Sample records for dose verification method

  1. A calibration method for patient specific IMRT QA using a single therapy verification film

    PubMed Central

    Shukla, Arvind Kumar; Oinam, Arun S.; Kumar, Sanjeev; Sandhu, I.S.; Sharma, S.C.

    2013-01-01

    Aim The aim of the present study is to develop and verify the single film calibration procedure used in intensity-modulated radiation therapy (IMRT) quality assurance. Background Radiographic films have been regularly used in routine commissioning of treatment modalities and verification of treatment planning system (TPS). The radiation dosimetery based on radiographic films has ability to give absolute two-dimension dose distribution and prefer for the IMRT quality assurance. However, the single therapy verification film gives a quick and significant reliable method for IMRT verification. Materials and methods A single extended dose rate (EDR 2) film was used to generate the sensitometric curve of film optical density and radiation dose. EDR 2 film was exposed with nine 6 cm × 6 cm fields of 6 MV photon beam obtained from a medical linear accelerator at 5-cm depth in solid water phantom. The nine regions of single film were exposed with radiation doses raging from 10 to 362 cGy. The actual dose measurements inside the field regions were performed using 0.6 cm3 ionization chamber. The exposed film was processed after irradiation using a VIDAR film scanner and the value of optical density was noted for each region. Ten IMRT plans of head and neck carcinoma were used for verification using a dynamic IMRT technique, and evaluated using the gamma index method with TPS calculated dose distribution. Results Sensitometric curve has been generated using a single film exposed at nine field region to check quantitative dose verifications of IMRT treatments. The radiation scattered factor was observed to decrease exponentially with the increase in the distance from the centre of each field region. The IMRT plans based on calibration curve were verified using the gamma index method and found to be within acceptable criteria. Conclusion The single film method proved to be superior to the traditional calibration method and produce fast daily film calibration for highly accurate IMRT verification. PMID:24416558

  2. SU-E-T-602: Patient-Specific Online Dose Verification Based On Transmission Detector Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thoelking, J; Yuvaraj, S; Jens, F

    Purpose: Intensity modulated radiotherapy requires a comprehensive quality assurance program in general and ideally independent verification of dose delivery. Since conventional 2D detector arrays allow only pre-treatment verification, there is a debate concerning the need of online dose verification. This study presents the clinical performance, including dosimetric plan verification in 2D as well as in 3D and the error detection abilities of a new transmission detector (TD) for online dose verification of 6MV photon beam. Methods: To validate the dosimetric performance of the new device, dose reconstruction based on TD measurements were compared to a conventional pre-treatment verification method (reference)more » and treatment planning system (TPS) for 18 IMRT and VMAT treatment plans. Furthermore, dose reconstruction inside the patient based on TD read-out was evaluated by comparing various dose volume indices and 3D gamma evaluations against independent dose computation and TPS. To investigate the sensitivity of the new device, different types of systematic and random errors for leaf positions and linac output were introduced in IMRT treatment sequences. Results: The 2D gamma index evaluation of transmission detector based dose reconstruction showed an excellent agreement for all IMRT and VMAT plans compared to reference measurements (99.3±1.2)% and TPS (99.1±0.7)%. Good agreement was also obtained for 3D dose reconstruction based on TD read-out compared to dose computation (mean gamma value of PTV = 0.27±0.04). Only a minimal dose underestimation within the target volume was observed when analyzing DVH indices (<1%). Positional errors in leaf banks larger than 1mm and errors in linac output larger than 2% could clearly identified with the TD. Conclusion: Since 2D and 3D evaluations for all IMRT and VMAT treatment plans were in excellent agreement with reference measurements and dose computation, the new TD is suitable to qualify for routine treatment plan verification. Funding Support, Disclosures, and Conflict of Interest: COIs: Frank Lohr: Elekta: research grant, travel grants, teaching honoraria IBA: research grant, travel grants, teaching honoraria, advisory board C-Rad: board honoraria, travel grants Frederik Wenz: Elekta: research grant, teaching honoraria, consultant, advisory board Zeiss: research grant, teaching honoraria, patent Hansjoerg Wertz: Elekta: research grant, teaching honoraria IBA: research grant.« less

  3. Real-Time Verification of a High-Dose-Rate Iridium 192 Source Position Using a Modified C-Arm Fluoroscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nose, Takayuki, E-mail: nose-takayuki@nms.ac.jp; Chatani, Masashi; Otani, Yuki

    Purpose: High-dose-rate (HDR) brachytherapy misdeliveries can occur at any institution, and they can cause disastrous results. Even a patient's death has been reported. Misdeliveries could be avoided with real-time verification methods. In 1996, we developed a modified C-arm fluoroscopic verification of an HDR Iridium 192 source position prevent these misdeliveries. This method provided excellent image quality sufficient to detect errors, and it has been in clinical use at our institutions for 20 years. The purpose of the current study is to introduce the mechanisms and validity of our straightforward C-arm fluoroscopic verification method. Methods and Materials: Conventional X-ray fluoroscopic images aremore » degraded by spurious signals and quantum noise from Iridium 192 photons, which make source verification impractical. To improve image quality, we quadrupled the C-arm fluoroscopic X-ray dose per pulse. The pulse rate was reduced by a factor of 4 to keep the average exposure compliant with Japanese medical regulations. The images were then displayed with quarter-frame rates. Results: Sufficient quality was obtained to enable observation of the source position relative to both the applicators and the anatomy. With this method, 2 errors were detected among 2031 treatment sessions for 370 patients within a 6-year period. Conclusions: With the use of a modified C-arm fluoroscopic verification method, treatment errors that were otherwise overlooked were detected in real time. This method should be given consideration for widespread use.« less

  4. Alternative sample sizes for verification dose experiments and dose audits

    NASA Astrophysics Data System (ADS)

    Taylor, W. A.; Hansen, J. M.

    1999-01-01

    ISO 11137 (1995), "Sterilization of Health Care Products—Requirements for Validation and Routine Control—Radiation Sterilization", provides sampling plans for performing initial verification dose experiments and quarterly dose audits. Alternative sampling plans are presented which provide equivalent protection. These sampling plans can significantly reduce the cost of testing. These alternative sampling plans have been included in a draft ISO Technical Report (type 2). This paper examines the rational behind the proposed alternative sampling plans. The protection provided by the current verification and audit sampling plans is first examined. Then methods for identifying equivalent plans are highlighted. Finally, methods for comparing the cost associated with the different plans are provided. This paper includes additional guidance for selecting between the original and alternative sampling plans not included in the technical report.

  5. Field evaluations of the VD max approach for substantiation of a 25 kGy sterilization dose and its application to other preselected doses

    NASA Astrophysics Data System (ADS)

    Kowalski, John B.; Herring, Craig; Baryschpolec, Lisa; Reger, John; Patel, Jay; Feeney, Mary; Tallentire, Alan

    2002-08-01

    The International and European standards for radiation sterilization require evidence of the effectiveness of a minimum sterilization dose of 25 kGy but do not provide detailed guidance on how this evidence can be generated. An approach, designated VD max, has recently been described and computer evaluated to provide safe and unambiguous substantiation of a 25 kGy sterilization dose. The approach has been further developed into a practical method, which has been subjected to field evaluations at three manufacturing facilities which produce different types of medical devices. The three facilities each used a different overall evaluation strategy: Facility A used VD max for quarterly dose audits; Facility B compared VD max and Method 1 in side-by-side parallel experiments; and Facility C, a new facility at start-up, used VD max for initial substantiation of 25 kGy and subsequent quarterly dose audits. A common element at all three facilities was the use of 10 product units for irradiation in the verification dose experiment. The field evaluations of the VD max method were successful at all three facilities; they included many different types of medical devices/product families with a wide range of average bioburden and sample item portion values used in the verification dose experiments. Overall, around 500 verification dose experiments were performed and no failures were observed. In the side-by-side parallel experiments, the outcomes of the VD max experiments were consistent with the outcomes observed with Method 1. The VD max approach has been extended to sterilization doses >25 and <25 kGy; verification doses have been derived for sterilization doses of 15, 20, 30, and 35 kGy. Widespread application of the VD max method for doses other than 25 kGy must await controlled field evaluations and the development of appropriate specifications/standards.

  6. SU-F-T-229: A Novel Method for EPID-Based In-Vivo Exit Dose Verification for Intensity Modulated Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Z; Wang, J; Peng, J

    Purpose: Electronic portal imaging device (EPID) can be used to acquire a two-dimensional exit dose distribution during treatment delivery, thus allowing the in-vivo verification of the dose delivery through a comparison of measured portal images to predicted portal dose images (PDI). The aim of this study was to present a novel method to easily and accurately predict PDI, and to establish an EPID-based in-vivo dose verification method during IMRT treatments. Methods: We developed a model to determine the predicted portal dose at the same plane of the EPID detector location. The Varian EPID (aS1000) positions at 150cm source-to-detector-distance (SDD), andmore » can be used to acquire in-vivo exit dose using Portal Dosimetry (PD) function. Our model was generated to make an equivalent water thickness represent the buildup plate of EPID. The exit dose at extend SDD plane with patient CT data in the beam can be calculated as the predicted PDI in the treatment planning system (TPS). After that, the PDI was converted to the fluence at SDD of 150cm using the inverse square law coded in MATLAB. Five head-and-neck and prostate IMRT patient plans contain 32 fields were investigated to evaluate the feasibility of this new method. The measured EPID image was compared with PDI using the gamma analysis. Results: The average results for cumulative dose comparison were 81.9% and 91.6% for 3%, 3mm and 4%, 4mm gamma criteria, respectively. Results indicate that the patient transit dosimetry predicted algorithm compares well with EPID measured PD doses for test situations. Conclusion: Our new method can be used as an easy and feasible tool for online EPID-based in-vivo dose delivery verification for IMRT treatments. It can be implemented for fast detecting those obvious treatment delivery errors for individual field and patient quality assurance.« less

  7. Real-Time Verification of a High-Dose-Rate Iridium 192 Source Position Using a Modified C-Arm Fluoroscope.

    PubMed

    Nose, Takayuki; Chatani, Masashi; Otani, Yuki; Teshima, Teruki; Kumita, Shinichirou

    2017-03-15

    High-dose-rate (HDR) brachytherapy misdeliveries can occur at any institution, and they can cause disastrous results. Even a patient's death has been reported. Misdeliveries could be avoided with real-time verification methods. In 1996, we developed a modified C-arm fluoroscopic verification of an HDR Iridium 192 source position prevent these misdeliveries. This method provided excellent image quality sufficient to detect errors, and it has been in clinical use at our institutions for 20 years. The purpose of the current study is to introduce the mechanisms and validity of our straightforward C-arm fluoroscopic verification method. Conventional X-ray fluoroscopic images are degraded by spurious signals and quantum noise from Iridium 192 photons, which make source verification impractical. To improve image quality, we quadrupled the C-arm fluoroscopic X-ray dose per pulse. The pulse rate was reduced by a factor of 4 to keep the average exposure compliant with Japanese medical regulations. The images were then displayed with quarter-frame rates. Sufficient quality was obtained to enable observation of the source position relative to both the applicators and the anatomy. With this method, 2 errors were detected among 2031 treatment sessions for 370 patients within a 6-year period. With the use of a modified C-arm fluoroscopic verification method, treatment errors that were otherwise overlooked were detected in real time. This method should be given consideration for widespread use. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latty, Drew, E-mail: drew.latty@health.nsw.gov.au; Stuart, Kirsty E; Westmead Breast Cancer Institute, Sydney, New South Wales

    Radiation treatment to the left breast is associated with increased cardiac morbidity and mortality. The deep inspiration breath-hold technique (DIBH) can decrease radiation dose delivered to the heart and this may facilitate the treatment of the internal mammary chain nodes. The aim of this review is to critically analyse the literature available in relation to breath-hold methods, implementation, utilisation, patient compliance, planning methods and treatment verification of the DIBH technique. Despite variation in the literature regarding the DIBH delivery method, patient coaching, visual feedback mechanisms and treatment verification, all methods of DIBH delivery reduce radiation dose to the heart. Furthermore » research is required to determine optimum protocols for patient training and treatment verification to ensure the technique is delivered successfully.« less

  9. SU-F-T-268: A Feasibility Study of Independent Dose Verification for Vero4DRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamashita, M; Kokubo, M; Institute of Biomedical Research and Innovation, Kobe, Hyogo

    2016-06-15

    Purpose: Vero4DRT (Mitsubishi Heavy Industries Ltd.) has been released for a few years. The treatment planning system (TPS) of Vero4DRT is dedicated, so the measurement is the only method of dose verification. There have been no reports of independent dose verification using Clarksonbased algorithm for Vero4DRT. An independent dose verification software program of the general-purpose linac using a modified Clarkson-based algorithm was modified for Vero4DRT. In this study, we evaluated the accuracy of independent dose verification program and the feasibility of the secondary check for Vero4DRT. Methods: iPlan (Brainlab AG) was used as the TPS. PencilBeam Convolution was used formore » dose calculation algorithm of IMRT and X-ray Voxel Monte Carlo was used for the others. Simple MU Analysis (SMU, Triangle Products, Japan) was used as the independent dose verification software program in which CT-based dose calculation was performed using a modified Clarkson-based algorithm. In this study, 120 patients’ treatment plans were collected in our institute. The treatments were performed using the conventional irradiation for lung and prostate, SBRT for lung and Step and shoot IMRT for prostate. Comparison in dose between the TPS and the SMU was done and confidence limits (CLs, Mean ± 2SD %) were compared to those from the general-purpose linac. Results: As the results of the CLs, the conventional irradiation (lung, prostate), SBRT (lung) and IMRT (prostate) show 2.2 ± 3.5% (CL of the general-purpose linac: 2.4 ± 5.3%), 1.1 ± 1.7% (−0.3 ± 2.0%), 4.8 ± 3.7% (5.4 ± 5.3%) and −0.5 ± 2.5% (−0.1 ± 3.6%), respectively. The CLs for Vero4DRT show similar results to that for the general-purpose linac. Conclusion: The independent dose verification for the new linac is clinically available as a secondary check and we performed the check with the similar tolerance level of the general-purpose linac. This research is partially supported by Japan Agency for Medical Research and Development (AMED)« less

  10. SU-D-BRC-03: Development and Validation of an Online 2D Dose Verification System for Daily Patient Plan Delivery Accuracy Check

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, J; Hu, W; Xing, Y

    Purpose: All plan verification systems for particle therapy are designed to do plan verification before treatment. However, the actual dose distributions during patient treatment are not known. This study develops an online 2D dose verification tool to check the daily dose delivery accuracy. Methods: A Siemens particle treatment system with a modulated scanning spot beam is used in our center. In order to do online dose verification, we made a program to reconstruct the delivered 2D dose distributions based on the daily treatment log files and depth dose distributions. In the log files we can get the focus size, positionmore » and particle number for each spot. A gamma analysis is used to compare the reconstructed dose distributions with the dose distributions from the TPS to assess the daily dose delivery accuracy. To verify the dose reconstruction algorithm, we compared the reconstructed dose distributions to dose distributions measured using PTW 729XDR ion chamber matrix for 13 real patient plans. Then we analyzed 100 treatment beams (58 carbon and 42 proton) for prostate, lung, ACC, NPC and chordoma patients. Results: For algorithm verification, the gamma passing rate was 97.95% for the 3%/3mm and 92.36% for the 2%/2mm criteria. For patient treatment analysis,the results were 97.7%±1.1% and 91.7%±2.5% for carbon and 89.9%±4.8% and 79.7%±7.7% for proton using 3%/3mm and 2%/2mm criteria, respectively. The reason for the lower passing rate for the proton beam is that the focus size deviations were larger than for the carbon beam. The average focus size deviations were −14.27% and −6.73% for proton and −5.26% and −0.93% for carbon in the x and y direction respectively. Conclusion: The verification software meets our requirements to check for daily dose delivery discrepancies. Such tools can enhance the current treatment plan and delivery verification processes and improve safety of clinical treatments.« less

  11. SU-E-T-762: Toward Volume-Based Independent Dose Verification as Secondary Check

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tachibana, H; Tachibana, R

    2015-06-15

    Purpose: Lung SBRT plan has been shifted to volume prescription technique. However, point dose agreement is still verified using independent dose verification at the secondary check. The volume dose verification is more affected by inhomogeneous correction rather than point dose verification currently used as the check. A feasibility study for volume dose verification was conducted in lung SBRT plan. Methods: Six SBRT plans were collected in our institute. Two dose distributions with / without inhomogeneous correction were generated using Adaptive Convolve (AC) in Pinnacle3. Simple MU Analysis (SMU, Triangle Product, Ishikawa, JP) was used as the independent dose verification softwaremore » program, in which a modified Clarkson-based algorithm was implemented and radiological path length was computed using CT images independently to the treatment planning system. The agreement in point dose and mean dose between the AC with / without the correction and the SMU were assessed. Results: In the point dose evaluation for the center of the GTV, the difference shows the systematic shift (4.5% ± 1.9 %) in comparison of the AC with the inhomogeneous correction, on the other hands, there was good agreement of 0.2 ± 0.9% between the SMU and the AC without the correction. In the volume evaluation, there were significant differences in mean dose for not only PTV (14.2 ± 5.1 %) but also GTV (8.0 ± 5.1 %) compared to the AC with the correction. Without the correction, the SMU showed good agreement for GTV (1.5 ± 0.9%) as well as PTV (0.9% ± 1.0%). Conclusion: The volume evaluation for secondary check may be possible in homogenous region. However, the volume including the inhomogeneous media would make larger discrepancy. Dose calculation algorithm for independent verification needs to be modified to take into account the inhomogeneous correction.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, H; Yu, N; Qi, P

    Purpose: In commercial secondary dose calculation system, an average effective depth is used to calculate the Monitor Units for an arc beam from the volumetric modulated arc (VMAT) plans. Typically, an arithmetic mean of the effective depths (AMED) of a VMAT arc beam is used, which may result in large MU discrepancy from that of the primary treatment planning system. This study is to demonstrate the use of a dose weighted mean effective depth (DWED) can improve accuracy of MU calculation for the secondary MU verification. Methods: In-house scripts were written in the primary treatment planning system (TPS) to firstmore » convert a VMAT arc beam to a series of static step & shoot beams (every 4 degree). The computed dose and effective depth of each static beam were then used to obtain the dose weighted mean effective depth (DWED) for the VMAT beam. The DWED was used for the secondary MU calculation for VMAT plans. Six lung SBRT VMAT plans, eight head and neck VMAT plans and ten prostate VMAT plans that had > 5% MU deviations (failed MU verification) using the AMED method were recalculated with the DWED. For comparison, same number VMAT plans that had < 5% MU deviations (passed MU verification) using AMED method were also reevaluated with the dose weighted mean effective depth method. Results: For MU verification passed plans, the mean and standard deviation of MU differences between the TPS and the secondary calculation program were 2.2%±1.5% for the AMED and 2.1%±1.7% for the DMED method. For the failed plans, the mean and standard deviation of MU differences of TPS to the secondary calculation program were 9.9%±4.7% and 4.7%±2.6, respectively. Conclusion: The dose weighted mean effective depth improved MU calculation accuracy which can be used for the pre-treatment MU verification of VMAT plans.« less

  13. MR Imaging Based Treatment Planning for Radiotherapy of Prostate Cancer

    DTIC Science & Technology

    2007-02-01

    developed practical methods for heterogeneity correction for MRI - based dose calculations (Chen et al 2007). 6) We will use existing Monte Carlo ... Monte Carlo verification of IMRT dose distributions from a commercial treatment planning optimization system, Phys. Med. Biol., 45:2483-95 (2000) Ma...accuracy and consistency for MR based IMRT treatment planning for prostate cancer. A short paper entitled “ Monte Carlo dose verification of MR image based

  14. Validation of 15 kGy as a radiation sterilisation dose for bone allografts manufactured at the Queensland Bone Bank: application of the VDmax 15 method.

    PubMed

    Nguyen, Huynh; Morgan, David A F; Sly, Lindsay I; Benkovich, Morris; Cull, Sharon; Forwood, Mark R

    2008-06-01

    ISO 11137-2006 (ISO 11137-2a 2006) provides a VDmax 15 method for substantiation of 15 kGy as radiation sterilisation dose (RSD) for health care products with a relatively low sample requirement. Moreover, the method is also valid for products in which the bioburden level is less than or equal to 1.5. In the literature, the bioburden level of processed bone allografts is extremely low. Similarly, the Queensland Bone Bank (QBB) usually recovers no viable organisms from processed bone allografts. Because bone allografts are treated as a type of health care product, the aim of this research was to substantiate 15 kGy as a RSD for frozen bone allografts at the QBB using method VDmax 15-ISO 11137-2: 2006 (ISO 11137-2e, Procedure for method VDmax 15 for multiple production batches. Sterilisation of health care products - radiation - part 2: establishing the sterilisation dose, 2006; ISO 11137-2f, Procedure for method VDmax 15 for a single production batch. Sterilisation of health care products - radiation - part 2: establishing the sterilisation dose, 2006). 30 femoral heads, 40 milled bone allografts and 40 structural bone allografts manufactured according to QBB standard operating procedures were used. Estimated bioburdens for each bone allograft group were used to calculate the verification doses. Next, 10 samples per group were irradiated at the verification dose, sterility was tested and the number of positive tests of sterility recorded. If the number of positive samples was no more than 1, from the 10 tests carried out in each group, the verification was accepted and 15 kGy was substantiated as RSD for those bone allografts. The bioburdens in all three groups were 0, and therefore the verification doses were 0 kGy. Sterility tests of femoral heads and milled bones were all negative (no contamination), and there was one positive test of sterility in the structural bone allograft. Accordingly, the verification was accepted. Using the ISO validated protocol, VDmax 15, 15 kGy was substantiated as RSD for frozen bone allografts manufactured at the QBB.

  15. On flattening filter‐free portal dosimetry

    PubMed Central

    Novais, Juan Castro; Molina López, María Yolanda; Maqueda, Sheila Ruiz

    2016-01-01

    Varian introduced (in 2010) the option of removing the flattening filter (FF) in their C‐Arm linacs for intensity‐modulated treatments. This mode, called flattening filter‐free (FFF), offers the advantage of a greater dose rate. Varian's “Portal Dosimetry” is an electronic portal imager device (EPID)‐based tool for IMRT verification. This tool lacks the capability of verifying flattening filter‐free (FFF) modes due to saturation and lack of an image prediction algorithm. (Note: the latest versions of this software and EPID correct these issues.) The objective of the present study is to research the feasibility of said verifications (with the older versions of the software and EPID). By placing the EPID at a greater distance, the images can be acquired without saturation, yielding a linearity similar to the flattened mode. For the image prediction, a method was optimized based on the clinically used algorithm (analytical anisotropic algorithm (AAA)) over a homogeneous phantom. The depth inside the phantom and its electronic density were tailored. An application was developed to allow the conversion of a dose plane (in DICOM format) to Varian's custom format for Portal Dosimetry. The proposed method was used for the verification of test and clinical fields for the three qualities used in our institution for IMRT: 6X, 6FFF and 10FFF. The method developed yielded a positive verification (more than 95% of the points pass a 2%/2 mm gamma) for both the clinical and test fields. This method was also capable of “predicting” static and wedged fields. A workflow for the verification of FFF fields was developed. This method relies on the clinical algorithm used for dose calculation and is able to verify the FFF modes, as well as being useful for machine quality assurance. The procedure described does not require new hardware. This method could be used as a verification of Varian's Portal Dose Image Prediction. PACS number(s): 87.53.Kn, 87.55.T‐, 87.56.bd, 87.59.‐e PMID:27455487

  16. SU-E-T-49: A Multi-Institutional Study of Independent Dose Verification for IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baba, H; Tachibana, H; Kamima, T

    2015-06-15

    Purpose: AAPM TG114 does not cover the independent verification for IMRT. We conducted a study of independent dose verification for IMRT in seven institutes to show the feasibility. Methods: 384 IMRT plans in the sites of prostate and head and neck (HN) were collected from the institutes, where the planning was performed using Eclipse and Pinnacle3 with the two techniques of step and shoot (S&S) and sliding window (SW). All of the institutes used a same independent dose verification software program (Simple MU Analysis: SMU, Triangle Product, Ishikawa, JP), which is Clarkson-based and CT images were used to compute radiologicalmore » path length. An ion-chamber measurement in a water-equivalent slab phantom was performed to compare the doses computed using the TPS and an independent dose verification program. Additionally, the agreement in dose computed in patient CT images between using the TPS and using the SMU was assessed. The dose of the composite beams in the plan was evaluated. Results: The agreement between the measurement and the SMU were −2.3±1.9 % and −5.6±3.6 % for prostate and HN sites, respectively. The agreement between the TPSs and the SMU were −2.1±1.9 % and −3.0±3.7 for prostate and HN sites, respectively. There was a negative systematic difference with similar standard deviation and the difference was larger in the HN site. The S&S technique showed a statistically significant difference between the SW. Because the Clarkson-based method in the independent program underestimated (cannot consider) the dose under the MLC. Conclusion: The accuracy would be improved when the Clarkson-based algorithm should be modified for IMRT and the tolerance level would be within 5%.« less

  17. Validation of an in-vivo proton beam range check method in an anthropomorphic pelvic phantom using dose measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bentefour, El H., E-mail: hassan.bentefour@iba-group.com; Prieels, Damien; Tang, Shikui

    Purpose: In-vivo dosimetry and beam range verification in proton therapy could play significant role in proton treatment validation and improvements. In-vivo beam range verification, in particular, could enable new treatment techniques one of which could be the use of anterior fields for prostate treatment instead of opposed lateral fields as in current practice. This paper reports validation study of an in-vivo range verification method which can reduce the range uncertainty to submillimeter levels and potentially allow for in-vivo dosimetry. Methods: An anthropomorphic pelvic phantom is used to validate the clinical potential of the time-resolved dose method for range verification inmore » the case of prostrate treatment using range modulated anterior proton beams. The method uses a 3 × 4 matrix of 1 mm diodes mounted in water balloon which are read by an ADC system at 100 kHz. The method is first validated against beam range measurements by dose extinction measurements. The validation is first completed in water phantom and then in pelvic phantom for both open field and treatment field configurations. Later, the beam range results are compared with the water equivalent path length (WEPL) values computed from the treatment planning system XIO. Results: Beam range measurements from both time-resolved dose method and the dose extinction method agree with submillimeter precision in water phantom. For the pelvic phantom, when discarding two of the diodes that show sign of significant range mixing, the two methods agree with ±1 mm. Only a dose of 7 mGy is sufficient to achieve this result. The comparison to the computed WEPL by the treatment planning system (XIO) shows that XIO underestimates the protons beam range. Quantifying the exact XIO range underestimation depends on the strategy used to evaluate the WEPL results. To our best evaluation, XIO underestimates the treatment beam range between a minimum of 1.7% and maximum of 4.1%. Conclusions: Time-resolved dose measurement method satisfies the two basic requirements, WEPL accuracy and minimum dose, necessary for clinical use, thus, its potential for in-vivo protons range verification. Further development is needed, namely, devising a workflow that takes into account the limits imposed by proton range mixing and the susceptibility of the comparison of measured and expected WEPLs to errors on the detector positions. The methods may also be used for in-vivo dosimetry and could benefit various proton therapy treatments.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucconi, G; Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA; Bentefour, E

    Purpose: The clinical commissioning of a workflow for pre-treatment range verification/adjustment for the head treatment of pediatric medulloblastoma patients, including dose monitoring during treatment. Methods: An array of Si-diodes (DIODES Incorporated) is placed on the patient skin on the opposite side to the beam entrance. A “scout” SOBP beam, with a longer beam range to cover the diodes in its plateau, is delivered; the measured signal is analyzed and the extracted water equivalent path lengths (WEPL) are compared to the expected values, revealing if a range correction is needed. Diodes stay in place during treatment to measure dose. The workflowmore » was tested in solid water and head phantoms and validated against independent WEPL measurements. Both measured WEPL and skin doses were compared to computed values from the TPS (XiO); a Markus chamber was used for reference dose measurements. Results: The WEPL accuracy of the method was verified by comparing it with the dose extinction method. It resulted, for both solid water and head phantom, in the sub-millimeter range, with a deviation less than 1% to the value extracted from the TPS. The accuracy of dose measurements in the fall-off part of the dose profile was validated against the Markus chamber. The entire range verification workflow was successfully tested for the mock-treatment of head phantom with the standard delivery of 90 cGy per field per fraction. The WEPL measurement revealed no need for range correction. The dose measurements agreed to better than 4% with the prescription dose. The robustness of the method and workflow, including detector array, hardware set and software functions, was successfully stress-tested with multiple repetitions. Conclusion: The performance of the in-vivo range verification system and related workflow meet the clinical requirements in terms of the needed WEPL accuracy for pretreatment range verification with acceptable dose to the patient.« less

  19. Online 3D EPID-based dose verification: Proof of concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spreeuw, Hanno; Rozendaal, Roel, E-mail: r.rozenda

    Purpose: Delivery errors during radiotherapy may lead to medical harm and reduced life expectancy for patients. Such serious incidents can be avoided by performing dose verification online, i.e., while the patient is being irradiated, creating the possibility of halting the linac in case of a large overdosage or underdosage. The offline EPID-based 3D in vivo dosimetry system clinically employed at our institute is in principle suited for online treatment verification, provided the system is able to complete 3D dose reconstruction and verification within 420 ms, the present acquisition time of a single EPID frame. It is the aim of thismore » study to show that our EPID-based dosimetry system can be made fast enough to achieve online 3D in vivo dose verification. Methods: The current dose verification system was sped up in two ways. First, a new software package was developed to perform all computations that are not dependent on portal image acquisition separately, thus removing the need for doing these calculations in real time. Second, the 3D dose reconstruction algorithm was sped up via a new, multithreaded implementation. Dose verification was implemented by comparing planned with reconstructed 3D dose distributions delivered to two regions in a patient: the target volume and the nontarget volume receiving at least 10 cGy. In both volumes, the mean dose is compared, while in the nontarget volume, the near-maximum dose (D2) is compared as well. The real-time dosimetry system was tested by irradiating an anthropomorphic phantom with three VMAT plans: a 6 MV head-and-neck treatment plan, a 10 MV rectum treatment plan, and a 10 MV prostate treatment plan. In all plans, two types of serious delivery errors were introduced. The functionality of automatically halting the linac was also implemented and tested. Results: The precomputation time per treatment was ∼180 s/treatment arc, depending on gantry angle resolution. The complete processing of a single portal frame, including dose verification, took 266 ± 11 ms on a dual octocore Intel Xeon E5-2630 CPU running at 2.40 GHz. The introduced delivery errors were detected after 5–10 s irradiation time. Conclusions: A prototype online 3D dose verification tool using portal imaging has been developed and successfully tested for two different kinds of gross delivery errors. Thus, online 3D dose verification has been technologically achieved.« less

  20. Dosimetric characterization and output verification for conical brachytherapy surface applicators. Part I. Electronic brachytherapy source

    PubMed Central

    Fulkerson, Regina K.; Micka, John A.; DeWerd, Larry A.

    2014-01-01

    Purpose: Historically, treatment of malignant surface lesions has been achieved with linear accelerator based electron beams or superficial x-ray beams. Recent developments in the field of brachytherapy now allow for the treatment of surface lesions with specialized conical applicators placed directly on the lesion. Applicators are available for use with high dose rate (HDR) 192Ir sources, as well as electronic brachytherapy sources. Part I of this paper will discuss the applicators used with electronic brachytherapy sources; Part II will discuss those used with HDR 192Ir sources. Although the use of these applicators has gained in popularity, the dosimetric characteristics including depth dose and surface dose distributions have not been independently verified. Additionally, there is no recognized method of output verification for quality assurance procedures with applicators like these. Existing dosimetry protocols available from the AAPM bookend the cross-over characteristics of a traditional brachytherapy source (as described by Task Group 43) being implemented as a low-energy superficial x-ray beam (as described by Task Group 61) as observed with the surface applicators of interest. Methods: This work aims to create a cohesive method of output verification that can be used to determine the dose at the treatment surface as part of a quality assurance/commissioning process for surface applicators used with HDR electronic brachytherapy sources (Part I) and 192Ir sources (Part II). Air-kerma rate measurements for the electronic brachytherapy sources were completed with an Attix Free-Air Chamber, as well as several models of small-volume ionization chambers to obtain an air-kerma rate at the treatment surface for each applicator. Correction factors were calculated using MCNP5 and EGSnrc Monte Carlo codes in order to determine an applicator-specific absorbed dose to water at the treatment surface from the measured air-kerma rate. Additionally, relative dose measurements of the surface dose distributions and characteristic depth dose curves were completed in-phantom. Results: Theoretical dose distributions and depth dose curves were generated for each applicator and agreed well with the measured values. A method of output verification was created that allows users to determine the applicator-specific dose to water at the treatment surface based on a measured air-kerma rate. Conclusions: The novel output verification methods described in this work will reduce uncertainties in dose delivery for treatments with these kinds of surface applicators, ultimately improving patient care. PMID:24506635

  1. Patient-specific IMRT verification using independent fluence-based dose calculation software: experimental benchmarking and initial clinical experience.

    PubMed

    Georg, Dietmar; Stock, Markus; Kroupa, Bernhard; Olofsson, Jörgen; Nyholm, Tufve; Ahnesjö, Anders; Karlsson, Mikael

    2007-08-21

    Experimental methods are commonly used for patient-specific intensity-modulated radiotherapy (IMRT) verification. The purpose of this study was to investigate the accuracy and performance of independent dose calculation software (denoted as 'MUV' (monitor unit verification)) for patient-specific quality assurance (QA). 52 patients receiving step-and-shoot IMRT were considered. IMRT plans were recalculated by the treatment planning systems (TPS) in a dedicated QA phantom, in which an experimental 1D and 2D verification (0.3 cm(3) ionization chamber; films) was performed. Additionally, an independent dose calculation was performed. The fluence-based algorithm of MUV accounts for collimator transmission, rounded leaf ends, tongue-and-groove effect, backscatter to the monitor chamber and scatter from the flattening filter. The dose calculation utilizes a pencil beam model based on a beam quality index. DICOM RT files from patient plans, exported from the TPS, were directly used as patient-specific input data in MUV. For composite IMRT plans, average deviations in the high dose region between ionization chamber measurements and point dose calculations performed with the TPS and MUV were 1.6 +/- 1.2% and 0.5 +/- 1.1% (1 S.D.). The dose deviations between MUV and TPS slightly depended on the distance from the isocentre position. For individual intensity-modulated beams (total 367), an average deviation of 1.1 +/- 2.9% was determined between calculations performed with the TPS and with MUV, with maximum deviations up to 14%. However, absolute dose deviations were mostly less than 3 cGy. Based on the current results, we aim to apply a confidence limit of 3% (with respect to the prescribed dose) or 6 cGy for routine IMRT verification. For off-axis points at distances larger than 5 cm and for low dose regions, we consider 5% dose deviation or 10 cGy acceptable. The time needed for an independent calculation compares very favourably with the net time for an experimental approach. The physical effects modelled in the dose calculation software MUV allow accurate dose calculations in individual verification points. Independent calculations may be used to replace experimental dose verification once the IMRT programme is mature.

  2. Tolerance limits and methodologies for IMRT measurement-based verification QA: Recommendations of AAPM Task Group No. 218.

    PubMed

    Miften, Moyed; Olch, Arthur; Mihailidis, Dimitris; Moran, Jean; Pawlicki, Todd; Molineu, Andrea; Li, Harold; Wijesooriya, Krishni; Shi, Jie; Xia, Ping; Papanikolaou, Nikos; Low, Daniel A

    2018-04-01

    Patient-specific IMRT QA measurements are important components of processes designed to identify discrepancies between calculated and delivered radiation doses. Discrepancy tolerance limits are neither well defined nor consistently applied across centers. The AAPM TG-218 report provides a comprehensive review aimed at improving the understanding and consistency of these processes as well as recommendations for methodologies and tolerance limits in patient-specific IMRT QA. The performance of the dose difference/distance-to-agreement (DTA) and γ dose distribution comparison metrics are investigated. Measurement methods are reviewed and followed by a discussion of the pros and cons of each. Methodologies for absolute dose verification are discussed and new IMRT QA verification tools are presented. Literature on the expected or achievable agreement between measurements and calculations for different types of planning and delivery systems are reviewed and analyzed. Tests of vendor implementations of the γ verification algorithm employing benchmark cases are presented. Operational shortcomings that can reduce the γ tool accuracy and subsequent effectiveness for IMRT QA are described. Practical considerations including spatial resolution, normalization, dose threshold, and data interpretation are discussed. Published data on IMRT QA and the clinical experience of the group members are used to develop guidelines and recommendations on tolerance and action limits for IMRT QA. Steps to check failed IMRT QA plans are outlined. Recommendations on delivery methods, data interpretation, dose normalization, the use of γ analysis routines and choice of tolerance limits for IMRT QA are made with focus on detecting differences between calculated and measured doses via the use of robust analysis methods and an in-depth understanding of IMRT verification metrics. The recommendations are intended to improve the IMRT QA process and establish consistent, and comparable IMRT QA criteria among institutions. © 2018 American Association of Physicists in Medicine.

  3. SU-F-T-269: Preliminary Experience of Kuwait Cancer Control Center (KCCC) On IMRT Treatment Planning and Pre-Treatment Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sethuraman, TKR; Sherif, M; Subramanian, N

    Purpose: The complexity of IMRT delivery requires pre-treatment quality assurance and plan verification. KCCC has implemented IMRT clinically in few sites and will extend to all sites. Recently, our Varian linear accelerator and Eclipse planning system were upgraded from Millennium 80 to 120 Multileaf Collimator (MLC) and from v8.6 to 11.0 respectively. Our preliminary experience on the pre-treatment quality assurance verification is discussed. Methods: Eight Breast, Three Prostate and One Hypopharynx cancer patients were planned with step and shoot IMRT. All breast cases were planned before the upgrade with 60% cases treated. The ICRU 83 recommendations were followed for themore » dose prescription and constraints to OAR for all cases. Point dose measurement was done with CIRS cylindrical phantom and PTW 0.125 cc ionization chamber. Measured dose was compared with calculated dose at the point of measurement. Map CHECK diode array phantom was used for the plan verification. Planned and measured doses were compared by applying gamma index of 3% (dose difference) / 3 mm DTA (average distance to agreement). For all cases, a plan is considered to be successful if more than 95% of the tested diodes pass the gamma test. A prostate case was chosen to compare the plan verification before and after the upgrade. Results: Point dose measurement results were in agreement with the calculated doses. The maximum deviation observed was 2.3%. The passing rate of average gamma index was measured higher than 97% for the plan verification of all cases. Similar result was observed for plan verification of the chosen prostate case before and after the upgrade. Conclusion: Our preliminary experience from the obtained results validates the accuracy of our QA process and provides confidence to extend IMRT to all sites in Kuwait.« less

  4. SU-F-T-440: The Feasibility Research of Checking Cervical Cancer IMRT Pre- Treatment Dose Verification by Automated Treatment Planning Verification System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, X; Yin, Y; Lin, X

    Purpose: To assess the preliminary feasibility of automated treatment planning verification system in cervical cancer IMRT pre-treatment dose verification. Methods: The study selected randomly clinical IMRT treatment planning data for twenty patients with cervical cancer, all IMRT plans were divided into 7 fields to meet the dosimetric goals using a commercial treatment planning system(PianncleVersion 9.2and the EclipseVersion 13.5). The plans were exported to the Mobius 3D (M3D)server percentage differences of volume of a region of interest (ROI) and dose calculation of target region and organ at risk were evaluated, in order to validate the accuracy automated treatment planning verification system.more » Results: The difference of volume for Pinnacle to M3D was less than results for Eclipse to M3D in ROI, the biggest difference was 0.22± 0.69%, 3.5±1.89% for Pinnacle and Eclipse respectively. M3D showed slightly better agreement in dose of target and organ at risk compared with TPS. But after recalculating plans by M3D, dose difference for Pinnacle was less than Eclipse on average, results were within 3%. Conclusion: The method of utilizing the automated treatment planning system to validate the accuracy of plans is convenientbut the scope of differences still need more clinical patient cases to determine. At present, it should be used as a secondary check tool to improve safety in the clinical treatment planning.« less

  5. A Quality Assurance Method that Utilizes 3D Dosimetry and Facilitates Clinical Interpretation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oldham, Mark, E-mail: mark.oldham@duke.edu; Thomas, Andrew; O'Daniel, Jennifer

    2012-10-01

    Purpose: To demonstrate a new three-dimensional (3D) quality assurance (QA) method that provides comprehensive dosimetry verification and facilitates evaluation of the clinical significance of QA data acquired in a phantom. Also to apply the method to investigate the dosimetric efficacy of base-of-skull (BOS) intensity-modulated radiotherapy (IMRT) treatment. Methods and Materials: Two types of IMRT QA verification plans were created for 6 patients who received BOS IMRT. The first plan enabled conventional 2D planar IMRT QA using the Varian portal dosimetry system. The second plan enabled 3D verification using an anthropomorphic head phantom. In the latter, the 3D dose distribution wasmore » measured using the DLOS/Presage dosimetry system (DLOS = Duke Large-field-of-view Optical-CT System, Presage Heuris Pharma, Skillman, NJ), which yielded isotropic 2-mm data throughout the treated volume. In a novel step, measured 3D dose distributions were transformed back to the patient's CT to enable calculation of dose-volume histograms (DVH) and dose overlays. Measured and planned patient DVHs were compared to investigate clinical significance. Results: Close agreement between measured and calculated dose distributions was observed for all 6 cases. For gamma criteria of 3%, 2 mm, the mean passing rate for portal dosimetry was 96.8% (range, 92.0%-98.9%), compared to 94.9% (range, 90.1%-98.9%) for 3D. There was no clear correlation between 2D and 3D passing rates. Planned and measured dose distributions were evaluated on the patient's anatomy, using DVH and dose overlays. Minor deviations were detected, and the clinical significance of these are presented and discussed. Conclusions: Two advantages accrue to the methods presented here. First, treatment accuracy is evaluated throughout the whole treated volume, yielding comprehensive verification. Second, the clinical significance of any deviations can be assessed through the generation of DVH curves and dose overlays on the patient's anatomy. The latter step represents an important development that advances the clinical relevance of complex treatment QA.« less

  6. Spot scanning proton therapy plan assessment: design and development of a dose verification application for use in routine clinical practice

    NASA Astrophysics Data System (ADS)

    Augustine, Kurt E.; Walsh, Timothy J.; Beltran, Chris J.; Stoker, Joshua B.; Mundy, Daniel W.; Parry, Mark D.; Bues, Martin; Fatyga, Mirek

    2016-04-01

    The use of radiation therapy for the treatment of cancer has been carried out clinically since the late 1800's. Early on however, it was discovered that a radiation dose sufficient to destroy cancer cells can also cause severe injury to surrounding healthy tissue. Radiation oncologists continually strive to find the perfect balance between a dose high enough to destroy the cancer and one that avoids damage to healthy organs. Spot scanning or "pencil beam" proton radiotherapy offers another option to improve on this. Unlike traditional photon therapy, proton beams stop in the target tissue, thus better sparing all organs beyond the targeted tumor. In addition, the beams are far narrower and thus can be more precisely "painted" onto the tumor, avoiding exposure to surrounding healthy tissue. To safely treat patients with proton beam radiotherapy, dose verification should be carried out for each plan prior to treatment. Proton dose verification systems are not currently commercially available so the Department of Radiation Oncology at the Mayo Clinic developed its own, called DOSeCHECK, which offers two distinct dose simulation methods: GPU-based Monte Carlo and CPU-based analytical. The three major components of the system include the web-based user interface, the Linux-based dose verification simulation engines, and the supporting services and components. The architecture integrates multiple applications, libraries, platforms, programming languages, and communication protocols and was successfully deployed in time for Mayo Clinic's first proton beam therapy patient. Having a simple, efficient application for dose verification greatly reduces staff workload and provides additional quality assurance, ultimately improving patient safety.

  7. New developments in EPID-based 3D dosimetry in The Netherlands Cancer Institute

    NASA Astrophysics Data System (ADS)

    Mijnheer, B.; Rozendaal, R.; Olaciregui-Ruiz, I.; González, P.; van Oers, R.; Mans, A.

    2017-05-01

    EPID-based offline 3D in vivo dosimetry is performed routinely in The Netherlands Cancer Institute for almost all RT treatments. The 3D dose distribution is reconstructed using the EPID primary dose in combination with a back-projection algorithm and compared with the planned dose distribution. Recently the method was adapted for real-time dose verification, performing 3D dose verification in less than 300 ms, which is faster than the current portal frame acquisition rate. In this way a possibility is created for halting the linac in case of large delivery errors. Furthermore, a new method for pre-treatment QA was developed in which the EPID primary dose behind a phantom or patient is predicted using the CT data of that phantom or patient in combination with in-air EPID measurements. This virtual EPID primary transit dose is then used to reconstruct the 3D dose distribution within the phantom or patient geometry using the same dose engine as applied offline. In order to assess the relevance of our clinically applied alert criteria, we investigated the sensitivity of our EPID-based 3D dose verification system to detect delivery errors in VMAT treatments. This was done through simulation by modifying patient treatment plans, as well as experimentally by performing EPID measurements during the irradiation of an Alderson phantom, both after deliberately introducing errors during VMAT delivery. In this presentation these new developments will be elucidated.

  8. WE-DE-201-11: Sensitivity and Specificity of Verification Methods Based On Total Reference Air Kerma (TRAK) Or On User Provided Dose Points for Graphically Planned Skin HDR Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damato, A; Devlin, P; Bhagwat, M

    Purpose: To investigate the sensitivity and specificity of a novel verification methodology for image-guided skin HDR brachytherapy plans using a TRAK-based reasonableness test, compared to a typical manual verification methodology. Methods: Two methodologies were used to flag treatment plans necessitating additional review due to a potential discrepancy of 3 mm between planned dose and clinical target in the skin. Manual verification was used to calculate the discrepancy between the average dose to points positioned at time of planning representative of the prescribed depth and the expected prescription dose. Automatic verification was used to calculate the discrepancy between TRAK of themore » clinical plan and its expected value, which was calculated using standard plans with varying curvatures, ranging from flat to cylindrically circumferential. A plan was flagged if a discrepancy >10% was observed. Sensitivity and specificity were calculated using as a criteria for true positive that >10% of plan dwells had a distance to prescription dose >1 mm different than prescription depth (3 mm + size of applicator). All HDR image-based skin brachytherapy plans treated at our institution in 2013 were analyzed. Results: 108 surface applicator plans to treat skin of the face, scalp, limbs, feet, hands or abdomen were analyzed. Median number of catheters was 19 (range, 4 to 71) and median number of dwells was 257 (range, 20 to 1100). Sensitivity/specificity were 57%/78% for manual and 70%/89% for automatic verification. Conclusion: A check based on expected TRAK value is feasible for irregularly shaped, image-guided skin HDR brachytherapy. This test yielded higher sensitivity and specificity than a test based on the identification of representative points, and can be implemented with a dedicated calculation code or with pre-calculated lookup tables of ideally shaped, uniform surface applicators.« less

  9. In vivo dose verification method in catheter based high dose rate brachytherapy.

    PubMed

    Jaselskė, Evelina; Adlienė, Diana; Rudžianskas, Viktoras; Urbonavičius, Benas Gabrielis; Inčiūra, Arturas

    2017-12-01

    In vivo dosimetry is a powerful tool for dose verification in radiotherapy. Its application in high dose rate (HDR) brachytherapy is usually limited to the estimation of gross errors, due to inability of the dosimetry system/ method to record non-uniform dose distribution in steep dose gradient fields close to the radioactive source. In vivo dose verification in interstitial catheter based HDR brachytherapy is crucial since the treatment is performed inserting radioactive source at the certain positions within the catheters that are pre-implanted into the tumour. We propose in vivo dose verification method for this type of brachytherapy treatment which is based on the comparison between experimentally measured and theoretical dose values calculated at well-defined locations corresponding dosemeter positions in the catheter. Dose measurements were performed using TLD 100-H rods (6 mm long, 1 mm diameter) inserted in a certain sequences into additionally pre-implanted dosimetry catheter. The adjustment of dosemeter positioning in the catheter was performed using reconstructed CT scans of patient with pre-implanted catheters. Doses to three Head&Neck and one Breast cancer patient have been measured during several randomly selected treatment fractions. It was found that the average experimental dose error varied from 4.02% to 12.93% during independent in vivo dosimetry control measurements for selected Head&Neck cancer patients and from 7.17% to 8.63% - for Breast cancer patient. Average experimental dose error was below the AAPM recommended margin of 20% and did not exceed the measurement uncertainty of 17.87% estimated for this type of dosemeters. Tendency of slightly increasing average dose error was observed in every following treatment fraction of the same patient. It was linked to the changes of theoretically estimated dosemeter positions due to the possible patient's organ movement between different treatment fractions, since catheter reconstruction was performed for the first treatment fraction only. These findings indicate potential for further average dose error reduction in catheter based brachytherapy by at least 2-3% in the case that catheter locations will be adjusted before each following treatment fraction, however it requires more detailed investigation. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  10. From prompt gamma distribution to dose: a novel approach combining an evolutionary algorithm and filtering based on Gaussian-powerlaw convolutions.

    PubMed

    Schumann, A; Priegnitz, M; Schoene, S; Enghardt, W; Rohling, H; Fiedler, F

    2016-10-07

    Range verification and dose monitoring in proton therapy is considered as highly desirable. Different methods have been developed worldwide, like particle therapy positron emission tomography (PT-PET) and prompt gamma imaging (PGI). In general, these methods allow for a verification of the proton range. However, quantification of the dose from these measurements remains challenging. For the first time, we present an approach for estimating the dose from prompt γ-ray emission profiles. It combines a filtering procedure based on Gaussian-powerlaw convolution with an evolutionary algorithm. By means of convolving depth dose profiles with an appropriate filter kernel, prompt γ-ray depth profiles are obtained. In order to reverse this step, the evolutionary algorithm is applied. The feasibility of this approach is demonstrated for a spread-out Bragg-peak in a water target.

  11. TU-C-BRE-11: 3D EPID-Based in Vivo Dosimetry: A Major Step Forward Towards Optimal Quality and Safety in Radiation Oncology Practice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mijnheer, B; Mans, A; Olaciregui-Ruiz, I

    Purpose: To develop a 3D in vivo dosimetry method that is able to substitute pre-treatment verification in an efficient way, and to terminate treatment delivery if the online measured 3D dose distribution deviates too much from the predicted dose distribution. Methods: A back-projection algorithm has been further developed and implemented to enable automatic 3D in vivo dose verification of IMRT/VMAT treatments using a-Si EPIDs. New software tools were clinically introduced to allow automated image acquisition, to periodically inspect the record-and-verify database, and to automatically run the EPID dosimetry software. The comparison of the EPID-reconstructed and planned dose distribution is donemore » offline to raise automatically alerts and to schedule actions when deviations are detected. Furthermore, a software package for online dose reconstruction was also developed. The RMS of the difference between the cumulative planned and reconstructed 3D dose distributions was used for triggering a halt of a linac. Results: The implementation of fully automated 3D EPID-based in vivo dosimetry was able to replace pre-treatment verification for more than 90% of the patient treatments. The process has been fully automated and integrated in our clinical workflow where over 3,500 IMRT/VMAT treatments are verified each year. By optimizing the dose reconstruction algorithm and the I/O performance, the delivered 3D dose distribution is verified in less than 200 ms per portal image, which includes the comparison between the reconstructed and planned dose distribution. In this way it was possible to generate a trigger that can stop the irradiation at less than 20 cGy after introducing large delivery errors. Conclusion: The automatic offline solution facilitated the large scale clinical implementation of 3D EPID-based in vivo dose verification of IMRT/VMAT treatments; the online approach has been successfully tested for various severe delivery errors.« less

  12. SU-F-T-494: A Multi-Institutional Study of Independent Dose Verification Using Golden Beam Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Itano, M; Yamazaki, T; Tachibana, R

    Purpose: In general, beam data of individual linac is measured for independent dose verification software program and the verification is performed as a secondary check. In this study, independent dose verification using golden beam data was compared to that using individual linac’s beam data. Methods: Six institutions were participated and three different beam data were prepared. The one was individual measured data (Original Beam Data, OBD) .The others were generated by all measurements from same linac model (Model-GBD) and all linac models (All-GBD). The three different beam data were registered to the independent verification software program for each institute. Subsequently,more » patient’s plans in eight sites (brain, head and neck, lung, esophagus, breast, abdomen, pelvis and bone) were analyzed using the verification program to compare doses calculated using the three different beam data. Results: 1116 plans were collected from six institutes. Compared to using the OBD, the results shows the variation using the Model-GBD based calculation and the All-GBD was 0.0 ± 0.3% and 0.0 ± 0.6%, respectively. The maximum variations were 1.2% and 2.3%, respectively. The plans with the variation over 1% shows the reference points were located away from the central axis with/without physical wedge. Conclusion: The confidence limit (2SD) using the Model-GBD and the All-GBD was within 0.6% and 1.2%, respectively. Thus, the use of golden beam data may be feasible for independent verification. In addition to it, the verification using golden beam data provide quality assurance of planning from the view of audit. This research is partially supported by Japan Agency for Medical Research and Development(AMED)« less

  13. Clinical Experience and Evaluation of Patient Treatment Verification With a Transit Dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ricketts, Kate, E-mail: k.ricketts@ucl.ac.uk; Department of Radiotherapy Physics, Royal Berkshire NHS Foundation Trust, Reading; Navarro, Clara

    2016-08-01

    Purpose: To prospectively evaluate a protocol for transit dosimetry on a patient population undergoing intensity modulated radiation therapy (IMRT) and to assess the issues in clinical implementation of electronic portal imaging devices (EPIDs) for treatment verification. Methods and Materials: Fifty-eight patients were enrolled in the study. Amorphous silicon EPIDs were calibrated for dose and used to acquire images of delivered fields. Measured EPID dose maps were back-projected using the planning computed tomographic (CT) images to calculate dose at prespecified points within the patient and compared with treatment planning system dose offline using point dose difference and point γ analysis. Themore » deviation of the results was used to inform future action levels. Results: Two hundred twenty-five transit images were analyzed, composed of breast, prostate, and head and neck IMRT fields. Patient measurements demonstrated the potential of the dose verification protocol to model dose well under complex conditions: 83.8% of all delivered beams achieved the initial set tolerance level of Δ{sub D} of 0 ± 5 cGy or %Δ{sub D} of 0% ± 5%. Importantly, the protocol was also sensitive to anatomic changes and spotted that 3 patients from 20 measured prostate patients had undergone anatomic change in comparison with the planning CT. Patient data suggested an EPID-reconstructed versus treatment planning system dose difference action level of 0% ± 7% for breast fields. Asymmetric action levels were more appropriate for inversed IMRT fields, using absolute dose difference (−2 ± 5 cGy) or summed field percentage dose difference (−6% ± 7%). Conclusions: The in vivo dose verification method was easy to use and simple to implement, and it could detect patient anatomic changes that impacted dose delivery. The system required no extra dose to the patient or treatment time delay and so could be used throughout the course of treatment to identify and limit systematic and random errors in dose delivery for patient groups.« less

  14. Physics-aspects of dose accuracy in high dose rate (HDR) brachytherapy: source dosimetry, treatment planning, equipment performance and in vivo verification techniques

    PubMed Central

    Bradley, David; Nisbet, Andrew

    2012-01-01

    This study provides a review of recent publications on the physics-aspects of dosimetric accuracy in high dose rate (HDR) brachytherapy. The discussion of accuracy is primarily concerned with uncertainties, but methods to improve dose conformation to the prescribed intended dose distribution are also noted. The main aim of the paper is to review current practical techniques and methods employed for HDR brachytherapy dosimetry. This includes work on the determination of dose rate fields around brachytherapy sources, the capability of treatment planning systems, the performance of treatment units and methods to verify dose delivery. This work highlights the determinants of accuracy in HDR dosimetry and treatment delivery and presents a selection of papers, focusing on articles from the last five years, to reflect active areas of research and development. Apart from Monte Carlo modelling of source dosimetry, there is no clear consensus on the optimum techniques to be used to assure dosimetric accuracy through all the processes involved in HDR brachytherapy treatment. With the exception of the ESTRO mailed dosimetry service, there is little dosimetric audit activity reported in the literature, when compared with external beam radiotherapy verification. PMID:23349649

  15. Physics-aspects of dose accuracy in high dose rate (HDR) brachytherapy: source dosimetry, treatment planning, equipment performance and in vivo verification techniques.

    PubMed

    Palmer, Antony; Bradley, David; Nisbet, Andrew

    2012-06-01

    This study provides a review of recent publications on the physics-aspects of dosimetric accuracy in high dose rate (HDR) brachytherapy. The discussion of accuracy is primarily concerned with uncertainties, but methods to improve dose conformation to the prescribed intended dose distribution are also noted. The main aim of the paper is to review current practical techniques and methods employed for HDR brachytherapy dosimetry. This includes work on the determination of dose rate fields around brachytherapy sources, the capability of treatment planning systems, the performance of treatment units and methods to verify dose delivery. This work highlights the determinants of accuracy in HDR dosimetry and treatment delivery and presents a selection of papers, focusing on articles from the last five years, to reflect active areas of research and development. Apart from Monte Carlo modelling of source dosimetry, there is no clear consensus on the optimum techniques to be used to assure dosimetric accuracy through all the processes involved in HDR brachytherapy treatment. With the exception of the ESTRO mailed dosimetry service, there is little dosimetric audit activity reported in the literature, when compared with external beam radiotherapy verification.

  16. TH-AB-201-01: A Feasibility Study of Independent Dose Verification for CyberKnife

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, A; Noda, T; Keduka, Y

    2016-06-15

    Purpose: CyberKnife irradiation is composed of tiny-size, multiple and intensity-modulated beams compared to conventional linacs. Few of the publications for Independent dose calculation verification for CyberKnife have been reported. In this study, we evaluated the feasibility of independent dose verification for CyberKnife treatment as Secondary check. Methods: The followings were measured: test plans using some static and single beams, clinical plans in a phantom and using patient’s CT. 75 patient plans were collected from several treatment sites of brain, lung, liver and bone. In the test plans and the phantom plans, a pinpoint ion-chamber measurement was performed to assess dosemore » deviation for a treatment planning system (TPS) and an independent verification program of Simple MU Analysis (SMU). In the clinical plans, dose deviation between the SMU and the TPS was performed. Results: In test plan, the dose deviations were 3.3±4.5%, and 4.1±4.4% for the TPS and the SMU, respectively. In the phantom measurements for the clinical plans, the dose deviations were −0.2±3.6% for the TPS and −2.3±4.8% for the SMU. In the clinical plans using the patient’s CT, the dose deviations were −3.0±2.1% (Mean±1SD). The systematic difference was partially derived from inverse square law and penumbra calculation. Conclusion: The independent dose calculation for CyberKnife shows −3.0±4.2% (Mean±2SD) and our study, the confidence limit was achieved within 5% of the tolerance level from AAPM task group 114 for non-IMRT treatment. Thus, it may be feasible to use independent dose calculation verification for CyberKnife treatment as the secondary check. This research is partially supported by Japan Agency for Medical Research and Development (AMED)« less

  17. SU-F-T-267: A Clarkson-Based Independent Dose Verification for the Helical Tomotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagata, H; Juntendo University, Hongo, Tokyo; Hongo, H

    2016-06-15

    Purpose: There have been few reports for independent dose verification for Tomotherapy. We evaluated the accuracy and the effectiveness of an independent dose verification system for the Tomotherapy. Methods: Simple MU Analysis (SMU, Triangle Product, Ishikawa, Japan) was used as the independent verification system and the system implemented a Clarkson-based dose calculation algorithm using CT image dataset. For dose calculation in the SMU, the Tomotherapy machine-specific dosimetric parameters (TMR, Scp, OAR and MLC transmission factor) were registered as the machine beam data. Dose calculation was performed after Tomotherapy sinogram from DICOM-RT plan information was converted to the information for MUmore » and MLC location at more segmented control points. The performance of the SMU was assessed by a point dose measurement in non-IMRT and IMRT plans (simple target and mock prostate plans). Subsequently, 30 patients’ treatment plans for prostate were compared. Results: From the comparison, dose differences between the SMU and the measurement were within 3% for all cases in non-IMRT plans. In the IMRT plan for the simple target, the differences (Average±1SD) were −0.70±1.10% (SMU vs. TPS), −0.40±0.10% (measurement vs. TPS) and −1.20±1.00% (measurement vs. SMU), respectively. For the mock prostate, the differences were −0.40±0.60% (SMU vs. TPS), −0.50±0.90% (measurement vs. TPS) and −0.90±0.60% (measurement vs. SMU), respectively. For patients’ plans, the difference was −0.50±2.10% (SMU vs. TPS). Conclusion: A Clarkson-based independent dose verification for the Tomotherapy can be clinically available as a secondary check with the similar tolerance level of AAPM Task group 114. This research is partially supported by Japan Agency for Medical Research and Development (AMED)« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherpak, Amanda

    Purpose: The Octavius 1000{sup SRS} detector was commissioned in December 2014 and is used routinely for verification of all SRS and SBRT plans. Results of verifications were analyzed to assess trends and limitations of the device and planning methods. Methods: Plans were delivered using a True Beam STx and results were evaluated using gamma analysis (95%, 3%/3mm) and absolute dose difference (5%). Verification results were analyzed based on several plan parameters including tumour volume, degree of modulation and prescribed dose. Results: During a 12 month period, a total of 124 patient plans were verified using the Octavius detector. Thirteen plansmore » failed the gamma criteria, while 7 plans failed based on the absolute dose difference. When binned according to degree of modulation, a significant correlation was found between MU/cGy and both mean dose difference (r=0.78, p<0.05) and gamma (r=−0.60, p<0.05). When data was binned according to tumour volume, the standard deviation of average gamma dropped from 2.2% – 3.7% for the volumes less than 30 cm{sup 3} to below 1% for volumes greater than 30 cm{sup 3}. Conclusions: The majority of plans and verification failures involved tumour volumes smaller than 30 cm{sup 3}. This was expected due to the nature of disease treated with SBRT and SRS techniques and did not increase rate of failure. Correlations found with MU/cGy indicate that as modulation increased, results deteriorated but not beyond the previously set thresholds.« less

  19. SU-E-T-490: Independent Three-Dimensional (3D) Dose Verification of VMAT/SBRT Using EPID and Cloud Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, A; Han, B; Bush, K

    Purpose: Dosimetric verification of VMAT/SBRT is currently performed on one or two planes in a phantom with either film or array detectors. A robust and easy-to-use 3D dosimetric tool has been sought since the advent of conformal radiation therapy. Here we present such a strategy for independent 3D VMAT/SBRT plan verification system by a combined use of EPID and cloud-based Monte Carlo (MC) dose calculation. Methods: The 3D dosimetric verification proceeds in two steps. First, the plan was delivered with a high resolution portable EPID mounted on the gantry, and the EPID-captured gantry-angle-resolved VMAT/SBRT field images were converted into fluencemore » by using the EPID pixel response function derived from MC simulations. The fluence was resampled and used as the input for an in-house developed Amazon cloud-based MC software to reconstruct the 3D dose distribution. The accuracy of the developed 3D dosimetric tool was assessed using a Delta4 phantom with various field sizes (square, circular, rectangular, and irregular MLC fields) and different patient cases. The method was applied to validate VMAT/SBRT plans using WFF and FFF photon beams (Varian TrueBeam STX). Results: It was found that the proposed method yielded results consistent with the Delta4 measurements. For points on the two detector planes, a good agreement within 1.5% were found for all the testing fields. Patient VMAT/SBRT plan studies revealed similar level of accuracy: an average γ-index passing rate of 99.2± 0.6% (3mm/3%), 97.4± 2.4% (2mm/2%), and 72.6± 8.4 % ( 1mm/1%). Conclusion: A valuable 3D dosimetric verification strategy has been developed for VMAT/SBRT plan validation. The technique provides a viable solution for a number of intractable dosimetry problems, such as small fields and plans with high dose gradient.« less

  20. Verification of intensity modulated radiation therapy beams using a tissue equivalent plastic scintillator dosimetry system

    NASA Astrophysics Data System (ADS)

    Petric, Martin Peter

    This thesis describes the development and implementation of a novel method for the dosimetric verification of intensity modulated radiation therapy (IMRT) fields with several advantages over current techniques. Through the use of a tissue equivalent plastic scintillator sheet viewed by a charge-coupled device (CCD) camera, this method provides a truly tissue equivalent dosimetry system capable of efficiently and accurately performing field-by-field verification of IMRT plans. This work was motivated by an initial study comparing two IMRT treatment planning systems. The clinical functionality of BrainLAB's BrainSCAN and Varian's Helios IMRT treatment planning systems were compared in terms of implementation and commissioning, dose optimization, and plan assessment. Implementation and commissioning revealed differences in the beam data required to characterize the beam prior to use with the BrainSCAN system requiring higher resolution data compared to Helios. This difference was found to impact on the ability of the systems to accurately calculate dose for highly modulated fields, with BrainSCAN being more successful than Helios. The dose optimization and plan assessment comparisons revealed that while both systems use considerably different optimization algorithms and user-control interfaces, they are both capable of producing substantially equivalent dose plans. The extensive use of dosimetric verification techniques in the IMRT treatment planning comparison study motivated the development and implementation of a novel IMRT dosimetric verification system. The system consists of a water-filled phantom with a tissue equivalent plastic scintillator sheet built into the top surface. Scintillation light is reflected by a plastic mirror within the phantom towards a viewing window where it is captured using a CCD camera. Optical photon spread is removed using a micro-louvre optical collimator and by deconvolving a glare kernel from the raw images. Characterization of this new dosimetric verification system indicates excellent dose response and spatial linearity, high spatial resolution, and good signal uniformity and reproducibility. Dosimetric results from square fields, dynamic wedged fields, and a 7-field head and neck IMRT treatment plan indicate good agreement with film dosimetry distributions. Efficiency analysis of the system reveals a 50% reduction in time requirements for field-by-field verification of a 7-field IMRT treatment plan compared to film dosimetry.

  1. Two years experience with quality assurance protocol for patient related Rapid Arc treatment plan verification using a two dimensional ionization chamber array

    PubMed Central

    2011-01-01

    Purpose To verify the dose distribution and number of monitor units (MU) for dynamic treatment techniques like volumetric modulated single arc radiation therapy - Rapid Arc - each patient treatment plan has to be verified prior to the first treatment. The purpose of this study was to develop a patient related treatment plan verification protocol using a two dimensional ionization chamber array (MatriXX, IBA, Schwarzenbruck, Germany). Method Measurements were done to determine the dependence between response of 2D ionization chamber array, beam direction, and field size. Also the reproducibility of the measurements was checked. For the patient related verifications the original patient Rapid Arc treatment plan was projected on CT dataset of the MatriXX and the dose distribution was calculated. After irradiation of the Rapid Arc verification plans measured and calculated 2D dose distributions were compared using the gamma evaluation method implemented in the measuring software OmniPro (version 1.5, IBA, Schwarzenbruck, Germany). Results The dependence between response of 2D ionization chamber array, field size and beam direction has shown a passing rate of 99% for field sizes between 7 cm × 7 cm and 24 cm × 24 cm for measurements of single arc. For smaller and larger field sizes than 7 cm × 7 cm and 24 cm × 24 cm the passing rate was less than 99%. The reproducibility was within a passing rate of 99% and 100%. The accuracy of the whole process including the uncertainty of the measuring system, treatment planning system, linear accelerator and isocentric laser system in the treatment room was acceptable for treatment plan verification using gamma criteria of 3% and 3 mm, 2D global gamma index. Conclusion It was possible to verify the 2D dose distribution and MU of Rapid Arc treatment plans using the MatriXX. The use of the MatriXX for Rapid Arc treatment plan verification in clinical routine is reasonable. The passing rate should be 99% than the verification protocol is able to detect clinically significant errors. PMID:21342509

  2. Dosimetric verification for intensity-modulated arc therapy plans by use of 2D diode array, radiochromic film and radiosensitive polymer gel.

    PubMed

    Hayashi, Naoki; Malmin, Ryan L; Watanabe, Yoichi

    2014-05-01

    Several tools are used for the dosimetric verification of intensity-modulated arc therapy (IMAT) treatment delivery. However, limited information is available for composite on-line evaluation of these tools. The purpose of this study was to evaluate the dosimetric verification of IMAT treatment plans using a 2D diode array detector (2D array), radiochromic film (RCF) and radiosensitive polymer gel dosimeter (RPGD). The specific verification plans were created for IMAT for two prostate cancer patients by use of the clinical treatment plans. Accordingly, the IMAT deliveries were performed with the 2D array on a gantry-mounting device, RCF in a cylindrical acrylic phantom, and the RPGD in two cylindrical phantoms. After the irradiation, the planar dose distributions from the 2D array and the RCFs, and the 3D dose distributions from the RPGD measurements were compared with the calculated dose distributions using the gamma analysis method (3% dose difference and 3-mm distance-to-agreement criterion), dose-dependent dose difference diagrams, dose difference histograms, and isodose distributions. The gamma passing rates of 2D array, RCFs and RPGD for one patient were 99.5%, 96.5% and 93.7%, respectively; the corresponding values for the second patient were 97.5%, 92.6% and 92.9%. Mean percentage differences between the RPGD measured and calculated doses in 3D volumes containing PTVs were -0.29 ± 7.1% and 0.97 ± 7.6% for the two patients, respectively. In conclusion, IMAT prostate plans can be delivered with high accuracy, although the 3D measurements indicated less satisfactory agreement with the treatment plans, mainly due to the dosimetric inaccuracy in low-dose regions of the RPGD measurements.

  3. Time dependent pre-treatment EPID dosimetry for standard and FFF VMAT.

    PubMed

    Podesta, Mark; Nijsten, Sebastiaan M J J G; Persoon, Lucas C G G; Scheib, Stefan G; Baltes, Christof; Verhaegen, Frank

    2014-08-21

    Methods to calibrate Megavoltage electronic portal imaging devices (EPIDs) for dosimetry have been previously documented for dynamic treatments such as intensity modulated radiotherapy (IMRT) using flattened beams and typically using integrated fields. While these methods verify the accumulated field shape and dose, the dose rate and differential fields remain unverified. The aim of this work is to provide an accurate calibration model for time dependent pre-treatment dose verification using amorphous silicon (a-Si) EPIDs in volumetric modulated arc therapy (VMAT) for both flattened and flattening filter free (FFF) beams. A general calibration model was created using a Varian TrueBeam accelerator, equipped with an aS1000 EPID, for each photon spectrum 6 MV, 10 MV, 6 MV-FFF, 10 MV-FFF. As planned VMAT treatments use control points (CPs) for optimization, measured images are separated into corresponding time intervals for direct comparison with predictions. The accuracy of the calibration model was determined for a range of treatment conditions. Measured and predicted CP dose images were compared using a time dependent gamma evaluation using criteria (3%, 3 mm, 0.5 sec). Time dependent pre-treatment dose verification is possible without an additional measurement device or phantom, using the on-board EPID. Sufficient data is present in trajectory log files and EPID frame headers to reliably synchronize and resample portal images. For the VMAT plans tested, significantly more deviation is observed when analysed in a time dependent manner for FFF and non-FFF plans than when analysed using only the integrated field. We show EPID-based pre-treatment dose verification can be performed on a CP basis for VMAT plans. This model can measure pre-treatment doses for both flattened and unflattened beams in a time dependent manner which highlights deviations that are missed in integrated field verifications.

  4. A back-projection algorithm in the presence of an extra attenuating medium: towards EPID dosimetry for the MR-Linac

    NASA Astrophysics Data System (ADS)

    Torres-Xirau, I.; Olaciregui-Ruiz, I.; Rozendaal, R. A.; González, P.; Mijnheer, B. J.; Sonke, J.-J.; van der Heide, U. A.; Mans, A.

    2017-08-01

    In external beam radiotherapy, electronic portal imaging devices (EPIDs) are frequently used for pre-treatment and for in vivo dose verification. Currently, various MR-guided radiotherapy systems are being developed and clinically implemented. Independent dosimetric verification is highly desirable. For this purpose we adapted our EPID-based dose verification system for use with the MR-Linac combination developed by Elekta in cooperation with UMC Utrecht and Philips. In this study we extended our back-projection method to cope with the presence of an extra attenuating medium between the patient and the EPID. Experiments were performed at a conventional linac, using an aluminum mock-up of the MRI scanner housing between the phantom and the EPID. For a 10 cm square field, the attenuation by the mock-up was 72%, while 16% of the remaining EPID signal resulted from scattered radiation. 58 IMRT fields were delivered to a 20 cm slab phantom with and without the mock-up. EPID reconstructed dose distributions were compared to planned dose distributions using the γ -evaluation method (global, 3%, 3 mm). In our adapted back-projection algorithm the averaged {γmean} was 0.27+/- 0.06 , while in the conventional it was 0.28+/- 0.06 . Dose profiles of several square fields reconstructed with our adapted algorithm showed excellent agreement when compared to TPS.

  5. Online 3D EPID-based dose verification: Proof of concept.

    PubMed

    Spreeuw, Hanno; Rozendaal, Roel; Olaciregui-Ruiz, Igor; González, Patrick; Mans, Anton; Mijnheer, Ben; van Herk, Marcel

    2016-07-01

    Delivery errors during radiotherapy may lead to medical harm and reduced life expectancy for patients. Such serious incidents can be avoided by performing dose verification online, i.e., while the patient is being irradiated, creating the possibility of halting the linac in case of a large overdosage or underdosage. The offline EPID-based 3D in vivo dosimetry system clinically employed at our institute is in principle suited for online treatment verification, provided the system is able to complete 3D dose reconstruction and verification within 420 ms, the present acquisition time of a single EPID frame. It is the aim of this study to show that our EPID-based dosimetry system can be made fast enough to achieve online 3D in vivo dose verification. The current dose verification system was sped up in two ways. First, a new software package was developed to perform all computations that are not dependent on portal image acquisition separately, thus removing the need for doing these calculations in real time. Second, the 3D dose reconstruction algorithm was sped up via a new, multithreaded implementation. Dose verification was implemented by comparing planned with reconstructed 3D dose distributions delivered to two regions in a patient: the target volume and the nontarget volume receiving at least 10 cGy. In both volumes, the mean dose is compared, while in the nontarget volume, the near-maximum dose (D2) is compared as well. The real-time dosimetry system was tested by irradiating an anthropomorphic phantom with three VMAT plans: a 6 MV head-and-neck treatment plan, a 10 MV rectum treatment plan, and a 10 MV prostate treatment plan. In all plans, two types of serious delivery errors were introduced. The functionality of automatically halting the linac was also implemented and tested. The precomputation time per treatment was ∼180 s/treatment arc, depending on gantry angle resolution. The complete processing of a single portal frame, including dose verification, took 266 ± 11 ms on a dual octocore Intel Xeon E5-2630 CPU running at 2.40 GHz. The introduced delivery errors were detected after 5-10 s irradiation time. A prototype online 3D dose verification tool using portal imaging has been developed and successfully tested for two different kinds of gross delivery errors. Thus, online 3D dose verification has been technologically achieved.

  6. Technical Note: Range verification system using edge detection method for a scintillator and a CCD camera system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saotome, Naoya, E-mail: naosao@nirs.go.jp; Furukawa, Takuji; Hara, Yousuke

    Purpose: Three-dimensional irradiation with a scanned carbon-ion beam has been performed from 2011 at the authors’ facility. The authors have developed the rotating-gantry equipped with the scanning irradiation system. The number of combinations of beam properties to measure for the commissioning is more than 7200, i.e., 201 energy steps, 3 intensities, and 12 gantry angles. To compress the commissioning time, quick and simple range verification system is required. In this work, the authors develop a quick range verification system using scintillator and charge-coupled device (CCD) camera and estimate the accuracy of the range verification. Methods: A cylindrical plastic scintillator blockmore » and a CCD camera were installed on the black box. The optical spatial resolution of the system is 0.2 mm/pixel. The camera control system was connected and communicates with the measurement system that is part of the scanning system. The range was determined by image processing. Reference range for each energy beam was determined by a difference of Gaussian (DOG) method and the 80% of distal dose of the depth-dose distribution that were measured by a large parallel-plate ionization chamber. The authors compared a threshold method and a DOG method. Results: The authors found that the edge detection method (i.e., the DOG method) is best for the range detection. The accuracy of range detection using this system is within 0.2 mm, and the reproducibility of the same energy measurement is within 0.1 mm without setup error. Conclusions: The results of this study demonstrate that the authors’ range check system is capable of quick and easy range verification with sufficient accuracy.« less

  7. The Use of an On-Board MV Imager for Plan Verification of Intensity Modulated Radiation Therapy and Volumetrically Modulated Arc Therapy

    NASA Astrophysics Data System (ADS)

    Walker, Justin A.

    The introduction of complex treatment modalities such as IMRT and VMAT has led to the development of many devices for plan verification. One such innovation in this field is the repurposing of the portal imager to not only be used for tumor localization but for recording dose distributions as well. Several advantages make portal imagers attractive options for this purpose. Very high spatial resolution allows for better verification of small field plans than may be possible with commercially available devices. Because the portal imager is attached to the gantry set up is simpler than any other method available, requiring no additional accessories, and often can be accomplished from outside the treatment room. Dose images capture by the portal imager are in digital format make permanent records that can be analyzed immediately. Portal imaging suffers from a few limitations however that must be overcome. Images captured contain dose information and a calibration must be maintained for image to dose conversion. Dose images can only be taken perpendicular to the treatment beam allowing only for planar dose comparison. Planar dose files are themself difficult to obtain for VMAT treatments and an in-house script had to be developed to create such a file before analysis could be performed. Using the methods described in this study, excellent agreement between planar dose files generated and dose images taken were found. The average agreement for IMRT field analyzed being greater than 97% for non-normalized images at 3mm and 3%. Comparable agreement for VAMT plans was found as well with the average agreement being greater than 98%.

  8. Anatomy-corresponding method of IMRT verification.

    PubMed

    Winiecki, Janusz; Zurawski, Zbigniew; Drzewiecka, Barbara; Slosarek, Krzysztof

    2010-01-01

    During a proper execution of dMLC plans, there occurs an undesired but frequent effect of the dose locally accumulated by tissue being significantly different than expected. The conventional dosimetric QA procedures give only a partial picture of the quality of IMRT treatment, because their solely quantitative outcomes usually correspond more to the total area of the detector than the actually irradiated volume. The aim of this investigation was to develop a procedure of dynamic plans verification which would be able to visualize the potential anomalies of dose distribution and specify which tissue they exactly refer to. The paper presents a method discovered and clinically examined in our department. It is based on a Gamma Evaluation concept and allows accurate localization of deviations between predicted and acquired dose distributions, which were registered by portal as well as film dosimetry. All the calculations were performed on the self-made software GammaEval, the γ-images (2-dimensional distribution of γ-values) and γ-histograms were created as quantitative outcomes of verification. Over 150 maps of dose distribution have been analyzed and the cross-examination of the gamma images with DRRs was performed. It seems, that the complex monitoring of treatment would be possible owing to the images obtained as a cross-examination of γ-images and corresponding DRRs.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klüter, Sebastian, E-mail: sebastian.klueter@med.uni-heidelberg.de; Schubert, Kai; Lissner, Steffen

    Purpose: The dosimetric verification of treatment plans in helical tomotherapy usually is carried out via verification measurements. In this study, a method for independent dose calculation of tomotherapy treatment plans is presented, that uses a conventional treatment planning system with a pencil kernel dose calculation algorithm for generation of verification dose distributions based on patient CT data. Methods: A pencil beam algorithm that directly uses measured beam data was configured for dose calculation for a tomotherapy machine. Tomotherapy treatment plans were converted into a format readable by an in-house treatment planning system by assigning each projection to one static treatmentmore » field and shifting the calculation isocenter for each field in order to account for the couch movement. The modulation of the fluence for each projection is read out of the delivery sinogram, and with the kernel-based dose calculation, this information can directly be used for dose calculation without the need for decomposition of the sinogram. The sinogram values are only corrected for leaf output and leaf latency. Using the converted treatment plans, dose was recalculated with the independent treatment planning system. Multiple treatment plans ranging from simple static fields to real patient treatment plans were calculated using the new approach and either compared to actual measurements or the 3D dose distribution calculated by the tomotherapy treatment planning system. In addition, dose–volume histograms were calculated for the patient plans. Results: Except for minor deviations at the maximum field size, the pencil beam dose calculation for static beams agreed with measurements in a water tank within 2%/2 mm. A mean deviation to point dose measurements in the cheese phantom of 0.89% ± 0.81% was found for unmodulated helical plans. A mean voxel-based deviation of −0.67% ± 1.11% for all voxels in the respective high dose region (dose values >80%), and a mean local voxel-based deviation of −2.41% ± 0.75% for all voxels with dose values >20% were found for 11 modulated plans in the cheese phantom. Averaged over nine patient plans, the deviations amounted to −0.14% ± 1.97% (voxels >80%) and −0.95% ± 2.27% (>20%, local deviations). For a lung case, mean voxel-based deviations of more than 4% were found, while for all other patient plans, all mean voxel-based deviations were within ±2.4%. Conclusions: The presented method is suitable for independent dose calculation for helical tomotherapy within the known limitations of the pencil beam algorithm. It can serve as verification of the primary dose calculation and thereby reduce the need for time-consuming measurements. By using the patient anatomy and generating full 3D dose data, and combined with measurements of additional machine parameters, it can substantially contribute to overall patient safety.« less

  10. Proton Therapy Verification with PET Imaging

    PubMed Central

    Zhu, Xuping; Fakhri, Georges El

    2013-01-01

    Proton therapy is very sensitive to uncertainties introduced during treatment planning and dose delivery. PET imaging of proton induced positron emitter distributions is the only practical approach for in vivo, in situ verification of proton therapy. This article reviews the current status of proton therapy verification with PET imaging. The different data detecting systems (in-beam, in-room and off-line PET), calculation methods for the prediction of proton induced PET activity distributions, and approaches for data evaluation are discussed. PMID:24312147

  11. SU-E-T-48: A Multi-Institutional Study of Independent Dose Verification for Conventional, SRS and SBRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, R; Kamima, T; Tachibana, H

    2015-06-15

    Purpose: To show the results of a multi-institutional study of the independent dose verification for conventional, Stereotactic radiosurgery and body radiotherapy (SRS and SBRT) plans based on the action level of AAPM TG-114. Methods: This study was performed at 12 institutions in Japan. To eliminate the bias of independent dose verification program (Indp), all of the institutions used the same CT-based independent dose verification software (Simple MU Analysis, Triangle Products, JP) with the Clarkson-based algorithm. Eclipse (AAA, PBC), Pinnacle{sup 3} (Adaptive Convolve) and Xio (Superposition) were used as treatment planning system (TPS). The confidence limits (CL, Mean±2SD) for 18 sitesmore » (head, breast, lung, pelvis, etc.) were evaluated in comparison in dose between the TPS and the Indp. Results: A retrospective analysis of 6352 treatment fields was conducted. The CLs for conventional, SRS and SBRT were 1.0±3.7 %, 2.0±2.5 % and 6.2±4.4 %, respectively. In conventional plans, most of the sites showed within 5 % of TG-114 action level. However, there were the systematic difference (4.0±4.0 % and 2.5±5.8 % for breast and lung, respectively). In SRS plans, our results showed good agreement compared to the action level. In SBRT plans, the discrepancy between the Indp was variable depending on dose calculation algorithms of TPS. Conclusion: The impact of dose calculation algorithms for the TPS and the Indp affects the action level. It is effective to set the site-specific tolerances, especially for the site where inhomogeneous correction can affect dose distribution strongly.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menegotti, L.; Delana, A.; Martignano, A.

    Film dosimetry is an attractive tool for dose distribution verification in intensity modulated radiotherapy (IMRT). A critical aspect of radiochromic film dosimetry is the scanner used for the readout of the film: the output needs to be calibrated in dose response and corrected for pixel value and spatial dependent nonuniformity caused by light scattering; these procedures can take a long time. A method for a fast and accurate calibration and uniformity correction for radiochromic film dosimetry is presented: a single film exposure is used to do both calibration and correction. Gafchromic EBT films were read with two flatbed charge coupledmore » device scanners (Epson V750 and 1680Pro). The accuracy of the method is investigated with specific dose patterns and an IMRT beam. The comparisons with a two-dimensional array of ionization chambers using a 18x18 cm{sup 2} open field and an inverse pyramid dose pattern show an increment in the percentage of points which pass the gamma analysis (tolerance parameters of 3% and 3 mm), passing from 55% and 64% for the 1680Pro and V750 scanners, respectively, to 94% for both scanners for the 18x18 open field, and from 76% and 75% to 91% for the inverse pyramid pattern. Application to an IMRT beam also shows better gamma index results, passing from 88% and 86% for the two scanners, respectively, to 94% for both. The number of points and dose range considered for correction and calibration appears to be appropriate for use in IMRT verification. The method showed to be fast and to correct properly the nonuniformity and has been adopted for routine clinical IMRT dose verification.« less

  13. Technical Note: Range verification system using edge detection method for a scintillator and a CCD camera system.

    PubMed

    Saotome, Naoya; Furukawa, Takuji; Hara, Yousuke; Mizushima, Kota; Tansho, Ryohei; Saraya, Yuichi; Shirai, Toshiyuki; Noda, Koji

    2016-04-01

    Three-dimensional irradiation with a scanned carbon-ion beam has been performed from 2011 at the authors' facility. The authors have developed the rotating-gantry equipped with the scanning irradiation system. The number of combinations of beam properties to measure for the commissioning is more than 7200, i.e., 201 energy steps, 3 intensities, and 12 gantry angles. To compress the commissioning time, quick and simple range verification system is required. In this work, the authors develop a quick range verification system using scintillator and charge-coupled device (CCD) camera and estimate the accuracy of the range verification. A cylindrical plastic scintillator block and a CCD camera were installed on the black box. The optical spatial resolution of the system is 0.2 mm/pixel. The camera control system was connected and communicates with the measurement system that is part of the scanning system. The range was determined by image processing. Reference range for each energy beam was determined by a difference of Gaussian (DOG) method and the 80% of distal dose of the depth-dose distribution that were measured by a large parallel-plate ionization chamber. The authors compared a threshold method and a DOG method. The authors found that the edge detection method (i.e., the DOG method) is best for the range detection. The accuracy of range detection using this system is within 0.2 mm, and the reproducibility of the same energy measurement is within 0.1 mm without setup error. The results of this study demonstrate that the authors' range check system is capable of quick and easy range verification with sufficient accuracy.

  14. Development of an iterative reconstruction method to overcome 2D detector low resolution limitations in MLC leaf position error detection for 3D dose verification in IMRT.

    PubMed

    Visser, R; Godart, J; Wauben, D J L; Langendijk, J A; Van't Veld, A A; Korevaar, E W

    2016-05-21

    The objective of this study was to introduce a new iterative method to reconstruct multi leaf collimator (MLC) positions based on low resolution ionization detector array measurements and to evaluate its error detection performance. The iterative reconstruction method consists of a fluence model, a detector model and an optimizer. Expected detector response was calculated using a radiotherapy treatment plan in combination with the fluence model and detector model. MLC leaf positions were reconstructed by minimizing differences between expected and measured detector response. The iterative reconstruction method was evaluated for an Elekta SLi with 10.0 mm MLC leafs in combination with the COMPASS system and the MatriXX Evolution (IBA Dosimetry) detector with a spacing of 7.62 mm. The detector was positioned in such a way that each leaf pair of the MLC was aligned with one row of ionization chambers. Known leaf displacements were introduced in various field geometries ranging from  -10.0 mm to 10.0 mm. Error detection performance was tested for MLC leaf position dependency relative to the detector position, gantry angle dependency, monitor unit dependency, and for ten clinical intensity modulated radiotherapy (IMRT) treatment beams. For one clinical head and neck IMRT treatment beam, influence of the iterative reconstruction method on existing 3D dose reconstruction artifacts was evaluated. The described iterative reconstruction method was capable of individual MLC leaf position reconstruction with millimeter accuracy, independent of the relative detector position within the range of clinically applied MU's for IMRT. Dose reconstruction artifacts in a clinical IMRT treatment beam were considerably reduced as compared to the current dose verification procedure. The iterative reconstruction method allows high accuracy 3D dose verification by including actual MLC leaf positions reconstructed from low resolution 2D measurements.

  15. Improving target coverage and organ-at-risk sparing in intensity-modulated radiotherapy for cervical oesophageal cancer using a simple optimisation method.

    PubMed

    Lu, Jia-Yang; Cheung, Michael Lok-Man; Huang, Bao-Tian; Wu, Li-Li; Xie, Wen-Jia; Chen, Zhi-Jian; Li, De-Rui; Xie, Liang-Xi

    2015-01-01

    To assess the performance of a simple optimisation method for improving target coverage and organ-at-risk (OAR) sparing in intensity-modulated radiotherapy (IMRT) for cervical oesophageal cancer. For 20 selected patients, clinically acceptable original IMRT plans (Original plans) were created, and two optimisation methods were adopted to improve the plans: 1) a base dose function (BDF)-based method, in which the treatment plans were re-optimised based on the original plans, and 2) a dose-controlling structure (DCS)-based method, in which the original plans were re-optimised by assigning additional constraints for hot and cold spots. The Original, BDF-based and DCS-based plans were compared with regard to target dose homogeneity, conformity, OAR sparing, planning time and monitor units (MUs). Dosimetric verifications were performed and delivery times were recorded for the BDF-based and DCS-based plans. The BDF-based plans provided significantly superior dose homogeneity and conformity compared with both the DCS-based and Original plans. The BDF-based method further reduced the doses delivered to the OARs by approximately 1-3%. The re-optimisation time was reduced by approximately 28%, but the MUs and delivery time were slightly increased. All verification tests were passed and no significant differences were found. The BDF-based method for the optimisation of IMRT for cervical oesophageal cancer can achieve significantly better dose distributions with better planning efficiency at the expense of slightly more MUs.

  16. SU-E-T-586: Optimal Determination of Tolerance Level for Radiation Dose Delivery Verification in An in Vivo Dosimetry System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y; Souri, S; Gill, G

    Purpose: To statistically determine the optimal tolerance level in the verification of delivery dose compared to the planned dose in an in vivo dosimetry system in radiotherapy. Methods: The LANDAUER MicroSTARii dosimetry system with screened nanoDots (optically stimulated luminescence dosimeters) was used for in vivo dose measurements. Ideally, the measured dose should match with the planned dose and falls within a normal distribution. Any deviation from the normal distribution may be redeemed as a mismatch, therefore a potential sign of the dose misadministration. Randomly mis-positioned nanoDots can yield a continuum background distribution. A percentage difference of the measured dose tomore » its corresponding planned dose (ΔD) can be used to analyze combined data sets for different patients. A model of a Gaussian plus a flat function was used to fit the ΔD distribution. Results: Total 434 nanoDot measurements for breast cancer patients were collected across a period of three months. The fit yields a Gaussian mean of 2.9% and a standard deviation (SD) of 5.3%. The observed shift of the mean from zero is attributed to the machine output bias and calibration of the dosimetry system. A pass interval of −2SD to +2SD was applied and a mismatch background was estimated to be 4.8%. With such a tolerance level, one can expect that 99.99% of patients should pass the verification and at most 0.011% might have a potential dose misadministration that may not be detected after 3 times of repeated measurements. After implementation, a number of new start breast cancer patients were monitored and the measured pass rate is consistent with the model prediction. Conclusion: It is feasible to implement an optimal tolerance level in order to maintain a low limit of potential dose misadministration while still to keep a relatively high pass rate in radiotherapy delivery verification.« less

  17. Dosimetric characterization with 62 MeV protons of a silicon-segmented detector for 2D dose verifications in radiotherapy

    NASA Astrophysics Data System (ADS)

    Talamonti, C.; Bucciolini, M.; Marrazzo, L.; Menichelli, D.; Bruzzi, M.; Cirrone, G. A. P.; Cuttone, G.; LoJacono, P.

    2008-10-01

    Due to the features of the modern radiotherapy techniques, namely intensity modulated radiation therapy and proton therapy, where high spatial dose gradients are often present, detectors to be employed for 2D dose verifications have to satisfy very narrow requirements. In particular they have to show high spatial resolution. In the framework of the European Integrated Project—Methods and Advanced Equipment for Simulation and Treatment in Radio-Oncology (MAESTRO, no. LSHC-CT-2004-503564), a dosimetric detector adequate for 2D pre-treatment dose verifications was developed. It is a modular detector, based on a monolithic silicon-segmented sensor, with an n-type implantation on an epitaxial p-type layer. Each pixel element is 2×2 mm 2 and the distance center-to-center is 3 mm. The sensor is composed of 21×21 pixels. In this paper, we report the dosimetric characterization of the system with a proton beam. The sensor was irradiated with 62 MeV protons for clinical treatments at INFN-Laboratori Nazionali del Sud (LNS) Catania. The studied parameters were repeatability of a same pixel, response linearity versus absorbed dose, and dose rate and dependence on field size. The obtained results are promising since the performances are within the project specifications.

  18. A preliminary study on the use of FX-Glycine gel and an in-house optical cone beam CT readout for IMRT and RapidArc verification

    NASA Astrophysics Data System (ADS)

    Ravindran, Paul B.; Ebenezer, Suman Babu S.; Winfred, Michael Raj; Amalan, S.

    2017-05-01

    The radiochromic FX gel with Optical CT readout has been investigated by several authors and has shown promising results for 3D dosimetry. One of the applications of the gel dosimeters is their use in 3D dose verification for IMRT and RapidArc quality assurance. Though polymer gel has been used successfully for clinical dose verification, the use of FX gel for clinical dose verification with optical cone beam CT needs further validation. In this work, we have used FX gel and an in- house optical readout system for gamma analysis between the dose matrices of measured dose distribution and a treatment planning system (TPS) calculated dose distribution for a few test cases.

  19. Experimental verification of a CT-based Monte Carlo dose-calculation method in heterogeneous phantoms.

    PubMed

    Wang, L; Lovelock, M; Chui, C S

    1999-12-01

    To further validate the Monte Carlo dose-calculation method [Med. Phys. 25, 867-878 (1998)] developed at the Memorial Sloan-Kettering Cancer Center, we have performed experimental verification in various inhomogeneous phantoms. The phantom geometries included simple layered slabs, a simulated bone column, a simulated missing-tissue hemisphere, and an anthropomorphic head geometry (Alderson Rando Phantom). The densities of the inhomogeneity range from 0.14 to 1.86 g/cm3, simulating both clinically relevant lunglike and bonelike materials. The data are reported as central axis depth doses, dose profiles, dose values at points of interest, such as points at the interface of two different media and in the "nasopharynx" region of the Rando head. The dosimeters used in the measurement included dosimetry film, TLD chips, and rods. The measured data were compared to that of Monte Carlo calculations for the same geometrical configurations. In the case of the Rando head phantom, a CT scan of the phantom was used to define the calculation geometry and to locate the points of interest. The agreement between the calculation and measurement is generally within 2.5%. This work validates the accuracy of the Monte Carlo method. While Monte Carlo, at present, is still too slow for routine treatment planning, it can be used as a benchmark against which other dose calculation methods can be compared.

  20. Clinical Experience and Evaluation of Patient Treatment Verification With a Transit Dosimeter.

    PubMed

    Ricketts, Kate; Navarro, Clara; Lane, Katherine; Blowfield, Claire; Cotten, Gary; Tomala, Dee; Lord, Christine; Jones, Joanne; Adeyemi, Abiodun

    2016-08-01

    To prospectively evaluate a protocol for transit dosimetry on a patient population undergoing intensity modulated radiation therapy (IMRT) and to assess the issues in clinical implementation of electronic portal imaging devices (EPIDs) for treatment verification. Fifty-eight patients were enrolled in the study. Amorphous silicon EPIDs were calibrated for dose and used to acquire images of delivered fields. Measured EPID dose maps were back-projected using the planning computed tomographic (CT) images to calculate dose at prespecified points within the patient and compared with treatment planning system dose offline using point dose difference and point γ analysis. The deviation of the results was used to inform future action levels. Two hundred twenty-five transit images were analyzed, composed of breast, prostate, and head and neck IMRT fields. Patient measurements demonstrated the potential of the dose verification protocol to model dose well under complex conditions: 83.8% of all delivered beams achieved the initial set tolerance level of ΔD of 0 ± 5 cGy or %ΔD of 0% ± 5%. Importantly, the protocol was also sensitive to anatomic changes and spotted that 3 patients from 20 measured prostate patients had undergone anatomic change in comparison with the planning CT. Patient data suggested an EPID-reconstructed versus treatment planning system dose difference action level of 0% ± 7% for breast fields. Asymmetric action levels were more appropriate for inversed IMRT fields, using absolute dose difference (-2 ± 5 cGy) or summed field percentage dose difference (-6% ± 7%). The in vivo dose verification method was easy to use and simple to implement, and it could detect patient anatomic changes that impacted dose delivery. The system required no extra dose to the patient or treatment time delay and so could be used throughout the course of treatment to identify and limit systematic and random errors in dose delivery for patient groups. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. SU-E-T-287: Robustness Study of Passive-Scattering Proton Therapy in Lung: Is Range and Setup Uncertainty Calculation On the Initial CT Enough to Predict the Plan Robustness?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, X; Dormer, J; Kenton, O

    Purpose: Plan robustness of the passive-scattering proton therapy treatment of lung tumors has been studied previously using combined uncertainties of 3.5% in CT number and 3 mm geometric shifts. In this study, we investigate whether this method is sufficient to predict proton plan robustness by comparing to plans performed on weekly verification CT scans. Methods: Ten lung cancer patients treated with passive-scattering proton therapy were randomly selected. All plans were prescribed 6660cGy in 37 fractions. Each initial plan was calculated using +/− 3.5% range and +/− 0.3cm setup uncertainty in x, y and z directions in Eclipse TPS(Method-A). Throughout themore » treatment course, patients received weekly verification CT scans to assess the daily treatment variation(Method-B). After contours and imaging registrations are verified by the physician, the initial plan with the same beamline and compensator was mapped into the verification CT. Dose volume histograms (DVH) were evaluated for robustness study. Results: Differences are observed between method A and B in terms of iCTV coverage and lung dose. Method-A shows all the iCTV D95 are within +/− 1% difference, while 20% of cases fall outside +/−1% range in Method-B. In the worst case scenario(WCS), the iCTV D95 is reduced by 2.5%. All lung V5 and V20 are within +/−5% in Method-A while 15% of V5 and 10% of V20 fall outside of +/−5% in Method-B. In the WCS, Lung V5 increased by 15% and V20 increased by 9%. Method A and B show good agreement with regard to cord maximum and Esophagus mean dose. Conclusion: This study suggests that using range and setup uncertainty calculation (+/−3.5% and +/−3mm) may not be sufficient to predict the WCS. In the absence of regular verification scans, expanding the conventional uncertainty parameters(e.g., to +/−3.5% and +/−4mm) may be needed to better reflect plan actual robustness.« less

  2. Dosimetric verification for primary focal hypermetabolism of nasopharyngeal carcinoma patients treated with dynamic intensity-modulated radiation therapy.

    PubMed

    Xin, Yong; Wang, Jia-Yang; Li, Liang; Tang, Tian-You; Liu, Gui-Hong; Wang, Jian-She; Xu, Yu-Mei; Chen, Yong; Zhang, Long-Zhen

    2012-01-01

    To make sure the feasibility with (18F)FDG PET/CT to guided dynamic intensity-modulated radiation therapy (IMRT) for nasopharyngeal carcinoma patients, by dosimetric verification before treatment. Chose 11 patients in III~IVA nasopharyngeal carcinoma treated with functional image-guided IMRT and absolute and relative dosimetric verification by Varian 23EX LA, ionization chamber, 2DICA of I'mRT Matrixx and IBA detachable phantom. Drawing outline and making treatment plan were by different imaging techniques (CT and (18F)FDG PET/CT). The dose distributions of the various regional were realized by SMART. The absolute mean errors of interest area were 2.39%±0.66 using 0.6 cc ice chamber. Results using DTA method, the average relative dose measurements within our protocol (3%, 3 mm) were 87.64% at 300 MU/min in all filed. Dosimetric verification before IMRT is obligatory and necessary. Ionization chamber and 2DICA of I'mRT Matrixx was the effective dosimetric verification tool for primary focal hyper metabolism in functional image-guided dynamic IMRT for nasopharyngeal carcinoma. Our preliminary evidence indicates that functional image-guided dynamic IMRT is feasible.

  3. A multi-institutional study of independent calculation verification in inhomogeneous media using a simple and effective method of heterogeneity correction integrated with the Clarkson method.

    PubMed

    Jinno, Shunta; Tachibana, Hidenobu; Moriya, Shunsuke; Mizuno, Norifumi; Takahashi, Ryo; Kamima, Tatsuya; Ishibashi, Satoru; Sato, Masanori

    2018-05-21

    In inhomogeneous media, there is often a large systematic difference in the dose between the conventional Clarkson algorithm (C-Clarkson) for independent calculation verification and the superposition-based algorithms of treatment planning systems (TPSs). These treatment site-dependent differences increase the complexity of the radiotherapy planning secondary check. We developed a simple and effective method of heterogeneity correction integrated with the Clarkson algorithm (L-Clarkson) to account for the effects of heterogeneity in the lateral dimension, and performed a multi-institutional study to evaluate the effectiveness of the method. In the method, a 2D image reconstructed from computed tomography (CT) images is divided according to lines extending from the reference point to the edge of the multileaf collimator (MLC) or jaw collimator for each pie sector, and the radiological path length (RPL) of each line is calculated on the 2D image to obtain a tissue maximum ratio and phantom scatter factor, allowing the dose to be calculated. A total of 261 plans (1237 beams) for conventional breast and lung treatments and lung stereotactic body radiotherapy were collected from four institutions. Disagreements in dose between the on-site TPSs and a verification program using the C-Clarkson and L-Clarkson algorithms were compared. Systematic differences with the L-Clarkson method were within 1% for all sites, while the C-Clarkson method resulted in systematic differences of 1-5%. The L-Clarkson method showed smaller variations. This heterogeneity correction integrated with the Clarkson algorithm would provide a simple evaluation within the range of -5% to +5% for a radiotherapy plan secondary check.

  4. SU-E-T-50: A Multi-Institutional Study of Independent Dose Verification Software Program for Lung SBRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawai, D; Takahashi, R; Kamima, T

    2015-06-15

    Purpose: The accuracy of dose distribution depends on treatment planning system especially in heterogeneity-region. The tolerance level (TL) of the secondary check using the independent dose verification may be variable in lung SBRT plans. We conducted a multi-institutional study to evaluate the tolerance level of lung SBRT plans shown in the AAPM TG114. Methods: Five institutes in Japan participated in this study. All of the institutes used a same independent dose verification software program (Simple MU Analysis: SMU, Triangle Product, Ishikawa, JP), which is Clarkson-based and CT images were used to compute radiological path length. Analytical Anisotropic Algorithm (AAA), Pencilmore » Beam Convolution with modified Batho-method (PBC-B) and Adaptive Convolve (AC) were used for lung SBRT planning. A measurement using an ion-chamber was performed in a heterogeneous phantom to compare doses from the three different algorithms and the SMU to the measured dose. In addition to it, a retrospective analysis using clinical lung SBRT plans (547 beams from 77 patients) was conducted to evaluate the confidence limit (CL, Average±2SD) in dose between the three algorithms and the SMU. Results: Compared to the measurement, the AAA showed the larger systematic dose error of 2.9±3.2% than PBC-B and AC. The Clarkson-based SMU showed larger error of 5.8±3.8%. The CLs for clinical plans were 7.7±6.0 % (AAA), 5.3±3.3 % (AC), 5.7±3.4 % (PBC -B), respectively. Conclusion: The TLs from the CLs were evaluated. A Clarkson-based system shows a large systematic variation because of inhomogeneous correction. The AAA showed a significant variation. Thus, we must consider the difference of inhomogeneous correction as well as the dependence of dose calculation engine.« less

  5. SU-E-T-435: Development and Commissioning of a Complete System for In-Vivo Dosimetry and Range Verification in Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samuel, D; Testa, M; Park, Y

    Purpose: In-vivo dose and beam range verification in proton therapy could play significant roles in proton treatment validation and improvements. Invivo beam range verification, in particular, could enable new treatment techniques one of which, for example, could be the use of anterior fields for prostate treatment instead of opposed lateral fields as in current practice. We have developed and commissioned an integrated system with hardware, software and workflow protocols, to provide a complete solution, simultaneously for both in-vivo dosimetry and range verification for proton therapy. Methods: The system uses a matrix of diodes, up to 12 in total, but separablemore » into three groups for flexibility in application. A special amplifier was developed to capture extremely small signals from very low proton beam current. The software was developed within iMagX, a general platform for image processing in radiation therapy applications. The range determination exploits the inherent relationship between the internal range modulation clock of the proton therapy system and the radiological depth at the point of measurement. The commissioning of the system, for in-vivo dosimetry and for range verification was separately conducted using anthropomorphic phantom. EBT films and TLDs were used for dose comparisons and range scan of the beam distal fall-off was used as ground truth for range verification. Results: For in-vivo dose measurement, the results were in agreement with TLD and EBT films and were within 3% from treatment planning calculations. For range verification, a precision of 0.5mm is achieved in homogeneous phantoms, and a precision of 2mm for anthropomorphic pelvic phantom, except at points with significant range mixing. Conclusion: We completed the commissioning of our system for in-vivo dosimetry and range verification in proton therapy. The results suggest that the system is ready for clinical trials on patient.« less

  6. Dosimetric changes with computed tomography automatic tube-current modulation techniques.

    PubMed

    Spampinato, Sofia; Gueli, Anna Maria; Milone, Pietro; Raffaele, Luigi Angelo

    2018-04-06

    The study is aimed at a verification of dose changes for a computed tomography automatic tube-current modulation (ATCM) technique. For this purpose, anthropomorphic phantom and Gafchromic ® XR-QA2 films were used. Radiochromic films were cut according to the shape of two thorax regions. The ATCM algorithm is based on noise index (NI) and three exam protocols with different NI were chosen, of which one was a reference. Results were compared with dose values displayed by the console and with Poisson statistics. The information obtained with radiochromic films has been normalized with respect to the NI reference value to compare dose percentage variations. Results showed that, on average, the information reported by the CT console and calculated values coincide with measurements. The study allowed verification of the dose information reported by the CT console for an ATCM technique. Although this evaluation represents an estimate, the method can be a starting point for further studies.

  7. SU-F-T-288: Impact of Trajectory Log Files for Clarkson-Based Independent Dose Verification of IMRT and VMAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, R; Kamima, T; Tachibana, H

    2016-06-15

    Purpose: To investigate the effect of the trajectory files from linear accelerator for Clarkson-based independent dose verification in IMRT and VMAT plans. Methods: A CT-based independent dose verification software (Simple MU Analysis: SMU, Triangle Products, Japan) with a Clarksonbased algorithm was modified to calculate dose using the trajectory log files. Eclipse with the three techniques of step and shoot (SS), sliding window (SW) and Rapid Arc (RA) was used as treatment planning system (TPS). In this study, clinically approved IMRT and VMAT plans for prostate and head and neck (HN) at two institutions were retrospectively analyzed to assess the dosemore » deviation between DICOM-RT plan (PL) and trajectory log file (TJ). An additional analysis was performed to evaluate MLC error detection capability of SMU when the trajectory log files was modified by adding systematic errors (0.2, 0.5, 1.0 mm) and random errors (5, 10, 30 mm) to actual MLC position. Results: The dose deviations for prostate and HN in the two sites were 0.0% and 0.0% in SS, 0.1±0.0%, 0.1±0.1% in SW and 0.6±0.5%, 0.7±0.9% in RA, respectively. The MLC error detection capability shows the plans for HN IMRT were the most sensitive and 0.2 mm of systematic error affected 0.7% dose deviation on average. Effect of the MLC random error did not affect dose error. Conclusion: The use of trajectory log files including actual information of MLC location, gantry angle, etc should be more effective for an independent verification. The tolerance level for the secondary check using the trajectory file may be similar to that of the verification using DICOM-RT plan file. From the view of the resolution of MLC positional error detection, the secondary check could detect the MLC position error corresponding to the treatment sites and techniques. This research is partially supported by Japan Agency for Medical Research and Development (AMED)« less

  8. Fast 3D dosimetric verifications based on an electronic portal imaging device using a GPU calculation engine.

    PubMed

    Zhu, Jinhan; Chen, Lixin; Chen, Along; Luo, Guangwen; Deng, Xiaowu; Liu, Xiaowei

    2015-04-11

    To use a graphic processing unit (GPU) calculation engine to implement a fast 3D pre-treatment dosimetric verification procedure based on an electronic portal imaging device (EPID). The GPU algorithm includes the deconvolution and convolution method for the fluence-map calculations, the collapsed-cone convolution/superposition (CCCS) algorithm for the 3D dose calculations and the 3D gamma evaluation calculations. The results of the GPU-based CCCS algorithm were compared to those of Monte Carlo simulations. The planned and EPID-based reconstructed dose distributions in overridden-to-water phantoms and the original patients were compared for 6 MV and 10 MV photon beams in intensity-modulated radiation therapy (IMRT) treatment plans based on dose differences and gamma analysis. The total single-field dose computation time was less than 8 s, and the gamma evaluation for a 0.1-cm grid resolution was completed in approximately 1 s. The results of the GPU-based CCCS algorithm exhibited good agreement with those of the Monte Carlo simulations. The gamma analysis indicated good agreement between the planned and reconstructed dose distributions for the treatment plans. For the target volume, the differences in the mean dose were less than 1.8%, and the differences in the maximum dose were less than 2.5%. For the critical organs, minor differences were observed between the reconstructed and planned doses. The GPU calculation engine was used to boost the speed of 3D dose and gamma evaluation calculations, thus offering the possibility of true real-time 3D dosimetric verification.

  9. SU-D-213-05: Design, Evaluation and First Applications of a Off-Site State-Of-The-Art 3D Dosimetry System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malcolm, J; Mein, S; McNiven, A

    2015-06-15

    Purpose: To design, construct and commission a prototype in-house three dimensional (3D) dose verification system for stereotatic body radiotherapy (SBRT) verification at an off-site partner institution. To investigate the potential of this system to achieve sufficient performance (1mm resolution, 3% noise, within 3% of true dose reading) for SBRT verification. Methods: The system was designed utilizing a parallel ray geometry instigated by precision telecentric lenses and an LED 630nm light source. Using a radiochromic dosimeter, a 3D dosimetric comparison with our gold-standard system and treatment planning software (Eclipse) was done for a four-field box treatment, under gamma passing criteria ofmore » 3%/3mm/10% dose threshold. Post off-site installation, deviations in the system’s dose readout performance was assessed by rescanning the four-field box irradiated dosimeter and using line-profiles to compare on-site and off-site mean and noise levels in four distinct dose regions. As a final step, an end-to-end test of the system was completed at the off-site location, including CT-simulation, irradiation of the dosimeter and a 3D dosimetric comparison of the planned (Pinnacle{sup 3}) to delivered dose for a spinal SBRT treatment(12 Gy per fraction). Results: The noise level in the high and medium dose regions of the four field box treatment was relatively 5% pre and post installation. This reflects the reduction in positional uncertainty through the new design. This At 1mm dose voxels, the gamma pass rates(3%,3mm) for our in-house gold standard system and the off-site system were comparable at 95.8% and 93.2% respectively. Conclusion: This work will describe the end-to-end process and results of designing, installing, and commissioning a state-of-the-art 3D dosimetry system created for verification of advanced radiation treatments including spinal radiosurgery.« less

  10. WE-D-BRA-04: Online 3D EPID-Based Dose Verification for Optimum Patient Safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spreeuw, H; Rozendaal, R; Olaciregui-Ruiz, I

    2015-06-15

    Purpose: To develop an online 3D dose verification tool based on EPID transit dosimetry to ensure optimum patient safety in radiotherapy treatments. Methods: A new software package was developed which processes EPID portal images online using a back-projection algorithm for the 3D dose reconstruction. The package processes portal images faster than the acquisition rate of the portal imager (∼ 2.5 fps). After a portal image is acquired, the software seeks for “hot spots” in the reconstructed 3D dose distribution. A hot spot is in this study defined as a 4 cm{sup 3} cube where the average cumulative reconstructed dose exceedsmore » the average total planned dose by at least 20% and 50 cGy. If a hot spot is detected, an alert is generated resulting in a linac halt. The software has been tested by irradiating an Alderson phantom after introducing various types of serious delivery errors. Results: In our first experiment the Alderson phantom was irradiated with two arcs from a 6 MV VMAT H&N treatment having a large leaf position error or a large monitor unit error. For both arcs and both errors the linac was halted before dose delivery was completed. When no error was introduced, the linac was not halted. The complete processing of a single portal frame, including hot spot detection, takes about 220 ms on a dual hexacore Intel Xeon 25 X5650 CPU at 2.66 GHz. Conclusion: A prototype online 3D dose verification tool using portal imaging has been developed and successfully tested for various kinds of gross delivery errors. The detection of hot spots was proven to be effective for the timely detection of these errors. Current work is focused on hot spot detection criteria for various treatment sites and the introduction of a clinical pilot program with online verification of hypo-fractionated (lung) treatments.« less

  11. Feasibility study on dosimetry verification of volumetric-modulated arc therapy-based total marrow irradiation.

    PubMed

    Liang, Yun; Kim, Gwe-Ya; Pawlicki, Todd; Mundt, Arno J; Mell, Loren K

    2013-03-04

    The purpose of this study was to develop dosimetry verification procedures for volumetric-modulated arc therapy (VMAT)-based total marrow irradiation (TMI). The VMAT based TMI plans were generated for three patients: one child and two adults. The planning target volume (PTV) was defined as bony skeleton, from head to mid-femur, with a 3 mm margin. The plan strategy similar to published studies was adopted. The PTV was divided into head and neck, chest, and pelvic regions, with separate plans each of which is composed of 2-3 arcs/fields. Multiple isocenters were evenly distributed along the patient's axial direction. The focus of this study is to establish a dosimetry quality assurance procedure involving both two-dimensional (2D) and three-dimensional (3D) volumetric verifications, which is desirable for a large PTV treated with multiple isocenters. The 2D dose verification was performed with film for gamma evaluation and absolute point dose was measured with ion chamber, with attention to the junction between neighboring plans regarding hot/cold spots. The 3D volumetric dose verification used commercial dose reconstruction software to reconstruct dose from electronic portal imaging devices (EPID) images. The gamma evaluation criteria in both 2D and 3D verification were 5% absolute point dose difference and 3 mm of distance to agreement. With film dosimetry, the overall average gamma passing rate was 98.2% and absolute dose difference was 3.9% in junction areas among the test patients; with volumetric portal dosimetry, the corresponding numbers were 90.7% and 2.4%. A dosimetry verification procedure involving both 2D and 3D was developed for VMAT-based TMI. The initial results are encouraging and warrant further investigation in clinical trials.

  12. The combination of the error correction methods of GAFCHROMIC EBT3 film

    PubMed Central

    Li, Yinghui; Chen, Lixin; Zhu, Jinhan; Liu, Xiaowei

    2017-01-01

    Purpose The aim of this study was to combine a set of methods for use of radiochromic film dosimetry, including calibration, correction for lateral effects and a proposed triple-channel analysis. These methods can be applied to GAFCHROMIC EBT3 film dosimetry for radiation field analysis and verification of IMRT plans. Methods A single-film exposure was used to achieve dose calibration, and the accuracy was verified based on comparisons with the square-field calibration method. Before performing the dose analysis, the lateral effects on pixel values were corrected. The position dependence of the lateral effect was fitted by a parabolic function, and the curvature factors of different dose levels were obtained using a quadratic formula. After lateral effect correction, a triple-channel analysis was used to reduce disturbances and convert scanned images from films into dose maps. The dose profiles of open fields were measured using EBT3 films and compared with the data obtained using an ionization chamber. Eighteen IMRT plans with different field sizes were measured and verified with EBT3 films, applying our methods, and compared to TPS dose maps, to check correct implementation of film dosimetry proposed here. Results The uncertainty of lateral effects can be reduced to ±1 cGy. Compared with the results of Micke A et al., the residual disturbances of the proposed triple-channel method at 48, 176 and 415 cGy are 5.3%, 20.9% and 31.4% smaller, respectively. Compared with the ionization chamber results, the difference in the off-axis ratio and percentage depth dose are within 1% and 2%, respectively. For the application of IMRT verification, there were no difference between two triple-channel methods. Compared with only corrected by triple-channel method, the IMRT results of the combined method (include lateral effect correction and our present triple-channel method) show a 2% improvement for large IMRT fields with the criteria 3%/3 mm. PMID:28750023

  13. Clinical Implementation of a Model-Based In Vivo Dose Verification System for Stereotactic Body Radiation Therapy–Volumetric Modulated Arc Therapy Treatments Using the Electronic Portal Imaging Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCowan, Peter M., E-mail: pmccowan@cancercare.mb.ca; Asuni, Ganiyu; Van Uytven, Eric

    Purpose: To report findings from an in vivo dosimetry program implemented for all stereotactic body radiation therapy patients over a 31-month period and discuss the value and challenges of utilizing in vivo electronic portal imaging device (EPID) dosimetry clinically. Methods and Materials: From December 2013 to July 2016, 117 stereotactic body radiation therapy–volumetric modulated arc therapy patients (100 lung, 15 spine, and 2 liver) underwent 602 EPID-based in vivo dose verification events. A developed model-based dose reconstruction algorithm calculates the 3-dimensional dose distribution to the patient by back-projecting the primary fluence measured by the EPID during treatment. The EPID frame-averaging was optimized in Junemore » 2015. For each treatment, a 3%/3-mm γ comparison between our EPID-derived dose and the Eclipse AcurosXB–predicted dose to the planning target volume (PTV) and the ≥20% isodose volume were performed. Alert levels were defined as γ pass rates <85% (lung and liver) and <80% (spine). Investigations were carried out for all fractions exceeding the alert level and were classified as follows: EPID-related, algorithmic, patient setup, anatomic change, or unknown/unidentified errors. Results: The percentages of fractions exceeding the alert levels were 22.6% for lung before frame-average optimization and 8.0% for lung, 20.0% for spine, and 10.0% for liver after frame-average optimization. Overall, mean (± standard deviation) planning target volume γ pass rates were 90.7% ± 9.2%, 87.0% ± 9.3%, and 91.2% ± 3.4% for the lung, spine, and liver patients, respectively. Conclusions: Results from the clinical implementation of our model-based in vivo dose verification method using on-treatment EPID images is reported. The method is demonstrated to be valuable for routine clinical use for verifying delivered dose as well as for detecting errors.« less

  14. Experiences using IAEA Code of practice for radiation sterilization of tissue allografts: Validation and routine control

    NASA Astrophysics Data System (ADS)

    Hilmy, N.; Febrida, A.; Basril, A.

    2007-11-01

    Problems of tissue allografts in using International Standard (ISO) 11137 for validation of radiation sterilization dose (RSD) are limited and low numbers of uniform samples per production batch, those are products obtained from one donor. Allograft is a graft transplanted between two different individuals of the same species. The minimum number of uniform samples needed for verification dose (VD) experiment at the selected sterility assurance level (SAL) per production batch according to the IAEA Code is 20, i.e., 10 for bio-burden determination and the remaining 10 for sterilization test. Three methods of the IAEA Code have been used for validation of RSD, i.e., method A1 that is a modification of method 1 of ISO 11137:1995, method B (ISO 13409:1996), and method C (AAMI TIR 27:2001). This paper describes VD experiments using uniform products obtained from one cadaver donor, i.e., cancellous bones, demineralized bone powders and amnion grafts from one life donor. Results of the verification dose experiments show that RSD is 15.4 kGy for cancellous and demineralized bone grafts and 19.2 kGy for amnion grafts according to method A1 and 25 kGy according to methods B and C.

  15. SU-C-BRD-07: Three-Dimensional Dose Reconstruction in the Presence of Inhomogeneities Using Fast EPID-Based Back-Projection Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Q; Cao, R; Pei, X

    2015-06-15

    Purpose: Three-dimensional dose verification can detect errors introduced by the treatment planning system (TPS) or differences between planned and delivered dose distribution during the treatment. The aim of the study is to extend a previous in-house developed three-dimensional dose reconstructed model in homogeneous phantom to situtions in which tissue inhomogeneities are present. Methods: The method was based on the portal grey images from an electronic portal imaging device (EPID) and the relationship between beamlets and grey-scoring voxels at the position of the EPID. The relationship was expressed in the form of grey response matrix that was quantified using thickness-dependence scattermore » kernels determined by series of experiments. From the portal grey-value distribution information measured by the EPID the two-dimensional incident fluence distribution was reconstructed based on the grey response matrix using a fast iterative algorithm. The accuracy of this approach was verified using a four-field intensity-modulated radiotherapy (IMRT) plan for the treatment of lung cancer in anthopomorphic phantom. Each field had between twenty and twenty-eight segments and was evaluated by comparing the reconstructed dose distribution with the measured dose. Results: The gamma-evaluation method was used with various evaluation criteria of dose difference and distance-to-agreement: 3%/3mm and 2%/2 mm. The dose comparison for all irradiated fields showed a pass rate of 100% with the criterion of 3%/3mm, and a pass rate of higher than 92% with the criterion of 2%/2mm. Conclusion: Our experimental results demonstrate that our method is capable of accurately reconstructing three-dimensional dose distribution in the presence of inhomogeneities. Using the method, the combined planning and treatment delivery process is verified, offing an easy-to-use tool for the verification of complex treatments.« less

  16. SU-E-T-455: Impact of Different Independent Dose Verification Software Programs for Secondary Check

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Itano, M; Yamazaki, T; Kosaka, M

    2015-06-15

    Purpose: There have been many reports for different dose calculation algorithms for treatment planning system (TPS). Independent dose verification program (IndpPro) is essential to verify clinical plans from the TPS. However, the accuracy of different independent dose verification programs was not evident. We conducted a multi-institutional study to reveal the impact of different IndpPros using different TPSs. Methods: Three institutes participated in this study. They used two different IndpPros (RADCALC and Simple MU Analysis (SMU), which implemented the Clarkson algorithm. RADCALC needed the input of radiological path length (RPL) computed by the TPSs (Eclipse or Pinnacle3). SMU used CT imagesmore » to compute the RPL independently from TPS). An ion-chamber measurement in water-equivalent phantom was performed to evaluate the accuracy of two IndpPros and the TPS in each institute. Next, the accuracy of dose calculation using the two IndpPros compared to TPS was assessed in clinical plan. Results: The accuracy of IndpPros and the TPSs in the homogenous phantom was +/−1% variation to the measurement. 1543 treatment fields were collected from the patients treated in the institutes. The RADCALC showed better accuracy (0.9 ± 2.2 %) than the SMU (1.7 ± 2.1 %). However, the accuracy was dependent on the TPS (Eclipse: 0.5%, Pinnacle3: 1.0%). The accuracy of RADCALC with Eclipse was similar to that of SMU in one of the institute. Conclusion: Depending on independent dose verification program, the accuracy shows systematic dose accuracy variation even though the measurement comparison showed a similar variation. The variation was affected by radiological path length calculation. IndpPro with Pinnacle3 has different variation because Pinnacle3 computed the RPL using physical density. Eclipse and SMU uses electron density, though.« less

  17. SU-E-I-24: Method for CT Automatic Exposure Control Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gracia, M; Olasolo, J; Martin, M

    Purpose: Design of a phantom and a simple method for the automatic exposure control (AEC) verification in CT. This verification is included in the computed tomography (CT) Spanish Quality Assurance Protocol. Methods: The phantom design is made from the head and the body phantom used for the CTDI measurement and PMMA plates (35×35 cm2) of 10 cm thickness. Thereby, three different thicknesses along the longitudinal axis are obtained which permit to evaluate the longitudinal AEC performance. Otherwise, the existent asymmetry in the PMMA layers helps to assess angular and 3D AEC operation.Recent acquisition in our hospital (August 2014) of Nomexmore » electrometer (PTW), together with the 10 cm pencil ionization chamber, led to register dose rate as a function of time. Measurements with this chamber fixed at 0° and 90° on the gantry where made on five multidetector-CTs from principal manufacturers. Results: Individual analysis of measurements shows dose rate variation as a function of phantom thickness. The comparative analysis shows that dose rate is kept constant in the head and neck phantom while the PMMA phantom exhibits an abrupt variation between both results, being greater results at 90° as the thickness of the phantom is 3.5 times larger than in the perpendicular direction. Conclusion: Proposed method is simple, quick and reproducible. Results obtained let a qualitative evaluation of the AEC and they are consistent with the expected behavior. A line of future development is to quantitatively study the intensity modulation and parameters of image quality, and a possible comparative study between different manufacturers.« less

  18. Performance Characteristics of an Independent Dose Verification Program for Helical Tomotherapy

    PubMed Central

    Chang, Isaac C. F.; Chen, Jeff; Yartsev, Slav

    2017-01-01

    Helical tomotherapy with its advanced method of intensity-modulated radiation therapy delivery has been used clinically for over 20 years. The standard delivery quality assurance procedure to measure the accuracy of delivered radiation dose from each treatment plan to a phantom is time-consuming. RadCalc®, a radiotherapy dose verification software, has released specifically for beta testing a module for tomotherapy plan dose calculations. RadCalc®'s accuracy for tomotherapy dose calculations was evaluated through examination of point doses in ten lung and ten prostate clinical plans. Doses calculated by the TomoHDA™ tomotherapy treatment planning system were used as the baseline. For lung cases, RadCalc® overestimated point doses in the lung by an average of 13%. Doses within the spinal cord and esophagus were overestimated by 10%. Prostate plans showed better agreement, with overestimations of 6% in the prostate, bladder, and rectum. The systematic overestimation likely resulted from limitations of the pencil beam dose calculation algorithm implemented by RadCalc®. Limitations were more severe in areas of greater inhomogeneity and less prominent in regions of homogeneity with densities closer to 1 g/cm3. Recommendations for RadCalc® dose calculation algorithms and anatomical representation were provided based on the results of the study. PMID:28974862

  19. SU-E-T-398: Feasibility of Automated Tools for Robustness Evaluation of Advanced Photon and Proton Techniques in Oropharyngeal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H; Liang, X; Kalbasi, A

    2014-06-01

    Purpose: Advanced radiotherapy (RT) techniques such as proton pencil beam scanning (PBS) and photon-based volumetric modulated arc therapy (VMAT) have dosimetric advantages in the treatment of head and neck malignancies. However, anatomic or alignment changes during treatment may limit robustness of PBS and VMAT plans. We assess the feasibility of automated deformable registration tools for robustness evaluation in adaptive PBS and VMAT RT of oropharyngeal cancer (OPC). Methods: We treated 10 patients with bilateral OPC with advanced RT techniques and obtained verification CT scans with physician-reviewed target and OAR contours. We generated 3 advanced RT plans for each patient: protonmore » PBS plan using 2 posterior oblique fields (2F), proton PBS plan using an additional third low-anterior field (3F), and a photon VMAT plan using 2 arcs (Arc). For each of the planning techniques, we forward calculated initial (Ini) plans on the verification scans to create verification (V) plans. We extracted DVH indicators based on physician-generated contours for 2 target and 14 OAR structures to investigate the feasibility of two automated tools (contour propagation (CP) and dose deformation (DD)) as surrogates for routine clinical plan robustness evaluation. For each verification scan, we compared DVH indicators of V, CP and DD plans in a head-to-head fashion using Student's t-test. Results: We performed 39 verification scans; each patient underwent 3 to 6 verification scan. We found no differences in doses to target or OAR structures between V and CP, V and DD, and CP and DD plans across all patients (p > 0.05). Conclusions: Automated robustness evaluation tools, CP and DD, accurately predicted dose distributions of verification (V) plans using physician-generated contours. These tools may be further developed as a potential robustness screening tool in the workflow for adaptive treatment of OPC using advanced RT techniques, reducing the need for physician-generated contours.« less

  20. SU-E-T-64: A Programmable Moving Insert for the ArcCHECK Phantom for Dose Verification of Respiratory-Gated VMAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaede, S; Jordan, K; Western University, London, ON

    Purpose: To present a customized programmable moving insert for the ArcCHECK™ phantom that can, in a single delivery, check both entrance dosimetry, while simultaneously verifying the delivery of respiratory-gated VMAT. Methods: The cylindrical motion phantom uses a computer-controlled stepping motor to move an insert inside a stationery sleeve. Insert motion is programmable and can include rotational motion in addition to linear motion along the axis of the cylinder. The sleeve fits securely in the bore of the ArcCHECK™. Interchangeable inserts, including an A1SL chamber, optically-stimulated luminescence dosimeters, radiochromic film, or 3D gels, allow this combination to be used for commissioning,more » routine quality assurance, and patient-specific dosimetric verification of respiratory-gated VMAT. Before clinical implementation, the effect of a moving insert on the ArcCHECK™ measurements was considered. First, the measured dose to the ArcCHECK™ containing multiple inserts in the static position was compared to the calculated dose during multiple VMAT treatment deliveries. Then, dose was measured under both sinusoidal and real-patient motion conditions to determine any effect of the moving inserts on the ArcCHECK™ measurements. Finally, dose was measured during gated VMAT delivery to the same inserts under the same motion conditions to examine any effect of various beam “on-and-off” and dose rate ramp “up-and-down”. Multiple comparisons between measured and calculated dose to different inserts were also considered. Results: The pass rate for the static delivery exceeded 98% for all measurements (3%/3mm), suggesting a valid setup for entrance dosimetry. The pass rate was not altered for any measurement delivered under motion conditions. A similar Result was observed under gated VMAT conditions, including agreement of measured and calculated dose to the various inserts. Conclusion: Incorporating a programmable moving insert within the ArcCHECK™ phantom provides an efficient verification of respiratory-gated VMAT delivery that is useful during commissioning, routine quality assurance, and patient-specific dose verification. Prototype phantom development and testing was performed in collaboration with Modus Medical Devices Inc. (London, ON). No financial support was granted.« less

  1. Feasibility Study on Applying Radiophotoluminescent Glass Dosimeters for CyberKnife SRS Dose Verification

    PubMed Central

    Hsu, Shih-Ming; Hung, Chao-Hsiung; Liao, Yi-Jen; Fu, Hsiao-Mei; Tsai, Jo-Ting

    2017-01-01

    CyberKnife is one of multiple modalities for stereotactic radiosurgery (SRS). Due to the nature of CyberKnife and the characteristics of SRS, dose evaluation of the CyberKnife procedure is critical. A radiophotoluminescent glass dosimeter was used to verify the dose accuracy for the CyberKnife procedure and validate a viable dose verification system for CyberKnife treatment. A radiophotoluminescent glass dosimeter, thermoluminescent dosimeter, and Kodak EDR2 film were used to measure the lateral dose profile and percent depth dose of CyberKnife. A Monte Carlo simulation for dose verification was performed using BEAMnrc to verify the measured results. This study also used a radiophotoluminescent glass dosimeter coupled with an anthropomorphic phantom to evaluate the accuracy of the dose given by CyberKnife. Measurements from the radiophotoluminescent glass dosimeter were compared with the results of a thermoluminescent dosimeter and EDR2 film, and the differences found were less than 5%. The radiophotoluminescent glass dosimeter has some advantages in terms of dose measurements over CyberKnife, such as repeatability, stability, and small effective size. These advantages make radiophotoluminescent glass dosimeters a potential candidate dosimeter for the CyberKnife procedure. This study concludes that radiophotoluminescent glass dosimeters are a promising and reliable dosimeter for CyberKnife dose verification with clinically acceptable accuracy within 5%. PMID:28046056

  2. Dosimetry investigation of MOSFET for clinical IMRT dose verification.

    PubMed

    Deshpande, Sudesh; Kumar, Rajesh; Ghadi, Yogesh; Neharu, R M; Kannan, V

    2013-06-01

    In IMRT, patient-specific dose verification is followed regularly at each centre. Simple and efficient dosimetry techniques play a very important role in routine clinical dosimetry QA. The MOSFET dosimeter offers several advantages over the conventional dosimeters such as its small detector size, immediate readout, immediate reuse, multiple point dose measurements. To use the MOSFET as routine clinical dosimetry system for pre-treatment dose verification in IMRT, a comprehensive set of experiments has been conducted, to investigate its linearity, reproducibility, dose rate effect and angular dependence for 6 MV x-ray beam. The MOSFETs shows a linear response with linearity coefficient of 0.992 for a dose range of 35 cGy to 427 cGy. The reproducibility of the MOSFET was measured by irradiating the MOSFET for ten consecutive irradiations in the dose range of 35 cGy to 427 cGy. The measured reproducibility of MOSFET was found to be within 4% up to 70 cGy and within 1.4% above 70 cGy. The dose rate effect on the MOSFET was investigated in the dose rate range 100 MU/min to 600 MU/min. The response of the MOSFET varies from -1.7% to 2.1%. The angular responses of the MOSFETs were measured at 10 degrees intervals from 90 to 270 degrees in an anticlockwise direction and normalized at gantry angle zero and it was found to be in the range of 0.98 ± 0.014 to 1.01 ± 0.014. The MOSFETs were calibrated in a phantom which was later used for IMRT verification. The measured calibration coefficients were found to be 1 mV/cGy and 2.995 mV/cGy in standard and high sensitivity mode respectively. The MOSFETs were used for pre-treatment dose verification in IMRT. Nine dosimeters were used for each patient to measure the dose in different plane. The average variation between calculated and measured dose at any location was within 3%. Dose verification using MOSFET and IMRT phantom was found to quick and efficient and well suited for a busy radiotherapy department.

  3. MO-AB-BRA-03: Development of Novel Real Time in Vivo EPID Treatment Verification for Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fonseca, G; Podesta, M; Reniers, B

    2016-06-15

    Purpose: High Dose Rate (HDR) brachytherapy treatments are employed worldwide to treat a wide variety of cancers. However, in vivo dose verification remains a challenge with no commercial dosimetry system available to verify the treatment dose delivered to the patient. We propose a novel dosimetry system that couples an independent Monte Carlo (MC) simulation platform and an amorphous silicon Electronic Portal Imaging Device (EPID) to provide real time treatment verification. Methods: MC calculations predict the EPID response to the photon fluence emitted by the HDR source by simulating the patient, the source dwell positions and times, and treatment complexities suchmore » as tissue compositions/densities and different applicators. Simulated results are then compared against EPID measurements acquired with ∼0.14s time resolution which allows dose measurements for each dwell position. The EPID has been calibrated using an Ir-192 HDR source and experiments were performed using different phantoms, including tissue equivalent materials (PMMA, lung and bone). A source positioning accuracy of 0.2 mm, without including the afterloader uncertainty, was ensured using a robotic arm moving the source. Results: An EPID can acquire 3D Cartesian source positions and its response varies significantly due to differences in the material composition/density of the irradiated object, allowing detection of changes in patient geometry. The panel time resolution allows dose rate and dwell time measurements. Moreover, predicted EPID images obtained from clinical treatment plans provide anatomical information that can be related to the patient anatomy, mostly bone and air cavities, localizing the source inside of the patient using its anatomy as reference. Conclusion: Results obtained show the feasibility of the proposed dose verification system that is capable to verify all the brachytherapy treatment steps in real time providing data about treatment delivery quality and also applicator/structure motion during or between treatments.« less

  4. A method to improve the effectiveness of diode in vivo dosimetry.

    PubMed

    Alecu, R; Alecu, M; Ochran, T G

    1998-05-01

    A routine diode in vivo dosimetry program based on a combination of entrance and exit dose measurements was clinically implemented in the radiation oncology department of Grace Hospital, Detroit, in January 1995. The delivered dose has been monitored by taking weekly measurements. The calibration of the diodes and the in vivo dosimetry protocol for this new, more effective type of dose verification is presented. The problems encountered within the program are discussed along with our solutions.

  5. Impact of radiation attenuation by a carbon fiber couch on patient dose verification

    NASA Astrophysics Data System (ADS)

    Yu, Chun-Yen; Chou, Wen-Tsae; Liao, Yi-Jen; Lee, Jeng-Hung; Liang, Ji-An; Hsu, Shih-Ming

    2017-02-01

    The aim of this study was to understand the difference between the measured and calculated irradiation attenuations obtained using two algorithms and to identify the influence of couch attenuation on patient dose verification. We performed eight tests of couch attenuation with two photon energies, two longitudinal couch positions, and two rail positions. The couch attenuation was determined using a radiation treatment planning system. The measured and calculated attenuations were compared. We also performed 12 verifications of head-and-neck and rectum cases by using a Delta phantom. The dose deviation (DD), distance to agreement (DTA), and gamma index of pencil-beam convolution (PBC) verifications were nearly the same. The agreement was least consistent for the anisotropic analytical algorithm (AAA) without the couch for the head-and-neck case, in which the DD, DTA, and gamma index were 74.4%, 99.3%, and 89%, respectively; for the rectum case, the corresponding values were 56.2%, 95.1%, and 92.4%. We suggest that dose verification should be performed using the following three metrics simultaneously: DD, DTA, and the gamma index.

  6. Polymer gel dosimeters for pretreatment radiotherapy verification using the three-dimensional gamma evaluation and pass rate maps.

    PubMed

    Hsieh, Ling-Ling; Shieh, Jiunn-I; Wei, Li-Ju; Wang, Yi-Chun; Cheng, Kai-Yuan; Shih, Cheng-Ting

    2017-05-01

    Polymer gel dosimeters (PGDs) have been widely studied for use in the pretreatment verification of clinical radiation therapy. However, the readability of PGDs in three-dimensional (3D) dosimetry remain unclear. In this study, the pretreatment verifications of clinical radiation therapy were performed using an N-isopropyl-acrylamide (NIPAM) PGD, and the results were used to evaluate the performance of the NIPAM PGD on 3D dose measurement. A gel phantom was used to measure the dose distribution of a clinical case of intensity-modulated radiation therapy. Magnetic resonance imaging scans were performed for dose readouts. The measured dose volumes were compared with the planned dose volume. The relative volume histograms showed that relative volumes with a negative percent dose difference decreased as time elapsed. Furthermore, the histograms revealed few changes after 24h postirradiation. For the 3%/3mm and 2%/2mm criteria, the pass rates of the 12- and 24-h dose volumes were higher than 95%, respectively. This study thus concludes that the pass rate map can be used to evaluate the dose-temporal readability of PGDs and that the NIPAM PGD can be used for clinical pretreatment verifications. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saur, Sigrun; Frengen, Jomar; Department of Oncology and Radiotherapy, St. Olavs University Hospital, N-7006 Trondheim

    Film dosimetry using radiochromic EBT film in combination with a flatbed charge coupled device scanner is a useful method both for two-dimensional verification of intensity-modulated radiation treatment plans and for general quality assurance of treatment planning systems and linear accelerators. Unfortunately, the response over the scanner area is nonuniform, and when not corrected for, this results in a systematic error in the measured dose which is both dose and position dependent. In this study a novel method for background correction is presented. The method is based on the subtraction of a correction matrix, a matrix that is based on scansmore » of films that are irradiated to nine dose levels in the range 0.08-2.93 Gy. Because the response of the film is dependent on the film's orientation with respect to the scanner, correction matrices for both landscape oriented and portrait oriented scans were made. In addition to the background correction method, a full dose uncertainty analysis of the film dosimetry procedure was performed. This analysis takes into account the fit uncertainty of the calibration curve, the variation in response for different film sheets, the nonuniformity after background correction, and the noise in the scanned films. The film analysis was performed for film pieces of size 16x16 cm, all with the same lot number, and all irradiations were done perpendicular onto the films. The results show that the 2-sigma dose uncertainty at 2 Gy is about 5% and 3.5% for landscape and portrait scans, respectively. The uncertainty gradually increases as the dose decreases, but at 1 Gy the 2-sigma dose uncertainty is still as good as 6% and 4% for landscape and portrait scans, respectively. The study shows that film dosimetry using GafChromic EBT film, an Epson Expression 1680 Professional scanner and a dedicated background correction technique gives precise and accurate results. For the purpose of dosimetric verification, the calculated dose distribution can be compared with the film-measured dose distribution using a dose constraint of 4% (relative to the measured dose) for doses between 1 and 3 Gy. At lower doses, the dose constraint must be relaxed.« less

  8. TPS(PET)-A TPS-based approach for in vivo dose verification with PET in proton therapy.

    PubMed

    Frey, K; Bauer, J; Unholtz, D; Kurz, C; Krämer, M; Bortfeld, T; Parodi, K

    2014-01-06

    Since the interest in ion-irradiation for tumour therapy has significantly increased over the last few decades, intensive investigations are performed to improve the accuracy of this form of patient treatment. One major goal is the development of methods for in vivo dose verification. In proton therapy, a PET (positron emission tomography)-based approach measuring the irradiation-induced tissue activation inside the patient has been already clinically implemented. The acquired PET images can be compared to an expectation, derived under the assumption of a correct treatment application, to validate the particle range and the lateral field position in vivo. In the context of this work, TPSPET is introduced as a new approach to predict proton-irradiation induced three-dimensional positron emitter distributions by means of the same algorithms of the clinical treatment planning system (TPS). In order to perform additional activity calculations, reaction-channel-dependent input positron emitter depth distributions are necessary, which are determined from the application of a modified filtering approach to the TPS reference depth dose profiles in water. This paper presents the implementation of TPSPET on the basis of the research treatment planning software treatment planning for particles. The results are validated in phantom and patient studies against Monte Carlo simulations, and compared to β(+)-emitter distributions obtained from a slightly modified version of the originally proposed one-dimensional filtering approach applied to three-dimensional dose distributions. In contrast to previously introduced methods, TPSPET provides a faster implementation, the results show no sensitivity to lateral field extension and the predicted β(+)-emitter densities are fully consistent to the planned treatment dose as they are calculated by the same pencil beam algorithms. These findings suggest a large potential of the application of TPSPET for in vivo dose verification in the daily clinical routine.

  9. "Edge-on" MOSkin detector for stereotactic beam measurement and verification.

    PubMed

    Jong, Wei Loong; Ung, Ngie Min; Vannyat, Ath; Jamalludin, Zulaikha; Rosenfeld, Anatoly; Wong, Jeannie Hsiu Ding

    2017-01-01

    Dosimetry in small radiation field is challenging and complicated because of dose volume averaging and beam perturbations in a detector. We evaluated the suitability of the "Edge-on" MOSkin (MOSFET) detector in small radiation field measurement. We also tested the feasibility for dosimetric verification in stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT). "Edge-on" MOSkin detector was calibrated and the reproducibility and linearity were determined. Lateral dose profiles and output factors were measured using the "Edge-on" MOSkin detector, ionization chamber, SRS diode and EBT2 film. Dosimetric verification was carried out on two SRS and five SRT plans. In dose profile measurements, the "Edge-on" MOSkin measurements concurred with EBT2 film measurements. It showed full width at half maximum of the dose profile with average difference of 0.11mm and penumbral width with difference of ±0.2mm for all SRS cones as compared to EBT2 film measurement. For output factor measurements, a 1.1% difference was observed between the "Edge-on" MOSkin detector and EBT2 film for 4mm SRS cone. The "Edge-on" MOSkin detector provided reproducible measurements for dose verification in real-time. The measured doses concurred with the calculated dose for SRS (within 1%) and SRT (within 3%). A set of output correction factors for the "Edge-on" MOSkin detector for small radiation fields were derived from EBT2 film measurement and presented. This study showed that the "Edge-on" MOSkin detector is a suitable tool for dose verification in small radiation field. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  10. Time-resolved dosimetry using a pinpoint ionization chamber as quality assurance for IMRT and VMAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louwe, Robert J. W., E-mail: rob.louwe@ccdbh.org.nz; Satherley, Thomas; Day, Rebecca A.

    Purpose: To develop a method to verify the dose delivery in relation to the individual control points of intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) using an ionization chamber. In addition to more effective problem solving during patient-specific quality assurance (QA), the aim is to eventually map out the limitations in the treatment chain and enable a targeted improvement of the treatment technique in an efficient way. Methods: Pretreatment verification was carried out for 255 treatment plans that included a broad range of treatment indications in two departments using the equipment of different vendors. In-house developed softwaremore » was used to enable calculation of the dose delivery for the individual beamlets in the treatment planning system (TPS), for data acquisition, and for analysis of the data. The observed deviations were related to various delivery and measurement parameters such as gantry angle, field size, and the position of the detector with respect to the field edge to distinguish between error sources. Results: The average deviation of the integral fraction dose during pretreatment verification of the planning target volume dose was −2.1% ± 2.2% (1 SD), −1.7% ± 1.7% (1 SD), and 0.0% ± 1.3% (1 SD) for IMRT at the Radboud University Medical Center (RUMC), VMAT (RUMC), and VMAT at the Wellington Blood and Cancer Centre, respectively. Verification of the dose to organs at risk gave very similar results but was generally subject to a larger measurement uncertainty due to the position of the detector at a high dose gradient. The observed deviations could be related to limitations of the TPS beam models, attenuation of the treatment couch, as well as measurement errors. The apparent systematic error of about −2% in the average deviation of the integral fraction dose in the RUMC results could be explained by the limitations of the TPS beam model in the calculation of the beam penumbra. Conclusions: This study showed that time-resolved dosimetry using an ionization chamber is feasible and can be largely automated which limits the required additional time compared to integrated dose measurements. It provides a unique QA method which enables identification and quantification of the contribution of various error sources during IMRT and VMAT delivery.« less

  11. Benchmarking and validation of a Geant4-SHADOW Monte Carlo simulation for dose calculations in microbeam radiation therapy.

    PubMed

    Cornelius, Iwan; Guatelli, Susanna; Fournier, Pauline; Crosbie, Jeffrey C; Sanchez Del Rio, Manuel; Bräuer-Krisch, Elke; Rosenfeld, Anatoly; Lerch, Michael

    2014-05-01

    Microbeam radiation therapy (MRT) is a synchrotron-based radiotherapy modality that uses high-intensity beams of spatially fractionated radiation to treat tumours. The rapid evolution of MRT towards clinical trials demands accurate treatment planning systems (TPS), as well as independent tools for the verification of TPS calculated dose distributions in order to ensure patient safety and treatment efficacy. Monte Carlo computer simulation represents the most accurate method of dose calculation in patient geometries and is best suited for the purpose of TPS verification. A Monte Carlo model of the ID17 biomedical beamline at the European Synchrotron Radiation Facility has been developed, including recent modifications, using the Geant4 Monte Carlo toolkit interfaced with the SHADOW X-ray optics and ray-tracing libraries. The code was benchmarked by simulating dose profiles in water-equivalent phantoms subject to irradiation by broad-beam (without spatial fractionation) and microbeam (with spatial fractionation) fields, and comparing against those calculated with a previous model of the beamline developed using the PENELOPE code. Validation against additional experimental dose profiles in water-equivalent phantoms subject to broad-beam irradiation was also performed. Good agreement between codes was observed, with the exception of out-of-field doses and toward the field edge for larger field sizes. Microbeam results showed good agreement between both codes and experimental results within uncertainties. Results of the experimental validation showed agreement for different beamline configurations. The asymmetry in the out-of-field dose profiles due to polarization effects was also investigated, yielding important information for the treatment planning process in MRT. This work represents an important step in the development of a Monte Carlo-based independent verification tool for treatment planning in MRT.

  12. Clinical Implementation of a Model-Based In Vivo Dose Verification System for Stereotactic Body Radiation Therapy-Volumetric Modulated Arc Therapy Treatments Using the Electronic Portal Imaging Device.

    PubMed

    McCowan, Peter M; Asuni, Ganiyu; Van Uytven, Eric; VanBeek, Timothy; McCurdy, Boyd M C; Loewen, Shaun K; Ahmed, Naseer; Bashir, Bashir; Butler, James B; Chowdhury, Amitava; Dubey, Arbind; Leylek, Ahmet; Nashed, Maged

    2017-04-01

    To report findings from an in vivo dosimetry program implemented for all stereotactic body radiation therapy patients over a 31-month period and discuss the value and challenges of utilizing in vivo electronic portal imaging device (EPID) dosimetry clinically. From December 2013 to July 2016, 117 stereotactic body radiation therapy-volumetric modulated arc therapy patients (100 lung, 15 spine, and 2 liver) underwent 602 EPID-based in vivo dose verification events. A developed model-based dose reconstruction algorithm calculates the 3-dimensional dose distribution to the patient by back-projecting the primary fluence measured by the EPID during treatment. The EPID frame-averaging was optimized in June 2015. For each treatment, a 3%/3-mm γ comparison between our EPID-derived dose and the Eclipse AcurosXB-predicted dose to the planning target volume (PTV) and the ≥20% isodose volume were performed. Alert levels were defined as γ pass rates <85% (lung and liver) and <80% (spine). Investigations were carried out for all fractions exceeding the alert level and were classified as follows: EPID-related, algorithmic, patient setup, anatomic change, or unknown/unidentified errors. The percentages of fractions exceeding the alert levels were 22.6% for lung before frame-average optimization and 8.0% for lung, 20.0% for spine, and 10.0% for liver after frame-average optimization. Overall, mean (± standard deviation) planning target volume γ pass rates were 90.7% ± 9.2%, 87.0% ± 9.3%, and 91.2% ± 3.4% for the lung, spine, and liver patients, respectively. Results from the clinical implementation of our model-based in vivo dose verification method using on-treatment EPID images is reported. The method is demonstrated to be valuable for routine clinical use for verifying delivered dose as well as for detecting errors. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. SU-E-T-430: Modeling MLC Leaf End in 2D for Sliding Window IMRT and Arc Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, X; Zhu, T

    2014-06-01

    Purpose: To develop a 2D geometric model for MLC accounting for leaf end dose leakage for dynamic IMRT and Rapidarc therapy. Methods: Leaf-end dose leakage is one of the problems for MLC dose calculation and modeling. Dosimetric leaf gap used to model the MLC and to count for leakage in dose calculation, but may not be accurate for smaller leaf gaps. We propose another geometric modeling method to compensate for the MLC round-shape leaf ends dose leakage, and improve the accuracy of dose calculation and dose verification. A triangular function is used to geometrically model the MLC leaf end leakagemore » in the leaf motion direction, and a step function is used in the perpendicular direction. Dose measurements with different leaf gap, different window width, and different window height were conducted, and the results were used to fit the analytical model to get the model parameters. Results: Analytical models have been obtained for stop-and-shoot and dynamic modes for MLC motion. Parameters a=0.4, lw'=5.0 mm for 6X and a=0.54, lw'=4.1 mm for 15x were obtained from the fitting process. The proposed MLC leaf end model improves the dose profile at the two ends of the sliding window opening. This improvement is especially significant for smaller sliding window openings, which are commonly used for highly modulated IMRT plans and arc therapy plans. Conclusion: This work models the MLC round leaf end shape and movement pattern for IMRT dose calculation. The theory, as well as the results in this work provides a useful tool for photon beam IMRT dose calculation and verification.« less

  14. Current status of 3D EPID-based in vivo dosimetry in The Netherlands Cancer Institute

    NASA Astrophysics Data System (ADS)

    Mijnheer, B.; Olaciregui-Ruiz, I.; Rozendaal, R.; Spreeuw, H.; van Herk, M.; Mans, A.

    2015-01-01

    3D in vivo dose verification using a-Si EPIDs is performed routinely in our institution for almost all RT treatments. The EPID-based 3D dose distribution is reconstructed using a back-projection algorithm and compared with the planned dose distribution using 3D gamma evaluation. Dose-reconstruction and gamma-evaluation software runs automatically, and deviations outside the alert criteria are immediately available and investigated, in combination with inspection of cone-beam CT scans. The implementation of our 3D EPID- based in vivo dosimetry approach was able to replace pre-treatment verification for more than 90% of the patient treatments. Clinically relevant deviations could be detected for approximately 1 out of 300 patient treatments (IMRT and VMAT). Most of these errors were patient related anatomical changes or deviations from the routine clinical procedure, and would not have been detected by pre-treatment verification. Moreover, 3D EPID-based in vivo dose verification is a fast and accurate tool to assure the safe delivery of RT treatments. It provides clinically more useful information and is less time consuming than pre-treatment verification measurements. Automated 3D in vivo dosimetry is therefore a prerequisite for large-scale implementation of patient-specific quality assurance of RT treatments.

  15. GafChromic EBT film dosimetry with flatbed CCD scanner: a novel background correction method and full dose uncertainty analysis.

    PubMed

    Saur, Sigrun; Frengen, Jomar

    2008-07-01

    Film dosimetry using radiochromic EBT film in combination with a flatbed charge coupled device scanner is a useful method both for two-dimensional verification of intensity-modulated radiation treatment plans and for general quality assurance of treatment planning systems and linear accelerators. Unfortunately, the response over the scanner area is nonuniform, and when not corrected for, this results in a systematic error in the measured dose which is both dose and position dependent. In this study a novel method for background correction is presented. The method is based on the subtraction of a correction matrix, a matrix that is based on scans of films that are irradiated to nine dose levels in the range 0.08-2.93 Gy. Because the response of the film is dependent on the film's orientation with respect to the scanner, correction matrices for both landscape oriented and portrait oriented scans were made. In addition to the background correction method, a full dose uncertainty analysis of the film dosimetry procedure was performed. This analysis takes into account the fit uncertainty of the calibration curve, the variation in response for different film sheets, the nonuniformity after background correction, and the noise in the scanned films. The film analysis was performed for film pieces of size 16 x 16 cm, all with the same lot number, and all irradiations were done perpendicular onto the films. The results show that the 2-sigma dose uncertainty at 2 Gy is about 5% and 3.5% for landscape and portrait scans, respectively. The uncertainty gradually increases as the dose decreases, but at 1 Gy the 2-sigma dose uncertainty is still as good as 6% and 4% for landscape and portrait scans, respectively. The study shows that film dosimetry using GafChromic EBT film, an Epson Expression 1680 Professional scanner and a dedicated background correction technique gives precise and accurate results. For the purpose of dosimetric verification, the calculated dose distribution can be compared with the film-measured dose distribution using a dose constraint of 4% (relative to the measured dose) for doses between 1 and 3 Gy. At lower doses, the dose constraint must be relaxed.

  16. [The Dose Effect of Isocenter Selection during IMRT Dose Verification with the 2D Chamber Array].

    PubMed

    Xie, Chuanbin; Cong, Xiaohu; Xu, Shouping; Dai, Xiangkun; Wang, Yunlai; Han, Lu; Gong, Hanshun; Ju, Zhongjian; Ge, Ruigang; Ma, Lin

    2015-03-01

    To investigate the dose effect of isocenter difference during IMRT dose verification with the 2D chamber array. The samples collected from 10 patients were respectively designed for IMRT plans, the isocenter of which was independently defined as P(o), P(x) and P(y). P(o) was fixed on the target center and the other points shifted 8cm from the target center in the orientation of x/y. The PTW729 was used for 2D dose verification in the 3 groups which beams of plans were set to 0 degrees. The γ-analysis passing rates for the whole plan and each beam were gotten using the different standards in the 3 groups, The results showed the mean passing rate of γ-analysis was highest in the P(o) group, and the mean passing rate of the whole plan was better than that of each beam. In addition, it became worse with the increase of dose leakage between the leaves in P(y) group. Therefore, the determination of isocenter has a visible effect for IMRT dose verification of the 2D chamber array, The isocenter of the planning design should be close to the geometric center of target.

  17. Stopping power and dose calculations with analytical and Monte Carlo methods for protons and prompt gamma range verification

    NASA Astrophysics Data System (ADS)

    Usta, Metin; Tufan, Mustafa Çağatay; Aydın, Güral; Bozkurt, Ahmet

    2018-07-01

    In this study, we have performed the calculations stopping power, depth dose, and range verification for proton beams using dielectric and Bethe-Bloch theories and FLUKA, Geant4 and MCNPX Monte Carlo codes. In the framework, as analytical studies, Drude model was applied for dielectric theory and effective charge approach with Roothaan-Hartree-Fock charge densities was used in Bethe theory. In the simulations different setup parameters were selected to evaluate the performance of three distinct Monte Carlo codes. The lung and breast tissues were investigated are considered to be related to the most common types of cancer throughout the world. The results were compared with each other and the available data in literature. In addition, the obtained results were verified with prompt gamma range data. In both stopping power values and depth-dose distributions, it was found that the Monte Carlo values give better results compared with the analytical ones while the results that agree best with ICRU data in terms of stopping power are those of the effective charge approach between the analytical methods and of the FLUKA code among the MC packages. In the depth dose distributions of the examined tissues, although the Bragg curves for Monte Carlo almost overlap, the analytical ones show significant deviations that become more pronounce with increasing energy. Verifications with the results of prompt gamma photons were attempted for 100-200 MeV protons which are regarded important for proton therapy. The analytical results are within 2%-5% and the Monte Carlo values are within 0%-2% as compared with those of the prompt gammas.

  18. SU-F-T-549: Validation of a Method for in Vivo 3D Dose Reconstruction for SBRT Using a New Transmission Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakaguchi, Y; Shimohigashi, Y; Onizuka, R

    Purpose: Recently, there has been increased clinical use of stereotactic body radiation therapy (SBRT). SBRT treatments will strongly benefit from in vivo patient dose verification, as any errors in delivery can be more detrimental to the radiobiology of the patient as compared to conventional therapy. In vivo dose measurements, a commercially available quality assurance platform which is able to correlate the delivered dose to the patient’s anatomy and take into account tissue inhomogeneity, is the COMPASS system (IBA Dosimetry, Germany) using a new transmission detector (Dolphin, IBA Dosimetry). In this work, we evaluate a method for in vivo 3D dosemore » reconstruction for SBRT using a new transmission detector, which was developed for in vivo dose verification for intensity-modulated radiation therapy (IMRT). Methods: We evaluated the accuracy of measurement for SBRT using simple small fields (2×2−10×10 cm2), a multileaf collimator (MLC) test pattern, and clinical cases. The dose distributions from the COMPASS were compared with those of EDR2 films (Kodak, USA) and the Monte Carlo simulations (MC). For clinical cases, we compared MC using dose-volume-histograms (DVHs) and dose profiles. Results: The dose profiles from the COMPASS for small fields and the complicated MLC test pattern agreed with those of EDR2 films, and MC within 3%. This showed the COMPASS with Dolphin system showed good spatial resolution and can measure small fields which are required for SBRT. Those results also suggest that COMPASS with Dolphin is able to detect MLC leaf position errors for SBRT. In clinical cases, the COMPASS with Dolphin agreed well with MC. The Dolphin detector, which consists of ionization chambers, provided stable measurement. Conclusion: COMPASS with Dolphin detector showed a useful in vivo 3D dose reconstruction for SBRT. The accuracy of the results indicates that this approach is suitable for clinical implementation.« less

  19. Poster - Thurs Eve-43: Verification of dose calculation with tissue inhomogeneity using MapCHECK.

    PubMed

    Korol, R; Chen, J; Mosalaei, H; Karnas, S

    2008-07-01

    MapCHECK (Sun Nuclear, Melbourne, FL) with 445 diode detectors has been used widely for routine IMRT quality assurance (QA) 1 . However, routine IMRT QA has not included the verification of inhomogeneity effects. The objective of this study is to use MapCHECK and a phantom to verify dose calculation and IMRT delivery with tissue inhomogeneity. A phantom with tissue inhomogeneities was placed on top of MapCHECK to measure the planar dose for an anterior beam with photon energy 6 MV or 18 MV. The phantom was composed of a 3.5 cm thick block of lung equivalent material and solid water arranged side by side with a 0.5 cm slab of solid water on the top of the phantom. The phantom setup including MapCHECK was CT scanned and imported into Pinnacle 8.0d for dose calculation. Absolute dose distributions were compared with gamma criteria 3% for dose difference and 3 mm for distance-to-agreement. The results are in good agreement between the measured and calculated planar dose with 88% pass rate based on the gamma analysis. The major dose difference was at the lung-water interface. Further investigation will be performed on a custom designed inhomogeneity phantom with inserts of varying densities and effective depth to create various dose gradients at the interface for dose calculation and delivery verification. In conclusion, a phantom with tissue inhomogeneities can be used with MapCHECK for verification of dose calculation and delivery with tissue inhomogeneity. © 2008 American Association of Physicists in Medicine.

  20. SU-F-T-587: Quality Assurance of Stereotactic Radiosurgery (SRS) and Stereotactic Body Radiation Therapy (SBRT) for Patient Specific Plans: A Comparison Between MATRIXX and Delta4 QA Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, YC; Lu, SH; Chen, LH

    2016-06-15

    Purpose: Patient-specific quality assurance (QA) is necessary to accurately deliver high dose radiation to the target, especially for stereotactic radiosurgery (SRS) and stereotactic body radiation therapy (SBRT). Unlike previous 2 dimensional (D) array QA devices, Delta{sup 4} can verify the dose delivery in 3D. In this study, the difference between calculated and measured dose distribution was compared with two QA devices (MATRIXX and Delta{sup 4}) to evaluate the delivery accuracy. Methods: Twenty-seven SRS/SBRT plans with VMAT were verified with point-dose and dose-map analysis. We use an ion chamber (A1SL, 0.053cc) for point-dose measurement. For verification of the dose map, themore » differences between the calculated and measured doses were analyzed with a gamma index using MATRIXX and Delta{sup 4} devices. The passing criteria for gamma evaluation were set at 3 mm for distance-to-agreement (DTA) and 3% for dose-difference. A gamma index less than 1 was defined as the verification passing the criteria and satisfying at least 95% of the points. Results: The mean prescribed dose and fraction was 40 ± 14.41 Gy (range: 16–60) and 10 ± 2.35 fractions (range: 1–8), respectively. In point dose analysis, the differences between the calculated and measured doses were all less than 5% (mean: 2.12 ± 1.13%; range: −0.55% to 4.45%). In dose-map analysis, the average passing rates were 99.38 ± 0.96% (range: 95.31–100%) and 100 ± 0.12% (range: 99.5%–100%) for MATRIXX and Delta{sup 4}, respectively. Even using criteria of 2%/2 mm, the passing rate of Delta{sup 4} was still more than 95% (mean: 99 ± 1.08%; range: 95.6%–100%). Conclusion: Both MATRIXX and Delta{sup 4} offer accurate and efficient verification for SRS/SBRT plans. The results measured by MATRIXX and Delta{sup 4} dosimetry systems are similar for SRS/SBRT performed with the VMAT technique.« less

  1. SU-E-T-32: A Feasibility Study of Independent Dose Verification for IMAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamima, T; Takahashi, R; Sato, Y

    2015-06-15

    Purpose: To assess the feasibility of the independent dose verification (Indp) for intensity modulated arc therapy (IMAT). Methods: An independent dose calculation software program (Simple MU Analysis, Triangle Products, JP) was used in this study, which can compute the radiological path length from the surface to the reference point for each control point using patient’s CT image dataset and the MLC aperture shape was simultaneously modeled in reference to the information of MLC from DICOM-RT plan. Dose calculation was performed using a modified Clarkson method considering MLC transmission and dosimetric leaf gap. In this study, a retrospective analysis was conductedmore » in which IMAT plans from 120 patients of the two sites (prostate / head and neck) from four institutes were retrospectively analyzed to compare the Indp to the TPS using patient CT images. In addition, an ion-chamber measurement was performed to verify the accuracy of the TPS and the Indp in water-equivalent phantom. Results: The agreements between the Indp and the TPS (mean±1SD) were −0.8±2.4% and −1.3±3.8% for the regions of prostate and head and neck, respectively. The measurement comparison showed similar results (−0.8±1.6% and 0.1±4.6% for prostate and head and neck). The variation was larger in the head and neck because the number of the segments was increased that the reference point was under the MLC and the modified Clarkson method cannot consider the smooth falloff of the leaf penumbra. Conclusion: The independent verification program would be practical and effective for secondary check for IMAT with the sufficient accuracy in the measurement and CT-based calculation. The accuracy would be improved if considering the falloff of the leaf penumbra.« less

  2. SU-E-T-138: Dosimetric Verification For Volumetric Modulated Arc Therapy Cranio-Spinal Irradiation Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goksel, E; Bilge, H; Yildiz, Yarar

    2014-06-01

    Purpose: Dosimetric feasibility of cranio-spinal irradiation with volumetric modulated arc therapy (VMAT-CSI) technique in terms of dose distribution accuracy was investigated using a humanlike phantom. Methods: The OARs and PTV volumes for the Rando phantom were generated on supine CT images. Eclipse (version 8.6) TPS with AAA algorithm was used to create the treatment plan with VMAT-CSI technique. RapidArc plan consisted of cranial, upper spinal (US) and lower spinal (LS) regions that were optimized in the same plan. US field was overlapped by 3cm with cranial and LS fields. Three partial arcs for cranium and 1 full arc for eachmore » US and LS region were used. The VMAT-CSI dose distribution inside the Rando phantom was measured with thermoluminescent detectors (TLD) and film dosimetry, and was compared to the calculated doses of field junctions, target and OARs. TLDs were placed at 24 positions throughout the phantom. The measured TLD doses were compared to the calculated point doses. Planar doses for field junctions were verified with Gafchromic films. Films were analyzed in PTW Verisoft application software using gamma analysis method with the 4 mm distance to agreement (DTA) and 4% dose agreement criteria. Results: TLD readings demonstrated accurate dose delivery, with a median dose difference of -0.3% (range: -8% and 12%) when compared with calculated doses for the areas inside the treatment portal. The maximum dose difference was 12% higher in testicals that are outside the treatment region and 8% lower in lungs where the heterogeinity was higher. All planar dose verifications for field junctions passed the gamma analysis and measured planar dose distributions demonstrated average 97% agreement with calculated doses. Conclusion: The dosimetric data verified with TLD and film dosimetry shows that VMAT-CSI technique provides accurate dose distribution and can be delivered safely.« less

  3. Monte Carlo simulations to replace film dosimetry in IMRT verification.

    PubMed

    Goetzfried, Thomas; Rickhey, Mark; Treutwein, Marius; Koelbl, Oliver; Bogner, Ludwig

    2011-01-01

    Patient-specific verification of intensity-modulated radiation therapy (IMRT) plans can be done by dosimetric measurements or by independent dose or monitor unit calculations. The aim of this study was the clinical evaluation of IMRT verification based on a fast Monte Carlo (MC) program with regard to possible benefits compared to commonly used film dosimetry. 25 head-and-neck IMRT plans were recalculated by a pencil beam based treatment planning system (TPS) using an appropriate quality assurance (QA) phantom. All plans were verified both by film and diode dosimetry and compared to MC simulations. The irradiated films, the results of diode measurements and the computed dose distributions were evaluated, and the data were compared on the basis of gamma maps and dose-difference histograms. Average deviations in the high-dose region between diode measurements and point dose calculations performed with the TPS and MC program were 0.7 ± 2.7% and 1.2 ± 3.1%, respectively. For film measurements, the mean gamma values with 3% dose difference and 3mm distance-to-agreement were 0.74 ± 0.28 (TPS as reference) with dose deviations up to 10%. Corresponding values were significantly reduced to 0.34 ± 0.09 for MC dose calculation. The total time needed for both verification procedures is comparable, however, by far less labor intensive in the case of MC simulations. The presented study showed that independent dose calculation verification of IMRT plans with a fast MC program has the potential to eclipse film dosimetry more and more in the near future. Thus, the linac-specific QA part will necessarily become more important. In combination with MC simulations and due to the simple set-up, point-dose measurements for dosimetric plausibility checks are recommended at least in the IMRT introduction phase. Copyright © 2010. Published by Elsevier GmbH.

  4. Real-time in vivo dosimetry with MOSFET detectors in serial tomotherapy for head and neck cancer patients.

    PubMed

    Qi, Zhen-Yu; Deng, Xiao-Wu; Huang, Shao-Min; Shiu, Almon; Lerch, Michael; Metcalfe, Peter; Rosenfeld, Anatoly; Kron, Tomas

    2011-08-01

    A real-time dose verification method using a recently designed metal oxide semiconductor field effect transistor (MOSFET) dosimetry system was evaluated for quality assurance (QA) of intensity-modulated radiation therapy (IMRT). Following the investigation of key parameters that might affect the accuracy of MOSFET measurements (i.e., source surface distance [SSD], field size, beam incident angles and radiation energy spectrum), the feasibility of this detector in IMRT dose verification was demonstrated by comparison with ion chamber measurements taken in an IMRT QA phantom. Real-time in vivo measurements were also performed with the MOSFET system during serial tomotherapy treatments administered to 8 head and neck cancer patients. MOSFET sensitivity did not change with SSD. For field sizes smaller than 20 × 20 cm(2), MOFET sensitivity varied within 1.0%. The detector angular response was isotropic within 2% over 360°, and the observed sensitivity variation due to changes in the energy spectrum was negligible in 6-MV photons. MOSFET system measurements and ion chamber measurements agreed at all points in IMRT phantom plan verification, within 5%. The mean difference between 48 IMRT MOSFET-measured doses and calculated values in 8 patients was 3.33% and ranged from -2.20% to 7.89%. More than 90% of the total measurements had deviations of less than 5% from the planned doses. The MOSFET dosimetry system has been proven to be an effective tool in evaluating the actual dose within individual patients during IMRT treatment. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. SU-E-J-146: A Research of PET-CT SUV Range for the Online Dose Verification in Carbon Ion Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, L; Hu, W; Moyers, M

    2015-06-15

    Purpose: Positron-emitting isotope distributions can be used for the image fusion of the carbon ion planning CT and online target verification PETCT, after radiation in the same decay period,the relationship between the same target volume and the SUV value of different every single fraction dose can be found,then the range of SUV for the radiation target could be decided.So this online range also can provide reference for the correlation and consistency in planning target dose verification and evaluation for the clinical trial. Methods: The Rando head phantom can be used as real body,the 10cc cube volume target contouring is done,beammore » ISO Center depth is 7.6cm and the 90 degree fixed carbon ion beams should be delivered in single fraction effective dose of 2.5GyE,5GyE and 8GyE.After irradiation,390 seconds later the 30 minutes PET-CT scanning is performed,parameters are set to 50Kg virtual weight,0.05mCi activity.MIM Maestro is used for the image processing and fusion,five 16mm diameter SUV spheres have been chosen in the different direction in the target.The average SUV in target for different fraction dose can be found by software. Results: For 10cc volume target,390 seconds decay period,the Single fraction effective dose equal to 2.5Gy,Ethe SUV mean value is 3.42,the relative range is 1.72 to 6.83;Equal to 5GyE,SUV mean value is 9.946,the relative range is 7.016 to 12.54;Equal or above to 8GyE,SUV mean value is 20.496,the relative range is 11.16 to 34.73. Conclusion: Making an evaluation for accuracy of the dose distribution using the SUV range which is from the planning CT with after treatment online PET-CT fusion for the normal single fraction carbon ion treatment is available.Even to the plan which single fraction dose is above 2GyE,in the condition of other parameters all the same,the SUV range is linearly dependent with single fraction dose,so this method also can be used in the hyper-fraction treatment plan.« less

  6. In vivo proton range verification: a review

    NASA Astrophysics Data System (ADS)

    Knopf, Antje-Christin; Lomax, Antony

    2013-08-01

    Protons are an interesting modality for radiotherapy because of their well defined range and favourable depth dose characteristics. On the other hand, these same characteristics lead to added uncertainties in their delivery. This is particularly the case at the distal end of proton dose distributions, where the dose gradient can be extremely steep. In practice however, this gradient is rarely used to spare critical normal tissues due to such worries about its exact position in the patient. Reasons for this uncertainty are inaccuracies and non-uniqueness of the calibration from CT Hounsfield units to proton stopping powers, imaging artefacts (e.g. due to metal implants) and anatomical changes of the patient during treatment. In order to improve the precision of proton therapy therefore, it would be extremely desirable to verify proton range in vivo, either prior to, during, or after therapy. In this review, we describe and compare state-of-the art in vivo proton range verification methods currently being proposed, developed or clinically implemented.

  7. Evaluation of Gafchromic EBT-XD film, with comparison to EBT3 film, and application in high dose radiotherapy verification.

    PubMed

    Palmer, Antony L; Dimitriadis, Alexis; Nisbet, Andrew; Clark, Catharine H

    2015-11-21

    There is renewed interest in film dosimetry for the verification of dose delivery of complex treatments, particularly small fields, compared to treatment planning system calculations. A new radiochromic film, Gafchromic EBT-XD, is available for high-dose treatment verification and we present the first published evaluation of its use. We evaluate the new film for MV photon dosimetry, including calibration curves, performance with single- and triple-channel dosimetry, and comparison to existing EBT3 film. In the verification of a typical 25 Gy stereotactic radiotherapy (SRS) treatment, compared to TPS planned dose distribution, excellent agreement was seen with EBT-XD using triple-channel dosimetry, in isodose overlay, maximum 1.0 mm difference over 200-2400 cGy, and gamma evaluation, mean passing rate 97% at 3% locally-normalised, 1.5 mm criteria. In comparison to EBT3, EBT-XD gave improved evaluation results for the SRS-plan, had improved calibration curve gradients at high doses, and had reduced lateral scanner effect. The dimensions of the two films are identical. The optical density of EBT-XD is lower than EBT3 for the same dose. The effective atomic number for both may be considered water-equivalent in MV radiotherapy. We have validated the use of EBT-XD for high-dose, small-field radiotherapy, for routine QC and a forthcoming multi-centre SRS dosimetry intercomparison.

  8. Evaluation of Gafchromic EBT-XD film, with comparison to EBT3 film, and application in high dose radiotherapy verification

    NASA Astrophysics Data System (ADS)

    Palmer, Antony L.; Dimitriadis, Alexis; Nisbet, Andrew; Clark, Catharine H.

    2015-11-01

    There is renewed interest in film dosimetry for the verification of dose delivery of complex treatments, particularly small fields, compared to treatment planning system calculations. A new radiochromic film, Gafchromic EBT-XD, is available for high-dose treatment verification and we present the first published evaluation of its use. We evaluate the new film for MV photon dosimetry, including calibration curves, performance with single- and triple-channel dosimetry, and comparison to existing EBT3 film. In the verification of a typical 25 Gy stereotactic radiotherapy (SRS) treatment, compared to TPS planned dose distribution, excellent agreement was seen with EBT-XD using triple-channel dosimetry, in isodose overlay, maximum 1.0 mm difference over 200-2400 cGy, and gamma evaluation, mean passing rate 97% at 3% locally-normalised, 1.5 mm criteria. In comparison to EBT3, EBT-XD gave improved evaluation results for the SRS-plan, had improved calibration curve gradients at high doses, and had reduced lateral scanner effect. The dimensions of the two films are identical. The optical density of EBT-XD is lower than EBT3 for the same dose. The effective atomic number for both may be considered water-equivalent in MV radiotherapy. We have validated the use of EBT-XD for high-dose, small-field radiotherapy, for routine QC and a forthcoming multi-centre SRS dosimetry intercomparison.

  9. SU-E-T-278: Realization of Dose Verification Tool for IMRT Plan Based On DPM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Jinfeng; Cao, Ruifen; Dai, Yumei

    Purpose: To build a Monte Carlo dose verification tool for IMRT Plan by implementing a irradiation source model into DPM code. Extend the ability of DPM to calculate any incident angles and irregular-inhomogeneous fields. Methods: With the virtual source and the energy spectrum which unfolded from the accelerator measurement data,combined with optimized intensity maps to calculate the dose distribution of the irradiation irregular-inhomogeneous field. The irradiation source model of accelerator was substituted by a grid-based surface source. The contour and the intensity distribution of the surface source were optimized by ARTS (Accurate/Advanced Radiotherapy System) optimization module based on the tumormore » configuration. The weight of the emitter was decided by the grid intensity. The direction of the emitter was decided by the combination of the virtual source and the emitter emitting position. The photon energy spectrum unfolded from the accelerator measurement data was adjusted by compensating the contaminated electron source. For verification, measured data and realistic clinical IMRT plan were compared with DPM dose calculation. Results: The regular field was verified by comparing with the measured data. It was illustrated that the differences were acceptable (<2% inside the field, 2–3mm in the penumbra). The dose calculation of irregular field by DPM simulation was also compared with that of FSPB (Finite Size Pencil Beam) and the passing rate of gamma analysis was 95.1% for peripheral lung cancer. The regular field and the irregular rotational field were all within the range of permitting error. The computing time of regular fields were less than 2h, and the test of peripheral lung cancer was 160min. Through parallel processing, the adapted DPM could complete the calculation of IMRT plan within half an hour. Conclusion: The adapted parallelized DPM code with irradiation source model is faster than classic Monte Carlo codes. Its computational accuracy and speed satisfy the clinical requirement, and it is expectable to be a Monte Carlo dose verification tool for IMRT Plan. Strategic Priority Research Program of the China Academy of Science(XDA03040000); National Natural Science Foundation of China (81101132)« less

  10. Evaluation of a single-scan protocol for radiochromic film dosimetry.

    PubMed

    Shimohigashi, Yoshinobu; Araki, Fujio; Maruyama, Masato; Nakaguchi, Yuji; Kuwahara, Satoshi; Nagasue, Nozomu; Kai, Yudai

    2015-03-08

    The purpose of this study was to evaluate a single-scan protocol using Gafchromic EBT3 film (EBT3) by comparing it with the commonly used 24-hr measurement protocol for radiochromic film dosimetry. Radiochromic film is generally scanned 24 hr after film exposure (24-hr protocol). The single-scan protocol enables measurement results within a short time using only the verification film, one calibration film, and unirradiated film. The single-scan protocol was scanned 30 min after film irradiation. The EBT3 calibration curves were obtained with the multichannel film dosimetry method. The dose verifications for each protocol were performed with the step pattern, pyramid pattern, and clinical treatment plans for intensity-modulated radiation therapy (IMRT). The absolute dose distributions for each protocol were compared with those calculated by the treatment planning system (TPS) using gamma evaluation at 3% and 3 mm. The dose distribution for the single-scan protocol was within 2% of the 24-hr protocol dose distribution. For the step pattern, the absolute dose discrepancies between the TPS for the single-scan and 24-hr protocols were 2.0 ± 1.8 cGy and 1.4 ± 1.2 cGy at the dose plateau, respectively. The pass rates were 96.0% for the single-scan protocol and 95.9% for the 24-hr protocol. Similarly, the dose discrepancies for the pyramid pattern were 3.6 ± 3.5cGy and 2.9 ± 3.3 cGy, respectively, while the pass rates for the pyramid pattern were 95.3% and 96.4%, respectively. The average pass rates for the four IMRT plans were 96.7% ± 1.8% for the single-scan protocol and 97.3% ± 1.4% for the 24-hr protocol. Thus, the single-scan protocol measurement is useful for dose verification of IMRT, based on its accuracy and efficiency.

  11. Evaluation of a single‐scan protocol for radiochromic film dosimetry

    PubMed Central

    Araki, Fujio; Maruyama, Masato; Nakaguchi, Yuji; Kuwahara, Satoshi; Nagasue, Nozomu; Kai, Yudai

    2015-01-01

    The purpose of this study was to evaluate a single‐scan protocol using Gafchromic EBT3 film (EBT3) by comparing it with the commonly used 24‐hr measurement protocol for radiochromic film dosimetry. Radiochromic film is generally scanned 24 hr after film exposure (24‐hr protocol). The single‐scan protocol enables measurement results within a short time using only the verification film, one calibration film, and unirradiated film. The single‐scan protocol was scanned 30 min after film irradiation. The EBT3 calibration curves were obtained with the multichannel film dosimetry method. The dose verifications for each protocol were performed with the step pattern, pyramid pattern, and clinical treatment plans for intensity‐modulated radiation therapy (IMRT). The absolute dose distributions for each protocol were compared with those calculated by the treatment planning system (TPS) using gamma evaluation at 3% and 3 mm. The dose distribution for the single‐scan protocol was within 2% of the 24‐hr protocol dose distribution. For the step pattern, the absolute dose discrepancies between the TPS for the single‐scan and 24‐hr protocols were 2.0±1.8 cGy and 1.4±1.2 cGy at the dose plateau, respectively. The pass rates were 96.0% for the single‐scan protocol and 95.9% for the 24‐hr protocol. Similarly, the dose discrepancies for the pyramid pattern were 3.6±3.5 cGy and 2.9±3.3 cGy, respectively, while the pass rates for the pyramid pattern were 95.3% and 96.4%, respectively. The average pass rates for the four IMRT plans were 96.7%±1.8% for the single‐scan protocol and 97.3%±1.4% for the 24‐hr protocol. Thus, the single‐scan protocol measurement is useful for dose verification of IMRT, based on its accuracy and efficiency. PACS number: 87.55.Qr PMID:26103194

  12. SU-E-J-70: Evaluation of Multiple Isocentric Intensity Modulated and Volumetric Modulated Arc Therapy Techniques Using Portal Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muralidhar, K Raja; Pangam, S; Kolla, J

    2015-06-15

    Purpose: To develop a method for verification of dose distribution in a patient during treatment using multiple isocentric Intensity modulated and volumetric modulated arc therapy techniques with portal dosimetry. Methods: Varian True Beam accelerator, equipped with an aS1000 megavoltage electronic portal imaging device (EPID) has an integrated image mode for portal dosimetry (PD). The source-to-imager distance was taken at 150 cm to avoid collision to the table. Fourteen fractions were analyzed for this study. During shift in a single plan from one isocenter to another isocenter, EPID also shifted longitudinally for each field by taking the extent of divergence ofmore » beam into the consideration for EPID distance of 150cm. Patients were given treatment everyday with EPID placed in proper position for each field. Several parameters were obtained by comparing the dose distribution between fractions to fraction. The impact of the intra-fraction and inter-fraction of the patient in combination with isocenter shift of the beams were observed. Results: During treatment, measurements were performed by EPID and were evaluated by the gamma method. Analysis was done between fractions for multiple isocenter treatments. The pass rates of the gamma analysis with a criterion of 3% and 3 mm for the 14 fractions were over 97.8% with good consistency. Whereas maximum gamma exceeded the criteria in few fractions (in<1 cc vol). Average gamma was observed in the criteria of 0.5%. Maximum dose difference and average dose differences were less than 0.22 CU and 0.01 CU for maximum tolerance of 1.0 CU and 0.2 CU respectively. Conclusion: EPID with extended distance is ideal method to verify the multiple isocentric dose distribution in patient during treatment, especially cold and hot spots in junction dose. Verification of shifts as well as the dose differences between each fraction due to inter-fraction and intra-fraction of the patient can be derived.« less

  13. Optimal sensitometric curves of Kodak EDR2 film for dynamic intensity modulated radiation therapy verification

    PubMed Central

    Suriyapee, S; Pitaxtarnin, N; Oonsiri, S; Jumpangern, C; Israngkul Na Ayuthaya, I

    2008-01-01

    Purpose: To investigate the optimal sensitometric curves of extended dose range (EDR2) radiographic film in terms of depth, field size, dose range and processing conditions for dynamic intensity modulated radiation therapy (IMRT) dosimetry verification with 6 MV X-ray beams. Materials and methods: A Varian Clinac 23 EX linear accelerator with 6 MV X-ray beam was used to study the response of Kodak EDR2 film. Measurements were performed at depths of 5, 10 and 15 cm in MedTec virtual water phantom and with field sizes of 2x2, 3x3, 10x10 and 15x15 cm2. Doses ranging from 20 to 450 cGy were used. The film was developed with the Kodak RP X-OMAT Model M6B automatic film processor. Film response was measured with the Vidar model VXR-16 scanner. Sensitometric curves were applied to the dose profiles measured with film at 5 cm in the virtual water phantom with field sizes of 2x2 and 10x10 cm2 and compared with ion chamber data. Scanditronix/Wellhofer OmniProTM IMRT software was used for the evaluation of the IMRT plan calculated by Eclipse treatment planning. Results: Investigation of the reproducibility and accuracy of the film responses, which depend mainly on the film processor, was carried out by irradiating one film nine times with doses of 20 to 450 cGy. A maximum standard deviation of 4.9% was found which decreased to 1.9% for doses between 20 and 200 cGy. The sensitometric curves for various field sizes at fixed depth showed a maximum difference of 4.2% between 2x2 and 15x15 cm2 at 5 cm depth with a dose of 450 cGy. The shallow depth tended to show a greater effect of field size responses than the deeper depths. The sensitometric curves for various depths at fixed field size showed slightly different film responses; the difference due to depth was within 1.8% for all field sizes studied. Both field size and depth effect were reduced when the doses were lower than 450 cGy. The difference was within 2.5% in the dose range from 20 to 300 cGy for all field sizes and depths studied. Dose profiles measured with EDR2 film were consistent with those measured with an ion chamber. The optimal sensitometric curve was acquired by irradiating film at a depth of 5 cm with doses ranging from 20 to 450 cGy with a 3×3 cm2 multileaf collimator. The optimal sensitometric curve allowed accurate determination of the absolute dose distribution. In almost 200 cases of dynamic IMRT plan verification with EDR2 film, the difference between measured and calculated dose was generally less than 3% and with 3 mm distance to agreement when using gamma value verification. Conclusion: EDR2 film can be used for accurate verification of composite isodose distributions of dynamic IMRT when the optimal sensitometric curve has been established. PMID:21614315

  14. SU-F-T-364: Monte Carlo-Dose Verification of Volumetric Modulated Arc Therapy Plans Using AAPM TG-119 Test Patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onizuka, R; Araki, F; Ohno, T

    2016-06-15

    Purpose: To investigate the Monte Carlo (MC)-based dose verification for VMAT plans by a treatment planning system (TPS). Methods: The AAPM TG-119 test structure set was used for VMAT plans by the Pinnacle3 (convolution/superposition), using a Synergy radiation head of a 6 MV beam with the Agility MLC. The Synergy was simulated with the EGSnrc/BEAMnrc code, and VMAT dose distributions were calculated with the EGSnrc/DOSXYZnrc code by the same irradiation conditions as TPS. VMAT dose distributions of TPS and MC were compared with those of EBT3 film, by 2-D gamma analysis of ±3%/3 mm criteria with a threshold of 30%more » of prescribed doses. VMAT dose distributions between TPS and MC were also compared by DVHs and 3-D gamma analysis of ±3%/3 mm criteria with a threshold of 10%, and 3-D passing rates for PTVs and OARs were analyzed. Results: TPS dose distributions differed from those of film, especially for Head & neck. The dose difference between TPS and film results from calculation accuracy for complex motion of MLCs like tongue and groove effect. In contrast, MC dose distributions were in good agreement with those of film. This is because MC can model fully the MLC configuration and accurately reproduce the MLC motion between control points in VMAT plans. D95 of PTV for Prostate, Head & neck, C-shaped, and Multi Target was 97.2%, 98.1%, 101.6%, and 99.7% for TPS and 95.7%, 96.0%, 100.6%, and 99.1% for MC, respectively. Similarly, 3-D gamma passing rates of each PTV for TPS vs. MC were 100%, 89.5%, 99.7%, and 100%, respectively. 3-D passing rates of TPS reduced for complex VMAT fields like Head & neck because MLCs are not modeled completely for TPS. Conclusion: MC-calculated VMAT dose distributions is useful for the 3-D dose verification of VMAT plans by TPS.« less

  15. Experimental verification of a Monte Carlo-based MLC simulation model for IMRT dose calculations in heterogeneous media

    NASA Astrophysics Data System (ADS)

    Tyagi, N.; Curran, B. H.; Roberson, P. L.; Moran, J. M.; Acosta, E.; Fraass, B. A.

    2008-02-01

    IMRT often requires delivering small fields which may suffer from electronic disequilibrium effects. The presence of heterogeneities, particularly low-density tissues in patients, complicates such situations. In this study, we report on verification of the DPM MC code for IMRT treatment planning in heterogeneous media, using a previously developed model of the Varian 120-leaf MLC. The purpose of this study is twofold: (a) design a comprehensive list of experiments in heterogeneous media for verification of any dose calculation algorithm and (b) verify our MLC model in these heterogeneous type geometries that mimic an actual patient geometry for IMRT treatment. The measurements have been done using an IMRT head and neck phantom (CIRS phantom) and slab phantom geometries. Verification of the MLC model has been carried out using point doses measured with an A14 slim line (SL) ion chamber inside a tissue-equivalent and a bone-equivalent material using the CIRS phantom. Planar doses using lung and bone equivalent slabs have been measured and compared using EDR films (Kodak, Rochester, NY).

  16. Clinical implementation and rapid commissioning of an EPID based in-vivo dosimetry system.

    PubMed

    Hanson, Ian M; Hansen, Vibeke N; Olaciregui-Ruiz, Igor; van Herk, Marcel

    2014-10-07

    Using an Electronic Portal Imaging Device (EPID) to perform in-vivo dosimetry is one of the most effective and efficient methods of verifying the safe delivery of complex radiotherapy treatments. Previous work has detailed the development of an EPID based in-vivo dosimetry system that was subsequently used to replace pre-treatment dose verification of IMRT and VMAT plans. Here we show that this system can be readily implemented on a commercial megavoltage imaging platform without modification to EPID hardware and without impacting standard imaging procedures. The accuracy and practicality of the EPID in-vivo dosimetry system was confirmed through a comparison with traditional TLD in-vivo measurements performed on five prostate patients.The commissioning time required for the EPID in-vivo dosimetry system was initially prohibitive at approximately 10 h per linac. Here we present a method of calculating linac specific EPID dosimetry correction factors that allow a single energy specific commissioning model to be applied to EPID data from multiple linacs. Using this method reduced the required per linac commissioning time to approximately 30 min.The validity of this commissioning method has been tested by analysing in-vivo dosimetry results of 1220 patients acquired on seven linacs over a period of 5 years. The average deviation between EPID based isocentre dose and expected isocentre dose for these patients was (-0.7  ±  3.2)%.EPID based in-vivo dosimetry is now the primary in-vivo dosimetry tool used at our centre and has replaced nearly all pre-treatment dose verification of IMRT treatments.

  17. Clinical implementation and rapid commissioning of an EPID based in-vivo dosimetry system

    NASA Astrophysics Data System (ADS)

    Hanson, Ian M.; Hansen, Vibeke N.; Olaciregui-Ruiz, Igor; van Herk, Marcel

    2014-10-01

    Using an Electronic Portal Imaging Device (EPID) to perform in-vivo dosimetry is one of the most effective and efficient methods of verifying the safe delivery of complex radiotherapy treatments. Previous work has detailed the development of an EPID based in-vivo dosimetry system that was subsequently used to replace pre-treatment dose verification of IMRT and VMAT plans. Here we show that this system can be readily implemented on a commercial megavoltage imaging platform without modification to EPID hardware and without impacting standard imaging procedures. The accuracy and practicality of the EPID in-vivo dosimetry system was confirmed through a comparison with traditional TLD in-vivo measurements performed on five prostate patients. The commissioning time required for the EPID in-vivo dosimetry system was initially prohibitive at approximately 10 h per linac. Here we present a method of calculating linac specific EPID dosimetry correction factors that allow a single energy specific commissioning model to be applied to EPID data from multiple linacs. Using this method reduced the required per linac commissioning time to approximately 30 min. The validity of this commissioning method has been tested by analysing in-vivo dosimetry results of 1220 patients acquired on seven linacs over a period of 5 years. The average deviation between EPID based isocentre dose and expected isocentre dose for these patients was (-0.7  ±  3.2)%. EPID based in-vivo dosimetry is now the primary in-vivo dosimetry tool used at our centre and has replaced nearly all pre-treatment dose verification of IMRT treatments.

  18. Dosimetric accuracy of Kodak EDR2 film for IMRT verifications.

    PubMed

    Childress, Nathan L; Salehpour, Mohammad; Dong, Lei; Bloch, Charles; White, R Allen; Rosen, Isaac I

    2005-02-01

    Patient-specific intensity-modulated radiotherapy (IMRT) verifications require an accurate two-dimensional dosimeter that is not labor-intensive. We assessed the precision and reproducibility of film calibrations over time, measured the elemental composition of the film, measured the intermittency effect, and measured the dosimetric accuracy and reproducibility of calibrated Kodak EDR2 film for single-beam verifications in a solid water phantom and for full-plan verifications in a Rexolite phantom. Repeated measurements of the film sensitometric curve in a single experiment yielded overall uncertainties in dose of 2.1% local and 0.8% relative to 300 cGy. 547 film calibrations over an 18-month period, exposed to a range of doses from 0 to a maximum of 240 MU or 360 MU and using 6 MV or 18 MV energies, had optical density (OD) standard deviations that were 7%-15% of their average values. This indicates that daily film calibrations are essential when EDR2 film is used to obtain absolute dose results. An elemental analysis of EDR2 film revealed that it contains 60% as much silver and 20% as much bromine as Kodak XV2 film. EDR2 film also has an unusual 1.69:1 silver:halide molar ratio, compared with the XV2 film's 1.02:1 ratio, which may affect its chemical reactions. To test EDR2's intermittency effect, the OD generated by a single 300 MU exposure was compared to the ODs generated by exposing the film 1 MU, 2 MU, and 4 MU at a time to a total of 300 MU. An ion chamber recorded the relative dose of all intermittency measurements to account for machine output variations. Using small MU bursts to expose the film resulted in delivery times of 4 to 14 minutes and lowered the film's OD by approximately 2% for both 6 and 18 MV beams. This effect may result in EDR2 film underestimating absolute doses for patient verifications that require long delivery times. After using a calibration to convert EDR2 film's OD to dose values, film measurements agreed within 2% relative difference and 2 mm criteria to ion chamber measurements for both sliding window and step-and-shoot fluence map verifications. Calibrated film results agreed with ion chamber measurements to within 5 % /2 mm criteria for transverse-plane full-plan verifications, but were consistently low. When properly calibrated, EDR2 film can be an adequate two-dimensional dosimeter for IMRT verifications, although it may underestimate doses in regions with long exposure times.

  19. Microionization chamber for reference dosimetry in IMRT verification: clinical implications on OAR dosimetric errors

    NASA Astrophysics Data System (ADS)

    Sánchez-Doblado, Francisco; Capote, Roberto; Leal, Antonio; Roselló, Joan V.; Lagares, Juan I.; Arráns, Rafael; Hartmann, Günther H.

    2005-03-01

    Intensity modulated radiotherapy (IMRT) has become a treatment of choice in many oncological institutions. Small fields or beamlets with sizes of 1 to 5 cm2 are now routinely used in IMRT delivery. Therefore small ionization chambers (IC) with sensitive volumes <=0.1 cm3are generally used for dose verification of an IMRT treatment. The measurement conditions during verification may be quite different from reference conditions normally encountered in clinical beam calibration, so dosimetry of these narrow photon beams pertains to the so-called non-reference conditions for beam calibration. This work aims at estimating the error made when measuring the organ at risk's (OAR) absolute dose by a micro ion chamber (μIC) in a typical IMRT treatment. The dose error comes from the assumption that the dosimetric parameters determining the absolute dose are the same as for the reference conditions. We have selected two clinical cases, treated by IMRT, for our dose error evaluations. Detailed geometrical simulation of the μIC and the dose verification set-up was performed. The Monte Carlo (MC) simulation allows us to calculate the dose measured by the chamber as a dose averaged over the air cavity within the ion-chamber active volume (Dair). The absorbed dose to water (Dwater) is derived as the dose deposited inside the same volume, in the same geometrical position, filled and surrounded by water in the absence of the ion chamber. Therefore, the Dwater/Dair dose ratio is the MC estimator of the total correction factor needed to convert the absorbed dose in air into the absorbed dose in water. The dose ratio was calculated for the μIC located at the isocentre within the OARs for both clinical cases. The clinical impact of the calculated dose error was found to be negligible for the studied IMRT treatments.

  20. SU-E-T-04: 3D Dose Based Patient Compensator QA Procedure for Proton Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, W; Reyhan, M; Zhang, M

    2015-06-15

    Purpose: In proton double-scattering radiotherapy, compensators are the essential patient specific devices to contour the distal dose distribution to the tumor target. Traditional compensator QA is limited to checking the drilled surface profiles against the plan. In our work, a compensator QA process was established that assess the entire compensator including its internal structure for patient 3D dose verification. Methods: The fabricated patient compensators were CT scanned. Through mathematical image processing and geometric transformations, the CT images of the proton compensator were combined with the patient simulation CT images into a new series of CT images, in which the imagedmore » compensator is placed at the planned location along the corresponding beam line. The new CT images were input into the Eclipse treatment planning system. The original plan was calculated to the combined CT image series without the plan compensator. The newly computed patient 3D dose from the combined patientcompensator images was verified against the original plan dose. Test plans include the compensators with defects intentionally created inside the fabricated compensators. Results: The calculated 3D dose with the combined compensator and patient CT images reflects the impact of the fabricated compensator to the patient. For the test cases in which no defects were created, the dose distributions were in agreement between our method and the corresponding original plans. For the compensator with the defects, the purposely changed material and a purposely created internal defect were successfully detected while not possible with just the traditional compensator profiles detection methods. Conclusion: We present here a 3D dose verification process to qualify the fabricated proton double-scattering compensator. Such compensator detection process assesses the patient 3D impact of the fabricated compensator surface profile as well as the compensator internal material and structure changes. This research receives funding support from CURA Medical Technologies.« less

  1. Lithium formate EPR dosimetry for verifications of planned dose distributions prior to intensity-modulated radiation therapy.

    PubMed

    Gustafsson, H; Lund, E; Olsson, S

    2008-09-07

    The objective of the present investigation was to evaluate lithium formate electron paramagnetic resonance (EPR) dosimetry for measurement of dose distributions in phantoms prior to intensity-modulated radiation therapy (IMRT). Lithium formate monohydrate tablets were carefully prepared, and blind tests were performed in clinically relevant situations in order to determine the precision and accuracy of the method. Further experiments confirmed that within the accuracy of the current method, the dosimeter response was independent of beam energies and dose rates used for IMRT treatments. The method was applied to IMRT treatment plans, and the dose determinations were compared to ionization chamber measurements. The experiments showed that absorbed doses above 3 Gy could be measured with an uncertainty of less than 2.5% of the dose (coverage factor kappa = 1.96). Measurement time was about 15 min using a well-calibrated dosimeter batch. The conclusion drawn from the investigation was that lithium formate EPR dosimetry is a promising new tool for absorbed dose measurements in external beam radiation therapy, especially for doses above 3 Gy.

  2. Lithium formate EPR dosimetry for verifications of planned dose distributions prior to intensity-modulated radiation therapy

    NASA Astrophysics Data System (ADS)

    Gustafsson, H.; Lund, E.; Olsson, S.

    2008-09-01

    The objective of the present investigation was to evaluate lithium formate electron paramagnetic resonance (EPR) dosimetry for measurement of dose distributions in phantoms prior to intensity-modulated radiation therapy (IMRT). Lithium formate monohydrate tablets were carefully prepared, and blind tests were performed in clinically relevant situations in order to determine the precision and accuracy of the method. Further experiments confirmed that within the accuracy of the current method, the dosimeter response was independent of beam energies and dose rates used for IMRT treatments. The method was applied to IMRT treatment plans, and the dose determinations were compared to ionization chamber measurements. The experiments showed that absorbed doses above 3 Gy could be measured with an uncertainty of less than 2.5% of the dose (coverage factor k = 1.96). Measurement time was about 15 min using a well-calibrated dosimeter batch. The conclusion drawn from the investigation was that lithium formate EPR dosimetry is a promising new tool for absorbed dose measurements in external beam radiation therapy, especially for doses above 3 Gy.

  3. SU-G-JeP3-06: Lower KV Image Dose Are Expected From a Limited-Angle Intra-Fractional Verification (LIVE) System for SBRT Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, G; Yin, F; Ren, L

    Purpose: In order to track the tumor movement for patient positioning verification during arc treatment delivery or in between 3D/IMRT beams for stereotactic body radiation therapy (SBRT), the limited-angle kV projections acquisition simultaneously during arc treatment delivery or in-between static treatment beams as the gantry moves to the next beam angle was proposed. The purpose of this study is to estimate additional imaging dose resulting from multiple tomosynthesis acquisitions in-between static treatment beams and to compare with that of a conventional kV-CBCT acquisition. Methods: kV imaging system integrated into Varian TrueBeam accelerators was modeled using EGSnrc Monte Carlo user code,more » BEAMnrc and DOSXYZnrc code was used in dose calculations. The simulated realistic kV beams from the Varian TrueBeam OBI 1.5 system were used to calculate dose to patient based on CT images. Organ doses were analyzed using DVHs. The imaging dose to patient resulting from realistic multiple tomosynthesis acquisitions with each 25–30 degree kV source rotation between 6 treatment beam gantry angles was studied. Results: For a typical lung SBRT treatment delivery much lower (20–50%) kV imaging doses from the sum of realistic six tomosynthesis acquisitions with each 25–30 degree x-ray source rotation between six treatment beam gantry angles were observed compared to that from a single CBCT image acquisition. Conclusion: This work indicates that the kV imaging in this proposed Limited-angle Intra-fractional Verification (LIVE) System for SBRT Treatments has a negligible imaging dose increase. It is worth to note that the MV imaging dose caused by MV projection acquisition in-between static beams in LIVE can be minimized by restricting the imaging to the target region and reducing the number of projections acquired. For arc treatments, MV imaging acquisition in LIVE does not add additional imaging dose as the MV images are acquired from treatment beams directly during the treatment.« less

  4. SU-E-T-105: Development of 3D Dose Verification System for Volumetric Modulated Arc Therapy Using Improved Polyacrylamide-Based Gel Dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, K; Fujimoto, S; Akagi, Y

    2014-06-01

    Purpose: The aim of this dosimetric study was to develop 3D dose verification system for volumetric modulated arc therapy (VMAT) using polyacrylamide-based gel (PAGAT) dosimeter improved the sensitivity by magnesium chloride (MgCl{sub 2}). Methods: PAGAT gel containing MgCl{sub 2} as a sensitizer was prepared in this study. Methacrylic-acid-based gel (MAGAT) was also prepared to compare the dosimetric characteristics with PAGAT gel. The cylindrical glass vials (4 cm diameter, 12 cm length) filled with each polymer gel were irradiated with 6 MV photon beam using Novalis Tx linear accelerator (Varian/BrainLAB). The irradiated polymer gel dosimeters were scanned with Signa 1.5 Tmore » MRI system (GE), and dose calibration curves were obtained using T{sub 2} relaxation rate (R{sub 2} = 1/T{sub 2}). Dose rate (100-600 MU min{sup −1}) and fractionation (1-8 fractions) were varied. In addition, a cubic acrylic phantom (10 × 10 × 10 cm{sup 3}) filled with improved PAGAT gel inserted into the IMRT phantom (IBA) was irradiated with VMAT (RapidArc). C-shape structure was used for the VMAT planning by the Varian Eclipse treatment planning system (TPS). The dose comparison of TPS and measurements with the polymer gel dosimeter was accomplished by the gamma index analysis, overlaying the dose profiles for a set of data on selected planes using in-house developed software. Results: Dose rate and fractionation dependence of improved PAGAT gel were smaller than MAGAT gel. A high similarity was found by overlaying the dose profiles measured with improved PAGAT gel dosimeter and the TPS dose, and the mean pass rate of the gamma index analysis using 3%/3 mm criteria was achieved 90% on orthogonal planes for VMAT using improved PAGAT gel dosimeter. Conclusion: In-house developed 3D dose verification system using improved polyacrylamide-based gel dosimeter had a potential as an effective tool for VMAT QA.« less

  5. SU-F-T-399: Migration of Treatment Planning Systems Without Beam Data Measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolakanahalli, R; Tewatia, D

    2016-06-15

    Purpose: Data acquisition for commissioning is steered by Treatment Planning System (TPS) requirements which can be cumbersome and time consuming involving significant clinic downtime. The purpose of this abstract is to answer if we could circumvent this by extracting data from existing TPS and speed up the process. Methods: Commissioning beam data was obtained from a clinically commissioned TPS (Pinnacle™) using Matlab™ generated Pinnacle™ executable scripts to commission a secondary 3D dose verification TPS (Eclipse™). Profiles and output factors for commissioning as required by Eclipse™ were computed on a 50 cm{sup 3} water phantom at a dose grid resolution ofmore » 2mm3. Verification doses were computed and compared to clinical TPS dose profiles as per TG-106 guidelines. Standard patient plans from Pinnacle™ including IMRT and VMAT plans were re-computed keeping the same monitor units (in order to perform true comparison) using Eclipse™. Computed dose was exported back to Pinnacle for comparison to original plans. This methodology enables us to alleviate all ambiguities that arise in such studies. Results: Profile analysis using in-house software for 6x, showed that for all field sizes including small MLC generated fields, 100% of infield and penumbra data points of Eclipse™ match Pinnacle™ generated and measured profiles with 2%/2 mm gamma criteria. Excellent agreement was observed in the penumbra regions, with all data points passing DTA criteria for complex C-shaped and S-shaped profiles. Patient plan dose volume histograms (DVHs) and isodose lines agreed well to within a 1.5% for target coverage. Conclusion: Secondary 3D dose checking is of utmost importance with advanced techniques such as IMRT and VMAT. Migration of TPS is possible without compromising accuracy or enduring the cumbersome measurement of commissioning data. Economizing time for commissioning such a verification system or for migration of TPS can add great QA value and minimize downtime.« less

  6. Dependency of EBT2 film calibration curve on postirradiation time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Liyun, E-mail: liyunc@isu.edu.tw; Ding, Hueisch-Jy; Ho, Sheng-Yow

    2014-02-15

    Purpose: The Ashland Inc. product EBT2 film model is a widely used quality assurance tool, especially for verification of 2-dimensional dose distributions. In general, the calibration film and the dose measurement film are irradiated, scanned, and calibrated at the same postirradiation time (PIT), 1-2 days after the films are irradiated. However, for a busy clinic or in some special situations, the PIT for the dose measurement film may be different from that of the calibration film. In this case, the measured dose will be incorrect. This paper proposed a film calibration method that includes the effect of PIT. Methods: Themore » dose versus film optical density was fitted to a power function with three parameters. One of these parameters was PIT dependent, while the other two were found to be almost constant with a standard deviation of the mean less than 4%. The PIT-dependent parameter was fitted to another power function of PIT. The EBT2 film model was calibrated using the PDD method with 14 different PITs ranging from 1 h to 2 months. Ten of the fourteen PITs were used for finding the fitting parameters, and the other four were used for testing the model. Results: The verification test shows that the differences between the delivered doses and the film doses calculated with this modeling were mainly within 2% for delivered doses above 60 cGy, and the total uncertainties were generally under 5%. The errors and total uncertainties of film dose calculation were independent of the PIT using the proposed calibration procedure. However, the fitting uncertainty increased with decreasing dose or PIT, but stayed below 1.3% for this study. Conclusions: The EBT2 film dose can be modeled as a function of PIT. For the ease of routine calibration, five PITs were suggested to be used. It is recommended that two PITs be located in the fast developing period (1∼6 h), one in 1 ∼ 2 days, one around a week, and one around a month.« less

  7. Dosimetric evaluation of intrafractional tumor motion by means of a robot driven phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, Anne; Wilbert, Juergen; Flentje, Michael

    2011-10-15

    Purpose: The aim of the work was to investigate the influence of intrafractional tumor motion to the accumulated (absorbed) dose. The accumulated dose was determined by means of calculations and measurements with a robot driven motion phantom. Methods: Different motion scenarios and compensation techniques were realized in a phantom study to investigate the influence of motion on image acquisition, dose calculation, and dose measurement. The influence of motion on the accumulated dose was calculated by employing two methods (a model based and a voxel based method). Results: Tumor motion resulted in a blurring of steep dose gradients and a reductionmore » of dose at the periphery of the target. A systematic variation of motion parameters allowed the determination of the main influence parameters on the accumulated dose. The key parameters with the greatest influence on dose were the mean amplitude and the pattern of motion. Investigations on necessary safety margins to compensate for dose reduction have shown that smaller safety margins are sufficient, if the developed concept with optimized margins (OPT concept) was used instead of the standard internal target volume (ITV) concept. Both calculation methods were a reasonable approximation of the measured dose with the voxel based method being in better agreement with the measurements. Conclusions: Further evaluation of available systems and algorithms for dose accumulation are needed to create guidelines for the verification of the accumulated dose.« less

  8. Characterization and clinical evaluation of a novel 2D detector array for conventional and flattening filter free (FFF) IMRT pre-treatment verification.

    PubMed

    Sekar, Yuvaraj; Thoelking, Johannes; Eckl, Miriam; Kalichava, Irakli; Sihono, Dwi Seno Kuncoro; Lohr, Frank; Wenz, Frederik; Wertz, Hansjoerg

    2018-04-01

    The novel MatriXX FFF (IBA Dosimetry, Germany) detector is a new 2D ionization chamber detector array designed for patient specific IMRT-plan verification including flattening-filter-free (FFF) beams. This study provides a detailed analysis of the characterization and clinical evaluation of the new detector array. The verification of the MatriXX FFF was subdivided into (i) physical dosimetric tests including dose linearity, dose rate dependency and output factor measurements and (ii) patient specific IMRT pre-treatment plan verifications. The MatriXX FFF measurements were compared to the calculated dose distribution of a commissioned treatment planning system by gamma index and dose difference evaluations for 18 IMRT-sequences. All IMRT-sequences were measured with original gantry angles and with collapsing all beams to 0° gantry angle to exclude the influence of the detector's angle dependency. The MatriXX FFF was found to be linear and dose rate independent for all investigated modalities (deviations ≤0.6%). Furthermore, the output measurements of the MatriXX FFF were in very good agreement to reference measurements (deviations ≤1.8%). For the clinical evaluation an average pixel passing rate for γ (3%,3mm) of (98.5±1.5)% was achieved when applying a gantry angle correction. Also, with collapsing all beams to 0° gantry angle an excellent agreement to the calculated dose distribution was observed (γ (3%,3mm) =(99.1±1.1)%). The MatriXX FFF fulfills all physical requirements in terms of dosimetric accuracy. Furthermore, the evaluation of the IMRT-plan measurements showed that the detector particularly together with the gantry angle correction is a reliable device for IMRT-plan verification including FFF. Copyright © 2017. Published by Elsevier GmbH.

  9. Clinical commissioning of an in vivo range verification system for prostate cancer treatment with anterior and anterior oblique proton beams

    NASA Astrophysics Data System (ADS)

    Hoesl, M.; Deepak, S.; Moteabbed, M.; Jassens, G.; Orban, J.; Park, Y. K.; Parodi, K.; Bentefour, E. H.; Lu, H. M.

    2016-04-01

    The purpose of this work is the clinical commissioning of a recently developed in vivo range verification system (IRVS) for treatment of prostate cancer by anterior and anterior oblique proton beams. The IRVS is designed to perform a complete workflow for pre-treatment range verification and adjustment. It contains specifically designed dosimetry and electronic hardware and a specific software for workflow control with database connection to the treatment and imaging systems. An essential part of the IRVS system is an array of Si-diode detectors, designed to be mounted to the endorectal water balloon routinely used for prostate immobilization. The diodes can measure dose rate as function of time from which the water equivalent path length (WEPL) and the dose received are extracted. The former is used for pre-treatment beam range verification and correction, if necessary, while the latter is to monitor the dose delivered to patient rectum during the treatment and serves as an additional verification. The entire IRVS workflow was tested for anterior and 30 degree inclined proton beam in both solid water and anthropomorphic pelvic phantoms, with the measured WEPL and rectal doses compared to the treatment plan. Gafchromic films were also used for measurement of the rectal dose and compared to IRVS results. The WEPL measurement accuracy was in the order of 1 mm and after beam range correction, the dose received by the rectal wall were 1.6% and 0.4% from treatment planning, respectively, for the anterior and anterior oblique field. We believe the implementation of IRVS would make the treatment of prostate with anterior proton beams more accurate and reliable.

  10. In vivo dose verification of IMRT treated head and neck cancer patients.

    PubMed

    Engström, Per E; Haraldsson, Pia; Landberg, Torsten; Sand Hansen, Hanne; Aage Engelholm, Svend; Nyström, Håkan

    2005-01-01

    An independent in vivo dose verification procedure for IMRT treatments of head and neck cancers was developed. Results of 177 intracavitary TLD measurements from 10 patients are presented. The study includes data from 10 patients with cancer of the rhinopharynx or the thyroid treated with dynamic IMRT. Dose verification was performed by insertion of a flexible naso-oesophageal tube containing TLD rods and markers for EPID and simulator image detection. Part of the study focussed on investigating the accuracy of the TPS calculations in the presence of inhomogeneities. Phantom measurements and Monte Carlo simulations were performed for a number of geometries involving lateral electronic disequilibrium and steep density shifts. The in vivo TLD measurements correlated well with the predictions of the treatment planning system with a measured/calculated dose ratio of 1.002+/-0.051 (1 SD, N=177). The measurements were easily performed and well tolerated by the patients. We conclude that in vivo intracavitary dosimetry with TLD is suitable and accurate for dose determination in intensity-modulated beams.

  11. Multicentre validation of IMRT pre-treatment verification: comparison of in-house and external audit.

    PubMed

    Jornet, Núria; Carrasco, Pablo; Beltrán, Mercè; Calvo, Juan Francisco; Escudé, Lluís; Hernández, Victor; Quera, Jaume; Sáez, Jordi

    2014-09-01

    We performed a multicentre intercomparison of IMRT optimisation and dose planning and IMRT pre-treatment verification methods and results. The aims were to check consistency between dose plans and to validate whether in-house pre-treatment verification results agreed with those of an external audit. Participating centres used two mock cases (prostate and head and neck) for the intercomparison and audit. Compliance to dosimetric goals and total number of MU per plan were collected. A simple quality index to compare the different plans was proposed. We compared gamma index pass rates using the centre's equipment and methodology to those of an external audit. While for the prostate case, all centres fulfilled the dosimetric goals and plan quality was homogeneous, that was not the case for the head and neck case. The number of MU did not correlate with the plan quality index. Pre-treatment verifications results of the external audit did not agree with those of the in-house measurements for two centres: being within tolerance for in-house measurements and unacceptable for the audit or the other way round. Although all plans fulfilled dosimetric constraints, plan quality is highly dependent on the planner expertise. External audits are an excellent tool to detect errors in IMRT implementation and cannot be replaced by intercomparison using results obtained by centres. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. TU-FG-BRB-05: A 3 Dimensional Prompt Gamma Imaging System for Range Verification in Proton Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draeger, E; Chen, H; Polf, J

    2016-06-15

    Purpose: To report on the initial developments of a clinical 3-dimensional (3D) prompt gamma (PG) imaging system for proton radiotherapy range verification. Methods: The new imaging system under development consists of a prototype Compton camera to measure PG emission during proton beam irradiation and software to reconstruct, display, and analyze 3D images of the PG emission. For initial test of the system, PGs were measured with a prototype CC during a 200 cGy dose delivery with clinical proton pencil beams (ranging from 100 MeV – 200 MeV) to a water phantom. Measurements were also carried out with the CC placedmore » 15 cm from the phantom for a full range 150 MeV pencil beam and with its range shifted by 2 mm. Reconstructed images of the PG emission were displayed by the clinical PG imaging software and compared to the dose distributions of the proton beams calculated by a commercial treatment planning system. Results: Measurements made with the new PG imaging system showed that a 3D image could be reconstructed from PGs measured during the delivery of 200 cGy of dose, and that shifts in the Bragg peak range of as little as 2 mm could be detected. Conclusion: Initial tests of a new PG imaging system show its potential to provide 3D imaging and range verification for proton radiotherapy. Based on these results, we have begun work to improve the system with the goal that images can be produced from delivery of as little as 20 cGy so that the system could be used for in-vivo proton beam range verification on a daily basis.« less

  13. Simulation-based MDP verification for leading-edge masks

    NASA Astrophysics Data System (ADS)

    Su, Bo; Syrel, Oleg; Pomerantsev, Michael; Hagiwara, Kazuyuki; Pearman, Ryan; Pang, Leo; Fujimara, Aki

    2017-07-01

    For IC design starts below the 20nm technology node, the assist features on photomasks shrink well below 60nm and the printed patterns of those features on masks written by VSB eBeam writers start to show a large deviation from the mask designs. Traditional geometry-based fracturing starts to show large errors for those small features. As a result, other mask data preparation (MDP) methods have become available and adopted, such as rule-based Mask Process Correction (MPC), model-based MPC and eventually model-based MDP. The new MDP methods may place shot edges slightly differently from target to compensate for mask process effects, so that the final patterns on a mask are much closer to the design (which can be viewed as the ideal mask), especially for those assist features. Such an alteration generally produces better masks that are closer to the intended mask design. Traditional XOR-based MDP verification cannot detect problems caused by eBeam effects. Much like model-based OPC verification which became a necessity for OPC a decade ago, we see the same trend in MDP today. Simulation-based MDP verification solution requires a GPU-accelerated computational geometry engine with simulation capabilities. To have a meaningful simulation-based mask check, a good mask process model is needed. The TrueModel® system is a field tested physical mask model developed by D2S. The GPU-accelerated D2S Computational Design Platform (CDP) is used to run simulation-based mask check, as well as model-based MDP. In addition to simulation-based checks such as mask EPE or dose margin, geometry-based rules are also available to detect quality issues such as slivers or CD splits. Dose margin related hotspots can also be detected by setting a correct detection threshold. In this paper, we will demonstrate GPU-acceleration for geometry processing, and give examples of mask check results and performance data. GPU-acceleration is necessary to make simulation-based mask MDP verification acceptable.

  14. High-resolution fluence verification for treatment plan specific QA in ion beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Martišíková, Mária; Brons, Stephan; Hesse, Bernd M.; Jäkel, Oliver

    2013-03-01

    Ion beam radiotherapy exploits the finite range of ion beams and the increased dose deposition of ions toward the end of their range in material. This results in high dose conformation to the target region, which can be further increased using scanning ion beams. The standard method for patient-plan verification in ion beam therapy is ionization chamber dosimetry. The spatial resolution of this method is given by the distance between the chambers (typically 1 cm). However, steep dose gradients created by scanning ion beams call for more information and improved spatial resolution. Here we propose a clinically applicable method, supplementary to standard patient-plan verification. It is based on ion fluence measurements in the entrance region with high spatial resolution in the plane perpendicular to the beam, separately for each energy slice. In this paper the usability of the RID256 L amorphous silicon flat-panel detector for the measurements proposed is demonstrated for carbon ion beams. The detector provides sufficient spatial resolution for this kind of measurement (pixel pitch 0.8 mm). The experiments were performed at the Heidelberg Ion-Beam Therapy Center in Germany. This facility is equipped with a synchrotron capable of accelerating ions from protons up to oxygen to energies between 48 and 430 MeV u-1. Beam application is based on beam scanning technology. The measured signal corresponding to single energy slices was translated to ion fluence on a pixel-by-pixel basis, using calibration, which is dependent on energy and ion type. To quantify the agreement of the fluence distributions measured with those planned, a gamma-index criterion was used. In the patient field investigated excellent agreement was found between the two distributions. At least 95% of the slices contained more than 96% of points agreeing with our criteria. Due to the high spatial resolution, this method is especially valuable for measurements of strongly inhomogeneous fluence distributions like those in intensity-modulated treatment plans or plans including dose painting. Since no water phantom is needed to perform measurements, the flat-panel detector investigated has high potential for use with gantries. Before the method can be used in the clinical routine, it has to be sufficiently tested for each detector-facility combination.

  15. The use of National Weather Service Data to Compute the Dose to the MEOI.

    PubMed

    Vickers, Linda

    2018-05-01

    The Turner method is the "benchmark method" for computing the stability class that is used to compute the X/Q (s m). The Turner method should be used to ascertain the validity of X/Q results determined by other methods. This paper used site-specific meteorological data obtained from the National Weather Service. The Turner method described herein is simple, quick, accurate, and transparent because all of the data, calculations, and results are visible for verification and validation with published literature.

  16. An in vivo dose verification method for SBRT–VMAT delivery using the EPID

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCowan, P. M., E-mail: peter.mccowan@cancercare.mb.ca; Medical Physics Department, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba R3E 0V9; Van Uytven, E.

    2015-12-15

    Purpose: Radiation treatments have become increasingly more complex with the development of volumetric modulated arc therapy (VMAT) and the use of stereotactic body radiation therapy (SBRT). SBRT involves the delivery of substantially larger doses over fewer fractions than conventional therapy. SBRT–VMAT treatments will strongly benefit from in vivo patient dose verification, as any errors in delivery can be more detrimental to the radiobiology of the patient as compared to conventional therapy. Electronic portal imaging devices (EPIDs) are available on most commercial linear accelerators (Linacs) and their documented use for dosimetry makes them valuable tools for patient dose verification. In thismore » work, the authors customize and validate a physics-based model which utilizes on-treatment EPID images to reconstruct the 3D dose delivered to the patient during SBRT–VMAT delivery. Methods: The SBRT Linac head, including jaws, multileaf collimators, and flattening filter, were modeled using Monte Carlo methods and verified with measured data. The simulation provides energy spectrum data that are used by their “forward” model to then accurately predict fluence generated by a SBRT beam at a plane above the patient. This fluence is then transported through the patient and then the dose to the phosphor layer in the EPID is calculated. Their “inverse” model back-projects the EPID measured focal fluence to a plane upstream of the patient and recombines it with the extra-focal fluence predicted by the forward model. This estimate of total delivered fluence is then forward projected onto the patient’s density matrix and a collapsed cone convolution algorithm calculates the dose delivered to the patient. The model was tested by reconstructing the dose for two prostate, three lung, and two spine SBRT–VMAT treatment fractions delivered to an anthropomorphic phantom. It was further validated against actual patient data for a lung and spine SBRT–VMAT plan. The results were verified with the treatment planning system (TPS) (ECLIPSE AAA) dose calculation. Results: The SBRT–VMAT reconstruction model performed very well when compared to the TPS. A stringent 2%/2 mm χ-comparison calculation gave pass rates better than 91% for the prostate plans, 88% for the lung plans, and 86% for the spine plans for voxels containing 80% or more of the prescribed dose. Patient data were 86% for the lung and 95% for the spine. A 3%/3 mm χ-comparison was also performed and gave pass rates better than 93% for all plan types. Conclusions: The authors have customized and validated a robust, physics-based model that calculates the delivered dose to a patient for SBRT–VMAT delivery using on-treatment EPID images. The accuracy of the results indicates that this approach is suitable for clinical implementation. Future work will incorporate this model into both offline and real-time clinical adaptive radiotherapy.« less

  17. In vivo dosimetry and shielding disk alignment verification by EBT3 GAFCHROMIC film in breast IOERT treatment.

    PubMed

    Severgnini, Mara; de Denaro, Mario; Bortul, Marina; Vidali, Cristiana; Beorchia, Aulo

    2014-01-08

    Intraoperative electron radiation therapy (IOERT) cannot usually benefit, as conventional external radiotherapy, from software systems of treatment planning based on computed tomography and from common dose verify procedures. For this reason, in vivo film dosimetry (IVFD) proves to be an effective methodology to evaluate the actual radiation dose delivered to the target. A practical method for IVFD during breast IOERT was carried out to improve information on the dose actually delivered to the tumor target and on the alignment of the shielding disk with respect to the electron beam. Two EBT3 GAFCHROMIC films have been positioned on the two sides of the shielding disk in order to obtain the dose maps at the target and beyond the disk. Moreover the postprocessing analysis of the dose distribution measured on the films provides a quantitative estimate of the misalignment between the collimator and the disk. EBT3 radiochromic films have been demonstrated to be suitable dosimeters for IVD due to their linear dose-optical density response in a narrow range around the prescribed dose, as well as their capability to be fixed to the shielding disk without giving any distortion in the dose distribution. Off-line analysis of the radiochromic film allowed absolute dose measurements and this is indeed a very important verification of the correct exposure to the target organ, as well as an estimate of the dose to the healthy tissue underlying the shielding. These dose maps allow surgeons and radiation oncologists to take advantage of qualitative and quantitative feedback for setting more accurate treatment strategies and further optimized procedures. The proper alignment using elastic bands has improved the absolute dose accuracy and the collimator disk alignment by more than 50%.

  18. A novel method for dose distribution registration using fiducial marks made by a megavoltage beam in film dosimetry for intensity-modulated radiation therapy quality assurance.

    PubMed

    Nakayama, Shinichi; Monzen, Hajime; Oonishi, Yuuichi; Mizote, Rika; Iramina, Hiraku; Kaneshige, Souichirou; Mizowaki, Takashi

    2015-06-01

    Photographic film is widely used for the dose distribution verification of intensity-modulated radiation therapy (IMRT). However, analysis for verification of the results is subjective. We present a novel method for marking the isocenter using irradiation from a megavoltage (MV) beam transmitted through slits in a multi-leaf collimator (MLC). We evaluated the effect of the marking irradiation at 500 monitor units (MU) on the total transmission through the MLC using an ionization chamber and Radiochromic Film. Film dosimetry was performed for quality assurance (QA) of IMRT plans. Three methods of registration were used for each film: marking by irradiating with an MV beam through slits in the MLC (MLC-IC); marking with a fabricated phantom (Phantom-IC); and a subjective method based on isodose lines (Manual). Each method was subjected to local γ-analysis. The effect of the marking irradiation on the total transmission was 0.16%, as measured by a ionization chamber at a 10-cm depth in a solid phantom, while the inter-leaf transmission was 0.3%, determined from the film. The mean pass rates for each registration method agreed within ± 1% when the criteria used were a distance-to-agreement (DTA) of 3 mm and a dose difference (DD) of 3%. For DTA/DD criteria of 2mm/3%, the pass rates in the sagittal plane were 96.09 ± 0.631% (MLC-IC), 96.27 ± 0.399% (Phantom-IC), and 95.62 ± 0.988% (Manual). The present method is a versatile and useful method of improving the objectivity of film dosimetry for IMRT QA. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H; Lin, H; Darafsheh, A

    Purpose: To characterize basic performance of plastic scintillator detectors (PSD) designed for dosimetry of radiation therapy. Methods: The Exradin W1 Scintillator is a plastic scintillating fiber-based detector designed for highly accurate measurement of small radiotherapy fields used in patient plan verification and machine commissioning and QA procedures. The Cerenkov emissions were corrected using spectral separation. The optical signal was converted to electronic signal with a photodiode. We measured its dosimetry performance, including percentage depth dose, output factor, dose and dose rate linear response. We compared the dosimetry results with reference ion chamber measurements. Results: The dosimetry results of PSD agreemore » well with reference ion chamber measurements. For percentage depth dose, the differences between PSD and ion chamber results are on average 1.7±1.1% and 0.8±0.8% with a maximum of 3.5% and 2.7% for 6MV and 15MV beams, respectively. For the output factors, PSD measurements are within 2% from ion chamber results. The dose linear response is within 1% when dose is larger than 20 MU for both 6 MV and 15 MV. The dose rate linear response is within 1% for the entire dose rate used (100 MU/min to 600MU/min). Conclusions: The current design of PSD is feasible for the dosimtry measurement in radiation therapy. This combination of PSD and photodiode system could be extended to multichannel array detection of dose distribution. It might as well be used as range verification in proton therapy. The work is partially supported by: DOD (W81XWH-09-2-0174) and American Cancer Society (IRG-78-002-28)« less

  20. SU-E-T-229: Craniospinal Radiotherapy Planning with VMAT, Two First Years Experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lliso, F; Carmona, V; Gimeno, J

    2015-06-15

    Purpose: To describe how we moved to VMAT in the craniospinal radiotherapy planning process, the actual procedure details, and the results for the patients treated. Methods: Twelve patients underwent craniospinal irradiation with the new procedure, based on the paper by Lee et al. (IJROBP 82, 2012), with some additional modifications. Patients were treated in supine position in Varian Clinac iX linacs with 6 MV RapidArc; prescription doses ranged from 23.4 to 40 Gy (13 to 20 fractions); depending on the PTV length, 2 or 3 isocenters were used, all coordinates being equal except the longitudinal one, setting a few centimeter-longmore » overlapping region; 2 arcs (RA) sharing isocentre for the cranial region, RA1 encompassing cranium and superior spinal region, and RA2 intended to improve conformity, only for cranium; for spine, 1 or 2 isocenters were employed; optimization was performed with Eclipse (V 13.0) using AAA algorithm, establishing sets of optimization parameters to give high conformity while sparing OAR. In pediatric patients, homogeneous irradiation of the vertebrae was also required.Conformity (CI) and heterogeneity (HI) indices (same as Lee et al.), and mean and maximum doses for OAR were calculated. Several pre-treatment verification methods were used: Octavius4D (PTW) for each isocentre, point dose at the junction region, Portal Dosimetry (when possible), and independent MU verification software (Diamond, PTW). Results: CI median value was 1.02 (0.99–1.07) and HI, 1.07 (1.06–1.09); a great reduction was observed for CI and OAR mean doses with respect to Lee et al. data; median maximum eye lens dose was 7.3 Gy (4.0–12.0); mean LungV20Gy was 1.9%; in children, vertebrae were homogeneously irradiated (D95%=20.8 Gy, Dmean= 23.2 Gy).All pre-treatment verifications were found within our action levels except for Portal Dosimetry. Conclusion: A RapidArc planning process for craniospinal axis irradiation has been implemented with significant advantages on conformity, homogeneity, feasibility and efficiency. and increase brain tissue sparing. Variations in volume decrease may be related to shape or location of the tumor.« less

  1. Dose verification to cochlea during gamma knife radiosurgery of acoustic schwannoma using MOSFET dosimeter.

    PubMed

    Sharma, Sunil D; Kumar, Rajesh; Akhilesh, Philomina; Pendse, Anil M; Deshpande, Sudesh; Misra, Basant K

    2012-01-01

    Dose verification to cochlea using metal oxide semiconductor field effect transistor (MOSFET) dosimeter using a specially designed multi slice head and neck phantom during the treatment of acoustic schwannoma by Gamma Knife radiosurgery unit. A multi slice polystyrene head phantom was designed and fabricated for measurement of dose to cochlea during the treatment of the acoustic schwannoma. The phantom has provision to position the MOSFET dosimeters at the desired location precisely. MOSFET dosimeters of 0.2 mm x 0.2 mm x 0.5 μm were used to measure the dose to the cochlea. CT scans of the phantom with MOSFETs in situ were taken along with Leksell frame. The treatment plans of five patients treated earlier for acoustic schwannoma were transferred to the phantom. Dose and coordinates of maximum dose point inside the cochlea were derived. The phantom along with the MOSFET dosimeters was irradiated to deliver the planned treatment and dose received by cochlea were measured. The treatment planning system (TPS) estimated and measured dose to the cochlea were in the range of 7.4 - 8.4 Gy and 7.1 - 8 Gy, respectively. The maximum variation between TPS calculated and measured dose to cochlea was 5%. The measured dose values were found in good agreement with the dose values calculated using the TPS. The MOSFET dosimeter can be a suitable choice for routine dose verification in the Gamma Knife radiosurgery.

  2. SU-G-201-05: Comparison of Different Methods for Output Verification of Eleckta Nucletron’s Valencia Skin Applicators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, J; Yudelev, M

    2016-06-15

    Purpose: The provided output factors for Elekta Nucletron’s skin applicators are based on Monte Carlo simulations. These outputs have not been independently verified, and there is no recognized method for output verification of the vendor’s applicators. The purpose of this work is to validate the outputs provided by the vendor experimentally. Methods: Using a Flexitron Ir-192 HDR unit, three experimental methods were employed to determine dose with the 30 mm diameter Valencia applicator: first a gradient method using extrapolation ionization chamber (Far West Technology, EIC-1) measurements in solid water phantom at 3 mm SCD was used. The dose was derivedmore » based on first principles. Secondly a combination of a parallel plate chamber (Exradin A-10) and the EIC-1 was used to determine air kerma at 3 mm SCD. The air kerma was converted to dose to water in line with TG-61 formalism by using a muen ratio and a scatter factor measured with the skin applicators. Similarly a combination of the A-10 parallel plate chamber and gafchromic film (EBT 3) was also used. The Nk factor for the A-10 chamber was obtained through linear interpolation between ADCL supplied Nk factors for Cs-137 and M250. Results: EIC-1 measurements in solid water defined the outputs factor at 3 mm as 0.1343 cGy/U hr. The combination of A-10/ EIC-1 and A-10/EBT3 lead to output factors of 0.1383 and 0.1568 cGy/U hr, respectively. For comparison the output recommended by the vendor is 0.1659 cGy/U hr. Conclusion: All determined dose rates were lower than the vendor supplied values. The observed discrepancy between extrapolation chamber and film methods can be ascribed to extracameral gradient effects that may not be fully accounted for by the former method.« less

  3. Range Verification Methods in Particle Therapy: Underlying Physics and Monte Carlo Modeling

    PubMed Central

    Kraan, Aafke Christine

    2015-01-01

    Hadron therapy allows for highly conformal dose distributions and better sparing of organs-at-risk, thanks to the characteristic dose deposition as function of depth. However, the quality of hadron therapy treatments is closely connected with the ability to predict and achieve a given beam range in the patient. Currently, uncertainties in particle range lead to the employment of safety margins, at the expense of treatment quality. Much research in particle therapy is therefore aimed at developing methods to verify the particle range in patients. Non-invasive in vivo monitoring of the particle range can be performed by detecting secondary radiation, emitted from the patient as a result of nuclear interactions of charged hadrons with tissue, including β+ emitters, prompt photons, and charged fragments. The correctness of the dose delivery can be verified by comparing measured and pre-calculated distributions of the secondary particles. The reliability of Monte Carlo (MC) predictions is a key issue. Correctly modeling the production of secondaries is a non-trivial task, because it involves nuclear physics interactions at energies, where no rigorous theories exist to describe them. The goal of this review is to provide a comprehensive overview of various aspects in modeling the physics processes for range verification with secondary particles produced in proton, carbon, and heavier ion irradiation. We discuss electromagnetic and nuclear interactions of charged hadrons in matter, which is followed by a summary of some widely used MC codes in hadron therapy. Then, we describe selected examples of how these codes have been validated and used in three range verification techniques: PET, prompt gamma, and charged particle detection. We include research studies and clinically applied methods. For each of the techniques, we point out advantages and disadvantages, as well as clinical challenges still to be addressed, focusing on MC simulation aspects. PMID:26217586

  4. In vivo dosimetry and shielding disk alignment verification by EBT3 GAFCHROMIC film in breast IOERT treatment

    PubMed Central

    de Denaro, Mario; Bortul, Marina; Vidali, Cristiana; Beorchia, Aulo

    2014-01-01

    Intraoperative electron radiation therapy (IOERT) cannot usually benefit, as conventional external radiotherapy, from software systems of treatment planning based on computed tomography and from common dose verify procedures. For this reason, in vivo film dosimetry (IVFD) proves to be an effective methodology to evaluate the actual radiation dose delivered to the target. A practical method for IVFD during breast IOERT was carried out to improve information on the dose actually delivered to the tumor target and on the alignment of the shielding disk with respect to the electron beam. Two EBT3 GAFCHROMIC films have been positioned on the two sides of the shielding disk in order to obtain the dose maps at the target and beyond the disk. Moreover the postprocessing analysis of the dose distribution measured on the films provides a quantitative estimate of the misalignment between the collimator and the disk. EBT3 radiochromic films have been demonstrated to be suitable dosimeters for IVD due to their linear dose‐optical density response in a narrow range around the prescribed dose, as well as their capability to be fixed to the shielding disk without giving any distortion in the dose distribution. Off‐line analysis of the radiochromic film allowed absolute dose measurements and this is indeed a very important verification of the correct exposure to the target organ, as well as an estimate of the dose to the healthy tissue underlying the shielding. These dose maps allow surgeons and radiation oncologists to take advantage of qualitative and quantitative feedback for setting more accurate treatment strategies and further optimized procedures. The proper alignment using elastic bands has improved the absolute dose accuracy and the collimator disk alignment by more than 50%. PACS number: 87.55.kh

  5. Multi-centre audit of VMAT planning and pre-treatment verification.

    PubMed

    Jurado-Bruggeman, Diego; Hernández, Victor; Sáez, Jordi; Navarro, David; Pino, Francisco; Martínez, Tatiana; Alayrach, Maria-Elena; Ailleres, Norbert; Melero, Alejandro; Jornet, Núria

    2017-08-01

    We performed a multi-centre intercomparison of VMAT dose planning and pre-treatment verification. The aims were to analyse the dose plans in terms of dosimetric quality and deliverability, and to validate whether in-house pre-treatment verification results agreed with those of an external audit. The nine participating centres encompassed different machines, equipment, and methodologies. Two mock cases (prostate and head and neck) were planned using one and two arcs. A plan quality index was defined to compare the plans and different complexity indices were calculated to check their deliverability. We compared gamma index pass rates using the centre's equipment and methodology to those of an external audit (global 3D gamma, absolute dose differences, 10% of maximum dose threshold). Log-file analysis was performed to look for delivery errors. All centres fulfilled the dosimetric goals but plan quality and delivery complexity were heterogeneous and uncorrelated, depending on the manufacturer and the planner's methodology. Pre-treatment verifications results were within tolerance in all cases for gamma 3%-3mm evaluation. Nevertheless, differences between the external audit and in-house measurements arose due to different equipment or methodology, especially for 2%-2mm criteria with differences up to 20%. No correlation was found between complexity indices and verification results amongst centres. All plans fulfilled dosimetric constraints, but plan quality and complexity did not correlate and were strongly dependent on the planner and the vendor. In-house measurements cannot completely replace external audits for credentialing. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. An in vivo dose verification method for SBRT-VMAT delivery using the EPID.

    PubMed

    McCowan, P M; Van Uytven, E; Van Beek, T; Asuni, G; McCurdy, B M C

    2015-12-01

    Radiation treatments have become increasingly more complex with the development of volumetric modulated arc therapy (VMAT) and the use of stereotactic body radiation therapy (SBRT). SBRT involves the delivery of substantially larger doses over fewer fractions than conventional therapy. SBRT-VMAT treatments will strongly benefit from in vivo patient dose verification, as any errors in delivery can be more detrimental to the radiobiology of the patient as compared to conventional therapy. Electronic portal imaging devices (EPIDs) are available on most commercial linear accelerators (Linacs) and their documented use for dosimetry makes them valuable tools for patient dose verification. In this work, the authors customize and validate a physics-based model which utilizes on-treatment EPID images to reconstruct the 3D dose delivered to the patient during SBRT-VMAT delivery. The SBRT Linac head, including jaws, multileaf collimators, and flattening filter, were modeled using Monte Carlo methods and verified with measured data. The simulation provides energy spectrum data that are used by their "forward" model to then accurately predict fluence generated by a SBRT beam at a plane above the patient. This fluence is then transported through the patient and then the dose to the phosphor layer in the EPID is calculated. Their "inverse" model back-projects the EPID measured focal fluence to a plane upstream of the patient and recombines it with the extra-focal fluence predicted by the forward model. This estimate of total delivered fluence is then forward projected onto the patient's density matrix and a collapsed cone convolution algorithm calculates the dose delivered to the patient. The model was tested by reconstructing the dose for two prostate, three lung, and two spine SBRT-VMAT treatment fractions delivered to an anthropomorphic phantom. It was further validated against actual patient data for a lung and spine SBRT-VMAT plan. The results were verified with the treatment planning system (TPS) (ECLIPSE AAA) dose calculation. The SBRT-VMAT reconstruction model performed very well when compared to the TPS. A stringent 2%/2 mm χ-comparison calculation gave pass rates better than 91% for the prostate plans, 88% for the lung plans, and 86% for the spine plans for voxels containing 80% or more of the prescribed dose. Patient data were 86% for the lung and 95% for the spine. A 3%/3 mm χ-comparison was also performed and gave pass rates better than 93% for all plan types. The authors have customized and validated a robust, physics-based model that calculates the delivered dose to a patient for SBRT-VMAT delivery using on-treatment EPID images. The accuracy of the results indicates that this approach is suitable for clinical implementation. Future work will incorporate this model into both offline and real-time clinical adaptive radiotherapy.

  7. Verification of Internal Dose Calculations.

    NASA Astrophysics Data System (ADS)

    Aissi, Abdelmadjid

    The MIRD internal dose calculations have been in use for more than 15 years, but their accuracy has always been questionable. There have been attempts to verify these calculations; however, these attempts had various shortcomings which kept the question of verification of the MIRD data still unanswered. The purpose of this research was to develop techniques and methods to verify the MIRD calculations in a more systematic and scientific manner. The research consisted of improving a volumetric dosimeter, developing molding techniques, and adapting the Monte Carlo computer code ALGAM to the experimental conditions and vice versa. The organic dosimetric system contained TLD-100 powder and could be shaped to represent human organs. The dosimeter possessed excellent characteristics for the measurement of internal absorbed doses, even in the case of the lungs. The molding techniques are inexpensive and were used in the fabrication of dosimetric and radioactive source organs. The adaptation of the computer program provided useful theoretical data with which the experimental measurements were compared. The experimental data and the theoretical calculations were compared for 6 source organ-7 target organ configurations. The results of the comparison indicated the existence of an agreement between measured and calculated absorbed doses, when taking into consideration the average uncertainty (16%) of the measurements, and the average coefficient of variation (10%) of the Monte Carlo calculations. However, analysis of the data gave also an indication that the Monte Carlo method might overestimate the internal absorbed doses. Even if the overestimate exists, at least it could be said that the use of the MIRD method in internal dosimetry was shown to lead to no unnecessary exposure to radiation that could be caused by underestimating the absorbed dose. The experimental and the theoretical data were also used to test the validity of the Reciprocity Theorem for heterogeneous phantoms, such as the MIRD phantom and its physical representation, Mr. ADAM. The results indicated that the Reciprocity Theorem is valid within an average range of uncertainty of 8%.

  8. Acoustic-based proton range verification in heterogeneous tissue: simulation studies

    NASA Astrophysics Data System (ADS)

    Jones, Kevin C.; Nie, Wei; Chu, James C. H.; Turian, Julius V.; Kassaee, Alireza; Sehgal, Chandra M.; Avery, Stephen

    2018-01-01

    Acoustic-based proton range verification (protoacoustics) is a potential in vivo technique for determining the Bragg peak position. Previous measurements and simulations have been restricted to homogeneous water tanks. Here, a CT-based simulation method is proposed and applied to a liver and prostate case to model the effects of tissue heterogeneity on the protoacoustic amplitude and time-of-flight range verification accuracy. For the liver case, posterior irradiation with a single proton pencil beam was simulated for detectors placed on the skin. In the prostate case, a transrectal probe measured the protoacoustic pressure generated by irradiation with five separate anterior proton beams. After calculating the proton beam dose deposition, each CT voxel’s material properties were mapped based on Hounsfield Unit values, and thermoacoustically-generated acoustic wave propagation was simulated with the k-Wave MATLAB toolbox. By comparing the simulation results for the original liver CT to homogenized variants, the effects of heterogeneity were assessed. For the liver case, 1.4 cGy of dose at the Bragg peak generated 50 mPa of pressure (13 cm distal), a 2×  lower amplitude than simulated in a homogeneous water tank. Protoacoustic triangulation of the Bragg peak based on multiple detector measurements resulted in 0.4 mm accuracy for a δ-function proton pulse irradiation of the liver. For the prostate case, higher amplitudes are simulated (92-1004 mPa) for closer detectors (<8 cm). For four of the prostate beams, the protoacoustic range triangulation was accurate to  ⩽1.6 mm (δ-function proton pulse). Based on the results, application of protoacoustic range verification to heterogeneous tissue will result in decreased signal amplitudes relative to homogeneous water tank measurements, but accurate range verification is still expected to be possible.

  9. SU-F-BRE-04: Construction of 3D Printed Patient Specific Phantoms for Dosimetric Verification Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehler, E; Higgins, P; Dusenbery, K

    2014-06-15

    Purpose: To validate a method to create per patient phantoms for dosimetric verification measurements. Methods: Using a RANDO phantom as a substitute for an actual patient, a model of the external features of the head and neck region of the phantom was created. A phantom was used instead of a human for two reasons: to allow for dosimetric measurements that would not be possible in-vivo and to avoid patient privacy issues. Using acrylonitrile butadiene styrene thermoplastic as the building material, a hollow replica was created using the 3D printer filled with a custom tissue equivalent mixture of paraffin wax, magnesiummore » oxide, and calcium carbonate. A traditional parallel-opposed head and neck plan was constructed. Measurements were performed with thermoluminescent dosimeters in both the RANDO phantom and in the 3D printed phantom. Calculated and measured dose was compared at 17 points phantoms including regions in high and low dose regions and at the field edges. On-board cone beam CT was used to localize both phantoms within 1mm and 1° prior to radiation. Results: The maximum difference in calculated dose between phantoms was 1.8% of the planned dose (180 cGy). The mean difference between calculated and measured dose in the anthropomorphic phantom and the 3D printed phantom was 1.9% ± 2.8% and −0.1% ± 4.9%, respectively. The difference between measured and calculated dose was determined in the RANDO and 3D printed phantoms. The differences between measured and calculated dose in each respective phantom was within 2% for 12 of 17 points. The overlap of the RANDO and 3D printed phantom was 0.956 (Jaccard Index). Conclusion: A custom phantom was created using a 3D printer. Dosimetric calculations and measurements showed good agreement between the dose in the RANDO phantom (patient substitute) and the 3D printed phantom.« less

  10. Feasibility of using glass-bead thermoluminescent dosimeters for radiotherapy treatment plan verification.

    PubMed

    Jafari, Shakardokht M; Jordan, Tom J; Distefano, Gail; Bradley, David A; Spyrou, Nicholas M; Nisbet, Andrew; Clark, Catharine H

    2015-01-01

    To investigate the feasibility of using glass beads as novel thermoluminescent dosemeters (TLDs) for radiotherapy treatment plan verification. Commercially available glass beads with a size of 1-mm thickness and 2-mm diameter were characterized as TLDs. Five clinical treatment plans including a conventional larynx, a conformal prostate, an intensity-modulated radiotherapy (IMRT) prostate and two stereotactic body radiation therapy (SBRT) lung plans were transferred onto a CT scan of a water-equivalent phantom (Solid Water(®), Gammex, Middleton, WI) and the dose distribution recalculated. The number of monitor units was maintained from the clinical plan and delivered accordingly. The doses determined by the glass beads were compared with those measured by a graphite-walled ionization chamber, and the respective expected doses were determined by the treatment-planning system (TPS) calculation. The mean percentage difference between measured dose with the glass beads and TPS was found to be 0.3%, -0.1%, 0.4%, 1.8% and 1.7% for the conventional larynx, conformal prostate, IMRT prostate and each of the SBRT delivery techniques, respectively. The percentage difference between measured dose with the ionization chamber and glass bead was found to be -1.2%, -1.4%, -0.1%, -0.9% and 2.4% for the above-mentioned plans, respectively. The results of measured doses with the glass beads and ionization chamber in comparison with expected doses from the TPS were analysed using a two-sided paired t-test, and there was no significant difference at p < 0.05. It is feasible to use glass-bead TLDs as dosemeters in a range of clinical plan verifications. Commercial glass beads are utilized as low-cost novel TLDs for treatment-plan verification.

  11. Dose distribution verification for GYN brachytherapy using EBT Gafchromic film and TG-43 calculation.

    PubMed

    Gholami, Somayeh; Mirzaei, Hamid Reza; Jabbary Arfaee, Ali; Jaberi, Ramin; Nedaie, Hassan Ali; Rabi Mahdavi, Seied; Rajab Bolookat, Eftekhar; Meigooni, Ali S

    2016-01-01

    Verification of dose distributions for gynecological (GYN) brachytherapy implants using EBT Gafchromic film. One major challenge in brachytherapy is to verify the accuracy of dose distributions calculated by a treatment planning system. A new phantom was designed and fabricated using 90 slabs of 18 cm × 16 cm × 0.2 cm Perspex to accommodate a tandem and Ovoid assembly, which is normally used for GYN brachytherapy treatment. This phantom design allows the use of EBT Gafchromic films for dosimetric verification of GYN implants with a cobalt-60 HDR system or a LDR Cs-137 system. Gafchromic films were exposed using a plan that was designed to deliver 1.5 Gy of dose to 0.5 cm distance from the lateral surface of ovoids from a pair of ovoid assembly that was used for treatment vaginal cuff. For a quantitative analysis of the results for both LDR and HDR systems, the measured dose values at several points of interests were compared with the calculated data from a commercially available treatment planning system. This planning system was utilizing the TG-43 formalism and parameters for calculation of dose distributions around a brachytherapy implant. The results of these investigations indicated that the differences between the calculated and measured data at different points were ranging from 2.4% to 3.8% for the LDR Cs-137 and HDR Co-60 systems, respectively. The EBT Gafchromic films combined with the newly designed phantom could be utilized for verification of the dose distributions around different GYN implants treated with either LDR or HDR brachytherapy procedures.

  12. ENVIRONMENTAL TECHNOLOGY VERIFICATION: JOINT (NSF-EPA) VERIFICATION STATEMENT AND REPORT; UV DISINFECTION FOR REUSE APPLICATION, AQUIONICS, INC. BERSONINLINE 4250 UV SYSTEM

    EPA Science Inventory

    Verification testing of the Aquionics, Inc. bersonInLine® 4250 UV System to develop the UV delivered dose flow relationship was conducted at the Parsippany-Troy Hills Wastewater Treatment Plant test site in Parsippany, New Jersey. Two full-scale reactors were mounted in series. T...

  13. ENVIRONMENTAL TECHNOLOGY VERIFICATION: JOINT (NSF-EPA) VERIFICATION STATEMENT AND REPORT: UV DISINFECTION FOR REUSE APPLICATIONS, ONDEO DEGREMONT, INC., AQUARAY® 40 HO VLS DISINFECTION SYSTEM

    EPA Science Inventory

    Verification testing of the Ondeo Degremont, Inc. Aquaray® 40 HO VLS Disinfection System to develop the UV delivered dose flow relationship was conducted at the Parsippany-Troy Hills wastewater treatment plant test site in Parsippany, New Jersey. Three reactor modules were m...

  14. Verification of an on line in vivo semiconductor dosimetry system for TBI with two TLD procedures.

    PubMed

    Sánchez-Doblado, F; Terrón, J A; Sánchez-Nieto, B; Arráns, R; Errazquin, L; Biggs, D; Lee, C; Núñez, L; Delgado, A; Muñiz, J L

    1995-01-01

    This work presents the verification of an on line in vivo dosimetry system based on semiconductors. Software and hardware has been designed to convert the diode signal into absorbed dose. Final verification was made in the form of an intercomparison with two independent thermoluminiscent (TLD) dosimetry systems, under TBI conditions.

  15. Experimental verification of the Acuros XB and AAA dose calculation adjacent to heterogeneous media for IMRT and RapidArc of nasopharygeal carcinoma.

    PubMed

    Kan, Monica W K; Leung, Lucullus H T; So, Ronald W K; Yu, Peter K N

    2013-03-01

    To compare the doses calculated by the Acuros XB (AXB) algorithm and analytical anisotropic algorithm (AAA) with experimentally measured data adjacent to and within heterogeneous medium using intensity modulated radiation therapy (IMRT) and RapidArc(®) (RA) volumetric arc therapy plans for nasopharygeal carcinoma (NPC). Two-dimensional dose distribution immediately adjacent to both air and bone inserts of a rectangular tissue equivalent phantom irradiated using IMRT and RA plans for NPC cases were measured with GafChromic(®) EBT3 films. Doses near and within the nasopharygeal (NP) region of an anthropomorphic phantom containing heterogeneous medium were also measured with thermoluminescent dosimeters (TLD) and EBT3 films. The measured data were then compared with the data calculated by AAA and AXB. For AXB, dose calculations were performed using both dose-to-medium (AXB_Dm) and dose-to-water (AXB_Dw) options. Furthermore, target dose differences between AAA and AXB were analyzed for the corresponding real patients. The comparison of real patient plans was performed by stratifying the targets into components of different densities, including tissue, bone, and air. For the verification of planar dose distribution adjacent to air and bone using the rectangular phantom, the percentages of pixels that passed the gamma analysis with the ± 3%/3mm criteria were 98.7%, 99.5%, and 97.7% on the axial plane for AAA, AXB_Dm, and AXB_Dw, respectively, averaged over all IMRT and RA plans, while they were 97.6%, 98.2%, and 97.7%, respectively, on the coronal plane. For the verification of planar dose distribution within the NP region of the anthropomorphic phantom, the percentages of pixels that passed the gamma analysis with the ± 3%/3mm criteria were 95.1%, 91.3%, and 99.0% for AAA, AXB_Dm, and AXB_Dw, respectively, averaged over all IMRT and RA plans. Within the NP region where air and bone were present, the film measurements represented the dose close to unit density water in a heterogeneous medium, produced the best agreement with the AXB_Dw. For the verification of point doses within the target using TLD in the anthropomorphic phantom, the absolute percentage deviations between the calculated and measured data when averaged over all IMRT and RA plans were 1.8%, 1.7%, and 1.8% for AAA, AXB_Dm and AXB_Dw, respectively. From all the verification results, no significant difference was found between the IMRT and RA plans. The target dose analysis of the real patient plans showed that the discrepancies in mean doses to the PTV component in tissue among the three dose calculation options were within 2%, but up to about 4% in the bone content, with AXB_Dm giving the lowest values and AXB_Dw giving the highest values. In general, the verification measurements demonstrated that both algorithms produced acceptable accuracy when compared to the measured data. GafChromic(®) film results indicated that AXB produced slightly better accuracy compared to AAA for dose calculation adjacent to and within the heterogeneous media. Users should be aware of the differences in calculated target doses between options AXB_Dm and AXB_Dw, especially in bone, for IMRT and RA in NPC cases.

  16. Evaluation of Kodak EDR2 film for dose verification of intensity modulated radiation therapy delivered by a static multileaf collimator.

    PubMed

    Zhu, X R; Jursinic, P A; Grimm, D F; Lopez, F; Rownd, J J; Gillin, M T

    2002-08-01

    A new type of radiographic film, Kodak EDR2 film, was evaluated for dose verification of intensity modulated radiation therapy (IMRT) delivered by a static multileaf collimator (SMLC). A sensitometric curve of EDR2 film irradiated by a 6 MV x-ray beam was compared with that of Kodak X-OMAT V (XV) film. The effects of field size, depth and dose rate on the sensitometric curve were also studied. It is found that EDR2 film is much less sensitive than XV film. In high-energy x-ray beams, the double hit process is the dominant mechanism that renders the grains on EDR2 films developable. As a result, in the dose range that is commonly used for film dosimetry for IMRT and conventional external beam therapy, the sensitometric curves of EDR2 films cannot be approximated as a linear function, OD = c * D. Within experimental uncertainty, the film sensitivity does not depend on the dose rate (50 vs 300 MU/min) or dose per pulse (from 1.0 x 10(-4) to 4.21 x 10(-4) Gy/pulse). Field sizes and depths (up to field size of 10 x 10 cm2 and depth = 10 cm) have little effect on the sensitometric curves. Percent depth doses (PDDs) for both 6 and 23 MV x rays were measured with both EDR2 and XV films and compared with ion chamber data. Film data are within 2.5% of the ion chamber results. Dose profiles measured with EDR2 film are consistent with those measured with an ion chamber. Examples of measured IMRT isodose distributions versus calculated isodoses are presented. We have used EDR2 films for verification of all IMRT patients treated by SMLC in our clinic. In most cases, with EDR2 film, actual clinical daily fraction doses can be used for verification of composite isodose distributions of SMLC-based IMRT.

  17. Source position verification and dosimetry in HDR brachytherapy using an EPID.

    PubMed

    Smith, R L; Taylor, M L; McDermott, L N; Haworth, A; Millar, J L; Franich, R D

    2013-11-01

    Accurate treatment delivery in high dose rate (HDR) brachytherapy requires correct source dwell positions and dwell times to be administered relative to each other and to the surrounding anatomy. Treatment delivery inaccuracies predominantly occur for two reasons: (i) anatomical movement or (ii) as a result of human errors that are usually related to incorrect implementation of the planned treatment. Electronic portal imaging devices (EPIDs) were originally developed for patient position verification in external beam radiotherapy and their application has been extended to provide dosimetric information. The authors have characterized the response of an EPID for use with an (192)Ir brachytherapy source to demonstrate its use as a verification device, providing both source position and dosimetric information. Characterization of the EPID response using an (192)Ir brachytherapy source included investigations of reproducibility, linearity with dose rate, photon energy dependence, and charge build-up effects associated with exposure time and image acquisition time. Source position resolution in three dimensions was determined. To illustrate treatment verification, a simple treatment plan was delivered to a phantom and the measured EPID dose distribution compared with the planned dose. The mean absolute source position error in the plane parallel to the EPID, for dwells measured at 50, 100, and 150 mm source to detector distances (SDD), was determined to be 0.26 mm. The resolution of the z coordinate (perpendicular distance from detector plane) is SDD dependent with 95% confidence intervals of ± 0.1, ± 0.5, and ± 2.0 mm at SDDs of 50, 100, and 150 mm, respectively. The response of the EPID is highly linear to dose rate. The EPID exhibits an over-response to low energy incident photons and this nonlinearity is incorporated into the dose calibration procedure. A distance (spectral) dependent dose rate calibration procedure has been developed. The difference between measured and planned dose is less than 2% for 98.0% of pixels in a two-dimensional plane at an SDD of 100 mm. Our application of EPID dosimetry to HDR brachytherapy provides a quality assurance measure of the geometrical distribution of the delivered dose as well as the source positions, which is not possible with any current HDR brachytherapy verification system.

  18. In vivo thermoluminescence dosimetry dose verification of transperineal 192Ir high-dose-rate brachytherapy using CT-based planning for the treatment of prostate cancer.

    PubMed

    Anagnostopoulos, G; Baltas, D; Geretschlaeger, A; Martin, T; Papagiannis, P; Tselis, N; Zamboglou, N

    2003-11-15

    To evaluate the potential of in vivo thermoluminescence dosimetry to estimate the accuracy of dose delivery in conformal high-dose-rate brachytherapy of prostate cancer. A total of 50 LiF, TLD-100 cylindrical rods were calibrated in the dose range of interest and used as a batch for all fractions. Fourteen dosimeters for every treatment fraction were loaded in a plastic 4F catheter that was fixed in either one of the 6F needles implanted for treatment purposes or in an extra needle implanted after consulting with the patient. The 6F needles were placed either close to the urethra or in the vicinity of the median posterior wall of the prostate. Initial results are presented for 18 treatment fractions in 5 patients and compared to corresponding data calculated using the commercial treatment planning system used for the planning of the treatments based on CT images acquired postimplantation. The maximum observed mean difference between planned and delivered dose within a single treatment fraction was 8.57% +/- 2.61% (root mean square [RMS] errors from 4.03% to 9.73%). Corresponding values obtained after averaging results over all fractions of a patient were 6.88% +/- 4.93% (RMS errors from 4.82% to 7.32%). Experimental results of each fraction corresponding to the same patient point were found to agree within experimental uncertainties. Experimental results indicate that the proposed method is feasible for dose verification purposes and suggest that dose delivery in transperineal high-dose-rate brachytherapy after CT-based planning can be of acceptable accuracy.

  19. Acoustic time-of-flight for proton range verification in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Kevin C.; Avery, Stephen, E-mail: Stephen.A

    2016-09-15

    Purpose: Measurement of the arrival times of thermoacoustic waves induced by pulsed proton dose depositions (protoacoustics) may provide a proton range verification method. The goal of this study is to characterize the required dose and protoacoustic proton range (distance) verification accuracy in a homogeneous water medium at a hospital-based clinical cyclotron. Methods: Gaussian-like proton pulses with 17 μs widths and instantaneous currents of 480 nA (5.6 × 10{sup 7} protons/pulse, 3.4 cGy/pulse at the Bragg peak) were generated by modulating the cyclotron proton source with a function generator. After energy degradation, the 190 MeV proton pulses irradiated a water phantom,more » and the generated protoacoustic emissions were measured by a hydrophone. The detector position and proton pulse characteristics were varied. The experimental results were compared to simulations. Different arrival time metrics derived from acoustic waveforms were compared, and the accuracy of protoacoustic time-of-flight distance calculations was assessed. Results: A 27 mPa noise level was observed in the treatment room during irradiation. At 5 cm from the proton beam, an average maximum pressure of 5.2 mPa/1 × 10{sup 7} protons (6.1 mGy at the Bragg peak) was measured after irradiation with a proton pulse with 10%–90% rise time of 11 μs. Simulation and experiment arrival times agreed well, and the observed 2.4 μs delay between simulation and experiment is attributed to the difference between the hydrophone’s acoustic and geometric centers. Based on protoacoustic arrival times, the beam axis position was measured to within (x, y) = (−2.0,  0.5) ± 1 mm. After deconvolution of the exciting proton pulse, the protoacoustic compression peak provided the most consistent measure of the distance to the Bragg peak, with an error distribution with mean = − 4.5 mm and standard deviation = 2.0 mm. Conclusions: Based on water tank measurements at a clinical hospital-based cyclotron, protoacoustics is a potential method for measuring the beam’s position (x and y within 2.0 mm) and Bragg peak range (2.0 mm standard deviation), although range verification will require simulation or experimental calibration to remove systematic error. Based on extrapolation, a protoacoustic arrival time reproducibility of 1.5 μs (2.2 mm) is achievable with 2 Gy of total deposited dose. Of the compared methods, deconvolution of the excitation proton pulse is the best technique for extracting protoacoustic arrival times, particularly if there is variation in the proton pulse shape.« less

  20. SU-E-T-14: A Feasibility Study of Using Modified AP Proton Beam for Post-Operative Pancreatic Cancer Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, X; Witztum, A; Kenton, O

    2014-06-01

    Purpose: Due to the unpredictability of bowel gas movement, the PA beam direction is always favored for robust proton therapy in post-operative pancreatic cancer treatment. We investigate the feasibility of replacing PA beam with a modified AP beam to take the bowel gas uncertainty into account. Methods: Nine post-operative pancreatic cancer patients treated with proton therapy (5040cGy, 28 fractions) in our institution were randomly selected. The original plan uses PA and lateral direction passive-scattering proton beams. Beam weighting is about 1:1. All patients received weekly verification CTs to assess the daily variations(total 17 verification CTs). The PA direction beam wasmore » replaced by two other groups of AP direction beam. Group AP: takes 3.5% range uncertainty into account. Group APmod: compensates the bowel gas uncertainty by expanding the proximal margin to 2cm more. The 2cm margin was acquired from the average bowel diameter in from 100 adult abdominal CT scans near pancreatic region (+/- 5cm superiorly and inferiorly). Dose Volume Histograms(DVHs) of the verification CTs were acquired for robustness study. Results: Without the lateral beam, Group APmod is as robust as Group PA. In Group AP, more than 10% of iCTV D98/D95 were reduced by 4–8%. LT kidney and Liver dose robustness are not affected by the AP/PA beam direction. There is 10% of chance that RT kidney and cord will be hit by AP proton beam due to the bowel gas. Compared to Group PA, APmod plan reduced the dose to kidneys and cord max significantly, while there is no statistical significant increase in bowel mean dose. Conclusion: APmod proton beam for the target coverage could be as robust as the PA direction without sacrificing too much of bowel dose. When the AP direction beam has to be selected, a 2cm proximal margin should be considered.« less

  1. A quality control method for intensity-modulated radiation therapy planning based on generalized equivalent uniform dose.

    PubMed

    Pang, Haowen; Sun, Xiaoyang; Yang, Bo; Wu, Jingbo

    2018-05-01

    To ensure good quality intensity-modulated radiation therapy (IMRT) planning, we proposed the use of a quality control method based on generalized equivalent uniform dose (gEUD) that predicts absorbed radiation doses in organs at risk (OAR). We conducted a retrospective analysis of patients who underwent IMRT for the treatment of cervical carcinoma, nasopharyngeal carcinoma (NPC), or non-small cell lung cancer (NSCLC). IMRT plans were randomly divided into data acquisition and data verification groups. OAR in the data acquisition group for cervical carcinoma and NPC were further classified as sub-organs at risk (sOAR). The normalized volume of sOAR and normalized gEUD (a = 1) were analyzed using multiple linear regression to establish a fitting formula. For NSCLC, the normalized intersection volume of the planning target volume (PTV) and lung, the maximum diameter of the PTV (left-right, anterior-posterior, and superior-inferior), and the normalized gEUD (a = 1) were analyzed using multiple linear regression to establish a fitting formula for the lung gEUD (a = 1). The r-squared and P values indicated that the fitting formula was a good fit. In the data verification group, IMRT plans verified the accuracy of the fitting formula, and compared the gEUD (a = 1) for each OAR between the subjective method and the gEUD-based method. In conclusion, the gEUD-based method can be used effectively for quality control and can reduce the influence of subjective factors on IMRT planning optimization. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  2. Determining the mechanical properties of a radiochromic silicone-based 3D dosimeter

    NASA Astrophysics Data System (ADS)

    Kaplan, L. P.; Høye, E. M.; Balling, P.; Muren, L. P.; Petersen, J. B. B.; Poulsen, P. R.; Yates, E. S.; Skyt, P. S.

    2017-07-01

    New treatment modalities in radiotherapy (RT) enable delivery of highly conformal dose distributions in patients. This creates a need for precise dose verification in three dimensions (3D). A radiochromic silicone-based 3D dosimetry system has recently been developed. Such a dosimeter can be used for dose verification in deformed geometries, which requires knowledge of the dosimeter’s mechanical properties. In this study we have characterized the dosimeter’s elastic behaviour under tensile and compressive stress. In addition, the dose response under strain was determined. It was found that the dosimeter behaved as an incompressible hyperelastic material with a non-linear stress/strain curve and with no observable hysteresis or plastic deformation even at high strains. The volume was found to be constant within a 2% margin at deformations up to 60%. Furthermore, it was observed that the dosimeter returned to its original geometry within a 2% margin when irradiated under stress, and that the change in optical density per centimeter was constant regardless of the strain during irradiation. In conclusion, we have shown that this radiochromic silicone-based dosimeter’s mechanical properties make it a viable candidate for dose verification in deformable 3D geometries.

  3. Feasibility of RACT for 3D dose measurement and range verification in a water phantom.

    PubMed

    Alsanea, Fahed; Moskvin, Vadim; Stantz, Keith M

    2015-02-01

    The objective of this study is to establish the feasibility of using radiation-induced acoustics to measure the range and Bragg peak dose from a pulsed proton beam. Simulation studies implementing a prototype scanner design based on computed tomographic methods were performed to investigate the sensitivity to proton range and integral dose. Derived from thermodynamic wave equation, the pressure signals generated from the dose deposited from a pulsed proton beam with a 1 cm lateral beam width and a range of 16, 20, and 27 cm in water using Monte Carlo methods were simulated. The resulting dosimetric images were reconstructed implementing a 3D filtered backprojection algorithm and the pressure signals acquired from a 71-transducer array with a cylindrical geometry (30 × 40 cm) rotated over 2π about its central axis. Dependencies on the detector bandwidth and proton beam pulse width were performed, after which, different noise levels were added to the detector signals (using 1 μs pulse width and a 0.5 MHz cutoff frequency/hydrophone) to investigate the statistical and systematic errors in the proton range (at 20 cm) and Bragg peak dose (of 1 cGy). The reconstructed radioacoustic computed tomographic image intensity was shown to be linearly correlated to the dose within the Bragg peak. And, based on noise dependent studies, a detector sensitivity of 38 mPa was necessary to determine the proton range to within 1.0 mm (full-width at half-maximum) (systematic error < 150 μm) for a 1 cGy Bragg peak dose, where the integral dose within the Bragg peak was measured to within 2%. For existing hydrophone detector sensitivities, a Bragg peak dose of 1.6 cGy is possible. This study demonstrates that computed tomographic scanner based on ionizing radiation-induced acoustics can be used to verify dose distribution and proton range with centi-Gray sensitivity. Realizing this technology into the clinic has the potential to significantly impact beam commissioning, treatment verification during particle beam therapy and image guided techniques.

  4. Dosimetric verification of radiation therapy including intensity modulated treatments, using an amorphous-silicon electronic portal imaging device

    NASA Astrophysics Data System (ADS)

    Chytyk-Praznik, Krista Joy

    Radiation therapy is continuously increasing in complexity due to technological innovation in delivery techniques, necessitating thorough dosimetric verification. Comparing accurately predicted portal dose images to measured images obtained during patient treatment can determine if a particular treatment was delivered correctly. The goal of this thesis was to create a method to predict portal dose images that was versatile and accurate enough to use in a clinical setting. All measured images in this work were obtained with an amorphous silicon electronic portal imaging device (a-Si EPID), but the technique is applicable to any planar imager. A detailed, physics-motivated fluence model was developed to characterize fluence exiting the linear accelerator head. The model was further refined using results from Monte Carlo simulations and schematics of the linear accelerator. The fluence incident on the EPID was converted to a portal dose image through a superposition of Monte Carlo-generated, monoenergetic dose kernels specific to the a-Si EPID. Predictions of clinical IMRT fields with no patient present agreed with measured portal dose images within 3% and 3 mm. The dose kernels were applied ignoring the geometrically divergent nature of incident fluence on the EPID. A computational investigation into this parallel dose kernel assumption determined its validity under clinically relevant situations. Introducing a patient or phantom into the beam required the portal image prediction algorithm to account for patient scatter and attenuation. Primary fluence was calculated by attenuating raylines cast through the patient CT dataset, while scatter fluence was determined through the superposition of pre-calculated scatter fluence kernels. Total dose in the EPID was calculated by convolving the total predicted incident fluence with the EPID-specific dose kernels. The algorithm was tested on water slabs with square fields, agreeing with measurement within 3% and 3 mm. The method was then applied to five prostate and six head-and-neck IMRT treatment courses (˜1900 clinical images). Deviations between the predicted and measured images were quantified. The portal dose image prediction model developed in this thesis work has been shown to be accurate, and it was demonstrated to be able to verify patients' delivered radiation treatments.

  5. Image-guided method for TLD-based in vivo rectal dose verification with endorectal balloon in proton therapy for prostate cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsi, Wen C.; Fagundes, Marcio; Zeidan, Omar

    Purpose: To present a practical image-guided method to position an endorectal balloon that improves in vivo thermoluminiscent dosimeter (TLD) measurements of rectal doses in proton therapy for prostate cancer. Methods: TLDs were combined with endorectal balloons to measure dose at the anterior rectal wall during daily proton treatment delivery. Radiopaque metallic markers were employed as surrogates for balloon position reproducibility in rotation and translation. The markers were utilized to guide the balloon orientation during daily treatment employing orthogonal x-ray image-guided patient positioning. TLDs were placed at the 12 o'clock position on the anterior balloon surface at the midprostatic plane. Markersmore » were placed at the 3 and 9 o'clock positions on the balloon to align it with respect to the planned orientation. The balloon rotation along its stem axis, referred to as roll, causes TLD displacement along the anterior-posterior direction. The magnitude of TLD displacement is revealed by the separation distance between markers at opposite sides of the balloon on sagittal x-ray images. Results: A total of 81 in vivo TLD measurements were performed on six patients. Eighty-three percent of all measurements (65 TLD readings) were within +5% and -10% of the planning dose with a mean of -2.1% and a standard deviation of 3.5%. Examination of marker positions with in-room x-ray images of measured doses between -10% and -20% of the planned dose revealed a strong correlation between balloon roll and TLD displacement posteriorly from the planned position. The magnitude of the roll was confirmed by separations of 10-20 mm between the markers which could be corrected by manually adjusting the balloon position and verified by a repeat x-ray image prior to proton delivery. This approach could properly correct the balloon roll, resulting in TLD positioning within 2 mm along the anterior-posterior direction. Conclusions: Our results show that image-guided TLD-based in vivo dosimetry for rectal dose verification can be perfomed reliably and reproducibly for proton therapy in prostate cancer.« less

  6. An automatic dose verification system for adaptive radiotherapy for helical tomotherapy

    NASA Astrophysics Data System (ADS)

    Mo, Xiaohu; Chen, Mingli; Parnell, Donald; Olivera, Gustavo; Galmarini, Daniel; Lu, Weiguo

    2014-03-01

    Purpose: During a typical 5-7 week treatment of external beam radiotherapy, there are potential differences between planned patient's anatomy and positioning, such as patient weight loss, or treatment setup. The discrepancies between planned and delivered doses resulting from these differences could be significant, especially in IMRT where dose distributions tightly conforms to target volumes while avoiding organs-at-risk. We developed an automatic system to monitor delivered dose using daily imaging. Methods: For each treatment, a merged image is generated by registering the daily pre-treatment setup image and planning CT using treatment position information extracted from the Tomotherapy archive. The treatment dose is then computed on this merged image using our in-house convolution-superposition based dose calculator implemented on GPU. The deformation field between merged and planning CT is computed using the Morphon algorithm. The planning structures and treatment doses are subsequently warped for analysis and dose accumulation. All results are saved in DICOM format with private tags and organized in a database. Due to the overwhelming amount of information generated, a customizable tolerance system is used to flag potential treatment errors or significant anatomical changes. A web-based system and a DICOM-RT viewer were developed for reporting and reviewing the results. Results: More than 30 patients were analysed retrospectively. Our in-house dose calculator passed 97% gamma test evaluated with 2% dose difference and 2mm distance-to-agreement compared with Tomotherapy calculated dose, which is considered sufficient for adaptive radiotherapy purposes. Evaluation of the deformable registration through visual inspection showed acceptable and consistent results, except for cases with large or unrealistic deformation. Our automatic flagging system was able to catch significant patient setup errors or anatomical changes. Conclusions: We developed an automatic dose verification system that quantifies treatment doses, and provides necessary information for adaptive planning without impeding clinical workflows.

  7. SU-F-T-522: Dosimetric Study of Junction Dose in Double Isocenter Flatten and Flatten Filter Free IMRT and VMAT Plan Delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samuvel, K; Yadav, G; Bhushan, M

    2016-06-15

    Purpose: To quantify the dosimetric accuracy of junction dose in double isocenter flattened and flatten filter free(FFF) intensity modulated radiation therapy(IMRT) and volumetric modulated arc therapy(VMAT) plan delivery using pelvis phantom. Methods: Five large field pelvis patients were selected for this study. Double isocenter IMRT and VMAT treatment plans were generated in Eclipse Treatment planning System (V.11.0) using 6MV FB and FFF beams. For all the plans same distance 17.0cm was kept between one isocenter to another isocenter. IMRT Plans were made with 7 coplanar fields and VMAT plans were made with full double arcs. Dose calculation was performed usingmore » AAA algorithms with dose grid size of 0.25 cm. Verification plans were calculated on Scanditronix Wellhofer pelvis slab phantom. Measurement point was selected and calculated, where two isocenter plan fields are overlapping, this measurement point was kept at distance 8.5cm from both isocenter. The plans were delivered using Varian TrueBeamTM machine on pelvis slab phantom. Point dose measurements was carried out using CC13 ion chamber volume of 0.13cm3. Results: The measured junction point dose are compared with TPS calculated dose. The mean difference observed was 4.5%, 6.0%, 4.0% and 7.0% for IMRT-FB,IMRT-FFF, VMAT-FB and VMAT-FFF respectively. The measured dose results shows closer agreement with calculated dose in Flatten beam planning in both IMRT and VMAT, whereas in FFF beam plan dose difference are more compared with flatten beam plan. Conclusion: Dosimetry accuracy of Large Field junction dose difference was found less in Flatten beam compared with FFF beam plan delivery. Even though more dosimetric studies are required to analyse junction dose for FFF beam planning using multiple point dose measurements and fluence map verification in field junction area.« less

  8. Verification of monitor unit calculations for non-IMRT clinical radiotherapy: report of AAPM Task Group 114.

    PubMed

    Stern, Robin L; Heaton, Robert; Fraser, Martin W; Goddu, S Murty; Kirby, Thomas H; Lam, Kwok Leung; Molineu, Andrea; Zhu, Timothy C

    2011-01-01

    The requirement of an independent verification of the monitor units (MU) or time calculated to deliver the prescribed dose to a patient has been a mainstay of radiation oncology quality assurance. The need for and value of such a verification was obvious when calculations were performed by hand using look-up tables, and the verification was achieved by a second person independently repeating the calculation. However, in a modern clinic using CT/MR/PET simulation, computerized 3D treatment planning, heterogeneity corrections, and complex calculation algorithms such as convolution/superposition and Monte Carlo, the purpose of and methodology for the MU verification have come into question. In addition, since the verification is often performed using a simpler geometrical model and calculation algorithm than the primary calculation, exact or almost exact agreement between the two can no longer be expected. Guidelines are needed to help the physicist set clinically reasonable action levels for agreement. This report addresses the following charges of the task group: (1) To re-evaluate the purpose and methods of the "independent second check" for monitor unit calculations for non-IMRT radiation treatment in light of the complexities of modern-day treatment planning. (2) To present recommendations on how to perform verification of monitor unit calculations in a modern clinic. (3) To provide recommendations on establishing action levels for agreement between primary calculations and verification, and to provide guidance in addressing discrepancies outside the action levels. These recommendations are to be used as guidelines only and shall not be interpreted as requirements.

  9. Comparison of Kodak EDR2 and Gafchromic EBT film for intensity-modulated radiation therapy dose distribution verification.

    PubMed

    Sankar, A; Ayyangar, Komanduri M; Nehru, R Mothilal; Kurup, P G Gopalakrishna; Murali, V; Enke, Charles A; Velmurugan, J

    2006-01-01

    The quantitative dose validation of intensity-modulated radiation therapy (IMRT) plans require 2-dimensional (2D) high-resolution dosimetry systems with uniform response over its sensitive region. The present work deals with clinical use of commercially available self-developing Radio Chromic Film, Gafchromic EBT film, for IMRT dose verification. Dose response curves were generated for the films using a VXR-16 film scanner. The results obtained with EBT films were compared with the results of Kodak extended dose range 2 (EDR2) films. The EBT film had a linear response between the dose range of 0 to 600 cGy. The dose-related characteristics of the EBT film, such as post irradiation color growth with time, film uniformity, and effect of scanning orientation, were studied. There was up to 8.6% increase in the color density between 2 to 40 hours after irradiation. There was a considerable variation, up to 8.5%, in the film uniformity over its sensitive region. The quantitative differences between calculated and measured dose distributions were analyzed using DTA and Gamma index with the tolerance of 3% dose difference and 3-mm distance agreement. The EDR2 films showed consistent results with the calculated dose distributions, whereas the results obtained using EBT were inconsistent. The variation in the film uniformity limits the use of EBT film for conventional large-field IMRT verification. For IMRT of smaller field sizes (4.5 x 4.5 cm), the results obtained with EBT were comparable with results of EDR2 films.

  10. A preliminary study of in-house Monte Carlo simulations: an integrated Monte Carlo verification system.

    PubMed

    Mukumoto, Nobutaka; Tsujii, Katsutomo; Saito, Susumu; Yasunaga, Masayoshi; Takegawa, Hideki; Yamamoto, Tokihiro; Numasaki, Hodaka; Teshima, Teruki

    2009-10-01

    To develop an infrastructure for the integrated Monte Carlo verification system (MCVS) to verify the accuracy of conventional dose calculations, which often fail to accurately predict dose distributions, mainly due to inhomogeneities in the patient's anatomy, for example, in lung and bone. The MCVS consists of the graphical user interface (GUI) based on a computational environment for radiotherapy research (CERR) with MATLAB language. The MCVS GUI acts as an interface between the MCVS and a commercial treatment planning system to import the treatment plan, create MC input files, and analyze MC output dose files. The MCVS consists of the EGSnrc MC codes, which include EGSnrc/BEAMnrc to simulate the treatment head and EGSnrc/DOSXYZnrc to calculate the dose distributions in the patient/phantom. In order to improve computation time without approximations, an in-house cluster system was constructed. The phase-space data of a 6-MV photon beam from a Varian Clinac unit was developed and used to establish several benchmarks under homogeneous conditions. The MC results agreed with the ionization chamber measurements to within 1%. The MCVS GUI could import and display the radiotherapy treatment plan created by the MC method and various treatment planning systems, such as RTOG and DICOM-RT formats. Dose distributions could be analyzed by using dose profiles and dose volume histograms and compared on the same platform. With the cluster system, calculation time was improved in line with the increase in the number of central processing units (CPUs) at a computation efficiency of more than 98%. Development of the MCVS was successful for performing MC simulations and analyzing dose distributions.

  11. Sci-Sat AM: Radiation Dosimetry and Practical Therapy Solutions - 04: On 3D Fabrication of Phantoms and Experimental Verification of Patient Dose Computation Algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Rao; Zavan, Rodolfo; McGeachy, Philip

    2016-08-15

    Purpose: Transport based dose calculation algorithm Acuros XB (AXB) has been shown to accurately account for heterogeneities mostly through comparisons with Monte Carlo simulations. This study aims at providing additional experimental verification for AXB for flattened and unflattened clinical energies in low density phantoms of the same material. Materials and Methods: Polystyrene slabs were created using a bench-top 3D printer. Six slabs were printed at varying densities from 0.23 g/cm{sup 3} to 0.68 g/cm{sup 3}, corresponding to different density humanoid tissues. The slabs were used to form different single and multilayer geometries. Dose was calculated with AXB 11.0.31 for 6MV,more » 15MV flattened and 6FFF (flattening filter free) energies for field sizes of 2×2 cm{sup 2} and 5×5 cm{sup 2}. The phantoms containing radiochromic EBT3 films were irradiated. Absolute dose profiles and 2D gamma analyses were performed for 96 dose planes. Results: For all single slab, multislab configurations and energies, absolute dose differences between the AXB calculation and film measurements remained <3% for both fields, with slightly poor disagreement in penumbra. The gamma index at 2% / 2mm averaged 98% in all combinations of fields, phantoms and photon energies. Conclusions: The transport based dose algorithm AXB is in good agreement with the experimental measurements for small field sizes using 6MV, 6FFF and 15MV beams adjacent to low density heterogeneous media. This work provides sufficient experimental ground to support the use of AXB for heterogeneous dose calculation purposes.« less

  12. Dosimetric verification and clinical evaluation of a new commercially available Monte Carlo-based dose algorithm for application in stereotactic body radiation therapy (SBRT) treatment planning

    NASA Astrophysics Data System (ADS)

    Fragoso, Margarida; Wen, Ning; Kumar, Sanath; Liu, Dezhi; Ryu, Samuel; Movsas, Benjamin; Munther, Ajlouni; Chetty, Indrin J.

    2010-08-01

    Modern cancer treatment techniques, such as intensity-modulated radiation therapy (IMRT) and stereotactic body radiation therapy (SBRT), have greatly increased the demand for more accurate treatment planning (structure definition, dose calculation, etc) and dose delivery. The ability to use fast and accurate Monte Carlo (MC)-based dose calculations within a commercial treatment planning system (TPS) in the clinical setting is now becoming more of a reality. This study describes the dosimetric verification and initial clinical evaluation of a new commercial MC-based photon beam dose calculation algorithm, within the iPlan v.4.1 TPS (BrainLAB AG, Feldkirchen, Germany). Experimental verification of the MC photon beam model was performed with film and ionization chambers in water phantoms and in heterogeneous solid-water slabs containing bone and lung-equivalent materials for a 6 MV photon beam from a Novalis (BrainLAB) linear accelerator (linac) with a micro-multileaf collimator (m3 MLC). The agreement between calculated and measured dose distributions in the water phantom verification tests was, on average, within 2%/1 mm (high dose/high gradient) and was within ±4%/2 mm in the heterogeneous slab geometries. Example treatment plans in the lung show significant differences between the MC and one-dimensional pencil beam (PB) algorithms within iPlan, especially for small lesions in the lung, where electronic disequilibrium effects are emphasized. Other user-specific features in the iPlan system, such as options to select dose to water or dose to medium, and the mean variance level, have been investigated. Timing results for typical lung treatment plans show the total computation time (including that for processing and I/O) to be less than 10 min for 1-2% mean variance (running on a single PC with 8 Intel Xeon X5355 CPUs, 2.66 GHz). Overall, the iPlan MC algorithm is demonstrated to be an accurate and efficient dose algorithm, incorporating robust tools for MC-based SBRT treatment planning in the routine clinical setting.

  13. Comparative evaluation of Kodak EDR2 and XV2 films for verification of intensity modulated radiation therapy.

    PubMed

    Dogan, Nesrin; Leybovich, Leonid B; Sethi, Anil

    2002-11-21

    Film dosimetry provides a convenient tool to determine dose distributions, especially for verification of IMRT plans. However, the film response to radiation shows a significant dependence on depth, energy and field size that compromise the accuracy of measurements. Kodak's XV2 film has a low saturation dose (approximately 100 cGy) and, consequently, a relatively short region of linear dose-response. The recently introduced Kodak extended range EDR2 film was reported to have a linear dose-response region extending to 500 cGy. This increased dose range may be particularly useful in the verification of IMRT plans. In this work, the dependence of Kodak EDR2 film's response on the depth, field size and energy was evaluated and compared with Kodak XV2 film. Co-60, 6 MV, 10 MV and 18 MV beams were used. Field sizes were 2 x 2, 6 x 6, 10 x 10, 14 x 14, 18 x 18 and 24 x 24 cm2. Doses for XV2 and EDR2 films were 80 cGy and 300 cGy, respectively. Optical density was converted to dose using depth-corrected sensitometric (Hurter and Driffield, or H&D) curves. For each field size, XV2 and EDR2 depth-dose curves were compared with ion chamber depth-dose curves. Both films demonstrated similar (within 1%) field size dependence. The deviation from the ion chamber for both films was small forthe fields ranging from 2 x 2 to 10 x 10 cm2: < or =2% for 6, 10 and 18 MV beams. No deviation was observed for the Co-60 beam. As the field size increased to 24 x 24 cm2, the deviation became significant for both films: approximately 7.5% for Co-60, approximately 5% for 6 MV and 10 MV, and approximately 6% for 18 MV. During the verification of IMRT plans, EDR2 film showed a better agreement with the calculated dose distributions than the XV2 film.

  14. MO-G-BRE-04: Automatic Verification of Daily Treatment Deliveries and Generation of Daily Treatment Reports for a MR Image-Guided Treatment Machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, D; Li, X; Li, H

    2014-06-15

    Purpose: Two aims of this work were to develop a method to automatically verify treatment delivery accuracy immediately after patient treatment and to develop a comprehensive daily treatment report to provide all required information for daily MR-IGRT review. Methods: After systematically analyzing the requirements for treatment delivery verification and understanding the available information from a novel MR-IGRT treatment machine, we designed a method to use 1) treatment plan files, 2) delivery log files, and 3) dosimetric calibration information to verify the accuracy and completeness of daily treatment deliveries. The method verifies the correctness of delivered treatment plans and beams, beammore » segments, and for each segment, the beam-on time and MLC leaf positions. Composite primary fluence maps are calculated from the MLC leaf positions and the beam-on time. Error statistics are calculated on the fluence difference maps between the plan and the delivery. We also designed the daily treatment delivery report by including all required information for MR-IGRT and physics weekly review - the plan and treatment fraction information, dose verification information, daily patient setup screen captures, and the treatment delivery verification results. Results: The parameters in the log files (e.g. MLC positions) were independently verified and deemed accurate and trustable. A computer program was developed to implement the automatic delivery verification and daily report generation. The program was tested and clinically commissioned with sufficient IMRT and 3D treatment delivery data. The final version has been integrated into a commercial MR-IGRT treatment delivery system. Conclusion: A method was developed to automatically verify MR-IGRT treatment deliveries and generate daily treatment reports. Already in clinical use since December 2013, the system is able to facilitate delivery error detection, and expedite physician daily IGRT review and physicist weekly chart review.« less

  15. ENVIRONMENTAL TECHNOLOGY VERIFICATION: JOINT (NSF-EPA) VERIFICATION STATEMENT AND REPORT FOR THE UV DISINFECTION OF SECONDARY EFFLUENTS, SUNTEC, INC. MODEL LPX200 DISINFECTION SYSTEM - 03/09/WQPC-SWP

    EPA Science Inventory

    Verification testing of the SUNTEC LPX200 UV Disinfection System to develop the UV delivered dose flow relationship was conducted at the Parsippany-Troy Hills wastewater treatment plant test site in Parsippany, New Jersey. Two lamp modules were mounted parallel in a 6.5-meter lon...

  16. SU-E-T-582: On-Line Dosimetric Verification of Respiratory Gated Volumetric Modulated Arc Therapy Using the Electronic Portal Imaging Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaly, B; Gaede, S; Department of Medical Biophysics, Western University, London, ON

    2015-06-15

    Purpose: To investigate the clinical utility of on-line verification of respiratory gated VMAT dosimetry during treatment. Methods: Portal dose images were acquired during treatment in integrated mode on a Varian TrueBeam (v. 1.6) linear accelerator for gated lung and liver patients that used flattening filtered beams. The source to imager distance (SID) was set to 160 cm to ensure imager clearance in case the isocenter was off midline. Note that acquisition of integrated images resulted in no extra dose to the patient. Fraction 1 was taken as baseline and all portal dose images were compared to that of the baseline,more » where the gamma comparison and dose difference were used to measure day-to-day exit dose variation. All images were analyzed in the Portal Dosimetry module of Aria (v. 10). The portal imager on the TrueBeam was calibrated by following the instructions for dosimetry calibration in service mode, where we define 1 calibrated unit (CU) equal to 1 Gy for 10×10 cm field size at 100 cm SID. This reference condition was measured frequently to verify imager calibration. Results: The gamma value (3%, 3 mm, 5% threshold) ranged between 92% and 100% for the lung and liver cases studied. The exit dose can vary by as much as 10% of the maximum dose for an individual fraction. The integrated images combined with the information given by the corresponding on-line soft tissue matched cone-beam computed tomography (CBCT) images were useful in explaining dose variation. For gated lung treatment, dose variation was mainly due to the diaphragm position. For gated liver treatment, the dose variation was due to both diaphragm position and weight loss. Conclusion: Integrated images can be useful in verifying dose delivery consistency during respiratory gated VMAT, although the CBCT information is needed to explain dose differences due to anatomical changes.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, X

    Purpose: To explore the real-time dose verification method in volumetric modulated arc radiotherapy (VMAT) with a 2D array ion chamber array. Methods: The 2D ion chamber array was fixed on the panel of electronic portal imaging device (EPID). Source-detector distance (SDD)was 140cm. 8mm RW3 solid water was added to the detector panel to achieve maximum readings.The patient plans for esophageal, prostate and liver cancers were selected to deliver on the cylindrical Cheese phantom 5 times in order to validate the reproducibility of doses. Real-time patient transit dose measurements were performed at each fraction. Dose distributions wereevaluated using gamma index criteriamore » of 3mm DTA and 3% dose difference referred to the firsttime Result. Results: The gamma index pass rate in the Cheese phantom were about 98%; The gamma index pass rate for esophageal, liver and prostate cancer patient were about 92%,94%, and 92%, respectively; Gamma pass rate for all single fraction were more than 90%. Conclusion: The 2D array is capable of monitoring the real time transit doses during VMAT delivery. It is helpful to improve the treatment accuracy.« less

  18. SU-E-T-624: Quantitative Evaluation of 2D Versus 3D Dosimetry for Stereotactic Volumetric Modulated Arc Delivery Using COMPASS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vikraman, S; Karrthick, K; Rajesh, T

    2014-06-15

    Purpose: The purpose of this study was to evaluate quantitatively 2D versus 3D dosimetry for stereotactic volumetric modulated arc delivery using COMPASS with 2D array. Methods: Twenty-five patients CT images and RT structures of different sites like brain, head and neck, thorax, abdomen and spine were taken from Multiplan planning system for this study. All these patients underwent radical stereotactic treatment in Cyberknife. For each patient, linac based VMAT stereotactic plans were generated in Monaco TPS v 3.1 using Elekta Beam Modulator MLC. Dose prescription was in the range of 5-20Gy/fraction.TPS calculated VMAT plan delivery accuracy was quantitatively evaluated withmore » COMPASS measured dose and calculated dose based on DVH metrics. In order to ascertain the potential of COMPASS 3D dosimetry for stereotactic plan delivery, 2D fluence verification was performed with MatriXX using Multicube. Results: For each site, D{sub 9} {sub 5} was achieved with 100% of prescription dose with maximum 0.05SD. Conformity index (CI) was observed closer to 1.15 in all cases. Maximum deviation of 2.62 % was observed for D{sub 9} {sub 5} when compared TPS versus COMPASS measured. Considerable deviations were observed in head and neck cases compare to other sites. The maximum mean and standard deviation for D{sub 9} {sub 5}, average target dose and average gamma were -0.78±1.72, -1.10±1.373 and 0.39±0.086 respectively. Numbers of pixels passing 2D fluence verification were observed as a mean of 99.36% ±0.455 SD with 3% dose difference and 3mm DTA. For critical organs in head and neck cases, significant dose differences were observed in 3D dosimetry while the target doses were matched well within limit in both 2D and 3D dosimetry. Conclusion: The quantitative evaluations of 2D versus 3D dosimetry for stereotactic volumetric modulated plans showed the potential of highlighting the delivery errors. This study reveals that COMPASS 3D dosimetry is an effective tool for patient specific quality assurance compared to 2D fluence verification.« less

  19. An optimized computational method for determining the beta dose distribution using a multiple-element thermoluminescent dosimeter system.

    PubMed

    Shen, L; Levine, S H; Catchen, G L

    1987-07-01

    This paper describes an optimization method for determining the beta dose distribution in tissue, and it describes the associated testing and verification. The method uses electron transport theory and optimization techniques to analyze the responses of a three-element thermoluminescent dosimeter (TLD) system. Specifically, the method determines the effective beta energy distribution incident on the dosimeter system, and thus the system performs as a beta spectrometer. Electron transport theory provides the mathematical model for performing the optimization calculation. In this calculation, parameters are determined that produce calculated doses for each of the chip/absorber components in the three-element TLD system. The resulting optimized parameters describe an effective incident beta distribution. This method can be used to determine the beta dose specifically at 7 mg X cm-2 or at any depth of interest. The doses at 7 mg X cm-2 in tissue determined by this method are compared to those experimentally determined using an extrapolation chamber. For a great variety of pure beta sources having different incident beta energy distributions, good agreement is found. The results are also compared to those produced by a commonly used empirical algorithm. Although the optimization method produces somewhat better results, the advantage of the optimization method is that its performance is not sensitive to the specific method of calibration.

  20. Monte Carlo patient study on the comparison of prompt gamma and PET imaging for range verification in proton therapy

    NASA Astrophysics Data System (ADS)

    Moteabbed, M.; España, S.; Paganetti, H.

    2011-02-01

    The purpose of this work was to compare the clinical adaptation of prompt gamma (PG) imaging and positron emission tomography (PET) as independent tools for non-invasive proton beam range verification and treatment validation. The PG range correlation and its differences with PET have been modeled for the first time in a highly heterogeneous tissue environment, using different field sizes and configurations. Four patients with different tumor locations (head and neck, prostate, spine and abdomen) were chosen to compare the site-specific behaviors of the PG and PET images, using both passive scattered and pencil beam fields. Accurate reconstruction of dose, PG and PET distributions was achieved by using the planning computed tomography (CT) image in a validated GEANT4-based Monte Carlo code capable of modeling the treatment nozzle and patient anatomy in detail. The physical and biological washout phenomenon and decay half-lives for PET activity for the most abundant isotopes such as 11C, 15O, 13N, 30P and 38K were taken into account in the data analysis. The attenuation of the gamma signal after traversing the patient geometry and respective detection efficiencies were estimated for both methods to ensure proper comparison. The projected dose, PG and PET profiles along many lines in the beam direction were analyzed to investigate the correlation consistency across the beam width. For all subjects, the PG method showed on average approximately 10 times higher gamma production rates than the PET method before, and 60 to 80 times higher production after including the washout correction and acquisition time delay. This rate strongly depended on tissue density and elemental composition. For broad passive scattered fields, it was demonstrated that large differences exist between PG and PET signal falloff positions and the correlation with the dose distribution for different lines in the beam direction. These variations also depended on the treatment site and the particular subject. Thus, similar to PET, direct range verification with PG in passive scattering is not easily viable. However, upon development of an optimized 3D PG detector, indirect range verification by comparing measured and simulated PG distributions (currently being explored for the PET method) would be more beneficial because it can avoid the inherent biological challenges of the PET imaging. The improved correlation of PG and PET with dose when using pencil beams was evident. PG imaging was found to be potentially advantageous especially for small tumors in the presence of high tissue heterogeneities. Including the effects of detector acceptance and efficiency may hold PET superior in terms of the amplitude of the detected signal (depending on the future development of PG detection technology), but the ability to perform online measurements and avoid signal disintegration (due to washout) with PG are important factors that can outweigh the benefits of higher detection sensitivity.

  1. Monte Carlo patient study on the comparison of prompt gamma and PET imaging for range verification in proton therapy.

    PubMed

    Moteabbed, M; España, S; Paganetti, H

    2011-02-21

    The purpose of this work was to compare the clinical adaptation of prompt gamma (PG) imaging and positron emission tomography (PET) as independent tools for non-invasive proton beam range verification and treatment validation. The PG range correlation and its differences with PET have been modeled for the first time in a highly heterogeneous tissue environment, using different field sizes and configurations. Four patients with different tumor locations (head and neck, prostate, spine and abdomen) were chosen to compare the site-specific behaviors of the PG and PET images, using both passive scattered and pencil beam fields. Accurate reconstruction of dose, PG and PET distributions was achieved by using the planning computed tomography (CT) image in a validated GEANT4-based Monte Carlo code capable of modeling the treatment nozzle and patient anatomy in detail. The physical and biological washout phenomenon and decay half-lives for PET activity for the most abundant isotopes such as (11)C, (15)O, (13)N, (30)P and (38)K were taken into account in the data analysis. The attenuation of the gamma signal after traversing the patient geometry and respective detection efficiencies were estimated for both methods to ensure proper comparison. The projected dose, PG and PET profiles along many lines in the beam direction were analyzed to investigate the correlation consistency across the beam width. For all subjects, the PG method showed on average approximately 10 times higher gamma production rates than the PET method before, and 60 to 80 times higher production after including the washout correction and acquisition time delay. This rate strongly depended on tissue density and elemental composition. For broad passive scattered fields, it was demonstrated that large differences exist between PG and PET signal falloff positions and the correlation with the dose distribution for different lines in the beam direction. These variations also depended on the treatment site and the particular subject. Thus, similar to PET, direct range verification with PG in passive scattering is not easily viable. However, upon development of an optimized 3D PG detector, indirect range verification by comparing measured and simulated PG distributions (currently being explored for the PET method) would be more beneficial because it can avoid the inherent biological challenges of the PET imaging. The improved correlation of PG and PET with dose when using pencil beams was evident. PG imaging was found to be potentially advantageous especially for small tumors in the presence of high tissue heterogeneities. Including the effects of detector acceptance and efficiency may hold PET superior in terms of the amplitude of the detected signal (depending on the future development of PG detection technology), but the ability to perform online measurements and avoid signal disintegration (due to washout) with PG are important factors that can outweigh the benefits of higher detection sensitivity.

  2. SU-E-J-245: Is Off-Line Adaptive Radiotherapy Sufficient for Head and Neck Cancer with IGRT?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Z; Cleveland Clinic, Cleveland, OH; Shang, Q

    2014-06-01

    Purpose: Radiation doses delivered to patients with head and neck cancer (HN) may deviate from the planned doses because of variations in patient setup and anatomy. This study was to evaluate whether off-line Adaptive Radiotherapy (ART) is sufficient. Methods: Ten HN patients, who received IMRT under daily imaging guidance using CT-on-rail/KV-CBCT, were randomly selected for this study. For each patient, the daily treatment setup was corrected with translational only directions. Sixty weekly verification CTs were retrospectively analyzed. On these weekly verification CTs, the tumor volumes and OAR contours were manually delineated by a physician. With the treatment iso-center placed onmore » the verification CTs, according to the recorded clinical shifts, the treatment beams from the original IMRT plans were then applied to these CTs to calculate the delivered doses. The electron density of the planning CTs and weekly CTs were overridden to 1 g/cm3. Results: Among 60 fractions, D99 of the CTVs in 4 fractions decreased more than 5% of the planned doses. The maximum dose of the spinal cord exceeded 10% of the planned values in 2 fractions. A close examination indicated that the dose discrepancy in these 6 fractions was due to patient rotations, especially shoulder rotations. After registering these 6 CTs with the planning CT allowing six degree of freedoms, the maximum rotations around 3 axes were > 1.5° for these fractions. With rotation setup errors removed, 4 out of 10 patients still required off-line ART to accommodate anatomical changes. Conclusion: A significant shoulder rotations were observed in 10% fractions, requiring patient re-setup. Off-line ART alone is not sufficient to correct for random variations of patient position, although ART is effective to adapt to patients' gradual anatomic changes. Re-setup or on-line ART may be considered for patients with large deviations detected early by daily IGRT images. The study is supported in part by Siemens Medical Solutions.« less

  3. Nonclinical dose formulation analysis method validation and sample analysis.

    PubMed

    Whitmire, Monica Lee; Bryan, Peter; Henry, Teresa R; Holbrook, John; Lehmann, Paul; Mollitor, Thomas; Ohorodnik, Susan; Reed, David; Wietgrefe, Holly D

    2010-12-01

    Nonclinical dose formulation analysis methods are used to confirm test article concentration and homogeneity in formulations and determine formulation stability in support of regulated nonclinical studies. There is currently no regulatory guidance for nonclinical dose formulation analysis method validation or sample analysis. Regulatory guidance for the validation of analytical procedures has been developed for drug product/formulation testing; however, verification of the formulation concentrations falls under the framework of GLP regulations (not GMP). The only current related regulatory guidance is the bioanalytical guidance for method validation. The fundamental parameters for bioanalysis and formulation analysis validations that overlap include: recovery, accuracy, precision, specificity, selectivity, carryover, sensitivity, and stability. Divergence in bioanalytical and drug product validations typically center around the acceptance criteria used. As the dose formulation samples are not true "unknowns", the concept of quality control samples that cover the entire range of the standard curve serving as the indication for the confidence in the data generated from the "unknown" study samples may not always be necessary. Also, the standard bioanalytical acceptance criteria may not be directly applicable, especially when the determined concentration does not match the target concentration. This paper attempts to reconcile the different practices being performed in the community and to provide recommendations of best practices and proposed acceptance criteria for nonclinical dose formulation method validation and sample analysis.

  4. Radiation Dose Uncertainty and Correction for a Mouse Orthotopic and Xenograft Irradiation Model

    PubMed Central

    Gan, Gregory N.; Altunbas, Cem; Morton, John J.; Eagles, Justin; Backus, Jennifer; Dzingle, Wayne; Raben, David; Jimeno, Antonio

    2016-01-01

    Purpose In animal irradiation models, reported dose can vary significantly from the actual doses delivered. We describe an effective method for in vivo dose verification. Materials and Methods Mice bearing commercially-available cell line or patient-derived tumor cell orthotopic or flank xenografts were irradiated using a 160 kVp, 25 mA X-ray source. Entrance dose was evaluated using optically-stimulated luminescence dosimeters (OSLD) and exit dose was assessed using radiochromic film dosimetry. Results Tumor position within the irradiation field was validated using external fiducial markers. The average entrance dose in orthotopic tumors from 10 OSLDs placed on 2 different animal irradiation days was 514±37 cGy (range: 437–545). Exit dose measurements taken from 7 radiochromic films on two separate days were 341±21 cGy (a 34% attenuation). Flank tumor irradiation doses measured by OSLD were 368±9 cGy compared to exit doses of 330 cGy measured by radiochromic film. Conclusion Variations related to the irradiation model can lead to significant under or over- dosing in vivo which can affect tumor control and/or biologic endpoints that are dose dependent. We recommend that dose measurements be determined empirically based on the mouse model and irradiator used and dose compensation adjustments performed to ensure correct and appropriate doses. PMID:26689828

  5. Reduction of Microbial Contaminants in Drinking Water by Ultraviolet Light Technology: ETS UV MODEL UVL-200-4 (Report and Statement)

    EPA Science Inventory

    Final technical report provides test methods used and verification results to be published on ETV web sites. The ETS UV System Model UVL-200-4 was tested to validate the UV dose delivered by the system using biodosimetry and a set line approach. The set line for 40 mJ/cm2 Red...

  6. Investigation of dose characteristics in three-dimensional MAGAT-type polymer gel dosimetry with MSE MR imaging

    NASA Astrophysics Data System (ADS)

    Lee, Jason J. S.; Tsai, Chia-Jung; Lo, Man-Kuok; Huang, Yung-Hui; Chen, Chien-Chuan; Wu, Jay; Tyan, Yeu-Sheng; Wu, Tung-Hsin

    2008-05-01

    A new type of normoxic polymer gel dosimeter, named MAGAT responses well to absorbed dose even when manufacturing in the presence of normal levels of oxygen. The aim of this study was to evaluate dose response, diffusion effect and cumulated dose response under multiple fractional irradiations of the MAGAT gel dosimeter using Multiple Spin-Echo (MSE) Magnetic Resonance (MR) sequence. Dose response was performed by irradiating MAGAT-gel-filled testing vials with a 6 MV linear accelerator and a linear relationship was present with doses from 0 to 6 Gy, but gradually, a bi-exponential function result was obtained with given doses up to 20 Gy. No significant difference in dose response was present between single and cumulated doses (p > 0.05). For study of diffusion effect, edge sharpness of the R2 map imaging between two split doses was smaller than 1 cm of dose profile penumbra between 20% and 80%. In conclusion, the MAGAT polymer gel dosimeter with MSE MR imaging is a promising method for dose verification in clinical radiation therapy practice.

  7. Verification of the radiometric map of the Czech Republic.

    PubMed

    Matolín, Milan

    2017-01-01

    The radiometric map of the Czech Republic is based on uniform regional airborne radiometric total count measurements (1957-1959) which covered 100% of the country. The airborne radiometric instrument was calibrated to a 226 Ra point source. The calibration facility for field gamma-ray spectrometers, established in the Czech Republic in 1975, significantly contributed to the subsequent radiometric data standardization. In the 1990's, the original analogue airborne radiometric data were digitized and using the method of back-calibration (IAEA, 2003) converted to dose rate. The map of terrestrial gamma radiation expressed in dose rate (nGy/h) was published on the scale 1:500,000 in 1995. Terrestrial radiation in the Czech Republic, formed by magmatic, sedimentary and metamorphic rocks of Proterozoic to Quaternary age, ranges mostly from 6 to 245 nGy/h, with a mean of 65.6 ± 19.0 nGy/h. The elevated terrestrial radiation in the Czech Republic, in comparison to the global dose rate average of 54 nGy/h, reflects an enhanced content of natural radioactive elements in the rocks. The 1995 published radiometric map of the Czech Republic was successively studied and verified by additional ground gamma-ray spectrometric measurements and by comparison to radiometric maps of Germany, Poland and Slovakia in border zones. A ground dose rate intercomparison measurement under participation of foreign and domestic professional institutions revealed mutual dose rate deviations about 20 nGy/h and more due to differing technical parameters of applied radiometric instruments. Studies and verification of the radiometric map of the Czech Republic illustrate the magnitude of current deviations in dose rate data. This gained experience can assist in harmonization of dose rate data on the European scale. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Acoustic time-of-flight for proton range verification in water.

    PubMed

    Jones, Kevin C; Vander Stappen, François; Sehgal, Chandra M; Avery, Stephen

    2016-09-01

    Measurement of the arrival times of thermoacoustic waves induced by pulsed proton dose depositions (protoacoustics) may provide a proton range verification method. The goal of this study is to characterize the required dose and protoacoustic proton range (distance) verification accuracy in a homogeneous water medium at a hospital-based clinical cyclotron. Gaussian-like proton pulses with 17 μs widths and instantaneous currents of 480 nA (5.6 × 10(7) protons/pulse, 3.4 cGy/pulse at the Bragg peak) were generated by modulating the cyclotron proton source with a function generator. After energy degradation, the 190 MeV proton pulses irradiated a water phantom, and the generated protoacoustic emissions were measured by a hydrophone. The detector position and proton pulse characteristics were varied. The experimental results were compared to simulations. Different arrival time metrics derived from acoustic waveforms were compared, and the accuracy of protoacoustic time-of-flight distance calculations was assessed. A 27 mPa noise level was observed in the treatment room during irradiation. At 5 cm from the proton beam, an average maximum pressure of 5.2 mPa/1 × 10(7) protons (6.1 mGy at the Bragg peak) was measured after irradiation with a proton pulse with 10%-90% rise time of 11 μs. Simulation and experiment arrival times agreed well, and the observed 2.4 μs delay between simulation and experiment is attributed to the difference between the hydrophone's acoustic and geometric centers. Based on protoacoustic arrival times, the beam axis position was measured to within (x, y) = (-2.0,  0.5) ± 1 mm. After deconvolution of the exciting proton pulse, the protoacoustic compression peak provided the most consistent measure of the distance to the Bragg peak, with an error distribution with mean = - 4.5 mm and standard deviation = 2.0 mm. Based on water tank measurements at a clinical hospital-based cyclotron, protoacoustics is a potential method for measuring the beam's position (x and y within 2.0 mm) and Bragg peak range (2.0 mm standard deviation), although range verification will require simulation or experimental calibration to remove systematic error. Based on extrapolation, a protoacoustic arrival time reproducibility of 1.5 μs (2.2 mm) is achievable with 2 Gy of total deposited dose. Of the compared methods, deconvolution of the excitation proton pulse is the best technique for extracting protoacoustic arrival times, particularly if there is variation in the proton pulse shape.

  9. Development and validation of MCNPX-based Monte Carlo treatment plan verification system

    PubMed Central

    Jabbari, Iraj; Monadi, Shahram

    2015-01-01

    A Monte Carlo treatment plan verification (MCTPV) system was developed for clinical treatment plan verification (TPV), especially for the conformal and intensity-modulated radiotherapy (IMRT) plans. In the MCTPV, the MCNPX code was used for particle transport through the accelerator head and the patient body. MCTPV has an interface with TiGRT planning system and reads the information which is needed for Monte Carlo calculation transferred in digital image communications in medicine-radiation therapy (DICOM-RT) format. In MCTPV several methods were applied in order to reduce the simulation time. The relative dose distribution of a clinical prostate conformal plan calculated by the MCTPV was compared with that of TiGRT planning system. The results showed well implementation of the beams configuration and patient information in this system. For quantitative evaluation of MCTPV a two-dimensional (2D) diode array (MapCHECK2) and gamma index analysis were used. The gamma passing rate (3%/3 mm) of an IMRT plan was found to be 98.5% for total beams. Also, comparison of the measured and Monte Carlo calculated doses at several points inside an inhomogeneous phantom for 6- and 18-MV photon beams showed a good agreement (within 1.5%). The accuracy and timing results of MCTPV showed that MCTPV could be used very efficiently for additional assessment of complicated plans such as IMRT plan. PMID:26170554

  10. Quantitative evaluation of 3D dosimetry for stereotactic volumetric‐modulated arc delivery using COMPASS

    PubMed Central

    Manigandan, Durai; Karrthick, Karukkupalayam Palaniappan; Sambasivaselli, Raju; Senniandavar, Vellaingiri; Ramu, Mahendran; Rajesh, Thiyagarajan; Lutz, Muller; Muthukumaran, Manavalan; Karthikeyan, Nithyanantham; Tejinder, Kataria

    2014-01-01

    The purpose of this study was to evaluate quantitatively the patient‐specific 3D dosimetry tool COMPASS with 2D array MatriXX detector for stereotactic volumetric‐modulated arc delivery. Twenty‐five patients CT images and RT structures from different sites (brain, head & neck, thorax, abdomen, and spine) were taken from CyberKnife Multiplan planning system for this study. All these patients underwent radical stereotactic treatment in CyberKnife. For each patient, linac based volumetric‐modulated arc therapy (VMAT) stereotactic plans were generated in Monaco TPS v3.1 using Elekta Beam Modulator MLC. Dose prescription was in the range of 5–20 Gy per fraction. Target prescription and critical organ constraints were tried to match the delivered treatment plans. Each plan quality was analyzed using conformity index (CI), conformity number (CN), gradient Index (GI), target coverage (TC), and dose to 95% of volume (D95). Monaco Monte Carlo (MC)‐calculated treatment plan delivery accuracy was quantitatively evaluated with COMPASS‐calculated (CCA) dose and COMPASS indirectly measured (CME) dose based on dose‐volume histogram metrics. In order to ascertain the potential of COMPASS 3D dosimetry for stereotactic plan delivery, 2D fluence verification was performed with MatriXX using MultiCube phantom. Routine quality assurance of absolute point dose verification was performed to check the overall delivery accuracy. Quantitative analyses of dose delivery verification were compared with pass and fail criteria of 3 mm and 3% distance to agreement and dose differences. Gamma passing rate was compared with 2D fluence verification from MatriXX with MultiCube. Comparison of COMPASS reconstructed dose from measured fluence and COMPASS computed dose has shown a very good agreement with TPS calculated dose. Each plan was evaluated based on dose volume parameters for target volumes such as dose at 95% of volume (D95) and average dose. For critical organs dose at 20% of volume (D20), dose at 50% of volume (D50), and maximum point doses were evaluated. Comparison was carried out using gamma analysis with passing criteria of 3 mm and 3%. Mean deviation of 1.9%±1% was observed for dose at 95% of volume (D95) of target volumes, whereas much less difference was noticed for critical organs. However, significant dose difference was noticed in two cases due to the smaller tumor size. Evaluation of this study revealed that the COMPASS 3D dosimetry is efficient and easy to use for patient‐specific QA of VMAT stereotactic delivery. 3D dosimetric QA with COMPASS provides additional degrees of freedom to check the high‐dose modulated stereotactic delivery with very high precision on patient CT images. PACS numbers: 87.55.Qr, 87.56.Fc PMID:25679152

  11. Quantitative assessment of the physical potential of proton beam range verification with PET/CT.

    PubMed

    Knopf, A; Parodi, K; Paganetti, H; Cascio, E; Bonab, A; Bortfeld, T

    2008-08-07

    A recent clinical pilot study demonstrated the feasibility of offline PET/CT range verification for proton therapy treatments. In vivo PET measurements are challenged by blood perfusion, variations of tissue compositions, patient motion and image co-registration uncertainties. Besides these biological and treatment specific factors, the accuracy of the method is constrained by the underlying physical processes. This phantom study distinguishes physical factors from other factors, assessing the reproducibility, consistency and sensitivity of the PET/CT range verification method. A spread-out Bragg-peak (SOBP) proton field was delivered to a phantom consisting of poly-methyl methacrylate (PMMA), lung and bone equivalent material slabs. PET data were acquired in listmode at a commercial PET/CT scanner available within 10 min walking distance from the proton therapy unit. The measured PET activity distributions were compared to simulations of the PET signal based on Geant4 and FLUKA Monte Carlo (MC) codes. To test the reproducibility of the measured PET signal, data from two independent measurements at the same geometrical position in the phantom were compared. Furthermore, activation depth profiles within identical material arrangements but at different positions within the irradiation field were compared to test the consistency of the measured PET signal. Finally, activation depth profiles through air/lung, air/bone and lung/bone interfaces parallel as well as at 6 degrees to the beam direction were studied to investigate the sensitivity of the PET/CT range verification method. The reproducibility and the consistency of the measured PET signal were found to be of the same order of magnitude. They determine the physical accuracy of the PET measurement to be about 1 mm. However, range discrepancies up to 2.6 mm between two measurements and range variations up to 2.6 mm within one measurement were found at the beam edge and at the edge of the field of view (FOV) of the PET scanner. PET/CT range verification was found to be able to detect small range modifications in the presence of complex tissue inhomogeneities. This study indicates the physical potential of the PET/CT verification method to detect the full-range characteristic of the delivered dose in the patient.

  12. Quantitative assessment of the physical potential of proton beam range verification with PET/CT

    NASA Astrophysics Data System (ADS)

    Knopf, A.; Parodi, K.; Paganetti, H.; Cascio, E.; Bonab, A.; Bortfeld, T.

    2008-08-01

    A recent clinical pilot study demonstrated the feasibility of offline PET/CT range verification for proton therapy treatments. In vivo PET measurements are challenged by blood perfusion, variations of tissue compositions, patient motion and image co-registration uncertainties. Besides these biological and treatment specific factors, the accuracy of the method is constrained by the underlying physical processes. This phantom study distinguishes physical factors from other factors, assessing the reproducibility, consistency and sensitivity of the PET/CT range verification method. A spread-out Bragg-peak (SOBP) proton field was delivered to a phantom consisting of poly-methyl methacrylate (PMMA), lung and bone equivalent material slabs. PET data were acquired in listmode at a commercial PET/CT scanner available within 10 min walking distance from the proton therapy unit. The measured PET activity distributions were compared to simulations of the PET signal based on Geant4 and FLUKA Monte Carlo (MC) codes. To test the reproducibility of the measured PET signal, data from two independent measurements at the same geometrical position in the phantom were compared. Furthermore, activation depth profiles within identical material arrangements but at different positions within the irradiation field were compared to test the consistency of the measured PET signal. Finally, activation depth profiles through air/lung, air/bone and lung/bone interfaces parallel as well as at 6° to the beam direction were studied to investigate the sensitivity of the PET/CT range verification method. The reproducibility and the consistency of the measured PET signal were found to be of the same order of magnitude. They determine the physical accuracy of the PET measurement to be about 1 mm. However, range discrepancies up to 2.6 mm between two measurements and range variations up to 2.6 mm within one measurement were found at the beam edge and at the edge of the field of view (FOV) of the PET scanner. PET/CT range verification was found to be able to detect small range modifications in the presence of complex tissue inhomogeneities. This study indicates the physical potential of the PET/CT verification method to detect the full-range characteristic of the delivered dose in the patient.

  13. SU-E-J-58: Dosimetric Verification of Metal Artifact Effects: Comparison of Dose Distributions Affected by Patient Teeth and Implants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, M; Kang, S; Lee, S

    Purpose: Implant-supported dentures seem particularly appropriate for the predicament of becoming edentulous and cancer patients are no exceptions. As the number of people having dental implants increased in different ages, critical dosimetric verification of metal artifact effects are required for the more accurate head and neck radiation therapy. The purpose of this study is to verify the theoretical analysis of the metal(streak and dark) artifact, and to evaluate dosimetric effect which cause by dental implants in CT images of patients with the patient teeth and implants inserted humanoid phantom. Methods: The phantom comprises cylinder which is shaped to simulate themore » anatomical structures of a human head and neck. Through applying various clinical cases, made phantom which is closely allied to human. Developed phantom can verify two classes: (i)closed mouth (ii)opened mouth. RapidArc plans of 4 cases were created in the Eclipse planning system. Total dose of 2000 cGy in 10 fractions is prescribed to the whole planning target volume (PTV) using 6MV photon beams. Acuros XB (AXB) advanced dose calculation algorithm, Analytical Anisotropic Algorithm (AAA) and progressive resolution optimizer were used in dose optimization and calculation. Results: In closed and opened mouth phantom, because dark artifacts formed extensively around the metal implants, dose variation was relatively higher than that of streak artifacts. As the PTV was delineated on the dark regions or large streak artifact regions, maximum 7.8% dose error and average 3.2% difference was observed. The averaged minimum dose to the PTV predicted by AAA was about 5.6% higher and OARs doses are also 5.2% higher compared to AXB. Conclusion: The results of this study showed that AXB dose calculation involving high-density materials is more accurate than AAA calculation, and AXB was superior to AAA in dose predictions beyond dark artifact/air cavity portion when compared against the measurements.« less

  14. Online pretreatment verification of high-dose rate brachytherapy using an imaging panel

    NASA Astrophysics Data System (ADS)

    Fonseca, Gabriel P.; Podesta, Mark; Bellezzo, Murillo; Van den Bosch, Michiel R.; Lutgens, Ludy; Vanneste, Ben G. L.; Voncken, Robert; Van Limbergen, Evert J.; Reniers, Brigitte; Verhaegen, Frank

    2017-07-01

    Brachytherapy is employed to treat a wide variety of cancers. However, an accurate treatment verification method is currently not available. This study describes a pre-treatment verification system that uses an imaging panel (IP) to verify important aspects of the treatment plan. A detailed modelling of the IP was only possible with an extensive calibration performed using a robotic arm. Irradiations were performed with a high dose rate (HDR) 192Ir source within a water phantom. An empirical fit was applied to measure the distance between the source and the detector so 3D Cartesian coordinates of the dwell positions can be obtained using a single panel. The IP acquires 7.14 fps to verify the dwell times, dwell positions and air kerma strength (Sk). A gynecological applicator was used to create a treatment plan that was registered with a CT image of the water phantom used during the experiments for verification purposes. Errors (shifts, exchanged connections and wrong dwell times) were simulated to verify the proposed verification system. Cartesian source positions (panel measurement plane) have a standard deviation of about 0.02 cm. The measured distance between the source and the panel (z-coordinate) have a standard deviation up to 0.16 cm and maximum absolute error of  ≈0.6 cm if the signal is close to sensitive limit of the panel. The average response of the panel is very linear with Sk. Therefore, Sk measurements can be performed with relatively small errors. The measured dwell times show a maximum error of 0.2 s which is consistent with the acquisition rate of the panel. All simulated errors were clearly identified by the proposed system. The use of IPs is not common in brachytherapy, however, it provides considerable advantages. It was demonstrated that the IP can accurately measure Sk, dwell times and dwell positions.

  15. Online pretreatment verification of high-dose rate brachytherapy using an imaging panel.

    PubMed

    Fonseca, Gabriel P; Podesta, Mark; Bellezzo, Murillo; Van den Bosch, Michiel R; Lutgens, Ludy; Vanneste, Ben G L; Voncken, Robert; Van Limbergen, Evert J; Reniers, Brigitte; Verhaegen, Frank

    2017-07-07

    Brachytherapy is employed to treat a wide variety of cancers. However, an accurate treatment verification method is currently not available. This study describes a pre-treatment verification system that uses an imaging panel (IP) to verify important aspects of the treatment plan. A detailed modelling of the IP was only possible with an extensive calibration performed using a robotic arm. Irradiations were performed with a high dose rate (HDR) 192 Ir source within a water phantom. An empirical fit was applied to measure the distance between the source and the detector so 3D Cartesian coordinates of the dwell positions can be obtained using a single panel. The IP acquires 7.14 fps to verify the dwell times, dwell positions and air kerma strength (Sk). A gynecological applicator was used to create a treatment plan that was registered with a CT image of the water phantom used during the experiments for verification purposes. Errors (shifts, exchanged connections and wrong dwell times) were simulated to verify the proposed verification system. Cartesian source positions (panel measurement plane) have a standard deviation of about 0.02 cm. The measured distance between the source and the panel (z-coordinate) have a standard deviation up to 0.16 cm and maximum absolute error of  ≈0.6 cm if the signal is close to sensitive limit of the panel. The average response of the panel is very linear with Sk. Therefore, Sk measurements can be performed with relatively small errors. The measured dwell times show a maximum error of 0.2 s which is consistent with the acquisition rate of the panel. All simulated errors were clearly identified by the proposed system. The use of IPs is not common in brachytherapy, however, it provides considerable advantages. It was demonstrated that the IP can accurately measure Sk, dwell times and dwell positions.

  16. Extravasation of a therapeutic dose of 131I-metaiodobenzylguanidine: prevention, dosimetry, and mitigation.

    PubMed

    Bonta, Dacian V; Halkar, Raghuveer K; Alazraki, Naomi

    2011-09-01

    After the extravasation of a therapeutic dose of (131)I-metaiodobenzylguanidine that produced a radiation burn to a patient's forearm, we instituted a catheter placement verification protocol. Before therapy infusion, proper placement is verified by administering 37 MBq of (99m)Tc-pertechnetate through the catheter, and monitoring activity at the administration site and on the contralateral extremity. A dosimetric model describing both high-rate and low-rate dose components was developed and predicted that the basal epidermal layer received a radiation dose consistent with the observed moist desquamation radiation skin toxicity. No extravasation incidents have occurred since the verification procedure was instituted. To protect against radiation injury from extravasation of therapeutic radionuclides, test administration of a small (99m)Tc dose with probe monitoring of comparable sites in both upper extremities appears to be an effective preventive measure.

  17. Dose verification with different ion chambers for SRT/SBRT plans

    NASA Astrophysics Data System (ADS)

    Durmus, I. F.; Tas, B.; Okumus, A.; Uzel, O. E.

    2017-02-01

    Verification of patient plan is very important in stereotactic treatments. VMAT plans were prepared with 6MV-FFF or 10MV-FFF energies for 25 intracranial and extracranial stereotactic patients. Absolute dose was measured for dose verification in each plans. Iba® CC01, Iba® CC04, Iba® CC13 ion chambers placed at a depth of 5cm in solid phantom (RW3). Also we scanned this phantom with ion chambers by Siemens® Biograph mCT. QA plans were prepared by transferring twenty five patient plans to phantom assemblies for three ion chambers. All plans were performed separately for three ion chambers at Elekta® Versa HD linear accelerator. Statistical analysis of results were made by Wilcoxon signed-rank test. Difference between dose values were determined %1.84±3.4 (p: 0.001) with Iba CC13 ion chamber, %1.80±3.4 (p: 0.002) with Iba CC04 ion chamber and %0.29±4.6 (p: 0.667) with Iba CC01 ion chamber. In stereotactic treatments, dosimetric uncertainty increases in small areas. We determined more accurate results with small sized detectors. Difference between TPS calculations and all measurements were founded lower than %2.

  18. Dose calculation of dynamic trajectory radiotherapy using Monte Carlo.

    PubMed

    Manser, P; Frauchiger, D; Frei, D; Volken, W; Terribilini, D; Fix, M K

    2018-04-06

    Using volumetric modulated arc therapy (VMAT) delivery technique gantry position, multi-leaf collimator (MLC) as well as dose rate change dynamically during the application. However, additional components can be dynamically altered throughout the dose delivery such as the collimator or the couch. Thus, the degrees of freedom increase allowing almost arbitrary dynamic trajectories for the beam. While the dose delivery of such dynamic trajectories for linear accelerators is technically possible, there is currently no dose calculation and validation tool available. Thus, the aim of this work is to develop a dose calculation and verification tool for dynamic trajectories using Monte Carlo (MC) methods. The dose calculation for dynamic trajectories is implemented in the previously developed Swiss Monte Carlo Plan (SMCP). SMCP interfaces the treatment planning system Eclipse with a MC dose calculation algorithm and is already able to handle dynamic MLC and gantry rotations. Hence, the additional dynamic components, namely the collimator and the couch, are described similarly to the dynamic MLC by defining data pairs of positions of the dynamic component and the corresponding MU-fractions. For validation purposes, measurements are performed with the Delta4 phantom and film measurements using the developer mode on a TrueBeam linear accelerator. These measured dose distributions are then compared with the corresponding calculations using SMCP. First, simple academic cases applying one-dimensional movements are investigated and second, more complex dynamic trajectories with several simultaneously moving components are compared considering academic cases as well as a clinically motivated prostate case. The dose calculation for dynamic trajectories is successfully implemented into SMCP. The comparisons between the measured and calculated dose distributions for the simple as well as for the more complex situations show an agreement which is generally within 3% of the maximum dose or 3mm. The required computation time for the dose calculation remains the same when the additional dynamic moving components are included. The results obtained for the dose comparisons for simple and complex situations suggest that the extended SMCP is an accurate dose calculation and efficient verification tool for dynamic trajectory radiotherapy. This work was supported by Varian Medical Systems. Copyright © 2018. Published by Elsevier GmbH.

  19. Sci—Thur PM: Planning and Delivery — 03: Automated delivery and quality assurance of a modulated electron radiation therapy plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connell, T; Papaconstadopoulos, P; Alexander, A

    2014-08-15

    Modulated electron radiation therapy (MERT) offers the potential to improve healthy tissue sparing through increased dose conformity. Challenges remain, however, in accurate beamlet dose calculation, plan optimization, collimation method and delivery accuracy. In this work, we investigate the accuracy and efficiency of an end-to-end MERT plan and automated-delivery workflow for the electron boost portion of a previously treated whole breast irradiation case. Dose calculations were performed using Monte Carlo methods and beam weights were determined using a research-based treatment planning system capable of inverse optimization. The plan was delivered to radiochromic film placed in a water equivalent phantom for verification,more » using an automated motorized tertiary collimator. The automated delivery, which covered 4 electron energies, 196 subfields and 6183 total MU was completed in 25.8 minutes, including 6.2 minutes of beam-on time with the remainder of the delivery time spent on collimator leaf motion and the automated interfacing with the accelerator in service mode. The delivery time could be reduced by 5.3 minutes with minor electron collimator modifications and the beam-on time could be reduced by and estimated factor of 2–3 through redesign of the scattering foils. Comparison of the planned and delivered film dose gave 3%/3 mm gamma pass rates of 62.1, 99.8, 97.8, 98.3, and 98.7 percent for the 9, 12, 16, 20 MeV, and combined energy deliveries respectively. Good results were also seen in the delivery verification performed with a MapCHECK 2 device. The results showed that accurate and efficient MERT delivery is possible with current technologies.« less

  20. Dosimetric verification of stereotactic radiosurgery/stereotactic radiotherapy dose distributions using Gafchromic EBT3.

    PubMed

    Cusumano, Davide; Fumagalli, Maria L; Marchetti, Marcello; Fariselli, Laura; De Martin, Elena

    2015-01-01

    Aim of this study is to examine the feasibility of using the new Gafchromic EBT3 film in a high-dose stereotactic radiosurgery and radiotherapy quality assurance procedure. Owing to the reduced dimensions of the involved lesions, the feasibility of scanning plan verification films on the scanner plate area with the best uniformity rather than using a correction mask was evaluated. For this purpose, signal values dispersion and reproducibility of film scans were investigated. Uniformity was then quantified in the selected area and was found to be within 1.5% for doses up to 8 Gy. A high-dose threshold level for analyses using this procedure was established evaluating the sensitivity of the irradiated films. Sensitivity was found to be of the order of centiGray for doses up to 6.2 Gy and decreasing for higher doses. The obtained results were used to implement a procedure comparing dose distributions delivered with a CyberKnife system to planned ones. The procedure was validated through single beam irradiation on a Gafchromic film. The agreement between dose distributions was then evaluated for 13 patients (brain lesions, 5 Gy/die prescription isodose ~80%) using gamma analysis. Results obtained using Gamma test criteria of 5%/1 mm show a pass rate of 94.3%. Gamma frequency parameters calculation for EBT3 films showed to strongly depend on subtraction of unexposed film pixel values from irradiated ones. In the framework of the described dosimetric procedure, EBT3 films proved to be effective in the verification of high doses delivered to lesions with complex shapes and adjacent to organs at risk. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  1. Dosimetric verification of stereotactic radiosurgery/stereotactic radiotherapy dose distributions using Gafchromic EBT3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cusumano, Davide, E-mail: davide.cusumano@unimi.it; Fumagalli, Maria L.; Marchetti, Marcello

    2015-10-01

    Aim of this study is to examine the feasibility of using the new Gafchromic EBT3 film in a high-dose stereotactic radiosurgery and radiotherapy quality assurance procedure. Owing to the reduced dimensions of the involved lesions, the feasibility of scanning plan verification films on the scanner plate area with the best uniformity rather than using a correction mask was evaluated. For this purpose, signal values dispersion and reproducibility of film scans were investigated. Uniformity was then quantified in the selected area and was found to be within 1.5% for doses up to 8 Gy. A high-dose threshold level for analyses usingmore » this procedure was established evaluating the sensitivity of the irradiated films. Sensitivity was found to be of the order of centiGray for doses up to 6.2 Gy and decreasing for higher doses. The obtained results were used to implement a procedure comparing dose distributions delivered with a CyberKnife system to planned ones. The procedure was validated through single beam irradiation on a Gafchromic film. The agreement between dose distributions was then evaluated for 13 patients (brain lesions, 5 Gy/die prescription isodose ~80%) using gamma analysis. Results obtained using Gamma test criteria of 5%/1 mm show a pass rate of 94.3%. Gamma frequency parameters calculation for EBT3 films showed to strongly depend on subtraction of unexposed film pixel values from irradiated ones. In the framework of the described dosimetric procedure, EBT3 films proved to be effective in the verification of high doses delivered to lesions with complex shapes and adjacent to organs at risk.« less

  2. Characterization of a novel two dimensional diode array the "magic plate" as a radiation detector for radiation therapy treatment.

    PubMed

    Wong, J H D; Fuduli, I; Carolan, M; Petasecca, M; Lerch, M L F; Perevertaylo, V L; Metcalfe, P; Rosenfeld, A B

    2012-05-01

    Intensity modulated radiation therapy (IMRT) utilizes the technology of multileaf collimators to deliver highly modulated and complex radiation treatment. Dosimetric verification of the IMRT treatment requires the verification of the delivered dose distribution. Two dimensional ion chamber or diode arrays are gaining popularity as a dosimeter of choice due to their real time feedback compared to film dosimetry. This paper describes the characterization of a novel 2D diode array, which has been named the "magic plate" (MP). It was designed to function as a 2D transmission detector as well as a planar detector for dose distribution measurements in a solid water phantom for the dosimetric verification of IMRT treatment delivery. The prototype MP is an 11 × 11 detector array based on thin (50 μm) epitaxial diode technology mounted on a 0.6 mm thick Kapton substrate using a proprietary "drop-in" technology developed by the Centre for Medical Radiation Physics, University of Wollongong. A full characterization of the detector was performed, including radiation damage study, dose per pulse effect, percent depth dose comparison with CC13 ion chamber and build up characteristics with a parallel plane ion chamber measurements, dose linearity, energy response and angular response. Postirradiated magic plate diodes showed a reproducibility of 2.1%. The MP dose per pulse response decreased at higher dose rates while at lower dose rates the MP appears to be dose rate independent. The depth dose measurement of the MP agrees with ion chamber depth dose measurements to within 0.7% while dose linearity was excellent. MP showed angular response dependency due to the anisotropy of the silicon diode with the maximum variation in angular response of 10.8% at gantry angle 180°. Angular dependence was within 3.5% for the gantry angles ± 75°. The field size dependence of the MP at isocenter agrees with ion chamber measurement to within 1.1%. In the beam perturbation study, the surface dose increased by 12.1% for a 30 × 30 cm(2) field size at the source to detector distance (SDD) of 80 cm whilst the transmission for the MP was 99%. The radiation response of the magic plate was successfully characterized. The array of epitaxial silicon based detectors with "drop-in" packaging showed properties suitable to be used as a simplified multipurpose and nonperturbing 2D radiation detector for radiation therapy dosimetric verification.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clemente, F; Perez, C

    Purpose: Redundant treatment verifications in conformal and intensity-modulated radiation therapy techniques are traditionally performed with single point calculations. New solutions can replace these checks with 3D treatment plan verifications. This work describes a software tool (Mobius3D, Mobius Medical Systems) that uses a GPU-accelerated collapsed cone algorithm to perform 3D independent verifications of TPS calculations. Methods: Mobius3D comes with reference beam models for common linear accelerators. The system uses an independently developed collapsed cone algorithm updated with recent enhancements. 144 isotropically-spaced cones are used for each voxel for calculations. These complex calculations can be sped up by using GPUs. Mobius3D calculatemore » dose using DICOM information coming from TPS (CT, RT Struct, RT Plan RT Dose). DVH-metrics and 3D gamma tests can be used to compare both TPS and secondary calculations. 170 patients treated with all common techniques as 3DCFRT (including wedged), static and dynamic IMRT and VMAT have been successfully verified with this solution. Results: Calculation times are between 3–5 minutes for 3DCFRT treatments and 15–20 for most complex dMLC and VMAT plans. For all PTVs mean dose and 90% coverage differences are (1.12±0.97)% and (0.68±1.19)%, respectively. Mean dose discrepancies for all OARs is (0.64±1.00)%. 3D gamma (global, 3%/3 mm) analysis shows a mean passing rate of (97.8 ± 3.0)% for PTVs and (99.0±3.0)% for OARs. 3D gamma pasing rate for all voxels in CT has a mean value of (98.5±1.6)%. Conclusion: Mobius3D is a powerful tool to verify all modalities of radiation therapy treatments. Dose discrepancies calculated by this system are in good agreement with TPS. The use of reference beam data results in time savings and can be used to avoid the propagation of errors in original beam data into our QA system. GPU calculations permit enhanced collapsed cone calculations with reasonable calculation times.« less

  4. SU-G-BRB-11: On the Sensitivity of An EPID-Based 3D Dose Verification System to Detect Delivery Errors in VMAT Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, P; Olaciregui-Ruiz, I; Mijnheer, B

    2016-06-15

    Purpose: To investigate the sensitivity of an EPID-based 3D dose verification system to detect delivery errors in VMAT treatments. Methods: For this study 41 EPID-reconstructed 3D in vivo dose distributions of 15 different VMAT plans (H&N, lung, prostate and rectum) were selected. To simulate the effect of delivery errors, their TPS plans were modified by: 1) scaling of the monitor units by ±3% and ±6% and 2) systematic shifting of leaf bank positions by ±1mm, ±2mm and ±5mm. The 3D in vivo dose distributions where then compared to the unmodified and modified treatment plans. To determine the detectability of themore » various delivery errors, we made use of a receiver operator characteristic (ROC) methodology. True positive and false positive rates were calculated as a function of the γ-parameters γmean, γ1% (near-maximum γ) and the PTV dose parameter ΔD{sub 50} (i.e. D{sub 50}(EPID)-D{sub 50}(TPS)). The ROC curve is constructed by plotting the true positive rate vs. the false positive rate. The area under the ROC curve (AUC) then serves as a measure of the performance of the EPID dosimetry system in detecting a particular error; an ideal system has AUC=1. Results: The AUC ranges for the machine output errors and systematic leaf position errors were [0.64 – 0.93] and [0.48 – 0.92] respectively using γmean, [0.57 – 0.79] and [0.46 – 0.85] using γ1% and [0.61 – 0.77] and [ 0.48 – 0.62] using ΔD{sub 50}. Conclusion: For the verification of VMAT deliveries, the parameter γmean is the best discriminator for the detection of systematic leaf position errors and monitor unit scaling errors. Compared to γmean and γ1%, the parameter ΔD{sub 50} performs worse as a discriminator in all cases.« less

  5. Methodology to reduce 6D patient positional shifts into a 3D linear shift and its verification in frameless stereotactic radiotherapy

    NASA Astrophysics Data System (ADS)

    Sarkar, Biplab; Ray, Jyotirmoy; Ganesh, Tharmarnadar; Manikandan, Arjunan; Munshi, Anusheel; Rathinamuthu, Sasikumar; Kaur, Harpreet; Anbazhagan, Satheeshkumar; Giri, Upendra K.; Roy, Soumya; Jassal, Kanan; Kalyan Mohanti, Bidhu

    2018-04-01

    The aim of this article is to derive and verify a mathematical formulation for the reduction of the six-dimensional (6D) positional inaccuracies of patients (lateral, longitudinal, vertical, pitch, roll and yaw) to three-dimensional (3D) linear shifts. The formulation was mathematically and experimentally tested and verified for 169 stereotactic radiotherapy patients. The mathematical verification involves the comparison of any (one) of the calculated rotational coordinates with the corresponding value from the 6D shifts obtained by cone beam computed tomography (CBCT). The experimental verification involves three sets of measurements using an ArcCHECK phantom, when (i) the phantom was not moved (neutral position: 0MES), (ii) the position of the phantom shifted by 6D shifts obtained from CBCT (6DMES) from neutral position and (iii) the phantom shifted from its neutral position by 3D shifts reduced from 6D shifts (3DMES). Dose volume histogram and statistical comparisons were made between ≤ft< TPSCAL{\\text -}0MES \\right> and ≤ft< 3DMES{\\text -6DMES} \\right> . The mathematical verification was performed by a comparison of the calculated and measured yaw (γ°) rotation values, which gave a straight line, Y  =  1X with a goodness of fit as R 2  =  0.9982. The verification, based on measurements, gave a planning target volume receiving 100% of the dose (V100%) as 99.1  ±  1.9%, 96.3  ±  1.8%, 74.3  ±  1.9% and 72.6  ±  2.8% for the calculated treatment planning system values TPSCAL, 0MES, 3DMES and 6DMES, respectively. The statistical significance (p-values: paired sample t-test) of V100% were found to be 0.03 for the paired sample ≤ft< 3DMES{\\text -6DMES} \\right> and 0.01 for ≤ft< 0MES{\\text -TPSCAL} \\right> . In this paper, a mathematical method to reduce 6D shifts to 3D shifts is presented. The mathematical method is verified by using well-matched values between the measured and calculated γ°. Measurements done on the ArcCHECK phantom also proved that the proposed methodology is correct. The post-correction of the table position condition introduces a minimal spatial dose delivery error in the frameless stereotactic system, using a 6D motion enabled robotic couch. This formulation enables the reduction of 6D positional inaccuracies to 3D linear shifts, and hence allows the treatment of patients with frameless stereotactic radiosurgery by using only a 3D linear motion enabled couch.

  6. Methodology to reduce 6D patient positional shifts into a 3D linear shift and its verification in frameless stereotactic radiotherapy.

    PubMed

    Sarkar, Biplab; Ray, Jyotirmoy; Ganesh, Tharmarnadar; Manikandan, Arjunan; Munshi, Anusheel; Rathinamuthu, Sasikumar; Kaur, Harpreet; Anbazhagan, Satheeshkumar; Giri, Upendra K; Roy, Soumya; Jassal, Kanan; Mohanti, Bidhu Kalyan

    2018-03-22

    The aim of this article is to derive and verify a mathematical formulation for the reduction of the six-dimensional (6D) positional inaccuracies of patients (lateral, longitudinal, vertical, pitch, roll and yaw) to three-dimensional (3D) linear shifts. The formulation was mathematically and experimentally tested and verified for 169 stereotactic radiotherapy patients. The mathematical verification involves the comparison of any (one) of the calculated rotational coordinates with the corresponding value from the 6D shifts obtained by cone beam computed tomography (CBCT). The experimental verification involves three sets of measurements using an ArcCHECK phantom, when (i) the phantom was not moved (neutral position: 0MES), (ii) the position of the phantom shifted by 6D shifts obtained from CBCT (6DMES) from neutral position and (iii) the phantom shifted from its neutral position by 3D shifts reduced from 6D shifts (3DMES). Dose volume histogram and statistical comparisons were made between [Formula: see text] and [Formula: see text]. The mathematical verification was performed by a comparison of the calculated and measured yaw (γ°) rotation values, which gave a straight line, Y  =  1X with a goodness of fit as R 2   =  0.9982. The verification, based on measurements, gave a planning target volume receiving 100% of the dose (V100%) as 99.1  ±  1.9%, 96.3  ±  1.8%, 74.3  ±  1.9% and 72.6  ±  2.8% for the calculated treatment planning system values TPSCAL, 0MES, 3DMES and 6DMES, respectively. The statistical significance (p-values: paired sample t-test) of V100% were found to be 0.03 for the paired sample [Formula: see text] and 0.01 for [Formula: see text]. In this paper, a mathematical method to reduce 6D shifts to 3D shifts is presented. The mathematical method is verified by using well-matched values between the measured and calculated γ°. Measurements done on the ArcCHECK phantom also proved that the proposed methodology is correct. The post-correction of the table position condition introduces a minimal spatial dose delivery error in the frameless stereotactic system, using a 6D motion enabled robotic couch. This formulation enables the reduction of 6D positional inaccuracies to 3D linear shifts, and hence allows the treatment of patients with frameless stereotactic radiosurgery by using only a 3D linear motion enabled couch.

  7. The use of nomograms in LDR-HDR prostate brachytherapy

    PubMed Central

    Camacho, Cristina; Perez-Calatayud, Jose; Richart, José; Gimeno, Jose; Lliso, Françoise; Carmona, Vicente; Ballester, Facundo; Crispín, Vicente; Rodríguez, Silvia; Tormo, Alejandro

    2011-01-01

    Purpose The common use of nomograms in Low Dose Rate (LDR) permanent prostate brachytherapy (BT) allows to estimate the number of seeds required for an implant. Independent dosimetry verification is recommended for each clinical dosimetry in BT. Also, nomograms can be useful for dose calculation quality assurance and they could be adapted to High Dose Rate (HDR). This work sets nomograms for LDR and HDR prostate-BT implants, which are applied to three different institutions that use different implant techniques. Material and methods Patients treated throughout 2010 till April 2011 were considered for this study. This example was chosen to be the representative of the latest implant techniques and to ensure consistency in the planning. A sufficient number of cases for both BT modalities, prescription dose and different work methodology (depending on the institution) were taken into account. The specific nomograms were built using the correlation between the prostate volume and some characteristic parameters of each BT modality, such as the source Air Kerma Strength, number of implanted seeds in LDR or total radiation time in HDR. Results For each institution and BT modality, nomograms normalized to the prescribed dose were obtained and fitted to a linear function. The parameters of the adjustment show a good agreement between data and the fitting. It should be noted that for each institution these linear function parameters are different, indicating that each centre should construct its own nomograms. Conclusions Nomograms for LDR and HDR prostate brachytherapy are simple quality assurance tools, specific for each institution. Nevertheless, their use should be complementary to the necessary independent verification. PMID:23346120

  8. Adaptation and validation of a commercial head phantom for cranial radiosurgery dosimetry end-to-end audit.

    PubMed

    Dimitriadis, Alexis; Palmer, Antony L; Thomas, Russell A S; Nisbet, Andrew; Clark, Catharine H

    2017-06-01

    To adapt and validate an anthropomorphic head phantom for use in a cranial radiosurgery audit. Two bespoke inserts were produced for the phantom: one for providing the target and organ at risk for delineation and the other for performing dose measurements. The inserts were tested to assess their positional accuracy. A basic treatment plan dose verification with an ionization chamber was performed to establish a baseline accuracy for the phantom and beam model. The phantom and inserts were then used to perform dose verification measurements of a radiosurgery plan. The dose was measured with alanine pellets, EBT extended dose film and a plastic scintillation detector (PSD). Both inserts showed reproducible positioning (±0.5 mm) and good positional agreement between them (±0.6 mm). The basic treatment plan measurements showed agreement to the treatment planning system (TPS) within 0.5%. Repeated film measurements showed consistent gamma passing rates with good agreement to the TPS. For 2%-2 mm global gamma, the mean passing rate was 96.7% and the variation in passing rates did not exceed 2.1%. The alanine pellets and PSD showed good agreement with the TPS (-0.1% and 0.3% dose difference in the target) and good agreement with each other (within 1%). The adaptations to the phantom showed acceptable accuracies. The presence of alanine and PSD do not affect film measurements significantly, enabling simultaneous measurements by all three detectors. Advances in knowledge: A novel method for thorough end-to-end test of radiosurgery, with capability to incorporate all steps of the clinical pathway in a time-efficient and reproducible manner, suitable for a national audit.

  9. An Approach in Radiation Therapy Treatment Planning: A Fast, GPU-Based Monte Carlo Method.

    PubMed

    Karbalaee, Mojtaba; Shahbazi-Gahrouei, Daryoush; Tavakoli, Mohammad B

    2017-01-01

    An accurate and fast radiation dose calculation is essential for successful radiation radiotherapy. The aim of this study was to implement a new graphic processing unit (GPU) based radiation therapy treatment planning for accurate and fast dose calculation in radiotherapy centers. A program was written for parallel running based on GPU. The code validation was performed by EGSnrc/DOSXYZnrc. Moreover, a semi-automatic, rotary, asymmetric phantom was designed and produced using a bone, the lung, and the soft tissue equivalent materials. All measurements were performed using a Mapcheck dosimeter. The accuracy of the code was validated using the experimental data, which was obtained from the anthropomorphic phantom as the gold standard. The findings showed that, compared with those of DOSXYZnrc in the virtual phantom and for most of the voxels (>95%), <3% dose-difference or 3 mm distance-to-agreement (DTA) was found. Moreover, considering the anthropomorphic phantom, compared to the Mapcheck dose measurements, <5% dose-difference or 5 mm DTA was observed. Fast calculation speed and high accuracy of GPU-based Monte Carlo method in dose calculation may be useful in routine radiation therapy centers as the core and main component of a treatment planning verification system.

  10. SU-E-T-337: Dosimetric Study of TMI Using Helical Tomotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phurailatpam, R; Swamidas, J; Sastri, J

    Purpose: The purpose of this study is to evaluate the dosimtry of TMI using Helical Tomotherapy (HT). Methods: Whole body CT data sets of 4 patients (median age : range:12–37 years) with 5mm slice thickness were used for planning in HT (TPS version 4.2.3). The contouring of the target and organ at risks (OAR) were delineated ( Oncentra Master Plan v 4.1). Two plans were generated using 5cm and 2.5 cm field widths.The modulation factor and pitch was 3 and 0.3 respectively. Dose to PTV, OARs and the dose homogeneity were evaluated. The doses obtained were compared with the existimgmore » literature. Dose delivery verification was carried out by point dose and 2D array measurements with ion chamber and Arc check dosimetry (Sun NuclearTM) system repectively. The prescribed dose was 14.4 Gy in 8 fractions. Results: The mean PTV volume was 7341.28cc (sd=2353) The dose homogeneity index of PTV was 12.03(sd=2.98) for 2.5cm-FW and 14.61 (sd=1.33) for 5cm-FW.The conformation number for 2.5 and 5 cm plans are 0.6328(sd=0.09) and 0.5915 (sd=0.0376) respectively. The mean dose(Gy) to the OARs were as follows for 2.5cm-FW : eyes, lens, lungs, kidneys, heart, liver,thyroid and testes for are 4.12,1.9,6.61,4.04,4.85,6.06,7.17 and 1.27. The mean dose(Gy) to the OARs were as follows for 5cm-FW :eyes, lens, lungs, kidneys, heart, liver,thyroid and testes for are 4.45,3.14,6.79,4.02,5.01,6.01,10.8 and 1.33. The mean variation of the point dose as compared to the expected dose was within 2% and the gamma analysis was at 91%. Conclusion: It was concluded that 5cm field width plans produces optimal dose volume parameters with deliverable treatment time. From this initial dissymmetric study, it was concluded that the treatment planning and the dose delivery verification was feasible considering the complexity of the TMI.« less

  11. SU-G-TeP1-06: Fast GPU Framework for Four-Dimensional Monte Carlo in Adaptive Intensity Modulated Proton Therapy (IMPT) for Mobile Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Botas, P; Heidelberg University, Heidelberg; Grassberger, C

    Purpose: To demonstrate the feasibility of fast Monte Carlo (MC) treatment planning and verification using four-dimensional CT (4DCT) for adaptive IMPT for lung cancer patients. Methods: A validated GPU MC code, gPMC, has been linked to the patient database at our institution and employed to compute the dose-influence matrices (Dij) on the planning CT (pCT). The pCT is an average of the respiratory motion of the patient. The Dijs and patient structures were fed to the optimizer to calculate a treatment plan. To validate the plan against motion, a 4D dose distribution averaged over the possible starting phases is calculatedmore » using the 4DCT and a model of the time structure of the delivered spot map. The dose is accumulated using vector maps created by a GPU-accelerated deformable image registration program (DIR) from each phase of the 4DCT to the reference phase using the B-spline method. Calculation of the Dij matrices and the DIR are performed on a cluster, with each field and vector map calculated in parallel. Results: The Dij production takes ∼3.5s per beamlet for 10e6 protons, depending on the energy and the CT size. Generating a plan with 4D simulation of 1000 spots in 4 fields takes approximately 1h. To test the framework, IMPT plans for 10 lung cancer patients were generated for validation. Differences between the planned and the delivered dose of 19% in dose to some organs at risk and 1.4/21.1% in target mean dose/homogeneity with respect to the plan were observed, suggesting potential for improvement if adaptation is considered. Conclusion: A fast MC treatment planning framework has been developed that allows reliable plan design and verification for mobile targets and adaptation of treatment plans. This will significantly impact treatments for lung tumors, as 4D-MC dose calculations can now become part of planning strategies.« less

  12. Image-guided method for TLD-based in vivo rectal dose verification with endorectal balloon in proton therapy for prostate cancer.

    PubMed

    Hsi, Wen C; Fagundes, Marcio; Zeidan, Omar; Hug, Eugen; Schreuder, Niek

    2013-05-01

    To present a practical image-guided method to position an endorectal balloon that improves in vivo thermoluminiscent dosimeter (TLD) measurements of rectal doses in proton therapy for prostate cancer. TLDs were combined with endorectal balloons to measure dose at the anterior rectal wall during daily proton treatment delivery. Radiopaque metallic markers were employed as surrogates for balloon position reproducibility in rotation and translation. The markers were utilized to guide the balloon orientation during daily treatment employing orthogonal x-ray image-guided patient positioning. TLDs were placed at the 12 o'clock position on the anterior balloon surface at the midprostatic plane. Markers were placed at the 3 and 9 o'clock positions on the balloon to align it with respect to the planned orientation. The balloon rotation along its stem axis, referred to as roll, causes TLD displacement along the anterior-posterior direction. The magnitude of TLD displacement is revealed by the separation distance between markers at opposite sides of the balloon on sagittal x-ray images. A total of 81 in vivo TLD measurements were performed on six patients. Eighty-three percent of all measurements (65 TLD readings) were within +5% and -10% of the planning dose with a mean of -2.1% and a standard deviation of 3.5%. Examination of marker positions with in-room x-ray images of measured doses between -10% and -20% of the planned dose revealed a strong correlation between balloon roll and TLD displacement posteriorly from the planned position. The magnitude of the roll was confirmed by separations of 10-20 mm between the markers which could be corrected by manually adjusting the balloon position and verified by a repeat x-ray image prior to proton delivery. This approach could properly correct the balloon roll, resulting in TLD positioning within 2 mm along the anterior-posterior direction. Our results show that image-guided TLD-based in vivo dosimetry for rectal dose verification can be perfomed reliably and reproducibly for proton therapy in prostate cancer.

  13. Independent calculation-based verification of IMRT plans using a 3D dose-calculation engine.

    PubMed

    Arumugam, Sankar; Xing, Aitang; Goozee, Gary; Holloway, Lois

    2013-01-01

    Independent monitor unit verification of intensity-modulated radiation therapy (IMRT) plans requires detailed 3-dimensional (3D) dose verification. The aim of this study was to investigate using a 3D dose engine in a second commercial treatment planning system (TPS) for this task, facilitated by in-house software. Our department has XiO and Pinnacle TPSs, both with IMRT planning capability and modeled for an Elekta-Synergy 6MV photon beam. These systems allow the transfer of computed tomography (CT) data and RT structures between them but do not allow IMRT plans to be transferred. To provide this connectivity, an in-house computer programme was developed to convert radiation therapy prescription (RTP) files as generated by many planning systems into either XiO or Pinnacle IMRT file formats. Utilization of the technique and software was assessed by transferring 14 IMRT plans from XiO and Pinnacle onto the other system and performing 3D dose verification. The accuracy of the conversion process was checked by comparing the 3D dose matrices and dose volume histograms (DVHs) of structures for the recalculated plan on the same system. The developed software successfully transferred IMRT plans generated by 1 planning system into the other. Comparison of planning target volume (TV) DVHs for the original and recalculated plans showed good agreement; a maximum difference of 2% in mean dose, - 2.5% in D95, and 2.9% in V95 was observed. Similarly, a DVH comparison of organs at risk showed a maximum difference of +7.7% between the original and recalculated plans for structures in both high- and medium-dose regions. However, for structures in low-dose regions (less than 15% of prescription dose) a difference in mean dose up to +21.1% was observed between XiO and Pinnacle calculations. A dose matrix comparison of original and recalculated plans in XiO and Pinnacle TPSs was performed using gamma analysis with 3%/3mm criteria. The mean and standard deviation of pixels passing gamma tolerance for XiO-generated IMRT plans was 96.1 ± 1.3, 96.6 ± 1.2, and 96.0 ± 1.5 in axial, coronal, and sagittal planes respectively. Corresponding results for Pinnacle-generated IMRT plans were 97.1 ± 1.5, 96.4 ± 1.2, and 96.5 ± 1.3 in axial, coronal, and sagittal planes respectively. © 2013 American Association of Medical Dosimetrists.

  14. Optimal sensitometric curves of Kodak EDR2 film for dynamic intensity modulated radiation therapy verification.

    PubMed

    Suriyapee, S; Pitaxtarnin, N; Oonsiri, S; Jumpangern, C; Israngkul Na Ayuthaya, I

    2008-01-01

    To investigate the optimal sensitometric curves of extended dose range (EDR2) radiographic film in terms of depth, field size, dose range and processing conditions for dynamic intensity modulated radiation therapy (IMRT) dosimetry verification with 6 MV X-ray beams. A Varian Clinac 23 EX linear accelerator with 6 MV X-ray beam was used to study the response of Kodak EDR2 film. Measurements were performed at depths of 5, 10 and 15 cm in MedTec virtual water phantom and with field sizes of 2x2, 3x3, 10x10 and 15x15 cm(2). Doses ranging from 20 to 450 cGy were used. The film was developed with the Kodak RP X-OMAT Model M6B automatic film processor. Film response was measured with the Vidar model VXR-16 scanner. Sensitometric curves were applied to the dose profiles measured with film at 5 cm in the virtual water phantom with field sizes of 2x2 and 10x10 cm(2) and compared with ion chamber data. Scanditronix/Wellhofer OmniPro(TM) IMRT software was used for the evaluation of the IMRT plan calculated by Eclipse treatment planning. Investigation of the reproducibility and accuracy of the film responses, which depend mainly on the film processor, was carried out by irradiating one film nine times with doses of 20 to 450 cGy. A maximum standard deviation of 4.9% was found which decreased to 1.9% for doses between 20 and 200 cGy. The sensitometric curves for various field sizes at fixed depth showed a maximum difference of 4.2% between 2x2 and 15x15 cm(2) at 5 cm depth with a dose of 450 cGy. The shallow depth tended to show a greater effect of field size responses than the deeper depths. The sensitometric curves for various depths at fixed field size showed slightly different film responses; the difference due to depth was within 1.8% for all field sizes studied. Both field size and depth effect were reduced when the doses were lower than 450 cGy. The difference was within 2.5% in the dose range from 20 to 300 cGy for all field sizes and depths studied. Dose profiles measured with EDR2 film were consistent with those measured with an ion chamber. The optimal sensitometric curve was acquired by irradiating film at a depth of 5 cm with doses ranging from 20 to 450 cGy with a 3×3 cm(2) multileaf collimator. The optimal sensitometric curve allowed accurate determination of the absolute dose distribution. In almost 200 cases of dynamic IMRT plan verification with EDR2 film, the difference between measured and calculated dose was generally less than 3% and with 3 mm distance to agreement when using gamma value verification. EDR2 film can be used for accurate verification of composite isodose distributions of dynamic IMRT when the optimal sensitometric curve has been established.

  15. WE-DE-BRA-01: SCIENCE COUNCIL JUNIOR INVESTIGATOR COMPETITION WINNER: Acceleration of a Limited-Angle Intrafraction Verification (LIVE) System Using Adaptive Prior Knowledge Based Image Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y; Yin, F; Ren, L

    Purpose: To develop an adaptive prior knowledge based image estimation method to reduce the scan angle needed in the LIVE system to reconstruct 4D-CBCT for intrafraction verification. Methods: The LIVE system has been previously proposed to reconstructs 4D volumetric images on-the-fly during arc treatment for intrafraction target verification and dose calculation. This system uses limited-angle beam’s eye view (BEV) MV cine images acquired from the treatment beam together with the orthogonally acquired limited-angle kV projections to reconstruct 4D-CBCT images for target verification during treatment. In this study, we developed an adaptive constrained free-form deformation reconstruction technique in LIVE to furthermore » reduce the scanning angle needed to reconstruct the CBCT images. This technique uses free form deformation with energy minimization to deform prior images to estimate 4D-CBCT based on projections acquired in limited angle (orthogonal 6°) during the treatment. Note that the prior images are adaptively updated using the latest CBCT images reconstructed by LIVE during treatment to utilize the continuity of patient motion.The 4D digital extended-cardiac-torso (XCAT) phantom was used to evaluate the efficacy of this technique with LIVE system. A lung patient was simulated with different scenario, including baseline drifts, amplitude change and phase shift. Limited-angle orthogonal kV and beam’s eye view (BEV) MV projections were generated for each scenario. The CBCT reconstructed by these projections were compared with the ground-truth generated in XCAT.Volume-percentage-difference (VPD) and center-of-mass-shift (COMS) were calculated between the reconstructed and the ground-truth tumors to evaluate the reconstruction accuracy. Results: Using orthogonal-view of 6° kV and BEV- MV projections, the VPD/COMS values were 12.7±4.0%/0.7±0.5 mm, 13.0±5.1%/0.8±0.5 mm, and 11.4±5.4%/0.5±0.3 mm for the three scenarios, respectively. Conclusion: The technique enables LIVE to accurately reconstruct 4D-CBCT images using only orthogonal 6° angle, which greatly improves the efficiency and reduces dose of LIVE for intrafraction verification.« less

  16. A technique for pediatric total skin electron irradiation

    PubMed Central

    2012-01-01

    Background Total skin electron irradiation (TSEI) is a special radiotherapy technique which has generally been used for treating adult patients with mycosis fungoides. Recently, two infants presented with leukemia cutis isolated to the skin requiring TSEI. This work discusses the commissioning and quality assurance (QA) methods for implementing a modified Stanford technique using a rotating harness system to position sedated pediatric patients treated with electrons to the total skin. Methods and Results Commissioning of pediatric TSEI consisted of absolute calibration, measurement of dosimetric parameters, and subsequent verification in a pediatric patient sized cylindrical phantom using radiographic film and optically stimulated luminance (OSL) dosimeters. The depth of dose penetration under TSEI treatment condition was evaluated using radiographic film sandwiched in the phantom and demonstrated a 2 cm penetration depth with the maximum dose located at the phantom surface. Dosimetry measurements on the cylindrical phantom and in-vivo measurements from the patients suggested that, the factor relating the skin and calibration point doses (i.e., the B-factor) was larger for the pediatric TSEI treatments as compared to adult TSEI treatments. Custom made equipment, including a rotating plate and harness, was fabricated and added to a standard total body irradiation stand and tested to facilitate patient setup under sedated condition. A pediatric TSEI QA program, consisting of daily output, energy, flatness, and symmetry measurements as well as in-vivo dosimetry verification for the first cycle was developed. With a long interval between pediatric TSEI cases, absolute dosimetry was also repeated as part of the QA program. In-vivo dosimetry for the first two infants showed that a dose of ± 10% of the prescription dose can be achieved over the entire patient body. Conclusion Though pediatric leukemia cutis and the subsequent need for TSEI are rare, the ability to commission the technique on a modified TBI stand is appealing for clinical implementation and has been successfully used for the treatment of two pediatric patients at our institution. PMID:22433063

  17. A method for verification of treatment delivery in HDR prostate brachytherapy using a flat panel detector for both imaging and source tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Ryan L., E-mail: ryan.smith@wbrc.org.au; Millar, Jeremy L.; Franich, Rick D.

    Purpose: Verification of high dose rate (HDR) brachytherapy treatment delivery is an important step, but is generally difficult to achieve. A technique is required to monitor the treatment as it is delivered, allowing comparison with the treatment plan and error detection. In this work, we demonstrate a method for monitoring the treatment as it is delivered and directly comparing the delivered treatment with the treatment plan in the clinical workspace. This treatment verification system is based on a flat panel detector (FPD) used for both pre-treatment imaging and source tracking. Methods: A phantom study was conducted to establish the resolutionmore » and precision of the system. A pretreatment radiograph of a phantom containing brachytherapy catheters is acquired and registration between the measurement and treatment planning system (TPS) is performed using implanted fiducial markers. The measured catheter paths immediately prior to treatment were then compared with the plan. During treatment delivery, the position of the {sup 192}Ir source is determined at each dwell position by measuring the exit radiation with the FPD and directly compared to the planned source dwell positions. Results: The registration between the two corresponding sets of fiducial markers in the TPS and radiograph yielded a registration error (residual) of 1.0 mm. The measured catheter paths agreed with the planned catheter paths on average to within 0.5 mm. The source positions measured with the FPD matched the planned source positions for all dwells on average within 0.6 mm (s.d. 0.3, min. 0.1, max. 1.4 mm). Conclusions: We have demonstrated a method for directly comparing the treatment plan with the delivered treatment that can be easily implemented in the clinical workspace. Pretreatment imaging was performed, enabling visualization of the implant before treatment delivery and identification of possible catheter displacement. Treatment delivery verification was performed by measuring the source position as each dwell was delivered. This approach using a FPD for imaging and source tracking provides a noninvasive method of acquiring extensive information for verification in HDR prostate brachytherapy.« less

  18. SU-C-BRD-04: Comparison of Shallow Fluence to Deep Point Dose Measurements for Spine VMAT SBRT Patient-Specific QA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, J; Held, M; Morin, O

    2015-06-15

    Purpose: To investigate the sensitivity of traditional gamma-index-based fluence measurements for patient-specific measurements in VMAT delivered spine SBRT. Methods: The ten most recent cases for spine SBRT were selected. All cases were planned with Eclipse RapidArc for a TrueBeam STx. The delivery was verified using a point dose measurement with a Pinpoint 3D micro-ion chamber in a Standard Imaging Stereotactic Dose Verification Phantom. Two points were selected for each case, one within the target in a low dose-gradient region and one in the spinal cord. Measurements were localized using on-board CBCT. Cumulative and separate arc measurements were acquired with themore » ArcCheck and assessed using the SNC patient software with a 3%/3mm and 2%/2mm gamma analysis with global normalization and a 10% dose threshold. Correlations between data were determined using the Pearson Product-Moment Correlation. Results: For our cohort of patients, the measured doses were higher than calculated ranging from 2.2%–9.7% for the target and 1.0%–8.2% for the spinal cord. There was strong correlation between 3%/3mm and 2%/2mm passing rates (r=0.91). Moderate correlation was found between target and cord dose with a weak fit (r=0.67, R-Square=0.45). The cumulative ArcCheck measurements showed poor correlation with the measured point doses for both the target and cord (r=0.20, r=0.35). If the arcs are assessed separately with an acceptance criteria applied to the minimum passing rate between all arcs, a moderate negative correlation was found for the target and cord (r=−0.48, r= −0.71). The case with the highest dose difference (9.7%) received a passing rate of 97.2% for the cumulative arcs and 87.8% for the minimum with separate arcs. Conclusion: Our data suggest that traditional passing criteria using ArcCheck with cumulative measurements do not correlate well with dose errors. Separate arc analysis shows better correlation but may still miss large dose errors. Point dose verifications are recommended.« less

  19. SU-E-T-120: Dosimetric Characteristics Study of NanoDotâ,,¢ for In-Vivo Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussain, A; Wasaye, A; Gohar, R

    Purpose: The purpose of the study was to analyze the dosimetric characteristics (energy dependence, reproducibility and dose linearity) of nanoDot™ optically stimulated luminescence dosimeters (OSLDs) and validate their potential use during in-vivo dosimetry, specifically TBI. The manufacturer stated accuracy is ±10% for standard nanoDot™. Methods: At AKUH, the InLight microStar OSL dosimetry system for patient in-vivo dosimetry is in use since 2012. Twenty-five standard nanoDot™ were used in the analysis. Sensitivity and reproducibility was tested in the first part with 6MV and 18 MV Varian x-ray beams. Each OSLD was irradiated to 100cGy dose at nominal SSD (100 cm). Allmore » the OSLDs were read 3 times for average reading. Dose linearity and calibration were also performed with same beams in common clinical dose range of 0 - 500 cGy. In addition, verification of TBI absolute dose at extended SSD (500cm) was also performed. Results: The reproducibility observed with the OSLD was better than the manufacturer stated limits. Measured doses vary less than ±2% in 19(76%) OSLDs, whereas less than ±3% in 6(24%) OSLDs. Their sensitivity was approximately 525 counts per cGy. Better agreement was observed between measurements, with a standard deviation of 1.8%. A linear dose response was observed with OSLDs for both 6 and 18MV beams in 0 - 500 cGy dose range. TBI measured doses at 500 cm SSD were also confirmed to be within ±0.5% and ±1.3% of the ion chamber measured doses for 6 and 18MV beams respectively. Conclusion: The dosimetric results demonstrate that nanoDot™ can be potentially used for in-vivo dosimetry verification in various clinical situations, with a high degree of accuracy and precision. In addition OSLDs exhibit better dose reproducibility with standard deviation of 1.8%. There was no significant difference in their response to 6 and 18MV beams. The dose response was also linear.« less

  20. Ionizing Radiation Environment on the International Space Station: Performance vs. Expectations for Avionics and Material

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L.; Boeder, Paul A.; Pankop, Courtney; Reddell, Brandon

    2005-01-01

    The role of structural shielding mass in the design, verification, and in-flight performance of International Space Station (ISS), in both the natural and induced orbital ionizing radiation (IR) environments, is reported. Detailed consideration of the effects of both the natural and induced ionizing radiation environment during ISS design, development, and flight operations has produced a safe, efficient manned space platform that is largely immune to deleterious effects of the LEO ionizing radiation environment. The assumption of a small shielding mass for purposes of design and verification has been shown to be a valid worst-case approximation approach to design for reliability, though predicted dependences of single event effect (SEE) effects on latitude, longitude, SEP events, and spacecraft structural shielding mass are not observed. The Figure of Merit (FOM) method over predicts the rate for median shielding masses of about 10g/cm(exp 2) by only a factor of 3, while the Scott Effective Flux Approach (SEFA) method overestimated by about one order of magnitude as expected. The Integral Rectangular Parallelepiped (IRPP), SEFA, and FOM methods for estimating on-orbit (Single Event Upsets) SEU rates all utilize some version of the CREME-96 treatment of energetic particle interaction with structural shielding, which has been shown to underestimate the production of secondary particles in heavily shielded manned spacecraft. The need for more work directed to development of a practical understanding of secondary particle production in massive structural shielding for SEE design and verification is indicated. In contrast, total dose estimates using CAD based shielding mass distributions functions and the Shieldose Code provided a reasonable accurate estimate of accumulated dose in Grays internal to the ISS pressurized elements, albeit as a result of using worst-on-worst case assumptions (500 km altitude x 2) that compensate for ignoring both GCR and secondary particle production in massive structural shielding.

  1. MO-F-16A-01: Implementation of MPPG TPS Verification Tests On Various Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smilowitz, J; Bredfeldt, J; Geurts, M

    2014-06-15

    Purpose: To demonstrate the implementation of the Medical Physics Practice Guideline (MPPG) for dose calculation and beam parameters verification of treatment planning systems (TPS). Methods: We implemented the draft TPS MPPG for three linacs: Varian Trilogy, TomoHDA and Elekta Infinity. Static and modulated test plans were created. The static fields are different than used in commissioning. Data was collected using ion chambers and diodes in a scanning water tank, Delta4 phantom and a custom phantom. MatLab and Microsoft Excel were used to create analysis tools to compare reference DICOM dose with scan data. This custom code allowed for the interpolation,more » registration and gamma analysis of arbitrary dose profiles. It will be provided as open source code. IMRT fields were validated with Delta4 registration and comparison tools. The time for each task was recorded. Results: The tests confirmed the strengths, and revealed some limitations, of our TPS. The agreement between calculated and measured dose was reported for all beams. For static fields, percent depth dose and profiles were analyzed with criteria in the draft MPPG. The results reveal areas of slight mismatch with the model (MLC leaf penumbra, buildup region.) For TomoTherapy, the IMRT plan 2%/2 mm gamma analysis revealed poorest agreement in the low dose regions. For one static test plan for all 10MV Trilogy photon beams, the plan generation, scan queue creation, data collection, data analysis and report took 2 hours, excluding tank setup. Conclusions: We have demonstrated the implementation feasibility of the TPS MPPG. This exercise generated an open source tool for dose comparisons between scan data and DICOM dose data. An easily reproducible and efficient infrastructure with streamlined data collection was created for repeatable robust testing of the TPS. The tests revealed minor discrepancies in our models and areas for improvement that are being investigated.« less

  2. Assessment of female breast dose for thoracic cone-beam CT using MOSFET dosimeters

    PubMed Central

    Qiu, Bo; Liang, Jian; Xie, Weihao; Deng, Xiaowu; Qi, Zhenyu

    2017-01-01

    Objective: To assess the breast dose during a routine thoracic cone-beam CT (CBCT) check with the efforts to explore the possible dose reduction strategy. Materials and Methods: Metal oxide semiconductor field-effect transistor (MOSFET) dosimeters were used to measure breast surface doses during a thorax kV CBCT scan in an anthropomorphic phantom. Breast doses for different scanning protocols and breast sizes were compared. Dose reduction was attempted by using partial arc CBCT scan with bowtie filter. The impact of this dose reduction strategy on image registration accuracy was investigated. Results: The average breast surface doses were 20.02 mGy and 11.65 mGy for thoracic CBCT without filtration and with filtration, respectively. This indicates a dose reduction of 41.8% by use of bowtie filter. It was found 220° partial arc scanning significantly reduced the dose to contralateral breast (44.4% lower than ipsilateral breast), while the image registration accuracy was not compromised. Conclusions: Breast dose reduction can be achieved by using ipsilateral 220° partial arc scan with bowtie filter. This strategy also provides sufficient image quality for thorax image registration in daily patient positioning verification. PMID:28423624

  3. SU-E-T-802: Verification of Implanted Cardiac Pacemaker Doses in Intensity-Modulated Radiation Therapy: Dose Prediction Accuracy and Reduction Effect of a Lead Sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J; Chung, J

    2015-06-15

    Purpose: To verify delivered doses on the implanted cardiac pacemaker, predicted doses with and without dose reduction method were verified using the MOSFET detectors in terms of beam delivery and dose calculation techniques in intensity-modulated radiation therapy (IMRT). Methods: The pacemaker doses for a patient with a tongue cancer were predicted according to the beam delivery methods [step-and-shoot (SS) and sliding window (SW)], intensity levels for dose optimization, and dose calculation algorithms. Dosimetric effects on the pacemaker were calculated three dose engines: pencil-beam convolution (PBC), analytical anisotropic algorithm (AAA), and Acuros-XB. A lead shield of 2 mm thickness was designedmore » for minimizing irradiated doses to the pacemaker. Dose variations affected by the heterogeneous material properties of the pacemaker and effectiveness of the lead shield were predicted by the Acuros-XB. Dose prediction accuracy and the feasibility of the dose reduction strategy were verified based on the measured skin doses right above the pacemaker using mosfet detectors during the radiation treatment. Results: The Acuros-XB showed underestimated skin doses and overestimated doses by the lead-shield effect, even though the lower dose disagreement was observed. It led to improved dose prediction with higher intensity level of dose optimization in IMRT. The dedicated tertiary lead sheet effectively achieved reduction of pacemaker dose up to 60%. Conclusion: The current SS technique could deliver lower scattered doses than recommendation criteria, however, use of the lead sheet contributed to reduce scattered doses.Thin lead plate can be a useful tertiary shielder and it could not acuse malfunction or electrical damage of the implanted pacemaker in IMRT. It is required to estimate more accurate scattered doses of the patient with medical device to design proper dose reduction strategy.« less

  4. Use of maxillofacial laboratory materials to construct a tissue-equivalent head phantom with removable titanium implantable devices for use in verification of the dose of intensity-modulated radiotherapy.

    PubMed

    Morris, K

    2017-06-01

    The dose of radiotherapy is often verified by measuring the dose of radiation at specific points within a phantom. The presence of high-density implant materials such as titanium, however, may cause complications both during calculation and delivery of the dose. Numerous studies have reported photon/electron backscatter and alteration of the dose by high-density implants, but we know of no evidence of a dosimetry phantom that incorporates high density implants or fixtures. The aim of the study was to design and manufacture a tissue-equivalent head phantom for use in verification of the dose in radiotherapy using a combination of traditional laboratory materials and techniques and 3-dimensional technology that can incorporate titanium maxillofacial devices. Digital designs were used together with Mimics® 18.0 (Materialise NV) and FreeForm® software. DICOM data were downloaded and manipulated into the final pieces of the phantom mould. Three-dimensional digital objects were converted into STL files and exported for additional stereolithography. Phantoms were constructed in four stages: material testing and selection, design of a 3-dimensional mould, manufacture of implants, and final fabrication of the phantom using traditional laboratory techniques. Three tissue-equivalent materials were found and used to successfully manufacture a suitable phantom with interchangeable sections that contained three versions of titanium maxillofacial implants. Maxillofacial and other materials can be used to successfully construct a head phantom with interchangeable titanium implant sections for use in verification of doses of radiotherapy. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  5. Challenges in validating the sterilisation dose for processed human amniotic membranes

    NASA Astrophysics Data System (ADS)

    Yusof, Norimah; Hassan, Asnah; Firdaus Abd Rahman, M. N.; Hamid, Suzina A.

    2007-11-01

    Most of the tissue banks in the Asia Pacific region have been using ionising radiation at 25 kGy to sterilise human tissues for save clinical usage. Under tissue banking quality system, any dose employed for sterilisation has to be validated and the validation exercise has to be a part of quality document. Tissue grafts, unlike medical items, are not produced in large number per each processing batch and tissues relatively have a different microbial population. A Code of Practice established by the International Atomic Energy Agency (IAEA) in 2004 offers several validation methods using smaller number of samples compared to ISO 11137 (1995), which is meant for medical products. The methods emphasise on bioburden determination, followed by sterility test on samples after they were exposed to verification dose for attaining of sterility assurance level (SAL) of 10 -1. This paper describes our experience in using the IAEA Code of Practice in conducting the validation exercise for substantiating 25 kGy as sterilisation dose for both air-dried amnion and those preserved in 99% glycerol.

  6. Dosimetric assessment of static and helical TomoTherapy in the clinical implementation of breast cancer treatments.

    PubMed

    Reynders, Truus; Tournel, Koen; De Coninck, Peter; Heymann, Steve; Vinh-Hung, Vincent; Van Parijs, Hilde; Duchateau, Michaël; Linthout, Nadine; Gevaert, Thierry; Verellen, Dirk; Storme, Guy

    2009-10-01

    Investigation of the use of TomoTherapy and TomoDirect versus conventional radiotherapy for the treatment of post-operative breast carcinoma. This study concentrates on the evaluation of the planning protocol for the TomoTherapy and TomoDirect TPS, dose verification and the implementation of in vivo dosimetry. Eight patients with different breast cancer indications (left/right tumor, axillary nodes involvement (N+)/no nodes (N0), tumorectomy/mastectomy) were enrolled. TomoTherapy, TomoDirect and conventional plans were generated for prone and supine positions leading to six or seven plans per patient. Dose prescription was 42Gy in 15 fractions over 3weeks. Dose verification of a TomoTherapy plan is performed using TLDs and EDR2 film inside a home-made wax breast phantom fixed on a rando-alderson phantom. In vivo dosimetry was performed with TLDs. It is possible to create clinically acceptable plans with TomoTherapy and TomoDirect. TLD calibration protocol with a water equivalent phantom is accurate. TLD verification with the phantom shows measured over calculated ratios within 2.2% (PTV). An overresponse of the TLDs was observed in the low dose regions (<0.1Gy). The film measurements show good agreement for high and low dose regions inside the phantom. A sharp gradient can be created to the thoracic wall. In vivo dosimetry with TLDs was clinically feasible. The TomoTherapy and TomoDirect modalities can deliver dose distributions which the radiotherapist judges to be equal to or better than conventional treatment of breast carcinoma according to the organ to be protected.

  7. Comparison of individual and composite field analysis using array detector for Intensity Modulated Radiotherapy dose verification.

    PubMed

    Saminathan, Sathiyan; Chandraraj, Varatharaj; Sridhar, C H; Manickam, Ravikumar

    2012-01-01

    To compare the measured and calculated individual and composite field planar dose distribution of Intensity Modulated Radiotherapy plans. The measurements were performed in Clinac DHX linear accelerator with 6 MV photons using Matrixx device and a solid water phantom. The 20 brain tumor patients were selected for this study. The IMRT plan was carried out for all the patients using Eclipse treatment planning system. The verification plan was produced for every original plan using CT scan of Matrixx embedded in the phantom. Every verification field was measured by the Matrixx. The TPS calculated and measured dose distributions were compared for individual and composite fields. The percentage of gamma pixel match for the dose distribution patterns were evaluated using gamma histogram. The gamma pixel match was 95-98% for 41 fields (39%) and 98% for 59 fields (61%) with individual fields. The percentage of gamma pixel match was 95-98% for 5 patients and 98% for other 12 patients with composite fields. Three patients showed a gamma pixel match of less than 95%. The comparison of percentage gamma pixel match for individual and composite fields showed more than 2.5% variation for 6 patients, more than 1% variation for 4 patients, while the remaining 10 patients showed less than 1% variation. The individual and composite field measurements showed good agreement with TPS calculated dose distribution for the studied patients. The measurement and data analysis for individual fields is a time consuming process, the composite field analysis may be sufficient enough for smaller field dose distribution analysis with array detectors.

  8. Characterization of the microbunch time structure of proton pencil beams at a clinical treatment facility.

    PubMed

    Petzoldt, J; Roemer, K E; Enghardt, W; Fiedler, F; Golnik, C; Hueso-González, F; Helmbrecht, S; Kormoll, T; Rohling, H; Smeets, J; Werner, T; Pausch, G

    2016-03-21

    Proton therapy is an advantageous treatment modality compared to conventional radiotherapy. In contrast to photons, charged particles have a finite range and can thus spare organs at risk. Additionally, the increased ionization density in the so-called Bragg peak close to the particle range can be utilized for maximum dose deposition in the tumour volume. Unfortunately, the accuracy of the therapy can be affected by range uncertainties, which have to be covered by additional safety margins around the treatment volume. A real-time range and dose verification is therefore highly desired and would be key to exploit the major advantages of proton therapy. Prompt gamma rays, produced in nuclear reactions between projectile and target nuclei, can be used to measure the proton's range. The prompt gamma-ray timing (PGT) method aims at obtaining this information by determining the gamma-ray emission time along the proton path using a conventional time-of-flight detector setup. First tests at a clinical accelerator have shown the feasibility to observe range shifts of about 5 mm at clinically relevant doses. However, PGT spectra are smeared out by the bunch time spread. Additionally, accelerator related proton bunch drifts against the radio frequency have been detected, preventing a potential range verification. At OncoRay, first experiments using a proton bunch monitor (PBM) at a clinical pencil beam have been conducted. Elastic proton scattering at a hydrogen-containing foil could be utilized to create a coincident proton-proton signal in two identical PBMs. The selection of coincident events helped to suppress uncorrelated background. The PBM setup was used as time reference for a PGT detector to correct for potential bunch drifts. Furthermore, the corrected PGT data were used to image an inhomogeneous phantom. In a further systematic measurement campaign, the bunch time spread and the proton transmission rate were measured for several beam energies between 69 and 225 MeV as well as for variable momentum limiting slit openings. We conclude that the usage of a PBM increases the robustness of the PGT method in clinical conditions and that the obtained data will help to create reliable range verification procedures in clinical routine.

  9. TomoTherapy MLC verification using exit detector data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Quan; Westerly, David; Fang Zhenyu

    2012-01-15

    Purpose: Treatment delivery verification (DV) is important in the field of intensity modulated radiation therapy (IMRT). While IMRT and image guided radiation therapy (IGRT), allow us to create more conformal plans and enables the use of tighter margins, an erroneously executed plan can have detrimental effects on the treatment outcome. The purpose of this study is to develop a DV technique to verify TomoTherapy's multileaf collimator (MLC) using the onboard mega-voltage CT detectors. Methods: The proposed DV method uses temporal changes in the MVCT detector signal to predict actual leaf open times delivered on the treatment machine. Penumbra and scatteredmore » radiation effects may produce confounding results when determining leaf open times from the raw detector data. To reduce the impact of the effects, an iterative, Richardson-Lucy (R-L) deconvolution algorithm is applied. Optical sensors installed on each MLC leaf are used to verify the accuracy of the DV technique. The robustness of the DV technique is examined by introducing different attenuation materials in the beam. Additionally, the DV technique has been used to investigate several clinical plans which failed to pass delivery quality assurance (DQA) and was successful in identifying MLC timing discrepancies as the root cause. Results: The leaf open time extracted from the exit detector showed good agreement with the optical sensors under a variety of conditions. Detector-measured leaf open times agreed with optical sensor data to within 0.2 ms, and 99% of the results agreed within 8.5 ms. These results changed little when attenuation was added in the beam. For the clinical plans failing DQA, the dose calculated from reconstructed leaf open times played an instrumental role in discovering the root-cause of the problem. Throughout the retrospective study, it is found that the reconstructed dose always agrees with measured doses to within 1%. Conclusions: The exit detectors in the TomoTherapy treatment systems can provide valuable information about MLC behavior during delivery. A technique to estimate the TomoTherapy binary MLC leaf open time from exit detector signals is described. This technique is shown to be both robust and accurate for delivery verification.« less

  10. Proton therapy of prostate cancer by anterior-oblique beams: implications of setup and anatomy variations

    NASA Astrophysics Data System (ADS)

    Moteabbed, M.; Trofimov, A.; Sharp, G. C.; Wang, Y.; Zietman, A. L.; Efstathiou, J. A.; Lu, H.-M.

    2017-03-01

    Proton therapy of prostate by anterior beams could offer an attractive option for treating patients with hip prosthesis and limiting the high-dose exposure to the rectum. We investigated the impact of setup and anatomy variations on the anterior-oblique (AO) proton plan dose, and strategies to manage these effects via range verification and adaptive delivery. Ten patients treated by bilateral (BL) passive-scattering proton therapy (79.2 Gy in 44 fractions) who underwent weekly verification CT scans were selected. Plans with AO beams were additionally created. To isolate the effect of daily variations, initial AO plans did not include range uncertainty margins. The use of fixed planning margins and adaptive range adjustments to manage these effects was investigated. For each case, the planned dose was recalculated on weekly CTs, and accumulated on the simulation CT using deformable registration to approximate the delivered dose. Planned and accumulated doses were compared for each scenario to quantify dose deviations induced by variations. The possibility of estimating the necessary range adjustments before each treatment was explored by simulating the procedure of a diode-based in vivo range verification technique, which would potentially be used clinically. The average planned rectum, penile bulb and femoral heads mean doses were smaller for initial AO compared to BL plans (by 8.3, 16.1 and 25.9 Gy, respectively). After considering interfractional variations in AO plans, the target coverage was substantially reduced. The maximum reduction of V 79.2/D 95/D mean/EUD for AO (without distal margins) (25.3%/10.7/1.6/4.9 Gy, respectively) was considerably larger than BL plans. The loss of coverage was mainly related to changes in water equivalent path length of the prostate after fiducial-based setup, caused by discrepancies in patient anterior surface and bony-anatomy alignment. Target coverage was recovered partially when using fixed planning margins, and fully when applying adaptive range adjustments. The accumulated organs-at-risk dose for AO beams after range adjustment demonstrated full sparing of femoral heads and superior sparing of penile bulb and rectum compared to the conventional BL cases. Our study indicates that using AO beams makes prostate treatment more susceptible to target underdose induced by interfractional variations. Adaptive range verification/adjustment may facilitate the use of anterior beam approaches, and ensure adequate target coverage in every fraction of the treatment.

  11. SU-E-T-491: Importance of Energy Dependent Protons Per MU Calibration Factors in IMPT Dose Calculations Using Monte Carlo Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randeniya, S; Mirkovic, D; Titt, U

    2014-06-01

    Purpose: In intensity modulated proton therapy (IMPT), energy dependent, protons per monitor unit (MU) calibration factors are important parameters that determine absolute dose values from energy deposition data obtained from Monte Carlo (MC) simulations. Purpose of this study was to assess the sensitivity of MC-computed absolute dose distributions to the protons/MU calibration factors in IMPT. Methods: A “verification plan” (i.e., treatment beams applied individually to water phantom) of a head and neck patient plan was calculated using MC technique. The patient plan had three beams; one posterior-anterior (PA); two anterior oblique. Dose prescription was 66 Gy in 30 fractions. Ofmore » the total MUs, 58% was delivered in PA beam, 25% and 17% in other two. Energy deposition data obtained from the MC simulation were converted to Gy using energy dependent protons/MU calibrations factors obtained from two methods. First method is based on experimental measurements and MC simulations. Second is based on hand calculations, based on how many ion pairs were produced per proton in the dose monitor and how many ion pairs is equal to 1 MU (vendor recommended method). Dose distributions obtained from method one was compared with those from method two. Results: Average difference of 8% in protons/MU calibration factors between method one and two converted into 27 % difference in absolute dose values for PA beam; although dose distributions preserved the shape of 3D dose distribution qualitatively, they were different quantitatively. For two oblique beams, significant difference in absolute dose was not observed. Conclusion: Results demonstrate that protons/MU calibration factors can have a significant impact on absolute dose values in IMPT depending on the fraction of MUs delivered. When number of MUs increases the effect due to the calibration factors amplify. In determining protons/MU calibration factors, experimental method should be preferred in MC dose calculations. Research supported by National Cancer Institute grant P01CA021239.« less

  12. Impact of geometric uncertainties on dose calculations for intensity modulated radiation therapy of prostate cancer

    NASA Astrophysics Data System (ADS)

    Jiang, Runqing

    Intensity-modulated radiation therapy (IMRT) uses non-uniform beam intensities within a radiation field to provide patient-specific dose shaping, resulting in a dose distribution that conforms tightly to the planning target volume (PTV). Unavoidable geometric uncertainty arising from patient repositioning and internal organ motion can lead to lower conformality index (CI) during treatment delivery, a decrease in tumor control probability (TCP) and an increase in normal tissue complication probability (NTCP). The CI of the IMRT plan depends heavily on steep dose gradients between the PTV and organ at risk (OAR). Geometric uncertainties reduce the planned dose gradients and result in a less steep or "blurred" dose gradient. The blurred dose gradients can be maximized by constraining the dose objective function in the static IMRT plan or by reducing geometric uncertainty during treatment with corrective verification imaging. Internal organ motion and setup error were evaluated simultaneously for 118 individual patients with implanted fiducials and MV electronic portal imaging (EPI). A Gaussian probability density function (PDF) is reasonable for modeling geometric uncertainties as indicated by the 118 patients group. The Gaussian PDF is patient specific and group standard deviation (SD) should not be used for accurate treatment planning for individual patients. In addition, individual SD should not be determined or predicted from small imaging samples because of random nature of the fluctuations. Frequent verification imaging should be employed in situations where geometric uncertainties are expected. Cumulative PDF data can be used for re-planning to assess accuracy of delivered dose. Group data is useful for determining worst case discrepancy between planned and delivered dose. The margins for the PTV should ideally represent true geometric uncertainties. The measured geometric uncertainties were used in this thesis to assess PTV coverage, dose to OAR, equivalent uniform dose per fraction (EUDf) and NTCP. The dose distribution including geometric uncertainties was determined from integration of the convolution of the static dose gradient with the PDF. Integration of the convolution of the static dose and derivative of the PDF can also be used to determine the dose including geometric uncertainties although this method was not investigated in detail. Local maximum dose gradient (LMDG) was determined via optimization of dose objective function by manually adjusting DVH control points or selecting beam numbers and directions during IMRT treatment planning. Minimum SD (SDmin) is used when geometric uncertainty is corrected with verification imaging. Maximum SD (SDmax) is used when the geometric uncertainty is known to be large and difficult to manage. SDmax was 4.38 mm in anterior-posterior (AP) direction, 2.70 mm in left-right (LR) direction and 4.35 mm in superior-inferior (SI) direction; SDmin was 1.1 mm in all three directions if less than 2 mm threshold was used for uncorrected fractions in every direction. EUDf is a useful QA parameter for interpreting the biological impact of geometric uncertainties on the static dose distribution. The EUD f has been used as the basis for the time-course NTCP evaluation in the thesis. Relative NTCP values are useful for comparative QA checking by normalizing known complications (e.g. reported in the RTOG studies) to specific DVH control points. For prostate cancer patients, rectal complications were evaluated from specific RTOG clinical trials and detailed evaluation of the treatment techniques (e.g. dose prescription, DVH, number of beams, bean angles). Treatment plans that did not meet DVH constraints represented additional complication risk. Geometric uncertainties improved or worsened rectal NTCP depending on individual internal organ motion within patient.

  13. Investigating the accuracy of microstereotactic-body-radiotherapy utilizing anatomically accurate 3D printed rodent-morphic dosimeters

    PubMed Central

    Bache, Steven T.; Juang, Titania; Belley, Matthew D.; Koontz, Bridget F.; Adamovics, John; Yoshizumi, Terry T.; Kirsch, David G.; Oldham, Mark

    2015-01-01

    Purpose: Sophisticated small animal irradiators, incorporating cone-beam-CT image-guidance, have recently been developed which enable exploration of the efficacy of advanced radiation treatments in the preclinical setting. Microstereotactic-body-radiation-therapy (microSBRT) is one technique of interest, utilizing field sizes in the range of 1–15 mm. Verification of the accuracy of microSBRT treatment delivery is challenging due to the lack of available methods to comprehensively measure dose distributions in representative phantoms with sufficiently high spatial resolution and in 3 dimensions (3D). This work introduces a potential solution in the form of anatomically accurate rodent-morphic 3D dosimeters compatible with ultrahigh resolution (0.3 mm3) optical computed tomography (optical-CT) dose read-out. Methods: Rodent-morphic dosimeters were produced by 3D-printing molds of rodent anatomy directly from contours defined on x-ray CT data sets of rats and mice, and using these molds to create tissue-equivalent radiochromic 3D dosimeters from Presage. Anatomically accurate spines were incorporated into some dosimeters, by first 3D printing the spine mold, then forming a high-Z bone equivalent spine insert. This spine insert was then set inside the tissue equivalent body mold. The high-Z spinal insert enabled representative cone-beam CT IGRT targeting. On irradiation, a linear radiochromic change in optical-density occurs in the dosimeter, which is proportional to absorbed dose, and was read out using optical-CT in high-resolution (0.5 mm isotropic voxels). Optical-CT data were converted to absolute dose in two ways: (i) using a calibration curve derived from other Presage dosimeters from the same batch, and (ii) by independent measurement of calibrated dose at a point using a novel detector comprised of a yttrium oxide based nanocrystalline scintillator, with a submillimeter active length. A microSBRT spinal treatment was delivered consisting of a 180° continuous arc at 225 kVp with a 20 × 10 mm field size. Dose response was evaluated using both the Presage/optical-CT 3D dosimetry system described above, and independent verification in select planes using EBT2 radiochromic film placed inside rodent-morphic dosimeters that had been sectioned in half. Results: Rodent-morphic 3D dosimeters were successfully produced from Presage radiochromic material by utilizing 3D printed molds of rat CT contours. The dosimeters were found to be compatible with optical-CT dose readout in high-resolution 3D (0.5 mm isotropic voxels) with minimal artifacts or noise. Cone-beam CT image guidance was possible with these dosimeters due to sufficient contrast between high-Z spinal inserts and tissue equivalent Presage material (CNR ∼10 on CBCT images). Dose at isocenter measured with optical-CT was found to agree with nanoscintillator measurement to within 2.8%. Maximum dose in line profiles taken through Presage and film dose slices agreed within 3%, with FWHM measurements through each profile found to agree within 2%. Conclusions: This work demonstrates the feasibility of using 3D printing technology to make anatomically accurate Presage rodent-morphic dosimeters incorporating spinal-mimicking inserts. High quality optical-CT 3D dosimetry is feasible on these dosimeters, despite the irregular surfaces and implanted inserts. The ability to measure dose distributions in anatomically accurate phantoms represents a powerful useful additional verification tool for preclinical microSBRT. PMID:25652497

  14. Investigating the accuracy of microstereotactic-body-radiotherapy utilizing anatomically accurate 3D printed rodent-morphic dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bache, Steven T.; Juang, Titania; Belley, Matthew D.

    Purpose: Sophisticated small animal irradiators, incorporating cone-beam-CT image-guidance, have recently been developed which enable exploration of the efficacy of advanced radiation treatments in the preclinical setting. Microstereotactic-body-radiation-therapy (microSBRT) is one technique of interest, utilizing field sizes in the range of 1–15 mm. Verification of the accuracy of microSBRT treatment delivery is challenging due to the lack of available methods to comprehensively measure dose distributions in representative phantoms with sufficiently high spatial resolution and in 3 dimensions (3D). This work introduces a potential solution in the form of anatomically accurate rodent-morphic 3D dosimeters compatible with ultrahigh resolution (0.3 mm{sup 3}) opticalmore » computed tomography (optical-CT) dose read-out. Methods: Rodent-morphic dosimeters were produced by 3D-printing molds of rodent anatomy directly from contours defined on x-ray CT data sets of rats and mice, and using these molds to create tissue-equivalent radiochromic 3D dosimeters from Presage. Anatomically accurate spines were incorporated into some dosimeters, by first 3D printing the spine mold, then forming a high-Z bone equivalent spine insert. This spine insert was then set inside the tissue equivalent body mold. The high-Z spinal insert enabled representative cone-beam CT IGRT targeting. On irradiation, a linear radiochromic change in optical-density occurs in the dosimeter, which is proportional to absorbed dose, and was read out using optical-CT in high-resolution (0.5 mm isotropic voxels). Optical-CT data were converted to absolute dose in two ways: (i) using a calibration curve derived from other Presage dosimeters from the same batch, and (ii) by independent measurement of calibrated dose at a point using a novel detector comprised of a yttrium oxide based nanocrystalline scintillator, with a submillimeter active length. A microSBRT spinal treatment was delivered consisting of a 180° continuous arc at 225 kVp with a 20 × 10 mm field size. Dose response was evaluated using both the Presage/optical-CT 3D dosimetry system described above, and independent verification in select planes using EBT2 radiochromic film placed inside rodent-morphic dosimeters that had been sectioned in half. Results: Rodent-morphic 3D dosimeters were successfully produced from Presage radiochromic material by utilizing 3D printed molds of rat CT contours. The dosimeters were found to be compatible with optical-CT dose readout in high-resolution 3D (0.5 mm isotropic voxels) with minimal artifacts or noise. Cone-beam CT image guidance was possible with these dosimeters due to sufficient contrast between high-Z spinal inserts and tissue equivalent Presage material (CNR ∼10 on CBCT images). Dose at isocenter measured with optical-CT was found to agree with nanoscintillator measurement to within 2.8%. Maximum dose in line profiles taken through Presage and film dose slices agreed within 3%, with FWHM measurements through each profile found to agree within 2%. Conclusions: This work demonstrates the feasibility of using 3D printing technology to make anatomically accurate Presage rodent-morphic dosimeters incorporating spinal-mimicking inserts. High quality optical-CT 3D dosimetry is feasible on these dosimeters, despite the irregular surfaces and implanted inserts. The ability to measure dose distributions in anatomically accurate phantoms represents a powerful useful additional verification tool for preclinical microSBRT.« less

  15. [A practical procedure to improve the accuracy of radiochromic film dosimetry: a integration with a correction method of uniformity correction and a red/blue correction method].

    PubMed

    Uehara, Ryuzo; Tachibana, Hidenobu; Ito, Yasushi; Yoshino, Shinichi; Matsubayashi, Fumiyasu; Sato, Tomoharu

    2013-06-01

    It has been reported that the light scattering could worsen the accuracy of dose distribution measurement using a radiochromic film. The purpose of this study was to investigate the accuracy of two different films, EDR2 and EBT2, as film dosimetry tools. The effectiveness of a correction method for the non-uniformity caused from EBT2 film and the light scattering was also evaluated. In addition the efficacy of this correction method integrated with the red/blue correction method was assessed. EDR2 and EBT2 films were read using a flatbed charge-coupled device scanner (EPSON 10000G). Dose differences on the axis perpendicular to the scanner lamp movement axis were within 1% with EDR2, but exceeded 3% (Maximum: +8%) with EBT2. The non-uniformity correction method, after a single film exposure, was applied to the readout of the films. A corrected dose distribution data was subsequently created. The correction method showed more than 10%-better pass ratios in dose difference evaluation than when the correction method was not applied. The red/blue correction method resulted in 5%-improvement compared with the standard procedure that employed red color only. The correction method with EBT2 proved to be able to rapidly correct non-uniformity, and has potential for routine clinical IMRT dose verification if the accuracy of EBT2 is required to be similar to that of EDR2. The use of red/blue correction method may improve the accuracy, but we recommend we should use the red/blue correction method carefully and understand the characteristics of EBT2 for red color only and the red/blue correction method.

  16. Radiation dose uncertainty and correction for a mouse orthotopic and xenograft irradiation model.

    PubMed

    Gan, Gregory N; Altunbas, Cem; Morton, John J; Eagles, Justin; Backus, Jennifer; Dzingle, Wayne; Raben, David; Jimeno, Antonio

    2016-01-01

    In animal irradiation models, reported dose can vary significantly from the actual doses delivered. We describe an effective method for in vivo dose verification. Mice bearing commercially-available cell line or patient-derived tumor cell orthotopic or flank xenografts were irradiated using a 160 kVp, 25 mA X-ray source. Entrance dose was evaluated using optically-stimulated luminescence dosimeters (OSLD) and exit dose was assessed using radiochromic film dosimetry. Tumor position within the irradiation field was validated using external fiducial markers. The average entrance dose in orthotopic tumors from 10 OSLDs placed on two different animal irradiation days was 514 ± 37 cGy (range: 437-545). Exit dose measurements taken from seven radiochromic films on two separate days were 341 ± 21 cGy (a 34% attenuation). Flank tumor irradiation doses measured by OSLD were 368 ± 9 cGy compared to exit doses of 330 cGy measured by radiochromic film. Variations related to the irradiation model can lead to significant under or overdosing in vivo which can affect tumor control and/or biologic endpoints that are dose-dependent. We recommend that dose measurements be determined empirically based on the mouse model and irradiator used and dose compensation adjustments performed to ensure correct and appropriate doses.

  17. SU-E-T-424: Dosimetric Verification of Modulated Electron Radiation Therapy Delivered Using An Electron Specific Multileaf Collimator for Treatment of Scalp Cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldib, A; Al-Azhar University Cairo; Jin, L

    2014-06-01

    Purpose: Modulated electron radiotherapy (MERT) has the potential to achieve better treatment outcome for shallow tumors such as those of breast and scalp. In a separate study with scalp lesions, MERT was compared to volumetric modulated arc therapy. Our results showed a reduction in the dose reaching the brain with MERT. However dose calculation accuracy and delivery efficiency challenges remain. Thus in the current study we proceed to add more cases to demonstrate MERT beneficial outcome and its delivery accuracy using an electron specific multileaf collimator (eMLC). Methods: We have used the MCBEAM code for treatment head simulation and formore » generating phase space files to be used as radiation source input for our Monte Carlo based treatment planning system (MC TPS). MCPLAN code is used for calculation of patient specific dose deposition coefficient and for final MERT plan dose calculation. An in-house developed optimization code is used for the optimization process. MERT plans were generated for real patients and head and neck phantom. Film was used for dosimetric verification. The film was cut following the contour of the curved phantom surface and then sealed with black masking tape. In the measurement, the sealed film packet was sandwiched between two adjacent slabs of the head and neck phantom. The measured 2D dose distribution was then compared with calculations. Results: The eMLC allows effective treatment of scalps with multi-lesions spreading around the patient head, which was usually difficult to plan or very time consuming with conventional applicators. MERT continues to show better reduction in the brain dose. The dosimetric measurements showed slight discrepancy, which was attributed to the film setup. Conclusion: MERT can improve treatment plan quality for patients with scalp cancers. Our in-house MC TPS is capable of performing treatment planning and accurate dose calculation for MERT using the eMLC.« less

  18. SU-E-T-67: A Quality Assurance Procedure for VMAT Delivery Technique with Multiple Verification Metric Using TG-119 Protocol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsuta, Y; Kadoya, N; Shimizu, E

    2015-06-15

    Purpose: A successful VMAT plan delivery includes precise modulations of dose rate, gantry rotational and multi-leaf collimator shapes. The purpose of this research is to construct routine QA protocol which focuses on VMAT delivery technique and to obtain a baseline including dose error, fluence distribution and mechanical accuracy during VMAT. Methods: The mock prostate, head and neck (HN) cases supplied from AAPM were used in this study. A VMAT plans were generated in Monaco TPS according to TG-119 protocol. Plans were created using 6 MV and 10 MV photon beams for each case. The phantom based measurement, fluence measurement andmore » log files analysis were performed. The dose measurement was performed using 0.6 cc ion chamber, which located at isocenter. The fluence distribution were acquired using the MapCHECK2 mounted in the MapPHAN. The trajectory log files recorded inner 20 leaf pairs and gantry angle positions at every 0.25 sec interval were exported to in-house software developed by MATLAB and determined those RMS values. Results: The dose difference is expressed as a ratio of the difference between measured and planned doses. The dose difference for 6 MV was 0.91%, for 10 MV was 0.67%. In turn, the fluence distribution using gamma criteria of 2%/2 mm with a 50% minimum dose threshold for 6 MV was 98.8%, for 10 MV was 97.5%, respectively. The RMS values of MLC for 6 MV and 10 MV were 0.32 mm and 0.37 mm, of gantry were 0.33 degree and 0.31 degree. Conclusion: In this study, QA protocol to assess VMAT delivery accuracy is constructed and results acquired in this study are used as a baseline of VMAT delivery performance verification.« less

  19. Dosimetric verification of small fields in the lung using lung-equivalent polymer gel and Monte Carlo simulation.

    PubMed

    Gharehaghaji, Nahideh; Dadgar, Habib Alah

    2018-01-01

    The main purpose of this study was evaluate a polymer-gel-dosimeter (PGD) for three-dimensional verification of dose distributions in the lung that is called lung-equivalent gel (LEG) and then to compare its result with Monte Carlo (MC) method. In the present study, to achieve a lung density for PGD, gel is beaten until foam is obtained, and then sodium dodecyl sulfate is added as a surfactant to increase the surface tension of the gel. The foam gel was irradiated with 1 cm × 1 cm field size in the 6 MV photon beams of ONCOR SIEMENS LINAC, along the central axis of the gel. The LEG was then scanned on a 1.5 Tesla magnetic resonance imaging scanner after irradiation using a multiple-spin echo sequence. Least-square fitting the pixel values from 32 consecutive images using a single exponential decay function derived the R2 relaxation rates. Moreover, 6 and 18 MV photon beams of ONCOR SIEMENS LINAC are simulated using MCNPX MC Code. The MC model is used to calculate the depth dose water and low-density water resembling the soft tissue and lung, respectively. Percentages of dose reduction in the lung region relative to homogeneous phantom for 6 MV photon beam were 44.6%, 39%, 13%, and 7% for 0.5 cm × 0.5 cm, 1 cm × 1 cm, 2 cm × 2 cm, and 3 cm × 3 cm fields, respectively. For 18 MV photon beam, the results were found to be 82%, 69%, 46%, and 25.8% for the same field sizes, respectively. Preliminary results show good agreement between depth dose measured with the LEG and the depth dose calculated using MCNP code. Our study showed that the dose reduction with small fields in the lung was very high. Thus, inaccurate prediction of absorbed dose inside the lung and also lung/soft-tissue interfaces with small photon beams may lead to critical consequences for treatment outcome.

  20. SU-F-T-609: Impact of Dosimetric Variation for Prescription Dose Using Analytical Anisotropic Algorithm (AAA) in Lung SBRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawai, D; Takahashi, R; Kamima, T

    Purpose: Actual irradiated prescription dose to patients cannot be verified. Thus, independent dose verification and second treatment planning system are used as the secondary check. AAA dose calculation engine has contributed to lung SBRT. We conducted a multi-institutional study to assess variation of prescription dose for lung SBRT when using AAA in reference to using Acuros XB and Clarkson algorithm. Methods: Six institutes in Japan participated in this study. All SBRT treatments were planed using AAA in Eclipse and Adaptive Convolve (AC) in Pinnacle3. All of the institutes used a same independent dose verification software program (Simple MU Analysis: SMU,more » Triangle Product, Ishikawa, Japan), which implemented a Clarkson-based dose calculation algorithm using CT image dataset. A retrospective analysis for lung SBRT plans (73 patients) was performed to compute the confidence limit (CL, Average±2SD) in dose between the AAA and the SMU. In one of the institutes, a additional analysis was conducted to evaluate the variations between the AAA and the Acuros XB (AXB). Results: The CL for SMU shows larger systematic and random errors of 8.7±9.9 % for AAA than the errors of 5.7±4.2 % for AC. The variations of AAA correlated with the mean CT values in the voxels of PTV (a correlation coefficient : −0.7) . The comparison of AXB vs. AAA shows smaller systematic and random errors of −0.7±1.7%. The correlation between dose variations for AXB and the mean CT values in PTV was weak (0.4). However, there were several plans with more than 2% deviation of AAPM TG114 (Maximum: −3.3 %). Conclusion: In comparison for AC, prescription dose calculated by AAA may be more variable in lung SBRT patient. Even AXB comparison shows unexpected variation. Care should be taken for the use of AAA in lung SBRT. This research is partially supported by Japan Agency for Medical Research and Development (AMED)« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vikraman, S; Ramu, M; Karrthick, Kp

    Purpose: The purpose of this study was to validate the advent of COMPASS 3D dosimetry as a routine pre treatment verification tool with commercially available CMS Monaco and Oncentra Masterplan planning system. Methods: Twenty esophagus patients were selected for this study. All these patients underwent radical VMAT treatment in Elekta Linac and plans were generated in Monaco v5.0 with MonteCarlo(MC) dose calculation algorithm. COMPASS 3D dosimetry comprises an advanced dose calculation algorithm of collapsed cone convolution(CCC). To validate CCC algorithm in COMPASS, The DICOM RT Plans generated using Monaco MC algorithm were transferred to Oncentra Masterplan v4.3 TPS. Only finalmore » dose calculations were performed using CCC algorithm with out optimization in Masterplan planning system. It is proven that MC algorithm is an accurate algorithm and obvious that there will be a difference with MC and CCC algorithms. Hence CCC in COMPASS should be validated with other commercially available CCC algorithm. To use the CCC as pretreatment verification tool with reference to MC generated treatment plans, CCC in OMP and CCC in COMPASS were validated using dose volume based indices such as D98, D95 for target volumes and OAR doses. Results: The point doses for open beams were observed <1% with reference to Monaco MC algorithms. Comparisons of CCC(OMP) Vs CCC(COMPASS) showed a mean difference of 1.82%±1.12SD and 1.65%±0.67SD for D98 and D95 respectively for Target coverage. Maximum point dose of −2.15%±0.60SD difference was observed in target volume. The mean lung dose of −2.68%±1.67SD was noticed between OMP and COMPASS. The maximum point doses for spinal cord were −1.82%±0.287SD. Conclusion: In this study, the accuracy of CCC algorithm in COMPASS 3D dosimetry was validated by compared with CCC algorithm in OMP TPS. Dose calculation in COMPASS is feasible within < 2% in comparison with commercially available TPS algorithms.« less

  2. A method for verification of treatment delivery in HDR prostate brachytherapy using a flat panel detector for both imaging and source tracking.

    PubMed

    Smith, Ryan L; Haworth, Annette; Panettieri, Vanessa; Millar, Jeremy L; Franich, Rick D

    2016-05-01

    Verification of high dose rate (HDR) brachytherapy treatment delivery is an important step, but is generally difficult to achieve. A technique is required to monitor the treatment as it is delivered, allowing comparison with the treatment plan and error detection. In this work, we demonstrate a method for monitoring the treatment as it is delivered and directly comparing the delivered treatment with the treatment plan in the clinical workspace. This treatment verification system is based on a flat panel detector (FPD) used for both pre-treatment imaging and source tracking. A phantom study was conducted to establish the resolution and precision of the system. A pretreatment radiograph of a phantom containing brachytherapy catheters is acquired and registration between the measurement and treatment planning system (TPS) is performed using implanted fiducial markers. The measured catheter paths immediately prior to treatment were then compared with the plan. During treatment delivery, the position of the (192)Ir source is determined at each dwell position by measuring the exit radiation with the FPD and directly compared to the planned source dwell positions. The registration between the two corresponding sets of fiducial markers in the TPS and radiograph yielded a registration error (residual) of 1.0 mm. The measured catheter paths agreed with the planned catheter paths on average to within 0.5 mm. The source positions measured with the FPD matched the planned source positions for all dwells on average within 0.6 mm (s.d. 0.3, min. 0.1, max. 1.4 mm). We have demonstrated a method for directly comparing the treatment plan with the delivered treatment that can be easily implemented in the clinical workspace. Pretreatment imaging was performed, enabling visualization of the implant before treatment delivery and identification of possible catheter displacement. Treatment delivery verification was performed by measuring the source position as each dwell was delivered. This approach using a FPD for imaging and source tracking provides a noninvasive method of acquiring extensive information for verification in HDR prostate brachytherapy.

  3. Investigation of Advanced Dose Verification Techniques for External Beam Radiation Treatment

    NASA Astrophysics Data System (ADS)

    Asuni, Ganiyu Adeniyi

    Intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) have been introduced in radiation therapy to achieve highly conformal dose distributions around the tumour while minimizing dose to surrounding normal tissues. These techniques have increased the need for comprehensive quality assurance tests, to verify that customized patient treatment plans are accurately delivered during treatment. in vivo dose verification, performed during treatment delivery, confirms that the actual dose delivered is the same as the prescribed dose, helping to reduce treatment delivery errors. in vivo measurements may be accomplished using entrance or exit detectors. The objective of this project is to investigate a novel entrance detector designed for in vivo dose verification. This thesis is separated into three main investigations, focusing on a prototype entrance transmission detector (TRD) developed by IBA Dosimetry, Germany. First contaminant electrons generated by the TRD in a 6 MV photon beam were investigated using Monte Carlo (MC) simulation. This study demonstrates that modification of the contaminant electron model in the treatment planning system is required for accurate patient dose calculation in buildup regions when using the device. Second, the ability of the TRD to accurately measure dose from IMRT and VMAT was investigated by characterising the spatial resolution of the device. This was accomplished by measuring the point spread function with further validation provided by MC simulation. Comparisons of measured and calculated doses show that the spatial resolution of the TRD allows for measurement of clinical IMRT fields within acceptable tolerance. Finally, a new general research tool was developed to perform MC simulations for VMAT and IMRT treatments, simultaneously tracking dose deposition in both the patient CT geometry and an arbitrary planar detector system, generalized to handle either entrance or exit orientations. It was demonstrated that the tool accurately simulates dose to the patient CT and planar detector geometries. The tool has been made freely available to the medical physics research community to help advance the development of in vivo planar detectors. In conclusion, this thesis presents several investigations that improve the understanding of a novel entrance detector designed for patient in vivo dosimetry.

  4. Density scaling of phantom materials for a 3D dose verification system.

    PubMed

    Tani, Kensuke; Fujita, Yukio; Wakita, Akihisa; Miyasaka, Ryohei; Uehara, Ryuzo; Kodama, Takumi; Suzuki, Yuya; Aikawa, Ako; Mizuno, Norifumi; Kawamori, Jiro; Saitoh, Hidetoshi

    2018-05-21

    In this study, the optimum density scaling factors of phantom materials for a commercially available three-dimensional (3D) dose verification system (Delta4) were investigated in order to improve the accuracy of the calculated dose distributions in the phantom materials. At field sizes of 10 × 10 and 5 × 5 cm 2 with the same geometry, tissue-phantom ratios (TPRs) in water, polymethyl methacrylate (PMMA), and Plastic Water Diagnostic Therapy (PWDT) were measured, and TPRs in various density scaling factors of water were calculated by Monte Carlo simulation, Adaptive Convolve (AdC, Pinnacle 3 ), Collapsed Cone Convolution (CCC, RayStation), and AcurosXB (AXB, Eclipse). Effective linear attenuation coefficients (μ eff ) were obtained from the TPRs. The ratios of μ eff in phantom and water ((μ eff ) pl,water ) were compared between the measurements and calculations. For each phantom material, the density scaling factor proposed in this study (DSF) was set to be the value providing a match between the calculated and measured (μ eff ) pl,water . The optimum density scaling factor was verified through the comparison of the dose distributions measured by Delta4 and calculated with three different density scaling factors: the nominal physical density (PD), nominal relative electron density (ED), and DSF. Three plans were used for the verifications: a static field of 10 × 10 cm 2 and two intensity modulated radiation therapy (IMRT) treatment plans. DSF were determined to be 1.13 for PMMA and 0.98 for PWDT. DSF for PMMA showed good agreement for AdC and CCC with 6 MV x ray, and AdC for 10 MV x ray. DSF for PWDT showed good agreement regardless of the dose calculation algorithms and x-ray energy. DSF can be considered one of the references for the density scaling factor of Delta4 phantom materials and may help improve the accuracy of the IMRT dose verification using Delta4. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  5. Performance analysis of a film dosimetric quality assurance procedure for IMRT with regard to the employment of quantitative evaluation methods.

    PubMed

    Winkler, Peter; Zurl, Brigitte; Guss, Helmuth; Kindl, Peter; Stuecklschweiger, Georg

    2005-02-21

    A system for dosimetric verification of intensity-modulated radiotherapy (IMRT) treatment plans using absolute calibrated radiographic films is presented. At our institution this verification procedure is performed for all IMRT treatment plans prior to patient irradiation. Therefore clinical treatment plans are transferred to a phantom and recalculated. Composite treatment plans are irradiated to a single film. Film density to absolute dose conversion is performed automatically based on a single calibration film. A software application encompassing film calibration, 2D registration of measurement and calculated distributions, image fusion, and a number of visual and quantitative evaluation utilities was developed. The main topic of this paper is a performance analysis for this quality assurance procedure, with regard to the specification of tolerance levels for quantitative evaluations. Spatial and dosimetric precision and accuracy were determined for the entire procedure, comprising all possible sources of error. The overall dosimetric and spatial measurement uncertainties obtained thereby were 1.9% and 0.8 mm respectively. Based on these results, we specified 5% dose difference and 3 mm distance-to-agreement as our tolerance levels for patient-specific quality assurance for IMRT treatments.

  6. Dosimetric verification of lung cancer treatment using the CBCTs estimated from limited-angle on-board projections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, You; Yin, Fang-Fang; Ren, Lei, E-mail: lei.ren@duke.edu

    2015-08-15

    Purpose: Lung cancer treatment is susceptible to treatment errors caused by interfractional anatomical and respirational variations of the patient. On-board treatment dose verification is especially critical for the lung stereotactic body radiation therapy due to its high fractional dose. This study investigates the feasibility of using cone-beam (CB)CT images estimated by a motion modeling and free-form deformation (MM-FD) technique for on-board dose verification. Methods: Both digital and physical phantom studies were performed. Various interfractional variations featuring patient motion pattern change, tumor size change, and tumor average position change were simulated from planning CT to on-board images. The doses calculated onmore » the planning CT (planned doses), the on-board CBCT estimated by MM-FD (MM-FD doses), and the on-board CBCT reconstructed by the conventional Feldkamp-Davis-Kress (FDK) algorithm (FDK doses) were compared to the on-board dose calculated on the “gold-standard” on-board images (gold-standard doses). The absolute deviations of minimum dose (ΔD{sub min}), maximum dose (ΔD{sub max}), and mean dose (ΔD{sub mean}), and the absolute deviations of prescription dose coverage (ΔV{sub 100%}) were evaluated for the planning target volume (PTV). In addition, 4D on-board treatment dose accumulations were performed using 4D-CBCT images estimated by MM-FD in the physical phantom study. The accumulated doses were compared to those measured using optically stimulated luminescence (OSL) detectors and radiochromic films. Results: Compared with the planned doses and the FDK doses, the MM-FD doses matched much better with the gold-standard doses. For the digital phantom study, the average (± standard deviation) ΔD{sub min}, ΔD{sub max}, ΔD{sub mean}, and ΔV{sub 100%} (values normalized by the prescription dose or the total PTV) between the planned and the gold-standard PTV doses were 32.9% (±28.6%), 3.0% (±2.9%), 3.8% (±4.0%), and 15.4% (±12.4%), respectively. The corresponding values of FDK PTV doses were 1.6% (±1.9%), 1.2% (±0.6%), 2.2% (±0.8%), and 17.4% (±15.3%), respectively. In contrast, the corresponding values of MM-FD PTV doses were 0.3% (±0.2%), 0.9% (±0.6%), 0.6% (±0.4%), and 1.0% (±0.8%), respectively. Similarly, for the physical phantom study, the average ΔD{sub min}, ΔD{sub max}, ΔD{sub mean}, and ΔV{sub 100%} of planned PTV doses were 38.1% (±30.8%), 3.5% (±5.1%), 3.0% (±2.6%), and 8.8% (±8.0%), respectively. The corresponding values of FDK PTV doses were 5.8% (±4.5%), 1.6% (±1.6%), 2.0% (±0.9%), and 9.3% (±10.5%), respectively. In contrast, the corresponding values of MM-FD PTV doses were 0.4% (±0.8%), 0.8% (±1.0%), 0.5% (±0.4%), and 0.8% (±0.8%), respectively. For the 4D dose accumulation study, the average (± standard deviation) absolute dose deviation (normalized by local doses) between the accumulated doses and the OSL measured doses was 3.3% (±2.7%). The average gamma index (3%/3 mm) between the accumulated doses and the radiochromic film measured doses was 94.5% (±2.5%). Conclusions: MM-FD estimated 4D-CBCT enables accurate on-board dose calculation and accumulation for lung radiation therapy. It can potentially be valuable for treatment quality assessment and adaptive radiation therapy.« less

  7. Relative dosimetrical verification in high dose rate brachytherapy using two-dimensional detector array IMatriXX

    PubMed Central

    Manikandan, A.; Biplab, Sarkar; David, Perianayagam A.; Holla, R.; Vivek, T. R.; Sujatha, N.

    2011-01-01

    For high dose rate (HDR) brachytherapy, independent treatment verification is needed to ensure that the treatment is performed as per prescription. This study demonstrates dosimetric quality assurance of the HDR brachytherapy using a commercially available two-dimensional ion chamber array called IMatriXX, which has a detector separation of 0.7619 cm. The reference isodose length, step size, and source dwell positional accuracy were verified. A total of 24 dwell positions, which were verified for positional accuracy gave a total error (systematic and random) of –0.45 mm, with a standard deviation of 1.01 mm and maximum error of 1.8 mm. Using a step size of 5 mm, reference isodose length (the length of 100% isodose line) was verified for single and multiple catheters of same and different source loadings. An error ≤1 mm was measured in 57% of tests analyzed. Step size verification for 2, 3, 4, and 5 cm was performed and 70% of the step size errors were below 1 mm, with maximum of 1.2 mm. The step size ≤1 cm could not be verified by the IMatriXX as it could not resolve the peaks in dose profile. PMID:21897562

  8. A virtual dosimetry audit - Towards transferability of gamma index analysis between clinical trial QA groups.

    PubMed

    Hussein, Mohammad; Clementel, Enrico; Eaton, David J; Greer, Peter B; Haworth, Annette; Ishikura, Satoshi; Kry, Stephen F; Lehmann, Joerg; Lye, Jessica; Monti, Angelo F; Nakamura, Mitsuhiro; Hurkmans, Coen; Clark, Catharine H

    2017-12-01

    Quality assurance (QA) for clinical trials is important. Lack of compliance can affect trial outcome. Clinical trial QA groups have different methods of dose distribution verification and analysis, all with the ultimate aim of ensuring trial compliance. The aim of this study was to gain a better understanding of different processes to inform future dosimetry audit reciprocity. Six clinical trial QA groups participated. Intensity modulated treatment plans were generated for three different cases. A range of 17 virtual 'measurements' were generated by introducing a variety of simulated perturbations (such as MLC position deviations, dose differences, gantry rotation errors, Gaussian noise) to three different treatment plan cases. Participants were blinded to the 'measured' data details. Each group analysed the datasets using their own gamma index (γ) technique and using standardised parameters for passing criteria, lower dose threshold, γ normalisation and global γ. For the same virtual 'measured' datasets, different results were observed using local techniques. For the standardised γ, differences in the percentage of points passing with γ < 1 were also found, however these differences were less pronounced than for each clinical trial QA group's analysis. These variations may be due to different software implementations of γ. This virtual dosimetry audit has been an informative step in understanding differences in the verification of measured dose distributions between different clinical trial QA groups. This work lays the foundations for audit reciprocity between groups, particularly with more clinical trials being open to international recruitment. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. SU-F-T-70: A High Dose Rate Total Skin Electron Irradiation Technique with A Specific Inter-Film Variation Correction Method for Very Large Electron Beam Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, X; Rosenfield, J; Dong, X

    2016-06-15

    Purpose: Rotational total skin electron irradiation (RTSEI) is used in the treatment of cutaneous T-cell lymphoma. Due to inter-film uniformity variations the dosimetry measurement of a large electron beam of a very low energy is challenging. This work provides a method to improve the accuracy of flatness and symmetry for a very large treatment field of low electron energy used in dual beam RTSEI. Methods: RTSEI is delivered by dual angles field a gantry of ±20 degrees of 270 to cover the upper and the lower halves of the patient body with acceptable beam uniformity. The field size is inmore » the order of 230cm in vertical height and 120 cm in horizontal width and beam energy is a degraded 6 MeV (6 mm of PMMA spoiler). We utilized parallel plate chambers, Gafchromic films and OSLDs as a measuring devices for absolute dose, B-Factor, stationary and rotational percent depth dose and beam uniformity. To reduce inter-film dosimetric variation we introduced a new specific correction method to analyze beam uniformity. This correction method uses some image processing techniques combining film value before and after radiation dose to compensate the inter-variation dose response differences among films. Results: Stationary and rotational depth of dose demonstrated that the Rp is 2 cm for rotational and the maximum dose is shifted toward the surface (3mm). The dosimetry for the phantom showed that dose uniformity reduced to 3.01% for the vertical flatness and 2.35% for horizontal flatness after correction thus achieving better flatness and uniformity. The absolute dose readings of calibrated films after our correction matched with the readings from OSLD. Conclusion: The proposed correction method for Gafchromic films will be a useful tool to correct inter-film dosimetric variation for the future clinical film dosimetry verification in very large fields, allowing the optimizations of other parameters.« less

  10. SU-E-T-215: Comparison of VMAT-SABR Treatment Plans with Flattened Filter (FF) Beam and Flattening Filter-Free (FFF) Beam for Localized Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, J; Kim, J; Kang, S

    2015-06-15

    Purpose: The purpose of this study is to access VMAT-SABR plan using flattening filter (FF) and flattening filter-free (FFF) beam, and compare the verification results for all pretreatment plans. Methods: SABR plans for 20 prostate patients were optimized in the Eclipse treatment planning system. A prescription dose was 42.7 Gy/7 fractions. Four SABR plans for each patient were calculated using Acuros XB algorithm with both FF and FFF beams of 6- and 10-MV. The dose-volume histograms (DVH) and technical parameters were recorded and compared. A pretreatment verification was performed and the gamma analysis was used to quantify the agreement betweenmore » calculations and measurements. Results: For each patient, the DVHs are closely similar for plans of four different beams. There are small differences showed in dose distributions and corresponding DVHs when comparing the each plan related to the same patient. Sparing on bladder and rectum was slightly better on plans with 10-MV FF and FFF than with 6-MV FF and FFF, but this difference was negligible. However, there was no significance in the other OARs. The mean agreement of 3%/3mm criteria was higher than 97% in all plans. The mean MUs and deliver time employed was 1701±101 and 3.02±0.17 min for 6-MV FF, 1870±116 and 1.69±0.08 min for 6-MV FFF, 1471±86 and 2.68±0.14 min for 10-MV FF, and 1619±101 and 0.98±0.04 min for 10-MV FFF, respectively. Conclusion: Dose distributions on prostate SABR plans using FFF beams were similar to those generated by FF beams. However, the use of FFF beam offers a clear benefit in delivery time when compared to FF beam. Verification of pretreatment also represented the acceptable and comparable results in all plans using FF beam as well as FFF beam. Therefore, this study suggests that the use of FFF beam is feasible and efficient technique for prostate SABR.« less

  11. SU-G-BRB-15: Verifications of Absolute and Relative Dosimetry of a Novel Stereotactic Breast Device: GammaPodTM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, S; Mossahebi, S; Yi, B

    Purpose: A dedicated stereotactic breast radiotherapy device, GammaPod, was developed to treat early stage breast cancer. The first clinical unit was installed and commissioned at University of Maryland. We report our methodology of absolute dosimetry in multiple calibration conditions and dosimetric verifications of treatment plans produced by the system. Methods: GammaPod unit is comprised of a rotating hemi-spherical source carrier containing 36 Co-60 sources and a concentric tungsten collimator providing beams of 15 and 25 mm. Absolute dose calibration formalism was developed with modifications to AAPM protocols for unique geometry and different calibration medium (acrylic, polyethylene or liquid water). Breastmore » cup-size specific and collimator output factors were measured and verified with respect to Monte-Carlo simulations for single isocenter plans. Multiple isocenter plans were generated for various target size, location and cup-sizes in phantoms and 20 breast cancer patients images. Stereotactic mini-farmer chamber, OSL and TLD detectors as well as radio-chromic films were used for dosimetric measurements. Results: At the time of calibration (1/14/2016), absolute dose rate of the GammaPod was established to be 2.10 Gy/min in acrylic for 25 mm for sources installed in March 2011. Output factor for 15 mm collimator was measured to be 0.950. Absolute dose calibration was independently verified by IROC-Houston with a TLD/Institution ratio of 0.99. Cup size specific output measurements in liquid water for single isocenter were found to be within 3.0% of MC simulations. Point-dose measurements of multiple isocenter treatment plans were found to be within −1.0 ± 1.2 % of treatment planning system while 2-dimensional gamma analysis yielded a pass rate of 97.9 ± 2.2 % using gamma criteria of 3% and 2mm. Conclusion: The first GammaPod treatment unit for breast stereotactic radiotherapy was successfully installed, calibrated and commissioned for patient treatments. An absolute dosimetry and dosimetric verification protocols were successfully created.« less

  12. Calibrating page sized Gafchromic EBT3 films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crijns, W.; Maes, F.; Heide, U. A. van der

    2013-01-15

    Purpose: The purpose is the development of a novel calibration method for dosimetry with Gafchromic EBT3 films. The method should be applicable for pretreatment verification of volumetric modulated arc, and intensity modulated radiotherapy. Because the exposed area on film can be large for such treatments, lateral scan errors must be taken into account. The correction for the lateral scan effect is obtained from the calibration data itself. Methods: In this work, the film measurements were modeled using their relative scan values (Transmittance, T). Inside the transmittance domain a linear combination and a parabolic lateral scan correction described the observed transmittancemore » values. The linear combination model, combined a monomer transmittance state (T{sub 0}) and a polymer transmittance state (T{sub {infinity}}) of the film. The dose domain was associated with the observed effects in the transmittance domain through a rational calibration function. On the calibration film only simple static fields were applied and page sized films were used for calibration and measurements (treatment verification). Four different calibration setups were considered and compared with respect to dose estimation accuracy. The first (I) used a calibration table from 32 regions of interest (ROIs) spread on 4 calibration films, the second (II) used 16 ROIs spread on 2 calibration films, the third (III), and fourth (IV) used 8 ROIs spread on a single calibration film. The calibration tables of the setups I, II, and IV contained eight dose levels delivered to different positions on the films, while for setup III only four dose levels were applied. Validation was performed by irradiating film strips with known doses at two different time points over the course of a week. Accuracy of the dose response and the lateral effect correction was estimated using the dose difference and the root mean squared error (RMSE), respectively. Results: A calibration based on two films was the optimal balance between cost effectiveness and dosimetric accuracy. The validation resulted in dose errors of 1%-2% for the two different time points, with a maximal absolute dose error around 0.05 Gy. The lateral correction reduced the RMSE values on the sides of the film to the RMSE values at the center of the film. Conclusions: EBT3 Gafchromic films were calibrated for large field dosimetry with a limited number of page sized films and simple static calibration fields. The transmittance was modeled as a linear combination of two transmittance states, and associated with dose using a rational calibration function. Additionally, the lateral scan effect was resolved in the calibration function itself. This allows the use of page sized films. Only two calibration films were required to estimate both the dose and the lateral response. The calibration films were used over the course of a week, with residual dose errors Less-Than-Or-Slanted-Equal-To 2% or Less-Than-Or-Slanted-Equal-To 0.05 Gy.« less

  13. Two-year experience with the commercial Gamma Knife Check software.

    PubMed

    Xu, Andy Yuanguang; Bhatnagar, Jagdish; Bednarz, Greg; Novotny, Josef; Flickinger, John; Lunsford, L Dade; Huq, M Saiful

    2016-07-08

    The Gamma Knife Check software is an FDA approved second check system for dose calculations in Gamma Knife radiosurgery. The purpose of this study was to evaluate the accuracy and the stability of the commercial software package as a tool for independent dose verification. The Gamma Knife Check software version 8.4 was commissioned for a Leksell Gamma Knife Perfexion and a 4C unit at the University of Pittsburgh Medical Center in May 2012. Independent dose verifications were performed using this software for 319 radiosurgery cases on the Perfexion and 283 radiosurgery cases on the 4C units. The cases on each machine were divided into groups according to their diagnoses, and an averaged absolute percent dose difference for each group was calculated. The percentage dose difference for each treatment target was obtained as the relative difference between the Gamma Knife Check dose and the dose from the tissue maximum ratio algorithm (TMR 10) from the GammaPlan software version 10 at the reference point. For treatment plans with imaging skull definition, results obtained from the Gamma Knife Check software using the measurement-based skull definition method are used for comparison. The collected dose difference data were also analyzed in terms of the distance from the treatment target to the skull, the number of treatment shots used for the target, and the gamma angles of the treatment shots. The averaged percent dose differences between the Gamma Knife Check software and the GammaPlan treatment planning system are 0.3%, 0.89%, 1.24%, 1.09%, 0.83%, 0.55%, 0.33%, and 1.49% for the trigeminal neuralgia, acoustic neuroma, arteriovenous malformation (AVM), meningioma, pituitary adenoma, glioma, functional disorders, and metastasis cases on the Perfexion unit. The corresponding averaged percent dose differences for the 4C unit are 0.33%, 1.2%, 2.78% 1.99%, 1.4%, 1.92%, 0.62%, and 1.51%, respectively. The dose difference is, in general, larger for treatment targets in the peripheral regions of the skull owing to the difference in the numerical methods used for skull shape simulation in the GammaPlan and the Gamma Knife Check software. Larger than 5% dose differences were observed on both machines for certain targets close to patient skull surface and for certain targets in the lower half of the brain on the Perfexion, especially when shots with 70 and/or 110 gamma angles are used. Out of the 1065 treatment targets studied, a 5% cutoff criterion cannot always be met for the dose differences between the studied versions of the Gamma Knife Check software and the planning system for 40 treatment targets. © 2016 The Authors.

  14. Two‐year experience with the commercial Gamma Knife Check software

    PubMed Central

    Bhatnagar, Jagdish; Bednarz, Greg; Novotny, Josef; Flickinger, John; Lunsford, L. Dade; Huq, M. Saiful

    2016-01-01

    The Gamma Knife Check software is an FDA approved second check system for dose calculations in Gamma Knife radiosurgery. The purpose of this study was to evaluate the accuracy and the stability of the commercial software package as a tool for independent dose verification. The Gamma Knife Check software version 8.4 was commissioned for a Leksell Gamma Knife Perfexion and a 4C unit at the University of Pittsburgh Medical Center in May 2012. Independent dose verifications were performed using this software for 319 radiosurgery cases on the Perfexion and 283 radiosurgery cases on the 4C units. The cases on each machine were divided into groups according to their diagnoses, and an averaged absolute percent dose difference for each group was calculated. The percentage dose difference for each treatment target was obtained as the relative difference between the Gamma Knife Check dose and the dose from the tissue maximum ratio algorithm (TMR 10) from the GammaPlan software version 10 at the reference point. For treatment plans with imaging skull definition, results obtained from the Gamma Knife Check software using the measurement‐based skull definition method are used for comparison. The collected dose difference data were also analyzed in terms of the distance from the treatment target to the skull, the number of treatment shots used for the target, and the gamma angles of the treatment shots. The averaged percent dose differences between the Gamma Knife Check software and the GammaPlan treatment planning system are 0.3%, 0.89%, 1.24%, 1.09%, 0.83%, 0.55%, 0.33%, and 1.49% for the trigeminal neuralgia, acoustic neuroma, arteriovenous malformation (AVM), meningioma, pituitary adenoma, glioma, functional disorders, and metastasis cases on the Perfexion unit. The corresponding averaged percent dose differences for the 4C unit are 0.33%, 1.2%, 2.78% 1.99%, 1.4%, 1.92%, 0.62%, and 1.51%, respectively. The dose difference is, in general, larger for treatment targets in the peripheral regions of the skull owing to the difference in the numerical methods used for skull shape simulation in the GammaPlan and the Gamma Knife Check software. Larger than 5% dose differences were observed on both machines for certain targets close to patient skull surface and for certain targets in the lower half of the brain on the Perfexion, especially when shots with 70 and/or 110 gamma angles are used. Out of the 1065 treatment targets studied, a 5% cutoff criterion cannot always be met for the dose differences between the studied versions of the Gamma Knife Check software and the planning system for 40 treatment targets. PACS number(s): 87.55.Qr, 87.56.Fc PMID:27455470

  15. Dosimetric evaluation of IMRT plan for homogenous and inhomogeneous medium using AAPM TG-119 protocol

    NASA Astrophysics Data System (ADS)

    Fatimah, L. A. N.; Wibowo, W. E.; Pawiro, S. A.

    2017-05-01

    The American Association of Physicists in Medicine (AAPM) TG-119 protocol has been applied for dose verification in IMRT technique. However, some criteria in the protocol need to be verified for inhomogeneous medium and small volume targets. Hence, the purpose of this study was to verify the assessment criteria of dose verification in AAPM TG-119 for inhomogeneous medium and small volume targets. The work has been conducted by dose verification for homogeneous (phantom A) and inhomogeneous phantoms (phantom B and C) on two geometrical targets: C-shape and circular targets. The targets were simulated using 7 static dMLC IMRT fields at two different depths of 5 g/cm2 and 10 g/cm2. The dose optimisation and calculation were done by using Pinnacle3 for 6 MV photons beam. The planning objectives were set according to AAPM TG-119 parameters. The plan analysis was conducted by Conformity Index and Homogeneity Index. The point dose measurements were conducted with Exradin A16, Semiflex 0.125cc, and Gafchromic EBT3. The plan results show that CI for C-shape target is in the range of 0.710-0.999 at 10 g/cm2 depth and 0.691-1.613 at 5 g/cm2. In addition, HI for C-shape and circular were in the range of 6.3%-58.7% and 5.4%-87.1% for 10 g/cm2 depth. The measurement results show that the dose measurement at inhomogeneous medium and small volume targets are much lower than the criteria in AAPM TG-119. In conclusion, the criteria in the AAPM TG-119 cannot be fully implemented for inhomogeneous medium and small volume targets.

  16. Physical aspects of total-body irradiation at the Middlesex Hospital (UCL group of hospitals), London 1988-1993: I. Phantom measurements and planning methods.

    PubMed

    Planskoy, B; Bedford, A M; Davis, F M; Tapper, P D; Loverock, L T

    1996-11-01

    This paper, which is divided into parts I and II, describes the physical aspects of work on total-body irradiation (TBI) at the Middlesex Hospital, London, from 1988 to 1993. Irradiation is fractionated and bi-lateral with horizontal accelerator photon beams of 8 MV (1988-1992) at a source-surface distance (SSD) of 3.36 m and 10 MV (1992-1993) at an SSD of 4.62 m. The main aims were maximum patient comfort, a simple, accurate set-up with overall times per fraction of 30 min or less, dose homogeneity throughout the body within +/- 10 to +/- 15%, pre-irradiation treatment planning on nine CT slices using our commercial IGE RTplan (1988-1992) and Target 2 (1992-1993) treatment planning systems and, most important, verification of the plans by in vivo dosimetry to within +/- 5%. Verification of the planned lung doses, which are distributed over five CT slices, was given special attention. In part I of this paper we describe the preliminary work, most of which was done prior to patient treatment. This consisted of standard dosimetric measurements (central axis depth doses, beam profiles at several depths, build-up and build-down curves, beam output calibrations, effect of body compensators, etc), in evaluating silicon diode dosimeters for in vivo dosimetry and of adapting and verifying the methods of treatment planning for TBI conditions. The results obtained with phantoms, including a Rando body phantom, showed that, in principle, our aims could be achieved. The final proof depended, however, on an analysis of the results of the in vivo work and this forms the subject of part II of this paper.

  17. Design and implementation of a head-and-neck phantom for system audit and verification of intensity-modulated radiation therapy.

    PubMed

    Webster, Gareth J; Hardy, Mark J; Rowbottom, Carl G; Mackay, Ranald I

    2008-04-16

    The head and neck is a challenging anatomic site for intensity-modulated radiation therapy (IMRT), requiring thorough testing of planning and treatment delivery systems. Ideally, the phantoms used should be anatomically realistic, have radiologic properties identical to those of the tissues concerned, and allow for the use of a variety of devices to verify dose and dose distribution in any target or normaltissue structure. A phantom that approaches the foregoing characteristics has been designed and built; its specific purpose is verification for IMRT treatments in the head-andneck region. This semi-anatomic phantom, HANK, is constructed of Perspex (Imperial Chemical Industries, London, U.K.) and provides for the insertion of heterogeneities simulating air cavities in a range of fixed positions. Chamber inserts are manufactured to incorporate either a standard thimble ionization chamber (0.125 cm3: PTW, Freiburg, Germany) or a smaller PinPoint chamber (0.015 cm3: PTW), and measurements can be made with either chamber in a range of positions throughout the phantom. Coronal films can also be acquired within the phantom, and additional solid blocks of Perspex allow for transverse films to be acquired within the head region. Initial studies using simple conventional head-and-neck plans established the reproducibility of the phantom and the measurement devices to within the setup uncertainty of +/- 0.5 mm. Subsequent verification of 9 clinical head-and-neck IMRT plans demonstrated the efficacy of the phantom in making a range of patient-specific dose measurements in regions of dosimetric and clinical interest. Agreement between measured values and those predicted by the Pinnacle3 treatment planning system (Philips Medical Systems, Andover, MA) was found to be generally good, with a mean error on the calculated dose to each point of +0.2% (range: -4.3% to +2.2%; n = 9) for the primary planning target volume (PTV), -0.1% (range: -1.5% to +2.0%; n = 8) for the nodal PTV, and +0.0% (range: -1.8% to +4.3%, n = 9) for the spinal cord. The suitability of the phantom for measuring combined dose distributions using radiographic film was also evaluated. The phantom has proved to be a valuable tool in the development and implementation of clinical head-and-neck IMRT, allowing for accurate verification of absolute dose and dose distributions in regions of clinical and dosimetric interest.

  18. SU-E-T-280: Reconstructed Rectal Wall Dose Map-Based Verification of Rectal Dose Sparing Effect According to Rectum Definition Methods and Dose Perturbation by Air Cavity in Endo-Rectal Balloon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J; Research Institute of Biomedical Engineering, The Catholic University of Korea, Seoul; Park, H

    Purpose: Dosimetric effect and discrepancy according to the rectum definition methods and dose perturbation by air cavity in an endo-rectal balloon (ERB) were verified using rectal-wall (Rwall) dose maps considering systematic errors in dose optimization and calculation accuracy in intensity-modulated radiation treatment (IMRT) for prostate cancer patients. Methods: When the inflated ERB having average diameter of 4.5 cm and air volume of 100 cc is used for patient, Rwall doses were predicted by pencil-beam convolution (PBC), anisotropic analytic algorithm (AAA), and AcurosXB (AXB) with material assignment function. The errors of dose optimization and calculation by separating air cavity from themore » whole rectum (Rwhole) were verified with measured rectal doses. The Rwall doses affected by the dose perturbation of air cavity were evaluated using a featured rectal phantom allowing insert of rolled-up gafchromic films and glass rod detectors placed along the rectum perimeter. Inner and outer Rwall doses were verified with reconstructed predicted rectal wall dose maps. Dose errors and extent at dose levels were evaluated with estimated rectal toxicity. Results: While AXB showed insignificant difference of target dose coverage, Rwall doses underestimated by up to 20% in dose optimization for the Rwhole than Rwall at all dose range except for the maximum dose. As dose optimization for Rwall was applied, the Rwall doses presented dose error less than 3% between dose calculation algorithm except for overestimation of maximum rectal dose up to 5% in PBC. Dose optimization for Rwhole caused dose difference of Rwall especially at intermediate doses. Conclusion: Dose optimization for Rwall could be suggested for more accurate prediction of rectal wall dose prediction and dose perturbation effect by air cavity in IMRT for prostate cancer. This research was supported by the Leading Foreign Research Institute Recruitment Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (MSIP) (Grant No. 200900420)« less

  19. 24 CFR 985.3 - Indicators, HUD verification methods and ratings.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Indicators, HUD verification..., HUD verification methods and ratings. This section states the performance indicators that are used to assess PHA Section 8 management. HUD will use the verification method identified for each indicator in...

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, S; Guerrero, M; Zhang, B

    Purpose: To implement a comprehensive non-measurement-based verification program for patient-specific IMRT QA Methods: Based on published guidelines, a robust IMRT QA program should assess the following components: 1) accuracy of dose calculation, 2) accuracy of data transfer from the treatment planning system (TPS) to the record-and-verify (RV) system, 3) treatment plan deliverability, and 4) accuracy of plan delivery. Results: We have implemented an IMRT QA program that consist of four components: 1) an independent re-calculation of the dose distribution in the patient anatomy with a commercial secondary dose calculation program: Mobius3D (Mobius Medical Systems, Houston, TX), with dose accuracy evaluationmore » using gamma analysis, PTV mean dose, PTV coverage to 95%, and organ-at-risk mean dose; 2) an automated in-house-developed plan comparison system that compares all relevant plan parameters such as MU, MLC position, beam iso-center position, collimator, gantry, couch, field size settings, and bolus placement, etc. between the plan and the RV system; 3) use of the RV system to check the plan deliverability and further confirm using “mode-up” function on treatment console for plans receiving warning; and 4) implementation of a comprehensive weekly MLC QA, in addition to routine accelerator monthly and daily QA. Among 1200 verifications, there were 9 cases of suspicious calculations, 5 cases of delivery failure, no data transfer errors, and no failure of weekly MLC QA. These 9 suspicious cases were due to the PTV extending to the skin or to heterogeneity correction effects, which would not have been caught using phantom measurement-based QA. The delivery failure was due to the rounding variation of MLC position between the planning system and RV system. Conclusion: A very efficient, yet comprehensive, non-measurement-based patient-specific QA program has been implemented and used clinically for about 18 months with excellent results.« less

  1. SU-F-J-199: Predictive Models for Cone Beam CT-Based Online Verification of Pencil Beam Scanning Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, L; Lin, A; Ahn, P

    Purpose: To utilize online CBCT scans to develop models for predicting DVH metrics in proton therapy of head and neck tumors. Methods: Nine patients with locally advanced oropharyngeal cancer were retrospectively selected in this study. Deformable image registration was applied to the simulation CT, target volumes, and organs at risk (OARs) contours onto each weekly CBCT scan. Intensity modulated proton therapy (IMPT) treatment plans were created on the simulation CT and forward calculated onto each corrected CBCT scan. Thirty six potentially predictive metrics were extracted from each corrected CBCT. These features include minimum/maximum/mean over and under-ranges at the proximal andmore » distal surface of PTV volumes, and geometrical and water equivalent distance between PTV and each OARs. Principal component analysis (PCA) was used to reduce the dimension of the extracted features. Three principal components were found to account for over 90% of variances in those features. Datasets from eight patients were used to train a machine learning model to fit these principal components with DVH metrics (dose to 95% and 5% of PTV, mean dose or max dose to OARs) from the forward calculated dose on each corrected CBCT. The accuracy of this model was verified on the datasets from the 9th patient. Results: The predicted changes of DVH metrics from the model were in good agreement with actual values calculated on corrected CBCT images. Median differences were within 1 Gy for most DVH metrics except for larynx and constrictor mean dose. However, a large spread of the differences was observed, indicating additional training datasets and predictive features are needed to improve the model. Conclusion: Intensity corrected CBCT scans hold the potential to be used for online verification of proton therapy and prediction of delivered dose distributions.« less

  2. Evaluation of a real-time BeO ceramic fiber-coupled luminescence dosimetry system for dose verification of high dose rate brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, Alexandre M. Caraça, E-mail: alexandre.santos@adelaide.edu.au; Mohammadi, Mohammad; Shahraam, Afshar V.

    Purpose: The authors evaluate the capability of a beryllium oxide (BeO) ceramic fiber-coupled luminescence dosimeter, named radioluminescence/optically stimulated luminescence (RL/OSL) BeO FOD, for dosimetric verification of high dose rate (HDR) treatments. The RL/OSL BeO FOD is capable of RL and OSL measurements. Methods: The RL/OSL BeO FOD is able to be inserted in 6F proguide needles, used in interstitial HDR treatments. Using a custom built Perspex phantom, 6F proguide needles could be submerged in a water tank at 1 cm separations from each other. A second background fiber was required to correct for the stem effect. The stem effect, dosemore » linearity, reproducibility, depth-dose curves, and angular and temperature dependency of the RL/OSL BeO FOD were characterised using an Ir-192 source. The RL/OSL BeO FOD was also applied to the commissioning of a 10 mm horizontal Leipzig applicator. Results: Both the RL and OSL were found to be reproducible and their percentage depth-dose curves to be in good agreement with those predicted via TG-43. A combined uncertainty of 7.9% and 10.1% (k = 1) was estimated for the RL and OSL, respectively. For the 10 mm horizontal Leipzig applicator, measured percentage depth doses were within 5% agreement of the published reference calculations. The output at the 3 mm prescription depth for a 1 Gy delivery was verified to be 0.99 ± 0.08 Gy and 1.01 ± 0.10 Gy by the RL and OSL, respectively. Conclusions: The use of the second background fiber under the current setup means that the two fibers cannot fit into a single 6F needle. Hence, use of the RL is currently not adequate for the purpose of in vivo brachytherapy dosimetry. While not real-time, the OSL is shown to be adequate for in vivo brachytherapy dosimetry.« less

  3. Initial experience of ArcCHECK and 3DVH software for RapidArc treatment plan verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Infusino, Erminia; Mameli, Alessandra, E-mail: e.infusino@unicampus.it; Conti, Roberto

    2014-10-01

    The purpose of this study was to perform delivery quality assurance with ArcCHECK and 3DVH system (Sun Nuclear, FL) and to evaluate the suitability of this system for volumetric-modulated arc therapy (VMAT) (RapidArc [RA]) verification. This software calculates the delivered dose distributions in patients by perturbing the calculated dose using errors detected in fluence or planar dose measurements. The device is tested to correlate the gamma passing rate (%GP) and the composite dose predicted by 3DVH software. A total of 28 patients with prostate cancer who were treated with RA were analyzed. RA treatments were delivered to a diode arraymore » phantom (ArcCHECK), which was used to create a planned dose perturbation (PDP) file. The 3DVH analysis used the dose differences derived from comparing the measured dose with the treatment planning system (TPS)-calculated doses to perturb the initial TPS-calculated dose. The 3DVH then overlays the resultant dose on the patient's structures using the resultant “PDP” beams. Measured dose distributions were compared with the calculated ones using the gamma index (GI) method by applying the global (Van Dyk) normalization and acceptance criteria, i.e., 3%/3 mm. Paired differences tests were used to estimate statistical significance of the differences between the composite dose calculated using 3DVH and %GP. Also, statistical correlation by means of logistic regression analysis has been analyzed. Dose-volume histogram (DVH) analysis for patient plans revealed small differences between treatment plan calculations and 3DVH results for organ at risk (OAR), whereas planning target volume (PTV) of the measured plan was systematically higher than that predicted by the TPS. The t-test results between the planned and the estimated DVH values showed that mean values were incomparable (p < 0.05). The quality assurance (QA) gamma analysis 3%/3 mm showed that in all cases there were only weak-to-moderate correlations (Pearson r: 0.12 to 0.74). Moreover, clinically relevant differences increased with increasing QA passing rate, indicating that some of the largest dose differences occurred in the cases of high QA passing rates, which may be called “false negatives.” The clinical importance of any disagreement between the measured and the calculated dose is often difficult to interpret; however, beam errors (either in delivery or in TPS calculation) can affect the effectiveness of the patient dose. Further research is needed to determinate the role of a PDP-type algorithm to accurately estimate patient dose effect.« less

  4. Statistical methods for clinical verification of dose response parameters related to esophageal stricture and AVM obliteration from radiotherapy

    NASA Astrophysics Data System (ADS)

    Mavroidis, Panayiotis; Lind, Bengt K.; Theodorou, Kyriaki; Laurell, Göran; Fernberg, Jan-Olof; Lefkopoulos, Dimitrios; Kappas, Constantin; Brahme, Anders

    2004-08-01

    The purpose of this work is to provide some statistical methods for evaluating the predictive strength of radiobiological models and the validity of dose-response parameters for tumour control and normal tissue complications. This is accomplished by associating the expected complication rates, which are calculated using different models, with the clinical follow-up records. These methods are applied to 77 patients who received radiation treatment for head and neck cancer and 85 patients who were treated for arteriovenous malformation (AVM). The three-dimensional dose distribution delivered to esophagus and AVM nidus and the clinical follow-up results were available for each patient. Dose-response parameters derived by a maximum likelihood fitting were used as a reference to evaluate their compatibility with the examined treatment methodologies. The impact of the parameter uncertainties on the dose-response curves is demonstrated. The clinical utilization of the radiobiological parameters is illustrated. The radiobiological models (relative seriality and linear Poisson) and the reference parameters are validated to prove their suitability in reproducing the treatment outcome pattern of the patient material studied (through the probability of finding a worse fit, area under the ROC curve and khgr2 test). The analysis was carried out for the upper 5 cm of the esophagus (proximal esophagus) where all the strictures are formed, and the total volume of AVM. The estimated confidence intervals of the dose-response curves appear to have a significant supporting role on their clinical implementation and use.

  5. Research on radiation exposure from CT part of hybrid camera and diagnostic CT

    NASA Astrophysics Data System (ADS)

    Solný, Pavel; Zimák, Jaroslav

    2014-11-01

    Research on radiation exposure from CT part of hybrid camera in seven different Departments of Nuclear Medicine (DNM) was conducted. Processed data and effective dose (E) estimations led to the idea of phantom verification and comparison of absorbed doses and software estimation. Anonymous data from about 100 examinations from each DNM was gathered. Acquired data was processed and utilized by dose estimation programs (ExPACT, ImPACT, ImpactDose) with respect to the type of examination and examination procedures. Individual effective doses were calculated using enlisted programs. Preserving the same procedure in dose estimation process allows us to compare the resulting E. Some differences and disproportions during dose estimation led to the idea of estimated E verification. Consequently, two different sets of about 100 of TLD 100H detectors were calibrated for measurement inside the Aldersnon RANDO Anthropomorphic Phantom. Standard examination protocols were examined using a 2 Slice CT- part of hybrid SPECT/CT. Moreover, phantom exposure from body examining protocol for 32 Slice and 64 Slice diagnostic CT scanner was also verified. Absorbed dose (DT,R) measured using TLD detectors was compared with software estimation of equivalent dose HT values, computed by E estimation software. Though, only limited number of cavities for detectors enabled measurement within the regions of lung, liver, thyroid and spleen-pancreas region, some basic comparison is possible.

  6. On the new metrics for IMRT QA verification.

    PubMed

    Garcia-Romero, Alejandro; Hernandez-Vitoria, Araceli; Millan-Cebrian, Esther; Alba-Escorihuela, Veronica; Serrano-Zabaleta, Sonia; Ortega-Pardina, Pablo

    2016-11-01

    The aim of this work is to search for new metrics that could give more reliable acceptance/rejection criteria on the IMRT verification process and to offer solutions to the discrepancies found among different conventional metrics. Therefore, besides conventional metrics, new ones are proposed and evaluated with new tools to find correlations among them. These new metrics are based on the processing of the dose-volume histogram information, evaluating the absorbed dose differences, the dose constraint fulfillment, or modified biomathematical treatment outcome models such as tumor control probability (TCP) and normal tissue complication probability (NTCP). An additional purpose is to establish whether the new metrics yield the same acceptance/rejection plan distribution as the conventional ones. Fifty eight treatment plans concerning several patient locations are analyzed. All of them were verified prior to the treatment, using conventional metrics, and retrospectively after the treatment with the new metrics. These new metrics include the definition of three continuous functions, based on dose-volume histograms resulting from measurements evaluated with a reconstructed dose system and also with a Monte Carlo redundant calculation. The 3D gamma function for every volume of interest is also calculated. The information is also processed to obtain ΔTCP or ΔNTCP for the considered volumes of interest. These biomathematical treatment outcome models have been modified to increase their sensitivity to dose changes. A robustness index from a radiobiological point of view is defined to classify plans in robustness against dose changes. Dose difference metrics can be condensed in a single parameter: the dose difference global function, with an optimal cutoff that can be determined from a receiver operating characteristics (ROC) analysis of the metric. It is not always possible to correlate differences in biomathematical treatment outcome models with dose difference metrics. This is due to the fact that the dose constraint is often far from the dose that has an actual impact on the radiobiological model, and therefore, biomathematical treatment outcome models are insensitive to big dose differences between the verification system and the treatment planning system. As an alternative, the use of modified radiobiological models which provides a better correlation is proposed. In any case, it is better to choose robust plans from a radiobiological point of view. The robustness index defined in this work is a good predictor of the plan rejection probability according to metrics derived from modified radiobiological models. The global 3D gamma-based metric calculated for each plan volume shows a good correlation with the dose difference metrics and presents a good performance in the acceptance/rejection process. Some discrepancies have been found in dose reconstruction depending on the algorithm employed. Significant and unavoidable discrepancies were found between the conventional metrics and the new ones. The dose difference global function and the 3D gamma for each plan volume are good classifiers regarding dose difference metrics. ROC analysis is useful to evaluate the predictive power of the new metrics. The correlation between biomathematical treatment outcome models and the dose difference-based metrics is enhanced by using modified TCP and NTCP functions that take into account the dose constraints for each plan. The robustness index is useful to evaluate if a plan is likely to be rejected. Conventional verification should be replaced by the new metrics, which are clinically more relevant.

  7. Validation of a method for in vivo 3D dose reconstruction for IMRT and VMAT treatments using on-treatment EPID images and a model-based forward-calculation algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Uytven, Eric, E-mail: eric.vanuytven@cancercare.mb.ca; Van Beek, Timothy; McCowan, Peter M.

    2015-12-15

    Purpose: Radiation treatments are trending toward delivering higher doses per fraction under stereotactic radiosurgery and hypofractionated treatment regimens. There is a need for accurate 3D in vivo patient dose verification using electronic portal imaging device (EPID) measurements. This work presents a model-based technique to compute full three-dimensional patient dose reconstructed from on-treatment EPID portal images (i.e., transmission images). Methods: EPID dose is converted to incident fluence entering the patient using a series of steps which include converting measured EPID dose to fluence at the detector plane and then back-projecting the primary source component of the EPID fluence upstream of themore » patient. Incident fluence is then recombined with predicted extra-focal fluence and used to calculate 3D patient dose via a collapsed-cone convolution method. This method is implemented in an iterative manner, although in practice it provides accurate results in a single iteration. The robustness of the dose reconstruction technique is demonstrated with several simple slab phantom and nine anthropomorphic phantom cases. Prostate, head and neck, and lung treatments are all included as well as a range of delivery techniques including VMAT and dynamic intensity modulated radiation therapy (IMRT). Results: Results indicate that the patient dose reconstruction algorithm compares well with treatment planning system computed doses for controlled test situations. For simple phantom and square field tests, agreement was excellent with a 2%/2 mm 3D chi pass rate ≥98.9%. On anthropomorphic phantoms, the 2%/2 mm 3D chi pass rates ranged from 79.9% to 99.9% in the planning target volume (PTV) region and 96.5% to 100% in the low dose region (>20% of prescription, excluding PTV and skin build-up region). Conclusions: An algorithm to reconstruct delivered patient 3D doses from EPID exit dosimetry measurements was presented. The method was applied to phantom and patient data sets, as well as for dynamic IMRT and VMAT delivery techniques. Results indicate that the EPID dose reconstruction algorithm presented in this work is suitable for clinical implementation.« less

  8. Extension and validation of an analytical model for in vivo PET verification of proton therapy—a phantom and clinical study

    NASA Astrophysics Data System (ADS)

    Attanasi, F.; Knopf, A.; Parodi, K.; Paganetti, H.; Bortfeld, T.; Rosso, V.; Del Guerra, A.

    2011-08-01

    The interest in positron emission tomography (PET) as a tool for treatment verification in proton therapy has become widespread in recent years, and several research groups worldwide are currently investigating the clinical implementation. After the first off-line investigation with a PET/CT scanner at MGH (Boston, USA), attention is now focused on an in-room PET application immediately after treatment in order to also detect shorter-lived isotopes, such as O15 and N13, minimizing isotope washout and avoiding patient repositioning errors. Clinical trials are being conducted by means of commercially available PET systems, and other tests are planned using application-dedicated tomographs. Parallel to the experimental investigation and new hardware development, great interest has been shown in the development of fast procedures to provide feedback regarding the delivered dose from reconstructed PET images. Since the thresholds of inelastic nuclear reactions leading to tissue β+-activation fall within the energy range of 15-20 MeV, the distal activity fall-off is correlated, but not directly matched, to the distal fall-off of the dose distribution. Moreover, the physical interactions leading to β+-activation and energy deposition are of a different nature. All these facts make it essential to further develop accurate and fast methodologies capable of predicting, on the basis of the planned dose distribution, expected PET images to be compared with actual PET measurements, thus providing clinical feedback on the correctness of the dose delivery and of the irradiation field position. The aim of this study has been to validate an analytical model and to implement and evaluate it in a fast and flexible framework able to locally predict such activity distributions directly taking the reference planning CT and planned dose as inputs. The results achieved in this study for phantoms and clinical cases highlighted the potential of the implemented method to predict expected activity distributions with great accuracy. Thus, the analytical model can be used as a powerful substitute method to the sensitive and time-consuming Monte Carlo approach.

  9. A Science and Risk-Based Pragmatic Methodology for Blend and Content Uniformity Assessment.

    PubMed

    Sayeed-Desta, Naheed; Pazhayattil, Ajay Babu; Collins, Jordan; Doshi, Chetan

    2018-04-01

    This paper describes a pragmatic approach that can be applied in assessing powder blend and unit dosage uniformity of solid dose products at Process Design, Process Performance Qualification, and Continued/Ongoing Process Verification stages of the Process Validation lifecycle. The statistically based sampling, testing, and assessment plan was developed due to the withdrawal of the FDA draft guidance for industry "Powder Blends and Finished Dosage Units-Stratified In-Process Dosage Unit Sampling and Assessment." This paper compares the proposed Grouped Area Variance Estimate (GAVE) method with an alternate approach outlining the practicality and statistical rationalization using traditional sampling and analytical methods. The approach is designed to fit solid dose processes assuring high statistical confidence in both powder blend uniformity and dosage unit uniformity during all three stages of the lifecycle complying with ASTM standards as recommended by the US FDA.

  10. Comparison of forward- and back-projection in vivo EPID dosimetry for VMAT treatment of the prostate

    NASA Astrophysics Data System (ADS)

    Bedford, James L.; Hanson, Ian M.; Hansen, Vibeke N.

    2018-01-01

    In the forward-projection method of portal dosimetry for volumetric modulated arc therapy (VMAT), the integrated signal at the electronic portal imaging device (EPID) is predicted at the time of treatment planning, against which the measured integrated image is compared. In the back-projection method, the measured signal at each gantry angle is back-projected through the patient CT scan to give a measure of total dose to the patient. This study aims to investigate the practical agreement between the two types of EPID dosimetry for prostate radiotherapy. The AutoBeam treatment planning system produced VMAT plans together with corresponding predicted portal images, and a total of 46 sets of gantry-resolved portal images were acquired in 13 patients using an iViewGT portal imager. For the forward-projection method, each acquisition of gantry-resolved images was combined into a single integrated image and compared with the predicted image. For the back-projection method, iViewDose was used to calculate the dose distribution in the patient for comparison with the planned dose. A gamma index for 3% and 3 mm was used for both methods. The results were investigated by delivering the same plans to a phantom and repeating some of the deliveries with deliberately introduced errors. The strongest agreement between forward- and back-projection methods is seen in the isocentric intensity/dose difference, with moderate agreement in the mean gamma. The strongest correlation is observed within a given patient, with less correlation between patients, the latter representing the accuracy of prediction of the two methods. The error study shows that each of the two methods has its own distinct sensitivity to errors, but that overall the response is similar. The forward- and back-projection EPID dosimetry methods show moderate agreement in this series of prostate VMAT patients, indicating that both methods can contribute to the verification of dose delivered to the patient.

  11. DEVELOPMENT OF A MULTIMODAL MONTE CARLO BASED TREATMENT PLANNING SYSTEM.

    PubMed

    Kumada, Hiroaki; Takada, Kenta; Sakurai, Yoshinori; Suzuki, Minoru; Takata, Takushi; Sakurai, Hideyuki; Matsumura, Akira; Sakae, Takeji

    2017-10-26

    To establish boron neutron capture therapy (BNCT), the University of Tsukuba is developing a treatment device and peripheral devices required in BNCT, such as a treatment planning system. We are developing a new multimodal Monte Carlo based treatment planning system (developing code: Tsukuba Plan). Tsukuba Plan allows for dose estimation in proton therapy, X-ray therapy and heavy ion therapy in addition to BNCT because the system employs PHITS as the Monte Carlo dose calculation engine. Regarding BNCT, several verifications of the system are being carried out for its practical usage. The verification results demonstrate that Tsukuba Plan allows for accurate estimation of thermal neutron flux and gamma-ray dose as fundamental radiations of dosimetry in BNCT. In addition to the practical use of Tsukuba Plan in BNCT, we are investigating its application to other radiation therapies. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. A novel approach to EPID-based 3D volumetric dosimetry for IMRT and VMAT QA

    NASA Astrophysics Data System (ADS)

    Alhazmi, Abdulaziz; Gianoli, Chiara; Neppl, Sebastian; Martins, Juliana; Veloza, Stella; Podesta, Mark; Verhaegen, Frank; Reiner, Michael; Belka, Claus; Parodi, Katia

    2018-06-01

    Intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) are relatively complex treatment delivery techniques and require quality assurance (QA) procedures. Pre-treatment dosimetric verification represents a fundamental QA procedure in daily clinical routine in radiation therapy. The purpose of this study is to develop an EPID-based approach to reconstruct a 3D dose distribution as imparted to a virtual cylindrical water phantom to be used for plan-specific pre-treatment dosimetric verification for IMRT and VMAT plans. For each depth, the planar 2D dose distributions acquired in air were back-projected and convolved by depth-specific scatter and attenuation kernels. The kernels were obtained by making use of scatter and attenuation models to iteratively estimate the parameters from a set of reference measurements. The derived parameters served as a look-up table for reconstruction of arbitrary measurements. The summation of the reconstructed 3D dose distributions resulted in the integrated 3D dose distribution of the treatment delivery. The accuracy of the proposed approach was validated in clinical IMRT and VMAT plans by means of gamma evaluation, comparing the reconstructed 3D dose distributions with Octavius measurement. The comparison was carried out using (3%, 3 mm) criteria scoring 99% and 96% passing rates for IMRT and VMAT, respectively. An accuracy comparable to the one of the commercial device for 3D volumetric dosimetry was demonstrated. In addition, five IMRT and five VMAT were validated against the 3D dose calculation performed by the TPS in a water phantom using the same passing rate criteria. The median passing rates within the ten treatment plans was 97.3%, whereas the lowest was 95%. Besides, the reconstructed 3D distribution is obtained without predictions relying on forward dose calculation and without external phantom or dosimetric devices. Thus, the approach provides a fully automated, fast and easy QA procedure for plan-specific pre-treatment dosimetric verification.

  13. Systematic Model-in-the-Loop Test of Embedded Control Systems

    NASA Astrophysics Data System (ADS)

    Krupp, Alexander; Müller, Wolfgang

    Current model-based development processes offer new opportunities for verification automation, e.g., in automotive development. The duty of functional verification is the detection of design flaws. Current functional verification approaches exhibit a major gap between requirement definition and formal property definition, especially when analog signals are involved. Besides lack of methodical support for natural language formalization, there does not exist a standardized and accepted means for formal property definition as a target for verification planning. This article addresses several shortcomings of embedded system verification. An Enhanced Classification Tree Method is developed based on the established Classification Tree Method for Embeded Systems CTM/ES which applies a hardware verification language to define a verification environment.

  14. Theoretical detection threshold of the proton-acoustic range verification technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Moiz; Yousefi, Siavash; Xing, Lei, E-mail: lei@stanford.edu

    2015-10-15

    Purpose: Range verification in proton therapy using the proton-acoustic signal induced in the Bragg peak was investigated for typical clinical scenarios. The signal generation and detection processes were simulated in order to determine the signal-to-noise limits. Methods: An analytical model was used to calculate the dose distribution and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. In this method, the acoustic waves propagating from the Bragg peak were generated by the general 3D pressure wave equation implemented using a finite element method.more » Various beam pulse widths (0.1–10 μs) were simulated by convolving the acoustic waves with Gaussian kernels. A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth bandpass filter with consideration of random noise based on a model of thermal noise in the transducer. The signal-to-noise ratio on a per-proton basis was calculated, determining the minimum number of protons required to generate a detectable pulse. The maximum spatial resolution of the proton-acoustic imaging modality was also estimated from the signal spectrum. Results: The calculated noise in the transducer was 12–28 mPa, depending on the transducer central frequency (70–380 kHz). The minimum number of protons detectable by the technique was on the order of 3–30 × 10{sup 6} per pulse, with 30–800 mGy dose per pulse at the Bragg peak. Wider pulses produced signal with lower acoustic frequencies, with 10 μs pulses producing signals with frequency less than 100 kHz. Conclusions: The proton-acoustic process was simulated using a realistic model and the minimal detection limit was established for proton-acoustic range validation. These limits correspond to a best case scenario with a single large detector with no losses and detector thermal noise as the sensitivity limiting factor. Our study indicated practical proton-acoustic range verification may be feasible with approximately 5 × 10{sup 6} protons/pulse and beam current.« less

  15. Theoretical detection threshold of the proton-acoustic range verification technique

    PubMed Central

    Ahmad, Moiz; Xiang, Liangzhong; Yousefi, Siavash; Xing, Lei

    2015-01-01

    Purpose: Range verification in proton therapy using the proton-acoustic signal induced in the Bragg peak was investigated for typical clinical scenarios. The signal generation and detection processes were simulated in order to determine the signal-to-noise limits. Methods: An analytical model was used to calculate the dose distribution and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. In this method, the acoustic waves propagating from the Bragg peak were generated by the general 3D pressure wave equation implemented using a finite element method. Various beam pulse widths (0.1–10 μs) were simulated by convolving the acoustic waves with Gaussian kernels. A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth bandpass filter with consideration of random noise based on a model of thermal noise in the transducer. The signal-to-noise ratio on a per-proton basis was calculated, determining the minimum number of protons required to generate a detectable pulse. The maximum spatial resolution of the proton-acoustic imaging modality was also estimated from the signal spectrum. Results: The calculated noise in the transducer was 12–28 mPa, depending on the transducer central frequency (70–380 kHz). The minimum number of protons detectable by the technique was on the order of 3–30 × 106 per pulse, with 30–800 mGy dose per pulse at the Bragg peak. Wider pulses produced signal with lower acoustic frequencies, with 10 μs pulses producing signals with frequency less than 100 kHz. Conclusions: The proton-acoustic process was simulated using a realistic model and the minimal detection limit was established for proton-acoustic range validation. These limits correspond to a best case scenario with a single large detector with no losses and detector thermal noise as the sensitivity limiting factor. Our study indicated practical proton-acoustic range verification may be feasible with approximately 5 × 106 protons/pulse and beam current. PMID:26429247

  16. MAGAT gel and EBT2 film‐based dosimetry for evaluating source plugging‐based treatment plan in Gamma Knife stereotactic radiosurgery

    PubMed Central

    Vivekanandhan, S.; Kale, S.S.; Rath, G.K.; Senthilkumaran, S.; Thulkar, S.; Subramani, V.; Laviraj, M.A.; Bisht, R.K.; Mahapatra, A.K.

    2012-01-01

    This work illustrates a procedure to assess the overall accuracy associated with Gamma Knife treatment planning using plugging. The main role of source plugging or blocking is to create dose falloff in the junction between a target and a critical structure. We report the use of MAGAT gel dosimeter for verification of an experimental treatment plan based on plugging. The polymer gel contained in a head‐sized glass container simulated all major aspects of the treatment process of Gamma Knife radiosurgery. The 3D dose distribution recorded in the gel dosimeter was read using a 1.5T MRI scanner. Scanning protocol was: CPMG pulse sequence with 8 equidistant echoes, TR=7 s, echo step=14 ms, pixel size=0.5 mm x 0.5 mm, and slice thickness of 2 mm. Using a calibration relationship between absorbed dose and spin‐spin relaxation rate (R2), we converted R2 images to dose images. Volumetric dose comparison between treatment planning system (TPS) and gel measurement was accomplished using an in‐house MATLAB‐based program. The isodose overlay of the measured and computed dose distribution on axial planes was in close agreement. Gamma index analysis of 3D data showed more than 94% voxel pass rate for different tolerance criteria of 3%/2 mm, 3%/1 mm and 2%/2 mm. Film dosimetry with GAFCHROMIC EBT 2 film was also performed to compare the results with the calculated TPS dose. Gamma index analysis of film measurement for the same tolerance criteria used for gel measurement evaluation showed more than 95% voxel pass rate. Verification of gamma plan calculated dose on account of shield is not part of acceptance testing of Leksell Gamma Knife (LGK). Through this study we accomplished a volumetric comparison of dose distributions measured with a polymer gel dosimeter and Leksell GammaPlan (LGP) calculations for plans using plugging. We propose gel dosimeter as a quality assurance (QA) tool for verification of plug‐based planning. PACS number: 87.53.Ly, 87.55.‐x, 87.56.N‐ PMID:23149780

  17. SU-E-T-167: Characterization of In-House Plastic Scintillator Detectors Array for Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, T; Liu, H; Dimofte, A

    Purpose: To characterize basic performance of plastic scintillator detectors (PSD) array designed for dosimetry of radiation therapy. Methods: An in-house PSD array has been developed by placing single point PSD into customized 2D holder. Each point PSD is a plastic scintillating fiber-based detector designed for highly accurate measurement of small radiotherapy fields used in patient plan verification and machine commissioning and QA procedures. A parallel fiber without PSD is used for Cerenkov separation by subtracting from PSD readings. Cerenkov separation was confirmed by optical spectroscopy. Alternative Cerenkov separation approaches are also investigated. The optical signal was converted to electronic signalmore » with a photodiode and then subsequently amplified. We measured its dosimetry performance, including percentage depth dose and output factor, and compared with reference ion chamber measurements. The PSD array is then placed along the radiation beam for multiple point dose measurement, representing subsets of PDD measurements, or perpendicular to the beam for profile measurements. Results: The dosimetry results of PSD point measurements agree well with reference ion chamber measurements. For percentage depth dose, the maximal differences between PSD and ion chamber results are 3.5% and 2.7% for 6MV and 15MV beams, respectively. For the output factors, PSD measurements are within 3% from ion chamber results. PDD and profile measurement with PSD array are also performed. Conclusions: The current design of multichannel PSD array is feasible for the dosimetry measurement in radiation therapy. Dose distribution along or perpendicular to the beam path could be measured. It might as well be used as range verification in proton therapy.A PS hollow fiber detector will be investigated to eliminate the Cerenkov radiation effect so that all 32 channels can be used.« less

  18. Quantitative evaluation of patient-specific quality assurance using online dosimetry system

    NASA Astrophysics Data System (ADS)

    Jung, Jae-Yong; Shin, Young-Ju; Sohn, Seung-Chang; Min, Jung-Whan; Kim, Yon-Lae; Kim, Dong-Su; Choe, Bo-Young; Suh, Tae-Suk

    2018-01-01

    In this study, we investigated the clinical performance of an online dosimetry system (Mobius FX system, MFX) by 1) dosimetric plan verification using gamma passing rates and dose volume metrics and 2) error-detection capability evaluation by deliberately introduced machine error. Eighteen volumetric modulated arc therapy (VMAT) plans were studied. To evaluate the clinical performance of the MFX, we used gamma analysis and dose volume histogram (DVH) analysis. In addition, to evaluate the error-detection capability, we used gamma analysis and DVH analysis utilizing three types of deliberately introduced errors (Type 1: gantry angle-independent multi-leaf collimator (MLC) error, Type 2: gantry angle-dependent MLC error, and Type 3: gantry angle error). A dosimetric verification comparison of physical dosimetry system (Delt4PT) and online dosimetry system (MFX), gamma passing rates of the two dosimetry systems showed very good agreement with treatment planning system (TPS) calculation. For the average dose difference between the TPS calculation and the MFX measurement, most of the dose metrics showed good agreement within a tolerance of 3%. For the error-detection comparison of Delta4PT and MFX, the gamma passing rates of the two dosimetry systems did not meet the 90% acceptance criterion with the magnitude of error exceeding 2 mm and 1.5 ◦, respectively, for error plans of Types 1, 2, and 3. For delivery with all error types, the average dose difference of PTV due to error magnitude showed good agreement between calculated TPS and measured MFX within 1%. Overall, the results of the online dosimetry system showed very good agreement with those of the physical dosimetry system. Our results suggest that a log file-based online dosimetry system is a very suitable verification tool for accurate and efficient clinical routines for patient-specific quality assurance (QA).

  19. WE-F-16A-04: Micro-Irradiator Treatment Verification with High-Resolution 3D-Printed Rodent-Morphic Dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bache, S; Belley, M; Benning, R

    2014-06-15

    Purpose: Pre-clinical micro-radiation therapy studies often utilize very small beams (∼0.5-5mm), and require accurate dose delivery in order to effectively investigate treatment efficacy. Here we present a novel high-resolution absolute 3D dosimetry procedure, capable of ∼100-micron isotopic dosimetry in anatomically accurate rodent-morphic phantoms Methods: Anatomically accurate rat-shaped 3D dosimeters were made using 3D printing techniques from outer body contours and spinal contours outlined on CT. The dosimeters were made from a radiochromic plastic material PRESAGE, and incorporated high-Z PRESASGE inserts mimicking the spine. A simulated 180-degree spinal arc treatment was delivered through a 2 step process: (i) cone-beam-CT image-guided positioningmore » was performed to precisely position the rat-dosimeter for treatment on the XRad225 small animal irradiator, then (ii) treatment was delivered with a simulated spine-treatment with a 180-degree arc with 20mm x 10mm cone at 225 kVp. Dose distribution was determined from the optical density change using a high-resolution in-house optical-CT system. Absolute dosimetry was enabled through calibration against a novel nano-particle scintillation detector positioned in a channel in the center of the distribution. Results: Sufficient contrast between regular PRESAGE (tissue equivalent) and high-Z PRESAGE (spinal insert) was observed to enable highly accurate image-guided alignment and targeting. The PRESAGE was found to have linear optical density (OD) change sensitivity with respect to dose (R{sup 2} = 0.9993). Absolute dose for 360-second irradiation at isocenter was found to be 9.21Gy when measured with OD change, and 9.4Gy with nano-particle detector- an agreement within 2%. The 3D dose distribution was measured at 500-micron resolution Conclusion: This work demonstrates for the first time, the feasibility of accurate absolute 3D dose measurement in anatomically accurate rat phantoms containing variable density PRESAGE material (tissue equivalent and bone equivalent). This method enables precise treatment verification of micro-radiation therapies, and enhances the robustness of tumor radio-response studies. This work was supported by NIH R01CA100835.« less

  20. SU-F-T-619: Dose Evaluation of Specific Patient Plans Based On Monte Carlo Algorithm for a CyberKnife Stereotactic Radiosurgery System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piao, J; PLA 302 Hospital, Beijing; Xu, S

    2016-06-15

    Purpose: This study will use Monte Carlo to simulate the Cyberknife system, and intend to develop the third-party tool to evaluate the dose verification of specific patient plans in TPS. Methods: By simulating the treatment head using the BEAMnrc and DOSXYZnrc software, the comparison between the calculated and measured data will be done to determine the beam parameters. The dose distribution calculated in the Raytracing, Monte Carlo algorithms of TPS (Multiplan Ver4.0.2) and in-house Monte Carlo simulation method for 30 patient plans, which included 10 head, lung and liver cases in each, were analyzed. The γ analysis with the combinedmore » 3mm/3% criteria would be introduced to quantitatively evaluate the difference of the accuracy between three algorithms. Results: More than 90% of the global error points were less than 2% for the comparison of the PDD and OAR curves after determining the mean energy and FWHM.The relative ideal Monte Carlo beam model had been established. Based on the quantitative evaluation of dose accuracy for three algorithms, the results of γ analysis shows that the passing rates (84.88±9.67% for head,98.83±1.05% for liver,98.26±1.87% for lung) of PTV in 30 plans between Monte Carlo simulation and TPS Monte Carlo algorithms were good. And the passing rates (95.93±3.12%,99.84±0.33% in each) of PTV in head and liver plans between Monte Carlo simulation and TPS Ray-tracing algorithms were also good. But the difference of DVHs in lung plans between Monte Carlo simulation and Ray-tracing algorithms was obvious, and the passing rate (51.263±38.964%) of γ criteria was not good. It is feasible that Monte Carlo simulation was used for verifying the dose distribution of patient plans. Conclusion: Monte Carlo simulation algorithm developed in the CyberKnife system of this study can be used as a reference tool for the third-party tool, which plays an important role in dose verification of patient plans. This work was supported in part by the grant from Chinese Natural Science Foundation (Grant No. 11275105). Thanks for the support from Accuray Corp.« less

  1. Research on key technology of the verification system of steel rule based on vision measurement

    NASA Astrophysics Data System (ADS)

    Jia, Siyuan; Wang, Zhong; Liu, Changjie; Fu, Luhua; Li, Yiming; Lu, Ruijun

    2018-01-01

    The steel rule plays an important role in quantity transmission. However, the traditional verification method of steel rule based on manual operation and reading brings about low precision and low efficiency. A machine vison based verification system of steel rule is designed referring to JJG1-1999-Verificaiton Regulation of Steel Rule [1]. What differentiates this system is that it uses a new calibration method of pixel equivalent and decontaminates the surface of steel rule. Experiments show that these two methods fully meet the requirements of the verification system. Measuring results strongly prove that these methods not only meet the precision of verification regulation, but also improve the reliability and efficiency of the verification system.

  2. SU-F-T-328: Real-Time in Vivo Dosimetry of Prostate SBRT Boost Treatments Using MOSkin Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Legge, K; O’Connor, D J; Cutajar, D

    Purpose: To provide in vivo measurements of dose to the anterior rectal wall during prostate SBRT boost treatments using MOSFET detectors. Methods: Dual MOSkin detectors were attached to a Rectafix rectal sparing device and inserted into patients during SBRT boost treatments. Patients received two boost fractions, each of 9.5–10 Gy and delivered using 2 VMAT arcs. Measurements were acquired for 12 patients. MOSFET voltages were read out at 1 Hz during delivery and converted to dose. MV images were acquired at known frequency during treatment so that the position of the gantry at each point in time was known. Themore » cumulative dose at the MOSFET location was extracted from the treatment planning system at in 5.2° increments (FF beams) or at 5 points during each delivered arc (FFF beams). The MOSFET dose and planning system dose throughout the entirety of each arc were then compared using root mean square error normalised to the final planned dose for each arc. Results: The average difference between MOSFET measured and planning system doses determined over the entire course of treatment was 9.7% with a standard deviation of 3.6%. MOSFETs measured below the planned dose in 66% of arcs measured. Uncertainty in the position of the MOSFET detector and verification point are major sources of discrepancy, as the detector is placed in a high dose gradient region during treatment. Conclusion: MOSkin detectors were able to provide real time in vivo measurements of anterior rectal wall dose during prostate SBRT boost treatments. This method could be used to verify Rectafix positioning and treatment delivery. Further developments could enable this method to be used during high dose treatments to monitor dose to the rectal wall to ensure it remains at safe levels. Funding has been provided by the University of Newcastle. Kimberley Legge is the recipient of an Australian Postgraduate Award.« less

  3. SU-E-T-91: Correction Method to Determine Surface Dose for OSL Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, T; Higgins, P

    Purpose: OSL detectors are commonly used in clinic due to their numerous advantages, such as linear response, negligible energy, angle and temperature dependence in clinical range, for verification of the doses beyond the dmax. Although, due to the bulky shielding envelope, this type of detectors fails to measure skin dose, which is an important assessment of patient ability to finish the treatment on time and possibility of acute side effects. This study aims to optimize the methodology of determination of skin dose for conventional accelerators and a flattening filter free Tomotherapy. Methods: Measurements were done for x-ray beams: 6 MVmore » (Varian Clinac 2300, 10×10 cm{sup 2} open field, SSD = 100 cm) and for 5.5 MV (Tomotherapy, 15×40 cm{sup 2} field, SAD = 85 cm). The detectors were placed at the surface of the solid water phantom and at the reference depth (dref=1.7cm (Varian 2300), dref =1.0 cm (Tomotherapy)). The measurements for OSLs were related to the externally exposed OSLs measurements, and further were corrected to surface dose using an extrapolation method indexed to the baseline Attix ion chamber measurements. A consistent use of the extrapolation method involved: 1) irradiation of three OSLs stacked on top of each other on the surface of the phantom; 2) measurement of the relative dose value for each layer; and, 3) extrapolation of these values to zero thickness. Results: OSL measurements showed an overestimation of surface doses by the factor 2.31 for Varian 2300 and 2.65 for Tomotherapy. The relationships: SD{sup 2300} = 0.68 × M{sup 2300}-12.7 and SDτoμo = 0.73 × Mτoμo-13.1 were found to correct the single OSL measurements to surface doses in agreement with Attix measurements to within 0.1% for both machines. Conclusion: This work provides simple empirical relationships for surface dose measurements using single OSL detectors.« less

  4. Designing Spacecraft and Mission Operations Plans to Meet Flight Crew Radiation Dose Requirements: Why is this an "Epic Challenge" for Long-Term Manned Interplanetary Flight

    NASA Technical Reports Server (NTRS)

    Koontz, Steven

    2012-01-01

    Outline of presentation: (1) Radiation Shielding Concepts and Performance - Galactic Cosmic Rays (GCRs) (1a) Some general considerations (1b) Galactic Cosmic Rays (2)GCR Shielding I: What material should I use and how much do I need? (2a) GCR shielding materials design and verification (2b) Spacecraft materials point dose cosmic ray shielding performance - hydrogen content and atomic number (2c) Accelerator point dose materials testing (2d) Material ranking and selection guidelines (2e) Development directions and return on investment (point dose metric) (2f) Secondary particle showers in the human body (2f-1) limited return of investment for low-Z, high-hydrogen content materials (3) GCR shielding II: How much will it cost? (3a) Spacecraft design and verification for mission radiation dose to the crew (3b) Habitat volume, shielding areal density, total weight, and launch cost for two habitat volumes (3c) It's All about the Money - Historical NASA budgets and budget limits (4) So, what can I do about all this? (4a) Program Design Architecture Trade Space (4b) The Vehicle Design Trade Space (4c) Some Near Term Recommendations

  5. Dosimetric evaluation of a MOSFET detector for clinical application in photon therapy.

    PubMed

    Kohno, Ryosuke; Hirano, Eriko; Nishio, Teiji; Miyagishi, Tomoko; Goka, Tomonori; Kawashima, Mitsuhiko; Ogino, Takashi

    2008-01-01

    Dosimetric characteristics of a metal oxide-silicon semiconductor field effect transistor (MOSFET) detector are studied with megavoltage photon beams for patient dose verification. The major advantages of this detector are its size, which makes it a point dosimeter, and its ease of use. In order to use the MOSFET detector for dose verification of intensity-modulated radiation therapy (IMRT) and in-vivo dosimetry for radiation therapy, we need to evaluate the dosimetric properties of the MOSFET detector. Therefore, we investigated the reproducibility, dose-rate effect, accumulated-dose effect, angular dependence, and accuracy in tissue-maximum ratio measurements. Then, as it takes about 20 min in actual IMRT for the patient, we evaluated fading effect of MOSFET response. When the MOSFETs were read-out 20 min after irradiation, we observed a fading effect of 0.9% with 0.9% standard error of the mean. Further, we applied the MOSFET to the measurement of small field total scatter factor. The MOSFET for dose measurements of small field sizes was better than the reference pinpoint chamber with vertical direction. In conclusion, we assessed the accuracy, reliability, and usefulness of the MOSFET detector in clinical applications such as pinpoint absolute dosimetry for small fields.

  6. Interfractional trend analysis of dose differences based on 2D transit portal dosimetry

    NASA Astrophysics Data System (ADS)

    Persoon, L. C. G. G.; Nijsten, S. M. J. J. G.; Wilbrink, F. J.; Podesta, M.; Snaith, J. A. D.; Lustberg, T.; van Elmpt, W. J. C.; van Gils, F.; Verhaegen, F.

    2012-10-01

    Dose delivery of a radiotherapy treatment can be influenced by a number of factors. It has been demonstrated that the electronic portal imaging device (EPID) is valuable for transit portal dosimetry verification. Patient related dose differences can emerge at any time during treatment and can be categorized in two types: (1) systematic—appearing repeatedly, (2) random—appearing sporadically during treatment. The aim of this study is to investigate how systematic and random information appears in 2D transit dose distributions measured in the EPID plane over the entire course of a treatment and how this information can be used to examine interfractional trends, building toward a methodology to support adaptive radiotherapy. To create a trend overview of the interfractional changes in transit dose, the predicted portal dose for the different beams is compared to a measured portal dose using a γ evaluation. For each beam of the delivered fraction, information is extracted from the γ images to differentiate systematic from random dose delivery errors. From the systematic differences of a fraction for a projected anatomical structures, several metrics are extracted like percentage pixels with |γ| > 1. We demonstrate for four example cases the trends and dose difference causes which can be detected with this method. Two sample prostate cases show the occurrence of a random and systematic difference and identify the organ that causes the difference. In a lung cancer case a trend is shown of a rapidly diminishing atelectasis (lung fluid) during the course of treatment, which was detected with this trend analysis method. The final example is a breast cancer case where we show the influence of set-up differences on the 2D transit dose. A method is presented based on 2D portal transit dosimetry to record dose changes throughout the course of treatment, and to allow trend analysis of dose discrepancies. We show in example cases that this method can identify the causes of dose delivery differences and that treatment adaptation can be triggered as a result. It provides an important element toward informed decision-making for adaptive radiotherapy.

  7. Quality assurance of dynamic parameters in volumetric modulated arc therapy

    PubMed Central

    Manikandan, A; Sarkar, B; Holla, R; Vivek, T R; Sujatha, N

    2012-01-01

    Objectives The purpose of this study was to demonstrate quality assurance checks for accuracy of gantry speed and position, dose rate and multileaf collimator (MLC) speed and position for a volumetric modulated arc treatment (VMAT) modality (Synergy® S; Elekta, Stockholm, Sweden), and to check that all the necessary variables and parameters were synchronous. Methods Three tests (for gantry position–dose delivery synchronisation, gantry speed–dose delivery synchronisation and MLC leaf speed and positions) were performed. Results The average error in gantry position was 0.5° and the average difference was 3 MU for a linear and a parabolic relationship between gantry position and delivered dose. In the third part of this test (sawtooth variation), the maximum difference was 9.3 MU, with a gantry position difference of 1.2°. In the sweeping field method test, a linear relationship was observed between recorded doses and distance from the central axis, as expected. In the open field method, errors were encountered at the beginning and at the end of the delivery arc, termed the “beginning” and “end” errors. For MLC position verification, the maximum error was −2.46 mm and the mean error was 0.0153 ±0.4668 mm, and 3.4% of leaves analysed showed errors of >±1 mm. Conclusion This experiment demonstrates that the variables and parameters of the Synergy® S are synchronous and that the system is suitable for delivering VMAT using a dynamic MLC. PMID:22745206

  8. Feasibility study on the verification of actual beam delivery in a treatment room using EPID transit dosimetry.

    PubMed

    Baek, Tae Seong; Chung, Eun Ji; Son, Jaeman; Yoon, Myonggeun

    2014-12-04

    The aim of this study is to evaluate the ability of transit dosimetry using commercial treatment planning system (TPS) and an electronic portal imaging device (EPID) with simple calibration method to verify the beam delivery based on detection of large errors in treatment room. Twenty four fields of intensity modulated radiotherapy (IMRT) plans were selected from four lung cancer patients and used in the irradiation of an anthropomorphic phantom. The proposed method was evaluated by comparing the calculated dose map from TPS and EPID measurement on the same plane using a gamma index method with a 3% dose and 3 mm distance-to-dose agreement tolerance limit. In a simulation using a homogeneous plastic water phantom, performed to verify the effectiveness of the proposed method, the average passing rate of the transit dose based on gamma index was high enough, averaging 94.2% when there was no error during beam delivery. The passing rate of the transit dose for 24 IMRT fields was lower with the anthropomorphic phantom, averaging 86.8% ± 3.8%, a reduction partially due to the inaccuracy of TPS calculations for inhomogeneity. Compared with the TPS, the absolute value of the transit dose at the beam center differed by -0.38% ± 2.1%. The simulation study indicated that the passing rate of the gamma index was significantly reduced, to less than 40%, when a wrong field was erroneously irradiated to patient in the treatment room. This feasibility study suggested that transit dosimetry based on the calculation with commercial TPS and EPID measurement with simple calibration can provide information about large errors for treatment beam delivery.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadsell, M; Holcombe, C; Chin, E

    Introduction: As diagnostic techniques become more sensitive and targeting methods grow in accuracy, target volumes continue to shrink and SBRT becomes more prevalent. Due to this fact, patient-specific QA must also enhance resolution and accuracy in order to verify dose delivery in these volumes. It has been suggested that when measuring small fields at least two separate detectors be used to verify delivered dose. Therefore, we have instituted a secondary patient QA verification for small (<3cm) SBRT fields using Gafchromic EBT2 film. Methods: Films were cross-calibrated using a Farmer chamber in plastic water at reference conditions as defined by TG-51.more » Films were scanned, and an RGB calibration curve was created according to best practices published by Ashland, Inc. Four SBRT cases were evaluated both with the Scandidos Delta4 and with EBT2 films sandwiched in plastic water. Raw values obtained from the film were converted to dose using an in-house algorithm employing all three color channels to increase accuracy and dosimetric range. Gamma and dose profile comparisons to Eclipse dose calculations were obtained using RIT and compared to values obtained with the Delta4. Results: Film gamma pass rates at 2% and 2mm were similar to those obtained with the Delta4. However, dose difference histograms showed better absolute dose agreement, with the average mean film dose agreeing with calculation to 0.3% and the Delta4 only agreeing to 3.1% across the cases. Additionally, films provided more resolution than the Delta4 and thus their dose profiles better succeeded in diagnosing dose calculation inaccuracies. Conclusion: We believe that the implementation of secondary patient QA using EBT2 film analyzed with all three color channels is an invaluable tool for evaluation of small SBRT fields. Furthermore, we have shown that this method can sometimes provide a more detailed and faithful reproduction of plan dose than the Delta4.« less

  10. SU-F-J-197: A Novel Intra-Beam Range Detection and Adaptation Strategy for Particle Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, M; Jiang, S; Shao, Y

    2016-06-15

    Purpose: In-vivo range detection/verification is crucial in particle therapy for effective and safe delivery. The state-of-art techniques are not sufficient for in-vivo on-line range verification due to conflicts among patient dose, signal statistics and imaging time. We propose a novel intra-beam range detection and adaptation strategy for particle therapy. Methods: This strategy uses the planned mid-range spots as probing beams without adding extra radiation to patients. Such choice of probing beams ensures the Bragg peaks to remain inside the tumor even with significant range variation from the plan. It offers sufficient signal statistics for in-beam positron emission tomography (PET) duemore » to high positron activity of therapeutic dose. The probing beam signal can be acquired and reconstructed using in-beam PET that allows for delineation of the Bragg peaks and detection of range shift with ease of detection enabled by single-layered spots. If the detected range shift is within a pre-defined tolerance, the remaining spots will be delivered as the original plan. Otherwise, a fast re-optimization using range-shifted beamlets and accounting for the probing beam dose is applied to consider the tradeoffs posed by the online anatomy. Simulated planning and delivery studies were used to demonstrate the effectiveness of the proposed techniques. Results: Simulations with online range variations due to shifts of various foreign objects into the beam path showed successful delineation of the Bragg peaks as a result of delivering probing beams. Without on-line delivery adaptation, dose distribution was significantly distorted. In contrast, delivery adaptation incorporating detected range shift recovered well the planned dose. Conclusion: The proposed intra-beam range detection and adaptation utilizing the planned mid-range spots as probing beams, which illuminate the beam range with strong and accurate PET signals, is a safe, practical, yet effective approach to address range uncertainty issues in particle therapy.« less

  11. A technique for pediatric total skin electron irradiation.

    PubMed

    Bao, Qinan; Hrycushko, Brian A; Dugas, Joseph P; Hager, Frederick H; Solberg, Timothy D

    2012-03-20

    Total skin electron irradiation (TSEI) is a special radiotherapy technique which has generally been used for treating adult patients with mycosis fungoides. Recently, two infants presented with leukemia cutis isolated to the skin requiring TSEI. This work discusses the commissioning and quality assurance (QA) methods for implementing a modified Stanford technique using a rotating harness system to position sedated pediatric patients treated with electrons to the total skin. Commissioning of pediatric TSEI consisted of absolute calibration, measurement of dosimetric parameters, and subsequent verification in a pediatric patient sized cylindrical phantom using radiographic film and optically stimulated luminance (OSL) dosimeters. The depth of dose penetration under TSEI treatment condition was evaluated using radiographic film sandwiched in the phantom and demonstrated a 2 cm penetration depth with the maximum dose located at the phantom surface. Dosimetry measurements on the cylindrical phantom and in-vivo measurements from the patients suggested that, the factor relating the skin and calibration point doses (i.e., the B-factor) was larger for the pediatric TSEI treatments as compared to adult TSEI treatments. Custom made equipment, including a rotating plate and harness, was fabricated and added to a standard total body irradiation stand and tested to facilitate patient setup under sedated condition. A pediatric TSEI QA program, consisting of daily output, energy, flatness, and symmetry measurements as well as in-vivo dosimetry verification for the first cycle was developed. With a long interval between pediatric TSEI cases, absolute dosimetry was also repeated as part of the QA program. In-vivo dosimetry for the first two infants showed that a dose of ± 10% of the prescription dose can be achieved over the entire patient body. Though pediatric leukemia cutis and the subsequent need for TSEI are rare, the ability to commission the technique on a modified TBI stand is appealing for clinical implementation and has been successfully used for the treatment of two pediatric patients at our institution.

  12. TU-F-CAMPUS-J-01: Dosimetric Effects of HU Changes During the Course of Proton Therapy for Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, C; Yin, L; Ainsley, C

    2015-06-15

    Purpose: To characterize the changes in Hounsfield unit (HU) in lung radiotherapy with proton beams during the course of treatment and to study the effect on the proton plan dose distribution. Methods: Twenty consecutive patients with non-small cell lung cancer treated with proton radiotherapy who underwent multiple CT scans including the planning CT and weekly verification CTs were studied. HU histograms were computed for irradiated lung volumes in beam paths for all scans using the same treatment plan. Histograms for un-irradiated lung volume were used as control to characterize inter-scan variations. HU statistics were calculated for both irradiated and un-irradiatedmore » lung volumes for each patient scan. Further, multiple CT scans based on the same planning CT were generated by replacing the HU of the lung based on the verification CT scans HU values. Using the same beam arrangement, we created plans for each of the altered CT scans to study the dosimetric effect using the dose volume histogram. Results: Lung HU decreased for irradiated lung volume during the course of radiotherapy. The magnitude of this change increased with total irradiation dose. On average, HU changed by −53.8 in the irradiated volume. This change resulted in less than 0.5mm of beam overshoot in tissue for every 1cm beam traversed in the irradiated lung. The dose modification is about +3% for the lung, and less than +1% for the primary tumor. Conclusion: HU of the lung decrease throughout the course of radiation therapy. This change results in a beam overshoot (e.g. 3mm for 6cm of lung traversed) and causes a small dose modification in the overall plan. However, this overshoot does not affect the quality of plans since the margins used in planning, based on proton range uncertainty, are greater. HU needs to change by 150 units before re-planning is warranted.« less

  13. Accuracy of rapid radiographic film calibration for intensity‐modulated radiation therapy verification

    PubMed Central

    Kulasekere, Ravi; Moran, Jean M.; Fraass, Benedick A.; Roberson, Peter L.

    2006-01-01

    A single calibration film method was evaluated for use with intensity‐modulated radiation therapy film quality assurance measurements. The single‐film method has the potential advantages of exposure simplicity, less media consumption, and improved processor quality control. Potential disadvantages include cross contamination of film exposure, implementation effort to document delivered dose, and added complication of film response analysis. Film response differences were measured between standard and single‐film calibration methods. Additional measurements were performed to help trace causes for the observed discrepancies. Kodak X‐OmatV (XV) film was found to have greater response variability than extended dose range (EDR) film. We found it advisable for XV film to relate the film response calibration for the single‐film method to a user‐defined optimal calibration geometry. Using a single calibration film exposed at the time of experiment, the total uncertainty of film response was estimated to be <2% (1%) for XV (EDR) film at 50 (100) cGy and higher, respectively. PACS numbers: 87.53.‐j, 87.53.Dq PMID:17533325

  14. Verification and validation of RADMODL Version 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimball, K.D.

    1993-03-01

    RADMODL is a system of linked computer codes designed to calculate the radiation environment following an accident in which nuclear materials are released. The RADMODL code and the corresponding Verification and Validation (V&V) calculations (Appendix A), were developed for Westinghouse Savannah River Company (WSRC) by EGS Corporation (EGS). Each module of RADMODL is an independent code and was verified separately. The full system was validated by comparing the output of the various modules with the corresponding output of a previously verified version of the modules. The results of the verification and validation tests show that RADMODL correctly calculates the transportmore » of radionuclides and radiation doses. As a result of this verification and validation effort, RADMODL Version 1.0 is certified for use in calculating the radiation environment following an accident.« less

  15. Development of independent MU/treatment time verification algorithm for non-IMRT treatment planning: A clinical experience

    NASA Astrophysics Data System (ADS)

    Tatli, Hamza; Yucel, Derya; Yilmaz, Sercan; Fayda, Merdan

    2018-02-01

    The aim of this study is to develop an algorithm for independent MU/treatment time (TT) verification for non-IMRT treatment plans, as a part of QA program to ensure treatment delivery accuracy. Two radiotherapy delivery units and their treatment planning systems (TPS) were commissioned in Liv Hospital Radiation Medicine Center, Tbilisi, Georgia. Beam data were collected according to vendors' collection guidelines, and AAPM reports recommendations, and processed by Microsoft Excel during in-house algorithm development. The algorithm is designed and optimized for calculating SSD and SAD treatment plans, based on AAPM TG114 dose calculation recommendations, coded and embedded in MS Excel spreadsheet, as a preliminary verification algorithm (VA). Treatment verification plans were created by TPSs based on IAEA TRS 430 recommendations, also calculated by VA, and point measurements were collected by solid water phantom, and compared. Study showed that, in-house VA can be used for non-IMRT plans MU/TT verifications.

  16. Influence of the Redundant Verification and the Non-Redundant Verification on the Hydraulic Tomography

    NASA Astrophysics Data System (ADS)

    Wei, T. B.; Chen, Y. L.; Lin, H. R.; Huang, S. Y.; Yeh, T. C. J.; Wen, J. C.

    2016-12-01

    In the groundwater study, it estimated the heterogeneous spatial distribution of hydraulic Properties, there were many scholars use to hydraulic tomography (HT) from field site pumping tests to estimate inverse of heterogeneous spatial distribution of hydraulic Properties, to prove the most of most field site aquifer was heterogeneous hydrogeological parameters spatial distribution field. Many scholars had proposed a method of hydraulic tomography to estimate heterogeneous spatial distribution of hydraulic Properties of aquifer, the Huang et al. [2011] was used the non-redundant verification analysis of pumping wells changed, observation wells fixed on the inverse and the forward, to reflect the feasibility of the heterogeneous spatial distribution of hydraulic Properties of field site aquifer of the non-redundant verification analysis on steady-state model.From post literature, finding only in steady state, non-redundant verification analysis of pumping well changed location and observation wells fixed location for inverse and forward. But the studies had not yet pumping wells fixed or changed location, and observation wells fixed location for redundant verification or observation wells change location for non-redundant verification of the various combinations may to explore of influences of hydraulic tomography method. In this study, it carried out redundant verification method and non-redundant verification method for forward to influences of hydraulic tomography method in transient. And it discuss above mentioned in NYUST campus sites the actual case, to prove the effectiveness of hydraulic tomography methods, and confirmed the feasibility on inverse and forward analysis from analysis results.Keywords: Hydraulic Tomography, Redundant Verification, Heterogeneous, Inverse, Forward

  17. Effect of electron contamination on in vivo dosimetry for lung block shielding during TBI

    PubMed Central

    Narayanasamy, Ganesh; Cruz, Wilbert; Saenz, Daniel L.; Stathakis, Sotirios; Papanikolaou, Niko

    2016-01-01

    Our institution performs in vivo verification measurement for each of our total body irradiation (TBI) patients with optically stimulated luminescent dosimeters (OSLD). The lung block verification measurements were commonly higher than expected. The aim of this work is to understand this discrepancy and improve the accuracy of these lung block verification measurements. Initially, the thickness of the lung block was increased to provide adequate lung sparing. Further tests revealed the increase was due to electron contamination dose emanating from the lung block. The thickness of the bolus material covering the OSLD behind the lung block was increased to offset the electron contamination. In addition, the distance from the lung block to the dosimeter was evaluated for its effect on the OSLD reading and found to be clinically insignificant over the range of variability in our clinic. The results show that the improved TBI treatment technique provides for better accuracy of measured dose in vivo and consistency of patient setup. PACS number(s): 87.53.Bn, 87.53.Kn, 87.55.N‐, 87.55.Qr PMID:27167290

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, A

    Purpose: Accuboost treatment planning uses dwell times from a nomogram designed with Monte Carlo calculations for round and D-shaped applicators. A quick dose calculation method has been developed for verification of the HDR Brachytherapy dose as a second check. Methods: Accuboost breast treatment uses several round and D-shaped applicators to be used non-invasively with an Ir-192 source from a HDR Brachytherapy afterloader after the breast is compressed in a mammographic unit for localization. The breast thickness, source activity, the prescription dose and the applicator size are entered into a nomogram spreadsheet which gives the dwell times to be manually enteredmore » into the delivery computer. Approximating the HDR Ir-192 as a point source, and knowing the geometry of the round and D-applicators, the distances from the source positions to the midpoint of the central plane are calculated. Using the exposure constant of Ir-192 and medium as human tissue, the dose at a point is calculated as: D(cGy) = 1.254 × A × t/R2, where A is the activity in Ci, t is the dwell time in sec and R is the distance in cm. The dose from each dwell position is added to get the total dose. Results: Each fraction is delivered in two compressions: cranio-caudally and medial-laterally. A typical APBI treatment in 10 fractions requires 20 compressions. For a patient treated with D45 applicators and an average of 5.22 cm thickness, this calculation was 1.63 % higher than the prescription. For another patient using D53 applicators in the CC direction and 7 cm SDO applicators in the ML direction, this calculation was 1.31 % lower than the prescription. Conclusion: This is a simple and quick method to double check the dose on the central plane for Accuboost treatment.« less

  19. Three-dimensional dose verification of the clinical application of gamma knife stereotactic radiosurgery using polymer gel and MRI.

    PubMed

    Papagiannis, P; Karaiskos, P; Kozicki, M; Rosiak, J M; Sakelliou, L; Sandilos, P; Seimenis, I; Torrens, M

    2005-05-07

    This work seeks to verify multi-shot clinical applications of stereotactic radiosurgery with a Leksell Gamma Knife model C unit employing a polymer gel-MRI based experimental procedure, which has already been shown to be capable of verifying the precision and accuracy of dose delivery in single-shot gamma knife applications. The treatment plan studied in the present work resembles a clinical treatment case of pituitary adenoma using four 8 mm and one 14 mm collimator helmet shots to deliver a prescription dose of 15 Gy to the 50% isodose line (30 Gy maximum dose). For the experimental dose verification of the treatment plan, the same criteria as those used in the clinical treatment planning evaluation were employed. These included comparison of measured and GammaPlan calculated data, in terms of percentage isodose contours on axial, coronal and sagittal planes, as well as 3D plan evaluation criteria such as dose-volume histograms for the target volume, target coverage and conformity indices. Measured percentage isodose contours compared favourably with calculated ones despite individual point fluctuations at low dose contours (e.g., 20%) mainly due to the effect of T2 measurement uncertainty on dose resolution. Dose-volume histogram data were also found in a good agreement while the experimental results for the percentage target coverage and conformity index were 94% and 1.17 relative to corresponding GammaPlan calculations of 96% and 1.12, respectively. Overall, polymer gel results verified the planned dose distribution within experimental uncertainties and uncertainty related to the digitization process of selected GammaPlan output data.

  20. Survey of Verification and Validation Techniques for Small Satellite Software Development

    NASA Technical Reports Server (NTRS)

    Jacklin, Stephen A.

    2015-01-01

    The purpose of this paper is to provide an overview of the current trends and practices in small-satellite software verification and validation. This document is not intended to promote a specific software assurance method. Rather, it seeks to present an unbiased survey of software assurance methods used to verify and validate small satellite software and to make mention of the benefits and value of each approach. These methods include simulation and testing, verification and validation with model-based design, formal methods, and fault-tolerant software design with run-time monitoring. Although the literature reveals that simulation and testing has by far the longest legacy, model-based design methods are proving to be useful for software verification and validation. Some work in formal methods, though not widely used for any satellites, may offer new ways to improve small satellite software verification and validation. These methods need to be further advanced to deal with the state explosion problem and to make them more usable by small-satellite software engineers to be regularly applied to software verification. Last, it is explained how run-time monitoring, combined with fault-tolerant software design methods, provides an important means to detect and correct software errors that escape the verification process or those errors that are produced after launch through the effects of ionizing radiation.

  1. MR Imaging Based Treatment Planning for Radiotherapy of Prostate Cancer

    DTIC Science & Technology

    2008-02-01

    Radiotherapy, MR-based treatment planning, dosimetry, Monte Carlo dose verification, Prostate Cancer, MRI -based DRRs 16. SECURITY CLASSIFICATION...AcQPlan system Version 5 was used for the study , which is capable of performing dose calculation on both CT and MRI . A four field 3D conformal planning...prostate motion studies for 3DCRT and IMRT of prostate cancer; (2) to investigate and improve the accuracy of MRI -based treatment planning dose calculation

  2. Maxine: A spreadsheet for estimating dose from chronic atmospheric radioactive releases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jannik, Tim; Bell, Evaleigh; Dixon, Kenneth

    MAXINE is an EXCEL© spreadsheet, which is used to estimate dose to individuals for routine and accidental atmospheric releases of radioactive materials. MAXINE does not contain an atmospheric dispersion model, but rather doses are estimated using air and ground concentrations as input. Minimal input is required to run the program and site specific parameters are used when possible. Complete code description, verification of models, and user’s manual have been included.

  3. Verification of eye lens dose in IMRT by MOSFET measurement.

    PubMed

    Wang, Xuetao; Li, Guangjun; Zhao, Jianling; Song, Ying; Xiao, Jianghong; Bai, Sen

    2018-04-17

    The eye lens is recognized as one of the most radiosensitive structures in the human body. The widespread use of intensity-modulated radiotherapy (IMRT) complicates dose verification and necessitates high standards of dose computation. The purpose of this work was to assess the computed dose accuracy of eye lens through measurements using a metal-oxide-semiconductor field-effect transistor (MOSFET) dosimetry system. Sixteen clinical IMRT plans of head and neck patients were copied to an anthropomorphic head phantom. Measurements were performed using the MOSFET dosimetry system based on the head phantom. Two MOSFET detectors were imbedded in the eyes of the head phantom as the left and the right lens, covered by approximately 5-mm-thick paraffin wax. The measurement results were compared with the calculated values with a dose grid size of 1 mm. Sixteen IMRT plans were delivered, and 32 measured lens doses were obtained for analysis. The MOSFET dosimetry system can be used to verify the lens dose, and our measurements showed that the treatment planning system used in our clinic can provide adequate dose assessment in eye lenses. The average discrepancy between measurement and calculation was 6.7 ± 3.4%, and the largest discrepancy was 14.3%, which met the acceptability criterion set by the American Association of Physicists in Medicine Task Group 53 for external beam calculation for multileaf collimator-shaped fields in buildup regions. Copyright © 2018 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  4. SU-E-T-275: Dose Verification in a Small Animal Image-Guided Radiation Therapy X-Ray Machine: A Dose Comparison between TG-61 Based Look-Up Table and MOSFET Method for Various Collimator Sizes.

    PubMed

    Rodrigues, A; Nguyen, G; Li, Y; Roy Choudhury, K; Kirsch, D; Das, S; Yoshizumi, T

    2012-06-01

    To verify the accuracy of TG-61 based dosimetry with MOSFET technology using a tissue-equivalent mouse phantom. Accuracy of mouse dose between a TG-61 based look-up table was verified with MOSFET technology. The look-up table followed a TG-61 based commissioning and used a solid water block and radiochromic film. A tissue-equivalent mouse phantom (2 cm diameter, 8 cm length) was used for the MOSFET method. Detectors were placed in the phantom at the head and center of the body. MOSFETs were calibrated in air with an ion chamber and f-factor was applied to derive the dose to tissue. In CBCT mode, the phantom was positioned such that the system isocenter coincided with the center of the MOSFET with the active volume perpendicular to the beam. The absorbed dose was measured three times for seven different collimators, respectively. The exposure parameters were 225 kVp, 13 mA, and an exposure time of 20 s. For a 10 mm, 15 mm, and 20 mm circular collimator, the dose measured by the phantom was 4.3%, 2.7%, and 6% lower than TG-61 based measurements, respectively. For a 10 × 10 mm, 20 × 20 mm, and 40 × 40 mm collimator, the dose difference was 4.7%, 7.7%, and 2.9%, respectively. The MOSFET data was systematically lower than the commissioning data. The dose difference is due to the increased scatter radiation in the solid water block versus the dimension of the mouse phantom leading to an overestimation of the actual dose in the solid water block. The MOSFET method with the use of a tissue- equivalent mouse phantom provides less labor intensive geometry-specific dosimetry and accuracy with better dose tolerances of up to ± 2.7%. © 2012 American Association of Physicists in Medicine.

  5. Quality assurance of dynamic parameters in volumetric modulated arc therapy.

    PubMed

    Manikandan, A; Sarkar, B; Holla, R; Vivek, T R; Sujatha, N

    2012-07-01

    The purpose of this study was to demonstrate quality assurance checks for accuracy of gantry speed and position, dose rate and multileaf collimator (MLC) speed and position for a volumetric modulated arc treatment (VMAT) modality (Synergy S; Elekta, Stockholm, Sweden), and to check that all the necessary variables and parameters were synchronous. Three tests (for gantry position-dose delivery synchronisation, gantry speed-dose delivery synchronisation and MLC leaf speed and positions) were performed. The average error in gantry position was 0.5° and the average difference was 3 MU for a linear and a parabolic relationship between gantry position and delivered dose. In the third part of this test (sawtooth variation), the maximum difference was 9.3 MU, with a gantry position difference of 1.2°. In the sweeping field method test, a linear relationship was observed between recorded doses and distance from the central axis, as expected. In the open field method, errors were encountered at the beginning and at the end of the delivery arc, termed the "beginning" and "end" errors. For MLC position verification, the maximum error was -2.46 mm and the mean error was 0.0153 ±0.4668 mm, and 3.4% of leaves analysed showed errors of >±1 mm. This experiment demonstrates that the variables and parameters of the Synergy S are synchronous and that the system is suitable for delivering VMAT using a dynamic MLC.

  6. Assessment of radiation shield integrity of DD/DT fusion neutron generator facilities by Monte Carlo and experimental methods

    NASA Astrophysics Data System (ADS)

    Srinivasan, P.; Priya, S.; Patel, Tarun; Gopalakrishnan, R. K.; Sharma, D. N.

    2015-01-01

    DD/DT fusion neutron generators are used as sources of 2.5 MeV/14.1 MeV neutrons in experimental laboratories for various applications. Detailed knowledge of the radiation dose rates around the neutron generators are essential for ensuring radiological protection of the personnel involved with the operation. This work describes the experimental and Monte Carlo studies carried out in the Purnima Neutron Generator facility of the Bhabha Atomic Research Center (BARC), Mumbai. Verification and validation of the shielding adequacy was carried out by measuring the neutron and gamma dose-rates at various locations inside and outside the neutron generator hall during different operational conditions both for 2.5-MeV and 14.1-MeV neutrons and comparing with theoretical simulations. The calculated and experimental dose rates were found to agree with a maximum deviation of 20% at certain locations. This study has served in benchmarking the Monte Carlo simulation methods adopted for shield design of such facilities. This has also helped in augmenting the existing shield thickness to reduce the neutron and associated gamma dose rates for radiological protection of personnel during operation of the generators at higher source neutron yields up to 1 × 1010 n/s.

  7. A study of applications scribe frame data verifications using design rule check

    NASA Astrophysics Data System (ADS)

    Saito, Shoko; Miyazaki, Masaru; Sakurai, Mitsuo; Itoh, Takahisa; Doi, Kazumasa; Sakurai, Norioko; Okada, Tomoyuki

    2013-06-01

    In semiconductor manufacturing, scribe frame data generally is generated for each LSI product according to its specific process design. Scribe frame data is designed based on definition tables of scanner alignment, wafer inspection and customers specified marks. We check that scribe frame design is conforming to specification of alignment and inspection marks at the end. Recently, in COT (customer owned tooling) business or new technology development, there is no effective verification method for the scribe frame data, and we take a lot of time to work on verification. Therefore, we tried to establish new verification method of scribe frame data by applying pattern matching and DRC (Design Rule Check) which is used in device verification. We would like to show scheme of the scribe frame data verification using DRC which we tried to apply. First, verification rules are created based on specifications of scanner, inspection and others, and a mark library is also created for pattern matching. Next, DRC verification is performed to scribe frame data. Then the DRC verification includes pattern matching using mark library. As a result, our experiments demonstrated that by use of pattern matching and DRC verification our new method can yield speed improvements of more than 12 percent compared to the conventional mark checks by visual inspection and the inspection time can be reduced to less than 5 percent if multi-CPU processing is used. Our method delivers both short processing time and excellent accuracy when checking many marks. It is easy to maintain and provides an easy way for COT customers to use original marks. We believe that our new DRC verification method for scribe frame data is indispensable and mutually beneficial.

  8. Sterilization of allograft bone: is 25 kGy the gold standard for gamma irradiation?

    PubMed

    Nguyen, Huynh; Morgan, David A F; Forwood, Mark R

    2007-01-01

    For several decades, a dose of 25 kGy of gamma irradiation has been recommended for terminal sterilization of medical products, including bone allografts. Practically, the application of a given gamma dose varies from tissue bank to tissue bank. While many banks use 25 kGy, some have adopted a higher dose, while some choose lower doses, and others do not use irradiation for terminal sterilization. A revolution in quality control in the tissue banking industry has occurred in line with development of quality assurance standards. These have resulted in significant reductions in the risk of contamination by microorganisms of final graft products. In light of these developments, there is sufficient rationale to re-establish a new standard dose, sufficient enough to sterilize allograft bone, while minimizing the adverse effects of gamma radiation on tissue properties. Using valid modifications, several authors have applied ISO standards to establish a radiation dose for bone allografts that is specific to systems employed in bone banking. These standards, and their verification, suggest that the actual dose could be significantly reduced from 25 kGy, while maintaining a valid sterility assurance level (SAL) of 10(-6). The current paper reviews the methods that have been used to develop radiation doses for terminal sterilization of medical products, and the current trend for selection of a specific dose for tissue banks.

  9. Commissioning results of an automated treatment planning verification system

    PubMed Central

    Mason, Bryan E.; Robinson, Ronald C.; Kisling, Kelly D.; Kirsner, Steven M.

    2014-01-01

    A dose calculation verification system (VS) was acquired and commissioned as a second check on the treatment planning system (TPS). This system reads DICOM CT datasets, RT plans, RT structures, and RT dose from the TPS and automatically, using its own collapsed cone superposition/convolution algorithm, computes dose on the same CT dataset. The system was commissioned by extracting basic beam parameters for simple field geometries and dose verification for complex treatments. Percent depth doses (PDD) and profiles were extracted for field sizes using jaw settings 3 × 3 cm2 ‐ 40 × 40 cm2 and compared to measured data, as well as our TPS model. Smaller fields of 1 × 1 cm2 and 2 × 2 cm2 generated using the multileaf collimator (MLC) were analyzed in the same fashion as the open fields. In addition, 40 patient plans consisting of both IMRT and VMAT were computed and the following comparisons were made: 1) TPS to the VS, 2) VS to measured data, and 3) TPS to measured data where measured data is both ion chamber (IC) and film measurements. Our results indicated for all field sizes using jaw settings PDD errors for the VS on average were less than 0.87%, 1.38%, and 1.07% for 6x, 15x, and 18x, respectively, relative to measured data. PDD errors for MLC field sizes were less than 2.28%, 1.02%, and 2.23% for 6x, 15x, and 18x, respectively. The infield profile analysis yielded results less than 0.58% for 6x, 0.61% for 15x, and 0.77% for 18x for the VS relative to measured data. Analysis of the penumbra region yields results ranging from 66.5% points, meeting the DTA criteria to 100% of the points for smaller field sizes for all energies. Analysis of profile data for field sizes generated using the MLC saw agreement with infield DTA analysis ranging from 68.8%–100% points passing the 1.5%/1.5 mm criteria. Results from the dose verification for IMRT and VMAT beams indicated that, on average, the ratio of TPS to IC and VS to IC measurements was 100.5 ± 1.9% and 100.4 ± 1.3%, respectively, while our TPS to VS was 100.1 ± 1.0%. When comparing the TPS and VS to film measurements, the average percentage pixels passing a 3%/3 mm criteria based gamma analysis were 96.6 ± 4.2% and 97 ± 5.6%, respectively. When the VS was compared to the TPS, on average 98.1 ± 5.3% of pixels passed the gamma analysis. Based upon these preliminary results, the VS system should be able to calculate dose adequately as a verification tool of our TPS. PACS number: 87.55.km PMID:25207567

  10. Dosimetry in radiotherapy using a-Si EPIDs: Systems, methods, and applications focusing on 3D patient dose estimation

    NASA Astrophysics Data System (ADS)

    McCurdy, B. M. C.

    2013-06-01

    An overview is provided of the use of amorphous silicon electronic portal imaging devices (EPIDs) for dosimetric purposes in radiation therapy, focusing on 3D patient dose estimation. EPIDs were originally developed to provide on-treatment radiological imaging to assist with patient setup, but there has also been a natural interest in using them as dosimeters since they use the megavoltage therapy beam to form images. The current generation of clinically available EPID technology, amorphous-silicon (a-Si) flat panel imagers, possess many characteristics that make them much better suited to dosimetric applications than earlier EPID technologies. Features such as linearity with dose/dose rate, high spatial resolution, realtime capability, minimal optical glare, and digital operation combine with the convenience of a compact, retractable detector system directly mounted on the linear accelerator to provide a system that is well-suited to dosimetric applications. This review will discuss clinically available a-Si EPID systems, highlighting dosimetric characteristics and remaining limitations. Methods for using EPIDs in dosimetry applications will be discussed. Dosimetric applications using a-Si EPIDs to estimate three-dimensional dose in the patient during treatment will be overviewed. Clinics throughout the world are implementing increasingly complex treatments such as dynamic intensity modulated radiation therapy and volumetric modulated arc therapy, as well as specialized treatment techniques using large doses per fraction and short treatment courses (ie. hypofractionation and stereotactic radiosurgery). These factors drive the continued strong interest in using EPIDs as dosimeters for patient treatment verification.

  11. Complete data preparation flow for Massively Parallel E-Beam lithography on 28nm node full-field design

    NASA Astrophysics Data System (ADS)

    Fay, Aurélien; Browning, Clyde; Brandt, Pieter; Chartoire, Jacky; Bérard-Bergery, Sébastien; Hazart, Jérôme; Chagoya, Alexandre; Postnikov, Sergei; Saib, Mohamed; Lattard, Ludovic; Schavione, Patrick

    2016-03-01

    Massively parallel mask-less electron beam lithography (MP-EBL) offers a large intrinsic flexibility at a low cost of ownership in comparison to conventional optical lithography tools. This attractive direct-write technique needs a dedicated data preparation flow to correct both electronic and resist processes. Moreover, Data Prep has to be completed in a short enough time to preserve the flexibility advantage of MP-EBL. While the MP-EBL tools have currently entered an advanced stage of development, this paper will focus on the data preparation side of the work for specifically the MAPPER Lithography FLX-1200 tool [1]-[4], using the ASELTA Nanographics Inscale software. The complete flow as well as the methodology used to achieve a full-field layout data preparation, within an acceptable cycle time, will be presented. Layout used for Data Prep evaluation was one of a 28 nm technology node Metal1 chip with a field size of 26x33mm2, compatible with typical stepper/scanner field sizes and wafer stepping plans. Proximity Effect Correction (PEC) was applied to the entire field, which was then exported as a single file to MAPPER Lithography's machine format, containing fractured shapes and dose assignments. The Soft Edge beam to beam stitching method was employed in the specific overlap regions defined by the machine format as well. In addition to PEC, verification of the correction was included as part of the overall data preparation cycle time. This verification step was executed on the machine file format to ensure pattern fidelity and accuracy as late in the flow as possible. Verification over the full chip, involving billions of evaluation points, is performed both at nominal conditions and at Process Window corners in order to ensure proper exposure and process latitude. The complete MP-EBL data preparation flow was demonstrated for a 28 nm node Metal1 layout in 37 hours. The final verification step shows that the Edge Placement Error (EPE) is kept below 2.25 nm over an exposure dose variation of 8%.

  12. SU-E-J-07: IGRT Gently: Evaluating Imaging Dose in Phantoms of Different Sizes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, B; Duggar, W; Stanford, J

    Purpose: IGRT imaging procedures have emerged as a common method of patient position verification in radiotherapy, though imaging dose is generally neglected in the treatment plan. Consequently, evaluating and optimizing the dose from these procedures is worthwhile. This process is especially important for children, who are more radiosensitive than adults. The aim of this work was to gain some understanding of the relative doses involved with various XVI-preset parameters for an “adult” and “child” phantom set, with the hopes that imaging dose for a child can be reduced. Methods: 32 and 16cm CTDI-phantoms were used as surrogates for adult andmore » child torsos, respectively. Dose was measured in the central and peripheral chamber positions of the phantoms. CBCT scans were made for both phantoms using Elekta’s Chest-preset to establish a dose baseline. The child-phantom was then scanned using the Elekta Head and Neck (HN) preset. A modified HN-preset (named Peds Abd-pelvis) was also created with a doubled mAs to maintain a reduction in dose to the child-phantom (relative to the baseline), while providing clinically-usable image quality. Results: The baseline dose to the child-phantom from the Chest-preset was 310% that of the adult-phantom for the center chamber position and 150% at the periphery. An average dose reduction of 97% was obtained in the childphantom by switching from the Chest-preset to the HN-preset, while the Peds Abd-pelvis-preset similarly reduced the dose by an average of 92%. Conclusion: XVI-preset parameters significantly affect dose, and should be optimized to reduce dose, while ensuring clinically-usable image quality. Using a modified imaging preset (Peds Abd-pelvis-preset) greatly reduced the dose to the child-phantom compared to the dose for the Chest-preset for both the child and adult-phantoms. This outcome provides support for the development of child-specific protocols for IGRT imaging in pediatric patients.« less

  13. SU-F-T-610: Comparison of Output Factors for Small Radiation Fields Used in SBRT Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, R; Eldib, A; Li, J

    2016-06-15

    Purpose: In order to fundamentally understand our previous dose verification results between measurements and calculations from treatment planning system (TPS) for SBRT plans for different sized targets, the goal of the present work was to compare output factors for small fields measured using EDR2 films with TPS and Monet Carlo (MC) simulations. Methods: 6MV beam was delivered to EDR2 films for each of the following field sizes; 1×1 cm{sup 2}, 1.5×1.5 cm{sup 2}, 2×2 cm{sup 2}, 3×3 cm{sup 2}, 4×4 cm{sup 2}, 5×5 cm{sup 2} and 10×10 cm{sup 2}. The films were developed in a film processer, then scanned withmore » a Vidar VXR-16 scanner and analyzed using RIT113 version 6.1. A standard calibration curve was obtained with the 6MV beam and was used to get absolute dose for measured field sizes. Similar plans for all fields sizes mentioned above were generated using Eclipse with the Analytical Anisotropic Algorithm. Similarly, MC simulations were carried out using the MCSIM, an in-house MC code for different field sizes. Output factors normalized to 10×10 cm{sup 2} reference field were calculated for different field sizes in all the three cases and compared. Results: For field sizes ranging from 1×1 cm{sup 2} to 2×2 cm{sup 2}, the differences in output factors between measurements (films), TPS and MC simulations were within 0.22%. For field sizes ranging from 3×3cm{sup 2} to 5×5cm{sup 2}, differences in output factors were within 0.10%. Conclusion: No clinically significant difference was obtained in output factors for different field sizes acquired from films, TPS and MC simulations. Our results showed that the output factors are predicted accurately from TPS when compared to the actual measurements and superior dose calculation Monte Carlo method. This study would help us in understanding our previously obtained dose verification results for small fields used in the SBRT treatment.« less

  14. SU-E-T-563: Multi-Fraction Stereotactic Radiosurgery with Extend System of Gamma Knife: Treatment Verification Using Indigenously Designed Patient Simulating Multipurpose Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisht, R; Kale, S; Gopishankar, N

    2015-06-15

    Purpose: Aim of the study is to evaluate mechanical and radiological accuracy of multi-fraction regimen and validate Gamma knife based fractionation using newly developed patient simulating multipurpose phantom. Methods: A patient simulating phantom was designed to verify fractionated treatments with extend system (ES) of Gamma Knife however it could be used to validate other radiotherapy procedures as well. The phantom has options to insert various density material plugs and mini CT/MR distortion phantoms to analyze the quality of stereotactic imaging. An additional thorax part designed to predict surface doses at various organ sites. The phantom was positioned using vacuum headmore » cushion and patient control unit for imaging and treatment. The repositioning check tool (RCT) was used to predict phantom positioning under ES assembly. The phantom with special inserts for film in axial, coronal and sagittal plane were scanned with X-Ray CT and the acquired images were transferred to treatment planning system (LGP 10.1). The focal precession test was performed with 4mm collimator and an experimental plan of four 16mm collimator shots was prepared for treatment verification of multi-fraction regimen. The prescription dose of 5Gy per fraction was delivered in four fractions. Each fraction was analyzed using EBT3 films scanned with EPSON 10000XL Scanner. Results: The measurement of 38 RCT points showed an overall positional accuracy of 0.28mm. The mean deviation of 0.28% and 0.31 % were calculated as CT and MR image distortion respectively. The radiological focus accuracy test showed its deviation from mechanical center point of 0.22mm. The profile measurement showed close agreement between TPS planned and film measured dose. At tolerance criteria of 1%/1mm gamma index analysis showed a pass rate of > 95%. Conclusion: Our results show that the newly developed multipurpose patient simulating phantom is highly suitable for the verification of fractionated stereotactic radiosurgery using ES of Gamma knife. The study is a part of intramural research project of Research Section, All India Institute of Medical Sciences New Delhi India (A 247)« less

  15. Verification and Validation Studies for the LAVA CFD Solver

    NASA Technical Reports Server (NTRS)

    Moini-Yekta, Shayan; Barad, Michael F; Sozer, Emre; Brehm, Christoph; Housman, Jeffrey A.; Kiris, Cetin C.

    2013-01-01

    The verification and validation of the Launch Ascent and Vehicle Aerodynamics (LAVA) computational fluid dynamics (CFD) solver is presented. A modern strategy for verification and validation is described incorporating verification tests, validation benchmarks, continuous integration and version control methods for automated testing in a collaborative development environment. The purpose of the approach is to integrate the verification and validation process into the development of the solver and improve productivity. This paper uses the Method of Manufactured Solutions (MMS) for the verification of 2D Euler equations, 3D Navier-Stokes equations as well as turbulence models. A method for systematic refinement of unstructured grids is also presented. Verification using inviscid vortex propagation and flow over a flat plate is highlighted. Simulation results using laminar and turbulent flow past a NACA 0012 airfoil and ONERA M6 wing are validated against experimental and numerical data.

  16. Investigating the accuracy of microstereotactic-body-radiotherapy utilizing anatomically accurate 3D printed rodent-morphic dosimeters.

    PubMed

    Bache, Steven T; Juang, Titania; Belley, Matthew D; Koontz, Bridget F; Adamovics, John; Yoshizumi, Terry T; Kirsch, David G; Oldham, Mark

    2015-02-01

    Sophisticated small animal irradiators, incorporating cone-beam-CT image-guidance, have recently been developed which enable exploration of the efficacy of advanced radiation treatments in the preclinical setting. Microstereotactic-body-radiation-therapy (microSBRT) is one technique of interest, utilizing field sizes in the range of 1-15 mm. Verification of the accuracy of microSBRT treatment delivery is challenging due to the lack of available methods to comprehensively measure dose distributions in representative phantoms with sufficiently high spatial resolution and in 3 dimensions (3D). This work introduces a potential solution in the form of anatomically accurate rodent-morphic 3D dosimeters compatible with ultrahigh resolution (0.3 mm(3)) optical computed tomography (optical-CT) dose read-out. Rodent-morphic dosimeters were produced by 3D-printing molds of rodent anatomy directly from contours defined on x-ray CT data sets of rats and mice, and using these molds to create tissue-equivalent radiochromic 3D dosimeters from Presage. Anatomically accurate spines were incorporated into some dosimeters, by first 3D printing the spine mold, then forming a high-Z bone equivalent spine insert. This spine insert was then set inside the tissue equivalent body mold. The high-Z spinal insert enabled representative cone-beam CT IGRT targeting. On irradiation, a linear radiochromic change in optical-density occurs in the dosimeter, which is proportional to absorbed dose, and was read out using optical-CT in high-resolution (0.5 mm isotropic voxels). Optical-CT data were converted to absolute dose in two ways: (i) using a calibration curve derived from other Presage dosimeters from the same batch, and (ii) by independent measurement of calibrated dose at a point using a novel detector comprised of a yttrium oxide based nanocrystalline scintillator, with a submillimeter active length. A microSBRT spinal treatment was delivered consisting of a 180° continuous arc at 225 kVp with a 20 × 10 mm field size. Dose response was evaluated using both the Presage/optical-CT 3D dosimetry system described above, and independent verification in select planes using EBT2 radiochromic film placed inside rodent-morphic dosimeters that had been sectioned in half. Rodent-morphic 3D dosimeters were successfully produced from Presage radiochromic material by utilizing 3D printed molds of rat CT contours. The dosimeters were found to be compatible with optical-CT dose readout in high-resolution 3D (0.5 mm isotropic voxels) with minimal artifacts or noise. Cone-beam CT image guidance was possible with these dosimeters due to sufficient contrast between high-Z spinal inserts and tissue equivalent Presage material (CNR ∼10 on CBCT images). Dose at isocenter measured with optical-CT was found to agree with nanoscintillator measurement to within 2.8%. Maximum dose in line profiles taken through Presage and film dose slices agreed within 3%, with FWHM measurements through each profile found to agree within 2%. This work demonstrates the feasibility of using 3D printing technology to make anatomically accurate Presage rodent-morphic dosimeters incorporating spinal-mimicking inserts. High quality optical-CT 3D dosimetry is feasible on these dosimeters, despite the irregular surfaces and implanted inserts. The ability to measure dose distributions in anatomically accurate phantoms represents a powerful useful additional verification tool for preclinical microSBRT.

  17. [A fine line between legal and illegal oral drug repackaging].

    PubMed

    Casanova, Heberto Arboleya; Sánchez, Héctor Marino Zavala; Fernández, Angélica María Hernández; Herrera, Dulce Janeth González

    2016-06-01

    In 2009, with the implementation of the National Hospital Pharmacy Model, Mexico began regulating single-dose drugs. The repackaging of oral drugs is fundamental and critical and should be standardized by Mexican health legislation to enable quality drugs to be dispensed. Data is required on stability, compatibility, drug interactions, containers, and repackaging methods, in order to establish a new expiration date. The literature on health regulations applicable to repackaging was analyzed, revealing major conceptual imprecisions since there is no legislation in Mexico that regulates repackaging; rather, everything is carried out according to pharmacists' recommendations and criteria. The conclusion is that the regulations need to be rewritten to establish minimum single-dose oral drug criteria for dispensing hospitals-regulations that cover infrastructure, equipment, and professionals complying with good practices in oral drug repackaging. A proposal is offered to implement an official Mexican standard that regulates single-dose repackaging and unifies concepts, criteria, and means of verification, while the pharmaceutical industry would be responsible for the technology and resources for single-dose drug packaging designed for the health sector.

  18. Verification of BWR Turbine Skyshine Dose with the MCNP5 Code Based on an Experiment Made at SHIMANE Nuclear Power Station

    NASA Astrophysics Data System (ADS)

    Tayama, Ryuichi; Wakasugi, Kenichi; Kawanaka, Ikunori; Kadota, Yoshinobu; Murakami, Yasuhiro

    We measured the skyshine dose from turbine buildings at Shimane Nuclear Power Station Unit 1 (NS-1) and Unit 2 (NS-2), and then compared it with the dose calculated with the Monte Carlo transport code MCNP5. The skyshine dose values calculated with the MCNP5 code agreed with the experimental data within a factor of 2.8, when the roof of the turbine building was precisely modeled. We concluded that our MCNP5 calculation was valid for BWR turbine skyshine dose evaluation.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fakir, H.; Gaede, S.; Mulligan, M.

    Purpose: To design a versatile, nonhomogeneous insert for the dose verification phantom ArcCHECK{sup Trade-Mark-Sign} (Sun Nuclear Corp., FL) and to demonstrate its usefulness for the verification of dose distributions in inhomogeneous media. As an example, we demonstrate it can be used clinically for routine quality assurance of two volumetric modulated arc therapy (VMAT) systems for lung stereotactic body radiation therapy (SBRT): SmartArc{sup Registered-Sign} (Pinnacle{sup 3}, Philips Radiation Oncology Systems, Fitchburg, WI) and RapidArc{sup Registered-Sign} (Eclipse{sup Trade-Mark-Sign }, Varian Medical Systems, Palo Alto, CA). Methods: The cylindrical detector array ArcCHECK{sup Trade-Mark-Sign} has a retractable homogeneous acrylic insert. In this work, wemore » designed and manufactured a customized heterogeneous insert with densities that simulate soft tissue, lung, bone, and air. The insert offers several possible heterogeneity configurations and multiple locations for point dose measurements. SmartArc{sup Registered-Sign} and RapidArc{sup Registered-Sign} plans for lung SBRT were generated and copied to ArcCHECK{sup Trade-Mark-Sign} for each inhomogeneity configuration. Dose delivery was done on a Varian 2100 ix linac. The evaluation of dose distributions was based on gamma analysis of the diode measurements and point doses measurements at different positions near the inhomogeneities. Results: The insert was successfully manufactured and tested with different measurements of VMAT plans. Dose distributions measured with the homogeneous insert showed gamma passing rates similar to our clinical results ({approx}99%) for both treatment-planning systems. Using nonhomogeneous inserts decreased the passing rates by up to 3.6% in the examples studied. Overall, SmartArc{sup Registered-Sign} plans showed better gamma passing rates for nonhomogeneous measurements. The discrepancy between calculated and measured point doses was increased up to 6.5% for the nonhomogeneous insert depending on the inhomogeneity configuration and measurement location. SmartArc{sup Registered-Sign} and RapidArc{sup Registered-Sign} plans had similar plan quality but RapidArc{sup Registered-Sign} plans had significantly higher monitor units (up to 70%). Conclusions: A versatile, nonhomogeneous insert was developed for ArcCHECK{sup Trade-Mark-Sign} for an easy and quick evaluation of dose calculations with nonhomogeneous media and for comparison of different treatment planning systems. The device was tested for SmartArc{sup Registered-Sign} and RapidArc{sup Registered-Sign} plans for lung SBRT, showing the uncertainties of dose calculations with inhomogeneities. The new insert combines the convenience of the ArcCHECK{sup Trade-Mark-Sign} and the possibility of assessing dose distributions in inhomogeneous media.« less

  20. Development of a multi-knife-edge slit collimator for prompt gamma ray imaging during proton beam cancer therapy

    NASA Astrophysics Data System (ADS)

    Ready, John Francis, III

    Proton beam usage to treat cancer has recently experienced rapid growth, as it offers the ability to target dose delivery in a patient more precisely than traditional x-ray treatment methods. Protons stop within the patient, delivering the maximum dose at the end of their track--a phenomenon described as the Bragg peak. However, because a large dose is delivered to a small volume, proton therapy is very sensitive to errors in patient setup and treatment planning calculations. Additionally, because all primary beam particles stop in the patient, there is no direct information available to verify dose delivery. These factors contribute to the range uncertainty in proton therapy, which ultimately hinders its clinical usefulness. A reliable method of proton range verification would allow the clinician to fully utilize the precise dose delivery of the Bragg peak. Several methods to verify proton range detect secondary emissions, especially prompt gamma ray (PG) emissions. However, detection of PGs is challenging due to their high energy (2-10 MeV) and low attenuation coefficients, which limit PG interactions in materials. Therefore, detection and collimation methods must be specifically designed for prompt gamma ray imaging (PGI) applications. In addition, production of PGs relies on delivering a dose of radiation to the patient. Ideally, verification of the Bragg peak location exposes patients to a minimal dose, thus limiting the PG counts available to the imaging system. An additional challenge for PGI is the lack of accurate simulation models, which limit the study of PG production characteristics and the relationship between PG distribution and dose delivery. Specific limitations include incorrect modeling of the reaction cross sections, gamma emission yields, and angular distribution of emission for specific photon energies. While simulations can still be valuable assets in designing a system to detect and image PGs, until new models are developed and incorporated into Monte Carlo simulation packages, simulations cannot be used to study the production and location of PG emissions during proton therapy. This work presents a novel system to image PGs emitted during proton therapy to verify proton beam range. The imaging system consists of a multi-slit collimator paired with a position-sensitive LSO scintillation detector. This innovative design is the first collimated imaging system to implement two-dimensional (2-D) imaging for PG proton beam range verification, while also providing a larger field of view than compared to single-slit collimator systems. Other, uncollimated imaging systems have been explored for PGI applications, such as Compton cameras. However, Compton camera designs are severely limited by counting rate capabilities. A recent Compton camera study reported count rate capability of about 5 kHz. However, at a typical clinical beam current of 1.0 nA, the estimated PG emission rate would be 6 x 108 per second. After accounting for distance to the detector and interaction efficiencies, the detection system will still be overwhelmed with counts in the MHz range, causing false coincidences and hindering the operation of the imaging system. Initial measurements using 50 MeV protons demonstrated the ability of our system to reconstruct 2-D PG distributions at clinical beam currents. A Bragg peak localization precision of 1 mm (2sigma) was achieved with delivery of (1.7 +/- 0.8) x 108 protons into a PMMA target, suggesting the ability of the system to detect relative shifts in proton range while delivering fewer protons than used in a typical treatment fraction. This is key, as the ideal system allows the clinician to verify proton range when delivering only a small portion of the prescribed dose, preventing the mistreatment of the patient. Additionally, the absolute position of the Bragg peak was identified to within 1.6 mm (2sigma) with 5.6 x 1010 protons delivered. These promising results warrant further investigation and system optimization for clinical implementation. While further measurements at clinical beam energy levels will be required to verify system performance, these preliminary results provide evidence that 2-D image reconstruction, with 1-2 mm accuracy, is possible with this design. Implementing such a system in the clinical setting would greatly improve proton therapy cancer treatment outcomes.

  1. SU-E-T-799: Verification of a Simultaneous Treatment of Multiple Brain Metastases Using VMAT Technique by a Composite Alanine-Gel Dosimeter Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavoni, J; Silveira, M; Filho, O Baffa

    Purpose: This work presents an end-to-end test using a Gel-Alanine phantom to validate the three-dimensional (3D) dose distribution (DD) delivered by a single isocenter VMAT technique on the simultaneous treatment of multiple brain metastases. Methods: Three cylindrical phantons containing MAGIC-f gel dosimeter were used to measure the 3D DD of a VMAT treatment, the first two were filled with the gel dosimeter (Gel 1 and 2) and the third one was filled with gel and 12 alanine dosimeters distributed along it (Gel 3). Gels 1 and 3 were irradiated and gel 2 was used to map the magnetic resonance imagemore » (MRI) scanner field inomogeneities. A CT scan of gel 3 was used for the VMAT treatment planning and 5 alanine pellets were chosen as lesions, around them a PTV was grown and different dose prescriptions were assigned for each one, varying from 5 to 9Gy. Before treatment, the plan was approved in a QA based on an ionization chamber absolute dose measurement, a radiochromic film planar dose measurement and a portal dosimetry per field verification; and also the phantons positioning were verified by ExacTrac 6D correction and OBI kV Cone Beam CT. The gels were irradiated, the MRIs were acquired 24 hours after irradiation and finally, the alanine dosimeters were analysed in a X-band Electron Spin Resonance spectrometer. Results: The association of the two detectors enabled the 3D dose evaluation by gel and punctually inside target volumes by alanine. In the gamma analyses (3%/3mm) comparing the 5 PTVs’ central images DD with TPS expected DD more than 95% of the points were approved. The alanine absolute dose measurements were in agreement with TPS by less than 5%. Conclusion: The gel-alanine phantom enabled the dosimetric validation of multiple brain metastases treatment using VMAT, being an almost ideal tool for this application. This work is partially supported by FAPESP.« less

  2. Requirement Assurance: A Verification Process

    NASA Technical Reports Server (NTRS)

    Alexander, Michael G.

    2011-01-01

    Requirement Assurance is an act of requirement verification which assures the stakeholder or customer that a product requirement has produced its "as realized product" and has been verified with conclusive evidence. Product requirement verification answers the question, "did the product meet the stated specification, performance, or design documentation?". In order to ensure the system was built correctly, the practicing system engineer must verify each product requirement using verification methods of inspection, analysis, demonstration, or test. The products of these methods are the "verification artifacts" or "closure artifacts" which are the objective evidence needed to prove the product requirements meet the verification success criteria. Institutional direction is given to the System Engineer in NPR 7123.1A NASA Systems Engineering Processes and Requirements with regards to the requirement verification process. In response, the verification methodology offered in this report meets both the institutional process and requirement verification best practices.

  3. Feasibility of TCP-based dose painting by numbers applied to a prostate case with (18)F-choline PET imaging.

    PubMed

    Dirscherl, Thomas; Rickhey, Mark; Bogner, Ludwig

    2012-02-01

    A biologically adaptive radiation treatment method to maximize the TCP is shown. Functional imaging is used to acquire a heterogeneous dose prescription in terms of Dose Painting by Numbers and to create a patient-specific IMRT plan. Adapted from a method for selective dose escalation under the guidance of spatial biology distribution, a model, which translates heterogeneously distributed radiobiological parameters into voxelwise dose prescriptions, was developed. At the example of a prostate case with (18)F-choline PET imaging, different sets of reported values for the parameters were examined concerning their resulting range of dose values. Furthermore, the influence of each parameter of the linear-quadratic model was investigated. A correlation between PET signal and proliferation as well as cell density was assumed. Using our in-house treatment planning software Direct Monte Carlo Optimization (DMCO), a treatment plan based on the obtained dose prescription was generated. Gafchromic EBT films were irradiated for evaluation. When a TCP of 95% was aimed at, the maximal dose in a voxel of the prescription exceeded 100Gy for most considered parameter sets. One of the parameter sets resulted in a dose range of 87.1Gy to 99.3Gy, yielding a TCP of 94.7%, and was investigated more closely. The TCP of the plan decreased to 73.5% after optimization based on that prescription. The dose difference histogram of optimized and prescribed dose revealed a mean of -1.64Gy and a standard deviation of 4.02Gy. Film verification showed a reasonable agreement of planned and delivered dose. If the distribution of radiobiological parameters within a tumor is known, this model can be used to create a dose-painting by numbers plan which maximizes the TCP. It could be shown, that such a heterogeneous dose distribution is technically feasible. Copyright © 2012. Published by Elsevier GmbH.

  4. Small-Field Measurements of 3D Polymer Gel Dosimeters through Optical Computed Tomography.

    PubMed

    Shih, Tian-Yu; Wu, Jay; Shih, Cheng-Ting; Lee, Yao-Ting; Wu, Shin-Hua; Yao, Chun-Hsu; Hsieh, Bor-Tsung

    2016-01-01

    With advances in therapeutic instruments and techniques, three-dimensional dose delivery has been widely used in radiotherapy. The verification of dose distribution in a small field becomes critical because of the obvious dose gradient within the field. The study investigates the dose distributions of various field sizes by using NIPAM polymer gel dosimeter. The dosimeter consists of 5% gelatin, 5% monomers, 3% cross linkers, and 5 mM THPC. After irradiation, a 24 to 96 hour delay was applied, and the gel dosimeters were read by a cone beam optical computed tomography (optical CT) scanner. The dose distributions measured by the NIPAM gel dosimeter were compared to the outputs of the treatment planning system using gamma evaluation. For the criteria of 3%/3 mm, the pass rates for 5 × 5, 3 × 3, 2 × 2, 1 × 1, and 0.5 × 0.5 cm2 were as high as 91.7%, 90.7%, 88.2%, 74.8%, and 37.3%, respectively. For the criteria of 5%/5 mm, the gamma pass rates of the 5 × 5, 3 × 3, and 2 × 2 cm2 fields were over 99%. The NIPAM gel dosimeter provides high chemical stability. With cone-beam optical CT readouts, the NIPAM polymer gel dosimeter has potential for clinical dose verification of small-field irradiation.

  5. An accurate model for the computation of the dose of protons in water.

    PubMed

    Embriaco, A; Bellinzona, V E; Fontana, A; Rotondi, A

    2017-06-01

    The accurate and fast calculation of the dose in proton radiation therapy is an essential ingredient for successful treatments. We propose a novel approach with a minimal number of parameters. The approach is based on the exact calculation of the electromagnetic part of the interaction, namely the Molière theory of the multiple Coulomb scattering for the transversal 1D projection and the Bethe-Bloch formula for the longitudinal stopping power profile, including a gaussian energy straggling. To this e.m. contribution the nuclear proton-nucleus interaction is added with a simple two-parameter model. Then, the non gaussian lateral profile is used to calculate the radial dose distribution with a method that assumes the cylindrical symmetry of the distribution. The results, obtained with a fast C++ based computational code called MONET (MOdel of ioN dosE for Therapy), are in very good agreement with the FLUKA MC code, within a few percent in the worst case. This study provides a new tool for fast dose calculation or verification, possibly for clinical use. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  6. Performance evaluation of an improved optical computed tomography polymer gel dosimeter system for 3D dose verification of static and dynamic phantom deliveries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopatiuk-Tirpak, O.; Langen, K. M.; Meeks, S. L.

    2008-09-15

    The performance of a next-generation optical computed tomography scanner (OCTOPUS-5X) is characterized in the context of three-dimensional gel dosimetry. Large-volume (2.2 L), muscle-equivalent, radiation-sensitive polymer gel dosimeters (BANG-3) were used. Improvements in scanner design leading to shorter acquisition times are discussed. The spatial resolution, detectable absorbance range, and reproducibility are assessed. An efficient method for calibrating gel dosimeters using the depth-dose relationship is applied, with photon- and electron-based deliveries yielding equivalent results. A procedure involving a preirradiation scan was used to reduce the edge artifacts in reconstructed images, thereby increasing the useful cross-sectional area of the dosimeter by nearly amore » factor of 2. Dose distributions derived from optical density measurements using the calibration coefficient show good agreement with the treatment planning system simulations and radiographic film measurements. The feasibility of use for motion (four-dimensional) dosimetry is demonstrated on an example comparing dose distributions from static and dynamic delivery of a single-field photon plan. The capability to visualize three-dimensional dose distributions is also illustrated.« less

  7. Design and Realization of Controllable Ultrasonic Fault Detector Automatic Verification System

    NASA Astrophysics Data System (ADS)

    Sun, Jing-Feng; Liu, Hui-Ying; Guo, Hui-Juan; Shu, Rong; Wei, Kai-Li

    The ultrasonic flaw detection equipment with remote control interface is researched and the automatic verification system is developed. According to use extensible markup language, the building of agreement instruction set and data analysis method database in the system software realizes the controllable designing and solves the diversification of unreleased device interfaces and agreements. By using the signal generator and a fixed attenuator cascading together, a dynamic error compensation method is proposed, completes what the fixed attenuator does in traditional verification and improves the accuracy of verification results. The automatic verification system operating results confirms that the feasibility of the system hardware and software architecture design and the correctness of the analysis method, while changes the status of traditional verification process cumbersome operations, and reduces labor intensity test personnel.

  8. Dosimetric verification of lung cancer treatment using the CBCTs estimated from limited-angle on-board projections.

    PubMed

    Zhang, You; Yin, Fang-Fang; Ren, Lei

    2015-08-01

    Lung cancer treatment is susceptible to treatment errors caused by interfractional anatomical and respirational variations of the patient. On-board treatment dose verification is especially critical for the lung stereotactic body radiation therapy due to its high fractional dose. This study investigates the feasibility of using cone-beam (CB)CT images estimated by a motion modeling and free-form deformation (MM-FD) technique for on-board dose verification. Both digital and physical phantom studies were performed. Various interfractional variations featuring patient motion pattern change, tumor size change, and tumor average position change were simulated from planning CT to on-board images. The doses calculated on the planning CT (planned doses), the on-board CBCT estimated by MM-FD (MM-FD doses), and the on-board CBCT reconstructed by the conventional Feldkamp-Davis-Kress (FDK) algorithm (FDK doses) were compared to the on-board dose calculated on the "gold-standard" on-board images (gold-standard doses). The absolute deviations of minimum dose (ΔDmin), maximum dose (ΔDmax), and mean dose (ΔDmean), and the absolute deviations of prescription dose coverage (ΔV100%) were evaluated for the planning target volume (PTV). In addition, 4D on-board treatment dose accumulations were performed using 4D-CBCT images estimated by MM-FD in the physical phantom study. The accumulated doses were compared to those measured using optically stimulated luminescence (OSL) detectors and radiochromic films. Compared with the planned doses and the FDK doses, the MM-FD doses matched much better with the gold-standard doses. For the digital phantom study, the average (± standard deviation) ΔDmin, ΔDmax, ΔDmean, and ΔV100% (values normalized by the prescription dose or the total PTV) between the planned and the gold-standard PTV doses were 32.9% (±28.6%), 3.0% (±2.9%), 3.8% (±4.0%), and 15.4% (±12.4%), respectively. The corresponding values of FDK PTV doses were 1.6% (±1.9%), 1.2% (±0.6%), 2.2% (±0.8%), and 17.4% (±15.3%), respectively. In contrast, the corresponding values of MM-FD PTV doses were 0.3% (±0.2%), 0.9% (±0.6%), 0.6% (±0.4%), and 1.0% (±0.8%), respectively. Similarly, for the physical phantom study, the average ΔDmin, ΔDmax, ΔDmean, and ΔV100% of planned PTV doses were 38.1% (±30.8%), 3.5% (±5.1%), 3.0% (±2.6%), and 8.8% (±8.0%), respectively. The corresponding values of FDK PTV doses were 5.8% (±4.5%), 1.6% (±1.6%), 2.0% (±0.9%), and 9.3% (±10.5%), respectively. In contrast, the corresponding values of MM-FD PTV doses were 0.4% (±0.8%), 0.8% (±1.0%), 0.5% (±0.4%), and 0.8% (±0.8%), respectively. For the 4D dose accumulation study, the average (± standard deviation) absolute dose deviation (normalized by local doses) between the accumulated doses and the OSL measured doses was 3.3% (±2.7%). The average gamma index (3%/3 mm) between the accumulated doses and the radiochromic film measured doses was 94.5% (±2.5%). MM-FD estimated 4D-CBCT enables accurate on-board dose calculation and accumulation for lung radiation therapy. It can potentially be valuable for treatment quality assessment and adaptive radiation therapy.

  9. Development of Novel Treatment Plan Verification Techniques for Prostate Intensity Modulation Arc Therapy

    DTIC Science & Technology

    2010-03-01

    is to develop a novel clinical useful delivered-dose verification protocol for modern prostate VMAT using Electronic Portal Imaging Device (EPID...technique. A number of important milestones have been accomplished, which include (i) calibrated CBCT HU vs. electron density curve; (ii...prostate  VMAT  using  Electronic   Portal  Imaging  Device  (EPID)  and  onboard Cone beam Computed Tomography (CBCT).  The specific aims of this project

  10. Common arc method for diffraction pattern orientation.

    PubMed

    Bortel, Gábor; Tegze, Miklós

    2011-11-01

    Very short pulses of X-ray free-electron lasers opened the way to obtaining diffraction signal from single particles beyond the radiation dose limit. For three-dimensional structure reconstruction many patterns are recorded in the object's unknown orientation. A method is described for the orientation of continuous diffraction patterns of non-periodic objects, utilizing intensity correlations in the curved intersections of the corresponding Ewald spheres, and hence named the common arc orientation method. The present implementation of the algorithm optionally takes into account Friedel's law, handles missing data and is capable of determining the point group of symmetric objects. Its performance is demonstrated on simulated diffraction data sets and verification of the results indicates a high orientation accuracy even at low signal levels. The common arc method fills a gap in the wide palette of orientation methods. © 2011 International Union of Crystallography

  11. Simulation verification techniques study

    NASA Technical Reports Server (NTRS)

    Schoonmaker, P. B.; Wenglinski, T. H.

    1975-01-01

    Results are summarized of the simulation verification techniques study which consisted of two tasks: to develop techniques for simulator hardware checkout and to develop techniques for simulation performance verification (validation). The hardware verification task involved definition of simulation hardware (hardware units and integrated simulator configurations), survey of current hardware self-test techniques, and definition of hardware and software techniques for checkout of simulator subsystems. The performance verification task included definition of simulation performance parameters (and critical performance parameters), definition of methods for establishing standards of performance (sources of reference data or validation), and definition of methods for validating performance. Both major tasks included definition of verification software and assessment of verification data base impact. An annotated bibliography of all documents generated during this study is provided.

  12. Comparison between In-house developed and Diamond commercial software for patient specific independent monitor unit calculation and verification with heterogeneity corrections.

    PubMed

    Kuppusamy, Vijayalakshmi; Nagarajan, Vivekanandan; Jeevanandam, Prakash; Murugan, Lavanya

    2016-02-01

    The study was aimed to compare two different monitor unit (MU) or dose verification software in volumetric modulated arc therapy (VMAT) using modified Clarkson's integration technique for 6 MV photons beams. In-house Excel Spreadsheet based monitor unit verification calculation (MUVC) program and PTW's DIAMOND secondary check software (SCS), version-6 were used as a secondary check to verify the monitor unit (MU) or dose calculated by treatment planning system (TPS). In this study 180 patients were grouped into 61 head and neck, 39 thorax and 80 pelvic sites. Verification plans are created using PTW OCTAVIUS-4D phantom and also measured using 729 detector chamber and array with isocentre as the suitable point of measurement for each field. In the analysis of 154 clinically approved VMAT plans with isocentre at a region above -350 HU, using heterogeneity corrections, In-house Spreadsheet based MUVC program and Diamond SCS showed good agreement TPS. The overall percentage average deviations for all sites were (-0.93% + 1.59%) and (1.37% + 2.72%) for In-house Excel Spreadsheet based MUVC program and Diamond SCS respectively. For 26 clinically approved VMAT plans with isocentre at a region below -350 HU showed higher variations for both In-house Spreadsheet based MUVC program and Diamond SCS. It can be concluded that for patient specific quality assurance (QA), the In-house Excel Spreadsheet based MUVC program and Diamond SCS can be used as a simple and fast accompanying to measurement based verification for plans with isocentre at a region above -350 HU. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  13. Design, development of water tank-type lung phantom and dosimetric verification in institutions participating in a phase I study of stereotactic body radiation therapy in patients with T2N0M0 non-small cell lung cancer: Japan Clinical Oncology Group trial (JCOG0702).

    PubMed

    Nishio, Teiji; Shirato, Hiroki; Ishikawa, Masayori; Miyabe, Yuki; Kito, Satoshi; Narita, Yuichirou; Onimaru, Rikiya; Ishikura, Satoshi; Ito, Yoshinori; Hiraoka, Masahiro

    2014-05-01

    A domestic multicenter phase I study of stereotactic body radiotherapy (SBRT) for T2N0M0 non-small cell lung cancer in inoperable patients or elderly patients who refused surgery was initiated as the Japan Clinical Oncology Group trial (JCOG0702) in Japan. Prior to the clinical study, the accuracy of dose calculation in radiation treatment-planning systems was surveyed in participating institutions, and differences in the irradiating dose between the institutions were investigated. We developed a water tank-type lung phantom appropriate for verification of the exposure dose in lung SBRT. Using this water tank-type lung phantom, the dose calculated in the radiation treatment-planning system and the measured dose using a free air ionization chamber and dosimetric film were compared in a visiting survey of the seven institutions participating in the clinical study. In all participating institutions, differences between the calculated and the measured dose in the irradiation plan were as follows: the accuracy of the absolute dose in the center of the simulated tumor measured using a free air ionization chamber was within 2%, the mean gamma value was ≤ 0.47 on gamma analysis following the local dose criteria, and the pass rate was >87% for 3%/3 mm from measurement of dose distribution with dosimetric film. These findings confirmed the accuracy of delivery doses in the institutions participating in the clinical study, so that a study with integration of the institutions could be initiated.

  14. SU-F-T-308: Mobius FX Evaluation and Comparison Against a Commercial 4D Detector Array for VMAT Plan QA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vazquez Quino, L; Huerta Hernandez, C; Morrow, A

    2016-06-15

    Purpose: To evaluate the use of MobiusFX as a pre-treatment verification IMRT QA tool and compare it with a commercial 4D detector array for VMAT plan QA. Methods: 15 VMAT plan QA of different treatment sites were delivered and measured by traditional means with the 4D detector array ArcCheck (Sun Nuclear corporation) and at the same time measurement in linac treatment logs (Varian Dynalogs files) were analyzed from the same delivery with MobiusFX software (Mobius Medical Systems). VMAT plan QAs created in Eclipse treatment planning system (Varian) in a TrueBeam linac machine (Varian) were delivered and analyzed with the gammamore » analysis routine from SNPA software (Sun Nuclear corporation). Results: Comparable results in terms of the gamma analysis with 99.06% average gamma passing with 3%,3mm passing rate is observed in the comparison among MobiusFX, ArcCheck measurements, and the Treatment Planning System dose calculated. When going to a stricter criterion (1%,1mm) larger discrepancies are observed in different regions of the measurements with an average gamma of 66.24% between MobiusFX and ArcCheck. Conclusion: This work indicates the potential for using MobiusFX as a routine pre-treatment patient specific IMRT method for quality assurance purposes and its advantages as a phantom-less method which reduce the time for IMRT QA measurement. MobiusFX is capable of produce similar results of those by traditional methods used for patient specific pre-treatment verification VMAT QA. Even the gamma results comparing to the TPS are similar the analysis of both methods show that the errors being identified by each method are found in different regions. Traditional methods like ArcCheck are sensitive to setup errors and dose difference errors coming from the linac output. On the other hand linac log files analysis record different errors in the VMAT QA associated with the MLCs and gantry motion that by traditional methods cannot be detected.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lou, K; Rice University, Houston, TX; Sun, X

    Purpose: To study the feasibility of clinical on-line proton beam range verification with PET imaging Methods: We simulated a 179.2-MeV proton beam with 5-mm diameter irradiating a PMMA phantom of human brain size, which was then imaged by a brain PET with 300*300*100-mm{sup 3} FOV and different system sensitivities and spatial resolutions. We calculated the mean and standard deviation of positron activity range (AR) from reconstructed PET images, with respect to different data acquisition times (from 5 sec to 300 sec with 5-sec step). We also developed a technique, “Smoothed Maximum Value (SMV)”, to improve AR measurement under a givenmore » dose. Furthermore, we simulated a human brain irradiated by a 110-MeV proton beam of 50-mm diameter with 0.3-Gy dose at Bragg peak and imaged by the above PET system with 40% system sensitivity at the center of FOV and 1.7-mm spatial resolution. Results: MC Simulations on the PMMA phantom showed that, regardless of PET system sensitivities and spatial resolutions, the accuracy and precision of AR were proportional to the reciprocal of the square root of image count if image smoothing was not applied. With image smoothing or SMV method, the accuracy and precision could be substantially improved. For a cylindrical PMMA phantom (200 mm diameter and 290 mm long), the accuracy and precision of AR measurement could reach 1.0 and 1.7 mm, with 100-sec data acquired by the brain PET. The study with a human brain showed it was feasible to achieve sub-millimeter accuracy and precision of AR measurement with acquisition time within 60 sec. Conclusion: This study established the relationship between count statistics and the accuracy and precision of activity-range verification. It showed the feasibility of clinical on-line BR verification with high-performance PET systems and improved AR measurement techniques. Cancer Prevention and Research Institute of Texas grant RP120326, NIH grant R21CA187717, The Cancer Center Support (Core) Grant CA016672 to MD Anderson Cancer Center.« less

  16. Theoretical detection threshold of the proton-acoustic range verification technique.

    PubMed

    Ahmad, Moiz; Xiang, Liangzhong; Yousefi, Siavash; Xing, Lei

    2015-10-01

    Range verification in proton therapy using the proton-acoustic signal induced in the Bragg peak was investigated for typical clinical scenarios. The signal generation and detection processes were simulated in order to determine the signal-to-noise limits. An analytical model was used to calculate the dose distribution and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. In this method, the acoustic waves propagating from the Bragg peak were generated by the general 3D pressure wave equation implemented using a finite element method. Various beam pulse widths (0.1-10 μs) were simulated by convolving the acoustic waves with Gaussian kernels. A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth bandpass filter with consideration of random noise based on a model of thermal noise in the transducer. The signal-to-noise ratio on a per-proton basis was calculated, determining the minimum number of protons required to generate a detectable pulse. The maximum spatial resolution of the proton-acoustic imaging modality was also estimated from the signal spectrum. The calculated noise in the transducer was 12-28 mPa, depending on the transducer central frequency (70-380 kHz). The minimum number of protons detectable by the technique was on the order of 3-30 × 10(6) per pulse, with 30-800 mGy dose per pulse at the Bragg peak. Wider pulses produced signal with lower acoustic frequencies, with 10 μs pulses producing signals with frequency less than 100 kHz. The proton-acoustic process was simulated using a realistic model and the minimal detection limit was established for proton-acoustic range validation. These limits correspond to a best case scenario with a single large detector with no losses and detector thermal noise as the sensitivity limiting factor. Our study indicated practical proton-acoustic range verification may be feasible with approximately 5 × 10(6) protons/pulse and beam current.

  17. Implementation of IMRT and VMAT using Delta4 phantom and portal dosimetry as dosimetry verification tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daci, Lulzime, E-mail: lulzime.daci@nodlandssykehuset.no; Malkaj, Partizan, E-mail: malkaj-p@hotmail.com

    2016-03-25

    In this study we analyzed and compared the dose distribution of different IMRT and VMAT plans with the intent to provide pre-treatment quality assurance using two different tools. Materials/Methods: We have used the electronic portal imaging device EPID after calibration to dose and correction for the background offset signal and also the Delta4 phantom after en evaluation of angular sensitivity. The Delta4 phantom has a two-dimensional array with ionization chambers. We analyzed three plans for each anatomical site calculated by Eclipse treatment planning system. The measurements were analyzed using γ-evaluation method with passing criteria 3% absolute dose and 3 mm distancemore » to agreement (DTA). For all the plans the range of score has been from 97% to 99% for gantry fixed at 0° while for rotational planes there was a slightly decreased pass rates and above 95%. Point measurement with a ionization chamber were done in additional to see the accuracy of portal dosimetry and to evaluate the Delta4 device to various dose rates. Conclusions: Both Delt4 and Portal dosimetry shows good results between the measured and calculated doses. While Delta4 is more accurate in measurements EPID is more time efficient. We have decided to use both methods in the first steps of IMRT and VMAT implementation and later on to decide which of the tools to use depending on the complexity of plans, how much accurate we want to be and the time we have on the machine.« less

  18. Deformable structure registration of bladder through surface mapping.

    PubMed

    Xiong, Li; Viswanathan, Akila; Stewart, Alexandra J; Haker, Steven; Tempany, Clare M; Chin, Lee M; Cormack, Robert A

    2006-06-01

    Cumulative dose distributions in fractionated radiation therapy depict the dose to normal tissues and therefore may permit an estimation of the risk of normal tissue complications. However, calculation of these distributions is highly challenging because of interfractional changes in the geometry of patient anatomy. This work presents an algorithm for deformable structure registration of the bladder and the verification of the accuracy of the algorithm using phantom and patient data. In this algorithm, the registration process involves conformal mapping of genus zero surfaces using finite element analysis, and guided by three control landmarks. The registration produces a correspondence between fractions of the triangular meshes used to describe the bladder surface. For validation of the algorithm, two types of balloons were inflated gradually to three times their original size, and several computerized tomography (CT) scans were taken during the process. The registration algorithm yielded a local accuracy of 4 mm along the balloon surface. The algorithm was then applied to CT data of patients receiving fractionated high-dose-rate brachytherapy to the vaginal cuff, with the vaginal cylinder in situ. The patients' bladder filling status was intentionally different for each fraction. The three required control landmark points were identified for the bladder based on anatomy. Out of an Institutional Review Board (IRB) approved study of 20 patients, 3 had radiographically identifiable points near the bladder surface that were used for verification of the accuracy of the registration. The verification point as seen in each fraction was compared with its predicted location based on affine as well as deformable registration. Despite the variation in bladder shape and volume, the deformable registration was accurate to 5 mm, consistently outperforming the affine registration. We conclude that the structure registration algorithm presented works with reasonable accuracy and provides a means of calculating cumulative dose distributions.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Xiong; Viswanathan, Akila; Stewart, Alexandra J.

    Cumulative dose distributions in fractionated radiation therapy depict the dose to normal tissues and therefore may permit an estimation of the risk of normal tissue complications. However, calculation of these distributions is highly challenging because of interfractional changes in the geometry of patient anatomy. This work presents an algorithm for deformable structure registration of the bladder and the verification of the accuracy of the algorithm using phantom and patient data. In this algorithm, the registration process involves conformal mapping of genus zero surfaces using finite element analysis, and guided by three control landmarks. The registration produces a correspondence between fractionsmore » of the triangular meshes used to describe the bladder surface. For validation of the algorithm, two types of balloons were inflated gradually to three times their original size, and several computerized tomography (CT) scans were taken during the process. The registration algorithm yielded a local accuracy of 4 mm along the balloon surface. The algorithm was then applied to CT data of patients receiving fractionated high-dose-rate brachytherapy to the vaginal cuff, with the vaginal cylinder in situ. The patients' bladder filling status was intentionally different for each fraction. The three required control landmark points were identified for the bladder based on anatomy. Out of an Institutional Review Board (IRB) approved study of 20 patients, 3 had radiographically identifiable points near the bladder surface that were used for verification of the accuracy of the registration. The verification point as seen in each fraction was compared with its predicted location based on affine as well as deformable registration. Despite the variation in bladder shape and volume, the deformable registration was accurate to 5 mm, consistently outperforming the affine registration. We conclude that the structure registration algorithm presented works with reasonable accuracy and provides a means of calculating cumulative dose distributions.« less

  20. Verification measurements and clinical evaluation of the iPlan RT Monte Carlo dose algorithm for 6 MV photon energy

    NASA Astrophysics Data System (ADS)

    Petoukhova, A. L.; van Wingerden, K.; Wiggenraad, R. G. J.; van de Vaart, P. J. M.; van Egmond, J.; Franken, E. M.; van Santvoort, J. P. C.

    2010-08-01

    This study presents data for verification of the iPlan RT Monte Carlo (MC) dose algorithm (BrainLAB, Feldkirchen, Germany). MC calculations were compared with pencil beam (PB) calculations and verification measurements in phantoms with lung-equivalent material, air cavities or bone-equivalent material to mimic head and neck and thorax and in an Alderson anthropomorphic phantom. Dosimetric accuracy of MC for the micro-multileaf collimator (MLC) simulation was tested in a homogeneous phantom. All measurements were performed using an ionization chamber and Kodak EDR2 films with Novalis 6 MV photon beams. Dose distributions measured with film and calculated with MC in the homogeneous phantom are in excellent agreement for oval, C and squiggle-shaped fields and for a clinical IMRT plan. For a field with completely closed MLC, MC is much closer to the experimental result than the PB calculations. For fields larger than the dimensions of the inhomogeneities the MC calculations show excellent agreement (within 3%/1 mm) with the experimental data. MC calculations in the anthropomorphic phantom show good agreement with measurements for conformal beam plans and reasonable agreement for dynamic conformal arc and IMRT plans. For 6 head and neck and 15 lung patients a comparison of the MC plan with the PB plan was performed. Our results demonstrate that MC is able to accurately predict the dose in the presence of inhomogeneities typical for head and neck and thorax regions with reasonable calculation times (5-20 min). Lateral electron transport was well reproduced in MC calculations. We are planning to implement MC calculations for head and neck and lung cancer patients.

  1. Online Kidney Position Verification Using Non-Contrast Radiographs on a Linear Accelerator with on Board KV X-Ray Imaging Capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willis, David J.; Kron, Tomas; Hubbard, Patricia

    2009-01-01

    The kidneys are dose-limiting organs in abdominal radiotherapy. Kilovoltage (kV) radiographs can be acquired using on-board imager (OBI)-equipped linear accelerators with better soft tissue contrast and lower radiation doses than conventional portal imaging. A feasibility study was conducted to test the suitability of anterior-posterior (AP) non-contrast kV radiographs acquired at treatment time for online kidney position verification. Anthropomorphic phantoms were used to evaluate image quality and radiation dose. Institutional Review Board approval was given for a pilot study that enrolled 5 adults and 5 children. Customized digitally reconstructed radiographs (DRRs) were generated to provide a priori information on kidney shapemore » and position. Radiotherapy treatment staff performed online evaluation of kidney visibility on OBI radiographs. Kidney dose measured in a pediatric anthropomorphic phantom was 0.1 cGy for kV imaging and 1.7 cGy for MV imaging. Kidneys were rated as well visualized in 60% of patients (90% confidence interval, 34-81%). The likelihood of visualization appears to be influenced by the relative AP separation of the abdomen and kidneys, the axial profile of the kidneys, and their relative contrast with surrounding structures. Online verification of kidney position using AP non-contrast kV radiographs on an OBI-equipped linear accelerator appears feasible for patients with suitable abdominal anatomy. Kidney position information provided is limited to 2-dimensional 'snapshots,' but this is adequate in some clinical situations and potentially advantageous in respiratory-correlated treatments. Successful clinical implementation requires customized partial DRRs, appropriate imaging parameters, and credentialing of treatment staff.« less

  2. Poster - Thurs Eve-09: Evaluation of a commercial 2D ion-chamber array for intensity modulated radiation therapy dose measurements.

    PubMed

    Mei, X; Bracken, G; Kerr, A

    2008-07-01

    Experimental verification of calculated dose from a treatment planning system is often essential for quality assurance (QA) of intensity modulated radiation therapy (IMRT). Film dosimetry and single ion chamber measurements are commonly used for IMRT QA. Film dosimetry has very good spatial resolution, but is labor intensive and absolute dose is not reliable. Ion chamber measurements are still required for absolute dose after measurements using films. Dosimeters based on 2D detector arrays that can measure 2D dose in real-time are gaining wider use. These devices provide a much easier and reliable tool for IMRT QA. We report the evaluation of a commercial 2D ion chamber array, including its basic performance characteristics, such as linearity, reproducibility and uniformity of relative ion chamber sensitivities, and comparisons between measured 2D dose and calculated dose with a commercial treatment planning system. Our analysis shows this matrix has excellent linearity and reproducibility, but relative sensitivities are tilted such that the +Y region is over sensitive, while the -Y region is under sensitive. Despite this behavior, our results show good agreement between measured 2D dose profiles and Eclipse planned data for IMRT test plans and a few verification plans for clinical breast field-in-field plans. The gamma values (3% or 3 mm distance-to-agreement) are all less than 1 except for one or two pixels at the field edge This device provides a fast and reliable stand-alone dosimeter for IMRT QA. © 2008 American Association of Physicists in Medicine.

  3. SU-E-T-24: A Simple Correction-Based Method for Independent Monitor Unit (MU) Verification in Monte Carlo (MC) Lung SBRT Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokhrel, D; Badkul, R; Jiang, H

    2014-06-01

    Purpose: Lung-SBRT uses hypo-fractionated dose in small non-IMRT fields with tissue-heterogeneity corrected plans. An independent MU verification is mandatory for safe and effective delivery of the treatment plan. This report compares planned MU obtained from iPlan-XVM-Calgorithm against spreadsheet-based hand-calculation using most commonly used simple TMR-based method. Methods: Treatment plans of 15 patients who underwent for MC-based lung-SBRT to 50Gy in 5 fractions for PTV V100%=95% were studied. ITV was delineated on MIP images based on 4D-CT scans. PTVs(ITV+5mm margins) ranged from 10.1- 106.5cc(average=48.6cc). MC-SBRT plans were generated using a combination of non-coplanar conformal arcs/beams using iPlan XVM-Calgorithm (BrainLAB iPlan ver.4.1.2)more » for Novalis-TX consisting of micro-MLCs and 6MV-SRS (1000MU/min) beam. These plans were re-computed using heterogeneity-corrected Pencil-Beam (PB-hete) algorithm without changing any beam parameters, such as MLCs/MUs. Dose-ratio: PB-hete/MC gave beam-by-beam inhomogeneity-correction-factors (ICFs):Individual Correction. For independent-2nd-check, MC-MUs were verified using TMR-based hand-calculation and obtained an average ICF:Average Correction, whereas TMR-based hand-calculation systematically underestimated MC-MUs by ∼5%. Also, first 10 MC-plans were verified with an ion-chamber measurement using homogenous phantom. Results: For both beams/arcs, mean PB-hete dose was systematically overestimated by 5.5±2.6% and mean hand-calculated MU systematic underestimated by 5.5±2.5% compared to XVMC. With individual correction, mean hand-calculated MUs matched with XVMC by - 0.3±1.4%/0.4±1.4 for beams/arcs, respectively. After average 5% correction, hand-calculated MUs matched with XVMC by 0.5±2.5%/0.6±2.0% for beams/arcs, respectively. Smaller dependence on tumor volume(TV)/field size(FS) was also observed. Ion-chamber measurement was within ±3.0%. Conclusion: PB-hete overestimates dose to lung tumor relative to XVMC. XVMC-algorithm is much more-complex and accurate with tissues-heterogeneities. Measurement at machine is time consuming and need extra resources; also direct measurement of dose for heterogeneous treatment plans is not clinically practiced, yet. This simple correction-based method was very helpful for independent-2nd-check of MC-lung-SBRT plans and routinely used in our clinic. A look-up table can be generated to include TV/FS dependence in ICFs.« less

  4. Characterizing proton-activated materials to develop PET-mediated proton range verification markers

    NASA Astrophysics Data System (ADS)

    Cho, Jongmin; Ibbott, Geoffrey S.; Kerr, Matthew D.; Amos, Richard A.; Stingo, Francesco C.; Marom, Edith M.; Truong, Mylene T.; Palacio, Diana M.; Betancourt, Sonia L.; Erasmus, Jeremy J.; DeGroot, Patricia M.; Carter, Brett W.; Gladish, Gregory W.; Sabloff, Bradley S.; Benveniste, Marcelo F.; Godoy, Myrna C.; Patil, Shekhar; Sorensen, James; Mawlawi, Osama R.

    2016-06-01

    Conventional proton beam range verification using positron emission tomography (PET) relies on tissue activation alone and therefore requires particle therapy PET whose installation can represent a large financial burden for many centers. Previously, we showed the feasibility of developing patient implantable markers using high proton cross-section materials (18O, Cu, and 68Zn) for in vivo proton range verification using conventional PET scanners. In this technical note, we characterize those materials to test their usability in more clinically relevant conditions. Two phantoms made of low-density balsa wood (~0.1 g cm-3) and beef (~1.0 g cm-3) were embedded with Cu or 68Zn foils of several volumes (10-50 mm3). The metal foils were positioned at several depths in the dose fall-off region, which had been determined from our previous study. The phantoms were then irradiated with different proton doses (1-5 Gy). After irradiation, the phantoms with the embedded foils were moved to a diagnostic PET scanner and imaged. The acquired data were reconstructed with 20-40 min of scan time using various delay times (30-150 min) to determine the maximum contrast-to-noise ratio. The resultant PET/computed tomography (CT) fusion images of the activated foils were then examined and the foils’ PET signal strength/visibility was scored on a 5 point scale by 13 radiologists experienced in nuclear medicine. For both phantoms, the visibility of activated foils increased in proportion to the foil volume, dose, and PET scan time. A linear model was constructed with visibility scores as the response variable and all other factors (marker material, phantom material, dose, and PET scan time) as covariates. Using the linear model, volumes of foils that provided adequate visibility (score 3) were determined for each dose and PET scan time. The foil volumes that were determined will be used as a guideline in developing practical implantable markers.

  5. A robust method using propensity score stratification for correcting verification bias for binary tests

    PubMed Central

    He, Hua; McDermott, Michael P.

    2012-01-01

    Sensitivity and specificity are common measures of the accuracy of a diagnostic test. The usual estimators of these quantities are unbiased if data on the diagnostic test result and the true disease status are obtained from all subjects in an appropriately selected sample. In some studies, verification of the true disease status is performed only for a subset of subjects, possibly depending on the result of the diagnostic test and other characteristics of the subjects. Estimators of sensitivity and specificity based on this subset of subjects are typically biased; this is known as verification bias. Methods have been proposed to correct verification bias under the assumption that the missing data on disease status are missing at random (MAR), that is, the probability of missingness depends on the true (missing) disease status only through the test result and observed covariate information. When some of the covariates are continuous, or the number of covariates is relatively large, the existing methods require parametric models for the probability of disease or the probability of verification (given the test result and covariates), and hence are subject to model misspecification. We propose a new method for correcting verification bias based on the propensity score, defined as the predicted probability of verification given the test result and observed covariates. This is estimated separately for those with positive and negative test results. The new method classifies the verified sample into several subsamples that have homogeneous propensity scores and allows correction for verification bias. Simulation studies demonstrate that the new estimators are more robust to model misspecification than existing methods, but still perform well when the models for the probability of disease and probability of verification are correctly specified. PMID:21856650

  6. Independent calculation of monitor units for VMAT and SPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xin; Bush, Karl; Ding, Aiping

    Purpose: Dose and monitor units (MUs) represent two important facets of a radiation therapy treatment. In current practice, verification of a treatment plan is commonly done in dose domain, in which a phantom measurement or forward dose calculation is performed to examine the dosimetric accuracy and the MU settings of a given treatment plan. While it is desirable to verify directly the MU settings, a computational framework for obtaining the MU values from a known dose distribution has yet to be developed. This work presents a strategy to calculate independently the MUs from a given dose distribution of volumetric modulatedmore » arc therapy (VMAT) and station parameter optimized radiation therapy (SPORT). Methods: The dose at a point can be expressed as a sum of contributions from all the station points (or control points). This relationship forms the basis of the proposed MU verification technique. To proceed, the authors first obtain the matrix elements which characterize the dosimetric contribution of the involved station points by computing the doses at a series of voxels, typically on the prescription surface of the VMAT/SPORT treatment plan, with unit MU setting for all the station points. An in-house Monte Carlo (MC) software is used for the dose matrix calculation. The MUs of the station points are then derived by minimizing the least-squares difference between doses computed by the treatment planning system (TPS) and that of the MC for the selected set of voxels on the prescription surface. The technique is applied to 16 clinical cases with a variety of energies, disease sites, and TPS dose calculation algorithms. Results: For all plans except the lung cases with large tissue density inhomogeneity, the independently computed MUs agree with that of TPS to within 2.7% for all the station points. In the dose domain, no significant difference between the MC and Eclipse Anisotropic Analytical Algorithm (AAA) dose distribution is found in terms of isodose contours, dose profiles, gamma index, and dose volume histogram (DVH) for these cases. For the lung cases, the MC-calculated MUs differ significantly from that of the treatment plan computed using AAA. However, the discrepancies are reduced to within 3% when the TPS dose calculation algorithm is switched to a transport equation-based technique (Acuros™). Comparison in the dose domain between the MC and Eclipse AAA/Acuros calculation yields conclusion consistent with the MU calculation. Conclusions: A computational framework relating the MU and dose domains has been established. The framework does not only enable them to verify the MU values of the involved station points of a VMAT plan directly in the MU domain but also provide a much needed mechanism to adaptively modify the MU values of the station points in accordance to a specific change in the dose domain.« less

  7. The grout/glass performance assessment code system (GPACS) with verification and benchmarking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piepho, M.G.; Sutherland, W.H.; Rittmann, P.D.

    1994-12-01

    GPACS is a computer code system for calculating water flow (unsaturated or saturated), solute transport, and human doses due to the slow release of contaminants from a waste form (in particular grout or glass) through an engineered system and through a vadose zone to an aquifer, well and river. This dual-purpose document is intended to serve as a user`s guide and verification/benchmark document for the Grout/Glass Performance Assessment Code system (GPACS). GPACS can be used for low-level-waste (LLW) Glass Performance Assessment and many other applications including other low-level-waste performance assessments and risk assessments. Based on all the cses presented, GPACSmore » is adequate (verified) for calculating water flow and contaminant transport in unsaturated-zone sediments and for calculating human doses via the groundwater pathway.« less

  8. Dosimetry for audit and clinical trials: challenges and requirements

    NASA Astrophysics Data System (ADS)

    Kron, T.; Haworth, A.; Williams, I.

    2013-06-01

    Many important dosimetry audit networks for radiotherapy have their roots in clinical trial quality assurance (QA). In both scenarios it is essential to test two issues: does the treatment plan conform with the clinical requirements and is the plan a reasonable representation of what is actually delivered to a patient throughout their course of treatment. Part of a sound quality program would be an external audit of these issues with verification of the equivalence of plan and treatment typically referred to as a dosimetry audit. The increasing complexity of radiotherapy planning and delivery makes audits challenging. While verification of absolute dose delivered at a reference point was the standard of external dosimetry audits two decades ago this is often deemed inadequate for verification of treatment approaches such as Intensity Modulated Radiation Therapy (IMRT) and Volumetric Modulated Arc Therapy (VMAT). As such, most dosimetry audit networks have successfully introduced more complex tests of dose delivery using anthropomorphic phantoms that can be imaged, planned and treated as a patient would. The new challenge is to adapt this approach to ever more diversified radiotherapy procedures with image guided/adaptive radiotherapy, motion management and brachytherapy being the focus of current research.

  9. Calibration of EBT2 film by the PDD method with scanner non-uniformity correction.

    PubMed

    Chang, Liyun; Chui, Chen-Shou; Ding, Hueisch-Jy; Hwang, Ing-Ming; Ho, Sheng-Yow

    2012-09-21

    The EBT2 film together with a flatbed scanner is a convenient dosimetry QA tool for verification of clinical radiotherapy treatments. However, it suffers from a relatively high degree of uncertainty and a tedious film calibration process for every new lot of films, including cutting the films into several small pieces, exposing with different doses, restoring them back and selecting the proper region of interest (ROI) for each piece for curve fitting. In this work, we present a percentage depth dose (PDD) method that can accurately calibrate the EBT2 film together with the scanner non-uniformity correction and provide an easy way to perform film dosimetry. All films were scanned before and after the irradiation in one of the two homemade 2 mm thick acrylic frames (one portrait and the other landscape), which was located at a fixed position on the scan bed of an Epson 10 000XL scanner. After the pre-irradiated scan, the film was placed parallel to the beam central axis and sandwiched between six polystyrene plates (5 cm thick each), followed by irradiation of a 20 × 20 cm² 6 MV photon beam. Two different beams on times were used on two different films to deliver a dose to the film ranging from 32 to 320 cGy. After the post-irradiated scan, the net optical densities for a total of 235 points on the beam central axis on the films were auto-extracted and compared with the corresponding depth doses that were calculated through the measurement of a 0.6 cc farmer chamber and the related PDD table to perform the curve fitting. The portrait film location was selected for routine calibration, since the central beam axis on the film is parallel to the scanning direction, where non-uniformity correction is not needed (Ferreira et al 2009 Phys. Med. Biol. 54 1073-85). To perform the scanner non-uniformity calibration, the cross-beam profiles of the film were analysed by referencing the measured profiles from a Profiler™. Finally, to verify our method, the films were exposed to 60° physical wedge fields and the compositive fields, and their relative dose profiles were compared with those from the water phantom measurement. The fitting uncertainty was less than 0.5% due to the many calibration points, and the overall calibration uncertainty was within 3% for doses above 50 cGy, when the average of four films were used for the calibration. According to our study, the non-uniformity calibration factor was found to be independent of the given dose for the EBT2 film and the relative dose differences between the profiles measured by the film and the Profiler were within 1.5% after applying the non-uniformity correction. For the verification tests, the relative dose differences between the measurements by films and in the water phantom, when the average of three films were used, were generally within 3% for the 60° wedge fields and compositive fields, respectively. In conclusion, our method is convenient, time-saving and cost-effective, since no film cutting is needed and only two films with two exposures are needed.

  10. An investigation of a PRESAGE® in-vivo dosimeter for brachytherapy

    PubMed Central

    Vidovic, A K; Juang, T; Meltsner, S; Adamovics, J; Chino, J; Steffey, B; Craciunescu, O; Oldham, M

    2014-01-01

    Determining accurate in-vivo dosimetry in brachytherapy treatment with high dose gradients is challenging. Here we introduce, investigate, and characterize a novel in-vivo dosimeter and readout technique with the potential to address this problem. A cylindrical (4 mm x 20 mm) tissue equivalent radiochromic dosimeter PRESAGE® In-Vivo (PRESAGE®-IV) is investigated. Two readout methods of the radiation induced change in optical density (OD) were investigated: (i) volume-averaged readout by spectrophotometer, and (ii) a line profile readout by 2D projection imaging utilizing a high-resolution (50 micron) telecentric optical system. Method (i) is considered the gold standard when applied to PRESAGE® in optical cuvettes. The feasibility of both methods was evaluated by comparison to standard measurements on PRESAGE® in optical cuvettes via spectrophotometer. An end-to-end feasibility study was performed by a side-by-side comparison with TLDs in an 192Ir HDR delivery. 7 and 8 Gy was delivered to PRESAGE®-IV and TLDs attached to the surface of a vaginal cylinder. Known geometry enabled direct comparison of measured dose with commissioned treatment planning system. A high-resolution readout study under a steep dose gradient region showed 98.9% (5%/1 mm) agreement between PRESAGE®-IV and Gafchromic® EBT2 Film. Spectrometer measurements exhibited a linear dose response between 0–15 Gy with sensitivity of 0.0133 ± 0.0007 ΔOD/(Gy·cm) at the 95% confidence interval. Method (ii) yielded a linear response with sensitivity of 0.0132 ± 0.0006 (ΔOD/Gy), within 2% of method (i). Method (i) has poor spatial resolution due to volume averaging. Method (ii) has higher resolution (~1mm) without loss of sensitivity or increased noise. Both readout methods are shown to be feasible. The end-to-end comparison revealed a 2.5% agreement between PRESAGE®-IV and treatment plan in regions of uniform high dose. PRESAGE®-IV shows promise for in-vivo dose verification, although improved sensitivity would be desirable. Advantages include high-resolution, convenience and fast, low-cost readout. PMID:24957850

  11. An investigation of a PRESAGE® in vivo dosimeter for brachytherapy

    NASA Astrophysics Data System (ADS)

    Vidovic, A. K.; Juang, T.; Meltsner, S.; Adamovics, J.; Chino, J.; Steffey, B.; Craciunescu, O.; Oldham, M.

    2014-07-01

    Determining accurate in vivo dosimetry in brachytherapy treatment with high dose gradients is challenging. Here we introduce, investigate, and characterize a novel in vivo dosimeter and readout technique with the potential to address this problem. A cylindrical (4 mm × 20 mm) tissue equivalent radiochromic dosimeter PRESAGE® in vivo (PRESAGE®-IV) is investigated. Two readout methods of the radiation induced change in optical density (OD) were investigated: (i) volume-averaged readout by spectrophotometer, and (ii) a line profile readout by 2D projection imaging utilizing a high-resolution (50 micron) telecentric optical system. Method (i) is considered the gold standard when applied to PRESAGE® in optical cuvettes. The feasibility of both methods was evaluated by comparison to standard measurements on PRESAGE® in optical cuvettes via spectrophotometer. An end-to-end feasibility study was performed by a side-by-side comparison with TLDs in an 192Ir HDR delivery. 7 and 8 Gy was delivered to PRESAGE®-IV and TLDs attached to the surface of a vaginal cylinder. Known geometry enabled direct comparison of measured dose with a commissioned treatment planning system. A high-resolution readout study under a steep dose gradient region showed 98.9% (5%/1 mm) agreement between PRESAGE®-IV and Gafchromic® EBT2 Film. Spectrometer measurements exhibited a linear dose response between 0-15 Gy with sensitivity of 0.0133 ± 0.0007 ΔOD/(Gy ṡ cm) at the 95% confidence interval. Method (ii) yielded a linear response with sensitivity of 0.0132 ± 0.0006 (ΔOD/Gy), within 2% of method (i). Method (i) has poor spatial resolution due to volume averaging. Method (ii) has higher resolution (˜1 mm) without loss of sensitivity or increased noise. Both readout methods are shown to be feasible. The end-to-end comparison revealed a 2.5% agreement between PRESAGE®-IV and treatment plan in regions of uniform high dose. PRESAGE®-IV shows promise for in vivo dose verification, although improved sensitivity would be desirable. Advantages include high-resolution, convenience and fast, low-cost readout.

  12. Adjusting for partial verification or workup bias in meta-analyses of diagnostic accuracy studies.

    PubMed

    de Groot, Joris A H; Dendukuri, Nandini; Janssen, Kristel J M; Reitsma, Johannes B; Brophy, James; Joseph, Lawrence; Bossuyt, Patrick M M; Moons, Karel G M

    2012-04-15

    A key requirement in the design of diagnostic accuracy studies is that all study participants receive both the test under evaluation and the reference standard test. For a variety of practical and ethical reasons, sometimes only a proportion of patients receive the reference standard, which can bias the accuracy estimates. Numerous methods have been described for correcting this partial verification bias or workup bias in individual studies. In this article, the authors describe a Bayesian method for obtaining adjusted results from a diagnostic meta-analysis when partial verification or workup bias is present in a subset of the primary studies. The method corrects for verification bias without having to exclude primary studies with verification bias, thus preserving the main advantages of a meta-analysis: increased precision and better generalizability. The results of this method are compared with the existing methods for dealing with verification bias in diagnostic meta-analyses. For illustration, the authors use empirical data from a systematic review of studies of the accuracy of the immunohistochemistry test for diagnosis of human epidermal growth factor receptor 2 status in breast cancer patients.

  13. EURATOM safeguards efforts in the development of spent fuel verification methods by non-destructive assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matloch, L.; Vaccaro, S.; Couland, M.

    The back end of the nuclear fuel cycle continues to develop. The European Commission, particularly the Nuclear Safeguards Directorate of the Directorate General for Energy, implements Euratom safeguards and needs to adapt to this situation. The verification methods for spent nuclear fuel, which EURATOM inspectors can use, require continuous improvement. Whereas the Euratom on-site laboratories provide accurate verification results for fuel undergoing reprocessing, the situation is different for spent fuel which is destined for final storage. In particular, new needs arise from the increasing number of cask loadings for interim dry storage and the advanced plans for the construction ofmore » encapsulation plants and geological repositories. Various scenarios present verification challenges. In this context, EURATOM Safeguards, often in cooperation with other stakeholders, is committed to further improvement of NDA methods for spent fuel verification. In this effort EURATOM plays various roles, ranging from definition of inspection needs to direct participation in development of measurement systems, including support of research in the framework of international agreements and via the EC Support Program to the IAEA. This paper presents recent progress in selected NDA methods. These methods have been conceived to satisfy different spent fuel verification needs, ranging from attribute testing to pin-level partial defect verification. (authors)« less

  14. Using SysML for verification and validation planning on the Large Synoptic Survey Telescope (LSST)

    NASA Astrophysics Data System (ADS)

    Selvy, Brian M.; Claver, Charles; Angeli, George

    2014-08-01

    This paper provides an overview of the tool, language, and methodology used for Verification and Validation Planning on the Large Synoptic Survey Telescope (LSST) Project. LSST has implemented a Model Based Systems Engineering (MBSE) approach as a means of defining all systems engineering planning and definition activities that have historically been captured in paper documents. Specifically, LSST has adopted the Systems Modeling Language (SysML) standard and is utilizing a software tool called Enterprise Architect, developed by Sparx Systems. Much of the historical use of SysML has focused on the early phases of the project life cycle. Our approach is to extend the advantages of MBSE into later stages of the construction project. This paper details the methodology employed to use the tool to document the verification planning phases, including the extension of the language to accommodate the project's needs. The process includes defining the Verification Plan for each requirement, which in turn consists of a Verification Requirement, Success Criteria, Verification Method(s), Verification Level, and Verification Owner. Each Verification Method for each Requirement is defined as a Verification Activity and mapped into Verification Events, which are collections of activities that can be executed concurrently in an efficient and complementary way. Verification Event dependency and sequences are modeled using Activity Diagrams. The methodology employed also ties in to the Project Management Control System (PMCS), which utilizes Primavera P6 software, mapping each Verification Activity as a step in a planned activity. This approach leads to full traceability from initial Requirement to scheduled, costed, and resource loaded PMCS task-based activities, ensuring all requirements will be verified.

  15. SU-C-207A-04: Accuracy of Acoustic-Based Proton Range Verification in Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, KC; Sehgal, CM; Avery, S

    2016-06-15

    Purpose: To determine the accuracy and dose required for acoustic-based proton range verification (protoacoustics) in water. Methods: Proton pulses with 17 µs FWHM and instantaneous currents of 480 nA (5.6 × 10{sup 7} protons/pulse, 8.9 cGy/pulse) were generated by a clinical, hospital-based cyclotron at the University of Pennsylvania. The protoacoustic signal generated in a water phantom by the 190 MeV proton pulses was measured with a hydrophone placed at multiple known positions surrounding the dose deposition. The background random noise was measured. The protoacoustic signal was simulated to compare to the experiments. Results: The maximum protoacoustic signal amplitude at 5more » cm distance was 5.2 mPa per 1 × 10{sup 7} protons (1.6 cGy at the Bragg peak). The background random noise of the measurement was 27 mPa. Comparison between simulation and experiment indicates that the hydrophone introduced a delay of 2.4 µs. For acoustic data collected with a signal-to-noise ratio (SNR) of 21, deconvolution of the protoacoustic signal with the proton pulse provided the most precise time-of-flight range measurement (standard deviation of 2.0 mm), but a systematic error (−4.5 mm) was observed. Conclusion: Based on water phantom measurements at a clinical hospital-based cyclotron, protoacoustics is a potential technique for measuring the proton Bragg peak range with 2.0 mm standard deviation. Simultaneous use of multiple detectors is expected to reduce the standard deviation, but calibration is required to remove systematic error. Based on the measured background noise and protoacoustic amplitude, a SNR of 5.3 is projected for a deposited dose of 2 Gy.« less

  16. Study on verifying the angle measurement performance of the rotary-laser system

    NASA Astrophysics Data System (ADS)

    Zhao, Jin; Ren, Yongjie; Lin, Jiarui; Yin, Shibin; Zhu, Jigui

    2018-04-01

    An angle verification method to verify the angle measurement performance of the rotary-laser system was developed. Angle measurement performance has a great impact on measuring accuracy. Although there is some previous research on the verification of angle measuring uncertainty for the rotary-laser system, there are still some limitations. High-precision reference angles are used in the study of the method, and an integrated verification platform is set up to evaluate the performance of the system. This paper also probes the error that has biggest influence on the verification system. Some errors of the verification system are avoided via the experimental method, and some are compensated through the computational formula and curve fitting. Experimental results show that the angle measurement performance meets the requirement for coordinate measurement. The verification platform can evaluate the uncertainty of angle measurement for the rotary-laser system efficiently.

  17. Proton Therapy Dose Characterization and Verification

    DTIC Science & Technology

    2016-10-01

    than recommended as these patients are on a separate UPENN research study where dose maximum accepted was 6700 cGy. 15... Research Protection Office. 8.0 Data Handling and Record Keeping All patients must have a signed Informed Consent Form and an On - study (confirmation...this award. Phase 1 concentrated on designing and building a Multi-leaf collimator for use in proton therapy. Phase 2 focused on studying the

  18. RTL validation methodology on high complexity wireless microcontroller using OVM technique for fast time to market

    NASA Astrophysics Data System (ADS)

    Zhafirah Muhammad, Nurul; Harun, A.; Hambali, N. A. M. A.; Murad, S. A. Z.; Mohyar, S. N.; Isa, M. N.; Jambek, AB

    2017-11-01

    Increased demand in internet of thing (IOT) application based has inadvertently forced the move towards higher complexity of integrated circuit supporting SoC. Such spontaneous increased in complexity poses unequivocal complicated validation strategies. Hence, the complexity allows researchers to come out with various exceptional methodologies in order to overcome this problem. This in essence brings about the discovery of dynamic verification, formal verification and hybrid techniques. In reserve, it is very important to discover bugs at infancy of verification process in (SoC) in order to reduce time consuming and fast time to market for the system. Ergo, in this paper we are focusing on the methodology of verification that can be done at Register Transfer Level of SoC based on the AMBA bus design. On top of that, the discovery of others verification method called Open Verification Methodology (OVM) brings out an easier way in RTL validation methodology neither as the replacement for the traditional method yet as an effort for fast time to market for the system. Thus, the method called OVM is proposed in this paper as the verification method for larger design to avert the disclosure of the bottleneck in validation platform.

  19. A Hybrid On-line Verification Method of Relay Setting

    NASA Astrophysics Data System (ADS)

    Gao, Wangyuan; Chen, Qing; Si, Ji; Huang, Xin

    2017-05-01

    Along with the rapid development of the power industry, grid structure gets more sophisticated. The validity and rationality of protective relaying are vital to the security of power systems. To increase the security of power systems, it is essential to verify the setting values of relays online. Traditional verification methods mainly include the comparison of protection range and the comparison of calculated setting value. To realize on-line verification, the verifying speed is the key. The verifying result of comparing protection range is accurate, but the computation burden is heavy, and the verifying speed is slow. Comparing calculated setting value is much faster, but the verifying result is conservative and inaccurate. Taking the overcurrent protection as example, this paper analyses the advantages and disadvantages of the two traditional methods above, and proposes a hybrid method of on-line verification which synthesizes the advantages of the two traditional methods. This hybrid method can meet the requirements of accurate on-line verification.

  20. FORMED: Bringing Formal Methods to the Engineering Desktop

    DTIC Science & Technology

    2016-02-01

    integrates formal verification into software design and development by precisely defining semantics for a restricted subset of the Unified Modeling...input-output contract satisfaction and absence of null pointer dereferences. 15. SUBJECT TERMS Formal Methods, Software Verification , Model-Based...Domain specific languages (DSLs) drive both implementation and formal verification

  1. SU-E-T-205: Improving Quality Assurance of HDR Brachytherapy: Verifying Agreement Between Planned and Delivered Dose Distributions Using DICOM RTDose and Advanced Film Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, A L; University of Surrey, Guildford, Surrey; Bradley, D A

    Purpose: HDR brachytherapy is undergoing significant development, and quality assurance (QA) checks must keep pace. Current recommendations do not adequately verify delivered against planned dose distributions: This is particularly relevant for new treatment planning system (TPS) calculation algorithms (non TG-43 based), and an era of significant patient-specific plan optimisation. Full system checks are desirable in modern QA recommendations, complementary to device-centric individual tests. We present a QA system incorporating TPS calculation, dose distribution export, HDR unit performance, and dose distribution measurement. Such an approach, more common in external beam radiotherapy, has not previously been reported in the literature for brachytherapy.more » Methods: Our QA method was tested at 24 UK brachytherapy centres. As a novel approach, we used the TPS DICOM RTDose file export to compare planned dose distribution with that measured using Gafchromic EBT3 films placed around clinical brachytherapy treatment applicators. Gamma analysis was used to compare the dose distributions. Dose difference and distance to agreement were determined at prescription Point A. Accurate film dosimetry was achieved using a glass compression plate at scanning to ensure physically-flat films, simultaneous scanning of known dose films with measurement films, and triple-channel dosimetric analysis. Results: The mean gamma pass rate of RTDose compared to film-measured dose distributions was 98.1% at 3%(local), 2 mm criteria. The mean dose difference, measured to planned, at Point A was -0.5% for plastic treatment applicators and -2.4% for metal applicators, due to shielding not accounted for in TPS. The mean distance to agreement was 0.6 mm. Conclusion: It is recommended to develop brachytherapy QA to include full-system verification of agreement between planned and delivered dose distributions. This is a novel approach for HDR brachytherapy QA. A methodology using advanced film dosimetry and gamma comparison to DICOM RTDose files has been demonstrated as suitable to fulfil this need.« less

  2. MAGIC polymer gel for dosimetric verification in boron neutron capture therapy

    PubMed Central

    Heikkinen, Sami; Kotiluoto, Petri; Serén, Tom; Seppälä, Tiina; Auterinen, Iiro; Savolainen, Sauli

    2007-01-01

    Radiation‐sensitive polymer gels are among the most promising three‐dimensional dose verification tools developed to date. We tested the normoxic polymer gel dosimeter known by the acronym MAGIC (methacrylic and ascorbic acid in gelatin initiated by copper) to evaluate its use in boron neutron capture therapy (BNCT) dosimetry. We irradiated a large cylindrical gel phantom (diameter: 10 cm; length: 20 cm) in the epithermal neutron beam of the Finnish BNCT facility at the FiR 1 nuclear reactor. Neutron irradiation was simulated with a Monte Carlo radiation transport code MCNP. To compare dose–response, gel samples from the same production batch were also irradiated with 6 MV photons from a medical linear accelerator. Irradiated gel phantoms then underwent magnetic resonance imaging to determine their R2 relaxation rate maps. The measured and normalized dose distribution in the epithermal neutron beam was compared with the dose distribution calculated by computer simulation. The results support the feasibility of using MAGIC gel in BNCT dosimetry. PACS numbers: 87.53.Qc, 87.53.Wz, 87.66.Ff PMID:17592463

  3. Predicting film dose to aid in cassette placement for radiation therapy portal verification film images.

    PubMed

    Keys, Richard A; Marks, James E; Haus, Arthur G

    2002-12-01

    EC film has improved portal localization images with better contrast and improved distinction of bony structures and air-tissue interfaces. A cassette with slower speed screens was used with EC film to image the treatment portal during the entire course of treatment (verification) instead of taking separate films after treatment. Measurements of film density vs source to film distance (SFD) were made using 15 and 25 cm thick water phantoms with both 6 and 18 MV photons from I to 40 cm past the phantom. A characteristic (H & D) curve was measured in air to compare dose to film density. Results show the reduction in radiation between patient and cassette more closely follows an "inverse cube law" rather than an inverse square law. Formulas to calculate radiation exposure to the film, and the desired SFD were based on patient tumor dose, calculation of the exit dose, and the inverse cube relationship. A table of exposure techniques based on the SFD for a given tumor dose was evaluated and compared to conventional techniques. Although the film has a high contrast, there is enough latitude that excellent films can be achieved using a fixed SFD based simply on the tumor dose and beam energy. Patient diameter has a smaller effect. The benefits of imaging portal films during the entire treatment are more reliability in the accuracy of the portal image, ability to detect patient motion, and reduction in the time it takes to take portal images.

  4. Characterization of the a-Si EPID in the unity MR-linac for dosimetric applications.

    PubMed

    Torres-Xirau, I; Olaciregui-Ruiz, I; Baldvinsson, G; Mijnheer, B J; van der Heide, U A; Mans, A

    2018-01-09

    Electronic portal imaging devices (EPIDs) are frequently used in external beam radiation therapy for dose verification purposes. The aim of this study was to investigate the dose-response characteristics of the EPID in the Unity MR-linac (Elekta AB, Stockholm, Sweden) relevant for dosimetric applications under clinical conditions. EPID images and ionization chamber (IC) measurements were used to study the effects of the magnetic field, the scatter generated in the MR housing reaching the EPID, and inhomogeneous attenuation from the MR housing. Dose linearity and dose rate dependencies were also determined. The magnetic field strength at EPID level did not exceed 10 mT, and dose linearity and dose rate dependencies proved to be comparable to that on a conventional linac. Profiles of fields, delivered with and without the magnetic field, were indistinguishable. The EPID center had an offset of 5.6 cm in the longitudinal direction, compared to the beam central axis, meaning that large fields in this direction will partially fall outside the detector area and not be suitable for verification. Beam attenuation by the MRI scanner and the table is gantry angle dependent, presenting a minimum attenuation of 67% relative to the 90° measurement. Repeatability, observed over two months, was within 0.5% (1 SD). In order to use the EPID for dosimetric applications in the MR-linac, challenges related to the EPID position, scatter from the MR housing, and the inhomogeneous, gantry angle-dependent attenuation of the beam will need to be solved.

  5. Characterization of the a-Si EPID in the unity MR-linac for dosimetric applications

    NASA Astrophysics Data System (ADS)

    Torres-Xirau, I.; Olaciregui-Ruiz, I.; Baldvinsson, G.; Mijnheer, B. J.; van der Heide, U. A.; Mans, A.

    2018-01-01

    Electronic portal imaging devices (EPIDs) are frequently used in external beam radiation therapy for dose verification purposes. The aim of this study was to investigate the dose-response characteristics of the EPID in the Unity MR-linac (Elekta AB, Stockholm, Sweden) relevant for dosimetric applications under clinical conditions. EPID images and ionization chamber (IC) measurements were used to study the effects of the magnetic field, the scatter generated in the MR housing reaching the EPID, and inhomogeneous attenuation from the MR housing. Dose linearity and dose rate dependencies were also determined. The magnetic field strength at EPID level did not exceed 10 mT, and dose linearity and dose rate dependencies proved to be comparable to that on a conventional linac. Profiles of fields, delivered with and without the magnetic field, were indistinguishable. The EPID center had an offset of 5.6 cm in the longitudinal direction, compared to the beam central axis, meaning that large fields in this direction will partially fall outside the detector area and not be suitable for verification. Beam attenuation by the MRI scanner and the table is gantry angle dependent, presenting a minimum attenuation of 67% relative to the 90° measurement. Repeatability, observed over two months, was within 0.5% (1 SD). In order to use the EPID for dosimetric applications in the MR-linac, challenges related to the EPID position, scatter from the MR housing, and the inhomogeneous, gantry angle-dependent attenuation of the beam will need to be solved.

  6. Physical and engineering aspect of carbon beam therapy

    NASA Astrophysics Data System (ADS)

    Kanai, Tatsuaki; Kanematsu, Nobuyuki; Minohara, Shinichi; Yusa, Ken; Urakabe, Eriko; Mizuno, Hideyuki; Iseki, Yasushi; Kanazawa, Mitsutaka; Kitagawa, Atsushi; Tomitani, Takehiro

    2003-08-01

    Conformal irradiation system of HIMAC has been up-graded for a clinical trial using a technique of a layer-stacking method. The system has been developed for localizing irradiation dose to target volume more effectively than the present irradiation dose. With dynamic control of the beam modifying devices, a pair of wobbler magnets, and multileaf collimator and range shifter, during the irradiation, more conformal radiotherapy can be achieved. The system, which has to be adequately safe for patient irradiations, was constructed and tested from a viewpoint of safety and the quality of the dose localization realized. A secondary beam line has been constructed for use of radioactive beam in heavy-ion radiotherapy. Spot scanning method has been adapted for the beam delivery system of the radioactive beam. Dose distributions of the spot beam were measured and analyzed taking into account of aberration of the beam optics. Distributions of the stopped positron-emitter beam can be observed by PET. Pencil beam of the positron-emitter, about 1 mm size, can also be used for measurements ranges of the test beam in patients using positron camera. The positron camera, consisting of a pair of Anger-type scintillation detectors, has been developed for this verification before treatment. Wash-out effect of the positron-emitter was examined using the positron camera installed. In this report, present status of the HIMAC irradiation system is described in detail.

  7. Estimation of extremely small field radiation dose for brain stereotactic radiotherapy using the Vero4DRT system.

    PubMed

    Nakayama, Shinichi; Monzen, Hajime; Onishi, Yuichi; Kaneshige, Soichiro; Kanno, Ikuo

    2018-06-01

    The purpose of this study was a dosimetric validation of the Vero4DRT for brain stereotactic radiotherapy (SRT) with extremely small fields calculated by the treatment planning system (TPS) iPlan (Ver.4.5.1; algorithm XVMC). Measured and calculated data (e.g. percentage depth dose [PDD], dose profile, and point dose) were compared for small square fields of 30 × 30, 20 × 20, 10 × 10 and 5 × 5 mm 2 using ionization chambers of 0.01 or 0.04 cm 3 and a diamond detector. Dose verifications were performed using an ionization chamber and radiochromic film (EBT3; the equivalent field sizes used were 8.2, 8.7, 8.9, 9.5, and 12.9 mm 2 ) for five brain SRT cases irradiated with dynamic conformal arcs. The PDDs and dose profiles for the measured and calculated data were in good agreement for fields larger than or equal to 10 × 10 mm 2 when an appropriate detector was chosen. The dose differences for point doses in fields of 30 × 30, 20 × 20, 10 × 10 and 5 × 5 mm 2 were +0.48%, +0.56%, -0.52%, and +11.2% respectively. In the dose verifications for the brain SRT plans, the mean dose difference between the calculated and measured doses were -0.35% (range, -0.94% to +0.47%), with the average pass rates for the gamma index under the 3%/2 mm criterion being 96.71%, 93.37%, and 97.58% for coronal, sagittal, and axial planes respectively. The Vero4DRT system provides accurate delivery of radiation dose for small fields larger than or equal to 10 × 10 mm 2 . Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  8. Characterization of a fiber-coupled Al2O3:C luminescence dosimetry system for online in vivo dose verification during 192Ir brachytherapy.

    PubMed

    Andersen, Claus E; Nielsen, Søren Kynde; Greilich, Steffen; Helt-Hansen, Jakob; Lindegaard, Jacob Christian; Tanderup, Kari

    2009-03-01

    A prototype of a new dose-verification system has been developed to facilitate prevention and identification of dose delivery errors in remotely afterloaded brachytherapy. The system allows for automatic online in vivo dosimetry directly in the tumor region using small passive detector probes that fit into applicators such as standard needles or catheters. The system measures the absorbed dose rate (0.1 s time resolution) and total absorbed dose on the basis of radioluminescence (RL) and optically stimulated luminescence (OSL) from aluminum oxide crystals attached to optical fiber cables (1 mm outer diameter). The system was tested in the range from 0 to 4 Gy using a solid-water phantom, a Varian GammaMed Plus 192Ir PDR afterloader, and dosimetry probes inserted into stainless-steel brachytherapy needles. The calibrated system was found to be linear in the tested dose range. The reproducibility (one standard deviation) for RL and OSL measurements was 1.3%. The measured depth-dose profiles agreed well with the theoretical expectations computed with the EGSNRC Monte Carlo code, suggesting that the energy dependence for the dosimeter probes (relative to water) is less than 6% for source-to-probe distances in the range of 2-50 mm. Under certain conditions, the RL signal could be greatly disturbed by the so-called stem signal (i.e., unwanted light generated in the fiber cable upon irradiation). The OSL signal is not subject to this source of error. The tested system appears to be adequate for in vivo brachytherapy dosimetry.

  9. Interpretation of Gamma Index for Quality Assurance of Simultaneously Integrated Boost (SIB) IMRT Plans for Head and Neck Carcinoma

    NASA Astrophysics Data System (ADS)

    Atiq, Maria; Atiq, Atia; Iqbal, Khalid; Shamsi, Quratul ain; Andleeb, Farah; Buzdar, Saeed Ahmad

    2017-12-01

    Objective: The Gamma Index is prerequisite to estimate point-by-point difference between measured and calculated dose distribution in terms of both Distance to Agreement (DTA) and Dose Difference (DD). This study aims to inquire what percentage of pixels passing a certain criteria assure a good quality plan and suggest gamma index as efficient mechanism for dose verification of Simultaneous Integrated Boost Intensity Modulated Radiotherapy plans. Method: In this study, dose was calculated for 14 head and neck patients and IMRT Quality Assurance was performed with portal dosimetry using the Eclipse treatment planning system. Eclipse software has a Gamma analysis function to compare measured and calculated dose distribution. Plans of this study were deemed acceptable when passing rate was 95% using tolerance for Distance to agreement (DTA) as 3mm and Dose Difference (DD) as 5%. Result and Conclusion: Thirteen cases pass tolerance criteria of 95% set by our institution. Confidence Limit for DD is 9.3% and for gamma criteria our local CL came out to be 2.0% (i.e., 98.0% passing). Lack of correlation was found between DD and γ passing rate with R2 of 0.0509. Our findings underline the importance of gamma analysis method to predict the quality of dose calculation. Passing rate of 95% is achieved in 93% of cases which is adequate level of accuracy for analyzed plans thus assuring the robustness of SIB IMRT treatment technique. This study can be extended to investigate gamma criteria of 5%/3mm for different tumor localities and to explore confidence limit on target volumes of small extent and simple geometry.

  10. SU-E-T-287: Dose Verification On the Variation of Target Volume and Organ at Risk in Preradiation Chemotherapy IMRT for Nasopharyngeal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, X; Kong, L; Wang, J

    2015-06-15

    Purpose: To quantify the target volume and organ at risk of nasopharyngeal carcinoma (NPC) patients with preradiation chemotherapy based on CT scanned during intensity-modulated radiotherapy (IMRT), and recalculate the dose distribution. Methods: Seven patients with NPC and preradiation chemotherapy, treated with IMRT (35 to 37 fractions) were reviewed. Repeat CT scanning was required to all of the patients during the radiotherapy, and the number of repeat CTs varies from 2 to 6. The plan CT and repeat CT were generated by different CT scanner. To ensure crespectively on the same IMPT plan. The real dose distribution was calculated by deformablemore » registration and weighted method in Raystation (v 4.5.1). The fraction of each dose is based on radiotherapy record. The volumetric and dose differences among these images were calculated for nascIpharyngeal tumor and retro-pharyngeal lymph nodes (GTV-NX), neck lymph nodes(GTV-ND), and parotid glands. Results: The volume variation in GTV-NX from CT1 to CT2 was 1.15±3.79%, and in GTV-LN −0.23±4.93%. The volume variation in left parotid from CT1 to CT2 was −6.79±11.91%, and in right parotid −3.92±8.80%. In patient 2, the left parotid volume were decreased remarkably, as a Result, the V30 and V40 of it were increased as well. Conclusion: The target volume of patients with NPC varied lightly during IMRT. It shows that preradiation chemotherapy can control the target volume variation and perform a good dose repeatability. Also, the decreasing volume of parotid in some patient might increase the dose of it, which might course potential complications.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moteabbed, M; Trofimov, A; Sharp, G

    Purpose: To investigate the impact of anatomy/setup variations on standard vs. hypofractionated anterolateral pencil beam scanning (PBS) proton therapy for prostate cancer. Methods: Six prostate cancer patients treated with double-scattering proton therapy, who underwent weekly verification CT scans were selected. Implanted fiducials were used for localization, and endorectal balloons for immobilization. New PBS plans using combination of lateral and anterior-oblique (AO) (±35 deg) beams were created. AO beams were added to spare the femoral heads during hypofractionation. Lateral beams delivered 50.4 Gy(RBE) to prostate plus 5-15mm of seminal vesicles and AO beams 28.8 Gy(RBE) to prostate, in 44 fractions. PTVmore » was laterally expanded by 2.5% to account for range uncertainty. No range margins were applied for AO beams, assuming delivery with in-vivo range verification. Field-specific apertures with 1.2cm margin were used. Spot size was ∼9.5mm sigma for 172MeV @isocenter in air. Plans were optimized as single-field-uniform-dose with ∼5% maximum non-uniformity. The planned dose was recomputed on each weekly CT after aligning the fiducials with the simulation CT, scaled and accumulated via deformable image registration. Hypofractionated treatments with 12 and 5 fractions were considered. Equivalent doses were calculated for prostate (α/β= 1.5Gy), bladder and rectum (α/β= 3Gy). Results: The biological equivalent prostate dose was 86.2 and 92.9 Gyeq for the hypofractionation scenarios at 4.32 and 7.35 Gy/fx, respectively. The equivalent prostate D98 was degraded by on average 2.7 Gyeq for standard, and 3.1 and 4.0 Gyeq for the hypofractionated plans after accumulation. Differences between accumulated and planned Dmean/D2/EUD were generally reduced when reducing the number of fractions for bladder and rectum. The average Dmean/D2/EUD differences over all patients and organs-at-risk were 0.74/4.0/9.23, 0.49/3.64/5.51, 0.37/3.21/3.49 Gyeq for 44, 12 and 5 fractions. Conclusion: Hypofractionation makes proton therapy of prostate more susceptible to interfractional motion-induced target dose degradation compared to the standard fractionation.« less

  12. SU-F-J-32: Do We Need KV Imaging During CBCT Based Patient Set-Up for Lung Radiation Therapy?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gopal, A; Zhou, J; Prado, K

    Purpose: To evaluate the role of 2D kilovoltage (kV) imaging to complement cone beam CT (CBCT) imaging in a shift threshold based image guided radiation therapy (IGRT) strategy for conventional lung radiotherapy. Methods: A retrospective study was conducted by analyzing IGRT couch shift trends for 15 patients that received lung radiation therapy to evaluate the benefit of performing orthogonal kV imaging prior to CBCT imaging. Herein, a shift threshold based IGRT protocol was applied, which would mandate additional CBCT verification if the applied patient shifts exceeded 3 mm to avoid intraobserver variability in CBCT registration and to confirm table shifts.more » For each patient, two IGRT strategies: kV + CBCT and CBCT alone, were compared and the recorded patient shifts were categorized into whether additional CBCT acquisition would have been mandated or not. The effectiveness of either strategy was gauged by the likelihood of needing additional CBCT imaging for accurate patient set-up. Results: The use of CBCT alone was 6 times more likely to require an additional CBCT than KV+CBCT, for a 3 mm shift threshold (88% vs 14%). The likelihood of additional CBCT verification generally increased with lower shift thresholds, and was significantly lower when kV+CBCT was used (7% with 5 mm shift threshold, 36% with 2 mm threshold), than with CBCT alone (61% with 5 mm shift threshold, 97% with 2 mm threshold). With CBCT alone, treatment time increased by 2.2 min and dose increased by 1.9 cGy per fraction on average due to additional CBCT with a 3mm shift threshold. Conclusion: The benefit of kV imaging to screen for gross misalignments led to more accurate CBCT based patient localization compared with using CBCT alone. The subsequently reduced need for additional CBCT verification will minimize treatment time and result in less overall patient imaging dose.« less

  13. HDL to verification logic translator

    NASA Technical Reports Server (NTRS)

    Gambles, J. W.; Windley, P. J.

    1992-01-01

    The increasingly higher number of transistors possible in VLSI circuits compounds the difficulty in insuring correct designs. As the number of possible test cases required to exhaustively simulate a circuit design explodes, a better method is required to confirm the absence of design faults. Formal verification methods provide a way to prove, using logic, that a circuit structure correctly implements its specification. Before verification is accepted by VLSI design engineers, the stand alone verification tools that are in use in the research community must be integrated with the CAD tools used by the designers. One problem facing the acceptance of formal verification into circuit design methodology is that the structural circuit descriptions used by the designers are not appropriate for verification work and those required for verification lack some of the features needed for design. We offer a solution to this dilemma: an automatic translation from the designers' HDL models into definitions for the higher-ordered logic (HOL) verification system. The translated definitions become the low level basis of circuit verification which in turn increases the designer's confidence in the correctness of higher level behavioral models.

  14. An evaluation of radiation damage to solid state components flown in low earth orbit satellites.

    PubMed

    Shin, Myung-Won; Kim, Myung-Hyun

    2004-01-01

    The effects of total ionising radiation dose upon commercial off-the-shelf semiconductors fitted to satellites operating in low Earth orbit (LEO) conditions was evaluated. The evaluation was performed for the Korea Institute of Technology SATellite-1, (KITSAT-1) which was equipped with commercial solid state components. Two approximate calculation models for space radiation shielding were developed. Verification was performed by comparing the results with detailed three-dimensional calculations using the Monte-Carlo method and measured data from KITSAT-1. It was confirmed that the developed approximate models were reliable for satellite shielding calculations. It was also found that commercial semiconductor devices, which were not radiation hardened, could be damaged within their lifetime due to the total ionising dose they are subject to in the LEO environment. To conclude, an intensive shielding analysis should be considered when commercial devices are used.

  15. Dosimetric verification of IMRT treatment planning using Monte Carlo simulations for prostate cancer

    NASA Astrophysics Data System (ADS)

    Yang, J.; Li, J.; Chen, L.; Price, R.; McNeeley, S.; Qin, L.; Wang, L.; Xiong, W.; Ma, C.-M.

    2005-03-01

    The purpose of this work is to investigate the accuracy of dose calculation of a commercial treatment planning system (Corvus, Normos Corp., Sewickley, PA). In this study, 30 prostate intensity-modulated radiotherapy (IMRT) treatment plans from the commercial treatment planning system were recalculated using the Monte Carlo method. Dose-volume histograms and isodose distributions were compared. Other quantities such as minimum dose to the target (Dmin), the dose received by 98% of the target volume (D98), dose at the isocentre (Diso), mean target dose (Dmean) and the maximum critical structure dose (Dmax) were also evaluated based on our clinical criteria. For coplanar plans, the dose differences between Monte Carlo and the commercial treatment planning system with and without heterogeneity correction were not significant. The differences in the isocentre dose between the commercial treatment planning system and Monte Carlo simulations were less than 3% for all coplanar cases. The differences on D98 were less than 2% on average. The differences in the mean dose to the target between the commercial system and Monte Carlo results were within 3%. The differences in the maximum bladder dose were within 3% for most cases. The maximum dose differences for the rectum were less than 4% for all the cases. For non-coplanar plans, the difference in the minimum target dose between the treatment planning system and Monte Carlo calculations was up to 9% if the heterogeneity correction was not applied in Corvus. This was caused by the excessive attenuation of the non-coplanar beams by the femurs. When the heterogeneity correction was applied in Corvus, the differences were reduced significantly. These results suggest that heterogeneity correction should be used in dose calculation for prostate cancer with non-coplanar beam arrangements.

  16. Direct-detection EPID dosimetry: investigation of a potential clinical configuration for IMRT verification.

    PubMed

    Vial, Philip; Gustafsson, Helen; Oliver, Lyn; Baldock, Clive; Greer, Peter B

    2009-12-07

    The routine use of electronic portal imaging devices (EPIDs) as dosimeters for radiotherapy quality assurance is complicated by the non-water equivalence of the EPID's dose response. A commercial EPID modified to a direct-detection configuration was previously demonstrated to provide water-equivalent dose response with d(max) solid water build-up and 10 cm solid water backscatter. Clinical implementation of the direct EPID (dEPID) requires a design that maintains the water-equivalent dose response, can be incorporated onto existing EPID support arms and maintains sufficient image quality for clinical imaging. This study investigated the dEPID dose response with different configurations of build-up and backscatter using varying thickness of solid water and copper. Field size output factors and beam profiles measured with the dEPID were compared with ionization chamber measurements of dose in water for both 6 MV and 18 MV. The dEPID configured with d(max) solid water build-up and no backscatter (except for the support arm) was within 1.5% of dose in water data for both energies. The dEPID was maintained in this configuration for clinical dosimetry and image quality studies. Close agreement between the dEPID and treatment planning system was obtained for an IMRT field with 98.4% of pixels within the field meeting a gamma criterion of 3% and 3 mm. The reduced sensitivity of the dEPID resulted in a poorer image quality based on quantitative (contrast-to-noise ratio) and qualitative (anthropomorphic phantom) studies. However, clinically useful images were obtained with the dEPID using typical treatment field doses. The dEPID is a water-equivalent dosimeter that can be implemented with minimal modifications to the standard commercial EPID design. The proposed dEPID design greatly simplifies the verification of IMRT dose delivery.

  17. Verification of VLSI designs

    NASA Technical Reports Server (NTRS)

    Windley, P. J.

    1991-01-01

    In this paper we explore the specification and verification of VLSI designs. The paper focuses on abstract specification and verification of functionality using mathematical logic as opposed to low-level boolean equivalence verification such as that done using BDD's and Model Checking. Specification and verification, sometimes called formal methods, is one tool for increasing computer dependability in the face of an exponentially increasing testing effort.

  18. SU-E-T-374: Evaluation and Verification of Dose Calculation Accuracy with Different Dose Grid Sizes for Intracranial Stereotactic Radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, C; Schultheiss, T

    Purpose: In this study, we aim to evaluate the effect of dose grid size on the accuracy of calculated dose for small lesions in intracranial stereotactic radiosurgery (SRS), and to verify dose calculation accuracy with radiochromic film dosimetry. Methods: 15 intracranial lesions from previous SRS patients were retrospectively selected for this study. The planning target volume (PTV) ranged from 0.17 to 2.3 cm{sup 3}. A commercial treatment planning system was used to generate SRS plans using the volumetric modulated arc therapy (VMAT) technique using two arc fields. Two convolution-superposition-based dose calculation algorithms (Anisotropic Analytical Algorithm and Acuros XB algorithm) weremore » used to calculate volume dose distribution with dose grid size ranging from 1 mm to 3 mm with 0.5 mm step size. First, while the plan monitor units (MU) were kept constant, PTV dose variations were analyzed. Second, with 95% of the PTV covered by the prescription dose, variations of the plan MUs as a function of dose grid size were analyzed. Radiochomic films were used to compare the delivered dose and profile with the calculated dose distribution with different dose grid sizes. Results: The dose to the PTV, in terms of the mean dose, maximum, and minimum dose, showed steady decrease with increasing dose grid size using both algorithms. With 95% of the PTV covered by the prescription dose, the total MU increased with increasing dose grid size in most of the plans. Radiochromic film measurements showed better agreement with dose distributions calculated with 1-mm dose grid size. Conclusion: Dose grid size has significant impact on calculated dose distribution in intracranial SRS treatment planning with small target volumes. Using the default dose grid size could lead to under-estimation of delivered dose. A small dose grid size should be used to ensure calculation accuracy and agreement with QA measurements.« less

  19. Monte Carlo verification of radiotherapy treatments with CloudMC.

    PubMed

    Miras, Hector; Jiménez, Rubén; Perales, Álvaro; Terrón, José Antonio; Bertolet, Alejandro; Ortiz, Antonio; Macías, José

    2018-06-27

    A new implementation has been made on CloudMC, a cloud-based platform presented in a previous work, in order to provide services for radiotherapy treatment verification by means of Monte Carlo in a fast, easy and economical way. A description of the architecture of the application and the new developments implemented is presented together with the results of the tests carried out to validate its performance. CloudMC has been developed over Microsoft Azure cloud. It is based on a map/reduce implementation for Monte Carlo calculations distribution over a dynamic cluster of virtual machines in order to reduce calculation time. CloudMC has been updated with new methods to read and process the information related to radiotherapy treatment verification: CT image set, treatment plan, structures and dose distribution files in DICOM format. Some tests have been designed in order to determine, for the different tasks, the most suitable type of virtual machines from those available in Azure. Finally, the performance of Monte Carlo verification in CloudMC is studied through three real cases that involve different treatment techniques, linac models and Monte Carlo codes. Considering computational and economic factors, D1_v2 and G1 virtual machines were selected as the default type for the Worker Roles and the Reducer Role respectively. Calculation times up to 33 min and costs of 16 € were achieved for the verification cases presented when a statistical uncertainty below 2% (2σ) was required. The costs were reduced to 3-6 € when uncertainty requirements are relaxed to 4%. Advantages like high computational power, scalability, easy access and pay-per-usage model, make Monte Carlo cloud-based solutions, like the one presented in this work, an important step forward to solve the long-lived problem of truly introducing the Monte Carlo algorithms in the daily routine of the radiotherapy planning process.

  20. PET/CT imaging for treatment verification after proton therapy: A study with plastic phantoms and metallic implants

    PubMed Central

    Parodi, Katia; Paganetti, Harald; Cascio, Ethan; Flanz, Jacob B.; Bonab, Ali A.; Alpert, Nathaniel M.; Lohmann, Kevin; Bortfeld, Thomas

    2008-01-01

    The feasibility of off-line positron emission tomography/computed tomography (PET/CT) for routine three dimensional in-vivo treatment verification of proton radiation therapy is currently under investigation at Massachusetts General Hospital in Boston. In preparation for clinical trials, phantom experiments were carried out to investigate the sensitivity and accuracy of the method depending on irradiation and imaging parameters. Furthermore, they addressed the feasibility of PET/CT as a robust verification tool in the presence of metallic implants. These produce x-ray CT artifacts and fluence perturbations which may compromise the accuracy of treatment planning algorithms. Spread-out Bragg peak proton fields were delivered to different phantoms consisting of polymethylmethacrylate (PMMA), PMMA stacked with lung and bone equivalent materials, and PMMA with titanium rods to mimic implants in patients. PET data were acquired in list mode starting within 20 min after irradiation at a commercial luthetium-oxyorthosilicate (LSO)-based PET/CT scanner. The amount and spatial distribution of the measured activity could be well reproduced by calculations based on the GEANT4 and FLUKA Monte Carlo codes. This phantom study supports the potential of millimeter accuracy for range monitoring and lateral field position verification even after low therapeutic dose exposures of 2 Gy, despite the delay between irradiation and imaging. It also indicates the value of PET for treatment verification in the presence of metallic implants, demonstrating a higher sensitivity to fluence perturbations in comparison to a commercial analytical treatment planning system. Finally, it addresses the suitability of LSO-based PET detectors for hadron therapy monitoring. This unconventional application of PET involves countrates which are orders of magnitude lower than in diagnostic tracer imaging, i.e., the signal of interest is comparable to the noise originating from the intrinsic radioactivity of the detector itself. In addition to PET alone, PET/CT imaging provides accurate information on the position of the imaged object and may assess possible anatomical changes during fractionated radiotherapy in clinical applications. PMID:17388158

  1. Technical Note: Scanning of parallel-plate ionization chamber and diamond detector for measurements of water-dose profiles in the vicinity of a narrow x-ray microbeam.

    PubMed

    Nariyama, Nobuteru

    2017-12-01

    Scanning of dosimeters facilitates dose distribution measurements with fine spatial resolutions. This paper presents a method of conversion of the scanning results to water-dose profiles and provides an experimental verification. An Advanced Markus chamber and a diamond detector were scanned at a resolution of 6 μm near the beam edges during irradiation with a 25-μm-wide white narrow x-ray beam from a synchrotron radiation source. For comparison, GafChromic films HD-810 and HD-V2 were also irradiated. The conversion procedure for the water dose values was simulated with Monte Carlo photon-electron transport code as a function of the x-ray incidence position. This method was deduced from nonstandard beam reference-dosimetry protocols used for high-energy x-rays. Among the calculated nonstandard beam correction factors, P wall , which is the ratio of the absorbed dose in the sensitive volume of the chamber with water wall to that with a polymethyl methacrylate wall, was found to be the most influential correction factor in most conditions. The total correction factor ranged from 1.7 to 2.7 for the Advanced Markus chamber and from 1.15 to 1.86 for the diamond detector as a function of the x-ray incidence position. The water dose values obtained with the Advanced Markus chamber and the HD-810 film were in agreement in the vicinity of the beam, within 35% and 18% for the upper and lower sides of the beam respectively. The beam width obtained from the diamond detector was greater, and the doses out of the beam were smaller than the doses of the others. The comparison between the Advanced Markus chamber and HD-810 revealed that the dose obtained with the scanned chamber could be converted to the water dose around the beam by applying nonstandard beam reference-dosimetry protocols. © 2017 American Association of Physicists in Medicine.

  2. SU-F-SPS-06: Implementation of a Back-Projection Algorithm for 2D in Vivo Dosimetry with An EPID System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez Reyes, B; Rodriguez Perez, E; Sosa Aquino, M

    Purpose: To implement a back-projection algorithm for 2D dose reconstructions for in vivo dosimetry in radiation therapy using an Electronic Portal Imaging Device (EPID) based on amorphous silicon. Methods: An EPID system was used to calculate dose-response function, pixel sensitivity map, exponential scatter kernels and beam hardenig correction for the back-projection algorithm. All measurements were done with a 6 MV beam. A 2D dose reconstruction for an irradiated water phantom (30×30×30 cm{sup 3}) was done to verify the algorithm implementation. Gamma index evaluation between the 2D reconstructed dose and the calculated with a treatment planning system (TPS) was done. Results:more » A linear fit was found for the dose-response function. The pixel sensitivity map has a radial symmetry and was calculated with a profile of the pixel sensitivity variation. The parameters for the scatter kernels were determined only for a 6 MV beam. The primary dose was estimated applying the scatter kernel within EPID and scatter kernel within the patient. The beam hardening coefficient is σBH= 3.788×10{sup −4} cm{sup 2} and the effective linear attenuation coefficient is µAC= 0.06084 cm{sup −1}. The 95% of points evaluated had γ values not longer than the unity, with gamma criteria of ΔD = 3% and Δd = 3 mm, and within the 50% isodose surface. Conclusion: The use of EPID systems proved to be a fast tool for in vivo dosimetry, but the implementation is more complex that the elaborated for pre-treatment dose verification, therefore, a simplest method must be investigated. The accuracy of this method should be improved modifying the algorithm in order to compare lower isodose curves.« less

  3. Evaluation of three presets for four-dimensional cone beam CT in lung radiotherapy verification by visual grading analysis.

    PubMed

    Kember, Sally A; Hansen, Vibeke N; Fast, Martin F; Nill, Simeon; McDonald, Fiona; Ahmed, Merina; Thomas, Karen; McNair, Helen A

    2016-07-01

    To evaluate three image acquisition presets for four-dimensional cone beam CT (CBCT) to identify an optimal preset for lung tumour image quality while minimizing dose and acquisition time. Nine patients undergoing radical conventionally fractionated radiotherapy for lung cancer had verification CBCTs acquired using three presets: Preset 1 on Day 1 (11 mGy dose, 240 s acquisition time), Preset 2 on Day 2 (9 mGy dose, 133 s acquisition time) and Preset 3 on Day 3 (9 mGy dose, 67 s acquisition time). The clarity of the tumour and other thoracic structures, and the acceptability of the match, were retrospectively graded by visual grading analysis (VGA). Logistic regression was used to identify the most appropriate preset and any factors that might influence the result. Presets 1 and 2 met a clinical requirement of 75% of structures to be rated "Clear" or above and 75% of matches to be rated "Acceptable" or above. Clarity is significantly affected by preset, patient, observer and structure. Match acceptability is significantly affected by preset. The application of VGA in this initial study enabled a provisional selection of an optimal preset (Preset 2) to be made. This was the first application of VGA to the investigation of presets for CBCT.

  4. SU-E-J-158: Experimental Investigation of Proton Radiography Based On Time-Resolved Dose Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Testa, M; Paganetti, H; Lu, H-M

    2014-06-01

    Purpose: To use proton radiography for i) in-vivo range verification of the brain fields of medulloblastoma patients in order to reduce the exit dose to the cranial skin and thus the risk of permanent alopecia; ii) for performing patient specific optimization of the calibration from CT-Hounsfield units to proton relative stopping power in order to minimize uncertainties of proton rang Methods: We developed and tested a prototype proton radiography system based on a single-plane scintillation screen coupled with a fast CCD camera (1ms sampling rate, 0.29x0.29 mm{sup 2} pixel size, 30×30 cm{sup 2} field of view). The method is basedmore » on the principle that, for passively scattered beams, the radiological depth of any point in the plateau of a spread-out Bragg-Peak (SOBP) can be inferred from the time-pattern of the dose rate measurements. We performed detector characterization measurements using complex-shape homogeneous phantoms and an Alderson phanto Results: Detector characterization tests confirmed the robustness of the technique. The results of the phantom measurements are encouraging in terms of achievable accuracy of the water equivalent thickness. A technique to minimize the degradation of spatial resolution due to multiple Coulomb scattering is discussed. Our novel radiographic technique is rapid (100 ms) and simultaneous over the whole field. The dose required to produce one radiograph, with the current settings, is ∼3 cG Conclusion: The results obtained with this simple and innovative radiography method are promising and motivate further development of technique. The system requires only a single-plane 2D dosimeter and it uses the clinical beam for a fraction of second with low dose to the patient.« less

  5. Evaluation of the deformation and corresponding dosimetric implications in prostate cancer treatment

    NASA Astrophysics Data System (ADS)

    Wen, Ning; Glide-Hurst, Carri; Nurushev, Teamour; Xing, Lei; Kim, Jinkoo; Zhong, Hualiang; Liu, Dezhi; Liu, Manju; Burmeister, Jay; Movsas, Benjamin; Chetty, Indrin J.

    2012-09-01

    The cone-beam computed tomography (CBCT) imaging modality is an integral component of image-guided adaptive radiation therapy (IGART), which uses patient-specific dynamic/temporal information for potential treatment plan modification. In this study, an offline process for the integral component IGART framework has been implemented that consists of deformable image registration (DIR) and its validation, dose reconstruction, dose accumulation and dose verification. This study compares the differences between planned and estimated delivered doses under an IGART framework of five patients undergoing prostate cancer radiation therapy. The dose calculation accuracy on CBCT was verified by measurements made in a Rando pelvic phantom. The accuracy of DIR on patient image sets was evaluated in three ways: landmark matching with fiducial markers, visual image evaluation and unbalanced energy (UE); UE has been previously demonstrated to be a feasible method for the validation of DIR accuracy at a voxel level. The dose calculated on each CBCT image set was reconstructed and accumulated over all fractions to reflect the ‘actual dose’ delivered to the patient. The deformably accumulated (delivered) plans were then compared to the original (static) plans to evaluate tumor and normal tissue dose discrepancies. The results support the utility of adaptive planning, which can be used to fully elucidate the dosimetric impact based on the simulated delivered dose to achieve the desired tumor control and normal tissue sparing, which may be of particular importance in the context of hypofractionated radiotherapy regimens.

  6. Automation and uncertainty analysis of a method for in-vivo range verification in particle therapy.

    PubMed

    Frey, K; Unholtz, D; Bauer, J; Debus, J; Min, C H; Bortfeld, T; Paganetti, H; Parodi, K

    2014-10-07

    We introduce the automation of the range difference calculation deduced from particle-irradiation induced β(+)-activity distributions with the so-called most-likely-shift approach, and evaluate its reliability via the monitoring of algorithm- and patient-specific uncertainty factors. The calculation of the range deviation is based on the minimization of the absolute profile differences in the distal part of two activity depth profiles shifted against each other. Depending on the workflow of positron emission tomography (PET)-based range verification, the two profiles under evaluation can correspond to measured and simulated distributions, or only measured data from different treatment sessions. In comparison to previous work, the proposed approach includes an automated identification of the distal region of interest for each pair of PET depth profiles and under consideration of the planned dose distribution, resulting in the optimal shift distance. Moreover, it introduces an estimate of uncertainty associated to the identified shift, which is then used as weighting factor to 'red flag' problematic large range differences. Furthermore, additional patient-specific uncertainty factors are calculated using available computed tomography (CT) data to support the range analysis. The performance of the new method for in-vivo treatment verification in the clinical routine is investigated with in-room PET images for proton therapy as well as with offline PET images for proton and carbon ion therapy. The comparison between measured PET activity distributions and predictions obtained by Monte Carlo simulations or measurements from previous treatment fractions is performed. For this purpose, a total of 15 patient datasets were analyzed, which were acquired at Massachusetts General Hospital and Heidelberg Ion-Beam Therapy Center with in-room PET and offline PET/CT scanners, respectively. Calculated range differences between the compared activity distributions are reported in a 2D map in beam-eye-view. In comparison to previously proposed approaches, the new most-likely-shift method shows more robust results for assessing in-vivo the range from strongly varying PET distributions caused by differing patient geometry, ion beam species, beam delivery techniques, PET imaging concepts and counting statistics. The additional visualization of the uncertainties and the dedicated weighting strategy contribute to the understanding of the reliability of observed range differences and the complexity in the prediction of activity distributions. The proposed method promises to offer a feasible technique for clinical routine of PET-based range verification.

  7. Automation and uncertainty analysis of a method for in-vivo range verification in particle therapy

    NASA Astrophysics Data System (ADS)

    Frey, K.; Unholtz, D.; Bauer, J.; Debus, J.; Min, C. H.; Bortfeld, T.; Paganetti, H.; Parodi, K.

    2014-10-01

    We introduce the automation of the range difference calculation deduced from particle-irradiation induced β+-activity distributions with the so-called most-likely-shift approach, and evaluate its reliability via the monitoring of algorithm- and patient-specific uncertainty factors. The calculation of the range deviation is based on the minimization of the absolute profile differences in the distal part of two activity depth profiles shifted against each other. Depending on the workflow of positron emission tomography (PET)-based range verification, the two profiles under evaluation can correspond to measured and simulated distributions, or only measured data from different treatment sessions. In comparison to previous work, the proposed approach includes an automated identification of the distal region of interest for each pair of PET depth profiles and under consideration of the planned dose distribution, resulting in the optimal shift distance. Moreover, it introduces an estimate of uncertainty associated to the identified shift, which is then used as weighting factor to ‘red flag’ problematic large range differences. Furthermore, additional patient-specific uncertainty factors are calculated using available computed tomography (CT) data to support the range analysis. The performance of the new method for in-vivo treatment verification in the clinical routine is investigated with in-room PET images for proton therapy as well as with offline PET images for proton and carbon ion therapy. The comparison between measured PET activity distributions and predictions obtained by Monte Carlo simulations or measurements from previous treatment fractions is performed. For this purpose, a total of 15 patient datasets were analyzed, which were acquired at Massachusetts General Hospital and Heidelberg Ion-Beam Therapy Center with in-room PET and offline PET/CT scanners, respectively. Calculated range differences between the compared activity distributions are reported in a 2D map in beam-eye-view. In comparison to previously proposed approaches, the new most-likely-shift method shows more robust results for assessing in-vivo the range from strongly varying PET distributions caused by differing patient geometry, ion beam species, beam delivery techniques, PET imaging concepts and counting statistics. The additional visualization of the uncertainties and the dedicated weighting strategy contribute to the understanding of the reliability of observed range differences and the complexity in the prediction of activity distributions. The proposed method promises to offer a feasible technique for clinical routine of PET-based range verification.

  8. Imaging and characterization of primary and secondary radiation in ion beam therapy

    NASA Astrophysics Data System (ADS)

    Granja, Carlos; Martisikova, Maria; Jakubek, Jan; Opalka, Lukas; Gwosch, Klaus

    2016-07-01

    Imaging in ion beam therapy is an essential and increasingly significant tool for treatment planning and radiation and dose deposition verification. Efforts aim at providing precise radiation field characterization and online monitoring of radiation dose distribution. A review is given of the research and methodology of quantum-imaging, composition, spectral and directional characterization of the mixed-radiation fields in proton and light ion beam therapy developed by the IEAP CTU Prague and HIT Heidelberg group. Results include non-invasive imaging of dose deposition and primary beam online monitoring.

  9. MO-FG-CAMPUS-TeP1-05: Rapid and Efficient 3D Dosimetry for End-To-End Patient-Specific QA of Rotational SBRT Deliveries Using a High-Resolution EPID

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Y M; Han, B; Xing, L

    2016-06-15

    Purpose: EPID-based patient-specific quality assurance provides verification of the planning setup and delivery process that phantomless QA and log-file based virtual dosimetry methods cannot achieve. We present a method for EPID-based QA utilizing spatially-variant EPID response kernels that allows for direct calculation of the entrance fluence and 3D phantom dose. Methods: An EPID dosimetry system was utilized for 3D dose reconstruction in a cylindrical phantom for the purposes of end-to-end QA. Monte Carlo (MC) methods were used to generate pixel-specific point-spread functions (PSFs) characterizing the spatially non-uniform EPID portal response in the presence of phantom scatter. The spatially-variant PSFs weremore » decomposed into spatially-invariant basis PSFs with the symmetric central-axis kernel as the primary basis kernel and off-axis representing orthogonal perturbations in pixel-space. This compact and accurate characterization enables the use of a modified Richardson-Lucy deconvolution algorithm to directly reconstruct entrance fluence from EPID images without iterative scatter subtraction. High-resolution phantom dose kernels were cogenerated in MC with the PSFs enabling direct recalculation of the resulting phantom dose by rapid forward convolution once the entrance fluence was calculated. A Delta4 QA phantom was used to validate the dose reconstructed in this approach. Results: The spatially-invariant representation of the EPID response accurately reproduced the entrance fluence with >99.5% fidelity with a simultaneous reduction of >60% in computational overhead. 3D dose for 10{sub 6} voxels was reconstructed for the entire phantom geometry. A 3D global gamma analysis demonstrated a >95% pass rate at 3%/3mm. Conclusion: Our approach demonstrates the capabilities of an EPID-based end-to-end QA methodology that is more efficient than traditional EPID dosimetry methods. Displacing the point of measurement external to the QA phantom reduces the necessary complexity of the phantom itself while offering a method that is highly scalable and inherently generalizable to rotational and trajectory based deliveries. This research was partially supported by Varian.« less

  10. Formal Methods for Life-Critical Software

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Johnson, Sally C.

    1993-01-01

    The use of computer software in life-critical applications, such as for civil air transports, demands the use of rigorous formal mathematical verification procedures. This paper demonstrates how to apply formal methods to the development and verification of software by leading the reader step-by-step through requirements analysis, design, implementation, and verification of an electronic phone book application. The current maturity and limitations of formal methods tools and techniques are then discussed, and a number of examples of the successful use of formal methods by industry are cited.

  11. Oxygen beams for therapy: advanced biological treatment planning and experimental verification

    NASA Astrophysics Data System (ADS)

    Sokol, O.; Scifoni, E.; Tinganelli, W.; Kraft-Weyrather, W.; Wiedemann, J.; Maier, A.; Boscolo, D.; Friedrich, T.; Brons, S.; Durante, M.; Krämer, M.

    2017-10-01

    Nowadays there is a rising interest towards exploiting new therapeutical beams beyond carbon ions and protons. In particular, 16 O ions are being widely discussed due to their increased LET distribution. In this contribution, we report on the first experimental verification of biologically optimized treatment plans, accounting for different biological effects, generated with the TRiP98 planning system with 16 O beams, performed at HIT and GSI. This implies the measurements of 3D profiles of absorbed dose as well as several biological measurements. The latter includes the measurements of relative biological effectiveness along the range of linear energy transfer values from  ≈20 up to  ≈750 keV μ m-1 , oxygen enhancement ratio values and the verification of the kill-painting approach, to overcome hypoxia, with a phantom imitating an unevenly oxygenated target. With the present implementation, our treatment planning system is able to perform a comparative analysis of different ions, according to any given condition of the target. For the particular cases of low target oxygenation, 16 O ions demonstrate a higher peak-to-entrance dose ratio for the same cell killing in the target region compared to 12 C ions. Based on this phenomenon, we performed a short computational analysis to reveal the potential range of treatment plans, where 16 O can benefit over lighter modalities. It emerges that for more hypoxic target regions (partial oxygen pressure of  ≈0.15% or lower) and relatively low doses (≈4 Gy or lower) the choice of 16 O over 12 C or 4 He may be justified.

  12. Improving semi-text-independent method of writer verification using difference vector

    NASA Astrophysics Data System (ADS)

    Li, Xin; Ding, Xiaoqing

    2009-01-01

    The semi-text-independent method of writer verification based on the linear framework is a method that can use all characters of two handwritings to discriminate the writers in the condition of knowing the text contents. The handwritings are allowed to just have small numbers of even totally different characters. This fills the vacancy of the classical text-dependent methods and the text-independent methods of writer verification. Moreover, the information, what every character is, is used for the semi-text-independent method in this paper. Two types of standard templates, generated from many writer-unknown handwritten samples and printed samples of each character, are introduced to represent the content information of each character. The difference vectors of the character samples are gotten by subtracting the standard templates from the original feature vectors and used to replace the original vectors in the process of writer verification. By removing a large amount of content information and remaining the style information, the verification accuracy of the semi-text-independent method is improved. On a handwriting database involving 30 writers, when the query handwriting and the reference handwriting are composed of 30 distinct characters respectively, the average equal error rate (EER) of writer verification reaches 9.96%. And when the handwritings contain 50 characters, the average EER falls to 6.34%, which is 23.9% lower than the EER of not using the difference vectors.

  13. Verification test report on a solar heating and hot water system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information is provided on the development, qualification and acceptance verification of commercial solar heating and hot water systems and components. The verification includes the performances, the efficiences and the various methods used, such as similarity, analysis, inspection, test, etc., that are applicable to satisfying the verification requirements.

  14. An Optimized Online Verification Imaging Procedure for External Beam Partial Breast Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willis, David J., E-mail: David.Willis@petermac.or; Royal Melbourne Institute of Technology University, Melbourne, Victoria; Kron, Tomas

    2011-07-01

    The purpose of this study was to evaluate the capabilities of a kilovoltage (kV) on-board imager (OBI)-equipped linear accelerator in the setting of on-line verification imaging for external-beam partial breast irradiation. Available imaging techniques were optimized and assessed for image quality using a modified anthropomorphic phantom. Imaging dose was also assessed. Imaging techniques were assessed for physical clearance between patient and treatment machine using a volunteer. Nonorthogonal kV image pairs were identified as optimal in terms of image quality, clearance, and dose. After institutional review board approval, this approach was used for 17 patients receiving accelerated partial breast irradiation. Imagingmore » was performed before every fraction verification with online correction of setup deviations >5 mm (total image sessions = 170). Treatment staff rated risk of collision and visibility of tumor bed surgical clips where present. Image session duration and detected setup deviations were recorded. For all cases, both image projections (n = 34) had low collision risk. Surgical clips were rated as well as visualized in all cases where they were present (n = 5). The average imaging session time was 6 min, 16 sec, and a reduction in duration was observed as staff became familiar with the technique. Setup deviations of up to 1.3 cm were detected before treatment and subsequently confirmed offline. Nonorthogonal kV image pairs allowed effective and efficient online verification for partial breast irradiation. It has yet to be tested in a multicenter study to determine whether it is dependent on skilled treatment staff.« less

  15. Energy- and time-resolved detection of prompt gamma-rays for proton range verification.

    PubMed

    Verburg, Joost M; Riley, Kent; Bortfeld, Thomas; Seco, Joao

    2013-10-21

    In this work, we present experimental results of a novel prompt gamma-ray detector for proton beam range verification. The detection system features an actively shielded cerium-doped lanthanum(III) bromide scintillator, coupled to a digital data acquisition system. The acquisition was synchronized to the cyclotron radio frequency to separate the prompt gamma-ray signals from the later-arriving neutron-induced background. We designed the detector to provide a high energy resolution and an effective reduction of background events, enabling discrete proton-induced prompt gamma lines to be resolved. Measuring discrete prompt gamma lines has several benefits for range verification. As the discrete energies correspond to specific nuclear transitions, the magnitudes of the different gamma lines have unique correlations with the proton energy and can be directly related to nuclear reaction cross sections. The quantification of discrete gamma lines also enables elemental analysis of tissue in the beam path, providing a better prediction of prompt gamma-ray yields. We present the results of experiments in which a water phantom was irradiated with proton pencil-beams in a clinical proton therapy gantry. A slit collimator was used to collimate the prompt gamma-rays, and measurements were performed at 27 positions along the path of proton beams with ranges of 9, 16 and 23 g cm(-2) in water. The magnitudes of discrete gamma lines at 4.44, 5.2 and 6.13 MeV were quantified. The prompt gamma lines were found to be clearly resolved in dimensions of energy and time, and had a reproducible correlation with the proton depth-dose curve. We conclude that the measurement of discrete prompt gamma-rays for in vivo range verification of clinical proton beams is feasible, and plan to further study methods and detector designs for clinical use.

  16. TU-FG-BRB-09: Thermoacoustic Range Verification with Perfect Co-Registered Overlay of Bragg Peak onto Ultrasound Image

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patch, S; Kireeff Covo, M; Jackson, A

    Purpose: The potential of particle therapy has not yet been fully realized due to inaccuracies in range verification. The purpose of this work was to correlate the Bragg peak location with target structure, by overlaying thermoacoustic localization of the Bragg peak onto an ultrasound image. Methods: Pulsed delivery of 50 MeV protons was accomplished by a fast chopper installed between the ion source and the inflector of the 88″ cyclotron at Lawrence Berkeley National Lab. 2 Gy were delivered in 2 µs by a beam with peak current of 2 µA. Thermoacoustic emissions were detected by a cardiac array andmore » Verasonics V1 ultrasound system, which also generated a grayscale ultrasound image. 1024 thermoacoustic pulses were averaged before filtering and one-way beamforming focused signal onto the Bragg peak location with perfect co-registration to the ultrasound images. Data was collected in a room temperature water bath and gelatin phantom with a cavity designed to mimic the intestine, in which gas pockets can displace the Bragg peak. Experiments were performed with the cavity both empty and filled with olive oil. Results: In the waterbath overlays of the Bragg peak agreed with Monte Carlo simulations to within 800±170 µm. Agreement within 1.3 ± 0.2 mm was achieved in the gelatin phantom, although relative stopping powers were estimated only to first order from CT scans. Protoacoustic signals were detected after travel from the Bragg peak through 29 mm and 65 mm of phantom material when the cavity was empty and full of olive oil, respectively. Conclusion: Protoacoustic range verification is feasible with a commercial clinical ultrasound array, but at doses exceeding the clinical realm. Further optimization of both transducer array and injection line chopper is required to enable range verification within a 2 Gy dose limit, which would enable online adaptive treatment. This work was supported in part by a UWM Intramural Instrumentation Grant and by the Director, Office of Science, Office of Nuclear Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. YMQ was supported by a UWM-OUR summer fellowship.« less

  17. Principles of Sterilization of Mars Descent Vehicle Elements

    NASA Astrophysics Data System (ADS)

    Trofimov, Vladislav; Deshevaya, Elena; Khamidullina, N.; Kalashnikov, Viktor

    Due to COSPAR severe requirements to permissible microbiological contamination of elements of down-to-Mars S/C as well as complexity of their chemical composition and structure the exposure of such S/C elements to antimicrobial treatment (sterilization) at their integration requires application of a wide set of methods: chemical, ultraviolet, radiation. The report describes the analysis of all the aspects of applicable methods of treatment for cleaning of elements’ surfaces and inner contents from microbiota. The analysis showed that the most important, predictable and controllable method is radiation processing (of the elements which don’t change their properties after effective treatment). The experience of ionizing radiation application for sterilization of products for medicine, etc. shows that, depending on initial microbial contamination of lander elements, the required absorbed dose can be within the range 12 ÷ 35 kGr. The analysis of the effect of irregularity of radiation absorption in complex structure elements to the choice of radiation methodology was made and the algorithm of the choice of effective conditions of radiation treatment and control of sterilization efficiency was suggested. The important phase of establishing of the effective condition of each structure element treatment is experimental verification of real microbiological contamination in terms of S/C integration, contamination maximum decrease using another cleaning procedures (mechanical, chemical, ultraviolet) and determination of radiation resistance of spore microorganisms typical for the shops of space technology manufacturing and assembling. Proceeding from three parameters (irregularity of radiation absorption in a concrete element, its initial microbial contamination and resistance of microorganisms to the effect of radiation) the condition of the packed object sterilization is chosen, the condition that prevents secondary contamination, ensures given reliability of the treatment without final experimental microbiological verification only by simple control of the absorbed dose at critical points. All the process phases (from the choice of treatment conditions to provision of the procedure safety) are strictly regulated by Russian legislation in accordance with international standards.

  18. Clinical impact of IMPORT HIGH trial (CRUK/06/003) on breast radiotherapy practices in the United Kingdom

    PubMed Central

    Ciurlionis, Laura; Kirby, Anna M; Locke, Imogen; Venables, Karen; Yarnold, John R; Titley, Jenny; Bliss, Judith; Coles, Charlotte E

    2015-01-01

    Objective: IMPORT HIGH is a multicentre randomized UK trial testing dose-escalated intensity-modulated radiotherapy (IMRT) after tumour excision in females with early breast cancer and higher than average local recurrence risk. A survey was carried out to investigate the impact of this trial on the adoption of advanced breast radiotherapy (RT) techniques in the UK. Methods: A questionnaire was sent to all 26 IMPORT HIGH recruiting RT centres to determine whether the trial has influenced non-trial breast RT techniques in terms of volume delineation, dosimetry, treatment delivery and verification. In order to compare the clinical practice of breast RT between IMPORT HIGH and non–IMPORT HIGH centres, parts of the Royal College of Radiologists (RCR) breast RT audit result were used in this study. Results: 26/26 participating centres completed the questionnaire. After joining the trial, the number of centres routinely using tumour bed clips to guide whole-breast RT rose from 5 (19%) to 21 (81%). 20/26 (77%) centres now contour target volumes and organs at risk (OARs) in some or all patients compared with 14 (54%) before the trial. 14/26 (54%) centres offer inverse-planned IMRT for selected non-trial patients with breast cancer, and 10/14 (71%) have adopted the IMPORT HIGH trial protocol for target volume and OARs dose constraints. Only 2/26 (8%) centres used clip information routinely for breast treatment verification prior to IMPORT HIGH, a minority that has since risen to 7/26 (27%). Data on 1386 patients was included from the RCR audit. This suggested that more cases from IMPORT HIGH centres had surgical clips implanted (83 vs 67%), were treated using CT guided planning with full three-dimensional dose compensation (100 vs 75%), and were treated with photon boost RT (30 vs 8%). Conclusion: The study suggests that participation in the IMPORT HIGH trial has played an important part in providing the guidance and support networks needed for the safe integration of advanced RT techniques, where appropriate, as a standard of care for breast cancer patients treated at participating cancer centres. Advances in knowledge: We investigated the impact of the IMPORT HIGH trial on the adoption of advanced breast RT techniques in the UK and the trial has influenced non-trial breast RT techniques in terms of volume delineation, dosimetry, treatment delivery and verification. PMID:26492402

  19. First test of the prompt gamma ray timing method with heterogeneous targets at a clinical proton therapy facility

    NASA Astrophysics Data System (ADS)

    Hueso-González, Fernando; Enghardt, Wolfgang; Fiedler, Fine; Golnik, Christian; Janssens, Guillaume; Petzoldt, Johannes; Prieels, Damien; Priegnitz, Marlen; Römer, Katja E.; Smeets, Julien; Vander Stappen, François; Wagner, Andreas; Pausch, Guntram

    2015-08-01

    Ion beam therapy promises enhanced tumour coverage compared to conventional radiotherapy, but particle range uncertainties significantly blunt the achievable precision. Experimental tools for range verification in real-time are not yet available in clinical routine. The prompt gamma ray timing method has been recently proposed as an alternative to collimated imaging systems. The detection times of prompt gamma rays encode essential information about the depth-dose profile thanks to the measurable transit time of ions through matter. In a collaboration between OncoRay, Helmholtz-Zentrum Dresden-Rossendorf and IBA, the first test at a clinical proton accelerator (Westdeutsches Protonentherapiezentrum Essen, Germany) with several detectors and phantoms is performed. The robustness of the method against background and stability of the beam bunch time profile is explored, and the bunch time spread is characterized for different proton energies. For a beam spot with a hundred million protons and a single detector, range differences of 5 mm in defined heterogeneous targets are identified by numerical comparison of the spectrum shape. For higher statistics, range shifts down to 2 mm are detectable. A proton bunch monitor, higher detector throughput and quantitative range retrieval are the upcoming steps towards a clinically applicable prototype. In conclusion, the experimental results highlight the prospects of this straightforward verification method at a clinical pencil beam and settle this novel approach as a promising alternative in the field of in vivo dosimetry.

  20. Low altitude unmanned aerial vehicle for characterising remediation effectiveness following the FDNPP accident.

    PubMed

    Martin, P G; Payton, O D; Fardoulis, J S; Richards, D A; Yamashiki, Y; Scott, T B

    2016-01-01

    On the 12th of March 2011, The Great Tōhoku Earthquake occurred 70 km off the eastern coast of Japan, generating a large 14 m high tsunami. The ensuing catalogue of events over the succeeding 12 d resulted in the release of considerable quantities of radioactive material into the environment. Important to the large-scale remediation of the affected areas is the accurate and high spatial resolution characterisation of contamination, including the verification of decontaminated areas. To enable this, a low altitude unmanned aerial vehicle equipped with a lightweight gamma-spectrometer and height normalisation system was used to produce sub-meter resolution maps of contamination. This system provided a valuable method to examine both contaminated and remediated areas rapidly, whilst greatly reducing the dose received by the operator, typically in localities formerly inaccessible to ground-based survey methods. The characterisation of three sites within Fukushima Prefecture is presented; one remediated (and a site of much previous attention), one un-remediated and a third having been subjected to an alternative method to reduce emitted radiation dose. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. SPENVIS Implementation of End-of-Life Solar Cell Calculations Using the Displacement Damage Dose Methodology

    NASA Technical Reports Server (NTRS)

    Walters, Robert; Summers, Geoffrey P.; Warmer. Keffreu J/; Messenger, Scott; Lorentzen, Justin R.; Morton, Thomas; Taylor, Stephen J.; Evans, Hugh; Heynderickx, Daniel; Lei, Fan

    2007-01-01

    This paper presents a method for using the SPENVIS on-line computational suite to implement the displacement damage dose (D(sub d)) methodology for calculating end-of-life (EOL) solar cell performance for a specific space mission. This paper builds on our previous work that has validated the D(sub d) methodology against both measured space data [1,2] and calculations performed using the equivalent fluence methodology developed by NASA JPL [3]. For several years, the space solar community has considered general implementation of the D(sub d) method, but no computer program exists to enable this implementation. In a collaborative effort, NRL, NASA and OAI have produced the Solar Array Verification and Analysis Tool (SAVANT) under NASA funding, but this program has not progressed beyond the beta-stage [4]. The SPENVIS suite with the Multi Layered Shielding Simulation Software (MULASSIS) contains all of the necessary components to implement the Dd methodology in a format complementary to that of SAVANT [5]. NRL is currently working with ESA and BIRA to include the Dd method of solar cell EOL calculations as an integral part of SPENVIS. This paper describes how this can be accomplished.

  2. SU-F-T-32: Evaluation of the Performance of a Multiple-Array-Diode Detector for Quality Assurance Tests in High-Dose-Rate Brachytherapy with Ir-192 Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harpool, K; De La Fuente Herman, T; Ahmad, S

    Purpose: To evaluate the performance of a two-dimensional (2D) array-diode- detector for geometric and dosimetric quality assurance (QA) tests of high-dose-rate (HDR) brachytherapy with an Ir-192-source. Methods: A phantom setup was designed that encapsulated a two-dimensional (2D) array-diode-detector (MapCheck2) and a catheter for the HDR brachytherapy Ir-192 source. This setup was used to perform both geometric and dosimetric quality assurance for the HDR-Ir192 source. The geometric tests included: (a) measurement of the position of the source and (b) spacing between different dwell positions. The dosimteric tests include: (a) linearity of output with time, (b) end effect and (c) relative dosemore » verification. The 2D-dose distribution measured with MapCheck2 was used to perform the previous tests. The results of MapCheck2 were compared with the corresponding quality assurance testes performed with Gafchromic-film and well-ionization-chamber. Results: The position of the source and the spacing between different dwell-positions were reproducible within 1 mm accuracy by measuring the position of maximal dose using MapCheck2 in contrast to the film which showed a blurred image of the dwell positions due to limited film sensitivity to irradiation. The linearity of the dose with dwell times measured from MapCheck2 was superior to the linearity measured with ionization chamber due to higher signal-to-noise ratio of the diode readings. MapCheck2 provided more accurate measurement of the end effect with uncertainty < 1.5% in comparison with the ionization chamber uncertainty of 3%. Although MapCheck2 did not provide absolute calibration dosimeter for the activity of the source, it provided accurate tool for relative dose verification in HDR-brachytherapy. Conclusion: The 2D-array-diode-detector provides a practical, compact and accurate tool to perform quality assurance for HDR-brachytherapy with an Ir-192 source. The diodes in MapCheck2 have high radiation sensitivity and linearity that is superior to Gafchromic-films and ionization chamber used for geometric and dosimetric QA in HDR-brachytherapy, respectively.« less

  3. SU-E-T-644: Evaluation of Angular Dependence Correction for 2D Array Detector Using for Quality Assurance of Volumetric Modulated Arc Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karthikeyan, N; Ganesh, K M; Vikraman, S

    2014-06-15

    Purpose: To evaluate the angular dependence correction for Matrix Evolution 2D array detector in quality assurance of volumetric modulated arc therapy(VMAT). Methods: Total ten patients comprising of different sites were planned for VMAT and taken for the study. Each plan was exposed on Matrix Evolution 2D array detector with Omnipro IMRT software based on the following three different methods using 6MV photon beams from Elekta Synergy linear accelerator. First method, VMAT plan was delivered on Matrix Evolution detector as it gantry mounted with dedicated holder with build-up of 2.3cm. Second, the VMAT plan was delivered with the static gantry anglemore » on to the table mounted setup. Third, the VMAT plan was delivered with actual gantry angle on Matrix Evolution detector fixed in Multicube phantom with gantry angle sensor and angular dependence correction were applied to quantify the plan quality. For all these methods, the corresponding QA plans were generated in TPS and the dose verification was done for both point and 2D fluence analysis with pass criteria of 3% dose difference and 3mm distance to agreement. Results: The measured point dose variation for the first method was observed as 1.58±0.6% of mean and SD with TPS calculated. For second and third method, the mean and standard deviation(SD) was observed as 1.67±0.7% and 1.85±0.8% respectively. The 2D fluence analysis of measured and TPS calculated has the mean and SD of 97.9±1.1%, 97.88±1.2% and 97.55±1.3% for first, second and third methods respectively. The calculated two-tailed Pvalue for point dose and 2D fluence analysis shows the insignificance with values of 0.9316 and 0.9015 respectively, among the different methods of QA. Conclusion: The qualitative evaluation of angular dependence correction for Matrix Evolution 2D array detector shows its competency in accuracy of quality assurance measurement of composite dose distribution of volumetric modulated arc therapy.« less

  4. Adaptive beamlet-based finite-size pencil beam dose calculation for independent verification of IMRT and VMAT.

    PubMed

    Park, Justin C; Li, Jonathan G; Arhjoul, Lahcen; Yan, Guanghua; Lu, Bo; Fan, Qiyong; Liu, Chihray

    2015-04-01

    The use of sophisticated dose calculation procedure in modern radiation therapy treatment planning is inevitable in order to account for complex treatment fields created by multileaf collimators (MLCs). As a consequence, independent volumetric dose verification is time consuming, which affects the efficiency of clinical workflow. In this study, the authors present an efficient adaptive beamlet-based finite-size pencil beam (AB-FSPB) dose calculation algorithm that minimizes the computational procedure while preserving the accuracy. The computational time of finite-size pencil beam (FSPB) algorithm is proportional to the number of infinitesimal and identical beamlets that constitute an arbitrary field shape. In AB-FSPB, dose distribution from each beamlet is mathematically modeled such that the sizes of beamlets to represent an arbitrary field shape no longer need to be infinitesimal nor identical. As a result, it is possible to represent an arbitrary field shape with combinations of different sized and minimal number of beamlets. In addition, the authors included the model parameters to consider MLC for its rounded edge and transmission. Root mean square error (RMSE) between treatment planning system and conventional FSPB on a 10 × 10 cm(2) square field using 10 × 10, 2.5 × 2.5, and 0.5 × 0.5 cm(2) beamlet sizes were 4.90%, 3.19%, and 2.87%, respectively, compared with RMSE of 1.10%, 1.11%, and 1.14% for AB-FSPB. This finding holds true for a larger square field size of 25 × 25 cm(2), where RMSE for 25 × 25, 2.5 × 2.5, and 0.5 × 0.5 cm(2) beamlet sizes were 5.41%, 4.76%, and 3.54% in FSPB, respectively, compared with RMSE of 0.86%, 0.83%, and 0.88% for AB-FSPB. It was found that AB-FSPB could successfully account for the MLC transmissions without major discrepancy. The algorithm was also graphical processing unit (GPU) compatible to maximize its computational speed. For an intensity modulated radiation therapy (∼12 segments) and a volumetric modulated arc therapy fields (∼90 control points) with a 3D grid size of 2.0 × 2.0 × 2.0 mm(3), dose was computed within 3-5 and 10-15 s timeframe, respectively. The authors have developed an efficient adaptive beamlet-based pencil beam dose calculation algorithm. The fast computation nature along with GPU compatibility has shown better performance than conventional FSPB. This enables the implementation of AB-FSPB in the clinical environment for independent volumetric dose verification.

  5. SU-F-T-06: Development of a Formalism for Practical Dose Measurements in Brachytherapy in the German Standard DIN 6803

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hensley, F; Chofor, N; Schoenfeld, A

    2016-06-15

    Purpose: In the steep dose gradients in the vicinity of a radiation source and due to the properties of the changing photon spectra, dose measurements in Brachytherapy usually have large uncertainties. Working group DIN 6803-3 is presently discussing recommendations for practical brachytherapy dosimetry incorporating recent theoretical developments in the description of brachytherapy radiation fields as well as new detectors and phantom materials. The goal is to prepare methods and instruments to verify dose calculation algorithms and for clinical dose verification with reduced uncertainties. Methods: After analysis of the distance dependent spectral changes of the radiation field surrounding brachytherapy sources, themore » energy dependent response of typical brachytherapy detectors was examined with Monte Carlo simulations. A dosimetric formalism was developed allowing the correction of their energy dependence as function of source distance for a Co-60 calibrated detector. Water equivalent phantom materials were examined with Monte Carlo calculations for their influence on brachytherapy photon spectra and for their water equivalence in terms of generating equivalent distributions of photon spectra and absorbed dose to water. Results: The energy dependence of a detector in the vicinity of a brachytherapy source can be described by defining an energy correction factor kQ for brachytherapy in the same manner as in existing dosimetry protocols which incorporates volume averaging and radiation field distortion by the detector. Solid phantom materials were identified which allow precise positioning of a detector together with small correctable deviations from absorbed dose to water. Recommendations for the selection of detectors and phantom materials are being developed for different measurements in brachytherapy. Conclusion: The introduction of kQ for brachytherapy sources may allow more systematic and comparable dose measurements. In principle, the corrections can be verified or even determined by measurement in a water phantom and comparison with dose distributions calculated using the TG43 dosimetry formalism. Project is supported by DIN Deutsches Institut fuer Normung.« less

  6. PATIENT STUDY OF IN VIVO VERIFICATION OF BEAM DELIVERY AND RANGE, USING POSITRON EMISSION TOMOGRAPHY AND COMPUTED TOMOGRAPHY IMAGING AFTER PROTON THERAPY

    PubMed Central

    Parodi, Katia; Paganetti, Harald; Shih, Helen A.; Michaud, Susan; Loeffler, Jay S.; Delaney, Thomas F.; Liebsch, Norbert J.; Munzenrider, John E.; Fischman, Alan J.; Knopf, Antje; Bortfeld, Thomas

    2007-01-01

    Purpose To investigate the feasibility and value of positron emission tomography and computed tomography (PET/CT) for treatment verification after proton radiotherapy. Methods and Materials This study included 9 patients with tumors in the cranial base, spine, orbit, and eye. Total doses of 1.8–3 GyE and 10 GyE (for an ocular melanoma) per fraction were delivered in 1 or 2 fields. Imaging was performed with a commercial PET/CT scanner for 30 min, starting within 20 min after treatment. The same treatment immobilization device was used during imaging for all but 2 patients. Measured PET/CT images were coregistered to the planning CT and compared with the corresponding PET expectation, obtained from CT-based Monte Carlo calculations complemented by functional information. For the ocular case, treatment position was approximately replicated, and spatial correlation was deduced from reference clips visible in both the planning radiographs and imaging CT. Here, the expected PET image was obtained from an analytical model. Results Good spatial correlation and quantitative agreement within 30% were found between the measured and expected activity. For head-and-neck patients, the beam range could be verified with an accuracy of 1–2 mm in well-coregistered bony structures. Low spine and eye sites indicated the need for better fixation and coregistration methods. An analysis of activity decay revealed as tissue-effective half-lives of 800–1,150 s. Conclusions This study demonstrates the feasibility of postradiation PET/CT for in vivo treatment verification. It also indicates some technological and methodological improvements needed for optimal clinical application. PMID:17544003

  7. Image movement of the Elekta EPID during gantry rotation: Effects on the verification of dose distributions.

    PubMed

    Köhn, J; Licher, J; Mielke, M; Loutfi-Krauss, B; Blümer, N; Heine, B; Rödel, C; Scherf, C; Ramm, U

    2017-02-01

    The use of Electronic Portal Imaging Devices (EPIDs) to acquire dosimetric information, especially for 3D-back-projection, has been increasingly extended. For a precise back-projection, the accurate knowledge of the movement characteristics of the EPID during gantry rotation is an essential requirement. Measurements were conducted with different alignments of steel balls, which were mounted on the treatment table to avoid secondary effects such as the mechanical sag of gantry or jaws. The image movement of the EPID was determined by comparing the predicted projections of the phantoms with the EPID acquired image. Effects on dosimetric verifications were evaluated by γ-evaluation. The measurement results showed that the shift of the EPID image is larger in Y direction than in X direction. A maximum rotation of 0.3° and nodding of 2.4° of the detector was calculated. Changes in SDD were found up to 10mm. The angles of nodding are overall higher at discrete gantry angles in comparison to images detected for continuous rotation. Using these results we were able to correct the EPID images used for verification measurements. γ-evaluation revealed a significantly improved agreement between planned and measured EPID signal values. The measurement methods and algorithms introduced in this study are simple and comprehensive. Using these methods and algorithms we were able to quantify the major effects on geometrical and dosimetric characteristics. This allows the correction of EPID signal measurements for these effects related to the gantry angle, leading to an improved γ-evaluation for treatment plans. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  8. Dose-response characteristics of an amorphous silicon EPID.

    PubMed

    Winkler, Peter; Hefner, Alfred; Georg, Dietmar

    2005-10-01

    Electronic portal imaging devices (EPIDs) were originally developed for the purpose of patient setup verification. Nowadays, they are increasingly used as dosimeters (e.g., for IMRT verification and linac-specific QA). A prerequisite for any clinical dosimetric application is a detailed understanding of the detector's dose-response behavior. The aim of this study is to investigate the dosimetric properties of an amorphous silicon EPID (Elekta IVIEWGT) with respect to three photon beam qualities: 6, 10, and 25 MV. The EPID showed an excellent temporal stability on short term as well as on long term scales. The stability throughout the day was strongly influenced by warming up, which took several hours and affected EPID response by 2.5%. Ghosting effects increased the sensitivity of the EPID. They became more pronounced with decreasing time intervals between two exposures as well as with increasing dose. Due to ghosting, changes in pixel sensitivity amounted up to 16% (locally) for the 25 MV photon beam. It was observed that the response characteristics of our EPID depended on dose as well as on dose rate. Doubling the dose rate increased the EPID sensitivity by 1.5%. This behavior was successfully attributed to a dose per frame effect, i.e., a nonlinear relationship between the EPID signal and the dose which was delivered to the panel between two successive readouts. The sensitivity was found to vary up to 10% in the range of 1 to 1000 monitor units. This variation was governed by two independent effects. For low doses, the EPID signal was reduced due to the linac's changing dose rate during startup. Furthermore, the detector reading was influenced by intrabeam variations of EPID sensitivity, namely, an increase of detector response during uniform exposure. For the beam qualities which were used, the response characteristics of the EPID did not depend on energy. Differences in relative dose-response curves resulted from energy dependent temporal output characteristics of the accelerator. If ghosting is prevented from affecting the results and all dose-response effects are properly corrected for, the EPID signal becomes independent of dose rate, dose, and exposure time.

  9. Characterization of exposure and dose of man made vitreous fiber in experimental studies.

    PubMed Central

    Hamilton, R D; Miiller, W C; Christensen, D R; Anderson, R; Hesterberg, T W

    1994-01-01

    The use of fibrous test materials in in vivo experiments introduces a number of significant problems not associated with nonfibrous particulates. The key to all aspects of the experiment is the accurate characterization of the test material in terms of fiber length, diameter, particulate content, and chemistry. All data related to fiber properties must be collected in a statistically sound manner to eliminate potential bias. Procedures similar to those outlined by the National Institute of Occupational Safety and Health (NIOSH) or the World Health Organization (WHO) must be the basis of any fiber characterization. The test material to which the animal is exposed must be processed to maximize the amount of respirable fiber and to minimize particulate content. The complex relationship among the characteristics of the test material, the properties of the delivery system, and the actual dose that reaches the target tissue in the lung makes verification of dose essential. In the case of man-made vitreous fibers (MMVF), dose verification through recovery of fiber from exposed animals is a complex task. The potential for high fiber solubility makes many of the conventional techniques for tissue preservation and digestion inappropriate. Processes based on the minimum use of aggressive chemicals, such as cold storage and low temperature ashing, are potentially useful for a wide range of inorganic fibers. Any processes used to assess fiber exposure and dose must be carefully validated to establish that the chemical and physical characteristics of the fibers have not been changed and that the dose to the target tissue is completely and accurately described. PMID:7882912

  10. Verification of Calculated Skin Doses in Postmastectomy Helical Tomotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, Shima; Parker, Brent C., E-mail: bcparker@marybird.com; Mary Bird Perkins Cancer Center, Baton Rouge, LA

    2011-10-01

    Purpose: To verify the accuracy of calculated skin doses in helical tomotherapy for postmastectomy radiation therapy (PMRT). Methods and Materials: In vivo thermoluminescent dosimeters (TLDs) were used to measure the skin dose at multiple points in each of 14 patients throughout the course of treatment on a TomoTherapy Hi.Art II system, for a total of 420 TLD measurements. Five patients were evaluated near the location of the mastectomy scar, whereas 9 patients were evaluated throughout the treatment volume. The measured dose at each location was compared with calculations from the treatment planning system. Results: The mean difference and standard errormore » of the mean difference between measurement and calculation for the scar measurements was -1.8% {+-} 0.2% (standard deviation [SD], 4.3%; range, -11.1% to 10.6%). The mean difference and standard error of the mean difference between measurement and calculation for measurements throughout the treatment volume was -3.0% {+-} 0.4% (SD, 4.7%; range, -18.4% to 12.6%). The mean difference and standard error of the mean difference between measurement and calculation for all measurements was -2.1% {+-} 0.2% (standard deviation, 4.5%: range, -18.4% to 12.6%). The mean difference between measured and calculated TLD doses was statistically significant at two standard deviations of the mean, but was not clinically significant (i.e., was <5%). However, 23% of the measured TLD doses differed from the calculated TLD doses by more than 5%. Conclusions: The mean of the measured TLD doses agreed with TomoTherapy calculated TLD doses within our clinical criterion of 5%.« less

  11. Poster - Thurs Eve-03: Dose verification using a 2D diode array (Mapcheck) for electron beam modeling, QA and patient customized cutouts.

    PubMed

    Ghasroddashti, E; Sawchuk, S

    2008-07-01

    To assess a diode detector array (MapCheck) for commissioning, quality assurance (QA); and patient specific QA for electrons. 2D dose information was captured for various depths at several square fields ranging from 2×2 to 25×25cm 2 , and 9 patient customized cutouts using both Mapcheck and a scanning water phantom. Beam energies of 6, 9, 12, 16 and 20 MeV produced by Varian linacs were used. The water tank, beam energies and fields were also modeled on the Pinnacle planning system obtaining dose information. Mapcheck, water phantom and Pinnacle results were compared. Relative output factors (ROF) acquired with Mapcheck were compared to an in-house algorithm (JeffIrreg). Inter- and intra-observer variability was also investigated Results: Profiles and %DD data for Mapcheck, water tank, and Pinnacle agree well. High-dose, low-dose-gradient comparisons agree to within 1% between Mapcheck and water phantom. Field size comparisons showed mostly sub-millimeter agreement. ROFs for Mapcheck and JeffIrreg agreed within 2.0% (mean=0.9%±0.6%). The current standard for electron commissioning and QA is the scanning water tank which may be inefficient. Our results demonstrate that MapCheck can potentially be an alternative. Also the dose distributions for patient specific electron treatment require verification. This procedure is particularly challenging when the minimum dimension across the central axis of the cutout is smaller than the range of the electrons in question. Mapcheck offers an easy and efficient way of determining patient dose distributions especially compared to using the alternatives, namely, ion chamber and film. © 2008 American Association of Physicists in Medicine.

  12. Development and reproducibility evaluation of a Monte Carlo-based standard LINAC model for quality assurance of multi-institutional clinical trials.

    PubMed

    Usmani, Muhammad Nauman; Takegawa, Hideki; Takashina, Masaaki; Numasaki, Hodaka; Suga, Masaki; Anetai, Yusuke; Kurosu, Keita; Koizumi, Masahiko; Teshima, Teruki

    2014-11-01

    Technical developments in radiotherapy (RT) have created a need for systematic quality assurance (QA) to ensure that clinical institutions deliver prescribed radiation doses consistent with the requirements of clinical protocols. For QA, an ideal dose verification system should be independent of the treatment-planning system (TPS). This paper describes the development and reproducibility evaluation of a Monte Carlo (MC)-based standard LINAC model as a preliminary requirement for independent verification of dose distributions. The BEAMnrc MC code is used for characterization of the 6-, 10- and 15-MV photon beams for a wide range of field sizes. The modeling of the LINAC head components is based on the specifications provided by the manufacturer. MC dose distributions are tuned to match Varian Golden Beam Data (GBD). For reproducibility evaluation, calculated beam data is compared with beam data measured at individual institutions. For all energies and field sizes, the MC and GBD agreed to within 1.0% for percentage depth doses (PDDs), 1.5% for beam profiles and 1.2% for total scatter factors (Scps.). Reproducibility evaluation showed that the maximum average local differences were 1.3% and 2.5% for PDDs and beam profiles, respectively. MC and institutions' mean Scps agreed to within 2.0%. An MC-based standard LINAC model developed to independently verify dose distributions for QA of multi-institutional clinical trials and routine clinical practice has proven to be highly accurate and reproducible and can thus help ensure that prescribed doses delivered are consistent with the requirements of clinical protocols. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  13. The use of radiochromic EBT2 film for the quality assurance and dosimetric verification of 3D conformal radiotherapy using Microtek ScanMaker 9800XL flatbed scanner

    PubMed Central

    Sim, GS; Ng, KH

    2013-01-01

    Radiochromic and radiographic films are widely used for radiation dosimetry due to the advantage of high spatial resolution and two‐dimensional dose measurement. Different types of scanners, including various models of flatbed scanners, have been used as part of the dosimetry readout procedure. This paper focuses on the characterization of the EBT2 film response in combination with a Microtek ScanMaker 9800XL scanner and the subsequent use in the dosimetric verification of a 3D conformal radiotherapy treatment. The film reproducibility and scanner uniformity of the Microtek ScanMaker 9800XL was studied. A three‐field 3D conformal radiotherapy treatment was planned on an anthropomorphic phantom and EBT2 film measurements were carried out to verify the treatment. The interfilm reproducibility was found to be 0.25%. Over a period of three months, the films darkened by 1%. The scanner reproducibility was ± 2% and a nonuniformity was ±1.9% along the direction perpendicular to the scan direction. EBT2 measurements showed an underdose of 6.2% at high‐dose region compared to TPS predicted dose. This may be due to the inability of the treatment planning system to predict the correct dose distribution in the presence of tissue inhomogeneities and the uncertainty of the scanner reproducibility and uniformity. The use of EBT2 film in conjunction with the axial CT image of the anthropomorphic phantom allows the evaluation of the anatomical location of dose discrepancies between the EBT2 measured dose distribution and TPS predicted dose distribution. PACS number: 87.55.Qr PMID:23835383

  14. Intensity- and energy-modulated electron radiotherapy by means of an xMLC for head and neck shallow tumors

    NASA Astrophysics Data System (ADS)

    Salguero, Francisco Javier; Arráns, Rafael; Atriana Palma, Bianey; Leal, Antonio

    2010-03-01

    The purpose of this paper is to assess the feasibility of delivering intensity- and energy-modulated electron radiation treatment (MERT) by a photon multileaf collimator (xMLC) and to evaluate the improvements obtained in shallow head and neck (HN) tumors. Four HN patient cases covering different clinical situations were planned by MERT, which used an in-house treatment planning system that utilized Monte Carlo dose calculation. The cases included one oronasal, two parotid and one middle ear tumors. The resulting dose-volume histograms were compared with those obtained from conventional photon and electron treatment techniques in our clinic, which included IMRT, electron beam and mixed beams, most of them using fixed-thickness bolus. Experimental verification was performed with plane-parallel ionization chambers for absolute dose verification, and a PTW ionization chamber array and radiochromic film for relative dosimetry. A MC-based treatment planning system for target with compromised volumes in depth and laterally has been validated. A quality assurance protocol for individual MERT plans was launched. Relative MC dose distributions showed a high agreement with film measurements and absolute ion chamber dose measurements performed at a reference point agreed with MC calculations within 2% in all cases. Clinically acceptable PTV coverage and organ-at-risk sparing were achieved by using the proposed MERT approach. MERT treatment plans, based on delivery of intensity-modulated electron beam using the xMLC, for superficial head and neck tumors, demonstrated comparable or improved PTV dose homogeneity with significantly lower dose to normal tissues. The clinical implementation of this technique will be able to offer a viable alternative for the treatment of shallow head and neck tumors.

  15. Monte Carlo modeling of HD120 multileaf collimator on Varian TrueBeam linear accelerator for verification of 6X and 6X FFF VMAT SABR treatment plans

    PubMed Central

    Gete, Ermias; Duzenli, Cheryl; Teke, Tony

    2014-01-01

    A Monte Carlo (MC) validation of the vendor‐supplied Varian TrueBeam 6 MV flattened (6X) phase‐space file and the first implementation of the Siebers‐Keall MC MLC model as applied to the HD120 MLC (for 6X flat and 6X flattening filterfree (6X FFF) beams) are described. The MC model is validated in the context of VMAT patient‐specific quality assurance. The Monte Carlo commissioning process involves: 1) validating the calculated open‐field percentage depth doses (PDDs), profiles, and output factors (OF), 2) adapting the Siebers‐Keall MLC model to match the new HD120‐MLC geometry and material composition, 3) determining the absolute dose conversion factor for the MC calculation, and 4) validating this entire linac/MLC in the context of dose calculation verification for clinical VMAT plans. MC PDDs for the 6X beams agree with the measured data to within 2.0% for field sizes ranging from 2 × 2 to 40 × 40 cm2. Measured and MC profiles show agreement in the 50% field width and the 80%‐20% penumbra region to within 1.3 mm for all square field sizes. MC OFs for the 2 to 40 cm2 square fields agree with measurement to within 1.6%. Verification of VMAT SABR lung, liver, and vertebra plans demonstrate that measured and MC ion chamber doses agree within 0.6% for the 6X beam and within 2.0% for the 6X FFF beam. A 3D gamma factor analysis demonstrates that for the 6X beam, > 99% of voxels meet the pass criteria (3%/3 mm). For the 6X FFF beam, > 94% of voxels meet this criteria. The TrueBeam accelerator delivering 6X and 6X FFF beams with the HD120 MLC can be modeled in Monte Carlo to provide an independent 3D dose calculation for clinical VMAT plans. This quality assurance tool has been used clinically to verify over 140 6X and 16 6X FFF TrueBeam treatment plans. PACS number: 87.55.K‐ PMID:24892341

  16. A silicon strip detector array for energy verification and quality assurance in heavy ion therapy.

    PubMed

    Debrot, Emily; Newall, Matthew; Guatelli, Susanna; Petasecca, Marco; Matsufuji, Naruhiro; Rosenfeld, Anatoly B

    2018-02-01

    The measurement of depth dose profiles for range and energy verification of heavy ion beams is an important aspect of quality assurance procedures for heavy ion therapy facilities. The steep dose gradients in the Bragg peak region of these profiles require the use of detectors with high spatial resolution. The aim of this work is to characterize a one dimensional monolithic silicon detector array called the "serial Dose Magnifying Glass" (sDMG) as an independent ion beam energy and range verification system used for quality assurance conducted for ion beams used in heavy ion therapy. The sDMG detector consists of two linear arrays of 128 silicon sensitive volumes each with an effective size of 2mm × 50μm × 100μm fabricated on a p-type substrate at a pitch of 200 μm along a single axis of detection. The detector was characterized for beam energy and range verification by measuring the response of the detector when irradiated with a 290 MeV/u 12 C ion broad beam incident along the single axis of the detector embedded in a PMMA phantom. The energy of the 12 C ion beam incident on the detector and the residual energy of an ion beam incident on the phantom was determined from the measured Bragg peak position in the sDMG. Ad hoc Monte Carlo simulations of the experimental setup were also performed to give further insight into the detector response. The relative response profiles along the single axis measured with the sDMG detector were found to have good agreement between experiment and simulation with the position of the Bragg peak determined to fall within 0.2 mm or 1.1% of the range in the detector for the two cases. The energy of the beam incident on the detector was found to vary less than 1% between experiment and simulation. The beam energy incident on the phantom was determined to be (280.9 ± 0.8) MeV/u from the experimental and (280.9 ± 0.2) MeV/u from the simulated profiles. These values coincide with the expected energy of 281 MeV/u. The sDMG detector response was studied experimentally and characterized using a Monte Carlo simulation. The sDMG detector was found to accurately determine the 12 C beam energy and is suited for fast energy and range verification quality assurance. It is proposed that the sDMG is also applicable for verification of treatment planning systems that rely on particle range. © 2017 American Association of Physicists in Medicine.

  17. Development and Verification of the Charring Ablating Thermal Protection Implicit System Solver

    NASA Technical Reports Server (NTRS)

    Amar, Adam J.; Calvert, Nathan D.; Kirk, Benjamin S.

    2010-01-01

    The development and verification of the Charring Ablating Thermal Protection Implicit System Solver is presented. This work concentrates on the derivation and verification of the stationary grid terms in the equations that govern three-dimensional heat and mass transfer for charring thermal protection systems including pyrolysis gas flow through the porous char layer. The governing equations are discretized according to the Galerkin finite element method with first and second order implicit time integrators. The governing equations are fully coupled and are solved in parallel via Newton's method, while the fully implicit linear system is solved with the Generalized Minimal Residual method. Verification results from exact solutions and the Method of Manufactured Solutions are presented to show spatial and temporal orders of accuracy as well as nonlinear convergence rates.

  18. Development and Verification of the Charring, Ablating Thermal Protection Implicit System Simulator

    NASA Technical Reports Server (NTRS)

    Amar, Adam J.; Calvert, Nathan; Kirk, Benjamin S.

    2011-01-01

    The development and verification of the Charring Ablating Thermal Protection Implicit System Solver (CATPISS) is presented. This work concentrates on the derivation and verification of the stationary grid terms in the equations that govern three-dimensional heat and mass transfer for charring thermal protection systems including pyrolysis gas flow through the porous char layer. The governing equations are discretized according to the Galerkin finite element method (FEM) with first and second order fully implicit time integrators. The governing equations are fully coupled and are solved in parallel via Newton s method, while the linear system is solved via the Generalized Minimum Residual method (GMRES). Verification results from exact solutions and Method of Manufactured Solutions (MMS) are presented to show spatial and temporal orders of accuracy as well as nonlinear convergence rates.

  19. Motion induced interplay effects for VMAT radiotherapy.

    PubMed

    Edvardsson, Anneli; Nordström, Fredrik; Ceberg, Crister; Ceberg, Sofie

    2018-04-19

    The purpose of this study was to develop a method to simulate breathing motion induced interplay effects for volumetric modulated arc therapy (VMAT), to verify the proposed method with measurements, and to use the method to investigate how interplay effects vary with different patient- and machine specific parameters. VMAT treatment plans were created on a virtual phantom in a treatment planning system (TPS). Interplay effects were simulated by dividing each plan into smaller sub-arcs using an in-house developed software and shifting the isocenter for each sub-arc to simulate a sin 6 breathing motion in the superior-inferior direction. The simulations were performed for both flattening-filter (FF) and flattening-filter free (FFF) plans and for different breathing amplitudes, period times, initial breathing phases, dose levels, plan complexities, CTV sizes, and collimator angles. The resulting sub-arcs were calculated in the TPS, generating a dose distribution including the effects of motion. The interplay effects were separated from dose blurring and the relative dose differences to 2% and 98% of the CTV volume (ΔD 98% and ΔD 2% ) were calculated. To verify the simulation method, measurements were carried out, both static and during motion, using a quasi-3D phantom and a motion platform. The results of the verification measurements during motion were comparable to the results of the static measurements. Considerable interplay effects were observed for individual fractions, with the minimum ΔD 98% and maximum ΔD 2% being  -16.7% and 16.2%, respectively. The extent of interplay effects was larger for FFF compared to FF and generally increased for higher breathing amplitudes, larger period times, lower dose levels, and more complex treatment plans. Also, the interplay effects varied considerably with the initial breathing phase, and larger variations were observed for smaller CTV sizes. In conclusion, a method to simulate motion induced interplay effects was developed and verified with measurements, which allowed for a large number of treatment scenarios to be investigated. The simulations showed large interplay effects for individual fractions and that the extent of interplay effects varied with the breathing pattern, FFF/FF, dose level, CTV size, collimator angle, and the complexity of the treatment plan.

  20. Motion induced interplay effects for VMAT radiotherapy

    NASA Astrophysics Data System (ADS)

    Edvardsson, Anneli; Nordström, Fredrik; Ceberg, Crister; Ceberg, Sofie

    2018-04-01

    The purpose of this study was to develop a method to simulate breathing motion induced interplay effects for volumetric modulated arc therapy (VMAT), to verify the proposed method with measurements, and to use the method to investigate how interplay effects vary with different patient- and machine specific parameters. VMAT treatment plans were created on a virtual phantom in a treatment planning system (TPS). Interplay effects were simulated by dividing each plan into smaller sub-arcs using an in-house developed software and shifting the isocenter for each sub-arc to simulate a sin6 breathing motion in the superior–inferior direction. The simulations were performed for both flattening-filter (FF) and flattening-filter free (FFF) plans and for different breathing amplitudes, period times, initial breathing phases, dose levels, plan complexities, CTV sizes, and collimator angles. The resulting sub-arcs were calculated in the TPS, generating a dose distribution including the effects of motion. The interplay effects were separated from dose blurring and the relative dose differences to 2% and 98% of the CTV volume (ΔD98% and ΔD2%) were calculated. To verify the simulation method, measurements were carried out, both static and during motion, using a quasi-3D phantom and a motion platform. The results of the verification measurements during motion were comparable to the results of the static measurements. Considerable interplay effects were observed for individual fractions, with the minimum ΔD98% and maximum ΔD2% being  ‑16.7% and 16.2%, respectively. The extent of interplay effects was larger for FFF compared to FF and generally increased for higher breathing amplitudes, larger period times, lower dose levels, and more complex treatment plans. Also, the interplay effects varied considerably with the initial breathing phase, and larger variations were observed for smaller CTV sizes. In conclusion, a method to simulate motion induced interplay effects was developed and verified with measurements, which allowed for a large number of treatment scenarios to be investigated. The simulations showed large interplay effects for individual fractions and that the extent of interplay effects varied with the breathing pattern, FFF/FF, dose level, CTV size, collimator angle, and the complexity of the treatment plan.

  1. Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning.

    PubMed

    Chetty, Indrin J; Curran, Bruce; Cygler, Joanna E; DeMarco, John J; Ezzell, Gary; Faddegon, Bruce A; Kawrakow, Iwan; Keall, Paul J; Liu, Helen; Ma, C M Charlie; Rogers, D W O; Seuntjens, Jan; Sheikh-Bagheri, Daryoush; Siebers, Jeffrey V

    2007-12-01

    The Monte Carlo (MC) method has been shown through many research studies to calculate accurate dose distributions for clinical radiotherapy, particularly in heterogeneous patient tissues where the effects of electron transport cannot be accurately handled with conventional, deterministic dose algorithms. Despite its proven accuracy and the potential for improved dose distributions to influence treatment outcomes, the long calculation times previously associated with MC simulation rendered this method impractical for routine clinical treatment planning. However, the development of faster codes optimized for radiotherapy calculations and improvements in computer processor technology have substantially reduced calculation times to, in some instances, within minutes on a single processor. These advances have motivated several major treatment planning system vendors to embark upon the path of MC techniques. Several commercial vendors have already released or are currently in the process of releasing MC algorithms for photon and/or electron beam treatment planning. Consequently, the accessibility and use of MC treatment planning algorithms may well become widespread in the radiotherapy community. With MC simulation, dose is computed stochastically using first principles; this method is therefore quite different from conventional dose algorithms. Issues such as statistical uncertainties, the use of variance reduction techniques, the ability to account for geometric details in the accelerator treatment head simulation, and other features, are all unique components of a MC treatment planning algorithm. Successful implementation by the clinical physicist of such a system will require an understanding of the basic principles of MC techniques. The purpose of this report, while providing education and review on the use of MC simulation in radiotherapy planning, is to set out, for both users and developers, the salient issues associated with clinical implementation and experimental verification of MC dose algorithms. As the MC method is an emerging technology, this report is not meant to be prescriptive. Rather, it is intended as a preliminary report to review the tenets of the MC method and to provide the framework upon which to build a comprehensive program for commissioning and routine quality assurance of MC-based treatment planning systems.

  2. SU-F-T-293: Experimental Comparisons of Ionization Chambers with Different Volumes for CyberKnife Delivery Quality Assurance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakayama, M; Kobe University Graduate School of Medicine, Kobe, Hyogo; Munetomo, Y

    2016-06-15

    Purpose: To evaluate the practicality use of ionization chambers with different volumes for delivery quality assurance of CyberKnife plans, Methods: Dosimetric measurements with a spherical solid water phantom and three ionization chambers with volumes of 0.13, 0.04, and 0.01 cm3 (IBA CC13, CC04, and CC01, respectively) were performed for various CyberKnife clinical treatment plans including both isocentric and nonisocentric delivery. For each chamber, the ion recombination correction factors Ks were calculated using the Jaffe plot method and twovoltage method at a 10-cm depth for a 60-mm collimator field in a water phantom. The polarity correction factors Kpol were determined formore » 5–60-mm collimator fields in same experimental setup. The measured doses were compared to the doses for the detectors calculated using a treatment planning system. Results: The differences in the Ks between the Jaffe plot method and two-voltage method were −0.12, −0.02, and 0.89% for CC13, CC04, and CC01, respectively. The changes in Kpol for the different field sizes were 0.2, 0.3, and 0.8% for CC13, CC04, and CC01, respectively. The measured doses for CC04 and CC01 were within 3% of the calculated doses for the clinical treatment plans with isocentric delivery with collimator fields greater than 12.5 mm. Those for CC13 had differences of over 3% for the plans with isocentric delivery with collimator fields less than 15 mm. The differences for the isocentric plans were similar to those for the single beam plans. The measured doses for each chamber were within 3% of the calculated doses for the non-isocentric plans except for that with a PTV volume less than 1.0 cm{sup 3}. Conclusion: Although there are some limitations, the ionization chamber with a smaller volume is a better detector for verification of the CyberKnife plans owing to the high spatial resolution.« less

  3. In vivo TLD dose measurements in catheter-based high-dose-rate brachytherapy.

    PubMed

    Adlienė, Diana; Jakštas, Karolis; Urbonavičius, Benas Gabrielis

    2015-07-01

    Routine in vivo dosimetry is well established in external beam radiotherapy; however, it is restricted mainly to detection of gross errors in high-dose-rate (HDR) brachytherapy due to complicated measurements in the field of steep dose gradients in the vicinity of radioactive source and high uncertainties. The results of in vivo dose measurements using TLD 100 mini rods and TLD 'pin worms' in catheter-based HDR brachytherapy are provided in this paper alongside with their comparison with corresponding dose values obtained using calculation algorithm of the treatment planning system. Possibility to perform independent verification of treatment delivery in HDR brachytherapy using TLDs is discussed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. The evaluation of a 2D diode array in “magic phantom” for use in high dose rate brachytherapy pretreatment quality assurance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espinoza, A.; Petasecca, M.; Fuduli, I.

    2015-02-15

    Purpose: High dose rate (HDR) brachytherapy is a treatment method that is used increasingly worldwide. The development of a sound quality assurance program for the verification of treatment deliveries can be challenging due to the high source activity utilized and the need for precise measurements of dwell positions and times. This paper describes the application of a novel phantom, based on a 2D 11 × 11 diode array detection system, named “magic phantom” (MPh), to accurately measure plan dwell positions and times, compare them directly to the treatment plan, determine errors in treatment delivery, and calculate absorbed dose. Methods: Themore » magic phantom system was CT scanned and a 20 catheter plan was generated to simulate a nonspecific treatment scenario. This plan was delivered to the MPh and, using a custom developed software suite, the dwell positions and times were measured and compared to the plan. The original plan was also modified, with changes not disclosed to the primary authors, and measured again using the device and software to determine the modifications. A new metric, the “position–time gamma index,” was developed to quantify the quality of a treatment delivery when compared to the treatment plan. The MPh was evaluated to determine the minimum measurable dwell time and step size. The incorporation of the TG-43U1 formalism directly into the software allows for dose calculations to be made based on the measured plan. The estimated dose distributions calculated by the software were compared to the treatment plan and to calibrated EBT3 film, using the 2D gamma analysis method. Results: For the original plan, the magic phantom system was capable of measuring all dwell points and dwell times and the majority were found to be within 0.93 mm and 0.25 s, respectively, from the plan. By measuring the altered plan and comparing it to the unmodified treatment plan, the use of the position–time gamma index showed that all modifications made could be readily detected. The MPh was able to measure dwell times down to 0.067 ± 0.001 s and planned dwell positions separated by 1 mm. The dose calculation carried out by the MPh software was found to be in agreement with values calculated by the treatment planning system within 0.75%. Using the 2D gamma index, the dose map of the MPh plane and measured EBT3 were found to have a pass rate of over 95% when compared to the original plan. Conclusions: The application of this magic phantom quality assurance system to HDR brachytherapy has demonstrated promising ability to perform the verification of treatment plans, based upon the measured dwell positions and times. The introduction of the quantitative position–time gamma index allows for direct comparison of measured parameters against the plan and could be used prior to patient treatment to ensure accurate delivery.« less

  5. Messen, Kalibrieren, Eichen in der Radiologie: Prinzipien und Praxis

    NASA Astrophysics Data System (ADS)

    Wagner, Siegfried R.

    Nach einleitender Erläuterung der unterschiedlichen Meßbedingungen in der Strahlentherapie und im Strahlenschutz werden die metrologischen Probleme am Beispiel der Größenkategorie Äquivalentdosis diskutiert. Als spezielle Größen werden effektive Äquivalentdosis und Umgebungs-Äquivalentdosis eingeführt. Es wird gezeigt, wie richtiges Messen durch ein konsistentes System von Bauartanforderungen an Meßgeräte, durch Kalibrieren und durch Eichen gewährleistet werden kann. Die Bedeutung von Meßunsicherheiten und Fehlergrenzen wird erläutert und ihre Auswirkung auf die Interpretation von Meßergebnissen behandelt.Translated AbstractMeasurements, Calibration, Verification in Radiology: Principles and PracticeThe different measuring conditions in radiotherapy and in radiation protection are discussed in the introduction. Then, the metrological problems are discussed exemplarily with the dose equivalent as a category of quantity. Effective dose equivalent and ambient dose equivalent are introduced as special quantities. It is demonstrated, how correct measurements can be secured by a consistent system of instrument pattern requirements, by calibration and verification. The importance of uncertainties of measurements and of error limits is illustrated and their influence on the interpretation of the results of measurements is treated.

  6. Measurement of radiation damage of water-based liquid scintillator and liquid scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bignell, L. J.; Diwan, M. V.; Hans, S.

    2015-10-19

    Liquid scintillating phantoms have been proposed as a means to perform real-time 3D dosimetry for proton therapy treatment plan verification. We have studied what effect radiation damage to the scintillator will have upon this application. We have performed measurements of the degradation of the light yield and optical attenuation length of liquid scintillator and water-based liquid scintillator after irradiation by 201 MeV proton beams that deposited doses of approximately 52 Gy, 300 Gy, and 800 Gy in the scintillator. Liquid scintillator and water-based liquid scintillator (composed of 5% scintillating phase) exhibit light yield reductions of 1.74 ± 0.55 % andmore » 1.31 ± 0.59 % after ≈ 800 Gy of proton dose, respectively. Some increased optical attenuation was observed in the irradiated samples, the measured reduction to the light yield is also due to damage to the scintillation light production. Based on our results and conservative estimates of the expected dose in a clinical context, a scintillating phantom used for proton therapy treatment plan verification would exhibit a systematic light yield reduction of approximately 0.1% after a year of operation.« less

  7. Exploration of Uncertainty in Glacier Modelling

    NASA Technical Reports Server (NTRS)

    Thompson, David E.

    1999-01-01

    There are procedures and methods for verification of coding algebra and for validations of models and calculations that are in use in the aerospace computational fluid dynamics (CFD) community. These methods would be efficacious if used by the glacier dynamics modelling community. This paper is a presentation of some of those methods, and how they might be applied to uncertainty management supporting code verification and model validation for glacier dynamics. The similarities and differences between their use in CFD analysis and the proposed application of these methods to glacier modelling are discussed. After establishing sources of uncertainty and methods for code verification, the paper looks at a representative sampling of verification and validation efforts that are underway in the glacier modelling community, and establishes a context for these within overall solution quality assessment. Finally, an information architecture and interactive interface is introduced and advocated. This Integrated Cryospheric Exploration (ICE) Environment is proposed for exploring and managing sources of uncertainty in glacier modelling codes and methods, and for supporting scientific numerical exploration and verification. The details and functionality of this Environment are described based on modifications of a system already developed for CFD modelling and analysis.

  8. Verification of Triple Modular Redundancy (TMR) Insertion for Reliable and Trusted Systems

    NASA Technical Reports Server (NTRS)

    Berg, Melanie; LaBel, Kenneth A.

    2016-01-01

    We propose a method for TMR insertion verification that satisfies the process for reliable and trusted systems. If a system is expected to be protected using TMR, improper insertion can jeopardize the reliability and security of the system. Due to the complexity of the verification process, there are currently no available techniques that can provide complete and reliable confirmation of TMR insertion. This manuscript addresses the challenge of confirming that TMR has been inserted without corruption of functionality and with correct application of the expected TMR topology. The proposed verification method combines the usage of existing formal analysis tools with a novel search-detect-and-verify tool. Field programmable gate array (FPGA),Triple Modular Redundancy (TMR),Verification, Trust, Reliability,

  9. Voltage verification unit

    DOEpatents

    Martin, Edward J [Virginia Beach, VA

    2008-01-15

    A voltage verification unit and method for determining the absence of potentially dangerous potentials within a power supply enclosure without Mode 2 work is disclosed. With this device and method, a qualified worker, following a relatively simple protocol that involves a function test (hot, cold, hot) of the voltage verification unit before Lock Out/Tag Out and, and once the Lock Out/Tag Out is completed, testing or "trying" by simply reading a display on the voltage verification unit can be accomplished without exposure of the operator to the interior of the voltage supply enclosure. According to a preferred embodiment, the voltage verification unit includes test leads to allow diagnostics with other meters, without the necessity of accessing potentially dangerous bus bars or the like.

  10. Dosimetric validation and clinical implementation of two 3D dose verification systems for quality assurance in volumetric-modulated arc therapy techniques.

    PubMed

    Clemente-Gutiérrez, Francisco; Pérez-Vara, Consuelo

    2015-03-08

    A pretreatment quality assurance program for volumetric techniques should include redundant calculations and measurement-based verifications. The patient-specific quality assurance process must be based in clinically relevant metrics. The aim of this study was to show the commission, clinical implementation, and comparison of two systems that allow performing a 3D redundant dose calculation. In addition, one of them is capable of reconstructing the dose on patient anatomy from measurements taken with a 2D ion chamber array. Both systems were compared in terms of reference calibration data (absolute dose, output factors, percentage depth-dose curves, and profiles). Results were in good agreement for absolute dose values (discrepancies were below 0.5%) and output factors (mean differences were below 1%). Maximum mean discrepancies were located between 10 and 20 cm of depth for PDDs (-2.7%) and in the penumbra region for profiles (mean DTA of 1.5 mm). Validation of the systems was performed by comparing point-dose measurements with values obtained by the two systems for static, dynamic fields from AAPM TG-119 report, and 12 real VMAT plans for different anatomical sites (differences better than 1.2%). Comparisons between measurements taken with a 2D ion chamber array and results obtained by both systems for real VMAT plans were also performed (mean global gamma passing rates better than 87.0% and 97.9% for the 2%/2 mm and 3%/3 mm criteria). Clinical implementation of the systems was evaluated by comparing dose-volume parameters for all TG-119 tests and real VMAT plans with TPS values (mean differences were below 1%). In addition, comparisons between dose distributions calculated by TPS and those extracted by the two systems for real VMAT plans were also performed (mean global gamma passing rates better than 86.0% and 93.0% for the 2%/2 mm and 3%/ 3 mm criteria). The clinical use of both systems was successfully evaluated.

  11. Verification of chemistry reference ranges using a simple method in sub-Saharan Africa

    PubMed Central

    Taylor, Douglas; Mandala, Justin; Nanda, Kavita; Van Campenhout, Christel; Agingu, Walter; Madurai, Lorna; Barsch, Eva-Maria; Deese, Jennifer; Van Damme, Lut; Crucitti, Tania

    2016-01-01

    Background Chemistry safety assessments are interpreted by using chemistry reference ranges (CRRs). Verification of CRRs is time consuming and often requires a statistical background. Objectives We report on an easy and cost-saving method to verify CRRs. Methods Using a former method introduced by Sigma Diagnostics, three study sites in sub-Saharan Africa, Bondo, Kenya, and Pretoria and Bloemfontein, South Africa, verified the CRRs for hepatic and renal biochemistry assays performed during a clinical trial of HIV antiretroviral pre-exposure prophylaxis. The aspartate aminotransferase/alanine aminotransferase, creatinine and phosphorus results from 10 clinically-healthy participants at the screening visit were used. In the event the CRRs did not pass the verification, new CRRs had to be calculated based on 40 clinically-healthy participants. Results Within a few weeks, the study sites accomplished verification of the CRRs without additional costs. The aspartate aminotransferase reference ranges for the Bondo, Kenya site and the alanine aminotransferase reference ranges for the Pretoria, South Africa site required adjustment. The phosphorus CRR passed verification and the creatinine CRR required adjustment at every site. The newly-established CRR intervals were narrower than the CRRs used previously at these study sites due to decreases in the upper limits of the reference ranges. As a result, more toxicities were detected. Conclusion To ensure the safety of clinical trial participants, verification of CRRs should be standard practice in clinical trials conducted in settings where the CRR has not been validated for the local population. This verification method is simple, inexpensive, and can be performed by any medical laboratory. PMID:28879112

  12. Method of analysis at the U.S. Geological Survey California Water Science Center, Sacramento Laboratory - determination of haloacetic acid formation potential, method validation, and quality-control practices

    USGS Publications Warehouse

    Zazzi, Barbara C.; Crepeau, Kathryn L.; Fram, Miranda S.; Bergamaschi, Brian A.

    2005-01-01

    An analytical method for the determination of haloacetic acid formation potential of water samples has been developed by the U.S. Geological Survey California Water Science Center Sacramento Laboratory. The haloacetic acid formation potential is measured by dosing water samples with chlorine under specified conditions of pH, temperature, incubation time, darkness, and residual-free chlorine. The haloacetic acids formed are bromochloroacetic acid, bromodichloroacetic acid, dibromochloroacetic acid, dibromoacetic acid, dichloroacetic acid, monobromoacetic acid, monochloroacetic acid, tribromoacetic acid, and trichloroacetic acid. They are extracted, methylated, and then analyzed using a gas chromatograph equipped with an electron capture detector. Method validation experiments were performed to determine the method accuracy, precision, and detection limit for each of the compounds. Method detection limits for these nine haloacetic acids ranged from 0.11 to 0.45 microgram per liter. Quality-control practices include the use of blanks, quality-control samples, calibration verification standards, surrogate recovery, internal standard, matrix spikes, and duplicates.

  13. Formal methods for dependable real-time systems

    NASA Technical Reports Server (NTRS)

    Rushby, John

    1993-01-01

    The motivation for using formal methods to specify and reason about real time properties is outlined and approaches that were proposed and used are sketched. The formal verifications of clock synchronization algorithms are concluded as showing that mechanically supported reasoning about complex real time behavior is feasible. However, there was significant increase in the effectiveness of verification systems since those verifications were performed, at it is to be expected that verifications of comparable difficulty will become fairly routine. The current challenge lies in developing perspicuous and economical approaches to the formalization and specification of real time properties.

  14. An open source solution for an in-house built dynamic platform for the validation of stereotactic ablative body radiotherapy for VMAT and IMRT.

    PubMed

    Munoz, Luis; Ziebell, Amy; Morton, Jason; Bhat, Madhava

    2016-12-01

    An in-house solution for the verification of dose delivered to a moving phantom as required for the clinical implementation of lung stereotactic ablative body radiation therapy was developed. The superior-inferior movement required to simulate tumour motion during a normal breathing cycle was achieved via the novel use of an Arduino Uno™, a low-cost open-source microcontroller board connected to a high torque servo motor. Slow CT imaging was used to acquire the image set and a 4D cone beam CT (4D-CBCT) verified the efficacy of contoured margins before treatment on the moving phantom. Treatment fields were delivered to a section of a CIRS™ anthropomorphic phantom. Dose verification to the dynamic phantom with Gafchromic EBT3 film using 3 %-1 mm gamma analysis acceptance criteria registered an absolute dose pass rate for IMRT and VMAT of 98 and 96.6 %, respectively. It was verified that 100 % of the PTV received the prescribed dose of 12 Gy per fraction using the dynamic phantom, and no major discrepancy between planned and measured results due to interplay between multileaf collimator sequences and target motion was observed. This study confirmed that the use of an in-house solution using open source hardware and software with existing quality assurance equipment was appropriate in validating a new treatment technique.

  15. Tailoring four-dimensional cone-beam CT acquisition settings for fiducial marker-based image guidance in radiation therapy.

    PubMed

    Jin, Peng; van Wieringen, Niek; Hulshof, Maarten C C M; Bel, Arjan; Alderliesten, Tanja

    2018-04-01

    Use of four-dimensional cone-beam CT (4D-CBCT) and fiducial markers for image guidance during radiation therapy (RT) of mobile tumors is challenging due to the trade-off among image quality, imaging dose, and scanning time. This study aimed to investigate different 4D-CBCT acquisition settings for good visibility of fiducial markers in 4D-CBCT. Using these 4D-CBCTs, the feasibility of marker-based 4D registration for RT setup verification and manual respiration-induced motion quantification was investigated. For this, we applied a dynamic phantom with three different breathing motion amplitudes and included two patients with implanted markers. Irrespective of the motion amplitude, for a medium field of view (FOV), marker visibility was improved by reducing the imaging dose per projection and increasing the number of projection images; however, the scanning time was 4 to 8 min. For a small FOV, the total imaging dose and the scanning time were reduced (62.5% of the dose using a medium FOV, 2.5 min) without losing marker visibility. However, the body contour could be missing for a small FOV, which is not preferred in RT. The marker-based 4D setup verification was feasible for both the phantom and patient data. Moreover, manual marker motion quantification can achieve a high accuracy with a mean error of [Formula: see text].

  16. Sci-Thur PM – Brachytherapy 05: Surface Collimation Applied to Superficial Flap High Dose-Rate Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Derek; Sabondjian, Eric; Lawrence, Kailin

    Purpose: To apply surface collimation for superficial flap HDR skin brachytherapy utilizing common clinical resources and to demonstrate the potential for OAR dose reduction within a clinically relevant setting. Methods: Two phantom setups were used. 3 mm lead collimation was applied to a solid slab phantom to determine appropriate geometries relating to collimation and dwell activation. The same collimation was applied to the temple of an anthropomorphic head phantom to demonstrate lens dose reduction. Each setup was simulated and planned to deliver 400 cGy to a 3 cm circular target to 3 mm depth. The control and collimated irradiations weremore » sequentially measured using calibrated radiochromic films. Results: Collimation for the slab phantom attenuated the dose beyond the collimator opening, decreasing the fall-off distances by half and reducing the area of healthy skin irradiated. Target coverage can be negatively impacted by a tight collimation margin, with the required margin approximated by the primary beam geometric penumbra. Surface collimation applied to the head phantom similarly attenuated the surrounding normal tissue dose while reducing the lens dose from 84 to 68 cGy. To ensure consistent setup between simulation and treatment, additional QA was performed including collimator markup, accounting for collimator placement uncertainties, standoff distance verification, and in vivo dosimetry. Conclusions: Surface collimation was shown to reduce normal tissue dose without compromising target coverage. Lens dose reduction was demonstrated on an anthropomorphic phantom within a clinical setting. Additional QA is proposed to ensure treatment fidelity.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, R; Zhu, X; Li, S

    Purpose: High Dose Rate (HDR) brachytherapy forward planning is principally an iterative process; hence, plan quality is affected by planners’ experiences and limited planning time. Thus, this may lead to sporadic errors and inconsistencies in planning. A statistical tool based on previous approved clinical treatment plans would help to maintain the consistency of planning quality and improve the efficiency of second checking. Methods: An independent dose calculation tool was developed from commercial software. Thirty-three previously approved cervical HDR plans with the same prescription dose (550cGy), applicator type, and treatment protocol were examined, and ICRU defined reference point doses (bladder, vaginalmore » mucosa, rectum, and points A/B) along with dwell times were collected. Dose calculation tool then calculated appropriate range with a 95% confidence interval for each parameter obtained, which would be used as the benchmark for evaluation of those parameters in future HDR treatment plans. Model quality was verified using five randomly selected approved plans from the same dataset. Results: Dose variations appears to be larger at the reference point of bladder and mucosa as compared with rectum. Most reference point doses from verification plans fell between the predicted range, except the doses of two points of rectum and two points of reference position A (owing to rectal anatomical variations & clinical adjustment in prescription points, respectively). Similar results were obtained for tandem and ring dwell times despite relatively larger uncertainties. Conclusion: This statistical tool provides an insight into clinically acceptable range of cervical HDR plans, which could be useful in plan checking and identifying potential planning errors, thus improving the consistency of plan quality.« less

  18. A dual two dimensional electronic portal imaging device transit dosimetry model based on an empirical quadratic formalism

    PubMed Central

    Metwaly, M; Glegg, M; Baggarley, S P; Elliott, A

    2015-01-01

    Objective: This study describes a two dimensional electronic portal imaging device (EPID) transit dosimetry model that can predict either: (1) in-phantom exit dose, or (2) EPID transit dose, for treatment verification. Methods: The model was based on a quadratic equation that relates the reduction in intensity to the equivalent path length (EPL) of the attenuator. In this study, two sets of quadratic equation coefficients were derived from calibration dose planes measured with EPID and ionization chamber in water under reference conditions. With two sets of coefficients, EPL can be calculated from either EPID or treatment planning system (TPS) dose planes. Consequently, either the in-phantom exit dose or the EPID transit dose can be predicted from the EPL. The model was tested with two open, five wedge and seven sliding window prostate and head and neck intensity-modulated radiation therapy (IMRT) fields on phantoms. Results were analysed using absolute gamma analysis (3%/3 mm). Results: The open fields gamma pass rates were >96.8% for all comparisons. For wedge and IMRT fields, comparisons between predicted and TPS-computed in-phantom exit dose resulted in mean gamma pass rate of 97.4% (range, 92.3–100%). As for the comparisons between predicted and measured EPID transit dose, the mean gamma pass rate was 97.5% (range, 92.6–100%). Conclusion: An EPID transit dosimetry model that can predict in-phantom exit dose and EPID transit dose was described and proven to be valid. Advances in knowledge: The described model is practical, generic and flexible to encourage widespread implementation of EPID dosimetry for the improvement of patients' safety in radiotherapy. PMID:25969867

  19. Feasibility Study of Glass Dosimeter for In Vivo Measurement: Dosimetric Characterization and Clinical Application in Proton Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rah, Jeong-Eun; Oh, Do Hoon; Kim, Jong Won

    Purpose: To evaluate the suitability of the GD-301 glass dosimeter for in vivo dose verification in proton therapy. Methods and Materials: The glass dosimeter was analyzed for its dosimetrics characteristic in proton beam. Dosimeters were calibrated in a water phantom using a stairlike holder specially designed for this study. To determine the accuracy of the glass dosimeter in proton dose measurements, we compared the glass dosimeter and thermoluminescent dosimeter (TLD) dose measurements using a cylindrical phantom. We investigated the feasibility of the glass dosimeter for the measurement of dose distributions near the superficial region for proton therapy plans with amore » varying separation between the target volume and the surface of 6 patients. Results and Discussion: Uniformity was within 1.5%. The dose-response has good linearity. Dose-rate, fading, and energy dependence were found to be within 3%. The beam profile measured using the glass dosimeter was in good agreement with the profile obtained from the ionization chamber. Depth-dose distributions in nonmodulated and modulated proton beams obtained with the glass dosimeter were estimated to be within 3%, which was lower than those with the ionization chamber. In the phantom study, the difference of isocenter dose between the delivery dose calculated by the treatment planning system and that measured by the glass dosimeter was within 5%. With in vivo dosimetry, the calculated surface doses overestimated measurements by 4%-16% using glass dosimeter and TLD. Conclusion: It is recommended that bolus be added for these clinical cases. We also believe that the glass dosimeter has considerable potential for use with in vivo patient proton dosimetry.« less

  20. SU-E-T-188: Film Dosimetry Verification of Monte Carlo Generated Electron Treatment Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enright, S; Asprinio, A; Lu, L

    2014-06-01

    Purpose: The purpose of this study was to compare dose distributions from film measurements to Monte Carlo generated electron treatment plans. Irradiation with electrons offers the advantages of dose uniformity in the target volume and of minimizing the dose to deeper healthy tissue. Using the Monte Carlo algorithm will improve dose accuracy in regions with heterogeneities and irregular surfaces. Methods: Dose distributions from GafChromic{sup ™} EBT3 films were compared to dose distributions from the Electron Monte Carlo algorithm in the Eclipse{sup ™} radiotherapy treatment planning system. These measurements were obtained for 6MeV, 9MeV and 12MeV electrons at two depths. Allmore » phantoms studied were imported into Eclipse by CT scan. A 1 cm thick solid water template with holes for bonelike and lung-like plugs was used. Different configurations were used with the different plugs inserted into the holes. Configurations with solid-water plugs stacked on top of one another were also used to create an irregular surface. Results: The dose distributions measured from the film agreed with those from the Electron Monte Carlo treatment plan. Accuracy of Electron Monte Carlo algorithm was also compared to that of Pencil Beam. Dose distributions from Monte Carlo had much higher pass rates than distributions from Pencil Beam when compared to the film. The pass rate for Monte Carlo was in the 80%–99% range, where the pass rate for Pencil Beam was as low as 10.76%. Conclusion: The dose distribution from Monte Carlo agreed with the measured dose from the film. When compared to the Pencil Beam algorithm, pass rates for Monte Carlo were much higher. Monte Carlo should be used over Pencil Beam for regions with heterogeneities and irregular surfaces.« less

  1. Fractionated Proton Radiotherapy for Benign Cavernous Sinus Meningiomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slater, Jerry D., E-mail: jdslater@dominion.llumc.edu; Loredo, Lilia N.; Chung, Arthur

    2012-08-01

    Purpose: To evaluate the efficacy of fractionated proton radiotherapy for a population of patients with benign cavernous sinus meningiomas. Methods and Materials: Between 1991 and 2002, 72 patients were treated at Loma Linda University Medical Center with proton therapy for cavernous sinus meningiomas. Fifty-one patients had biopsy or subtotal resection; 47 had World Health Organization grade 1 pathology. Twenty-one patients had no histologic verification. Twenty-two patients received primary proton therapy; 30 had 1 previous surgery; 20 had more than 1 surgery. The mean gross tumor volume was 27.6 cm{sup 3}; mean clinical target volume was 52.9 cm{sup 3}. Median totalmore » doses for patients with and without histologic verification were 59 and 57 Gy, respectively. Mean and median follow-up periods were 74 months. Results: The overall 5-year actuarial control rate was 96%; the control rate was 99% in patients with grade 1 or absent histologic findings and 50% for those with atypical histology. All 21 patients who did not have histologic verification and 46 of 47 patients with histologic confirmation of grade 1 tumor demonstrated disease control at 5 years. Control rates for patients without previous surgery, 1 surgery, and 2 or more surgeries were 95%, 96%, and 95%, respectively. Conclusions: Fractionated proton radiotherapy for grade 1 cavernous sinus meningiomas achieves excellent control rates with minimal toxicities, regardless of surgical intervention or use of histologic diagnosis. Disease control for large lesions can be achieved by primary fractionated proton therapy.« less

  2. Offline signature verification using convolution Siamese network

    NASA Astrophysics Data System (ADS)

    Xing, Zi-Jian; Yin, Fei; Wu, Yi-Chao; Liu, Cheng-Lin

    2018-04-01

    This paper presents an offline signature verification approach using convolutional Siamese neural network. Unlike the existing methods which consider feature extraction and metric learning as two independent stages, we adopt a deepleaning based framework which combines the two stages together and can be trained end-to-end. The experimental results on two offline public databases (GPDSsynthetic and CEDAR) demonstrate the superiority of our method on the offline signature verification problem.

  3. A framework of multitemplate ensemble for fingerprint verification

    NASA Astrophysics Data System (ADS)

    Yin, Yilong; Ning, Yanbin; Ren, Chunxiao; Liu, Li

    2012-12-01

    How to improve performance of an automatic fingerprint verification system (AFVS) is always a big challenge in biometric verification field. Recently, it becomes popular to improve the performance of AFVS using ensemble learning approach to fuse related information of fingerprints. In this article, we propose a novel framework of fingerprint verification which is based on the multitemplate ensemble method. This framework is consisted of three stages. In the first stage, enrollment stage, we adopt an effective template selection method to select those fingerprints which best represent a finger, and then, a polyhedron is created by the matching results of multiple template fingerprints and a virtual centroid of the polyhedron is given. In the second stage, verification stage, we measure the distance between the centroid of the polyhedron and a query image. In the final stage, a fusion rule is used to choose a proper distance from a distance set. The experimental results on the FVC2004 database prove the improvement on the effectiveness of the new framework in fingerprint verification. With a minutiae-based matching method, the average EER of four databases in FVC2004 drops from 10.85 to 0.88, and with a ridge-based matching method, the average EER of these four databases also decreases from 14.58 to 2.51.

  4. Verification of operational solar flare forecast: Case of Regional Warning Center Japan

    NASA Astrophysics Data System (ADS)

    Kubo, Yûki; Den, Mitsue; Ishii, Mamoru

    2017-08-01

    In this article, we discuss a verification study of an operational solar flare forecast in the Regional Warning Center (RWC) Japan. The RWC Japan has been issuing four-categorical deterministic solar flare forecasts for a long time. In this forecast verification study, we used solar flare forecast data accumulated over 16 years (from 2000 to 2015). We compiled the forecast data together with solar flare data obtained with the Geostationary Operational Environmental Satellites (GOES). Using the compiled data sets, we estimated some conventional scalar verification measures with 95% confidence intervals. We also estimated a multi-categorical scalar verification measure. These scalar verification measures were compared with those obtained by the persistence method and recurrence method. As solar activity varied during the 16 years, we also applied verification analyses to four subsets of forecast-observation pair data with different solar activity levels. We cannot conclude definitely that there are significant performance differences between the forecasts of RWC Japan and the persistence method, although a slightly significant difference is found for some event definitions. We propose to use a scalar verification measure to assess the judgment skill of the operational solar flare forecast. Finally, we propose a verification strategy for deterministic operational solar flare forecasting. For dichotomous forecast, a set of proposed verification measures is a frequency bias for bias, proportion correct and critical success index for accuracy, probability of detection for discrimination, false alarm ratio for reliability, Peirce skill score for forecast skill, and symmetric extremal dependence index for association. For multi-categorical forecast, we propose a set of verification measures as marginal distributions of forecast and observation for bias, proportion correct for accuracy, correlation coefficient and joint probability distribution for association, the likelihood distribution for discrimination, the calibration distribution for reliability and resolution, and the Gandin-Murphy-Gerrity score and judgment skill score for skill.

  5. Monte Carlo-based treatment planning system calculation engine for microbeam radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Rovira, I.; Sempau, J.; Prezado, Y.

    Purpose: Microbeam radiation therapy (MRT) is a synchrotron radiotherapy technique that explores the limits of the dose-volume effect. Preclinical studies have shown that MRT irradiations (arrays of 25-75-{mu}m-wide microbeams spaced by 200-400 {mu}m) are able to eradicate highly aggressive animal tumor models while healthy tissue is preserved. These promising results have provided the basis for the forthcoming clinical trials at the ID17 Biomedical Beamline of the European Synchrotron Radiation Facility (ESRF). The first step includes irradiation of pets (cats and dogs) as a milestone before treatment of human patients. Within this context, accurate dose calculations are required. The distinct featuresmore » of both beam generation and irradiation geometry in MRT with respect to conventional techniques require the development of a specific MRT treatment planning system (TPS). In particular, a Monte Carlo (MC)-based calculation engine for the MRT TPS has been developed in this work. Experimental verification in heterogeneous phantoms and optimization of the computation time have also been performed. Methods: The penelope/penEasy MC code was used to compute dose distributions from a realistic beam source model. Experimental verification was carried out by means of radiochromic films placed within heterogeneous slab-phantoms. Once validation was completed, dose computations in a virtual model of a patient, reconstructed from computed tomography (CT) images, were performed. To this end, decoupling of the CT image voxel grid (a few cubic millimeter volume) to the dose bin grid, which has micrometer dimensions in the transversal direction of the microbeams, was performed. Optimization of the simulation parameters, the use of variance-reduction (VR) techniques, and other methods, such as the parallelization of the simulations, were applied in order to speed up the dose computation. Results: Good agreement between MC simulations and experimental results was achieved, even at the interfaces between two different media. Optimization of the simulation parameters and the use of VR techniques saved a significant amount of computation time. Finally, parallelization of the simulations improved even further the calculation time, which reached 1 day for a typical irradiation case envisaged in the forthcoming clinical trials in MRT. An example of MRT treatment in a dog's head is presented, showing the performance of the calculation engine. Conclusions: The development of the first MC-based calculation engine for the future TPS devoted to MRT has been accomplished. This will constitute an essential tool for the future clinical trials on pets at the ESRF. The MC engine is able to calculate dose distributions in micrometer-sized bins in complex voxelized CT structures in a reasonable amount of time. Minimization of the computation time by using several approaches has led to timings that are adequate for pet radiotherapy at synchrotron facilities. The next step will consist in its integration into a user-friendly graphical front-end.« less

  6. The evaluation of a 2D diode array in "magic phantom" for use in high dose rate brachytherapy pretreatment quality assurance.

    PubMed

    Espinoza, A; Petasecca, M; Fuduli, I; Howie, A; Bucci, J; Corde, S; Jackson, M; Lerch, M L F; Rosenfeld, A B

    2015-02-01

    High dose rate (HDR) brachytherapy is a treatment method that is used increasingly worldwide. The development of a sound quality assurance program for the verification of treatment deliveries can be challenging due to the high source activity utilized and the need for precise measurements of dwell positions and times. This paper describes the application of a novel phantom, based on a 2D 11 × 11 diode array detection system, named "magic phantom" (MPh), to accurately measure plan dwell positions and times, compare them directly to the treatment plan, determine errors in treatment delivery, and calculate absorbed dose. The magic phantom system was CT scanned and a 20 catheter plan was generated to simulate a nonspecific treatment scenario. This plan was delivered to the MPh and, using a custom developed software suite, the dwell positions and times were measured and compared to the plan. The original plan was also modified, with changes not disclosed to the primary authors, and measured again using the device and software to determine the modifications. A new metric, the "position-time gamma index," was developed to quantify the quality of a treatment delivery when compared to the treatment plan. The MPh was evaluated to determine the minimum measurable dwell time and step size. The incorporation of the TG-43U1 formalism directly into the software allows for dose calculations to be made based on the measured plan. The estimated dose distributions calculated by the software were compared to the treatment plan and to calibrated EBT3 film, using the 2D gamma analysis method. For the original plan, the magic phantom system was capable of measuring all dwell points and dwell times and the majority were found to be within 0.93 mm and 0.25 s, respectively, from the plan. By measuring the altered plan and comparing it to the unmodified treatment plan, the use of the position-time gamma index showed that all modifications made could be readily detected. The MPh was able to measure dwell times down to 0.067 ± 0.001 s and planned dwell positions separated by 1 mm. The dose calculation carried out by the MPh software was found to be in agreement with values calculated by the treatment planning system within 0.75%. Using the 2D gamma index, the dose map of the MPh plane and measured EBT3 were found to have a pass rate of over 95% when compared to the original plan. The application of this magic phantom quality assurance system to HDR brachytherapy has demonstrated promising ability to perform the verification of treatment plans, based upon the measured dwell positions and times. The introduction of the quantitative position-time gamma index allows for direct comparison of measured parameters against the plan and could be used prior to patient treatment to ensure accurate delivery. © 2015 American Association of Physicists in Medicine.

  7. Geometric Verification of Dynamic Wave Arc Delivery With the Vero System Using Orthogonal X-ray Fluoroscopic Imaging.

    PubMed

    Burghelea, Manuela; Verellen, Dirk; Poels, Kenneth; Gevaert, Thierry; Depuydt, Tom; Tournel, Koen; Hung, Cecilia; Simon, Viorica; Hiraoka, Masahiro; de Ridder, Mark

    2015-07-15

    The purpose of this study was to define an independent verification method based on on-board orthogonal fluoroscopy to determine the geometric accuracy of synchronized gantry-ring (G/R) rotations during dynamic wave arc (DWA) delivery available on the Vero system. A verification method for DWA was developed to calculate O-ring-gantry (G/R) positional information from ball-bearing positions retrieved from fluoroscopic images of a cubic phantom acquired during DWA delivery. Different noncoplanar trajectories were generated in order to investigate the influence of path complexity on delivery accuracy. The G/R positions detected from the fluoroscopy images (DetPositions) were benchmarked against the G/R angulations retrieved from the control points (CP) of the DWA RT plan and the DWA log files recorded by the treatment console during DWA delivery (LogActed). The G/R rotational accuracy was quantified as the mean absolute deviation ± standard deviation. The maximum G/R absolute deviation was calculated as the maximum 3-dimensional distance between the CP and the closest DetPositions. In the CP versus DetPositions comparison, an overall mean G/R deviation of 0.13°/0.16° ± 0.16°/0.16° was obtained, with a maximum G/R deviation of 0.6°/0.2°. For the LogActed versus DetPositions evaluation, the overall mean deviation was 0.08°/0.15° ± 0.10°/0.10° with a maximum G/R of 0.3°/0.4°. The largest decoupled deviations registered for gantry and ring were 0.6° and 0.4° respectively. No directional dependence was observed between clockwise and counterclockwise rotations. Doubling the dose resulted in a double number of detected points around each CP, and an angular deviation reduction in all cases. An independent geometric quality assurance approach was developed for DWA delivery verification and was successfully applied on diverse trajectories. Results showed that the Vero system is capable of following complex G/R trajectories with maximum deviations during DWA below 0.6°. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. SU-E-T-616: Comparison of Plan Dose Accuracy for Anterior Vs. Lateral Fields in Proton Therapy of Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moteabbed, M; Trofimov, A; Testa, M

    2014-06-01

    Purpose: With the anticipated introduction of in vivo range verification methods, the use of anterior fields for proton therapy of prostate cancer may become an attractive treatment option, and improve upon the dose distributions achievable with conventional lateral-opposed fields. This study aimed to evaluate and compare the planned dose accuracy for lateral versus anterior oblique field arrangements. Methods: Four patients with low/intermediate risk prostate cancer, participating in a clinical trial at our institution, were selected for this study. All patients were treated using lateral-opposed fields (LAT). The clinical target volume (CTV) received a total dose of 79.2 Gy in 44more » fractions. Anterior oblique research plans (ANT) were created using the clinical planning system, and featured beams with ±35-degree gantry angle, 1.2 cm aperture margins, 3-mm range compensator smearing and no range uncertainty margins. Monte Carlo (MC) simulations were performed for both beam arrangements using TOPAS. Dose volume histograms were analyzed and compared for planned and MC dose distributions. Differences between MC and planned DVH parameters were computed as a percentage of the total prescribed dose. Results: For all patients, CTV dose was systematically lower (∼2–2.5%) for MC than the plan. This discrepancy was slightly larger (∼0.5%) for LAT compared to ANT plans for all cases. Although the dose differences for bladder and anterior rectal wall remained within 0.7% for all LAT cases, they were slightly larger for ANT plans, especially for case 3 due to larger patient size and MC-plan range difference. The EUD difference for femoral heads was within 0.6% for both LAT and ANT cases. Conclusion: The dose calculated by the treatment planning system using pencil beam algorithm agrees with MC to within 2.5% and is comparable for lateral and anterior scenarios. The dose agreement in the anterior rectal wall is range- and hence, patient-dependent for ANT treatments.« less

  9. ENVIRONMENTAL TECHNOLOGY VERIFICATION TEST PROTOCOL, GENERAL VENTILATION FILTERS

    EPA Science Inventory

    The Environmental Technology Verification Test Protocol, General Ventilation Filters provides guidance for verification tests.

    Reference is made in the protocol to the ASHRAE 52.2P "Method of Testing General Ventilation Air-cleaning Devices for Removal Efficiency by P...

  10. Film Dosimetry for Intensity Modulated Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Benites-Rengifo, J.; Martínez-Dávalos, A.; Celis, M.; Lárraga, J.

    2004-09-01

    Intensity Modulated Radiation Therapy (IMRT) is an oncology treatment technique that employs non-uniform beam intensities to deliver highly conformal radiation to the targets while minimizing doses to normal tissues and critical organs. A key element for a successful clinical implementation of IMRT is establishing a dosimetric verification process that can ensure that delivered doses are consistent with calculated ones for each patient. To this end we are developing a fast quality control procedure, based on film dosimetry techniques, to be applied to the 6 MV Novalis linear accelerator for IMRT of the Instituto Nacional de Neurología y Neurocirugía (INNN) in Mexico City. The procedure includes measurements of individual fluence maps for a limited number of fields and dose distributions in 3D using extended dose-range radiographic film. However, the film response to radiation might depend on depth, energy and field size, and therefore compromise the accuracy of measurements. In this work we present a study of the dependence of Kodak EDR2 film's response on the depth, field size and energy, compared with those of Kodak XV2 film. The first aim is to devise a fast and accurate method to determine the calibration curve of film (optical density vs. doses) commonly called a sensitometric curve. This was accomplished by using three types of irradiation techniques: Step-and-shoot, dynamic and static fields.

  11. [A Quality Assurance (QA) System with a Web Camera for High-dose-rate Brachytherapy].

    PubMed

    Hirose, Asako; Ueda, Yoshihiro; Oohira, Shingo; Isono, Masaru; Tsujii, Katsutomo; Inui, Shouki; Masaoka, Akira; Taniguchi, Makoto; Miyazaki, Masayoshi; Teshima, Teruki

    2016-03-01

    The quality assurance (QA) system that simultaneously quantifies the position and duration of an (192)Ir source (dwell position and time) was developed and the performance of this system was evaluated in high-dose-rate brachytherapy. This QA system has two functions to verify and quantify dwell position and time by using a web camera. The web camera records 30 images per second in a range from 1,425 mm to 1,505 mm. A user verifies the source position from the web camera at real time. The source position and duration were quantified with the movie using in-house software which was applied with a template-matching technique. This QA system allowed verification of the absolute position in real time and quantification of dwell position and time simultaneously. It was evident from the verification of the system that the mean of step size errors was 0.31±0.1 mm and that of dwell time errors 0.1±0.0 s. Absolute position errors can be determined with an accuracy of 1.0 mm at all dwell points in three step sizes and dwell time errors with an accuracy of 0.1% in more than 10.0 s of the planned time. This system is to provide quick verification and quantification of the dwell position and time with high accuracy at various dwell positions without depending on the step size.

  12. 4D cone-beam CT imaging for guidance in radiation therapy: setup verification by use of implanted fiducial markers

    NASA Astrophysics Data System (ADS)

    Jin, Peng; van Wieringen, Niek; Hulshof, Maarten C. C. M.; Bel, Arjan; Alderliesten, Tanja

    2016-03-01

    The use of 4D cone-beam computed tomography (CBCT) and fiducial markers for guidance during radiation therapy of mobile tumors is challenging due to the trade-off between image quality, imaging dose, and scanning time. We aimed to investigate the visibility of markers and the feasibility of marker-based 4D registration and manual respiration-induced marker motion quantification for different CBCT acquisition settings. A dynamic thorax phantom and a patient with implanted gold markers were included. For both the phantom and patient, the peak-to-peak amplitude of marker motion in the cranial-caudal direction ranged from 5.3 to 14.0 mm, which did not affect the marker visibility and the associated marker-based registration feasibility. While using a medium field of view (FOV) and the same total imaging dose as is applied for 3D CBCT scanning in our clinic, it was feasible to attain an improved marker visibility by reducing the imaging dose per projection and increasing the number of projection images. For a small FOV with a shorter rotation arc but similar total imaging dose, streak artifacts were reduced due to using a smaller sampling angle. Additionally, the use of a small FOV allowed reducing total imaging dose and scanning time (~2.5 min) without losing the marker visibility. In conclusion, by using 4D CBCT with identical or lower imaging dose and a reduced gantry speed, it is feasible to attain sufficient marker visibility for marker-based 4D setup verification. Moreover, regardless of the settings, manual marker motion quantification can achieve a high accuracy with the error <1.2 mm.

  13. MR-based source localization for MR-guided HDR brachytherapy

    NASA Astrophysics Data System (ADS)

    Beld, E.; Moerland, M. A.; Zijlstra, F.; Viergever, M. A.; Lagendijk, J. J. W.; Seevinck, P. R.

    2018-04-01

    For the purpose of MR-guided high-dose-rate (HDR) brachytherapy, a method for real-time localization of an HDR brachytherapy source was developed, which requires high spatial and temporal resolutions. MR-based localization of an HDR source serves two main aims. First, it enables real-time treatment verification by determination of the HDR source positions during treatment. Second, when using a dummy source, MR-based source localization provides an automatic detection of the source dwell positions after catheter insertion, allowing elimination of the catheter reconstruction procedure. Localization of the HDR source was conducted by simulation of the MR artifacts, followed by a phase correlation localization algorithm applied to the MR images and the simulated images, to determine the position of the HDR source in the MR images. To increase the temporal resolution of the MR acquisition, the spatial resolution was decreased, and a subpixel localization operation was introduced. Furthermore, parallel imaging (sensitivity encoding) was applied to further decrease the MR scan time. The localization method was validated by a comparison with CT, and the accuracy and precision were investigated. The results demonstrated that the described method could be used to determine the HDR source position with a high accuracy (0.4–0.6 mm) and a high precision (⩽0.1 mm), at high temporal resolutions (0.15–1.2 s per slice). This would enable real-time treatment verification as well as an automatic detection of the source dwell positions.

  14. Verification of Pharmacogenetics-Based Warfarin Dosing Algorithms in Han-Chinese Patients Undertaking Mechanic Heart Valve Replacement

    PubMed Central

    Zhao, Li; Chen, Chunxia; Li, Bei; Dong, Li; Guo, Yingqiang; Xiao, Xijun; Zhang, Eryong; Qin, Li

    2014-01-01

    Objective To study the performance of pharmacogenetics-based warfarin dosing algorithms in the initial and the stable warfarin treatment phases in a cohort of Han-Chinese patients undertaking mechanic heart valve replacement. Methods We searched PubMed, Chinese National Knowledge Infrastructure and Wanfang databases for selecting pharmacogenetics-based warfarin dosing models. Patients with mechanic heart valve replacement were consecutively recruited between March 2012 and July 2012. The predicted warfarin dose of each patient was calculated and compared with the observed initial and stable warfarin doses. The percentage of patients whose predicted dose fell within 20% of their actual therapeutic dose (percentage within 20%), and the mean absolute error (MAE) were utilized to evaluate the predictive accuracy of all the selected algorithms. Results A total of 8 algorithms including Du, Huang, Miao, Wei, Zhang, Lou, Gage, and International Warfarin Pharmacogenetics Consortium (IWPC) model, were tested in 181 patients. The MAE of the Gage, IWPC and 6 Han-Chinese pharmacogenetics-based warfarin dosing algorithms was less than 0.6 mg/day in accuracy and the percentage within 20% exceeded 45% in all of the selected models in both the initial and the stable treatment stages. When patients were stratified according to the warfarin dose range, all of the equations demonstrated better performance in the ideal-dose range (1.88–4.38 mg/day) than the low-dose range (<1.88 mg/day). Among the 8 algorithms compared, the algorithms of Wei, Huang, and Miao showed a lower MAE and higher percentage within 20% in both the initial and the stable warfarin dose prediction and in the low-dose and the ideal-dose ranges. Conclusions All of the selected pharmacogenetics-based warfarin dosing regimens performed similarly in our cohort. However, the algorithms of Wei, Huang, and Miao showed a better potential for warfarin prediction in the initial and the stable treatment phases in Han-Chinese patients undertaking mechanic heart valve replacement. PMID:24728385

  15. Development of dose delivery verification by PET imaging of photonuclear reactions following high energy photon therapy

    NASA Astrophysics Data System (ADS)

    Janek, S.; Svensson, R.; Jonsson, C.; Brahme, A.

    2006-11-01

    A method for dose delivery monitoring after high energy photon therapy has been investigated based on positron emission tomography (PET). The technique is based on the activation of body tissues by high energy bremsstrahlung beams, preferably with energies well above 20 MeV, resulting primarily in 11C and 15O but also 13N, all positron-emitting radionuclides produced by photoneutron reactions in the nuclei of 12C, 16O and 14N. A PMMA phantom and animal tissue, a frozen hind leg of a pig, were irradiated to 10 Gy and the induced positron activity distributions were measured off-line in a PET camera a couple of minutes after irradiation. The accelerator used was a Racetrack Microtron at the Karolinska University Hospital using 50 MV scanned photon beams. From photonuclear cross-section data integrated over the 50 MV photon fluence spectrum the predicted PET signal was calculated and compared with experimental measurements. Since measured PET images change with time post irradiation, as a result of the different decay times of the radionuclides, the signals from activated 12C, 16O and 14N within the irradiated volume could be separated from each other. Most information is obtained from the carbon and oxygen radionuclides which are the most abundant elements in soft tissue. The predicted and measured overall positron activities are almost equal (-3%) while the predicted activity originating from nitrogen is overestimated by almost a factor of two, possibly due to experimental noise. Based on the results obtained in this first feasibility study the great value of a combined radiotherapy-PET-CT unit is indicated in order to fully exploit the high activity signal from oxygen immediately after treatment and to avoid patient repositioning. With an RT-PET-CT unit a high signal could be collected even at a dose level of 2 Gy and the acquisition time for the PET could be reduced considerably. Real patient dose delivery verification by means of PET imaging seems to be applicable provided that biological transport processes such as capillary blood flow containing mobile 15O and 11C in the activated tissue volume can be accounted for.

  16. SU-E-T-188: Commission of World 1st Commercial Compact PBS Proton System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, X; Patel, B; Song, X

    2015-06-15

    Purpose: ProteusONE is the 1st commercial compact PBS proton system with an upstream scanning gantry and C230 cyclotron. We commissioned XiO and Raystation TPS simultaneously. This is a summary of beam data collection, modeling, and verification and comparison without range shiter for this unique system with both TPS. Methods: Both Raystation and XiO requires the same measurements data: (i) integral depth dose(IDDs) of single central spot measured in water tank; (ii) absolute dose calibration measured at 2cm depth of water with mono-energetic 10×10 cm2 field with spot spacing 4mm, 1MU per spot; and (iii) beam spot characteristics in air atmore » 0cm and ± 20cm away from ISO. To verify the beam model for both TPS, same 15 cube plans were created to simulate different treatment sites, target volumes and positions. PDDs of each plan were measured using a Multi-layer Ionization Chamber(MLIC), absolute point dose verification were measured using PPC05 in water tank and patient-specific QA were measured using MatriXX PT, a 2D ion chamber array. Results: All the point dose measurements at midSOBP were within 2% for both XiO and Raystation. However, up to 5% deviations were observed in XiO’s plans at shallow depth while within 2% in Raystation plans. 100% of the ranges measured were within 1 mm with maximum deviation of 0.5 mm. 20 patient specific plan were generated and measured in 3 planes (distal, proximal and midSOBP) in Raystation. The average of gamma index is 98.7%±3% with minimum 94% Conclusions: Both TPS were successfully commissioned and can be safely deployed for clinical use for ProteusONE. Based on our clinical experience in PBS planning, user interface, function and workflow, we preferably use Raystation as our main clinical TPS. Gamma Index >95% at 3%/3 mm criteria is our institution action level for patient specific plan QAs.« less

  17. Assessment of Impact of Monoenergetic Photon Sources on Prioritized Nonproliferation Applications: Simulation Study Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geddes, Cameron; Ludewigt, Bernhard; Valentine, John

    Near-monoenergetic photon sources (MPSs) have the potential to improve sensitivity at greatly reduced dose in existing applications and enable new capabilities in other applications. MPS advantages include the ability to select energy, energy spread, flux, and pulse structures to deliver only the photons needed for the application, while suppressing extraneous dose and background. Some MPSs also offer narrow divergence photon beams which can target dose and/or mitigate scattering contributions to image contrast degradation. Current broad-band, bremsstrahlung photon sources (e.g., linacs and betatrons) deliver unnecessary dose that in some cases also interferes with the signature to be detected and/or restricts operations,more » and must be collimated (reducing flux) to generate narrow divergence beams. While MPSs can in principle resolve these issues, they are technically challenging to produce. Candidate MPS technologies for nonproliferation applications are now being developed, each of which have different properties (e.g. broad divergence vs. narrow). Within each technology, source parameters trade off against one another (e.g. flux vs. energy spread), representing a large operation space. To guide development, requirements for each application of interest must be defined and simulations conducted to define MPS parameters that deliver benefit relative to current systems. The present project conducted a broad assessment of potential nonproliferation applications where MPSs may provide new capabilities or significant performance enhancement (reported separately), which led to prioritization of several applications for detailed analysis. The applications prioritized were: cargo screening and interdiction of Special Nuclear Materials (SNM), detection of hidden SNM, treaty/dismantlement verification, and spent fuel dry storage cask content verification. High resolution imaging for stockpile stewardship was considered as a sub-area of the treaty topic, as it is also of interest for future treaty use. This report presents higher-fidelity calculations and modeling results to quantitatively evaluate the prioritized applications, and to derive the key MPS properties that drive application benefit. Simulations focused on the conventional signatures of radiography, photofission, and NRF to enable comparison to present methods and evaluation of benefit.« less

  18. Characteristics and verification of a car-borne survey system for dose rates in air: KURAMA-II.

    PubMed

    Tsuda, S; Yoshida, T; Tsutsumi, M; Saito, K

    2015-01-01

    The car-borne survey system KURAMA-II, developed by the Kyoto University Research Reactor Institute, has been used for air dose rate mapping after the Fukushima Dai-ichi Nuclear Power Plant accident. KURAMA-II consists of a CsI(Tl) scintillation detector, a GPS device, and a control device for data processing. The dose rates monitored by KURAMA-II are based on the G(E) function (spectrum-dose conversion operator), which can precisely calculate dose rates from measured pulse-height distribution even if the energy spectrum changes significantly. The characteristics of KURAMA-II have been investigated with particular consideration to the reliability of the calculated G(E) function, dose rate dependence, statistical fluctuation, angular dependence, and energy dependence. The results indicate that 100 units of KURAMA-II systems have acceptable quality for mass monitoring of dose rates in the environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. A new method to address verification bias in studies of clinical screening tests: cervical cancer screening assays as an example.

    PubMed

    Xue, Xiaonan; Kim, Mimi Y; Castle, Philip E; Strickler, Howard D

    2014-03-01

    Studies to evaluate clinical screening tests often face the problem that the "gold standard" diagnostic approach is costly and/or invasive. It is therefore common to verify only a subset of negative screening tests using the gold standard method. However, undersampling the screen negatives can lead to substantial overestimation of the sensitivity and underestimation of the specificity of the diagnostic test. Our objective was to develop a simple and accurate statistical method to address this "verification bias." We developed a weighted generalized estimating equation approach to estimate, in a single model, the accuracy (eg, sensitivity/specificity) of multiple assays and simultaneously compare results between assays while addressing verification bias. This approach can be implemented using standard statistical software. Simulations were conducted to assess the proposed method. An example is provided using a cervical cancer screening trial that compared the accuracy of human papillomavirus and Pap tests, with histologic data as the gold standard. The proposed approach performed well in estimating and comparing the accuracy of multiple assays in the presence of verification bias. The proposed approach is an easy to apply and accurate method for addressing verification bias in studies of multiple screening methods. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. SU-F-T-264: VMAT QA with 2D Radiation Measuring Equipment Attached to Gantry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fung, A

    2016-06-15

    Purpose: To introduce a method of VMAT QA by 2D measuring device. The 2D device is attached to the gantry throughout measurement duration. This eliminates error caused by the angular dependence of the radiation detectors. Methods: A 2D radiation measuring device was attached to the gantry of linear accelerator. The center of the detector plane was at the isocenter. For each patient plan, two verification plans were created for QA purpose. One was like an ordinary VMAT plan, to be used for radiation delivery. The other is a plan with gantry angle fixed at zero, so the dose distribution asmore » seen by the rotating 2D device. Points above 10% dose threshold were analyzed. Data is in tolerance if it fits within the 3 mm or 3% dose gamma criteria. For each patient, the plan was passed when 95% of all the points in the 2D matrix fit the gamma criteria. The following statistics were calculated: number of patient plans passed, percentage of all points passed, average percentage difference of all points. Results: VMAT QA was performed for patients during one year in our department, and the results were analyzed. All irradiation was with 6 MV photon beam. Each plan has calculated and measured doses compared. After collecting one year’s result, with 81 patient plans analyzed, all (100%) of the plans passed the gamma criteria. Of the points analyzed from all plans, 98.8% of all points passed. Conclusion: This method of attaching a 2D measuring device on the linac gantry proves to be an accurate way for VMAT QA. It is simple to use and low cost, and it eliminates the problem of directional dependence.« less

  1. Angular dependence of the nanoDot OSL dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerns, James R.; Kry, Stephen F.; Sahoo, Narayan

    Purpose: Optically stimulated luminescent detectors (OSLDs) are quickly gaining popularity as passive dosimeters, with applications in medicine for linac output calibration verification, brachytherapy source verification, treatment plan quality assurance, and clinical dose measurements. With such wide applications, these dosimeters must be characterized for numerous factors affecting their response. The most abundant commercial OSLD is the InLight/OSL system from Landauer, Inc. The purpose of this study was to examine the angular dependence of the nanoDot dosimeter, which is part of the InLight system. Methods: Relative dosimeter response data were taken at several angles in 6 and 18 MV photon beams, asmore » well as a clinical proton beam. These measurements were done within a phantom at a depth beyond the build-up region. To verify the observed angular dependence, additional measurements were conducted as well as Monte Carlo simulations in MCNPX. Results: When irradiated with the incident photon beams parallel to the plane of the dosimeter, the nanoDot response was 4% lower at 6 MV and 3% lower at 18 MV than the response when irradiated with the incident beam normal to the plane of the dosimeter. Monte Carlo simulations at 6 MV showed similar results to the experimental values. Examination of the results in Monte Carlo suggests the cause as partial volume irradiation. In a clinical proton beam, no angular dependence was found. Conclusions: A nontrivial angular response of this OSLD was observed in photon beams. This factor may need to be accounted for when evaluating doses from photon beams incident from a variety of directions.« less

  2. Angular dependence of the nanoDot OSL dosimeter

    PubMed Central

    Kerns, James R.; Kry, Stephen F.; Sahoo, Narayan; Followill, David S.; Ibbott, Geoffrey S.

    2011-01-01

    Purpose: Optically stimulated luminescent detectors (OSLDs) are quickly gaining popularity as passive dosimeters, with applications in medicine for linac output calibration verification, brachytherapy source verification, treatment plan quality assurance, and clinical dose measurements. With such wide applications, these dosimeters must be characterized for numerous factors affecting their response. The most abundant commercial OSLD is the InLight∕OSL system from Landauer, Inc. The purpose of this study was to examine the angular dependence of the nanoDot dosimeter, which is part of the InLight system.Methods: Relative dosimeter response data were taken at several angles in 6 and 18 MV photon beams, as well as a clinical proton beam. These measurements were done within a phantom at a depth beyond the build-up region. To verify the observed angular dependence, additional measurements were conducted as well as Monte Carlo simulations in MCNPX.Results: When irradiated with the incident photon beams parallel to the plane of the dosimeter, the nanoDot response was 4% lower at 6 MV and 3% lower at 18 MV than the response when irradiated with the incident beam normal to the plane of the dosimeter. Monte Carlo simulations at 6 MV showed similar results to the experimental values. Examination of the results in Monte Carlo suggests the cause as partial volume irradiation. In a clinical proton beam, no angular dependence was found.Conclusions: A nontrivial angular response of this OSLD was observed in photon beams. This factor may need to be accounted for when evaluating doses from photon beams incident from a variety of directions. PMID:21858992

  3. Analysis of potential errors in real-time streamflow data and methods of data verification by digital computer

    USGS Publications Warehouse

    Lystrom, David J.

    1972-01-01

    Various methods of verifying real-time streamflow data are outlined in part II. Relatively large errors (those greater than 20-30 percent) can be detected readily by use of well-designed verification programs for a digital computer, and smaller errors can be detected only by discharge measurements and field observations. The capability to substitute a simulated discharge value for missing or erroneous data is incorporated in some of the verification routines described. The routines represent concepts ranging from basic statistical comparisons to complex watershed modeling and provide a selection from which real-time data users can choose a suitable level of verification.

  4. Information verification and encryption based on phase retrieval with sparsity constraints and optical inference

    NASA Astrophysics Data System (ADS)

    Zhong, Shenlu; Li, Mengjiao; Tang, Xiajie; He, Weiqing; Wang, Xiaogang

    2017-01-01

    A novel optical information verification and encryption method is proposed based on inference principle and phase retrieval with sparsity constraints. In this method, a target image is encrypted into two phase-only masks (POMs), which comprise sparse phase data used for verification. Both of the two POMs need to be authenticated before being applied for decrypting. The target image can be optically reconstructed when the two authenticated POMs are Fourier transformed and convolved by the correct decryption key, which is also generated in encryption process. No holographic scheme is involved in the proposed optical verification and encryption system and there is also no problem of information disclosure in the two authenticable POMs. Numerical simulation results demonstrate the validity and good performance of this new proposed method.

  5. The use of nomograms in LDR-HDR prostate brachytherapy.

    PubMed

    Pujades, Ma Carmen; Camacho, Cristina; Perez-Calatayud, Jose; Richart, José; Gimeno, Jose; Lliso, Françoise; Carmona, Vicente; Ballester, Facundo; Crispín, Vicente; Rodríguez, Silvia; Tormo, Alejandro

    2011-09-01

    The common use of nomograms in Low Dose Rate (LDR) permanent prostate brachytherapy (BT) allows to estimate the number of seeds required for an implant. Independent dosimetry verification is recommended for each clinical dosimetry in BT. Also, nomograms can be useful for dose calculation quality assurance and they could be adapted to High Dose Rate (HDR). This work sets nomograms for LDR and HDR prostate-BT implants, which are applied to three different institutions that use different implant techniques. Patients treated throughout 2010 till April 2011 were considered for this study. This example was chosen to be the representative of the latest implant techniques and to ensure consistency in the planning. A sufficient number of cases for both BT modalities, prescription dose and different work methodology (depending on the institution) were taken into account. The specific nomograms were built using the correlation between the prostate volume and some characteristic parameters of each BT modality, such as the source Air Kerma Strength, number of implanted seeds in LDR or total radiation time in HDR. For each institution and BT modality, nomograms normalized to the prescribed dose were obtained and fitted to a linear function. The parameters of the adjustment show a good agreement between data and the fitting. It should be noted that for each institution these linear function parameters are different, indicating that each centre should construct its own nomograms. Nomograms for LDR and HDR prostate brachytherapy are simple quality assurance tools, specific for each institution. Nevertheless, their use should be complementary to the necessary independent verification.

  6. SU-F-T-67: Correction Factors for Monitor Unit Verification of Clinical Electron Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haywood, J

    Purpose: Monitor units calculated by electron Monte Carlo treatment planning systems are often higher than TG-71 hand calculations for a majority of patients. Here I’ve calculated tables of geometry and heterogeneity correction factors for correcting electron hand calculations. Method: A flat water phantom with spherical volumes having radii ranging from 3 to 15 cm was created. The spheres were centered with respect to the flat water phantom, and all shapes shared a surface at 100 cm SSD. D{sub max} dose at 100 cm SSD was calculated for each cone and energy on the flat phantom and for the spherical volumesmore » in the absence of the flat phantom. The ratio of dose in the sphere to dose in the flat phantom defined the geometrical correction factor. The heterogeneity factors were then calculated from the unrestricted collisional stopping power for tissues encountered in electron beam treatments. These factors were then used in patient second check calculations. Patient curvature was estimated by the largest sphere that aligns to the patient contour, and appropriate tissue density was read from the physical properties provided by the CT. The resulting MU were compared to those calculated by the treatment planning system and TG-71 hand calculations. Results: The geometry and heterogeneity correction factors range from ∼(0.8–1.0) and ∼(0.9–1.01) respectively for the energies and cones presented. Percent differences for TG-71 hand calculations drop from ∼(3–14)% to ∼(0–2)%. Conclusion: Monitor units calculated with the correction factors typically decrease the percent difference to under actionable levels, < 5%. While these correction factors work for a majority of patients, there are some patient anatomies that do not fit the assumptions made. Using these factors in hand calculations is a first step in bringing the verification monitor units into agreement with the treatment planning system MU.« less

  7. Monte Carlo design and simulation of a grid-type multi-layer pixel collimator for radiotherapy: Feasibility study

    NASA Astrophysics Data System (ADS)

    Yoon, Do-Kun; Jung, Joo-Young; Suh, Tae Suk

    2014-05-01

    In order to confirm the possibility of field application of a different type collimator with a multileaf collimator (MLC), we constructed a grid-type multi-layer pixel collimator (GTPC) by using a Monte Carlo n-particle simulation (MCNPX). In this research, a number of factors related to the performance of the GPTC were evaluated using simulated output data of a basic MLC model. A layer was comprised of a 1024-pixel collimator (5.0 × 5.0 mm2) which could operate individually as a grid-type collimator (32 × 32). A 30-layer collimator was constructed for a specific portal form to pass radiation through the opening and closing of each pixel cover. The radiation attenuation level and the leakage were compared between the GTPC modality simulation and MLC modeling (tungsten, 17.50 g/cm3, 5.0 × 70.0 × 160.0 mm3) currently used for a radiation field. Comparisons of the portal imaging, the lateral dose profile from a virtual water phantom, the dependence of the performance on the increase in the number of layers, the radiation intensity modulation verification, and the geometric error between the GTPC and the MLC were done using the MCNPX simulation data. From the simulation data, the intensity modulation of the GTPC showed a faster response than the MLC's (29.6%). In addition, the agreement between the doses that should be delivered to the target region was measured as 97.0%, and the GTPC system had an error below 0.01%, which is identical to that of MLC. A Monte Carlo simulation of the GTPC could be useful for verification of application possibilities. Because the line artifact is caused by the grid frame and the folded cover, a lineal dose transfer type is chosen for the operation of this system. However, the result of GTPC's performance showed that the methods of effective intensity modulation and the specific geometric beam shaping differed with the MLC modality.

  8. TU-FG-BRB-08: Challenges, Limitations and Future Outlook Towards Clinical Translation of Proton Acoustic Range Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yousefi, S; Ahmad, M; Xiang, L

    Purpose: To report our investigations of proton acoustic imaging, including computer simulations and preliminary experimental studies at clinical facilities. The ultimate achievable accuracy, sensitivity and clinical translation challenges are discussed. Methods: The acoustic pulse due to pressure rise was estimated using finite element model. Since the ionoacoustic pulse is highly dependent on the proton pulse width and energy, multiple pulse widths were studied. Based on the received signal spectrum at piezoelectric ultrasound transducer with consideration of random thermal noise, maximum spatial resolution of the proton-acoustic imaging modality was calculated. The simulation studies defined the design specifications of the system tomore » detect proton acoustic signal from Hitachi and Mevion clinical machines. A 500 KHz hydrophone with 100 dB amplification was set up in a water tank placed in front of the proton nozzle A 40 MHz data acquisition was synchronized by a trigger signal provided by the machine. Results: Given 30–800 mGy dose per pulse at the Bragg peak, the minimum number of protons detectable by the proton acoustic technique was on the order of 10×10^6 per pulse. The broader pulse widths produce signal with lower acoustic frequencies, with 10 µs pulses producing signals with frequency less than 100 kHz. As the proton beam pulse width increases, a higher dose rate is required to measure the acoustic signal. Conclusion: We have established the minimal detection limit for protonacoustic range validation for a variety of pulse parameters. Our study indicated practical proton-acoustic range verification can be feasible with a pulse shorter than 10 µs, 5×10^6 protons/pulse, 50 nA beam current and a highly sensitive ultrasonic transducer. The translational challenges into current clinical machines include proper magnetic shielding of the measurement equipment, providing a clean trigger signal from the proton machine, providing a shorter proton beam pulse and higher dose per pulse.« less

  9. Helium ions for radiotherapy? Physical and biological verifications of a novel treatment modality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krämer, Michael, E-mail: m.kraemer@gsi.de; Scifoni, Emanuele; Schuy, Christoph

    Purpose: Modern facilities for actively scanned ion beam radiotherapy allow in principle the use of helium beams, which could present specific advantages, especially for pediatric tumors. In order to assess the potential use of these beams for radiotherapy, i.e., to create realistic treatment plans, the authors set up a dedicated {sup 4}He beam model, providing base data for their treatment planning system TRiP98, and they have reported that in this work together with its physical and biological validations. Methods: A semiempirical beam model for the physical depth dose deposition and the production of nuclear fragments was developed and introduced inmore » TRiP98. For the biological effect calculations the last version of the local effect model was used. The model predictions were experimentally verified at the HIT facility. The primary beam attenuation and the characteristics of secondary charged particles at various depth in water were investigated using {sup 4}He ion beams of 200 MeV/u. The nuclear charge of secondary fragments was identified using a ΔE/E telescope. 3D absorbed dose distributions were measured with pin point ionization chambers and the biological dosimetry experiments were realized irradiating a Chinese hamster ovary cells stack arranged in an extended target. Results: The few experimental data available on basic physical processes are reproduced by their beam model. The experimental verification of absorbed dose distributions in extended target volumes yields an overall agreement, with a slight underestimation of the lateral spread. Cell survival along a 4 cm extended target is reproduced with remarkable accuracy. Conclusions: The authors presented a simple simulation model for therapeutical {sup 4}He beams which they introduced in TRiP98, and which is validated experimentally by means of physical and biological dosimetries. Thus, it is now possible to perform detailed treatment planning studies with {sup 4}He beams, either exclusively or in combination with other ion modalities.« less

  10. SU-F-BRE-08: Feasibility of 3D Printed Patient Specific Phantoms for IMRT/IGRT QA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehler, E; Higgins, P; Dusenbery, K

    Purpose: Test the feasibility of 3D printed, per-patient phantoms for IMRT QA to analyze the treatment delivery quality within the patient geometry. Methods: Using the head and neck region of an anthropomorphic phantom as a substitute for an actual patient, a soft-tissue equivalent model was constructed with the use of a 3D printer. A nine-field IMRT plan was constructed and dose verification measurements were performed for the 3D printed phantom. During the delivery of the IMRT QA on to the 3D printed phantom, the same patient positioning indexing system was used on the phantom and image guidance (cone beam CT)more » was used to localize the phantom, serving as a test of the IGRT system as well. The 3D printed phantom was designed to accommodate four radiochromic film planes (two axial, one coronal and one sagittal) and an ionization chamber measurement. As a frame of comparison, the IMRT QA was also performed on traditional phantoms. Dosimetric tolerance levels such as 3mm / 3% Gamma Index as well as 3% and 5% dose difference were considered. All detector systems were calibrated against a NIST traceable ionization chamber. Results: Comparison of results 3D printed patient phantom with the standard IMRT QA systems showed similar passing rates for the 3D printed phantom and the standard phantoms. However, the locations of the failing regions did not necessarily correlate. The 3D printed phantom was localized within 1 mm and 1° using on-board cone beam CT. Conclusion: A custom phantom was created using a 3D printer. It was determined that the use of patient specific phantoms to perform dosimetric verification and estimate the dose in the patient is feasible. In addition, end-to-end testing on a per-patient basis was possible with the 3D printed phantom. Further refinement of the phantom construction process is needed for routine clinical use.« less

  11. Review of ultrasound image guidance in external beam radiotherapy part II: intra-fraction motion management and novel applications

    NASA Astrophysics Data System (ADS)

    O'Shea, Tuathan; Bamber, Jeffrey; Fontanarosa, Davide; van der Meer, Skadi; Verhaegen, Frank; Harris, Emma

    2016-04-01

    Imaging has become an essential tool in modern radiotherapy (RT), being used to plan dose delivery prior to treatment and verify target position before and during treatment. Ultrasound (US) imaging is cost-effective in providing excellent contrast at high resolution for depicting soft tissue targets apart from those shielded by the lungs or cranium. As a result, it is increasingly used in RT setup verification for the measurement of inter-fraction motion, the subject of Part I of this review (Fontanarosa et al 2015 Phys. Med. Biol. 60 R77-114). The combination of rapid imaging and zero ionising radiation dose makes US highly suitable for estimating intra-fraction motion. The current paper (Part II of the review) covers this topic. The basic technology for US motion estimation, and its current clinical application to the prostate, is described here, along with recent developments in robust motion-estimation algorithms, and three dimensional (3D) imaging. Together, these are likely to drive an increase in the number of future clinical studies and the range of cancer sites in which US motion management is applied. Also reviewed are selections of existing and proposed novel applications of US imaging to RT. These are driven by exciting developments in structural, functional and molecular US imaging and analytical techniques such as backscatter tissue analysis, elastography, photoacoustography, contrast-specific imaging, dynamic contrast analysis, microvascular and super-resolution imaging, and targeted microbubbles. Such techniques show promise for predicting and measuring the outcome of RT, quantifying normal tissue toxicity, improving tumour definition and defining a biological target volume that describes radiation sensitive regions of the tumour. US offers easy, low cost and efficient integration of these techniques into the RT workflow. US contrast technology also has potential to be used actively to assist RT by manipulating the tumour cell environment and by improving the delivery of radiosensitising agents. Finally, US imaging offers various ways to measure dose in 3D. If technical problems can be overcome, these hold potential for wide-dissemination of cost-effective pre-treatment dose verification and in vivo dose monitoring methods. It is concluded that US imaging could eventually contribute to all aspects of the RT workflow.

  12. Review of ultrasound image guidance in external beam radiotherapy part II: intra-fraction motion management and novel applications.

    PubMed

    O'Shea, Tuathan; Bamber, Jeffrey; Fontanarosa, Davide; van der Meer, Skadi; Verhaegen, Frank; Harris, Emma

    2016-04-21

    Imaging has become an essential tool in modern radiotherapy (RT), being used to plan dose delivery prior to treatment and verify target position before and during treatment. Ultrasound (US) imaging is cost-effective in providing excellent contrast at high resolution for depicting soft tissue targets apart from those shielded by the lungs or cranium. As a result, it is increasingly used in RT setup verification for the measurement of inter-fraction motion, the subject of Part I of this review (Fontanarosa et al 2015 Phys. Med. Biol. 60 R77-114). The combination of rapid imaging and zero ionising radiation dose makes US highly suitable for estimating intra-fraction motion. The current paper (Part II of the review) covers this topic. The basic technology for US motion estimation, and its current clinical application to the prostate, is described here, along with recent developments in robust motion-estimation algorithms, and three dimensional (3D) imaging. Together, these are likely to drive an increase in the number of future clinical studies and the range of cancer sites in which US motion management is applied. Also reviewed are selections of existing and proposed novel applications of US imaging to RT. These are driven by exciting developments in structural, functional and molecular US imaging and analytical techniques such as backscatter tissue analysis, elastography, photoacoustography, contrast-specific imaging, dynamic contrast analysis, microvascular and super-resolution imaging, and targeted microbubbles. Such techniques show promise for predicting and measuring the outcome of RT, quantifying normal tissue toxicity, improving tumour definition and defining a biological target volume that describes radiation sensitive regions of the tumour. US offers easy, low cost and efficient integration of these techniques into the RT workflow. US contrast technology also has potential to be used actively to assist RT by manipulating the tumour cell environment and by improving the delivery of radiosensitising agents. Finally, US imaging offers various ways to measure dose in 3D. If technical problems can be overcome, these hold potential for wide-dissemination of cost-effective pre-treatment dose verification and in vivo dose monitoring methods. It is concluded that US imaging could eventually contribute to all aspects of the RT workflow.

  13. SU-F-P-21: Study of Dosimetry Accuracy of Small Passively Scattered Proton Beam Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y; Gautam, A; Kerr, M

    2016-06-15

    Purpose: To study the accuracy of the dose distribution of very small irregular fields of passively scattered proton beams calculated by the analytical pencil beam model of the Eclipse treatment planning system (TPS). Methods: An irregular field with a narrow region (width < 1 cm) that was used for the treatment of a small volume adjacent to a previously treated area were chosen for this investigation. Point doses at different locations inside the field were measured with a small volume ion chamber (A26, Standard Imaging). 2-D dose distributions were measured using a 2-D ion chamber array (MatriXX, IBA). All themore » measurements were done in plastic water phantom. The measured dose distributions were compared with the verification plan dose calculated in a water like phantom for the patient treatment field without the use of the compensator. Results: Point doses measured with the ion chamber in the narrowest section of the field were found to differ as much as 10% from the Eclipse calculated dose at some of the points. The 2-D dose distribution measured with the MatriXX which was validated by comparison with limited film measurement, at the proximal 95%, center of the spread out Bragg Peak and distal 90% depths agreed reasonably well with the TPS calculated dose distribution with more than 92% of the pixels passing the 2% / 2 mm dose distance agreement. Conclusion: The dose calculated by the pencil beam model of the Eclipse TPS for narrow irregular fields may not be accurate within 5% at some locations of the field, especially at the points close to the field edge due to the limitation of the dose calculation model. Overall accuracy of the calculated 2-D dose distribution was found to be acceptable for the 2%/2 mm dose/distance agreement with the measurement.« less

  14. TH-A-19A-06: Site-Specific Comparison of Analytical and Monte Carlo Based Dose Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuemann, J; Grassberger, C; Paganetti, H

    2014-06-15

    Purpose: To investigate the impact of complex patient geometries on the capability of analytical dose calculation algorithms to accurately predict dose distributions and to verify currently used uncertainty margins in proton therapy. Methods: Dose distributions predicted by an analytical pencilbeam algorithm were compared with Monte Carlo simulations (MCS) using TOPAS. 79 complete patient treatment plans were investigated for 7 disease sites (liver, prostate, breast, medulloblastoma spine and whole brain, lung and head and neck). A total of 508 individual passively scattered treatment fields were analyzed for field specific properties. Comparisons based on target coverage indices (EUD, D95, D90 and D50)more » were performed. Range differences were estimated for the distal position of the 90% dose level (R90) and the 50% dose level (R50). Two-dimensional distal dose surfaces were calculated and the root mean square differences (RMSD), average range difference (ARD) and average distal dose degradation (ADD), the distance between the distal position of the 80% and 20% dose levels (R80- R20), were analyzed. Results: We found target coverage indices calculated by TOPAS to generally be around 1–2% lower than predicted by the analytical algorithm. Differences in R90 predicted by TOPAS and the planning system can be larger than currently applied range margins in proton therapy for small regions distal to the target volume. We estimate new site-specific range margins (R90) for analytical dose calculations considering total range uncertainties and uncertainties from dose calculation alone based on the RMSD. Our results demonstrate that a reduction of currently used uncertainty margins is feasible for liver, prostate and whole brain fields even without introducing MC dose calculations. Conclusion: Analytical dose calculation algorithms predict dose distributions within clinical limits for more homogeneous patients sites (liver, prostate, whole brain). However, we recommend treatment plan verification using Monte Carlo simulations for patients with complex geometries.« less

  15. Dose calculation and verification of the Vero gimbal tracking treatment delivery

    NASA Astrophysics Data System (ADS)

    Prasetio, H.; Wölfelschneider, J.; Ziegler, M.; Serpa, M.; Witulla, B.; Bert, C.

    2018-02-01

    The Vero linear accelerator delivers dynamic tumor tracking (DTT) treatment using a gimbal motion. However, the availability of treatment planning systems (TPS) to simulate DTT is limited. This study aims to implement and verify the gimbal tracking beam geometry in the dose calculation. Gimbal tracking was implemented by rotating the reference CT outside the TPS according to the ring, gantry, and gimbal tracking position obtained from the tracking log file. The dose was calculated using these rotated CTs. The geometric accuracy was verified by comparing calculated and measured film response using a ball bearing phantom. The dose was verified by comparing calculated 2D dose distributions and film measurements in a ball bearing and a homogeneous phantom using a gamma criterion of 2%/2 mm. The effect of implementing the gimbal tracking beam geometry in a 3D patient data dose calculation was evaluated using dose volume histograms (DVH). Geometrically, the gimbal tracking implementation accuracy was  <0.94 mm. The isodose lines agreed with the film measurement. The largest dose difference of 9.4% was observed at maximum tilt positions with an isocenter and target separation of 17.51 mm. Dosimetrically, gamma passing rates were  >98.4%. The introduction of the gimbal tracking beam geometry in the dose calculation shifted the DVH curves by 0.05%-1.26% for the phantom geometry and by 5.59% for the patient CT dataset. This study successfully demonstrates a method to incorporate the gimbal tracking beam geometry into dose calculations. By combining CT rotation and MU distribution according to the log file, the TPS was able to simulate the Vero tracking treatment dose delivery. The DVH analysis from the gimbal tracking dose calculation revealed changes in the dose distribution during gimbal DTT that are not visible with static dose calculations.

  16. 37 CFR 262.7 - Verification of royalty payments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Designated Agent have agreed as to proper verification methods. (b) Frequency of verification. A Copyright Owner or a Performer may conduct a single audit of the Designated Agent upon reasonable notice and... COPYRIGHT ARBITRATION ROYALTY PANEL RULES AND PROCEDURES RATES AND TERMS FOR CERTAIN ELIGIBLE...

  17. Generic Verification Protocol for Testing Pesticide Application Spray Drift Reduction Technologies for Row and Field Crops

    EPA Pesticide Factsheets

    This generic verification protocol provides a detailed method to conduct and report results from a verification test of pesticide application technologies that can be used to evaluate these technologies for their potential to reduce spray drift.

  18. The Maximal Oxygen Uptake Verification Phase: a Light at the End of the Tunnel?

    PubMed

    Schaun, Gustavo Z

    2017-12-08

    Commonly performed during an incremental test to exhaustion, maximal oxygen uptake (V̇O 2max ) assessment has become a recurring practice in clinical and experimental settings. To validate the test, several criteria were proposed. In this context, the plateau in oxygen uptake (V̇O 2 ) is inconsistent in its frequency, reducing its usefulness as a robust method to determine "true" V̇O 2max . Moreover, secondary criteria previously suggested, such as expiratory exchange ratios or percentages of maximal heart rate, are highly dependent on protocol design and often are achieved at V̇O 2 percentages well below V̇O 2max . Thus, an alternative method termed verification phase was proposed. Currently, it is clear that the verification phase can be a practical and sensitive method to confirm V̇O 2max ; however, procedures to conduct it are not standardized across the literature and no previous research tried to summarize how it has been employed. Therefore, in this review the knowledge on the verification phase was updated, while suggestions on how it can be performed (e.g. intensity, duration, recovery) were provided according to population and protocol design. Future studies should focus to identify a verification protocol feasible for different populations and to compare square-wave and multistage verification phases. Additionally, studies assessing verification phases in different patient populations are still warranted.

  19. SU-F-P-39: End-To-End Validation of a 6 MV High Dose Rate Photon Beam, Configured for Eclipse AAA Algorithm Using Golden Beam Data, for SBRT Treatments Using RapidArc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferreyra, M; Salinas Aranda, F; Dodat, D

    Purpose: To use end-to-end testing to validate a 6 MV high dose rate photon beam, configured for Eclipse AAA algorithm using Golden Beam Data (GBD), for SBRT treatments using RapidArc. Methods: Beam data was configured for Varian Eclipse AAA algorithm using the GBD provided by the vendor. Transverse and diagonals dose profiles, PDDs and output factors down to a field size of 2×2 cm2 were measured on a Varian Trilogy Linac and compared with GBD library using 2% 2mm 1D gamma analysis. The MLC transmission factor and dosimetric leaf gap were determined to characterize the MLC in Eclipse. Mechanical andmore » dosimetric tests were performed combining different gantry rotation speeds, dose rates and leaf speeds to evaluate the delivery system performance according to VMAT accuracy requirements. An end-to-end test was implemented planning several SBRT RapidArc treatments on a CIRS 002LFC IMRT Thorax Phantom. The CT scanner calibration curve was acquired and loaded in Eclipse. PTW 31013 ionization chamber was used with Keithley 35617EBS electrometer for absolute point dose measurements in water and lung equivalent inserts. TPS calculated planar dose distributions were compared to those measured using EPID and MapCheck, as an independent verification method. Results were evaluated with gamma criteria of 2% dose difference and 2mm DTA for 95% of points. Results: GBD set vs. measured data passed 2% 2mm 1D gamma analysis even for small fields. Machine performance tests show results are independent of machine delivery configuration, as expected. Absolute point dosimetry comparison resulted within 4% for the worst case scenario in lung. Over 97% of the points evaluated in dose distributions passed gamma index analysis. Conclusion: Eclipse AAA algorithm configuration of the 6 MV high dose rate photon beam using GBD proved efficient. End-to-end test dose calculation results indicate it can be used clinically for SBRT using RapidArc.« less

  20. Simple method to verify OPC data based on exposure condition

    NASA Astrophysics Data System (ADS)

    Moon, James; Ahn, Young-Bae; Oh, Sey-Young; Nam, Byung-Ho; Yim, Dong Gyu

    2006-03-01

    In a world where Sub100nm lithography tool is an everyday household item for device makers, shrinkage of the device is at a rate that no one ever have imagined. With the shrinkage of device at such a high rate, demand placed on Optical Proximity Correction (OPC) is like never before. To meet this demand with respect to shrinkage rate of the device, more aggressive OPC tactic is involved. Aggressive OPC tactics is a must for sub 100nm lithography tech but this tactic eventually results in greater room for OPC error and complexity of the OPC data. Until now, Optical Rule Check (ORC) or Design Rule Check (DRC) was used to verify this complex OPC error. But each of these methods has its pros and cons. ORC verification of OPC data is rather accurate "process" wise but inspection of full chip device requires a lot of money (Computer , software,..) and patience (run time). DRC however has no such disadvantage, but accuracy of the verification is a total downfall "process" wise. In this study, we were able to create a new method for OPC data verification that combines the best of both ORC and DRC verification method. We created a method that inspects the biasing of the OPC data with respect to the illumination condition of the process that's involved. This new method for verification was applied to 80nm tech ISOLATION and GATE layer of the 512M DRAM device and showed accuracy equivalent to ORC inspection with run time that of DRC verification.

  1. Clinical relevance of liquid chromatography tandem mass spectrometry as an analytical method in microdose clinical studies.

    PubMed

    Yamane, Naoe; Tozuka, Zenzaburo; Kusama, Makiko; Maeda, Kazuya; Ikeda, Toshihiko; Sugiyama, Yuichi

    2011-08-01

    To investigate the potency of LC-MS/MS by means of sensitivity and the applicability for cassette dosing in microdose clinical trials. Thirty one top-selling 31 drugs were spiked to human plasma, extracted, and analyzed by LC-MS/MS. The lower limits of quantification for each drug varied from 0.08 to 50 pg/mL, and were lower than one eighth of the assumed maximum plasma concentration at microdose in all drugs except for losartan, indicating the high performance in acquisition of full pharmacokinetic profiles at microdose. We also succeeded in simultaneous analysis of multiple compounds, assuming a situation of cassette dosing in which multiple drug candidates would be administrated simultaneously. Together with the features of LC-MS/MS, such as immediate verification, the utilization of non-radiolabeled drugs and no special facilities, we suppose that LC-MS/MS analysis would be widely applicable in conducting microdose clinical studies.

  2. Verification of chemistry reference ranges using a simple method in sub-Saharan Africa.

    PubMed

    De Baetselier, Irith; Taylor, Douglas; Mandala, Justin; Nanda, Kavita; Van Campenhout, Christel; Agingu, Walter; Madurai, Lorna; Barsch, Eva-Maria; Deese, Jennifer; Van Damme, Lut; Crucitti, Tania

    2016-01-01

    Chemistry safety assessments are interpreted by using chemistry reference ranges (CRRs). Verification of CRRs is time consuming and often requires a statistical background. We report on an easy and cost-saving method to verify CRRs. Using a former method introduced by Sigma Diagnostics, three study sites in sub-Saharan Africa, Bondo, Kenya, and Pretoria and Bloemfontein, South Africa, verified the CRRs for hepatic and renal biochemistry assays performed during a clinical trial of HIV antiretroviral pre-exposure prophylaxis. The aspartate aminotransferase/alanine aminotransferase, creatinine and phosphorus results from 10 clinically-healthy participants at the screening visit were used. In the event the CRRs did not pass the verification, new CRRs had to be calculated based on 40 clinically-healthy participants. Within a few weeks, the study sites accomplished verification of the CRRs without additional costs. The aspartate aminotransferase reference ranges for the Bondo, Kenya site and the alanine aminotransferase reference ranges for the Pretoria, South Africa site required adjustment. The phosphorus CRR passed verification and the creatinine CRR required adjustment at every site. The newly-established CRR intervals were narrower than the CRRs used previously at these study sites due to decreases in the upper limits of the reference ranges. As a result, more toxicities were detected. To ensure the safety of clinical trial participants, verification of CRRs should be standard practice in clinical trials conducted in settings where the CRR has not been validated for the local population. This verification method is simple, inexpensive, and can be performed by any medical laboratory.

  3. Specification and Verification of Medical Monitoring System Using Petri-nets.

    PubMed

    Majma, Negar; Babamir, Seyed Morteza

    2014-07-01

    To monitor the patient behavior, data are collected from patient's body by a medical monitoring device so as to calculate the output using embedded software. Incorrect calculations may endanger the patient's life if the software fails to meet the patient's requirements. Accordingly, the veracity of the software behavior is a matter of concern in the medicine; moreover, the data collected from the patient's body are fuzzy. Some methods have already dealt with monitoring the medical monitoring devices; however, model based monitoring fuzzy computations of such devices have been addressed less. The present paper aims to present synthesizing a fuzzy Petri-net (FPN) model to verify behavior of a sample medical monitoring device called continuous infusion insulin (INS) because Petri-net (PN) is one of the formal and visual methods to verify the software's behavior. The device is worn by the diabetic patients and then the software calculates the INS dose and makes a decision for injection. The input and output of the infusion INS software are not crisp in the real world; therefore, we present them in fuzzy variables. Afterwards, we use FPN instead of clear PN to model the fuzzy variables. The paper follows three steps to synthesize an FPN to deal with verification of the infusion INS device: (1) Definition of fuzzy variables, (2) definition of fuzzy rules and (3) design of the FPN model to verify the software behavior.

  4. Organ dose measurements from multiple-detector computed tomography using a commercial dosimetry system and tomographic, physical phantoms

    NASA Astrophysics Data System (ADS)

    Lavoie, Lindsey K.

    The technology of computed tomography (CT) imaging has soared over the last decade with the use of multi-detector CT (MDCT) scanners that are capable of performing studies in a matter of seconds. While the diagnostic information obtained from MDCT imaging is extremely valuable, it is important to ensure that the radiation doses resulting from these studies are at acceptably safe levels. This research project focused on the measurement of organ doses resulting from modern MDCT scanners. A commercially-available dosimetry system was used to measure organ doses. Small dosimeters made of optically-stimulated luminescent (OSL) material were analyzed with a portable OSL reader. Detailed verification of this system was performed. Characteristics studied include energy, scatter, and angular responses; dose linearity, ability to erase the exposed dose and ability to reuse dosimeters multiple times. The results of this verification process were positive. While small correction factors needed to be applied to the dose reported by the OSL reader, these factors were small and expected. Physical, tomographic pediatric and adult phantoms were used to measure organ doses. These phantoms were developed from CT images and are composed of tissue-equivalent materials. Because the adult phantom is comprised of numerous segments, dosimeters were placed in the phantom at several organ locations, and doses to select organs were measured using three clinical protocols: pediatric craniosynostosis, adult brain perfusion and adult cardiac CT angiography (CTA). A wide-beam, 320-slice, volumetric CT scanner and a 64-slice, MDCT scanner were used for organ dose measurements. Doses ranged from 1 to 26 mGy for the pediatric protocol, 1 to 1241 mGy for the brain perfusion protocol, and 2-100 mGy for the cardiac protocol. In most cases, the doses measured on the 64-slice scanner were higher than those on the 320-slice scanner. A methodology to measure organ doses with OSL dosimeters received from CT imaging has been presented. These measurements are especially important in keeping with the ALARA (as low as reasonably achievable) principle. While diagnostic information from CT imaging is valuable and necessary, the dose to patients is always a consideration. This methodology aids in this important task. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)

  5. Time-resolved in vivo luminescence dosimetry for online error detection in pulsed dose-rate brachytherapy.

    PubMed

    Andersen, Claus E; Nielsen, Søren Kynde; Lindegaard, Jacob Christian; Tanderup, Kari

    2009-11-01

    The purpose of this study is to present and evaluate a dose-verification protocol for pulsed dose-rate (PDR) brachytherapy based on in vivo time-resolved (1 s time resolution) fiber-coupled luminescence dosimetry. Five cervix cancer patients undergoing PDR brachytherapy (Varian GammaMed Plus with 192Ir) were monitored. The treatments comprised from 10 to 50 pulses (1 pulse/h) delivered by intracavitary/interstitial applicators (tandem-ring systems and/or needles). For each patient, one or two dosimetry probes were placed directly in or close to the tumor region using stainless steel or titanium needles. Each dosimeter probe consisted of a small aluminum oxide crystal attached to an optical fiber cable (1 mm outer diameter) that could guide radioluminescence (RL) and optically stimulated luminescence (OSL) from the crystal to special readout instrumentation. Positioning uncertainty and hypothetical dose-delivery errors (interchanged guide tubes or applicator movements from +/-5 to +/-15 mm) were simulated in software in order to assess the ability of the system to detect errors. For three of the patients, the authors found no significant differences (P>0.01) for comparisons between in vivo measurements and calculated reference values at the level of dose per dwell position, dose per applicator, or total dose per pulse. The standard deviations of the dose per pulse were less than 3%, indicating a stable dose delivery and a highly stable geometry of applicators and dosimeter probes during the treatments. For the two other patients, the authors noted significant deviations for three individual pulses and for one dosimeter probe. These deviations could have been due to applicator movement during the treatment and one incorrectly positioned dosimeter probe, respectively. Computer simulations showed that the likelihood of detecting a pair of interchanged guide tubes increased by a factor of 10 or more for the considered patients when going from integrating to time-resolved dose verification. The likelihood of detecting a +/-15 mm displacement error increased by a factor of 1.5 or more. In vivo fiber-coupled RL/OSL dosimetry based on detectors placed in standard brachytherapy needles was demonstrated. The time-resolved dose-rate measurements were found to provide a good way to visualize the progression and stability of PDR brachytherapy dose delivery, and time-resolved dose-rate measurements provided an increased sensitivity for detection of dose-delivery errors compared with time-integrated dosimetry.

  6. Sterility and Safety Validation for Transport Packaging of Organs and Tissues.

    PubMed

    Cobos, M; Trunzo, L; Vogt, M V; Romero, O; Anessi, C; Pachado, J; Ciávaro, M N; Horak, C; Bacqué, M C

    2018-03-01

    The bags used in the transport of organs and tissues must be sterile, nontoxic, pyrogen free, and must serve as a barrier throughout their useful life. The goal of this study was to show the sterility, safety, and functionality of the bags subjected to irradiation, through validated procedures and techniques. The selected sterilization method was the use of gamma radiation. The sterilization dose was determined based on validated standards for the sterilization of medical products, ISO 11137-2: 2013 and ISO/TS 13004: 2013, using the Verification Dose Maximum method on samples belonging to 3 manufacturing lots. The ISO 10993-5: 2009 standard was used in the cytotoxicity tests, by means of extracts test and quantitative technique of MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. The tests to determine the expiration date of the kit were performed by ASTM F1980, accelerated aging, and ASTM D3078 to evaluate hermeticity. The irradiation dose validated to reach the required sterility safety level was 22.5 kGy. The constituent materials and the sterilization method do not generated cellular toxicity, and the product was not modified during the simulated time of 5 years. Sterilization by irradiation is a method that leaves no residue, does not harm the properties of the material because it is conducted in cold, and as the sterilizing agent, the energy absorbed by the product is highly penetrating and can be treated in its final packaging, with no risk of postcontamination. It is for this reason that it is prioritized over other methods of sterilization. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Using Concept Space to Verify Hyponymy in Building a Hyponymy Lexicon

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Zhang, Sen; Diao, Lu Hong; Yan, Shu Ying; Cao, Cun Gen

    Verification of hyponymy relations is a basic problem in knowledge acquisition. We present a method of hyponymy verification based on concept space. Firstly, we give the definition of concept space about a group of candidate hyponymy relations. Secondly we analyze the concept space and define a set of hyponymy features based on the space structure. Then we use them to verify candidate hyponymy relations. Experimental results show that the method can provide adequate verification of hyponymy.

  8. Asessment of adequacy of the monitoring method in the activity of a verification laboratory

    NASA Astrophysics Data System (ADS)

    Ivanov, R. N.; Grinevich, V. A.; Popov, A. A.; Shalay, V. V.; Malaja, L. D.

    2018-04-01

    Questions of assessing adequacy of a risk monitoring technique for a verification laboratory operation concerning the conformity to the accreditation criteria, and aimed at decision-making on advisability of a verification laboratory activities in the declared area of accreditation are considered.

  9. Three Lectures on Theorem-proving and Program Verification

    NASA Technical Reports Server (NTRS)

    Moore, J. S.

    1983-01-01

    Topics concerning theorem proving and program verification are discussed with particlar emphasis on the Boyer/Moore theorem prover, and approaches to program verification such as the functional and interpreter methods and the inductive assertion approach. A history of the discipline and specific program examples are included.

  10. 49 CFR 236.905 - Railroad Safety Program Plan (RSPP).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... to be used in the verification and validation process, consistent with appendix C to this part. The...; and (iv) The identification of the safety assessment process. (2) Design for verification and validation. The RSPP must require the identification of verification and validation methods for the...

  11. 49 CFR 236.905 - Railroad Safety Program Plan (RSPP).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... to be used in the verification and validation process, consistent with appendix C to this part. The...; and (iv) The identification of the safety assessment process. (2) Design for verification and validation. The RSPP must require the identification of verification and validation methods for the...

  12. 49 CFR 236.905 - Railroad Safety Program Plan (RSPP).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... to be used in the verification and validation process, consistent with appendix C to this part. The...; and (iv) The identification of the safety assessment process. (2) Design for verification and validation. The RSPP must require the identification of verification and validation methods for the...

  13. 49 CFR 236.905 - Railroad Safety Program Plan (RSPP).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... to be used in the verification and validation process, consistent with appendix C to this part. The...; and (iv) The identification of the safety assessment process. (2) Design for verification and validation. The RSPP must require the identification of verification and validation methods for the...

  14. Ionoacoustic characterization of the proton Bragg peak with submillimeter accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assmann, W., E-mail: walter.assmann@lmu.de; Reinhardt, S.; Lehrack, S.

    2015-02-15

    Purpose: Range verification in ion beam therapy relies to date on nuclear imaging techniques which require complex and costly detector systems. A different approach is the detection of thermoacoustic signals that are generated due to localized energy loss of ion beams in tissue (ionoacoustics). Aim of this work was to study experimentally the achievable position resolution of ionoacoustics under idealized conditions using high frequency ultrasonic transducers and a specifically selected probing beam. Methods: A water phantom was irradiated by a pulsed 20 MeV proton beam with varying pulse intensity and length. The acoustic signal of single proton pulses was measuredmore » by different PZT-based ultrasound detectors (3.5 and 10 MHz central frequencies). The proton dose distribution in water was calculated by Geant4 and used as input for simulation of the generated acoustic wave by the matlab toolbox k-WAVE. Results: In measurements from this study, a clear signal of the Bragg peak was observed for an energy deposition as low as 10{sup 12} eV. The signal amplitude showed a linear increase with particle number per pulse and thus, dose. Bragg peak position measurements were reproducible within ±30 μm and agreed with Geant4 simulations to better than 100 μm. The ionoacoustic signal pattern allowed for a detailed analysis of the Bragg peak and could be well reproduced by k-WAVE simulations. Conclusions: The authors have studied the ionoacoustic signal of the Bragg peak in experiments using a 20 MeV proton beam with its correspondingly localized energy deposition, demonstrating submillimeter position resolution and providing a deep insight in the correlation between the acoustic signal and Bragg peak shape. These results, together with earlier experiments and new simulations (including the results in this study) at higher energies, suggest ionoacoustics as a technique for range verification in particle therapy at locations, where the tumor can be localized by ultrasound imaging. This acoustic range verification approach could offer the possibility of combining anatomical ultrasound and Bragg peak imaging, but further studies are required for translation of these findings to clinical application.« less

  15. Auditing the Immunization Data Quality from Routine Reports in Shangyu District, East China

    PubMed Central

    Hu, Yu; Zhang, Xinpei; Li, Qian; Chen, Yaping

    2016-01-01

    Objective: To evaluate the immunization data quality in Shangyu District, East China. Methods: An audit for immunization data for the year 2014 was conducted in 20 vaccination clinics of Shangyu District. The consistency of immunization data was estimated by verification factors (VFs), which was the proportion of vaccine doses reported as being administered that could be verified by written documentation at vaccination clinics. The quality of monitoring systems was evaluated using the quality index (QI). Results: The VFs of 20 vaccine doses ranged from 0.94 to 1.04 at the district level. The VFs for the 20 vaccination clinics ranged from 0.57 to 1.07. The VFs for Shangyu District was 0.98. The mean of total QI score of the 20 vaccination clinics was 80.32%. A significant correlation between the VFs of the 3rd dose of the diphtheria–tetanus–pertussis combined vaccine (DTP) and QI scores was observed at the vaccination clinic level. Conclusions: Deficiencies in data consistency and immunization reporting practice in Shangyu District were observed. Targeted measures are suggested to improve the quality of the immunization reporting system in vaccination clinics with poor data consistency. PMID:27869729

  16. Auditing the Immunization Data Quality from Routine Reports in Shangyu District, East China.

    PubMed

    Hu, Yu; Zhang, Xinpei; Li, Qian; Chen, Yaping

    2016-11-18

    Objective: To evaluate the immunization data quality in Shangyu District, East China. Methods: An audit for immunization data for the year 2014 was conducted in 20 vaccination clinics of Shangyu District. The consistency of immunization data was estimated by verification factors (VFs), which was the proportion of vaccine doses reported as being administered that could be verified by written documentation at vaccination clinics. The quality of monitoring systems was evaluated using the quality index (QI). Results: The VFs of 20 vaccine doses ranged from 0.94 to 1.04 at the district level. The VFs for the 20 vaccination clinics ranged from 0.57 to 1.07. The VFs for Shangyu District was 0.98. The mean of total QI score of the 20 vaccination clinics was 80.32%. A significant correlation between the VFs of the 3rd dose of the diphtheria-tetanus-pertussis combined vaccine (DTP) and QI scores was observed at the vaccination clinic level. Conclusions: Deficiencies in data consistency and immunization reporting practice in Shangyu District were observed. Targeted measures are suggested to improve the quality of the immunization reporting system in vaccination clinics with poor data consistency.

  17. WE-G-18A-01: JUNIOR INVESTIGATOR WINNER - Low-Dose C-Arm Cone-Beam CT with Model-Based Image Reconstruction for High-Quality Guidance of Neurosurgical Intervention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, A; Stayman, J; Otake, Y

    Purpose: To address the challenges of image quality, radiation dose, and reconstruction speed in intraoperative cone-beam CT (CBCT) for neurosurgery by combining model-based image reconstruction (MBIR) with accelerated algorithmic and computational methods. Methods: Preclinical studies involved a mobile C-arm for CBCT imaging of two anthropomorphic head phantoms that included simulated imaging targets (ventricles, soft-tissue structures/bleeds) and neurosurgical procedures (deep brain stimulation (DBS) electrode insertion) for assessment of image quality. The penalized likelihood (PL) framework was used for MBIR, incorporating a statistical model with image regularization via an edgepreserving penalty. To accelerate PL reconstruction, the ordered-subset, separable quadratic surrogates (OS-SQS) algorithmmore » was modified to incorporate Nesterov's method and implemented on a multi-GPU system. A fair comparison of image quality between PL and conventional filtered backprojection (FBP) was performed by selecting reconstruction parameters that provided matched low-contrast spatial resolution. Results: CBCT images of the head phantoms demonstrated that PL reconstruction improved image quality (∼28% higher CNR) even at half the radiation dose (3.3 mGy) compared to FBP. A combination of Nesterov's method and fast projectors yielded a PL reconstruction run-time of 251 sec (cf., 5729 sec for OS-SQS, 13 sec for FBP). Insertion of a DBS electrode resulted in severe metal artifact streaks in FBP reconstructions, whereas PL was intrinsically robust against metal artifact. The combination of noise and artifact was reduced from 32.2 HU in FBP to 9.5 HU in PL, thereby providing better assessment of device placement and potential complications. Conclusion: The methods can be applied to intraoperative CBCT for guidance and verification of neurosurgical procedures (DBS electrode insertion, biopsy, tumor resection) and detection of complications (intracranial hemorrhage). Significant improvement in image quality, dose reduction, and reconstruction time of ∼4 min will enable practical deployment of low-dose C-arm CBCT within the operating room. AAPM Research Seed Funding (2013-2014); NIH Fellowship F32EB017571; Siemens Healthcare (XP Division)« less

  18. SU-E-T-364: 6X FFF and 10X FFF Portal Dosimetry Output Factor Verification: Application for SRS/SBRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulam, M; Bellon, M; Gopal, A

    2014-06-01

    Purpose: To enhance portal dosimetry of high dose rate SRS/SBRT plan verifications with extensive imager measurement of output factors (OF). Methods: Electronic portal image dosimetry (EPID), implemented on the Varian Edge allows for acquisition of its two energies: 6X FFF and 10 FFF (1400 and 2400 MU/min, respectively) at source to imager distance (SID) =100cm without imager saturation. Square and rectangular aSi OF following EPID calibration were obtained. Data taken was similar to that obtained during beam commissioning (of almost all field sizes from 1×1 to 15×15 and 20×20 cm{sup 2}, [Trilogy] and [Edge], respectively) to construct a table usingmore » the OF tool for use in the Portal Dosimetry Prediction Algorithm (PDIP v11). The Trilogy 6x SRS 1000 MU/min EPID data were taken at 140 SID. The large number of OF were obtained for comparison to that obtained with diode detectors and ion chambers (cc13 for >3×3 field size). As Edge PDIP verification is currently ongoing, EPID measurements of three SRS/SBRT plans for the Trilogy were taken and compared to results obtained prior to these measurements. Results: The relative difference output factors of field sizes 2×2 and higher compared to commissioning data were (mean+/-SD, [range]): Edge 6X (−1.9+/−2.9%, [−5.9%,3.1%]), Edge 10X (−0.7+/−1.2%, [− 3.3%,0.8%] and Trilogy (0.03+/−0.5%, [−1.4%,1.1%]) with EPID over predicting. The results for the 140 SID showed excellent agreement throughout except at the 1×1 to 1×15 and 15×1 field sizes where differences were: −10.6%, −6.0% and −5.8%. The differences were also most pronounced for the 1×1 at 100 SID. They were −7.4% and −11.5% for 6X and 10X, respectively. The Gamma (3%, 1mm) for three clinical plans improved by 8.7+/−1.8%. Conclusion: Results indicate that imager output factor measurements at any SID of high dose rate SRS/SBRT are quite reliable for portal dosimetry plan verification except for the smallest fields. This work was not funded by Varian Oncology Systems. Some authors have other work partly funded by Varian Oncology Systems.« less

  19. Treatment planning and delivery of involved field radiotherapy in advanced Hodgkin's disease: results from a questionnaire-based audit for the UK Stanford V regimen vs ABVD clinical trial quality assurance programme (ISRCTN 64141244).

    PubMed

    Diez, P; Hoskin, P J; Aird, E G A

    2007-10-01

    This questionnaire forms the basis of the quality assurance (QA) programme for the UK randomized Phase III study of the Stanford V regimen versus ABVD for treatment of advanced Hodgkin's disease to assess differences between participating centres in treatment planning and delivery of involved-field radiotherapy for Hodgkin's lymphoma The questionnaire, which was circulated amongst 42 participating centres, consisted of seven sections: target volume definition and dose prescription; critical structures; patient positioning and irradiation techniques; planning; dose calculation; verification; and future developments The results are based on 25 responses. One-third plan using CT alone, one-third use solely the simulator and the rest individualize, depending on disease site. Eleven centres determine a dose distribution for each patient. Technique depends on disease site and whether CT or simulator planning is employed. Most departments apply isocentric techniques and use immobilization and customized shielding. In vivo dosimetry is performed in 7 centres and treatment verification occurs in 24 hospitals. In conclusion, the planning and delivery of treatment for lymphoma patients varies across the country. Conventional planning is still widespread but most centres are moving to CT-based planning and virtual simulation with extended use of immobilization, customized shielding and compensation.

  20. High-resolution face verification using pore-scale facial features.

    PubMed

    Li, Dong; Zhou, Huiling; Lam, Kin-Man

    2015-08-01

    Face recognition methods, which usually represent face images using holistic or local facial features, rely heavily on alignment. Their performances also suffer a severe degradation under variations in expressions or poses, especially when there is one gallery per subject only. With the easy access to high-resolution (HR) face images nowadays, some HR face databases have recently been developed. However, few studies have tackled the use of HR information for face recognition or verification. In this paper, we propose a pose-invariant face-verification method, which is robust to alignment errors, using the HR information based on pore-scale facial features. A new keypoint descriptor, namely, pore-Principal Component Analysis (PCA)-Scale Invariant Feature Transform (PPCASIFT)-adapted from PCA-SIFT-is devised for the extraction of a compact set of distinctive pore-scale facial features. Having matched the pore-scale features of two-face regions, an effective robust-fitting scheme is proposed for the face-verification task. Experiments show that, with one frontal-view gallery only per subject, our proposed method outperforms a number of standard verification methods, and can achieve excellent accuracy even the faces are under large variations in expression and pose.

Top