same title, consists of 22 supporting appendices. Together, these reports serve the following purposes: (1) describe the methodologies used to estimate the amount of iodine-131 (I-131) released; (2) evaluate I-131's pathway from air to vegetation to food to humans; (3) estimate doses received by human thyroids; (4) estimate excess risk of acquiring a thyroid cancer during ones lifetime; and (5) provide equations, examples of historical documents used, and tables of calculated values as appendices. Results indicate that females born in 1952 who consumed milk from a goat pastured a few miles east of X-10 received the highest doses from I-131 and would have had the highest

  19. Derivation of Human Lethal Doses

    DTIC Science & Technology

    2006-01-19

    extrapolate to human lethal doses. In this effort, Ekwall et al. (1998) collected data on human lethal doses in acute poisonings from handbooks on...emergency medicine, pharmacology, forensic medicine, and industrial chemical toxicology, in addition to a poison information center. The authors presented...lethal doses would be dose-response data in people. Estimates of doses from case reports of fatal poisonings provide information on what doses can be

  20. Dose Reduction Techniques

    SciTech Connect

    WAGGONER, L.O.

    2000-05-16

    As radiation safety specialists, one of the things we are required to do is evaluate tools, equipment, materials and work practices and decide whether the use of these products or work practices will reduce radiation dose or risk to the environment. There is a tendency for many workers that work with radioactive material to accomplish radiological work the same way they have always done it rather than look for new technology or change their work practices. New technology is being developed all the time that can make radiological work easier and result in less radiation dose to the worker or reduce the possibility that contamination will be spread to the environment. As we discuss the various tools and techniques that reduce radiation dose, keep in mind that the radiological controls should be reasonable. We can not always get the dose to zero, so we must try to accomplish the work efficiently and cost-effectively. There are times we may have to accept there is only so much you can do. The goal is to do the smart things that protect the worker but do not hinder him while the task is being accomplished. In addition, we should not demand that large amounts of money be spent for equipment that has marginal value in order to save a few millirem. We have broken the handout into sections that should simplify the presentation. Time, distance, shielding, and source reduction are methods used to reduce dose and are covered in Part I on work execution. We then look at operational considerations, radiological design parameters, and discuss the characteristics of personnel who deal with ALARA. This handout should give you an overview of what it takes to have an effective dose reduction program.

  1. Dose Calculation Spreadsheet

    SciTech Connect

    Simpkins, Ali

    1997-06-10

    VENTSAR XL is an EXCEL Spreadsheet that can be used to calculate downwind doses as a result of a hypothetical atmospheric release. Both building effects and plume rise may be considered. VENTSAR XL will run using any version of Microsoft EXCEL version 4.0 or later. Macros (the programming language of EXCEL) was used to automate the calculations. The user enters a minimal amount of input and the code calculates the resulting concentrations and doses at various downwind distances as specified by the user.

  2. Dose accuracy comparison between SoloSTAR and FlexPen at three different dose levels.

    PubMed

    Penfornis, Alfred; Horvat, Kristian

    2008-10-01

    The convenience and accuracy of insulin pens have led to their extensive use in patients with diabetes. Although all insulin pens go through extensive testing as part of the regulatory process, it is important that both the patient and clinician can be assured of the accuracy of the dose delivered. This study compared the dosing accuracy of two commonly available insulin pens, the SoloSTAR (sanofi-aventis Deutschland GmbH, Frankfurt, Germany) and FlexPen (Novo Nordisk A/S, Bagsvaerd, Denmark) devices. Doses of 5, 10, and 30 units of insulin were investigated for SoloSTAR and FlexPen, and specific units of accuracy were based on International Organization of Standards for insulin injection pens (+/-1 unit for the 5 and 10-unit doses, +/-5% for the 30-unit dose). A total of 30 pens were tested for both the SoloSTAR and FlexPen, and a total of 2,280 measurement values were taken for each pen type (5 units, 1,260; 10 units, 750; and 30 units, 270 doses). Both devices were shown to be accurate at all three doses, and all doses were delivered within the limits proposed by the International Standard of Organization, which is used as part of the regulatory approval process when introducing an insulin injection device to the market. Our study shows that the SoloSTAR and FlexPen devices have comparable accuracy.

  3. Enhanced Low Dose Rate Sensitivity at Ultra-Low Dose Rates

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Pease, Ronald; Forney, James; Carts, Martin; Phan, Anthony; Cox, Stephen; Kruckmeyer, Kriby; Burns, Sam; Albarian, Rafi; Holcombe, Bruce; Little, Bradley; Salzman, James; Chaumont, Geraldine; Duperray, Herve; Ouellet, Al; Buchner, Stephen; LaBel, Kenneth

    2011-01-01

    We have presented results of ultra-low dose rate irradiations (< or = 10 mrad(Si)/s) for a variety of radiation hardened and commercial linear bipolar devices. We observed low dose rate enhancement factors exceeding 1.5 in several parts. The worst case of dose rate enhancement resulted in functional failures, which occurred after 10 and 60 krad(Si), for devices irradiated at 0.5 and 10 mrad(Si)/s, respectively. Devices fabricated with radiation hardened processes and designs also displayed dose rate enhancement at below 10 mrad(Si)/s. Furthermore, the data indicated that these devices have not reached the damage saturation point. Therefore the degradation will likely continue to increase with increasing total dose, and the low dose rate enhancement will further magnify. The cases presented here, in addition to previous examples, illustrate the significance and pervasiveness of low dose rate enhancement at dose rates lower than 10 mrad(Si). These results present further challenges for radiation hardness assurance of bipolar linear circuits, and raise the question of whether the current standard test dose rate is conservative enough to bound degradations due to ELDRS.

  4. Catalytic property of an indium-deposited powder-type material containing silicon and its dependence on the dose of indium nano-particles irradiated by a pulse arc plasma process

    NASA Astrophysics Data System (ADS)

    Yoshimura, Satoru; Nishimoto, Yoshihiro; Kiuchi, Masato; Agawa, Yoshiaki; Tanaka, Hiroyuki; Yasuda, Makoto

    2017-06-01

    Indium nano-particle irradiations onto zeolite powders were carried out using a pulse arc plasma source system. X-ray photoelectron spectroscopic and scanning electron microscopic studies of an indium irradiated zeolite sample revealed that indium nano-particles were successfully deposited on the sample. Besides, the sample was found to be capable of catalyzing an organic chemical reaction (i.e., Friedel-Crafts alkylation). Then, we examined whether or not the catalytic ability depends on the irradiated indium dose, having established the optimal indium dose for inducing the catalytic effect.

  5. When is a dose not a dose

    SciTech Connect

    Bond, V.P.

    1991-01-01

    Although an enormous amount of progress has been made in the fields of radiation protection and risk assessment, a number of significant problems remain. The one problem which transcends all the rest, and which has been subject to considerable misunderstanding, involves what has come to be known as the 'linear non-threshold hypothesis', or 'linear hypothesis'. Particularly troublesome has been the interpretation that any amount of radiation can cause an increase in the excess incidence of cancer. The linear hypothesis has dominated radiation protection philosophy for more than three decades, with enormous financial, societal and political impacts and has engendered an almost morbid fear of low-level exposure to ionizing radiation in large segments of the population. This document presents a different interpretation of the linear hypothesis. The basis for this view lies in the evolution of dose-response functions, particularly with respect to their use initially in the context of early acute effects, and then for the late effects, carcinogenesis and mutagenesis. 11 refs., 4 figs. (MHB)

  6. Dose response signal detection under model uncertainty.

    PubMed

    Dette, Holger; Titoff, Stefanie; Volgushev, Stanislav; Bretz, Frank

    2015-12-01

    We investigate likelihood ratio contrast tests for dose response signal detection under model uncertainty, when several competing regression models are available to describe the dose response relationship. The proposed approach uses the complete structure of the regression models, but does not require knowledge of the parameters of the competing models. Standard likelihood ratio test theory is applicable in linear models as well as in nonlinear regression models with identifiable parameters. However, for many commonly used nonlinear dose response models the regression parameters are not identifiable under the null hypothesis of no dose response and standard arguments cannot be used to obtain critical values. We thus derive the asymptotic distribution of likelihood ratio contrast tests in regression models with a lack of identifiability and use this result to simulate the quantiles based on Gaussian processes. The new method is illustrated with a real data example and compared to existing procedures using theoretical investigations as well as simulations.

  7. Low-Dose Carcinogenicity Studies

    EPA Science Inventory

    One of the major deficiencies of cancer risk assessments is the lack of low-dose carcinogenicity data. Most assessments require extrapolation from high to low doses, which is subject to various uncertainties. Only 4 low-dose carcinogenicity studies and 5 low-dose biomarker/pre-n...

  8. Low-Dose Carcinogenicity Studies

    EPA Science Inventory

    One of the major deficiencies of cancer risk assessments is the lack of low-dose carcinogenicity data. Most assessments require extrapolation from high to low doses, which is subject to various uncertainties. Only 4 low-dose carcinogenicity studies and 5 low-dose biomarker/pre-n...

  9. Dose tracking and dose auditing in a comprehensive computed tomography dose-reduction program.

    PubMed

    Duong, Phuong-Anh; Little, Brent P

    2014-08-01

    Implementation of a comprehensive computed tomography (CT) radiation dose-reduction program is a complex undertaking, requiring an assessment of baseline doses, an understanding of dose-saving techniques, and an ongoing appraisal of results. We describe the role of dose tracking in planning and executing a dose-reduction program and discuss the use of the American College of Radiology CT Dose Index Registry at our institution. We review the basics of dose-related CT scan parameters, the components of the dose report, and the dose-reduction techniques, showing how an understanding of each technique is important in effective auditing of "outlier" doses identified by dose tracking. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Towards more reliable automated multi-dose dispensing: retrospective follow-up study on medication dose errors and product defects.

    PubMed

    Palttala, Iida; Heinämäki, Jyrki; Honkanen, Outi; Suominen, Risto; Antikainen, Osmo; Hirvonen, Jouni; Yliruusi, Jouko

    2013-03-01

    To date, little is known on applicability of different types of pharmaceutical dosage forms in an automated high-speed multi-dose dispensing process. The purpose of the present study was to identify and further investigate various process-induced and/or product-related limitations associated with multi-dose dispensing process. The rates of product defects and dose dispensing errors in automated multi-dose dispensing were retrospectively investigated during a 6-months follow-up period. The study was based on the analysis of process data of totally nine automated high-speed multi-dose dispensing systems. Special attention was paid to the dependence of multi-dose dispensing errors/product defects and pharmaceutical tablet properties (such as shape, dimensions, weight, scored lines, coatings, etc.) to profile the most suitable forms of tablets for automated dose dispensing systems. The relationship between the risk of errors in dose dispensing and tablet characteristics were visualized by creating a principal component analysis (PCA) model for the outcome of dispensed tablets. The two most common process-induced failures identified in the multi-dose dispensing are predisposal of tablet defects and unexpected product transitions in the medication cassette (dose dispensing error). The tablet defects are product-dependent failures, while the tablet transitions are dependent on automated multi-dose dispensing systems used. The occurrence of tablet defects is approximately twice as common as tablet transitions. Optimal tablet preparation for the high-speed multi-dose dispensing would be a round-shaped, relatively small/middle-sized, film-coated tablet without any scored line. Commercial tablet products can be profiled and classified based on their suitability to a high-speed multi-dose dispensing process.

  11. Effects of Proton Radiation Dose, Dose Rate and Dose Fractionation on Hematopoietic Cells in Mice

    PubMed Central

    Ware, J. H.; Sanzari, J.; Avery, S.; Sayers, C.; Krigsfeld, G.; Nuth, M.; Wan, X. S.; Rusek, A.; Kennedy, A. R.

    2012-01-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05–0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons. PMID:20726731

  12. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice.

    PubMed

    Ware, J H; Sanzari, J; Avery, S; Sayers, C; Krigsfeld, G; Nuth, M; Wan, X S; Rusek, A; Kennedy, A R

    2010-09-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  13. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice

    SciTech Connect

    Ware, J.H.; Rusek, A.; Sanzari, J.; Avery, S.; Sayers, C.; Krigsfeld, G.; Nuth, M.; Wan, X.S.; Kennedy, A.R.

    2010-09-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  14. Six steps to a successful dose-reduction strategy

    SciTech Connect

    Bennett, M.

    1995-03-01

    The increased importance of demonstrating achievement of the ALARA principle has helped produce a proliferation of dose-reduction ideas. Across a company there may be many dose-reduction items being pursued in a variety of areas. However, companies have a limited amount of resource and, therefore, to ensure funding is directed to those items which will produce the most benefit and that all areas apply a common policy, requires the presence of a dose-reduction strategy. Six steps were identified in formulating the dose-reduction strategy for Rolls-Royce and Associates (RRA): (1) collating the ideas; (2) quantitatively evaluating them on a common basis; (3) prioritizing the ideas in terms of cost benefit, (4) implementation of the highest priority items; (5) monitoring their success; (6) periodically reviewing the strategy. Inherent in producing the dose-reduction strategy has been a comprehensive dose database and the RRA-developed dose management computer code DOMAIN, which allows prediction of dose rates and dose. The database enabled high task dose items to be identified, assisted in evaluating dose benefits, and monitored dose trends once items had been implemented. The DOMAIN code was used both in quantifying some of the project dose benefits and its results, such as dose contours, used in some of the dose-reduction items themselves. In all, over fifty dose-reduction items were evaluated in the strategy process and the items which will give greatest benefit are being implemented. The strategy has been successful in giving renewed impetus and direction to dose-reduction management.

  15. Small dose... big poison.

    PubMed

    Braitberg, George; Oakley, Ed

    2010-11-01

    It is not possible to identify all toxic substances in a single journal article. However, there are some exposures that in small doses are potentially fatal. Many of these exposures are particularly toxic to children. Using data from poison control centres, it is possible to recognise this group of exposures. This article provides information to assist the general practitioner to identify potential toxic substance exposures in children. In this article the authors report the signs and symptoms of toxic exposures and identify the time of onset. Where clear recommendations on the period of observation and known fatal dose are available, these are provided. We do not discuss management or disposition, and advise readers to contact the Poison Information Service or a toxicologist for this advice.

  16. Photon dose calculation based on electron multiple-scattering theory: primary dose deposition kernels.

    PubMed

    Wang, L; Jette, D

    1999-08-01

    The transport of the secondary electrons resulting from high-energy photon interactions is essential to energy redistribution and deposition. In order to develop an accurate dose-calculation algorithm for high-energy photons, which can predict the dose distribution in inhomogeneous media and at the beam edges, we have investigated the feasibility of applying electron transport theory [Jette, Med. Phys. 15, 123 (1988)] to photon dose calculation. In particular, the transport of and energy deposition by Compton electron and electrons and positrons resulting from pair production were studied. The primary photons are treated as the source of the secondary electrons and positrons, which are transported through the irradiated medium using Gaussian multiple-scattering theory [Jette, Med. Phys. 15, 123 (1988)]. The initial angular and kinetic energy distribution(s) of the secondary electrons (and positrons) emanating from the photon interactions are incorporated into the transport. Due to different mechanisms of creation and cross-section functions, the transport of and the energy deposition by the electrons released in these two processes are studied and modeled separately based on first principles. In this article, we focus on determining the dose distribution for an individual interaction site. We define the Compton dose deposition kernel (CDK) or the pair-production dose deposition kernel (PDK) as the dose distribution relative to the point of interaction, per unit interaction density, for a monoenergetic photon beam in an infinite homogeneous medium of unit density. The validity of this analytic modeling of dose deposition was evaluated through EGS4 Monte Carlo simulation. Quantitative agreement between these two calculations of the dose distribution and the average energy deposited per interaction was achieved. Our results demonstrate the applicability of the electron dose-calculation method to photon dose calculation.

  17. Estimation of the Dose and Dose Rate Effectiveness Factor

    NASA Technical Reports Server (NTRS)

    Chappell, L.; Cucinotta, F. A.

    2013-01-01

    Current models to estimate radiation risk use the Life Span Study (LSS) cohort that received high doses and high dose rates of radiation. Transferring risks from these high dose rates to the low doses and dose rates received by astronauts in space is a source of uncertainty in our risk calculations. The solid cancer models recommended by BEIR VII [1], UNSCEAR [2], and Preston et al [3] is fitted adequately by a linear dose response model, which implies that low doses and dose rates would be estimated the same as high doses and dose rates. However animal and cell experiments imply there should be curvature in the dose response curve for tumor induction. Furthermore animal experiments that directly compare acute to chronic exposures show lower increases in tumor induction than acute exposures. A dose and dose rate effectiveness factor (DDREF) has been estimated and applied to transfer risks from the high doses and dose rates of the LSS cohort to low doses and dose rates such as from missions in space. The BEIR VII committee [1] combined DDREF estimates using the LSS cohort and animal experiments using Bayesian methods for their recommendation for a DDREF value of 1.5 with uncertainty. We reexamined the animal data considered by BEIR VII and included more animal data and human chromosome aberration data to improve the estimate for DDREF. Several experiments chosen by BEIR VII were deemed inappropriate for application to human risk models of solid cancer risk. Animal tumor experiments performed by Ullrich et al [4], Alpen et al [5], and Grahn et al [6] were analyzed to estimate the DDREF. Human chromosome aberration experiments performed on a sample of astronauts within NASA were also available to estimate the DDREF. The LSS cohort results reported by BEIR VII were combined with the new radiobiology results using Bayesian methods.

  18. Dose esclation in radioimmunotherapy based on projected whole body dose

    SciTech Connect

    Wahl, R.L.; Kaminski, M.S.; Regan, D.

    1994-05-01

    A variety of approaches have been utilized in conducting phase I radioimmunotherapy dose-escalation trials. Escalation of dose has been based on graded increases in administered mCi; mCi/kg; or mCi/m2. It is also possible to escalate dose based on tracer-projected marrow, blood or whole body radiation dose. We describe our results in performing a dose-escalation trial in patients with non-Hodgkin lymphoma based on escalating administered whole-body radiation dose. The mCi dose administered was based on a patient-individualized tracer projected whole-body dose. 25 patients were entered on the study. RIT with 131 I anti-B-1 was administered to 19 patients. The administered dose was prescribed based on the projected whole body dose, determined from patient-individualized tracer studies performed prior to RIT. Whole body dose estimates were based on the assumption that the patient was an ellipsoid, with 131 antibody kinetics determined using a whole-body probe device acquiring daily conjugate views of 1 minute duration/view. Dose escalation levels proceeded with 10 cGy increments from 25 cGy whole-body and continues, now at 75 cGy. The correlation among potential methods of dose escalation and toxicity was assessed. Whole body radiation dose by probe was strongly correlated with the blood radiation dose determined from sequential blood sampling during tracer studies (r=.87). Blood radiation dose was very weakly correlated with mCi dose (r=.4) and mCi/kg (r=.45). Whole body radiation dose appeared less well-correlated with injected dose in mCi (r=.6), or mCi/kg (r=.64). Toxicity has been infrequent in these patients, but appears related to increasing whole body dose. Non-invasive determination of whole-body radiation dose by gamma probe represents a non-invasive method of estimating blood radiation dose, and thus of estimating bone marrow radiation dose.

  19. Dose dependence of interface traps in gate oxides at high levels of total dose

    SciTech Connect

    Baze, M.P.; Plaag, R.E.; Johnston, A.H. )

    1989-12-01

    Interface traps in gate oxides were found to saturate at high total dose levels. An empirical model was developed to describe the nonlinear dependence and saturation characteristics. Three different processes were studied including CMOS/SOS, hardened bulk CMOS and unhardened bulk CMOS using several combinations of dose rate and bias. An evaluation was made of the model's accuracy in extrapolating the effect of interface traps to very high doses. A possible application of the model in characterizing devices for space environments is discussed along with implications for a physical model of radiation induced interface trap buildup.

  20. Antimicrobial Dose in Obese Patient

    PubMed Central

    Kassab, Sawsan; Syed Sulaiman, Syed Azhar; Abdul Aziz, Noorizan

    2007-01-01

    Introduction Obesity is a chronic disease that has become one of major public health issue in Malaysia because of its association with other disease states including cardiovascular disease and diabetes. Despite continuous efforts to educate the public about the health risks associated with obesity, prevalence of the disease continues to increase. Dosing of many medications are based on weight, limited data are available on how antimicrobial agents should be dosed in obesity. The aim of this case presentation is to discuss dose of antibiotic in obese patient. Case report: Patient: GMN, Malay, Female, 45 year old, 150kg, transferred from medical ward to ICU with problems of fever, orthopnea, sepsis secondary to nosocomial pneumonia. She was admitted to hospital a week ago for SOB on exertion, cyanosis, mildly dyspneic, somasthenia, bilateral ankle swelling. There was no fever, cough, chest pain, clubbing, flapping tremor. Her grand father has pre-morbid history of obesity, HPT, DM and asthma. She was non alcoholic, smoker, and not on diet control. The diagnosis Pickwickian syndrome was made. Patient was treated with IV Dopamine 11mcg/kg/min, IV Morphine 4mg/h. IV GTN 15mcg/min, IV Ca gluconate 10g/24h for 3/7, IV Zantac 50mg tds, IV Augmentin 1.2g tds, IV Lasix 40mg od, IV Plasil 10mg tds, S.c heparin 5000IU bd. patient become stable and moved to medical ward to continue her treatment. Discussion: The altered physiologic function seen in obese patients is a concern in patients receiving antimicrobial agents because therapeutic outcomes depend on achieving a minimum inhibitory concentration (MIC). The therapeutic effect of any drug can be altered when any of the 4 pharmacokinetic processes (absorption, distribution, metabolism, or elimination) are altered. Decreased blood flow rates and increased renal clearance in obese patients can affect drug distribution and elimination. Changes in serum protein levels can change the metabolism and distribution of drugs that are

  1. Pharmacokinetics and pharmacodynamics in antibiotic dose optimization.

    PubMed

    Sy, Sherwin K B; Zhuang, Luning; Derendorf, Hartmut

    2016-01-01

    Identifying the optimized dosing regimen and algorithm is critical in the development of antibiotics. Suboptimal regimens and inappropriate choice of drug give rise to drug-resistant bacteria which have limited the therapeutic utility of many commercially available antimicrobial agents. Strategies to optimize therapy of antimicrobial candidates to speed up the development process are urgently needed. We examined pharmacokinetics and pharmacodynamics of antimicrobial agents with modeling and simulation approaches. The approach that is based on minimum inhibitory concentration to evaluate antimicrobial dosing strategy is widely utilized in drug development. The modeling approach utilizing information from time-kill kinetic studies is a tool that can provide more information on the time-course of bacterial response to a particular dosing regimen. Animal studies of dosing regimens that mimic human pharmacokinetics are another option to evaluate antimicrobial efficacy. Empirical, semi-mechanistic and mechanistic models of bacterial dynamics and development of drug resistance in response to drug therapy are discussed. Both theories and applications of these approaches provide an overall understanding of how the tools can streamline drug development process and help make crucial decisions. Many opportunities and potentials are presented to incorporate more rigorous integration of PK-PD modeling approaches even at preclinical stage to extrapolate to clinical settings, thus enabling successful trials and optimizing dosing strategies in relevant populations where the drug is mostly used.

  2. Validation of GPU based TomoTherapy dose calculation engine.

    PubMed

    Chen, Quan; Lu, Weiguo; Chen, Yu; Chen, Mingli; Henderson, Douglas; Sterpin, Edmond

    2012-04-01

    The graphic processing unit (GPU) based TomoTherapy convolution/superposition(C/S) dose engine (GPU dose engine) achieves a dramatic performance improvement over the traditional CPU-cluster based TomoTherapy dose engine (CPU dose engine). Besides the architecture difference between the GPU and CPU, there are several algorithm changes from the CPU dose engine to the GPU dose engine. These changes made the GPU dose slightly different from the CPU-cluster dose. In order for the commercial release of the GPU dose engine, its accuracy has to be validated. Thirty eight TomoTherapy phantom plans and 19 patient plans were calculated with both dose engines to evaluate the equivalency between the two dose engines. Gamma indices (Γ) were used for the equivalency evaluation. The GPU dose was further verified with the absolute point dose measurement with ion chamber and film measurements for phantom plans. Monte Carlo calculation was used as a reference for both dose engines in the accuracy evaluation in heterogeneous phantom and actual patients. The GPU dose engine showed excellent agreement with the current CPU dose engine. The majority of cases had over 99.99% of voxels with Γ(1%, 1 mm) < 1. The worst case observed in the phantom had 0.22% voxels violating the criterion. In patient cases, the worst percentage of voxels violating the criterion was 0.57%. For absolute point dose verification, all cases agreed with measurement to within ±3% with average error magnitude within 1%. All cases passed the acceptance criterion that more than 95% of the pixels have Γ(3%, 3 mm) < 1 in film measurement, and the average passing pixel percentage is 98.5%-99%. The GPU dose engine also showed similar degree of accuracy in heterogeneous media as the current TomoTherapy dose engine. It is verified and validated that the ultrafast TomoTherapy GPU dose engine can safely replace the existing TomoTherapy cluster based dose engine without degradation in dose accuracy.

  3. An expanded pharmacogenomics warfarin dosing table with utility in generalised dosing guidance.

    PubMed

    Shahabi, Payman; Scheinfeldt, Laura B; Lynch, Daniel E; Schmidlen, Tara J; Perreault, Sylvie; Keller, Margaret A; Kasper, Rachel; Wawak, Lisa; Jarvis, Joseph P; Gerry, Norman P; Gordon, Erynn S; Christman, Michael F; Dubé, Marie-Pierre; Gharani, Neda

    2016-08-01

    Pharmacogenomics (PGx) guided warfarin dosing, using a comprehensive dosing algorithm, is expected to improve dose optimisation and lower the risk of adverse drug reactions. As a complementary tool, a simple genotype-dosing table, such as in the US Food and Drug Administration (FDA) Coumadin drug label, may be utilised for general risk assessment of likely over- or under-anticoagulation on a standard dose of warfarin. This tool may be used as part of the clinical decision support for the interpretation of genetic data, serving as a first step in the anticoagulation therapy decision making process. Here we used a publicly available warfarin dosing calculator (www.warfarindosing.org) to create an expanded gene-based warfarin dosing table, the CPMC-WD table that includes nine genetic variants in CYP2C9, VKORC1, and CYP4F2. Using two datasets, a European American cohort (EUA, n=73) and the Quebec Warfarin Cohort (QWC, n=769), we show that the CPMC-WD table more accurately predicts therapeutic dose than the FDA table (51 % vs 33 %, respectively, in the EUA, McNemar's two-sided p=0.02; 52 % vs 37 % in the QWC, p<1×10(-6)). It also outperforms both the standard of care 5 mg/day dosing (51 % vs 34 % in the EUA, p=0.04; 52 % vs 31 % in the QWC, p<1×10(-6)) as well as a clinical-only algorithm (51 % vs 38 % in the EUA, trend p=0.11; 52 % vs 45 % in the QWC, p=0.003). This table offers a valuable update to the PGx dosing guideline in the drug label.

  4. Pharmacokinetics of BILR 355 after Multiple Oral Doses Coadministered with a Low Dose of Ritonavir ▿

    PubMed Central

    Huang, Fenglei; Drda, Kristin; MacGregor, Thomas R.; Scherer, Joseph; Rowland, Lois; Nguyen, Thuy; Ballow, Charles; Castles, Mark; Robinson, Patrick

    2009-01-01

    The pharmacokinetics and safety of BILR 355 following oral repeated dosing coadministered with low doses of ritonavir (RTV) were investigated in 12 cohorts of healthy male volunteers with a ratio of 6 to 2 for BILR 355 versus the placebo. BILR 355 was given once a day (QD) coadministered with 100 mg RTV (BILR 355/r) at 5 to 50 mg in a polyethylene glycol solution or at 50 to 250 mg as tablets. BILR 355 tablets were also dosed at 150 mg twice a day (BID) coadministered with 100 mg RTV QD or BID. Following oral dosing, BILR 355 was rapidly absorbed, with the mean time to maximum concentration of drug in serum reached within 1.3 to 5 h and a mean half-life of 16 to 20 h. BILR 355 exhibited an approximately linear pharmacokinetics for doses of 5 to 50 mg when given as a solution; in contrast, when given as tablets, BILR 355 displayed a dose-proportional pharmacokinetics, with a dose range of 50 to 100 mg; from 100 to 150 mg, a slightly downward nonlinear pharmacokinetics occurred. The exposure to BILR 355 was maximized at 150 mg and higher due to a saturated dissolution/absorption process. After oral dosing of BILR 355/r, 150/100 mg BID, the values for the maximum concentration of drug in plasma at steady state, the area under the concentration-time curve from 0 to the dose interval at steady state, and the minimum concentration of drug in serum at steady state were 1,500 ng/ml, 12,500 h·ng/ml, and 570 ng/ml, respectively, providing sufficient suppressive concentration toward human immunodeficiency virus type 1. Based on pharmacokinetic modeling along with the in vitro virologic data, several BILR 355 doses were selected for phase II trials using Monte Carlo simulations. Throughout the study, BILR 355 was safe and well tolerated. PMID:18955519

  5. Cognitive performance in methadone maintenance patients: Effects of time relative to dosing and maintenance dose level

    PubMed Central

    Rass, Olga; Kleykamp, Bethea A.; Vandrey, Ryan G.; Bigelow, George E.; Leoutsakos, Jeannie-Marie; Stitzer, Maxine L.; Strain, Eric; Copersino, Marc L.; Mintzer, Miriam Z.

    2014-01-01

    Given the long-term nature of methadone maintenance treatment, it is important to assess the extent of cognitive side effects. This study investigated cognitive and psychomotor performance in fifty-one methadone maintenance patients (MMP) as a function of time since last methadone dose and maintenance dose level. MMP maintained on doses ranging from 40 to 200 mg (Mean = 97 mg) completed a battery of psychomotor and cognitive measures across two sessions, during peak and trough states, in a double-blind crossover design. Peak sessions were associated with worse performance on measures of sensory processing, psychomotor speed, divided attention, and working memory, compared to trough sessions. The effects of maintenance dose were mixed, with higher dose resulting in worse performance on aspects of attention and working memory, improved performance on executive function, and no effects on several measures. Longer treatment duration was associated with better performance on some measures, but was also associated with increased sensitivity to time since last dose (i.e., worse performance at peak vs. trough) on some measures. The results suggest that cognitive functioning can fluctuate as a function of time since last dose even in MMP who have been maintained on stable doses for an extended time (mean duration in treatment = 4 years), but worsened performance at peak is limited to a subset of functions and may not be clinically significant at these modest levels of behavioral effect. For patients on stable methadone maintenance doses, maintenance at higher doses may not significantly increase the risk of performance impairment. PMID:24548244

  6. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Cannon, S.D.; Finch, S.M.

    1992-10-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates):Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  7. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1991-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms; environmental transport environmental monitoring data; demographics, agriculture, food habits; environmental pathways and dose estimates.

  8. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-02-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demography, food consumption, and agriculture; environmental pathways and dose estimates.

  9. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  10. Brachytherapy source characterization for improved dose calculations using primary and scatter dose separation.

    PubMed

    Russell, Kellie R; Tedgren, Asa K Carlsson; Ahnesjö, Anders

    2005-09-01

    In brachytherapy, tissue heterogeneities, source shielding, and finite patient/phantom extensions affect both the primary and scatter dose distributions. The primary dose is, due to the short range of secondary electrons, dependent only on the distribution of material located on the ray line between the source and dose deposition site. The scatter dose depends on both the direct irradiation pattern and the distribution of material in a large volume surrounding the point of interest, i.e., a much larger volume must be included in calculations to integrate many small dose contributions. It is therefore of interest to consider different methods for the primary and the scatter dose calculation to improve calculation accuracy with limited computer resources. The algorithms in present clinical use ignore these effects causing systematic dose errors in brachytherapy treatment planning. In this work we review a primary and scatter dose separation formalism (PSS) for brachytherapy source characterization to support separate calculation of the primary and scatter dose contributions. We show how the resulting source characterization data can be used to drive more accurate dose calculations using collapsed cone superposition for scatter dose calculations. Two types of source characterization data paths are used: a direct Monte Carlo simulation in water phantoms with subsequent parameterization of the results, and an alternative data path built on processing of AAPM TG43 formatted data to provide similar parameter sets. The latter path is motivated of the large amounts of data already existing in the TG43 format. We demonstrate the PSS methods using both data paths for a clinical 192Ir source. Results are shown for two geometries: a finite but homogeneous water phantom, and a half-slab consisting of water and air. The dose distributions are compared to results from full Monte Carlo simulations and we show significant improvement in scatter dose calculations when the collapsed

  11. Brachytherapy source characterization for improved dose calculations using primary and scatter dose separation

    SciTech Connect

    Russell, Kellie R.; Carlsson Tedgren, Aasa K.; Ahnesjoe, Anders

    2005-09-15

    In brachytherapy, tissue heterogeneities, source shielding, and finite patient/phantom extensions affect both the primary and scatter dose distributions. The primary dose is, due to the short range of secondary electrons, dependent only on the distribution of material located on the ray line between the source and dose deposition site. The scatter dose depends on both the direct irradiation pattern and the distribution of material in a large volume surrounding the point of interest, i.e., a much larger volume must be included in calculations to integrate many small dose contributions. It is therefore of interest to consider different methods for the primary and the scatter dose calculation to improve calculation accuracy with limited computer resources. The algorithms in present clinical use ignore these effects causing systematic dose errors in brachytherapy treatment planning. In this work we review a primary and scatter dose separation formalism (PSS) for brachytherapy source characterization to support separate calculation of the primary and scatter dose contributions. We show how the resulting source characterization data can be used to drive more accurate dose calculations using collapsed cone superposition for scatter dose calculations. Two types of source characterization data paths are used: a direct Monte Carlo simulation in water phantoms with subsequent parameterization of the results, and an alternative data path built on processing of AAPM TG43 formatted data to provide similar parameter sets. The latter path is motivated of the large amounts of data already existing in the TG43 format. We demonstrate the PSS methods using both data paths for a clinical {sup 192}Ir source. Results are shown for two geometries: a finite but homogeneous water phantom, and a half-slab consisting of water and air. The dose distributions are compared to results from full Monte Carlo simulations and we show significant improvement in scatter dose calculations when the

  12. A mathematical approach to optimal selection of dose values in the additive dose method of ERP dosimetry

    SciTech Connect

    Hayes, R.B.; Haskell, E.H.; Kenner, G.H.

    1996-01-01

    Additive dose methods commonly used in electron paramagnetic resonance (EPR) dosimetry are time consuming and labor intensive. We have developed a mathematical approach for determining optimal spacing of applied doses and the number of spectra which should be taken at each dose level. Expected uncertainitites in the data points are assumed to be normally distributed with a fixed standard deviation and linearity of dose response is also assumed. The optimum spacing and number of points necessary for the minimal error can be estimated, as can the likely error in the resulting estimate. When low doses are being estimated for tooth enamel samples the optimal spacing is shown to be a concentration of points near the zero dose value with fewer spectra taken at a single high dose value within the range of known linearity. Optimization of the analytical process results in increased accuracy and sample throughput.

  13. SU-F-P-19: Fetal Dose Estimate for a High-Dose Fluoroscopy Guided Intervention Using Modern Data Tools

    SciTech Connect

    Moirano, J

    2016-06-15

    Purpose: An accurate dose estimate is necessary for effective patient management after a fetal exposure. In the case of a high-dose exposure, it is critical to use all resources available in order to make the most accurate assessment of the fetal dose. This work will demonstrate a methodology for accurate fetal dose estimation using tools that have recently become available in many clinics, and show examples of best practices for collecting data and performing the fetal dose calculation. Methods: A fetal dose estimate calculation was performed using modern data collection tools to determine parameters for the calculation. The reference point air kerma as displayed by the fluoroscopic system was checked for accuracy. A cumulative dose incidence map and DICOM header mining were used to determine the displayed reference point air kerma. Corrections for attenuation caused by the patient table and pad were measured and applied in order to determine the peak skin dose. The position and depth of the fetus was determined by ultrasound imaging and consultation with a radiologist. The data collected was used to determine a normalized uterus dose from Monte Carlo simulation data. Fetal dose values from this process were compared to other accepted calculation methods. Results: An accurate high-dose fetal dose estimate was made. Comparison to accepted legacy methods were were within 35% of estimated values. Conclusion: Modern data collection and reporting methods ease the process for estimation of fetal dose from interventional fluoroscopy exposures. Many aspects of the calculation can now be quantified rather than estimated, which should allow for a more accurate estimation of fetal dose.

  14. Automated extraction of radiation dose information for CT examinations.

    PubMed

    Cook, Tessa S; Zimmerman, Stefan; Maidment, Andrew D A; Kim, Woojin; Boonn, William W

    2010-11-01

    Exposure to radiation as a result of medical imaging is currently in the spotlight, receiving attention from Congress as well as the lay press. Although scanner manufacturers are moving toward including effective dose information in the Digital Imaging and Communications in Medicine headers of imaging studies, there is a vast repository of retrospective CT data at every imaging center that stores dose information in an image-based dose sheet. As such, it is difficult for imaging centers to participate in the ACR's Dose Index Registry. The authors have designed an automated extraction system to query their PACS archive and parse CT examinations to extract the dose information stored in each dose sheet. First, an open-source optical character recognition program processes each dose sheet and converts the information to American Standard Code for Information Interchange (ASCII) text. Each text file is parsed, and radiation dose information is extracted and stored in a database which can be queried using an existing pathology and radiology enterprise search tool. Using this automated extraction pipeline, it is possible to perform dose analysis on the >800,000 CT examinations in the PACS archive and generate dose reports for all of these patients. It is also possible to more effectively educate technologists, radiologists, and referring physicians about exposure to radiation from CT by generating report cards for interpreted and performed studies. The automated extraction pipeline enables compliance with the ACR's reporting guidelines and greater awareness of radiation dose to patients, thus resulting in improved patient care and management.

  15. Survey of computed tomography scanners in Taiwan: Dose descriptors, dose guidance levels, and effective doses

    SciTech Connect

    Tsai, H. Y.; Tung, C. J.; Yu, C. C.; Tyan, Y. S.

    2007-04-15

    The IAEA and the ICRP recommended dose guidance levels for the most frequent computed tomography (CT) examinations to promote strategies for the optimization of radiation dose to CT patients. A national survey, including on-site measurements and questionnaires, was conducted in Taiwan in order to establish dose guidance levels and evaluate effective doses for CT. The beam quality and output and the phantom doses were measured for nine representative CT scanners. Questionnaire forms were completed by respondents from facilities of 146 CT scanners out of 285 total scanners. Information on patient, procedure, scanner, and technique for the head and body examinations was provided. The weighted computed tomography dose index (CTDI{sub w}), the dose length product (DLP), organ doses and effective dose were calculated using measured data, questionnaire information and Monte Carlo simulation results. A cost-effective analysis was applied to derive the dose guidance levels on CTDI{sub w} and DLP for several CT examinations. The mean effective dose{+-}standard deviation distributes from 1.6{+-}0.9 mSv for the routine head examination to 13{+-}11 mSv for the examination of liver, spleen, and pancreas. The surveyed results and the dose guidance levels were provided to the national authorities to develop quality control standards and protocols for CT examinations.

  16. Biological-Based Modeling of Low Dose Radiation Risks

    SciTech Connect

    Scott, Bobby R., Ph.D.

    2006-11-08

    threshold. However, low-dose and low-dose-rate induced adapted protection leads to hormetic type dose-response relationships (e.g. U or J shaped) for cancer induction. Indeed, our research findings point to several dose zones of biological responses: (1) The natural background radiation dose zone over which increasing background radiation doses appear to lead to decrease cancer risk (Transition Zone A) due to activation (in a stochastic manner) of a system of protective processes that include high-fidelity DNA repair, apoptosis of unstable cells, and immune system activation. (2) A dose zone just above natural background radiation exposure over which cancer risk appears to further decrease and then remain suppressed at a relatively constant level below the spontaneous frequency (Zone of Maximal Protection); (3) higher but moderate doses over which cancer risk increases rather steeply over relative narrow dose range (Transition Zone B) due to radiation related suppression of protective processes (immune system function and selective apoptosis of unstable cells); (4) higher doses (LNT zone) where cancer risk increases as a linear function of dose for a range of doses (protective processes maximally suppressed in this zone). The indicted dose zones are dose-rate and radiation-type dependent with the protective zone increasing as dose rate is decreases and exposure time extended. In fact, natural background low-LET radiation appears to be protecting us not only from cancer occurrence but also from other genomic instability associated diseases via repeatedly inducing transient adapted protection. Reducing natural background radiation exposure (e.g., via relocation) over extended periods (years) would be expected to cause more harm than benefit. The harm would be expressed as increased cases of cancer and other genomic-instability-associated diseases as well as in significantly reduced life expectancy.

  17. Collective dose-practical ways to estimate a dose matrix.

    PubMed

    Simmonds, Jane; Sihra, Kamaljit; Bexon, Antony

    2006-06-01

    It has been suggested that collective doses should be presented in the form of a 'dose matrix' giving information on the breakdown of collective dose in space and time and by population group. This paper is an initial attempt to provide such a breakdown by geographic region and time, and to give an idea of associated individual doses for routine discharges to atmosphere. This is done through the use of representative per-caput individual doses but these need to be supplemented by information on the individual doses received by the critical group for a full radiological impact assessment. The results show that it is important to distinguish between the different population groups for up to a few hundred years following the discharge. However, beyond this time the main contribution is from global circulation and this distinction is less important. The majority of the collective dose was found to be delivered at low levels of individual doses; the estimated per-caput dose rates were significantly less than 10(-5) Sv y(-1), a level of dose felt to give rise to a trivial risk to the exposed individual.

  18. An algorithm for unfolding neutron dose and dose equivalent from digitized recoil-particle tracks

    SciTech Connect

    Bolch, W.E.; Turner, J.E.; Hamm, R.N.

    1986-10-01

    Previous work had demonstrated the feasibility of a digital approach to neutron dosimetry. A Monte Carlo simulation code of one detector design utilizing the operating principles of time-projection chambers was completed. This thesis presents and verifies one version of the dosimeter's computer algorithm. This algorithm processes the output of the ORNL simulation code, but is applicable to all detectors capable of digitizing recoil-particle tracks. Key features include direct measurement of track lengths and identification of particle type for each registered event. The resulting dosimeter should allow more accurate determinations of neutron dose and dose equivalent compared with conventional dosimeters, which cannot measure these quantities directly. Verification of the algorithm was accomplished by running a variety of recoil particles through the simulated detector volume and comparing the resulting absorbed dose and dose equivalent to those unfolded by the algorithm.

  19. Standardized radiological dose evaluations

    SciTech Connect

    Peterson, V.L.; Stahlnecker, E.

    1996-05-01

    Following the end of the Cold War, the mission of Rocky Flats Environmental Technology Site changed from production of nuclear weapons to cleanup. Authorization baseis documents for the facilities, primarily the Final Safety Analysis Reports, are being replaced with new ones in which accident scenarios are sorted into coarse bins of consequence and frequency, similar to the approach of DOE-STD-3011-94. Because this binning does not require high precision, a standardized approach for radiological dose evaluations is taken for all the facilities at the site. This is done through a standard calculation ``template`` for use by all safety analysts preparing the new documents. This report describes this template and its use.

  20. Tradeoffs between image quality and dose.

    PubMed

    Seibert, J Anthony

    2004-10-01

    Image quality takes on different perspectives and meanings when associated with the concept of as low as reasonably achievable (ALARA), which is chiefly focused on radiation dose delivered as a result of a medical imaging procedure. ALARA is important because of the increased radiosensitivity of children to ionizing radiation and the desire to keep the radiation dose low. By the same token, however, image quality is also important because of the need to provide the necessary information in a radiograph in order to make an accurate diagnosis. Thus, there are tradeoffs to be considered between image quality and radiation dose, which is the main topic of this article. ALARA does not necessarily mean the lowest radiation dose, nor, when implemented, does it result in the least desirable radiographic images. With the recent widespread implementation of digital radiographic detectors and displays, a new level of flexibility and complexity confronts the technologist, physicist, and radiologist in optimizing the pediatric radiography exam. This is due to the separation of the acquisition, display, and archiving events that were previously combined by the screen-film detector, which allows for compensation for under- and overexposures, image processing, and on-line image manipulation. As explained in the article, different concepts must be introduced for a better understanding of the tradeoffs encountered when dealing with digital radiography and ALARA. In addition, there are many instances during the image acquisition/display/interpretation process in which image quality and associated dose can be compromised. This requires continuous diligence to quality control and feedback mechanisms to verify that the goals of image quality, dose and ALARA are achieved.

  1. Patient-specific dose calculation methods for high-dose-rate iridium-192 brachytherapy

    NASA Astrophysics Data System (ADS)

    Poon, Emily S.

    In high-dose-rate 192Ir brachytherapy, the radiation dose received by the patient is calculated according to the AAPM Task Group 43 (TG-43) formalism. This table-based dose superposition method uses dosimetry parameters derived with the radioactive 192Ir source centered in a water phantom. It neglects the dose perturbations caused by inhomogeneities, such as the patient anatomy, applicators, shielding, and radiographic contrast solution. In this work, we evaluated the dosimetric characteristics of a shielded rectal applicator with an endocavitary balloon injected with contrast solution. The dose distributions around this applicator were calculated by the GEANT4 Monte Carlo (MC) code and measured by ionization chamber and GAFCHROMIC EBT film. A patient-specific dose calculation study was then carried out for 40 rectal treatment plans. The PTRAN_CT MC code was used to calculate the dose based on computed tomography (CT) images. This study involved the development of BrachyGUI, an integrated treatment planning tool that can process DICOM-RT data and create PTRAN_CT input initialization files. BrachyGUI also comes with dose calculation and evaluation capabilities. We proposed a novel scatter correction method to account for the reduction in backscatter radiation near tissue-air interfaces. The first step requires calculating the doses contributed by primary and scattered photons separately, assuming a full scatter environment. The scatter dose in the patient is subsequently adjusted using a factor derived by MC calculations, which depends on the distances between the point of interest, the 192Ir source, and the body contour. The method was validated for multicatheter breast brachytherapy, in which the target and skin doses for 18 patient plans agreed with PTRAN_CT calculations better than 1%. Finally, we developed a CT-based analytical dose calculation method. It corrects for the photon attenuation and scatter based upon the radiological paths determined by ray tracing

  2. Low dose neutron late effects: Cataractogenesis

    SciTech Connect

    Worgul, B.V.

    1991-04-01

    The work is formulated to resolve the uncertainty regarding the relative biological effectiveness. The endpoint which is being utilized is cataractogenesis. The advantages conferred by this system stems primarily from the non-invasive longitudinal analysis which it allows. It also exploits a well defined system and one which has demonstrated sensitivity to the inverse dose rate effect observed with heavy ions. Four week old rats were divided into 8 dose groups which received single or fractionated total doses of .2, 1.0, 5.0 and 25 cGy of monoenergetic 435 keV neutrons. Special restraining jigs were devised to insure that the eye at the midpoint of the lens received the appropriate energy and dose with a relative error of {plus minus} 5%. The fractionated regimen consisted of four exposures, each administered at 3 hour intervals. The reference radiations, 250 kVp X-rays, were administered in the same fashion but in doses ranging from .5 to 6.0 Gy. The animals are examined on a bi-weekly basis utilizing conventional slit-lamp biomicroscopy and the Scheimpflug Slit-lamp Imaging System. The follow-ups will continue throughout the lifespan of the animals. When opacification begins full documentation will involve the Zeiss imaging system and Oxford retroillumination photography. The processing routinely employs the Merriam/Focht scoring system for cross-referencing with previous cataract studies and establish cataractogenecity using a proven scoring method.

  3. Agriculture-related radiation dose calculations

    SciTech Connect

    Furr, J.M.; Mayberry, J.J.; Waite, D.A.

    1987-10-01

    Estimates of radiation dose to the public must be made at each stage in the identification and qualification process leading to siting a high-level nuclear waste repository. Specifically considering the ingestion pathway, this paper examines questions of reliability and adequacy of dose calculations in relation to five stages of data availability (geologic province, region, area, location, and mass balance) and three methods of calculation (population, population/food production, and food production driven). Calculations were done using the model PABLM with data for the Permian and Palo Duro Basins and the Deaf Smith County area. Extra effort expended in gathering agricultural data at succeeding environmental characterization levels does not appear justified, since dose estimates do not differ greatly; that effort would be better spent determining usage of food types that contribute most to the total dose; and that consumption rate and the air dispersion factor are critical to assessment of radiation dose via the ingestion pathway. 17 refs., 9 figs., 32 tabs.

  4. Ambient dose equivalents in TGFs

    NASA Astrophysics Data System (ADS)

    Celestin, Sebastien; Pincon, Jean-Louis; Trompier, Francois

    2017-04-01

    Terrestrial gamma-ray flashes (TGFs) are bursts of high-energy photons originating from the Earth's atmosphere in association with thunderstorm activity [e.g., Briggs et al., JGR, 118, 3805, 2013]. TGFs are associated with initial propagation stages of intracloud lightning, which represent the most frequent type of lightning discharges [e.g., Cummer et al., GRL, 42, 7792, 2015, and references therein]. TGFs are known to be produced inside common thunderclouds [e.g., Splitt et al., JGR, 115, A00E38, 2010] typically at altitudes ranging from 10 to 14 km [e.g., Cummer et al., GRL, 41, 8586, 2014]. The global TGF occurrence rate is estimated to be 400,000 per year concerning TGFs detectable by Fermi-GBM (Gamma ray Burst Monitor) [Briggs et al., 2013], but detailed analysis of satellite measurements [Østgaard et al., JGR, 117, A03327, 2012] and theoretical studies [Celestin et al., JGR, 120, 10712, 2015] suggest that it cannot be excluded that TGFs represent a part of a regular process taking place during the propagation of lightning discharges. It is important to assess the risk induced by TGFs for airline passengers and crews on board aircraft approaching thunderstorms. Dwyer et al. [JGR, 115, D09206, 2010] have estimated that if an aircraft were to find itself in the source electron beam giving rise to a TGF, passengers and crews might receive effective radiation doses above the regulatory limit depending on the beam diameter. Moreover, Tavani et al. [Nat. Hazards Earth Syst. Sci., 13, 1127, 2013] concluded that TGF-associated neutrons produced by photonuclear reactions would cause serious hazard on the aircraft avionics. In this work, we will present detailed simulation-based estimations of effective doses received by humans that would be irradiated by TGFs for various production altitudes and distances from the TGF source.

  5. Intensity-modulated radiosurgery: improving dose gradients and maximum dose using post inverse-optimization interactive dose shaping.

    PubMed

    Fuss, Martin; Salter, Bill J

    2007-06-01

    dose gradient, and increased maximum and mean target doses compared to clinically delivered plans that were already considered excellent. Gains were especially pronounced in the reduction of normal brain tissue included into the 90%, and 50% isodose lines. We have since made this process part of the clinical routine for all cranial IMRS procedures.

  6. 77 FR 36533 - Notice of Availability of the Benchmark Dose Technical Guidance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-19

    ... process involves evaluating the dose-response relationship between exposure to the agent and the observed effect. The dose-response assessment is a two-step process: (1) Defining a point of departure (POD); and... document discusses computation of BMD values and their confidence limits, data requirements, dose-...

  7. Visualization of a changing dose field.

    SciTech Connect

    Helm, T. M; Kornreich, D. E.

    2002-01-01

    To help visualize the results of dose modeling for nuclear materials processing opcrations, we have developed an integrated model that uses a simple dosc calculation tool to obtain estimates of the dose field in a complex geomctry and then post-process the data to produce a video of the now time-dependent data. We generate two-dimensional radiation fields within an existing physical cnvironment and then analyze them using three-dimensional visualization techniques. The radiation fields are generated for both neutrons and photons. Standard monoenergetic diffusion theory is used to estimate the neutron dosc fields. The photon dose is estimated using a point-kernel formalism, with photon shielding effects and buildup taken into account. The radiation field dynamics are analyzed by interleaving individual 3D graphic 'snapshots' into a smoothed, lime dependent, video-based display. In-the-room workers are 'seen' in the radiation fields via a graphical, 3D fly-through rendering of the room. Worker dose levels can reveal surprising dependencies on operational source placement, source types, worker alignment, shielding alignments, and indirect operations from external workers.

  8. Stop spoon dosing: milliliter instructions reduce inclination to spoon dosing.

    PubMed

    van Ittersum, Koert; Wansink, Brian

    2016-01-21

    Does the use of teaspoon units in dose recommendations on Drug Facts panels of liquid medicine lead to dosing errors and could any such errors be reduced if millimeter units were used instead? Participants given dosing instructions in teaspoon units were twice as likely to choose a kitchen teaspoon as those given instructions in milliliter units (31.3 vs. 15.4%). Our results suggest that spoon usage--and the inherent risk of dosage errors--could be reduced by more than 50% simply by changing the units of measurement given in dosing instructions.

  9. ["Dose-risk" relationships at low doses of radiation].

    PubMed

    Stefanou, E P

    1988-01-01

    The ionizing radiation is inherently harmful to human beings, and people must be protected from unnecessary or excessive exposure to it. The harmful nature of high doses of x rays has been known for many years. However, for low doses such as those commonly employed in dental radiographic procedures the magnitude of the risk (or even if there is a risk) remains uncertain. The purpose of this paper is to do an analysis of the Dose-risk relationships at low doses of radiation according to the latest recommendations and philosophy of the International Commission on Radiological Protection (ICRP).

  10. Radiation dose implications of airborne contaminant deposition to humans.

    PubMed

    Andersson, K G; Fogh, C L; Byrne, M A; Roed, J; Goddard, A J H; Hotchkiss, S A M

    2002-02-01

    In nuclear accident consequence assessment, dose contributions from radionuclide deposition on the human body have in the past generally been either ignored or estimated on the basis of rather simple models. Recent experimental work has improved the state of knowledge of relevant processes and parameter ranges. The results presented in this paper represent a first approach to a detailed assessment of doses from radiopollutant deposition on the human body, based on contaminant-specific data. Both the dose to skin from beta-emitters and the whole-body dose from gamma-emitters on body surfaces were found to give potentially significant contributions to dose. Further, skin penetration of some contaminants could lead to significant internal doses.

  11. In defence of collective dose.

    PubMed

    Fairlie, I; Sumner, D

    2000-03-01

    Recent proposals for a new scheme of radiation protection leave little room for collective dose estimations. This article discusses the history and present use of collective doses for occupational, ALARA, EIS and other purposes with reference to practical industry papers and government reports. The linear no-threshold (LNT) hypothesis suggests that collective doses which consist of very small doses added together should be used. Moral and ethical questions are discussed, particularly the emphasis on individual doses to the exclusion of societal risks, uncertainty over effects into the distant future and hesitation over calculating collective detriments. It is concluded that for moral, practical and legal reasons, collective dose is a valid parameter which should continue to be used.

  12. Dose from slow negative muons.

    PubMed

    Siiskonen, T

    2008-01-01

    Conversion coefficients from fluence to ambient dose equivalent, from fluence to maximum dose equivalent and quality factors for slow negative muons are examined in detail. Negative muons, when stopped, produce energetic photons, electrons and a variety of high-LET particles. Contribution from each particle type to the dose equivalent is calculated. The results show that for the high-LET particles the details of energy spectra and decay yields are important for accurate dose estimates. For slow negative muons the ambient dose equivalent does not always yield a conservative estimate for the protection quantities. Especially, the skin equivalent dose is strongly underestimated if the radiation-weighting factor of unity for slow muons is used. Comparisons to earlier studies are presented.

  13. Experimental evaluation of neutron dose in radiotherapy patients: Which dose?

    SciTech Connect

    Romero-Expósito, M. Domingo, C.; Ortega-Gelabert, O.; Gallego, S.; Sánchez-Doblado, F.

    2016-01-15

    Purpose: The evaluation of peripheral dose has become a relevant issue recently, in particular, the contribution of secondary neutrons. However, after the revision of the Recommendations of the International Commission on Radiological Protection, there has been a lack of experimental procedure for its evaluation. Specifically, the problem comes from the replacement of organ dose equivalent by the organ-equivalent dose, being the latter “immeasurable” by definition. Therefore, dose equivalent has to be still used although it needs the calculation of the radiation quality factor Q, which depends on the unrestricted linear energy transfer, for the specific neutron irradiation conditions. On the other hand, equivalent dose is computed through the radiation weighting factor w{sub R}, which can be easily calculated using the continuous function provided by the recommendations. The aim of the paper is to compare the dose equivalent evaluated following the definition, that is, using Q, with the values obtained by replacing the quality factor with w{sub R}. Methods: Dose equivalents were estimated in selected points inside a phantom. Two types of medical environments were chosen for the irradiations: a photon- and a proton-therapy facility. For the estimation of dose equivalent, a poly-allyl-diglicol-carbonate-based neutron dosimeter was used for neutron fluence measurements and, additionally, Monte Carlo simulations were performed to obtain the energy spectrum of the fluence in each point. Results: The main contribution to dose equivalent comes from neutrons with energy higher than 0.1 MeV, even when they represent the smallest contribution in fluence. For this range of energy, the radiation quality factor and the radiation weighting factor are approximately equal. Then, dose equivalents evaluated using both factors are compatible, with differences below 12%. Conclusions: Quality factor can be replaced by the radiation weighting factor in the evaluation of dose

  14. Comparing dose prediction software used to manage gentamicin dosing.

    PubMed

    Wong, C; Kumar, S S; Graham, G G; Begg, E J; Chin, P K L; Brett, J; Ray, J E; Marriott, D J E; Williams, K M; Day, R O

    2013-05-01

    Current Australian guidelines recommend initiating directed therapy of gentamicin if administration exceeds 48 h. Directed doses of gentamicin require the monitoring of plasma concentrations of gentamicin to determine the 24-h area under the time course of plasma gentamicin concentrations (AUC) and a dosage prediction program, for example TCIWorks or Aladdin. However, doses calculated by such programs have not been compared with an established program. To compare the directed dosage of gentamicin calculated by TCIWorks, Aladdin and an Excel-based program, with an established program, Abbottbase. Peak and trough plasma concentrations after the first and second administered doses of gentamicin were available from three patient groups (n = 20-23) with varying creatinine clearances (<40, 40-80, >80 mL/min). The directed dose needed to produce 24-h AUC values of 80 mg.h/L was calculated using each program. There was a strong correlation between the directed doses predicted by each of the three programs compared with Abbottbase, following the first administered dose (r(2) > 0.97, P < 0.0001). The mean ratio (90% confidence intervals) of these directed doses of the gentamicin were: TCIWorks/Abbottbase 106% (105-107%), Aladdin/Abbottbase 102% (101-103%) and Excel/Abbottbase 108% (106-109%). The correlations and dose ratios were also similar when comparisons were made following the second administered dose. For each of the three renal function groups, all programs yielded similar directed doses. The four programs used in the calculation of directed doses of gentamicin yielded similar results. Any would be suitable for use in clinical practice. © 2012 The Authors; Internal Medicine Journal © 2012 Royal Australasian College of Physicians.

  15. Experimental evaluation of neutron dose in radiotherapy patients: Which dose?

    PubMed

    Romero-Expósito, M; Domingo, C; Sánchez-Doblado, F; Ortega-Gelabert, O; Gallego, S

    2016-01-01

    The evaluation of peripheral dose has become a relevant issue recently, in particular, the contribution of secondary neutrons. However, after the revision of the Recommendations of the International Commission on Radiological Protection, there has been a lack of experimental procedure for its evaluation. Specifically, the problem comes from the replacement of organ dose equivalent by the organ-equivalent dose, being the latter "immeasurable" by definition. Therefore, dose equivalent has to be still used although it needs the calculation of the radiation quality factor Q, which depends on the unrestricted linear energy transfer, for the specific neutron irradiation conditions. On the other hand, equivalent dose is computed through the radiation weighting factor wR, which can be easily calculated using the continuous function provided by the recommendations. The aim of the paper is to compare the dose equivalent evaluated following the definition, that is, using Q, with the values obtained by replacing the quality factor with wR. Dose equivalents were estimated in selected points inside a phantom. Two types of medical environments were chosen for the irradiations: a photon- and a proton-therapy facility. For the estimation of dose equivalent, a poly-allyl-diglicol-carbonate-based neutron dosimeter was used for neutron fluence measurements and, additionally, Monte Carlo simulations were performed to obtain the energy spectrum of the fluence in each point. The main contribution to dose equivalent comes from neutrons with energy higher than 0.1 MeV, even when they represent the smallest contribution in fluence. For this range of energy, the radiation quality factor and the radiation weighting factor are approximately equal. Then, dose equivalents evaluated using both factors are compatible, with differences below 12%. Quality factor can be replaced by the radiation weighting factor in the evaluation of dose equivalent in radiotherapy environments simplifying the

  16. Dose to medium versus dose to water as an estimator of dose to sensitive skeletal tissue

    NASA Astrophysics Data System (ADS)

    Walters, B. R. B.; Kramer, R.; Kawrakow, I.

    2010-08-01

    The purpose of this study is to determine whether dose to medium, Dm, or dose to water, Dw, provides a better estimate of the dose to the radiosensitive red bone marrow (RBM) and bone surface cells (BSC) in spongiosa, or cancellous bone. This is addressed in the larger context of the ongoing debate over whether Dm or Dw should be specified in Monte Carlo calculated radiotherapy treatment plans. The study uses voxelized, virtual human phantoms, FAX06/MAX06 (female/male), incorporated into an EGSnrc Monte Carlo code to perform Monte Carlo dose calculations during simulated irradiation by a 6 MV photon beam from an Elekta SL25 accelerator. Head and neck, chest and pelvis irradiations are studied. FAX06/MAX06 include precise modelling of spongiosa based on µCT images, allowing dose to RBM and BSC to be resolved from the dose to bone. Modifications to the FAX06/MAX06 user codes are required to score Dw and Dm in spongiosa. Dose uncertainties of ~1% (BSC, RBM) or ~0.5% (Dm, Dw) are obtained after up to 5 days of simulations on 88 CPUs. Clinically significant differences (>5%) between Dm and Dw are found only in cranial spongiosa, where the volume fraction of trabecular bone (TBVF) is high (55%). However, for spongiosa locations where there is any significant difference between Dm and Dw, comparisons of differential dose volume histograms (DVHs) and average doses show that Dw provides a better overall estimate of dose to RBM and BSC. For example, in cranial spongiosa the average Dm underestimates the average dose to sensitive tissue by at least 5%, while average Dw is within ~1% of the average dose to sensitive tissue. Thus, it is better to specify Dw than Dm in Monte Carlo treatment plans, since Dw provides a better estimate of dose to sensitive tissue in bone, the only location where the difference is likely to be clinically significant.

  17. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-06-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Battelle Pacific Northwest Laboratories under contract with the Centers for Disease Control. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demography, food consumption, and agriculture; environmental pathways and dose estimates.

  18. Reference doses for dental radiography.

    PubMed

    Napier, I D

    1999-04-24

    To establish reference doses for use within dental radiography. Retrospective analysis, single centre. UK General Dental Practice, 1995-1998. A statistical analysis was performed on the results from NRPB evaluations of dental x-ray equipment within general practice. The third quartile patient entrance dose was determined from 6,344 assessments of intra-oral x-ray equipment. The third quartile dose-width product was determined from 387 assessments of panoramic x-ray equipment. The third quartile patient entrance dose for an adult mandibular molar intra-oral radiograph is 3.9 mGy. The third quartile dose-width product for a standard adult panoramic radiograph is 66.7 mGy mm. NRPB recommends the adoption of reference doses of 4 mGy for an adult mandibular molar intra-oral radiograph and 65 mGy mm for a standard adult panoramic radiograph. These reference values can be used as a guide to accepted clinical practice. Where radiography is carried out using doses above these reference values, a thorough review of radiographic practice should be made to either improve techniques, or justify keeping the current techniques. However, attainment of doses at or below the reference values cannot be construed as achievement of optimum performance; further dose reductions below the reference value are still practicable.

  19. Psychotropic dose equivalence in Japan.

    PubMed

    Inada, Toshiya; Inagaki, Ataru

    2015-08-01

    Psychotropic dose equivalence is an important concept when estimating the approximate psychotropic doses patients receive, and deciding on the approximate titration dose when switching from one psychotropic agent to another. It is also useful from a research viewpoint when defining and extracting specific subgroups of subjects. Unification of various agents into a single standard agent facilitates easier analytical comparisons. On the basis of differences in psychopharmacological prescription features, those of available psychotropic agents and their approved doses, and racial differences between Japan and other countries, psychotropic dose equivalency tables designed specifically for Japanese patients have been widely used in Japan since 1998. Here we introduce dose equivalency tables for: (i) antipsychotics; (ii) antiparkinsonian agents; (iii) antidepressants; and (iv) anxiolytics, sedatives and hypnotics available in Japan. Equivalent doses for the therapeutic effects of individual psychotropic compounds were determined principally on the basis of randomized controlled trials conducted in Japan and consensus among dose equivalency tables reported previously by psychopharmacological experts. As these tables are intended to merely suggest approximate standard values, physicians should use them with discretion. Updated information of psychotropic dose equivalence in Japan is available at http://www.jsprs.org/en/equivalence.tables/. [Correction added on 8 July 2015, after first online publication: A link to the updated information has been added.].

  20. REMEDIATION FACILITY WORKER DOSE ASSESSMENT

    SciTech Connect

    V. Arakali; E. Faillace

    2004-02-27

    The purpose of this design calculation is to estimate radiation doses received by personnel in the Remediation Facility performing operations to receive, prepare, open, repair, recover, disposition, and correct off-normal and non-standard conditions with casks, canisters, spent nuclear fuel (SNF) assemblies, and waste packages (WP). The specific scope of work contained in this calculation covers both collective doses and individual worker group doses on an annual basis, and includes the contributions due to external and internal radiation. The results of this calculation will be used to support the design of the Remediation Facility and provide occupational dose estimates for the License Application.

  1. Patient Dose in Diagnostic Radiology

    NASA Astrophysics Data System (ADS)

    Noel, Alain

    One of the basic principles, stated explicitly in Article 4 of the EC Council Directive 97/43 Euratom, is optimization. This means that all radiological examinations should be performed with a dose that is As Low As Reasonably Achievable (ALARA principle applied to the protection of the patient) in order to obtain the required diagnostic information. Therefore, dose needs to be determined with the relationship between image quality and dose always kept in mind. In this paper, radiation quantities and units to report patient doses in diagnostic radiology will be identified.

  2. Radiation dose in dental radiology.

    PubMed

    Cohnen, M; Kemper, J; Möbes, O; Pawelzik, J; Mödder, U

    2002-03-01

    The aim of this study was to compare radiation exposure in panoramic radiography (PR), dental CT, and digital volume tomography (DVT). An anthropomorphic Alderson-Rando phantom and two anatomical head phantoms with thermoluminescent dosimeters fixed at appropriate locations were exposed as in a dental examination. In PR and DVT, standard parameters were used while variables in CT included mA, pitch, and rotation time. Image noise was assessed in dental CT and DVT. Radiation doses to the skin and internal organs within the primary beam and resulting from scatter radiation were measured and expressed as maximum doses in mGy. For PR, DVT, and CT, these maximum doses were 0.65, 4.2, and 23 mGy. In dose-reduced CT protocols, radiation doses ranged from 10.9 to 6.1 mGy. Effective doses calculated on this basis showed values below 0.1 mSv for PR, DVT, and dose-reduced CT. Image noise was similar in DVT and low-dose CT. As radiation exposure and image noise of DVT is similar to low-dose CT, this imaging technique cannot be recommended as a general alternative to replace PR in dental radiology.

  3. Pediatric interventional radiology and dose-reduction techniques.

    PubMed

    Johnson, Craig; Martin-Carreras, Teresa; Rabinowitz, Deborah

    2014-08-01

    The pediatric interventional radiology community has worked diligently in recent years through education and the use of technology to incorporate numerous dose-reduction strategies. This article seeks to describe different strategies where we can significantly lower the dose to the pediatric patient undergoing a diagnostic or therapeutic image-guided procedure and, subsequently, lower the dose several fold to the staff and ourselves in the process. These strategies start with patient selection, dose awareness and monitoring, shielding, fluoroscopic techniques, and collimation. Advanced features such as cone-beam technology, dose-reduction image processing algorithms, overlay road mapping, and volumetric cross-sectional hybrid imaging are also discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Dose Estimation in Pediatric Nuclear Medicine.

    PubMed

    Fahey, Frederic H; Goodkind, Alison B; Plyku, Donika; Khamwan, Kitiwat; O'Reilly, Shannon E; Cao, Xinhua; Frey, Eric C; Li, Ye; Bolch, Wesley E; Sgouros, George; Treves, S Ted

    2017-03-01

    The practice of nuclear medicine in children is well established for imaging practically all physiologic systems but particularly in the fields of oncology, neurology, urology, and orthopedics. Pediatric nuclear medicine yields images of physiologic and molecular processes that can provide essential diagnostic information to the clinician. However, nuclear medicine involves the administration of radiopharmaceuticals that expose the patient to ionizing radiation and children are thought to be at a higher risk for adverse effects from radiation exposure than adults. Therefore it may be considered prudent to take extra care to optimize the radiation dose associated with pediatric nuclear medicine. This requires a solid understanding of the dosimetry associated with the administration of radiopharmaceuticals in children. Models for estimating the internal radiation dose from radiopharmaceuticals have been developed by the Medical Internal Radiation Dosimetry Committee of the Society of Nuclear Medicine and Molecular Imaging and other groups. But to use these models accurately in children, better pharmacokinetic data for the radiopharmaceuticals and anatomical models specifically for children need to be developed. The use of CT in the context of hybrid imaging has also increased significantly in the past 15 years, and thus CT dosimetry as it applies to children needs to be better understood. The concept of effective dose has been used to compare different practices involving radiation on a dosimetric level, but this approach may not be appropriate when applied to a population of children of different ages as the radiosensitivity weights utilized in the calculation of effective dose are not specific to children and may vary as a function of age on an organ-by-organ bias. As these gaps in knowledge of dosimetry and radiation risk as they apply to children are filled, more accurate models can be developed that allow for better approaches to dose optimization. In turn, this

  5. Dose prescription in boron neutron capture therapy

    SciTech Connect

    Gupta, N.M.S.; Gahbauer, R.A. ); Blue, T.E. ); Wambersie, A. )

    1994-03-30

    The purpose of this paper is to address some aspects of the many considerations that need to go into a dose prescription in boron neutron capture therapy (BNCT) for brain tumors; and to describe some methods to incorporate knowledge from animal studies and other experiments into the process of dose prescription. Previously, an algorithm to estimate the normal tissue tolerance to mixed high and low linear energy transfer radiations in BNCT was proposed. The authors have developed mathematical formulations and computational methods to represent this algorithm. Generalized models to fit the central axis dose rate components for an epithermal neutron field were also developed. These formulations and beam fitting models were programmed into spreadsheets to simulate two treatment techniques which are expected to be used in BNCT: a two-field bilateral scheme and a single-field treatment scheme. Parameters in these spreadsheets can be varied to represent the fractionation scheme used, the [sup 10]B microdistribution in normal tissue, and the ratio of [sup 10]B in tumor to normal tissue. Most of these factors have to be determined for a given neutron field and [sup 10]B compound combination from large animal studies. The spreadsheets have been programmed to integrate all of the treatment-related information and calculate the location along the central axis where the normal tissue tolerance is exceeded first. This information is then used to compute the maximum treatment time allowable and the maximum tumor dose that may be delivered for a given BNCT treatment. The effect of different treatment variables on the treatment time and tumor dose has been shown to be very significant. It has also been shown that the location of D[sub max] shifts significantly, depending on some of the treatment variables-mainly the fractionation scheme used. These results further emphasize the fact that dose prescription in BNCT is very complicated and nonintuitive. 11 refs., 6 figs., 3 tabs.

  6. Low Dose Ionizing Radiation Modulates Immune Function

    SciTech Connect

    Nelson, Gregory A.

    2016-01-12

    In order to examine the effects of low dose ionizing radiation on the immune system we chose to examine an amplified adaptive cellular immunity response. This response is Type IV delayed-type hypersensitivity also called contact hypersensitivity. The agent fluorescein isothiocyanate (FITC) is a low molecular weight, lipophilic, reactive, fluorescent molecule that can be applied to the skin where it (hapten) reacts with proteins (carriers) to become a complete antigen. Exposure to FITC leads to sensitization which is easily measured as a hypersensitivity inflammatory reaction following a subsequent exposure to the ear. Ear swelling, eosinophil infiltration, immunoglobulin E production and cytokine secretion patterns characteristic of a “Th2 polarized” immune response are the components of the reaction. The reaction requires successful implementation of antigen processing and presentation by antigen presenting Langerhans cells, communication with naïve T lymphocytes in draining lymph nodes, expansion of activated T cell clones, migration of activated T cells to the circulation, and recruitment of memory T cells, macrophages and eosinophils to the site of the secondary challenge. Using this model our approach was to quantify system function rather than relying only on indirect biomarkers of cell. We measured the FITC-induced hypersensitivity reaction over a range of doses from 2 cGy to 2 Gy. Irradiations were performed during key events or prior to key events to deplete critical cell populations. In addition to quantifying the final inflammatory response, we assessed cell populations in peripheral blood and spleen, cytokine signatures, IgE levels and expression of genes associated with key processes in sensitization and elicitation/recall. We hypothesized that ionizing radiation would produce a biphasic effect on immune system function resulting in an enhancement at low doses and a depression at higher doses and suggested that this transition would occur in the

  7. Effects of fragmentation parameter variations on estimates of galactic cosmic ray exposure: Dose sensitivity studies for aluminum shields

    NASA Technical Reports Server (NTRS)

    Townsend, Lawrence W.; Cucinotta, Francis A.; Shinn, Judy L.; Wilson, John W.

    1992-01-01

    Initial studies of the sensitivities of estimates of particle fluence, absorbed dose, and dose equivalent to fragmentation parameter variations are undertaken by using the LaRC galactic cosmic ray transport code (HZETRN). The new results, presented as a function of aluminum shield thickness, include upper and lower bounds on dose/dose equivalent corresponding to the physically realistic extremes of the fragmentation process and the percentage of variation of the dose/dose equivalent as a function of fragmentation parameter variation.

  8. Bayesian estimation of dose thresholds

    NASA Technical Reports Server (NTRS)

    Groer, P. G.; Carnes, B. A.

    2003-01-01

    An example is described of Bayesian estimation of radiation absorbed dose thresholds (subsequently simply referred to as dose thresholds) using a specific parametric model applied to a data set on mice exposed to 60Co gamma rays and fission neutrons. A Weibull based relative risk model with a dose threshold parameter was used to analyse, as an example, lung cancer mortality and determine the posterior density for the threshold dose after single exposures to 60Co gamma rays or fission neutrons from the JANUS reactor at Argonne National Laboratory. The data consisted of survival, censoring times and cause of death information for male B6CF1 unexposed and exposed mice. The 60Co gamma whole-body doses for the two exposed groups were 0.86 and 1.37 Gy. The neutron whole-body doses were 0.19 and 0.38 Gy. Marginal posterior densities for the dose thresholds for neutron and gamma radiation were calculated with numerical integration and found to have quite different shapes. The density of the threshold for 60Co is unimodal with a mode at about 0.50 Gy. The threshold density for fission neutrons declines monotonically from a maximum value at zero with increasing doses. The posterior densities for all other parameters were similar for the two radiation types.

  9. Single daily dosing of aminoglycosides.

    PubMed

    Preston, S L; Briceland, L L

    1995-01-01

    To evaluate the rationale behind dosing aminoglycosides as a single daily dose versus traditional dosing approaches, we conducted a MEDLINE search to identify all pertinent articles, and also reviewed the references of all articles. Single daily dosing of aminoglycosides is not a new concept, having been examined since 1974. The advantages of this regimen include optimum concentration-dependent bactericidal activity, longer dosing intervals due to the postantibiotic effect (PAE), and prevention of bacterial adaptive resistance. Because of longer dosing intervals, toxicity may also be delayed or reduced. Costs may be reduced due to decreased monitoring and administration. Clinically, the regimen has been implemented in various patient populations with reported success. Questions remain, however, about optimum dose, peak and trough serum concentrations, and dose adjustment in patients with renal impairment or neutropenia. More clinical experience with this method in large numbers of patients has to be published. Pharmacists can be instrumental in monitoring patients receiving once-daily therapy and by educating health care professionals as to the rationale behind the therapy.

  10. Dose metrology for DUV lithographic tools

    NASA Astrophysics Data System (ADS)

    Kivenzor, Gregory J.; Zimmerman, Richard

    2001-04-01

    The semiconductor industry is investigating metrology methods and tools to ensure the high accuracy and stability required for chip making. Lithography equipment manufacturers are under constant pressure to provide in situ measurements that prevent wafer processing form slipping from the established parameters. This is especially true for DUV exposure tools utilizing excimer lasers with high repetition rates. Dose metrology is one of the key parameters for linewidth control in photolithography. This paper discusses current developments in dose metrology for 248, 193, and 157 nm wavelengths. Particular emphasis is placed on the methodology to support dose stability over the lifetime of the tool. Aspects of tool-to-self and tool-to- tool matching are examined in detail, as well as the implications of the mix-and-match use of lithography equipment. To ensure the long-term accuracy of present tools, strong cooperation is needed within the semiconductor industry from suppliers and end users; and beyond, from standards organizations and international consortia. This paper describes the tasks that have to be accomplished to sustain the dose metrology during the transition from the existing tools to future generations of optical micro lithographic tools.

  11. Personnel Dose Assessment during Active Interrogation

    SciTech Connect

    Miller, Thomas Martin; Akkurt, Hatice; Patton, Bruce W

    2010-01-01

    A leading candidate in the detection of special nuclear material (SNM) is active interrogation (AI). Unlike passive interrogation, AI uses a source to enhance or create a detectable signal from SNM (usually fission), particularly in shielded scenarios or scenarios where the SNM has a low activity. The use of AI thus makes the detection of SNM easier or, in some scenarios, even enables previously impossible detection. During the development of AI sources, significant effort is put into determining the source strength required to detect SNM in specific scenarios. Usually during this process, but not always, an evaluation of personnel dose is also completed. In this instance personnel dose could involve any of the following: (1) personnel performing the AI; (2) unknown stowaways who are inside the object being interrogated; or (3) in clandestine interrogations, personnel who are known to be inside the object being interrogated but are unaware of the interrogation. In most instances, dose to anyone found smuggling SNM will be a secondary issue. However, for the organizations performing the AI, legal if not moral considerations should make dose to the personnel performing the AI, unknown stowaways, or innocent bystanders in clandestine interrogations a serious concern.

  12. Exercise Dose in Clinical Practice.

    PubMed

    Wasfy, Meagan M; Baggish, Aaron L

    2016-06-07

    There is wide variability in the physical activity patterns of the patients in contemporary clinical cardiovascular practice. This review is designed to address the impact of exercise dose on key cardiovascular risk factors and on mortality. We begin by examining the body of literature that supports a dose-response relationship between exercise and cardiovascular disease risk factors, including plasma lipids, hypertension, diabetes mellitus, and obesity. We next explore the relationship between exercise dose and mortality by reviewing the relevant epidemiological literature underlying current physical activity guideline recommendations. We then expand this discussion to critically examine recent data pertaining to the impact of exercise dose at the lowest and highest ends of the spectrum. Finally, we provide a framework for how the key concepts of exercise dose can be integrated into clinical practice.

  13. Exercise Dose in Clinical Practice

    PubMed Central

    Wasfy, Meagan; Baggish, Aaron L.

    2016-01-01

    There is wide variability in the physical activity patterns of the patients in contemporary clinical cardiovascular practice. This review is designed to address the impact of exercise dose on key cardiovascular risk factors and on mortality. We begin by examining the body of literature that supports a dose-response relationship between exercise and cardiovascular disease risk factors including plasma lipids, hypertension, diabetes mellitus, and obesity. We next explore the relationship between exercise dose and mortality by reviewing the relevant epidemiological literature underlying current physical activity guideline recommendations. We then expand this discussion to critically examine recent data pertaining to the impact of exercise dose at the lowest and highest ends of the spectrum. Finally, we provide a framework for how the key concepts of exercise dose can be integrated into clinical practice. PMID:27267537

  14. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.

    1990-09-01

    This monthly report summarizes the technical progress and project status for the Hanford Environmental Dose Reconstruction (HEDR) Project being conducted at the Pacific Northwest Laboratory (PNL) under the direction of a Technical Steering Panel (TSP). The TSP is composed of experts in numerous technical fields related to this project and represents the interests of the public. The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms, environmental transport, environmental monitoring data, demographics, agriculture, food habits, environmental pathways and dose estimates. 3 figs.

  15. Curtailing patient-specific IMRT QA procedures from 2D dose error distribution.

    PubMed

    Kurosu, Keita; Sumida, Iori; Mizuno, Hirokazu; Otani, Yuki; Oda, Michio; Isohashi, Fumiaki; Seo, Yuji; Suzuki, Osamu; Ogawa, Kazuhiko

    2016-06-01

    A patient-specific quality assurance (QA) test is conducted to verify the accuracy of dose delivery. It generally consists of three verification processes: the absolute point dose difference, the planar dose differences at each gantry angle, and the planar dose differences by 3D composite irradiation. However, this imposes a substantial workload on medical physicists. The objective of this study was to determine whether our novel method that predicts the 3D delivered dose allows certain patient-specific IMRT QAs to be curtailed. The object was IMRT QA for the pelvic region with regard to point dose and composite planar dose differences. We compared measured doses, doses calculated in the treatment planning system, and doses predicted by in-house software. The 3D predicted dose was reconstructed from the per-field measurement by incorporating the relative dose error distribution into the original dose grid of each beam. All point dose differences between the measured and the calculated dose were within ±3%, whereas 93.3% of them between the predicted and the calculated dose were within ±3%. As for planar dose differences, the gamma passing rates between the calculated and the predicted dose were higher than those between the calculated and the measured dose. Comparison and statistical analysis revealed a correlation between the predicted and the measured dose with regard to both point dose and planar dose differences. We concluded that the prediction-based approach is an accurate substitute for the conventional measurement-based approach in IMRT QA for the pelvic region. Our novel approach will help medical physicists save time on IMRT QA.

  16. Curtailing patient-specific IMRT QA procedures from 2D dose error distribution

    PubMed Central

    Kurosu, Keita; Sumida, Iori; Mizuno, Hirokazu; Otani, Yuki; Oda, Michio; Isohashi, Fumiaki; Seo, Yuji; Suzuki, Osamu; Ogawa, Kazuhiko

    2016-01-01

    A patient-specific quality assurance (QA) test is conducted to verify the accuracy of dose delivery. It generally consists of three verification processes: the absolute point dose difference, the planar dose differences at each gantry angle, and the planar dose differences by 3D composite irradiation. However, this imposes a substantial workload on medical physicists. The objective of this study was to determine whether our novel method that predicts the 3D delivered dose allows certain patient-specific IMRT QAs to be curtailed. The object was IMRT QA for the pelvic region with regard to point dose and composite planar dose differences. We compared measured doses, doses calculated in the treatment planning system, and doses predicted by in-house software. The 3D predicted dose was reconstructed from the per-field measurement by incorporating the relative dose error distribution into the original dose grid of each beam. All point dose differences between the measured and the calculated dose were within ±3%, whereas 93.3% of them between the predicted and the calculated dose were within ±3%. As for planar dose differences, the gamma passing rates between the calculated and the predicted dose were higher than those between the calculated and the measured dose. Comparison and statistical analysis revealed a correlation between the predicted and the measured dose with regard to both point dose and planar dose differences. We concluded that the prediction-based approach is an accurate substitute for the conventional measurement-based approach in IMRT QA for the pelvic region. Our novel approach will help medical physicists save time on IMRT QA. PMID:26661854

  17. Optimization of dosing regimens and dosing in special populations.

    PubMed

    Sime, F B; Roberts, M S; Roberts, J A

    2015-10-01

    Treatment of infectious diseases is becoming increasingly challenging with the emergence of less-susceptible organisms that are poorly responsive to existing antibiotic therapies, and the unpredictable pharmacokinetic alterations arising from complex pathophysiologic changes in some patient populations. In view of this fact, there has been a progressive work on novel dose optimization strategies to renew the utility of forgotten old antibiotics and to improve the efficacy of those currently in use. This review summarizes the different approaches of optimization of antibiotic dosing regimens and the special patient populations which may benefit most from these approaches. The existing methods are based on monitoring of antibiotic concentrations and/or use of clinical covariates. Measured concentrations can be correlated with predefined pharmacokinetic/pharmacodynamic targets to guide clinicians in predicting the necessary dose adjustment. Dosing nomograms are also available to relate observed concentrations or clinical covariates (e.g. creatinine clearance) with optimal dosing. More precise dose prediction based on observed covariates is possible through the application of population pharmacokinetic models. However, the most accurate estimation of individualized dosing requirements is achieved through Bayesian forecasting which utilizes both measured concentration and clinical covariates. Various software programs are emerging to ease clinical application. Whilst more studies are warranted to clarify the clinical outcomes associated with the different dose optimization approaches, severely ill patients in the course of marked infections and/or inflammation including those with sepsis, septic shock, severe trauma, burns injury, major surgery, febrile neutropenia, cystic fibrosis, organ dysfunction and obesity are those groups which may benefit most from individualized dosing.

  18. Radiation dose estimates for radiopharmaceuticals

    SciTech Connect

    Stabin, M.G.; Stubbs, J.B.; Toohey, R.E.

    1996-04-01

    Tables of radiation dose estimates based on the Cristy-Eckerman adult male phantom are provided for a number of radiopharmaceuticals commonly used in nuclear medicine. Radiation dose estimates are listed for all major source organs, and several other organs of interest. The dose estimates were calculated using the MIRD Technique as implemented in the MIRDOSE3 computer code, developed by the Oak Ridge Institute for Science and Education, Radiation Internal Dose Information Center. In this code, residence times for source organs are used with decay data from the MIRD Radionuclide Data and Decay Schemes to produce estimates of radiation dose to organs of standardized phantoms representing individuals of different ages. The adult male phantom of the Cristy-Eckerman phantom series is different from the MIRD 5, or Reference Man phantom in several aspects, the most important of which is the difference in the masses and absorbed fractions for the active (red) marrow. The absorbed fractions for flow energy photons striking the marrow are also different. Other minor differences exist, but are not likely to significantly affect dose estimates calculated with the two phantoms. Assumptions which support each of the dose estimates appears at the bottom of the table of estimates for a given radiopharmaceutical. In most cases, the model kinetics or organ residence times are explicitly given. The results presented here can easily be extended to include other radiopharmaceuticals or phantoms.

  19. Superficial dose evaluation of four dose calculation algorithms

    NASA Astrophysics Data System (ADS)

    Cao, Ying; Yang, Xiaoyu; Yang, Zhen; Qiu, Xiaoping; Lv, Zhiping; Lei, Mingjun; Liu, Gui; Zhang, Zijian; Hu, Yongmei

    2017-08-01

    Accurate superficial dose calculation is of major importance because of the skin toxicity in radiotherapy, especially within the initial 2 mm depth being considered more clinically relevant. The aim of this study is to evaluate superficial dose calculation accuracy of four commonly used algorithms in commercially available treatment planning systems (TPS) by Monte Carlo (MC) simulation and film measurements. The superficial dose in a simple geometrical phantom with size of 30 cm×30 cm×30 cm was calculated by PBC (Pencil Beam Convolution), AAA (Analytical Anisotropic Algorithm), AXB (Acuros XB) in Eclipse system and CCC (Collapsed Cone Convolution) in Raystation system under the conditions of source to surface distance (SSD) of 100 cm and field size (FS) of 10×10 cm2. EGSnrc (BEAMnrc/DOSXYZnrc) program was performed to simulate the central axis dose distribution of Varian Trilogy accelerator, combined with measurements of superficial dose distribution by an extrapolation method of multilayer radiochromic films, to estimate the dose calculation accuracy of four algorithms in the superficial region which was recommended in detail by the ICRU (International Commission on Radiation Units and Measurement) and the ICRP (International Commission on Radiological Protection). In superficial region, good agreement was achieved between MC simulation and film extrapolation method, with the mean differences less than 1%, 2% and 5% for 0°, 30° and 60°, respectively. The relative skin dose errors were 0.84%, 1.88% and 3.90%; the mean dose discrepancies (0°, 30° and 60°) between each of four algorithms and MC simulation were (2.41±1.55%, 3.11±2.40%, and 1.53±1.05%), (3.09±3.00%, 3.10±3.01%, and 3.77±3.59%), (3.16±1.50%, 8.70±2.84%, and 18.20±4.10%) and (14.45±4.66%, 10.74±4.54%, and 3.34±3.26%) for AXB, CCC, AAA and PBC respectively. Monte Carlo simulation verified the feasibility of the superficial dose measurements by multilayer Gafchromic films. And the rank

  20. Management of pediatric radiation dose using GE fluoroscopic equipment.

    PubMed

    Belanger, Barry; Boudry, John

    2006-09-01

    In this article, we present GE Healthcare's design philosophy and implementation of X-ray imaging systems with dose management for pediatric patients, as embodied in its current radiography and fluoroscopy and interventional cardiovascular X-ray product offerings. First, we present a basic framework of image quality and dose in the context of a cost-benefit trade-off, with the development of the concept of imaging dose efficiency. A set of key metrics of image quality and dose efficiency is presented, including X-ray source efficiency, detector quantum efficiency (DQE), detector dynamic range, and temporal response, with an explanation of the clinical relevance of each. Second, we present design methods for automatically selecting optimal X-ray technique parameters (kVp, mA, pulse width, and spectral filtration) in real time for various clinical applications. These methods are based on an optimization scheme where patient skin dose is minimized for a target desired image contrast-to-noise ratio. Operator display of skin dose and Dose-Area Product (DAP) is covered, as well. Third, system controls and predefined protocols available to the operator are explained in the context of dose management and the need to meet varying clinical procedure imaging demands. For example, fluoroscopic dose rate is adjustable over a range of 20:1 to adapt to different procedure requirements. Fourth, we discuss the impact of image processing techniques upon dose minimization. In particular, two such techniques, dynamic range compression through adaptive multiband spectral filtering and fluoroscopic noise reduction, are explored in some detail. Fifth, we review a list of system dose-reduction features, including automatic spectral filtration, virtual collimation, variable-rate pulsed fluoroscopic, grid and no-grid techniques, and fluoroscopic loop replay with store. In addition, we describe a new feature that automatically minimizes the patient-to-detector distance, along with an

  1. Single dose pharmacokinetics of trimethoprim.

    PubMed Central

    Rylance, G W; George, R H; Healing, D E; Roberts, D G

    1985-01-01

    Single oral dose trimethoprim pharmacokinetics were determined in 18 children aged 3 months to 13 years. Trimethoprim suspension was rapidly absorbed and quickly and widely distributed. The mean clearance was considerably faster and the elimination half life considerably shorter than values reported in adults. Only one third of the administered drug dose was recovered from the urine within 24 hours which is considerably less than in adults, suggesting that children may metabolise a greater proportion of the dose given. Urine trimethoprim concentrations greatly in excess of minimum inhibitory concentrations for common pathogens were rapidly achieved and sustained for at least 16 hours. PMID:3970564

  2. Single dose pharmacokinetics of trimethoprim.

    PubMed

    Rylance, G W; George, R H; Healing, D E; Roberts, D G

    1985-01-01

    Single oral dose trimethoprim pharmacokinetics were determined in 18 children aged 3 months to 13 years. Trimethoprim suspension was rapidly absorbed and quickly and widely distributed. The mean clearance was considerably faster and the elimination half life considerably shorter than values reported in adults. Only one third of the administered drug dose was recovered from the urine within 24 hours which is considerably less than in adults, suggesting that children may metabolise a greater proportion of the dose given. Urine trimethoprim concentrations greatly in excess of minimum inhibitory concentrations for common pathogens were rapidly achieved and sustained for at least 16 hours.

  3. ORGAN DOSES AND EFFECTIVE DOSE FOR FIVE PET RADIOPHARMACEUTICALS.

    PubMed

    Andersson, Martin; Johansson, Lennart; Mattsson, Sören; Minarik, David; Leide-Svegborn, Sigrid

    2016-06-01

    Diagnostic investigations with positron-emitting radiopharmaceuticals are dominated by (18)F-fluorodeoxyglucose ((18)F-FDG), but other radiopharmaceuticals are also commercially available or under development. Five of them, which are all clinically important, are (18)F-fluoride, (18)F-fluoroethyltyrosine ((18)F-FET), (18)F-deoxyfluorothymidine ((18)F-FLT), (18)F-fluorocholine ((18)F-choline) and (11)C-raclopride. To estimate the potential risk of stochastic effects (mainly lethal cancer) to a population, organ doses and effective dose values were updated for all five radiopharmaceuticals. Dose calculations were performed using the computer program IDAC2.0, which bases its calculations on the ICRP/ICRU adult reference voxel phantoms and the tissue weighting factors from ICRP publication 103. The biokinetic models were taken from ICRP publication 128. For organ doses, there are substantial changes. The only significant change in effective dose compared with previous estimations was a 46 % reduction for (18)F-fluoride. The estimated effective dose in mSv MBq(-1) was 1.5E-02 for (18)F-FET, 1.5E-02 for (18)F-FLT, 2.0E-02 for (18)F-choline, 9.0E-03 for (18)F-fluoride and 4.4E-03 for (11)C-raclopride.

  4. Characterization of infectious dose and lethal dose of two strains of infectious hematopoietic necrosis virus (IHNV).

    PubMed

    McKenney, Douglas G; Kurath, Gael; Wargo, Andrew R

    2016-03-02

    The ability to infect a host is a key trait of a virus, and differences in infectivity could put one virus at an evolutionary advantage over another. In this study we have quantified the infectivity of two strains of infectious hematopoietic necrosis virus (IHNV) that are known to differ in fitness and virulence. By exposing juvenile rainbow trout (Oncorhynchus mykiss) hosts to a wide range of virus doses, we were able to calculate the infectious dose in terms of ID50 values for the two genotypes. Lethal dose experiments were also conducted to confirm the virulence difference between the two virus genotypes, using a range of virus doses and holding fish either in isolation or in batch so as to calculate LD50 values. We found that infectivity is positively correlated with virulence, with the more virulent genotype having higher infectivity. Additionally, infectivity increases more steeply over a short range of doses compared to virulence, which has a shallower increase. We also examined the data using models of virion interaction and found no evidence to suggest that virions have either an antagonistic or a synergistic effect on each other, supporting the independent action hypothesis in the process of IHNV infection of rainbow trout.

  5. Characterization of infectious dose and lethal dose of two strains of infectious hematopoietic necrosis virus (IHNV)

    USGS Publications Warehouse

    McKenney, Douglas; Kurath, Gael; Wargo, Andrew

    2016-01-01

    The ability to infect a host is a key trait of a virus, and differences in infectivity could put one virus at an evolutionary advantage over another. In this study we have quantified the infectivity of two strains of infectious hematopoietic necrosis virus (IHNV) that are known to differ in fitness and virulence. By exposing juvenile rainbow trout (Oncorhynchus mykiss) hosts to a wide range of virus doses, we were able to calculate the infectious dose in terms of ID50 values for the two genotypes. Lethal dose experiments were also conducted to confirm the virulence difference between the two virus genotypes, using a range of virus doses and holding fish either in isolation or in batch so as to calculate LD50values. We found that infectivity is positively correlated with virulence, with the more virulent genotype having higher infectivity. Additionally, infectivity increases more steeply over a short range of doses compared to virulence, which has a shallower increase. We also examined the data using models of virion interaction and found no evidence to suggest that virions have either an antagonistic or a synergistic effect on each other, supporting the independent action hypothesis in the process of IHNV infection of rainbow trout.

  6. Disruptive Event Biosphere Dose Conversion Factor Analysis

    SciTech Connect

    M. A. Wasiolek

    2003-07-21

    This analysis report, ''Disruptive Event Biosphere Dose Conversion Factor Analysis'', is one of the technical reports containing documentation of the ERMYN (Environmental Radiation Model for Yucca Mountain Nevada) biosphere model for the geologic repository at Yucca Mountain, its input parameters, and the application of the model to perform the dose assessment for the repository. The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of the two reports that develop biosphere dose conversion factors (BDCFs), which are input parameters for the TSPA model. The ''Biosphere Model Report'' (BSC 2003 [DIRS 164186]) describes in detail the conceptual model as well as the mathematical model and lists its input parameters. Model input parameters are developed and described in detail in five analysis report (BSC 2003 [DIRS 160964], BSC 2003 [DIRS 160965], BSC 2003 [DIRS 160976], BSC 2003 [DIRS 161239], and BSC 2003 [DIRS 161241]). The objective of this analysis was to develop the BDCFs for the volcanic ash exposure scenario and the dose factors (DFs) for calculating inhalation doses during volcanic eruption (eruption phase of the volcanic event). The volcanic ash exposure scenario is hereafter referred to as the volcanic ash scenario. For the volcanic ash scenario, the mode of radionuclide release into the biosphere is a volcanic eruption through the repository with the resulting entrainment of contaminated waste in the tephra and the subsequent atmospheric transport and dispersion of contaminated material in the biosphere. The biosphere process

  7. Culmination of Low-Dose Pesticide Effects

    PubMed Central

    2013-01-01

    Pesticides applied in agriculture can affect the structure and function of nontarget populations at lower doses and for longer timespans than predicted by the current risk assessment frameworks. We identified a mechanism for this observation. The populations of an aquatic invertebrate (Culex pipiens) exposed over several generations to repeated pulses of low concentrations of the neonicotinoid insecticide (thiacloprid) continuously declined and did not recover in the presence of a less sensitive competing species (Daphnia magna). By contrast, in the absence of a competitor, insecticide effects on the more sensitive species were only observed at concentrations 1 order of magnitude higher, and the species recovered more rapidly after a contamination event. The underlying processes are experimentally identified and reconstructed using a simulation model. We conclude that repeated toxicant pulse of populations that are challenged with interspecific competition may result in a multigenerational culmination of low-dose effects. PMID:23859631

  8. Mesorad dose assessment model. Volume 1. Technical basis

    SciTech Connect

    Scherpelz, R.I.; Bander, T.J.; Athey, G.F.; Ramsdell, J.V.

    1986-03-01

    MESORAD is a dose assessment model for emergency response applications. Using release data for as many as 50 radionuclides, the model calculates: (1) external doses resulting from exposure to radiation emitted by radionuclides contained in elevated or deposited material; (2) internal dose commitment resulting from inhalation; and (3) total whole-body doses. External doses from airborne material are calculated using semi-infinite and finite cloud approximations. At each stage in model execution, the appropriate approximation is selected after considering the cloud dimensions. Atmospheric processes are represented in MESORAD by a combination of Lagrangian puff and Gaussian plume dispersion models, a source depletion (deposition velocity) dry deposition model, and a wet deposition model using washout coefficients based on precipitation rates.

  9. Dose-mass inverse optimization for minimally moving thoracic lesions.

    PubMed

    Mihaylov, I B; Moros, E G

    2015-05-21

    In the past decade, several different radiotherapy treatment plan evaluation and optimization schemes have been proposed as viable approaches, aiming for dose escalation or an increase of healthy tissue sparing. In particular, it has been argued that dose-mass plan evaluation and treatment plan optimization might be viable alternatives to the standard of care, which is realized through dose-volume evaluation and optimization. The purpose of this investigation is to apply dose-mass optimization to a cohort of lung cancer patients and compare the achievable healthy tissue sparing to that one achievable through dose-volume optimization. Fourteen non-small cell lung cancer (NSCLC) patient plans were studied retrospectively. The range of tumor motion was less than 0.5 cm and motion management in the treatment planning process was not considered. For each case, dose-volume (DV)-based and dose-mass (DM)-based optimization was performed. Nine-field step-and-shoot IMRT was used, with all of the optimization parameters kept the same between DV and DM optimizations. Commonly used dosimetric indices (DIs) such as dose to 1% the spinal cord volume, dose to 50% of the esophageal volume, and doses to 20 and 30% of healthy lung volumes were used for cross-comparison. Similarly, mass-based indices (MIs), such as doses to 20 and 30% of healthy lung masses, 1% of spinal cord mass, and 33% of heart mass, were also tallied. Statistical equivalence tests were performed to quantify the findings for the entire patient cohort. Both DV and DM plans for each case were normalized such that 95% of the planning target volume received the prescribed dose. DM optimization resulted in more organs at risk (OAR) sparing than DV optimization. The average sparing of cord, heart, and esophagus was 23, 4, and 6%, respectively. For the majority of the DIs, DM optimization resulted in lower lung doses. On average, the doses to 20 and 30% of healthy lung were lower by approximately 3 and 4%, whereas lung

  10. Dose-mass inverse optimization for minimally moving thoracic lesions

    NASA Astrophysics Data System (ADS)

    Mihaylov, I. B.; Moros, E. G.

    2015-05-01

    In the past decade, several different radiotherapy treatment plan evaluation and optimization schemes have been proposed as viable approaches, aiming for dose escalation or an increase of healthy tissue sparing. In particular, it has been argued that dose-mass plan evaluation and treatment plan optimization might be viable alternatives to the standard of care, which is realized through dose-volume evaluation and optimization. The purpose of this investigation is to apply dose-mass optimization to a cohort of lung cancer patients and compare the achievable healthy tissue sparing to that one achievable through dose-volume optimization. Fourteen non-small cell lung cancer (NSCLC) patient plans were studied retrospectively. The range of tumor motion was less than 0.5 cm and motion management in the treatment planning process was not considered. For each case, dose-volume (DV)-based and dose-mass (DM)-based optimization was performed. Nine-field step-and-shoot IMRT was used, with all of the optimization parameters kept the same between DV and DM optimizations. Commonly used dosimetric indices (DIs) such as dose to 1% the spinal cord volume, dose to 50% of the esophageal volume, and doses to 20 and 30% of healthy lung volumes were used for cross-comparison. Similarly, mass-based indices (MIs), such as doses to 20 and 30% of healthy lung masses, 1% of spinal cord mass, and 33% of heart mass, were also tallied. Statistical equivalence tests were performed to quantify the findings for the entire patient cohort. Both DV and DM plans for each case were normalized such that 95% of the planning target volume received the prescribed dose. DM optimization resulted in more organs at risk (OAR) sparing than DV optimization. The average sparing of cord, heart, and esophagus was 23, 4, and 6%, respectively. For the majority of the DIs, DM optimization resulted in lower lung doses. On average, the doses to 20 and 30% of healthy lung were lower by approximately 3 and 4%, whereas lung

  11. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    McMakin, A.H.; Cannon, S.D.; Finch, S.M.

    1992-07-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates. Progress is discussed.

  12. Gamma Radiation Doses In Sweden

    SciTech Connect

    Almgren, Sara; Isaksson, Mats; Barregaard, Lars

    2008-08-07

    Gamma dose rate measurements were performed in one urban and one rural area using thermoluminescence dosimeters (TLD) worn by 46 participants and placed in their dwellings. The personal effective dose rates were 0.096{+-}0.019(1 SD) and 0.092{+-}0.016(1 SD){mu}Sv/h in the urban and rural area, respectively. The corresponding dose rates in the dwellings were 0.11{+-}0.042(1 SD) and 0.091{+-}0.026(1 SD){mu}Sv/h. However, the differences between the areas were not significant. The values were higher in buildings made of concrete than of wood and higher in apartments than in detached houses. Also, {sup 222}Rn measurements were performed in each dwelling, which showed no correlation with the gamma dose rates in the dwellings.

  13. Minimal Erythema Dose (MED) Testing

    PubMed Central

    Heckman, Carolyn J.; Chandler, Rachel; Kloss, Jacqueline D.; Benson, Amy; Rooney, Deborah; Munshi, Teja; Darlow, Susan D.; Perlis, Clifford; Manne, Sharon L.; Oslin, David W.

    2013-01-01

    Ultraviolet radiation (UV) therapy is sometimes used as a treatment for various common skin conditions, including psoriasis, acne, and eczema. The dosage of UV light is prescribed according to an individual's skin sensitivity. Thus, to establish the proper dosage of UV light to administer to a patient, the patient is sometimes screened to determine a minimal erythema dose (MED), which is the amount of UV radiation that will produce minimal erythema (sunburn or redness caused by engorgement of capillaries) of an individual's skin within a few hours following exposure. This article describes how to conduct minimal erythema dose (MED) testing. There is currently no easy way to determine an appropriate UV dose for clinical or research purposes without conducting formal MED testing, requiring observation hours after testing, or informal trial and error testing with the risks of under- or over-dosing. However, some alternative methods are discussed. PMID:23748556

  14. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1991-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon and Washington, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on human (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data; Demographics, Agriculture, Food Habits and; Environmental Pathways and Dose Estimates.

  15. Dose limits for astronauts

    NASA Technical Reports Server (NTRS)

    Sinclair, W. K.

    2000-01-01

    Radiation exposures to individuals in space can greatly exceed natural radiation exposure on Earth and possibly normal occupational radiation exposures as well. Consequently, procedures limiting exposures would be necessary. Limitations were proposed by the Radiobiological Advisory Panel of the National Academy of Sciences/National Research Council in 1970. This panel recommended short-term limits to avoid deterministic effects and a single career limit (of 4 Sv) based on a doubling of the cancer risk in men aged 35 to 55. Later, when risk estimates for cancer had increased and were recognized to be age and sex dependent, the NCRP, in Report No. 98 in 1989, recommended a range of career limits based on age and sex from 1 to 4 Sv. NCRP is again in the process of revising recommendations for astronaut exposure, partly because risk estimates have increased further and partly to recognize trends in limiting radiation exposure occupationally on the ground. The result of these considerations is likely to be similar short-term limits for deterministic effects but modified career limits.

  16. Dose limits for astronauts.

    PubMed

    Sinclair, W K

    2000-11-01

    Radiation exposures to individuals in space can greatly exceed natural radiation exposure on Earth and possibly normal occupational radiation exposures as well. Consequently, procedures limiting exposures would be necessary. Limitations were proposed by the Radiobiological Advisory Panel of the National Academy of Sciences/National Research Council in 1970. This panel recommended short-term limits to avoid deterministic effects and a single career limit (of 4 Sv) based on a doubling of the cancer risk in men aged 35 to 55. Later, when risk estimates for cancer had increased and were recognized to be age and sex dependent, the NCRP, in Report No. 98 in 1989, recommended a range of career limits based on age and sex from 1 to 4 Sv. NCRP is again in the process of revising recommendations for astronaut exposure, partly because risk estimates have increased further and partly to recognize trends in limiting radiation exposure occupationally on the ground. The result of these considerations is likely to be similar short-term limits for deterministic effects but modified career limits.

  17. Phase 1 of the Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Not Available

    1991-08-01

    The work described in this report was prompted by the public's concern about potential effect from the radioactive materials released from the Hanford Site. The Hanford Environmental Dose Reconstruction (HEDR) Project was established to estimate radiation dose the public might have received from the Hanford Site since 1944, when facilities began operating. Phase 1 of the HEDR Project is a pilot'' or demonstration'' phase. The objectives of this initial phase were to determine whether enough historical information could be found or reconstructed to be used for dose estimation and develop and test conceptual and computational models for calculating credible dose estimates. Preliminary estimates of radiation doses were produced in Phase 1 because they are needed to achieve these objectives. The reader is cautioned that the dose estimates provided in this and other Phase 1 HEDR reports are preliminary. As the HEDR Project continues, the dose estimates will change for at least three reasons: more complete input information for models will be developed; the models themselves will be refined; and the size and shape of the geographic study area will change. This is one of three draft reports that summarize the first phase of the four-phased HEDR Project. This, the Summary Report, is directed to readers who want a general understanding of the Phase 1 work and preliminary dose estimates. The two other reports -- the Air Pathway Report and the Columbia River Pathway Report -- are for readers who understand the radiation dose assessment process and want to see more technical detail. Detailed descriptions of the dose reconstruction process are available in more than 20 supporting reports listed in Appendix A. 32 refs., 46 figs.

  18. Integrated retrospective radiation dose assessment.

    PubMed

    Goldman, M

    1997-01-01

    Radiation dose reconstruction is used to estimate exposure to radiation that has occurred externally, e.g., from an atomic bomb, or internally, e.g., from radionuclide ingestion. This commentary reviews techniques for biological dosimetry that have been developed to estimate radiation doses from internal exposures, but which can also be used to estimate external exposures. The author argues for increased development and use of these biological tools.

  19. 42 CFR 82.12 - Will it be possible to conduct dose reconstructions for all claims?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Will it be possible to conduct dose reconstructions... Dose Reconstruction Process § 82.12 Will it be possible to conduct dose reconstructions for all claims? It is uncertain whether adequate information of the types outlined under § 82.14 will be available to...

  20. The total ionizing dose effect in 12-bit, 125 MSPS analog-to-digital converters

    NASA Astrophysics Data System (ADS)

    Xue, Wu; Wu, Lu; Yudong, Li; Qi, Guo; Xin, Wang; Xingyao, Zhang; Xin, Yu; Wuying, Ma

    2014-04-01

    This paper presents the total ionizing dose test results at different biases and dose rates for AD9233, which is fabricated using a modern CMOS process. The experimental results show that the digital parts are more sensitive than the other parts. Power down is the worst-case bias, and this phenomenon is first found in the total ionizing dose effect of analog-to-digital converters. We also find that the AC as well as DC parameters are sensitive to the total ionizing dose at a high dose rate, whereas none of the parameters are sensitive at a low dose rate. The test facilities, results and analysis are presented in detail.

  1. Technical basis for dose reconstruction

    SciTech Connect

    Anspaugh, L.R.

    1996-01-31

    The purpose of this paper is to consider two general topics: technical considerations of why dose-reconstruction studies should or should not be performed and methods of dose reconstruction. The first topic is of general and growing interest as the number of dose-reconstruction studies increases, and one asks the question whether it is necessary to perform a dose reconstruction for virtually every site at which, for example, the Department of Energy (DOE) has operated a nuclear-related facility. And there is the broader question of how one might logically draw the line at performing or not performing dose-reconstruction (radiological and chemical) studies for virtually every industrial complex in the entire country. The second question is also of general interest. There is no single correct way to perform a dose-reconstruction study, and it is important not to follow blindly a single method to the point that cheaper, faster, more accurate, and more transparent methods might not be developed and applied.

  2. 3D dose computation algorithms

    NASA Astrophysics Data System (ADS)

    Knöös, T.

    2017-05-01

    The calculation of absorbed dose within patients during external photon beam radiotherapy is reviewed. This includes the modelling of the radiation source i.e. in most cases a linear accelerator (beam modelling) and examples of dose calculation algorithms applied within the patient i.e. the dose engine. For the first part - the beam modelling, the different sources in the treatment head as target, filters and collimators etc are discussed as well as their importance for the photon and electron fluence reaching the patient. The consequences of removing the flattening filter, which several vendors now have made commercially available, is also shown. The pros and cons regarding different dose engines ability to consider density changes within the patient will is covered (type a and b models). Engines covered are, for example, pencil-beam models, collapsed cone superposition/-convolution models and combinations of these, as well as a glimpse on Monte Carlo methods for radiotherapy. The different models’ ability to calculate dose to medium (tissue) and or water is. Finally, the role of commissioning data especially measurements in today’s model based dose calculation is presented.

  3. Fast dose calculation in magnetic fields with GPUMCD.

    PubMed

    Hissoiny, S; Raaijmakers, A J E; Ozell, B; Després, P; Raaymakers, B W

    2011-08-21

    A new hybrid imaging-treatment modality, the MRI-Linac, involves the irradiation of the patient in the presence of a strong magnetic field. This field acts on the charged particles, responsible for depositing dose, through the Lorentz force. These conditions require a dose calculation engine capable of taking into consideration the effect of the magnetic field on the dose distribution during the planning stage. Also in the case of a change in anatomy at the time of treatment, a fast online replanning tool is desirable. It is improbable that analytical solutions such as pencil beam calculations can be efficiently adapted for dose calculations within a magnetic field. Monte Carlo simulations have therefore been used for the computations but the calculation speed is generally too slow to allow online replanning. In this work, GPUMCD, a fast graphics processing unit (GPU)-based Monte Carlo dose calculation platform, was benchmarked with a new feature that allows dose calculations within a magnetic field. As a proof of concept, this new feature is validated against experimental measurements. GPUMCD was found to accurately reproduce experimental dose distributions according to a 2%-2 mm gamma analysis in two cases with large magnetic field-induced dose effects: a depth-dose phantom with an air cavity and a lateral-dose phantom surrounded by air. Furthermore, execution times of less than 15 s were achieved for one beam in a prostate case phantom for a 2% statistical uncertainty while less than 20 s were required for a seven-beam plan. These results indicate that GPUMCD is an interesting candidate, being fast and accurate, for dose calculations for the hybrid MRI-Linac modality.

  4. Advanced Computational Approaches for Characterizing Stochastic Cellular Responses to Low Dose, Low Dose Rate Exposures

    SciTech Connect

    Scott, Bobby, R., Ph.D.

    2003-06-27

    applications of NEOTRANS2, indicate that nonlinear threshold-type, dose-response relationships for excess stochastic effects (problematic nonlethal mutations, neoplastic transformation) should be expected after exposure to low linear energy transfer (LET) gamma rays or gamma rays in combination with high-LET alpha radiation. Similar thresholds are expected for low-dose-rate low-LET beta irradiation. We attribute the thresholds to low-dose, low-LET radiation induced protection against spontaneous mutations and neoplastic transformations. The protection is presumed mainly to involve selective elimination of problematic cells via apoptosis. Low-dose, low-LET radiation is presumed to trigger wide-area cell signaling, which in turn leads to problematic bystander cells (e.g., mutants, neoplastically transformed cells) selectively undergoing apoptosis. Thus, this protective bystander effect leads to selective elimination of problematic cells (a tissue cleansing process in vivo). However, this protective bystander effects is a different process from low-dose stimulation of the immune system. Low-dose, low-LET radiation stimulation of the immune system may explain why thresholds for inducing excess cancer appear much larger (possibly more than 100-fold larger) than thresholds for inducing excess mutations and neoplastic transformations, when the dose rate is low. For ionizing radiation, the current risk assessment paradigm is such that the relative risk (RR) is always ¡Ý 1, no matter how small the dose. Our research results indicate that for low-dose or low-dose-rate, low-LET irradiation, RR < 1 may be more the rule than the exception. Directly tied to the current RR paradigm are the billion-dollar cleanup costs for radionuclide-contaminated DOE sites. Our research results suggest that continued use of the current RR paradigm for which RR ¡Ý 1 could cause more harm than benefit to society (e.g., by spreading unwarranted fear about phantom excess risks associated with low-dose low

  5. A comparison of Canadian general pediatric dosing publications.

    PubMed

    Dayneka, Natalie

    2003-01-01

    A comparison of the general pediatric dosing guidelines published in Canada was conducted. Institutions that publish pediatric dosing guidelines as a separate publication or as part of the hospital formulary were mailed a survey of questions to describe their publication. Publications that met the inclusion criteria were evaluated using 12 assessment criteria: approval or submissions by medical specialty groups, drug inclusion, dosing guidelines, dosing in organ failure, pharmacokinetic/pharmacodynamic parameters, therapeutic guidelines, intravenous and oral administration guidelines, adverse drug reactions/drug interactions, referencing, drug acquisition costs, organization and readability. Four Canadian pediatric centres satisfied the criteria for publishing general pediatric dosing guidelines. These were reviewed by the process of formulary selection (in alphabetical order by city): Formulary of Drugs and Dosing Manual (Halifax), Formulary of Drugs (Toronto), Drug Dosage Guidelines and Formulary (Vancouver), and Pediatric Drug Dosage Handbook (Winnipeg). Dosing guidelines from published pediatric drug trials have been collated with institutional experience and historical practice to produce a practical source of pediatric dosing information.

  6. A TLD dose algorithm using artificial neural networks

    SciTech Connect

    Moscovitch, M.; Rotunda, J.E.; Tawil, R.A.; Rathbone, B.A.

    1995-12-31

    An artificial neural network was designed and used to develop a dose algorithm for a multi-element thermoluminescence dosimeter (TLD). The neural network architecture is based on the concept of functional links network (FLN). Neural network is an information processing method inspired by the biological nervous system. A dose algorithm based on neural networks is fundamentally different as compared to conventional algorithms, as it has the capability to learn from its own experience. The neural network algorithm is shown the expected dose values (output) associated with given responses of a multi-element dosimeter (input) many times. The algorithm, being trained that way, eventually is capable to produce its own unique solution to similar (but not exactly the same) dose calculation problems. For personal dosimetry, the output consists of the desired dose components: deep dose, shallow dose and eye dose. The input consists of the TL data obtained from the readout of a multi-element dosimeter. The neural network approach was applied to the Harshaw Type 8825 TLD, and was shown to significantly improve the performance of this dosimeter, well within the U.S. accreditation requirements for personnel dosimeters.

  7. [CUDA-based fast dose calculation in radiotherapy].

    PubMed

    Wang, Xianliang; Liu, Cao; Hou, Qing

    2011-10-01

    Dose calculation plays a key role in treatment planning of radiotherapy. Algorithms for dose calculation require high accuracy and computational efficiency. Finite size pencil beam (FSPB) algorithm is a method commonly adopted in the treatment planning system for radiotherapy. However, improvement on its computational efficiency is still desirable for such purpose as real time treatment planning. In this paper, we present an implementation of the FSPB, by which the most time-consuming parts in the algorithm are parallelized and ported on graphic processing unit (GPU). Compared with the FSPB completely running on central processing unit (CPU), the GPU-implemented FSPB can speed up the dose calculation for 25-35 times on a low price GPU (Geforce GT320) and for 55-100 times on a Tesla C1060, indicating that the GPU-implemented FSPB can provide fast enough dose calculations for real-time treatment planning.

  8. Key Technologies for Ultra High Dose CMOS Applications

    SciTech Connect

    Jeon, Y.; Koo, I.; Singh, V.; Oh, J.; Jin, S.; Lee, J.; Rouh, K.; Ju, M.; Jeon, S.; Ku, J.; Lee, S. B.; Lee, S. W.; Ok, M. T.; Butterbaugh, J.; Lee, A.; Kim, K.; Lee, S. W.; Ju, K. J.; Park, J. W.

    2008-11-03

    The trend towards shrinking advanced microelectronic Logic and DRAM devices will require ultra high dose implantation. One ultra high dose application in DRAM, being rapidly adopted in production is Dual Poly Gate (DPG). Three main challenges existed for the adoption of this high dose dual poly gate (DPG) doping applications: monitoring of high dose implantation, photoresist stripping and maintaining high throughput. In this paper we present how these challenges have been addressed. VSEA's plasma doping (PLAD) tool offers several unique advantages for DPG applications. When compared to conventional or molecular beam line implanters or other immersion techniques, PLAD delivers 3 to 7 times higher throughput (compared to traditional ion implanter) without dopant penetration through the thin doped polysilicon layer into the gate oxide. It also improves P{sup +} poly silicon DPG device properties at superior throughput. In this work we demonstrate how hot spray photoresist strip processing eliminates the need for multiple-tools required for wet+ash+wet process. In addition to PLAD's patented in-situ dose control metrology we also demonstrate an ex-situ high dose implantation metrology using spectroscopic ellipsometer (SE) and spectroscopic reflectometer (SR). The technique shows good correlation (R{sup 2}{approx}0.99) between implant dose and damaged layer thickness.

  9. A real time dose monitoring and dose reconstruction tool for patient specific VMAT QA and delivery

    SciTech Connect

    Tyagi, Neelam; Yang Kai; Gersten, David; Yan Di

    2012-12-15

    Purpose: To develop a real time dose monitoring and dose reconstruction tool to identify and quantify sources of errors during patient specific volumetric modulated arc therapy (VMAT) delivery and quality assurance. Methods: The authors develop a VMAT delivery monitor tool called linac data monitor that connects to the linac in clinical mode and records, displays, and compares real time machine parameters with the planned parameters. A new measure, called integral error, keeps a running total of leaf overshoot and undershoot errors in each leaf pair, multiplied by leaf width, and the amount of time during which the error exists in monitor unit delivery. Another tool reconstructs Pinnacle{sup 3} Trade-Mark-Sign format delivered plan based on the saved machine logfile and recalculates actual delivered dose in patient anatomy. Delivery characteristics of various standard fractionation and stereotactic body radiation therapy (SBRT) VMAT plans delivered on Elekta Axesse and Synergy linacs were quantified. Results: The MLC and gantry errors for all the treatment sites were 0.00 {+-} 0.59 mm and 0.05 {+-} 0.31 Degree-Sign , indicating a good MLC gain calibration. Standard fractionation plans had a larger gantry error than SBRT plans due to frequent dose rate changes. On average, the MLC errors were negligible but larger errors of up to 6 mm and 2.5 Degree-Sign were seen when dose rate varied frequently. Large gantry errors occurred during the acceleration and deceleration process, and correlated well with MLC errors (r= 0.858, p= 0.0004). PTV mean, minimum, and maximum dose discrepancies were 0.87 {+-} 0.21%, 0.99 {+-} 0.59%, and 1.18 {+-} 0.52%, respectively. The organs at risk (OAR) doses were within 2.5%, except some OARs that showed up to 5.6% discrepancy in maximum dose. Real time displayed normalized total positive integral error (normalized to the total monitor units) correlated linearly with MLC (r= 0.9279, p < 0.001) and gantry errors (r= 0.742, p= 0.005). There

  10. Technical Note: scuda: A software platform for cumulative dose assessment.

    PubMed

    Park, Seyoun; McNutt, Todd; Plishker, William; Quon, Harry; Wong, John; Shekhar, Raj; Lee, Junghoon

    2016-10-01

    Accurate tracking of anatomical changes and computation of actually delivered dose to the patient are critical for successful adaptive radiation therapy (ART). Additionally, efficient data management and fast processing are practically important for the adoption in clinic as ART involves a large amount of image and treatment data. The purpose of this study was to develop an accurate and efficient Software platform for CUmulative Dose Assessment (scuda) that can be seamlessly integrated into the clinical workflow. scuda consists of deformable image registration (DIR), segmentation, dose computation modules, and a graphical user interface. It is connected to our image PACS and radiotherapy informatics databases from which it automatically queries/retrieves patient images, radiotherapy plan, beam data, and daily treatment information, thus providing an efficient and unified workflow. For accurate registration of the planning CT and daily CBCTs, the authors iteratively correct CBCT intensities by matching local intensity histograms during the DIR process. Contours of the target tumor and critical structures are then propagated from the planning CT to daily CBCTs using the computed deformations. The actual delivered daily dose is computed using the registered CT and patient setup information by a superposition/convolution algorithm, and accumulated using the computed deformation fields. Both DIR and dose computation modules are accelerated by a graphics processing unit. The cumulative dose computation process has been validated on 30 head and neck (HN) cancer cases, showing 3.5 ± 5.0 Gy (mean±STD) absolute mean dose differences between the planned and the actually delivered doses in the parotid glands. On average, DIR, dose computation, and segmentation take 20 s/fraction and 17 min for a 35-fraction treatment including additional computation for dose accumulation. The authors developed a unified software platform that provides accurate and efficient monitoring of

  11. Ultraviolet Radiation Dose National Standard of México

    NASA Astrophysics Data System (ADS)

    Cardoso, R.; Rosas, E.

    2006-09-01

    We present the Ultraviolet (UV) Radiation Dose National Standard for México. The establishment of this measurement reference at Centro Nacional de Metrología (CENAM) eliminates the need of contacting foreign suppliers in the search for traceability towards the SI units when calibrating instruments at 365 nm. Further more, the UV Radiation Dose National Standard constitutes a highly accurate and reliable source for the UV radiation dose measurements performed in medical and cosmetic treatments as in the the food and pharmaceutics disinfection processes, among other.

  12. HEDR model validation plan. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Napier, B.A.; Gilbert, R.O.; Simpson, J.C.; Ramsdell, J.V. Jr.; Thiede, M.E.; Walters, W.H.

    1993-06-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project has developed a set of computational ``tools`` for estimating the possible radiation dose that individuals may have received from past Hanford Site operations. This document describes the planned activities to ``validate`` these tools. In the sense of the HEDR Project, ``validation`` is a process carried out by comparing computational model predictions with field observations and experimental measurements that are independent of those used to develop the model.

  13. Disruptive Event Biosphere Dose Conversion Factor Analysis

    SciTech Connect

    M. Wasiolek

    2004-09-08

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the volcanic ash exposure scenario, and the development of dose factors for calculating inhalation dose during volcanic eruption. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop biosphere BDCFs, which are input parameters for the TSPA model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed descriptions of the model input parameters, their development and the relationship between the parameters and specific features, events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the volcanic ash exposure scenario. This analysis receives direct input from the outputs of the ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) and from the five analyses that develop parameter values for the biosphere model (BSC 2004 [DIRS 169671]; BSC 2004 [DIRS 169672]; BSC 2004 [DIRS 169673]; BSC 2004 [DIRS 169458]; and BSC 2004 [DIRS 169459]). The results of this report are further analyzed in the ''Biosphere Dose Conversion Factor Importance and Sensitivity Analysis''. The objective of this analysis was to develop the BDCFs for the volcanic ash

  14. Effective doses, guidelines & regulations.

    PubMed

    Burch, Michael D

    2008-01-01

    categories usually required to satisfy comprehensive risk assessment process for the major toxins to currently adopt any of the international guidelines as regulations in the US. The major limitations that need to be overcome include: the capacity to deal with multiple toxin congeners, the absence of robust analytical methods for compliance monitoring, and the absence of certified toxin standards to support analyses. However, the current WHO provisional guideline for microcystin-LR, or the other national guideline variants that are based upon it, (e.g., Canadian, Australian) may be appropriate to adopt as a health advisory in the short-term, while regulations are developed. The bathing and recreationa water guidelines developed in other countries could also be translated fo use as recreational water guidelines situation in the US.

  15. DISRUPTION OF SENSORY GATING BY MODERATE ALCOHOL DOSES

    PubMed Central

    Sklar, Alfredo L.; Nixon, Sara Jo

    2014-01-01

    Rationale Evidence from a growing body of literature suggests that alcohol, even at moderate dose levels, disrupts the ability to ignore distractors. However, little work has been done to elucidate the neural processes underlying this deficit. Objective The present study was conducted to determine if low-to-moderate alcohol doses affect sensory gating, an electrophysiological phenomenon believed to reflect the pre-attentive filtering of irrelevant sensory information. Methods Sixty social drinkers were administered one of three doses intended to produce breath alcohol concentrations of 0.0% (placebo), .04% (i.e., low dose), and .065% (i.e., moderate dose). A paired-click paradigm consisting of 100 pairs of identical tones (S1 and S2) was used to assess sensory gating. Amplitudes of the P50, N100 and P200 auditory evoked potentials (AEPs) were used to calculate gating difference (S1 – S2) and ratio (S2/S1) scores. Results The moderate alcohol dose significantly decreased P50 and N100 gating relative to placebo. Comparisons between the difference and ratio scores helped characterize the gating mechanisms affected at these stages of information processing. Alcohol did not alter P200 sensory gating. Conclusions These data suggest that alcohol disrupts pre-attentional sensory filtering processes at BrACs below the current .08% legal limit. Future studies should perform a combined assessment of sensory gating and selective attention to better understand the relationship between these two alcohol-induced deficits. PMID:24800896

  16. Multigroup neutron dose calculations for proton therapy

    SciTech Connect

    Kelsey Iv, Charles T; Prinja, Anil K

    2009-01-01

    We have developed tools for the preparation of coupled multigroup proton/neutron cross section libraries. Our method is to use NJOY to process evaluated nuclear data files for incident particles below 150 MeV and MCNPX to produce data for higher energies. We modified the XSEX3 program of the MCNPX code system to produce Legendre expansions of scattering matrices generated by sampling the physics models that are comparable to the output of the GROUPR routine of NJOY. Our code combines the low and high energy scattering data with user input stopping powers and energy deposition cross sections that we also calculated using MCNPX. Our code also calculates momentum transfer coefficients for the library and optionally applies an energy straggling model to the scattering cross sections and stopping powers. The motivation was initially for deterministic solution of space radiation shielding calculations using Attila, but noting that proton therapy treatment planning may neglect secondary neutron dose assessments because of difficulty and expense, we have also investigated the feasibility of multi group methods for this application. We have shown that multigroup MCNPX solutions for secondary neutron dose compare well with continuous energy solutions and are obtainable with less than half computational cost. This efficiency comparison neglects the cost of preparing the library data, but this becomes negligible when distributed over many multi group calculations. Our deterministic calculations illustrate recognized obstacles that may have to be overcome before discrete ordinates methods can be efficient alternatives for proton therapy neutron dose calculations.

  17. The biologically effective dose in inhalation nanotoxicology.

    PubMed

    Donaldson, Ken; Schinwald, Anja; Murphy, Fiona; Cho, Wan-Seob; Duffin, Rodger; Tran, Lang; Poland, Craig

    2013-03-19

    In all branches of toxicology, the biologically effective dose (BED) is the fraction of the total dose of a toxin that actually drives any toxic effect. Knowledge of the BED has a number of applications including in building structure-activity relationships, the selection of metrics, the design of safe particles, and the determination of when a nanoparticle (NP) can be considered to be "new" for regulatory purposes. In particle toxicology, we define the BED as "the entity within any dose of particles in tissue that drives a critical pathophysiogically relevant form of toxicity (e.g., oxidative stress, inflammation, genotoxicity, or proliferation) or a process that leads to it." In conventional chemical toxicology, researchers generally use the mass as the metric to describe dose (such as mass per unit tissue or cells in culture) because of its convenience. Concentration, calculated from mass, may also figure in any description of dose. In the case of a nanoparticle dose, researchers use either the mass or the surface area. The mass of nanoparticles is not the only driver of their activity: the surfaces of insoluble particles interact with biological systems, and soluble nanoparticles can release factors that interact with these systems. Nanoparticle shape can modify activity. In this Account, we describe the current knowledge of the BED as it pertains to different NP types. Soluble toxins released by NPs represent one potential indicator of BED for wholly or partially soluble NPs composed of copper or zinc. Rapid dissolution of these NPs into their toxic ions in the acidic environment of the macrophage phagolysosome causes those ions to accumulate, which leads to lysosome destabilization and inflammation. In contrast, soluble NPs that release low toxicity ions, such as magnesium oxide NPs, are not inflammogenic. For insoluble NPs, ζ potential can serve as a BED measurement because the exposure of the particle surface to the acidic milieu of the phagolysosome and

  18. Peripheral doses from pediatric IMRT

    SciTech Connect

    Klein, Eric E.; Maserang, Beth; Wood, Roy; Mansur, David

    2006-07-15

    Peripheral dose (PD) data exist for conventional fields ({>=}10 cm) and intensity-modulated radiotherapy (IMRT) delivery to standard adult-sized phantoms. Pediatric peripheral dose reports are limited to conventional therapy and are model based. Our goal was to ascertain whether data acquired from full phantom studies and/or pediatric models, with IMRT treatment times, could predict Organ at Risk (OAR) dose for pediatric IMRT. As monitor units (MUs) are greater for IMRT, it is expected IMRT PD will be higher; potentially compounded by decreased patient size (absorption). Baseline slab phantom peripheral dose measurements were conducted for very small field sizes (from 2 to 10 cm). Data were collected at distances ranging from 5 to 72 cm away from the field edges. Collimation was either with the collimating jaws or the multileaf collimator (MLC) oriented either perpendicular or along the peripheral dose measurement plane. For the clinical tests, five patients with intracranial or base of skull lesions were chosen. IMRT and conventional three-dimensional (3D) plans for the same patient/target/dose (180 cGy), were optimized without limitation to the number of fields or wedge use. Six MV, 120-leaf MLC Varian axial beams were used. A phantom mimicking a 3-year-old was configured per Center for Disease Control data. Micro (0.125 cc) and cylindrical (0.6 cc) ionization chambers were appropriated for the thyroid, breast, ovaries, and testes. The PD was recorded by electrometers set to the 10{sup -10} scale. Each system set was uniquely calibrated. For the slab phantom studies, close peripheral points were found to have a higher dose for low energy and larger field size and when MLC was not deployed. For points more distant from the field edge, the PD was higher for high-energy beams. MLC orientation was found to be inconsequential for the small fields tested. The thyroid dose was lower for IMRT delivery than that predicted for conventional (ratio of IMRT/cnventional ranged

  19. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S. M.; McMakin, A. H.

    1991-09-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation dose that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into five technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (i.e., dose estimates). The Source Terms Task develops estimates of radioactive emissions from Hanford facilities since 1944. The Environmental Transport Task reconstructs the movements of radioactive particles from the areas of release to populations. The Environmental Monitoring Data Task assemblies, evaluates and reports historical environmental monitoring data. The Demographics, Agriculture and Food Habits Task develops the data needed to identify the populations that could have been affected by the releases. The Environmental Pathways and Dose Estimates Task used the information derived from the other Tasks to estimate the radiation doses individuals could have received from Hanford radiation. This document lists the progress on this project as of September 1991. 3 figs., 2 tabs.

  20. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.

    1990-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates). The Source Terms Task develops estimates of radioactive emissions from Hanford facilities since 1944. The Environmental Transport Task reconstructs the movement of radioactive materials from the areas of release to populations. The Environmental Monitoring Data Task assembles, evaluates, and reports historical environmental monitoring data. The Demographics, Agriculture, Food Habits Task develops the data needed to identify the populations that could have been affected by the releases. In addition to population and demographic data, the food and water resources and consumption patterns for populations are estimated because they provide a primary pathway for the intake of radionuclides. The Environmental Pathways and Dose Estimates Task use the information produced by the other tasks to estimate the radiation doses populations could have received from Hanford radiation. Project progress is documented in this monthly report, which is available to the public. 3 figs., 3 tabs.

  1. Notes on the effect of dose uncertainty

    SciTech Connect

    Morris, M.D.

    1987-01-01

    The apparent dose-response relationship between amount of exposure to acute radiation and level of mortality in humans is affected by uncertainties in the dose values. It is apparent that one of the greatest concerns regarding the human data from Hiroshima and Nagasaki is the unexpectedly shallow slope of the dose response curve. This may be partially explained by uncertainty in the dose estimates. Some potential effects of dose uncertainty on the apparent dose-response relationship are demonstrated.

  2. Nominal Performance Biosphere Dose Conversion Factor Analysis

    SciTech Connect

    Wasiolek, Maryla A.

    2000-12-21

    The purpose of this report was to document the process leading to development of the Biosphere Dose Conversion Factors (BDCFs) for the postclosure nominal performance of the potential repository at Yucca Mountain. BDCF calculations concerned twenty-four radionuclides. This selection included sixteen radionuclides that may be significant nominal performance dose contributors during the compliance period of up to 10,000 years, five additional radionuclides of importance for up to 1 million years postclosure, and three relatively short-lived radionuclides important for the human intrusion scenario. Consideration of radionuclide buildup in soil caused by previous irrigation with contaminated groundwater was taken into account in the BDCF development. The effect of climate evolution, from the current arid conditions to a wetter and cooler climate, on the BDCF values was evaluated. The analysis included consideration of different exposure pathway's contribution to the BDCFs. Calculations of nominal performance BDCFs used the GENII-S computer code in a series of probabilistic realizations to propagate the uncertainties of input parameters into the output. BDCFs for the nominal performance, when combined with the concentrations of radionuclides in groundwater allow calculation of potential radiation doses to the receptor of interest. Calculated estimates of radionuclide concentration in groundwater result from the saturated zone modeling. The integration of the biosphere modeling results (BDCFs) with the outcomes of the other component models is accomplished in the Total System Performance Assessment (TSPA) to calculate doses to the receptor of interest from radionuclides postulated to be released to the environment from the potential repository at Yucca Mountain.

  3. The Northern Marshall Islands radiological survey: Data and dose assessments

    SciTech Connect

    Robison, W.L.; Noshkin, V.E.; Conrado, C.L.

    1997-07-01

    Fallout from atmospheric nuclear tests, especially from those conducted at the Pacific Proving Grounds between 1946 and 1958, contaminated areas of the Northern Marshall Islands. A radiological survey at some Northern Marshall Islands was conducted from September through November 1978 to evaluate the extent of residual radioactive contamination. The atolls included in the Northern Marshall Islands Radiological Survey (NMIRS) were Likiep, Ailuk, Utirik, Wotho, Ujelang, Taka, Rongelap, Rongerik, Bikar, Ailinginae, and Mejit and Jemo Islands. The original test sites, Bikini and Enewetak Atolls, were also visited on the survey. An aerial survey was conducted to determine the external gamma exposure rate. Terrestrial (soil, food crops, animals, and native vegetation), cistern and well water samples, and marine (sediment, seawater, fish and clams) samples were collected to evaluate radionuclide concentrations in the atoll environment. Samples were processed and analyzed for {sup 137}Cs, {sup 90}Sr, {sup 239+240}Pu and {sup 241}Am. The dose from the ingestion pathway was calculated using the radionuclide concentration data and a diet model for local food, marine, and water consumption. The ingestion pathway contributes 70% to 90% of the estimated dose. Approximately 95% of the dose is from {sup 137}Cs accounts for about 10% to 30% of the dose. {sup 239+240}Pu and {sup 241}Am are the major contributors to dose via the inhalation pathway; however, inhalation accounts for only about 1% of the total estimated dose, based on surface soil levels and resuspension studies. All doses are computed for concentrations decay corrected to 1996. The maximum annual effective dose from manmade radionuclides at these atolls ranges from .02 mSv y{sup -1}. The background dose in the Marshall Islands is estimated to be 2.4 mSv y{sup -1} to 4.5 mSv y{sup -1}. The 50-y integral dose ranges from 0.5 to 65 mSv. 35 refs., 2 figs., 9 tabs.

  4. Parameterization of solar flare dose

    SciTech Connect

    Lamarche, A.H.; Poston, J.W.

    1996-12-31

    A critical aspect of missions to the moon or Mars will be the safety and health of the crew. Radiation in space is a hazard for astronauts, especially high-energy radiation following certain types of solar flares. A solar flare event can be very dangerous if astronauts are not adequately shielded because flares can deliver a very high dose in a short period of time. The goal of this research was to parameterize solar flare dose as a function of time to see if it was possible to predict solar flare occurrence, thus providing a warning time. This would allow astronauts to take corrective action and avoid receiving a dose greater than the recommended limit set by the National Council on Radiation Protection and Measurements (NCRP).

  5. Radiation Dose from Reentrant Electrons

    NASA Technical Reports Server (NTRS)

    Badhwar, G.D.; Cleghorn, T. E.; Watts, J.

    2003-01-01

    In estimating the crew exposures during an EVA, the contribution of reentrant electrons has always been neglected. Although the flux of these electrons is small compared to the flux of trapped electrons, their energy spectrum extends to several GeV compared to about 7 MeV for trapped electrons. This is also true of splash electrons. Using the measured reentrant electron energy spectra, it is shown that the dose contribution of these electrons to the blood forming organs (BFO) is more than 10 times greater than that from the trapped electrons. The calculations also show that the dose-depth response is a very slowly changing function of depth, and thus adding reasonable amounts of additional shielding would not significantly lower the dose to BFO.

  6. Mask model calibration for MPC applications utilizing shot dose assignment

    NASA Astrophysics Data System (ADS)

    Bork, Ingo; Buck, Peter; Paninjath, Sankaranarayanan; Mishra, Kushlendra; Bürgel, Christian; Standiford, Keith; Chua, Gek Soon

    2014-10-01

    Shrinking feature sizes and the need for tighter CD (Critical Dimension) control require the introduction of new technologies in mask making processes. One of those methods is the dose assignment of individual shots on VSB (Variable Shaped Beam) mask writers to compensate CD non-linearity effects and improve dose edge slope. Using increased dose levels only for most critical features, generally only for the smallest CDs on a mask, the change in mask write time is minimal while the increase in image quality can be significant. However, this technology requires accurate modeling of the mask effects, especially the CD/dose dependencies. This paper describes a mask model calibration flow for Mask Process Correction (MPC) applications with shot dose assignment. The first step in the calibration flow is the selection of appropriate test structures. For this work, a combination of linespace patterns as well as a series of contact patterns are used for calibration. Features sizes vary from 34 nm up to several micrometers in order to capture a wide range of CDs and pattern densities. After mask measurements are completed the results are carefully analyzed and measurements very close to the process window limitation and outliers are removed from the data set. One key finding in this study is that by including patterns exposed at various dose levels the simulated contours of the calibrated model very well match the SEM contours even if the calibration was based entirely on gauge based CD values. In the calibration example shown in this paper, only 1D line and space measurements as well as 1D contact measurements are used for calibration. However, those measurements include patterns exposed at dose levels between 75% and 150% of the nominal dose. The best model achieved in this study uses 2 e-beam kernels and 4 kernels for the simulation of development and etch effects. The model error RMS on a large range of CD down to 34 nm line CD is 0.71 nm. The calibrated model is then

  7. TSD-DOSE : a radiological dose assessment model for treatment, storage, and disposal facilities.

    SciTech Connect

    Pfingston, M.

    1998-12-23

    In May 1991, the U.S. Department of Energy (DOE), Office of Waste Operations, issued a nationwide moratorium on shipping slightly radioactive mixed waste from DOE facilities to commercial treatment, storage, and disposal (TSD) facilities. Studies were subsequently conducted to evaluate the radiological impacts associated with DOE's prior shipments through DOE's authorized release process under DOE Order 5400.5. To support this endeavor, a radiological assessment computer code--TSD-DOSE (Version 1.1)--was developed and issued by DOE in 1997. The code was developed on the basis of detailed radiological assessments performed for eight commercial hazardous waste TSD facilities. It was designed to utilize waste-specific and site-specific data to estimate potential radiological doses to on-site workers and the off-site public from waste handling operations at a TSD facility. The code has since been released for use by DOE field offices and was recently used by DOE to evaluate the release of septic waste containing residual radioactive material to a TSD facility licensed under the Resource Conservation and Recovery Act. Revisions to the code were initiated in 1997 to incorporate comments received from users and to increase TSD-DOSE's capability, accuracy, and flexibility. These updates included incorporation of the method used to estimate external radiation doses from DOE's RESRAD model and expansion of the source term to include 85 radionuclides. In addition, a detailed verification and benchmarking analysis was performed.

  8. Exercise and sport performance with low doses of caffeine.

    PubMed

    Spriet, Lawrence L

    2014-11-01

    Caffeine is a popular work-enhancing supplement that has been actively researched since the 1970s. The majority of research has examined the effects of moderate to high caffeine doses (5-13 mg/kg body mass) on exercise and sport. These caffeine doses have profound effects on the responses to exercise at the whole-body level and are associated with variable results and some undesirable side effects. Low doses of caffeine (<3 mg/kg body mass, ~200 mg) are also ergogenic in some exercise and sport situations, although this has been less well studied. Lower caffeine doses (1) do not alter the peripheral whole-body responses to exercise; (2) improve vigilance, alertness, and mood and cognitive processes during and after exercise; and (3) are associated with few, if any, side effects. Therefore, the ergogenic effect of low caffeine doses appears to result from alterations in the central nervous system. However, several aspects of consuming low doses of caffeine remain unresolved and suffer from a paucity of research, including the potential effects on high-intensity sprint and burst activities. The responses to low doses of caffeine are also variable and athletes need to determine whether the ingestion of ~200 mg of caffeine before and/or during training and competitions is ergogenic on an individual basis.

  9. Energetic dose: Beyond fire and flint?

    USGS Publications Warehouse

    Linder, G.; Rattner, B.; Cohen, J.

    2000-01-01

    Nutritional and bioenergetic interactions influence exposure to environmental chemicals and may affect the risk realized when wildlife are exposed in the field. Here, food-chain analysis focuses on prairie voles (Microtus ochrogaster) and the evaluation of chemical risks associated with paraquat following 10-d dietary exposures. Reproductive effects were measured in 60-d trials that followed exposures to paraquat-tainted feed: control (untainted feed); 21 mg paraquat/kg feed; 63 mg paraquat/kg feed; and feed-restricted control (untainted feed restricted to 60% baseline consumption). Reproductive success was evaluated in control and treated breeding pairs, and a preliminary bioenergetics analysis was completed in parallel to derive exposure dose. Although reproductive performance differed among groups, feed-restriction appeared to be the dominant treatment effect observed in these 10-d feeding exposure/limited reproductive trials. Exposure dose ranged from 3.70-3.76 to 9.41-11.51 mg parquat/kg BW/day at 21 and 63 mg paraquat/kg feed stock exposures, respectively. Energetic doses as ug paraquat/kcal yielded preliminary estimates of energetic costs associated with paraquat exposure, and were similar within treatments for both sexes, ranging from 4.2-5.5 and 13.1-15.0 ug paraquat/kcal for voles exposed to 21 mg/kg feed stock and 63 mg/kg feed stock, respectively. Given the increasing likelihood that environmental chemicals will be found in wildlife habitat at 'acceptable levels', the critical role that wildlife nutrition plays in evaluating ecological risks should be fully integrated into the assessment process. Tools applied to the analysis of risk must gain higher resolution than the relatively crude methods we currently bring to the process.

  10. Exercise dose response in muscle.

    PubMed

    Duscha, B D; Annex, B H; Johnson, J L; Huffman, K; Houmard, J; Kraus, W E

    2012-03-01

    Exercise increases peak VO2 partially through muscle adaptations. However, understanding muscle adaptations related to exercise dose is incomplete. This study investigated exercise training dose on capillaries per fiber and capillaries per area; and citrate synthase from vastus lateralis and related both to changes in peak VO2. This randomized trial compared 3 exercise doses: low amount-moderate intensity (n=40), low amount-high intensity (n=47), high amount-high intensity (n=41), and a control group (n=35). Both measures of capillary supply increased in all exercise groups (p<0.05). Low amount-high intensity and high amount-high intensity improved citrate synthase (p<0.05) and the low amount-moderate intensity citrate synthase approached significance (p=0.059). Muscle improvements were only related to improvements in peak VO2 in high amount-high intensity (citrate synthase, r=0.304; capillaries:fiber, r= - 0.318; p<0.05 and capillaries/mm2 r= - 0.310, p<0.05). These data suggest muscle adaptations occur following both low and high exercise doses, but are only related to improved peak VO2 following high amount-high intensity training. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Exercise Dose Response in Muscle

    PubMed Central

    Duscha, Brian D.; Annex, Brian H.; Johnson, Johanna L.; Huffman, Kim M.; Houmard, Joseph A.; Kraus, William E.

    2013-01-01

    Exercise increases peak VO2 partially through muscle adaptations. However, understanding muscle adaptations related to exercise dose is incomplete. This study investigated exercise training dose on capillaries per fiber and capillaries per area; and citrate synthase from vastus lateralis and related both to changes in peak VO2. This randomized trial compared 3 exercise doses: low amount-moderate intensity (n = 40), low amount-high intensity (n=47 ), high amount-high intensity (n=41 ), and a control group (n=35). Both measures of capillary supply increased in all exercise groups (p<0.05). Low amount-high intensity and high amount-high intensity improved citrate synthase (p<0.05) and the low amount-moderate intensity citrate synthase approached significance (p=0.059). Muscle improvements were only related to improvements in peak VO2 in high amount-high intensity (citrate synthase, r = 0.308; capillaries: fiber, r = −0.318; p < 0.05 and capillaries/mm2 r= −0.310, p < 0.05 ). These data suggest muscle adaptations occur following both low and high exercise doses, but are only related to improved peak VO2 following high amount-high intensity training. PMID:22261824

  12. The Dose Makes the Poison.

    ERIC Educational Resources Information Center

    Ottoboni, Alice

    1992-01-01

    A Toxicologist discusses common misconception that all chemicals are poisonous to people and the environment and how these misconceptions are perpetuated. Describes what makes a chemical toxic. Defines related concepts including dose, acute and chronic toxicity, and natural verses synthetic chemicals. (MCO)

  13. Doses from Medical Radiation Sources

    MedlinePlus

    ... that the best approach is to make individual measurements of breast milk activity and individual-specific projections ... 70:437–439; 1997. (5,000 patient dose measurements from 375 hospitals) International Commission on Radiation Protection. ...

  14. Exposure and dose modelling in occupational epidemiology.

    PubMed

    Kriebel, David; Checkoway, Harvey; Pearce, Neil

    2007-07-01

    Complex and dynamic physiologic processes underlie the exposure-response relations that occupational and environmental epidemiologists study. Simple summary measures of exposure such as the average, cumulative exposure, or duration of exposure, can be applied suitably in exposure-response analyses in many instances. However, there are situations where these metrics may not be directly proportional to risk, in which case their use will result in misclassification and biased estimates of exposure-response associations. We outline methods for developing exposure or dose metrics which may reduce misclassification, as illustrated with some recent examples. Selecting better exposure or dose metrics can be thought of as a problem of choosing appropriate weights on the exposure history of each cohort member. Dosimetric modeling involves choosing exposure weights based on formal hypotheses about underlying physiologic or pathogenetic processes. Dosimetric modeling is still not widely used in epidemiology, and so the forms of mathematical models and the criteria for choosing one model over another are not yet standardized. We hope to stimulate further applications through this presentation.

  15. Exposure and dose modelling in occupational epidemiology

    PubMed Central

    Kriebel, David; Checkoway, Harvey; Pearce, Neil

    2007-01-01

    Complex and dynamic physiologic processes underlie the exposure‐response relations that occupational and environmental epidemiologists study. Simple summary measures of exposure such as the average, cumulative exposure, or duration of exposure, can be applied suitably in exposure‐response analyses in many instances. However, there are situations where these metrics may not be directly proportional to risk, in which case their use will result in misclassification and biased estimates of exposure‐response associations. We outline methods for developing exposure or dose metrics which may reduce misclassification, as illustrated with some recent examples. Selecting better exposure or dose metrics can be thought of as a problem of choosing appropriate weights on the exposure history of each cohort member. Dosimetric modeling involves choosing exposure weights based on formal hypotheses about underlying physiologic or pathogenetic processes. Dosimetric modeling is still not widely used in epidemiology, and so the forms of mathematical models and the criteria for choosing one model over another are not yet standardized. We hope to stimulate further applications through this presentation. PMID:17582090

  16. Comparative transcriptome analysis of rice seedlings induced by different doses of heavy ion radiation

    NASA Astrophysics Data System (ADS)

    Zhao, Qian; Sun, Yeqing; Wang, Wei

    2016-07-01

    Highly ionizing radiation (HZE) in space is considered as a main factor causing biological effects on plant seeds. To investigate the different effects on genome-wide gene expression of low-dose and high-dose ion radiation, we carried out ground-base carbon particle HZE experiments with different cumulative doses (0Gy, 0.2Gy, 2Gy) to rice seeds and then performed comparative transcriptome analysis of the rice seedlings. We identified a total of 2551 and 1464 differentially expressed genes (DEGs) in low-dose and high-dose radiation groups, respectively. Gene ontology analyses indicated that low-dose and high-dose ion radiation both led to multiple physiological and biochemical activities changes in rice. By Gene Ontology analyses, the results showed that only one process-oxidation reduction process was enriched in the biological process category after high-dose ion radiation, while more processes such as response to biotic stimulus, heme binding, tetrapyrrole binding, oxidoreductase activity, catalytic activity and oxidoreductase activity were significantly enriched after low-dose ion radiation. The results indicated that the rice plants only focused on the process of oxidation reduction to response to high-dose ion radiation, whereas it was a coordination of multiple biological processes to response to low-dose ion radiation. To elucidate the transcriptional regulation of radiation stress-responsive genes, we identified several DEGs-encoding TFs. AP2/EREBP, bHLH, C2H2, MYB and WRKY TF families were altered significantly in response to ion radiation. Mapman analysis speculated that the biological effects on rice seedlings caused by the radiation stress might share similar mechanisms with the biotic stress. Our findings highlight important alterations in the expression of radiation response genes, metabolic pathways, and TF-encoding genes in rice seedlings exposed to low-dose and high-dose ion radiation.

  17. A method for measuring the dose distribution of the radiotherapy domain using the computed radiography system.

    PubMed

    Homma, Mitsuhiko; Tabushi, Katsuyoshi; Obata, Yasunori; Tamiya, Tadashi; Koyama, Shuji; Ishigaki, Takeo

    2002-01-01

    Knowing the dose distribution in a tissue is as important as being able to measure exposure or absorbed dose in radiotherapy. Therefore, we have developed a measurement method for the dose distribution (CR dosimetry) in the phantom based on the imaging plate (IP) of the computed radiography (CR). The IP was applied for the dose measurement as a dosimeter instead of the film used for film dosimetry. The data from the irradiated IP were processed by a personal computer with 10 bits and were depicted as absorbed dose distributions in the phantom. The image of the dose distribution was obtained from the CR system using the DICOM form. The CR dosimetry is an application of CR system currently employed in medical examinations to dosimetry in radiotherapy. A dose distribution can be easily shown by the Dose Distribution Depiction System we developed this time. Moreover, the measurement method is simpler and a result is obtained more quickly compared with film dosimetry.

  18. [Absorbed doses in dental radiology].

    PubMed

    Bianchi, S D; Roccuzzo, M; Albrito, F; Ragona, R; Anglesio, S

    1996-01-01

    The growing use of dento-maxillo-facial radiographic examinations has been accompanied by the publication of a large number of studies on dosimetry. A thorough review of the literature is presented in this article. Most studies were carried out on tissue equivalent skull phantoms, while only a few were in vivo. The aim of the present study was to evaluate in vivo absorbed doses during Orthopantomography (OPT). Full Mouth Periapical Examination (FMPE) and Intraoral Tube Panoramic Radiography (ITPR). Measurements were made on 30 patients, reproducing clinical conditions, in 46 anatomical sites, with 24 intra- and 22 extra-oral thermoluminiscent dosimeters (TLDS). The highest doses were measured, in orthopantomography, at the right mandibular angle (1899 mu Gy) in FMPE on the right naso-labial fold (5640 mu Gy and in ITPR on the palatal surface of the left second upper molar (1936 mu Gy). Intraoral doses ranged from 21 mu Gy, in orthopantomography, to 4494 mu Gy in FMPE. Standard errors ranged from 142% in ITPR to 5% in orthopantomography. The highest rate of standard errors was found in FMPE and ITPR. The data collected in this trial are in agreement with others in major literature reports. Disagreements are probably due to different exam acquisition and data collections. Such differences, presented comparison in several sites, justify lower doses in FMPE and ITPR. Advantages and disadvantages of in vivo dosimetry of the maxillary region are discussed, the former being a close resemblance to clinical conditions of examination and the latter the impossibility of collecting values in depth of tissues. Finally, both ITPR and FMPE required lower doses than expected, and can be therefore reconsidered relative to their radiation risk.

  19. EXOMARS IRAS (DOSE) radiation measurements.

    NASA Astrophysics Data System (ADS)

    Federico, C.; Di Lellis, A. M.; Fonte, S.; Pauselli, C.; Reitz, G.; Beaujean, R.

    The characterization and the study of the radiations on their interaction with organic matter is of great interest in view of the human exploration on Mars. The Ionizing RAdiation Sensor (IRAS) selected in the frame of the ExoMars/Pasteur ESA mission is a lightweight particle spectrometer combining various techniques of radiation detection in space. It characterizes the first time the radiation environment on the Mars surface, and provide dose and dose equivalent rates as precursor information absolutely necessary to develop ways to mitigate the radiation risks for future human exploration on Mars. The Martian radiation levels are much higher than those found on Earth and they are relatively low for space. Measurements on the surface will show if they are similar or not to those seen in orbit (modified by the presence of ``albedo'' neutrons produced in the regolith and by the thin Martian atmosphere). IRAS consists of a telescope based on segmented silicon detectors of about 40\\userk\\milli\\metre\\user;k diameter and 300\\user;k\\micro\\metre\\user;k thickness, a segmented organic scintillator, and of a thermoluminescence dosimeter. The telescope will continuously monitor temporal variation of the particle count rate, the dose rate, particle and LET (Linear Energy Transfer) spectra. Tissue equivalent BC430 scintillator material will be used to measure the neutron dose. Neutrons are selected by a criteria requiring no signal in the anti-coincidence. Last, the passive thermoluminescence dosimeter, based on LiF:Mg detectors, regardless the on board operation timing, will measure the total dose accumulated during the exposure period and due to beta and gamma radiation, with a responsivity very close to that of a human tissue.

  20. Patient dose in cardiac radiology.

    PubMed

    Stratis, Andreas I; Anthopoulos, Prodromos L; Gavaliatsis, Isidoros P; Ifantis, Georghios P; Salahas, Anastasios I; Antonellis, Ioannis P; Tavernarakis, Antonios G; Molfetas, Michael I

    2009-01-01

    In diagnostic and interventional cardiology procedures performed with the use of X-ray diagnostic imaging systems, the long fluoroscopy time and the large number of cine projections, as well as the repetition of the procedure due to the recurrence of the lesion--a common event--result in a high locally delivered skin dose, which may even lead to patient skin necrosis. The purpose of this study was to collect information in order to estimate the patient dose during coronary angiography and coronary angioplasty procedures, using the dose-area product measuring system of the X-ray angiographic machine. Dose-area product (DAP), fluoroscopy time, number of sequences and frames per sequence were collected for each of 108 coronary angiography and 101 coronary angioplasty procedures, using the dedicated X-ray machine of the hospital's haemodynamic department, where more than 3000 procedures are performed per year. The median values of DAP were 19.96 and 40.17 Gy.cm(2) for coronary angiography and angioplasty, respectively; fluoroscopy times were 7.7 and 23.4 minutes; and the numbers of frames were 457 and 641, respectively. There was a strong correlation between DAP and fluoroscopy time, the number of frames per sequence, and hence the cine recording time. The entrance skin dose delivered to the patient in the haemodynamic department was lower than that of other studies, although the mean fluoroscopy time per patient was longer. The practices in use satisfy the diagnostic reference levels as far as DAP values and number of frames per patient are concerned, but not with regard to fluoroscopy time. We did not find the correlation between doctors' experience and DAP values reported in other studies, as we did not take into account the complexity index of the lesion.

  1. Sesame allergy threshold dose distribution.

    PubMed

    Dano, D; Remington, B C; Astier, C; Baumert, J L; Kruizinga, A G; Bihain, B E; Taylor, S L; Kanny, G

    2015-09-01

    Sesame is a relevant food allergen in France. Compared to other allergens there is a lack of food challenge data and more data could help sesame allergy risk management. The aim of this study is to collect more sesame challenge data and investigate the most efficient food challenge method for future studies. Records of patients at University Hospital in Nancy (France) with objective symptoms to sesame challenges were collected and combined with previously published data. An estimation of the sesame allergy population threshold was calculated based on individual NOAELs and LOAELs. Clinical dosing schemes at Nancy were investigated to see if the optimal protocol for sesame is currently used. Fourteen patients (10 M/4 F, 22 ± 14.85 years old) with objective symptoms were added to previously published data making a total of 35 sesame allergic patients. The most sensitive patient reacted to the first dose at challenge of 1.02 mg sesame protein. The ED05 ranges between 1.2 and 4.0 mg of sesame protein (Log-Normal, Log-Logistic, and Weibull models) and the ED10 between 4.2 and 6.2 mg. The optimal food challenge dosing scheme for sesame follows semi-log dose increases from 0.3 to 3000 mg protein. This article provides a valuable update to the existing clinical literature regarding sesame NOAELs and LOAELs. Establishment of a population threshold for sesame could help in increasing the credibility of precautionary labelling and decrease the costs associated with unexpected allergic reactions. Also, the use of an optimal dosing scheme would decrease time spent on diagnostic and thereafter on the economic burden of sesame allergy diagnosis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Radiological dose assessments of atolls in the Northern Marshall Islands

    SciTech Connect

    Robison, W.L.

    1983-11-01

    Methods and models used to estimate the radiation doses to a returning population of the atolls in the Marshall Islands are presented. In this environment natural processes have acted on source-term radionuclides for nearly 30 years. The data bases developed for the models, and the results of the radiological dose analyses at the various atolls are described. The major radionuclides in order of their contribution to the total estimated doses were /sup 137/Cs, /sup 90/Sr, /sup 239/ /sup 240/Pu, /sup 241/Am, and /sup 60/Co. Exposure pathways in order of their contribution to the estimated doses were: terrestrial food chain, external ..gamma.., marine food chain, inhalation, and cistern water and ground water. 56 references, 13 figures, 16 tables.

  3. Low-Dose Hyper-Radiosensitivity: Past, Present, and Future

    SciTech Connect

    Marples, Brian Collis, Spencer J.

    2008-04-01

    This review article discusses the biology of low-dose hyper-radiosensitivity (HRS) with reference to the molecular regulation of DNA repair and cell cycle control processes. Particular attention is paid to the significance of G2-phase cell cycle checkpoints in overcoming low-dose hyper-radiosensitivity and the impact of HRS on low-dose rate radiobiology. The history of HRS from the original in vivo discovery to the most recent in vitro and clinical data are examined to present a unifying hypothesis concerning the molecular control and regulation of this important low dose radiation response. Finally, preclinical and clinical data are discussed, from a molecular viewpoint, to provide theoretical approaches to exploit HRS biology for clinical gain.

  4. Identification and dose assessment of irradiated cumin by EPR spectrometry.

    PubMed

    Abdel-Fattah, A A

    2002-03-01

    The use of electron paramagnetic resonance spectroscopy to accurately distinguish irradiated from unirradiated cumin and assess the absorbed dose to radiation-processed cumin is examined. The results were successful for identifying both irradiated and unirradiated cumin. Additive reirradiation of the cumin produces a reproducible dose response function, which can be used to assess the initial dose by back-extrapolation. Third-degree polynomial and exponential functions were used to fit the EPR signal/dose curves. It was found that the 3rd degree polynomial function provides satisfactory results without correction for decay of free radicals. The exponential fit to the data cannot be used without correction of decay of free radicals. The stability of the radiation-induced EPR signal of irradiated cumin was studied over a storage period of 6 months. The additive reirradiation of some samples was carried out at different storage times (10, 20 and 30 days) after initial irradiation.

  5. A MULTIMODEL APPROACH FOR CALCULATING BENCHMARK DOSE

    EPA Science Inventory


    A Multimodel Approach for Calculating Benchmark Dose
    Ramon I. Garcia and R. Woodrow Setzer

    In the assessment of dose response, a number of plausible dose- response models may give fits that are consistent with the data. If no dose response formulation had been speci...

  6. A MULTIMODEL APPROACH FOR CALCULATING BENCHMARK DOSE

    EPA Science Inventory


    A Multimodel Approach for Calculating Benchmark Dose
    Ramon I. Garcia and R. Woodrow Setzer

    In the assessment of dose response, a number of plausible dose- response models may give fits that are consistent with the data. If no dose response formulation had been speci...

  7. Validation of CT dose-reduction simulation

    SciTech Connect

    Massoumzadeh, Parinaz; Don, Steven; Hildebolt, Charles F.; Bae, Kyongtae T.; Whiting, Bruce R.

    2009-01-15

    The objective of this research was to develop and validate a custom computed tomography dose-reduction simulation technique for producing images that have an appearance consistent with the same scan performed at a lower mAs (with fixed kVp, rotation time, and collimation). Synthetic noise is added to projection (sinogram) data, incorporating a stochastic noise model that includes energy-integrating detectors, tube-current modulation, bowtie beam filtering, and electronic system noise. Experimental methods were developed to determine the parameters required for each component of the noise model. As a validation, the outputs of the simulations were compared to measurements with cadavers in the image domain and with phantoms in both the sinogram and image domain, using an unbiased root-mean-square relative error metric to quantify agreement in noise processes. Four-alternative forced-choice (4AFC) observer studies were conducted to confirm the realistic appearance of simulated noise, and the effects of various system model components on visual noise were studied. The ''just noticeable difference (JND)'' in noise levels was analyzed to determine the sensitivity of observers to changes in noise level. Individual detector measurements were shown to be normally distributed (p>0.54), justifying the use of a Gaussian random noise generator for simulations. Phantom tests showed the ability to match original and simulated noise variance in the sinogram domain to within 5.6%{+-}1.6% (standard deviation), which was then propagated into the image domain with errors less than 4.1%{+-}1.6%. Cadaver measurements indicated that image noise was matched to within 2.6%{+-}2.0%. More importantly, the 4AFC observer studies indicated that the simulated images were realistic, i.e., no detectable difference between simulated and original images (p=0.86) was observed. JND studies indicated that observers' sensitivity to change in noise levels corresponded to a 25% difference in dose, which

  8. Validation of CT dose-reduction simulation

    PubMed Central

    Massoumzadeh, Parinaz; Don, Steven; Hildebolt, Charles F.; Bae, Kyongtae T.; Whiting, Bruce R.

    2009-01-01

    The objective of this research was to develop and validate a custom computed tomography dose-reduction simulation technique for producing images that have an appearance consistent with the same scan performed at a lower mAs (with fixed kVp, rotation time, and collimation). Synthetic noise is added to projection (sinogram) data, incorporating a stochastic noise model that includes energy-integrating detectors, tube-current modulation, bowtie beam filtering, and electronic system noise. Experimental methods were developed to determine the parameters required for each component of the noise model. As a validation, the outputs of the simulations were compared to measurements with cadavers in the image domain and with phantoms in both the sinogram and image domain, using an unbiased root-mean-square relative error metric to quantify agreement in noise processes. Four-alternative forced-choice (4AFC) observer studies were conducted to confirm the realistic appearance of simulated noise, and the effects of various system model components on visual noise were studied. The “just noticeable difference (JND)” in noise levels was analyzed to determine the sensitivity of observers to changes in noise level. Individual detector measurements were shown to be normally distributed (p>0.54), justifying the use of a Gaussian random noise generator for simulations. Phantom tests showed the ability to match original and simulated noise variance in the sinogram domain to within 5.6%±1.6% (standard deviation), which was then propagated into the image domain with errors less than 4.1%±1.6%. Cadaver measurements indicated that image noise was matched to within 2.6%±2.0%. More importantly, the 4AFC observer studies indicated that the simulated images were realistic, i.e., no detectable difference between simulated and original images (p=0.86) was observed. JND studies indicated that observers’ sensitivity to change in noise levels corresponded to a 25% difference in dose, which is

  9. Validation of CT dose-reduction simulation.

    PubMed

    Massoumzadeh, Parinaz; Don, Steven; Hildebolt, Charles F; Bae, Kyongtae T; Whiting, Bruce R

    2009-01-01

    The objective of this research was to develop and validate a custom computed tomography dose-reduction simulation technique for producing images that have an appearance consistent with the same scan performed at a lower mAs (with fixed kVp, rotation time, and collimation). Synthetic noise is added to projection (sinogram) data, incorporating a stochastic noise model that includes energy-integrating detectors, tube-current modulation, bowtie beam filtering, and electronic system noise. Experimental methods were developed to determine the parameters required for each component of the noise model. As a validation, the outputs of the simulations were compared to measurements with cadavers in the image domain and with phantoms in both the sinogram and image domain, using an unbiased root-mean-square relative error metric to quantify agreement in noise processes. Four-alternative forced-choice (4AFC) observer studies were conducted to confirm the realistic appearance of simulated noise, and the effects of various system model components on visual noise were studied. The "just noticeable difference (JND)" in noise levels was analyzed to determine the sensitivity of observers to changes in noise level. Individual detector measurements were shown to be normally distributed (p > 0.54), justifying the use of a Gaussian random noise generator for simulations. Phantom tests showed the ability to match original and simulated noise variance in the sinogram domain to within 5.6% +/- 1.6% (standard deviation), which was then propagated into the image domain with errors less than 4.1% +/- 1.6%. Cadaver measurements indicated that image noise was matched to within 2.6% +/- 2.0%. More importantly, the 4AFC observer studies indicated that the simulated images were realistic, i.e., no detectable difference between simulated and original images (p = 0.86) was observed. JND studies indicated that observers' sensitivity to change in noise levels corresponded to a 25% difference in dose

  10. Tank Z-361 dose rate calculations

    SciTech Connect

    Richard, R.F.

    1998-09-30

    Neutron and gamma ray dose rates were calculated above and around the 6-inch riser of tank Z-361 located at the Plutonium Finishing Plant. Dose rates were also determined off of one side of the tank. The largest dose rate 0.029 mrem/h was a gamma ray dose and occurred 76.2 cm (30 in.) directly above the open riser. All other dose rates were negligible. The ANSI/ANS 1991 flux to dose conversion factor for neutrons and photons were used in this analysis. Dose rates are reported in units of mrem/h with the calculated uncertainty shown within the parentheses.

  11. Online measurement of dose and dose distribution at bremsstrahlung facilities

    NASA Astrophysics Data System (ADS)

    Auslender, V. L.; Bryazgin, A. A.; Bukin, A. D.; Voronin, L. A.; Lukin, A. N.; Sidorov, A. V.

    2004-09-01

    A real-time measurement system of the spatial dose distribution is developed and realized for monitoring the bremsstrahlung flow generated on X-ray target by 5 MeV 50 kW electron accelerator. The sensors of the system consist of semiconductor diodes. The beam target and electron accelerator (ILU-10) are briefly described. The practice of using the system in the experimental and start-up procedure is included.

  12. Quantifying the potential for dose reduction with visual grading regression

    PubMed Central

    Smedby, Ö; Fredrikson, M; De Geer, J; Borgen, L; Sandborg, M

    2013-01-01

    Objectives To propose a method to study the effect of exposure settings on image quality and to estimate the potential for dose reduction when introducing dose-reducing measures. Methods Using the framework of visual grading regression (VGR), a log(mAs) term is included in the ordinal logistic regression equation, so that the effect of reducing the dose can be quantitatively related to the effect of adding post-processing. In the ordinal logistic regression, patient and observer identity are treated as random effects using generalised linear latent and mixed models. The potential dose reduction is then estimated from the regression coefficients. The method was applied in a single-image study of coronary CT angiography (CTA) to evaluate two-dimensional (2D) adaptive filters, and in an image-pair study of abdominal CT to evaluate 2D and three-dimensional (3D) adaptive filters. Results For five image quality criteria in coronary CTA, dose reductions of 16–26% were predicted when adding 2D filtering. Using five image quality criteria for abdominal CT, it was estimated that 2D filtering permits doses were reduced by 32–41%, and 3D filtering by 42–51%. Conclusions VGR including a log(mAs) term can be used for predictions of potential dose reduction that may be useful for guiding researchers in designing subsequent studies evaluating diagnostic value. With appropriate statistical analysis, it is possible to obtain direct numerical estimates of the dose-reducing potential of novel acquisition, reconstruction or post-processing techniques. PMID:22723511

  13. Quantifying the potential for dose reduction with visual grading regression.

    PubMed

    Smedby, O; Fredrikson, M; De Geer, J; Borgen, L; Sandborg, M

    2013-01-01

    To propose a method to study the effect of exposure settings on image quality and to estimate the potential for dose reduction when introducing dose-reducing measures. Using the framework of visual grading regression (VGR), a log(mAs) term is included in the ordinal logistic regression equation, so that the effect of reducing the dose can be quantitatively related to the effect of adding post-processing. In the ordinal logistic regression, patient and observer identity are treated as random effects using generalised linear latent and mixed models. The potential dose reduction is then estimated from the regression coefficients. The method was applied in a single-image study of coronary CT angiography (CTA) to evaluate two-dimensional (2D) adaptive filters, and in an image-pair study of abdominal CT to evaluate 2D and three-dimensional (3D) adaptive filters. For five image quality criteria in coronary CTA, dose reductions of 16-26% were predicted when adding 2D filtering. Using five image quality criteria for abdominal CT, it was estimated that 2D filtering permits doses were reduced by 32-41%, and 3D filtering by 42-51%. VGR including a log(mAs) term can be used for predictions of potential dose reduction that may be useful for guiding researchers in designing subsequent studies evaluating diagnostic value. With appropriate statistical analysis, it is possible to obtain direct numerical estimates of the dose-reducing potential of novel acquisition, reconstruction or post-processing techniques.

  14. Quantifying the potential for dose reduction with visual grading regression.

    PubMed

    Smedby, O; Fredrikson, M; De Geer, J; Borgen, L; Sandborg, M

    2013-01-01

    Objectives To propose a method to study the effect of exposure settings on image quality and to estimate the potential for dose reduction when introducing dose-reducing measures. Methods Using the framework of visual grading regression (VGR), a log(mAs) term is included in the ordinal logistic regression equation, so that the effect of reducing the dose can be quantitatively related to the effect of adding post-processing. In the ordinal logistic regression, patient and observer identity are treated as random effects using generalised linear latent and mixed models. The potential dose reduction is then estimated from the regression coefficients. The method was applied in a single-image study of coronary CT angiography (CTA) to evaluate two-dimensional (2D) adaptive filters, and in an image-pair study of abdominal CT to evaluate 2D and three-dimensional (3D) adaptive filters. Results For five image quality criteria in coronary CTA, dose reductions of 16-26% were predicted when adding 2D filtering. Using five image quality criteria for abdominal CT, it was estimated that 2D filtering permits doses were reduced by 32-41%, and 3D filtering by 42-51%. Conclusions VGR including a log(mAs) term can be used for predictions of potential dose reduction that may be useful for guiding researchers in designing subsequent studies evaluating diagnostic value. With appropriate statistical analysis, it is possible to obtain direct numerical estimates of the dose-reducing potential of novel acquisition, reconstruction or post-processing techniques.

  15. Patients who do not respond to the "usual" dose: why Terry fell off the dose-response curve.

    PubMed

    Preskorn, Sheldon H

    2009-11-01

    Clinical trials are aimed at determining what happens in the "usual" patient; however, clinicians are interested in what happens in their patients even if they are not usual. The usual dose-response relationship is determined as part of the drug development process required for approval of a new drug. However, clinicians are likely to encounter patients who "fall off" the usual dose-response curve because they are either sensitive or resistant to the beneficial (efficacy) or adverse effects of a drug. This column is the first in a series that will examine why specific patients fall off the usual dose-response curve and how clinicians can manage such patients when they encounter them. This column discusses what a dose-response curve is, how it is determined, and why it is clinically important.

  16. Low dose effects and non-monotonic dose responses for endocrine active chemicals: science to practice workshop: workshop summary.

    PubMed

    Beausoleil, Claire; Ormsby, Jean-Nicolas; Gies, Andreas; Hass, Ulla; Heindel, Jerrold J; Holmer, Marie Louise; Nielsen, Pia Juul; Munn, Sharon; Schoenfelder, Gilbert

    2013-10-01

    A workshop was held in Berlin September 12-14th 2012 to assess the state of the science of the data supporting low dose effects and non-monotonic dose responses ("low dose hypothesis") for chemicals with endocrine activity (endocrine disrupting chemicals or EDCs). This workshop consisted of lectures to present the current state of the science of EDC action and also the risk assessment process. These lectures were followed by breakout sessions to integrate scientists from various backgrounds to discuss in an open and unbiased manner the data supporting the "low dose hypothesis". While no consensus was reached the robust discussions were helpful to inform both basic scientists and risk assessors on all the issues. There were a number of important ideas developed to help continue the discussion and improve communication over the next few years. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Fast convolution-superposition dose calculation on graphics hardware.

    PubMed

    Hissoiny, Sami; Ozell, Benoît; Després, Philippe

    2009-06-01

    The numerical calculation of dose is central to treatment planning in radiation therapy and is at the core of optimization strategies for modern delivery techniques. In a clinical environment, dose calculation algorithms are required to be accurate and fast. The accuracy is typically achieved through the integration of patient-specific data and extensive beam modeling, which generally results in slower algorithms. In order to alleviate execution speed problems, the authors have implemented a modern dose calculation algorithm on a massively parallel hardware architecture. More specifically, they have implemented a convolution-superposition photon beam dose calculation algorithm on a commodity graphics processing unit (GPU). They have investigated a simple porting scenario as well as slightly more complex GPU optimization strategies. They have achieved speed improvement factors ranging from 10 to 20 times with GPU implementations compared to central processing unit (CPU) implementations, with higher values corresponding to larger kernel and calculation grid sizes. In all cases, they preserved the numerical accuracy of the GPU calculations with respect to the CPU calculations. These results show that streaming architectures such as GPUs can significantly accelerate dose calculation algorithms and let envision benefits for numerically intensive processes such as optimizing strategies, in particular, for complex delivery techniques such as IMRT and are therapy.

  18. Prenatal radiation exposure: dose calculation.

    PubMed

    Scharwächter, C; Röser, A; Schwartz, C A; Haage, P

    2015-05-01

    The unborn child requires special protection. In this context, the indication for an X-ray examination is to be checked critically. If thereupon radiation of the lower abdomen including the uterus cannot be avoided, the examination should be postponed until the end of pregnancy or alternative examination techniques should be considered. Under certain circumstances, either accidental or in unavoidable cases after a thorough risk assessment, radiation exposure of the unborn may take place. In some of these cases an expert radiation hygiene consultation may be required. This consultation should comprise the expected risks for the unborn while not perturbing the mother or the involved medical staff. For the risk assessment in case of an in-utero x-ray exposition deterministic damages with a defined threshold dose are distinguished from stochastic damages without a definable threshold dose. The occurrence of deterministic damages depends on the dose and the developmental stage of the unborn at the time of radiation. To calculate the risks of an in-utero radiation exposure a three-stage concept is commonly applied. Depending on the amount of radiation, the radiation dose is either estimated, roughly calculated using standard tables or, in critical cases, accurately calculated based on the individual event. The complexity of the calculation thereby increases from stage to stage. An estimation based on stage one is easily feasible whereas calculations based on stages two and especially three are more complex and often necessitate execution by specialists. This article demonstrates in detail the risks for the unborn child pertaining to its developmental phase and explains the three-stage concept as an evaluation scheme. It should be noted, that all risk estimations are subject to considerable uncertainties. • Radiation exposure of the unborn child can result in both deterministic as well as stochastic damage und hitherto should be avoided or reduced to a minimum

  19. Peanut Allergen Threshold Study (PATS): validation of eliciting doses using a novel single-dose challenge protocol

    PubMed Central

    2013-01-01

    Background The eliciting dose (ED) for a peanut allergic reaction in 5% of the peanut allergic population, the ED05, is 1.5 mg of peanut protein. This ED05 was derived from oral food challenges (OFC) that use graded, incremental doses administered at fixed time intervals. Individual patients’ threshold doses were used to generate population dose-distribution curves using probability distributions from which the ED05 was then determined. It is important to clinically validate that this dose is predictive of the allergenic response in a further unselected group of peanut-allergic individuals. Methods/Aims This is a multi-centre study involving three national level referral and teaching centres. (Cork University Hospital, Ireland, Royal Children’s Hospital Melbourne, Australia and Massachusetts General Hospital, Boston, U.S.A.) The study is now in process and will continue to run until all centres have recruited 125 participates in each respective centre. A total of 375 participants, aged 1–18 years will be recruited during routine Allergy appointments in the centres. The aim is to assess the precision of the predicted ED05 using a single dose (6 mg peanut = 1.5 mg of peanut protein) in the form of a cookie. Validated Food Allergy related Quality of Life Questionnaires-(FAQLQ) will be self-administered prior to OFC and 1 month after challenge to assess the impact of a single dose OFC on FAQL. Serological and cell based in vitro studies will be performed. Conclusion The validation of the ED05 threshold for allergic reactions in peanut allergic subjects has potential value for public health measures. The single dose OFC, based upon the statistical dose-distribution analysis of past challenge trials, promises an efficient approach to identify the most highly sensitive patients within any given food-allergic population. PMID:24028324

  20. Radiation dose from cigarette tobacco

    SciTech Connect

    Papastefanou, C.

    2008-08-07

    The radioactivity in tobacco leaves collected from 15 different regions of Greece before cigarette production was studied in order to estimate the effective dose from cigarette tobacco due to the naturally occurring primordial radionuclides, such as {sup 226}Ra and {sup 210}Pb of the uranium series and {sup 228}Ra of the thorium series and/or man-made produced radionuclides, such as {sup 137}Cs of Chernobyl origin. Gamma-ray spectrometry was applied using Ge planar and coaxial type detectors of high resolution and high efficiency. It was concluded that the annual effective dose due to inhalation for adults (smokers) for {sup 226}Ra varied from 42.5 to 178.6 {mu}Sv y{sup -1} (average 79.7 {mu}Sv y{sup -1}), while for {sup 228}Ra from 19.3 to 116.0 {mu}Sv y{sup -1} (average 67.1 {mu}Sv y{sup -1}) and for {sup 210}Pb from 47.0 to 134.9 {mu}Sv y{sup -1} (average 104.7 {mu}Sv y{sup -1}), that is the same order of magnitude for each radionuclide. The sum of the effective dose of the three natural radionuclides varied from 151.9 to 401.3 {mu}Sv y{sup -1} (average 251.5 {mu}Sv y{sup -1}). The annual effective dose from {sup 137}Cs of Chernobyl origin was three orders of magnitude lower as it varied from 70.4 to 410.4 nSv y{sup -1} (average 199.3 nSv y{sup -1})

  1. Radiation Dose from Cigarette Tobacco

    NASA Astrophysics Data System (ADS)

    Papastefanou, C.

    2008-08-01

    The radioactivity in tobacco leaves collected from 15 different regions of Greece before cigarette production was studied in order to estimate the effective dose from cigarette tobacco due to the naturally occurring primordial radionuclides, such as 226Ra and 210Pb of the uranium series and 228Ra of the thorium series and/or man-made produced radionuclides, such as 137Cs of Chernobyl origin. Gamma-ray spectrometry was applied using Ge planar and coaxial type detectors of high resolution and high efficiency. It was concluded that the annual effective dose due to inhalation for adults (smokers) for 226Ra varied from 42.5 to 178.6 μSv y-1 (average 79.7 μSv y-1), while for 228Ra from 19.3 to 116.0 μSv y-1 (average 67.1 μSv y-1) and for 210Pb from 47.0 to 134.9 μSv y-1 (average 104.7 μSv y-1), that is the same order of magnitude for each radionuclide. The sum of the effective dose of the three natural radionuclides varied from 151.9 to 401.3 μSv y-1 (average 251.5 μSv y-1). The annual effective dose from 137Cs of Chernobyl origin was three orders of magnitude lower as it varied from 70.4 to 410.4 nSv y-1 (average 199.3 nSv y-1).

  2. Dosing of antibiotics in obesity.

    PubMed

    Janson, Brett; Thursky, Karin

    2012-12-01

    Obesity is becoming a major burden on healthcare systems worldwide. The management of infections is problematic due to both an increased risk of morbidity and mortality, as well as a lack of information about dosing of antibiotics in the obese population. Recommendations in this patient group are severely lacking, so clinicians need to consider pharmacokinetic/pharmacodynamic parameters and the relative risks of overdosing and underdosing. Since 2011, articles on a number of antibiotics have been published, including cefazolin/cephazolin, cefepime, cefoxitin, clindamycin, cotrimoxazole, daptomycin, ertapenem, levofloxacin, linezolid, meropenem, moxifloxacin, piperacillin/tazobactam and vancomycin. Obesity causes a number of changes, including an increase in volume of distribution and changes in hepatic metabolism and renal excretion. Several antibiotics have sufficient data to be able to make recommendations, whereas other antibiotics may need to make use of doses at the upper end of the recommended range, or utilize other dose modifications based on pharmacokinetic/pharmacodynamic parameters, in an attempt to reach adequate levels and achieve similar efficacy.

  3. Tolerance doses for treatment planning

    SciTech Connect

    Lyman, J.T.

    1985-10-01

    Data for the tolerance of normal tissues or organs to (low-LET) radiation has been compiled from a number of sources which are referenced at the end of this document. This tolerance dose data are ostensibly for uniform irradiation of all or part of an organ, and are for either 5% (TD/sub 5/) or 50% (TD/sub 50/) complication probability. The ''size'' of the irradiated organ is variously stated in terms of the absolute volume or the fraction of the organ volume irradiated, or the area or the length of the treatment field. The accuracy of these data is questionable. Much of the data represents doses that one or several experienced therapists have estimated could be safely given rather than quantitative analyses of clinical observations. Because these data have been obtained from multiple sources with possible different criteria for the definition of a complication, there are sometimes different values for what is apparently the same endpoint. The data from some sources shows a tendancy to be quantized in 5 Gy increments. This reflects the size of possible round off errors. It is believed that all these data have been accumulated without the benefit of 3-D dose distributions and therefore the estimates of the size of the volume and/or the uniformity of the irradiation may be less accurate than is now possible. 19 refs., 4 figs.

  4. Nominal Performance Biosphere Dose Conversion Factor Analysis

    SciTech Connect

    M. Wasiolek

    2004-09-08

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the groundwater exposure scenario, and the development of conversion factors for assessing compliance with the groundwater protection standard. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop biosphere BDCFs, which are input parameters for the TSPA-LA model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the ''Biosphere Model Report'' in Figure 1-1, contain detailed description of the model input parameters, their development, and the relationship between the parameters and specific features events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the groundwater exposure scenario. The objectives of this analysis are to develop BDCFs for the groundwater exposure scenario for the three climate states considered in the TSPA-LA as well as conversion factors for evaluating compliance with the groundwater protection standard. The BDCFs will be used in performance assessment for calculating all-pathway annual doses for a given concentration of radionuclides in groundwater. The conversion factors will be used for calculating gross alpha particle activity in groundwater and the annual dose

  5. DNA profiling from heroin street dose packages.

    PubMed

    Zamir, Ashira; Cohen, Yaron; Azoury, Myriam

    2007-03-01

    A large amount of heroin street doses are seized and examined for drug content by the Israel police. These are generally wrapped in heat-sealed plastic. Occasionally it is possible to visualize latent fingerprints on the plastic wrap itself, but the small size of the plastic item and the sealing process makes the success rate very low. In this study, the possibility of extracting and profiling DNA from the burnt edge of the plastic wrap was investigated. The idea was based on the assumption that epithelial cells might be trapped during the sealing process. The results show that there are sufficient quantities of DNA deposited at the "amorphic" burnt edges of sealed street doses for DNA profiling to be carried out. A controlled experiment using a known donor was performed. This subject carried out sealing of "street drug" packages and consequent DNA extractions were performed to show that known DNA profiles could be recovered from such packages, as a result of handling by the "packer." "Square-like" burnt edges did not yield DNA profiles, probably because of differences in the sealing process. It was also shown that DNA could be recovered from the plastic wrap itself and not only from the amorphic burnt edges. As heroin dealers and drug users are often involved in other crimes and run-ins with the law, the effective extraction and addition of their DNA profiles from such items of evidence to the newly established DNA database in Israel provides new avenues in the continued fight against crime and drug traffickers.

  6. Once daily dose gentamicin in neonates - is our dosing correct?

    PubMed

    Serane, Tiroumourougane V; Zengeya, Stanley; Penford, Gemma; Cooke, Jane; Khanna, Gitika; McGregor-Colman, Elle

    2009-07-01

    The aim of this paper is to study the safety and efficacy (measured by therapeutic level) of once daily gentamicin in neonates >or=32 weeks of gestation and or=32 weeks of gestation and dose. In neonates with gestational age between 32 and 36 weeks, 14 out of 65 (22%) had trough serum concentration >2 mg/L. Only 39 (60%) had peak and trough levels within the therapeutic range. All babies who had audiometric evaluation (62 out of 65) had normal hearing. Out of the 65 babies, 60 had paired serum creatinine levels estimated and none had evidence of renal dysfunction. Among term neonates, only 2 out of 50 had the trough serum concentration of >2 mg/L. In 38 (76%) of the 50 neonates, the trough serum gentamicin concentration was <2.0 mg/L and the peak level was <10 mg/L. Forty-eight babies had audiometric evaluation which was normal. A dose of 4 mg/kg/day produces serum gentamicin levels outside the therapeutic range in two-fifths of neonates between 32 and 36 +/- 6 weeks. A single dose of 4 mg/kg/day of gentamicin is appropriate for term babies and probably excessive for 32-36 weeks' neonates.

  7. Dose rate mapping of VMAT treatments

    NASA Astrophysics Data System (ADS)

    Podesta, Mark; Antoniu Popescu, I.; Verhaegen, Frank

    2016-06-01

    Human tissues exhibit a varying response to radiation dose depending on the dose rate and fractionation scheme used. Dose rate effects have been reported for different radiations, and tissue types. The literature indicates that there is not a significant difference in response for low-LET radiation when using dose rates between 1 Gy min-1 and 12 Gy min-1 but lower dose rates have an observable sparing effect on tissues and a differential effect between tissues. In intensity-modulated radiotherapy such as volumetric modulated arc therapy (VMAT) the dose can be delivered with a wide range of dose rates. In this work we developed a method based on time-resolved Monte Carlo simulations to quantify the dose rate frequency distribution for clinical VMAT treatments for three cancer sites, head and neck, lung, and pelvis within both planning target volumes (PTV) and normal tissues. The results show a wide range of dose rates are used to deliver dose in VMAT and up to 75% of the PTV can have its dose delivered with dose rates  <1 Gy min-1. Pelvic plans on average have a lower mean dose rate within the PTV than lung or head and neck plans but a comparable mean dose rate within the organs at risk. Two VMAT plans that fulfil the same dose objectives and constraints may be delivered with different dose rate distributions, particularly when comparing single arcs to multiple arc plans. It is concluded that for dynamic plans, the dose rate range used varies to a larger degree than previously assumed. The effect of the dose rate range in VMAT on clinical outcome is unknown.

  8. Dose rate mapping of VMAT treatments.

    PubMed

    Podesta, Mark; Popescu, I Antoniu; Verhaegen, Frank

    2016-06-07

    Human tissues exhibit a varying response to radiation dose depending on the dose rate and fractionation scheme used. Dose rate effects have been reported for different radiations, and tissue types. The literature indicates that there is not a significant difference in response for low-LET radiation when using dose rates between 1 Gy min(-1) and 12 Gy min(-1) but lower dose rates have an observable sparing effect on tissues and a differential effect between tissues. In intensity-modulated radiotherapy such as volumetric modulated arc therapy (VMAT) the dose can be delivered with a wide range of dose rates. In this work we developed a method based on time-resolved Monte Carlo simulations to quantify the dose rate frequency distribution for clinical VMAT treatments for three cancer sites, head and neck, lung, and pelvis within both planning target volumes (PTV) and normal tissues. The results show a wide range of dose rates are used to deliver dose in VMAT and up to 75% of the PTV can have its dose delivered with dose rates  <1 Gy min(-1). Pelvic plans on average have a lower mean dose rate within the PTV than lung or head and neck plans but a comparable mean dose rate within the organs at risk. Two VMAT plans that fulfil the same dose objectives and constraints may be delivered with different dose rate distributions, particularly when comparing single arcs to multiple arc plans. It is concluded that for dynamic plans, the dose rate range used varies to a larger degree than previously assumed. The effect of the dose rate range in VMAT on clinical outcome is unknown.

  9. Personalised dosing: Printing a dose of one's own medicine.

    PubMed

    Alomari, Mustafa; Mohamed, Fatima H; Basit, Abdul W; Gaisford, Simon

    2015-10-30

    Ink-jet printing is a versatile, precise and relatively inexpensive method of depositing small volumes of solutions with remarkable accuracy and repeatability. Although developed primarily as a technology for image reproduction, its areas of application have expanded significantly in recent years. It is particularly suited to the manufacture of low dose medicines or to short production runs and so offers a potential manufacturing solution for the paradigm of personalised medicines. This review discusses the technical and clinical aspects of ink-jet printing that must be considered in order for the technology to become widely adopted in the pharmaceutical arena and considers applications in the literature.

  10. Dose-response approaches for nuclear receptor-mediated ...

    EPA Pesticide Factsheets

    A public workshop, organized by a Steering Committee of scientists from government, industry, universities, and research organizations, was held at the National Institute of Environmental Health Sciences (NIEHS) in September, 2010. The workshop explored the dose-response implications of toxicant modes of action (MOA) mediated by nuclear receptors. The dominant paradigm in human health risk assessment has been linear extrapolation without a threshold for cancer, and estimation of sub-threshold doses for non-cancer and (in appropriate cases) cancer endpoints. However, recent publications question the application of dose-response modeling approaches with a threshold. The growing body of molecular toxicology information and computational toxicology tools has allowed for exploration of the presence or absence of subthreshold doses for a number of receptor-mediated MOPs. The workshop explored the development of dose-response approaches for nuclear receptor-mediated liver cancer, within a MOA Human Relevance framework (HRF). Case studies addressed activation of the AHR; the CAR/PXR, and the PPARa. This paper describes the workshop process, key issues discussed, and conclusions. The value of an interactive workshop approach to apply current MOA/HRF frameworks was demonstrated. The results may help direct research on the MOA and dose-response of receptor-based toxicity, since there are commonalities for many receptors in the basic pathways involved for late steps in the

  11. Monte Carlo dose verification for intensity-modulated arc therapy

    NASA Astrophysics Data System (ADS)

    Li, X. Allen; Ma, Lijun; Naqvi, Shahid; Shih, Rompin; Yu, Cedric

    2001-09-01

    Intensity-modulated arc therapy (IMAT), a technique which combines beam rotation and dynamic multileaf collimation, has been implemented in our clinic. Dosimetric errors can be created by the inability of the planning system to accurately account for the effects of tissue inhomogeneities and physical characteristics of the multileaf collimator (MLC). The objective of this study is to explore the use of Monte Carlo (MC) simulation for IMAT dose verification. The BEAM/DOSXYZ Monte Carlo system was implemented to perform dose verification for the IMAT treatment. The implementation includes the simulation of the linac head/MLC (Elekta SL20), the conversion of patient CT images and beam arrangement for 3D dose calculation, the calculation of gantry rotation and leaf motion by a series of static beams and the development of software to automate the entire MC process. The MC calculations were verified by measurements for conventional beam settings. The agreement was within 2%. The IMAT dose distributions generated by a commercial forward planning system (RenderPlan, Elekta) were compared with those calculated by the MC package. For the cases studied, discrepancies of over 10% were found between the MC and the RenderPlan dose calculations. These discrepancies were due in part to the inaccurate dose calculation of the RenderPlan system. The computation time for the IMAT MC calculation was in the range of 20-80 min on 15 Pentium-III computers. The MC method was also useful in verifying the beam apertures used in the IMAT treatments.

  12. Dose-response approaches for nuclear receptor-mediated ...

    EPA Pesticide Factsheets

    A public workshop, organized by a Steering Committee of scientists from government, industry, universities, and research organizations, was held at the National Institute of Environmental Health Sciences (NIEHS) in September, 2010. The workshop explored the dose-response implications of toxicant modes of action (MOA) mediated by nuclear receptors. The dominant paradigm in human health risk assessment has been linear extrapolation without a threshold for cancer, and estimation of sub-threshold doses for non-cancer and (in appropriate cases) cancer endpoints. However, recent publications question the application of dose-response modeling approaches with a threshold. The growing body of molecular toxicology information and computational toxicology tools has allowed for exploration of the presence or absence of subthreshold doses for a number of receptor-mediated MOPs. The workshop explored the development of dose-response approaches for nuclear receptor-mediated liver cancer, within a MOA Human Relevance framework (HRF). Case studies addressed activation of the AHR; the CAR/PXR, and the PPARa. This paper describes the workshop process, key issues discussed, and conclusions. The value of an interactive workshop approach to apply current MOA/HRF frameworks was demonstrated. The results may help direct research on the MOA and dose-response of receptor-based toxicity, since there are commonalities for many receptors in the basic pathways involved for late steps in the

  13. Pediatric CT: Strategies to Lower Radiation Dose

    PubMed Central

    Zacharias, Claudia; Alessio, Adam M.; Otto, Randolph K.; Iyer, Ramesh S.; Philips, Grace S.; Swanson, Jonathan O.; Thapa, Mahesh M.

    2016-01-01

    OBJECTIVE The introduction of MDCT has increased the utilization of CT in pediatric radiology along with concerns for radiation sequelae. This article reviews general principles of lowering radiation dose, the basic physics that impact radiation dose, and specific CT integrated dose-reduction tools focused on the pediatric population. CONCLUSION The goal of this article is to provide a comprehensive review of the recent literature regarding CT dose reduction methods, their limitations, and an outlook on future developments with a focus on the pediatric population. The discussion will initially focus on general considerations that lead to radiation dose reduction, followed by specific technical features that influence the radiation dose. PMID:23617474

  14. A simplified technique for delivering total body irradiation (TBI) with improved dose homogeneity

    SciTech Connect

    Yao Rui; Bernard, Damian; Turian, Julius; Abrams, Ross A.; Sensakovic, William; Fung, Henry C.; Chu, James C. H.

    2012-04-15

    Purpose: Total body irradiation (TBI) with megavoltage photon beams has been accepted as an important component of management for a number of hematologic malignancies, generally as part of bone marrow conditioning regimens. The purpose of this paper is to present and discuss the authors' TBI technique, which both simplifies the treatment process and improves the treatment quality. Methods: An AP/PA TBI treatment technique to produce uniform dose distributions using sequential collimator reductions during each fraction was implemented, and a sample calculation worksheet is presented. Using this methodology, the dosimetric characteristics of both 6 and 18 MV photon beams, including lung dose under cerrobend blocks was investigated. A method of estimating midplane lung doses based on measured entrance and exit doses was proposed, and the estimated results were compared with measurements. Results: Whole body midplane dose uniformity of {+-}10% was achieved with no more than two collimator-based beam modulations. The proposed model predicted midplane lung doses 5% to 10% higher than the measured doses for 6 and 18 MV beams. The estimated total midplane doses were within {+-}5% of the prescribed midplane dose on average except for the lungs where the doses were 6% to 10% lower than the prescribed dose on average. Conclusions: The proposed TBI technique can achieve dose uniformity within {+-}10%. This technique is easy to implement and does not require complicated dosimetry and/or compensators.

  15. Respiratory dose assessment of inhaled particles: continuing progress

    EPA Science Inventory

    Internal dose is a key factor for determining the health risk ofinhaled pollutant particles on the one hand and the efficacy ofdrug inhalantsonthe other. Accurateestimation ofrespiratorydose, however, is a difficult task because multiple factors come to play roles in the process....

  16. Integrated Worker Radiation Dose Assessment for the K Basins

    SciTech Connect

    NELSON, J.V.

    1999-10-27

    This report documents an assessment of the radiation dose workers at the K Basins are expected to receive in the process of removing spent nuclear fuel from the storage basins. The K Basins (K East and K West) are located in the Hanford 100K Area.

  17. Respiratory dose assessment of inhaled particles: continuing progress

    EPA Science Inventory

    Internal dose is a key factor for determining the health risk ofinhaled pollutant particles on the one hand and the efficacy ofdrug inhalantsonthe other. Accurateestimation ofrespiratorydose, however, is a difficult task because multiple factors come to play roles in the process....

  18. Confusion: acetaminophen dosing changes based on NO evidence in adults.

    PubMed

    Krenzelok, Edward P; Royal, Mike A

    2012-06-01

    Acetaminophen (paracetamol) plays a vital role in American health care, with in excess of 25 billion doses being used annually as a nonprescription medication. Over 200 million acetaminophen-containing prescriptions, usually in combination with an opioid, are dispensed annually. While acetaminophen is recognized as a safe and effective analgesic and antipyretic, it is also associated with significant morbidity and mortality (hepatotoxicity) if doses in excess of the therapeutic amount are ingested inappropriately. The maximum daily therapeutic dose of 3900-4000 mg was established in separate actions in 1977 and 1988, respectively, via the Food and Drug Administration (FDA) monograph process for nonprescription medications. The FDA has conducted multiple advisory committee meetings to evaluate acetaminophen and its safety profile, and has suggested (but not mandated) a reduction in the maximum daily dosage from 3900-4000 mg to 3000-3250 mg. In 2011, McNeil, the producer of the Tylenol® brand of acetaminophen, voluntarily reduced the maximum daily dose of its 500 mg tablet product to 3000 mg/day, and it has pledged to change the labeling of its 325 mg/tablet product to reflect a maximum of 3250 mg/day. Generic manufacturers have not changed their dosing regimens and they have remained consistent with the established monograph dose. Therefore, confusion will be inevitable as both consumers and health care professionals try to determine the proper therapeutic dose of acetaminophen. Which is the correct dose of acetaminophen: 3000 mg if 500 mg tablets are used, 3250 mg with 325 mg tablets, or 3900 mg when 650 mg arthritis-strength products are used?

  19. Pharmacokinetics of temafloxacin in humans after single oral doses.

    PubMed Central

    Granneman, G R; Carpentier, P; Morrison, P J; Pernet, A G

    1991-01-01

    Temafloxacin (A-63004) is a new quinolone antibacterial agent with a broad spectrum of activity against gram-positive and gram-negative aerobes and anaerobes. The pharmacokinetics and metabolism of temafloxacin were determined in healthy volunteers after administration of single oral doses of 100, 200, 400, 600, 800, and 1,000 mg. The corresponding peak concentrations in plasma (mean +/- standard deviation) were 0.98 +/- 0.26, 1.61 +/- 0.57, 2.43 +/- 0.56, 3.87 +/- 0.64, 4.54 +/- 1.03, and 6.67 +/- 0.74 micrograms/ml. The times that elapsed to attain peak levels ranged from 1.25 to 3.5 h. Statistical analyses of parameters related to the extent of absorption and the linearity of the dispositional pharmacokinetics detected no dose-related trends. Study-wide, total clearance (223 ml/min) and renal clearance (125 ml/min) showed low intersubject variability, with coefficients of variation near 20%. The terminal-phase rate constant of 0.090 +/- 0.008 h-1 corresponds to a half-life of 7.7 h. Temafloxacin was excreted mainly in the urine, with 57 +/- 11% of the dose appearing in the urine unchanged. Conjugated temafloxacin, oxidative metabolites, and conjugates thereof were minor components in urine, collectively accounting for 5 to 8% of the dose. Since intravenously dosed dogs eliminated 50% of the dose by nonrenal processes, urinary recoveries approaching two-thirds of the dose in humans were consistent with high, if not quantitative, absorption. Reported adverse events were generally mild, were randomly distributed between temafloxacin- and placebo-treated subjects, and were not dose related. PMID:2039194

  20. Patient specific tube current modulation for CT dose reduction

    NASA Astrophysics Data System (ADS)

    Jin, Yannan; Yin, Zhye; Yao, Yangyang; Wang, Hui; Wu, Mingye; Kalra, Mannudeep; De Man, Bruno

    2015-03-01

    Radiation exposure during CT imaging has drawn growing concern from academia, industry as well as the general public. Sinusoidal tube current modulation has been available in most commercial products and used routinely in clinical practice. To further exploit the potential of tube current modulation, Sperl et al. proposed a Computer-Assisted Scan Protocol and Reconstruction (CASPAR) scheme [6] that modulates the tube current based on the clinical applications and patient specific information. The purpose of this study is to accelerate the CASPAR scheme to make it more practical for clinical use and investigate its dose benefit for different clinical applications. The Monte Carlo simulation in the original CASPAR scheme was substituted by the dose reconstruction to accelerate the optimization process. To demonstrate the dose benefit, we used the CATSIM package generate the projection data and perform standard FDK reconstruction. The NCAT phantom at thorax position was used in the simulation. We chose three clinical cases (routine chest scan, coronary CT angiography with and without breast avoidance) and compared the dose level with different mA modulation schemes (patient specific, sinusoidal and constant mA) with matched image quality. The simulation study of three clinical cases demonstrated that the patient specific mA modulation could significantly reduce the radiation dose compared to sinusoidal modulation. The dose benefits depend on the clinical application and object shape. With matched image quality, for chest scan the patient specific mA profile reduced the dose by about 15% compared to the sinusoid mA modulation; for the organ avoidance scan the dose reduction to the breast was over 50% compared to the constant mA baseline.

  1. Physical dependence potential of daily tramadol dosing in humans

    PubMed Central

    Lofwall, Michelle R.; Mintzer, Miriam Z.; Bigelow, George E.; Strain, Eric C.

    2011-01-01

    Rationale Tramadol is an atypical, mixed-mechanism analgesic involving both opioid and catecholamine processes that appears to have low abuse potential and may be useful as a treatment for opioid dependence. Objectives The current study assessed the level of physical dependence and opioid blockade efficacy produced by daily maintenance on oral tramadol. Methods Nine residential opioid-dependent adults were maintained on two doses of daily oral tramadol (200 and 800 mg) for approximately 4-week intervals in a randomized, double-blind, crossover design. The acute effects of intramuscular placebo, naloxone (0.25, 0.5, and 1.0 mg), and hydromorphone (1.5, 3.0, and 6.0 mg) were tested under double-blind, randomized conditions. Outcomes included observer- and subject-rated measures and physiologic indices. Results Challenge doses of naloxone resulted in significantly higher mean peak withdrawal scores compared to placebo. Withdrawal intensity from naloxone was generally greater during 800 versus 200 mg/day tramadol maintenance. Mean peak ratings of agonist effects were elevated at higher hydromorphone challenge doses, but did not differ significantly between tramadol doses. Physiologic measures were generally affected by challenge conditions in a dose-dependent manner, with few differences between tramadol maintenance dose conditions. Conclusions Chronic tramadol administration produces dose-related opioid physical dependence, without producing dose-related attenuation of agonist challenge effects. Tramadol may be a useful treatment for patients with low levels of opioid dependence or as a treatment for withdrawal during opioid detoxification, but does not appear to be effective as a maintenance medication due to a lack of opioid cross-tolerance. PMID:20589494

  2. Nominal Performance Biosphere Dose Conversion Factor Analysis

    SciTech Connect

    M.A. Wasiolek

    2005-04-28

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the groundwater exposure scenario, and the development of conversion factors for assessing compliance with the groundwater protection standards. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop BDCFs, which are input parameters for the TSPA-LA model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the ''Biosphere Model Report'' in Figure 1-1, contain detailed description of the model input parameters, their development, and the relationship between the parameters and specific features events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the groundwater exposure scenario. This analysis receives direct input from the outputs of the ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) and the five analyses that develop parameter values for the biosphere model (BSC 2005 [DIRS 172827]; BSC 2004 [DIRS 169672]; BSC 2004 [DIRS 169673]; BSC 2004 [DIRS 169458]; BSC 2004 [DIRS 169459]). The results of this report are further analyzed in the ''Biosphere Dose Conversion Factor Importance and Sensitivity Analysis'' (Figure 1-1). The objectives of this analysis are to develop BDCFs for the

  3. Optimal Dosing for Targeted Therapies in Oncology: Drug Development Cases Leading by Example.

    PubMed

    Sachs, Jeffrey R; Mayawala, Kapil; Gadamsetty, Satvik; Kang, Soonmo Peter; de Alwis, Dinesh P

    2016-03-15

    One of the key objectives of oncology first-in-human trials has often been to establish the maximum tolerated dose (MTD). However, targeted therapies might not exhibit dose-limiting toxicities (DLT) at doses significantly higher than sufficiently active doses, and there is frequently a limited ability to objectively quantify adverse events. Thus, while MTD-based determination of recommended phase II dose may have yielded appropriate dosing for some cytotoxics, targeted therapeutics (including monoclonal antibodies and/or immunotherapies) sometimes need alternative or complementary strategies to help identify dose ranges for a randomized dose-ranging study. One complementary strategy is to define a biologically efficacious dose (BED) using an "effect marker." An effect marker could be a target engagement, pharmacodynamic, or disease progression marker (change in tumor size for solid tumors or bone marrow blast count for some hematologic tumors). Although the concept of BED has been discussed extensively, we review specific examples in which the approach influenced oncology clinical development. Data extracted from the literature and the examples support improving dose selection strategies to benefit patients, providers, and the biopharmaceutical industry. Although the examples illustrate key contributions of effect markers in dose selection, no one-size-fits-all approach to dosing can be justified. Higher-than-optimal dosing can increase toxicity in later trials (and in clinical use), which can have a negative impact on efficacy (via lower adherence or direct sequelae of toxicities). Proper dose selection in oncology should follow a multifactorial decision process leading to a randomized, dose-ranging study instead of a single phase II dose. ©2015 American Association for Cancer Research.

  4. An alternative arrangement of metered dosing fluid using centrifugal pump

    NASA Astrophysics Data System (ADS)

    Islam, Md. Arafat; Ehsan, Md.

    2017-06-01

    Positive displacement dosing pumps are extensively used in various types of process industries. They are widely used for metering small flow rates of a dosing fluid into a main flow. High head and low controllable flow rates make these pumps suitable for industrial flow metering applications. However their pulsating flow is not very suitable for proper mixing of fluids and they are relatively more expensive to buy and maintain. Considering such problems, alternative techniques to control the fluid flow from a low cost centrifugal pump is practiced. These include - throttling, variable speed drive, impeller geometry control and bypass control. Variable speed drive and impeller geometry control are comparatively costly and the flow control by throttling is not an energy efficient process. In this study an arrangement of metered dosing flow was developed using a typical low cost centrifugal pump using bypass flow technique. Using bypass flow control technique a wide range of metered dosing flows under a range of heads were attained using fixed pump geometry and drive speed. The bulk flow returning from the system into the main tank ensures better mixing which may eliminate the need of separate agitators. Comparative performance study was made between the bypass flow control arrangement of centrifugal pump and a diaphragm type dosing pump. Similar heads and flow rates were attainable using the bypass control system compared to the diaphragm dosing pump, but using relatively more energy. Geometrical optimization of the centrifugal pump impeller was further carried out to make the bypass flow arrangement more energy efficient. Although both the systems run at low overall efficiencies but the capital cost could be reduced by about 87% compared to the dosing pump. The savings in capital investment and lower maintenance cost very significantly exceeds the relatively higher energy cost of the bypass system. This technique can be used as a cost effective solution for

  5. A Generalized QMRA Beta-Poisson Dose-Response Model.

    PubMed

    Xie, Gang; Roiko, Anne; Stratton, Helen; Lemckert, Charles; Dunn, Peter K; Mengersen, Kerrie

    2016-10-01

    Quantitative microbial risk assessment (QMRA) is widely accepted for characterizing the microbial risks associated with food, water, and wastewater. Single-hit dose-response models are the most commonly used dose-response models in QMRA. Denoting PI(d) as the probability of infection at a given mean dose d, a three-parameter generalized QMRA beta-Poisson dose-response model, PI(d|α,β,r*), is proposed in which the minimum number of organisms required for causing infection, Kmin , is not fixed, but a random variable following a geometric distribution with parameter 0dose-response mechanism. Since a maximum likelihood solution is not easily available, a likelihood-free approximate Bayesian computation (ABC) algorithm is employed for parameter estimation. By fitting the generalized model to four experimental data sets from the literature, this study reveals that the posterior median r* estimates produced fall short of meeting the required condition of r* = 1 for single-hit assumption. However, three out of four data sets fitted by the generalized models could not achieve an improvement in goodness of fit. These combined results imply that, at least in some cases, a single-hit assumption for characterizing the dose-response process may not be appropriate, but that the more complex models may be difficult to support especially if the sample size is small. The three-parameter generalized model provides a possibility to investigate the mechanism of a dose-response process in greater detail than is possible under a single-hit model.

  6. TSD-DOSE: A radiological dose assessment model for treatment, storage, and disposal facilities

    SciTech Connect

    Pfingston, M.; Arnish, J.; LePoire, D.; Chen, S.-Y.

    1998-10-14

    Past practices at US Department of Energy (DOE) field facilities resulted in the presence of trace amounts of radioactive materials in some hazardous chemical wastes shipped from these facilities. In May 1991, the DOE Office of Waste Operations issued a nationwide moratorium on shipping all hazardous waste until procedures could be established to ensure that only nonradioactive hazardous waste would be shipped from DOE facilities to commercial treatment, storage, and disposal (TSD) facilities. To aid in assessing the potential impacts of shipments of mixed radioactive and chemically hazardous wastes, a radiological assessment computer model (or code) was developed on the basis of detailed assessments of potential radiological exposures and doses for eight commercial hazardous waste TSD facilities. The model, called TSD-DOSE, is designed to incorporate waste-specific and site-specific data to estimate potential radiological doses to on-site workers and the off-site public from waste-handling operations at a TSD facility. The code is intended to provide both DOE and commercial TSD facilities with a rapid and cost-effective method for assessing potential human radiation exposures from the processing of chemical wastes contaminated with trace amounts of radionuclides.

  7. Dose-structured population dynamics.

    PubMed

    Ginn, Timothy R; Loge, Frank J

    2007-07-01

    Applied population dynamics modeling is relied upon with increasing frequency to quantify how human activities affect human and non-human populations. Current techniques include variously the population's spatial transport, age, size, and physiology, but typically not the life-histories of exposure to other important things occurring in the ambient environment, such as chemicals, heat, or radiation. Consequently, the effects of such 'abiotic' aspects of an ecosystem on populations are only currently addressed through individual-based modeling approaches that despite broad utility are limited in their applicability to realistic ecosystems [V. Grimm, Ten years of individual-based modeling in ecology: what have we learned and what could we learn in the future? Ecol. Model. 115 (1999) 129-148][1]. We describe a new category of population dynamics modeling, wherein population dynamical states of the biotic phases are structured on dose, and apply this framework to demonstrate how chemical species or other ambient aspects can be included in population dynamics in three separate examples involving growth suppression in fish, inactivation of microorganisms with ultraviolet irradiation, and metabolic lag in population growth. Dose-structuring is based on a kinematic approach that is a simple generalization of age-structuring, views the ecosystem as a multi-component mixture with reacting biotic/abiotic components. The resulting model framework accommodates (a) different memories of exposure as in recovery from toxic ambient conditions, (b) differentiation between exogenous and endogenous sources of variation in population response, and (c) quantification of acute or sub-acute effects on populations arising from life-history exposures to abiotic species. Classical models do not easily address the very important fact that organisms differ and have different experiences over their life cycle. The dose structuring is one approach to incorporate some of these elements into the

  8. The Northern Marshall Islands Radiological Survey: data and dose assessments.

    PubMed

    Robison, W L; Noshkin, V E; Conrado, C L; Eagle, R J; Brunk, J L; Jokela, T A; Mount, M E; Phillips, W A; Stoker, A C; Stuart, M L; Wong, K M

    1997-07-01

    Fallout from atmospheric nuclear tests, especially from those conducted at the Pacific Proving Grounds between 1946 and 1958, contaminated areas of the Northern Marshall Islands. A radiological survey at some Northern Marshall Islands was conducted from September through November 1978 to evaluate the extent of residual radioactive contamination. The atolls included in the Northern Marshall Islands Radiological Survey (NMIRS) were Likiep, Ailuk, Utirik, Wotho, Ujelang, Taka, Rongelap, Rongerik, Bikar, Ailinginae, and Mejit and Jemo Islands. The original test sites, Bikini and Enewetak Atolls, were also visited on the survey. An aerial survey was conducted to determine the external gamma exposure rate. Terrestrial (soil, food crops, animals, and native vegetation), cistern and well water samples, and marine (sediment, seawater, fish and clams) samples were collected to evaluate radionuclide concentrations in the atoll environment. Samples were processed and analyzed for 137Cs, 90Sr, 239+240Pu and 241Am. The dose from the ingestion pathway was calculated using the radionuclide concentration data and a diet model for local food, marine, and water consumption. The ingestion pathway contributes 70% to 90% of the estimated dose. Approximately 95% of the dose is from 137Cs. 90Sr is the second most significant radionuclide via ingestion. External gamma exposure from 137Cs accounts for about 10% to 30% of the dose. 239+240Pu and 241Am are the major contributors to dose via the inhalation pathway; however, inhalation accounts for only about 1% of the total estimated dose, based on surface soil levels and resuspension studies. All doses are computed for concentrations decay corrected to 1996. The maximum annual effective dose from manmade radionuclides at these atolls ranges from .02 mSv y(-1) to 2.1 mSv y(-1). The background dose in the Marshall Islands is estimated to be 2.4 mSv y(-1). The combined dose from both background and bomb related radionuclides ranges from slightly

  9. How to Use Metered-Dose Inhalers

    MedlinePlus

    ... inhaler the right way so that the full dose of medication reaches your lungs. You can use ... inhaler.These directions explain how to use metered-dose inhalers. If you are using a different type ...

  10. Exploring the dose response of radiochromic dosimeters

    NASA Astrophysics Data System (ADS)

    Skyt, P. S.; Wahlstedt, I.; Yates, E. S.; Muren, L. P.; Petersen, J. B. B.; Balling, P.

    2013-06-01

    The aim of this study was to explore the dose response of a newly developed radio-chromic hydrogel dosimeter based on leuco malachite green dye in a gelatine matrix. The original dosimeter composition was first investigated in terms of dose response and dose-rate dependence. In addition, the initiating compounds producing chlorine radicals were substituted with compounds producing fluorine radicals, oxygen-centered radicals, carbon-centered radicals and bromine radicals. Also the surfactant was substituted by other compounds of different molecular size and charge. The original composition gave a dose response of 3.5·10-3 Gy-1cm-1 at 6 Gy/min with a dose rate dependence giving a 27 % increase when decreasing the dose rate to 1 Gy/min. None of the substituted initiating components contributed to an increase in dose response while only one surfactant increased the dose response slightly.

  11. Hanford Environmental Dose Reconstruction Project. Monthly report

    SciTech Connect

    Cannon, S.D.; Finch, S.M.

    1992-10-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates):Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  12. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-03-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  13. Hanford Environmental Dose Reconstruction Project. Monthly report

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-04-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates.

  14. Multiple anatomy optimization of accumulated dose

    SciTech Connect

    Watkins, W. Tyler Siebers, Jeffrey V.; Moore, Joseph A.; Gordon, James; Hugo, Geoffrey D.

    2014-11-01

    Purpose: To investigate the potential advantages of multiple anatomy optimization (MAO) for lung cancer radiation therapy compared to the internal target volume (ITV) approach. Methods: MAO aims to optimize a single fluence to be delivered under free-breathing conditions such that the accumulated dose meets the plan objectives, where accumulated dose is defined as the sum of deformably mapped doses computed on each phase of a single four dimensional computed tomography (4DCT) dataset. Phantom and patient simulation studies were carried out to investigate potential advantages of MAO compared to ITV planning. Through simulated delivery of the ITV- and MAO-plans, target dose variations were also investigated. Results: By optimizing the accumulated dose, MAO shows the potential to ensure dose to the moving target meets plan objectives while simultaneously reducing dose to organs at risk (OARs) compared with ITV planning. While consistently superior to the ITV approach, MAO resulted in equivalent OAR dosimetry at planning objective dose levels to within 2% volume in 14/30 plans and to within 3% volume in 19/30 plans for each lung V20, esophagus V25, and heart V30. Despite large variations in per-fraction respiratory phase weights in simulated deliveries at high dose rates (e.g., treating 4/10 phases during single fraction beams) the cumulative clinical target volume (CTV) dose after 30 fractions and per-fraction dose were constant independent of planning technique. In one case considered, however, per-phase CTV dose varied from 74% to 117% of prescription implying the level of ITV-dose heterogeneity may not be appropriate with conventional, free-breathing delivery. Conclusions: MAO incorporates 4DCT information in an optimized dose distribution and can achieve a superior plan in terms of accumulated dose to the moving target and OAR sparing compared to ITV-plans. An appropriate level of dose heterogeneity in MAO plans must be further investigated.

  15. Radiation dose measurements in coronary CT angiography

    PubMed Central

    Sabarudin, Akmal; Sun, Zhonghua

    2013-01-01

    Coronary computed tomography (CT) angiography is associated with high radiation dose and this has raised serious concerns in the literature. Awareness of various parameters for dose estimates and measurements of coronary CT angiography plays an important role in increasing our understanding of the radiation exposure to patients, thus, contributing to the implementation of dose-saving strategies. This article provides an overview of the radiation dose quantity and its measurement during coronary CT angiography procedures. PMID:24392190

  16. Genetic warfarin dosing: tables versus algorithms.

    PubMed

    Finkelman, Brian S; Gage, Brian F; Johnson, Julie A; Brensinger, Colleen M; Kimmel, Stephen E

    2011-02-01

    The aim of this study was to compare the accuracy of genetic tables and formal pharmacogenetic algorithms for warfarin dosing. Pharmacogenetic algorithms based on regression equations can predict warfarin dose, but they require detailed mathematical calculations. A simpler alternative, recently added to the warfarin label by the U.S. Food and Drug Administration, is to use genotype-stratified tables to estimate warfarin dose. This table may potentially increase the use of pharmacogenetic warfarin dosing in clinical practice; however, its accuracy has not been quantified. A retrospective cohort study of 1,378 patients from 3 anticoagulation centers was conducted. Inclusion criteria were stable therapeutic warfarin dose and complete genetic and clinical data. Five dose prediction methods were compared: 2 methods using only clinical information (empiric 5 mg/day dosing and a formal clinical algorithm), 2 genetic tables (the new warfarin label table and a table based on mean dose stratified by genotype), and 1 formal pharmacogenetic algorithm, using both clinical and genetic information. For each method, the proportion of patients whose predicted doses were within 20% of their actual therapeutic doses was determined. Dosing methods were compared using McNemar's chi-square test. Warfarin dose prediction was significantly more accurate (all p < 0.001) with the pharmacogenetic algorithm (52%) than with all other methods: empiric dosing (37%; odds ratio [OR]: 2.2), clinical algorithm (39%; OR: 2.2), warfarin label (43%; OR: 1.8), and genotype mean dose table (44%; OR: 1.9). Although genetic tables predicted warfarin dose better than empiric dosing, formal pharmacogenetic algorithms were the most accurate. Copyright © 2011 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  17. 42 CFR 82.33 - How will NIOSH inform the public of changes to the scientific elements underlying the dose...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... scientific elements underlying the dose reconstruction process? 82.33 Section 82.33 Public Health PUBLIC... RELATED ACTIVITIES METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER THE ENERGY EMPLOYEES OCCUPATIONAL ILLNESS COMPENSATION PROGRAM ACT OF 2000 Updating the Scientific Elements Underlying Dose Reconstructions...

  18. 42 CFR 82.33 - How will NIOSH inform the public of changes to the scientific elements underlying the dose...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... scientific elements underlying the dose reconstruction process? 82.33 Section 82.33 Public Health PUBLIC... RELATED ACTIVITIES METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER THE ENERGY EMPLOYEES OCCUPATIONAL ILLNESS COMPENSATION PROGRAM ACT OF 2000 Updating the Scientific Elements Underlying Dose Reconstructions...

  19. 42 CFR 82.33 - How will NIOSH inform the public of changes to the scientific elements underlying the dose...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... scientific elements underlying the dose reconstruction process? 82.33 Section 82.33 Public Health PUBLIC... RELATED ACTIVITIES METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER THE ENERGY EMPLOYEES OCCUPATIONAL ILLNESS COMPENSATION PROGRAM ACT OF 2000 Updating the Scientific Elements Underlying Dose Reconstructions...

  20. 42 CFR 82.33 - How will NIOSH inform the public of changes to the scientific elements underlying the dose...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... scientific elements underlying the dose reconstruction process? 82.33 Section 82.33 Public Health PUBLIC... RELATED ACTIVITIES METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER THE ENERGY EMPLOYEES OCCUPATIONAL ILLNESS COMPENSATION PROGRAM ACT OF 2000 Updating the Scientific Elements Underlying Dose Reconstructions...

  1. 42 CFR 82.33 - How will NIOSH inform the public of changes to the scientific elements underlying the dose...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... scientific elements underlying the dose reconstruction process? 82.33 Section 82.33 Public Health PUBLIC... RELATED ACTIVITIES METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER THE ENERGY EMPLOYEES OCCUPATIONAL ILLNESS COMPENSATION PROGRAM ACT OF 2000 Updating the Scientific Elements Underlying Dose Reconstructions...

  2. Impact of Mobile Dose-Tracking Technology on Medication Distribution at an Academic Medical Center.

    PubMed

    Kelm, Matthew; Campbell, Udobi

    2016-05-01

    Medication dose-tracking technologies have the potential to improve efficiency and reduce costs associated with re-dispensing doses reported as missing. Data describing this technology and its impact on the medication use process are limited. The purpose of this study is to assess the impact of dose-tracking technology on pharmacy workload and drug expense at an academic, acute care medical center. Dose-tracking technology was implemented in June 2014. Pre-implementation data were collected from February to April 2014. Post-implementation data were collected from July to September 2014. The primary endpoint was the percent of re-dispensed oral syringe and compounded sterile product (CSP) doses within the pre- and post-implementation periods per 1,000 discharges. Secondary endpoints included pharmaceutical expense generated from re-dispensing doses, labor costs, and staff satisfaction with the medication distribution process. We observed an average 6% decrease in re-dispensing of oral syringe and CSP doses from pre- to post-implementation (15,440 vs 14,547 doses; p = .047). However, when values were adjusted per 1,000 discharges, this trend did not reach statistical significance (p = .074). Pharmaceutical expense generated from re-dispensing doses was significantly reduced from pre- to post-implementation ($834,830 vs $746,466 [savings of $88,364]; p = .047). We estimated that $2,563 worth of technician labor was avoided in re-dispensing missing doses. We also saw significant improvement in staff perception of technology assisting in reducing missing doses (p = .0003), as well as improvement in effectiveness of resolving or minimizing missing doses (p = .01). The use of mobile dose-tracking technology demonstrated meaningful reductions in both the number of doses re-dispensed and cost of pharmaceuticals dispensed.

  3. A dose monitoring system for dental radiography

    PubMed Central

    Lee, Chena; Kim, Jo-Eun; Symkhampha, Khanthaly; Lee, Woo-Jin; Huh, Kyung-Hoe; Yi, Won-Jin; Heo, Min-Suk; Choi, Soon-Chul; Yeom, Heon-Young

    2016-01-01

    Purpose The current study investigates the feasibility of a platform for a nationwide dose monitoring system for dental radiography. The essential elements for an unerring system are also assessed. Materials and Methods An intraoral radiographic machine with 14 X-ray generators and five sensors, 45 panoramic radiographic machines, and 23 cone-beam computed tomography (CBCT) models used in Korean dental clinics were surveyed to investigate the type of dose report. A main server for storing the dose data from each radiographic machine was prepared. The dose report transfer pathways from the radiographic machine to the main sever were constructed. An effective dose calculation method was created based on the machine specifications and the exposure parameters of three intraoral radiographic machines, five panoramic radiographic machines, and four CBCTs. A viewing system was developed for both dentists and patients to view the calculated effective dose. Each procedure and the main server were integrated into one system. Results The dose data from each type of radiographic machine was successfully transferred to the main server and converted into an effective dose. The effective dose stored in the main server is automatically connected to a viewing program for dentist and patient access. Conclusion A patient radiation dose monitoring system is feasible for dental clinics. Future research in cooperation with clinicians, industry, and radiologists is needed to ensure format convertibility for an efficient dose monitoring system to monitor unexpected radiation dose. PMID:27358817

  4. Occupational eye dose in interventional cardiology procedures.

    PubMed

    Haga, Yoshihiro; Chida, Koichi; Kaga, Yuji; Sota, Masahiro; Meguro, Taiichiro; Zuguchi, Masayuki

    2017-04-03

    It is important to measure the radiation dose [3-mm dose equivalent, Hp(3)] in the eye. This study was to determine the current occupational radiation eye dose of staff conducting interventional cardiology procedures, using a novel direct eye dosimeter. We measured the occupational eye dose [Hp(3)] in physicians and nurses in a catheterization laboratory for 6-months. The eye doses [Hp(3)] of 12 physicians (9 with Pb glasses, 3 without), and 11 nurses were recorded using a novel direct eye dosimeter, the DOSIRIS(TM). We placed dosimeters above and under the glasses. We also estimated the eye dose [0.07-mm dose equivalent] using a neck personal dosimeter. The eye doses among interventional staff ranked in the following order: physicians without Pb glasses > physicians with Pb glasses > nurses. The shielding effect of the glasses (0.07-mm Pb) in a clinical setting was approximately 60%. In physicians who do not wear Pb glasses, the eye dose may exceed the new regulatory limit for IR staff. We found good correlations between the neck dosimeter dose and eye dosimeter dose (inside or outside glasses, R(2) = 0.93 and R(2) = 0.86, respectively) in physicians. We recommend that interventional physicians use an eye dosimeter for correct evaluation of the lens dose.

  5. Proof of efficacy trials: choosing the dose.

    PubMed

    Pledger, G

    2001-05-01

    It is apparent from current usage of antiepileptic drugs (AEDs) and from retrospective review of their drug development programmes, that the doses currently used in clinical practice differ from those which were used in clinical trials. This raises the question of how dose and titration schedules are selected in early development. An integral component of a drug development programme should be an assessment of dose response. The International Council on Harmonization of Technical Requirements for the Registration of Pharmaceuticals for Human Use [1994. Guidelines for industry: Dose-response information to support drug registration. ICH-E4. Federal Register] regulatory guidelines suggest that, at a minimum, three elements of dosing should be characterised: a maximum well tolerated dose, a minimum effective dose, and an appropriate rate of titration. Several specific designs can be utilised to assess dose response, which fall broadly into four categories, namely free titration, forced titration and dose escalation, parallel dose response, and dose reduction studies. In addition to these standard approaches, concentration-defined trials are an alternative in some circumstances and have been used with success in the development of newer AEDs. The designs chosen to address these elements are dependent upon the phase of development of the drug, and the severity of the disease, however, it is clear that conducting dose response studies earlier in the development programme may reduce the number of failed Phase 3 studies.

  6. Low Dose Effects in Psychopharmacology: Ontogenetic Considerations

    PubMed Central

    Spear, Linda Patia; Varlinskaya, Elena I.

    2005-01-01

    Low doses of psychoactive drugs often elicit a behavioral profile opposite to that observed following administration of more substantial doses. Our laboratory has observed that these effects are often age-specific in rats. For instance, whereas moderate to high doses of the dopamine agonist apomorphine increase locomotion, suppressed locomotor activity is seen following low dose exposure, with this low dose effect not emerging consistently until adolescence. A somewhat earlier emergence of a low dose “paradoxical” effect is seen with the 5HT1a receptor agonist, 8-OH-DPAT, with late preweanling, but not neonatal, rats showing increases in ingestive behavior at low doses but suppression at higher doses. In contrast to these ontogenetic increases in expression of low dose drug effects, low dose facilitation of social behavior is seen following ethanol only in adolescent rats and not their mature counterparts, although suppression of social interactions at higher doses is seen at both ages. This hormesis-like low dose stimulation appears related in part to overcompensation, with brief social suppression preceding the subsequent stimulation response, and also bears a number of ontogenetic similarities to acute tolerance, a well characterized, rapidly emerging adaptation to ethanol. Implications of these and other ontogenetic findings for studies of hormesis are discussed. PMID:19330157

  7. Calculation of dose conversion factors for doses in the fingernails to organ doses at external gamma irradiation in air

    PubMed Central

    Khailov, A.M.; Ivannikov, A. I.; Skvortsov, V.G.; Stepanenko, V.F.; Orlenko, S.P.; Flood, A.B.; Williams, B.B.; Swartz, H.M.

    2015-01-01

    Absorbed doses to fingernails and organs were calculated for a set of homogenous external gamma-ray irradiation geometries in air. The doses were obtained by stochastic modeling of the ionizing particle transport (Monte Carlo method) for a mathematical human phantom with arms and hands placed loosely along the sides of the body. The resulting dose conversion factors for absorbed doses in fingernails can be used to assess the dose distribution and magnitude in practical dose reconstruction problems. For purposes of estimating dose in a large population exposed to radiation in order to triage people for treatment of acute radiation syndrome, the calculated data for a range of energies having a width of from 0.05 to 3.5 MeV were used to convert absorbed doses in fingernails to corresponding doses in organs and the whole body as well as the effective dose. Doses were assessed based on assumed rates of radioactive fallout at different time periods following a nuclear explosion. PMID:26347593

  8. SU-E-T-86: A Systematic Method for GammaKnife SRS Fetal Dose Estimation

    SciTech Connect

    Geneser, S; Paulsson, A; Sneed, P; Braunstein, S; Ma, L

    2015-06-15

    Purpose: Estimating fetal dose is critical to the decision-making process when radiation treatment is indicated during pregnancy. Fetal doses less than 5cGy confer no measurable non-cancer developmental risks but can produce a threefold increase in developing childhood cancer. In this study, we estimate fetal dose for a patient receiving Gamma Knife stereotactic radiosurgery (GKSRS) treatment and develop a method to estimate dose directly from plan details. Methods: A patient underwent GKSRS on a Perfexion unit for eight brain metastases (two infratentorial and one brainstem). Dose measurements were performed using a CC13, head phantom, and solid water. Superficial doses to the thyroid, sternum, and pelvis were measured using MOSFETs during treatment. Because the fetal dose was too low to accurately measure, we obtained measurements proximally to the isocenter, fitted to an exponential function, and extrapolated dose to the fundus of the uterus, uterine midpoint, and pubic synthesis for both the preliminary and delivered plans. Results: The R-squared fit for the delivered doses was 0.995. The estimated fetal doses for the 72 minute preliminary and 138 minute delivered plans range from 0.0014 to 0.028cGy and 0.07 to 0.38cGy, respectively. MOSFET readings during treatment were just above background for the thyroid and negligible for all inferior positions. The method for estimating fetal dose from plan shot information was within 0.2cGy of the measured values at 14cm cranial to the fetal location. Conclusion: Estimated fetal doses for both the preliminary and delivered plan were well below the 5cGy recommended limit. Due to Pefexion shielding, internal dose is primarily governed by attenuation and drops off exponentially. This is the first work that reports fetal dose for a GK Perfexion unit. Although multiple lesions were treated and the duration of treatment was long, the estimated fetal dose remained very low.

  9. Isobio software: biological dose distribution and biological dose volume histogram from physical dose conversion using linear-quadratic-linear model

    PubMed Central

    Jaikuna, Tanwiwat; Khadsiri, Phatchareewan; Chawapun, Nisa; Saekho, Suwit

    2017-01-01

    Purpose To develop an in-house software program that is able to calculate and generate the biological dose distribution and biological dose volume histogram by physical dose conversion using the linear-quadratic-linear (LQL) model. Material and methods The Isobio software was developed using MATLAB version 2014b to calculate and generate the biological dose distribution and biological dose volume histograms. The physical dose from each voxel in treatment planning was extracted through Computational Environment for Radiotherapy Research (CERR), and the accuracy was verified by the differentiation between the dose volume histogram from CERR and the treatment planning system. An equivalent dose in 2 Gy fraction (EQD2) was calculated using biological effective dose (BED) based on the LQL model. The software calculation and the manual calculation were compared for EQD2 verification with pair t-test statistical analysis using IBM SPSS Statistics version 22 (64-bit). Results Two and three-dimensional biological dose distribution and biological dose volume histogram were displayed correctly by the Isobio software. Different physical doses were found between CERR and treatment planning system (TPS) in Oncentra, with 3.33% in high-risk clinical target volume (HR-CTV) determined by D90%, 0.56% in the bladder, 1.74% in the rectum when determined by D2cc, and less than 1% in Pinnacle. The difference in the EQD2 between the software calculation and the manual calculation was not significantly different with 0.00% at p-values 0.820, 0.095, and 0.593 for external beam radiation therapy (EBRT) and 0.240, 0.320, and 0.849 for brachytherapy (BT) in HR-CTV, bladder, and rectum, respectively. Conclusions The Isobio software is a feasible tool to generate the biological dose distribution and biological dose volume histogram for treatment plan evaluation in both EBRT and BT. PMID:28344603

  10. Isobio software: biological dose distribution and biological dose volume histogram from physical dose conversion using linear-quadratic-linear model.

    PubMed

    Jaikuna, Tanwiwat; Khadsiri, Phatchareewan; Chawapun, Nisa; Saekho, Suwit; Tharavichitkul, Ekkasit

    2017-02-01

    To develop an in-house software program that is able to calculate and generate the biological dose distribution and biological dose volume histogram by physical dose conversion using the linear-quadratic-linear (LQL) model. The Isobio software was developed using MATLAB version 2014b to calculate and generate the biological dose distribution and biological dose volume histograms. The physical dose from each voxel in treatment planning was extracted through Computational Environment for Radiotherapy Research (CERR), and the accuracy was verified by the differentiation between the dose volume histogram from CERR and the treatment planning system. An equivalent dose in 2 Gy fraction (EQD2) was calculated using biological effective dose (BED) based on the LQL model. The software calculation and the manual calculation were compared for EQD2 verification with pair t-test statistical analysis using IBM SPSS Statistics version 22 (64-bit). Two and three-dimensional biological dose distribution and biological dose volume histogram were displayed correctly by the Isobio software. Different physical doses were found between CERR and treatment planning system (TPS) in Oncentra, with 3.33% in high-risk clinical target volume (HR-CTV) determined by D90%, 0.56% in the bladder, 1.74% in the rectum when determined by D2cc, and less than 1% in Pinnacle. The difference in the EQD2 between the software calculation and the manual calculation was not significantly different with 0.00% at p-values 0.820, 0.095, and 0.593 for external beam radiation therapy (EBRT) and 0.240, 0.320, and 0.849 for brachytherapy (BT) in HR-CTV, bladder, and rectum, respectively. The Isobio software is a feasible tool to generate the biological dose distribution and biological dose volume histogram for treatment plan evaluation in both EBRT and BT.

  11. Dose-dependent pharmacokinetics and biliary excretion of bromophenol blue in the rat.

    PubMed

    Wills, R J; Smith, R B; Yakatan, G J

    1983-10-01

    Concentrations of bromophenol blue (I) in plasma, urine, and bile were determined spectrophotometrically after intravenous bolus injections and infusions in rats. The plasma concentrations were found to decrease monoexponentially after all doses except the highest, where the decrease was biexponential. Although the disposition kinetics of I were apparently first-order at all doses, the half-life increased with increasing dose. The area under the plasma concentration-time curve (AUC0-infinity) increased disproportionately with increasing dose. The binding of I to rat plasma proteins, as determined by equilibrium dialysis, showed that the fraction bound (96%) remained constant in the concentration range of 10-300 micrograms/ml. Plasma concentrations were determined at time zero after intravenous administration and after a second dose administered 20 min later when plasma concentrations from the first dose were minimal. The apparent first-order elimination rate constant for the plasma concentration decline following the second dose was significantly less than after the first dose, indicating that the residual dye in the liver altered the elimination of I after the second dose. The fraction of the dose in the liver decreased with increasing dose, indicating a saturable uptake process. The biliary excretion profile reflected the uptake saturation that occurred in the liver and demonstrated that the biliary excretion of I depended on the amount present in the liver. When liver damage was induced by exposure to carbon tetrachloride, dye concentrations in the plasma, liver, and kidney increased markedly.

  12. Low-dose serotherapy improves early immune reconstitution after cord blood transplantation for primary immunodeficiencies.

    PubMed

    Lane, Jonathan P; Evans, Philippa T G; Nademi, Zohreh; Barge, Dawn; Jackson, Anthony; Hambleton, Sophie; Flood, Terry J; Cant, Andrew J; Abinun, Mario; Slatter, Mary A; Gennery, Andrew R

    2014-02-01

    Cord blood transplantation (CBT) is curative for many primary immunodeficiencies (PIDs) but is associated with risks of viral infection and graft-versus-host disease (GvHD). Serotherapy reduces GvHD but potentially increases the risk of viral infection by delaying immune reconstitution. Because many PID patients have pre-existing viral infections, the optimal dose of serotherapy is unclear. We performed a retrospective analysis in 34 consecutive PID patients undergoing CBT and compared immune reconstitution, viral infection, GvHD, mortality, and long-term immune function between high-dose (n = 11) and low-dose (n = 9) serotherapy. Serotherapy dose had no effect on neutrophil engraftment. Median CD3(+) engraftment occurred at 92.5 and 97 days for high- and low-dose serotherapy, respectively. The low-dose serotherapy group had higher CD3(+), CD4(+), and early thymic emigrant counts at 4 months compared with the high-dose group. GvHD severity and number of viral infections did not differ between serotherapy doses. Survival from the transplantation process was 90.9% for high-dose and 100% for low-dose groups. In conclusion, low-dose serotherapy enhanced T cell reconstitution and thymopoiesis during the first year after CBT with no increase in GvHD. Copyright © 2014 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  13. The benefit of accounting for DQE variations in simulated dose reduction of digital radiographic systems.

    PubMed

    Svalkvist, Angelica; Båth, Magnus

    2010-01-01

    Adding noise to clinical radiographs to simulate dose reduction can be used to investigate the relationship between dose level and clinical image quality without exposing patients to additional radiation. The purpose of the present paper was to examine the benefits of using a method that accounts for detective quantum efficiency (DQE) variations that may occur in different dose ranges in the simulated dose reduction process. A method initially intended for simulated dose reduction in tomosynthesis was applied to extremely low-dose posterioanterior radiographs of an anthropomorphic chest phantom, selected from a group of projection images included in a tomosynthesis examination and compared with a previous method that do not account for DQE variations. A comparison of images simulated to be collected at a lower dose level (73 % of the original dose level) and images actually collected at this lower dose level revealed that the error in the integrated normalised noise power spectrum was smaller than 4 % for the method that accounts for DQE variations in the simulated dose reduction, whereas the error was larger than 20 % for the previous method. This indicates that an increased validity in dose reduction simulation of digital radiographic systems is obtained with a method accounting for DQE variations.

  14. Comparison of the neutron ambient dose equivalent and ambient absorbed dose calculations with different GEANT4 physics lists

    NASA Astrophysics Data System (ADS)

    Ribeiro, Rosane Moreira; Souza-Santos, Denison

    2017-10-01

    A comparison between neutron physics lists given by GEANT4, is made in the calculation of the ambient dose equivalent, and ambient absorbed dose, per fluence conversion coefficients (H* (10) / ϕ and D* (10) / ϕ) for neutrons in the range of 10-9 MeV to 15 MeV. Physics processes are included for neutrons, photons and charged particles, and calculations are made for neutrons and secondary particles. Results obtained for QBBC, QGSP_BERT, QGSP_BIC and Neutron High Precision physics lists are compared with values published in ICRP 74 and previously published articles. Neutron high precision physics lists showed the best results in the studied energy range.

  15. Dose Rate Effects in Linear Bipolar Transistors

    NASA Technical Reports Server (NTRS)

    Johnston, Allan; Swimm, Randall; Harris, R. D.; Thorbourn, Dennis

    2011-01-01

    Dose rate effects are examined in linear bipolar transistors at high and low dose rates. At high dose rates, approximately 50% of the damage anneals at room temperature, even though these devices exhibit enhanced damage at low dose rate. The unexpected recovery of a significant fraction of the damage after tests at high dose rate requires changes in existing test standards. Tests at low temperature with a one-second radiation pulse width show that damage continues to increase for more than 3000 seconds afterward, consistent with predictions of the CTRW model for oxides with a thickness of 700 nm.

  16. Hanford Environmental Dose Reconstruction Project: Monthly Report

    SciTech Connect

    Finch, S.M.

    1990-07-01

    This monthly report summarizes the technical progress and project status for the Hanford Environmental Dose Reconstruction (HEDR) Project being conducted at the Pacific Northwest Laboratory (PNL) under the direction of a Technical Steering Panel (TSP). The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source Terms, Environmental Transport, Environmental Monitoring Data, Demographics, Agriculture, Food Habits, and Environmental Pathways and Dose Estimates. 3 figs.

  17. Dose Rate Effects in Linear Bipolar Transistors

    NASA Technical Reports Server (NTRS)

    Johnston, Allan; Swimm, Randall; Harris, R. D.; Thorbourn, Dennis

    2011-01-01

    Dose rate effects are examined in linear bipolar transistors at high and low dose rates. At high dose rates, approximately 50% of the damage anneals at room temperature, even though these devices exhibit enhanced damage at low dose rate. The unexpected recovery of a significant fraction of the damage after tests at high dose rate requires changes in existing test standards. Tests at low temperature with a one-second radiation pulse width show that damage continues to increase for more than 3000 seconds afterward, consistent with predictions of the CTRW model for oxides with a thickness of 700 nm.

  18. Tritium dose criteria and radiological impact of a tritium plant

    NASA Astrophysics Data System (ADS)

    Kolbasov, B. N.

    1993-06-01

    Radiation safetry criteria adopted in Russia (in the former USSR) distinguish five classes of tritium compounds. The lowest permissible tritium concentration in the air is set for insoluble tritium compounds (3.105 times lower than that for HT). Russia's criteria for tritiated radioactive waste are outlined. It is explained why the tritium weighting factor of two is used as a basis for the tritium dose criteria development in this country. The ecological situation nearby a large tritium processing plant is considered. Amounts of tritiated waste produced at the plant, sources of tritium effluents, tritium content in the air, water, snow, soil and vegetation as well as HTO sorption parameters of various food products are reported. On the basis of HTO near-surface concentrations in the air and public doses measured 3 km away from the plant stack, the tritium dose factor was calculated.

  19. Tritium dose criteria and radiological impact of a tritium plant

    SciTech Connect

    Kolbasov, B.N.

    1993-06-01

    Radiation safety criteria adopted in Russia (in the former USSR) distinguish five classes of tritium compounds. The lowest permissible tritium concentration in the air is set for insoluble tritium compounds (3 [times] 10[sup 5] times lower than that for HT). Russia's criteria for tritiated radioactive waste are outlined. It is explained why the tritium weighting factor of two is used as a basis for the tritium dose criteria development in this country. The ecological situation nearby a large tritium processing plant is considered. Amounts of tritiated waste produced at the plant, sources of tritium effluents, tritium content in the air, water, snow, soil and vegetation as well as HTO sorption parameters of various food products are reported. On the basis of HTO near-surface concentrations in the air and public doses measured 3 km away from the plant stack, the tritium dose factor was calculated.

  20. Using rule-based shot dose assignment in model-based MPC applications

    NASA Astrophysics Data System (ADS)

    Bork, Ingo; Buck, Peter; Wang, Lin; Müller, Uwe

    2014-10-01

    Shrinking feature sizes and the need for tighter CD (Critical Dimension) control require the introduction of new technologies in mask making processes. One of those methods is the dose assignment of individual shots on VSB (Variable Shaped Beam) mask writers to compensate CD non-linearity effects and improve dose edge slope. Using increased dose levels only for most critical features, generally only for the smallest CDs on a mask, the change in mask write time is minimal while the increase in image quality can be significant. This paper describes a method combining rule-based shot dose assignment with model-based shot size correction. This combination proves to be very efficient in correcting mask linearity errors while also improving dose edge slope of small features. Shot dose assignment is based on tables assigning certain dose levels to a range of feature sizes. The dose to feature size assignment is derived from mask measurements in such a way that shape corrections are kept to a minimum. For example, if a 50nm drawn line on mask results in a 45nm chrome line using nominal dose, a dose level is chosen which is closest to getting the line back on target. Since CD non-linearity is different for lines, line-ends and contacts, different tables are generated for the different shape categories. The actual dose assignment is done via DRC rules in a pre-processing step before executing the shape correction in the MPC engine. Dose assignment to line ends can be restricted to critical line/space dimensions since it might not be required for all line ends. In addition, adding dose assignment to a wide range of line ends might increase shot count which is undesirable. The dose assignment algorithm is very flexible and can be adjusted based on the type of layer and the best balance between accuracy and shot count. These methods can be optimized for the number of dose levels available for specific mask writers. The MPC engine now needs to be able to handle different dose

  1. High-dose secondary calibration laboratory accreditation program

    SciTech Connect

    Humphreys, J.C.

    1993-12-31

    There is a need for high-dose secondary calibration laboratories to serve the multi-billion dollar radiation processing industry. This need is driven by the desires of industry for less costly calibrations and faster calibration-cycle response time. Services needed include calibration irradiations of routine processing dosimeters and the supply of reference standard transfer dosimeters for irradiation in the production processing facility. In order to provide measurement quality assurance and to demonstrate consistency with national standards, the high-dose secondary laboratories would be accredited by means of an expansion of an existing National Voluntary Laboratory Accreditation Program. A laboratory performance criteria document is under development to implement the new program.

  2. Development of an online automatic computed radiography dose data mining program: a preliminary study.

    PubMed

    Ng, Curtise K C; Sun, Zhonghua

    2010-01-01

    Recent studies have reported the computed radiography (CR) dose creep problem and therefore the need to have monitoring processes in place in clinical departments. The objective of this study is to provide a better technological solution to implement a regular CR dose monitoring process. An online automatic CR dose data mining program which can be applied to different systems was developed based on freeware and existing softwares in the Picture Archiving and Communication System (PACS) server. The program was tested with 69 CR images. This preliminary study shows that the program addresses the major weaknesses of some existing studies including involvement of manual procedures in the monitoring process and being only applicable to a single manufacturer's CR images. The proposed method provides an efficient and effective solution to implement a CR dose monitoring program regularly in busy clinical departments to regulate the dose creep problem so as to reinforce the 'As Low As Reasonably Achievable' (ALARA) principle.

  3. Radiation dose dependent change in physiochemical, mechanical and barrier properties of guar gum based films.

    PubMed

    Saurabh, Chaturbhuj K; Gupta, Sumit; Bahadur, Jitendra; Mazumder, S; Variyar, Prasad S; Sharma, Arun

    2013-11-06

    Mechanical and water vapor barrier properties of biodegradable films prepared from radiation processed guar gum were investigated. Films prepared from GG irradiated up to 500 Gy demonstrated significantly higher tensile strength as compared to non-irradiated control films. This improvement in tensile strength observed was demonstrated to be due to the ordering of polymer structures as confirmed by small angle X-ray scattering analysis. Exposure to doses higher than 500 Gy, however, resulted in a dose dependent decrease in tensile strength. A dose dependent decrease in puncture strength with no significant differences in the percent elongation was also observed at all the doses studied. Water vapor barrier properties of films improved up to 15% due to radiation processing. Radiation processing at lower doses for improving mechanical and barrier properties of guar based packaging films is demonstrated here for the first time.

  4. Inhomogeneity Effects on Dose Deposition for Photon and Electron Beams

    NASA Astrophysics Data System (ADS)

    Yu, Xinsheng

    1989-03-01

    A long-standing problem in radiation therapy has been to correct the dose distributions for the presence of inhomogeneities. The availability of CT and MRI imaging for treatment planning has led to many new algorithms for making such corrections. Unfortunately, each of these methods shows a limited range of validity outside of which errors exceeding 10% may occur due to the assumptions made in the algorithm. In order for valid assumptions to be made, the physical processes involved in the perturbation effects of inhomogeneities on radiation dose deposition must be identified and understood. The work presented in this thesis is to achieve this goal. Inhomogeneity effects on photon dose deposition have been studied by means of experimental measurements and theoretical simulations. The results indicated that changes in atomic number could result in large changes in dose by perturbing the transport of the secondary electrons. Electron transport theory was then studied with the emphasis on the electron multiple scattering. The small angle approximation in the Fermi-Eyges theory and the assumption of semi-infinite slab geometry in current electron dose calculation algorithms were found to cause inaccurate prediction of dose in the vicinity of local inhomogeneities. Using the concept of mean path, a new multiray model has been derived, which is sensitive to local inhomogeneities and gives good agreement with Monte -Carlo simulations. Based on the understanding of both photon and electron transport, a new photon-electron cascade model is proposed for calculating photon dose deposition. The model explicitly includes the transport of the secondary charged particles and is applicable for the presence of inhomogeneities with different electron densities and atomic numbers.

  5. Can digoxin dose requirements be predicted?

    PubMed

    Dobbs, S M; Mawer, G E; Rodgers, M; Woodcock, B G; Lucas, S B

    1976-04-01

    A search for patient variables relevant to digoxin dose requirements was made in fourty-three patients with a wide range of renal and hepatic function. The daily dose of digoxin to achieve a mean serum concentration of 1.5 ng/ml, the standardized dose, was calculated for each patient. The standardized dose correlated significantly with the following variables, in descending order of correlation coefficient; creatinine clearance, serum creatinine concentration, body weight and serum albumin concentration. An equation containing the two independent variables, creatinine clearance and serum albumin concentration, had a significantly stronger correlation with standardized dose than creatinine clearance alone. Attempts were made in each patient to predict the standardized dose using both empirical prescribing methods and the published nomograms. Although a maximum of 70% of the variance of the standardized dose was explained, this corresponded approximately to one patient in three having a predicted dose outside the 95% confidnece limits for the standardized dose. There remain important sources of individual variation in digoxin dose requirements yet to be identified. Future application of empirical prescribing methods, such as multiple linear regression and Bayes' theorem, to prescription for large, defined patient groups may improve dose prediction for individual patients.

  6. Can digoxin dose requirements be predicted?

    PubMed Central

    Dobbs, S M; Mawer, G E; Rodgers, M; Woodcock, B G; Lucas, S B

    1976-01-01

    A search for patient variables relevant to digoxin dose requirements was made in fourty-three patients with a wide range of renal and hepatic function. The daily dose of digoxin to achieve a mean serum concentration of 1.5 ng/ml, the standardized dose, was calculated for each patient. The standardized dose correlated significantly with the following variables, in descending order of correlation coefficient; creatinine clearance, serum creatinine concentration, body weight and serum albumin concentration. An equation containing the two independent variables, creatinine clearance and serum albumin concentration, had a significantly stronger correlation with standardized dose than creatinine clearance alone. Attempts were made in each patient to predict the standardized dose using both empirical prescribing methods and the published nomograms. Although a maximum of 70% of the variance of the standardized dose was explained, this corresponded approximately to one patient in three having a predicted dose outside the 95% confidnece limits for the standardized dose. There remain important sources of individual variation in digoxin dose requirements yet to be identified. Future application of empirical prescribing methods, such as multiple linear regression and Bayes' theorem, to prescription for large, defined patient groups may improve dose prediction for individual patients. PMID:973957

  7. Matching target dose to target organ

    PubMed Central

    Bannon, Desmond I.; Williams, Marc A.

    2016-01-01

    In vitro assays have become a mainstay of modern approaches to toxicology with the promise of replacing or reducing the number of in vivo tests required to establish benchmark doses, as well as increasing mechanistic understanding. However, matching target dose to target organ is an often overlooked aspect of in vitro assays, and the calibration of in vitro exposure against in vivo benchmark doses is often ignored, inadvertently or otherwise.  An example of this was recently published in Environmental Health Perspectives by Wagner et al., where neural stems cells were used to model the molecular toxicity of lead.  On closer examination of the in vitro work, the doses used in media reflected in vivo lead doses that would be at the highest end of lead toxicity, perhaps even lethal.  Here we discuss the doses used and suggest more realistic doses for future work with stem cells or other neuronal cell lines. PMID:28163899

  8. Dose rate assessment in tooth enamel

    NASA Astrophysics Data System (ADS)

    Wieser, A.; Göksu, H. Y.; Regulla, D. F.; Vogenauer, A.

    A mammoth found in the southern part of Germany was dated by ESR spectroscopy. This dating method is based on the measurement of the accumulated dose in tooth enamel and assessment of the annual dose. The accumulated dose is obtained from the radiation induced ESR signal at g = 2.0018 of the enamel. The annual dose was first determined by measuring the 238U, 232Th and 40K content of the tooth and of the surrounding soil. As a crosscheck, the dose rate from the tooth was measured by inserting TL dosimeters in the dentine and storing them at 'zero' background in a salt mine. The cosmic dose rate and the gamma dose rate from the soil was evaluated from TL dosimeters buried at the excavation site. The results are discussed with respect to the applicability of ESR dating on teeth.

  9. Dose banding as an alternative to body surface area-based dosing of chemotherapeutic agents

    PubMed Central

    Chatelut, E; White-Koning, M L; Mathijssen, R HJ; Puisset, F; Baker, S D; Sparreboom, A

    2012-01-01

    Background: Dose banding is a recently suggested dosing method that uses predefined ranges (bands) of body surface area (BSA) to calculate each patient's dose by using a single BSA-value per band. Thus, drugs with sufficient long-term stability can be prepared in advance. The main advantages of dose banding are to reduce patient waiting time and improve pharmacy capacity planning; additional benefits include reduced medication errors, reduced drug wastage, and prospective quality control. This study compares dose banding with individual BSA dosing and fixed dose according to pharmacokinetic criteria. Methods: Three BSA bands were defined: BSA<1.7 m2, 1.7 m2⩽BSA<1.9 m2, BSA⩾1.9 m2 and each patient dose was calculated based on a unique BSA-value per band (1.55, 1.80, and 2.05 m2, respectively). By using individual clearance values of six drugs (cisplatin, docetaxel, paclitaxel, doxorubicin, irinotecan, and topotecan) from 1012 adult cancer patients in total, the AUCs corresponding to three dosing methods (BSA dosing, dose banding, and fixed dose) were compared with a target AUC for each drug. Results: For all six drugs, the per cent variation in individual dose obtained with dose banding compared with BSA dosing ranged between −14% and +22%, and distribution of AUC values was very similar with both dosing methods. In terms of reaching the target AUC, there was no significant difference in precision between dose banding and BSA dosing, except for paclitaxel (32.0% vs 30.7%, respectively; P<0.05). However, precision was significantly better for BSA dosing compared with fixed dose for four out of six drugs. Conclusion: For the studied drugs, implementation of dose banding should be considered as it entails no significant increase in interindividual plasma exposure. PMID:22929884

  10. Dose banding as an alternative to body surface area-based dosing of chemotherapeutic agents.

    PubMed

    Chatelut, E; White-Koning, M L; Mathijssen, R Hj; Puisset, F; Baker, S D; Sparreboom, A

    2012-09-25

    Dose banding is a recently suggested dosing method that uses predefined ranges (bands) of body surface area (BSA) to calculate each patient's dose by using a single BSA-value per band. Thus, drugs with sufficient long-term stability can be prepared in advance. The main advantages of dose banding are to reduce patient waiting time and improve pharmacy capacity planning; additional benefits include reduced medication errors, reduced drug wastage, and prospective quality control. This study compares dose banding with individual BSA dosing and fixed dose according to pharmacokinetic criteria. Three BSA bands were defined: BSA<1.7 m(2), 1.7 m(2)≤ BSA<1.9 m(2), BSA ≥ 1.9 m(2) and each patient dose was calculated based on a unique BSA-value per band (1.55, 1.80, and 2.05 m(2), respectively). By using individual clearance values of six drugs (cisplatin, docetaxel, paclitaxel, doxorubicin, irinotecan, and topotecan) from 1012 adult cancer patients in total, the AUCs corresponding to three dosing methods (BSA dosing, dose banding, and fixed dose) were compared with a target AUC for each drug. For all six drugs, the per cent variation in individual dose obtained with dose banding compared with BSA dosing ranged between -14% and +22%, and distribution of AUC values was very similar with both dosing methods. In terms of reaching the target AUC, there was no significant difference in precision between dose banding and BSA dosing, except for paclitaxel (32.0% vs 30.7%, respectively; P<0.05). However, precision was significantly better for BSA dosing compared with fixed dose for four out of six drugs. For the studied drugs, implementation of dose banding should be considered as it entails no significant increase in interindividual plasma exposure.

  11. Dosimetric impact of intermediate dose calculation for optimization convergence error.

    PubMed

    Park, Byung Do; Kim, Tae Gyu; Kim, Jong Eon

    2016-06-21

    Intensity-modulated radiation therapy (IMRT) provides the protection of the normal organs and a precise treatment plan through its optimization process. However, the final dose-volume histogram (DVH) obtained by this technique differs from the optimal DVH, owing to optimization convergence errors. Herein, intermediate dose calculation was applied to IMRT plans during the optimization process to solve these issues.Homogeneous and heterogeneous targets were delineated on a virtual phantom, and the final DVH for the target volume was assessed on the target coverage. The IMRT plans of 30 patients were established to evaluate the usefulness of intermediate dose calculation.The target coverage results were analogous in the three plans with homogeneous targets. Conversely, conformity indices (conformity index [CI], heterogeneity index [HI], and uniformity index [UI]) of plans with intermediate dose calculation were estimated to be more homogenous than plans without this option for heterogeneous targets (CI, 0.371 vs. 1.000; HI, 0.104 vs. 0.036; UI, 1.099 vs. 1.031 for Phantom B; and CI, 0.318 vs. 0.956; HI, 0.167 vs. 0.076; UI, 1.165 vs. 1.057 for Phantom C). In brain and prostate cancers, a slight difference between plans calculated with anisotropic analytical algorithm (AAA) was observed (HI, p = 0.043, UI, p = 0.043 for brain; HI, p = 0.042, UI, p = 0.043 for prostate). All target coverage indices were improved by intermediate dose calculation in lung cancer cases (p = 0.043).In conclusion, intermediate dose calculation in IMRT plans improves the target coverage in the target volume around heterogeneous materials. Moreover, the optimization time can be reduced.

  12. Dose Titration Algorithm Tuning (DTAT) should supersede 'the' Maximum Tolerated Dose (MTD) in oncology dose-finding trials.

    PubMed

    Norris, David C

    2017-01-01

    Background. Absent adaptive, individualized dose-finding in early-phase oncology trials, subsequent 'confirmatory' Phase III trials risk suboptimal dosing, with resulting loss of statistical power and reduced probability of technical success for the investigational therapy. While progress has been made toward explicitly adaptive dose-finding and quantitative modeling of dose-response relationships, most such work continues to be organized around a concept of 'the' maximum tolerated dose (MTD). The purpose of this paper is to demonstrate concretely how the aim of early-phase trials might be conceived, not as 'dose-finding', but as dose titration algorithm (DTA)-finding. Methods. A Phase I dosing study is simulated, for a notional cytotoxic chemotherapy drug, with neutropenia constituting the critical dose-limiting toxicity. The drug's population pharmacokinetics and myelosuppression dynamics are simulated using published parameter estimates for docetaxel. The amenability of this model to linearization is explored empirically. The properties of a simple DTA targeting neutrophil nadir of 500 cells/mm (3) using a Newton-Raphson heuristic are explored through simulation in 25 simulated study subjects. Results. Individual-level myelosuppression dynamics in the simulation model approximately linearize under simple transformations of neutrophil concentration and drug dose. The simulated dose titration exhibits largely satisfactory convergence, with great variance in individualized optimal dosing. Some titration courses exhibit overshooting. Conclusions. The large inter-individual variability in simulated optimal dosing underscores the need to replace 'the' MTD with an individualized concept of MTD i . To illustrate this principle, the simplest possible DTA capable of realizing such a concept is demonstrated. Qualitative phenomena observed in this demonstration support discussion of the notion of tuning such algorithms. Although here illustrated specifically in relation to

  13. Dose Titration Algorithm Tuning (DTAT) should supersede ‘the’ Maximum Tolerated Dose (MTD) in oncology dose-finding trials

    PubMed Central

    Norris, David C.

    2017-01-01

    Background. Absent adaptive, individualized dose-finding in early-phase oncology trials, subsequent ‘confirmatory’ Phase III trials risk suboptimal dosing, with resulting loss of statistical power and reduced probability of technical success for the investigational therapy. While progress has been made toward explicitly adaptive dose-finding and quantitative modeling of dose-response relationships, most such work continues to be organized around a concept of ‘the’ maximum tolerated dose (MTD). The purpose of this paper is to demonstrate concretely how the aim of early-phase trials might be conceived, not as ‘dose-finding’, but as dose titration algorithm (DTA)-finding. Methods. A Phase I dosing study is simulated, for a notional cytotoxic chemotherapy drug, with neutropenia constituting the critical dose-limiting toxicity. The drug’s population pharmacokinetics and myelosuppression dynamics are simulated using published parameter estimates for docetaxel. The amenability of this model to linearization is explored empirically. The properties of a simple DTA targeting neutrophil nadir of 500 cells/mm 3 using a Newton-Raphson heuristic are explored through simulation in 25 simulated study subjects. Results. Individual-level myelosuppression dynamics in the simulation model approximately linearize under simple transformations of neutrophil concentration and drug dose. The simulated dose titration exhibits largely satisfactory convergence, with great variance in individualized optimal dosing. Some titration courses exhibit overshooting. Conclusions. The large inter-individual variability in simulated optimal dosing underscores the need to replace ‘the’ MTD with an individualized concept of MTD i . To illustrate this principle, the simplest possible DTA capable of realizing such a concept is demonstrated. Qualitative phenomena observed in this demonstration support discussion of the notion of tuning such algorithms. Although here illustrated specifically

  14. Dose in x-ray computed tomography.

    PubMed

    Kalender, Willi A

    2014-02-07

    Radiation dose in x-ray computed tomography (CT) has become a topic of high interest due to the increasing numbers of CT examinations performed worldwide. This review aims to present an overview of current concepts for both scanner output metrics and for patient dosimetry and will comment on their strengths and weaknesses. Controversial issues such as the appropriateness of the CT dose index (CTDI) are discussed in detail. A review of approaches to patient dose assessment presently in practice, of the dose levels encountered and options for further dose optimization are also given and discussed. Patient dose assessment remains a topic for further improvement and for international consensus. All approaches presently in use are based on Monte Carlo (MC) simulations. Estimates for effective dose are established, but they are crude and not patient-specific; organ dose estimates are rarely available. Patient- and organ-specific dose estimates can be provided with adequate accuracy and independent of CTDI phantom measurements by fast MC simulations. Such information, in particular on 3D dose distributions, is important and helpful in optimization efforts. Dose optimization has been performed very successfully in recent years and even resulted in applications with effective dose values of below 1 mSv. In general, a trend towards lower dose values based on technical innovations has to be acknowledged. Effective dose values are down to clearly below 10 mSv on average, and there are a number of applications such as cardiac and pediatric CT which are performed routinely below 1 mSv on modern equipment.

  15. Management of pediatric radiation dose using Agfa computed radiography.

    PubMed

    Schaetzing, R

    2004-10-01

    Radiation dose to patients and its management have become important considerations in modern radiographic imaging procedures, but they acquire particular significance in the imaging of children. Because of their longer life expectancy, children exposed to radiation are thought to have a significantly increased risk of radiation-related late sequelae compared to adults first exposed to radiation later in life. Therefore, current clinical thinking dictates that dose in pediatric radiography be minimized, while simultaneously ensuring sufficient diagnostic information in the image, and reducing the need for repeat exposures. Dose management obviously starts with characterization and control of the exposure technique. However, it extends farther through the imaging chain to the acquisition system, and even to the image processing techniques used to optimize acquired images for display. Further, other factors, such as quality control procedures and the ability to handle special pediatric procedures, like scoliosis exams, also come into play. The need for dose management in modern radiography systems has spawned a variety of different solutions, some of which are similar across different manufacturers, and some of which are unique. This paper covers the techniques used in Agfa Computed Radiography (CR) systems to manage dose in a pediatric environment.

  16. Relieving pain using dose-extending placebos: a scoping review.

    PubMed

    Colloca, Luana; Enck, Paul; DeGrazia, David

    2016-08-01

    Placebos are often used by clinicians, usually deceptively and with little rationale or evidence of benefit, making their use ethically problematic. In contrast with their typical current use, a provocative line of research suggests that placebos can be intentionally exploited to extend analgesic therapeutic effects. Is it possible to extend the effects of drug treatments by interspersing placebos? We reviewed a database of placebo studies, searching for studies that indicate that placebos given after repeated administration of active treatments acquire medication-like effects. We found a total of 22 studies in both animals and humans hinting of evidence that placebos may work as a sort of dose extender of active painkillers. Wherever effective in relieving clinical pain, such placebo use would offer several advantages. First, extending the effects of a painkiller through the use of placebos may reduce total drug intake and side effects. Second, dose-extending placebos may decrease patient dependence. Third, using placebos along with active medication, for part of the course of treatment, should limit dose escalation and lower costs. Provided that nondisclosure is preauthorized in the informed consent process and that robust evidence indicates therapeutic benefit comparable to that of standard full-dose therapeutic regimens, introducing dose-extending placebos into the clinical arsenal should be considered. This novel prospect of placebo use has the potential to change our general thinking about painkiller treatments, the typical regimens of painkiller applications, and the ways in which treatments are evaluated.

  17. Relieving Pain using Dose-Extending Placebos: A Scoping Review

    PubMed Central

    Colloca, Luana; Enck, Paul; DeGrazia, David

    2017-01-01

    Placebos are often used by clinicians, usually deceptively and with little rationale or evidence of benefit, making their use ethically problematic. In contrast with their typical current use, a provocative line of research suggests that placebos can be intentionally exploited to extend analgesic therapeutic effects. Is it possible to extend the effects of drug treatments by interspersing placebos? We reviewed a database of placebo studies, searching for studies that indicate that placebos given after repeated administration of active treatments acquire medication-like effects. We found a total of 22studies in both animals and humans hinting of evidence that placebos may work as a sort of dose extender of active painkillers. Wherever effective in relieving clinical pain, such placebo use would offer several advantages. First, extending the effects of a painkiller through the use of placebos may reduce total drug intake and side effects. Second, dose-extending placebos may decrease patient dependence. Third, using placebos along with active medication, for part of the course of treatment, should limit dose escalation and lower costs. Importantly, provided that nondisclosure is pre-authorized in the informed consent process and that robust evidence indicates therapeutic benefit comparable to that of standard full-dose therapeutic regimens, introducing dose-extending placebos into the clinical arsenal should be considered. This novel prospect of placebo use has the potential to change our general thinking about painkiller treatments, the typical regimens of painkiller applications, and the ways in which treatments are evaluated. PMID:27023425

  18. USE OF MECHANISTIC DATA TO HELP DEFINE DOSE-RESPONSE CURVES

    EPA Science Inventory

    Use of Mechanistic Data to Help Define Dose-Response Curves

    The cancer risk assessment process described by the U.S. EPA necessitates a description of the dose-response curve for tumors in humans at low (environmental) exposures. This description can either be a default l...

  19. Pituitary-ovarian function following the standard levonorgestrel emergency contraceptive dose or a single 0.75-mg dose given on the days preceding ovulation.

    PubMed

    Croxatto, H B; Brache, V; Pavez, M; Cochon, L; Forcelledo, M L; Alvarez, F; Massai, R; Faundes, A; Salvatierra, A M

    2004-12-01

    We assessed to what extent the standard dose of levonorgestrel (LNG), used for emergency contraception, or a single dose (half dose), given in the follicular phase, affects the ovulatory process during the ensuing 5-day period. Fifty-eight women were divided into three groups according to timing of treatment. Each woman contributed with three treatment cycles separated by resting cycles. All received placebo in one cycle, and standard or single dose in two other cycles, in a randomized order. The diameter of the dominant follicle determined the time of treatment. Each woman had the same diameter assigned for all her treatments. Diameters were grouped into 33 categories: 12-14, 15-17 or 18-20 mm. Follicular rupture failed to occur during the 5-day period in 44%, 50% and 36% of cycles with the standard, half dose and placebo, respectively. Ovulatory dysfunction, characterized by follicular rupture associated with absent, blunted or mistimed gonadotropin surge, occurred in 35%, 36% and 5% of standard, single dose or placebo cycles, respectively. In conclusion, LNG can disrupt the ovulatory process in 93% of cycles treated when the diameter of the dominant follicle is between 12 and 17 mm. It is highly probable that this mode of action fully accounts for the contraceptive efficacy as well as the failure rate of this method. The present data suggest that half the dose may be as effective as the standard dose.

  20. Computational assessment of effective dose and patient specific doses for kilovoltage stereotactic radiosurgery of wet age-related macular degeneration

    NASA Astrophysics Data System (ADS)

    Hanlon, Justin Mitchell

    Age-related macular degeneration (AMD) is a leading cause of vision loss and a major health problem for people over the age of 50 in industrialized nations. The current standard of care, ranibizumab, is used to help slow and in some cases stabilize the process of AMD, but requires frequent invasive injections into the eye. Interest continues for stereotactic radiosurgery (SRS), an option that provides a non-invasive treatment for the wet form of AMD, through the development of the IRay(TM) (Oraya Therapeutics, Inc., Newark, CA). The goal of this modality is to destroy choroidal neovascularization beneath the pigment epithelium via delivery of three 100 kVp photon beams entering through the sclera and overlapping on the macula delivering up to 24 Gy of therapeutic dose over a span of approximately 5 minutes. The divergent x-ray beams targeting the fovea are robotically positioned and the eye is gently immobilized by a suction-enabled contact lens. Device development requires assessment of patient effective dose, reference patient mean absorbed doses to radiosensitive tissues, and patient specific doses to the lens and optic nerve. A series of head phantoms, including both reference and patient specific, was derived from CT data and employed in conjunction with the MCNPX 2.5.0 radiation transport code to simulate treatment and evaluate absorbed doses to potential tissues-at-risk. The reference phantoms were used to evaluate effective dose and mean absorbed doses to several radiosensitive tissues. The optic nerve was modeled with changeable positions based on individual patient variability seen in a review of head CT scans gathered. Patient specific phantoms were used to determine the effect of varying anatomy and gaze. The results showed that absorbed doses to the non-targeted tissues were below the threshold levels for serious complications; specifically the development of radiogenic cataracts and radiation induced optic neuropathy (RON). The effective dose

  1. Digital radiography: image quality and radiation dose.

    PubMed

    Seibert, J Anthony

    2008-11-01

    Digital radiography devices, rapidly replacing analog screen-film detectors, are now common in diagnostic radiological imaging, where implementation has been accelerated by the commodity status of electronic imaging and display systems. The shift from narrow latitude, fixed-speed screen-film detectors to wide latitude, variable-speed digital detectors has created a flexible imaging system that can easily result in overexposures to the patient without the knowledge of the operator, thus potentially increasing the radiation burden of the patient population from radiographic examinations. In addition, image processing can be inappropriately applied causing inconsistent or artifactual appearance of anatomy, which can lead to misdiagnosis. On the other hand, many advantages can be obtained from the variable-speed digital detector, such as an ability to lower dose in many examinations, image post-processing for disease-specific conditions, display flexibility to change the appearance of the image and aid the physician in making a differential diagnosis, and easy access to digital images. An understanding of digital radiography is necessary to minimize the possibility of overexposures and inconsistent results, and to achieve the principle of as low as reasonably achievable (ALARA) for the safe and effective care of all patients. Thus many issues must be considered for optimal implementation of digital radiography, as reviewed in this article.

  2. Assessing dose rate distributions in VMAT plans

    NASA Astrophysics Data System (ADS)

    Mackeprang, P.-H.; Volken, W.; Terribilini, D.; Frauchiger, D.; Zaugg, K.; Aebersold, D. M.; Fix, M. K.; Manser, P.

    2016-04-01

    Dose rate is an essential factor in radiobiology. As modern radiotherapy delivery techniques such as volumetric modulated arc therapy (VMAT) introduce dynamic modulation of the dose rate, it is important to assess the changes in dose rate. Both the rate of monitor units per minute (MU rate) and collimation are varied over the course of a fraction, leading to different dose rates in every voxel of the calculation volume at any point in time during dose delivery. Given the radiotherapy plan and machine specific limitations, a VMAT treatment plan can be split into arc sectors between Digital Imaging and Communications in Medicine control points (CPs) of constant and known MU rate. By calculating dose distributions in each of these arc sectors independently and multiplying them with the MU rate, the dose rate in every single voxel at every time point during the fraction can be calculated. Independently calculated and then summed dose distributions per arc sector were compared to the whole arc dose calculation for validation. Dose measurements and video analysis were performed to validate the calculated datasets. A clinical head and neck, cranial and liver case were analyzed using the tool developed. Measurement validation of synthetic test cases showed linac agreement to precalculated arc sector times within  ±0.4 s and doses  ±0.1 MU (one standard deviation). Two methods for the visualization of dose rate datasets were developed: the first method plots a two-dimensional (2D) histogram of the number of voxels receiving a given dose rate over the course of the arc treatment delivery. In similarity to treatment planning system display of dose, the second method displays the dose rate as color wash on top of the corresponding computed tomography image, allowing the user to scroll through the variation over time. Examining clinical cases showed dose rates spread over a continuous spectrum, with mean dose rates hardly exceeding 100 cGy min-1 for conventional

  3. Morphological changes induced by different doses of gamma irradiation in garlic sprouts

    NASA Astrophysics Data System (ADS)

    Pellegrini, C. N.; Croci, C. A.; Orioli, G. A.

    2000-03-01

    The objective of this work was to evaluate the effects of different doses of gamma rays applied in dormancy and post-dormancy on garlic bulbs in relation with some morphophysiological parameters. High (commercial) doses cause the complete inhibition of sprouting and mitosis (due to nuclear aberrations). Relatively low doses show no effects on bulbs but doses of 10 Gy applied in post-dormancy reduce sprouting and stop mitosis. This inhibition becomes noticeable from 150 days post-harvest onwards. Exogenous growth regulators can reverse these effects. Results may reinforce the good practice of radioinhibition processes in garlic.

  4. Identification of the minimum effective dose for normally distributed data using a Bayesian variable selection approach.

    PubMed

    Otava, Martin; Shkedy, Ziv; Hothorn, Ludwig A; Talloen, Willem; Gerhard, Daniel; Kasim, Adetayo

    2017-02-16

    The identification of the minimum effective dose is of high importance in the drug development process. In early stage screening experiments, establishing the minimum effective dose can be translated into a model selection based on information criteria. The presented alternative, Bayesian variable selection approach, allows for selection of the minimum effective dose, while taking into account model uncertainty. The performance of Bayesian variable selection is compared with the generalized order restricted information criterion on two dose-response experiments and through the simulations study. Which method has performed better depends on the complexity of the underlying model and the effect size relative to noise.

  5. A Simple Low-dose X-ray CT Simulation from High-dose Scan.

    PubMed

    Zeng, Dong; Huang, Jing; Bian, Zhaoying; Niu, Shanzhou; Zhang, Hua; Feng, Qianjin; Liang, Zhengrong; Ma, Jianhua

    2015-10-01

    Low-dose X-ray computed tomography (CT) simulation from high-dose scan is required in optimizing radiation dose to patients. In this study, we propose a simple low-dose CT simulation strategy in sinogram domain using the raw data from high-dose scan. Specially, a relationship between the incident fluxes of low- and high- dose scans is first determined according to the repeated projection measurements and analysis. Second, the incident flux level of the simulated low-dose scan is generated by properly scaling the incident flux level of high-dose scan via the determined relationship in the first step. Third, the low-dose CT transmission data by energy integrating detection is simulated by adding a statistically independent Poisson noise distribution plus a statistically independent Gaussian noise distribution. Finally, a filtered back-projection (FBP) algorithm is implemented to reconstruct the resultant low-dose CT images. The present low-dose simulation strategy is verified on the simulations and real scans by comparing it with the existing low-dose CT simulation tool. Experimental results demonstrated that the present low-dose CT simulation strategy can generate accurate low-dose CT sinogram data from high-dose scan in terms of qualitative and quantitative measurements.

  6. Platelet inhibitory effects of OTC doses of naproxen sodium compared with prescription dose naproxen sodium and low-dose aspirin.

    PubMed

    Schiff, Michael; Hochberg, Marc C; Oldenhof, John; Brune, Kay

    2009-10-01

    Prescription dose naproxen has been reported to have an antiplatelet effect similar to low-dose aspirin (ASA). This study evaluated the platelet inhibitory effects of over-the-counter (OTC) doses of naproxen sodium (NAPSO) compared to that of a prescription dose of NAPSO and to low-dose enteric-coated aspirin (EC-ASA). This was a phase I, open-label, randomized, placebo-controlled, two-way crossover, multi-dose, pharmacodynamic trial conducted in healthy male and female volunteers (n = 48, mean age = 41.7 years). All subjects received 7 days of either prescription dose NAPSO (550 mg twice daily), OTC doses of NAPSO (220 mg two or three times daily), or placebo twice daily (period 1). After a minimum 6-day washout period, all subjects then received 7 days of EC-ASA 81 mg once daily (period 2). All study medications were taken by mouth. Inhibition of serum thromboxane B(2) (TXB(2)), as a marker of platelet cyclooxygenase-1 (COX-1) inhibition, measured 24 h after the day 7 morning dose. This was measured after both period 1 and period 2. After 7 days of treatment in period 1, mean inhibition of TXB(2) was 47% for placebo and > or =98% for all doses of NAPSO. After 7 days of EC-ASA 81 mg, mean inhibition of TXB(2) was > or = 97% (period 2). Out-patient study setting. These data suggest that OTC doses of NAPSO (220 mg two or three times daily) have an antiplatelet effect similar to EC-ASA 81 mg and to prescription dose NAPSO (550 mg twice daily).

  7. Patient radiation doses for electron beam CT

    SciTech Connect

    Castellano, Isabel A.; Dance, David R.; Skinner, Claire L.; Evans, Phil M.

    2005-08-15

    A Monte Carlo based computer model has been developed for electron beam computed tomography (EBCT) to calculate organ and effective doses in a humanoid hermaphrodite phantom. The program has been validated by comparison with experimental measurements of the CT dose index in standard head and body CT dose phantoms; agreement to better than 8% has been found. The robustness of the model has been established by varying the input parameters. The amount of energy deposited at the 12:00 position of the standard body CT dose phantom is most susceptible to rotation angle, whereas that in the central region is strongly influenced by the beam quality. The program has been used to investigate the changes in organ absorbed doses arising from partial and full rotation about supine and prone subjects. Superficial organs experience the largest changes in absorbed dose with a change in subject orientation and for partial rotation. Effective doses for typical clinical scan protocols have been calculated and compared with values obtained using existing dosimetry techniques based on full rotation. Calculations which make use of Monte Carlo conversion factors for the scanner that best matches the EBCT dosimetric characteristics consistently overestimate the effective dose in supine subjects by typically 20%, and underestimate the effective dose in prone subjects by typically 13%. These factors can therefore be used to correct values obtained in this way. Empirical dosimetric techniques based on the dose-length product yield errors as great as 77%. This is due to the sensitivity of the dose length product to individual scan lengths. The magnitude of these errors is reduced if empirical dosimetric techniques based on the average absorbed dose in the irradiated volume (CTDI{sub vol}) are used. Therefore conversion factors specific to EBCT have been calculated to convert the CTDI{sub vol} to an effective dose.

  8. Simulation of dose reduction in tomosynthesis

    SciTech Connect

    Svalkvist, Angelica; Baath, Magnus

    2010-01-15

    Purpose: Methods for simulating dose reduction are valuable tools in the work of optimizing radiographic examinations. Using such methods, clinical images can be simulated to have been collected at other, lower, dose levels without the need of additional patient exposure. A recent technology introduced to healthcare that needs optimization is tomosynthesis, where a number of low-dose projection images collected at different angles is used to reconstruct section images of an imaged object. The aim of the present work was to develop a method of simulating dose reduction for digital radiographic systems, suitable for tomosynthesis. Methods: The developed method uses information about the noise power spectrum (NPS) at the original dose level and the simulated dose level to create a noise image that is added to the original image to produce an image that has the same noise properties as an image actually collected at the simulated dose level. As the detective quantum efficiency (DQE) of digital detectors operating at the low dose levels used for tomosynthesis may show a strong dependency on the dose level, it is important that a method for simulating dose reduction for tomosynthesis takes this dependency into account. By applying an experimentally determined relationship between pixel mean and pixel variance, variations in both dose and DQE in relevant dose ranges are taken into account. Results: The developed method was tested on a chest tomosynthesis system and was shown to produce NPS of simulated dose-reduced projection images that agreed well with the NPS of images actually collected at the simulated dose level. The simulated dose reduction method was also applied to tomosynthesis examinations of an anthropomorphic chest phantom, and the obtained noise in the reconstructed section images was very similar to that of an examination actually performed at the simulated dose level. Conclusions: In conclusion, the present article describes a method for simulating dose

  9. NAIRAS aircraft radiation model development, dose climatology, and initial validation

    PubMed Central

    Mertens, Christopher J; Meier, Matthias M; Brown, Steven; Norman, Ryan B; Xu, Xiaojing

    2013-01-01

    [1] The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis

  10. NAIRAS aircraft radiation model development, dose climatology, and initial validation.

    PubMed

    Mertens, Christopher J; Meier, Matthias M; Brown, Steven; Norman, Ryan B; Xu, Xiaojing

    2013-10-01

    [1] The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis

  11. Dependence of pentobarbital kinetics upon the dose of the drug and its pharmacodynamic effects.

    PubMed

    Kozlowski, K H; Szaykowski, A; Danysz, A

    1977-01-01

    Pentobarbital (PB), at dose range of 20--50 mg/kg, displays in rabbits non-linear, dose-dependent kinetics. Pharmacokinetics parameters of drug elimination depend largely upon the dose, while the distribution phase is dose-independent. The rate of disappearance of PB from the central compartment (plasma) decreases with the increase of the dose. The analysis of pharmacodynamic parameters has shown that this dose-dependent retardation of PB elimination is probably caused by an impairment of metabolic processes, resulting from disturbance of the circulatory system. A close correlation has been found between the hypotensive effect of PB and the elimination constant, k13, and also between the hypotensive effect and beta.Vd(extrap), a coefficient proportional to the rate of metabolism of PB [23, 29]. The results indicate the necessity of considering the changes in the functional state of the organism, related to the action of a drug, in pharmacokinetic studies.

  12. Simulation of dose distribution for iridium-192 brachytherapy source type-H01 using MCNPX

    NASA Astrophysics Data System (ADS)

    Purwaningsih, Anik

    2014-09-01

    Dosimetric data for a brachytherapy source should be known before it used for clinical treatment. Iridium-192 source type H01 was manufactured by PRR-BATAN aimed to brachytherapy is not yet known its dosimetric data. Radial dose function and anisotropic dose distribution are some primary keys in brachytherapy source. Dose distribution for Iridium-192 source type H01 was obtained from the dose calculation formalism recommended in the AAPM TG-43U1 report using MCNPX 2.6.0 Monte Carlo simulation code. To know the effect of cavity on Iridium-192 type H01 caused by manufacturing process, also calculated on Iridium-192 type H01 if without cavity. The result of calculation of radial dose function and anisotropic dose distribution for Iridium-192 source type H01 were compared with another model of Iridium-192 source.

  13. Pharmacokinetics of high-dose oral thiamine hydrochloride in healthy subjects.

    PubMed

    Smithline, Howard A; Donnino, Michael; Greenblatt, David J

    2012-02-04

    High dose oral thiamine may have a role in treating diabetes, heart failure, and hypermetabolic states. The purpose of this study was to determine the pharmacokinetic profile of oral thiamine hydrochloride at 100 mg, 500 mg and 1500 mg doses in healthy subjects. This was a randomized, double-blind, single-dose, 4-way crossover study. Pharmacokinetic measures were calculated. The AUC₀₋₁₀ hr and C(max) values increased nonlinearly between 100 mg and 1500 mg. The slope of the AUC₀₋₁₀ hr vs dose, as well as the C(max) vs dose, plots are steepest at the lowest thiamine doses. Our study demonstrates that high blood levels of thiamine can be achieved rapidly with oral thiamine hydrochloride. Thiamine is absorbed by both an active and nonsaturable passive process. ClinicalTrials.gov: NCT00981877.

  14. Pharmacokinetics of high-dose oral thiamine hydrochloride in healthy subjects

    PubMed Central

    2012-01-01

    Background High dose oral thiamine may have a role in treating diabetes, heart failure, and hypermetabolic states. The purpose of this study was to determine the pharmacokinetic profile of oral thiamine hydrochloride at 100 mg, 500 mg and 1500 mg doses in healthy subjects. Methods This was a randomized, double-blind, single-dose, 4-way crossover study. Pharmacokinetic measures were calculated. Results The AUC0-10 hr and Cmax values increased nonlinearly between100 mg and 1500 mg. The slope of the AUC0-10 hr vs dose, as well as the Cmax vs dose, plots are steepest at the lowest thiamine doses. Conclusion Our study demonstrates that high blood levels of thiamine can be achieved rapidly with oral thiamine hydrochloride. Thiamine is absorbed by both an active and nonsaturable passive process. Trial Registration ClinicalTrials.gov: NCT00981877 PMID:22305197

  15. Simulation of dose distribution for iridium-192 brachytherapy source type-H01 using MCNPX

    SciTech Connect

    Purwaningsih, Anik

    2014-09-30

    Dosimetric data for a brachytherapy source should be known before it used for clinical treatment. Iridium-192 source type H01 was manufactured by PRR-BATAN aimed to brachytherapy is not yet known its dosimetric data. Radial dose function and anisotropic dose distribution are some primary keys in brachytherapy source. Dose distribution for Iridium-192 source type H01 was obtained from the dose calculation formalism recommended in the AAPM TG-43U1 report using MCNPX 2.6.0 Monte Carlo simulation code. To know the effect of cavity on Iridium-192 type H01 caused by manufacturing process, also calculated on Iridium-192 type H01 if without cavity. The result of calculation of radial dose function and anisotropic dose distribution for Iridium-192 source type H01 were compared with another model of Iridium-192 source.

  16. Quality initiatives: CT radiation dose reduction: how to implement change without sacrificing diagnostic quality.

    PubMed

    Tamm, Eric P; Rong, X John; Cody, Dianna D; Ernst, Randy D; Fitzgerald, Nancy E; Kundra, Vikas

    2011-01-01

    The risks and benefits of using computed tomography (CT) as opposed to another imaging modality to accomplish a particular clinical goal should be weighed carefully. To accurately assess radiation risks and keep radiation doses as low as reasonably achievable, radiologists must be knowledgeable about the doses delivered during various types of CT studies performed at their institutions. The authors of this article propose a process improvement approach that includes the estimation of effective radiation dose levels, formulation of dose reduction goals, modification of acquisition protocols, assessment of effects on image quality, and implementation of changes necessary to ensure quality. A first step toward developing informed radiation dose reduction goals is to become familiar with the radiation dose values and radiation-associated health risks reported in the literature. Next, to determine the baseline dose values for a CT study at a particular institution, dose data can be collected from the CT scanners, interpreted, tabulated, and graphed. CT protocols can be modified to reduce overall effective dose by using techniques such as automated exposure control and iterative reconstruction, as well as by decreasing the number of scanning phases, increasing the section thickness, and adjusting the peak voltage (kVp setting), tube current-time product (milliampere-seconds), and pitch. Last, PDSA (plan, do, study, act) cycles can be established to detect and minimize negative effects of dose reduction methods on image quality.

  17. Extremity model for neutron dose calculations

    SciTech Connect

    Sattelberger, J. A.; Shores, E. F.

    2001-01-01

    In personnel dosimetry for external radiation exposures, health physicists tend to focus on measurement of whole body dose, where 'whole body' is generally regarded as the torso on which the dosimeter is placed.' Although a variety of scenarios exist in which workers must handle radioactive materials, whole body dose estimates may not be appropriate when assessing dose, particularly to the extremities. For example, consider sources used for instrument calibration. If such sources are in a contact geometry (e.g. held by fingers), an extremity dose estimate may be more relevant than a whole body dose. However, because questions arise regarding how that dose should be calculated, a detailed extremity model was constructed with the MCNP-4Ca Monte Carlo code. Although initially intended for use with gamma sources, recent work by Shores2 provided the impetus to test the model with neutrons.

  18. Relationship of dose to antidepressant prophylactic efficacy.

    PubMed

    Peselow, E D; Difiglia, C; Fieve, R R

    1991-12-01

    We studied 75 patients on prophylactic antidepressants (imipramine or amitriptyline) to examine the effect of antidepressant dose on long-term prophylaxis of depression and to see whether lowering the dose during the prophylactic period affected subsequent relapse. There was no statistically significant difference in maintenance and prophylactic doses between the group that completed the 2 years free of a depressive episode, the group that had a depressive relapse and the group that dropped out of treatment before the end of the prophylactic period. However, the group that completed the 2 years free of a depressive episode had significantly less of a difference between the maintenance and prophylactic doses than the other 2 groups. Overall, 11/31 who remained on the same dose during the prophylactic period vs the maintenance period relapsed vs 17/25 who had their dose lowered during the prophylactic period vs the maintenance period. The difference was statistically significant.

  19. Coronary CT angiography with low radiation dose.

    PubMed

    Xu, Lei; Zhang, Zhaoqi

    2010-02-01

    With the introduction of 64-slice CT and dual-source CT technology, coronary CT angiography(CCTA) has emerged as a useful diagnostic imaging modality for the noninvasive assessment of coronary heart disease. Recently, the risks associated with ionizing radiation on CT have raised serious concerns.The main concern of exposure to ionizing radiation is the potential risk of cancer. CCTA involves much higher radiation dose with the advances in the spatial and temporal resolution of cardiac CT. Currently,various dose-saving algorithms, such as ECG (electrocardiography)-based dose modulation, reduced tube voltage, and prospective ECG gating, high-pitch helical scanning are available to lower radiation exposure during cardiac CT. Therefore, careful selection of CT scanning protocols is needed to keep the radiation exposure 'as low as reasonably achievable (ALARA)'. In this review we will discuss the radiation dose safety issues, the measurement of radiation dose and current use of dose-saving techniques in CCTA.

  20. Practical applications of internal dose calculations

    SciTech Connect

    Carbaugh, E.H.

    1994-06-01

    Accurate estimates of intake magnitude and internal dose are the goal for any assessment of an actual intake of radioactivity. When only one datum is available on which to base estimates, the choices for internal dose assessment become straight-forward: apply the appropriate retention or excretion function, calculate the intake, and calculate the dose. The difficulty comes when multiple data and different types of data become available. Then practical decisions must be made on how to interpret conflicting data, or how to adjust the assumptions and techniques underlying internal dose assessments to give results consistent with the data. This article describes nine types of adjustments which can be incorporated into calculations of intake and internal dose, and then offers several practical insights to dealing with some real-world internal dose puzzles.

  1. Dynamically accumulated dose and 4D accumulated dose for moving tumors

    PubMed Central

    Li, Heng; Li, Yupeng; Zhang, Xiaodong; Li, Xiaoqiang; Liu, Wei; Gillin, Michael T.; Zhu, X. Ronald

    2012-01-01

    Purpose: The purpose of this work was to investigate the relationship between dynamically accumulated dose (dynamic dose) and 4D accumulated dose (4D dose) for irradiation of moving tumors, and to quantify the dose uncertainty induced by tumor motion. Methods: The authors established that regardless of treatment modality and delivery properties, the dynamic dose will converge to the 4D dose, instead of the 3D static dose, after multiple deliveries. The bounds of dynamic dose, or the maximum estimation error using 4D or static dose, were established for the 4D and static doses, respectively. Numerical simulations were performed (1) to prove the principle that for each phase, after multiple deliveries, the average number of deliveries for any given time converges to the total number of fractions (K) over the number of phases (N); (2) to investigate the dose difference between the 4D and dynamic doses as a function of the number of deliveries for deliveries of a “pulsed beam”; and (3) to investigate the dose difference between 4D dose and dynamic doses as a function of delivery time for deliveries of a “continuous beam.” A Poisson model was developed to estimate the mean dose error as a function of number of deliveries or delivered time for both pulsed beam and continuous beam. Results: The numerical simulations confirmed that the number of deliveries for each phase converges to K/N, assuming a random starting phase. Simulations for the pulsed beam and continuous beam also suggested that the dose error is a strong function of the number of deliveries and/or total deliver time and could be a function of the breathing cycle, depending on the mode of delivery. The Poisson model agrees well with the simulation. Conclusions: Dynamically accumulated dose will converge to the 4D accumulated dose after multiple deliveries, regardless of treatment modality. Bounds of the dynamic dose could be determined using quantities derived from 4D doses, and the mean dose

  2. Dynamically accumulated dose and 4D accumulated dose for moving tumors

    SciTech Connect

    Li Heng; Li Yupeng; Zhang Xiaodong; Li Xiaoqiang; Liu Wei; Gillin, Michael T.; Zhu, X. Ronald

    2012-12-15

    Purpose: The purpose of this work was to investigate the relationship between dynamically accumulated dose (dynamic dose) and 4D accumulated dose (4D dose) for irradiation of moving tumors, and to quantify the dose uncertainty induced by tumor motion. Methods: The authors established that regardless of treatment modality and delivery properties, the dynamic dose will converge to the 4D dose, instead of the 3D static dose, after multiple deliveries. The bounds of dynamic dose, or the maximum estimation error using 4D or static dose, were established for the 4D and static doses, respectively. Numerical simulations were performed (1) to prove the principle that for each phase, after multiple deliveries, the average number of deliveries for any given time converges to the total number of fractions (K) over the number of phases (N); (2) to investigate the dose difference between the 4D and dynamic doses as a function of the number of deliveries for deliveries of a 'pulsed beam'; and (3) to investigate the dose difference between 4D dose and dynamic doses as a function of delivery time for deliveries of a 'continuous beam.' A Poisson model was developed to estimate the mean dose error as a function of number of deliveries or delivered time for both pulsed beam and continuous beam. Results: The numerical simulations confirmed that the number of deliveries for each phase converges to K/N, assuming a random starting phase. Simulations for the pulsed beam and continuous beam also suggested that the dose error is a strong function of the number of deliveries and/or total deliver time and could be a function of the breathing cycle, depending on the mode of delivery. The Poisson model agrees well with the simulation. Conclusions: Dynamically accumulated dose will converge to the 4D accumulated dose after multiple deliveries, regardless of treatment modality. Bounds of the dynamic dose could be determined using quantities derived from 4D doses, and the mean dose difference

  3. Evaluation of Rectal Dose During High-Dose-Rate Intracavitary Brachytherapy for Cervical Carcinoma

    SciTech Connect

    Sha, Rajib Lochan; Reddy, Palreddy Yadagiri; Rao, Ramakrishna; Muralidhar, Kanaparthy R.; Kudchadker, Rajat J.

    2011-01-01

    High-dose-rate intracavitary brachytherapy (HDR-ICBT) for carcinoma of the uterine cervix often results in high doses being delivered to surrounding organs at risk (OARs) such as the rectum and bladder. Therefore, it is important to accurately determine and closely monitor the dose delivered to these OARs. In this study, we measured the dose delivered to the rectum by intracavitary applications and compared this measured dose to the International Commission on Radiation Units and Measurements rectal reference point dose calculated by the treatment planning system (TPS). To measure the dose, we inserted a miniature (0.1 cm{sup 3}) ionization chamber into the rectum of 86 patients undergoing radiation therapy for cervical carcinoma. The response of the miniature chamber modified by 3 thin lead marker rings for identification purposes during imaging was also characterized. The difference between the TPS-calculated maximum dose and the measured dose was <5% in 52 patients, 5-10% in 26 patients, and 10-14% in 8 patients. The TPS-calculated maximum dose was typically higher than the measured dose. Our study indicates that it is possible to measure the rectal dose for cervical carcinoma patients undergoing HDR-ICBT. We also conclude that the dose delivered to the rectum can be reasonably predicted by the TPS-calculated dose.

  4. Hanford Environmental Dose Reconstruction Project monthly report

    SciTech Connect

    Finch, S.M.

    1991-10-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doeses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; environmental pathways and dose estimates.

  5. Radiation measurements and doses at SST altitudes

    NASA Technical Reports Server (NTRS)

    Foelsche, T.

    1972-01-01

    Radiation components and dose equivalents due to galactic and solar cosmic rays in the high atmosphere, especially at SST altitudes, are presented. The dose equivalent rate for the flight personnel flying 500 hours per year in cruise altitudes of 60,000-65,000 feet (18-19.5 km) in high magnetic latitudes is about 0.75-1.0 rem per year averaged over the solar cycle, or about 15-20 percent of the maximum permissible dose rate.

  6. Fetal dose estimates for CT pelvimetry

    SciTech Connect

    Moore, M.M.; Shearer, D.R.

    1989-04-01

    Fetal and maternal dose estimates for computed tomographic pelvimetry have been obtained from phantom measurements. Use of routine abdomen imaging techniques may result in localized fetal doses in excess of 13 mGy (1.3 rad). With the use of a low-exposure (40-mAs) technique, it is possible to obtain images of acceptable quality for the necessary measurements. The resulting dose to the fetus is approximately 2.3 mGy (0.23 rad).

  7. Switching From Age-Based Stimulus Dosing to Dose Titration Protocols in Electroconvulsive Therapy: Empirical Evidence for Better Patient Outcomes With Lower Peak and Cumulative Energy Doses.

    PubMed

    O'Neill-Kerr, Alex; Yassin, Anhar; Rogers, Stephen; Cornish, Janie

    2017-09-01

    The aim of this study was to test the proposition that adoption of a dose titration protocol may be associated with better patient outcomes, at lower treatment dose, and with comparable cumulative dose to that in patients treated using an age-based stimulus dosing protocol. This was an analysis of data assembled from archived records and based on cohorts of patients treated respectively on an age-based stimulus dosing protocol and on a dose titration protocol in the National Health Service in England. We demonstrated a significantly better response in the patient cohort treated with dose titration than with age-based stimulus dosing. Peak doses were less and the total cumulative dose was less in the dose titration group than in the age-based stimulus dosing group. Our findings are consistent with superior outcomes in patients treated using a dose titration protocol when compared with age-based stimulus dosing in a similar cohort of patients.

  8. Cancer Dose-Response Assessment for Polychlorinated Biphenyls (PCBs) and Application to Environmental Mixtures

    EPA Pesticide Factsheets

    This report updates the cancer dose-response assessment for PCBs and shows how information on toxicity, disposition, and environmental processes can be considered together to evaluate health risks from PCB mixtures in the environment.

  9. BIOACCUMULATION OF POPS IN FISH AND ESTIMATION OF HUMAN DIETARY EXPOSURE AND DOSE

    EPA Science Inventory

    The risk assessment process is fundamental in understanding and controlling environmental health risks. Risk assessment includes four steps: hazard identification, dose-response assessment, exposure assessment, and risk characterization. Exposure assessments seek to characteriz...

  10. BIOACCUMULATION OF POPS IN FISH AND ESTIMATION OF HUMAN DIETARY EXPOSURE AND DOSE

    EPA Science Inventory

    The risk assessment process is fundamental in understanding and controlling environmental health risks. Risk assessment includes four steps: hazard identification, dose-response assessment, exposure assessment, and risk characterization. Exposure assessments seek to characteriz...

  11. Interactive Dose Shaping - efficient strategies for CPU-based real-time treatment planning

    NASA Astrophysics Data System (ADS)

    Ziegenhein, P.; Kamerling, C. P.; Oelfke, U.

    2014-03-01

    Conventional intensity modulated radiation therapy (IMRT) treatment planning is based on the traditional concept of iterative optimization using an objective function specified by dose volume histogram constraints for pre-segmented VOIs. This indirect approach suffers from unavoidable shortcomings: i) The control of local dose features is limited to segmented VOIs. ii) Any objective function is a mathematical measure of the plan quality, i.e., is not able to define the clinically optimal treatment plan. iii) Adapting an existing plan to changed patient anatomy as detected by IGRT procedures is difficult. To overcome these shortcomings, we introduce the method of Interactive Dose Shaping (IDS) as a new paradigm for IMRT treatment planning. IDS allows for a direct and interactive manipulation of local dose features in real-time. The key element driving the IDS process is a two-step Dose Modification and Recovery (DMR) strategy: A local dose modification is initiated by the user which translates into modified fluence patterns. This also affects existing desired dose features elsewhere which is compensated by a heuristic recovery process. The IDS paradigm was implemented together with a CPU-based ultra-fast dose calculation and a 3D GUI for dose manipulation and visualization. A local dose feature can be implemented via the DMR strategy within 1-2 seconds. By imposing a series of local dose features, equal plan qualities could be achieved compared to conventional planning for prostate and head and neck cases within 1-2 minutes. The idea of Interactive Dose Shaping for treatment planning has been introduced and first applications of this concept have been realized.

  12. Radon Exposure and the Definition of Low Doses-The Problem of Spatial Dose Distribution.

    PubMed

    Madas, Balázs G

    2016-07-01

    Investigating the health effects of low doses of ionizing radiation is considered to be one of the most important fields in radiological protection research. Although the definition of low dose given by a dose range seems to be clear, it leaves some open questions. For example, the time frame and the target volume in which absorbed dose is measured have to be defined. While dose rate is considered in the current system of radiological protection, the same cancer risk is associated with all exposures, resulting in a given amount of energy absorbed by a single target cell or distributed among all the target cells of a given organ. However, the biological effects and so the health consequences of these extreme exposure scenarios are unlikely to be the same. Due to the heterogeneous deposition of radon progeny within the lungs, heterogeneous radiation exposure becomes a practical issue in radiological protection. While the macroscopic dose is still within the low dose range, local tissue doses on the order of Grays can be reached in the most exposed parts of the bronchial airways. It can be concluded that progress in low dose research needs not only low dose but also high dose experiments where small parts of a biological sample receive doses on the order of Grays, while the average dose over the whole sample remains low. A narrow interpretation of low dose research might exclude investigations with high relevance to radiological protection. Therefore, studies important to radiological protection should be performed in the frame of low dose research even if the applied doses do not fit in the dose range used for the definition of low doses.

  13. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Finch, S.M.

    1990-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demographics; agriculture; food habits; and environmental pathways and dose estimates. 3 figs.

  14. Norfloxacin disposition after sequentially increasing oral doses.

    PubMed Central

    Swanson, B N; Boppana, V K; Vlasses, P H; Rotmensch, H H; Ferguson, R K

    1983-01-01

    Single doses of norfloxacin (200, 400, 800, 1,200, and 1,600 mg) or placebo were administered orally at weekly intervals to 14 healthy male volunteers in a double-blind study. Norfloxacin was measured in serum and urine by high-pressure liquid chromatography with UV detection. The concentrations of this drug in serum peaked 1 to 2 h after each dose; the mean peak values for increasing doses were 0.75, 1.58, 2.41, 3.15, and 3.87 micrograms/ml. Mean area under the serum concentration-time curves for the first 12 h after each dose were 3.56, 6.26, 11.4, 16.1, and 19.7 micrograms . h/ml, respectively. The elimination half-life of norfloxacin was about 7 h and was similar for all doses. The concentrations of the drug in urine also peaked 1 to 2 h after dosage; mean peak values for increasing doses were 200, 478, 697, 992, and 1,045 micrograms/ml. Renal clearances approximated 285 ml/min. About 30% of each dose was excreted into urine as unmetabolized norfloxacin. Crystals of the drug were occasionally observed during microscopic examination of freshly voided urine collected after the 1,200- and 1,600-mg doses. Crystalluria was not encountered at lower doses. PMID:6220672

  15. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1991-04-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from released to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; and, environmental pathways and dose estimates.

  16. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Finch, S.M.

    1991-07-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; and environmental pathways and dose estimates. 2 figs., 2 tabs.

  17. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1991-05-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source Terms, Environmental Transport, Environmental Monitoring Data, Demographics, Agriculture, Food Habits, Environmental Pathways and Dose Estimates. 2 figs., 1 tab.

  18. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Finch, S.M.

    1991-03-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the technical tasks which correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environment monitoring data; demographics, agriculture, food habits; and environmental pathways and dose estimates. 3 figs., 2 tabs.

  19. Sodium cromoglycate: spincaps or metered dose aerosol.

    PubMed Central

    Robson, R A; Taylor, B J; Taylor, B

    1981-01-01

    1 Sodium cromoglycate administered as a dry powder inhalation (20 mg/dose) via the Spinhaler was compared with a metered dose aerosol (2 mg/dose) in an eight week double dummy double blind crossover trial in 29 asthmatic children. 2 The powder formulation was associated with significantly less symptoms (night wheeze, night cough, day wheeze, day cough, activity) and bronchodilator intake; and significantly greater weight gain than aerosol therapy. There were no significant differences in morning or evening peak flow measurements on the two treatments. 3 The powder may be more effectively inhaled than the aerosol or the dose of the aerosol may not be large enough. PMID:6789851

  20. Hanford Environmental Dose Reconstruction Project monthly report

    SciTech Connect

    Finch, S.M.

    1990-12-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have been have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; and environmental pathways and dose estimates. 3 figs., 3 tabs.

  1. Skin dose measurement with MICROSPEC-2{trademark}

    SciTech Connect

    Hsu, H.H.; Chen, J.; Ing, H.; Clifford, E.T.H.; McLean, T.

    1997-10-01

    For many years, the Eberline HP-260{trademark} beta detectors were used for skin dose measurements at Los Alamos National Laboratory. This detector does not measure the beta spectrum and the skin dose can only be determined if the contaminating radioactive isotope is known. A new product MICROSPEC-2{trademark}, has been developed which consists of a small portable computer with a multichannel analyzer and a beta probe consisting of a phoswich detector. The system measures the beta spectrum and automatically folds in the beta fluence-to-dose conversion function to yield the skin dose.

  2. Internal dose following a major nuclear war

    SciTech Connect

    Peterson, K.R.; Shapiro, C.S. )

    1992-01-01

    The PATHWAY model results were used, in conjunction with a hypothetical major nuclear attack on the U.S., to arrive at the ratio of internal to external dose for humans from early (48 h) fallout. Considered were the four nuclides (137Cs, 89Sr, 90Sr, 131I) that account for most of the reconstructed whole-body committed equivalent dose from internal radiation in people who lived downwind of the Nevada Test Site during atmospheric tests. Effects of climate perturbations (the 'nuclear winter' effect) on food crops were considered. These could increase internal dose estimates, depending on the severity of the climate perturbations. Internal and external doses to humans for 10 locations within the U.S. have been calculated, with varying local conditions and varying assumption about their shelters. The estimated 50-y internal dose commitment ranged from 0.0-0.17 Sv, the 48-h external dose from 0.15-4.6 Sv. The resultant ratios of internal to external committed dose received in the first months (until food transport was restored) varied from less than 0.01 to about 0.2. In all cases examined, the total dose from early fallout was found to be dominated by the external dose.

  3. Internal dose following a major nuclear war.

    PubMed

    Peterson, K R; Shapiro, C S

    1992-01-01

    The PATHWAY model results were used, in conjunction with a hypothetical major nuclear attack on the U.S., to arrive at the ratio of internal to external dose for humans from early (48 h) fallout. Considered were the four nuclides (137Cs, 89Sr, 90Sr, 131I) that account for most of the reconstructed whole-body committed equivalent dose from internal radiation in people who lived downwind of the Nevada Test Site during atmospheric tests. Effects of climate perturbations (the "nuclear winter" effect) on food crops were considered. These could increase internal dose estimates, depending on the severity of the climate perturbations. Internal and external doses to humans for 10 locations within the U.S. have been calculated, with varying local conditions and varying assumption about their shelters. The estimated 50-y internal dose commitment ranged from 0.0-0.17 Sv, the 48-h external dose from 0.15-4.6 Sv. The resultant ratios of internal to external committed dose received in the first months (until food transport was restored) varied from less than 0.01 to about 0.2. In all cases examined, the total dose from early fallout was found to be dominated by the external dose.

  4. Adaption By Low Dose Radiation Exposure

    PubMed Central

    2015-01-01

    The procedures and dose limitations used for radiation protection in the nuclear industry are founded on the assumption that risk is directly proportional to dose, without a threshold. Based on this idea that any dose, no matter how small, will increase risk, radiation protection regulations generally attempt to reduce any exposure to “as low as reasonably achievable” (ALARA). We know however, that these regulatory assumptions are inconsistent with the known biological effects of low doses. Low doses induce protective effects, and these adaptive responses are part of a general response to low stress. Adaptive responses have been tightly conserved during evolution, from single celled organisms up to humans, indicating their importance. Here we examine cellular and animal studies that show the influence of radiation induced protective effects on diverse diseases, and examine the radiation dose range that is effective for different tissues in the same animal. The concept of a dose window, with upper and lower effective doses, as well as the effect of multiple stressors and the influence of genetics will also be examined. The effect of the biological variables on low dose responses will be considered from the point of view of the limitations they may impose on any revised radiation protection regulations. PMID:26672725

  5. Spent Nuclear Fuel Project dose management plan

    SciTech Connect

    Bergsman, K.H.

    1996-03-01

    This dose management plan facilitates meeting the dose management and ALARA requirements applicable to the design activities of the Spent Nuclear Fuel Project, and establishes consistency of information used by multiple subprojects in ALARA evaluations. The method for meeting the ALARA requirements applicable to facility designs involves two components. The first is each Spent Nuclear Fuel Project subproject incorporating ALARA principles, ALARA design optimizations, and ALARA design reviews throughout the design of facilities and equipment. The second component is the Spent Nuclear Fuel Project management providing overall dose management guidance to the subprojects and oversight of the subproject dose management efforts.

  6. Run-to-run CD error analysis and control monitoring of effective dose and focus

    NASA Astrophysics Data System (ADS)

    Asano, Masafumi; Fujisawa, Tadahito; Izuha, Kyoko; Inoue, Soichi

    2003-05-01

    We have developed in-line dose and focus monitoring techniques for the detailed analysis of critical dimension error and accurate process control. From exposed wafers, effective does and focus are measured with specificed monitor marks built on a reticle. The contributions of effective dose and focus to critical dimension error on device chips were clarified in a fabrication proces of 110 nm isolated pattern with a KrF scanner. The critical dimensions error was described as a function of effective dose and focus, which include various process fluctuations. We could determine whether current exposure settings such as dose input and focus input were adequate or not. Based on the experimental data, we estimated the benefit of simultaneous Run-to-Run control of dose and focus. The estimation clarifies that it realizes total critical dimension control including Run-to-Run and intra-Run.

  7. Criticality prompt gamma and neutron dose equations validated by Monte Carlo analyses and compared to known criticality accident doses

    NASA Astrophysics Data System (ADS)

    Hochhalter, Eugene

    The United States (US) Department of Energy [DOE] and the Nuclear Regulatory Commission [NRC] have provided the nuclear industry with requirements, goals, and objectives for the preparation of safety analysis and the finalization of that safety analysis in the form of a documented safety analysis (DSA) and technical safety requirements (TSRs). The deterministic guidance provided by the NRC in Regulatory Guide (RG) 3.33 for calculating the prompt gamma and neutron doses from a criticality has a number of potential issues associated with the semi-empirical equations, which make these equations potentially out dated. The NRC guidance for estimating the prompt gamma and neutron doses to a facility worker due to an accidental criticality was withdrawn without newer deterministic guidance being issued. This research project determined the original basis for the RG prompt gamma and neutron equations, evaluated the potential issues associated with the RG 3.33 prompt gamma and neutron equations, and modified the RG 3.33 point source prompt gamma and neutron equations to calculate the doses for the selected set of criticality accidents. The criticality accidents addressed by this dissertation include: 1. U-235, Pu-239, and Pu-241 point source criticality, 2. U-235, Pu-239, and Pu-241 sphere source criticality, 3. Uranyl nitrate and plutonium nitrate solutions in a cylindrical process vessel and 4. Low level waste in 55-gallon and 30-gallon drums. The prompt gamma and neutron equation doses (RG 3.33/3.34/3.35) are compared to actual nuclear industry criticality accident worker doses to assess the conservatism of the RG equations. Finally, the RG 3.33 prompt gamma and neutron dose equations are compared to MCNP5 results to investigate consistency with respect to the modified prompt gamma and neutron dose equations and the representative dose estimates for each of the criticality configurations (point source, spherical source, and cylindrical source). Knowledge and accurate

  8. Generalized Tumor Dose for Treatment Planning Decision Support

    NASA Astrophysics Data System (ADS)

    Zuniga, Areli A.

    Modern radiation therapy techniques allow for improved target conformity and normal tissue sparing. These highly conformal treatment plans have allowed dose escalation techniques increasing the probability of tumor control. At the same time this conformation has introduced inhomogeneous dose distributions, making delivered dose characterizations more difficult. The concept of equivalent uniform dose (EUD) characterizes a heterogeneous dose distribution within irradiated structures as a single value and has been used in biologically based treatment planning (BBTP); however, there are no substantial validation studies on clinical outcome data supporting EUD's use and therefore has not been widely adopted as decision-making support. These highly conformal treatment plans have also introduced the need for safety margins around the target volume. These margins are designed to minimize geometrical misses, and to compensate for dosimetric and treatment delivery uncertainties. The margin's purpose is to reduce the chance of tumor recurrence. This dissertation introduces a new EUD formulation designed especially for tumor volumes, called generalized Tumor Dose (gTD). It also investigates, as a second objective, margins extensions for potential improvements in local control while maintaining or minimizing toxicity. The suitability of gTD to rank LC was assessed by means of retrospective studies in a head and neck (HN) squamous cell carcinoma (SCC) and non-small cell lung cancer (NSCLC) cohorts. The formulation was optimized based on two datasets (one of each type) and then, model validation was assessed on independent cohorts. The second objective of this dissertation was investigated by ranking the probability of LC of the primary disease adding different margin sizes. In order to do so, an already published EUD formula was used retrospectively in a HN and a NSCLC datasets. Finally, recommendations for the viability to implement this new formulation into a routine treatment

  9. Dose rate in brachytherapy using after-loading machine: pulsed or high-dose rate?

    PubMed

    Hannoun-Lévi, J-M; Peiffert, D

    2014-10-01

    Since February 2014, it is no longer possible to use low-dose rate 192 iridium wires due to the end of industrial production of IRF1 and IRF2 sources. The Brachytherapy Group of the French society of radiation oncology (GC-SFRO) has recommended switching from iridium wires to after-loading machines. Two types of after-loading machines are currently available, based on the dose rate used: pulsed-dose rate or high-dose rate. In this article, we propose a comparative analysis between pulsed-dose rate and high-dose rate brachytherapy, based on biological, technological, organizational and financial considerations.

  10. Red bone marrow doses, integral absorbed doses, and somatically effective dose equivalent from four maxillary occlusal projections

    SciTech Connect

    Berge, T.I.; Wohni, T.

    1984-02-01

    Phantom measurements of red bone marrow (RBM) doses, integral absorbed doses, and somatically effective dose equivalent (SEDE) from four different maxillary occlusal projections are presented. For each projection, different combinations of focus-skin distances and tube potentials were compared with regard to the patient's radiation load. The axial