Sample records for dose volume histogram

  1. Dose-volume histogram prediction using density estimation.

    PubMed

    Skarpman Munter, Johanna; Sjölund, Jens

    2015-09-07

    Knowledge of what dose-volume histograms can be expected for a previously unseen patient could increase consistency and quality in radiotherapy treatment planning. We propose a machine learning method that uses previous treatment plans to predict such dose-volume histograms. The key to the approach is the framing of dose-volume histograms in a probabilistic setting.The training consists of estimating, from the patients in the training set, the joint probability distribution of some predictive features and the dose. The joint distribution immediately provides an estimate of the conditional probability of the dose given the values of the predictive features. The prediction consists of estimating, from the new patient, the distribution of the predictive features and marginalizing the conditional probability from the training over this. Integrating the resulting probability distribution for the dose yields an estimate of the dose-volume histogram.To illustrate how the proposed method relates to previously proposed methods, we use the signed distance to the target boundary as a single predictive feature. As a proof-of-concept, we predicted dose-volume histograms for the brainstems of 22 acoustic schwannoma patients treated with stereotactic radiosurgery, and for the lungs of 9 lung cancer patients treated with stereotactic body radiation therapy. Comparing with two previous attempts at dose-volume histogram prediction we find that, given the same input data, the predictions are similar.In summary, we propose a method for dose-volume histogram prediction that exploits the intrinsic probabilistic properties of dose-volume histograms. We argue that the proposed method makes up for some deficiencies in previously proposed methods, thereby potentially increasing ease of use, flexibility and ability to perform well with small amounts of training data.

  2. A Monte Carlo study of the impact of the choice of rectum volume definition on estimates of equivalent uniform doses and the volume parameter

    NASA Astrophysics Data System (ADS)

    Kvinnsland, Yngve; Muren, Ludvig Paul; Dahl, Olav

    2004-08-01

    Calculations of normal tissue complication probability (NTCP) values for the rectum are difficult because it is a hollow, non-rigid, organ. Finding the true cumulative dose distribution for a number of treatment fractions requires a CT scan before each treatment fraction. This is labour intensive, and several surrogate distributions have therefore been suggested, such as dose wall histograms, dose surface histograms and histograms for the solid rectum, with and without margins. In this study, a Monte Carlo method is used to investigate the relationships between the cumulative dose distributions based on all treatment fractions and the above-mentioned histograms that are based on one CT scan only, in terms of equivalent uniform dose. Furthermore, the effect of a specific choice of histogram on estimates of the volume parameter of the probit NTCP model was investigated. It was found that the solid rectum and the rectum wall histograms (without margins) gave equivalent uniform doses with an expected value close to the values calculated from the cumulative dose distributions in the rectum wall. With the number of patients available in this study the standard deviations of the estimates of the volume parameter were large, and it was not possible to decide which volume gave the best estimates of the volume parameter, but there were distinct differences in the mean values of the values obtained.

  3. Isobio software: biological dose distribution and biological dose volume histogram from physical dose conversion using linear-quadratic-linear model.

    PubMed

    Jaikuna, Tanwiwat; Khadsiri, Phatchareewan; Chawapun, Nisa; Saekho, Suwit; Tharavichitkul, Ekkasit

    2017-02-01

    To develop an in-house software program that is able to calculate and generate the biological dose distribution and biological dose volume histogram by physical dose conversion using the linear-quadratic-linear (LQL) model. The Isobio software was developed using MATLAB version 2014b to calculate and generate the biological dose distribution and biological dose volume histograms. The physical dose from each voxel in treatment planning was extracted through Computational Environment for Radiotherapy Research (CERR), and the accuracy was verified by the differentiation between the dose volume histogram from CERR and the treatment planning system. An equivalent dose in 2 Gy fraction (EQD 2 ) was calculated using biological effective dose (BED) based on the LQL model. The software calculation and the manual calculation were compared for EQD 2 verification with pair t -test statistical analysis using IBM SPSS Statistics version 22 (64-bit). Two and three-dimensional biological dose distribution and biological dose volume histogram were displayed correctly by the Isobio software. Different physical doses were found between CERR and treatment planning system (TPS) in Oncentra, with 3.33% in high-risk clinical target volume (HR-CTV) determined by D 90% , 0.56% in the bladder, 1.74% in the rectum when determined by D 2cc , and less than 1% in Pinnacle. The difference in the EQD 2 between the software calculation and the manual calculation was not significantly different with 0.00% at p -values 0.820, 0.095, and 0.593 for external beam radiation therapy (EBRT) and 0.240, 0.320, and 0.849 for brachytherapy (BT) in HR-CTV, bladder, and rectum, respectively. The Isobio software is a feasible tool to generate the biological dose distribution and biological dose volume histogram for treatment plan evaluation in both EBRT and BT.

  4. Impact of the radiotherapy technique on the correlation between dose-volume histograms of the bladder wall defined on MRI imaging and dose-volume/surface histograms in prostate cancer patients

    NASA Astrophysics Data System (ADS)

    Maggio, Angelo; Carillo, Viviana; Cozzarini, Cesare; Perna, Lucia; Rancati, Tiziana; Valdagni, Riccardo; Gabriele, Pietro; Fiorino, Claudio

    2013-04-01

    The aim of this study was to evaluate the correlation between the ‘true’ absolute and relative dose-volume histograms (DVHs) of the bladder wall, dose-wall histogram (DWH) defined on MRI imaging and other surrogates of bladder dosimetry in prostate cancer patients, planned both with 3D-conformal and intensity-modulated radiation therapy (IMRT) techniques. For 17 prostate cancer patients, previously treated with radical intent, CT and MRI scans were acquired and matched. The contours of bladder walls were drawn by using MRI images. External bladder surfaces were then used to generate artificial bladder walls by performing automatic contractions of 5, 7 and 10 mm. For each patient a 3D conformal radiotherapy (3DCRT) and an IMRT treatment plan was generated with a prescription dose of 77.4 Gy (1.8 Gy/fr) and DVH of the whole bladder of the artificial walls (DVH-5/10) and dose-surface histograms (DSHs) were calculated and compared against the DWH in absolute and relative value, for both treatment planning techniques. A specific software (VODCA v. 4.4.0, MSS Inc.) was used for calculating the dose-volume/surface histogram. Correlation was quantified for selected dose-volume/surface parameters by the Spearman correlation coefficient. The agreement between %DWH and DVH5, DVH7 and DVH10 was found to be very good (maximum average deviations below 2%, SD < 5%): DVH5 showed the best agreement. The correlation was slightly better for absolute (R = 0.80-0.94) compared to relative (R = 0.66-0.92) histograms. The DSH was also found to be highly correlated with the DWH, although slightly higher deviations were generally found. The DVH was not a good surrogate of the DWH (R < 0.7 for most of parameters). When comparing the two treatment techniques, more pronounced differences between relative histograms were seen for IMRT with respect to 3DCRT (p < 0.0001).

  5. A novel method for the evaluation of uncertainty in dose-volume histogram computation.

    PubMed

    Henríquez, Francisco Cutanda; Castrillón, Silvia Vargas

    2008-03-15

    Dose-volume histograms (DVHs) are a useful tool in state-of-the-art radiotherapy treatment planning, and it is essential to recognize their limitations. Even after a specific dose-calculation model is optimized, dose distributions computed by using treatment-planning systems are affected by several sources of uncertainty, such as algorithm limitations, measurement uncertainty in the data used to model the beam, and residual differences between measured and computed dose. This report presents a novel method to take them into account. To take into account the effect of associated uncertainties, a probabilistic approach using a new kind of histogram, a dose-expected volume histogram, is introduced. The expected value of the volume in the region of interest receiving an absorbed dose equal to or greater than a certain value is found by using the probability distribution of the dose at each point. A rectangular probability distribution is assumed for this point dose, and a formulation that accounts for uncertainties associated with point dose is presented for practical computations. This method is applied to a set of DVHs for different regions of interest, including 6 brain patients, 8 lung patients, 8 pelvis patients, and 6 prostate patients planned for intensity-modulated radiation therapy. Results show a greater effect on planning target volume coverage than in organs at risk. In cases of steep DVH gradients, such as planning target volumes, this new method shows the largest differences with the corresponding DVH; thus, the effect of the uncertainty is larger.

  6. Prospective Clinical Trial of Bladder Filling and Three-Dimensional Dosimetry in High-Dose-Rate Vaginal Cuff Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, Alexandra J.; Cormack, Robert A.; Lee, Hang

    2008-11-01

    Purpose: To investigate the effect of bladder filling on dosimetry and to determine the best bladder dosimetric parameter for vaginal cuff brachytherapy. Methods and Materials: In this prospective clinical trial, a total of 20 women underwent vaginal cylinder high-dose-rate brachytherapy. The bladder was full for Fraction 2 and empty for Fraction 3. Dose-volume histogram and dose-surface histogram values were generated for the bladder, rectum, and urethra. The midline maximal bladder point (MBP) and the midline maximal rectal point were recorded. Paired t tests, Pearson correlations, and regression analyses were performed. Results: The volume and surface area of the irradiated bladdermore » were significantly smaller when the bladder was empty than when full. Of the several dose-volume histogram and dose-surface histogram parameters evaluated, the bladder maximal dose received by 2 cm{sup 3} of tissue, volume of bladder receiving {>=}50% of the dose, volume of bladder receiving {>=}70% of the dose, and surface area of bladder receiving {>=}50% of the dose significantly predicted for the difference between the empty vs. full filling state. The volume of bladder receiving {>=}70% of the dose and the maximal dose received by 2 cm{sup 3} of tissue correlated significantly with the MBP. Bladder filling did not alter the volume or surface area of the rectum irradiated. However, an empty bladder did result in the nearest point of bowel being significantly closer to the vaginal cylinder than when the bladder was full. Conclusions: Patients undergoing vaginal cuff brachytherapy treated with an empty bladder have a lower bladder dose than those treated with a full bladder. The MBP correlated well with the volumetric assessments of bladder dose and provided a noninvasive method for reporting the MBP dose using three-dimensional imaging. The MBP can therefore be used as a surrogate for complex dosimetry in the clinic.« less

  7. SU-C-207A-07: Cumulative 18F-FDG Uptake Histogram Relative to Radiation Dose Volume Histogram of Lung After IMRT Or PSPT and Their Association with Radiation Pneumonitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shusharina, N; Choi, N; Bortfeld, T

    2016-06-15

    Purpose: To determine whether the difference in cumulative 18F-FDG uptake histogram of lung treated with either IMRT or PSPT is associated with radiation pneumonitis (RP) in patients with inoperable stage II and III NSCLC. Methods: We analyzed 24 patients from a prospective randomized trial to compare IMRT (n=12) with vs. PSPT (n=12) for inoperable NSCLC. All patients underwent PET-CT imaging between 35 and 88 days post-therapy. Post-treatment PET-CT was aligned with planning 4D CT to establish a voxel-to-voxel correspondence between post-treatment PET and planning dose images. 18F-FDG uptake as a function of radiation dose to normal lung was obtained formore » each patient. Distribution of the standard uptake value (SUV) was analyzed using a volume histogram method. The image quantitative characteristics and DVH measures were correlated with clinical symptoms of pneumonitis. Results: Patients with RP were present in both groups: 5 in the IMRT and 6 in the PSPT. The analysis of cumulative SUV histograms showed significantly higher relative volumes of the normal lung having higher SUV uptake in the PSPT patients for both symptomatic and asymptomatic cases (VSUV=2: 10% for IMRT vs 16% for proton RT and VSUV=1: 10% for IMRT vs 23% for proton RT). In addition, the SUV histograms for symptomatic cases in PSPT patients exhibited a significantly longer tail at the highest SUV. The absolute volume of the lung receiving the dose >70 Gy was larger in the PSPT patients. Conclusion: 18F-FDG uptake – radiation dose response correlates with RP in both groups of patients by means of the linear regression slope. SUV is higher for the PSPT patients for both symptomatic and asymptomatic cases. Higher uptake after PSPT patients is explained by larger volumes of the lung receiving high radiation dose.« less

  8. Converging stereotactic radiotherapy using kilovoltage X-rays: experimental irradiation of normal rabbit lung and dose-volume analysis with Monte Carlo simulation.

    PubMed

    Kawase, Takatsugu; Kunieda, Etsuo; Deloar, Hossain M; Tsunoo, Takanori; Seki, Satoshi; Oku, Yohei; Saitoh, Hidetoshi; Saito, Kimiaki; Ogawa, Eileen N; Ishizaka, Akitoshi; Kameyama, Kaori; Kubo, Atsushi

    2009-10-01

    To validate the feasibility of developing a radiotherapy unit with kilovoltage X-rays through actual irradiation of live rabbit lungs, and to explore the practical issues anticipated in future clinical application to humans through Monte Carlo dose simulation. A converging stereotactic irradiation unit was developed, consisting of a modified diagnostic computed tomography (CT) scanner. A tiny cylindrical volume in 13 normal rabbit lungs was individually irradiated with single fractional absorbed doses of 15, 30, 45, and 60 Gy. Observational CT scanning of the whole lung was performed every 2 weeks for 30 weeks after irradiation. After 30 weeks, histopathologic specimens of the lungs were examined. Dose distribution was simulated using the Monte Carlo method, and dose-volume histograms were calculated according to the data. A trial estimation of the effect of respiratory movement on dose distribution was made. A localized hypodense change and subsequent reticular opacity around the planning target volume (PTV) were observed in CT images of rabbit lungs. Dose-volume histograms of the PTVs and organs at risk showed a focused dose distribution to the target and sufficient dose lowering in the organs at risk. Our estimate of the dose distribution, taking respiratory movement into account, revealed dose reduction in the PTV. A converging stereotactic irradiation unit using kilovoltage X-rays was able to generate a focused radiobiologic reaction in rabbit lungs. Dose-volume histogram analysis and estimated sagittal dose distribution, considering respiratory movement, clarified the characteristics of the irradiation received from this type of unit.

  9. SU-G-BRC-08: Evaluation of Dose Mass Histogram as a More Representative Dose Description Method Than Dose Volume Histogram in Lung Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, J; Eldib, A; Ma, C

    2016-06-15

    Purpose: Dose-volume-histogram (DVH) is widely used for plan evaluation in radiation treatment. The concept of dose-mass-histogram (DMH) is expected to provide a more representative description as it accounts for heterogeneity in tissue density. This study is intended to assess the difference between DVH and DMH for evaluating treatment planning quality. Methods: 12 lung cancer treatment plans were exported from the treatment planning system. DVHs for the planning target volume (PTV), the normal lung and other structures of interest were calculated. DMHs were calculated in a similar way as DVHs expect that the voxel density converted from the CT number wasmore » used in tallying the dose histogram bins. The equivalent uniform dose (EUD) was calculated based on voxel volume and mass, respectively. The normal tissue complication probability (NTCP) in relation to the EUD was calculated for the normal lung to provide quantitative comparison of DVHs and DMHs for evaluating the radiobiological effect. Results: Large differences were observed between DVHs and DMHs for lungs and PTVs. For PTVs with dense tumor cores, DMHs are higher than DVHs due to larger mass weighing in the high dose conformal core regions. For the normal lungs, DMHs can either be higher or lower than DVHs depending on the target location within the lung. When the target is close to the lower lung, DMHs show higher values than DVHs because the lower lung has higher density than the central portion or the upper lung. DMHs are lower than DVHs for targets in the upper lung. The calculated NTCPs showed a large range of difference between DVHs and DMHs. Conclusion: The heterogeneity of lung can be well considered using DMH for evaluating target coverage and normal lung pneumonitis. Further studies are warranted to quantify the benefits of DMH over DVH for plan quality evaluation.« less

  10. SU-D-201-02: Prediction of Delivered Dose Based On a Joint Histogram of CT and FDG PET Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, M; Choi, Y; Cho, A

    2015-06-15

    Purpose: To investigate whether pre-treatment images can be used in predicting microsphere distribution in tumors. When intra-arterial radioembolization using Y90 microspheres was performed, the microspheres were often delivered non-uniformly within the tumor, which could lead to an inefficient therapy. Therefore, it is important to estimate the distribution of microspheres. Methods: Early arterial phase CT and FDG PET images were acquired for patients with primary liver cancer prior to radioembolization (RE) using Y90 microspheres. Tumor volume was delineated on CT images and fused with FDG PET images. From each voxel (3.9×3.9×3.3 mm3) in the tumor, the Hounsfield unit (HU) from themore » CT and SUV values from the FDG PET were harvested. We binned both HU and SUV into 11 bins and then calculated a normalized joint-histogram in an 11×11 array.Patients also underwent a post-treatment Y90 PET imaging. Radiation dose for the tumor was estimated using convolution of the Y90 distribution with a dose-point kernel. We also calculated a fraction of the tumor volume that received a radiation dose great than 100Gy. Results: Averaged over 40 patients, 55% of tumor volume received a dose greater than 100Gy (range : 1.1 – 100%). The width of the joint histogram was narrower for patients with a high dose. For patients with a low dose, the width was wider and a larger fraction of tumor volume had low HU. Conclusion: We have shown the pattern of joint histogram of the HU and SUV depends on delivered dose. The patterns can predict the efficacy of uniform intra-arterial delivery of Y90 microspheres.« less

  11. [Clinical evaluation of heavy-particle radiotherapy using dose volume histogram (DVH)].

    PubMed

    Terahara, A; Nakano, T; Tsujii, H

    1998-01-01

    Radiotherapy with heavy particles such as proton and heavy-charged particles is a promising modality for treatment of localized malignant tumors because of the good dose distribution. A dose calculation and radiotherapy planning system which is essential for this kind of treatment has been developed in recent years. It has the capability to compute the dose volume histogram (DVH) which contains dose-volume information for the target volume and other interesting volumes. Recently, DVH is commonly used to evaluate and compare dose distributions in radiotherapy with both photon and heavy particles, and it shows that a superior dose distribution is obtained in heavy particle radiotherapy. DVH is also utilized for the evaluation of dose distribution related to clinical outcomes. Besides models such as normal tissue complication probability (NTCP) and tumor control probability (TCP), which can be calculated from DVH are proposed by several authors, they are applied to evaluate dose distributions themselves and to evaluate them in relation to clinical results. DVH is now a useful and important tool, but further studies are needed to use DVH and these models practically for clinical evaluation of heavy-particle radiotherapy.

  12. Dosimetric impact in the dose-volume histograms of rectal and vesical wall contouring in prostate cancer IMRT treatments.

    PubMed

    Gómez, Laura; Andrés, Carlos; Ruiz, Antonio

    2017-01-01

    The main purpose of this study was to evaluate the differences in dose-volume histograms of IMRT treatments for prostate cancer based on the delineation of the main organs at risk (rectum and bladder) as solid organs or by contouring their wall. Rectum and bladder have typically been delineated as solid organs, including the waste material, which, in practice, can lead to an erroneous assessment of the risk of adverse effects. A retrospective study was made on 25 patients treated with IMRT radiotherapy for prostate adenocarcinoma. 76.32 Gy in 36 fractions was prescribed to the prostate and seminal vesicles. In addition to the delineation of the rectum and bladder as solid organs (including their content), the rectal and bladder wall were also delineated and the resulting dose-volume histograms were analyzed for the two groups of structures. Data analysis shows statistically significant differences in the main parameters used to assess the risk of toxicity of a prostate radiotherapy treatment. Higher doses were received on the rectal and bladder walls compared to doses received on the corresponding solid organs. The observed differences in terms of received doses to the rectum and bladder based on the method of contouring could gain greater importance in inverse planning treatments, where the treatment planning system optimizes the dose in these volumes. So, one should take into account the method of delineating of these structures to make a clinical decision regarding dose limitation and risk assessment of chronic toxicity.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugano, Yasutaka; Mizuta, Masahiro; Takao, Seishin

    Purpose: Radiotherapy of solid tumors has been performed with various fractionation regimens such as multi- and hypofractionations. However, the ability to optimize the fractionation regimen considering the physical dose distribution remains insufficient. This study aims to optimize the fractionation regimen, in which the authors propose a graphical method for selecting the optimal number of fractions (n) and dose per fraction (d) based on dose–volume histograms for tumor and normal tissues of organs around the tumor. Methods: Modified linear-quadratic models were employed to estimate the radiation effects on the tumor and an organ at risk (OAR), where the repopulation of themore » tumor cells and the linearity of the dose-response curve in the high dose range of the surviving fraction were considered. The minimization problem for the damage effect on the OAR was solved under the constraint that the radiation effect on the tumor is fixed by a graphical method. Here, the damage effect on the OAR was estimated based on the dose–volume histogram. Results: It was found that the optimization of fractionation scheme incorporating the dose–volume histogram is possible by employing appropriate cell surviving models. The graphical method considering the repopulation of tumor cells and a rectilinear response in the high dose range enables them to derive the optimal number of fractions and dose per fraction. For example, in the treatment of prostate cancer, the optimal fractionation was suggested to lie in the range of 8–32 fractions with a daily dose of 2.2–6.3 Gy. Conclusions: It is possible to optimize the number of fractions and dose per fraction based on the physical dose distribution (i.e., dose–volume histogram) by the graphical method considering the effects on tumor and OARs around the tumor. This method may stipulate a new guideline to optimize the fractionation regimen for physics-guided fractionation.« less

  14. MCNP-based computational model for the Leksell gamma knife.

    PubMed

    Trnka, Jiri; Novotny, Josef; Kluson, Jaroslav

    2007-01-01

    We have focused on the usage of MCNP code for calculation of Gamma Knife radiation field parameters with a homogenous polystyrene phantom. We have investigated several parameters of the Leksell Gamma Knife radiation field and compared the results with other studies based on EGS4 and PENELOPE code as well as the Leksell Gamma Knife treatment planning system Leksell GammaPlan (LGP). The current model describes all 201 radiation beams together and simulates all the sources in the same time. Within each beam, it considers the technical construction of the source, the source holder, collimator system, the spherical phantom, and surrounding material. We have calculated output factors for various sizes of scoring volumes, relative dose distributions along basic planes including linear dose profiles, integral doses in various volumes, and differential dose volume histograms. All the parameters have been calculated for each collimator size and for the isocentric configuration of the phantom. We have found the calculated output factors to be in agreement with other authors' works except the case of 4 mm collimator size, where averaging over the scoring volume and statistical uncertainties strongly influences the calculated results. In general, all the results are dependent on the choice of the scoring volume. The calculated linear dose profiles and relative dose distributions also match independent studies and the Leksell GammaPlan, but care must be taken about the fluctuations within the plateau, which can influence the normalization, and accuracy in determining the isocenter position, which is important for comparing different dose profiles. The calculated differential dose volume histograms and integral doses have been compared with data provided by the Leksell GammaPlan. The dose volume histograms are in good agreement as well as integral doses calculated in small calculation matrix volumes. However, deviations in integral doses up to 50% can be observed for large volumes such as for the total skull volume. The differences observed in treatment of scattered radiation between the MC method and the LGP may be important in this case. We have also studied the influence of differential direction sampling of primary photons and have found that, due to the anisotropic sampling, doses around the isocenter deviate from each other by up to 6%. With caution about the details of the calculation settings, it is possible to employ the MCNP Monte Carlo code for independent verification of the Leksell Gamma Knife radiation field properties.

  15. Improved dose-volume histogram estimates for radiopharmaceutical therapy by optimizing quantitative SPECT reconstruction parameters

    NASA Astrophysics Data System (ADS)

    Cheng, Lishui; Hobbs, Robert F.; Segars, Paul W.; Sgouros, George; Frey, Eric C.

    2013-06-01

    In radiopharmaceutical therapy, an understanding of the dose distribution in normal and target tissues is important for optimizing treatment. Three-dimensional (3D) dosimetry takes into account patient anatomy and the nonuniform uptake of radiopharmaceuticals in tissues. Dose-volume histograms (DVHs) provide a useful summary representation of the 3D dose distribution and have been widely used for external beam treatment planning. Reliable 3D dosimetry requires an accurate 3D radioactivity distribution as the input. However, activity distribution estimates from SPECT are corrupted by noise and partial volume effects (PVEs). In this work, we systematically investigated OS-EM based quantitative SPECT (QSPECT) image reconstruction in terms of its effect on DVHs estimates. A modified 3D NURBS-based Cardiac-Torso (NCAT) phantom that incorporated a non-uniform kidney model and clinically realistic organ activities and biokinetics was used. Projections were generated using a Monte Carlo (MC) simulation; noise effects were studied using 50 noise realizations with clinical count levels. Activity images were reconstructed using QSPECT with compensation for attenuation, scatter and collimator-detector response (CDR). Dose rate distributions were estimated by convolution of the activity image with a voxel S kernel. Cumulative DVHs were calculated from the phantom and QSPECT images and compared both qualitatively and quantitatively. We found that noise, PVEs, and ringing artifacts due to CDR compensation all degraded histogram estimates. Low-pass filtering and early termination of the iterative process were needed to reduce the effects of noise and ringing artifacts on DVHs, but resulted in increased degradations due to PVEs. Large objects with few features, such as the liver, had more accurate histogram estimates and required fewer iterations and more smoothing for optimal results. Smaller objects with fine details, such as the kidneys, required more iterations and less smoothing at early time points post-radiopharmaceutical administration but more smoothing and fewer iterations at later time points when the total organ activity was lower. The results of this study demonstrate the importance of using optimal reconstruction and regularization parameters. Optimal results were obtained with different parameters at each time point, but using a single set of parameters for all time points produced near-optimal dose-volume histograms.

  16. TU-H-CAMPUS-JeP3-02: Automated Dose Accumulation and Dose Accuracy Assessment for Online Or Offline Adaptive Replanning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, G; Ahunbay, E; Li, X

    Purpose: With introduction of high-quality treatment imaging during radiation therapy (RT) delivery, e.g., MR-Linac, adaptive replanning of either online or offline becomes appealing. Dose accumulation of delivered fractions, a prerequisite for the adaptive replanning, can be cumbersome and inaccurate. The purpose of this work is to develop an automated process to accumulate daily doses and to assess the dose accumulation accuracy voxel-by-voxel for adaptive replanning. Methods: The process includes the following main steps: 1) reconstructing daily dose for each delivered fraction with a treatment planning system (Monaco, Elekta) based on the daily images using machine delivery log file and consideringmore » patient repositioning if applicable, 2) overlaying the daily dose to the planning image based on deformable image registering (DIR) (ADMIRE, Elekta), 3) assessing voxel dose deformation accuracy based on deformation field using predetermined criteria, and 4) outputting accumulated dose and dose-accuracy volume histograms and parameters. Daily CTs acquired using a CT-on-rails during routine CT-guided RT for sample patients with head and neck and prostate cancers were used to test the process. Results: Daily and accumulated doses (dose-volume histograms, etc) along with their accuracies (dose-accuracy volume histogram) can be robustly generated using the proposed process. The test data for a head and neck cancer case shows that the gross tumor volume decreased by 20% towards the end of treatment course, and the parotid gland mean dose increased by 10%. Such information would trigger adaptive replanning for the subsequent fractions. The voxel-based accuracy in the accumulated dose showed that errors in accumulated dose near rigid structures were small. Conclusion: A procedure as well as necessary tools to automatically accumulate daily dose and assess dose accumulation accuracy is developed and is useful for adaptive replanning. Partially supported by Elekta, Inc.« less

  17. Polymer gel dosimeters for pretreatment radiotherapy verification using the three-dimensional gamma evaluation and pass rate maps.

    PubMed

    Hsieh, Ling-Ling; Shieh, Jiunn-I; Wei, Li-Ju; Wang, Yi-Chun; Cheng, Kai-Yuan; Shih, Cheng-Ting

    2017-05-01

    Polymer gel dosimeters (PGDs) have been widely studied for use in the pretreatment verification of clinical radiation therapy. However, the readability of PGDs in three-dimensional (3D) dosimetry remain unclear. In this study, the pretreatment verifications of clinical radiation therapy were performed using an N-isopropyl-acrylamide (NIPAM) PGD, and the results were used to evaluate the performance of the NIPAM PGD on 3D dose measurement. A gel phantom was used to measure the dose distribution of a clinical case of intensity-modulated radiation therapy. Magnetic resonance imaging scans were performed for dose readouts. The measured dose volumes were compared with the planned dose volume. The relative volume histograms showed that relative volumes with a negative percent dose difference decreased as time elapsed. Furthermore, the histograms revealed few changes after 24h postirradiation. For the 3%/3mm and 2%/2mm criteria, the pass rates of the 12- and 24-h dose volumes were higher than 95%, respectively. This study thus concludes that the pass rate map can be used to evaluate the dose-temporal readability of PGDs and that the NIPAM PGD can be used for clinical pretreatment verifications. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  18. Gastrointestinal Dose-Histogram Effects in the Context of Dose-Volume–Constrained Prostate Radiation Therapy: Analysis of Data From the RADAR Prostate Radiation Therapy Trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebert, Martin A., E-mail: Martin.Ebert@health.wa.gov.au; School of Physics, University of Western Australia, Perth, Western Australia; Foo, Kerwyn

    Purpose: To use a high-quality multicenter trial dataset to determine dose-volume effects for gastrointestinal (GI) toxicity following radiation therapy for prostate carcinoma. Influential dose-volume histogram regions were to be determined as functions of dose, anatomical location, toxicity, and clinical endpoint. Methods and Materials: Planning datasets for 754 participants in the TROG 03.04 RADAR trial were available, with Late Effects of Normal Tissues (LENT) Subjective, Objective, Management, and Analytic (SOMA) toxicity assessment to a median of 72 months. A rank sum method was used to define dose-volume cut-points as near-continuous functions of dose to 3 GI anatomical regions, together with amore » comprehensive assessment of significance. Univariate and multivariate ordinal regression was used to assess the importance of cut-points at each dose. Results: Dose ranges providing significant cut-points tended to be consistent with those showing significant univariate regression odds-ratios (representing the probability of a unitary increase in toxicity grade per percent relative volume). Ranges of significant cut-points for rectal bleeding validated previously published results. Separation of the lower GI anatomy into complete anorectum, rectum, and anal canal showed the impact of mid-low doses to the anal canal on urgency and tenesmus, completeness of evacuation and stool frequency, and mid-high doses to the anorectum on bleeding and stool frequency. Derived multivariate models emphasized the importance of the high-dose region of the anorectum and rectum for rectal bleeding and mid- to low-dose regions for diarrhea and urgency and tenesmus, and low-to-mid doses to the anal canal for stool frequency, diarrhea, evacuation, and bleeding. Conclusions: Results confirm anatomical dependence of specific GI toxicities. They provide an atlas summarizing dose-histogram effects and derived constraints as functions of anatomical region, dose, toxicity, and endpoint for informing future radiation therapy planning.« less

  19. Analysis of dose heterogeneity using a subvolume-DVH

    NASA Astrophysics Data System (ADS)

    Said, M.; Nilsson, P.; Ceberg, C.

    2017-11-01

    The dose-volume histogram (DVH) is universally used in radiation therapy for its highly efficient way of summarizing three-dimensional dose distributions. An apparent limitation that is inherent to standard histograms is the loss of spatial information, e.g. it is no longer possible to tell where low- and high-dose regions are, and whether they are connected or disjoint. Two methods for overcoming the spatial fragmentation of low- and high-dose regions are presented, both based on the gray-level size zone matrix, which is a two-dimensional histogram describing the frequencies of connected regions of similar intensities. The first approach is a quantitative metric which can be likened to a homogeneity index. The large cold spot metric (LCS) is here defined to emphasize large contiguous regions receiving too low a dose; emphasis is put on both size, and deviation from the prescribed dose. In contrast, the subvolume-DVH (sDVH) is an extension to the standard DVH and allows for a qualitative evaluation of the degree of dose heterogeneity. The information retained from the two-dimensional histogram is overlaid on top of the DVH and the two are presented simultaneously. Both methods gauge the underlying heterogeneity in ways that the DVH alone cannot, and both have their own merits—the sDVH being more intuitive and the LCS being quantitative.

  20. Factors Associated With Chest Wall Toxicity After Accelerated Partial Breast Irradiation Using High-Dose-Rate Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Sheree, E-mail: shereedst32@hotmail.com; Vicini, Frank; Vanapalli, Jyotsna R.

    2012-07-01

    Purpose: The purpose of this analysis was to evaluate dose-volume relationships associated with a higher probability for developing chest wall toxicity (pain) after accelerated partial breast irradiation (APBI) by using both single-lumen and multilumen brachytherapy. Methods and Materials: Rib dose data were available for 89 patients treated with APBI and were correlated with the development of chest wall/rib pain at any point after treatment. Ribs were contoured on computed tomography planning scans, and rib dose-volume histograms (DVH) along with histograms for other structures were constructed. Rib DVH data for all patients were sampled at all volumes {>=}0.008 cubic centimeter (cc)more » (for maximum dose related to pain) and at volumes of 0.5, 1, 2, and 3 cc for analysis. Rib pain was evaluated at each follow-up visit. Patient responses were marked as yes or no. No attempt was made to grade responses. Eighty-nine responses were available for this analysis. Results: Nineteen patients (21.3%) complained of transient chest wall/rib pain at any point in follow-up. Analysis showed a direct correlation between total dose received and volume of rib irradiated with the probability of developing rib/chest wall pain at any point after follow-up. The median maximum dose at volumes {>=}0.008 cc of rib in patients who experienced chest wall pain was 132% of the prescribed dose versus 95% of the prescribed dose in those patients who did not experience pain (p = 0.0035). Conclusions: Although the incidence of chest wall/rib pain is quite low with APBI brachytherapy, attempts should be made to keep the volume of rib irradiated at a minimum and the maximum dose received by the chest wall as low as reasonably achievable.« less

  1. TU-F-CAMPUS-J-01: Dosimetric Effects of HU Changes During the Course of Proton Therapy for Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, C; Yin, L; Ainsley, C

    2015-06-15

    Purpose: To characterize the changes in Hounsfield unit (HU) in lung radiotherapy with proton beams during the course of treatment and to study the effect on the proton plan dose distribution. Methods: Twenty consecutive patients with non-small cell lung cancer treated with proton radiotherapy who underwent multiple CT scans including the planning CT and weekly verification CTs were studied. HU histograms were computed for irradiated lung volumes in beam paths for all scans using the same treatment plan. Histograms for un-irradiated lung volume were used as control to characterize inter-scan variations. HU statistics were calculated for both irradiated and un-irradiatedmore » lung volumes for each patient scan. Further, multiple CT scans based on the same planning CT were generated by replacing the HU of the lung based on the verification CT scans HU values. Using the same beam arrangement, we created plans for each of the altered CT scans to study the dosimetric effect using the dose volume histogram. Results: Lung HU decreased for irradiated lung volume during the course of radiotherapy. The magnitude of this change increased with total irradiation dose. On average, HU changed by −53.8 in the irradiated volume. This change resulted in less than 0.5mm of beam overshoot in tissue for every 1cm beam traversed in the irradiated lung. The dose modification is about +3% for the lung, and less than +1% for the primary tumor. Conclusion: HU of the lung decrease throughout the course of radiation therapy. This change results in a beam overshoot (e.g. 3mm for 6cm of lung traversed) and causes a small dose modification in the overall plan. However, this overshoot does not affect the quality of plans since the margins used in planning, based on proton range uncertainty, are greater. HU needs to change by 150 units before re-planning is warranted.« less

  2. Comparison of optimized single and multifield irradiation plans of antiproton, proton and carbon ion beams.

    PubMed

    Bassler, Niels; Kantemiris, Ioannis; Karaiskos, Pantelis; Engelke, Julia; Holzscheiter, Michael H; Petersen, Jørgen B

    2010-04-01

    Antiprotons have been suggested as a possibly superior modality for radiotherapy, due to the energy released when antiprotons annihilate, which enhances the Bragg peak and introduces a high-LET component to the dose. However, concerns are expressed about the inferior lateral dose distribution caused by the annihilation products. We use the Monte Carlo code FLUKA to generate depth-dose kernels for protons, antiprotons, and carbon ions. Using these we then build virtual treatment plans optimized according to ICRU recommendations for the different beam modalities, which then are recalculated with FLUKA. Dose-volume histograms generated from these plans can be used to compare the different irradiations. The enhancement in physical and possibly biological dose from annihilating antiprotons can significantly lower the dose in the entrance channel; but only at the expense of a diffuse low dose background from long-range secondary particles. Lateral dose distributions are improved using active beam delivery methods, instead of flat fields. Dose-volume histograms for different treatment scenarios show that antiprotons have the potential to reduce the volume of normal tissue receiving medium to high dose, however, in the low dose region antiprotons are inferior to both protons and carbon ions. This limits the potential usage to situations where dose to normal tissue must be reduced as much as possible. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  3. Equivalent uniform dose concept evaluated by theoretical dose volume histograms for thoracic irradiation.

    PubMed

    Dumas, J L; Lorchel, F; Perrot, Y; Aletti, P; Noel, A; Wolf, D; Courvoisier, P; Bosset, J F

    2007-03-01

    The goal of our study was to quantify the limits of the EUD models for use in score functions in inverse planning software, and for clinical application. We focused on oesophagus cancer irradiation. Our evaluation was based on theoretical dose volume histograms (DVH), and we analyzed them using volumetric and linear quadratic EUD models, average and maximum dose concepts, the linear quadratic model and the differential area between each DVH. We evaluated our models using theoretical and more complex DVHs for the above regions of interest. We studied three types of DVH for the target volume: the first followed the ICRU dose homogeneity recommendations; the second was built out of the first requirements and the same average dose was built in for all cases; the third was truncated by a small dose hole. We also built theoretical DVHs for the organs at risk, in order to evaluate the limits of, and the ways to use both EUD(1) and EUD/LQ models, comparing them to the traditional ways of scoring a treatment plan. For each volume of interest we built theoretical treatment plans with differences in the fractionation. We concluded that both volumetric and linear quadratic EUDs should be used. Volumetric EUD(1) takes into account neither hot-cold spot compensation nor the differences in fractionation, but it is more sensitive to the increase of the irradiated volume. With linear quadratic EUD/LQ, a volumetric analysis of fractionation variation effort can be performed.

  4. Clinical outcomes using carbon-ion radiotherapy and dose-volume histogram comparison between carbon-ion radiotherapy and photon therapy for T2b-4N0M0 non-small cell lung cancer-A pilot study.

    PubMed

    Shirai, Katsuyuki; Kawashima, Motohiro; Saitoh, Jun-Ichi; Abe, Takanori; Fukata, Kyohei; Shigeta, Yuka; Irie, Daisuke; Shiba, Shintaro; Okano, Naoko; Ohno, Tatsuya; Nakano, Takashi

    2017-01-01

    The safety and efficacy of carbon-ion radiotherapy for advanced non-small cell lung cancer have not been established. We evaluated the clinical outcomes and dose-volume histogram parameters of carbon-ion radiotherapy compared with photon therapy in T2b-4N0M0 non-small cell lung cancer. Twenty-three patients were treated with carbon-ion radiotherapy between May 2011 and December 2015. Seven, 14, and 2 patients had T2b, T3, and T4, respectively. The median age was 78 (range, 53-91) years, with 22 male patients. There were 12 adenocarcinomas, 8 squamous cell carcinomas, 1 non-small cell lung carcinoma, and 2 clinically diagnosed lung cancers. Eleven patients were operable, and 12 patients were inoperable. Most patients (91%) were treated with carbon-ion radiotherapy of 60.0 Gy relative biological effectiveness (RBE) in 4 fractions or 64.0 Gy (RBE) in 16 fractions. Local control and overall survival rates were calculated. Dose-volume histogram parameters of normal lung and tumor coverages were compared between carbon-ion radiotherapy and photon therapies, including three-dimensional conformal radiotherapy (3DCRT) and intensity-modulated radiotherapy (IMRT). The median follow-up of surviving patients was 25 months. Three patients experienced local recurrence, and the 2-year local control rate was 81%. During follow-up, 5 patients died of lung cancer, and 1 died of intercurrent disease. The 2-year overall survival rate was 70%. Operable patients had a better overall survival rate compared with inoperable patients (100% vs. 43%; P = 0.04). There was no grade ≥2 radiation pneumonitis. In dose-volume histogram analysis, carbon-ion radiotherapy had a significantly lower dose to normal lung and greater tumor coverage compared with photon therapies. Carbon-ion radiotherapy was effectively and safely performed for T2b-4N0M0 non-small cell lung cancer, and the dose distribution was superior compared with those for photon therapies. A Japanese multi-institutional study is ongoing to prospectively evaluate these patients and establish the use of carbon-ion radiotherapy.

  5. Modelling duodenum radiotherapy toxicity using cohort dose-volume-histogram data.

    PubMed

    Holyoake, Daniel L P; Aznar, Marianne; Mukherjee, Somnath; Partridge, Mike; Hawkins, Maria A

    2017-06-01

    Gastro-intestinal toxicity is dose-limiting in abdominal radiotherapy and correlated with duodenum dose-volume parameters. We aimed to derive updated NTCP model parameters using published data and prospective radiotherapy quality-assured cohort data. A systematic search identified publications providing duodenum dose-volume histogram (DVH) statistics for clinical studies of conventionally-fractionated radiotherapy. Values for the Lyman-Kutcher-Burman (LKB) NTCP model were derived through sum-squared-error minimisation and using leave-one-out cross-validation. Data were corrected for fraction size and weighted according to patient numbers, and the model refined using individual patient DVH data for two further cohorts from prospective clinical trials. Six studies with published DVH data were utilised, and with individual patient data included outcomes for 531 patients in total (median follow-up 16months). Observed gastro-intestinal toxicity rates ranged from 0% to 14% (median 8%). LKB parameter values for unconstrained fit to published data were: n=0.070, m=0.46, TD 50(1) [Gy]=183.8, while the values for the model incorporating the individual patient data were n=0.193, m=0.51, TD 50(1) [Gy]=299.1. LKB parameters derived using published data are shown to be consistent to those previously obtained using individual patient data, supporting a small volume-effect and dependence on exposure to high threshold dose. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Dose evaluation of organs at risk (OAR) cervical cancer using dose volume histogram (DVH) on brachytherapy

    NASA Astrophysics Data System (ADS)

    Arif Wibowo, R.; Haris, Bambang; Inganatul Islamiyah, dan

    2017-05-01

    Brachytherapy is one way to cure cervical cancer. It works by placing a radioactive source near the tumor. However, there are some healthy tissues or organs at risk (OAR) such as bladder and rectum which received radiation also. This study aims to evaluate the radiation dose of the bladder and rectum. There were 12 total radiation dose data of the bladder and rectum obtained from patients’ brachytherapy. The dose of cervix for all patients was 6 Gy. Two-dimensional calculation of the radiation dose was based on the International Commission on Radiation Units and Measurements (ICRU) points or called DICRU while the 3-dimensional calculation derived from Dose Volume Histogram (DVH) on a volume of 2 cc (D2cc). The radiation dose of bladder and rectum from both methods were analysed using independent t test. The mean DICRU of bladder was 4.33730 Gy and its D2cc was4.78090 Gy. DICRU and D2cc bladder did not differ significantly (p = 0.144). The mean DICRU of rectum was 3.57980 Gy and 4.58670 Gy for D2cc. The mean DICRU of rectum differed significantly from D2cc of rectum (p = 0.000). The three-dimensional method radiation dose of the bladder and rectum was higher than the two-dimensional method with ratios 1.10227 for bladder and 1.28127 for rectum. The radiation dose of the bladder and rectum was still below the tolerance dose. Two-dimensional calculation of the bladder and rectum dose was lower than three-dimension which was more accurate due to its calculation at the whole volume of the organs.

  7. Esophageal wall dose-surface maps do not improve the predictive performance of a multivariable NTCP model for acute esophageal toxicity in advanced stage NSCLC patients treated with intensity-modulated (chemo-)radiotherapy.

    PubMed

    Dankers, Frank; Wijsman, Robin; Troost, Esther G C; Monshouwer, René; Bussink, Johan; Hoffmann, Aswin L

    2017-05-07

    In our previous work, a multivariable normal-tissue complication probability (NTCP) model for acute esophageal toxicity (AET) Grade  ⩾2 after highly conformal (chemo-)radiotherapy for non-small cell lung cancer (NSCLC) was developed using multivariable logistic regression analysis incorporating clinical parameters and mean esophageal dose (MED). Since the esophagus is a tubular organ, spatial information of the esophageal wall dose distribution may be important in predicting AET. We investigated whether the incorporation of esophageal wall dose-surface data with spatial information improves the predictive power of our established NTCP model. For 149 NSCLC patients treated with highly conformal radiation therapy esophageal wall dose-surface histograms (DSHs) and polar dose-surface maps (DSMs) were generated. DSMs were used to generate new DSHs and dose-length-histograms that incorporate spatial information of the dose-surface distribution. From these histograms dose parameters were derived and univariate logistic regression analysis showed that they correlated significantly with AET. Following our previous work, new multivariable NTCP models were developed using the most significant dose histogram parameters based on univariate analysis (19 in total). However, the 19 new models incorporating esophageal wall dose-surface data with spatial information did not show improved predictive performance (area under the curve, AUC range 0.79-0.84) over the established multivariable NTCP model based on conventional dose-volume data (AUC  =  0.84). For prediction of AET, based on the proposed multivariable statistical approach, spatial information of the esophageal wall dose distribution is of no added value and it is sufficient to only consider MED as a predictive dosimetric parameter.

  8. Esophageal wall dose-surface maps do not improve the predictive performance of a multivariable NTCP model for acute esophageal toxicity in advanced stage NSCLC patients treated with intensity-modulated (chemo-)radiotherapy

    NASA Astrophysics Data System (ADS)

    Dankers, Frank; Wijsman, Robin; Troost, Esther G. C.; Monshouwer, René; Bussink, Johan; Hoffmann, Aswin L.

    2017-05-01

    In our previous work, a multivariable normal-tissue complication probability (NTCP) model for acute esophageal toxicity (AET) Grade  ⩾2 after highly conformal (chemo-)radiotherapy for non-small cell lung cancer (NSCLC) was developed using multivariable logistic regression analysis incorporating clinical parameters and mean esophageal dose (MED). Since the esophagus is a tubular organ, spatial information of the esophageal wall dose distribution may be important in predicting AET. We investigated whether the incorporation of esophageal wall dose-surface data with spatial information improves the predictive power of our established NTCP model. For 149 NSCLC patients treated with highly conformal radiation therapy esophageal wall dose-surface histograms (DSHs) and polar dose-surface maps (DSMs) were generated. DSMs were used to generate new DSHs and dose-length-histograms that incorporate spatial information of the dose-surface distribution. From these histograms dose parameters were derived and univariate logistic regression analysis showed that they correlated significantly with AET. Following our previous work, new multivariable NTCP models were developed using the most significant dose histogram parameters based on univariate analysis (19 in total). However, the 19 new models incorporating esophageal wall dose-surface data with spatial information did not show improved predictive performance (area under the curve, AUC range 0.79-0.84) over the established multivariable NTCP model based on conventional dose-volume data (AUC  =  0.84). For prediction of AET, based on the proposed multivariable statistical approach, spatial information of the esophageal wall dose distribution is of no added value and it is sufficient to only consider MED as a predictive dosimetric parameter.

  9. Dose to mass for evaluation and optimization of lung cancer radiation therapy.

    PubMed

    Tyler Watkins, William; Moore, Joseph A; Hugo, Geoffrey D; Siebers, Jeffrey V

    2017-11-01

    To evaluate potential organ at risk dose-sparing by using dose-mass-histogram (DMH) objective functions compared with dose-volume-histogram (DVH) objective functions. Treatment plans were retrospectively optimized for 10 locally advanced non-small cell lung cancer patients based on DVH and DMH objectives. DMH-objectives were the same as DVH objectives, but with mass replacing volume. Plans were normalized to dose to 95% of the PTV volume (PTV-D95v) or mass (PTV-D95m). For a given optimized dose, DVH and DMH were intercompared to ascertain dose-to-volume vs. dose-to-mass differences. Additionally, the optimized doses were intercompared using DVH and DMH metrics to ascertain differences in optimized plans. Mean dose to volume, D v ‾, mean dose to mass, D M ‾, and fluence maps were intercompared. For a given dose distribution, DVH and DMH differ by >5% in heterogeneous structures. In homogeneous structures including heart and spinal cord, DVH and DMH are nearly equivalent. At fixed PTV-D95v, DMH-optimization did not significantly reduce dose to OARs but reduced PTV-D v ‾ by 0.20±0.2Gy (p=0.02) and PTV-D M ‾ by 0.23±0.3Gy (p=0.02). Plans normalized to PTV-D95m also result in minor PTV dose reductions and esophageal dose sparing (D v ‾ reduced 0.45±0.5Gy, p=0.02 and D M ‾ reduced 0.44±0.5Gy, p=0.02) compared to DVH-optimized plans. Optimized fluence map comparisons indicate that DMH optimization reduces dose in the periphery of lung PTVs. DVH- and DMH-dose indices differ by >5% in lung and lung target volumes for fixed dose distributions, but optimizing DMH did not reduce dose to OARs. The primary difference observed in DVH- and DMH-optimized plans were variations in fluence to the periphery of lung target PTVs, where low density lung surrounds tumor. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effects of voxelization on dose volume histogram accuracy

    NASA Astrophysics Data System (ADS)

    Sunderland, Kyle; Pinter, Csaba; Lasso, Andras; Fichtinger, Gabor

    2016-03-01

    PURPOSE: In radiotherapy treatment planning systems, structures of interest such as targets and organs at risk are stored as 2D contours on evenly spaced planes. In order to be used in various algorithms, contours must be converted into binary labelmap volumes using voxelization. The voxelization process results in lost information, which has little effect on the volume of large structures, but has significant impact on small structures, which contain few voxels. Volume differences for segmented structures affects metrics such as dose volume histograms (DVH), which are used for treatment planning. Our goal is to evaluate the impact of voxelization on segmented structures, as well as how factors like voxel size affects metrics, such as DVH. METHODS: We create a series of implicit functions, which represent simulated structures. These structures are sampled at varying resolutions, and compared to labelmaps with high sub-millimeter resolutions. We generate DVH and evaluate voxelization error for the same structures at different resolutions by calculating the agreement acceptance percentage between the DVH. RESULTS: We implemented tools for analysis as modules in the SlicerRT toolkit based on the 3D Slicer platform. We found that there were large DVH variation from the baseline for small structures or for structures located in regions with a high dose gradient, potentially leading to the creation of suboptimal treatment plans. CONCLUSION: This work demonstrates that labelmap and dose volume voxel size is an important factor in DVH accuracy, which must be accounted for in order to ensure the development of accurate treatment plans.

  11. On the impact of improved dosimetric accuracy on head and neck high dose rate brachytherapy.

    PubMed

    Peppa, Vasiliki; Pappas, Eleftherios; Major, Tibor; Takácsi-Nagy, Zoltán; Pantelis, Evaggelos; Papagiannis, Panagiotis

    2016-07-01

    To study the effect of finite patient dimensions and tissue heterogeneities in head and neck high dose rate brachytherapy. The current practice of TG-43 dosimetry was compared to patient specific dosimetry obtained using Monte Carlo simulation for a sample of 22 patient plans. The dose distributions were compared in terms of percentage dose differences as well as differences in dose volume histogram and radiobiological indices for the target and organs at risk (mandible, parotids, skin, and spinal cord). Noticeable percentage differences exist between TG-43 and patient specific dosimetry, mainly at low dose points. Expressed as fractions of the planning aim dose, percentage differences are within 2% with a general TG-43 overestimation except for the spine. These differences are consistent resulting in statistically significant differences of dose volume histogram and radiobiology indices. Absolute differences of these indices are however small to warrant clinical importance in terms of tumor control or complication probabilities. The introduction of dosimetry methods characterized by improved accuracy is a valuable advancement. It does not appear however to influence dose prescription or call for amendment of clinical recommendations for the mobile tongue, base of tongue, and floor of mouth patient cohort of this study. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Principal component analysis-based pattern analysis of dose-volume histograms and influence on rectal toxicity.

    PubMed

    Söhn, Matthias; Alber, Markus; Yan, Di

    2007-09-01

    The variability of dose-volume histogram (DVH) shapes in a patient population can be quantified using principal component analysis (PCA). We applied this to rectal DVHs of prostate cancer patients and investigated the correlation of the PCA parameters with late bleeding. PCA was applied to the rectal wall DVHs of 262 patients, who had been treated with a four-field box, conformal adaptive radiotherapy technique. The correlated changes in the DVH pattern were revealed as "eigenmodes," which were ordered by their importance to represent data set variability. Each DVH is uniquely characterized by its principal components (PCs). The correlation of the first three PCs and chronic rectal bleeding of Grade 2 or greater was investigated with uni- and multivariate logistic regression analyses. Rectal wall DVHs in four-field conformal RT can primarily be represented by the first two or three PCs, which describe approximately 94% or 96% of the DVH shape variability, respectively. The first eigenmode models the total irradiated rectal volume; thus, PC1 correlates to the mean dose. Mode 2 describes the interpatient differences of the relative rectal volume in the two- or four-field overlap region. Mode 3 reveals correlations of volumes with intermediate doses ( approximately 40-45 Gy) and volumes with doses >70 Gy; thus, PC3 is associated with the maximal dose. According to univariate logistic regression analysis, only PC2 correlated significantly with toxicity. However, multivariate logistic regression analysis with the first two or three PCs revealed an increased probability of bleeding for DVHs with more than one large PC. PCA can reveal the correlation structure of DVHs for a patient population as imposed by the treatment technique and provide information about its relationship to toxicity. It proves useful for augmenting normal tissue complication probability modeling approaches.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tucker, Susan L.; Liu, H. Helen; Wang, Shulian

    Purpose: The aim of this study was to investigate the effect of radiation dose distribution in the lung on the risk of postoperative pulmonary complications among esophageal cancer patients. Methods and Materials: We analyzed data from 110 patients with esophageal cancer treated with concurrent chemoradiotherapy followed by surgery at our institution from 1998 to 2003. The endpoint for analysis was postsurgical pneumonia or acute respiratory distress syndrome. Dose-volume histograms (DVHs) and dose-mass histograms (DMHs) for the whole lung were used to fit normal-tissue complication probability (NTCP) models, and the quality of fits were compared using bootstrap analysis. Results: Normal-tissue complicationmore » probability modeling identified that the risk of postoperative pulmonary complications was most significantly associated with small absolute volumes of lung spared from doses {>=}5 Gy (VS5), that is, exposed to doses <5 Gy. However, bootstrap analysis found no significant difference between the quality of this model and fits based on other dosimetric parameters, including mean lung dose, effective dose, and relative volume of lung receiving {>=}5 Gy, probably because of correlations among these factors. The choice of DVH vs. DMH or the use of fractionation correction did not significantly affect the results of the NTCP modeling. The parameter values estimated for the Lyman NTCP model were as follows (with 95% confidence intervals in parentheses): n = 1.85 (0.04, {infinity}), m = 0.55 (0.22, 1.02), and D {sub 5} = 17.5 Gy (9.4 Gy, 102 Gy). Conclusions: In this cohort of esophageal cancer patients, several dosimetric parameters including mean lung dose, effective dose, and absolute volume of lung receiving <5 Gy provided similar descriptions of the risk of postoperative pulmonary complications as a function of Radiation dose distribution in the lung.« less

  14. Quantitative Image Quality and Histogram-Based Evaluations of an Iterative Reconstruction Algorithm at Low-to-Ultralow Radiation Dose Levels: A Phantom Study in Chest CT

    PubMed Central

    Lee, Ki Baek

    2018-01-01

    Objective To describe the quantitative image quality and histogram-based evaluation of an iterative reconstruction (IR) algorithm in chest computed tomography (CT) scans at low-to-ultralow CT radiation dose levels. Materials and Methods In an adult anthropomorphic phantom, chest CT scans were performed with 128-section dual-source CT at 70, 80, 100, 120, and 140 kVp, and the reference (3.4 mGy in volume CT Dose Index [CTDIvol]), 30%-, 60%-, and 90%-reduced radiation dose levels (2.4, 1.4, and 0.3 mGy). The CT images were reconstructed by using filtered back projection (FBP) algorithms and IR algorithm with strengths 1, 3, and 5. Image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were statistically compared between different dose levels, tube voltages, and reconstruction algorithms. Moreover, histograms of subtraction images before and after standardization in x- and y-axes were visually compared. Results Compared with FBP images, IR images with strengths 1, 3, and 5 demonstrated image noise reduction up to 49.1%, SNR increase up to 100.7%, and CNR increase up to 67.3%. Noteworthy image quality degradations on IR images including a 184.9% increase in image noise, 63.0% decrease in SNR, and 51.3% decrease in CNR, and were shown between 60% and 90% reduced levels of radiation dose (p < 0.0001). Subtraction histograms between FBP and IR images showed progressively increased dispersion with increased IR strength and increased dose reduction. After standardization, the histograms appeared deviated and ragged between FBP images and IR images with strength 3 or 5, but almost normally-distributed between FBP images and IR images with strength 1. Conclusion The IR algorithm may be used to save radiation doses without substantial image quality degradation in chest CT scanning of the adult anthropomorphic phantom, down to approximately 1.4 mGy in CTDIvol (60% reduced dose). PMID:29354008

  15. Dosimetric variations due to interfraction organ deformation in cervical cancer brachytherapy.

    PubMed

    Kobayashi, Kazuma; Murakami, Naoya; Wakita, Akihisa; Nakamura, Satoshi; Okamoto, Hiroyuki; Umezawa, Rei; Takahashi, Kana; Inaba, Koji; Igaki, Hiroshi; Ito, Yoshinori; Shigematsu, Naoyuki; Itami, Jun

    2015-12-01

    We quantitatively estimated dosimetric variations due to interfraction organ deformation in multi-fractionated high-dose-rate brachytherapy (HDRBT) for cervical cancer using a novel surface-based non-rigid deformable registration. As the number of consecutive HDRBT fractions increased, simple addition of dose-volume histogram parameters significantly overestimated the dose, compared with distribution-based dose addition. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  16. Quantifying the impact of immediate reconstruction in postmastectomy radiation: a large, dose-volume histogram-based analysis.

    PubMed

    Ohri, Nisha; Cordeiro, Peter G; Keam, Jennifer; Ballangrud, Ase; Shi, Weiji; Zhang, Zhigang; Nerbun, Claire T; Woch, Katherine M; Stein, Nicholas F; Zhou, Ying; McCormick, Beryl; Powell, Simon N; Ho, Alice Y

    2012-10-01

    To assess the impact of immediate breast reconstruction on postmastectomy radiation (PMRT) using dose-volume histogram (DVH) data. Two hundred forty-seven women underwent PMRT at our center, 196 with implant reconstruction and 51 without reconstruction. Patients with reconstruction were treated with tangential photons, and patients without reconstruction were treated with en-face electron fields and customized bolus. Twenty percent of patients received internal mammary node (IMN) treatment. The DVH data were compared between groups. Ipsilateral lung parameters included V20 (% volume receiving 20 Gy), V40 (% volume receiving 40 Gy), mean dose, and maximum dose. Heart parameters included V25 (% volume receiving 25 Gy), mean dose, and maximum dose. IMN coverage was assessed when applicable. Chest wall coverage was assessed in patients with reconstruction. Propensity-matched analysis adjusted for potential confounders of laterality and IMN treatment. Reconstruction was associated with lower lung V20, mean dose, and maximum dose compared with no reconstruction (all P<.0001). These associations persisted on propensity-matched analysis (all P<.0001). Heart doses were similar between groups (P=NS). Ninety percent of patients with reconstruction had excellent chest wall coverage (D95 >98%). IMN coverage was superior in patients with reconstruction (D95 >92.0 vs 75.7%, P<.001). IMN treatment significantly increased lung and heart parameters in patients with reconstruction (all P<.05) but minimally affected those without reconstruction (all P>.05). Among IMN-treated patients, only lower lung V20 in those without reconstruction persisted (P=.022), and mean and maximum heart doses were higher than in patients without reconstruction (P=.006, P=.015, respectively). Implant reconstruction does not compromise the technical quality of PMRT when the IMNs are untreated. Treatment technique, not reconstruction, is the primary determinant of target coverage and normal tissue doses. Published by Elsevier Inc.

  17. Three-dimensional dose verification of the clinical application of gamma knife stereotactic radiosurgery using polymer gel and MRI.

    PubMed

    Papagiannis, P; Karaiskos, P; Kozicki, M; Rosiak, J M; Sakelliou, L; Sandilos, P; Seimenis, I; Torrens, M

    2005-05-07

    This work seeks to verify multi-shot clinical applications of stereotactic radiosurgery with a Leksell Gamma Knife model C unit employing a polymer gel-MRI based experimental procedure, which has already been shown to be capable of verifying the precision and accuracy of dose delivery in single-shot gamma knife applications. The treatment plan studied in the present work resembles a clinical treatment case of pituitary adenoma using four 8 mm and one 14 mm collimator helmet shots to deliver a prescription dose of 15 Gy to the 50% isodose line (30 Gy maximum dose). For the experimental dose verification of the treatment plan, the same criteria as those used in the clinical treatment planning evaluation were employed. These included comparison of measured and GammaPlan calculated data, in terms of percentage isodose contours on axial, coronal and sagittal planes, as well as 3D plan evaluation criteria such as dose-volume histograms for the target volume, target coverage and conformity indices. Measured percentage isodose contours compared favourably with calculated ones despite individual point fluctuations at low dose contours (e.g., 20%) mainly due to the effect of T2 measurement uncertainty on dose resolution. Dose-volume histogram data were also found in a good agreement while the experimental results for the percentage target coverage and conformity index were 94% and 1.17 relative to corresponding GammaPlan calculations of 96% and 1.12, respectively. Overall, polymer gel results verified the planned dose distribution within experimental uncertainties and uncertainty related to the digitization process of selected GammaPlan output data.

  18. Rectal Bleeding After High-Dose-Rate Brachytherapy Combined With Hypofractionated External-Beam Radiotherapy for Localized Prostate Cancer: The Relationship Between Dose-Volume Histogram Parameters and the Occurrence Rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamoto, Masahiko, E-mail: masaoka@showa.gunma-u.ac.jp; Ishikawa, Hitoshi; Ebara, Takeshi

    2012-02-01

    Purpose: To determine the predictive risk factors for Grade 2 or worse rectal bleeding after high-dose-rate brachytherapy (HDR-BT) combined with hypofractionated external-beam radiotherapy (EBRT) for prostate cancer using dose-volume histogram analysis. Methods and Materials: The records of 216 patients treated with HDR-BT combined with EBRT were analyzed. The treatment protocols for HDR-BT were 5 Gy Multiplication-Sign five times in 3 days or 7 Gy Multiplication-Sign three, 10.5 Gy Multiplication-Sign two, or 9 Gy Multiplication-Sign two in 2 days. The EBRT doses ranged from 45 to 51 Gy with a fractional dose of 3 Gy. Results: In 20 patients Grade 2more » or worse rectal bleeding developed, and the cumulative incidence rate was 9% at 5 years. By converting the HDR-BT and EBRT radiation doses into biologic effective doses (BED), the BED{sub 3} at rectal volumes of 5% and 10% in the patients who experienced bleeding were significantly higher than those in the remaining 196 patients. Univariate analysis showed that a higher rectal BED{sub 3-5%} and the use of fewer needles in brachytherapy were correlated with the incidence of bleeding, but BED{sub 3-5%} was found to be the only significant factor on multivariate analysis. Conclusions: The radiation dose delivered to small rectal lesions as 5% is important for predicting Grade 2 or worse rectal bleeding after HDR-BT combined with EBRT for prostate cancer.« less

  19. SU-F-J-94: Development of a Plug-in Based Image Analysis Tool for Integration Into Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, D; Anderson, C; Mayo, C

    Purpose: To extend the functionality of a commercial treatment planning system (TPS) to support (i) direct use of quantitative image-based metrics within treatment plan optimization and (ii) evaluation of dose-functional volume relationships to assist in functional image adaptive radiotherapy. Methods: A script was written that interfaces with a commercial TPS via an Application Programming Interface (API). The script executes a program that performs dose-functional volume analyses. Written in C#, the script reads the dose grid and correlates it with image data on a voxel-by-voxel basis through API extensions that can access registration transforms. A user interface was designed through WinFormsmore » to input parameters and display results. To test the performance of this program, image- and dose-based metrics computed from perfusion SPECT images aligned to the treatment planning CT were generated, validated, and compared. Results: The integration of image analysis information was successfully implemented as a plug-in to a commercial TPS. Perfusion SPECT images were used to validate the calculation and display of image-based metrics as well as dose-intensity metrics and histograms for defined structures on the treatment planning CT. Various biological dose correction models, custom image-based metrics, dose-intensity computations, and dose-intensity histograms were applied to analyze the image-dose profile. Conclusion: It is possible to add image analysis features to commercial TPSs through custom scripting applications. A tool was developed to enable the evaluation of image-intensity-based metrics in the context of functional targeting and avoidance. In addition to providing dose-intensity metrics and histograms that can be easily extracted from a plan database and correlated with outcomes, the system can also be extended to a plug-in optimization system, which can directly use the computed metrics for optimization of post-treatment tumor or normal tissue response models. Supported by NIH - P01 - CA059827.« less

  20. A geometric model for evaluating the effects of inter-fraction rectal motion during prostate radiotherapy

    NASA Astrophysics Data System (ADS)

    Pavel-Mititean, Luciana M.; Rowbottom, Carl G.; Hector, Charlotte L.; Partridge, Mike; Bortfeld, Thomas; Schlegel, Wolfgang

    2004-06-01

    A geometric model is presented which allows calculation of the dosimetric consequences of rectal motion in prostate radiotherapy. Variations in the position of the rectum are measured by repeat CT scanning during the courses of treatment of five patients. Dose distributions are calculated by applying the same conformal treatment plan to each imaged fraction and rectal dose-surface histograms produced. The 2D model allows isotropic expansion and contraction in the plane of each CT slice. By summing the dose to specific volume elements tracked by the model, composite dose distributions are produced that explicitly include measured inter-fraction motion for each patient. These are then used to estimate effective dose-surface histograms (DSHs) for the entire treatment. Results are presented showing the magnitudes of the measured target and rectal motion and showing the effects of this motion on the integral dose to the rectum. The possibility of using such information to calculate normal tissue complication probabilities (NTCP) is demonstrated and discussed.

  1. Evaluation of hybrid inverse planning and optimization (HIPO) algorithm for optimization in real-time, high-dose-rate (HDR) brachytherapy for prostate.

    PubMed

    Pokharel, Shyam; Rana, Suresh; Blikenstaff, Joseph; Sadeghi, Amir; Prestidge, Bradley

    2013-07-08

    The purpose of this study is to investigate the effectiveness of the HIPO planning and optimization algorithm for real-time prostate HDR brachytherapy. This study consists of 20 patients who underwent ultrasound-based real-time HDR brachytherapy of the prostate using the treatment planning system called Oncentra Prostate (SWIFT version 3.0). The treatment plans for all patients were optimized using inverse dose-volume histogram-based optimization followed by graphical optimization (GRO) in real time. The GRO is manual manipulation of isodose lines slice by slice. The quality of the plan heavily depends on planner expertise and experience. The data for all patients were retrieved later, and treatment plans were created and optimized using HIPO algorithm with the same set of dose constraints, number of catheters, and set of contours as in the real-time optimization algorithm. The HIPO algorithm is a hybrid because it combines both stochastic and deterministic algorithms. The stochastic algorithm, called simulated annealing, searches the optimal catheter distributions for a given set of dose objectives. The deterministic algorithm, called dose-volume histogram-based optimization (DVHO), optimizes three-dimensional dose distribution quickly by moving straight downhill once it is in the advantageous region of the search space given by the stochastic algorithm. The PTV receiving 100% of the prescription dose (V100) was 97.56% and 95.38% with GRO and HIPO, respectively. The mean dose (D(mean)) and minimum dose to 10% volume (D10) for the urethra, rectum, and bladder were all statistically lower with HIPO compared to GRO using the student pair t-test at 5% significance level. HIPO can provide treatment plans with comparable target coverage to that of GRO with a reduction in dose to the critical structures.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, D; Kang, S; Kim, D

    Purpose: The dose difference between three-dimensional dose (3D dose) and 4D dose which considers motion due to respiratory can be varied according to geometrical relationship between planning target volume (PTV) and organ at risk (OAR). The purpose of the study is to investigate the dose difference between 3D and 4D dose using overlap volume histogram (OVH) which is an indicator that quantify geometrical relationship between a PTV and an OAR. Methods: Five liver cancer patients who previously treated stereotactic body radiotherapy (SBRT) were investigated. Four-dimensional computed tomography (4DCT) images were acquired for all patients. ITV-based treatment planning was performed. 3Dmore » dose was calculated on the end-exhale phase image as a reference phase image. 4D dose accumulation was implemented from all phase images using dose warping technique used deformable image registration (DIR) algorithm (Horn and Schunck optical flow) in DIRART. In this study OVH was used to quantify geometrical relationship between a PTV and an OAR. OVH between a PTV and a selected OAR was generated for each patient case and compared for all cases. The dose difference between 3D and 4D dose for normal organ was calculated and compared for all cases according to OVH. Results: The 3D and 4D dose difference for OAR was analyzed using dose-volume histogram (DVH). On the basis of a specific point which corresponds to 10% of OAR volume overlapped with expanded PTV, mean dose difference was 34.56% in minimum OVH distance case and 13.36% in maximum OVH distance case. As the OVH distance increased, mean dose difference between 4D and 3D dose was decreased. Conclusion: The tendency of dose difference variation was verified according to OVH. OVH is seems to be indicator that has a potential to predict the dose difference between 4D and 3D dose. This work was supported by the Radiation Technology R&D program (No. 2013M2A2A7043498) and the Mid-career Researcher Program (2014R1A2A1A10050270) through the National Research Foundation of Korea funded by the Ministry of Science, ICT&Future Planning.« less

  3. Verification of Dose Distribution in Carbon Ion Radiation Therapy for Stage I Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irie, Daisuke; Saitoh, Jun-ichi, E-mail: junsaito@gunma-u.ac.jp; Shirai, Katsuyuki

    Purpose: To evaluate robustness of dose distribution of carbon-ion radiation therapy (C-ion RT) in non-small cell lung cancer (NSCLC) and to identify factors affecting the dose distribution by simulated dose distribution. Methods and Materials: Eighty irradiation fields for delivery of C-ion RT were analyzed in 20 patients with stage I NSCLC. Computed tomography images were obtained twice before treatment initiation. Simulated dose distribution was reconstructed on computed tomography for confirmation under the same settings as actual treatment with respiratory gating and bony structure matching. Dose-volume histogram parameters, such as %D95 (percentage of D95 relative to the prescribed dose), were calculated.more » Patients with any field for which the %D95 of gross tumor volume (GTV) was below 90% were classified as unacceptable for treatment, and the optimal target margin for such cases was examined. Results: Five patients with a total of 8 fields (10% of total number of fields analyzed) were classified as unacceptable according to %D95 of GTV, although most patients showed no remarkable change in the dose-volume histogram parameters. Receiver operating characteristic curve analysis showed that tumor displacement and change in water-equivalent pathlength were significant predictive factors of unacceptable cases (P<.001 and P=.002, respectively). The main cause of degradation of the dose distribution was tumor displacement in 7 of the 8 unacceptable fields. A 6-mm planning target volume margin ensured a GTV %D95 of >90%, except in 1 extremely unacceptable field. Conclusions: According to this simulation analysis of C-ion RT for stage I NSCLC, a few fields were reported as unacceptable and required resetting of body position and reconfirmation. In addition, tumor displacement and change in water-equivalent pathlength (bone shift and/or chest wall thickness) were identified as factors influencing the robustness of dose distribution. Such uncertainties should be regarded in planning.« less

  4. Parotid Gland Sparing With Helical Tomotherapy in Head-and-Neck Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voordeckers, Mia, E-mail: mia.voordeckers@uzbrussel.be; Farrag, Ashraf; Assiut University

    Purpose: This study evaluated the ability of helical tomotherapy to spare the function of the parotid glands in patients with head-and-neck cancer by analyzing dose-volume histograms, salivary gland scintigraphy, and quality of life assessment. Methods and Materials: Data from 76 consecutive patients treated with helical tomotherapy (Hi-Art Tomotherapy) at University Hospital Brussel were analyzed. During planning, priority was given to planning target volume (PTV) coverage: {>=}95% of the dose must be delivered to {>=}95% of the PTV. Elective nodal regions received 54 Gy (1.8 Gy/fraction). A dose of 70.5 Gy (2.35 Gy/fraction) was prescribed to the primary tumor and pathologicmore » lymph nodes (simultaneous integrated boost scheme). Objective scoring of salivary excretion was performed by salivary gland scintigraphy. Subjective scoring of salivary gland function was evaluated by the European Organization for Research and Treatment of Cancer quality of life questionnaires Quality of Life Questionnaire-C30 (QLQ-C30) and Quality of Life Questionnaire-Head and Neck 35 (H and N35). Results: Analysis of dose-volume histograms (DVHs) showed excellent coverage of the PTV. The volume of PTV receiving 95% of the prescribed dose (V95%) was 99.4 (range, 96.3-99.9). DVH analysis of parotid gland showed a median value of the mean parotid dose of 32.1 Gy (range, 17.5-70.3 Gy). The median parotid volume receiving a dose <26 Gy was 51.2%. Quality of life evaluation demonstrated an initial deterioration of almost all scales and items in QLQ-C30 and QLQ-H and N35. Most items improved in time, and some reached baseline values 18 months after treatment. Conclusion: DVH analysis, scintigraphic evaluation of parotid function, and quality of life assessment of our patient group showed that helical tomotherapy makes it possible to preserve parotid gland function without compromising disease control. We recommend mean parotid doses of <34 Gy and doses <26 Gy to a maximum 47% of the parotid volume as planning goals. Intensity-modulated radiotherapy should be considered as standard treatment in patients with head-and-neck cancer.« less

  5. Radiotherapy for gastric lymphoma: a planning study of 3D conformal radiotherapy, the half-beam method, and intensity-modulated radiotherapy.

    PubMed

    Inaba, Koji; Okamoto, Hiroyuki; Wakita, Akihisa; Nakamura, Satoshi; Kobayashi, Kazuma; Harada, Ken; Kitaguchi, Mayuka; Sekii, Shuhei; Takahashi, Kana; Yoshio, Kotaro; Murakami, Naoya; Morota, Madoka; Ito, Yoshinori; Sumi, Minako; Uno, Takashi; Itami, Jun

    2014-11-01

    During radiotherapy for gastric lymphoma, it is difficult to protect the liver and kidneys in cases where there is considerable overlap between these organs and the target volume. This study was conducted to compare the three radiotherapy planning techniques of four-fields 3D conformal radiotherapy (3DCRT), half-field radiotherapy (the half-beam method) and intensity-modulated radiotherapy (IMRT) used to treat primary gastric lymphoma in which the planning target volume (PTV) had a large overlap with the left kidney. A total of 17 patients with gastric diffuse large B-cell lymphoma (DLBCL) were included. In DLBCL, immunochemotherapy (Rituximab + CHOP) was followed by radiotherapy of 40 Gy to the whole stomach and peri-gastric lymph nodes. 3DCRT, the half-field method, and IMRT were compared with respect to the dose-volume histogram (DVH) parameters and generalized equivalent uniform dose (gEUD) to the kidneys, liver and PTV. The mean dose and gEUD for 3DCRT was higher than for IMRT and the half-beam method in the left kidney and both kidneys. The mean dose and gEUD of the left kidney was 2117 cGy and 2224 cGy for 3DCRT, 1520 cGy and 1637 cGy for IMRT, and 1100 cGy and 1357 cGy for the half-beam method, respectively. The mean dose and gEUD of both kidneys was 1335 cGy and 1559 cGy for 3DCRT, 1184 cGy and 1311 cGy for IMRT, and 700 cGy and 937 cGy for the half-beam method, respectively. Dose-volume histograms (DVHs) of the liver revealed a larger volume was irradiated in the dose range <25 Gy with 3DCRT, while the half-beam method irradiated a larger volume of liver with the higher dose range (>25 Gy). IMRT and the half-beam method had the advantages of dose reduction for the kidneys and liver. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  6. SU-E-T-294: Dosimetric Analysis of Planning Phase Using Overlap Volume Histogram for Respiratory Gated Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, S; Kim, D; Kim, T

    2015-06-15

    Purpose: End-of-exhale (EOE) phase is generally preferred for gating window because tumor position is more reproducible. However, other gating windows might be more appropriate for dose distribution perspective. In this pilot study, we proposed to utilize overlap volume histogram (OVH) to search optimized gating window and demonstrated its feasibility. Methods: We acquired 4DCT of 10 phases for 3 lung patients (2 with a target at right middle lobe and 1 at right upper lobe). After structures were defined in every phase, the OVH of each OAR was generated to quantify the three dimensional spatial relationship between the PTV and OARsmore » (bronchus, esophagus, heart and cord etc.) at each phase. OVH tells the overlap volume of an OAR according to outward distance from the PTV. Relative overlap volume at 20 mm outward distance from the PTV (ROV-20) was also defined as a metric for measuring overlap volume and obtained. For dose calculation, 3D CRT plans were made for all phases under the same beam angles and objectives (e.g., 95% of the PTV coverage with at least 100% of the prescription dose of 50 Gy). The gating window phase was ranked according to ROV-20, and the relationship between the OVH and dose distribution at each phase was evaluated by comparing the maximum dose, mean dose, and equivalent uniform dose of OAR. Results: OVHs showed noticeable difference from phase to phase, implying it is possible to find optimal phases for gating window. For 2 out of 3 patients (both with a target at RML), maximum dose, mean dose, and EUD increased as ROV-20 increased. Conclusion: It is demonstrated that optimal phases (in dose distribution perspective) for gating window could exist and OVH can be a useful tool for determining such phases without performing dose optimization calculations in all phases. This work was supported by the Radiation Technology R&D program (No. 2013M2A2A7043498) and the Mid-career Researcher Program (2012-007883) through the National Research Foundation (NRF) funded by the Ministry of Science, ICT & Future Planning (MSIP) of Korea.« less

  7. Modeling late rectal toxicities based on a parameterized representation of the 3D dose distribution

    NASA Astrophysics Data System (ADS)

    Buettner, Florian; Gulliford, Sarah L.; Webb, Steve; Partridge, Mike

    2011-04-01

    Many models exist for predicting toxicities based on dose-volume histograms (DVHs) or dose-surface histograms (DSHs). This approach has several drawbacks as firstly the reduction of the dose distribution to a histogram results in the loss of spatial information and secondly the bins of the histograms are highly correlated with each other. Furthermore, some of the complex nonlinear models proposed in the past lack a direct physical interpretation and the ability to predict probabilities rather than binary outcomes. We propose a parameterized representation of the 3D distribution of the dose to the rectal wall which explicitly includes geometrical information in the form of the eccentricity of the dose distribution as well as its lateral and longitudinal extent. We use a nonlinear kernel-based probabilistic model to predict late rectal toxicity based on the parameterized dose distribution and assessed its predictive power using data from the MRC RT01 trial (ISCTRN 47772397). The endpoints under consideration were rectal bleeding, loose stools, and a global toxicity score. We extract simple rules identifying 3D dose patterns related to a specifically low risk of complication. Normal tissue complication probability (NTCP) models based on parameterized representations of geometrical and volumetric measures resulted in areas under the curve (AUCs) of 0.66, 0.63 and 0.67 for predicting rectal bleeding, loose stools and global toxicity, respectively. In comparison, NTCP models based on standard DVHs performed worse and resulted in AUCs of 0.59 for all three endpoints. In conclusion, we have presented low-dimensional, interpretable and nonlinear NTCP models based on the parameterized representation of the dose to the rectal wall. These models had a higher predictive power than models based on standard DVHs and their low dimensionality allowed for the identification of 3D dose patterns related to a low risk of complication.

  8. Dose-distance metric that predicts late rectal bleeding in patients receiving radical prostate external-beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Lee, Richard; Chan, Elisa K.; Kosztyla, Robert; Liu, Mitchell; Moiseenko, Vitali

    2012-12-01

    The relationship between rectal dose distribution and the incidence of late rectal complications following external-beam radiotherapy has been previously studied using dose-volume histograms or dose-surface histograms. However, they do not account for the spatial dose distribution. This study proposes a metric based on both surface dose and distance that can predict the incidence of rectal bleeding in prostate cancer patients treated with radical radiotherapy. One hundred and forty-four patients treated with radical radiotherapy for prostate cancer were prospectively followed to record the incidence of grade ≥2 rectal bleeding. Radiotherapy plans were used to evaluate a dose-distance metric that accounts for the dose and its spatial distribution on the rectal surface, characterized by a logistic weighting function with slope a and inflection point d0. This was compared to the effective dose obtained from dose-surface histograms, characterized by the parameter n which describes sensitivity to hot spots. The log-rank test was used to determine statistically significant (p < 0.05) cut-off values for the dose-distance metric and effective dose that predict for the occurrence of rectal bleeding. For the dose-distance metric, only d0 = 25 and 30 mm combined with a > 5 led to statistical significant cut-offs. For the effective dose metric, only values of n in the range 0.07-0.35 led to statistically significant cut-offs. The proposed dose-distance metric is a predictor of rectal bleeding in prostate cancer patients treated with radiotherapy. Both the dose-distance metric and the effective dose metric indicate that the incidence of grade ≥2 rectal bleeding is sensitive to localized damage to the rectal surface.

  9. Functional Data Analysis in NTCP Modeling: A New Method to Explore the Radiation Dose-Volume Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benadjaoud, Mohamed Amine, E-mail: mohamedamine.benadjaoud@gustaveroussy.fr; Université Paris sud, Le Kremlin-Bicêtre; Institut Gustave Roussy, Villejuif

    2014-11-01

    Purpose/Objective(s): To describe a novel method to explore radiation dose-volume effects. Functional data analysis is used to investigate the information contained in differential dose-volume histograms. The method is applied to the normal tissue complication probability modeling of rectal bleeding (RB) for patients irradiated in the prostatic bed by 3-dimensional conformal radiation therapy. Methods and Materials: Kernel density estimation was used to estimate the individual probability density functions from each of the 141 rectum differential dose-volume histograms. Functional principal component analysis was performed on the estimated probability density functions to explore the variation modes in the dose distribution. The functional principalmore » components were then tested for association with RB using logistic regression adapted to functional covariates (FLR). For comparison, 3 other normal tissue complication probability models were considered: the Lyman-Kutcher-Burman model, logistic model based on standard dosimetric parameters (LM), and logistic model based on multivariate principal component analysis (PCA). Results: The incidence rate of grade ≥2 RB was 14%. V{sub 65Gy} was the most predictive factor for the LM (P=.058). The best fit for the Lyman-Kutcher-Burman model was obtained with n=0.12, m = 0.17, and TD50 = 72.6 Gy. In PCA and FLR, the components that describe the interdependence between the relative volumes exposed at intermediate and high doses were the most correlated to the complication. The FLR parameter function leads to a better understanding of the volume effect by including the treatment specificity in the delivered mechanistic information. For RB grade ≥2, patients with advanced age are significantly at risk (odds ratio, 1.123; 95% confidence interval, 1.03-1.22), and the fits of the LM, PCA, and functional principal component analysis models are significantly improved by including this clinical factor. Conclusion: Functional data analysis provides an attractive method for flexibly estimating the dose-volume effect for normal tissues in external radiation therapy.« less

  10. Assessment of Intrafraction Breathing Motion on Left Anterior Descending Artery Dose During Left-Sided Breast Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Sherif, Omar, E-mail: Omar.ElSherif@lhsc.on.ca; Department of Physics, London Regional Cancer Program, London, Ontario; Yu, Edward

    Purpose: To use 4-dimensional computed tomography (4D-CT) imaging to predict the level of uncertainty in cardiac dose estimates of the left anterior descending artery that arises due to breathing motion during radiation therapy for left-sided breast cancer. Methods and Materials: The fast helical CT (FH-CT) and 4D-CT of 30 left-sided breast cancer patients were retrospectively analyzed. Treatment plans were created on the FH-CT. The original treatment plan was then superimposed onto all 10 phases of the 4D-CT to quantify the dosimetric impact of respiratory motion through 4D dose accumulation (4D-dose). Dose-volume histograms for the heart, left ventricle (LV), and left anteriormore » descending (LAD) artery obtained from the FH-CT were compared with those obtained from the 4D-dose. Results: The 95% confidence interval of 4D-dose and FH-CT differences in mean dose estimates for the heart, LV, and LAD were ±0.5 Gy, ±1.0 Gy, and ±8.7 Gy, respectively. Conclusion: Fast helical CT is a good approximation for doses to the heart and LV; however, dose estimates for the LAD are susceptible to uncertainties that arise due to intrafraction breathing motion that cannot be ascertained without the additional information obtained from 4D-CT and dose accumulation. For future clinical studies, we suggest the use of 4D-CT–derived dose-volume histograms for estimating the dose to the LAD.« less

  11. Comparison of adverse effects of proton and X-ray chemoradiotherapy for esophageal cancer using an adaptive dose–volume histogram analysis

    PubMed Central

    Makishima, Hirokazu; Ishikawa, Hitoshi; Terunuma, Toshiyuki; Hashimoto, Takayuki; Yamanashi, Koichi; Sekiguchi, Takao; Mizumoto, Masashi; Okumura, Toshiyuki; Sakae, Takeji; Sakurai, Hideyuki

    2015-01-01

    Cardiopulmonary late toxicity is of concern in concurrent chemoradiotherapy (CCRT) for esophageal cancer. The aim of this study was to examine the benefit of proton beam therapy (PBT) using clinical data and adaptive dose–volume histogram (DVH) analysis. The subjects were 44 patients with esophageal cancer who underwent definitive CCRT using X-rays (n = 19) or protons (n = 25). Experimental recalculation using protons was performed for the patient actually treated with X-rays, and vice versa. Target coverage and dose constraints of normal tissues were conserved. Lung V5–V20, mean lung dose (MLD), and heart V30–V50 were compared for risk organ doses between experimental plans and actual treatment plans. Potential toxicity was estimated using protons in patients actually treated with X-rays, and vice versa. Pulmonary events of Grade ≥2 occurred in 8/44 cases (18%), and cardiac events were seen in 11 cases (25%). Risk organ doses in patients with events of Grade ≥2 were significantly higher than for those with events of Grade ≤1. Risk organ doses were lower in proton plans compared with X-ray plans. All patients suffering toxicity who were treated with X-rays (n = 13) had reduced predicted doses in lung and heart using protons, while doses in all patients treated with protons (n = 24) with toxicity of Grade ≤1 had worsened predicted toxicity with X-rays. Analysis of normal tissue complication probability showed a potential reduction in toxicity by using proton beams. Irradiation dose, volume and adverse effects on the heart and lung can be reduced using protons. Thus, PBT is a promising treatment modality for the management of esophageal cancer. PMID:25755255

  12. IMRT: Improvement in treatment planning efficiency using NTCP calculation independent of the dose-volume-histogram

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigorov, Grigor N.; Chow, James C.L.; Grigorov, Lenko

    2006-05-15

    The normal tissue complication probability (NTCP) is a predictor of radiobiological effect for organs at risk (OAR). The calculation of the NTCP is based on the dose-volume-histogram (DVH) which is generated by the treatment planning system after calculation of the 3D dose distribution. Including the NTCP in the objective function for intensity modulated radiation therapy (IMRT) plan optimization would make the planning more effective in reducing the postradiation effects. However, doing so would lengthen the total planning time. The purpose of this work is to establish a method for NTCP determination, independent of a DVH calculation, as a quality assurancemore » check and also as a mean of improving the treatment planning efficiency. In the study, the CTs of ten randomly selected prostate patients were used. IMRT optimization was performed with a PINNACLE3 V 6.2b planning system, using planning target volume (PTV) with margins in the range of 2 to 10 mm. The DVH control points of the PTV and OAR were adapted from the prescriptions of Radiation Therapy Oncology Group protocol P-0126 for an escalated prescribed dose of 82 Gy. This paper presents a new model for the determination of the rectal NTCP ({sub R}NTCP). The method uses a special function, named GVN (from Gy, Volume, NTCP), which describes the {sub R}NTCP if 1 cm{sup 3} of the volume of intersection of the PTV and rectum (R{sub int}) is irradiated uniformly by a dose of 1 Gy. The function was 'geometrically' normalized using a prostate-prostate ratio (PPR) of the patients' prostates. A correction of the {sub R}NTCP for different prescribed doses, ranging from 70 to 82 Gy, was employed in our model. The argument of the normalized function is the R{sub int}, and parameters are the prescribed dose, prostate volume, PTV margin, and PPR. The {sub R}NTCPs of another group of patients were calculated by the new method and the resulting difference was <{+-}5% in comparison to the NTCP calculated by the PINNACLE3 software where Kutcher's dose-response model for NTCP calculation is adopted.« less

  13. [Development of a Compared Software for Automatically Generated DVH in Eclipse TPS].

    PubMed

    Xie, Zhao; Luo, Kelin; Zou, Lian; Hu, Jinyou

    2016-03-01

    This study is to automatically calculate the dose volume histogram(DVH) for the treatment plan, then to compare it with requirements of doctor's prescriptions. The scripting language Autohotkey and programming language C# were used to develop a compared software for automatically generated DVH in Eclipse TPS. This software is named Show Dose Volume Histogram (ShowDVH), which is composed of prescription documents generation, operation functions of DVH, software visualization and DVH compared report generation. Ten cases in different cancers have been separately selected, in Eclipse TPS 11.0 ShowDVH could not only automatically generate DVH reports but also accurately determine whether treatment plans meet the requirements of doctor’s prescriptions, then reports gave direction for setting optimization parameters of intensity modulated radiated therapy. The ShowDVH is an user-friendly and powerful software, and can automatically generated compared DVH reports fast in Eclipse TPS 11.0. With the help of ShowDVH, it greatly saves plan designing time and improves working efficiency of radiation therapy physicists.

  14. SU-E-T-632: A Dosimetric Comparison of the 3D-CRT Planning of Chest Wall in Post-Mastectomy Breast Cancer Patients, with and Without Breast Board Setup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muzaffar, Ambreen; Masood, Asif; Ullah, Haseeb

    2014-06-15

    Purpose: Breast boards are used in breast radiation which increases normal lung and heart doses, when supraclavicular field is included. Therefore, in this study through dose volume histogram (DVHs), lung and heart doses comparison was done between two different setups i.e. with and without breast board, for the treatment of left chest wall and supraclavicular fossa in postmastectomy left breast cancer. Methods: In this study, CT-Simulation scans of ten breast cancer patients were done with and without breast board, at Shifa International Hospitals Islamabad, to investigate the differences between the two different setups of the irradiation of left chest wallmore » in terms of lung and heart doses. For immobilization, support under the neck, shoulders and arms was used. Precise PLAN 2.15 treatment planning system (TPS) was used for 3D-CRT planning. The total prescribed dose for both the plans was 5000 cGy/25 fractions. The chest wall was treated with a pair of tangential photon fields and the upper supraclavicular nodal regions were treated with an anterior photon field. A mono-isocentric technique was used to match the tangential fields with the anterior field at the isocentre. The dose volume histogram was used to compare the doses of heart and ipsilateral lung. Results: Both the plans of each patient were generated and compared. DVH results showed that for the same PTV dose coverage, plans without breast board resulted in a reduction of lung and heart doses compared with the plans with breast board. There was significant reductions in V20, V<25 and mean doses for lung and V<9 and mean doses for heart. Conclusion: In comparison of both the plans, setup without breast board significantly reduced the dose-volume of the ipsilateral lung and heart in left chest wall patients. Waived registration request has been submitted.« less

  15. Hippocampal dose volume histogram predicts Hopkins Verbal Learning Test scores after brain irradiation.

    PubMed

    Okoukoni, Catherine; McTyre, Emory R; Ayala Peacock, Diandra N; Peiffer, Ann M; Strowd, Roy; Cramer, Christina; Hinson, William H; Rapp, Steve; Metheny-Barlow, Linda; Shaw, Edward G; Chan, Michael D

    2017-01-01

    Radiation-induced cognitive decline is relatively common after treatment for primary and metastatic brain tumors; however, identifying dosimetric parameters that are predictive of radiation-induced cognitive decline is difficult due to the heterogeneity of patient characteristics. The memory function is especially susceptible to radiation effects after treatment. The objective of this study is to correlate volumetric radiation doses received by critical neuroanatomic structures to post-radiation therapy (RT) memory impairment. Between 2008 and 2011, 53 patients with primary brain malignancies were treated with conventionally fractionated RT in prospectively accrued clinical trials performed at our institution. Dose-volume histogram analysis was performed for the hippocampus, parahippocampus, amygdala, and fusiform gyrus. Hopkins Verbal Learning Test-Revised scores were obtained at least 6 months after RT. Impairment was defined as an immediate recall score ≤15. For each anatomic region, serial regression was performed to correlate volume receiving a given dose (V D(Gy) ) with memory impairment. Hippocampal V 53.4Gy to V 60.9Gy significantly predicted post-RT memory impairment ( P  < .05). Within this range, the hippocampal V 55Gy was the most significant predictor ( P  = .004). Hippocampal V 55Gy of 0%, 25%, and 50% was associated with tumor-induced impairment rates of 14.9% (95% confidence interval [CI], 7.2%-28.7%), 45.9% (95% CI, 24.7%-68.6%), and 80.6% (95% CI, 39.2%-96.4%), respectively. The hippocampal V 55Gy is a significant predictor for impairment, and a limiting dose below 55 Gy may minimize radiation-induced cognitive impairment.

  16. Temporal Evolution and Dose-Volume Histogram Predictors of Visual Acuity After Proton Beam Radiation Therapy of Uveal Melanoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polishchuk, Alexei L.; Mishra, Kavita K., E-mail: Kavita.Mishra@ucsf.edu; Weinberg, Vivian

    2017-01-01

    Purpose: To perform an in-depth temporal analysis of visual acuity (VA) outcomes after proton beam radiation therapy (PBRT) in a large, uniformly treated cohort of uveal melanoma (UM) patients, to determine trends in VA evolution depending on pretreatment and temporally defined posttreatment VA measurements; and to investigate the relevance of specific patient, tumor and dose-volume parameters to posttreatment vision loss. Methods and Materials: Uveal melanoma patients receiving PBRT were identified from a prospectively maintained database. Included patients (n=645) received 56 GyE in 4 fractions, had pretreatment best corrected VA (BCVA) in the affected eye of count fingers (CF) or better, withmore » posttreatment VA assessment at specified post-PBRT time point(s). Patients were grouped according to the pretreatment BCVA into favorable (≥20/40) or unfavorable (20/50-20/400) and poor (CF) strata. Temporal analysis of BCVA changes was described, and univariate and forward stepwise multivariate logistic regression analyses were performed to identify predictors for VA loss. Results: Median VA follow-up was 53 months (range, 3-213 months). At 60-month follow up, among evaluable treated eyes with favorable pretreatment BCVA, 45% retained BCVA ≥20/40, whereas among evaluable treated eyes with initially unfavorable/poor BCVA, 21% had vision ≥20/100. Among those with a favorable initial BCVA, attaining BCVA of ≥20/40 at any posttreatment time point was associated with subsequent maintenance of excellent BCVA. Multivariate analysis identified volume of the macula receiving 28GyE (P<.0001) and optic nerve (P=.0004) as independent dose-volume histogram predictors of 48-month post-PBRT vision loss among initially favorable treated eyes. Conclusions: Approximately half of PBRT-treated UM eyes with excellent pretreatment BCVA assessed at 5 years after treatment will retain excellent long-term vision. 28GyE macula and optic nerve dose-volume histogram parameters allow for rational treatment planning optimization that may lead to improved visual outcomes. The detailed temporal analysis with intermediate as well as long-term functional prognosis, and the relationship of outcomes with clinical and treatment planning parameters, is critical for informed care of UM patients before and after PBRT.« less

  17. Comparison of adverse effects of proton and X-ray chemoradiotherapy for esophageal cancer using an adaptive dose-volume histogram analysis.

    PubMed

    Makishima, Hirokazu; Ishikawa, Hitoshi; Terunuma, Toshiyuki; Hashimoto, Takayuki; Yamanashi, Koichi; Sekiguchi, Takao; Mizumoto, Masashi; Okumura, Toshiyuki; Sakae, Takeji; Sakurai, Hideyuki

    2015-05-01

    Cardiopulmonary late toxicity is of concern in concurrent chemoradiotherapy (CCRT) for esophageal cancer. The aim of this study was to examine the benefit of proton beam therapy (PBT) using clinical data and adaptive dose-volume histogram (DVH) analysis. The subjects were 44 patients with esophageal cancer who underwent definitive CCRT using X-rays (n = 19) or protons (n = 25). Experimental recalculation using protons was performed for the patient actually treated with X-rays, and vice versa. Target coverage and dose constraints of normal tissues were conserved. Lung V5-V20, mean lung dose (MLD), and heart V30-V50 were compared for risk organ doses between experimental plans and actual treatment plans. Potential toxicity was estimated using protons in patients actually treated with X-rays, and vice versa. Pulmonary events of Grade ≥2 occurred in 8/44 cases (18%), and cardiac events were seen in 11 cases (25%). Risk organ doses in patients with events of Grade ≥2 were significantly higher than for those with events of Grade ≤1. Risk organ doses were lower in proton plans compared with X-ray plans. All patients suffering toxicity who were treated with X-rays (n = 13) had reduced predicted doses in lung and heart using protons, while doses in all patients treated with protons (n = 24) with toxicity of Grade ≤1 had worsened predicted toxicity with X-rays. Analysis of normal tissue complication probability showed a potential reduction in toxicity by using proton beams. Irradiation dose, volume and adverse effects on the heart and lung can be reduced using protons. Thus, PBT is a promising treatment modality for the management of esophageal cancer. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  18. Anterior Myocardial Territory May Replace the Heart as Organ at Risk in Intensity-Modulated Radiotherapy for Left-Sided Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan Wenyong; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan; Liu Dong

    Purpose: We investigated whether the heart could be replaced by the anterior myocardial territory (AMT) as the organ at risk (OAR) in intensity-modulated radiotherapy (IMRT) of the breast for patients with left-sided breast cancer. Methods and Materials: Twenty-three patients with left-sided breast cancer who received postoperative radiation after breast-conserving surgery were studied. For each patient, we generated five IMRT plans including heart (H), left ventricle (LV), AMT, LV+AMT, and H+LV as the primary OARs, respectively, except both lungs and right breast, which corresponded to IMRT(H), IMRT(LV), IMRT(AMT), IMRT(LV+AMT), and IMRT(H+LV). For the planning target volumes and OARs, the parameters ofmore » dose-volume histograms were compared. Results: The homogeneity index, conformity index, and coverage index were not compromised significantly in IMRT(AMT), IMRT(LV) and IMRT(LV+ AMT), respectively, when compared with IMRT(H). The mean dose to the heart, LV, and AMT decreased 5.3-21.5% (p < 0.05), 19.9-29.5% (p < 0.05), and 13.3-24.5% (p < 0.05), respectively. Similarly, the low (e.g., V5%), middle (e.g., V20%), and high (e.g., V30%) dose-volume of the heart, LV, and AMT decreased with different levels. The mean dose and V10% of the right lung increased by 9.2% (p < 0.05) and 27.6% (p < 0.05), respectively, in IMRT(LV), and the mean dose and V5% of the right breast decreased significantly in IMRT(AMT) and IMRT(LV+AMT). IMRT(AMT) was the preferred plan and was then compared with IMRT(H+LV); the majority of dose-volume histogram parameters of OARs including the heart, LV, AMT, both lungs, and the right breast were not statistically different. However, the low dose-volume of LV increased and the middle dose-volume decreased significantly (p < 0.05) in IMRT(AMT). Also, those of the right lung (V10%, V15%) and right breast (V5%, V10%) decreased significantly (p < 0.05). Conclusions: The AMT may replace the heart as the OAR in left-sided breast IMRT after breast-conserving surgery to decrease the radiation dose to the heart.« less

  19. [Comparison of SIB-IMRT treatment plans for upper esophageal carcinoma].

    PubMed

    Fu, Wei-hua; Wang, Lv-hua; Zhou, Zong-mei; Dai, Jian-rong; Hu, Yi-min

    2003-06-01

    To implement simultaneous integrated boost intensity-modulated radiotherapy(SIB-IMRT) plans for upper esophageal carcinoma and investigate the dose profiles of tumor and electively treated region and the dose to organs at risk (OARs). SIB-IMRT plans were designed for two patients with upper esophageal carcinoma. Two target volumes were predefined: PTV1, the target volume of the primary lesion, which was given to 67.2 Gy, and PTV2, the target volume of electively treated region, which was given to 50.4 Gy. With the same dose-volume constraints, but different beams arrangements (3, 5, 7, or 9 equispaced coplanar beams), four plans were generated. Indices, including dose distribution, dose volume histogram (DVH) and conformity index, were used for comparison of these plans. The plan with three intensity-modulated beams could produce good dose distribution for the two target volumes. The dose conformity to targets and the dose to OARs were improved as the beam number increased. The dose distributions in targets changed little when the beam number increased from 7 to 9. Five to seven intensity-modulated beams can produce desirable dose distributions for simultaneous integrated boost (SIB) treatment for upper esophageal carcinoma. The primary tumor can get higher equivalent dose by SIB treatments. It is easier and more efficient to design plans with equispaced coplanar beams. The efficacy of SIB-IMRT remains to be determined by the clinical outcome.

  20. Dose impact in radiographic lung injury following lung SBRT: Statistical analysis and geometric interpretation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Victoria; Kishan, Amar U.; Cao, Minsong

    2014-03-15

    Purpose: To demonstrate a new method of evaluating dose response of treatment-induced lung radiographic injury post-SBRT (stereotactic body radiotherapy) treatment and the discovery of bimodal dose behavior within clinically identified injury volumes. Methods: Follow-up CT scans at 3, 6, and 12 months were acquired from 24 patients treated with SBRT for stage-1 primary lung cancers or oligometastic lesions. Injury regions in these scans were propagated to the planning CT coordinates by performing deformable registration of the follow-ups to the planning CTs. A bimodal behavior was repeatedly observed from the probability distribution for dose values within the deformed injury regions. Basedmore » on a mixture-Gaussian assumption, an Expectation-Maximization (EM) algorithm was used to obtain characteristic parameters for such distribution. Geometric analysis was performed to interpret such parameters and infer the critical dose level that is potentially inductive of post-SBRT lung injury. Results: The Gaussian mixture obtained from the EM algorithm closely approximates the empirical dose histogram within the injury volume with good consistency. The average Kullback-Leibler divergence values between the empirical differential dose volume histogram and the EM-obtained Gaussian mixture distribution were calculated to be 0.069, 0.063, and 0.092 for the 3, 6, and 12 month follow-up groups, respectively. The lower Gaussian component was located at approximately 70% prescription dose (35 Gy) for all three follow-up time points. The higher Gaussian component, contributed by the dose received by planning target volume, was located at around 107% of the prescription dose. Geometrical analysis suggests the mean of the lower Gaussian component, located at 35 Gy, as a possible indicator for a critical dose that induces lung injury after SBRT. Conclusions: An innovative and improved method for analyzing the correspondence between lung radiographic injury and SBRT treatment dose has been demonstrated. Bimodal behavior was observed in the dose distribution of lung injury after SBRT. Novel statistical and geometrical analysis has shown that the systematically quantified low-dose peak at approximately 35 Gy, or 70% prescription dose, is a good indication of a critical dose for injury. The determined critical dose of 35 Gy resembles the critical dose volume limit of 30 Gy for ipsilateral bronchus in RTOG 0618 and results from previous studies. The authors seek to further extend this improved analysis method to a larger cohort to better understand the interpatient variation in radiographic lung injury dose response post-SBRT.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matney, Jason; Park, Peter C.; The University of Texas Graduate School of Biomedical Sciences, Houston, Texas

    Purpose: To quantify and compare the effects of respiratory motion on paired passively scattered proton therapy (PSPT) and intensity modulated photon therapy (IMRT) plans; and to establish the relationship between the magnitude of tumor motion and the respiratory-induced dose difference for both modalities. Methods and Materials: In a randomized clinical trial comparing PSPT and IMRT, radiation therapy plans have been designed according to common planning protocols. Four-dimensional (4D) dose was computed for PSPT and IMRT plans for a patient cohort with respiratory motion ranging from 3 to 17 mm. Image registration and dose accumulation were performed using grayscale-based deformable imagemore » registration algorithms. The dose–volume histogram (DVH) differences (4D-3D [3D = 3-dimensional]) were compared for PSPT and IMRT. Changes in 4D-3D dose were correlated to the magnitude of tumor respiratory motion. Results: The average 4D-3D dose to 95% of the internal target volume was close to zero, with 19 of 20 patients within 1% of prescribed dose for both modalities. The mean 4D-3D between the 2 modalities was not statistically significant (P<.05) for all dose–volume histogram indices (mean ± SD) except the lung V5 (PSPT: +1.1% ± 0.9%; IMRT: +0.4% ± 1.2%) and maximum cord dose (PSPT: +1.5 ± 2.9 Gy; IMRT: 0.0 ± 0.2 Gy). Changes in 4D-3D dose were correlated to tumor motion for only 2 indices: dose to 95% planning target volume, and heterogeneity index. Conclusions: With our current margin formalisms, target coverage was maintained in the presence of respiratory motion up to 17 mm for both PSPT and IMRT. Only 2 of 11 4D-3D indices (lung V5 and spinal cord maximum) were statistically distinguishable between PSPT and IMRT, contrary to the notion that proton therapy will be more susceptible to respiratory motion. Because of the lack of strong correlations with 4D-3D dose differences in PSPT and IMRT, the extent of tumor motion was not an adequate predictor of potential dosimetric error caused by breathing motion.« less

  2. Impact of Spot Size and Spacing on the Quality of Robustly Optimized Intensity Modulated Proton Therapy Plans for Lung Cancer.

    PubMed

    Liu, Chenbin; Schild, Steven E; Chang, Joe Y; Liao, Zhongxing; Korte, Shawn; Shen, Jiajian; Ding, Xiaoning; Hu, Yanle; Kang, Yixiu; Keole, Sameer R; Sio, Terence T; Wong, William W; Sahoo, Narayan; Bues, Martin; Liu, Wei

    2018-06-01

    To investigate how spot size and spacing affect plan quality, robustness, and interplay effects of robustly optimized intensity modulated proton therapy (IMPT) for lung cancer. Two robustly optimized IMPT plans were created for 10 lung cancer patients: first by a large-spot machine with in-air energy-dependent large spot size at isocenter (σ: 6-15 mm) and spacing (1.3 σ), and second by a small-spot machine with in-air energy-dependent small spot size (σ: 2-6 mm) and spacing (5 mm). Both plans were generated by optimizing radiation dose to internal target volume on averaged 4-dimensional computed tomography scans using an in-house-developed IMPT planning system. The dose-volume histograms band method was used to evaluate plan robustness. Dose evaluation software was developed to model time-dependent spot delivery to incorporate interplay effects with randomized starting phases for each field per fraction. Patient anatomy voxels were mapped phase-to-phase via deformable image registration, and doses were scored using in-house-developed software. Dose-volume histogram indices, including internal target volume dose coverage, homogeneity, and organs at risk (OARs) sparing, were compared using the Wilcoxon signed-rank test. Compared with the large-spot machine, the small-spot machine resulted in significantly lower heart and esophagus mean doses, with comparable target dose coverage, homogeneity, and protection of other OARs. Plan robustness was comparable for targets and most OARs. With interplay effects considered, significantly lower heart and esophagus mean doses with comparable target dose coverage and homogeneity were observed using smaller spots. Robust optimization with a small spot-machine significantly improves heart and esophagus sparing, with comparable plan robustness and interplay effects compared with robust optimization with a large-spot machine. A small-spot machine uses a larger number of spots to cover the same tumors compared with a large-spot machine, which gives the planning system more freedom to compensate for the higher sensitivity to uncertainties and interplay effects for lung cancer treatments. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Exploratory Study of 4D Versus 3D Robust Optimization in Intensity-Modulated Proton Therapy for Lung Cancer

    PubMed Central

    Liu, Wei; Schild, Steven E.; Chang, Joe Y.; Liao, Zhongxing; Chang, Yu-Hui; Wen, Zhifei; Shen, Jiajian; Stoker, Joshua B.; Ding, Xiaoning; Hu, Yanle; Sahoo, Narayan; Herman, Michael G.; Vargas, Carlos; Keole, Sameer; Wong, William; Bues, Martin

    2015-01-01

    Background To compare the impact of uncertainties and interplay effect on 3D and 4D robustly optimized intensity-modulated proton therapy (IMPT) plans for lung cancer in an exploratory methodology study. Methods IMPT plans were created for 11 non-randomly selected non-small-cell lung cancer (NSCLC) cases: 3D robustly optimized plans on average CTs with internal gross tumor volume density overridden to irradiate internal target volume, and 4D robustly optimized plans on 4D CTs to irradiate clinical target volume (CTV). Regular fractionation (66 Gy[RBE] in 33 fractions) were considered. In 4D optimization, the CTV of individual phases received non-uniform doses to achieve a uniform cumulative dose. The root-mean-square-dose volume histograms (RVH) measured the sensitivity of the dose to uncertainties, and the areas under the RVH curve (AUCs) were used to evaluate plan robustness. Dose evaluation software modeled time-dependent spot delivery to incorporate interplay effect with randomized starting phases of each field per fraction. Dose-volume histogram indices comparing CTV coverage, homogeneity, and normal tissue sparing were evaluated using Wilcoxon signed-rank test. Results 4D robust optimization plans led to smaller AUC for CTV (14.26 vs. 18.61 (p=0.001), better CTV coverage (Gy[RBE]) [D95% CTV: 60.6 vs 55.2 (p=0.001)], and better CTV homogeneity [D5%–D95% CTV: 10.3 vs 17.7 (p=0.002)] in the face of uncertainties. With interplay effect considered, 4D robust optimization produced plans with better target coverage [D95% CTV: 64.5 vs 63.8 (p=0.0068)], comparable target homogeneity, and comparable normal tissue protection. The benefits from 4D robust optimization were most obvious for the 2 typical stage III lung cancer patients. Conclusions Our exploratory methodology study showed that, compared to 3D robust optimization, 4D robust optimization produced significantly more robust and interplay-effect-resistant plans for targets with comparable dose distributions for normal tissues. A further study with a larger and more realistic patient population is warranted to generalize the conclusions. PMID:26725727

  4. Risk factors for neovascular glaucoma after carbon ion radiotherapy of choroidal melanoma using dose-volume histogram analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirasawa, Naoki; Tsuji, Hiroshi; Ishikawa, Hitoshi

    2007-02-01

    Purpose: To determine the risk factors for neovascular glaucoma (NVG) after carbon ion radiotherapy (C-ion RT) of choroidal melanoma. Methods and Materials: A total of 55 patients with choroidal melanoma were treated between 2001 and 2005 with C-ion RT based on computed tomography treatment planning. All patients had a tumor of large size or one located close to the optic disk. Univariate and multivariate analyses were performed to identify the risk factors of NVG for the following parameters; gender, age, dose-volumes of the iris-ciliary body and the wall of eyeball, and irradiation of the optic disk (ODI). Results: Neovascular glaucomamore » occurred in 23 patients and the 3-year cumulative NVG rate was 42.6 {+-} 6.8% (standard error), but enucleation from NVG was performed in only three eyes. Multivariate analysis revealed that the significant risk factors for NVG were V50{sub IC} (volume irradiated {>=}50 GyE to iris-ciliary body) (p = 0.002) and ODI (p = 0.036). The 3-year NVG rate for patients with V50{sub IC} {>=}0.127 mL and those with V50{sub IC} <0.127 mL were 71.4 {+-} 8.5% and 11.5 {+-} 6.3%, respectively. The corresponding rate for the patients with and without ODI were 62.9 {+-} 10.4% and 28.4 {+-} 8.0%, respectively. Conclusion: Dose-volume histogram analysis with computed tomography indicated that V50{sub IC} and ODI were independent risk factors for NVG. An irradiation system that can reduce the dose to both the anterior segment and the optic disk might be worth adopting to investigate whether or not incidence of NVG can be decreased with it.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyawaki, Daisuke; Murakami, Masao; Demizu, Yusuke

    Purpose: To assess the incidence of early delayed or late morbidity of Brain after particle therapy for skull base tumors and head-and-neck cancers. Methods and Materials: Between May 2001 and December 2005, 59 patients with cancerous invasion of the skull base were treated with proton or carbon ion therapy at the Hyogo Ion Beam Medical Center. Adverse events were assessed according to the magnetic resonance imaging findings (late effects of normal tissue-subjective, objective, management, analytic [LENT-SOMA]) and symptoms (Common Terminology Criteria for Adverse Events [CTCAE], version 3.0). Dose-volume histograms were used to analyze the relationship between the dose and volumemore » of the irradiated brain and the occurrence of brain injury. The median follow-up time was 33 months. Results: Of the 48 patients treated with proton therapy and 11 patients treated with carbon ion radiotherapy, 8 (17%) and 7 (64%), respectively, developed radiation-induced brain changes (RIBCs) on magnetic resonance imaging (LENT-SOMA Grade 1-3). Four patients (7%) had some clinical symptoms, such as vertigo and headache (CTCAE Grade 2) or epilepsy (CTCAE Grade 3). The actuarial occurrence rate of RIBCs at 2 and 3 years was 20% and 39%, respectively, with a significant difference in the incidence between the proton and carbon ion radiotherapy groups. The dose-volume histogram analyses revealed significant differences between Brain lobes with and without RIBCs in the actuarial volume of brain lobes receiving high doses. Conclusion: Particle therapies produced minimal symptomatic brain toxicities, but sequential evaluation with magnetic resonance imaging detected a greater incidence of RIBCs. Significant differences were observed in the irradiated brain volume between Brain lobes with and without RIBCs.« less

  6. Poster — Thur Eve — 69: Computational Study of DVH-guided Cancer Treatment Planning Optimization Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghomi, Pooyan Shirvani; Zinchenko, Yuriy

    2014-08-15

    Purpose: To compare methods to incorporate the Dose Volume Histogram (DVH) curves into the treatment planning optimization. Method: The performance of three methods, namely, the conventional Mixed Integer Programming (MIP) model, a convex moment-based constrained optimization approach, and an unconstrained convex moment-based penalty approach, is compared using anonymized data of a prostate cancer patient. Three plans we generated using the corresponding optimization models. Four Organs at Risk (OARs) and one Tumor were involved in the treatment planning. The OARs and Tumor were discretized into total of 50,221 voxels. The number of beamlets was 943. We used commercially available optimization softwaremore » Gurobi and Matlab to solve the models. Plan comparison was done by recording the model runtime followed by visual inspection of the resulting dose volume histograms. Conclusion: We demonstrate the effectiveness of the moment-based approaches to replicate the set of prescribed DVH curves. The unconstrained convex moment-based penalty approach is concluded to have the greatest potential to reduce the computational effort and holds a promise of substantial computational speed up.« less

  7. Automated segmentation and dose-volume analysis with DICOMautomaton

    NASA Astrophysics Data System (ADS)

    Clark, H.; Thomas, S.; Moiseenko, V.; Lee, R.; Gill, B.; Duzenli, C.; Wu, J.

    2014-03-01

    Purpose: Exploration of historical data for regional organ dose sensitivity is limited by the effort needed to (sub-)segment large numbers of contours. A system has been developed which can rapidly perform autonomous contour sub-segmentation and generic dose-volume computations, substantially reducing the effort required for exploratory analyses. Methods: A contour-centric approach is taken which enables lossless, reversible segmentation and dramatically reduces computation time compared with voxel-centric approaches. Segmentation can be specified on a per-contour, per-organ, or per-patient basis, and can be performed along either an embedded plane or in terms of the contour's bounds (e.g., split organ into fractional-volume/dose pieces along any 3D unit vector). More complex segmentation techniques are available. Anonymized data from 60 head-and-neck cancer patients were used to compare dose-volume computations with Varian's EclipseTM (Varian Medical Systems, Inc.). Results: Mean doses and Dose-volume-histograms computed agree strongly with Varian's EclipseTM. Contours which have been segmented can be injected back into patient data permanently and in a Digital Imaging and Communication in Medicine (DICOM)-conforming manner. Lossless segmentation persists across such injection, and remains fully reversible. Conclusions: DICOMautomaton allows researchers to rapidly, accurately, and autonomously segment large amounts of data into intricate structures suitable for analyses of regional organ dose sensitivity.

  8. Application of Magnetic Resonance Imaging and Three-Dimensional Treatment Planning in the Treatment of Orbital Lymphoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudoltz, Marc S.; Ayyangar, Komanduri; Mohiuddin, Mohammed

    Radiotherapy for lymphoma of the orbit must be individualized for each patient and clinical setting. Most techniques focus on optimizing the dose to the tumor while sparing the lens. This study describes a technique utilizing magnetic resonance imaging (MRI) and three dimensional (3D) planning in the treatment of orbital lymphoma. A patient presented with an intermediate grade lymphoma of the right orbit. The prescribed tumor dose was 4050 cGy in 18 fractions. Three D planning was carried out and tumor volumes, retina, and lens were subsequently outlined. Dose calculations including dose volume histograms of the target, retina, and lens weremore » then performed. Part of the retina was outside of the treatment volume while 50% of the retina received 90% or more of the prescribed dose. The patient was clinically NED when last seen 2 years following therapy with no treatment-related morbidity. Patients with lymphomas of the orbit can be optimally treated using MRI based 3D treatment planning.« less

  9. Dosimetric comparison between VMAT and RC3D techniques: case of prostate treatment

    NASA Astrophysics Data System (ADS)

    Chemingui, Fatima Zohra; Benrachi, Fatima; Bali, Mohamed Saleh; Ladjal, Hamid

    2017-09-01

    Considered as the second men cancer in Algeria, prostate cancer is treated in 70% by radiation. That's why radiation therapy is therapeutic weapon for prostate cancer. Conformational Radiotherapy in 3D is the most common technique [1-5]. The use of conventionally optimized treatment plans was compared at case scenario of optimized treatment plans VMAT for prostate cancer. The evaluation of the two optimizations strategies focused on the resulting plans ability to retain dose objectives under the influence of patient set up. Dose Volume Histogram in the Planning Target Volume and dose in the Organs At Risks were used to calculate the conformity index, and evaluation ratio of irradiated volume which represent the main tool of comparison [6,7]. The situation was analysed systematically. The 14% dose increase in the target leads to a decrease in the dose in adjacent organs with 39% in the bladder. Therefore, the criterion for better efficacy and less toxicity reveal that VMAT is the best choice.

  10. Predictive factors for pericardial effusion identified by heart dose-volume histogram analysis in oesophageal cancer patients treated with chemoradiotherapy.

    PubMed

    Hayashi, K; Fujiwara, Y; Nomura, M; Kamata, M; Kojima, H; Kohzai, M; Sumita, K; Tanigawa, N

    2015-02-01

    To identify predictive factors for the development of pericardial effusion (PCE) in patients with oesophageal cancer treated with chemotherapy and radiotherapy (RT). From March 2006 to November 2012, patients with oesophageal cancer treated with chemoradiotherapy (CRT) using the following criteria were evaluated: radiation dose >50 Gy; heart included in the radiation field; dose-volume histogram (DVH) data available for analysis; no previous thoracic surgery; and no PCE before treatment. The diagnosis of PCE was independently determined by two radiologists. Clinical factors, the percentage of heart volume receiving >5-60 Gy in increments of 5 Gy (V5-60, respectively), maximum heart dose and mean heart dose were analysed. A total of 143 patients with oesophageal cancer were reviewed retrospectively. The median follow-up by CT was 15 months (range, 2.1-72.6 months) after RT. PCE developed in 55 patients (38.5%) after RT, and the median time to develop PCE was 3.5 months (range, 0.2-9.9 months). On univariate analysis, DVH parameters except for V60 were significantly associated with the development of PCE (p < 0.001). No clinical factor was significantly related to the development of PCE. Recursive partitioning analysis including all DVH parameters as variables showed a V10 cut-off value of 72.8% to be the most influential factor. The present results showed that DVH parameters are strong independent predictive factors for the development of PCE in patients with oesophageal cancer treated with CRT. A heart dosage was associated with the development of PCE with radiation and without prophylactic nodal irradiation.

  11. Dose-volume histogram analysis of brainstem necrosis in head and neck tumors treated using carbon-ion radiotherapy.

    PubMed

    Shirai, Katsuyuki; Fukata, Kyohei; Adachi, Akiko; Saitoh, Jun-Ichi; Musha, Atsushi; Abe, Takanori; Kanai, Tatsuaki; Kobayashi, Daijiro; Shigeta, Yuka; Yokoo, Satoshi; Chikamatsu, Kazuaki; Ohno, Tatsuya; Nakano, Takashi

    2017-10-01

    We aimed to evaluate the relationship between brainstem necrosis and dose-volume histograms in patients with head and neck tumors after carbon-ion radiotherapy. We evaluated 85 patients with head and neck tumors who underwent carbon-ion radiotherapy and were followed-up for ≥12months. Brainstem necrosis was evaluated using the Common Terminology Criteria for Adverse Events (version 4.0). The median follow-up was 24months, and four patients developed grade 1 brainstem necrosis, with 2-year and 3-year cumulative rates of 2.8% and 6.5%, respectively. Receiver operating characteristic curve analysis revealed the following significant cut-off values: a maximum brainstem dose of 48Gy (relative biological effectiveness [RBE]), D1cm 3 of 27Gy (RBE), V40Gy (RBE) of 0.1cm 3 , V30Gy (RBE) of 0.7cm 3 , and V20Gy (RBE) of 1.4cm 3 . Multivariate analysis revealed that V30Gy (RBE) was most significantly associated with brainstem necrosis. The 2-year cumulative rates were 33% and 0% for V30Gy (RBE) of ≥0.7cm 3 and <0.7cm 3 , respectively (p<0.001). The present study indicated that the dose constraints might help minimize brainstem necrosis after carbon-ion radiotherapy. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  12. Real-time computed tomography dosimetry during ultrasound-guided brachytherapy for prostate cancer.

    PubMed

    Kaplan, Irving D; Meskell, Paul; Oldenburg, Nicklas E; Saltzman, Brian; Kearney, Gary P; Holupka, Edward J

    2006-01-01

    Ultrasound-guided implantation of permanent radioactive seeds is a treatment option for localized prostate cancer. Several techniques have been described for the optimal placement of the seeds in the prostate during this procedure. Postimplantation dosimetric calculations are performed after the implant. Areas of underdosing can only be corrected with either an external beam boost or by performing a second implant. We demonstrate the feasibility of performing computed tomography (CT)-based postplanning during the ultrasound-guided implant and subsequently correcting for underdosed areas. Ultrasound-guided brachytherapy is performed on a modified CT table with general anesthesia. The postplanning CT scan is performed after the implant, while the patient is still under anesthesia. Additional seeds are implanted into "cold spots," and the resultant dosimetry confirmed with CT. Intraoperative postplanning was successfully performed. Dose-volume histograms demonstrated adequate dose coverage during the initial implant, but on detailed analysis, for some patients, areas of underdosing were observed either at the apex or the peripheral zone. Additional seeds were implanted to bring these areas to prescription dose. Intraoperative postplanning is feasible during ultrasound-guided brachytherapy for prostate cancer. Although the postimplant dose-volume histograms for all patients, before the implantation of additional seeds, were adequate according to the American Brachytherapy Society criteria, specific critical areas can be underdosed. Additional seeds can then be implanted to optimize the dosimetry and reduce the risk of underdosing areas of cancer.

  13. SU-E-J-93: Parametrisation of Dose to the Mucosa of the Anterior Rectal Wall in Transrectal Ultrasound Guided High-Dose-Rate Brachytherapy of the Prostate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aitkenhead, A; Hamlett, L; Wood, D

    2014-06-01

    Purpose: In high-dose-rate (HDR) brachytherapy of the prostate, radiation is delivered from a number of radioactive sources which are inserted via catheter into the target volume. The rectal mucosa also receives dose during the treatment, which may lead to late toxicity effects. To allow possible links between rectal dose and toxicity to be investigated, suitable methods of parametrising the rectal dose are needed. Methods: During treatment of a series of 95 patients, anatomy and catheter locations were monitored by transrectal ultrasound, and target volume positions were contoured on the ultrasound scan by the therapist. The anterior rectal mucosal wall wasmore » identified by contouring the transrectal ultrasound balloon within the ultrasound scan. Source positions and dwell times, along with the dose delivered to the patient were computed using the Oncentra Prostate treatment planning system (TPS). Data for the series of patients were exported from the TPS in Dicom format, and a series of parametrisation methods were developed in a Matlab environment to assess the rectal dose. Results: Contours of the anterior rectal mucosa were voxelised within Matlab to allow the dose to the rectal mucosa to be analysed directly from the 3D dose grid. Dose parametrisations based on dose-surface (DSH) and dose-line (DLH) histograms were obtained. Both lateral and longitudinal extents of the mucosal dose were parametrised using dose-line histograms in the relevant directions. Conclusion: We have developed a series of dose parametrisations for quantifying the dose to the rectal mucosa during HDR prostate brachytherapy which are suitable for future studies investigating potential associations between mucosal dose and late toxicity effects. The geometry of the transrectal probe standardises the rectal anatomy, making this treatment technique particularly suited to studies of this nature.« less

  14. Underestimation of Low-Dose Radiation in Treatment Planning of Intensity-Modulated Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Si Young; Liu, H. Helen; Mohan, Radhe

    2008-08-01

    Purpose: To investigate potential dose calculation errors in the low-dose regions and identify causes of such errors for intensity-modulated radiotherapy (IMRT). Methods and Materials: The IMRT treatment plans of 23 patients with lung cancer and mesothelioma were reviewed. Of these patients, 15 had severe pulmonary complications after radiotherapy. Two commercial treatment-planning systems (TPSs) and a Monte Carlo system were used to calculate and compare dose distributions and dose-volume parameters of the target volumes and critical structures. The effect of tissue heterogeneity, multileaf collimator (MLC) modeling, beam modeling, and other factors that could contribute to the differences in IMRT dose calculationsmore » were analyzed. Results: In the commercial TPS-generated IMRT plans, dose calculation errors primarily occurred in the low-dose regions of IMRT plans (<50% of the radiation dose prescribed for the tumor). Although errors in the dose-volume histograms of the normal lung were small (<5%) above 10 Gy, underestimation of dose <10 Gy was found to be up to 25% in patients with mesothelioma or large target volumes. These errors were found to be caused by inadequate modeling of MLC transmission and leaf scatter in commercial TPSs. The degree of low-dose errors depends on the target volumes and the degree of intensity modulation. Conclusions: Secondary radiation from MLCs contributes a significant portion of low dose in IMRT plans. Dose underestimation could occur in conventional IMRT dose calculations if such low-dose radiation is not properly accounted for.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arai, K; Tohoku University Graduate School of Medicine, Sendal, Miyagi; Kadoya, N

    Purpose: The aim of this study was to confirm On-Board Imager cone-beam computed tomography (CBCT) using a histogram-matching algorithm as a useful method for proton dose calculation in head and neck radiotherapy. Methods: We studied one head and neck phantom and ten patients with head and neck cancer treated using intensity-modulated radiation therapy (IMRT) and proton beam therapy. We modified Hounsfield unit (HU) values of CBCT (mCBCT) using a histogram-matching algorithm. In order to evaluate the accuracy of the proton dose calculation, we compared dose differences in dosimetric parameters (Dmean) for clinical target volume (CTV), planning target volume (PTV) andmore » left parotid and proton ranges (PR) between the planning CT (reference) and CBCT or mCBCT, and gamma passing rates of CBCT and mCBCT. To minimize the effect of organ deformation, we also performed image registration. Results: For patients, the average differences in Dmean for CTV, PTV, and left parotid between planning CT and CBCT were 1.63 ± 2.34%, 3.30 ± 1.02%, and 5.42 ± 3.06%, respectively. Similarly, the average differences between planning CT and mCBCT were 0.20 ± 0.19%, 0.58 ±0.43%, and 3.53 ±2.40%, respectively. The average differences in PR between planning CT and CBCT or mCBCT of a 50° beam for ten patients were 2.1 ± 2.1 mm and 0.3 ± 0.5 mm, respectively. Similarly, the average differences in PR of a 120° beam were 2.9 ± 2.6 mm and 1.1 ± 0.9 mm, respectively. The average dose and PR differences of mCBCT were smaller than those of CBCT. Additionally, the average gamma passing rates of mCBCT were larger than those of CBCT. Conclusion: We evaluated the accuracy of the proton dose calculation in CBCT and mCBCT with the image registration for ten patients. Our results showed that HU modification using a histogram-matching algorithm could improve the accuracy of the proton dose calculation.« less

  16. MO-G-304-01: FEATURED PRESENTATION: Expanding the Knowledge Base for Data-Driven Treatment Planning: Incorporating Patient Outcome Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, SP; Quon, H; Cheng, Z

    2015-06-15

    Purpose: To extend the capabilities of knowledge-based treatment planning beyond simple dose queries by incorporating validated patient outcome models. Methods: From an analytic, relational database of 684 head and neck cancer patients, 372 patients were identified having dose data for both left and right parotid glands as well as baseline and follow-up xerostomia assessments. For each existing patient, knowledge-based treatment planning was simulated for by querying the dose-volume histograms and geometric shape relationships (overlap volume histograms) for all other patients. Dose predictions were captured at normalized volume thresholds (NVT) of 0%, 10%, 20, 30%, 40%, 50%, and 85% and weremore » compared with the actual achieved doses using the Wilcoxon signed-rank test. Next, a logistic regression model was used to predict the maximum severity of xerostomia up to three months following radiotherapy. Baseline xerostomia scores were subtracted from follow-up assessments and were also included in the model. The relative risks from predicted doses and actual doses were computed and compared. Results: The predicted doses for both parotid glands were significantly less than the achieved doses (p < 0.0001), with differences ranging from 830 cGy ± 1270 cGy (0% NVT) to 1673 cGy ± 1197 cGy (30% NVT). The modelled risk of xerostomia ranged from 54% to 64% for achieved doses and from 33% to 51% for the dose predictions. Relative risks varied from 1.24 to 1.87, with maximum relative risk occurring at 85% NVT. Conclusions: Data-driven generation of treatment planning objectives without consideration of the underlying normal tissue complication probability may Result in inferior plans, even if quality metrics indicate otherwise. Inclusion of complication models in knowledge-based treatment planning is necessary in order to close the feedback loop between radiotherapy treatments and patient outcomes. Future work includes advancing and validating complication models in the context of knowledge-based treatment planning. This work is supported by Philips Radiation Oncology Systems.« less

  17. SU-D-BRC-05: Effects of Motion and Variable RBE in a Lung Patient Treated with Passively Scattered Protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirkovic, D; Titt, U; Mohan, R

    2016-06-15

    Purpose: To evaluate effects of motion and variable relative biological effectiveness (RBE) in a lung cancer patient treated with passively scattered proton therapy using dose volume histograms associated with patient dose computed using three different methods. Methods: A proton treatment plan of a lung cancer patient optimized using clinical treatment planning system (TPS) was used to construct a detailed Monte Carlo (MC) model of the beam delivery system and the patient specific aperture and compensator. A phase space file containing all particles transported through the beam line was collected at the distal surface of the range compensator and subsequently transportedmore » through two different patient models. The first model was based on the average CT used by the TPS and the second model included all 10 phases of the corresponding 4DCT. The physical dose and proton linear energy transfer (LET) were computed in each voxel of two models and used to compute constant and variable RBE MC dose on average CT and 4D CT. The MC computed doses were compared to the TPS dose using dose volume histograms for relevant structures. Results: The results show significant differences in doses to the target and critical structures suggesting the need for more accurate proton dose computation methods. In particular, the 4D dose shows reduced coverage of the target and higher dose to the spinal cord, while variable RBE dose shows higher lung dose. Conclusion: The methodology developed in this pilot study is currently used for the analysis of a cohort of ∼90 lung patients from a clinical trial comparing proton and photon therapy for lung cancer. The results from this study will help us in determining the clinical significance of more accurate dose computation models in proton therapy.« less

  18. Dose gradient curve: A new tool for evaluating dose gradient.

    PubMed

    Sung, KiHoon; Choi, Young Eun

    2018-01-01

    Stereotactic radiotherapy, which delivers an ablative high radiation dose to a target volume for maximum local tumor control, requires a rapid dose fall-off outside the target volume to prevent extensive damage to nearby normal tissue. Currently, there is no tool to comprehensively evaluate the dose gradient near the target volume. We propose the dose gradient curve (DGC) as a new tool to evaluate the quality of a treatment plan with respect to the dose fall-off characteristics. The average distance between two isodose surfaces was represented by the dose gradient index (DGI) estimated by a simple equation using the volume and surface area of isodose levels. The surface area was calculated by mesh generation and surface triangulation. The DGC was defined as a plot of the DGI of each dose interval as a function of the dose. Two types of DGCs, differential and cumulative, were generated. The performance of the DGC was evaluated using stereotactic radiosurgery plans for virtual targets. Over the range of dose distributions, the dose gradient of each dose interval was well-characterized by the DGC in an easily understandable graph format. Significant changes in the DGC were observed reflecting the differences in planning situations and various prescription doses. The DGC is a rational method for visualizing the dose gradient as the average distance between two isodose surfaces; the shorter the distance, the steeper the dose gradient. By combining the DGC with the dose-volume histogram (DVH) in a single plot, the DGC can be utilized to evaluate not only the dose gradient but also the target coverage in routine clinical practice.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medin, Paul M., E-mail: Paul.medin@utsouthwestern.ed; Boike, Thomas P.

    Clinical implementation of spinal radiosurgery has increased rapidly in recent years, but little is known regarding human spinal cord tolerance to single-fraction irradiation. In contrast, preclinical studies in single-fraction spinal cord tolerance have been ongoing since the 1970s. The influences of field length, dose rate, inhomogeneous dose distributions, and reirradiation have all been investigated. This review summarizes literature regarding single-fraction spinal cord tolerance in preclinical models with an emphasis on practical clinical significance. The outcomes of studies that incorporate uniform irradiation are surprisingly consistent among multiple small- and large-animal models. Extensive investigation of inhomogeneous dose distributions in the rat hasmore » demonstrated a significant dose-volume effect while preliminary results from one pig study are contradictory. Preclinical spinal cord dose-volume studies indicate that dose distribution is more critical than the volume irradiated suggesting that neither dose-volume histogram analysis nor absolute volume constraints are effective in predicting complications. Reirradiation data are sparse, but results from guinea pig, rat, and pig studies are consistent with the hypothesis that the spinal cord possesses a large capacity for repair. The mechanisms behind the phenomena observed in spinal cord studies are not readily explained and the ability of dose response models to predict outcomes is variable underscoring the need for further investigation. Animal studies provide insight into the phenomena and mechanisms of radiosensitivity but the true significance of animal studies can only be discovered through clinical trials.« less

  20. Dosimetric and Clinical Analysis of Spatial Distribution of the Radiation Dose in Gamma Knife Radiosurgery for Vestibular Schwannoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massager, Nicolas, E-mail: nmassage@ulb.ac.be; Neurosurgery-Department, Hospital Erasme, Brussels; Lonneville, Sarah

    2011-11-15

    Objectives: We investigated variations in the distribution of radiation dose inside (dose inhomogeneity) and outside (dose falloff) the target volume during Gamma Knife (GK) irradiation of vestibular schwannoma (VS). We analyzed the relationship between some parameters of dose distribution and the clinical and radiological outcome of patients. Methods and Materials: Data from dose plans of 203 patients treated for a vestibular schwannoma by GK C using same prescription dose (12 Gy at the 50% isodose) were collected. Four different dosimetric indexes were defined and calculated retrospectively in all plannings on the basis of dose-volume histograms: Paddick conformity index (PI), gradientmore » index (GI), homogeneity index (HI), and unit isocenter (UI). The different measures related to distribution of the radiation dose were compared with hearing and tumor outcome of 203 patients with clinical and radiological follow-up of minimum 2 years. Results: Mean, median, SD, and ranges of the four indexes of dose distribution analyzed were calculated; large variations were found between dose plans. We found a high correlation between the target volume and PI, GI, and UI. No significant association was found between the indexes of dose distribution calculated in this study and tumor control, tumor volume shrinkage, hearing worsening, loss of functional hearing, or complete hearing loss at last follow-up. Conclusions: Parameters of distribution of the radiation dose during GK radiosurgery for VS can be highly variable between dose plans. The tumor and hearing outcome of patients treated is not significantly related to these global indexes of dose distribution inside and around target volume. In GK radiosurgery for VS, the outcome seems more to be influenced by local radiation dose delivered to specific structures or volumes than by global dose gradients.« less

  1. Investigation of Presage 3D Dosimetry as a Method of Clinically Intuitive Quality Assurance and Comparison to a Semi-3D Delta4 System

    NASA Astrophysics Data System (ADS)

    Crockett, Ethan Van

    The need for clinically intuitive metrics for patient-specific quality assurance in radiation therapy has been well-documented (Zhen, Nelms et al. 2011). A novel transform method has shown to be effective at converting full-density 3D dose measurements made in a phantom to dose values in the patient geometry, enabling comparisons using clinically intuitive metrics such as dose-volume histograms (Oldham et al. 2011). This work investigates the transform method and compares its calculated dose-volume histograms (DVHs) to DVH values calculated by a Delta4 QA device (Scandidos), marking the first comparison of a true 3D system to a semi-3D device using clinical metrics. Measurements were made using Presage 3D dosimeters, which were readout by an in-house optical-CT scanner. Three patient cases were chosen for the study: one head-and-neck VMAT treatment and two spine IMRT treatments. The transform method showed good agreement with the planned dose values for all three cases. Furthermore, the transformed DVHs adhered to the planned dose with more accuracy than the Delta4 DVHs. The similarity between the Delta4 DVHs and the transformed DVHs, however, was greater for one of the spine cases than it was for the head-and-neck case, implying that the accuracy of the Delta4 Anatomy software may vary from one treatment site to another. Overall, the transform method, which incorporates data from full-density 3D dose measurements, provides clinically intuitive results that are more accurate and consistent than the corresponding results from a semi-3D Delta 4 system.

  2. Quantitative assessment of the accuracy of dose calculation using pencil beam and Monte Carlo algorithms and requirements for clinical quality assurance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, Imad, E-mail: iali@ouhsc.edu; Ahmad, Salahuddin

    2013-10-01

    To compare the doses calculated using the BrainLAB pencil beam (PB) and Monte Carlo (MC) algorithms for tumors located in various sites including the lung and evaluate quality assurance procedures required for the verification of the accuracy of dose calculation. The dose-calculation accuracy of PB and MC was also assessed quantitatively with measurement using ionization chamber and Gafchromic films placed in solid water and heterogeneous phantoms. The dose was calculated using PB convolution and MC algorithms in the iPlan treatment planning system from BrainLAB. The dose calculation was performed on the patient's computed tomography images with lesions in various treatmentmore » sites including 5 lungs, 5 prostates, 4 brains, 2 head and necks, and 2 paraspinal tissues. A combination of conventional, conformal, and intensity-modulated radiation therapy plans was used in dose calculation. The leaf sequence from intensity-modulated radiation therapy plans or beam shapes from conformal plans and monitor units and other planning parameters calculated by the PB were identical for calculating dose with MC. Heterogeneity correction was considered in both PB and MC dose calculations. Dose-volume parameters such as V95 (volume covered by 95% of prescription dose), dose distributions, and gamma analysis were used to evaluate the calculated dose by PB and MC. The measured doses by ionization chamber and EBT GAFCHROMIC film in solid water and heterogeneous phantoms were used to quantitatively asses the accuracy of dose calculated by PB and MC. The dose-volume histograms and dose distributions calculated by PB and MC in the brain, prostate, paraspinal, and head and neck were in good agreement with one another (within 5%) and provided acceptable planning target volume coverage. However, dose distributions of the patients with lung cancer had large discrepancies. For a plan optimized with PB, the dose coverage was shown as clinically acceptable, whereas in reality, the MC showed a systematic lack of dose coverage. The dose calculated by PB for lung tumors was overestimated by up to 40%. An interesting feature that was observed is that despite large discrepancies in dose-volume histogram coverage of the planning target volume between PB and MC, the point doses at the isocenter (center of the lesions) calculated by both algorithms were within 7% even for lung cases. The dose distributions measured with EBT GAFCHROMIC films in heterogeneous phantoms showed large discrepancies of nearly 15% lower than PB at interfaces between heterogeneous media, where these lower doses measured by the film were in agreement with those by MC. The doses (V95) calculated by MC and PB agreed within 5% for treatment sites with small tissue heterogeneities such as the prostate, brain, head and neck, and paraspinal tumors. Considerable discrepancies, up to 40%, were observed in the dose-volume coverage between MC and PB in lung tumors, which may affect clinical outcomes. The discrepancies between MC and PB increased for 15 MV compared with 6 MV indicating the importance of implementation of accurate clinical treatment planning such as MC. The comparison of point doses is not representative of the discrepancies in dose coverage and might be misleading in evaluating the accuracy of dose calculation between PB and MC. Thus, the clinical quality assurance procedures required to verify the accuracy of dose calculation using PB and MC need to consider measurements of 2- and 3-dimensional dose distributions rather than a single point measurement using heterogeneous phantoms instead of homogenous water-equivalent phantoms.« less

  3. Dosimetric and toxicity comparison between prone and supine position IMRT for endometrial cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beriwal, Sushil; Jain, Sheena K.; Heron, Dwight E.

    2007-02-01

    Purpose: To determine the dosimetric and toxicity differences between prone and supine position intensity-modulate radiotherapy in endometrial cancer patients treated with adjuvant radiotherapy. Methods: Forty-seven consecutive endometrial cancer patients treated with adjuvant RT were analyzed. Of these, 21 were treated in prone position and 26 in the supine position. Dose-volume histograms for normal tissue structures and targets were compared between the two groups. Acute and chronic toxicity were also compared between the cohorts. Results: The percentage of volume receiving 10, 20, 30, 40, 45, and 50 Gy for small bowel was 89.5%, 69%, 33%, 12.2%, 5%, and 0% in themore » prone group and 87.5%, 62.7%, 26.4%, 8%, 4.3%, and 0% in the supine group, respectively. The difference was not statistically significant. The dose-volume histograms for bladder and rectum were also comparable, except for a slightly greater percentage of volume receiving 10 Gy (1.5%) and 20 Gy (5%) for the rectum in the prone group. Acute small bowel toxicities were Grade 1 in 7 patients and Grade 2 in 14 patients in the prone group vs. Grade 1 in 6 patients and Grade 2 in 19 patients in the supine group. Chronic toxicity was Grade 1 in 7 patients and Grade 3 in 1 patient in the prone group and Grade 1 in 5 patients in the supine group. Conclusion: These preliminary results suggest that no difference exists in the dose to the normal tissue and toxicity between prone and supine intensity-modulated radiotherapy for endometrial cancer. Longer follow-up and more outcome studies are needed to determine whether any differences exist between the two approaches.« less

  4. Exploratory Study of 4D versus 3D Robust Optimization in Intensity Modulated Proton Therapy for Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wei, E-mail: Liu.Wei@mayo.edu; Schild, Steven E.; Chang, Joe Y.

    Purpose: The purpose of this study was to compare the impact of uncertainties and interplay on 3-dimensional (3D) and 4D robustly optimized intensity modulated proton therapy (IMPT) plans for lung cancer in an exploratory methodology study. Methods and Materials: IMPT plans were created for 11 nonrandomly selected non-small cell lung cancer (NSCLC) cases: 3D robustly optimized plans on average CTs with internal gross tumor volume density overridden to irradiate internal target volume, and 4D robustly optimized plans on 4D computed tomography (CT) to irradiate clinical target volume (CTV). Regular fractionation (66 Gy [relative biological effectiveness; RBE] in 33 fractions) was considered.more » In 4D optimization, the CTV of individual phases received nonuniform doses to achieve a uniform cumulative dose. The root-mean-square dose-volume histograms (RVH) measured the sensitivity of the dose to uncertainties, and the areas under the RVH curve (AUCs) were used to evaluate plan robustness. Dose evaluation software modeled time-dependent spot delivery to incorporate interplay effect with randomized starting phases of each field per fraction. Dose-volume histogram (DVH) indices comparing CTV coverage, homogeneity, and normal tissue sparing were evaluated using Wilcoxon signed rank test. Results: 4D robust optimization plans led to smaller AUC for CTV (14.26 vs 18.61, respectively; P=.001), better CTV coverage (Gy [RBE]) (D{sub 95%} CTV: 60.6 vs 55.2, respectively; P=.001), and better CTV homogeneity (D{sub 5%}-D{sub 95%} CTV: 10.3 vs 17.7, resspectively; P=.002) in the face of uncertainties. With interplay effect considered, 4D robust optimization produced plans with better target coverage (D{sub 95%} CTV: 64.5 vs 63.8, respectively; P=.0068), comparable target homogeneity, and comparable normal tissue protection. The benefits from 4D robust optimization were most obvious for the 2 typical stage III lung cancer patients. Conclusions: Our exploratory methodology study showed that, compared to 3D robust optimization, 4D robust optimization produced significantly more robust and interplay-effect-resistant plans for targets with comparable dose distributions for normal tissues. A further study with a larger and more realistic patient population is warranted to generalize the conclusions.« less

  5. Effect of various methods for rectum delineation on relative and absolute dose-volume histograms for prostate IMRT treatment planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusumoto, Chiaki; Ohira, Shingo; Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita

    2016-07-01

    Several reports have dealt with correlations of late rectal toxicity with rectal dose-volume histograms (DVHs) for high dose levels. There are 2 techniques to assess rectal volume for reception of a specific dose: relative-DVH (R-DVH, %) that indicates relative volume for a vertical axis, and absolute-DVH (A-DVH, cc) with its vertical axis showing absolute volume of the rectum. The parameters of DVH vary depending on the rectum delineation method, but the literature does not present any standardization of such methods. The aim of the present study was to evaluate the effects of different delineation methods on rectal DVHs. The enrollmentmore » for this study comprised 28 patients with high-risk localized prostate cancer, who had undergone intensity-modulated radiation therapy (IMRT) with the prescription dose of 78 Gy. The rectum was contoured with 4 different methods using 2 lengths, short (Sh) and long (Lg), and 2 cross sections, rectum (Rec) and rectal wall (Rw). Sh means the length from 1 cm above the seminal vesicles to 1 cm below the prostate and Lg the length from the rectosigmoid junction to the anus. Rec represents the entire rectal volume including the rectal contents and Rw the rectal volume of the area with a wall thickness of 4 mm. We compared dose-volume parameters by using 4 rectal contour methods for the same plan with the R-DVHs as well as the A-DVHs. For the high dose levels, the R-DVH parameters varied widely. The mean of V{sub 70} for Sh-Rw was the highest (19.4%) and nearly twice as high as that for Lg-Rec (10.4%). On the contrary, only small variations were observed in the A-DVH parameters (4.3, 4.3, 5.5, and 5.5 cc for Sh-Rw, Lg-Rw, Sh-Rec, and Lg-Rec, respectively). As for R-DVHs, the parameters of V{sub 70} varied depending on the rectal lengths (Sh-Rec vs Lg-Rec: R = 0.76; Sh-Rw vs Lg-Rw: R = 0.85) and cross sections (Sh-Rec vs Sh-Rw: R = 0.49; Lg-Rec vs Lg-Rw: R = 0.65). For A-DVHs, however, the parameters of Sh rectal A-DVHs hardly changed regardless of differences in rectal length at all dose levels. Moreover, at high dose levels (V{sub 70}), the parameters of A-DVHs showed less dependence on rectal cross sections (Sh-Rec vs Sh-Rw: R = 0.66; Lg-Rec vs Lg-Rw: R = 0.59). This study showed that A-DVHs were less dependent on the delineation methods than R-DVHs, especially for evaluating the rectal dose at higher dose levels. It can therefore be assumed that, in addition to R-DVHs, A-DVHs can be used for evaluating rectal toxicity.« less

  6. SU-F-T-378: Evaluation of Dose-Volume Variability and Parameters Between Prostate IMRT and VMAT Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chow, J; Jiang, R; Kiciak, A

    2016-06-15

    Purpose: This study compared the rectal dose-volume consistency, equivalent uniform dose (EUD) and normal tissue complication probability (NTCP) in prostate intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT). Methods: For forty prostate IMRT and fifty VMAT patients treated using the same dose prescription (78 Gy/39 fraction) and dose-volume criteria in inverse planning optimization, the rectal EUD and NTCP were calculated for each patient. The rectal dose-volume consistency, showing the variability of dose-volume histogram (DVH) among patients, was defined and calculated based on the deviation between the mean and corresponding rectal DVH. Results: From both the prostate IMRT andmore » VMAT plans, the rectal EUD and NTCP were found decreasing with the rectal volume. The decrease rates for the IMRT plans (EUD = 0.47 × 10{sup −3} Gy cm{sup −3} and NTCP = 3.94 × 10{sup −2} % cm{sup −3}) were higher than those for the VMAT (EUD = 0.28 × 10{sup −3} Gy cm{sup −3} and NTCP = 2.61 × 10{sup −2} % cm{sup −3}). In addition, the dependences of the rectal EUD and NTCP on the dose-volume consistency were found very similar between the prostate IMRT and VMAT plans. This shows that both delivery techniques have similar variations of the rectal EUD and NTCP on the dose-volume consistency. Conclusion: Dependences of the dose-volume consistency on the rectal EUD and NTCP were compared between the prostate IMRT and VMAT plans. It is concluded that both rectal EUD and NTCP decreased with an increase of the rectal volume. The variation rates of the rectal EUD and NTCP on the rectal volume were higher for the IMRT plans than VMAT. However, variations of the rectal dose-volume consistency on the rectal EUD and NTCP were found not significant for both delivery techniques.« less

  7. SU-F-R-50: Radiation-Induced Changes in CT Number Histogram During Chemoradiation Therapy for Pancreatic Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, X; Schott, D; Song, Y

    Purpose: In an effort of early assessment of treatment response, we investigate radiation induced changes in CT number histogram of GTV during the delivery of chemoradiation therapy (CRT) for pancreatic cancer. Methods: Diagnostic-quality CT data acquired daily during routine CT-guided CRT using a CT-on-rails for 20 pancreatic head cancer patients were analyzed. All patients were treated with a radiation dose of 50.4 in 28 fractions. On each daily CT set, the contours of the pancreatic head and the spinal cord were delineated. The Hounsfiled Units (HU) histogram in these contourswere extracted and processed using MATLAB. Eight parameters of the histogrammore » including the mean HU over all the voxels, peak position, volume, standard deviation (SD), skewness, kurtosis, energy, and entropy were calculated for each fraction. The significances were inspected using paired two-tailed t-test and the correlations were analyzed using Spearman rank correlation tests. Results: In general, HU histogram in pancreatic head (but not in spinal cord) changed during the CRT delivery. Changes from the first to the last fraction in mean HU in pancreatic head ranged from −13.4 to 3.7 HU with an average of −4.4 HU, which was significant (P<0.001). Among other quantities, the volume decreased, the skewness increased (less skewed), and the kurtosis decreased (less sharp) during the CRT delivery. The changes of mean HU, volume, skewness, and kurtosis became significant after two weeks of treatment. Patient pathological response status is associated with the changes of SD (ΔSD), i.e., ΔSD= 1.85 (average of 7 patients) for good reponse, −0.08 (average of 6 patients) for moderate and poor response. Conclusion: Significant changes in HU histogram and the histogram-based metrics (e.g., meam HU, skewness, and kurtosis) in tumor were observed during the course of chemoradiation therapy for pancreas cancer. These changes may be potentially used for early assessment of treatment response.« less

  8. Visualization of a variety of possible dosimetric outcomes in radiation therapy using dose-volume histogram bands.

    PubMed

    Trofimov, Alexei; Unkelbach, Jan; DeLaney, Thomas F; Bortfeld, Thomas

    2012-01-01

    Dose-volume histograms (DVH) are the most common tool used in the appraisal of the quality of a clinical treatment plan. However, when delivery uncertainties are present, the DVH may not always accurately describe the dose distribution actually delivered to the patient. We present a method, based on DVH formalism, to visualize the variability in the expected dosimetric outcome of a treatment plan. For a case of chordoma of the cervical spine, we compared 2 intensity modulated proton therapy plans. Treatment plan A was optimized based on dosimetric objectives alone (ie, desired target coverage, normal tissue tolerance). Plan B was created employing a published probabilistic optimization method that considered the uncertainties in patient setup and proton range in tissue. Dose distributions and DVH for both plans were calculated for the nominal delivery scenario, as well as for scenarios representing deviations from the nominal setup, and a systematic error in the estimate of range in tissue. The histograms from various scenarios were combined to create DVH bands to illustrate possible deviations from the nominal plan for the expected magnitude of setup and range errors. In the nominal scenario, the DVH from plan A showed superior dose coverage, higher dose homogeneity within the target, and improved sparing of the adjacent critical structure. However, when the dose distributions and DVH from plans A and B were recalculated for different error scenarios (eg, proton range underestimation by 3 mm), the plan quality, reflected by DVH, deteriorated significantly for plan A, while plan B was only minimally affected. In the DVH-band representation, plan A produced wider bands, reflecting its higher vulnerability to delivery errors, and uncertainty in the dosimetric outcome. The results illustrate that comparison of DVH for the nominal scenario alone does not provide any information about the relative sensitivity of dosimetric outcome to delivery uncertainties. Thus, such comparison may be misleading and may result in the selection of an inferior plan for delivery to a patient. A better-informed decision can be made if additional information about possible dosimetric variability is presented; for example, in the form of DVH bands. Copyright © 2012 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  9. Dose gradient curve: A new tool for evaluating dose gradient

    PubMed Central

    Choi, Young Eun

    2018-01-01

    Purpose Stereotactic radiotherapy, which delivers an ablative high radiation dose to a target volume for maximum local tumor control, requires a rapid dose fall-off outside the target volume to prevent extensive damage to nearby normal tissue. Currently, there is no tool to comprehensively evaluate the dose gradient near the target volume. We propose the dose gradient curve (DGC) as a new tool to evaluate the quality of a treatment plan with respect to the dose fall-off characteristics. Methods The average distance between two isodose surfaces was represented by the dose gradient index (DGI) estimated by a simple equation using the volume and surface area of isodose levels. The surface area was calculated by mesh generation and surface triangulation. The DGC was defined as a plot of the DGI of each dose interval as a function of the dose. Two types of DGCs, differential and cumulative, were generated. The performance of the DGC was evaluated using stereotactic radiosurgery plans for virtual targets. Results Over the range of dose distributions, the dose gradient of each dose interval was well-characterized by the DGC in an easily understandable graph format. Significant changes in the DGC were observed reflecting the differences in planning situations and various prescription doses. Conclusions The DGC is a rational method for visualizing the dose gradient as the average distance between two isodose surfaces; the shorter the distance, the steeper the dose gradient. By combining the DGC with the dose-volume histogram (DVH) in a single plot, the DGC can be utilized to evaluate not only the dose gradient but also the target coverage in routine clinical practice. PMID:29698471

  10. Assessing correlations between the spatial distribution of the dose to the rectal wall and late rectal toxicity after prostate radiotherapy: an analysis of data from the MRC RT01 trial (ISRCTN 47772397)

    NASA Astrophysics Data System (ADS)

    Buettner, Florian; Gulliford, Sarah L.; Webb, Steve; Sydes, Matthew R.; Dearnaley, David P.; Partridge, Mike

    2009-11-01

    Many studies have been performed to assess correlations between measures derived from dose-volume histograms and late rectal toxicities for radiotherapy of prostate cancer. The purpose of this study was to quantify correlations between measures describing the shape and location of the dose distribution and different outcomes. The dose to the rectal wall was projected on a two-dimensional map. In order to characterize the dose distribution, its centre of mass, longitudinal and lateral extent, and eccentricity were calculated at different dose levels. Furthermore, the dose-surface histogram (DSH) was determined. Correlations between these measures and seven clinically relevant rectal-toxicity endpoints were quantified by maximally selected standardized Wilcoxon rank statistics. The analysis was performed using data from the RT01 prostate radiotherapy trial. For some endpoints, the shape of the dose distribution is more strongly correlated with the outcome than simple DSHs. Rectal bleeding was most strongly correlated with the lateral extent of the dose distribution. For loose stools, the strongest correlations were found for longitudinal extent; proctitis was most strongly correlated with DSH. For the other endpoints no statistically significant correlations could be found. The strengths of the correlations between the shape of the dose distribution and outcome differed considerably between the different endpoints. Due to these significant correlations, it is desirable to use shape-based tools in order to assess the quality of a dose distribution.

  11. Dose Constraint for Minimizing Grade 2 Rectal Bleeding Following Brachytherapy Combined With External Beam Radiotherapy for Localized Prostate Cancer: Rectal Dose-Volume Histogram Analysis of 457 Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiraishi, Yutaka; Yorozu, Atsunori; Ohashi, Toshio, E-mail: ohashi@rad.med.keio.ac.jp

    2011-11-01

    Purpose: To determine the rectal tolerance to Grade 2 rectal bleeding after I-125 seed brachytherapy combined with external beam radiotherapy (EBRT), based on the rectal dose-volume histogram. Methods and Materials: A total of 458 consecutive patients with stages T1 to T3 prostate cancer received combined modality treatment consisting of I-125 seed implantation followed by EBRT to the prostate and seminal vesicles. The prescribed doses of brachytherapy and EBRT were 100 Gy and 45 Gy in 25 fractions, respectively. The rectal dosimetric factors were analyzed for rectal volumes receiving >100 Gy and >150 Gy (R100 and R150) during brachytherapy and formore » rectal volumes receiving >30 Gy to 40 Gy (V30-V40) during EBRT therapy in 373 patients for whom datasets were available. The patients were followed from 21 to 72 months (median, 45 months) after the I-125 seed implantation. Results: Forty-four patients (9.7%) developed Grade 2 rectal bleeding. On multivariate analysis, age (p = 0.014), R100 (p = 0.002), and V30 (p = 0.001) were identified as risk factors for Grade 2 rectal bleeding. The rectal bleeding rate increased as the R100 increased: 5.0% (2/40 patients) for 0 ml; 7.5% (20/267 patients) for >0 to 0.5 ml; 11.0% (11/100 patients) for >0.5 to 1 ml; 17.9% (5/28 patients) for >1 to 1.5 ml; and 27.3% (6/22 patients) for >1.5 ml (p = 0.014). Grade 2 rectal bleeding developed in 6.4% (12/188) of patients with a V30 {<=}35% and in 14.1% (26/185) of patients with a V30 >35% (p = 0.02). When these dose-volume parameters were considered in combination, the Grade 2 rectal bleeding rate was 4.2% (5/120 patients) for a R100 {<=}0.5 ml and a V30 {<=}35%, whereas it was 22.4% (13/58 patients) for R100 of >0.5 ml and V30 of >35%. Conclusion: The risk of rectal bleeding was found to be significantly volume-dependent in patients with prostate cancer who received combined modality treatment. Rectal dose-volume analysis is a practical method for predicting the risk of development of Grade 2 rectal bleeding.« less

  12. Analysis of dose-volume parameters predicting radiation pneumonitis in patients with esophageal cancer treated with 3D-conformal radiation therapy or IMRT.

    PubMed

    Kumar, Gaurav; Rawat, Sheh; Puri, Abhishek; Sharma, Manoj Kumar; Chadha, Pranav; Babu, Anand Giri; Yadav, Girigesh

    2012-01-01

    Multimodality therapy for esophageal cancer can cause various kinds of treatment-related sequelae, especially pulmonary toxicities. This prospective study aims to investigate the clinical and dosimetric parameters predicting lung injury in patients undergoing radiation therapy for esophageal cancer. Forty-five esophageal cancer patients were prospectively analyzed. The pulmonary toxicities (or sequelae) were evaluated by comparing chest X-ray films, pulmonary function tests and symptoms caused by pulmonary damage before and after treatment. All patients were treated with either three-dimensional radiotherapy (3DCRT) or with intensity-modulated radiotherapy (IMRT). The planning dose volume histogram was used to compute the lung volumes receiving more than 5, 10, 20 and 30 Gy (V5, V10, V20, V30) and mean lung dose. V20 was larger in the IMRT group than in the 3DCRT group (p = 0.002). V20 (>15%) and V30 (>20%) resulted in a statistically significant increase in the occurrence of chronic pneumonitis (p = 0.03) and acute pneumonitis (p = 0.007), respectively. The study signifies that a larger volume of lung receives lower doses because of multiple beam arrangement and a smaller volume of lung receives higher doses because of better dose conformity in IMRT plans. Acute pneumonitis correlates more with V30 values, whereas chronic pneumonitis was predominantly seen in patients with higher V20 values.

  13. Clinical Significance of Accounting for Tissue Heterogeneity in Permanent Breast Seed Implant Brachytherapy Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mashouf, Shahram; Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Ontario; Fleury, Emmanuelle

    Purpose: The inhomogeneity correction factor (ICF) method provides heterogeneity correction for the fast calculation TG43 formalism in seed brachytherapy. This study compared ICF-corrected plans to their standard TG43 counterparts, looking at their capacity to assess inadequate coverage and/or risk of any skin toxicities for patients who received permanent breast seed implant (PBSI). Methods and Materials: Two-month postimplant computed tomography scans and plans of 140 PBSI patients were used to calculate dose distributions by using the TG43 and the ICF methods. Multiple dose-volume histogram (DVH) parameters of clinical target volume (CTV) and skin were extracted and compared for both ICF and TG43more » dose distributions. Short-term (desquamation and erythema) and long-term (telangiectasia) skin toxicity data were available on 125 and 110 of the patients, respectively, at the time of the study. The predictive value of each DVH parameter of skin was evaluated using the area under the receiver operating characteristic (ROC) curve for each toxicity endpoint. Results: Dose-volume histogram parameters of CTV, calculated using the ICF method, showed an overall decrease compared to TG43, whereas those of skin showed an increase, confirming previously reported findings of the impact of heterogeneity with low-energy sources. The ICF methodology enabled us to distinguish patients for whom the CTV V{sub 100} and V{sub 90} are up to 19% lower compared to TG43, which could present a risk of recurrence not detected when heterogeneity are not accounted for. The ICF method also led to an increase in the prediction of desquamation, erythema, and telangiectasia for 91% of skin DVH parameters studied. Conclusions: The ICF methodology has the advantage of distinguishing any inadequate dose coverage of CTV due to breast heterogeneity, which can be missed by TG43. Use of ICF correction also led to an increase in prediction accuracy of skin toxicities in most cases.« less

  14. Clinical Significance of Accounting for Tissue Heterogeneity in Permanent Breast Seed Implant Brachytherapy Planning.

    PubMed

    Mashouf, Shahram; Fleury, Emmanuelle; Lai, Priscilla; Merino, Tomas; Lechtman, Eli; Kiss, Alex; McCann, Claire; Pignol, Jean-Philippe

    2016-03-15

    The inhomogeneity correction factor (ICF) method provides heterogeneity correction for the fast calculation TG43 formalism in seed brachytherapy. This study compared ICF-corrected plans to their standard TG43 counterparts, looking at their capacity to assess inadequate coverage and/or risk of any skin toxicities for patients who received permanent breast seed implant (PBSI). Two-month postimplant computed tomography scans and plans of 140 PBSI patients were used to calculate dose distributions by using the TG43 and the ICF methods. Multiple dose-volume histogram (DVH) parameters of clinical target volume (CTV) and skin were extracted and compared for both ICF and TG43 dose distributions. Short-term (desquamation and erythema) and long-term (telangiectasia) skin toxicity data were available on 125 and 110 of the patients, respectively, at the time of the study. The predictive value of each DVH parameter of skin was evaluated using the area under the receiver operating characteristic (ROC) curve for each toxicity endpoint. Dose-volume histogram parameters of CTV, calculated using the ICF method, showed an overall decrease compared to TG43, whereas those of skin showed an increase, confirming previously reported findings of the impact of heterogeneity with low-energy sources. The ICF methodology enabled us to distinguish patients for whom the CTV V100 and V90 are up to 19% lower compared to TG43, which could present a risk of recurrence not detected when heterogeneity are not accounted for. The ICF method also led to an increase in the prediction of desquamation, erythema, and telangiectasia for 91% of skin DVH parameters studied. The ICF methodology has the advantage of distinguishing any inadequate dose coverage of CTV due to breast heterogeneity, which can be missed by TG43. Use of ICF correction also led to an increase in prediction accuracy of skin toxicities in most cases. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Airborne gamma-ray spectrometer and magnetometer survey, Durango D, Colorado. Final report Volume II A. Detail area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-01-01

    This volume contains geology of the Durango D detail area, radioactive mineral occurrences in Colorado, and geophysical data interpretation. Eight appendices provide: stacked profiles, geologic histograms, geochemical histograms, speed and altitude histograms, geologic statistical tables, geochemical statistical tables, magnetic and ancillary profiles, and test line data.

  16. Long-term Results of Carbon Ion Radiation Therapy for Locally Advanced or Unfavorably Located Choroidal Melanoma: Usefulness of CT-based 2-Port Orthogonal Therapy for Reducing the Incidence of Neovascular Glaucoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toyama, Shingo; Department of Heavy Particle Therapy and Radiation Oncology, Faculty of Medicine, Saga University, Saga; Tsuji, Hiroshi, E-mail: h_tsuji@nirs.go.jp

    2013-06-01

    Purpose: To determine the long-term results of carbon ion radiation therapy (C-ion RT) in patients with choroidal melanoma, and to assess the usefulness of CT-based 2-port irradiation in reducing the risk of neovascular glaucoma (NVG). Methods and Materials: Between January 2001 and February 2012, a total of 116 patients with locally advanced or unfavorably located choroidal melanoma received CT-based C-ion RT. Of these patients, 114 were followed up for more than 6 months and their data analyzed. The numbers of T3 and T2 patients (International Union Against Cancer [UICC], 5th edition) were 106 and 8, respectively. The total dose ofmore » C-ion RT varied from 60 to 85 GyE, with each dose given in 5 fractions. Since October 2005, 2-port therapy (51 patients) has been used in an attempt to reduce the risk of NVG. A dose-volume histogram analysis was also performed in 106 patients. Results: The median follow-up was 4.6 years (range, 0.5-10.6 years). The 5-year overall survival, cause-specific survival, local control, distant metastasis-free survival, and eye retention rates were 80.4% (95% confidence interval 89.0%-71.8%), 82.2% (90.6%-73.8%), 92.8% (98.5%-87.1%), 72.1% (81.9%-62.3%), and 92.8% (98.1%-87.5%), respectively. The overall 5-year NVG incidence rate was 35.9% (25.9%-45.9%) and that of 1-port group and 2-port group were 41.6% (29.3%-54.0%) and 13.9% (3.2%-24.6%) with statistically significant difference (P<.001). The dose-volume histogram analysis showed that the average irradiated volume of the iris-ciliary body was significantly lower in the non-NVG group than in the NVG group at all dose levels, and significantly lower in the 2-port group than in the 1-port group at high dose levels. Conclusions: The long-term results of C-ion RT for choroidal melanoma are satisfactory. CT-based 2-port C-ion RT can be used to reduce the high-dose irradiated volume of the iris-ciliary body and the resulting risk of NVG.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Hua; Department of Radiation Oncology, Cancer Hospital of Jiangxi Province, Jiangxi Province; Li Yexiong, E-mail: yexiong@yahoo.com

    Purpose: The value of intensity-modulated radiotherapy (IMRT) for early-stage nasal NK/T-cell lymphoma has not been previously reported. The aim of the present study was to assess the dosimetric parameters, toxicity, and treatment outcomes of patients with nasal NK/T-cell lymphoma. Methods and Materials: Between 2003 and 2008, 42 patients with early-stage nasal NK/T-cell lymphoma underwent definitive high-dose and extended involved-field IMRT with or without combination chemotherapy. The median radiation dose to the primary tumor was 50 Gy. The dose-volume histograms of the target volume and critical normal structures were evaluated in all patients. The locoregional control, overall survival, and progression-free survivalmore » were calculated using the Kaplan-Meier method. Results: The average mean dose delivered to the planning target volume was 55.5 Gy. Only 1.3% and 2.5% of the planning target volume received <90% and 95% of the prescribed dose, respectively, indicating excellent planning target volume coverage. The mean dose and average dose to the parotid glands was 15 Gy and 14 Gy, respectively. With a median follow-up time of 27 months, the 2-year locoregional control, overall survival, and progression-free survivalrate was 93%, 78%, and 74%, respectively. No Grade 4 or 5 acute or late toxicity was reported. Conclusions: High-dose and extended involved-field IMRT for patients with early-stage nasal NK/T-cell lymphoma showed favorable locoregional control, overall survival, and progression-free survival, with mild toxicity. The dose constraints of IMRT for the parotid glands can be limited to <20 Gy in these patients.« less

  18. Sparsity constrained split feasibility for dose-volume constraints in inverse planning of intensity-modulated photon or proton therapy

    NASA Astrophysics Data System (ADS)

    Penfold, Scott; Zalas, Rafał; Casiraghi, Margherita; Brooke, Mark; Censor, Yair; Schulte, Reinhard

    2017-05-01

    A split feasibility formulation for the inverse problem of intensity-modulated radiation therapy treatment planning with dose-volume constraints included in the planning algorithm is presented. It involves a new type of sparsity constraint that enables the inclusion of a percentage-violation constraint in the model problem and its handling by continuous (as opposed to integer) methods. We propose an iterative algorithmic framework for solving such a problem by applying the feasibility-seeking CQ-algorithm of Byrne combined with the automatic relaxation method that uses cyclic projections. Detailed implementation instructions are furnished. Functionality of the algorithm was demonstrated through the creation of an intensity-modulated proton therapy plan for a simple 2D C-shaped geometry and also for a realistic base-of-skull chordoma treatment site. Monte Carlo simulations of proton pencil beams of varying energy were conducted to obtain dose distributions for the 2D test case. A research release of the Pinnacle 3 proton treatment planning system was used to extract pencil beam doses for a clinical base-of-skull chordoma case. In both cases the beamlet doses were calculated to satisfy dose-volume constraints according to our new algorithm. Examination of the dose-volume histograms following inverse planning with our algorithm demonstrated that it performed as intended. The application of our proposed algorithm to dose-volume constraint inverse planning was successfully demonstrated. Comparison with optimized dose distributions from the research release of the Pinnacle 3 treatment planning system showed the algorithm could achieve equivalent or superior results.

  19. [Low dose volume histogram analysis of the lungs in prediction of acute radiation pneumonitis in patients with esophageal cancer treated with three-dimensional conformal radiotherapy].

    PubMed

    Shen, Wen-bin; Zhu, Shu-chai; Gao, Hong-mei; Li, You-mei; Liu, Zhi-kun; Li, Juan; Su, Jing-wei; Wan, Jun

    2013-01-01

    To investigate the predictive value of low dose volume of the lung on acute radiation pneumonitis (RP) in patients with esophageal cancer treated with three-dimensional conformal radiotherapy (3D-CRT) only, and to analyze the relation of comprehensive parameters of the dose-volume V5, V20 and mean lung dose (MLD) with acute RP. Two hundred and twenty-two patients with esophageal cancer treated by 3D-CRT have been followed up. The V5-V30 and MLD were calculated from the dose-volume histogram system. The clinical factors and treatment parameters were collected and analyzed. The acute RP was evaluated according to the RTOG toxicity criteria. The acute RP of grade 1, 2, 3 and 4 were observed in 68 (30.6%), 40 (18.0%), 8 (3.6%) and 1 (0.5%) cases, respectively. The univariate analysis of measurement data:The primary tumor length, radiation fields, MLD and lung V5-V30 had a significant relationship with the acute RP. The magnitude of the number of radiation fields, the volume of GTV, MLD and Lung V5-V30 had a significant difference in whether the ≥ grade 1 and ≥ grade 2 acute RP developed or not. Binary logistic regression analysis showed that MLD, Lung V5, V20 and V25 were independent risk factors of ≥ grade 1 acute RP, and the radiation fields, MLD and Lung V5 were independent risk factors of ≥ grade 2 acute RP. The ≥ grade 1 and ≥ grade 2 acute RP were significantly decreased when MLD less than 14 Gy, V5 and V20 were less than 60% and 28%,respectively. When the V20 ≤ 28%, the acute RP was significantly decreased in V5 ≤ 60% group. When the MLD was ≤ 14 Gy, the ≥ 1 grade acute RP was significantly decreased in the V5 ≤ 60% group. When the MLD was >14 Gy, the ≥ grade 2 acute RP was significantly decreased in the V5 ≤ 60% group. The low dose volume of the lung is effective in predicting radiation pneumonitis in patients with esophageal cancer treated with 3D-CRT only. The comprehensive parameters combined with V5, V20 and MLD may increase the effect in predicting radiation pneumonitis.

  20. A gEUD-based inverse planning technique for HDR prostate brachytherapy: Feasibility study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giantsoudi, D.; Department of Radiation Oncology, Francis H. Burr Proton Therapy Center, Boston, Massachusetts 02114; Baltas, D.

    2013-04-15

    Purpose: The purpose of this work was to study the feasibility of a new inverse planning technique based on the generalized equivalent uniform dose for image-guided high dose rate (HDR) prostate cancer brachytherapy in comparison to conventional dose-volume based optimization. Methods: The quality of 12 clinical HDR brachytherapy implants for prostate utilizing HIPO (Hybrid Inverse Planning Optimization) is compared with alternative plans, which were produced through inverse planning using the generalized equivalent uniform dose (gEUD). All the common dose-volume indices for the prostate and the organs at risk were considered together with radiobiological measures. The clinical effectiveness of the differentmore » dose distributions was investigated by comparing dose volume histogram and gEUD evaluators. Results: Our results demonstrate the feasibility of gEUD-based inverse planning in HDR brachytherapy implants for prostate. A statistically significant decrease in D{sub 10} or/and final gEUD values for the organs at risk (urethra, bladder, and rectum) was found while improving dose homogeneity or dose conformity of the target volume. Conclusions: Following the promising results of gEUD-based optimization in intensity modulated radiation therapy treatment optimization, as reported in the literature, the implementation of a similar model in HDR brachytherapy treatment plan optimization is suggested by this study. The potential of improved sparing of organs at risk was shown for various gEUD-based optimization parameter protocols, which indicates the ability of this method to adapt to the user's preferences.« less

  1. Airborne gamma-ray spectrometer and magnetometer survey, Durango A, Colorado. Final report Volume II A. Detail area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-01-01

    This volume contains geology of the Durango A detail area, radioactive mineral occurences in Colorado, and geophysical data interpretation. Eight appendices provide the following: stacked profiles, geologic histograms, geochemical histograms, speed and altitude histograms, geologic statistical tables, geochemical statistical tables, magnetic and ancillary profiles, and test line data.

  2. WE-A-17A-12: The Influence of Eye Plaque Design On Dose Distributions and Dose- Volume Histograms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aryal, P; Molloy, JA; Rivard, MJ

    Purpose: To investigate the effect of slot design of the model EP917 plaque on dose distributions and dose-volume histograms (DVHs). Methods: The dimensions and orientation of the slots in EP917 plaques were measured. In the MCNP5 radiation simulation geometry, dose distributions on orthogonal planes and DVHs for a tumor and sclera were generated for comparisons. 27 slot designs and 13 plaques were evaluated and compared with the published literature and the Plaque Simulator clinical treatment planning system. Results: The dosimetric effect of the gold backing composition and mass density was < 3%. Slot depth, width, and length changed the centralmore » axis (CAX) dose distributions by < 1% per 0.1 mm in design variation. Seed shifts in the slot towards the eye and shifts of the {sup 125} I-coated Ag rod within the capsule had the greatest impact on CAX dose distribution, increasing by 14%, 9%, 4%, and 2.5% at 1, 2, 5, and 10 mm, respectively, from the inner sclera. Along the CAX, dose from the full plaque geometry using the measured slot design was 3.4% ± 2.3% higher than the manufacturer-provided geometry. D{sub 10} for the simulated tumor, inner sclera, and outer sclera for the measured plaque was also higher, but 9%, 10%, and 20%, respectively. In comparison to the measured plaque design, a theoretical plaque having narrow and deep slots delivered 30%, 37%, and 62% lower D{sub 10} doses to the tumor, inner sclera, and outer sclera, respectively. CAX doses at −1, 0, 1, and 2 mm were also lower by a factor of 2.6, 1.4, 1.23, and 1.13, respectively. Conclusion: The study identified substantial sensitivity of the EP917 plaque dose distributions to slot design. However, it did not identify substantial dosimetric variations based on radionuclide choice ({sup 125}I, {sup 103}Pd, or {sup 131}Cs). COMS plaques provided lower scleral doses with similar tumor dose coverage.« less

  3. Dose to the Developing Dentition During Therapeutic Irradiation: Organ at Risk Determination and Clinical Implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Reid F., E-mail: Reid.Thompson@uphs.upenn.edu; Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania; Schneider, Ralf A., E-mail: ralf.schneider@psi.ch

    Purpose: Irradiation of pediatric facial structures can cause severe impairment of permanent teeth later in life. We therefore focused on primary and permanent teeth as organs at risk, investigating the ability to identify individual teeth in children and infants and to correlate dose distributions with subsequent dental toxicity. Methods and Materials: We retrospectively reviewed 14 pediatric patients who received a maximum dose >20 Gy(relative biological effectiveness, RBE) to 1 or more primary or permanent teeth between 2003 and 2009. The patients (aged 1-16 years) received spot-scanning proton therapy with 46 to 66 Gy(RBE) in 23 to 33 daily fractions formore » a variety of tumors, including rhabdomyosarcoma (n=10), sarcoma (n=2), teratoma (n=1), and carcinoma (n=1). Individual teeth were contoured on axial slices from planning computed tomography (CT) scans. Dose-volume histogram data were retrospectively obtained from total calculated delivered treatments. Dental follow-up information was obtained from external care providers. Results: All primary teeth and permanent incisors, canines, premolars, and first and second molars were identifiable on CT scans in all patients as early as 1 year of age. Dose-volume histogram analysis showed wide dose variability, with a median 37 Gy(RBE) per tooth dose range across all individuals, and a median 50 Gy(RBE) intraindividual dose range across all teeth. Dental follow-up revealed absence of significant toxicity in 7 of 10 patients but severe localized toxicity in teeth receiving >20 Gy(RBE) among 3 patients who were all treated at <4 years of age. Conclusions: CT-based assessment of dose distribution to individual teeth is feasible, although delayed calcification may complicate tooth identification in the youngest patients. Patterns of dental dose exposure vary markedly within and among patients, corresponding to rapid dose falloff with protons. Severe localized dental toxicity was observed in a few patients receiving the largest doses of radiation at the youngest ages; however, multiple factors including concurrent chemotherapy confounded the dose-effect relationship. Further studies with larger cohorts and appropriate controls will be required.« less

  4. Whole-tumor histogram analysis of the cerebral blood volume map: tumor volume defined by 11C-methionine positron emission tomography image improves the diagnostic accuracy of cerebral glioma grading.

    PubMed

    Wu, Rongli; Watanabe, Yoshiyuki; Arisawa, Atsuko; Takahashi, Hiroto; Tanaka, Hisashi; Fujimoto, Yasunori; Watabe, Tadashi; Isohashi, Kayako; Hatazawa, Jun; Tomiyama, Noriyuki

    2017-10-01

    This study aimed to compare the tumor volume definition using conventional magnetic resonance (MR) and 11C-methionine positron emission tomography (MET/PET) images in the differentiation of the pre-operative glioma grade by using whole-tumor histogram analysis of normalized cerebral blood volume (nCBV) maps. Thirty-four patients with histopathologically proven primary brain low-grade gliomas (n = 15) and high-grade gliomas (n = 19) underwent pre-operative or pre-biopsy MET/PET, fluid-attenuated inversion recovery, dynamic susceptibility contrast perfusion-weighted magnetic resonance imaging, and contrast-enhanced T1-weighted at 3.0 T. The histogram distribution derived from the nCBV maps was obtained by co-registering the whole tumor volume delineated on conventional MR or MET/PET images, and eight histogram parameters were assessed. The mean nCBV value had the highest AUC value (0.906) based on MET/PET images. Diagnostic accuracy significantly improved when the tumor volume was measured from MET/PET images compared with conventional MR images for the parameters of mean, 50th, and 75th percentile nCBV value (p = 0.0246, 0.0223, and 0.0150, respectively). Whole-tumor histogram analysis of CBV map provides more valuable histogram parameters and increases diagnostic accuracy in the differentiation of pre-operative cerebral gliomas when the tumor volume is derived from MET/PET images.

  5. Optimization of Craniospinal Irradiation for Pediatric Medulloblastoma Using VMAT and IMRT.

    PubMed

    Al-Wassia, Rolina K; Ghassal, Noor M; Naga, Adly; Awad, Nesreen A; Bahadur, Yasir A; Constantinescu, Camelia

    2015-10-01

    Intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) provide highly conformal target radiation doses, but also expose large volumes of healthy tissue to low-dose radiation. With improving survival, more children with medulloblastoma (MB) are at risk of late adverse effects of radiotherapy, including secondary cancers. We evaluated the characteristics of IMRT and VMAT craniospinal irradiation treatment plans in children with standard-risk MB to compare radiation dose delivery to target organs and organs at risk (OAR). Each of 10 children with standard-risk MB underwent both IMRT and VMAT treatment planning. Dose calculations used inverse planning optimization with a craniospinal dose of 23.4 Gy followed by a posterior fossa boost to 55.8 Gy. Clinical and planning target volumes were demarcated on axial computed tomography images. Dose distributions to target organs and OAR for each planning technique were measured and compared with published dose-volume toxicity data for pediatric patients. All patients completed treatment planning for both techniques. Analyses and comparisons of dose distributions and dose-volume histograms for the planned target volumes, and dose delivery to the OAR for each technique demonstrated the following: (1) VMAT had a modest, but significantly better, planning target volume-dose coverage and homogeneity compared with IMRT; (2) there were different OAR dose-sparing profiles for IMRT versus VMAT; and (3) neither IMRT nor VMAT demonstrated dose reductions to the published pediatric dose limits for the eyes, the lens, the cochlea, the pituitary, and the brain. The use of both IMRT and VMAT provides good target tissue coverage and sparing of the adjacent tissue for MB. Both techniques resulted in OAR dose delivery within published pediatric dose guidelines, except those mentioned above. Pediatric patients with standard-risk MB remain at risk for late endocrinologic, sensory (auditory and visual), and brain functional impairments.

  6. An improved distance-to-dose correlation for predicting bladder and rectum dose-volumes in knowledge-based VMAT planning for prostate cancer

    NASA Astrophysics Data System (ADS)

    Wall, Phillip D. H.; Carver, Robert L.; Fontenot, Jonas D.

    2018-01-01

    The overlap volume histogram (OVH) is an anatomical metric commonly used to quantify the geometric relationship between an organ at risk (OAR) and target volume when predicting expected dose-volumes in knowledge-based planning (KBP). This work investigated the influence of additional variables contributing to variations in the assumed linear DVH-OVH correlation for the bladder and rectum in VMAT plans of prostate patients, with the goal of increasing prediction accuracy and achievability of knowledge-based planning methods. VMAT plans were retrospectively generated for 124 prostate patients using multi-criteria optimization. DVHs quantified patient dosimetric data while OVHs quantified patient anatomical information. The DVH-OVH correlations were calculated for fractional bladder and rectum volumes of 30, 50, 65, and 80%. Correlations between potential influencing factors and dose were quantified using the Pearson product-moment correlation coefficient (R). Factors analyzed included the derivative of the OVH, prescribed dose, PTV volume, bladder volume, rectum volume, and in-field OAR volume. Out of the selected factors, only the in-field bladder volume (mean R  =  0.86) showed a strong correlation with bladder doses. Similarly, only the in-field rectal volume (mean R  =  0.76) showed a strong correlation with rectal doses. Therefore, an OVH formalism accounting for in-field OAR volumes was developed to determine the extent to which it improved the DVH-OVH correlation. Including the in-field factor improved the DVH-OVH correlation, with the mean R values over the fractional volumes studied improving from  -0.79 to  -0.85 and  -0.82 to  -0.86 for the bladder and rectum, respectively. A re-planning study was performed on 31 randomly selected database patients to verify the increased accuracy of KBP dose predictions by accounting for bladder and rectum volume within treatment fields. The in-field OVH led to significantly more precise and fewer unachievable KBP predictions, especially for lower bladder and rectum dose-volumes.

  7. Evaluation of radiotherapy techniques for radical treatment of lateralised oropharyngeal cancers : Dosimetry and NTCP.

    PubMed

    McQuaid, D; Dunlop, A; Nill, S; Franzese, C; Nutting, C M; Harrington, K J; Newbold, K L; Bhide, S A

    2016-08-01

    The aim of this study was to investigate potential advantages and disadvantages of three-dimensional conformal radiotherapy (3DCRT), multiple fixed-field intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) in terms of dose to the planning target volume (PTV), organs at risk (OARs) and normal tissue complication probability (NTCP) for delivering ipsilateral radiotherapy. 3DCRT, IMRT and VMAT were compared in patients with well-lateralised primary tonsillar cancers who underwent primary radical ipsilateral radiotherapy. The following parameters were compared: conformity index (CI); homogeneity index (HI); dose-volume histograms (DVHs) of PTVs and OARs; NTCP, risk of radiation-induced cancer and dose accumulation during treatment. IMRT and VMAT were superior to 3DCRT in terms of CI, HI and dose to the target volumes, as well as mandible and dose accumulation robustness. The techniques were equivalent in terms of dose and NTCP for the contralateral oral cavity, contralateral submandibular gland and mandible, when specific dose constraint objectives were used on the oral cavity volume. Although the volume of normal tissue exposed to low-dose radiation was significantly higher with IMRT and VMAT, the risk of radiation-induced secondary malignancy was dependant on the mathematical model used. This study demonstrates the superiority of IMRT/VMAT techniques over 3DCRT in terms of dose homogeneity, conformity and consistent dose delivery to the PTV throughout the course of treatment in patients with lateralised oropharyngeal cancers. Dosimetry and NTCP calculations show that these techniques are equivalent to 3DCRT with regard to the risk of acute mucositis when specific dose constraint objectives were used on the contralateral oral cavity OAR.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, C; Yin, Y

    Purpose: To compare the dosimetric difference of the target volume and organs at risk(OARs) between conventional intensity-modulated radiotherapy(C-IMRT) and knowledge-based radiation therapy (KBRT) plans for cervix cancer. Methods: 39 patients with cervical cancer after surgery were randomly selected, 20 patient plans were used to create the model, the other 19 cases used for comparative evaluation. All plans were designed in Eclipse system. The prescription dose was 30.6Gy, 17 fractions, OARs dose satisfied to the clinical requirement. A paired t test was used to evaluate the differences of dose-volume histograms (DVH). Results: Comparaed to C-IMRT plan, the KBRT plan target canmore » achieve the similar target dose coverage, D98,D95,D2,HI and CI had no difference (P≥0.05). The dose of rectum, bladder and femoral heads had no significant differences(P≥0.05). The time was used to design treatment plan was significant reduced. Conclusion: This study shows that postoperative radiotherapy of cervical KBRT plans can achieve the similar target and OARs dose, but the shorter designing time.« less

  9. Proton beam radiotherapy versus fractionated stereotactic radiotherapy for uveal melanomas: A comparative study.

    PubMed

    Weber, Damien C; Bogner, Joachim; Verwey, Jorn; Georg, Dietmar; Dieckmann, Karin; Escudé, Lluis; Caro, Monica; Pötter, Richard; Goitein, Gudrun; Lomax, Antony J; Miralbell, Raymond

    2005-10-01

    A comparative treatment planning study was undertaken between proton and photon therapy in uveal melanoma to assess the potential benefits and limitations of these treatment modalities. A fixed proton horizontal beam (OPTIS) and intensity-modulated spot-scanning proton therapy (IMPT), with multiple noncoplanar beam arrangements, was compared with linear accelerator-based stereotactic radiotherapy (SRT), using a static and a dynamic micromultileaf collimator and intensity-modulated RT (IMRS). A planning CT scan was performed on a brain metastasis patient, with a 3-mm acquisition slice spacing and the patient looking at a luminous spot with the eyes in three different positions (neutral and 25 degrees right and left). Four different gross tumor volumes were defined for each treatment technique. These target scenarios represented different locations (involving vs. not involving the macula and temporal vs. nasal) and volumes (10 x 6 mm vs. 16 x 10 mm) to challenge the proton and photon treatment techniques. The planning target volume was defined as the gross tumor volume plus 2 mm laterally and 3 mm craniocaudally for both modalities. A dose homogeneity of 95-99% of the planning target volume was used as the "goal" for all techniques. The dose constraint (maximum) for the organs at risk (OARs) for both the proton and the SRT photon plans was 27.5, 22.5, 20, and 9 CGE-Gy for the optic apparatus, retina, lacrimal gland, and lens, respectively. The dose to the planning target volume was 50 CGE-Gy in 10 CGE-Gy daily fractions. The plans for proton and photon therapy were computed using the Paul Scherrer Institute and BrainSCAN, version 5.2 (BrainLAB, Heimstetten, Germany) treatment planning systems, respectively. Tumor and OARs dose-volume histograms were calculated. The results were analyzed using the dose-volume histogram parameters, conformity index (CI(95%)), and inhomogeneity coefficient. Target coverage of all simulated uveal melanomas was equally conformal with the photon and proton modalities. The median CI(95%) value was 1.74, 1.86, and 1.83 for the static, dynamic, and IMSRT plans, respectively. With proton planning, the median CI(95%) was 1.88 for OPTIS and substantially improved with IMPT in some tumor cases (median CI(95%), 1.29). The tumor dose homogeneity in the proton plans was, however, always better than with SRT photon planning (median inhomogeneity coefficient 0.1 and 0.15 vs. 0.46, 0.41, and 0.23 for the OPTIS and IMPT vs. the static, dynamic, and IMSRT plans, respectively). Compared with the photon plans, the use of protons did not lead to a substantial reduction in the homolateral OAR total integral dose in the low- to high-dose level, except for the lacrimal gland. The median maximal dose and dose at the 10% volume with the static, dynamic, and IMSRT plans was 33-30.8, 31.8-28, and 35.8-49 Gy, respectively, for the lacrimal gland, a critical organ. For protons, only the OPTIS plans were better, with a median maximal dose and dose at the 10% volume using OPTIS and IMPT of 19.2 and 8.8 and 25.6 and 23.6 CGE, respectively. The contralateral OARs were completely spared with the proton plans, but the median dose delivered to these structures was 1.2 Gy (range, 0-6.3 Gy) with the SRT photon plans. These results suggest that the use of SRT photon techniques, compared with protons, can result in similar levels of dose conformation. IMPT did not increase the degree of conformality for this small tumor. Tumor dose inhomogeneity was, however, always increased with photon planning. Except for the lacrimal gland, the use of protons, with or without intensity modulation, did not increase homolateral OAR dose sparing. The dose to all the contralateral OARs was, however, completely eliminated with proton planning.

  10. SU-E-T-375: Passive Scattering to Pencil-Beam-Scanning Comparison for Medulloblastoma Proton Therapy: LET Distributions and Radiobiological Implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giantsoudi, D; MacDonald, S; Paganetti, H

    2014-06-01

    Purpose: To compare the linear energy transfer (LET) distributions between passive scattering and pencil beam scanning proton radiation therapy techniques for medulloblastoma patients and study the potential radiobiological implications. Methods: A group of medulloblastoma patients, previously treated with passive scattering (PS) proton craniospinal irradiation followed by prosterior fossa or involved field boost, were selected from the patient database of our institution. Using the beam geometry and planning computed tomography (CT) image sets of the original treatment plans, pencil beam scanning (PBS) treatment plans were generated for the cranial treatment for each patient, with average beam spot size of 8mm (sigmamore » in air at isocenter). 3-dimensional dose and LET distributions were calculated by Monte Carlo methods (TOPAS) both for the original passive scattering and new pencil beam scanning treatment plans. LET volume histograms were calculated for the target and OARs and compared for the two delivery methods. Variable RBE weighted dose distributions and volume histograms were also calculated using a variable dose and LET-based model. Results: Better dose conformity was achieved with PBS planning compared to PS, leading to increased dose coverage for the boost target area and decreased average dose to the structures adjacent to it and critical structures outside the whole brain treatment field. LET values for the target were lower for PBS plans. Elevated LET values for OARs close to the boosted target areas were noticed, due to end of range of proton beams falling inside these structures, resulting in higher RBE weighted dose for these structures compared to the clinical RBE value of 1.1. Conclusion: Transitioning from passive scattering to pencil beam scanning proton radiation treatment can be dosimetrically beneficial for medulloblastoma patients. LET–guided treatment planning could contribute to better decision making for these cases, especially for critical structures at close proximity to the boosted target area.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei Xiong; Liu, H. Helen; Tucker, Susan L.

    Purpose: To identify clinical and dosimetric factors influencing the risk of pericardial effusion (PCE) in patients with inoperable esophageal cancer treated with definitive concurrent chemotherapy and radiation therapy (RT). Methods and Materials: Data for 101 patients with inoperable esophageal cancer treated with concurrent chemotherapy and RT from 2000 to 2003 at our institution were analyzed. The PCE was confirmed from follow-up chest computed tomography scans and radiologic reports, with freedom from PCE computed from the end of RT. Log-rank tests were used to identify clinical and dosimetric factors influencing freedom from PCE. Dosimetric factors were calculated from the dose-volume histogrammore » for the whole heart and pericardium. Results: The crude rate of PCE was 27.7% (28 of 101). Median time to onset of PCE was 5.3 months (range, 1.0-16.7 months) after RT. None of the clinical factors investigated was found to significantly influence the risk of PCE. In univariate analysis, a wide range of dose-volume histogram parameters of the pericardium and heart were associated with risk of PCE, including mean dose to the pericardium, volume of pericardium receiving a dose greater than 3 Gy (V3) to greater than 50 Gy (V50), and heart volume treated to greater than 32-38 Gy. Multivariate analysis selected V30 as the only parameter significantly associated with risk of PCE. Conclusions: High-dose radiation to the pericardium may strongly increase the risk of PCE. Such a risk may be reduced by minimizing the dose-volume of the irradiated pericardium and heart.« less

  12. On the new metrics for IMRT QA verification.

    PubMed

    Garcia-Romero, Alejandro; Hernandez-Vitoria, Araceli; Millan-Cebrian, Esther; Alba-Escorihuela, Veronica; Serrano-Zabaleta, Sonia; Ortega-Pardina, Pablo

    2016-11-01

    The aim of this work is to search for new metrics that could give more reliable acceptance/rejection criteria on the IMRT verification process and to offer solutions to the discrepancies found among different conventional metrics. Therefore, besides conventional metrics, new ones are proposed and evaluated with new tools to find correlations among them. These new metrics are based on the processing of the dose-volume histogram information, evaluating the absorbed dose differences, the dose constraint fulfillment, or modified biomathematical treatment outcome models such as tumor control probability (TCP) and normal tissue complication probability (NTCP). An additional purpose is to establish whether the new metrics yield the same acceptance/rejection plan distribution as the conventional ones. Fifty eight treatment plans concerning several patient locations are analyzed. All of them were verified prior to the treatment, using conventional metrics, and retrospectively after the treatment with the new metrics. These new metrics include the definition of three continuous functions, based on dose-volume histograms resulting from measurements evaluated with a reconstructed dose system and also with a Monte Carlo redundant calculation. The 3D gamma function for every volume of interest is also calculated. The information is also processed to obtain ΔTCP or ΔNTCP for the considered volumes of interest. These biomathematical treatment outcome models have been modified to increase their sensitivity to dose changes. A robustness index from a radiobiological point of view is defined to classify plans in robustness against dose changes. Dose difference metrics can be condensed in a single parameter: the dose difference global function, with an optimal cutoff that can be determined from a receiver operating characteristics (ROC) analysis of the metric. It is not always possible to correlate differences in biomathematical treatment outcome models with dose difference metrics. This is due to the fact that the dose constraint is often far from the dose that has an actual impact on the radiobiological model, and therefore, biomathematical treatment outcome models are insensitive to big dose differences between the verification system and the treatment planning system. As an alternative, the use of modified radiobiological models which provides a better correlation is proposed. In any case, it is better to choose robust plans from a radiobiological point of view. The robustness index defined in this work is a good predictor of the plan rejection probability according to metrics derived from modified radiobiological models. The global 3D gamma-based metric calculated for each plan volume shows a good correlation with the dose difference metrics and presents a good performance in the acceptance/rejection process. Some discrepancies have been found in dose reconstruction depending on the algorithm employed. Significant and unavoidable discrepancies were found between the conventional metrics and the new ones. The dose difference global function and the 3D gamma for each plan volume are good classifiers regarding dose difference metrics. ROC analysis is useful to evaluate the predictive power of the new metrics. The correlation between biomathematical treatment outcome models and the dose difference-based metrics is enhanced by using modified TCP and NTCP functions that take into account the dose constraints for each plan. The robustness index is useful to evaluate if a plan is likely to be rejected. Conventional verification should be replaced by the new metrics, which are clinically more relevant.

  13. Decreased Risk of Radiation Pneumonitis With Incidental Concurrent Use of Angiotensin-Converting Enzyme Inhibitors and Thoracic Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharofa, Jordan; Cohen, Eric P.; Tomic, Rade

    2012-09-01

    Purpose: Angiotensin-converting enzyme (ACE) inhibitors have been shown to mitigate radiation-induced lung injury in preclinical models. The aim of this study was to evaluate whether ACE inhibitors decrease the risk of radiation pneumonitis in lung cancer patients receiving thoracic irradiation. Methods and Materials: Patients with Stage I through III small-cell and non-small-cell lung cancer treated definitively with radiation from 2004-2009 at the Clement J. Zablocki Veterans Affairs Medical Center were retrospectively reviewed. Acute pulmonary toxicity was quantified within 6 months of completion of treatment according to the Common Terminology Criteria for Adverse Events version 4. The use of ACE inhibitors,more » nonsteroidal anti-inflammatory drugs, inhaled glucocorticosteroids, statins, and angiotensin receptor blockers; dose-volume histogram parameters; and patient factors were assessed for association with Grade 2 or higher pneumonitis. Results: A total of 162 patients met the criteria for inclusion. The majority of patients had Stage III disease (64%) and received concurrent chemotherapy (61%). Sixty-two patients were identified as ACE inhibitor users (38%). All patients had acceptable radiation plans based on dose-volume histogram constraints (V20 [volume of lung receiving at least 20 Gy] {<=}37% and mean lung dose {<=}20 Gy) with the exception of 2 patients who did not meet both criteria. Grade 2 or higher pulmonary toxicity occurred in 12 patients (7.4%). The rate of Grade 2 or higher pneumonitis was lower in ACE inhibitor users vs. nonusers (2% vs. 11%, p = 0.032). Rates of Grade 2 or higher pneumonitis were significantly increased in patients aged greater than 70 years (16% vs. 2%, p = 0.005) or in whom V5 (volume of lung receiving at least 5 Gy) was 50% or greater (13% vs. 4%, p = 0.04). V10 (volume of lung receiving at least 10 Gy), V20, V30 (volume of lung receiving at least 30 Gy), and mean lung dose were not independently associated with Grade 2 or higher pneumonitis. Conclusion: ACE inhibitors may decrease the incidence of radiation pneumonitis in patients receiving thoracic radiation for lung cancer. These findings are consistent with preclinical evidence and should be prospectively evaluated.« less

  14. Histogram analysis of T2*-based pharmacokinetic imaging in cerebral glioma grading.

    PubMed

    Liu, Hua-Shan; Chiang, Shih-Wei; Chung, Hsiao-Wen; Tsai, Ping-Huei; Hsu, Fei-Ting; Cho, Nai-Yu; Wang, Chao-Ying; Chou, Ming-Chung; Chen, Cheng-Yu

    2018-03-01

    To investigate the feasibility of histogram analysis of the T2*-based permeability parameter volume transfer constant (K trans ) for glioma grading and to explore the diagnostic performance of the histogram analysis of K trans and blood plasma volume (v p ). We recruited 31 and 11 patients with high- and low-grade gliomas, respectively. The histogram parameters of K trans and v p , derived from the first-pass pharmacokinetic modeling based on the T2* dynamic susceptibility-weighted contrast-enhanced perfusion-weighted magnetic resonance imaging (T2* DSC-PW-MRI) from the entire tumor volume, were evaluated for differentiating glioma grades. Histogram parameters of K trans and v p showed significant differences between high- and low-grade gliomas and exhibited significant correlations with tumor grades. The mean K trans derived from the T2* DSC-PW-MRI had the highest sensitivity and specificity for differentiating high-grade gliomas from low-grade gliomas compared with other histogram parameters of K trans and v p . Histogram analysis of T2*-based pharmacokinetic imaging is useful for cerebral glioma grading. The histogram parameters of the entire tumor K trans measurement can provide increased accuracy with additional information regarding microvascular permeability changes for identifying high-grade brain tumors. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Inverse optimization of objective function weights for treatment planning using clinical dose-volume histograms

    NASA Astrophysics Data System (ADS)

    Babier, Aaron; Boutilier, Justin J.; Sharpe, Michael B.; McNiven, Andrea L.; Chan, Timothy C. Y.

    2018-05-01

    We developed and evaluated a novel inverse optimization (IO) model to estimate objective function weights from clinical dose-volume histograms (DVHs). These weights were used to solve a treatment planning problem to generate ‘inverse plans’ that had similar DVHs to the original clinical DVHs. Our methodology was applied to 217 clinical head and neck cancer treatment plans that were previously delivered at Princess Margaret Cancer Centre in Canada. Inverse plan DVHs were compared to the clinical DVHs using objective function values, dose-volume differences, and frequency of clinical planning criteria satisfaction. Median differences between the clinical and inverse DVHs were within 1.1 Gy. For most structures, the difference in clinical planning criteria satisfaction between the clinical and inverse plans was at most 1.4%. For structures where the two plans differed by more than 1.4% in planning criteria satisfaction, the difference in average criterion violation was less than 0.5 Gy. Overall, the inverse plans were very similar to the clinical plans. Compared with a previous inverse optimization method from the literature, our new inverse plans typically satisfied the same or more clinical criteria, and had consistently lower fluence heterogeneity. Overall, this paper demonstrates that DVHs, which are essentially summary statistics, provide sufficient information to estimate objective function weights that result in high quality treatment plans. However, as with any summary statistic that compresses three-dimensional dose information, care must be taken to avoid generating plans with undesirable features such as hotspots; our computational results suggest that such undesirable spatial features were uncommon. Our IO-based approach can be integrated into the current clinical planning paradigm to better initialize the planning process and improve planning efficiency. It could also be embedded in a knowledge-based planning or adaptive radiation therapy framework to automatically generate a new plan given a predicted or updated target DVH, respectively.

  16. Inverse optimization of objective function weights for treatment planning using clinical dose-volume histograms.

    PubMed

    Babier, Aaron; Boutilier, Justin J; Sharpe, Michael B; McNiven, Andrea L; Chan, Timothy C Y

    2018-05-10

    We developed and evaluated a novel inverse optimization (IO) model to estimate objective function weights from clinical dose-volume histograms (DVHs). These weights were used to solve a treatment planning problem to generate 'inverse plans' that had similar DVHs to the original clinical DVHs. Our methodology was applied to 217 clinical head and neck cancer treatment plans that were previously delivered at Princess Margaret Cancer Centre in Canada. Inverse plan DVHs were compared to the clinical DVHs using objective function values, dose-volume differences, and frequency of clinical planning criteria satisfaction. Median differences between the clinical and inverse DVHs were within 1.1 Gy. For most structures, the difference in clinical planning criteria satisfaction between the clinical and inverse plans was at most 1.4%. For structures where the two plans differed by more than 1.4% in planning criteria satisfaction, the difference in average criterion violation was less than 0.5 Gy. Overall, the inverse plans were very similar to the clinical plans. Compared with a previous inverse optimization method from the literature, our new inverse plans typically satisfied the same or more clinical criteria, and had consistently lower fluence heterogeneity. Overall, this paper demonstrates that DVHs, which are essentially summary statistics, provide sufficient information to estimate objective function weights that result in high quality treatment plans. However, as with any summary statistic that compresses three-dimensional dose information, care must be taken to avoid generating plans with undesirable features such as hotspots; our computational results suggest that such undesirable spatial features were uncommon. Our IO-based approach can be integrated into the current clinical planning paradigm to better initialize the planning process and improve planning efficiency. It could also be embedded in a knowledge-based planning or adaptive radiation therapy framework to automatically generate a new plan given a predicted or updated target DVH, respectively.

  17. Retrospective review of Contura HDR breast cases to improve our standardized procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iftimia, Ileana, E-mail: Ileana.n.iftimia@lahey.org; Cirino, Eileen T.; Ladd, Ron

    2013-07-01

    To retrospectively review our first 20 Contura high dose rate breast cases to improve and refine our standardized procedure and checklists. We prepared in advance checklists for all steps, developed an in-house Excel spreadsheet for second checking the plan, and generated a procedure for efficient contouring and a set of optimization constraints to meet the dose volume histogram criteria. Templates were created in our treatment planning system for structures, isodose levels, optimization constraints, and plan report. This study reviews our first 20 high dose rate Contura breast treatment plans. We followed our standardized procedure for contouring, planning, and second checking.more » The established dose volume histogram criteria were successfully met for all plans. For the cases studied here, the balloon-skin and balloon-ribs distances ranged between 5 and 43 mm and 1 and 33 mm, respectively; air{sub s}eroma volume/PTV{sub E}val volume≤5.5% (allowed≤10%); asymmetry<1.2 mm (goal≤2 mm); PTV{sub E}val V90%≥97.6%; PTV{sub E}val V95%≥94.9%; skin max dose≤98%Rx; ribs max dose≤137%Rx; V150%≤29.8 cc; V200%≤7.8 cc; the total dwell time range was 225.4 to 401.9 seconds; and the second check agreement was within 3%. Based on this analysis, more appropriate ranges for the total dwell time and balloon diameter tolerance were found. Three major problems were encountered: balloon migration toward the skin for small balloon-to-skin distances, lumen obstruction, and length change for the flexible balloon. Solutions were found for these issues and our standardized procedure and checklists were updated accordingly. Based on our review of these cases, the use of checklists resulted in consistent results, indicating good coverage for the target without sacrificing the critical structures. This review helped us to refine our standardized procedure and update our checklists.« less

  18. Transforming growth factor-beta-1 is a serum biomarker of radiation-induced pneumonitis in esophageal cancer patients treated with thoracic radiotherapy: preliminary results of a prospective study.

    PubMed

    Li, Jingxia; Mu, Shuangfeng; Mu, Lixiang; Zhang, Xiaohui; Pang, Ranran; Gao, Shegan

    2015-01-01

    To examine the relationship between cytokine levels of transforming growth factor-beta-1 (TGF-β1), interleukin-1 beta (IL-1β), and angiotensin-converting enzyme (ACE) in the plasma of esophageal carcinoma patients and radiation-induced pneumonitis (RP). Sixty-three patients with esophageal carcinoma were treated with three-dimensional conformal radiotherapy (RT) using the Elekta Precise treatment planning system with a prescribed dose of 50-70 Gy. Dose-volume histograms were collected from three-dimensional conformal RT to determine the volume percentage of the lung received V5, V10, V20, and the normal tissue complication probability. RP was diagnosed based on computed tomography imaging, respiratory symptoms, and signs. The severity of radiation-induced lung toxicity was determined using the Lent-Soma scale defined by the Radiation Therapy Oncology Group. Plasma samples obtained before RT, during RT (at 40 Gy), and at 1 day, 1 month, and 3 months after RT were assayed for TGF-β1, IL-1β, and ACE levels by enzyme-linked immunosorbent assay. From the 63 patients, 17 (27%) developed RP, and 13 (21%) had RP of grade I and four (6%) had grade II or higher. We found plasma TGF-β1 levels were elevated in the patients that had RP when compared with the other 46 patients who did not have RP. The plasma IL-1β levels were not changed. The ACE levels were significantly lower in the 17 patients with RP compared to the 46 patients without RP throughout the RT. As expected, RP is associated with a higher dose of irradiation (>60 Gy); no other factors, including dose-volume histogram, age, sex, smoking status, location of tumor, and methods of treatment, are associated with RP. Elevated plasma TGF-β1 levels can be used as a marker for RP.

  19. Fractionation in normal tissues: the (α/β)eff concept can account for dose heterogeneity and volume effects.

    PubMed

    Hoffmann, Aswin L; Nahum, Alan E

    2013-10-07

    The simple Linear-Quadratic (LQ)-based Withers iso-effect formula (WIF) is widely used in external-beam radiotherapy to derive a new tumour dose prescription such that there is normal-tissue (NT) iso-effect when changing the fraction size and/or number. However, as conventionally applied, the WIF is invalid unless the normal-tissue response is solely determined by the tumour dose. We propose a generalized WIF (gWIF) which retains the tumour prescription dose, but replaces the intrinsic fractionation sensitivity measure (α/β) by a new concept, the normal-tissue effective fractionation sensitivity, [Formula: see text], which takes into account both the dose heterogeneity in, and the volume effect of, the late-responding normal-tissue in question. Closed-form analytical expressions for [Formula: see text] ensuring exact normal-tissue iso-effect are derived for: (i) uniform dose, and (ii) arbitrary dose distributions with volume-effect parameter n = 1 from the normal-tissue dose-volume histogram. For arbitrary dose distributions and arbitrary n, a numerical solution for [Formula: see text] exhibits a weak dependence on the number of fractions. As n is increased, [Formula: see text] increases from its intrinsic value at n = 0 (100% serial normal-tissue) to values close to or even exceeding the tumour (α/β) at n = 1 (100% parallel normal-tissue), with the highest values of [Formula: see text] corresponding to the most conformal dose distributions. Applications of this new concept to inverse planning and to highly conformal modalities are discussed, as is the effect of possible deviations from LQ behaviour at large fraction sizes.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsuta, Y; Tohoku University Graduate School of Medicine, Sendal, Miyagi; Kadoya, N

    Purpose: In this study, we developed a system to calculate three dimensional (3D) dose that reflects dosimetric error caused by leaf miscalibration for head and neck and prostate volumetric modulated arc therapy (VMAT) without additional treatment planning system calculation on real time. Methods: An original system called clarkson dose calculation based dosimetric error calculation to calculate dosimetric error caused by leaf miscalibration was developed by MATLAB (Math Works, Natick, MA). Our program, first, calculates point doses at isocenter for baseline and modified VMAT plan, which generated by inducing MLC errors that enlarged aperture size of 1.0 mm with clarkson dosemore » calculation. Second, error incuced 3D dose was generated with transforming TPS baseline 3D dose using calculated point doses. Results: Mean computing time was less than 5 seconds. For seven head and neck and prostate plans, between our method and TPS calculated error incuced 3D dose, the 3D gamma passing rates (0.5%/2 mm, global) are 97.6±0.6% and 98.0±0.4%. The dose percentage change with dose volume histogram parameter of mean dose on target volume were 0.1±0.5% and 0.4±0.3%, and with generalized equivalent uniform dose on target volume were −0.2±0.5% and 0.2±0.3%. Conclusion: The erroneous 3D dose calculated by our method is useful to check dosimetric error caused by leaf miscalibration before pre treatment patient QA dosimetry checks.« less

  1. Methods, software and datasets to verify DVH calculations against analytical values: Twenty years late(r)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelms, Benjamin; Stambaugh, Cassandra; Hunt, Dylan

    2015-08-15

    Purpose: The authors designed data, methods, and metrics that can serve as a standard, independent of any software package, to evaluate dose-volume histogram (DVH) calculation accuracy and detect limitations. The authors use simple geometrical objects at different orientations combined with dose grids of varying spatial resolution with linear 1D dose gradients; when combined, ground truth DVH curves can be calculated analytically in closed form to serve as the absolute standards. Methods: DICOM RT structure sets containing a small sphere, cylinder, and cone were created programmatically with axial plane spacing varying from 0.2 to 3 mm. Cylinders and cones were modeledmore » in two different orientations with respect to the IEC 1217 Y axis. The contours were designed to stringently but methodically test voxelation methods required for DVH. Synthetic RT dose files were generated with 1D linear dose gradient and with grid resolution varying from 0.4 to 3 mm. Two commercial DVH algorithms—PINNACLE (Philips Radiation Oncology Systems) and PlanIQ (Sun Nuclear Corp.)—were tested against analytical values using custom, noncommercial analysis software. In Test 1, axial contour spacing was constant at 0.2 mm while dose grid resolution varied. In Tests 2 and 3, the dose grid resolution was matched to varying subsampled axial contours with spacing of 1, 2, and 3 mm, and difference analysis and metrics were employed: (1) histograms of the accuracy of various DVH parameters (total volume, D{sub max}, D{sub min}, and doses to % volume: D99, D95, D5, D1, D0.03 cm{sup 3}) and (2) volume errors extracted along the DVH curves were generated and summarized in tabular and graphical forms. Results: In Test 1, PINNACLE produced 52 deviations (15%) while PlanIQ produced 5 (1.5%). In Test 2, PINNACLE and PlanIQ differed from analytical by >3% in 93 (36%) and 18 (7%) times, respectively. Excluding D{sub min} and D{sub max} as least clinically relevant would result in 32 (15%) vs 5 (2%) scored deviations for PINNACLE vs PlanIQ in Test 1, while Test 2 would yield 53 (25%) vs 17 (8%). In Test 3, statistical analyses of volume errors extracted continuously along the curves show PINNACLE to have more errors and higher variability (relative to PlanIQ), primarily due to PINNACLE’s lack of sufficient 3D grid supersampling. Another major driver for PINNACLE errors is an inconsistency in implementation of the “end-capping”; the additional volume resulting from expanding superior and inferior contours halfway to the next slice is included in the total volume calculation, but dose voxels in this expanded volume are excluded from the DVH. PlanIQ had fewer deviations, and most were associated with a rotated cylinder modeled by rectangular axial contours; for coarser axial spacing, the limited number of cross-sectional rectangles hinders the ability to render the true structure volume. Conclusions: The method is applicable to any DVH-calculating software capable of importing DICOM RT structure set and dose objects (the authors’ examples are available for download). It includes a collection of tests that probe the design of the DVH algorithm, measure its accuracy, and identify failure modes. Merits and applicability of each test are discussed.« less

  2. Evaluation of the Dosimetric Feasibility of Hippocampal Sparing Intensity-Modulated Radiotherapy in Patients with Locally Advanced Nasopharyngeal Carcinoma

    PubMed Central

    Gan, Hua; Denniston, Kyle A.; Li, Sicong; Tan, Wenyong; Wang, Zhaohua

    2014-01-01

    Purpose The objective of this study was to evaluate the dosimetric feasibility of using hippocampus (HPC) sparing intensity-modulated radiotherapy (IMRT) in patients with locally advanced nasopharyngeal carcinoma (NPC). Materials/Methods Eight cases of either T3 or T4 NPC were selected for this study. Standard IMRT treatment plans were constructed using the volume and dose constraints for the targets and organs at risk (OAR) per Radiation Therapy Oncology Group (RTOG) 0615 protocol. Experimental plans were constructed using the same criteria, with the addition of the HPC as an OAR. The two dose-volume histograms for each case were compared for the targets and OARs. Results All plans achieved the protocol dose criteria. The homogeneity index, conformity index, and coverage index for the planning target volumes (PTVs) were not significantly compromised by the avoidance of the HPC. The doses to all OARs, excluding the HPC, were similar. Both the dose (Dmax, D2%, D40%, Dmean, Dmedian, D98% and Dmin) and volume (V5, V10, V15, V20, V30, V40 and V50) parameters for the HPC were significantly lower in the HPC sparing plans (p<0.05), except for Dmin (P = 0.06) and V5 (P = 0.12). Conclusions IMRT for patients with locally advanced NPC exposes the HPC to a significant radiation dose. HPC sparing IMRT planning significantly decreases this dose, with minimal impact on the therapeutic targets and other OARs. PMID:24587184

  3. Dose-Volume Histogram Predictors of Chronic Gastrointestinal Complications After Radical Hysterectomy and Postoperative Concurrent Nedaplatin-Based Chemoradiation Therapy for Early-Stage Cervical Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isohashi, Fumiaki, E-mail: isohashi@radonc.med.osaka-u.ac.jp; Yoshioka, Yasuo; Mabuchi, Seiji

    2013-03-01

    Purpose: The purpose of this study was to evaluate dose-volume histogram (DVH) predictors for the development of chronic gastrointestinal (GI) complications in cervical cancer patients who underwent radical hysterectomy and postoperative concurrent nedaplatin-based chemoradiation therapy. Methods and Materials: This study analyzed 97 patients who underwent postoperative concurrent chemoradiation therapy. The organs at risk that were contoured were the small bowel loops, large bowel loop, and peritoneal cavity. DVH parameters subjected to analysis included the volumes of these organs receiving more than 15, 30, 40, and 45 Gy (V15-V45) and their mean dose. Associations between DVH parameters or clinical factors andmore » the incidence of grade 2 or higher chronic GI complications were evaluated. Results: Of the clinical factors, smoking and low body mass index (BMI) (<22) were significantly associated with grade 2 or higher chronic GI complications. Also, patients with chronic GI complications had significantly greater V15-V45 volumes and higher mean dose of the small bowel loops compared with those without GI complications. In contrast, no parameters for the large bowel loop or peritoneal cavity were significantly associated with GI complications. Results of the receiver operating characteristics (ROC) curve analysis led to the conclusion that V15-V45 of the small bowel loops has high accuracy for prediction of GI complications. Among these parameters, V40 gave the highest area under the ROC curve. Finally, multivariate analysis was performed with V40 of the small bowel loops and 2 other clinical parameters that were judged to be potential risk factors for chronic GI complications: BMI and smoking. Of these 3 parameters, V40 of the small bowel loops and smoking emerged as independent predictors of chronic GI complications. Conclusions: DVH parameters of the small bowel loops may serve as predictors of grade 2 or higher chronic GI complications after postoperative concurrent nedaplatin-based chemoradiation therapy for early-stage cervical cancer.« less

  4. External Beam Radiotherapy for Prostate Cancer Patients on Anticoagulation Therapy: How Significant is the Bleeding Toxicity?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choe, Kevin S.; Jani, Ashesh B.; Liauw, Stanley L., E-mail: sliauw@radonc.uchicago.ed

    Purpose: To characterize the bleeding toxicity associated with external beam radiotherapy for prostate cancer patients receiving anticoagulation (AC) therapy. Methods and Materials: The study cohort consisted of 568 patients with adenocarcinoma of the prostate who were treated with definitive external beam radiotherapy. Of these men, 79 were receiving AC therapy with either warfarin or clopidogrel. All patients were treated with three-dimensional conformal radiotherapy or intensity-modulated radiotherapy. Bleeding complications were recorded during treatment and subsequent follow-up visits. Results: With a median follow-up of 48 months, the 4-year actuarial risk of Grade 3 or worse bleeding toxicity was 15.5% for those receivingmore » AC therapy compared with 3.6% among those not receiving AC (p < .0001). On multivariate analysis, AC therapy was the only significant factor associated with Grade 3 or worse bleeding (p < .0001). For patients taking AC therapy, the crude rate of bleeding was 39.2%. Multivariate analysis within the AC group demonstrated that a higher radiotherapy dose (p = .0408), intensity-modulated radiotherapy (p = 0.0136), and previous transurethral resection of the prostate (p = .0001) were associated with Grade 2 or worse bleeding toxicity. Androgen deprivation therapy was protective against bleeding, with borderline significance (p = 0.0599). Dose-volume histogram analysis revealed that Grade 3 or worse bleeding was minimized if the percentage of the rectum receiving >=70 Gy was <10% or the rectum receiving >=50 Gy was <50%. Conclusion: Patients taking AC therapy have a substantial risk of bleeding toxicity from external beam radiotherapy. In this setting, dose escalation or intensity-modulated radiotherapy should be used judiciously. With adherence to strict dose-volume histogram criteria and minimizing hotspots, the risk of severe bleeding might be reduced.« less

  5. Dosimetric evaluation of high-dose-rate interstitial brachytherapy boost treatments for localized prostate cancer.

    PubMed

    Fröhlich, Georgina; Agoston, Péter; Lövey, József; Somogyi, András; Fodor, János; Polgár, Csaba; Major, Tibor

    2010-07-01

    To quantitatively evaluate the dose distributions of high-dose-rate (HDR) prostate implants regarding target coverage, dose homogeneity, and dose to organs at risk. Treatment plans of 174 implants were evaluated using cumulative dose-volume histograms (DVHs). The planning was based on transrectal ultrasound (US) imaging, and the prescribed dose (100%) was 10 Gy. The tolerance doses to rectum and urethra were 80% and 120%, respectively. Dose-volume parameters for target (V90, V100, V150, V200, D90, D(min)) and quality indices (DNR [dose nonuniformity ratio], DHI [dose homogeneity index], CI [coverage index], COIN [conformal index]) were calculated. Maximum dose in reference points of rectum (D(r)) and urethra (D(u)), dose to volume of 2 cm(3) of the rectum (D(2ccm)), and 0.1 cm(3) and 1% of the urethra (D(0.1ccm) and D1) were determined. Nonparametric correlation analysis was performed between these parameters. The median number of needles was 16, the mean prostate volume (V(p)) was 27.1 cm(3). The mean V90, V100, V150, and V200 were 99%, 97%, 39%, and 13%, respectively. The mean D90 was 109%, and the D(min) was 87%. The mean doses in rectum and urethra reference points were 75% and 119%, respectively. The mean volumetric doses were D(2ccm) = 49% for the rectum, D(0.1ccm) = 126%, and D1 = 140% for the urethra. The mean DNR was 0.37, while the DHI was 0.60. The mean COIN was 0.66. The Spearman rank order correlation coefficients for volume doses to rectum and urethra were R(D(r),D(2ccm)) = 0.69, R(D(u),D0.(1ccm)) = 0.64, R(D(u),D1) = 0.23. US-based treatment plans for HDR prostate implants based on the real positions of catheters provided acceptable dose distributions. In the majority of the cases, the doses to urethra and rectum were kept below the defined tolerance levels. For rectum, the dose in reference points correlated well with dose-volume parameters. For urethra dose characterization, the use of D1 volumetric parameter is recommended.

  6. SU-E-J-250: A Methodology for Active Bone Marrow Protection for Cervical Cancer Intensity-Modulated Radiotherapy Using 18F-FLT PET/CT Image

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, C; Yin, Y

    Purpose: The purpose of this study was to compare a radiation therapy treatment planning that would spare active bone marrow and whole pelvic bone marrow using 18F FLT PET/CT image. Methods: We have developed an IMRT planning methodology to incorporate functional PET imaging using 18F FLT/CT scans. Plans were generated for two cervical cancer patients, where pelvicactive bone marrow region was incorporated as avoidance regions based on the range: SUV>2., another region was whole pelvic bone marrow. Dose objectives were set to reduce the volume of active bone marrow and whole bone marraw. The volumes of received 10 (V10) andmore » 20 (V20) Gy for active bone marrow were evaluated. Results: Active bone marrow regions identified by 18F FLT with an SUV>2 represented an average of 48.0% of the total osseous pelvis for the two cases studied. Improved dose volume histograms for identified bone marrow SUV volumes and decreases in V10(average 18%), and V20(average 14%) were achieved without clinically significant changes to PTV or OAR doses. Conclusion: Incorporation of 18F FLT/CT PET in IMRT planning provides a methodology to reduce radiation dose to active bone marrow without compromising PTV or OAR dose objectives in cervical cancer.« less

  7. Treatment Planning for Accelerator-Based Boron Neutron Capture Therapy

    NASA Astrophysics Data System (ADS)

    Herrera, María S.; González, Sara J.; Minsky, Daniel M.; Kreiner, Andrés J.

    2010-08-01

    Glioblastoma multiforme and metastatic melanoma are frequent brain tumors in adults and presently still incurable diseases. Boron Neutron Capture Therapy (BNCT) is a promising alternative for this kind of pathologies. Accelerators have been proposed for BNCT as a way to circumvent the problem of siting reactors in hospitals and for their relative simplicity and lower cost among other advantages. Considerable effort is going into the development of accelerator-based BNCT neutron sources in Argentina. Epithermal neutron beams will be produced through appropriate proton-induced nuclear reactions and optimized beam shaping assemblies. Using these sources, computational dose distributions were evaluated in a real patient with diagnosed glioblastoma treated with BNCT. The simulated irradiation was delivered in order to optimize dose to the tumors within the normal tissue constraints. Using Monte Carlo radiation transport calculations, dose distributions were generated for brain, skin and tumor. Also, the dosimetry was studied by computing cumulative dose-volume histograms for volumes of interest. The results suggest acceptable skin average dose and a significant dose delivered to tumor with low average whole brain dose for irradiation times less than 60 minutes, indicating a good performance of an accelerator-based BNCT treatment.

  8. Treatment Planning for Accelerator-Based Boron Neutron Capture Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera, Maria S.; Gonzalez, Sara J.; Minsky, Daniel M.

    2010-08-04

    Glioblastoma multiforme and metastatic melanoma are frequent brain tumors in adults and presently still incurable diseases. Boron Neutron Capture Therapy (BNCT) is a promising alternative for this kind of pathologies. Accelerators have been proposed for BNCT as a way to circumvent the problem of siting reactors in hospitals and for their relative simplicity and lower cost among other advantages. Considerable effort is going into the development of accelerator-based BNCT neutron sources in Argentina. Epithermal neutron beams will be produced through appropriate proton-induced nuclear reactions and optimized beam shaping assemblies. Using these sources, computational dose distributions were evaluated in a realmore » patient with diagnosed glioblastoma treated with BNCT. The simulated irradiation was delivered in order to optimize dose to the tumors within the normal tissue constraints. Using Monte Carlo radiation transport calculations, dose distributions were generated for brain, skin and tumor. Also, the dosimetry was studied by computing cumulative dose-volume histograms for volumes of interest. The results suggest acceptable skin average dose and a significant dose delivered to tumor with low average whole brain dose for irradiation times less than 60 minutes, indicating a good performance of an accelerator-based BNCT treatment.« less

  9. Normal tissue complication probability modelling of tissue fibrosis following breast radiotherapy

    NASA Astrophysics Data System (ADS)

    Alexander, M. A. R.; Brooks, W. A.; Blake, S. W.

    2007-04-01

    Cosmetic late effects of radiotherapy such as tissue fibrosis are increasingly regarded as being of importance. It is generally considered that the complication probability of a radiotherapy plan is dependent on the dose uniformity, and can be reduced by using better compensation to remove dose hotspots. This work aimed to model the effects of improved dose homogeneity on complication probability. The Lyman and relative seriality NTCP models were fitted to clinical fibrosis data for the breast collated from the literature. Breast outlines were obtained from a commercially available Rando phantom using the Osiris system. Multislice breast treatment plans were produced using a variety of compensation methods. Dose-volume histograms (DVHs) obtained for each treatment plan were reduced to simple numerical parameters using the equivalent uniform dose and effective volume DVH reduction methods. These parameters were input into the models to obtain complication probability predictions. The fitted model parameters were consistent with a parallel tissue architecture. Conventional clinical plans generally showed reducing complication probabilities with increasing compensation sophistication. Extremely homogenous plans representing idealized IMRT treatments showed increased complication probabilities compared to conventional planning methods, as a result of increased dose to areas receiving sub-prescription doses using conventional techniques.

  10. Clinical Toxicities and Dosimetric Parameters After Whole-Pelvis Versus Prostate-Only Intensity-Modulated Radiation Therapy for Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deville, Curtiland, E-mail: deville@uphs.upenn.ed; Both, Stefan; Hwang, Wei-Ting

    2010-11-01

    Purpose: To assess whether whole-pelvis (WP) intensity-modulated radiation therapy (IMRT) is associated with increased toxicity compared with prostate-only (PO) IMRT. Methods and Materials: We retrospectively analyzed all patients with prostate cancer undergoing definitive IMRT to 79.2 Gy with concurrent androgen deprivation at our institution from November 2005 to May 2007 with a minimum follow-up of 12 months. Thirty patients received initial WP IMRT to 45 Gy in 1.8-Gy fractions, and thirty patients received PO IMRT. Study patients underwent computed tomography simulation and treatment planning by use of predefined dose constraints. Bladder and rectal dose-volume histograms, maximum genitourinary (GU) and gastrointestinalmore » (GI) Radiation Therapy Oncology Group toxicity grade, and late Grade 2 or greater toxicity-free survival curves were compared between the two groups by use of the Student t test, Fisher exact test, and Kaplan-Meier curve, respectively. Results: Bladder minimum dose, mean dose, median dose, volume receiving 5 Gy, volume receiving 20 Gy, volume receiving 40 Gy, and volume receiving 45 Gy and rectal minimum dose, median dose, and volume receiving 20 Gy were significantly increased in the WP group (all p values < 0.01). Maximum acute GI toxicity was limited to Grade 2 and was significantly increased in the WP group at 50% vs. 13% the PO group (p = 0.006). With a median follow-up of 24 months (range, 12-35 months), there was no difference in late GI toxicity (p = 0.884) or in acute or late GU toxicity. Conclusions: Despite dosimetric differences in the volume of bowel, bladder, and rectum irradiated in the low-dose and median-dose regions, WP IMRT results only in a clinically significant increase in acute GI toxicity, in comparison to PO IMRT, with no difference in GU or late GI toxicity.« less

  11. SU-C-17A-01: MRI-Based Radiotherapy Treatment Planning In Pelvis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, S; Cao, Y; Jolly, S

    2014-06-15

    Purpose: To support radiotherapy dose calculation, synthetic CT (MRCT) image volumes need to represent the electron density of tissues with sufficient accuracy. This study compares CT and MRCT for pelvic radiotherapy. Methods: CT and multi-contrast MRI acquired using T1- based Dixon, T2 TSE, and PETRA sequences were acquired on an IRBapproved protocol patient. A previously published method was used to create a MRCT image volume by applying fuzzy classification on T1- weighted and calculated water image volumes (air and fluid voxels were excluded using thresholds applied to PETRA and T2-weighted images). The correlation of pelvic bone intensity between CT andmore » MRCT was investigated. Two treatment plans, based on CT and MRCT, were performed to mimic treatment for: (a) pelvic bone metastasis with a 16MV parallel beam arrangement, and (b) gynecological cancer with 6MV volumetric modulated arc therapy (VMAT) using two full arcs. The CT-calculated fluence maps were used to recalculate doses using the MRCT-derived density grid. The dose-volume histograms and dose distributions were compared. Results: Bone intensities in the MRCT volume correlated linearly with CT intensities up to 800 HU (containing 96% of the bone volume), and then decreased with CT intensity increase (4% volume). There was no significant difference in dose distributions between CT- and MRCTbased plans, except for the rectum and bladder, for which the V45 differed by 15% and 9%, respectively. These differences may be attributed to normal and visualized organ movement and volume variations between CT and MR scans. Conclusion: While MRCT had lower bone intensity in highly-dense bone, this did not cause significant dose deviations from CT due to its small percentage of volume. These results indicate that treatment planning using MRCT could generate comparable dose distributions to that using CT, and further demonstrate the feasibility of using MRI-alone to support Radiation Oncology workflow. NIH R01EB016079.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gagne, Nolan L.; Leonard, Kara L.; Rivard, Mark J.

    Purpose: Clinical optimization of Collaborative Ocular Melanoma Study (COMS) eye plaque brachytherapy is currently limited to tumor coverage, consensus prescription dosage, and dose calculations to ocular structures. The biologically effective dose (BED) of temporary brachytherapy treatments is a function of both chosen radionuclide R and implant duration T. This study endeavored to evaluate BED delivered to the tumor volume and surrounding ocular structures as a function of plaque position P, prescription dose, R, and T. Methods: Plaque-heterogeneity-corrected dose distributions were generated with MCNP5 for the range of currently available COMS plaques loaded with sources using three available low-energy radionuclides. Thesemore » physical dose distributions were imported into the PINNACLE{sup 3} treatment planning system using the TG-43 hybrid technique and used to generate dose volume histograms for a T = 7 day implant within a reference eye geometry including the ciliary body, cornea, eyelid, foveola, lacrimal gland, lens, optic disc, optic nerve, retina, and tumor at eight standard treatment positions. The equation of Dale and Jones was employed to create biologically effective dose volume histograms (BEDVHs), allowing for BED volumetric analysis of all ROIs. Isobiologically effective prescription doses were calculated for T = 5 days down to 0.01 days, with BEDVHs subsequently generated for all ROIs using correspondingly reduced prescription doses. Objective functions were created to evaluate the BEDVHs as a function of R and T. These objective functions are mathematically accessible and sufficiently general to be applied to temporary or permanent brachytherapy implants for a variety of disease sites. Results: Reducing T from 7 to 0.01 days for a 10 mm plaque produced an average BED benefit of 26%, 20%, and 17% for {sup 103}Pd, {sup 125}I, and {sup 131}Cs, respectively, for all P; 16 and 22 mm plaque results were more position-dependent. {sup 103}Pd produced a 16%-35% BED benefit over {sup 125}I, whereas {sup 131}Cs produced a 3%-7% BED detriment, independent of P, T, and plaque size. Additionally, corresponding organ at risk physical doses were lowest using {sup 103}Pd in all circumstances. Conclusions: The results suggest that shorter implant durations may correlate with more favorable outcomes compared to 7 day implants when treating small or medium intraocular lesions. The data also indicate that implant duration may be safely reduced if the prescription physical dose is likewise diminished and that {sup 103}Pd offers a substantial radiobiological benefit over {sup 125}I and {sup 131}Cs irrespective of plaque position, implant duration, and tumor size.« less

  13. Efficient visibility-driven medical image visualisation via adaptive binned visibility histogram.

    PubMed

    Jung, Younhyun; Kim, Jinman; Kumar, Ashnil; Feng, David Dagan; Fulham, Michael

    2016-07-01

    'Visibility' is a fundamental optical property that represents the observable, by users, proportion of the voxels in a volume during interactive volume rendering. The manipulation of this 'visibility' improves the volume rendering processes; for instance by ensuring the visibility of regions of interest (ROIs) or by guiding the identification of an optimal rendering view-point. The construction of visibility histograms (VHs), which represent the distribution of all the visibility of all voxels in the rendered volume, enables users to explore the volume with real-time feedback about occlusion patterns among spatially related structures during volume rendering manipulations. Volume rendered medical images have been a primary beneficiary of VH given the need to ensure that specific ROIs are visible relative to the surrounding structures, e.g. the visualisation of tumours that may otherwise be occluded by neighbouring structures. VH construction and its subsequent manipulations, however, are computationally expensive due to the histogram binning of the visibilities. This limits the real-time application of VH to medical images that have large intensity ranges and volume dimensions and require a large number of histogram bins. In this study, we introduce an efficient adaptive binned visibility histogram (AB-VH) in which a smaller number of histogram bins are used to represent the visibility distribution of the full VH. We adaptively bin medical images by using a cluster analysis algorithm that groups the voxels according to their intensity similarities into a smaller subset of bins while preserving the distribution of the intensity range of the original images. We increase efficiency by exploiting the parallel computation and multiple render targets (MRT) extension of the modern graphical processing units (GPUs) and this enables efficient computation of the histogram. We show the application of our method to single-modality computed tomography (CT), magnetic resonance (MR) imaging and multi-modality positron emission tomography-CT (PET-CT). In our experiments, the AB-VH markedly improved the computational efficiency for the VH construction and thus improved the subsequent VH-driven volume manipulations. This efficiency was achieved without major degradation in the VH visually and numerical differences between the AB-VH and its full-bin counterpart. We applied several variants of the K-means clustering algorithm with varying Ks (the number of clusters) and found that higher values of K resulted in better performance at a lower computational gain. The AB-VH also had an improved performance when compared to the conventional method of down-sampling of the histogram bins (equal binning) for volume rendering visualisation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Three-dimensional radiotherapy of head and neck and esophageal carcinomas: a monoisocentric treatment technique to achieve improved dose distributions.

    PubMed

    Ahmad, M; Nath, R

    2001-02-20

    The specific aim of three-dimensional conformal radiotherapy is to deliver adequate therapeutic radiation dose to the target volume while concomitantly keeping the dose to surrounding and intervening normal tissues to a minimum. The objective of this study is to examine dose distributions produced by various radiotherapy techniques used in managing head and neck tumors when the upper part of the esophagus is also involved. Treatment planning was performed with a three-dimensional (3-D) treatment planning system. Computerized tomographic (CT) scans used by this system to generate isodose distributions and dose-volume histograms were obtained directly from the CT scanner, which is connected via ethernet cabling to the 3-D planning system. These are useful clinical tools for evaluating the dose distribution to the treatment volume, clinical target volume, gross tumor volume, and certain critical organs. Using 6 and 18 MV photon beams, different configurations of standard treatment techniques for head and neck and esophageal carcinoma were studied and the resulting dose distributions were analyzed. Film validation dosimetry in solid-water phantom was performed to assess the magnitude of dose inhomogeneity at the field junction. Real-time dose measurements on patients using diode dosimetry were made and compared with computed dose values. With regard to minimizing radiation dose to surrounding structures (i.e., lung, spinal cord, etc.), the monoisocentric technique gave the best isodose distributions in terms of dose uniformity. The mini-mantle anterior-posterior/posterior-anterior (AP/PA) technique produced grossly non-uniform dose distribution with excessive hot spots. The dose measured on the patient during the treatment agrees to within +/- 5 % with the computed dose. The protocols presented in this work for simulation, immobilization and treatment planning of patients with head and neck and esophageal tumors provide the optimum dose distributions in the target volume with reduced irradiation of surrounding non-target tissues, and can be routinely implemented in a radiation oncology department. The presence of a real-time dose-measuring system plays an important role in verifying the actual delivery of radiation dose.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thrower, Sara L., E-mail: slloupot@mdanderson.org; Shaitelman, Simona F.; Bloom, Elizabeth

    Purpose: To compare the treatment plans for accelerated partial breast irradiation calculated by the new commercially available collapsed cone convolution (CCC) and current standard TG-43–based algorithms for 50 patients treated at our institution with either a Strut-Adjusted Volume Implant (SAVI) or Contura device. Methods and Materials: We recalculated target coverage, volume of highly dosed normal tissue, and dose to organs at risk (ribs, skin, and lung) with each algorithm. For 1 case an artificial air pocket was added to simulate 10% nonconformance. We performed a Wilcoxon signed rank test to determine the median differences in the clinical indices V90, V95, V100,more » V150, V200, and highest-dosed 0.1 cm{sup 3} and 1.0 cm{sup 3} of rib, skin, and lung between the two algorithms. Results: The CCC algorithm calculated lower values on average for all dose-volume histogram parameters. Across the entire patient cohort, the median difference in the clinical indices calculated by the 2 algorithms was <10% for dose to organs at risk, <5% for target volume coverage (V90, V95, and V100), and <4 cm{sup 3} for dose to normal breast tissue (V150 and V200). No discernable difference was seen in the nonconformance case. Conclusions: We found that on average over our patient population CCC calculated (<10%) lower doses than TG-43. These results should inform clinicians as they prepare for the transition to heterogeneous dose calculation algorithms and determine whether clinical tolerance limits warrant modification.« less

  16. Three-dimensional conformal simultaneously integrated boost technique for breast-conserving radiotherapy.

    PubMed

    van der Laan, Hans Paul; Dolsma, Wil V; Maduro, John H; Korevaar, Erik W; Hollander, Miranda; Langendijk, Johannes A

    2007-07-15

    To compare the target coverage and normal tissue dose with the simultaneously integrated boost (SIB) and the sequential boost technique in breast cancer, and to evaluate the incidence of acute skin toxicity in patients treated with the SIB technique. Thirty patients with early-stage left-sided breast cancer underwent breast-conserving radiotherapy using the SIB technique. The breast and boost planning target volumes (PTVs) were treated simultaneously (i.e., for each fraction, the breast and boost PTVs received 1.81 Gy and 2.3 Gy, respectively). Three-dimensional conformal beams with wedges were shaped and weighted using forward planning. Dose-volume histograms of the PTVs and organs at risk with the SIB technique, 28 x (1.81 + 0.49 Gy), were compared with those for the sequential boost technique, 25 x 2 Gy + 8 x 2 Gy. Acute skin toxicity was evaluated for 90 patients treated with the SIB technique according to Common Terminology Criteria for Adverse Events, version 3.0. PTV coverage was adequate with both techniques. With SIB, more efficiently shaped boost beams resulted in smaller irradiated volumes. The mean volume receiving > or =107% of the breast dose was reduced by 20%, the mean volume outside the boost PTV receiving > or =95% of the boost dose was reduced by 54%, and the mean heart and lung dose were reduced by 10%. Of the evaluated patients, 32.2% had Grade 2 or worse toxicity. The SIB technique is proposed for standard use in breast-conserving radiotherapy because of its dose-limiting capabilities, easy implementation, reduced number of treatment fractions, and relatively low incidence of acute skin toxicity.

  17. Localized volume effects for late rectal and anal toxicity after radiotherapy for prostate cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeters, Stephanie T.H.; Lebesque, Joos V.; Heemsbergen, Wilma D.

    2006-03-15

    Purpose: To identify dosimetric parameters derived from anorectal, rectal, and anal wall dose distributions that correlate with different late gastrointestinal (GI) complications after three-dimensional conformal radiotherapy for prostate cancer. Methods and Materials: In this analysis, 641 patients from a randomized trial (68 Gy vs. 78 Gy) were included. Toxicity was scored with adapted Radiation Therapy Oncology Group/European Organization for the Research and Treatment of Cancer (RTOG/EORTC) criteria and five specific complications. The variables derived from dose-volume histogram of anorectal, rectal, and anal wall were as follows: % receiving {>=}5-70 Gy (V5-V70), maximum dose (D{sub max}), and mean dose (D{sub mean}).more » The anus was defined as the most caudal 3 cm of the anorectum. Statistics were done with multivariate Cox regression models. Median follow-up was 44 months. Results: Anal dosimetric variables were associated with RTOG/EORTC Grade {>=}2 (V5-V40, D{sub mean}) and incontinence (V5-V70, D{sub mean}). Bleeding correlated most strongly with anorectal V55-V65, and stool frequency with anorectal V40 and D{sub mean}. Use of steroids was weakly related to anal variables. No volume effect was seen for RTOG/EORTC Grade {>=}3 and pain/cramps/tenesmus. Conclusion: Different volume effects were found for various late GI complications. Therefore, to evaluate the risk of late GI toxicity, not only intermediate and high doses to the anorectal wall volume should be taken into account, but also the dose to the anal wall.« less

  18. TH-CD-209-05: Impact of Spot Size and Spacing On the Quality of Robustly-Optimized Intensity-Modulated Proton Therapy Plans for Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, W; Ding, X; Hu, Y

    Purpose: To investigate how spot size and spacing affect plan quality, especially, plan robustness and the impact of interplay effect, of robustly-optimized intensity-modulated proton therapy (IMPT) plans for lung cancer. Methods: Two robustly-optimized IMPT plans were created for 10 lung cancer patients: (1) one for a proton beam with in-air energy dependent large spot size at isocenter (σ: 5–15 mm) and spacing (1.53σ); (2) the other for a proton beam with small spot size (σ: 2–6 mm) and spacing (5 mm). Both plans were generated on the average CTs with internal-gross-tumor-volume density overridden to irradiate internal target volume (ITV). Themore » root-mean-square-dose volume histograms (RVH) measured the sensitivity of the dose to uncertainties, and the areas under RVH curves were used to evaluate plan robustness. Dose evaluation software was developed to model time-dependent spot delivery to incorporate interplay effect with randomized starting phases of each field per fraction. Patient anatomy voxels were mapped from phase to phase via deformable image registration to score doses. Dose-volume-histogram indices including ITV coverage, homogeneity, and organs-at-risk (OAR) sparing were compared using Student-t test. Results: Compared to large spots, small spots resulted in significantly better OAR sparing with comparable ITV coverage and homogeneity in the nominal plan. Plan robustness was comparable for ITV and most OARs. With interplay effect considered, significantly better OAR sparing with comparable ITV coverage and homogeneity is observed using smaller spots. Conclusion: Robust optimization with smaller spots significantly improves OAR sparing with comparable plan robustness and similar impact of interplay effect compare to larger spots. Small spot size requires the use of larger number of spots, which gives optimizer more freedom to render a plan more robust. The ratio between spot size and spacing was found to be more relevant to determine plan robustness and the impact of interplay effect than spot size alone. This research was supported by the National Cancer Institute Career Developmental Award K25CA168984, by the Fraternal Order of Eagles Cancer Research Fund Career Development Award, by The Lawrence W. and Marilyn W. Matteson Fund for Cancer Research, by Mayo Arizona State University Seed Grant, and by The Kemper Marley Foundation.« less

  19. Fractional labelmaps for computing accurate dose volume histograms

    NASA Astrophysics Data System (ADS)

    Sunderland, Kyle; Pinter, Csaba; Lasso, Andras; Fichtinger, Gabor

    2017-03-01

    PURPOSE: In radiation therapy treatment planning systems, structures are represented as parallel 2D contours. For treatment planning algorithms, structures must be converted into labelmap (i.e. 3D image denoting structure inside/outside) representations. This is often done by triangulated a surface from contours, which is converted into a binary labelmap. This surface to binary labelmap conversion can cause large errors in small structures. Binary labelmaps are often represented using one byte per voxel, meaning a large amount of memory is unused. Our goal is to develop a fractional labelmap representation containing non-binary values, allowing more information to be stored in the same amount of memory. METHODS: We implemented an algorithm in 3D Slicer, which converts surfaces to fractional labelmaps by creating 216 binary labelmaps, changing the labelmap origin on each iteration. The binary labelmap values are summed to create the fractional labelmap. In addition, an algorithm is implemented in the SlicerRT toolkit that calculates dose volume histograms (DVH) using fractional labelmaps. RESULTS: We found that with manually segmented RANDO head and neck structures, fractional labelmaps represented structure volume up to 19.07% (average 6.81%) more accurately than binary labelmaps, while occupying the same amount of memory. When compared to baseline DVH from treatment planning software, DVH from fractional labelmaps had agreement acceptance percent (1% ΔD, 1% ΔV) up to 57.46% higher (average 4.33%) than DVH from binary labelmaps. CONCLUSION: Fractional labelmaps promise to be an effective method for structure representation, allowing considerably more information to be stored in the same amount of memory.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mwidu, U; Devic, S; Shehadeh, M

    Purpose: A retrospective comparison of dose distributions achievable by High dose rate brachytherapy (HDRBT), Helical TomoTherapy (TOMO), CyberKnife (CK) and RapidArc (RA) in locally advanced inoperable cervical cancer patients is presented. Methods: Five patients with advanced stage cervical carcinoma were selected for this study after a full course of external beam radiotherapy (EBRT), chemotherapy and HDR Brachytherapy. To highlight any significant similarities/differences in dose distributions, high-risk clinical target volume (HRCTV) coverage, organs at risk (OAR) sparing, and machine specific delivery limitations, we used D90 (dose received by 90% of the volume) as the parameter for HRCTV coverage as recommended bymore » the GEC-ESTRO Working Group. We also compared both integral and differential dose volume histograms (DVH) between different dose distributions treatment modalities for HRCTV and OAR. Results: TOMO and RA provided the most conformal dose distributions to HRCTV. Median doses (in Gy) to organs at risk were; for rectal wall: 1.7±0.6, 2.5±0.6,1.2±0.3, and 1.5±0.6, and for bladder wall: 1.6±0.1, 2.4±0.4, 0.8±0.6, and 1.5±0.5, for HDRBT, TOMO, CK, and RA, respectively. Conclusion: Contemporary EBRT modalities might be able to replace brachytherapy treatments for cervix cancer. While brachytherapy dose distributions feature high dose gradients, EBRT modalities provide highly conformal dose distributions to the target. However, it is still not clear whether a highly conformal dose or high gradient dose is more clinically relevant for the HRCTV in cervix cancer patients.« less

  1. Potential dosimetric benefit of dose-warping based 4D planning compared to conventional 3D planning in liver stereotactic body radiotherapy (SBRT)

    NASA Astrophysics Data System (ADS)

    Yeo, U. J.; Taylor, M. L.; Kron, T.; Pham, D.; Siva, S.; Franich, R. D.

    2013-06-01

    Respiratory motion induces dosimetric uncertainties for thoracic and abdominal cancer radiotherapy (RT) due to deforming and moving anatomy. This study investigates the extent of dosimetric differences between conventional 3D treatment planning and path-integrated 4D treatment planning in liver stereotactic body radiotherapy (SBRT). Respiratory-correlated 4DCT image sets with 10 phases were acquired for patients with liver tumours. Path-integrated 4D dose accumulation was performed using dose-warping techniques based on deformable image registration. Dose-volume histogram analysis demonstrated that the 3D planning approach overestimated doses to targets by up to 24% and underestimated dose to normal liver by ~4.5%, compared to the 4D planning methodology. Therefore, 4D planning has the potential to quantify such issues of under- and/or over-dosage and improve treatment accuracy.

  2. Dosimetric Comparison of Bone Marrow-Sparing Intensity-Modulated Radiotherapy Versus Conventional Techniques for Treatment of Cervical Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mell, Loren K.; Tiryaki, Hanifi; Ahn, Kang-Hyun

    2008-08-01

    Purpose: To compare bone marrow-sparing intensity-modulated pelvic radiotherapy (BMS-IMRT) with conventional (four-field box and anteroposterior-posteroanterior [AP-PA]) techniques in the treatment of cervical cancer. Methods and Materials: The data from 7 cervical cancer patients treated with concurrent chemotherapy and IMRT without BMS were analyzed and compared with data using four-field box and AP-PA techniques. All plans were normalized to cover the planning target volume with the 99% isodose line. The clinical target volume consisted of the pelvic and presacral lymph nodes, uterus and cervix, upper vagina, and parametrial tissue. Normal tissues included bowel, bladder, and pelvic bone marrow (PBM), which comprisedmore » the lumbosacral spine and ilium and the ischium, pubis, and proximal femora (lower pelvis bone marrow). Dose-volume histograms for the planning target volume and normal tissues were compared for BMS-IMRT vs. four-field box and AP-PA plans. Results: BMS-IMRT was superior to the four-field box technique in reducing the dose to the PBM, small bowel, rectum, and bladder. Compared with AP-PA plans, BMS-IMRT reduced the PBM volume receiving a dose >16.4 Gy. BMS-IMRT reduced the volume of ilium, lower pelvis bone marrow, and bowel receiving a dose >27.7, >18.7, and >21.1 Gy, respectively, but increased dose below these thresholds compared with the AP-PA plans. BMS-IMRT reduced the volume of lumbosacral spine bone marrow, rectum, small bowel, and bladder at all dose levels in all 7 patients. Conclusion: BMS-IMRT reduced irradiation of PBM compared with the four-field box technique. Compared with the AP-PA technique, BMS-IMRT reduced lumbosacral spine bone marrow irradiation and reduced the volume of PBM irradiated to high doses. Therefore BMS-IMRT might reduce acute hematologic toxicity compared with conventional techniques.« less

  3. Dose distribution in the thyroid gland following radiation therapy of breast cancer--a retrospective study.

    PubMed

    Johansen, S; Reinertsen, K V; Knutstad, K; Olsen, D R; Fosså, S D

    2011-06-09

    To relate the development of post-treatment hypothyroidism with the dose distribution within the thyroid gland in breast cancer (BC) patients treated with loco-regional radiotherapy (RT). In two groups of BC patients postoperatively irradiated by computer tomography (CT)-based RT, the individual dose distributions in the thyroid gland were compared with each other; Cases developed post-treatment hypothyroidism after multimodal treatment including 4-field RT technique. Matched patients in Controls remained free for hypothyroidism. Based on each patient's dose volume histogram (DVH) the volume percentages of the thyroid absorbing respectively 20, 30, 40 and 50 Gy were then estimated (V20, V30, V40 and V50) together with the individual mean thyroid dose over the whole gland (MeanTotGy). The mean and median thyroid dose for the included patients was about 30 Gy, subsequently the total volume of the thyroid gland (VolTotGy) and the absolute volumes (cm3) receiving respectively <30 Gy and ≥30 Gy were calculated (Vol<30 and Vol≥30) and analyzed. No statistically significant inter-group differences were found between V20, V30, V40 and V50Gy or the median of MeanTotGy. The median VolTotGy in Controls was 2.3 times above VolTotGy in Cases (ρ=0.003), with large inter-individual variations in both groups. The volume of the thyroid gland receiving<30 Gy in Controls was almost 2.5 times greater than the comparable figure in Cases. We concluded that in patients with small thyroid glands after loco-radiotherapy of BC, the risk of post-treatment hypothyroidism depends on the volume of the thyroid gland.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Q

    Purpose: According to clinical and research requirement, we develop a function of automatic reading dose of interest from dose volume histogram(DVH), to replace the traditional method with a mouse one by one point, and it's also verified. Methods: The DVH automatic reading function will be developed in an in-house developed radiotherapy information management system(RTIMS), which is based on Apache+PHP+MySQL. A DVH ASCII file is exported from Varian Eclipse V8.6, which includes the following contents: 1. basic information of patient; 2. dose information of plan; 3. dose information of structures, including basic information and dose volume data of target volume andmore » organ at risk. And the default exported dose volume data also includes relative doses by 1% step and corresponding absolute doses and cumulative relative volumes, and the volumes are 4 decimal fraction. Clinically, we often need read the doses of some integer percent volumes, such as D50 and D30. So it couldn't be directly obtained from the above data, but we can use linear interpolation bye the near volumes and doses: Dx=D2−(V2−Vx)*(D2−D1)/(V2−V1), and program a function to search, read and calculate the corresponding data. And the doses of all preseted volume of interest of all structures can be automatically read one by one patient, and saved as a CSV file. To verify it, we select 24 IMRT plans for prostate cancer, and doses of interest are PTV D98/D95/D5/D2, bladder D30/D50, and rectum D25/D50. Two groups of data, using the automatic reading method(ARM) and pointed dose method(PDM), are analyzed with SPSS 16. The absolute difference=D-ARM-D-PDM, relative difference=absolute difference*100%/prescription dose(7600cGy). Results: The differences are as following: PTV D98/D95/D5/D2: −0.04%/− 0.04%/0.13%/0.19%, bladder D30/D50: −0.02%/0.01%, and rectum D25/D50: 0.03%/0.01%. Conclusion: Using this function, the error is very small, and can be neglected. It could greatly improve the efficiency of clinical work. Project supported by the National Natural Science Foundation of China (Grant No.81101694)« less

  5. A Varian DynaLog file-based procedure for patient dose-volume histogram-based IMRT QA.

    PubMed

    Calvo-Ortega, Juan F; Teke, Tony; Moragues, Sandra; Pozo, Miquel; Casals-Farran, Joan

    2014-03-06

    In the present study, we describe a method based on the analysis of the dynamic MLC log files (DynaLog) generated by the controller of a Varian linear accelerator in order to perform patient-specific IMRT QA. The DynaLog files of a Varian Millennium MLC, recorded during an IMRT treatment, can be processed using a MATLAB-based code in order to generate the actual fluence for each beam and so recalculate the actual patient dose distribution using the Eclipse treatment planning system. The accuracy of the DynaLog-based dose reconstruction procedure was assessed by introducing ten intended errors to perturb the fluence of the beams of a reference plan such that ten subsequent erroneous plans were generated. In-phantom measurements with an ionization chamber (ion chamber) and planar dose measurements using an EPID system were performed to investigate the correlation between the measured dose changes and the expected ones detected by the reconstructed plans for the ten intended erroneous cases. Moreover, the method was applied to 20 cases of clinical plans for different locations (prostate, lung, breast, and head and neck). A dose-volume histogram (DVH) metric was used to evaluate the impact of the delivery errors in terms of dose to the patient. The ionometric measurements revealed a significant positive correlation (R² = 0.9993) between the variations of the dose induced in the erroneous plans with respect to the reference plan and the corresponding changes indicated by the DynaLog-based reconstructed plans. The EPID measurements showed that the accuracy of the DynaLog-based method to reconstruct the beam fluence was comparable with the dosimetric resolution of the portal dosimetry used in this work (3%/3 mm). The DynaLog-based reconstruction method described in this study is a suitable tool to perform a patient-specific IMRT QA. This method allows us to perform patient-specific IMRT QA by evaluating the result based on the DVH metric of the planning CT image (patient DVH-based IMRT QA).

  6. Tolerance and dose-volume relationship of intrathoracic stomach irradiation after esophagectomy for patients with thoracic esophageal squamous cell carcinoma.

    PubMed

    Liu, Qi; Cai, Xu-Wei; Fu, Xiao-Long; Chen, Jun-Chao; Xiang, Jia-Qing

    2015-10-13

    To identify the tolerance of radiation with a high prescribed dose and predictors for the development of intrathoracic stomach toxicity in patients with thoracic esophageal squamous cell carcinoma (SCC) after esophagectomy followed by gastric conduit reconstruction. From 2011 to 2013, 105 patients after esophagectomy were treated with postoperative radiotherapy. The intrathoracic stomach was outlined with the calculation of a dose-volume histogram (DVH) for the initial intended treatment of 6020 cGy or 6300 cGy. The volume of the intrathoracic stomach receiving each dose was recorded at 10-Gy intervals between 10 and 40 Gy and at 5-Gy intervals between 40 and 60 Gy. The grade of toxicities was defined by the National Cancer Institute Common Toxicity Criteria version 4.0. The mean and maximum doses of the intrathoracic stomach were 2449 ± 986 cGy and 6519 ± 406 cGy, respectively. Sixteen (15.2%) and three (2.9%) experienced Common Toxicity Criteria Grade 2 and Grade 3 acute gastric toxicity. There were no Grade 4 toxicities. Fourteen patients (13.3%) exhibited late gastric complications possibly related to radiation. The volume percent of the intrathoracic stomach receiving at least 50 Gy (V50) was strongly associated with the degree of toxicity (p = 0.024, respectively). Multivariate analysis of patient and treatment-related factors revealed no other significant predictors of severe toxicities. The intrathoracic stomach is well tolerated with a high-dose irradiation for patients with esophageal SCC receiving radiotherapy after esophagectomy. A strong dose-volume relationship exists for the development of Grade 2 acute intrathoracic stomach toxicity in our study.

  7. Tolerance and dose-volume relationship of intrathoracic stomach irradiation after esophagectomy for patients with thoracic esophageal squamous cell carcinoma

    PubMed Central

    Fu, Xiao-Long; Chen, Jun-Chao; Xiang, Jia-Qing

    2015-01-01

    Purpose To identify the tolerance of radiation with a high prescribed dose and predictors for the development of intrathoracic stomach toxicity in patients with thoracic esophageal squamous cell carcinoma (SCC) after esophagectomy followed by gastric conduit reconstruction. Methods and Materials From 2011 to 2013, 105 patients after esophagectomy were treated with postoperative radiotherapy. The intrathoracic stomach was outlined with the calculation of a dose-volume histogram (DVH) for the initial intended treatment of 6020 cGy or 6300 cGy. The volume of the intrathoracic stomach receiving each dose was recorded at 10-Gy intervals between 10 and 40 Gy and at 5-Gy intervals between 40 and 60 Gy. The grade of toxicities was defined by the National Cancer Institute Common Toxicity Criteria version 4.0. Results The mean and maximum doses of the intrathoracic stomach were 2449 ± 986 cGy and 6519 ± 406 cGy, respectively. Sixteen (15.2%) and three (2.9%) experienced Common Toxicity Criteria Grade 2 and Grade 3 acute gastric toxicity. There were no Grade 4 toxicities. Fourteen patients (13.3%) exhibited late gastric complications possibly related to radiation. The volume percent of the intrathoracic stomach receiving at least 50 Gy (V50) was strongly associated with the degree of toxicity (p = 0.024, respectively). Multivariate analysis of patient and treatment-related factors revealed no other significant predictors of severe toxicities. Conclusions The intrathoracic stomach is well tolerated with a high-dose irradiation for patients with esophageal SCC receiving radiotherapy after esophagectomy. A strong dose-volume relationship exists for the development of Grade 2 acute intrathoracic stomach toxicity in our study. PMID:26314958

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang Jenghwa; Kowalski, Alex; Hou, Bob

    The purpose of this work was to study the feasibility of incorporating functional magnetic resonance imaging (fMRI) information for intensity modulated radiotherapy (IMRT) treatment planning of brain tumors. Three glioma patients were retrospectively replanned for radiotherapy (RT) with additional fMRI information. The fMRI of each patient was acquired using a bilateral finger-tapping paradigm with a gradient echo EPI (Echo Planer Imaging) sequence. The fMRI data were processed using the Analysis of Functional Neuroimaging (AFNI) software package for determining activation volumes, and the volumes were fused with the simulation computed tomography (CT) scan. The actived pixels in left and right primarymore » motor cortexes (PMCs) were contoured as critical structures for IMRT planning. The goal of replanning was to minimize the RT dose to the activation volumes in the PMC regions, while maintaining a similar coverage to the planning target volume (PTV) and keeping critical structures within accepted dose tolerance. Dose-volume histograms of the treatment plans with and without considering the fMRI information were compared. Beam angles adjustment or additional beams were needed for 2 cases to meet the planning criteria. Mean dose to the contralateral and ipsilateral PMC was significantly reduced by 66% and 55%, respectively, for 1 patient. For the other 2 patients, mean dose to contralateral PMC region was lowered by 73% and 69%. In general, IMRT optimization can reduce the RT dose to the PMC regions without compromising the PTV coverage or sparing of other critical organs. In conclusion, it is feasible to incorporate the fMRI information into the RT treatment planning. IMRT planning allows a significant reduction in RT dose to the PMC regions, especially if the region does not lie within the PTV.« less

  9. Defining the "Hostile Pelvis" for Intensity Modulated Radiation Therapy: The Impact of Anatomic Variations in Pelvic Dimensions on Dose Delivered to Target Volumes and Organs at Risk in Patients With High-Risk Prostate Cancer Treated With Whole Pelvic Radiation Therapy.

    PubMed

    Yirmibeşoğlu Erkal, Eda; Karabey, Sinan; Karabey, Ayşegül; Hayran, Mutlu; Erkal, Haldun Şükrü

    2015-07-15

    The aim of this study was to evaluate the impact of variations in pelvic dimensions on the dose delivered to the target volumes and the organs at risk (OARs) in patients with high-risk prostate cancer (PCa) to be treated with whole pelvic radiation therapy (WPRT) in an attempt to define the hostile pelvis in terms of intensity modulated radiation therapy (IMRT). In 45 men with high-risk PCa to be treated with WPRT, the target volumes and the OARs were delineated, the dose constraints for the OARs were defined, and treatment plans were generated according to the Radiation Therapy Oncology Group 0924 protocol. Six dimensions to reflect the depth, width, and height of the bony pelvis were measured, and 2 indexes were calculated from the planning computed tomographic scans. The minimum dose (Dmin), maximum dose (Dmax), and mean dose (Dmean) for the target volumes and OARs and the partial volumes of each of these structures receiving a specified dose (VD) were calculated from the dose-volume histograms (DVHs). The data from the DVHs were correlated with the pelvic dimensions and indexes. According to an overall hostility score (OHS) calculation, 25 patients were grouped as having a hospitable pelvis and 20 as having a hostile pelvis. Regarding the OHS grouping, the DVHs for the bladder, bowel bag, left femoral head, and right femoral head differed in favor of the hospitable pelvis group, and the DVHs for the rectum differed for a range of lower doses in favor of the hospitable pelvis group. Pelvimetry might be used as a guide to define the challenging anatomy or the hostile pelvis in terms of treatment planning for IMRT in patients with high-risk PCa to be treated with WPRT. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Comparison of plan quality and delivery time between volumetric arc therapy (RapidArc) and Gamma Knife radiosurgery for multiple cranial metastases.

    PubMed

    Thomas, Evan M; Popple, Richard A; Wu, Xingen; Clark, Grant M; Markert, James M; Guthrie, Barton L; Yuan, Yu; Dobelbower, Michael C; Spencer, Sharon A; Fiveash, John B

    2014-10-01

    Volumetric modulated arc therapy (VMAT) has been shown to be feasible for radiosurgical treatment of multiple cranial lesions with a single isocenter. To investigate whether equivalent radiosurgical plan quality and reduced delivery time could be achieved in VMAT for patients with multiple intracranial targets previously treated with Gamma Knife (GK) radiosurgery. We identified 28 GK treatments of multiple metastases. These were replanned for multiarc and single-arc, single-isocenter VMAT (RapidArc) in Eclipse. The prescription for all targets was standardized to 18 Gy. Each plan was normalized for 100% prescription dose to 99% to 100% of target volume. Plan quality was analyzed by target conformity (Radiation Therapy Oncology Group and Paddick conformity indices [CIs]), dose falloff (area under the dose-volume histogram curve), as well as the V4.5, V9, V12, and V18 isodose volumes. Other end points included beam-on and treatment time. Compared with GK, multiarc VMAT improved median plan conformity (CIVMAT = 1.14, CIGK = 1.65; P < .001) with no significant difference in median dose falloff (P = .269), 12 Gy isodose volume (P = .500), or low isodose spill (P = .49). Multiarc VMAT plans were associated with markedly reduced treatment time. A predictive model of the 12 Gy isodose volume as a function of tumor number and volume was also developed. For multiple target stereotactic radiosurgery, 4-arc VMAT produced clinically equivalent conformity, dose falloff, 12 Gy isodose volume, and low isodose spill, and reduced treatment time compared with GK. Because of its similar plan quality and increased delivery efficiency, single-isocenter VMAT radiosurgery may constitute an attractive alternative to multi-isocenter radiosurgery for some patients.

  11. Assessment of histological differentiation in gastric cancers using whole-volume histogram analysis of apparent diffusion coefficient maps.

    PubMed

    Zhang, Yujuan; Chen, Jun; Liu, Song; Shi, Hua; Guan, Wenxian; Ji, Changfeng; Guo, Tingting; Zheng, Huanhuan; Guan, Yue; Ge, Yun; He, Jian; Zhou, Zhengyang; Yang, Xiaofeng; Liu, Tian

    2017-02-01

    To investigate the efficacy of histogram analysis of the entire tumor volume in apparent diffusion coefficient (ADC) maps for differentiating between histological grades in gastric cancer. Seventy-eight patients with gastric cancer were enrolled in a retrospective 3.0T magnetic resonance imaging (MRI) study. ADC maps were obtained at two different b values (0 and 1000 sec/mm 2 ) for each patient. Tumors were delineated on each slice of the ADC maps, and a histogram for the entire tumor volume was subsequently generated. A series of histogram parameters (eg, skew and kurtosis) were calculated and correlated with the histological grade of the surgical specimen. The diagnostic performance of each parameter for distinguishing poorly from moderately well-differentiated gastric cancers was assessed by using the area under the receiver operating characteristic curve (AUC). There were significant differences in the 5 th , 10 th , 25 th , and 50 th percentiles, skew, and kurtosis between poorly and well-differentiated gastric cancers (P < 0.05). There were correlations between the degrees of differentiation and histogram parameters, including the 10 th percentile, skew, kurtosis, and max frequency; the correlation coefficients were 0.273, -0.361, -0.339, and -0.370, respectively. Among all the histogram parameters, the max frequency had the largest AUC value, which was 0.675. Histogram analysis of the ADC maps on the basis of the entire tumor volume can be useful in differentiating between histological grades for gastric cancer. 4 J. Magn. Reson. Imaging 2017;45:440-449. © 2016 International Society for Magnetic Resonance in Medicine.

  12. Impact of Fractionation and Dose in a Multivariate Model for Radiation-Induced Chest Wall Pain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Din, Shaun U.; Williams, Eric L.; Jackson, Andrew

    Purpose: To determine the role of patient/tumor characteristics, radiation dose, and fractionation using the linear-quadratic (LQ) model to predict stereotactic body radiation therapy–induced grade ≥2 chest wall pain (CWP2) in a larger series and develop clinically useful constraints for patients treated with different fraction numbers. Methods and Materials: A total of 316 lung tumors in 295 patients were treated with stereotactic body radiation therapy in 3 to 5 fractions to 39 to 60 Gy. Absolute dose–absolute volume chest wall (CW) histograms were acquired. The raw dose-volume histograms (α/β = ∞ Gy) were converted via the LQ model to equivalent doses in 2-Gy fractions (normalizedmore » total dose, NTD) with α/β from 0 to 25 Gy in 0.1-Gy steps. The Cox proportional hazards (CPH) model was used in univariate and multivariate models to identify and assess CWP2 exposed to a given physical and NTD. Results: The median follow-up was 15.4 months, and the median time to development of CWP2 was 7.4 months. On a univariate CPH model, prescription dose, prescription dose per fraction, number of fractions, D83cc, distance of tumor to CW, and body mass index were all statistically significant for the development of CWP2. Linear-quadratic correction improved the CPH model significance over the physical dose. The best-fit α/β was 2.1 Gy, and the physical dose (α/β = ∞ Gy) was outside the upper 95% confidence limit. With α/β = 2.1 Gy, V{sub NTD99Gy} was most significant, with median V{sub NTD99Gy} = 31.5 cm{sup 3} (hazard ratio 3.87, P<.001). Conclusion: There were several predictive factors for the development of CWP2. The LQ-adjusted doses using the best-fit α/β = 2.1 Gy is a better predictor of CWP2 than the physical dose. To aid dosimetrists, we have calculated the physical dose equivalent corresponding to V{sub NTD99Gy} = 31.5 cm{sup 3} for the 3- to 5-fraction groups.« less

  13. Comparing the dosimetric impact of interfractional anatomical changes in photon, proton and carbon ion radiotherapy for pancreatic cancer patients

    NASA Astrophysics Data System (ADS)

    Houweling, Antonetta C.; Crama, Koen; Visser, Jorrit; Fukata, Kyohei; Rasch, Coen R. N.; Ohno, Tatsuya; Bel, Arjan; van der Horst, Astrid

    2017-04-01

    Radiotherapy using charged particles is characterized by a low dose to the surrounding healthy organs, while delivering a high dose to the tumor. However, interfractional anatomical changes can greatly affect the robustness of particle therapy. Therefore, we compared the dosimetric impact of interfractional anatomical changes (i.e. body contour differences and gastrointestinal gas volume changes) in photon, proton and carbon ion therapy for pancreatic cancer patients. In this retrospective planning study, photon, proton and carbon ion treatment plans were created for 9 patients. Fraction dose calculations were performed using daily cone-beam CT (CBCT) images. To this end, the planning CT was deformably registered to each CBCT; gastrointestinal gas volumes were delineated on the CBCTs and copied to the deformed CT. Fraction doses were accumulated rigidly. To compare planned and accumulated dose, dose-volume histogram (DVH) parameters of the planned and accumulated dose of the different radiotherapy modalities were determined for the internal gross tumor volume, internal clinical target volume (iCTV) and organs-at-risk (OARs; duodenum, stomach, kidneys, liver and spinal cord). Photon plans were highly robust against interfractional anatomical changes. The difference between the planned and accumulated DVH parameters for the photon plans was less than 0.5% for the target and OARs. In both proton and carbon ion therapy, however, coverage of the iCTV was considerably reduced for the accumulated dose compared with the planned dose. The near-minimum dose ({{D}98 % } ) of the iCTV reduced with 8% for proton therapy and with 10% for carbon ion therapy. The DVH parameters of the OARs differed less than 3% for both particle modalities. Fractionated radiotherapy using photons is highly robust against interfractional anatomical changes. In proton and carbon ion therapy, such changes can severely reduce the dose coverage of the target.

  14. Evaluation of nonrigid registration models for interfraction dose accumulation in radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janssens, Guillaume; Orban de Xivry, Jonathan; Fekkes, Stein

    2009-09-15

    Purpose: Interfraction dose accumulation is necessary to evaluate the dose distribution of an entire course of treatment by adding up multiple dose distributions of different treatment fractions. This accumulation of dose distributions is not straightforward as changes in the patient anatomy may occur during treatment. For this purpose, the accuracy of nonrigid registration methods is assessed for dose accumulation based on the calculated deformations fields. Methods: A phantom study using a deformable cubic silicon phantom with implanted markers and a cylindrical silicon phantom with MOSFET detectors has been performed. The phantoms were deformed and images were acquired using a cone-beammore » CT imager. Dose calculations were performed on these CT scans using the treatment planning system. Nonrigid CT-based registration was performed using two different methods, the Morphons and Demons. The resulting deformation field was applied on the dose distribution. For both phantoms, accuracy of the registered dose distribution was assessed. For the cylindrical phantom, also measured dose values in the deformed conditions were compared with the dose values of the registered dose distributions. Finally, interfraction dose accumulation for two treatment fractions of a patient with primary rectal cancer has been performed and evaluated using isodose lines and the dose volume histograms of the target volume and normal tissue. Results: A significant decrease in the difference in marker or MOSFET position was observed after nonrigid registration methods (p<0.001) for both phantoms and with both methods, as well as a significant decrease in the dose estimation error (p<0.01 for the cubic phantom and p<0.001 for the cylindrical) with both methods. Considering the whole data set at once, the difference between estimated and measured doses was also significantly decreased using registration (p<0.001 for both methods). The patient case showed a slightly underdosed planning target volume and an overdosed bladder volume due to anatomical deformations. Conclusions: Dose accumulation using nonrigid registration methods is possible using repeated CT imaging. This opens possibilities for interfraction dose accumulation and adaptive radiotherapy to incorporate possible differences in dose delivered to the target volume and organs at risk due to anatomical deformations.« less

  15. Dosimetric benefits of automation in the treatment of lower thoracic esophageal cancer: Is manual planning still an alternative option?

    PubMed

    Li, Xiadong; Wang, Lu; Wang, Jiahao; Han, Xu; Xia, Bing; Wu, Shixiu; Hu, Weigang

    2017-01-01

    This study aimed to design automated volumetric-modulated arc therapy (VMAT) plans in Pinnacle auto-planning and compare it with manual plans for patients with lower thoracic esophageal cancer (EC). Thirty patients with lower thoracic EC were randomly selected for replanning VMAT plans using auto-planning in Pinnacle treatment planning system (TPS) version 9.10. Historical plans of these patients were then compared. Dose-volume histogram (DVH) statistics, dose uniformity, and dose homogeneity were analyzed to evaluate treatment plans. Auto-planning was superior in terms of conformity index (CI) and homogeneity index (HI) for planning target volume (PTV), significantly improving 8.2% (p = 0.013) and 25% (p = 0.007) compared with manual planning, respectively, and decreasing dose of heart and liver irradiated by 20 to 40 Gy and 5 to 30 Gy, respectively (p < 0.05). Meanwhile, auto-planning further reduced the maximum dose (D max ) of spinal cord by 6.9 Gy compared with manual planning (p = 0.000). Additionally, manual planning showed the significantly lower low-dose volume (V 5 ) for the lung (p = 0.005). For auto-planning, the V 5 of the lung was significantly associated with the relative volume index (the volume ratio of PTV to the lung), and the correlation coefficient (R) and p-value were 0.994 and 0.000. Pinnacle auto-planning achieved superior target conformity and homogeneity and similar target coverage compared with historical manual planning. Most of organs at risk (OARs) sparing was significantly improved by auto-planning except for the V 5 of the lung, and the low dose distribution was highly associated with PTV volume and lung volume in auto-planning. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  16. Dosimetric and radiobiological characterizations of prostate intensity-modulated radiotherapy and volumetric-modulated arc therapy: A single-institution review of ninety cases

    PubMed Central

    Khan, Muhammad Isa; Jiang, Runqing; Kiciak, Alexander; ur Rehman, Jalil; Afzal, Muhammad; Chow, James C. L.

    2016-01-01

    This study reviewed prostate volumetric-modulated arc therapy (VMAT) plans with intensity-modulated radiotherapy (IMRT) plans after prostate IMRT technique was replaced by VMAT in an institution. Characterizations of dosimetry and radiobiological variation in prostate were determined based on treatment plans of 40 prostate IMRT patients (planning target volume = 77.8–335 cm3) and 50 VMAT patients (planning target volume = 120–351 cm3) treated before and after 2013, respectively. Both IMRT and VMAT plans used the same dose-volume criteria in the inverse planning optimization. Dose-volume histogram, mean doses of target and normal tissues (rectum, bladder and femoral heads), dose-volume points (D99% of planning target volume; D30%, D50%, V30 Gy and V35 Gy of rectum and bladder; D5%, V14 Gy, V22 Gy of femoral heads), conformity index (CI), homogeneity index (HI), gradient index (GI), prostate tumor control probability (TCP), and rectal normal tissue complication probability (NTCP) based on the Lyman-Burman-Kutcher algorithm were calculated for each IMRT and VMAT plan. From our results, VMAT plan was found better due to its higher (1.05%) CI, lower (0.83%) HI and (0.75%) GI than IMRT. Comparing doses in normal tissues between IMRT and VMAT, it was found that IMRT mostly delivered higher doses of about 1.05% to the normal tissues than VMAT. Prostate TCP and rectal NTCP were found increased (1%) for VMAT than IMRT. It is seen that VMAT technique can decrease the dose-volume evaluation criteria for the normal tissues. Based on our dosimetric and radiobiological results in treatment plans, it is concluded that our VMAT implementation could produce comparable or slightly better target coverage and normal tissue sparing with a faster treatment time in prostate radiotherapy. PMID:27651562

  17. Helical tomotherapy for radiotherapy in esophageal cancer: a preferred plan with better conformal target coverage and more homogeneous dose distribution.

    PubMed

    Chen, Yi-Jen; Liu, An; Han, Chunhui; Tsai, Peter T; Schultheiss, Timothy E; Pezner, Richard D; Vora, Nilesh; Lim, Dean; Shibata, Stephen; Kernstine, Kemp H; Wong, Jeffrey Y C

    2007-01-01

    We compare different radiotherapy techniques-helical tomotherapy (tomotherapy), step-and-shoot IMRT (IMRT), and 3-dimensional conformal radiotherapy (3DCRT)-for patients with mid-distal esophageal carcinoma on the basis of dosimetric analysis. Six patients with locally advanced mid-distal esophageal carcinoma were treated with neoadjuvant chemoradiation followed by surgery. Radiotherapy included 50 Gy to gross planning target volume (PTV) and 45 Gy to elective PTV in 25 fractions. Tomotherapy, IMRT, and 3DCRT plans were generated. Dose-volume histograms (DVHs), homogeneity index (HI), volumes of lung receiving more than 10, 15, or 20 Gy (V(10), V(15), V(20)), and volumes of heart receiving more than 30 or 45 Gy (V(30), V(45)) were determined. Statistical analysis was performed by paired t-tests. By isodose distributions and DVHs, tomotherapy plans showed sharper dose gradients, more conformal coverage, and better HI for both gross and elective PTVs compared with IMRT or 3DCRT plans. Mean V(20) of lung was significantly reduced in tomotherapy plans. However, tomotherapy and IMRT plans resulted in larger V(10) of lung compared to 3DCRT plans. The heart was significantly spared in tomotherapy and IMRT plans compared to 3DCRT plans in terms of V(30) and V(45). We conclude that tomotherapy plans are superior in terms of target conformity, dose homogeneity, and V(20) of lung.

  18. SU-E-T-157: Evaluation and Comparison of Doses to Pelvic Lymph Nodes and to Point B with 3D Image Guided Treatment Planning for High Dose Brachytherapy for Treatment of Cervical Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhandare, N.

    2014-06-01

    Purpose: To estimate and compare the doses received by the obturator, external and internal iliac lymph nodes and point Methods: CT-MR fused image sets of 15 patients obtained for each of 5 fractions of HDR brachytherapy using tandem and ring applicator, were used to generate treatment plans optimized to deliver a prescription dose to HRCTV-D90 and to minimize the doses to organs at risk (OARs). For each set of image, target volume (GTV, HRCTV) OARs (Bladder, Rectum, Sigmoid), and both left and right pelvic lymph nodes (obturator, external and internal iliac lymph nodes) were delineated. Dose-volume histograms (DVH) were generatedmore » for pelvic nodal groups (left and right obturator group, internal and external iliac chains) Per fraction DVH parameters used for dose comparison included dose to 100% volume (D100), and dose received by 2cc (D2cc), 1cc (D1cc) and 0.1 cc (D0.1cc) of nodal volume. Dose to point B was compared with each DVH parameter using 2 sided t-test. Pearson correlation were determined to examine relationship of point B dose with nodal DVH parameters. Results: FIGO clinical stage varied from 1B1 to IIIB. The median pretreatment tumor diameter measured on MRI was 4.5 cm (2.7– 6.4cm).The median dose to bilateral point B was 1.20 Gy ± 0.12 or 20% of the prescription dose. The correlation coefficients were all <0.60 for all nodal DVH parameters indicating low degree of correlation. Only 2 cc of obturator nodes was not significantly different from point B dose on t-test. Conclusion: Dose to point B does not adequately represent the dose to any specific pelvic nodal group. When using image guided 3D dose-volume optimized treatment nodal groups should be individually identified and delineated to obtain the doses received by pelvic nodes.« less

  19. Risk Factors for Neovascular Glaucoma After Proton Beam Therapy of Uveal Melanoma: A Detailed Analysis of Tumor and Dose–Volume Parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Kavita K., E-mail: kmishra@radonc.ucsf.edu; Daftari, Inder K.; Weinberg, Vivian

    2013-10-01

    Purpose: To determine neovascular glaucoma (NVG) incidence and identify contributing tumor and dosing factors in uveal melanoma patients treated with proton beam radiation therapy (PBRT). Methods and Materials: A total of 704 PBRT patients treated by a single surgeon (DHC) for uveal melanoma (1996-2010) were reviewed for NVG in our prospectively maintained database. All patients received 56 GyE in 4 fractions. Median follow-up was 58.3 months. Analyses included the Kaplan-Meier method to estimate NVG distributions, univariate log–rank tests, and Cox's proportional hazards multivariate analysis using likelihood ratio tests to identify independent risk factors of NVG among patient, tumor, and dose–volumemore » histogram parameters. Results: The 5-year PBRT NVG rate was 12.7% (95% confidence interval [CI] 10.2%-15.9%). The 5-year rate of enucleation due to NVG was 4.9% (95% CI 3.4%-7.2%). Univariately, the NVG rate increased significantly with larger tumor diameter (P<.0001), greater height (P<.0001), higher T stage (P<.0001), and closer proximity to the disc (P=.002). Dose–volume histogram analysis revealed that if >30% of the lens or ciliary body received ≥50% dose (≥28 GyE), there was a higher probability of NVG (P<.0001 for both). Furthermore, if 100% of the disc or macula received ≥28 GyE, the NVG rate was higher (P<.0001 and P=.03, respectively). If both anterior and posterior doses were above specified cut points, NVG risk was highest (P<.0001). Multivariate analysis confirmed significant independent risk factors to include tumor height (P<.0001), age (P<.0001), %disc treated to ≥50% Dose (<100% vs 100%) (P=.0007), larger tumor diameter (P=.01), %lens treated to ≥90% Dose (0 vs >0%-30% vs >30%) (P=.01), and optic nerve length treated to ≥90% Dose (≤1 mm vs >1 mm) (P=.02). Conclusions: Our current PBRT patients experience a low rate of NVG and resultant enucleation compared with historical data. The present analysis shows that tumor height, diameter, and anterior as well as posterior critical structure dose–volume parameters may be used to predict NVG risk.« less

  20. Radiation-induced Liver Injury after 3D-conformal Radiotherapy for Hepatocellular Carcinoma: Quantitative Assessment Using Gd-EOB-DTPA-enhanced MRI.

    PubMed

    Fukugawa, Yoshiyuki; Namimoto, Tomohiro; Toya, Ryo; Saito, Tetsuo; Yuki, Hideaki; Matsuyama, Tomohiko; Ikeda, Osamu; Yamashita, Yasuyuki; Oya, Natsuo

    2017-02-01

    Focal liver reaction (FLR) appears in the hepatobiliary-phase images of gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging (Gd-EOB-DTPA-enhanced MRI) following radiotherapy (RT). We investigated the threshold dose (TD) for FLR development in 13 patients with hepatocellular carcinoma (HCC) who underwent three-dimensional conformal radiotherapy (3D-CRT) with 45 Gy in 15 fractions. FLR volumes (FLRVs) were calculated based on planning CT images by referring to fused hepatobiliary- phase images. We also calculated the TD and the irradiated volumes (IVs) of the liver parenchyma at a given dose of every 5 Gy (IVdose) based on a dose-volume histogram (DVH). The median TD was 35.2 Gy. The median IV20, IV25, IV30, IV35, IV40, and IV45 values were 371.1, 274.8, 233.4, 188.6, 145.8, and 31.0 ml, respectively. The median FLRV was 144.9 ml. There was a significant difference between the FLRV and IV20, IV25, and IV45 (p<0.05), but no significant differences between the FLRV and IV30, IV35, or IV40. These results suggest that the threshold dose of the FLR is approx. 35 Gy in HCC patients who undergo 3D-CRT in 15 fractions. The percentage of the whole liver volume receiving a dose of more than 30-40 Gy (V30-40) is a potential candidate optimal DVH parameter for this fractionation schedule.

  1. Effect of Dosimetric Factors on Occurrence and Volume of Temporal Lobe Necrosis Following Intensity Modulated Radiation Therapy for Nasopharyngeal Carcinoma: A Case-Control Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xin; Ou, Xiaomin; Xu, Tingting

    Purpose: To determine dosimetric risk factors for the occurrence of temporal lobe necrosis (TLN) among nasopharyngeal carcinoma (NPC) patients treated with intensity modulated radiation therapy (IMRT) and to investigate the impact of dose-volume histogram (DVH) parameters on the volume of TLN lesions (V-N). Methods and Materials: Forty-three NPC patients who had developed TLN following IMRT and 43 control subjects free of TLN were retrospectively assessed. DVH parameters included maximum dose (Dmax), minimum dose (Dmin), mean dose (Dmean), absolute volumes receiving specific dose (Vds) from 20 to 76 Gy (V20-V76), and doses covering certain volumes (Dvs) from 0.25 to 6.0 cm{sup 3} (D0.25-D6.0).more » V-Ns were quantified with axial magnetic resonance images. Results: DVH parameters were ubiquitously higher in temporal lobes with necrosis than in healthy temporal lobes. Increased Vds and Dvs were significantly associated with higher risk of TLN occurrence (P<.05). In particular, Vds at a dose of ≥70 Gy were found with the highest odds ratios. A common increasing trend was detected between V-N and DVH parameters through trend tests (P for trend of <.05). Linear regression analysis showed that V45 had the strongest predictive power for V-N (adjusted R{sup 2} = 0.305, P<.0001). V45 of <15.1 cm{sup 3} was relatively safe as the dose constraint for preventing large TLN lesions with V-N of >5 cm{sup 3}. Conclusions: Dosimetric parameters are significantly associated with TLN occurrence and the extent of temporal lobe injury. To better manage TLN, it would be important to avoid both focal high dose and moderate dose delivered to a large area in TLs.« less

  2. Comparison of 3D CRT and IMRT Tratment Plans

    PubMed Central

    Bakiu, Erjona; Telhaj, Ervis; Kozma, Elvisa; Ruçi, Ferdinand; Malkaj, Partizan

    2013-01-01

    Plans of patients with prostate tumor have been studied. These patients have been scanned in the CT simulator and the images have been sent to the Focal, the system where the doctor delineates the tumor and the organs at risk. After that in the treatment planning system XiO there are created for the same patients three dimensional conformal and intensity modulated radiotherapy treatment plans. The planes are compared according to the dose volume histograms. It is observed that the plans with IMRT technique conform better the isodoses to the planning target volume and protect more the organs at risk, but the time needed to create such plans and to control it is higher than 3D CRT. So it necessary to decide in which patients to do one or the other technique depending on the full dose given to PTV and time consuming in genereral. PMID:24167395

  3. Histogram Profiling of Postcontrast T1-Weighted MRI Gives Valuable Insights into Tumor Biology and Enables Prediction of Growth Kinetics and Prognosis in Meningiomas.

    PubMed

    Gihr, Georg Alexander; Horvath-Rizea, Diana; Kohlhof-Meinecke, Patricia; Ganslandt, Oliver; Henkes, Hans; Richter, Cindy; Hoffmann, Karl-Titus; Surov, Alexey; Schob, Stefan

    2018-06-14

    Meningiomas are the most frequently diagnosed intracranial masses, oftentimes requiring surgery. Especially procedure-related morbidity can be substantial, particularly in elderly patients. Hence, reliable imaging modalities enabling pretherapeutic prediction of tumor grade, growth kinetic, realistic prognosis, and-as a consequence-necessity of surgery are of great value. In this context, a promising diagnostic approach is advanced analysis of magnetic resonance imaging data. Therefore, our study investigated whether histogram profiling of routinely acquired postcontrast T1-weighted images is capable of separating low-grade from high-grade lesions and whether histogram parameters reflect Ki-67 expression in meningiomas. Pretreatment T1-weighted postcontrast volumes of 44 meningioma patients were used for signal intensity histogram profiling. WHO grade, tumor volume, and Ki-67 expression were evaluated. Comparative and correlative statistics investigating the association between histogram profile parameters and neuropathology were performed. None of the investigated histogram parameters revealed significant differences between low-grade and high-grade meningiomas. However, significant correlations were identified between Ki-67 and the histogram parameters skewness and entropy as well as between entropy and tumor volume. Contrary to previously reported findings, pretherapeutic postcontrast T1-weighted images can be used to predict growth kinetics in meningiomas if whole tumor histogram analysis is employed. However, no differences between distinct WHO grades were identifiable in out cohort. As a consequence, histogram analysis of postcontrast T1-weighted images is a promising approach to obtain quantitative in vivo biomarkers reflecting the proliferative potential in meningiomas. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Three-dimensional volumetric analysis of irradiated lung with adjuvant breast irradiation.

    PubMed

    Teh, Amy Yuen Meei; Park, Eileen J H; Shen, Liang; Chung, Hans T

    2009-12-01

    To retrospectively evaluate the dose-volume histogram data of irradiated lung in adjuvant breast radiotherapy (ABR) using a three-dimensional computed tomography (3D-CT)-guided planning technique; and to investigate the relationship between lung dose-volume data and traditionally used two-dimensional (2D) parameters, as well as their correlation with the incidence of steroid-requiring radiation pneumonitis (SRRP). Patients beginning ABR between January 2005 and February 2006 were retrospectively reviewed. Patients included were women aged >or=18 years with ductal carcinoma in situ or Stage I-III invasive carcinoma, who received radiotherapy using a 3D-CT technique to the breast or chest wall (two-field radiotherapy [2FRT]) with or without supraclavicular irradiation (three-field radiotherapy [3FRT]), to 50 Gy in 25 fractions. A 10-Gy tumor-bed boost was allowed. Lung dose-volume histogram parameters (V(10), V(20), V(30), V(40)), 2D parameters (central lung depth [CLD], maximum lung depth [MLD], and lung length [LL]), and incidence of SRRP were reported. A total of 89 patients met the inclusion criteria: 51 had 2FRT, and 38 had 3FRT. With 2FRT, mean ipsilateral V(10), V(20), V(30), V(40) and CLD, MLD, LL were 20%, 14%, 11%, and 8% and 2.0 cm, 2.1 cm, and 14.6 cm, respectively, with strong correlation between CLD and ipsilateral V(10-V40) (R(2) = 0.73-0.83, p < 0.0005). With 3FRT, mean ipsilateral V(10), V(20), V(30), and V(40) were 30%, 22%, 17%, and 11%, but its correlation with 2D parameters was poor. With a median follow-up of 14.5 months, 1 case of SRRP was identified. With only 1 case of SRRP observed, our study is limited in its ability to provide definitive guidance, but it does provide a starting point for acceptable lung irradiation during ABR. Further prospective studies are warranted.

  5. A Detailed Dosimetric Analysis of Spinal Cord Tolerance in High-Dose Spine Radiosurgery.

    PubMed

    Katsoulakis, Evangelia; Jackson, Andrew; Cox, Brett; Lovelock, Michael; Yamada, Yoshiya

    2017-11-01

    Dose-volume tolerance of the spinal cord (SC) in spinal stereotactic radiosurgery (SRS) is difficult to define because radiation myelitis rates are low, and published reports document cases of myelopathy but do not account for the total number of patients treated at given dose-volume combinations who do not have myelitis. This study reports SC toxicity from single-fraction spinal SRS and presents a comprehensive atlas of the incidence of adverse events to examine dose-volume predictors. A prospective database of all patients undergoing single-fraction spinal SRS at our institution between 2004 and 2011 was reviewed. SC toxicity was defined by clinical myelitis with accompanying magnetic resonance imaging (MRI) signal changes that were not attributable to tumor progression. Dose-volume histogram (DVH) atlases were created for these endpoints. Rates of adverse events with 95% confidence limits and probabilities that rates of adverse events were <2% and <5% for myelitis were determined as functions of dose and absolute volume. Information about DVH and myelitis was available for 228 patients treated at 259 sites. The median follow-up time was 14.6 months (range, 0.1-138.3 months). The median prescribed dose to the planning treatment volume was 24 Gy (range, 18-24 Gy). There were 2 cases of radiation myelitis (rate r=0.7%) with accompanying MRI signal changes. Myelitis occurred in 2 patients, with Dmax >13.33 Gy, and minimum doses to the hottest 0.1, 0.2, 0.5, and 1 cc were >10.66, 10.9, and 8 Gy, respectively; however, both myelitis cases occurred below the 34th percentile for Dmax and there were 194 DVHs in total with Dmax >13.33 Gy. A median SC Dmax of 13.85 Gy is safe and supports that a Dmax limit of 14 Gy carries a low <1% rate of myelopathy. No dose-volume thresholds or relationships between SC dose and myelitis were apparent. This is the largest study examining dosimetric data and radiation-induced myelitis in de novo spine SRS. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Conformal and intensity modulated irradiation of head and neck cancer: the potential for improved target irradiation, salivary gland function, and quality of life.

    PubMed

    Eisbruch, A; Dawson, L A; Kim, H M; Bradford, C R; Terrell, J E; Chepeha, D B; Teknos, T N; Anzai, Y; Marsh, L H; Martel, M K; Ten Haken, R K; Wolf, G T; Ship, J A

    1999-01-01

    To develop techniques which facilitate sparing of the major salivary glands while adequately treating the targets in patients requiring comprehensive bilateral neck irradiation (RT). Conformal and static, multisegmental intensity modulated (IMRT) techniques have been developed. The salivary flow rates before and periodically after RT have been measured selectively from each major salivary gland and the residual flows correlated with glands' dose volume histograms. Subjective xerostomia questionnaires have been developed and validated. The pattern of local-regional recurrences has been examined using CT scans at the time of recurrence, transferring the recurrence volumes to the planning CT scans and regenerating the dose distributions at the recurrence sites. Target coverage and dose homogeneity in IMRT treatment plans were found to be significantly better than standard RT plans. Significant parotid gland sparing was achieved. The relationships among dose, irradiated volume and saliva flow rates from the parotid glands were characterized by dose and volume thresholds. A mean dose of 26 Gy was found to be the threshold for stimulated saliva. Subjective xerostomia was significantly reduced in patients irradiated with parotid sparing techniques, compared to patients with similar tumors treated with standard RT. The large majority of recurrences occurred inside high-risk targets. Tangible gains in salivary gland sparing and target coverage are being achieved and an improvement in some measures of quality of life is suggested by our findings. A mean parotid gland dose of < or = 26 Gy should be a planning objective if significant parotid function preservation is desired. The pattern of recurrence suggests that careful escalation of the dose to targets judged to be at highest risk may improve tumor control.

  7. Predicting Grade 3 Acute Diarrhea During Radiation Therapy for Rectal Cancer Using a Cutoff-Dose Logistic Regression Normal Tissue Complication Probability Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, John M., E-mail: jrobertson@beaumont.ed; Soehn, Matthias; Yan Di

    Purpose: Understanding the dose-volume relationship of small bowel irradiation and severe acute diarrhea may help reduce the incidence of this side effect during adjuvant treatment for rectal cancer. Methods and Materials: Consecutive patients treated curatively for rectal cancer were reviewed, and the maximum grade of acute diarrhea was determined. The small bowel was outlined on the treatment planning CT scan, and a dose-volume histogram was calculated for the initial pelvic treatment (45 Gy). Logistic regression models were fitted for varying cutoff-dose levels from 5 to 45 Gy in 5-Gy increments. The model with the highest LogLikelihood was used to developmore » a cutoff-dose normal tissue complication probability (NTCP) model. Results: There were a total of 152 patients (48% preoperative, 47% postoperative, 5% other), predominantly treated prone (95%) with a three-field technique (94%) and a protracted venous infusion of 5-fluorouracil (78%). Acute Grade 3 diarrhea occurred in 21%. The largest LogLikelihood was found for the cutoff-dose logistic regression model with 15 Gy as the cutoff-dose, although the models for 20 Gy and 25 Gy had similar significance. According to this model, highly significant correlations (p <0.001) between small bowel volumes receiving at least 15 Gy and toxicity exist in the considered patient population. Similar findings applied to both the preoperatively (p = 0.001) and postoperatively irradiated groups (p = 0.001). Conclusion: The incidence of Grade 3 diarrhea was significantly correlated with the volume of small bowel receiving at least 15 Gy using a cutoff-dose NTCP model.« less

  8. Dosimetric comparison between conventional and conformal radiotherapy for carcinoma cervix: Are we treating the right volumes?

    PubMed Central

    Goswami, Jyotirup; Patra, Niladri B.; Sarkar, Biplab; Basu, Ayan; Pal, Santanu

    2013-01-01

    Background and Purpose: Conventional portals, based on bony anatomy, for external beam radiotherapy for cervical cancer have been repeatedly demonstrated as inadequate. Conversely, with image-based conformal radiotherapy, better target coverage may be offset by the greater toxicities and poorer compliance associated with treating larger volumes. This study was meant to dosimetrically compare conformal and conventional radiotherapy. Materials and Methods: Five patients of carcinoma cervix underwent planning CT scan with IV contrast and targets, and organs at risk (OAR) were contoured. Two sets of plans-conventional and conformal were generated for each patient. Field sizes were recorded, and dose volume histograms of both sets of plans were generated and compared on the basis of target coverage and OAR sparing. Results: Target coverage was significantly improved with conformal plans though field sizes required were significantly larger. On the other hand, dose homogeneity was not significantly improved. Doses to the OARs (rectum, urinary bladder, and small bowel) were not significantly different across the 2 arms. Conclusion: Three-dimensional conformal radiotherapy gives significantly better target coverage, which may translate into better local control and survival. On the other hand, it also requires significantly larger field sizes though doses to the OARs are not significantly increased. PMID:24455584

  9. Symptomatic radiation-induced cardiac disease in long-term survivors of esophageal cancer.

    PubMed

    Ogino, Ichiro; Watanabe, Shigenobu; Iwahashi, Noriaki; Kosuge, Masami; Sakamaki, Kentaro; Kunisaki, Chikara; Kimura, Kazuo

    2016-06-01

    To evaluate clinical and dosimetric factors retrospectively affecting the risk of symptomatic cardiac disease (SCD) in esophageal cancer patients treated with radiotherapy. A total of 343 patients with newly diagnosed esophageal cancer were managed with concurrent chemoradiotherapy or radiotherapy alone. Of these, 58 patients were followed at our hospital for at least 4 years. Median clinical follow-up was 79 months. Cardiac toxicity was determined by Common Terminology Criteria for Adverse Events (CTCAE) v. 4.0. The maximum and mean doses to the heart and percentage of the volume were calculated from the dose-volume histograms. SCD manifested in 11 patients. The heart diseases included three pericardial effusions, one pericardial effusion with valvular disease and paroxysmal atrial tachycardia, three atrial fibrillations, one sinus tachycardia, one coronary artery disease, one chest pain with strongly suspected coronary artery disease, and one congestive heart failure. The actual incidence of SCD was 13.8 % at 5 years. Univariate and multivariate analyses of continuous variables revealed that the risk of developing an SCD depended on the volume of the heart receiving a dose greater than 45 Gy (V45), 50 Gy (V50), and 55 Gy (V55). No other clinical factors were found to influence the risk of SCD. For V45, V50, and V55, the lowest significant cutoff values were 15, 10, and 5 %, respectively. High-dose and large-volume irradiation of the heart increased the risk of SCD in long-term survivors. Using modern radiotherapy techniques, it is important to minimize the heart dose-volume parameters without reducing the tumor dose.

  10. Three-dimensional volumetric gray-scale uterine cervix histogram prediction of days to delivery in full term pregnancy.

    PubMed

    Kim, Ji Youn; Kim, Hai-Joong; Hahn, Meong Hi; Jeon, Hye Jin; Cho, Geum Joon; Hong, Sun Chul; Oh, Min Jeong

    2013-09-01

    Our aim was to figure out whether volumetric gray-scale histogram difference between anterior and posterior cervix can indicate the extent of cervical consistency. We collected data of 95 patients who were appropriate for vaginal delivery with 36th to 37th weeks of gestational age from September 2010 to October 2011 in the Department of Obstetrics and Gynecology, Korea University Ansan Hospital. Patients were excluded who had one of the followings: Cesarean section, labor induction, premature rupture of membrane. Thirty-four patients were finally enrolled. The patients underwent evaluation of the cervix through Bishop score, cervical length, cervical volume, three-dimensional (3D) cervical volumetric gray-scale histogram. The interval days from the cervix evaluation to the delivery day were counted. We compared to 3D cervical volumetric gray-scale histogram, Bishop score, cervical length, cervical volume with interval days from the evaluation of the cervix to the delivery. Gray-scale histogram difference between anterior and posterior cervix was significantly correlated to days to delivery. Its correlation coefficient (R) was 0.500 (P = 0.003). The cervical length was significantly related to the days to delivery. The correlation coefficient (R) and P-value between them were 0.421 and 0.013. However, anterior lip histogram, posterior lip histogram, total cervical volume, Bishop score were not associated with days to delivery (P >0.05). By using gray-scale histogram difference between anterior and posterior cervix and cervical length correlated with the days to delivery. These methods can be utilized to better help predict a cervical consistency.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brualla, Lorenzo, E-mail: lorenzo.brualla@uni-due.de; Zaragoza, Francisco J.; Sempau, Josep

    Purpose: External beam radiotherapy is the only conservative curative approach for Stage I non-Hodgkin lymphomas of the conjunctiva. The target volume is geometrically complex because it includes the eyeball and lid conjunctiva. Furthermore, the target volume is adjacent to radiosensitive structures, including the lens, lacrimal glands, cornea, retina, and papilla. The radiotherapy planning and optimization requires accurate calculation of the dose in these anatomical structures that are much smaller than the structures traditionally considered in radiotherapy. Neither conventional treatment planning systems nor dosimetric measurements can reliably determine the dose distribution in these small irradiated volumes. Methods and Materials: The Montemore » Carlo simulations of a Varian Clinac 2100 C/D and human eye were performed using the PENELOPE and PENEASYLINAC codes. Dose distributions and dose volume histograms were calculated for the bulbar conjunctiva, cornea, lens, retina, papilla, lacrimal gland, and anterior and posterior hemispheres. Results: The simulated results allow choosing the most adequate treatment setup configuration, which is an electron beam energy of 6 MeV with additional bolus and collimation by a cerrobend block with a central cylindrical hole of 3.0 cm diameter and central cylindrical rod of 1.0 cm diameter. Conclusions: Monte Carlo simulation is a useful method to calculate the minute dose distribution in ocular tissue and to optimize the electron irradiation technique in highly critical structures. Using a voxelized eye phantom based on patient computed tomography images, the dose distribution can be estimated with a standard statistical uncertainty of less than 2.4% in 3 min using a computing cluster with 30 cores, which makes this planning technique clinically relevant.« less

  12. Beyond mean pharyngeal constrictor dose for beam path toxicity in non-target swallowing muscles: dose-volume correlates of chronic radiation-associated dysphagia (RAD) after oropharyngeal intensity modulated radiotherapy

    PubMed Central

    2016-01-01

    Purpose/Objective(s) We sought to identify swallowing muscle dose-response thresholds associated with chronic radiation-associated dysphagia (RAD) after IMRT for oropharyngeal cancer. Materials/Methods T1-4 N0-3 M0 oropharyngeal cancer patients who received definitive IMRT and systemic therapy were examined. Chronic RAD was coded as any of the following ≥ 12 months post-IMRT: videofluoroscopy/endoscopy detected aspiration or stricture, gastrostomy tube and/or aspiration pneumonia. DICOM-RT plan data were autosegmented using a custom region-of-interest (ROI) library and included inferior, middle and superior constrictors (IPC, MPC, and SPC), medial and lateral pterygoids (MPM, LPM), anterior and posterior digastrics (ADM, PDM), intrinsic tongue muscles (ITM), mylo/geniohyoid complex (MHM), genioglossus (GGM), ), masseter (MM), Buccinator (BM), palatoglossus (PGM), and cricopharyngeus (CPM), with ROI dose-volume histograms (DVHs) calculated. Recursive partitioning analysis (RPA) was used to identify dose-volume effects associated with chronic-RAD, for use in a multivariate (MV) model. Results Of 300 patients, 34 (11%) had chronic-RAD. RPA showed DVH-derived MHM V69 (i.e. the volume receiving ≥69Gy), GGM V35, ADM V60, MPC V49, and SPC V70 were associated with chronic-RAD. A model including age in addition to MHM V69 as continuous variables was optimal among tested MV models (AUC 0.835). Conclusion In addition to SPCs, dose to MHM should be monitored and constrained, especially in older patients (>62-years), when feasible. PMID:26897515

  13. Beyond mean pharyngeal constrictor dose for beam path toxicity in non-target swallowing muscles: Dose-volume correlates of chronic radiation-associated dysphagia (RAD) after oropharyngeal intensity modulated radiotherapy.

    PubMed

    2016-02-01

    We sought to identify swallowing muscle dose-response thresholds associated with chronic radiation-associated dysphagia (RAD) after IMRT for oropharyngeal cancer. T1-4 N0-3 M0 oropharyngeal cancer patients who received definitive IMRT and systemic therapy were examined. Chronic RAD was coded as any of the following ⩾12months post-IMRT: videofluoroscopy/endoscopy detected aspiration or stricture, gastrostomy tube and/or aspiration pneumonia. DICOM-RT plan data were autosegmented using a custom region-of-interest (ROI) library and included inferior, middle and superior constrictors (IPC, MPC, and SPC), medial and lateral pterygoids (MPM, LPM), anterior and posterior digastrics (ADM, PDM), intrinsic tongue muscles (ITM), mylo/geniohyoid complex (MHM), genioglossus (GGM), masseter (MM), buccinator (BM), palatoglossus (PGM), and cricopharyngeus (CPM), with ROI dose-volume histograms (DVHs) calculated. Recursive partitioning analysis (RPA) was used to identify dose-volume effects associated with chronic-RAD, for use in a multivariate (MV) model. Of 300 patients, 34 (11%) had chronic-RAD. RPA showed DVH-derived MHM V69 (i.e. the volume receiving⩾69Gy), GGM V35, ADM V60, MPC V49, and SPC V70 were associated with chronic-RAD. A model including age in addition to MHM V69 as continuous variables was optimal among tested MV models (AUC 0.835). In addition to SPCs, dose to MHM should be monitored and constrained, especially in older patients (>62-years), when feasible. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Anterior segment sparing to reduce charged particle radiotherapy complications in uveal melanoma

    NASA Technical Reports Server (NTRS)

    Daftari, I. K.; Char, D. H.; Verhey, L. J.; Castro, J. R.; Petti, P. L.; Meecham, W. J.; Kroll, S.; Blakely, E. A.; Chatterjee, A. (Principal Investigator)

    1997-01-01

    PURPOSE: The purpose of this investigation is to delineate the risk factors in the development of neovascular glaucoma (NVG) after helium-ion irradiation of uveal melanoma patients and to propose treatment technique that may reduce this risk. METHODS AND MATERIALS: 347 uveal melanoma patients were treated with helium-ions using a single-port treatment technique. Using univariate and multivariate statistics, the NVG complication rate was analyzed according to the percent of anterior chamber in the radiation field, tumor size, tumor location, sex, age, dose, and other risk factors. Several University of California San Francisco-Lawrence Berkeley National Laboratory (LBNL) patients in each size category (medium, large, and extralarge) were retrospectively replanned using two ports instead of a single port. By using appropriate polar and azimuthal gaze angles or by treating patients with two ports, the maximum dose to the anterior segment of the eye can often be reduced. Although a larger volume of anterior chamber may receive a lower dose by using two ports than a single port treatment. We hypothesize that this could reduce the level of complications that result from the irradiation of the anterior chamber of the eye. Dose-volume histograms were calculated for the lens, and compared for the single and two-port techniques. RESULTS: NVG developed in 121 (35%) patients. The risk of NVG peaked between 1 and 2.5 years posttreatment. By univariate and multivariate analysis, the percent of lens in the field was strongly correlated with the development of NVG. Other contributing factors were tumor height, history of diabetes, and vitreous hemorrhage. Dose-volume histogram analysis of single-port vs. two-port techniques demonstrate that for some patients in the medium and large category tumor groups, a significant decrease in dose to the structures in the anterior segment of the eye could have been achieved with the use of two ports. CONCLUSION: The development of NVG after helium-ion irradiation is correlated to the amount of lens, anterior chamber in the treatment field, tumor height, proximity to the fovea, history of diabetes, and the development of vitreous hemorrhage. Although the influence of the higher LET deposition of helium-ions is unclear, this study suggests that by reducing the dose to the anterior segment of the eye may reduce the NVG complications. Based on this retrospective analysis of LBNL patients, we have implemented techniques to reduce the amount of the anterior segment receiving a high dose in our new series of patients treated with protons using the cyclotron at the UC Davis Crocker Nuclear Laboratory (CNL).

  15. Impact of gastric filling on radiation dose delivered to gastroesophageal junction tumors.

    PubMed

    Bouchard, Myriam; McAleer, Mary Frances; Starkschall, George

    2010-05-01

    This study examined the impact of gastric filling variation on target coverage of gastroesophageal junction (GEJ) tumors in three-dimensional conformal radiation therapy (3DCRT), intensity-modulated radiation therapy (IMRT), or IMRT with simultaneous integrated boost (IMRT-SIB) plans. Eight patients previously receiving radiation therapy for esophageal cancer had computed tomography (CT) datasets acquired with full stomach (FS) and empty stomach (ES). We generated treatment plans for 3DCRT, IMRT, or IMRT-SIB for each patient on the ES-CT and on the FS-CT datasets. The 3DCRT and IMRT plans were planned to 50.4 Gy to the clinical target volume (CTV), and the same for IMRT-SIB plus 63.0 Gy to the gross tumor volume (GTV). Target coverage was evaluated using dose-volume histogram data for patient treatments simulated with ES-CT sets, assuming treatment on an FS for the entire course, and vice versa. FS volumes were a mean of 3.3 (range, 1.7-7.5) times greater than ES volumes. The volume of the GTV receiving >or=50.4 Gy (V(50.4Gy)) was 100% in all situations. The planning GTV V(63Gy) became suboptimal when gastric filling varied, regardless of whether simulation was done on the ES-CT or the FS-CT set. Stomach filling has a negligible impact on prescribed dose delivered to the GEJ GTV, using either 3DCRT or IMRT planning. Thus, local relapses are not likely to be related to variations in gastric filling. Dose escalation for GEJ tumors with IMRT-SIB may require gastric filling monitoring.

  16. Projections onto the Pareto surface in multicriteria radiation therapy optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bokrantz, Rasmus, E-mail: bokrantz@kth.se, E-mail: rasmus.bokrantz@raysearchlabs.com; Miettinen, Kaisa

    2015-10-15

    Purpose: To eliminate or reduce the error to Pareto optimality that arises in Pareto surface navigation when the Pareto surface is approximated by a small number of plans. Methods: The authors propose to project the navigated plan onto the Pareto surface as a postprocessing step to the navigation. The projection attempts to find a Pareto optimal plan that is at least as good as or better than the initial navigated plan with respect to all objective functions. An augmented form of projection is also suggested where dose–volume histogram constraints are used to prevent that the projection causes a violation ofmore » some clinical goal. The projections were evaluated with respect to planning for intensity modulated radiation therapy delivered by step-and-shoot and sliding window and spot-scanned intensity modulated proton therapy. Retrospective plans were generated for a prostate and a head and neck case. Results: The projections led to improved dose conformity and better sparing of organs at risk (OARs) for all three delivery techniques and both patient cases. The mean dose to OARs decreased by 3.1 Gy on average for the unconstrained form of the projection and by 2.0 Gy on average when dose–volume histogram constraints were used. No consistent improvements in target homogeneity were observed. Conclusions: There are situations when Pareto navigation leaves room for improvement in OAR sparing and dose conformity, for example, if the approximation of the Pareto surface is coarse or the problem formulation has too permissive constraints. A projection onto the Pareto surface can identify an inaccurate Pareto surface representation and, if necessary, improve the quality of the navigated plan.« less

  17. Consequences of additional use of PET information for target volume delineation and radiotherapy dose distribution for esophageal cancer.

    PubMed

    Muijs, Christina T; Schreurs, Liesbeth M; Busz, Dianne M; Beukema, Jannet C; van der Borden, Arnout J; Pruim, Jan; Van der Jagt, Eric J; Plukker, John Th; Langendijk, Johannes A

    2009-12-01

    To determine the consequences of target volume (TV) modifications, based on the additional use of PET information, on radiation planning, assuming PET/CT-imaging represents the true extent of the tumour. For 21 patients with esophageal cancer, two separate TV's were retrospectively defined based on CT (CT-TV) and co-registered PET/CT images (PET/CT-TV). Two 3D-CRT plans (prescribed dose 50.4 Gy) were constructed to cover the corresponding TV's. Subsequently, these plans were compared for target coverage, normal tissue dose-volume histograms and the corresponding normal tissue complication probability (NTCP) values. The addition of PET led to the modification of CT-TV with at least 10% in 12 of 21 patients (57%) (reduction in 9, enlargement in 3). PET/CT-TV was inadequately covered by the CT-based treatment plan in 8 patients (36%). Treatment plan modifications resulted in significant changes (p<0.05) in dose distributions to heart and lungs. Corresponding changes in NTCP values ranged from -3% to +2% for radiation pneumonitis and from -0.2% to +1.2% for cardiac mortality. This study demonstrated that TV's based on CT might exclude PET-avid disease. Consequences are under dosing and thereby possibly ineffective treatment. Moreover, the addition of PET in radiation planning might result in clinical important changes in NTCP.

  18. Assessments of Sequential Intensity Modulated Radiation Therapy Boost (SqIB) Treatments Using HART

    NASA Astrophysics Data System (ADS)

    Pyakuryal, Anil

    2009-05-01

    A retrospective study was pursued to evaluate the SqIB treatments performed on ten head and neck cancer patients(n=10).Average prescription doses (PDs) of 39 Gy,15Gy and 17.8Gy were delivered consecutively from larger to smaller planning target volumes(ptvs) in three different treatment plans using 6 MV X-ray photon beams from a Linear accelerator (SLA Linac, Elekta) on BID weak on-weak off schedules. These plans were statistically evaluated on basis of plan indices (PIs),dose response of targets and critical structures, and dose tolerance(DT) of various organs utilizing the DVH analysis automated software known as Histogram Analysis in Radiation Therapy-HART(S.Jang et al., 2008, Med Phys 35, p.2812). Mean SqIB PIs were found consistent with the reported values for varying radio-surgical systems.The 95.5%(n=10)of each ptvs and the gross tumor volume also received 95% (n=10)of PDs in treatments. The average volume of ten organs (N=10) affected by each PDs shrank with decreasing size of ptvs in above plans.A largest volume of Oropharynx (79%,n=10,N=10) irradiated at PD, but the largest volume of Larynx (98%, n=10, N=10) was vulnerable to DT of structure (TD50).Thus, we have demonstrated the efficiency and accuracy of HART in the assessment of Linac based plans in radiation therapy treatments of cancer.

  19. Assessing the Clinical Impact of Approximations in Analytical Dose Calculations for Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuemann, Jan, E-mail: jschuemann@mgh.harvard.edu; Giantsoudi, Drosoula; Grassberger, Clemens

    2015-08-01

    Purpose: To assess the impact of approximations in current analytical dose calculation methods (ADCs) on tumor control probability (TCP) in proton therapy. Methods: Dose distributions planned with ADC were compared with delivered dose distributions as determined by Monte Carlo simulations. A total of 50 patients were investigated in this analysis with 10 patients per site for 5 treatment sites (head and neck, lung, breast, prostate, liver). Differences were evaluated using dosimetric indices based on a dose-volume histogram analysis, a γ-index analysis, and estimations of TCP. Results: We found that ADC overestimated the target doses on average by 1% to 2%more » for all patients considered. The mean dose, D95, D50, and D02 (the dose value covering 95%, 50% and 2% of the target volume, respectively) were predicted within 5% of the delivered dose. The γ-index passing rate for target volumes was above 96% for a 3%/3 mm criterion. Differences in TCP were up to 2%, 2.5%, 6%, 6.5%, and 11% for liver and breast, prostate, head and neck, and lung patients, respectively. Differences in normal tissue complication probabilities for bladder and anterior rectum of prostate patients were less than 3%. Conclusion: Our results indicate that current dose calculation algorithms lead to underdosage of the target by as much as 5%, resulting in differences in TCP of up to 11%. To ensure full target coverage, advanced dose calculation methods like Monte Carlo simulations may be necessary in proton therapy. Monte Carlo simulations may also be required to avoid biases resulting from systematic discrepancies in calculated dose distributions for clinical trials comparing proton therapy with conventional radiation therapy.« less

  20. SU-E-T-618: Plan Robustness Study of Volumetric-Modulated Arc Therapy Vs. Intensity-Modulated Radiation Therapy for Head and Neck Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, W; Patel, S; Shen, J

    Purpose: Lack of plan robustness may contribute to local failure in volumetric-modulated arc therapy (VMAT) to treat head and neck (H&N) cancer. Thus we compared plan robustness of VMAT with intensity-modulated radiation therapy (IMRT). Methods: VMAT and IMRT plans were created for 9 H&N cancer patients. For each plan, six new perturbed dose distributions were computed — one each for ± 3mm setup deviations along the S-I, A-P and L-R directions. We used three robustness quantification tools: (1) worst-case analysis (WCA); (2) dose-volume histograms (DVHs) band (DVHB); and (3) root-mean-square-dose deviation (RMSD) volume histogram (DDVH). DDVH represents the relative volumemore » (y) on the vertical axis and the RMSD (x) on the horizontal axis. Similar to DVH, this means that y% of the volume of the indicated structure has the RMSD at least x Gy[RBE].The width from the first two methods at different target DVH indices (such as D95 and D5) and the area under the DDVH curves (AUC) for the target were used to indicate plan robustness. In these robustness quantification tools, the smaller the value, the more robust the plan is. Plan robustness evaluation metrics were compared using Wilcoxon test. Results: DVHB showed the width at D95 from IMRT to be larger than from VMAT (unit Gy) [1.59 vs 1.18 (p=0.49)], while the width at D5 from IMRT was found to be slightly larger than from VMAT [0.59 vs 0.54 (p=0.84)]. WCA showed similar results [D95: 3.28 vs 3.00 (p=0.56); D5: 1.68 vs 1.95 (p=0.23)]. DDVH showed the AUC from IMRT to be slightly smaller than from VMAT [1.13 vs 1.15 (p=0.43)]. Conclusion: VMAT plan robustness is comparable to IMRT plan robustness. The plan robustness conclusions from WCA and DVHB are DVH parameter dependent. On the other hand DDVH captures the overall effect of uncertainties on the dose to a volume of interest. NIH/NCI K25CA168984; Eagles Cancer Research Career Development; The Lawrence W. and Marilyn W. Matteson Fund for Cancer Research Mayo ASU Seed Grant; The Kemper Marley Foundation.« less

  1. SU-E-T-578: On Definition of Minimum and Maximum Dose for Target Volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Y; Yu, J; Xiao, Y

    Purpose: This study aims to investigate the impact of different minimum and maximum dose definitions in radiotherapy treatment plan quality evaluation criteria by using tumor control probability (TCP) models. Methods: Dosimetric criteria used in RTOG 1308 protocol are used in the investigation. RTOG 1308 is a phase III randomized trial comparing overall survival after photon versus proton chemoradiotherapy for inoperable stage II-IIIB NSCLC. The prescription dose for planning target volume (PTV) is 70Gy. Maximum dose (Dmax) should not exceed 84Gy and minimum dose (Dmin) should not go below 59.5Gy in order for the plan to be “per protocol” (satisfactory).A mathematicalmore » model that simulates the characteristics of PTV dose volume histogram (DVH) curve with normalized volume is built. The Dmax and Dmin are noted as percentage volumes Dη% and D(100-δ)%, with η and d ranging from 0 to 3.5. The model includes three straight line sections and goes through four points: D95%= 70Gy, Dη%= 84Gy, D(100-δ)%= 59.5 Gy, and D100%= 0Gy. For each set of η and δ, the TCP value is calculated using the inhomogeneously irradiated tumor logistic model with D50= 74.5Gy and γ50=3.52. Results: TCP varies within 0.9% with η; and δ values between 0 and 1. With η and η varies between 0 and 2, TCP change was up to 2.4%. With η and δ variations from 0 to 3.5, maximum of 8.3% TCP difference is seen. Conclusion: When defined maximum and minimum volume varied more than 2%, significant TCP variations were seen. It is recommended less than 2% volume used in definition of Dmax or Dmin for target dosimetric evaluation criteria. This project was supported by NIH grants U10CA180868, U10CA180822, U24CA180803, U24CA12014 and PA CURE Grant.« less

  2. Dosimetric comparison of IMRT rectal and anal canal plans generated using an anterior dose avoidance structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leicher, Brian, E-mail: bleicher@wpahs.org; Day, Ellen; Colonias, Athanasios

    2014-10-01

    To describe a dosimetric method using an anterior dose avoidance structure (ADAS) during the treatment planning process for intensity-modulated radiation therapy (IMRT) for patients with anal canal and rectal carcinomas. A total of 20 patients were planned on the Elekta/CMS XiO treatment planning system, version 4.5.1 (Maryland Heights MO) with a superposition algorithm. For each patient, 2 plans were created: one employing an ADAS (ADAS plan) and the other replanned without an ADAS (non-ADAS plan). The ADAS was defined to occupy the volume between the inguinal nodes and primary target providing a single organ at risk that is completely outsidemore » of the target volume. Each plan used the same beam parameters and was analyzed by comparing target coverage, overall plan dose conformity using a conformity number (CN) equation, bowel dose-volume histograms, and the number of segments, daily treatment duration, and global maximum dose. The ADAS and non-ADAS plans were equivalent in target coverage, mean global maximum dose, and sparing of small bowel in low-dose regions (5, 10, 15, and 20 Gy). The mean difference between the CN value for the non-ADAS plans and ADAS plans was 0.04 ± 0.03 (p < 0.001). The mean difference in the number of segments was 15.7 ± 12.7 (p < 0.001) in favor of ADAS plans. The ADAS plan delivery time was shorter by 2.0 ± 1.5 minutes (p < 0.001) than the non-ADAS one. The ADAS has proven to be a powerful tool when planning rectal and anal canal IMRT cases with critical structures partially contained inside the target volume.« less

  3. Novel high dose rate lip brachytherapy technique to improve dose homogeneity and reduce toxicity by customized mold.

    PubMed

    Feldman, Jon; Appelbaum, Limor; Sela, Mordechay; Voskoboinik, Ninel; Kadouri, Sarit; Weinberger, Jeffrey; Orion, Itzhak; Meirovitz, Amichay

    2014-12-23

    The purpose of this study is to describe a novel brachytherapy technique for lip Squamous Cell Carcinoma, utilizing a customized mold with embedded brachytherapy sleeves, which separates the lip from the mandible, and improves dose homogeneity. Seven patients with T2 lip cancer treated with a "sandwich" technique of High Dose Rate (HDR) brachytherapy to the lip, consisting of interstitial catheters and a customized mold with embedded catheters, were reviewed for dosimetry and outcome using 3D planning. Dosimetric comparison was made between the "sandwich" technique to "classic" - interstitial catheters only plan. We compared dose volume histograms for Clinical Tumor Volume (CTV), normal tissue "hot spots" and mandible dose. We are reporting according to the ICRU 58 and calculated the Conformal Index (COIN) to show the advantage of our technique. The seven patients (ages 36-81 years, male) had median follow-up of 47 months. Four patients received Brachytherapy and External Beam Radiation Therapy, 3 patients received brachytherapy alone. All achieved local control, with excellent esthetic and functional results. All patients are disease free. The Customized Mold Sandwich technique (CMS) reduced the high dose region receiving 150% (V150) by an average of 20% (range 1-47%), The low dose region (les then 90% of the prescribed dose) improved by 73% in average by using the CMS technique. The COIN value for the CMS was in average 0.92 as opposed to 0.88 for the interstitial catheter only. All differences (excluding the low dose region) were statistically significant. The CMS technique significantly reduces the high dose volume and increases treatment homogeneity. This may reduce the potential toxicity to the lip and adjacent mandible, and results in excellent tumor control, cosmetic and functionality.

  4. TU-G-BRD-08: In-Vivo EPID Dosimetry: Quantifying the Detectability of Four Classes of Errors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, E; Phillips, M; Bojechko, C

    Purpose: EPID dosimetry is an emerging method for treatment verification and QA. Given that the in-vivo EPID technique is in clinical use at some centers, we investigate the sensitivity and specificity for detecting different classes of errors. We assess the impact of these errors using dose volume histogram endpoints. Though data exist for EPID dosimetry performed pre-treatment, this is the first study quantifying its effectiveness when used during patient treatment (in-vivo). Methods: We analyzed 17 patients; EPID images of the exit dose were acquired and used to reconstruct the planar dose at isocenter. This dose was compared to the TPSmore » dose using a 3%/3mm gamma criteria. To simulate errors, modifications were made to treatment plans using four possible classes of error: 1) patient misalignment, 2) changes in patient body habitus, 3) machine output changes and 4) MLC misalignments. Each error was applied with varying magnitudes. To assess the detectability of the error, the area under a ROC curve (AUC) was analyzed. The AUC was compared to changes in D99 of the PTV introduced by the simulated error. Results: For systematic changes in the MLC leaves, changes in the machine output and patient habitus, the AUC varied from 0.78–0.97 scaling with the magnitude of the error. The optimal gamma threshold as determined by the ROC curve varied between 84–92%. There was little diagnostic power in detecting random MLC leaf errors and patient shifts (AUC 0.52–0.74). Some errors with weak detectability had large changes in D99. Conclusion: These data demonstrate the ability of EPID-based in-vivo dosimetry in detecting variations in patient habitus and errors related to machine parameters such as systematic MLC misalignments and machine output changes. There was no correlation found between the detectability of the error using the gamma pass rate, ROC analysis and the impact on the dose volume histogram. Funded by grant R18HS022244 from AHRQ.« less

  5. Simultaneous integrated protection : A new concept for high-precision radiation therapy.

    PubMed

    Brunner, Thomas B; Nestle, Ursula; Adebahr, Sonja; Gkika, Eleni; Wiehle, Rolf; Baltas, Dimos; Grosu, Anca-Ligia

    2016-12-01

    Stereotactic radiotherapy near serial organs at risk (OAR) requires special caution. A novel intensity-modulated radiotherapy (IMRT) prescription concept termed simultaneous integrated protection (SIP) for quantifiable and comparable dose prescription to targets very close to OAR is described. An intersection volume of a planning risk volume (PRV) with the total planning target volume (PTV) defined the protection volume (PTV SIP ). The remainder of the PTV represented the dominant PTV (PTV dom ). Planning was performed using IMRT. Dose was prescribed to PTV dom according to ICRU in 3, 5, 8, or 12 fractions. Constraints to OARs were expressed as absolute and as equieffective doses at 2 Gy (EQD2). Dose to the gross risk volume of an OAR was to respect constraints. Violation of constraints to OAR triggered a planning iteration at increased fractionation. Dose to PTV SIP was required to be as high as possible within the constraints to avoid local relapse. SIP was applied in 6 patients with OAR being large airways (n = 2) or bowel (n = 4) in 3, 5, 8, and 12 fractions in 1, 3, 1, and 1 patients, respectively. PTVs were 14.5-84.9 ml and PTV SIP 1.8-3.9 ml (2.9-13.4 % of PTV). Safety of the plans was analyzed from the absolute dose-volume histogram (dose to ml). The steepness of dose fall-off could be determined by comparing the dose constraints to the PRVs with those to the OARs (Wilcoxon test p = 0.001). Constraints were respected for the corresponding OARs. All patients had local control at a median 9 month follow-up and toxicity was low. SIP results in a median dose of ≥100 % to PTV, to achieve high local control and low toxicity. Longer follow-up is required to verify results and a prospective clinical trial is currently testing this new approach in chest and abdomen stereotactic body radiotherapy.

  6. Normal tissue complication probability (NTCP) parameters for breast fibrosis: pooled results from two randomised trials.

    PubMed

    Mukesh, Mukesh B; Harris, Emma; Collette, Sandra; Coles, Charlotte E; Bartelink, Harry; Wilkinson, Jenny; Evans, Philip M; Graham, Peter; Haviland, Jo; Poortmans, Philip; Yarnold, John; Jena, Raj

    2013-08-01

    The dose-volume effect of radiation therapy on breast tissue is poorly understood. We estimate NTCP parameters for breast fibrosis after external beam radiotherapy. We pooled individual patient data of 5856 patients from 2 trials including whole breast irradiation followed with or without a boost. A two-compartment dose volume histogram model was used with boost volume as the first compartment and the remaining breast volume as second compartment. Results from START-pilot trial (n=1410) were used to test the predicted models. 26.8% patients in the Cambridge trial (5 years) and 20.7% patients in the EORTC trial (10 years) developed moderate-severe breast fibrosis. The best fit NTCP parameters were BEUD3(50)=136.4 Gy, γ50=0.9 and n=0.011 for the Niemierko model and BEUD3(50)=132 Gy, m=0.35 and n=0.012 for the Lyman Kutcher Burman model. The observed rates of fibrosis in the START-pilot trial agreed well with the predicted rates. This large multi-centre pooled study suggests that the effect of volume parameter is small and the maximum RT dose is the most important parameter to influence breast fibrosis. A small value of volume parameter 'n' does not fit with the hypothesis that breast tissue is a parallel organ. However, this may reflect limitations in our current scoring system of fibrosis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. SU-E-T-300: Dosimetric Comparision of 4D Radiation Therapy and 3D Radiation Therapy for the Liver Tumor Based On 4D Medical Image

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, C; Yin, Y

    Purpose: The purpose of this work was to determine the dosimetric benefit to normal tissues by tracking liver tumor dose in four dimensional radiation therapy (4DRT) on ten phases of four dimensional computer tomagraphy(4DCT) images. Methods: Target tracking each phase with the beam aperture for ten liver cancer patients were converted to cumulative plan and compared to the 3D plan with a merged target volume based on 4DCT image in radiation treatment planning system (TPS). The change in normal tissue dose was evaluated in the plan by using the parameters V5, V10, V15, V20,V25, V30, V35 and V40 (volumes receivingmore » 5, 10, 15, 20, 25, 30, 35 and 40Gy, respectively) in the dose-volume histogram for the liver; mean dose for the following structures: liver, left kidney and right kidney; and maximum dose for the following structures: bowel, duodenum, esophagus, stomach and heart. Results: There was significant difference between 4D PTV(average 115.71cm3 )and ITV(169.86 cm3). When the planning objective is 95% volume of PTV covered by the prescription dose, the mean dose for the liver, left kidney and right kidney have an average decrease 23.13%, 49.51%, and 54.38%, respectively. The maximum dose for bowel, duodenum,esophagus, stomach and heart have an average decrease 16.77%, 28.07%, 24.28%, 4.89%, and 4.45%, respectively. Compared to 3D RT, radiation volume for the liver V5, V10, V15, V20, V25, V30, V35 and V40 by using the 4D plans have a significant decrease(P≤0.05). Conclusion: The 4D plan method creates plans that permit better sparing of the normal structures than the commonly used ITV method, which delivers the same dosimetric effects to the target.« less

  8. Hypothyroidism as a Consequence of Intensity-Modulated Radiotherapy With Concurrent Taxane-Based Chemotherapy for Locally Advanced Head-and-Neck Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz, Roberto; Jaboin, Jerry J.; Morales-Paliza, Manuel

    Purpose: To conduct a retrospective review of 168 consecutively treated locally advanced head-and-neck cancer (LAHNC) patients treated with intensity-modulated radiotherapy (IMRT)/chemotherapy, to determine the rate and risk factors for developing hypothyroidism. Methods and Materials: Intensity-modulated radiotherapy was delivered in 33 daily fractions to 69.3 Gy to gross disease and 56.1 Gy to clinically normal cervical nodes. Dose-volume histograms (DVHs) of IMRT plans were used to determine radiation dose to thyroid and were compared with DVHs using conventional three-dimensional radiotherapy (3D-RT) in 10 of these same patients randomly selected for replanning and with DVHs of 16 patients in whom the thyroidmore » was intentionally avoided during IMRT. Weekly paclitaxel (30 mg/m{sup 2}) and carboplatin area under the curve-1 were given concurrently with IMRT. Results: Sixty-one of 128 evaluable patients (47.7%) developed hypothyroidism after a median of 1.08 years after IMRT (range, 2.4 months to 3.9 years). Age and volume of irradiated thyroid were associated with hypothyroidism development after IMRT. Compared with 3D-RT, IMRT with no thyroid dose constraints resulted in significantly higher minimum, maximum, and median dose (p < 0.0001) and percentage thyroid volume receiving 10, 20, and 60 Gy (p < 0.05). Compared with 3D-RT, IMRT with thyroid dose constraints resulted in lower median dose and percentage thyroid volume receiving 30, 40, and 50 Gy (p < 0.005) but higher minimum and maximum dose (p < 0.005). Conclusions: If not protected, IMRT for LAHNC can result in higher radiation to the thyroid than with conventional 3D-RT. Techniques to reduce dose and volume of radiation to thyroid tissue with IMRT are achievable and recommended.« less

  9. Simulation of Dose to Surrounding Normal Structures in Tangential Breast Radiotherapy Due to Setup Error

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabhakar, Ramachandran; Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi; Department of Radiology, All India Institute of Medical Sciences, New Delhi

    Setup error plays a significant role in the final treatment outcome in radiotherapy. The effect of setup error on the planning target volume (PTV) and surrounding critical structures has been studied and the maximum allowed tolerance in setup error with minimal complications to the surrounding critical structure and acceptable tumor control probability is determined. Twelve patients were selected for this study after breast conservation surgery, wherein 8 patients were right-sided and 4 were left-sided breast. Tangential fields were placed on the 3-dimensional-computed tomography (3D-CT) dataset by isocentric technique and the dose to the PTV, ipsilateral lung (IL), contralateral lung (CLL),more » contralateral breast (CLB), heart, and liver were then computed from dose-volume histograms (DVHs). The planning isocenter was shifted for 3 and 10 mm in all 3 directions (X, Y, Z) to simulate the setup error encountered during treatment. Dosimetric studies were performed for each patient for PTV according to ICRU 50 guidelines: mean doses to PTV, IL, CLL, heart, CLB, liver, and percentage of lung volume that received a dose of 20 Gy or more (V20); percentage of heart volume that received a dose of 30 Gy or more (V30); and volume of liver that received a dose of 50 Gy or more (V50) were calculated for all of the above-mentioned isocenter shifts and compared to the results with zero isocenter shift. Simulation of different isocenter shifts in all 3 directions showed that the isocentric shifts along the posterior direction had a very significant effect on the dose to the heart, IL, CLL, and CLB, which was followed by the lateral direction. The setup error in isocenter should be strictly kept below 3 mm. The study shows that isocenter verification in the case of tangential fields should be performed to reduce future complications to adjacent normal tissues.« less

  10. Accuracy of the dose-shift approximation in estimating the delivered dose in SBRT of lung tumors considering setup errors and breathing motions.

    PubMed

    Karlsson, Kristin; Lax, Ingmar; Lindbäck, Elias; Poludniowski, Gavin

    2017-09-01

    Geometrical uncertainties can result in a delivered dose to the tumor different from that estimated in the static treatment plan. The purpose of this project was to investigate the accuracy of the dose calculated to the clinical target volume (CTV) with the dose-shift approximation, in stereotactic body radiation therapy (SBRT) of lung tumors considering setup errors and breathing motion. The dose-shift method was compared with a beam-shift method with dose recalculation. Included were 10 patients (10 tumors) selected to represent a variety of SBRT-treated lung tumors in terms of tumor location, CTV volume, and tumor density. An in-house developed toolkit within a treatment planning system allowed the shift of either the dose matrix or a shift of the beam isocenter with dose recalculation, to simulate setup errors and breathing motion. Setup shifts of different magnitudes (up to 10 mm) and directions as well as breathing with different peak-to-peak amplitudes (up to 10:5:5 mm) were modeled. The resulting dose-volume histograms (DVHs) were recorded and dose statistics were extracted. Generally, both the dose-shift and beam-shift methods resulted in calculated doses lower than the static planned dose, although the minimum (D 98% ) dose exceeded the prescribed dose in all cases, for setup shifts up to 5 mm. The dose-shift method also generally underestimated the dose compared with the beam-shift method. For clinically realistic systematic displacements of less than 5 mm, the results demonstrated that in the minimum dose region within the CTV, the dose-shift method was accurate to 2% (root-mean-square error). Breathing motion only marginally degraded the dose distributions. Averaged over the patients and shift directions, the dose-shift approximation was determined to be accurate to approximately 2% (RMS) within the CTV, for clinically relevant geometrical uncertainties for SBRT of lung tumors.

  11. Relationship between Eustachian tube dysfunction and otitis media with effusion in radiotherapy patients.

    PubMed

    Akazawa, K; Doi, H; Ohta, S; Terada, T; Fujiwara, M; Uwa, N; Tanooka, M; Sakagami, M

    2018-02-01

    This study evaluated the relationship between radiation and Eustachian tube dysfunction, and examined the radiation dose required to induce otitis media with effusion. The function of 36 Eustachian tubes in 18 patients with head and neck cancer were examined sonotubometrically before, during, and 1, 2 and 3 months after, intensity-modulated radiotherapy. Patients with an increase of 5 dB or less in sound pressure level (dB) during swallowing were categorised as being in the dysfunction group. Additionally, radiation dose distributions were assessed in all Eustachian tubes using three dose-volume histogram parameters. Twenty-two of 25 normally functioning Eustachian tubes before radiotherapy (88.0 per cent) shifted to the dysfunction group after therapy. All ears that developed otitis media with effusion belonged to the dysfunction group. The radiation dose threshold evaluation revealed that ears with otitis media with effusion received significantly higher doses to the Eustachian tubes. The results indicate a relationship between radiation dose and Eustachian tube dysfunction and otitis media with effusion.

  12. SU-F-T-359: Incorporating Dose Volume Histogram Prediction Into Auto-Planning for Volumetric-Modulated Arc Therapy in Rectal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, K; Chen, X; Wang, J

    Purpose: To incorporate dose volume histogram (DVH) prediction into Auto-Planning for volumetric-modulated arc therapy (VMAT) treatment planning and investigate the benefit of this new technique for rectal cancer. Methods: Ninety clinically accepted VMAT plans for patients with rectal cancer were selected and trained in the RapidPlan for DVH prediction. Both internal and external validations were performed before implementing the prediction model. A new VMAT planning method (hybrid-VMAT) was created with combining the DVH prediction and Auto-Planning. For each new patient, the DVH will be predicted and individual DVH constrains will be obtained and were exported as the original optimization parametersmore » to the Auto-Planning (Pinnacle3 treatment planning system, v9.10) for planning. A total of 20 rectal cancer patients previously treated with manual VMAT (manual-VMAT) plans were replanned using this new method. Dosimetric comparisons were performed between manual VMAT and new method plans. Results: Hybrid-VMAT shows similar PTV coverage to manual-VMAT in D2%, D98% and HI (p>0.05) and superior coverage in CI (p=0.000). For the bladder, the means of V40 and mean dose are 36.0% and 35.6Gy for hybrid-VMAT and 42% and 38.0Gy for the manual-VMAT. For the left (right) femur, the means of V30 and mean dose are 10.6% (11.6%) and 17.9Gy (19.2Gy) for the hybrid-VMAT and 25.6% (24.1%) and 27.3Gy (26.2Gy) for the manual-VMAT. The hybrid-VMAT has significantly improved the organs at risk sparing. Conclusion: The integration of DVH prediction and Auto-Planning significantly improve the VMAT plan quality in the rectal cancer radiotherapy. Our results show the benefit of the new method and will be further investigated in other tumor sites.« less

  13. Quantitative evaluation of 3D dosimetry for stereotactic volumetric‐modulated arc delivery using COMPASS

    PubMed Central

    Manigandan, Durai; Karrthick, Karukkupalayam Palaniappan; Sambasivaselli, Raju; Senniandavar, Vellaingiri; Ramu, Mahendran; Rajesh, Thiyagarajan; Lutz, Muller; Muthukumaran, Manavalan; Karthikeyan, Nithyanantham; Tejinder, Kataria

    2014-01-01

    The purpose of this study was to evaluate quantitatively the patient‐specific 3D dosimetry tool COMPASS with 2D array MatriXX detector for stereotactic volumetric‐modulated arc delivery. Twenty‐five patients CT images and RT structures from different sites (brain, head & neck, thorax, abdomen, and spine) were taken from CyberKnife Multiplan planning system for this study. All these patients underwent radical stereotactic treatment in CyberKnife. For each patient, linac based volumetric‐modulated arc therapy (VMAT) stereotactic plans were generated in Monaco TPS v3.1 using Elekta Beam Modulator MLC. Dose prescription was in the range of 5–20 Gy per fraction. Target prescription and critical organ constraints were tried to match the delivered treatment plans. Each plan quality was analyzed using conformity index (CI), conformity number (CN), gradient Index (GI), target coverage (TC), and dose to 95% of volume (D95). Monaco Monte Carlo (MC)‐calculated treatment plan delivery accuracy was quantitatively evaluated with COMPASS‐calculated (CCA) dose and COMPASS indirectly measured (CME) dose based on dose‐volume histogram metrics. In order to ascertain the potential of COMPASS 3D dosimetry for stereotactic plan delivery, 2D fluence verification was performed with MatriXX using MultiCube phantom. Routine quality assurance of absolute point dose verification was performed to check the overall delivery accuracy. Quantitative analyses of dose delivery verification were compared with pass and fail criteria of 3 mm and 3% distance to agreement and dose differences. Gamma passing rate was compared with 2D fluence verification from MatriXX with MultiCube. Comparison of COMPASS reconstructed dose from measured fluence and COMPASS computed dose has shown a very good agreement with TPS calculated dose. Each plan was evaluated based on dose volume parameters for target volumes such as dose at 95% of volume (D95) and average dose. For critical organs dose at 20% of volume (D20), dose at 50% of volume (D50), and maximum point doses were evaluated. Comparison was carried out using gamma analysis with passing criteria of 3 mm and 3%. Mean deviation of 1.9%±1% was observed for dose at 95% of volume (D95) of target volumes, whereas much less difference was noticed for critical organs. However, significant dose difference was noticed in two cases due to the smaller tumor size. Evaluation of this study revealed that the COMPASS 3D dosimetry is efficient and easy to use for patient‐specific QA of VMAT stereotactic delivery. 3D dosimetric QA with COMPASS provides additional degrees of freedom to check the high‐dose modulated stereotactic delivery with very high precision on patient CT images. PACS numbers: 87.55.Qr, 87.56.Fc PMID:25679152

  14. Integration of radiobiological modeling and indices in comparative plan evaluation: A study comparing VMAT and 3D-CRT in patients with NSCLC.

    PubMed

    Roy, Soumyajit; Badragan, Iulian; Ahmed, Sheikh Nisar; Sia, Michael; Singh, Jorawur; Bahl, Gaurav

    2018-03-01

    The purpose of this article was to generate an algorithm to calculate radiobiological endpoints and composite indices and use them to compare volumetric modulated arc therapy (VMAT) and 3-dimensional conformal radiation therapy (3D-CRT) techniques in patients with locally advanced non-small cell lung cancer. The study included 25 patients with locally advanced non-small cell lung cancer treated with 3D-CRT at our center between January 1, 2010, and December 31, 2014. The planner generated VMAT plans using clones of the original computed tomography scans and regions of interest volumes, which did not include the original 3D plans. Both 3D-CRT and VMAT plans were generated using the same dose-volume constraint worksheet. The dose-volume histogram parameters for planning target volume and relevant organs at risk (OAR) were reviewed. The calculation engine was written in the R programming language; the user interface was developed with the "shiny" R Web library. Dose-volume histogram data were imported into the calculation engine and tumor control probability (TCP), normal tissue complication probability (NTCP), composite cardiopulmonary toxicity index (CPTI), morbidity index: MI = ∑ j = 1 #ofrelevantOARs (w j  ∗ NTCP j ), uncomplicated TCP (UTCP=TCP∗∏k=1#ofOARs1-NTCP K 100, and therapeutic gain (TG): ie, TG = TCP ∗ (100 - MI) were calculated. TCP was better with 3D-CRT (12.62% vs 11.71%, P < .001), whereas VMAT demonstrated superior NTCP esophagus (4.45% vs 7.39%, P = .02). NTCP spinal cord (0.001% vs 0.009%, P = .001), and NTCP heart/perfusion defect (44.57% vs 56.42%, P = .016). There was no difference in NTCP lung (6.27% vs 7.62%, P = .221) and NTCP heart/pericarditis (0.001% vs 0.15%, P = .129) between 2 techniques. VMAT showed substantial improvement in morbidity index (11.06% vs. 14.31%, P = 0.01), CPTI (47.59% vs 59.41%, P = .03), TG (P = .035), and trend toward superiority in UTCP (5.89 vs 4.75, P=.057). The study highlights the utility of the radiobiological algorithm and summary indices in comparative plan evaluation and demonstrates benefits of VMAT over 3D-CRT. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Airborne gamma-ray spectrometer and magnetometer survey, Durango C, Colorado. Final report Volume II A. Detail area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-01-01

    Geology of Durango C detail area, radioactive mineral occurrences in Colorado, and geophysical data interpretation are included in this report. Eight appendices provide: stacked profiles, geologic histograms, geochemical histograms, speed and altitude histograms, geologic statistical tables, magnetic and ancillary profiles, and test line data.

  16. Efficacy of patient-specific bolus created using three-dimensional printing technique in photon radiotherapy.

    PubMed

    Fujimoto, Koya; Shiinoki, Takehiro; Yuasa, Yuki; Hanazawa, Hideki; Shibuya, Keiko

    2017-06-01

    A commercially available bolus ("commercial-bolus") does not make complete contact with the irregularly shaped patient skin. This study aims to customise a patient-specific three-dimensional (3D) bolus using a 3D printing technique ("3D-bolus") and to evaluate its clinical feasibility for photon radiotherapy. The 3D-bolus was designed using a treatment planning system (TPS) in Digital Imaging and Communications in Medicine-Radiotherapy (DICOM-RT) format, and converted to stereolithographic format for printing. To evaluate its physical characteristics, treatment plans were created for water-equivalent phantoms that were bolus-free, or had a flat-form printed 3D-bolus, a TPS-designed bolus ("virtual-bolus"), or a commercial-bolus. These plans were compared based on the percentage depth dose (PDD) and target-volume dose volume histogram (DVH) measurements. To evaluate the clinical feasibility, treatment plans were created for head phantoms that were bolus-free or had a 3D-bolus, a virtual-bolus, or a commercial-bolus. These plans were compared based on the target volume DVH. In the physical evaluation, the 3D-bolus provided effective dose coverage in the build-up region, which was equivalent to the commercial-bolus. With regard to the clinical feasibility, the air gaps were lesser with the 3D-bolus when compared to the commercial-bolus. Furthermore, the prescription dose could be delivered appropriately to the target volume. The 3D-bolus has potential use for air-gap reduction compared to the commercial-bolus and facilitates target-volume dose coverage and homogeneity improvement. A 3D-bolus produced using a 3D printing technique is comparable to a commercial-bolus applied to an irregular-shaped skin surface. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  17. The Dose-Volume Relationship of Small Bowel Irradiation and Acute Grade 3 Diarrhea During Chemoradiotherapy for Rectal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, John M.; Lockman, David; Yan Di

    Purpose: Previous work has found a highly significant relationship between the irradiated small-bowel volume and development of Grade 3 small-bowel toxicity in patients with rectal cancer. This study tested the previously defined parameters in a much larger group of patients. Methods and Materials: A total of 96 consecutive patients receiving pelvic radiation therapy for rectal cancer had treatment planning computed tomographic scans with small-bowel contrast that allowed the small bowel to be outlined with calculation of a small-bowel dose-volume histogram for the initial intended pelvic treatment to 45 Gy. Patients with at least one parameter above the previously determined dose-volumemore » parameters were considered high risk, whereas those with all parameters below these levels were low risk. The grade of diarrhea and presence of liquid stool was determined prospectively. Results: There was a highly significant association with small-bowel dose-volume and Grade 3 diarrhea (p {<=} 0.008). The high-risk and low-risk parameters were predictive with Grade 3 diarrhea in 16 of 51 high-risk patients and in 4 of 45 low-risk patients (p = 0.01). Patients who had undergone irradiation preoperatively had a lower incidence of Grade 3 diarrhea than those treated postoperatively (18% vs. 28%; p = 0.31); however, the predictive ability of the high-risk/low-risk parameters was better for preoperatively (p = 0.03) than for postoperatively treated patients (p = 0.15). Revised risk parameters were derived that improved the overall predictive ability (p = 0.004). Conclusions: The highly significant dose-volume relationship and validity of the high-risk and low-risk parameters were confirmed in a large group of patients. The risk parameters provided better modeling for the preoperative patients than for the postoperative patients.« less

  18. SU-E-T-546: Use of Implant Volume for Quality Assurance of Low Dose Rate Brachytherapy Treatment Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkinson, D; Kolar, M

    Purpose: To analyze the application of volume implant (V100) data as a method for a global check of low dose rate (LDR) brachytherapy plans. Methods: Treatment plans for 335 consecutive patients undergoing permanent seed implants for prostate cancer and for 113 patients treated with plaque therapy for ocular melanoma were analyzed. Plaques used were 54 COMS (10 to 20 mm, notched and regular) and 59 Eye Physics EP917s with variable loading. Plots of treatment time x implanted activity per unit dose versus v100 ^.667 were made. V100 values were obtained using dose volume histograms calculated by the treatment planning systemsmore » (Variseed 8.02 and Plaque Simulator 5.4). Four different physicists were involved in planning the prostate seed cases; two physicists for the eye plaques. Results: Since the time and dose for the prostate cases did not vary, a plot of implanted activity vs V100 ^.667 was made. A linear fit with no intercept had an r{sup 2} = 0.978; more than 94% of the actual activities fell within 5% of the activities calculated from the linear fit. The greatest deviations were in cases where the implant volumes were large (> 100 cc). Both COMS and EP917 plaque linear fits were good (r{sup 2} = .967 and .957); the largest deviations were seen for large volumes. Conclusions: The method outlined here is effective for checking planning consistency and quality assurance of two types of LDR brachytherapy treatment plans (temporary and permanent). A spreadsheet for the calculations enables a quick check of the plan in situations were time is short (e.g. OR-based prostate planning)« less

  19. SU-E-P-51: Dosimetric Comparison to Organs at Risk Sparing Using Volumetric-Modulated Arc Therapy Versus Intensity-Modulated Radiotherapy in Postoperative Radiotherapy of Left-Sided Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, L; Deng, G; Xie, J

    2015-06-15

    Purpose: To compare the dosimetric characteristics of volumetric-modulated arc therapy (VMAT) and intensity-modulated radiotherapy (IMRT) techniques in treatment planning for left-sided breast cancer patients with modified radical mastectomy. Methods: Twenty-four left-sided breast cancer patients treated with modified radical mastectomy were selected in this study. The planning target volume (PTV) was generated by using 7-mm uniform expansion of the clinical target volume (CTV) in all direction except the skin surface. The organs at risk (OARs) included heart, left lung, right lung, and right breast. Dose volume histograms (DVHs) were utilized to evaluate the dose distribution in PTV and OARs. Results: Bothmore » VMAT and IMRT plans met the requirement of PTV coverage. VMAT was superior to IMRT in terms of conformity, with a statistically significant difference (p=0.024). Mean doses, V5 and V10 of heart and both lungs in VMAT plans were significantly decreased compared to IMRT plans (P<0.05), but in terms of heart volume irradiated by high doses (V30 and V45), no significant differences were observed (P>0.05). For right breast, VMAT showed the reduction of V5 in comparison with IMRT (P<0.05). Additionally, the mean number of monitor units (MU) and treatment time in VMAT (357.21, 3.62 min) were significantly less than those in IMRT (1132.85, 8.74 min). Conclusion: VMAT showed similar PTV coverage and significant advantage in OARs sparing compared with IMRT, especially in terms of decreased volumes irradiated by low doses, while significantly reducing the treatment time and MU number.« less

  20. Novel Application of Helical Tomotherapy in Whole Skull Palliative Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodrigues, George; Yartsev, Slav; Coad, Terry

    2008-01-01

    Helical tomotherapy (HT) is a radiation planning/delivery platform that combines inversely planned IMRT with on-board megavoltage imaging. A unique HT radiotherapy whole skull brain sparing technique is described in a patient with metastatic prostate cancer. An inverse HT plan and an accompanying back-up conventional lateral 6-MV parallel opposed pair (POP) plan with corresponding isodose distributions and dose-volume histograms (DVH) were created and assessed prior to initiation of therapy. Plans conforming to the planning treatment volume (PTV) with significant sparing of brain, optic nerve, and eye were created. Dose heterogeneity to the PTV target was slightly higher in the HT planmore » compared to the back-up POP plan. Conformal sparing of brain, optic nerve, and eye was achieved by the HT plan. Similar lens and brain stem/spinal cord doses were seen with both plans. Prospective clinical evaluation with relevant end points (quality of life, symptom relief) are required to confirm the potential benefits of highly conformal therapies applied to palliative situations such as this case.« less

  1. Dose-volume parameters predict for the development of chest wall pain after stereotactic body radiation for lung cancer.

    PubMed

    Mutter, Robert W; Liu, Fan; Abreu, Andres; Yorke, Ellen; Jackson, Andrew; Rosenzweig, Kenneth E

    2012-04-01

    Chest wall (CW) pain has recently been recognized as an important adverse effect of stereotactic body radiation therapy (SBRT) for non-small-cell lung cancer (NSCLC). We developed a dose-volume model to predict the development of this toxicity. A total of 126 patients with primary, clinically node-negative NSCLC received three to five fractions of SBRT to doses of 40-60 Gy and were prospectively followed. The dose-absolute volume histograms of two different definitions of the CW as an organ at risk (CW3cm and CW2cm) were examined for all 126 patients. With a median follow-up of 16 months, the 2-year estimated actuarial incidence of Grade ≥ 2 CW pain was 39%. The median time to onset of Grade ≥ 2 CW pain (National Cancer Institute Common Terminology Criteria for Adverse Events, Version 3.0) was 9 months. There was no predictive advantage for biologically corrected dose over physical dose. Neither fraction number (p = 0.07) nor prescription dose (p = 0.07) were significantly correlated with the development of Grade ≥ 2 CW pain. Cox Proportional Hazards analysis identified significant correlation with a broad range of dose-volume combinations, with the CW volume receiving 30 Gy (V30) as one of the strongest predictors (p < 0.001). CW2cm consistently enabled better prediction of CW toxicity. When a physical dose of 30 Gy was received by more than 70 cm(3) of CW2cm, there was a significant correlation with Grade ≥ 2 CW pain (p = 0.004). CW toxicity after SBRT is common and long-term follow-up is needed to identify affected patients. A volume of CW ≥ 70 cm(3) receiving 30 Gy is significantly correlated with Grade ≥ 2 CW pain. We are currently applying this constraint at our institution for patients receiving thoracic SBRT. An actuarial atlas of our data is provided as an electronic supplement to facilitate data-sharing and meta-analysis relating to CW pain. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Defining the “Hostile Pelvis” for Intensity Modulated Radiation Therapy: The Impact of Anatomic Variations in Pelvic Dimensions on Dose Delivered to Target Volumes and Organs at Risk in Patients With High-Risk Prostate Cancer Treated With Whole Pelvic Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yirmibeşoğlu Erkal, Eda, E-mail: eyirmibesoglu@yahoo.com; Karabey, Sinan; Karabey, Ayşegül

    2015-07-15

    Purpose: The aim of this study was to evaluate the impact of variations in pelvic dimensions on the dose delivered to the target volumes and the organs at risk (OARs) in patients with high-risk prostate cancer (PCa) to be treated with whole pelvic radiation therapy (WPRT) in an attempt to define the hostile pelvis in terms of intensity modulated radiation therapy (IMRT). Methods and Materials: In 45 men with high-risk PCa to be treated with WPRT, the target volumes and the OARs were delineated, the dose constraints for the OARs were defined, and treatment plans were generated according to themore » Radiation Therapy Oncology Group 0924 protocol. Six dimensions to reflect the depth, width, and height of the bony pelvis were measured, and 2 indexes were calculated from the planning computed tomographic scans. The minimum dose (D{sub min}), maximum dose (D{sub max}), and mean dose (D{sub mean}) for the target volumes and OARs and the partial volumes of each of these structures receiving a specified dose (V{sub D}) were calculated from the dose-volume histograms (DVHs). The data from the DVHs were correlated with the pelvic dimensions and indexes. Results: According to an overall hostility score (OHS) calculation, 25 patients were grouped as having a hospitable pelvis and 20 as having a hostile pelvis. Regarding the OHS grouping, the DVHs for the bladder, bowel bag, left femoral head, and right femoral head differed in favor of the hospitable pelvis group, and the DVHs for the rectum differed for a range of lower doses in favor of the hospitable pelvis group. Conclusions: Pelvimetry might be used as a guide to define the challenging anatomy or the hostile pelvis in terms of treatment planning for IMRT in patients with high-risk PCa to be treated with WPRT.« less

  3. Dose-Volume Parameters Predict for the Development of Chest Wall Pain After Stereotactic Body Radiation for Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mutter, Robert W.; Liu Fan; Abreu, Andres

    Purpose: Chest wall (CW) pain has recently been recognized as an important adverse effect of stereotactic body radiation therapy (SBRT) for non-small-cell lung cancer (NSCLC). We developed a dose-volume model to predict the development of this toxicity. Methods and Materials: A total of 126 patients with primary, clinically node-negative NSCLC received three to five fractions of SBRT to doses of 40-60 Gy and were prospectively followed. The dose-absolute volume histograms of two different definitions of the CW as an organ at risk (CW3cm and CW2cm) were examined for all 126 patients. Results: With a median follow-up of 16 months, themore » 2-year estimated actuarial incidence of Grade {>=} 2 CW pain was 39%. The median time to onset of Grade {>=} 2 CW pain (National Cancer Institute Common Terminology Criteria for Adverse Events, Version 3.0) was 9 months. There was no predictive advantage for biologically corrected dose over physical dose. Neither fraction number (p = 0.07) nor prescription dose (p = 0.07) were significantly correlated with the development of Grade {>=} 2 CW pain. Cox Proportional Hazards analysis identified significant correlation with a broad range of dose-volume combinations, with the CW volume receiving 30 Gy (V30) as one of the strongest predictors (p < 0.001). CW2cm consistently enabled better prediction of CW toxicity. When a physical dose of 30 Gy was received by more than 70 cm{sup 3} of CW2cm, there was a significant correlation with Grade {>=} 2 CW pain (p = 0.004). Conclusions: CW toxicity after SBRT is common and long-term follow-up is needed to identify affected patients. A volume of CW {>=} 70 cm{sup 3} receiving 30 Gy is significantly correlated with Grade {>=} 2 CW pain. We are currently applying this constraint at our institution for patients receiving thoracic SBRT. An actuarial atlas of our data is provided as an electronic supplement to facilitate data-sharing and meta-analysis relating to CW pain.« less

  4. Critical dose and toxicity index of organs at risk in radiotherapy: Analyzing the calculated effects of modified dose fractionation in non–small cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pedicini, Piernicola, E-mail: ppiern@libero.it; Strigari, Lidia; Benassi, Marcello

    2014-04-01

    To increase the efficacy of radiotherapy for non–small cell lung cancer (NSCLC), many schemes of dose fractionation were assessed by a new “toxicity index” (I), which allows one to choose the fractionation schedules that produce less toxic treatments. Thirty-two patients affected by non resectable NSCLC were treated by standard 3-dimensional conformal radiotherapy (3DCRT) with a strategy of limited treated volume. Computed tomography datasets were employed to re plan by simultaneous integrated boost intensity-modulated radiotherapy (IMRT). The dose distributions from plans were used to test various schemes of dose fractionation, in 3DCRT as well as in IMRT, by transforming the dose-volumemore » histogram (DVH) into a biological equivalent DVH (BDVH) and by varying the overall treatment time. The BDVHs were obtained through the toxicity index, which was defined for each of the organs at risk (OAR) by a linear quadratic model keeping an equivalent radiobiological effect on the target volume. The less toxic fractionation consisted in a severe/moderate hyper fractionation for the volume including the primary tumor and lymph nodes, followed by a hypofractionation for the reduced volume of the primary tumor. The 3DCRT and IMRT resulted, respectively, in 4.7% and 4.3% of dose sparing for the spinal cord, without significant changes for the combined-lungs toxicity (p < 0.001). Schedules with reduced overall treatment time (accelerated fractionations) led to a 12.5% dose sparing for the spinal cord (7.5% in IMRT), 8.3% dose sparing for V{sub 20} in the combined lungs (5.5% in IMRT), and also significant dose sparing for all the other OARs (p < 0.001). The toxicity index allows to choose fractionation schedules with reduced toxicity for all the OARs and equivalent radiobiological effect for the tumor in 3DCRT, as well as in IMRT, treatments of NSCLC.« less

  5. SU-E-T-580: Comparison of Cervical Carcinoma IMRT Plans From Four Commercial Treatment Planning Systems (TPS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Y; Li, R; Chi, Z

    2014-06-01

    Purpose: Different treatment planning systems (TPS) use different treatment optimization and leaf sequencing algorithms. This work compares cervical carcinoma IMRT plans optimized with four commercial TPSs to investigate the plan quality in terms of target conformity and delivery efficiency. Methods: Five cervical carcinoma cases were planned with the Corvus, Monaco, Pinnacle and Xio TPSs by experienced planners using appropriate optimization parameters and dose constraints to meet the clinical acceptance criteria. Plans were normalized for at least 95% of PTV to receive the prescription dose (Dp). Dose-volume histograms and isodose distributions were compared. Other quantities such as Dmin(the minimum dose receivedmore » by 99% of GTV/PTV), Dmax(the maximum dose received by 1% of GTV/PTV), D100, D95, D90, V110%, V105%, V100% (the volume of GTV/PTV receiving 110%, 105%, 100% of Dp), conformity index(CI), homogeneity index (HI), the volume of receiving 40Gy and 50 Gy to rectum (V40,V50) ; the volume of receiving 30Gy and 50 Gy to bladder (V30,V50) were evaluated. Total segments and MUs were also compared. Results: While all plans meet target dose specifications and normal tissue constraints, the maximum GTVCI of Pinnacle plans was up to 0.74 and the minimum of Corvus plans was only 0.21, these four TPSs PTVCI had significant difference. The GTVHI and PTVHI of Pinnacle plans are all very low and show a very good dose distribution. Corvus plans received the higer dose of normal tissue. The Monaco plans require significantly less segments and MUs to deliver than the other plans. Conclusion: To deliver on a Varian linear-accelerator, the Pinnacle plans show a very good dose distribution. Corvus plans received the higer dose of normal tissue. The Monaco plans have faster beam delivery.« less

  6. Radiation dosimetry predicts IQ after conformal radiation therapy in pediatric patients with localized ependymoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merchant, Thomas E.; Kiehna, Erin N.; Li Chenghong

    2005-12-01

    Purpose: To assess the effects of radiation dose-volume distribution on the trajectory of IQ development after conformal radiation therapy (CRT) in pediatric patients with ependymoma. Methods and Materials: The study included 88 patients (median age, 2.8 years {+-} 4.5 years) with localized ependymoma who received CRT (54-59.4 Gy) that used a 1-cm margin on the postoperative tumor bed. Patients were evaluated with tests that included IQ measures at baseline (before CRT) and at 6, 12, 24, 36, 48, and 60 months. Differential dose-volume histograms (DVH) were derived for total-brain, supratentorial-brain, and right and left temporal-lobe volumes. The data were partitionedmore » into three dose intervals and integrated to create variables that represent the fractional volume that received dose over the specified intervals (e.g., V{sub 0-20Gy}, V{sub 20-40Gy}, V{sub 40-65Gy}) and modeled with clinical variables to develop a regression equation to estimate IQ after CRT. Results: A total of 327 IQ tests were performed in 66 patients with infratentorial tumors and 20 with supratentorial tumors. The median follow-up was 29.4 months. For all patients, IQ was best estimated by age (years) at CRT; percent volume of the supratentorial brain that received doses between 0 and 20 Gy, 20 and 40 Gy, and 40 and 65 Gy; and time (months) after CRT. Age contributed significantly to the intercept (p > 0.0001), and the dose-volume coefficients were statistically significant (V{sub 0-20Gy}, p = 0.01; V{sub 20-40Gy}, p < 0.001; V{sub 40-65Gy}, p = 0.04). A similar model was developed exclusively for patients with infratentorial tumors but not supratentorial tumors. Conclusion: Radiation dosimetry can be used to predict IQ after CRT in patients with localized ependymoma. The specificity of models may be enhanced by grouping according to tumor location.« less

  7. Evaluation of the Risk of Grade 3 Oral and Pharyngeal Dysphagia Using Atlas-Based Method and Multivariate Analyses of Individual Patient Dose Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otter, Sophie; Schick, Ulrike; Gulliford, Sarah

    Purpose: The study aimed to apply the atlas of complication incidence (ACI) method to patients receiving radical treatment for head and neck squamous cell carcinomas (HNSCC), to generate constraints based on dose-volume histograms (DVHs), and to identify clinical and dosimetric parameters that predict the risk of grade 3 oral mucositis (g3OM) and pharyngeal dysphagia (g3PD). Methods and Materials: Oral and pharyngeal mucosal DVHs were generated for 253 patients who received radiation (RT) or chemoradiation (CRT). They were used to produce ACI for g3OM and g3PD. Multivariate analysis (MVA) of the effect of dosimetry, clinical, and patient-related variables was performed usingmore » logistic regression and bootstrapping. Receiver operating curve (ROC) analysis was also performed, and the Youden index was used to find volume constraints that discriminated between volumes that predicted for toxicity. Results: We derived statistically significant dose-volume constraints for g3OM over the range v28 to v70. Only 3 statistically significant constraints were derived for g3PD v67, v68, and v69. On MVA, mean dose to the oral mucosa predicted for g3OM and concomitant chemotherapy and mean dose to the inferior constrictor (IC) predicted for g3PD. Conclusions: We have used the ACI method to evaluate incidences of g3OM and g3PD and ROC analysis to generate constraints to predict g3OM and g3PD derived from entire individual patient DVHs. On MVA, the strongest predictors were radiation dose (for g3OM) and concomitant chemotherapy (for g3PD).« less

  8. Accurate heterogeneous dose calculation for lung cancer patients without high‐resolution CT densities

    PubMed Central

    Li, Jonathan G.; Liu, Chihray; Olivier, Kenneth R.; Dempsey, James F.

    2009-01-01

    The aim of this study was to investigate the relative accuracy of megavoltage photon‐beam dose calculations employing either five bulk densities or independent voxel densities determined by calibration of the CT Houndsfield number. Full‐resolution CT and bulk density treatment plans were generated for 70 lung or esophageal cancer tumors (66 cases) using a commercial treatment planning system with an adaptive convolution dose calculation algorithm (Pinnacle3, Philips Medicals Systems). Bulk densities were applied to segmented regions. Individual and population average densities were compared to the full‐resolution plan for each case. Monitor units were kept constant and no normalizations were employed. Dose volume histograms (DVH) and dose difference distributions were examined for all cases. The average densities of the segmented air, lung, fat, soft tissue, and bone for the entire set were found to be 0.14, 0.26, 0.89, 1.02, and 1.12 g/cm3, respectively. In all cases, the normal tissue DVH agreed to better than 2% in dose. In 62 of 70 DVHs of the planning target volume (PTV), agreement to better than 3% in dose was observed. Six cases demonstrated emphysema, one with bullous formations and one with a hiatus hernia having a large volume of gas. These required the additional assignment of density to the emphysemic lung and inflammatory changes to the lung, the regions of collapsed lung, the bullous formations, and the hernia gas. Bulk tissue density dose calculation provides an accurate method of heterogeneous dose calculation. However, patients with advanced emphysema may require high‐resolution CT studies for accurate treatment planning. PACS number: 87.53.Tf

  9. In vivo assessment of the gastric mucosal tolerance dose after single fraction, small volume irradiation of liver malignancies by computed tomography-guided, high-dose-rate brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Streitparth, Florian; Pech, Maciej; Boehmig, Michael

    2006-08-01

    Purpose: The aim of this study was to assess the tolerance dose of gastric mucosa for single-fraction computed tomography (CT)-guided, high-dose-rate (HDR) brachytherapy of liver malignancies. Methods and Materials: A total of 33 patients treated by CT-guided HDR brachytherapy of liver malignancies in segments II and/or III were included. Dose planning was performed upon a three-dimensional CT data set acquired after percutaneous applicator positioning. All patients received gastric protection post-treatment. For further analysis, the contours of the gastric wall were defined in every CT slice using Brachyvision Software. Dose-volume histograms were calculated for each treatment and correlated with clinical datamore » derived from questionnaires assessing Common Toxicity Criteria (CTC). All patients presenting symptoms of upper GI toxicity were examined endoscopically. Results: Summarizing all patients the minimum dose applied to 1 ml of the gastric wall (D{sub 1ml}) ranged from 6.3 to 34.2 Gy; median, 14.3 Gy. Toxicity was present in 18 patients (55%). We found nausea in 16 (69%), emesis in 9 (27%), cramping in 13 (39%), weight loss in 12 (36%), gastritis in 4 (12%), and ulceration in 5 patients (15%). We found a threshold dose D{sub 1ml} of 11 Gy for general gastric toxicity and 15.5 Gy for gastric ulceration verified by an univariate analysis (p = 0.01). Conclusions: For a single fraction, small volume irradiation we found in the upper abdomen a threshold dose D{sub 1ml} of 15.5 Gy for the clinical endpoint ulceration of the gastric mucosa. This in vivo assessment is in accordance with previously published tolerance data.« less

  10. Temporal Lobe Toxicity Analysis After Proton Radiation Therapy for Skull Base Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pehlivan, Berrin; Ares, Carmen, E-mail: carmen.ares@psi.ch; Lomax, Antony J.

    2012-08-01

    Purpose: Temporal lobe (TL) parenchyma toxicity constitutes one of the most frequent late adverse event in high-dose proton therapy (PT) for tumors of the skull base. We analyzed clinical events with dosimetric parameters in our patients treated for skull base tumors with spot-scanning PT. Methods and Materials: Between 1998 and 2005, a total of 62 patients received PT to a median dose of 71.7 Gy (relative biologic effectiveness [RBE]) (range, 63-74 Gy). The dose-volume histogram of each TL and the entire brain parenchyma (BP) were analyzed according to maximum, mean, and minimum dose as well as doses to 0.5, 1,more » 2, and 3 cc of brain volume (D{sub 0.5}, D{sub 1}, D{sub 2}, D{sub 3}) and correlated with clinical events. Generalized equivalent uniform dose (gEUD) values were calculated. Results: At a mean follow-up of 38 months (range, 14-92 months), 2 patients had developed symptomatic Grade 3 and 5 patients asymptomatic Grade 1 TL toxicity. Mean doses to a 2-cc volume of BP increased from 71 {+-} 5 Gy (RBE) for no toxicity to 74 {+-} 5 Gy (RBE) for Grade 1 and to 76 {+-} 2 Gy (RBE) for Grade 3 toxicity. TL events occurred in 6 of 7 patients (86%) at or above dose levels of {>=}64 Gy (RBE) D{sub 3}, {>=}68 Gy (RBE) D{sub 2}, {>=}72 Gy (RBE) D{sub 1}, and {>=}73 Gy (RBE) D{sub 0.5}, respectively (p = NS). No statistically significant dose/volume threshold was detected between patients experiencing no toxicity vs. Grade 1 or Grade 3. A strong trend for Grade 1 and 3 events was observed, when the gEUD was 60 Gy. Conclusions: A statistically significant normal tissue threshold dose for BP has not been successfully defined. However, our data suggest that tolerance of TL and BP to fractionated radiotherapy appears to be correlated with tissue volume included in high-dose regions. Additional follow-up time and patient accrual is likely needed to achieve clinical significance for these dose-volume parameters investigated. Our findings support the importance of establishing an organ-at-risk maximally permissible dose for BP.« less

  11. Potential for intensity-modulated radiation therapy to permit dose escalation for canine nasal cancer.

    PubMed

    Vaudaux, Catherine; Schneider, Uwe; Kaser-Hotz, Barbara

    2007-01-01

    We evaluated the impact of inverse planned intensity-modulated radiation therapy (IMRT) on the dose-volume histograms (DVHs) and on the normal tissue complication probabilities (NTCPs) of brain and eyes in dogs with nasal tumors. Nine dogs with large, caudally located nasal tumors were planned using conventional techniques and inverse planned IMRT for a total prescribed dose of 52.5 Gy in 3.5 Gy fractions. The equivalent uniform dose for brain and eyes was calculated to estimate the normal tissue complication probability (NTCP) of these organs. The NTCP values as well as the DVHs were used to compare the treatment plans. The dose distribution in IMRT plans was more conformal than in conventional plans. The average dose delivered to one-third of the brain was 10 Gy lower with the IMRT plan compared with conventional planning. The mean partial brain volume receiving 43.6 Gy or more was reduced by 25.6% with IMRT. As a consequence, the NTCPs were also significantly lower in the IMRT plans. The mean NTCP of brain was two times lower and at least one eye could be saved in all patients planed with IMRT. Another possibility with IMRT is dose escalation in the target to improve tumor control while keeping the NTCPs at the same level as for conventional planning. Veterinary

  12. Dosimetric and radiobiologic comparison of 3D conformal versus intensity modulated planning techniques for prostate bed radiotherapy.

    PubMed

    Koontz, Bridget F; Das, Shiva; Temple, Kathy; Bynum, Sigrun; Catalano, Suzanne; Koontz, Jason I; Montana, Gustavo S; Oleson, James R

    2009-01-01

    Adjuvant radiotherapy for locally advanced prostate cancer improves biochemical and clinical disease-free survival. While comparisons in intact prostate cancer show a benefit for intensity modulated radiation therapy (IMRT) over 3D conformal planning, this has not been studied for post-prostatectomy radiotherapy (RT). This study compares normal tissue and target dosimetry and radiobiological modeling of IMRT vs. 3D conformal planning in the postoperative setting. 3D conformal plans were designed for 15 patients who had been treated with IMRT planning for salvage post-prostatectomy RT. The same computed tomography (CT) and target/normal structure contours, as well as prescription dose, was used for both IMRT and 3D plans. Normal tissue complication probabilities (NTCPs) were calculated based on the dose given to the bladder and rectum by both plans. Dose-volume histogram and NTCP data were compared by paired t-test. Bladder and rectal sparing were improved with IMRT planning compared to 3D conformal planning. The volume of the bladder receiving at least 75% (V75) and 50% (V50) of the dose was significantly reduced by 28% and 17%, respectively (p = 0.002 and 0.037). Rectal dose was similarly reduced, V75 by 33% and V50 by 17% (p = 0.001 and 0.004). While there was no difference in the volume of rectum receiving at least 65 Gy (V65), IMRT planning significant reduced the volume receiving 40 Gy or more (V40, p = 0.009). Bladder V40 and V65 were not significantly different between planning modalities. Despite these dosimetric differences, there was no significant difference in the NTCP for either bladder or rectal injury. IMRT planning reduces the volume of bladder and rectum receiving high doses during post-prostatectomy RT. Because of relatively low doses given to the bladder and rectum, there was no statistically significant improvement in NTCP between the 3D conformal and IMRT plans.

  13. Advances in prevention of radiation damage to visceral and solid organs in patients requiring radiation therapy of the trunk.

    PubMed

    Ritter, E F; Lee, C G; Tyler, D; Ferraro, F; Whiddon, C; Rudner, A M; Scully, S

    1997-02-01

    As a part of multimodality therapy, many patients with tumors of the trunk receive radiation therapy. The major morbidity of this therapy is often secondary to incidental radiation damage to tissues adjacent to treatment areas. We detail our use of saline breast implants placed in polyglycolic acid mesh sheets to displace visceral and solid organs away from the radiation field. Analysis of CT scans and dose volume histograms reveal that this technique successfully displaces uninvolved organs away from the radiation fields, thereby minimizing the radiation dose to such organs and tissues. We believe this is a safe and efficacious method to prevent radiation damage to visceral and solid organs adjacent to trunk tumor sites.

  14. Explicit optimization of plan quality measures in intensity-modulated radiation therapy treatment planning.

    PubMed

    Engberg, Lovisa; Forsgren, Anders; Eriksson, Kjell; Hårdemark, Björn

    2017-06-01

    To formulate convex planning objectives of treatment plan multicriteria optimization with explicit relationships to the dose-volume histogram (DVH) statistics used in plan quality evaluation. Conventional planning objectives are designed to minimize the violation of DVH statistics thresholds using penalty functions. Although successful in guiding the DVH curve towards these thresholds, conventional planning objectives offer limited control of the individual points on the DVH curve (doses-at-volume) used to evaluate plan quality. In this study, we abandon the usual penalty-function framework and propose planning objectives that more closely relate to DVH statistics. The proposed planning objectives are based on mean-tail-dose, resulting in convex optimization. We also demonstrate how to adapt a standard optimization method to the proposed formulation in order to obtain a substantial reduction in computational cost. We investigated the potential of the proposed planning objectives as tools for optimizing DVH statistics through juxtaposition with the conventional planning objectives on two patient cases. Sets of treatment plans with differently balanced planning objectives were generated using either the proposed or the conventional approach. Dominance in the sense of better distributed doses-at-volume was observed in plans optimized within the proposed framework. The initial computational study indicates that the DVH statistics are better optimized and more efficiently balanced using the proposed planning objectives than using the conventional approach. © 2017 American Association of Physicists in Medicine.

  15. Real-time dose calculation and visualization for the proton therapy of ocular tumours

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Karsten; Bendl, Rolf

    2001-03-01

    A new real-time dose calculation and visualization was developed as part of the new 3D treatment planning tool OCTOPUS for proton therapy of ocular tumours within a national research project together with the Hahn-Meitner Institut Berlin. The implementation resolves the common separation between parameter definition, dose calculation and evaluation and allows a direct examination of the expected dose distribution while adjusting the treatment parameters. The new tool allows the therapist to move the desired dose distribution under visual control in 3D to the appropriate place. The visualization of the resulting dose distribution as a 3D surface model, on any 2D slice or on the surface of specified ocular structures is done automatically when adapting parameters during the planning process. In addition, approximate dose volume histograms may be calculated with little extra time. The dose distribution is calculated and visualized in 200 ms with an accuracy of 6% for the 3D isodose surfaces and 8% for other objects. This paper discusses the advantages and limitations of this new approach.

  16. Airborne gamma-ray spectrometer and magnetometer survey, Durango B, Colorado. Final report Volume II A. Detail area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-01-01

    The geology of the Durango B detail area, the radioactive mineral occurrences in Colorado and the geophysical data interpretation are included in this report. Seven appendices contain: stacked profiles, geologic histograms, geochemical histograms, speed and altitude histograms, geologic statistical tables, geochemical statistical tables, and test line data.

  17. Intensity modulated radiation therapy (IMRT): differences in target volumes and improvement in clinically relevant doses to small bowel in rectal carcinoma.

    PubMed

    Mok, Henry; Crane, Christopher H; Palmer, Matthew B; Briere, Tina M; Beddar, Sam; Delclos, Marc E; Krishnan, Sunil; Das, Prajnan

    2011-06-08

    A strong dose-volume relationship exists between the amount of small bowel receiving low- to intermediate-doses of radiation and the rates of acute, severe gastrointestinal toxicity, principally diarrhea. There is considerable interest in the application of highly conformal treatment approaches, such as intensity-modulated radiation therapy (IMRT), to reduce dose to adjacent organs-at-risk in the treatment of carcinoma of the rectum. Therefore, we performed a comprehensive dosimetric evaluation of IMRT compared to 3-dimensional conformal radiation therapy (3DCRT) in standard, preoperative treatment for rectal cancer. Using RTOG consensus anorectal contouring guidelines, treatment volumes were generated for ten patients treated preoperatively at our institution for rectal carcinoma, with IMRT plans compared to plans derived from classic anatomic landmarks, as well as 3DCRT plans treating the RTOG consensus volume. The patients were all T3, were node-negative (N = 1) or node-positive (N = 9), and were planned to a total dose of 45-Gy. Pairwise comparisons were made between IMRT and 3DCRT plans with respect to dose-volume histogram parameters. IMRT plans had superior PTV coverage, dose homogeneity, and conformality in treatment of the gross disease and at-risk nodal volume, in comparison to 3DCRT. Additionally, in comparison to the 3DCRT plans, IMRT achieved a concomitant reduction in doses to the bowel (small bowel mean dose: 18.6-Gy IMRT versus 25.2-Gy 3DCRT; p = 0.005), bladder (V40Gy: 56.8% IMRT versus 75.4% 3DCRT; p = 0.005), pelvic bones (V40Gy: 47.0% IMRT versus 56.9% 3DCRT; p = 0.005), and femoral heads (V40Gy: 3.4% IMRT versus 9.1% 3DCRT; p = 0.005), with an improvement in absolute volumes of small bowel receiving dose levels known to induce clinically-relevant acute toxicity (small bowel V15Gy: 138-cc IMRT versus 157-cc 3DCRT; p = 0.005). We found that the IMRT treatment volumes were typically larger than that covered by classic bony landmark-derived fields, without incurring penalty with respect to adjacent organs-at-risk. For rectal carcinoma, IMRT, compared to 3DCRT, yielded plans superior with respect to target coverage, homogeneity, and conformality, while lowering dose to adjacent organs-at-risk. This is achieved despite treating larger volumes, raising the possibility of a clinically-relevant improvement in the therapeutic ratio through the use of IMRT with a belly-board apparatus.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukada, Junichi, E-mail: fukada@rad.med.keio.ac.jp; Shigematsu, Naoyuki; Takeuchi, Hiroya

    Purpose: We investigated clinical and treatment-related factors as predictors of symptomatic pericardial effusion in esophageal cancer patients after concurrent chemoradiation therapy. Methods and Materials: We reviewed 214 consecutive primary esophageal cancer patients treated with concurrent chemoradiation therapy between 2001 and 2010 in our institute. Pericardial effusion was detected on follow-up computed tomography. Symptomatic effusion was defined as effusion ≥grade 3 according to Common Terminology Criteria for Adverse Events v4.0 criteria. Percent volume irradiated with 5 to 65 Gy (V5-V65) and mean dose to the pericardium were evaluated employing dose-volume histograms. To evaluate dosimetry for patients treated with two-dimensional planning inmore » the earlier period (2001-2005), computed tomography data at diagnosis were transferred to a treatment planning system to reconstruct three-dimensional plans without modification. Optimal dosimetric thresholds for symptomatic pericardial effusion were calculated by receiver operating characteristic curves. Associating clinical and treatment-related risk factors for symptomatic pericardial effusion were detected by univariate and multivariate analyses. Results: The median follow-up was 29 (range, 6-121) months for eligible 167 patients. Symptomatic pericardial effusion was observed in 14 (8.4%) patients. Dosimetric analyses revealed average values of V30 to V45 for the pericardium and mean pericardial doses were significantly higher in patients with symptomatic pericardial effusion than in those with asymptomatic pericardial effusion (P<.05). Pericardial V5 to V55 and mean pericardial doses were significantly higher in patients with symptomatic pericardial effusion than in those without pericardial effusion (P<.001). Mean pericardial doses of 36.5 Gy and V45 of 58% were selected as optimal cutoff values for predicting symptomatic pericardial effusion. Multivariate analysis identified mean pericardial dose as the strongest risk factor for symptomatic pericardial effusion. Conclusions: Dose-volume thresholds for the pericardium facilitate predicting symptomatic pericardial effusion. Mean pericardial dose was selected based not only on the optimal dose-volume threshold but also on the most significant risk factor for symptomatic pericardial effusion.« less

  19. Radiation-induced second cancers: the impact of 3D-CRT and IMRT

    NASA Technical Reports Server (NTRS)

    Hall, Eric J.; Wuu, Cheng-Shie

    2003-01-01

    Information concerning radiation-induced malignancies comes from the A-bomb survivors and from medically exposed individuals, including second cancers in radiation therapy patients. The A-bomb survivors show an excess incidence of carcinomas in tissues such as the gastrointestinal tract, breast, thyroid, and bladder, which is linear with dose up to about 2.5 Sv. There is great uncertainty concerning the dose-response relationship for radiation-induced carcinogenesis at higher doses. Some animal and human data suggest a decrease at higher doses, usually attributed to cell killing; other data suggest a plateau in dose. Radiotherapy patients also show an excess incidence of carcinomas, often in sites remote from the treatment fields; in addition there is an excess incidence of sarcomas in the heavily irradiated in-field tissues. The transition from conventional radiotherapy to three-dimensional conformal radiation therapy (3D-CRT) involves a reduction in the volume of normal tissues receiving a high dose, with an increase in dose to the target volume that includes the tumor and a limited amount of normal tissue. One might expect a decrease in the number of sarcomas induced and also (less certain) a small decrease in the number of carcinomas. All around, a good thing. By contrast, the move from 3D-CRT to intensity-modulated radiation therapy (IMRT) involves more fields, and the dose-volume histograms show that, as a consequence, a larger volume of normal tissue is exposed to lower doses. In addition, the number of monitor units is increased by a factor of 2 to 3, increasing the total body exposure, due to leakage radiation. Both factors will tend to increase the risk of second cancers. Altogether, IMRT is likely to almost double the incidence of second malignancies compared with conventional radiotherapy from about 1% to 1.75% for patients surviving 10 years. The numbers may be larger for longer survival (or for younger patients), but the ratio should remain the same.

  20. Symptomatic pericardial effusion after chemoradiation therapy in esophageal cancer patients.

    PubMed

    Fukada, Junichi; Shigematsu, Naoyuki; Takeuchi, Hiroya; Ohashi, Toshio; Saikawa, Yoshiro; Takaishi, Hiromasa; Hanada, Takashi; Shiraishi, Yutaka; Kitagawa, Yuko; Fukuda, Keiichi

    2013-11-01

    We investigated clinical and treatment-related factors as predictors of symptomatic pericardial effusion in esophageal cancer patients after concurrent chemoradiation therapy. We reviewed 214 consecutive primary esophageal cancer patients treated with concurrent chemoradiation therapy between 2001 and 2010 in our institute. Pericardial effusion was detected on follow-up computed tomography. Symptomatic effusion was defined as effusion ≥grade 3 according to Common Terminology Criteria for Adverse Events v4.0 criteria. Percent volume irradiated with 5 to 65 Gy (V5-V65) and mean dose to the pericardium were evaluated employing dose-volume histograms. To evaluate dosimetry for patients treated with two-dimensional planning in the earlier period (2001-2005), computed tomography data at diagnosis were transferred to a treatment planning system to reconstruct three-dimensional plans without modification. Optimal dosimetric thresholds for symptomatic pericardial effusion were calculated by receiver operating characteristic curves. Associating clinical and treatment-related risk factors for symptomatic pericardial effusion were detected by univariate and multivariate analyses. The median follow-up was 29 (range, 6-121) months for eligible 167 patients. Symptomatic pericardial effusion was observed in 14 (8.4%) patients. Dosimetric analyses revealed average values of V30 to V45 for the pericardium and mean pericardial doses were significantly higher in patients with symptomatic pericardial effusion than in those with asymptomatic pericardial effusion (P<.05). Pericardial V5 to V55 and mean pericardial doses were significantly higher in patients with symptomatic pericardial effusion than in those without pericardial effusion (P<.001). Mean pericardial doses of 36.5 Gy and V45 of 58% were selected as optimal cutoff values for predicting symptomatic pericardial effusion. Multivariate analysis identified mean pericardial dose as the strongest risk factor for symptomatic pericardial effusion. Dose-volume thresholds for the pericardium facilitate predicting symptomatic pericardial effusion. Mean pericardial dose was selected based not only on the optimal dose-volume threshold but also on the most significant risk factor for symptomatic pericardial effusion. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Monte Carlo simulations of patient dose perturbations in rotational-type radiotherapy due to a transverse magnetic field: A tomotherapy investigation

    PubMed Central

    Yang, Y. M.; Geurts, M.; Smilowitz, J. B.; Sterpin, E.; Bednarz, B. P.

    2015-01-01

    Purpose: Several groups are exploring the integration of magnetic resonance (MR) image guidance with radiotherapy to reduce tumor position uncertainty during photon radiotherapy. The therapeutic gain from reducing tumor position uncertainty using intrafraction MR imaging during radiotherapy could be partially offset if the negative effects of magnetic field-induced dose perturbations are not appreciated or accounted for. The authors hypothesize that a more rotationally symmetric modality such as helical tomotherapy will permit a systematic mediation of these dose perturbations. This investigation offers a unique look at the dose perturbations due to homogeneous transverse magnetic field during the delivery of Tomotherapy® Treatment System plans under varying degrees of rotational beamlet symmetry. Methods: The authors accurately reproduced treatment plan beamlet and patient configurations using the Monte Carlo code geant4. This code has a thoroughly benchmarked electromagnetic particle transport physics package well-suited for the radiotherapy energy regime. The three approved clinical treatment plans for this study were for a prostate, head and neck, and lung treatment. The dose heterogeneity index metric was used to quantify the effect of the dose perturbations to the target volumes. Results: The authors demonstrate the ability to reproduce the clinical dose–volume histograms (DVH) to within 4% dose agreement at each DVH point for the target volumes and most planning structures, and therefore, are able to confidently examine the effects of transverse magnetic fields on the plans. The authors investigated field strengths of 0.35, 0.7, 1, 1.5, and 3 T. Changes to the dose heterogeneity index of 0.1% were seen in the prostate and head and neck case, reflecting negligible dose perturbations to the target volumes, a change from 5.5% to 20.1% was observed with the lung case. Conclusions: This study demonstrated that the effect of external magnetic fields can be mitigated by exploiting a more rotationally symmetric treatment modality. PMID:25652485

  2. A systematic study of posterior cervical lymph node irradiation with electrons: Conventional versus customized planning.

    PubMed

    Jankowska, Petra J; Kong, Christine; Burke, Kevin; Harrington, Kevin J; Nutting, Christopher

    2007-10-01

    High dose irradiation of the posterior cervical lymph nodes usually employs applied electron fields to treat the target volume and maintain the spinal cord dose within tolerance. In the light of recent advances in elective lymph node localisation we investigated optimization of field shape and electron energy to treat this target volume. In this study, three sequential hypotheses were tested. Firstly, that customization of the electron fields based on the nodal PTV outlined gives better PTV coverage than conventional field delineation. Using the consensus guidelines, customization of the electron field shape was compared to conventional fields based on bony landmarks. Secondly, that selection of electron energy using DVHs for spinal cord and PTV improves the minimum dose to PTV. Electron dose-volume histograms (DVHs) for the PTV, spinal cord and para-vertebral muscles, were generated using the Monte Carlo electron algorithm. These DVHs were used to compare standard vs optimized electron energy calculations. Finally, that combination of field customization and electron energy optimization improves both the minimum and mean doses to PTV compared with current standard practice. Customized electron beam shaping based on the consensus guidelines led to fewer geographical misses than standard field shaping. Customized electron energy calculation led to higher minimum doses to the PTV. Overall, the customization of field shape and energy resulted in an improved mean dose to the PTV (92% vs 83% p=0.02) and a 27% improvement in the minimum dose delivered to the PTV (45% vs 18% p=0.0009). Optimization of electron field shape and beam energy based on current consensus guidelines led to significant improvement in PTV coverage and may reduce recurrence rates.

  3. Comparison of respiratory-gated and respiratory-ungated planning in scattered carbon ion beam treatment of the pancreas using four-dimensional computed tomography.

    PubMed

    Mori, Shinichiro; Yanagi, Takeshi; Hara, Ryusuke; Sharp, Gregory C; Asakura, Hiroshi; Kumagai, Motoki; Kishimoto, Riwa; Yamada, Shigeru; Kato, Hirotoshi; Kandatsu, Susumu; Kamada, Tadashi

    2010-01-01

    We compared respiratory-gated and respiratory-ungated treatment strategies using four-dimensional (4D) scattered carbon ion beam distribution in pancreatic 4D computed tomography (CT) datasets. Seven inpatients with pancreatic tumors underwent 4DCT scanning under free-breathing conditions using a rapidly rotating cone-beam CT, which was integrated with a 256-slice detector, in cine mode. Two types of bolus for gated and ungated treatment were designed to cover the planning target volume (PTV) using 4DCT datasets in a 30% duty cycle around exhalation and a single respiratory cycle, respectively. Carbon ion beam distribution for each strategy was calculated as a function of respiratory phase by applying the compensating bolus to 4DCT at the respective phases. Smearing was not applied to the bolus, but consideration was given to drill diameter. The accumulated dose distributions were calculated by applying deformable registration and calculating the dose-volume histogram. Doses to normal tissues in gated treatment were minimized mainly on the inferior aspect, which thereby minimized excessive doses to normal tissues. Over 95% of the dose, however, was delivered to the clinical target volume at all phases for both treatment strategies. Maximum doses to the duodenum and pancreas averaged across all patients were 43.1/43.1 GyE (ungated/gated) and 43.2/43.2 GyE (ungated/gated), respectively. Although gated treatment minimized excessive dosing to normal tissue, the difference between treatment strategies was small. Respiratory gating may not always be required in pancreatic treatment as long as dose distribution is assessed. Any application of our results to clinical use should be undertaken only after discussion with oncologists, particularly with regard to radiotherapy combined with chemotherapy.

  4. Assessment of normal tissue complications following prostate cancer irradiation: Comparison of radiation treatment modalities using NTCP models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takam, Rungdham; Bezak, Eva; Yeoh, Eric E.

    2010-09-15

    Purpose: Normal tissue complication probability (NTCP) of the rectum, bladder, urethra, and femoral heads following several techniques for radiation treatment of prostate cancer were evaluated applying the relative seriality and Lyman models. Methods: Model parameters from literature were used in this evaluation. The treatment techniques included external (standard fractionated, hypofractionated, and dose-escalated) three-dimensional conformal radiotherapy (3D-CRT), low-dose-rate (LDR) brachytherapy (I-125 seeds), and high-dose-rate (HDR) brachytherapy (Ir-192 source). Dose-volume histograms (DVHs) of the rectum, bladder, and urethra retrieved from corresponding treatment planning systems were converted to biological effective dose-based and equivalent dose-based DVHs, respectively, in order to account for differences inmore » radiation treatment modality and fractionation schedule. Results: Results indicated that with hypofractionated 3D-CRT (20 fractions of 2.75 Gy/fraction delivered five times/week to total dose of 55 Gy), NTCP of the rectum, bladder, and urethra were less than those for standard fractionated 3D-CRT using a four-field technique (32 fractions of 2 Gy/fraction delivered five times/week to total dose of 64 Gy) and dose-escalated 3D-CRT. Rectal and bladder NTCPs (5.2% and 6.6%, respectively) following the dose-escalated four-field 3D-CRT (2 Gy/fraction to total dose of 74 Gy) were the highest among analyzed treatment techniques. The average NTCP for the rectum and urethra were 0.6% and 24.7% for LDR-BT and 0.5% and 11.2% for HDR-BT. Conclusions: Although brachytherapy techniques resulted in delivering larger equivalent doses to normal tissues, the corresponding NTCPs were lower than those of external beam techniques other than the urethra because of much smaller volumes irradiated to higher doses. Among analyzed normal tissues, the femoral heads were found to have the lowest probability of complications as most of their volume was irradiated to lower equivalent doses compared to other tissues.« less

  5. Uncertainties in Assesment of the Vaginal Dose for Intracavitary Brachytherapy of Cervical Cancer using a Tandem-ring Applicator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, Daniel; Dimopoulos, Johannes; Georg, Petra

    2007-04-01

    Purpose: The vagina has not been widely recognized as organ at risk in brachytherapy for cervical cancer. No widely accepted dose parameters are available. This study analyzes the uncertainties in dose reporting for the vaginal wall using tandem-ring applicators. Methods and Materials: Organ wall contours were delineated on axial magnetic resonance (MR) slices to perform dose-volume histogram (DVH) analysis. Different DVH parameters were used in a feasibility study based on 40 magnetic resonance imaging (MRI)-based treatment plans of different cervical cancer patients. Dose to the most irradiated, 0.1 cm{sup 3}, 1 cm{sup 3}, 2 cm{sup 3}, and at defined pointsmore » on the ring surface and at 5-mm tissue depth were reported. Treatment-planning systems allow different methods of dose point definition. Film dosimetry was used to verify the maximum dose at the surface of the ring applicator in an experimental setup. Results: Dose reporting for the vagina is extremely sensitive to geometrical uncertainties with variations of 25% for 1 mm shifts. Accurate delineation of the vaginal wall is limited by the finite pixel size of MRI and available treatment-planning systems. No significant correlation was found between dose-point and dose-volume parameters. The DVH parameters were often related to noncontiguous volumes and were not able to detect very different situations of spatial dose distributions inside the vaginal wall. Deviations between measured and calculated doses were up to 21%. Conclusions: Reporting either point dose values or DVH parameters for the vaginal wall is based on high inaccuracies because of contouring and geometric positioning. Therefore, the use of prospective dose constraints for individual treatment plans is not to be recommended at present. However, for large patient groups treated within one protocol correlation with vaginal morbidity can be evaluated.« less

  6. Dynamic contrast-enhanced MR imaging of the rectum: Correlations between single-section and whole-tumor histogram analyses.

    PubMed

    Choi, M H; Oh, S N; Park, G E; Yeo, D-M; Jung, S E

    2018-05-10

    To evaluate the interobserver and intermethod correlations of histogram metrics of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) parameters acquired by multiple readers using the single-section and whole-tumor volume methods. Four DCE parameters (K trans , K ep , V e , V p ) were evaluated in 45 patients (31 men and 14 women; mean age, 61±11 years [range, 29-83 years]) with locally advanced rectal cancer using pre-chemoradiotherapy (CRT) MRI. Ten histogram metrics were extracted using two methods of lesion selection performed by three radiologists: the whole-tumor volume method for the whole tumor on axial section-by-section images and the single-section method for the entire area of the tumor on one axial image. The interobserver and intermethod correlations were evaluated using the intraclass correlation coefficients (ICCs). The ICCs showed excellent interobserver and intermethod correlations in most of histogram metrics of the DCE parameters. The ICCs among the three readers were > 0.7 (P<0.001) for all histogram metrics, except for the minimum and maximum. The intermethod correlations for most of the histogram metrics were excellent for each radiologist, regardless of the differences in the radiologists' experience. The interobserver and intermethod correlations for most of the histogram metrics of the DCE parameters are excellent in rectal cancer. Therefore, the single-section method may be a potential alternative to the whole-tumor volume method using pre-CRT MRI, despite the fact that the high agreement between the two methods cannot be extrapolated to post-CRT MRI. Copyright © 2018 Société française de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  7. Measuring the apparent diffusion coefficient in primary rectal tumors: is there a benefit in performing histogram analyses?

    PubMed

    van Heeswijk, Miriam M; Lambregts, Doenja M J; Maas, Monique; Lahaye, Max J; Ayas, Z; Slenter, Jos M G M; Beets, Geerard L; Bakers, Frans C H; Beets-Tan, Regina G H

    2017-06-01

    The apparent diffusion coefficient (ADC) is a potential prognostic imaging marker in rectal cancer. Typically, mean ADC values are used, derived from precise manual whole-volume tumor delineations by experts. The aim was first to explore whether non-precise circular delineation combined with histogram analysis can be a less cumbersome alternative to acquire similar ADC measurements and second to explore whether histogram analyses provide additional prognostic information. Thirty-seven patients who underwent a primary staging MRI including diffusion-weighted imaging (DWI; b0, 25, 50, 100, 500, 1000; 1.5 T) were included. Volumes-of-interest (VOIs) were drawn on b1000-DWI: (a) precise delineation, manually tracing tumor boundaries (2 expert readers), and (b) non-precise delineation, drawing circular VOIs with a wide margin around the tumor (2 non-experts). Mean ADC and histogram metrics (mean, min, max, median, SD, skewness, kurtosis, 5th-95th percentiles) were derived from the VOIs and delineation time was recorded. Measurements were compared between the two methods and correlated with prognostic outcome parameters. Median delineation time reduced from 47-165 s (precise) to 21-43 s (non-precise). The 45th percentile of the non-precise delineation showed the best correlation with the mean ADC from the precise delineation as the reference standard (ICC 0.71-0.75). None of the mean ADC or histogram parameters showed significant prognostic value; only the total tumor volume (VOI) was significantly larger in patients with positive clinical N stage and mesorectal fascia involvement. When performing non-precise tumor delineation, histogram analysis (in specific 45th ADC percentile) may be used as an alternative to obtain similar ADC values as with precise whole tumor delineation. Histogram analyses are not beneficial to obtain additional prognostic information.

  8. Comparison of heart and coronary artery doses associated with intensity-modulated radiotherapy versus three-dimensional conformal radiotherapy for distal esophageal cancer.

    PubMed

    Kole, Thomas P; Aghayere, Osarhieme; Kwah, Jason; Yorke, Ellen D; Goodman, Karyn A

    2012-08-01

    To compare heart and coronary artery radiation exposure using intensity-modulated radiotherapy (IMRT) vs. four-field three-dimensional conformal radiotherapy (3D-CRT) treatment plans for patients with distal esophageal cancer undergoing chemoradiation. Nineteen patients with distal esophageal cancers treated with IMRT from March 2007 to May 2008 were identified. All patients were treated to 50.4 Gy with five-field IMRT plans. Theoretical 3D-CRT plans with four-field beam arrangements were generated. Dose-volume histograms of the planning target volume, heart, right coronary artery, left coronary artery, and other critical normal tissues were compared between the IMRT and 3D-CRT plans, and selected parameters were statistically evaluated using the Wilcoxon rank-sum test. Intensity-modulated radiotherapy treatment planning showed significant reduction (p < 0.05) in heart dose over 3D-CRT as assessed by average mean dose (22.9 vs. 28.2 Gy) and V30 (24.8% vs. 61.0%). There was also significant sparing of the right coronary artery (average mean dose, 23.8 Gy vs. 35.5 Gy), whereas the left coronary artery showed no significant improvement (mean dose, 11.2 Gy vs. 9.2 Gy), p = 0.11. There was no significant difference in percentage of total lung volume receiving at least 10, 15, or 20 Gy or in the mean lung dose between the planning methods. There were also no significant differences observed for the kidneys, liver, stomach, or spinal cord. Intensity-modulated radiotherapy achieved a significant improvement in target conformity as measured by the conformality index (ratio of total volume receiving 95% of prescription dose to planning target volume receiving 95% of prescription dose), with the mean conformality index reduced from 1.56 to 1.30 using IMRT. Treatment of patients with distal esophageal cancer using IMRT significantly decreases the exposure of the heart and right coronary artery when compared with 3D-CRT. Long-term studies are necessary to determine how this will impact on development of coronary artery disease and other cardiac complications. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. SU-F-T-336: A Quick Auto-Planning (QAP) Method for Patient Intensity Modulated Radiotherapy (IMRT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, J; Zhang, Z; Wang, J

    2016-06-15

    Purpose: The aim of this study is to develop a quick auto-planning system that permits fast patient IMRT planning with conformal dose to the target without manual field alignment and time-consuming dose distribution optimization. Methods: The planning target volume (PTV) of the source and the target patient were projected to the iso-center plane in certain beameye- view directions to derive the 2D projected shapes. Assuming the target interior was isotropic for each beam direction boundary analysis under polar coordinate was performed to map the source shape boundary to the target shape boundary to derive the source-to-target shape mapping function. Themore » derived shape mapping function was used to morph the source beam aperture to the target beam aperture over all segments in each beam direction. The target beam weights were re-calculated to deliver the same dose to the reference point (iso-center) as the source beam did in the source plan. The approach was tested on two rectum patients (one source patient and one target patient). Results: The IMRT planning time by QAP was 5 seconds on a laptop computer. The dose volume histograms and the dose distribution showed the target patient had the similar PTV dose coverage and OAR dose sparing with the source patient. Conclusion: The QAP system can instantly and automatically finish the IMRT planning without dose optimization.« less

  10. On the performances of different IMRT Treatment Planning Systems for selected paediatric cases.

    PubMed

    Fogliata, Antonella; Nicolini, Giorgia; Alber, Markus; Asell, Mats; Clivio, Alessandro; Dobler, Barbara; Larsson, Malin; Lohr, Frank; Lorenz, Friedlieb; Muzik, Jan; Polednik, Martin; Vanetti, Eugenio; Wolff, Dirk; Wyttenbach, Rolf; Cozzi, Luca

    2007-02-15

    To evaluate the performance of seven different TPS (Treatment Planning Systems: Corvus, Eclipse, Hyperion, KonRad, Oncentra Masterplan, Pinnacle and PrecisePLAN) when intensity modulated (IMRT) plans are designed for paediatric tumours. Datasets (CT images and volumes of interest) of four patients were used to design IMRT plans. The tumour types were: one extraosseous, intrathoracic Ewing Sarcoma; one mediastinal Rhabdomyosarcoma; one metastatic Rhabdomyosarcoma of the anus; one Wilm's tumour of the left kidney with multiple liver metastases. Prescribed doses ranged from 18 to 54.4 Gy. To minimise variability, the same beam geometry and clinical goals were imposed on all systems for every patient. Results were analysed in terms of dose distributions and dose volume histograms. For all patients, IMRT plans lead to acceptable treatments in terms of conformal avoidance since most of the dose objectives for Organs At Risk (OARs) were met, and the Conformity Index (averaged over all TPS and patients) ranged from 1.14 to 1.58 on primary target volumes and from 1.07 to 1.37 on boost volumes. The healthy tissue involvement was measured in terms of several parameters, and the average mean dose ranged from 4.6 to 13.7 Gy. A global scoring method was developed to evaluate plans according to their degree of success in meeting dose objectives (lower scores are better than higher ones). For OARs the range of scores was between 0.75 +/- 0.15 (Eclipse) to 0.92 +/- 0.18 (Pinnacle(3) with physical optimisation). For target volumes, the score ranged from 0.05 +/- 0.05 (Pinnacle(3) with physical optimisation) to 0.16 +/- 0.07 (Corvus). A set of complex paediatric cases presented a variety of individual treatment planning challenges. Despite the large spread of results, inverse planning systems offer promising results for IMRT delivery, hence widening the treatment strategies for this very sensitive class of patients.

  11. On the performances of different IMRT treatment planning systems for selected paediatric cases

    PubMed Central

    Fogliata, Antonella; Nicolini, Giorgia; Alber, Markus; Åsell, Mats; Clivio, Alessandro; Dobler, Barbara; Larsson, Malin; Lohr, Frank; Lorenz, Friedlieb; Muzik, Jan; Polednik, Martin; Vanetti, Eugenio; Wolff, Dirk; Wyttenbach, Rolf; Cozzi, Luca

    2007-01-01

    Background To evaluate the performance of seven different TPS (Treatment Planning Systems: Corvus, Eclipse, Hyperion, KonRad, Oncentra Masterplan, Pinnacle and PrecisePLAN) when intensity modulated (IMRT) plans are designed for paediatric tumours. Methods Datasets (CT images and volumes of interest) of four patients were used to design IMRT plans. The tumour types were: one extraosseous, intrathoracic Ewing Sarcoma; one mediastinal Rhabdomyosarcoma; one metastatic Rhabdomyosarcoma of the anus; one Wilm's tumour of the left kidney with multiple liver metastases. Prescribed doses ranged from 18 to 54.4 Gy. To minimise variability, the same beam geometry and clinical goals were imposed on all systems for every patient. Results were analysed in terms of dose distributions and dose volume histograms. Results For all patients, IMRT plans lead to acceptable treatments in terms of conformal avoidance since most of the dose objectives for Organs At Risk (OARs) were met, and the Conformity Index (averaged over all TPS and patients) ranged from 1.14 to 1.58 on primary target volumes and from 1.07 to 1.37 on boost volumes. The healthy tissue involvement was measured in terms of several parameters, and the average mean dose ranged from 4.6 to 13.7 Gy. A global scoring method was developed to evaluate plans according to their degree of success in meeting dose objectives (lower scores are better than higher ones). For OARs the range of scores was between 0.75 ± 0.15 (Eclipse) to 0.92 ± 0.18 (Pinnacle3 with physical optimisation). For target volumes, the score ranged from 0.05 ± 0.05 (Pinnacle3 with physical optimisation) to 0.16 ± 0.07 (Corvus). Conclusion A set of complex paediatric cases presented a variety of individual treatment planning challenges. Despite the large spread of results, inverse planning systems offer promising results for IMRT delivery, hence widening the treatment strategies for this very sensitive class of patients. PMID:17302972

  12. Prediction of radiation-induced normal tissue complications in radiotherapy using functional image data

    NASA Astrophysics Data System (ADS)

    Nioutsikou, Elena; Partridge, Mike; Bedford, James L.; Webb, Steve

    2005-03-01

    The aim of this study has been to explicitly include the functional heterogeneity of an organ as a factor that contributes to the probability of complication of normal tissues following radiotherapy. Situations for which the inclusion of this information can be advantageous to the design of treatment plans are then investigated. A Java program has been implemented for this purpose. This makes use of a voxelated model of a patient, which is based on registered anatomical and functional data in order to enable functional voxel weighting. Using this model, the functional dose-volume histogram (fDVH) and the functional normal tissue complication probability (fNTCP) are then introduced as extensions to the conventional dose-volume histogram (DVH) and normal tissue complication probability (NTCP). In the presence of functional heterogeneity, these tools are physically more meaningful for plan evaluation than the traditional indices, as they incorporate additional information and are anticipated to show a better correlation with outcome. New parameters mf, nf and TD50f are required to replace the m, n and TD50 parameters. A range of plausible values was investigated, awaiting fitting of these new parameters to patient outcomes where functional data have been measured. As an example, the model is applied to two lung datasets utilizing accurately registered computed tomography (CT) and single photon emission computed tomography (SPECT) perfusion scans. Assuming a linear perfusion-function relationship, the biological index mean perfusion weighted lung dose (MPWLD) has been extracted from integration over outlined regions of interest. In agreement with the MPWLD ranking, the fNTCP predictions reveal that incorporation of functional imaging in radiotherapy treatment planning is most beneficial for organs with a large volume effect and large focal areas of dysfunction. There is, however, no additional advantage in cases presenting with homogeneous function. Although presented for lung radiotherapy, this model is general. It can also be applied to positron emission tomography (PET)-CT or functional magnetic resonance imaging (fMRI)-CT registered data and extended to the functional description of tumour control probability.

  13. Dosimetric comparison of intensity modulated radiotherapy and three-dimensional conformal radiotherapy in patients with gynecologic malignancies: a systematic review and meta-analysis

    PubMed Central

    2012-01-01

    Background To quantitatively evaluate the safety and related-toxicities of intensity modulated radiotherapy (IMRT) dose–volume histograms (DVHs), as compared to the conventional three-dimensional conformal radiotherapy (3D-CRT), in gynecologic malignancy patients by systematic review of the related publications and meta-analysis. Methods Relevant articles were retrieved from the PubMed, Embase, and Cochrane Library databases up to August 2011. Two independent reviewers assessed the included studies and extracted data. Pooled average percent irradiated volumes of adjacent non-cancerous tissues were calculated and compared between IMRT and 3D-CRT for a range of common radiation doses (5-45Gy). Results In total, 13 articles comprised of 222 IMRT-treated and 233 3D-CRT-treated patients were included. For rectum receiving doses ≥30 Gy, the IMRT pooled average irradiated volumes were less than those from 3D-CRT by 26.40% (30 Gy, p = 0.004), 27.00% (35 Gy, p = 0.040), 37.30% (40 Gy, p = 0.006), and 39.50% (45 Gy, p = 0.002). Reduction in irradiated small bowel was also observed for IMRT-delivered 40 Gy and 45 Gy (by 17.80% (p = 0.043) and 17.30% (p = 0.012), respectively), as compared with 3D-CRT. However, there were no significant differences in the IMRT and 3D-CRT pooled average percent volumes of irradiated small bowel or rectum from lower doses, or in the bladder or bone marrow from any of the doses. IMRT-treated patients did not experience more severe acute or chronic toxicities than 3D-CRT-treated patients. Conclusions IMRT-delivered high radiation dose produced significantly less average percent volumes of irradiated rectum and small bowel than 3D-CRT, but did not differentially affect the average percent volumes in the bladder and bone marrow. PMID:23176540

  14. A Comparison of Dose-Response Models for the Parotid Gland in a Large Group of Head-and-Neck Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houweling, Antonetta C., E-mail: A.Houweling@umcutrecht.n; Philippens, Marielle E.P.; Dijkema, Tim

    2010-03-15

    Purpose: The dose-response relationship of the parotid gland has been described most frequently using the Lyman-Kutcher-Burman model. However, various other normal tissue complication probability (NTCP) models exist. We evaluated in a large group of patients the value of six NTCP models that describe the parotid gland dose response 1 year after radiotherapy. Methods and Materials: A total of 347 patients with head-and-neck tumors were included in this prospective parotid gland dose-response study. The patients were treated with either conventional radiotherapy or intensity-modulated radiotherapy. Dose-volume histograms for the parotid glands were derived from three-dimensional dose calculations using computed tomography scans. Stimulatedmore » salivary flow rates were measured before and 1 year after radiotherapy. A threshold of 25% of the pretreatment flow rate was used to define a complication. The evaluated models included the Lyman-Kutcher-Burman model, the mean dose model, the relative seriality model, the critical volume model, the parallel functional subunit model, and the dose-threshold model. The goodness of fit (GOF) was determined by the deviance and a Monte Carlo hypothesis test. Ranking of the models was based on Akaike's information criterion (AIC). Results: None of the models was rejected based on the evaluation of the GOF. The mean dose model was ranked as the best model based on the AIC. The TD{sub 50} in these models was approximately 39 Gy. Conclusions: The mean dose model was preferred for describing the dose-response relationship of the parotid gland.« less

  15. To Bleed or Not to Bleed. A Prediction Based on Individual Gene Profiling Combined With Dose-Volume Histogram Shapes in Prostate Cancer Patients Undergoing Three-Dimensional Conformal Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valdagni, Riccardo; Scientific Directorate, Fondazione IRCCS-Istituto Nazionale dei Tumori, Milano; Rancati, Tiziana

    2009-08-01

    Purpose: The main purpose of this work was to try to elucidate why, despite excellent rectal dose-volume histograms (DVHs), some patients treated for prostate cancer exhibit late rectal bleeding (LRB) and others with poor DVHs do not. Thirty-five genes involved in DNA repair/radiation response were analyzed in patients accrued in the AIROPROS 0101 trial, which investigated the correlation between LRB and dosimetric parameters. Methods and Materials: Thirty patients undergoing conformal radiotherapy with prescription doses higher than 70 Gy (minimum follow-up, 48 months) were selected: 10 patients in the low-risk group (rectal DVH with the percent volume of rectum receiving moremore » than 70 Gy [V70Gy] < 20% and the percent volume of rectum receiving more than 50 Gy [V50Gy] < 55%) with Grade 2 or Grade 3 (G2-G3) LRB, 10 patients in the high-risk group (V70Gy > 25% and V50Gy > 60%) with G2-G3 LRB, and 10 patients in the high-risk group with no toxicity. Quantitative reverse-transcriptase polymerase chain reaction was performed on RNA from lymphoblastoid cell lines obtained from Epstein-Barr virus-immortalized peripheral-blood mononucleated cells and on peripheral blood mononucleated cells. Interexpression levels were compared by using the Kruskal-Wallis test. Results: Intergroup comparison showed many constitutive differences: nine genes were significantly down-regulated in the low-risk bleeder group vs. the high-risk bleeder and high-risk nonbleeder groups: AKR1B1 (p = 0.019), BAZ1B (p = 0.042), LSM7 (p = 0.0016), MRPL23 (p = 0.015), NUDT1 (p = 0.0031), PSMB4 (p = 0.079), PSMD1 (p = 0.062), SEC22L1 (p = 0.040), and UBB (p = 0.018). Four genes were significantly upregulated in the high-risk nonbleeder group than in the other groups: DDX17 (p = 0.048), DRAP1 (p = 0.0025), RAD23 (p = 0.015), and SRF (p = 0.024). For most of these genes, it was possible to establish a cut-off value that correctly classified most patients. Conclusions: The predictive value of sensitivity and resistance to LRB of the genes identified by the study is promising and should be tested in a larger data set.« less

  16. WE-AB-207B-06: Dose and Biological Uncertainties in Sarcoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marteinsdottir, M; University of Iceland, Reykjavik; Schuemann, J

    2016-06-15

    Purpose: To understand the clinical impact of key uncertainties in proton therapy potentially affecting the analysis of clinical trials, namely the assumption of using a constant relative biological effectiveness (RBE) of 1.1 compared to variable RBE for proton therapy and the use of analytical dose calculation (ADC) methods. Methods: Proton dose distributions were compared for analytical and Monte Carlo (TOPAS) dose calculations. In addition, differences between using a constant RBE of 1.1 (RBE-constant) were compared with four different RBE models (to assess model variations). 10 patients were selected from an ongoing clinical trial on IMRT versus scanned protons for sarcoma.more » Comparisons were performed using dosimetric indices based on dose-volume histogram analyses and γ-index analyses. Results: For three of the RBE-models the mean dose, D95, D50 and D02 (dose values covering 95%, 50% and 2% of the target volume, respectively) were up to 5% lower than for RBE-constant. The dosimetric indices for one of the RBE-models were around 9% lower than for the RBE-constant model. The differences for V90 (the percentage of the target volume covered by 90% of the prescription dose) were up to 40% for three RBE-models, whereas for one the difference was around 95%. All ADC dosimetric indices were up to 5% larger than for RBE-constant. The γ-index passing rate for the target volume with a 3%/3mm criterion was above 97% for all models except for one, which was below 24%. Conclusion: Interpretation of clinical trials on sarcoma may depend on dose calculation uncertainties (as assessed by Monte Carlo). In addition, the biological dose distribution depends notably on which RBE model is utilized. The current practice of using a constant RBE of 1.1 may overestimate the target dose by as much as 5% for biological dose calculations. Performing an RBE uncertainty analysis is recommended for trial analysis. U19 projects - U19 CA 021239. PI: Delaney.« less

  17. Postmastectomy radiotherapy with integrated scar boost using helical tomotherapy.

    PubMed

    Rong, Yi; Yadav, Poonam; Welsh, James S; Fahner, Tasha; Paliwal, Bhudatt

    2012-01-01

    The purpose of this study was to evaluate helical tomotherapy dosimetry in postmastectomy patients undergoing treatment for chest wall and positive nodal regions with simultaneous integrated boost (SIB) in the scar region using strip bolus. Six postmastectomy patients were scanned with a 5-mm-thick strip bolus covering the scar planning target volume (PTV) plus 2-cm margin. For all 6 cases, the chest wall received a total cumulative dose of 49.3-50.4 Gy with daily fraction size of 1.7-2.0 Gy. Total dose to the scar PTV was prescribed to 58.0-60.2 Gy at 2.0-2.5 Gy per fraction. The supraclavicular PTV and mammary nodal PTV received 1.7-1.9 dose per fraction. Two plans (with and without bolus) were generated for all 6 cases. To generate no-bolus plans, strip bolus was contoured and overrode to air density before planning. The setup reproducibility and delivered dose accuracy were evaluated for all 6 cases. Dose-volume histograms were used to evaluate dose-volume coverage of targets and critical structures. We observed reduced air cavities with the strip bolus setup compared with what we normally see with the full bolus. The thermoluminescence dosimeters (TLD) in vivo dosimetry confirmed accurate dose delivery beneath the bolus. The verification plans performed on the first day megavoltage computed tomography (MVCT) image verified that the daily setup and overall dose delivery was within 2% accuracy compared with the planned dose. The hotspot of the scar PTV in no-bolus plans was 111.4% of the prescribed dose averaged over 6 cases compared with 106.6% with strip bolus. With a strip bolus only covering the postmastectomy scar region, we observed increased dose uniformity to the scar PTV, higher setup reproducibility, and accurate dose delivered beneath the bolus. This study demonstrates the feasibility of using a strip bolus over the scar using tomotherapy for SIB dosimetry in postmastectomy treatments. Published by Elsevier Inc.

  18. SU-F-T-340: Direct Editing of Dose Volume Histograms: Algorithms and a Unified Convex Formulation for Treatment Planning with Dose Constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ungun, B; Stanford University School of Medicine, Stanford, CA; Fu, A

    2016-06-15

    Purpose: To develop a procedure for including dose constraints in convex programming-based approaches to treatment planning, and to support dynamic modification of such constraints during planning. Methods: We present a mathematical approach that allows mean dose, maximum dose, minimum dose and dose volume (i.e., percentile) constraints to be appended to any convex formulation of an inverse planning problem. The first three constraint types are convex and readily incorporated. Dose volume constraints are not convex, however, so we introduce a convex restriction that is related to CVaR-based approaches previously proposed in the literature. To compensate for the conservatism of this restriction,more » we propose a new two-pass algorithm that solves the restricted problem on a first pass and uses this solution to form exact constraints on a second pass. In another variant, we introduce slack variables for each dose constraint to prevent the problem from becoming infeasible when the user specifies an incompatible set of constraints. We implement the proposed methods in Python using the convex programming package cvxpy in conjunction with the open source convex solvers SCS and ECOS. Results: We show, for several cases taken from the clinic, that our proposed method meets specified constraints (often with margin) when they are feasible. Constraints are met exactly when we use the two-pass method, and infeasible constraints are replaced with the nearest feasible constraint when slacks are used. Finally, we introduce ConRad, a Python-embedded free software package for convex radiation therapy planning. ConRad implements the methods described above and offers a simple interface for specifying prescriptions and dose constraints. Conclusion: This work demonstrates the feasibility of using modifiable dose constraints in a convex formulation, making it practical to guide the treatment planning process with interactively specified dose constraints. This work was supported by the Stanford BioX Graduate Fellowship and NIH Grant 5R01CA176553.« less

  19. Voxel-based dose prediction with multi-patient atlas selection for automated radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    McIntosh, Chris; Purdie, Thomas G.

    2017-01-01

    Automating the radiotherapy treatment planning process is a technically challenging problem. The majority of automated approaches have focused on customizing and inferring dose volume objectives to be used in plan optimization. In this work we outline a multi-patient atlas-based dose prediction approach that learns to predict the dose-per-voxel for a novel patient directly from the computed tomography planning scan without the requirement of specifying any objectives. Our method learns to automatically select the most effective atlases for a novel patient, and then map the dose from those atlases onto the novel patient. We extend our previous work to include a conditional random field for the optimization of a joint distribution prior that matches the complementary goals of an accurately spatially distributed dose distribution while still adhering to the desired dose volume histograms. The resulting distribution can then be used for inverse-planning with a new spatial dose objective, or to create typical dose volume objectives for the canonical optimization pipeline. We investigated six treatment sites (633 patients for training and 113 patients for testing) and evaluated the mean absolute difference in all DVHs for the clinical and predicted dose distribution. The results on average are favorable in comparison to our previous approach (1.91 versus 2.57). Comparing our method with and without atlas-selection further validates that atlas-selection improved dose prediction on average in whole breast (0.64 versus 1.59), prostate (2.13 versus 4.07), and rectum (1.46 versus 3.29) while it is less important in breast cavity (0.79 versus 0.92) and lung (1.33 versus 1.27) for which there is high conformity and minimal dose shaping. In CNS brain, atlas-selection has the potential to be impactful (3.65 versus 5.09), but selecting the ideal atlas is the most challenging.

  20. Postmastectomy radiotherapy with integrated scar boost using helical tomotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rong Yi, E-mail: rong@humonc.wisc.edu; University of Wisconsin Riverview Cancer Center, Wisconsin Rapids, WI; Yadav, Poonam

    2012-10-01

    The purpose of this study was to evaluate helical tomotherapy dosimetry in postmastectomy patients undergoing treatment for chest wall and positive nodal regions with simultaneous integrated boost (SIB) in the scar region using strip bolus. Six postmastectomy patients were scanned with a 5-mm-thick strip bolus covering the scar planning target volume (PTV) plus 2-cm margin. For all 6 cases, the chest wall received a total cumulative dose of 49.3-50.4 Gy with daily fraction size of 1.7-2.0 Gy. Total dose to the scar PTV was prescribed to 58.0-60.2 Gy at 2.0-2.5 Gy per fraction. The supraclavicular PTV and mammary nodal PTVmore » received 1.7-1.9 dose per fraction. Two plans (with and without bolus) were generated for all 6 cases. To generate no-bolus plans, strip bolus was contoured and overrode to air density before planning. The setup reproducibility and delivered dose accuracy were evaluated for all 6 cases. Dose-volume histograms were used to evaluate dose-volume coverage of targets and critical structures. We observed reduced air cavities with the strip bolus setup compared with what we normally see with the full bolus. The thermoluminescence dosimeters (TLD) in vivo dosimetry confirmed accurate dose delivery beneath the bolus. The verification plans performed on the first day megavoltage computed tomography (MVCT) image verified that the daily setup and overall dose delivery was within 2% accuracy compared with the planned dose. The hotspot of the scar PTV in no-bolus plans was 111.4% of the prescribed dose averaged over 6 cases compared with 106.6% with strip bolus. With a strip bolus only covering the postmastectomy scar region, we observed increased dose uniformity to the scar PTV, higher setup reproducibility, and accurate dose delivered beneath the bolus. This study demonstrates the feasibility of using a strip bolus over the scar using tomotherapy for SIB dosimetry in postmastectomy treatments.« less

  1. Sci-Thur PM – Colourful Interactions: Highlights 05: Opal–the Oncology Patient Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, Ackeem; Herrera, David; Kildea, John

    We describe Opal (Oncology portal and application), the mobile phone app and patient portal that we have developed and are deploying for Radiation Oncology patients at our cancer centre. Opal is a novel tool to empower patients with their own personal medical data, including appointment schedules, consultation notes, test results, radiotherapy treatment planning information and wait time management. Furthermore, due to its integration with our electronic medical record and treatment planning database, Opal will allow us to collect patient reported outcomes from consenting patients and link them directly with dose volume histograms and other treatment data.

  2. Impact of database quality in knowledge-based treatment planning for prostate cancer.

    PubMed

    Wall, Phillip D H; Carver, Robert L; Fontenot, Jonas D

    2018-03-13

    This article investigates dose-volume prediction improvements in a common knowledge-based planning (KBP) method using a Pareto plan database compared with using a conventional, clinical plan database. Two plan databases were created using retrospective, anonymized data of 124 volumetric modulated arc therapy (VMAT) prostate cancer patients. The clinical plan database (CPD) contained planning data from each patient's clinically treated VMAT plan, which were manually optimized by various planners. The multicriteria optimization database (MCOD) contained Pareto-optimal plan data from VMAT plans created using a standardized multicriteria optimization protocol. Overlap volume histograms, incorporating fractional organ at risk volumes only within the treatment fields, were computed for each patient and used to match new patient anatomy to similar database patients. For each database patient, CPD and MCOD KBP predictions were generated for D 10 , D 30 , D 50 , D 65 , and D 80 of the bladder and rectum in a leave-one-out manner. Prediction achievability was evaluated through a replanning study on a subset of 31 randomly selected database patients using the best KBP predictions, regardless of plan database origin, as planning goals. MCOD predictions were significantly lower than CPD predictions for all 5 bladder dose-volumes and rectum D 50 (P = .004) and D 65 (P < .001), whereas CPD predictions for rectum D 10 (P = .005) and D 30 (P < .001) were significantly less than MCOD predictions. KBP predictions were statistically achievable in the replans for all predicted dose-volumes, excluding D 10 of bladder (P = .03) and rectum (P = .04). Compared with clinical plans, replans showed significant average reductions in D mean for bladder (7.8 Gy; P < .001) and rectum (9.4 Gy; P < .001), while maintaining statistically similar planning target volume, femoral head, and penile bulb dose. KBP dose-volume predictions derived from Pareto plans were more optimal overall than those resulting from manually optimized clinical plans, which significantly improved KBP-assisted plan quality. This work investigates how the plan quality of knowledge databases affects the performance and achievability of dose-volume predictions from a common knowledge-based planning approach for prostate cancer. Bladder and rectum dose-volume predictions derived from a database of standardized Pareto-optimal plans were compared with those derived from clinical plans manually designed by various planners. Dose-volume predictions from the Pareto plan database were significantly lower overall than those from the clinical plan database, without compromising achievability. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Combining transrectal ultrasound and CT for image-guided adaptive brachytherapy of cervical cancer: Proof of concept.

    PubMed

    Nesvacil, Nicole; Schmid, Maximilian P; Pötter, Richard; Kronreif, Gernot; Kirisits, Christian

    To investigate the feasibility of a treatment planning workflow for three-dimensional image-guided cervix cancer brachytherapy, combining volumetric transrectal ultrasound (TRUS) for target definition with CT for dose optimization to organs at risk (OARs), for settings with no access to MRI. A workflow for TRUS/CT-based volumetric treatment planning was developed, based on a customized system including ultrasound probe, stepper unit, and software for image volume acquisition. A full TRUS/CT-based workflow was simulated in a clinical case and compared with MR- or CT-only delineation. High-risk clinical target volume was delineated on TRUS, and OARs were delineated on CT. Manually defined tandem/ring applicator positions on TRUS and CT were used as a reference for rigid registration of the image volumes. Treatment plan optimization for TRUS target and CT organ volumes was performed and compared to MRI and CT target contours. TRUS/CT-based contouring, applicator reconstruction, image fusion, and treatment planning were feasible, and the full workflow could be successfully demonstrated. The TRUS/CT plan fulfilled all clinical planning aims. Dose-volume histogram evaluation of the TRUS/CT-optimized plan (high-risk clinical target volume D 90 , OARs D 2cm³ for) on different image modalities showed good agreement between dose values reported for TRUS/CT and MRI-only reference contours and large deviations for CT-only target parameters. A TRUS/CT-based workflow for full three-dimensional image-guided cervix brachytherapy treatment planning seems feasible and may be clinically comparable to MRI-based treatment planning. Further development to solve challenges with applicator definition in the TRUS volume is required before systematic applicability of this workflow. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  4. Whole-tumour diffusion kurtosis MR imaging histogram analysis of rectal adenocarcinoma: Correlation with clinical pathologic prognostic factors.

    PubMed

    Cui, Yanfen; Yang, Xiaotang; Du, Xiaosong; Zhuo, Zhizheng; Xin, Lei; Cheng, Xintao

    2018-04-01

    To investigate potential relationships between diffusion kurtosis imaging (DKI)-derived parameters using whole-tumour volume histogram analysis and clinicopathological prognostic factors in patients with rectal adenocarcinoma. 79 consecutive patients who underwent MRI examination with rectal adenocarcinoma were retrospectively evaluated. Parameters D, K and conventional ADC were measured using whole-tumour volume histogram analysis. Student's t-test or Mann-Whitney U-test, receiver operating characteristic curves and Spearman's correlation were used for statistical analysis. Almost all the percentile metrics of K were correlated positively with nodal involvement, higher histological grades, the presence of lymphangiovascular invasion (LVI) and circumferential margin (CRM) (p<0.05), with the exception of between K 10th , K 90th and histological grades. In contrast, significant negative correlations were observed between 25th, 50th percentiles and mean values of ADC and D, as well as ADC 10th , with tumour T stages (p< 0.05). Meanwhile, lower 75th and 90th percentiles of ADC and D values were also correlated inversely with nodal involvement (p< 0.05). K mean showed a relatively higher area under the curve (AUC) and higher specificity than other percentiles for differentiation of lesions with nodal involvement. DKI metrics with whole-tumour volume histogram analysis, especially K parameters, were associated with important prognostic factors of rectal cancer. • K correlated positively with some important prognostic factors of rectal cancer. • K mean showed higher AUC and specificity for differentiation of nodal involvement. • DKI metrics with whole-tumour volume histogram analysis depicted tumour heterogeneity.

  5. Comparison of a 3-D multi-group SN particle transport code with Monte Carlo for intracavitary brachytherapy of the cervix uteri.

    PubMed

    Gifford, Kent A; Wareing, Todd A; Failla, Gregory; Horton, John L; Eifel, Patricia J; Mourtada, Firas

    2009-12-03

    A patient dose distribution was calculated by a 3D multi-group S N particle transport code for intracavitary brachytherapy of the cervix uteri and compared to previously published Monte Carlo results. A Cs-137 LDR intracavitary brachytherapy CT data set was chosen from our clinical database. MCNPX version 2.5.c, was used to calculate the dose distribution. A 3D multi-group S N particle transport code, Attila version 6.1.1 was used to simulate the same patient. Each patient applicator was built in SolidWorks, a mechanical design package, and then assembled with a coordinate transformation and rotation for the patient. The SolidWorks exported applicator geometry was imported into Attila for calculation. Dose matrices were overlaid on the patient CT data set. Dose volume histograms and point doses were compared. The MCNPX calculation required 14.8 hours, whereas the Attila calculation required 22.2 minutes on a 1.8 GHz AMD Opteron CPU. Agreement between Attila and MCNPX dose calculations at the ICRU 38 points was within +/- 3%. Calculated doses to the 2 cc and 5 cc volumes of highest dose differed by not more than +/- 1.1% between the two codes. Dose and DVH overlays agreed well qualitatively. Attila can calculate dose accurately and efficiently for this Cs-137 CT-based patient geometry. Our data showed that a three-group cross-section set is adequate for Cs-137 computations. Future work is aimed at implementing an optimized version of Attila for radiotherapy calculations.

  6. Comparison of a 3D multi‐group SN particle transport code with Monte Carlo for intercavitary brachytherapy of the cervix uteri

    PubMed Central

    Wareing, Todd A.; Failla, Gregory; Horton, John L.; Eifel, Patricia J.; Mourtada, Firas

    2009-01-01

    A patient dose distribution was calculated by a 3D multi‐group SN particle transport code for intracavitary brachytherapy of the cervix uteri and compared to previously published Monte Carlo results. A Cs‐137 LDR intracavitary brachytherapy CT data set was chosen from our clinical database. MCNPX version 2.5.c, was used to calculate the dose distribution. A 3D multi‐group SN particle transport code, Attila version 6.1.1 was used to simulate the same patient. Each patient applicator was built in SolidWorks, a mechanical design package, and then assembled with a coordinate transformation and rotation for the patient. The SolidWorks exported applicator geometry was imported into Attila for calculation. Dose matrices were overlaid on the patient CT data set. Dose volume histograms and point doses were compared. The MCNPX calculation required 14.8 hours, whereas the Attila calculation required 22.2 minutes on a 1.8 GHz AMD Opteron CPU. Agreement between Attila and MCNPX dose calculations at the ICRU 38 points was within ±3%. Calculated doses to the 2 cc and 5 cc volumes of highest dose differed by not more than ±1.1% between the two codes. Dose and DVH overlays agreed well qualitatively. Attila can calculate dose accurately and efficiently for this Cs‐137 CT‐based patient geometry. Our data showed that a three‐group cross‐section set is adequate for Cs‐137 computations. Future work is aimed at implementing an optimized version of Attila for radiotherapy calculations. PACS number: 87.53.Jw

  7. SU-E-J-71: Spatially Preserving Prior Knowledge-Based Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, H; Xing, L

    2015-06-15

    Purpose: Prior knowledge-based treatment planning is impeded by the use of a single dose volume histogram (DVH) curve. Critical spatial information is lost from collapsing the dose distribution into a histogram. Even similar patients possess geometric variations that becomes inaccessible in the form of a single DVH. We propose a simple prior knowledge-based planning scheme that extracts features from prior dose distribution while still preserving the spatial information. Methods: A prior patient plan is not used as a mere starting point for a new patient but rather stopping criteria are constructed. Each structure from the prior patient is partitioned intomore » multiple shells. For instance, the PTV is partitioned into an inner, middle, and outer shell. Prior dose statistics are then extracted for each shell and translated into the appropriate Dmin and Dmax parameters for the new patient. Results: The partitioned dose information from a prior case has been applied onto 14 2-D prostate cases. Using prior case yielded final DVHs that was comparable to manual planning, even though the DVH for the prior case was different from the DVH for the 14 cases. Solely using a single DVH for the entire organ was also performed for comparison but showed a much poorer performance. Different ways of translating the prior dose statistics into parameters for the new patient was also tested. Conclusion: Prior knowledge-based treatment planning need to salvage the spatial information without transforming the patients on a voxel to voxel basis. An efficient balance between the anatomy and dose domain is gained through partitioning the organs into multiple shells. The use of prior knowledge not only serves as a starting point for a new case but the information extracted from the partitioned shells are also translated into stopping criteria for the optimization problem at hand.« less

  8. [Characteristics of high resolution diffusion weighted imaging apparent diffusion coefficient histogram and its correlations with cancer stages in patients with nasopharyngeal carcinoma].

    PubMed

    Wang, G J; Wang, Y; Ye, Y; Chen, F; Lu, Y T; Li, S L

    2017-11-07

    Objective: To investigate the features of apparent diffusion coefficient (ADC) histogram parameters based on entire tumor volume data in high resolution diffusion weighted imaging of nasopharyngeal carcinoma (NPC) and to evaluate its correlations with cancer stages. Methods: This retrospective study included 154 cases of NPC patients[102 males and 52 females, mean age (48±11) years]who had received readout segmentation of long variable echo trains of MRI scan before radiation therapy. The area of tumor was delineated on each section of axial ADC maps to generate ADC histogram by using Image J. ADC histogram of entire tumor along with the histogram parameters-the tumor voxels, ADC(mean), ADC(25%), ADC(50%), ADC(75%), skewness and kurtosis were obtained by merging all sections with SPSS 22.0 software. Intra-observer repeatability was assessed by using intra-class correlation coefficients (ICC). The patients were subdivided into two groups according to cancer volume: small cancer group (<305 voxels, about 2 cm(3)) and large cancer group (≥2 cm(3)). The correlation between ADC histogram parameters and cancer stages was evaluated with Spearman test. Results: The ICC of measuring ADC histogram parameters of tumor voxels, ADC(mean), ADC(25%), ADC(50%), ADC(75%), skewness, kurtosis was 0.938, 0.861, 0.885, 0.838, 0.836, 0.358 and 0.456, respectively. The tumor voxels was positively correlated with T staging ( r =0.368, P <0.05). There were significant differences in tumor voxels among patients with different T stages ( K =22.306, P <0.05). There were significant differences in the ADC(mean), ADC(25%), ADC(50%) among patients with different T stages in the small cancer group( K =8.409, 8.187, 8.699, all P <0.05), and the up-mentioned three indices were positively correlated with T staging ( r =0.221, 0.209, 0.235, all P <0.05). Skewness and kurtosis differed significantly between the groups with different cancer volume( t =-2.987, Z =-3.770, both P <0.05). Conclusion: The tumor volume, tissue uniformity of NPC are important factors affecting ADC and cancer stages, parameters of ADC histogram (ADC(mean), ADC(25%), ADC(50%)) increases with T staging in NPC smaller than 2 cm(3).

  9. Effect of inhomogeneity in a patient's body on the accuracy of the pencil beam algorithm in comparison to Monte Carlo

    NASA Astrophysics Data System (ADS)

    Yamashita, T.; Akagi, T.; Aso, T.; Kimura, A.; Sasaki, T.

    2012-11-01

    The pencil beam algorithm (PBA) is reasonably accurate and fast. It is, therefore, the primary method used in routine clinical treatment planning for proton radiotherapy; still, it needs to be validated for use in highly inhomogeneous regions. In our investigation of the effect of patient inhomogeneity, PBA was compared with Monte Carlo (MC). A software framework was developed for the MC simulation of radiotherapy based on Geant4. Anatomical sites selected for the comparison were the head/neck, liver, lung and pelvis region. The dose distributions calculated by the two methods in selected examples were compared, as well as a dose volume histogram (DVH) derived from the dose distributions. The comparison of the off-center ratio (OCR) at the iso-center showed good agreement between the PBA and MC, while discrepancies were seen around the distal fall-off regions. While MC showed a fine structure on the OCR in the distal fall-off region, the PBA showed smoother distribution. The fine structures in MC calculation appeared downstream of very low-density regions. Comparison of DVHs showed that most of the target volumes were similarly covered, while some OARs located around the distal region received a higher dose when calculated by MC than the PBA.

  10. Dosimetric verification of IMRT treatment planning using Monte Carlo simulations for prostate cancer

    NASA Astrophysics Data System (ADS)

    Yang, J.; Li, J.; Chen, L.; Price, R.; McNeeley, S.; Qin, L.; Wang, L.; Xiong, W.; Ma, C.-M.

    2005-03-01

    The purpose of this work is to investigate the accuracy of dose calculation of a commercial treatment planning system (Corvus, Normos Corp., Sewickley, PA). In this study, 30 prostate intensity-modulated radiotherapy (IMRT) treatment plans from the commercial treatment planning system were recalculated using the Monte Carlo method. Dose-volume histograms and isodose distributions were compared. Other quantities such as minimum dose to the target (Dmin), the dose received by 98% of the target volume (D98), dose at the isocentre (Diso), mean target dose (Dmean) and the maximum critical structure dose (Dmax) were also evaluated based on our clinical criteria. For coplanar plans, the dose differences between Monte Carlo and the commercial treatment planning system with and without heterogeneity correction were not significant. The differences in the isocentre dose between the commercial treatment planning system and Monte Carlo simulations were less than 3% for all coplanar cases. The differences on D98 were less than 2% on average. The differences in the mean dose to the target between the commercial system and Monte Carlo results were within 3%. The differences in the maximum bladder dose were within 3% for most cases. The maximum dose differences for the rectum were less than 4% for all the cases. For non-coplanar plans, the difference in the minimum target dose between the treatment planning system and Monte Carlo calculations was up to 9% if the heterogeneity correction was not applied in Corvus. This was caused by the excessive attenuation of the non-coplanar beams by the femurs. When the heterogeneity correction was applied in Corvus, the differences were reduced significantly. These results suggest that heterogeneity correction should be used in dose calculation for prostate cancer with non-coplanar beam arrangements.

  11. A simple DVH generation technique for various radiotherapy treatment planning systems for an independent information system

    NASA Astrophysics Data System (ADS)

    Min, Byung Jun; Nam, Heerim; Jeong, Il Sun; Lee, Hyebin

    2015-07-01

    In recent years, the use of a picture archiving and communication system (PACS) for radiation therapy has become the norm in hospital environments and has been suggested for collecting and managing data using Digital Imaging and Communication in Medicine (DICOM) objects from different treatment planning systems (TPSs). However, some TPSs do not provide the ability to export the dose-volume histogram (DVH) in text or other format. In addition, plan review systems for various TPSs often allow DVH recalculations with different algorithms. These algorithms result in inevitable discrepancies between the values obtained with the recalculation and those obtained with TPS itself. The purpose of this study was to develop a simple method for generating reproducible DVH values by using the TPSs. Treatment planning information, including structures and delivered dose, was exported in the DICOM format from the Eclipse v8.9 or the Pinnacle v9.6 planning systems. The supersampling and trilinear interpolation methods were employed to calculate the DVH data from 35 treatment plans. The discrepancies between the DVHs extracted from each TPS and those extracted by using the proposed calculation method were evaluated with respect to the supersampling ratio. The volume, minimum dose, maximum dose, and mean dose were compared. The variations in DVHs from multiple TPSs were compared by using the MIM software v6.1, which is a commercially available treatment planning comparison tool. The overall comparisons of the volume, minimum dose, maximum dose, and mean dose showed that the proposed method generated relatively smaller discrepancies compared with TPS than the MIM software did compare with the TPS. As the structure volume decreased, the overall percent difference increased. The largest difference was observed in small organs such as the eye ball, eye lens, and optic nerve which had volume below 10 cc. A simple and useful technique was developed to generate a DVH with an acceptable error from a proprietary TPS. This study provides a convenient and common framework that will allow the use of a single well-managed storage solution for an independent information system.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kole, Thomas P.; Aghayere, Osarhieme; Kwah, Jason

    Purpose: To compare heart and coronary artery radiation exposure using intensity-modulated radiotherapy (IMRT) vs. four-field three-dimensional conformal radiotherapy (3D-CRT) treatment plans for patients with distal esophageal cancer undergoing chemoradiation. Methods and Materials: Nineteen patients with distal esophageal cancers treated with IMRT from March 2007 to May 2008 were identified. All patients were treated to 50.4 Gy with five-field IMRT plans. Theoretical 3D-CRT plans with four-field beam arrangements were generated. Dose-volume histograms of the planning target volume, heart, right coronary artery, left coronary artery, and other critical normal tissues were compared between the IMRT and 3D-CRT plans, and selected parameters weremore » statistically evaluated using the Wilcoxon rank-sum test. Results: Intensity-modulated radiotherapy treatment planning showed significant reduction (p < 0.05) in heart dose over 3D-CRT as assessed by average mean dose (22.9 vs. 28.2 Gy) and V30 (24.8% vs. 61.0%). There was also significant sparing of the right coronary artery (average mean dose, 23.8 Gy vs. 35.5 Gy), whereas the left coronary artery showed no significant improvement (mean dose, 11.2 Gy vs. 9.2 Gy), p = 0.11. There was no significant difference in percentage of total lung volume receiving at least 10, 15, or 20 Gy or in the mean lung dose between the planning methods. There were also no significant differences observed for the kidneys, liver, stomach, or spinal cord. Intensity-modulated radiotherapy achieved a significant improvement in target conformity as measured by the conformality index (ratio of total volume receiving 95% of prescription dose to planning target volume receiving 95% of prescription dose), with the mean conformality index reduced from 1.56 to 1.30 using IMRT. Conclusions: Treatment of patients with distal esophageal cancer using IMRT significantly decreases the exposure of the heart and right coronary artery when compared with 3D-CRT. Long-term studies are necessary to determine how this will impact on development of coronary artery disease and other cardiac complications.« less

  13. Bilateral implant reconstruction does not affect the quality of postmastectomy radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Alice Y., E-mail: hoa1234@mskcc.org; Patel, Nisha; Ohri, Nisha

    To determine if the presence of bilateral implants, in addition to other anatomic and treatment-related variables, affects coverage of the target volume and dose to the heart and lung in patients receiving postmastectomy radiation therapy (PMRT). A total of 197 consecutive women with breast cancer underwent mastectomy and immediate tissue expander (TE) placement, with or without exchange for a permanent implant (PI) before radiation therapy at our center. PMRT was delivered with 2 tangential beams + supraclavicular lymph node field (50 Gy). Patients were grouped by implant number: 51% unilateral (100) and 49% bilateral (97). The planning target volume (PTV)more » (defined as implant + chest wall + nodes), heart, and ipsilateral lung were contoured and the following parameters were abstracted from dose-volume histogram (DVH) data: PTV D{sub 95%} > 98%, Lung V{sub 20}Gy > 30%, and Heart V{sub 25}Gy > 5%. Univariate (UVA) and multivariate analyses (MVA) were performed to determine the association of variables with these parameters. The 2 groups were well balanced for implant type and volume, internal mammary node (IMN) treatment, and laterality. In the entire cohort, 90% had PTV D{sub 95%} > 98%, indicating excellent coverage of the chest wall. Of the patients, 27% had high lung doses (V{sub 20}Gy > 30%) and 16% had high heart doses (V{sub 25}Gy > 5%). No significant factors were associated with suboptimal PTV coverage. On MVA, IMN treatment was found to be highly associated with high lung and heart doses (both p < 0.0001), but implant number was not (p = 0.54). In patients with bilateral implants, IMN treatment was the only predictor of dose to the contralateral implant (p = 0.001). In conclusion, bilateral implants do not compromise coverage of the target volume or increase lung and heart dose in patients receiving PMRT. The most important predictor of high lung and heart doses in patients with implant-based reconstruction, whether unilateral or bilateral, is treatment of the IMNs. Refinement of radiation techniques in reconstructed patients who require comprehensive nodal irradiation is warranted.« less

  14. Whole-lesion apparent diffusion coefficient histogram analysis: significance in T and N staging of gastric cancers.

    PubMed

    Liu, Song; Zhang, Yujuan; Chen, Ling; Guan, Wenxian; Guan, Yue; Ge, Yun; He, Jian; Zhou, Zhengyang

    2017-10-02

    Whole-lesion apparent diffusion coefficient (ADC) histogram analysis has been introduced and proved effective in assessment of multiple tumors. However, the application of whole-volume ADC histogram analysis in gastrointestinal tumors has just started and never been reported in T and N staging of gastric cancers. Eighty patients with pathologically confirmed gastric carcinomas underwent diffusion weighted (DW) magnetic resonance imaging before surgery prospectively. Whole-lesion ADC histogram analysis was performed by two radiologists independently. The differences of ADC histogram parameters among different T and N stages were compared with independent-samples Kruskal-Wallis test. Receiver operating characteristic (ROC) analysis was performed to evaluate the performance of ADC histogram parameters in differentiating particular T or N stages of gastric cancers. There were significant differences of all the ADC histogram parameters for gastric cancers at different T (except ADC min and ADC max ) and N (except ADC max ) stages. Most ADC histogram parameters differed significantly between T1 vs T3, T1 vs T4, T2 vs T4, N0 vs N1, N0 vs N3, and some parameters (ADC 5% , ADC 10% , ADC min ) differed significantly between N0 vs N2, N2 vs N3 (all P < 0.05). Most parameters except ADC max performed well in differentiating different T and N stages of gastric cancers. Especially for identifying patients with and without lymph node metastasis, the ADC 10% yielded the largest area under the ROC curve of 0.794 (95% confidence interval, 0.677-0.911). All the parameters except ADC max showed excellent inter-observer agreement with intra-class correlation coefficients higher than 0.800. Whole-volume ADC histogram parameters held great potential in differentiating different T and N stages of gastric cancers preoperatively.

  15. Dosimetric quality endpoints for low-dose-rate prostate brachytherapy using biological effective dose (bed) vs. conventional dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Rachana; Al-Hallaq, Hania; Pelizzari, Charles A.

    2003-12-31

    The purpose of this study was to compare conventional low-dose-rate prostate brachytherapy dosimetric quality parameters with their biological effective dose (BED) counterparts. To validate a model for transformation from conventional dose to BED, the postimplant plans of 31 prostate brachytherapy patients were evaluated using conventional dose-volume histogram (DVH) quality endpoints and analogous BED-DVH endpoints. Based on CT scans obtained 4 weeks after implantation, DVHs were computed and standard dosimetric endpoints V100 (volume receiving 100% of the prescribed dose), V150, V200, HI (1-[V150/V100]), and D90 (dose that 90% of the target volume received) were obtained for quality analysis. Using known andmore » reported transformations, dose grids were transformed to BED-early ({alpha}/{beta} = 10 Gy) and BED-late ({alpha}/{beta} = 3 Gy) grids, and the same dosimetric endpoints were analyzed. For conventional, BED-early and BED-late DVHs, no differences in V100 were seen (0.896, 0.893, and 0.894, respectively). However, V150 and V200 were significantly higher for both BED-early (0.582 and 0.316) and BED-late (0.595 and 0.337), compared with the conventional (0.539 and 0.255) DVHs. D90 was significantly lower for the BED-early (103.1 Gy) and BED-late transformations (106.9 Gy) as compared with the conventional (119.5 Gy) DVHs. The conventional prescription parameter V100 is the same for the corresponding BED-early and BED-late transformed DVHs. The toxicity parameters V150 and V200 are slightly higher using the BED transformations, suggesting that the BED doses are somewhat higher than predicted using conventional DVHs. The prescription/quality parameter D90 is slightly lower, implying that target coverage is lower than predicted using conventional DVHs. This methodology can be applied to analyze BED dosimetric endpoints to improve clinical outcome and reduce complications of prostate brachytherapy.« less

  16. Impact of a commercially available model-based dose calculation algorithm on treatment planning of high-dose-rate brachytherapy in patients with cervical cancer.

    PubMed

    Abe, Kota; Kadoya, Noriyuki; Sato, Shinya; Hashimoto, Shimpei; Nakajima, Yujiro; Miyasaka, Yuya; Ito, Kengo; Umezawa, Rei; Yamamoto, Takaya; Takahashi, Noriyoshi; Takeda, Ken; Jingu, Keiichi

    2018-03-01

    We evaluated the impact of model-based dose calculation algorithms (MBDCAs) on high-dose-rate brachytherapy (HDR-BT) treatment planning for patients with cervical cancer. Seven patients with cervical cancer treated using HDR-BT were studied. Tandem and ovoid applicators were used in four patients, a vaginal cylinder in one, and interstitial needles in the remaining two patients. MBDCAs were applied to the Advanced Collapsed cone Engine (ACE; Elekta, Stockholm, Sweden). All plans, which were originally calculated using TG-43, were re-calculated using both ACE and Monte Carlo (MC) simulations. Air was used as the rectal material. The mean difference in the rectum D2cm3 between ACErec-air and MCrec-air was 8.60 ± 4.64%, whereas that in the bladder D2cm3 was -2.80 ± 1.21%. Conversely, in the small group analysis (n = 4) using water instead of air as the rectal material, the mean difference in the rectum D2cm3 between TG-43 and ACErec-air was 11.87 ± 2.65%, whereas that between TG-43 and ACErec-water was 0.81 ± 2.04%, indicating that the use of water as the rectal material reduced the difference in D2cm3 between TG-43 and ACE. Our results suggested that the differences in the dose-volume histogram (DVH) parameters of TG-43 and ACE were large for the rectum when considerable air (gas) volume was present in it, and that this difference was reduced when the air (gas) volume was reduced. Also, ACE exhibited better dose calculation accuracy than that of TG-43 in this situation. Thus, ACE may be able to calculate the dose more accurately than TG-43 for HDR-BT in treating cervical cancers, particularly for patients with considerable air (gas) volume in the rectum.

  17. TU-G-BRD-03: IMRT Dosimetry Differences in An Institution with Community and Academic Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, S; Indiana University School of Medicine, Indianapolis, IN; Andersen, A

    Purpose: Radiation outcome among institutions can be interpreted meaningfully if the dose delivery and prescription to the target volume is documented accurately and consistently. ICRU-83 recommended specific guidelines in IMRT for target volume definitions and dose reporting. This retrospective study evaluates the pattern of IMRT dose prescription and recording in an academic institution (AI) and a community hospital (CH) models in a single institution with reference to ICRU-83 recommendation. Materials & Methods: Dosimetric information of 625 (500 from academic and 125 from community) patients treated with IMRT was collected retrospectively from the AI and a CH. The dose-volume histogram (DVH)more » for the target volume of each patient was extracted. Standard dose parameters such as D2, D50, D95, D98, D100, as well as the homogeneity index (HI) defined as (D2-D98)/D50 and monitor units (MUs) were collected. Results: Significant dosimetric variations were observed in disease sites and between AI and CH. The variation in the mean value of D95 for AI is 98.48±4.12 and for CH is 96.41±4.13. A similar pattern was noticed for D50 (104.18±6.04 for AI and 101.05±3.49 for CH). Thus, nearly 95% of patients received dosage higher than 100% to the site viewed by D50 and varied between AI and CH models. The average variation of HI is found to be 0.12±0.08 and 0.11±0.08 for AI and CH model, showing better IMRT treatment plans for academic model compared to community. Conclusion: Even with the implementation of ICRU-83 guidelines, there is a large variation in dose prescription and delivery in IMRT. The variation is institution and site specific. For any meaningful comparison of the IMRT outcome, strict guidelines for dose reporting should be maintained in every institution.« less

  18. Dosimetric comparison of deep inspiration breath hold and free breathing technique in stereotactic body radiotherapy for localized lung tumor using Flattening Filter Free beam

    NASA Astrophysics Data System (ADS)

    Mani, Karthick Raj; Bhuiyan, Md. Anisuzzaman; Alam, Md. Mahbub; Ahmed, Sharif; Sumon, Mostafa Aziz; Sengupta, Ashim Kumar; Rahman, Md. Shakilur; Azharul Islam, Md. S. M.

    2018-03-01

    Aim: To compare the dosimetric advantage of stereotactic body radiotherapy (SBRT) for localized lung tumor between deep inspiration breath hold technique and free breathing technique. Materials and methods: We retrospectively included ten previously treated lung tumor patients in this dosimetric study. All the ten patients underwent CT simulation using 4D-CT free breathing (FB) and deep inspiration breath hold (DIBH) techniques. Plans were created using three coplanar full modulated arc using 6 MV flattening filter free (FFF) bream with a dose rate of 1400 MU/min. Same dose constraints for the target and the critical structures for a particular patient were used during the plan optimization process in DIBH and FB datasets. We intend to deliver 50 Gy in 5 fractions for all the patients. For standardization, all the plans were normalized at target mean of the planning target volume (PTV). Doses to the critical structures and targets were recorded from the dose volume histogram for evaluation. Results: The mean right and left lung volumes were inflated by 1.55 and 1.60 times in DIBH scans compared to the FB scans. The mean internal target volume (ITV) increased in the FB datasets by 1.45 times compared to the DIBH data sets. The mean dose followed by standard deviation (x¯ ± σx¯) of ipsilateral lung for DIBH-SBRT and FB-SBRT plans were 7.48 ± 3.57 (Gy) and 10.23 ± 4.58 (Gy) respectively, with a mean reduction of 36.84% in DIBH-SBRT plans. Ipsilateral lung were reduced to 36.84% in DIBH plans compared to FB plans. Conclusion: Significant dose reduction in ipsilateral lung due to the lung inflation and target motion restriction in DIBH-SBRT plans were observed compare to FB-SBRT. DIBH-SBRT plans demonstrate superior dose reduction to the normal tissues and other critical structures.

  19. Voxel-based population analysis for correlating local dose and rectal toxicity in prostate cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Acosta, Oscar; Drean, Gael; Ospina, Juan D.; Simon, Antoine; Haigron, Pascal; Lafond, Caroline; de Crevoisier, Renaud

    2013-04-01

    The majority of current models utilized for predicting toxicity in prostate cancer radiotherapy are based on dose-volume histograms. One of their main drawbacks is the lack of spatial accuracy, since they consider the organs as a whole volume and thus ignore the heterogeneous intra-organ radio-sensitivity. In this paper, we propose a dose-image-based framework to reveal the relationships between local dose and toxicity. In this approach, the three-dimensional (3D) planned dose distributions across a population are non-rigidly registered into a common coordinate system and compared at a voxel level, therefore enabling the identification of 3D anatomical patterns, which may be responsible for toxicity, at least to some extent. Additionally, different metrics were employed in order to assess the quality of the dose mapping. The value of this approach was demonstrated by prospectively analyzing rectal bleeding (⩾Grade 1 at 2 years) according to the CTCAE v3.0 classification in a series of 105 patients receiving 80 Gy to the prostate by intensity modulated radiation therapy (IMRT). Within the patients presenting bleeding, a significant dose excess (6 Gy on average, p < 0.01) was found in a region of the anterior rectal wall. This region, close to the prostate (1 cm), represented less than 10% of the rectum. This promising voxel-wise approach allowed subregions to be defined within the organ that may be involved in toxicity and, as such, must be considered during the inverse IMRT planning step.

  20. The threshold of hypothyroidism after radiation therapy for head and neck cancer: a retrospective analysis of 116 cases

    PubMed Central

    Fujiwara, Masayuki; Kamikonya, Norihiko; Odawara, Soichi; Suzuki, Hitomi; Niwa, Yasue; Takada, Yasuhiro; Doi, Hiroshi; Terada, Tomonori; Uwa, Nobuhiro; Sagawa, Kosuke; Hirota, Shozo

    2015-01-01

    The purpose of the present study was to determine the risk factors for developing thyroid disorders based on a dose–volume histograms (DVHs) analysis. Data from a total of 116 consecutive patients undergoing 3D conformal radiation therapy for head and neck cancers was retrospectively evaluated. Radiation therapy was performed between April 2007 and December 2010. There were 108 males and 8 females included in the study. The median follow-up term was 24 months (range, 1–62 months). The thyroid function was evaluated by measuring thyroid-stimulating hormone (TSH) and free thyroxine (FT4) levels. The mean thyroid dose, and the volume of thyroid gland spared from doses ≥10, 20, 30 and 40 Gy (VS10, VS20, VS30 and VS40) were calculated for all patients. The thyroid dose and volume were calculated by the radiotherapy planning system (RTPS). The cumulative incidences of hypothyroidism were 21.1% and 36.4% at one year and two years, respectively, after the end of radiation therapy. In the DVH analyses, the patients who received a mean thyroid dose <30 Gy had a significantly lower incidence of hypothyroidism. The univariate analyses showed that the VS10, VS20, VS30 and VS40 were associated with the risk of hypothyroidism. Hypothyroidism was a relatively common type of late radiation-induced toxicity. A mean thyroid dose of 30 Gy may be a useful threshold for predicting the development of hypothyroidism after radiation therapy for head and neck cancers. PMID:25818629

  1. Role of the parameters involved in the plan optimization based on the generalized equivalent uniform dose and radiobiological implications

    NASA Astrophysics Data System (ADS)

    Widesott, L.; Strigari, L.; Pressello, M. C.; Benassi, M.; Landoni, V.

    2008-03-01

    We investigated the role and the weight of the parameters involved in the intensity modulated radiation therapy (IMRT) optimization based on the generalized equivalent uniform dose (gEUD) method, for prostate and head-and-neck plans. We systematically varied the parameters (gEUDmax and weight) involved in the gEUD-based optimization of rectal wall and parotid glands. We found that the proper value of weight factor, still guaranteeing planning treatment volumes coverage, produced similar organs at risks dose-volume (DV) histograms for different gEUDmax with fixed a = 1. Most of all, we formulated a simple relation that links the reference gEUDmax and the associated weight factor. As secondary objective, we evaluated plans obtained with the gEUD-based optimization and ones based on DV criteria, using the normal tissue complication probability (NTCP) models. gEUD criteria seemed to improve sparing of rectum and parotid glands with respect to DV-based optimization: the mean dose, the V40 and V50 values to the rectal wall were decreased of about 10%, the mean dose to parotids decreased of about 20-30%. But more than the OARs sparing, we underlined the halving of the OARs optimization time with the implementation of the gEUD-based cost function. Using NTCP models we enhanced differences between the two optimization criteria for parotid glands, but no for rectum wall.

  2. Pencil beam scanning proton therapy vs rotational arc radiation therapy: A treatment planning comparison for postoperative oropharyngeal cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apinorasethkul, Ontida, E-mail: Ontida.a@gmail.com; Kirk, Maura; Teo, Kevin

    Patients diagnosed with head and neck cancer are traditionally treated with photon radiotherapy. Proton therapy is currently being used clinically and may potentially reduce treatment-related toxicities by minimizing the dose to normal organs in the treatment of postoperative oropharyngeal cancer. The finite range of protons has the potential to significantly reduce normal tissue toxicity compared to photon radiotherapy. Seven patients were planned with both proton and photon modalities. The planning goal for both modalities was achieving the prescribed dose to 95% of the planning target volume (PTV). Dose-volume histograms were compared in which all cases met the target coverage goals.more » Mean doses were significantly lower in the proton plans for the oral cavity (1771 cGy photon vs 293 cGy proton, p < 0.001), contralateral parotid (1796 cGy photon vs 1358 proton, p < 0.001), and the contralateral submandibular gland (3608 cGy photon vs 3251 cGy proton, p = 0.03). Average total integral dose was 9.1% lower in proton plans. The significant dosimetric sparing seen with proton therapy may lead to reduced side effects such as pain, weight loss, taste changes, and dry mouth. Prospective comparisons of protons vs photons for disease control, toxicity, and patient-reported outcomes are therefore warranted and currently being pursued.« less

  3. Quantification of dose uncertainties for the bladder in prostate cancer radiotherapy based on dominant eigenmodes

    NASA Astrophysics Data System (ADS)

    Rios, Richard; Acosta, Oscar; Lafond, Caroline; Espinosa, Jairo; de Crevoisier, Renaud

    2017-11-01

    In radiotherapy for prostate cancer the dose at the treatment planning for the bladder may be a bad surrogate of the actual delivered dose as the bladder presents the largest inter-fraction shape variations during treatment. This paper presents PCA models as a virtual tool to estimate dosimetric uncertainties for the bladder produced by motion and deformation between fractions. Our goal is to propose a methodology to determine the minimum number of modes required to quantify dose uncertainties of the bladder for motion/deformation models based on PCA. We trained individual PCA models using the bladder contours available from three patients with a planning computed tomography (CT) and on-treatment cone-beam CTs (CBCTs). Based on the above models and via deformable image registration (DIR), we estimated two accumulated doses: firstly, an accumulated dose obtained by integrating the planning dose over the Gaussian probability distribution of the PCA model; and secondly, an accumulated dose obtained by simulating treatment courses via a Monte Carlo approach. We also computed a reference accumulated dose for each patient using his available images via DIR. Finally, we compared the planning dose with the three accumulated doses, and we calculated local dose variability and dose-volume histogram uncertainties.

  4. Bolus-dependent dosimetric effect of positioning errors for tangential scalp radiotherapy with helical tomotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobb, Eric, E-mail: eclobb2@gmail.com

    2014-04-01

    The dosimetric effect of errors in patient position is studied on-phantom as a function of simulated bolus thickness to assess the need for bolus utilization in scalp radiotherapy with tomotherapy. A treatment plan is generated on a cylindrical phantom, mimicking a radiotherapy technique for the scalp utilizing primarily tangential beamlets. A planning target volume with embedded scalplike clinical target volumes (CTVs) is planned to a uniform dose of 200 cGy. Translational errors in phantom position are introduced in 1-mm increments and dose is recomputed from the original sinogram. For each error the maximum dose, minimum dose, clinical target dose homogeneitymore » index (HI), and dose-volume histogram (DVH) are presented for simulated bolus thicknesses from 0 to 10 mm. Baseline HI values for all bolus thicknesses were in the 5.5 to 7.0 range, increasing to a maximum of 18.0 to 30.5 for the largest positioning errors when 0 to 2 mm of bolus is used. Utilizing 5 mm of bolus resulted in a maximum HI value of 9.5 for the largest positioning errors. Using 0 to 2 mm of bolus resulted in minimum and maximum dose values of 85% to 94% and 118% to 125% of the prescription dose, respectively. When using 5 mm of bolus these values were 98.5% and 109.5%. DVHs showed minimal changes in CTV dose coverage when using 5 mm of bolus, even for the largest positioning errors. CTV dose homogeneity becomes increasingly sensitive to errors in patient position as bolus thickness decreases when treating the scalp with primarily tangential beamlets. Performing a radial expansion of the scalp CTV into 5 mm of bolus material minimizes dosimetric sensitivity to errors in patient position as large as 5 mm and is therefore recommended.« less

  5. Pediatric dosimetry for intrapleural lung injections of 32P chromic phosphate

    NASA Astrophysics Data System (ADS)

    Konijnenberg, Mark W.; Olch, Arthur

    2010-10-01

    Intracavitary injections of 32P chromic phosphate are used in the therapy of pleuropulmonary blastoma and pulmonary sarcomas in children. The lung dose, however, has never been calculated despite the potential risk of lung toxicity from treatment. In this work the dosimetry has been calculated in target tissue and lung for pediatric phantoms. Pleural cavities were modeled in the Monte Carlo code MCNP within the pediatric MIRD phantoms. Both the depth-dose curves in the pleural lining and into the lung as well as 3D dose distributions were calculated for either homogeneous or inhomogeneous 32P activity distributions. Dose-volume histograms for the lung tissue and isodose graphs were generated. The results for the 2D depth-dose curve to the pleural lining and tumor around the pleural cavity correspond well with the point kernel model-based recommendations. With a 2 mm thick pleural lining, one-third of the lung parenchyma volume gets a dose more than 30 Gy (V30) for 340 MBq 32P in a 10 year old. This is close to lung tolerance. Younger children will receive a larger dose to the lung when the lung density remains equal to the adult value; the V30 relative lung volume for a 5 year old is 35% at an activity of 256 MBq and for a 1 year old 165 MBq yields a V30 of 43%. At higher densities of the lung tissue V30 stays below 32%. All activities yield a therapeutic dose of at least 225 Gy in the pleural lining. With a more normal pleural lining thickness (0.5 mm instead of 2 mm) the injected activities will have to be reduced by a factor 5 to obtain tolerable lung doses in pediatric patients. Previous dosimetry recommendations for the adult apply well down to lung surface areas of 400 cm2. Monte Carlo dosimetry quantitates the three-dimensional dose distribution, providing a better insight into the maximum tolerable activity for this therapy.

  6. Impact of bowel gas and body outline variations on total accumulated dose with intensity-modulated proton therapy in locally advanced cervical cancer patients.

    PubMed

    Berger, Thomas; Petersen, Jørgen Breede Baltzer; Lindegaard, Jacob Christian; Fokdal, Lars Ulrik; Tanderup, Kari

    2017-11-01

    Density changes occurring during fractionated radiotherapy in the pelvic region may degrade proton dose distributions. The aim of the study was to quantify the dosimetric impact of gas cavities and body outline variations. Seven patients with locally advanced cervical cancer (LACC) were analyzed through a total of 175 daily cone beam computed tomography (CBCT) scans. Four-beams intensity-modulated proton therapy (IMPT) dose plans were generated targeting the internal target volume (ITV) composed of: primary tumor, elective and pathological nodes. The planned dose was 45 Gy [Relative-Biological-Effectiveness-weighted (RBE)] in 25 fractions and simultaneously integrated boosts of pathologic lymph nodes were 55-57.5 Gy (RBE). In total, 475 modified CTs were generated to evaluate the effect of: 1/gas cavities, 2/outline variations and 3/the two combined. The anatomy of each fraction was simulated by propagating gas cavities contours and body outlines from each daily CBCT to the pCT. Hounsfield units corresponding to gas and fat were assigned to the propagated contours. D98 (least dose received by the hottest 98% of the volume) and D99.9 for targets and V43Gy(RBE) (volume receiving ≥43 Gy(RBE)) for organs at risk (OARs) were recalculated on each modified CT, and total dose was evaluated through dose volume histogram (DVH) addition across all fractions. Weight changes during radiotherapy were between -3.1% and 1.2%. Gas cavities and outline variations induced a median [range] dose degradation for ITV45 of 1.0% [0.5-3.5%] for D98 and 2.1% [0.8-6.4%] for D99.9. Outline variations had larger dosimetric impact than gas cavities. Worst nodal dose degradation was 2.0% for D98 and 2.3% for D99.9. The impact on bladder, bowel and rectum was limited with V43Gy(RBE) variations ≤3.5 cm 3 . Bowel gas cavities and outline variations had minor impact on accumulated dose in targets and OAR of four-field IMPT in a LACC population of moderate weight changes.

  7. SU-G-TeP1-11: Predictors of Cardiac and Lung Dose Sparing in DIBH for Left Breast Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, N; Kalet, A; Fang, L

    Purpose: This retrospective study of left sided whole breast radiation therapy (RT) patients investigates possible predictive parameters correlating to cardiac and left lung dose sparing by deep inspiration breath-hold (DIBH) technique compared to free-breathing (FB). Methods: Thirty-one patients having both DIBH and FB CT scans were included in the study. All patients were planned with a standard step-and-shoot tangential technique using MV photons, with prescription of 50Gy or 50.4Gy. The displacement of the breath hold sternal mark during DIBH, the cardiac contact distances of the axial (CCDax) and parasagittal (CCDps) planes, and lateral-heart-to-chest (LHC) distance on FB CT scans weremore » measured. Lung volumes, mean dose and dose-volume histograms (V5, V10 and V20) were analyzed and compared for heart and left lung for both FB and DIBH techniques. Correlation analysis was performed to identify the predictors for heart and left lung dose sparing. Two-tailed Student’s t-test and linear regression were used for data analysis with significance level of P≤0.05. Results: All dosimetric metrics for the heart and left lung were significantly reduced (P<0.01) with DIBH. Breath hold sternal mark displacement ranged from 0.4–1.8 cm and correlated with mean (P=0.05) and V5 (P=0.02) of heart dose reduction by DIBH. FB lung volume showed correlation with mean lung dose reduction by DIBH (P<0.01). The FB-CCDps and FB-LHC distance had strong positive and negative correlation with FB mean heart dose (P<0.01) and mean heart dose reduction by DIBH (P<0.01), respectively. FB-CCDax showed no correlation with dosimetric changes. Conclusion: DIBH technique has been shown to reduce dose to the heart and left lung. In this patient cohort, FB-CCDps, FB-LHC distance, and FB lung volume served as significant predictors for heart and left lung. These parameters can be further investigated to be used as a tool to better select patients who will benefit from DIBH.« less

  8. The threshold of hypothyroidism after radiation therapy for head and neck cancer: a retrospective analysis of 116 cases.

    PubMed

    Fujiwara, Masayuki; Kamikonya, Norihiko; Odawara, Soichi; Suzuki, Hitomi; Niwa, Yasue; Takada, Yasuhiro; Doi, Hiroshi; Terada, Tomonori; Uwa, Nobuhiro; Sagawa, Kosuke; Hirota, Shozo

    2015-05-01

    The purpose of the present study was to determine the risk factors for developing thyroid disorders based on a dose-volume histograms (DVHs) analysis. Data from a total of 116 consecutive patients undergoing 3D conformal radiation therapy for head and neck cancers was retrospectively evaluated. Radiation therapy was performed between April 2007 and December 2010. There were 108 males and 8 females included in the study. The median follow-up term was 24 months (range, 1-62 months). The thyroid function was evaluated by measuring thyroid-stimulating hormone (TSH) and free thyroxine (FT4) levels. The mean thyroid dose, and the volume of thyroid gland spared from doses ≥10, 20, 30 and 40 Gy (VS10, VS20, VS30 and VS40) were calculated for all patients. The thyroid dose and volume were calculated by the radiotherapy planning system (RTPS). The cumulative incidences of hypothyroidism were 21.1% and 36.4% at one year and two years, respectively, after the end of radiation therapy. In the DVH analyses, the patients who received a mean thyroid dose <30 Gy had a significantly lower incidence of hypothyroidism. The univariate analyses showed that the VS10, VS20, VS30 and VS40 were associated with the risk of hypothyroidism. Hypothyroidism was a relatively common type of late radiation-induced toxicity. A mean thyroid dose of 30 Gy may be a useful threshold for predicting the development of hypothyroidism after radiation therapy for head and neck cancers. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  9. Influence of Prostatic Edema on {sup 131}CS Permanent Prostate Seed Implants: A Dosimetric and Radiobiological Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kehwar, Than S., E-mail: kehwarts@upmc.ed; Jones, Heather A.; Huq, M. Saiful

    2011-06-01

    Purpose: To study the influence of prostatic edema on postimplant physical and radiobiological parameters using {sup 131}Cs permanent prostate seed implants. Methods and Materials: Thirty-one patients with early prostate cancer who underwent {sup 131}Cs permanent seed implantation were evaluated. Dose-volume histograms were generated for each set of prostate volumes obtained at preimplantation and postimplantion days 0, 14, and 28 to compute quality indices (QIs) and fractional doses at level x (FD{sub x}). A set of equations for QI, FD{sub x}, and biologically effective doses at dose level D{sub x} (BED{sub x}) were defined to account for edema changes with timemore » after implant. Results: There were statistically significant differences found between QIs of pre- and postimplant plans at day 0, except for the overdose index (ODI). QIs correlated with postimplant time, and FD{sub x} was found to increase with increasing postimplant time. With the effect of edema, BED at different dose levels showed less improvement due to the short half-life of {sup 131}Cs, which delivers about 85% of the prescribed dose before the prostate reaches its original volume due to dissipation of edema. Conclusions: Results of the study show that QIs, FD{sub x}, and BEDs at the level of D{sub x} changed from preneedle plans to postimplant plans and have statistically significant differences (p < 0.05), except for the ODI (p = 0.106), which suggests that at the time of {sup 131}C seed implantation, the effect of edema must be accounted for when defining the seed positions, to avoid the possibility of poor dosimetric and radiobiologic results for {sup 131}Cs seed implants.« less

  10. Treatment planning and dose analysis for interstitial photodynamic therapy of prostate cancer

    NASA Astrophysics Data System (ADS)

    Davidson, Sean R. H.; Weersink, Robert A.; Haider, Masoom A.; Gertner, Mark R.; Bogaards, Arjen; Giewercer, David; Scherz, Avigdor; Sherar, Michael D.; Elhilali, Mostafa; Chin, Joseph L.; Trachtenberg, John; Wilson, Brian C.

    2009-04-01

    With the development of new photosensitizers that are activated by light at longer wavelengths, interstitial photodynamic therapy (PDT) is emerging as a feasible alternative for the treatment of larger volumes of tissue. Described here is the application of PDT treatment planning software developed by our group to ensure complete coverage of larger, geometrically complex target volumes such as the prostate. In a phase II clinical trial of TOOKAD vascular targeted photodynamic therapy (VTP) for prostate cancer in patients who failed prior radiotherapy, the software was used to generate patient-specific treatment prescriptions for the number of treatment fibres, their lengths, their positions and the energy each delivered. The core of the software is a finite element solution to the light diffusion equation. Validation against in vivo light measurements indicated that the software could predict the location of an iso-fluence contour to within approximately ±2 mm. The same software was used to reconstruct the treatments that were actually delivered, thereby providing an analysis of the threshold light dose required for TOOKAD-VTP of the post-irradiated prostate. The threshold light dose for VTP-induced prostate damage, as measured one week post-treatment using contrast-enhanced MRI, was found to be highly heterogeneous, both within and between patients. The minimum light dose received by 90% of the prostate, D90, was determined from each patient's dose-volume histogram and compared to six-month sextant biopsy results. No patient with a D90 less than 23 J cm-2 had complete biopsy response, while 8/13 (62%) of patients with a D90 greater than 23 J cm-2 had negative biopsies at six months. The doses received by the urethra and the rectal wall were also investigated.

  11. SU-F-T-254: Dose Volume Histogram (DVH) Analysis of Breath Hold Vs Free Breathing Techniques for Esophageal Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badkul, R; Doke, K; Pokhrel, D

    Purpose: Lung and heart doses and associated toxicity are of concern in radiotherapy for esophageal cancer. This study evaluates the dosimetry of deep-inspiration-breath-hold (DIBH) technique as compared to freebreathing( FB) using 3D-conformal treatment(3D-CRT) of esophageal cancer. Methods: Eight patients were planned with FB and DIBH CT scans. DIBH scans were acquired using Varian RPM system. FB and DIBH CTs were contoured per RTOG-1010 to create the planning target volume(PTV) as well as organs at risk volumes(OAR). Two sets of gross target volumes(GTV) with 5cm length were contoured for each patient: proximal at the level of the carina and distal atmore » the level of gastroesophageal junction and were enlarged with appropriate margin to generate Clinical Target Volume and PTV. 3D-CRT plans were created on Eclipse planning system for 45Gy to cover 95% of PTV in 25 fractions for both proximal and distal tumors on FB and DIBH scans. For distal tumors celiac nodes were covered electively. DVH parameters for lung and heart OARs were generated and analyzed. Results: All DIBH DVH parameters were normalized to FB plan values. Average of heart-mean and heart-V40 was 0.70 and 0.66 for proximal lesions. For distal lesions ratios were 1.21 and 2.22 respectively. For DIBH total lung volume increased by 2.43 times versus FB scan. Average of lung-mean, V30, V20, V10, V5 are 0.82, 0.92, 0.76, 0.77 and 0.79 for proximal lesions and 1.17,0.66,0.87,0.93 and 1.03 for distal lesions. Heart doses were lower for breath-hold proximal lesions but higher for distal lesions as compared to free-breathing plans. Lung doses were lower for both proximal and distal breath-hold lesions except mean lung dose and V5 for distal lesions. Conclusion: This study showed improvement of OAR doses for esophageal lesions at mid-thoracic level utilizing DIBH vs FB technique but did not show consistent OAR sparing with DIBH for distal lesions.« less

  12. Histogram Analysis of Diffusion Weighted Imaging at 3T is Useful for Prediction of Lymphatic Metastatic Spread, Proliferative Activity, and Cellularity in Thyroid Cancer.

    PubMed

    Schob, Stefan; Meyer, Hans Jonas; Dieckow, Julia; Pervinder, Bhogal; Pazaitis, Nikolaos; Höhn, Anne Kathrin; Garnov, Nikita; Horvath-Rizea, Diana; Hoffmann, Karl-Titus; Surov, Alexey

    2017-04-12

    Pre-surgical diffusion weighted imaging (DWI) is increasingly important in the context of thyroid cancer for identification of the optimal treatment strategy. It has exemplarily been shown that DWI at 3T can distinguish undifferentiated from well-differentiated thyroid carcinoma, which has decisive implications for the magnitude of surgery. This study used DWI histogram analysis of whole tumor apparent diffusion coefficient (ADC) maps. The primary aim was to discriminate thyroid carcinomas which had already gained the capacity to metastasize lymphatically from those not yet being able to spread via the lymphatic system. The secondary aim was to reflect prognostically important tumor-biological features like cellularity and proliferative activity with ADC histogram analysis. Fifteen patients with follicular-cell derived thyroid cancer were enrolled. Lymph node status, extent of infiltration of surrounding tissue, and Ki-67 and p53 expression were assessed in these patients. DWI was obtained in a 3T system using b values of 0, 400, and 800 s/mm². Whole tumor ADC volumes were analyzed using a histogram-based approach. Several ADC parameters showed significant correlations with immunohistopathological parameters. Most importantly, ADC histogram skewness and ADC histogram kurtosis were able to differentiate between nodal negative and nodal positive thyroid carcinoma. histogram analysis of whole ADC tumor volumes has the potential to provide valuable information on tumor biology in thyroid carcinoma. However, further studies are warranted.

  13. Histogram Analysis of Diffusion Weighted Imaging at 3T is Useful for Prediction of Lymphatic Metastatic Spread, Proliferative Activity, and Cellularity in Thyroid Cancer

    PubMed Central

    Schob, Stefan; Meyer, Hans Jonas; Dieckow, Julia; Pervinder, Bhogal; Pazaitis, Nikolaos; Höhn, Anne Kathrin; Garnov, Nikita; Horvath-Rizea, Diana; Hoffmann, Karl-Titus; Surov, Alexey

    2017-01-01

    Pre-surgical diffusion weighted imaging (DWI) is increasingly important in the context of thyroid cancer for identification of the optimal treatment strategy. It has exemplarily been shown that DWI at 3T can distinguish undifferentiated from well-differentiated thyroid carcinoma, which has decisive implications for the magnitude of surgery. This study used DWI histogram analysis of whole tumor apparent diffusion coefficient (ADC) maps. The primary aim was to discriminate thyroid carcinomas which had already gained the capacity to metastasize lymphatically from those not yet being able to spread via the lymphatic system. The secondary aim was to reflect prognostically important tumor-biological features like cellularity and proliferative activity with ADC histogram analysis. Fifteen patients with follicular-cell derived thyroid cancer were enrolled. Lymph node status, extent of infiltration of surrounding tissue, and Ki-67 and p53 expression were assessed in these patients. DWI was obtained in a 3T system using b values of 0, 400, and 800 s/mm2. Whole tumor ADC volumes were analyzed using a histogram-based approach. Several ADC parameters showed significant correlations with immunohistopathological parameters. Most importantly, ADC histogram skewness and ADC histogram kurtosis were able to differentiate between nodal negative and nodal positive thyroid carcinoma. Conclusions: histogram analysis of whole ADC tumor volumes has the potential to provide valuable information on tumor biology in thyroid carcinoma. However, further studies are warranted. PMID:28417929

  14. Diffusion Profiling via a Histogram Approach Distinguishes Low-grade from High-grade Meningiomas, Can Reflect the Respective Proliferative Potential and Progesterone Receptor Status.

    PubMed

    Gihr, Georg Alexander; Horvath-Rizea, Diana; Garnov, Nikita; Kohlhof-Meinecke, Patricia; Ganslandt, Oliver; Henkes, Hans; Meyer, Hans Jonas; Hoffmann, Karl-Titus; Surov, Alexey; Schob, Stefan

    2018-02-01

    Presurgical grading, estimation of growth kinetics, and other prognostic factors are becoming increasingly important for selecting the best therapeutic approach for meningioma patients. Diffusion-weighted imaging (DWI) provides microstructural information and reflects tumor biology. A novel DWI approach, histogram profiling of apparent diffusion coefficient (ADC) volumes, provides more distinct information than conventional DWI. Therefore, our study investigated whether ADC histogram profiling distinguishes low-grade from high-grade lesions and reflects Ki-67 expression and progesterone receptor status. Pretreatment ADC volumes of 37 meningioma patients (28 low-grade, 9 high-grade) were used for histogram profiling. WHO grade, Ki-67 expression, and progesterone receptor status were evaluated. Comparative and correlative statistics investigating the association between histogram profiling and neuropathology were performed. The entire ADC profile (p10, p25, p75, p90, mean, median) was significantly lower in high-grade versus low-grade meningiomas. The lower percentiles, mean, and modus showed significant correlations with Ki-67 expression. Skewness and entropy of the ADC volumes were significantly associated with progesterone receptor status and Ki-67 expression. ROC analysis revealed entropy to be the most accurate parameter distinguishing low-grade from high-grade meningiomas. ADC histogram profiling provides a distinct set of parameters, which help differentiate low-grade versus high-grade meningiomas. Also, histogram metrics correlate significantly with histological surrogates of the respective proliferative potential. More specifically, entropy revealed to be the most promising imaging biomarker for presurgical grading. Both, entropy and skewness were significantly associated with progesterone receptor status and Ki-67 expression and therefore should be investigated further as predictors for prognostically relevant tumor biological features. Since absolute ADC values vary between MRI scanners of different vendors and field strengths, their use is more limited in the presurgical setting.

  15. Apparent diffusion coefficient histogram analysis can evaluate radiation-induced parotid damage and predict late xerostomia degree in nasopharyngeal carcinoma

    PubMed Central

    Zhou, Nan; Guo, Tingting; Zheng, Huanhuan; Pan, Xia; Chu, Chen; Dou, Xin; Li, Ming; Liu, Song; Zhu, Lijing; Liu, Baorui; Chen, Weibo; He, Jian; Yan, Jing; Zhou, Zhengyang; Yang, Xiaofeng

    2017-01-01

    We investigated apparent diffusion coefficient (ADC) histogram analysis to evaluate radiation-induced parotid damage and predict xerostomia degrees in nasopharyngeal carcinoma (NPC) patients receiving radiotherapy. The imaging of bilateral parotid glands in NPC patients was conducted 2 weeks before radiotherapy (time point 1), one month after radiotherapy (time point 2), and four months after radiotherapy (time point 3). From time point 1 to 2, parotid volume, skewness, and kurtosis decreased (P < 0.001, = 0.001, and < 0.001, respectively), but all other ADC histogram parameters increased (all P < 0.001, except P = 0.006 for standard deviation [SD]). From time point 2 to 3, parotid volume continued to decrease (P = 0.022), and SD, 75th and 90th percentiles continued to increase (P = 0.024, 0.010, and 0.006, respectively). Early change rates of parotid ADCmean, ADCmin, kurtosis, and 25th, 50th, 75th, 90th percentiles (from time point 1 to 2) correlated with late parotid atrophy rate (from time point 1 to 3) (all P < 0.05). Multiple linear regression analysis revealed correlations among parotid volume, time point, and ADC histogram parameters. Early mean change rates for bilateral parotid SD and ADCmax could predict late xerostomia degrees at seven months after radiotherapy (three months after time point 3) with AUC of 0.781 and 0.818 (P = 0.014, 0.005, respectively). ADC histogram parameters were reproducible (intraclass correlation coefficient, 0.830 - 0.999). ADC histogram analysis could be used to evaluate radiation-induced parotid damage noninvasively, and predict late xerostomia degrees of NPC patients treated with radiotherapy. PMID:29050274

  16. Apparent diffusion coefficient histogram analysis can evaluate radiation-induced parotid damage and predict late xerostomia degree in nasopharyngeal carcinoma.

    PubMed

    Zhou, Nan; Guo, Tingting; Zheng, Huanhuan; Pan, Xia; Chu, Chen; Dou, Xin; Li, Ming; Liu, Song; Zhu, Lijing; Liu, Baorui; Chen, Weibo; He, Jian; Yan, Jing; Zhou, Zhengyang; Yang, Xiaofeng

    2017-09-19

    We investigated apparent diffusion coefficient (ADC) histogram analysis to evaluate radiation-induced parotid damage and predict xerostomia degrees in nasopharyngeal carcinoma (NPC) patients receiving radiotherapy. The imaging of bilateral parotid glands in NPC patients was conducted 2 weeks before radiotherapy (time point 1), one month after radiotherapy (time point 2), and four months after radiotherapy (time point 3). From time point 1 to 2, parotid volume, skewness, and kurtosis decreased ( P < 0.001, = 0.001, and < 0.001, respectively), but all other ADC histogram parameters increased (all P < 0.001, except P = 0.006 for standard deviation [SD]). From time point 2 to 3, parotid volume continued to decrease ( P = 0.022), and SD, 75 th and 90 th percentiles continued to increase ( P = 0.024, 0.010, and 0.006, respectively). Early change rates of parotid ADC mean , ADC min , kurtosis, and 25 th , 50 th , 75 th , 90 th percentiles (from time point 1 to 2) correlated with late parotid atrophy rate (from time point 1 to 3) (all P < 0.05). Multiple linear regression analysis revealed correlations among parotid volume, time point, and ADC histogram parameters. Early mean change rates for bilateral parotid SD and ADC max could predict late xerostomia degrees at seven months after radiotherapy (three months after time point 3) with AUC of 0.781 and 0.818 ( P = 0.014, 0.005, respectively). ADC histogram parameters were reproducible (intraclass correlation coefficient, 0.830 - 0.999). ADC histogram analysis could be used to evaluate radiation-induced parotid damage noninvasively, and predict late xerostomia degrees of NPC patients treated with radiotherapy.

  17. Comparison of doses received by the hippocampus in patients treated with single isocenter– vs multiple isocenter–based stereotactic radiation therapy to the brain for multiple brain metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Algan, Ozer, E-mail: oalgan@ouhsc.edu; Giem, Jared; Young, Julie

    To investigate the doses received by the hippocampus and normal brain tissue during a course of stereotactic radiation therapy using a single isocenter (SI)–based or multiple isocenter (MI)–based treatment planning in patients with less than 4 brain metastases. In total, 10 patients with magnetic resonance imaging (MRI) demonstrating 2-3 brain metastases were included in this retrospective study, and 2 sets of stereotactic intensity-modulated radiation therapy (IMRT) treatment plans (SI vs MI) were generated. The hippocampus was contoured on SPGR sequences, and doses received by the hippocampus and the brain were calculated and compared between the 2 treatment techniques. A totalmore » of 23 lesions in 10 patients were evaluated. The median tumor volume, the right hippocampus volume, and the left hippocampus volume were 3.15, 3.24, and 2.63 mL, respectively. In comparing the 2 treatment plans, there was no difference in the planning target volume (PTV) coverage except in the tail for the dose-volume histogram (DVH) curve. The only statistically significant dosimetric parameter was the V{sub 100}. All of the other measured dosimetric parameters including the V{sub 95}, V{sub 99}, and D{sub 100} were not significantly different between the 2 treatment planning techniques. None of the dosimetric parameters evaluated for the hippocampus revealed any statistically significant difference between the MI and SI plans. The total brain doses were slightly higher in the SI plans, especially in the lower dose region, although this difference was not statistically different. The use of SI-based treatment plan resulted in a 35% reduction in beam-on time. The use of SI treatments for patients with up to 3 brain metastases produces similar PTV coverage and similar normal tissue doses to the hippocampus and the brain when compared with MI plans. SI treatment planning should be considered in patients with multiple brain metastases undergoing stereotactic treatment.« less

  18. Comparison of doses received by the hippocampus in patients treated with single isocenter- vs multiple isocenter-based stereotactic radiation therapy to the brain for multiple brain metastases.

    PubMed

    Algan, Ozer; Giem, Jared; Young, Julie; Ali, Imad; Ahmad, Salahuddin; Hossain, Sabbir

    2015-01-01

    To investigate the doses received by the hippocampus and normal brain tissue during a course of stereotactic radiation therapy using a single isocenter (SI)-based or multiple isocenter (MI)-based treatment planning in patients with less than 4 brain metastases. In total, 10 patients with magnetic resonance imaging (MRI) demonstrating 2-3 brain metastases were included in this retrospective study, and 2 sets of stereotactic intensity-modulated radiation therapy (IMRT) treatment plans (SI vs MI) were generated. The hippocampus was contoured on SPGR sequences, and doses received by the hippocampus and the brain were calculated and compared between the 2 treatment techniques. A total of 23 lesions in 10 patients were evaluated. The median tumor volume, the right hippocampus volume, and the left hippocampus volume were 3.15, 3.24, and 2.63mL, respectively. In comparing the 2 treatment plans, there was no difference in the planning target volume (PTV) coverage except in the tail for the dose-volume histogram (DVH) curve. The only statistically significant dosimetric parameter was the V100. All of the other measured dosimetric parameters including the V95, V99, and D100 were not significantly different between the 2 treatment planning techniques. None of the dosimetric parameters evaluated for the hippocampus revealed any statistically significant difference between the MI and SI plans. The total brain doses were slightly higher in the SI plans, especially in the lower dose region, although this difference was not statistically different. The use of SI-based treatment plan resulted in a 35% reduction in beam-on time. The use of SI treatments for patients with up to 3 brain metastases produces similar PTV coverage and similar normal tissue doses to the hippocampus and the brain when compared with MI plans. SI treatment planning should be considered in patients with multiple brain metastases undergoing stereotactic treatment. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  19. Accuracy Evaluation of Oncentra™ TPS in HDR Brachytherapy of Nasopharynx Cancer Using EGSnrc Monte Carlo Code.

    PubMed

    Hadad, K; Zohrevand, M; Faghihi, R; Sedighi Pashaki, A

    2015-03-01

    HDR brachytherapy is one of the commonest methods of nasopharyngeal cancer treatment. In this method, depending on how advanced one tumor is, 2 to 6 Gy dose as intracavitary brachytherapy is prescribed. Due to high dose rate and tumor location, accuracy evaluation of treatment planning system (TPS) is particularly important. Common methods used in TPS dosimetry are based on computations in a homogeneous phantom. Heterogeneous phantoms, especially patient-specific voxel phantoms can increase dosimetric accuracy. In this study, using CT images taken from a patient and ctcreate-which is a part of the DOSXYZnrc computational code, patient-specific phantom was made. Dose distribution was plotted by DOSXYZnrc and compared with TPS one. Also, by extracting the voxels absorbed dose in treatment volume, dose-volume histograms (DVH) was plotted and compared with Oncentra™ TPS DVHs. The results from calculations were compared with data from Oncentra™ treatment planning system and it was observed that TPS calculation predicts lower dose in areas near the source, and higher dose in areas far from the source relative to MC code. Absorbed dose values in the voxels also showed that TPS reports D90 value is 40% higher than the Monte Carlo method. Today, most treatment planning systems use TG-43 protocol. This protocol may results in errors such as neglecting tissue heterogeneity, scattered radiation as well as applicator attenuation. Due to these errors, AAPM emphasized departing from TG-43 protocol and approaching new brachytherapy protocol TG-186 in which patient-specific phantom is used and heterogeneities are affected in dosimetry.

  20. Comparison of Chest Wall and Lymphatic Radiotherapy Techniques in Patients with Left Breast Carcinoma.

    PubMed

    Gültekin, Melis; Karabuğa, Mehmet; Yıldız, Ferah; Özyiğit, Gökhan; Cengiz, Mustafa; Zorlu, Faruk; Akyol, Fadıl; Gürkaynak, Murat

    2014-04-01

    The aim of this study was to find the most appropriate technique for postmastectomy chest wall (CW) and lymphatic irradiation. Partially wide tangent, 30/70 photon/electron mix, 20/80 photon/electron mix and CW and internal mammary en face electron field, were studied on computerized tomography (CT) scans of 10 left breast carcinoma patients and dosimetric calculations have been studied. Dose volume histograms (DVH) obtained from treatment planning system (TPS) were used for minimal, maximal and mean doses received by the clinical target volumes and critical structures. Partially wide tangent field resulted in the most homogeneous dose distribution for the CW and a significantly lower lung and heart doses compared with all other techniques. However, right breast dose was significantly higher for partially wide tangent technique than that each of the other techniques. Approximately 0.6-7.9% differences were found between thermoluminescent dosimeter (TLD) and treatment planning system (TPS). The daily surface doses calculating using Gafchromic® external beam therapy (EBT) dosimetry films were 161.8±2.7 cGy for the naked, 241.0±1.5 cGy when 0.5 cm bolus was used and 255.3±2.7 cGy when 1 cm bolus was used. As a result of this study, partially wide tangent field was found to be the most appropriate technique in terms of the dose distribution, treatment planning and set-up procedure. The main disadvantage of this technique was the higher dose to the contralateral breast comparing the other techniques.

  1. Accuracy Evaluation of Oncentra™ TPS in HDR Brachytherapy of Nasopharynx Cancer Using EGSnrc Monte Carlo Code

    PubMed Central

    Hadad, K.; Zohrevand, M.; Faghihi, R.; Sedighi Pashaki, A.

    2015-01-01

    Background HDR brachytherapy is one of the commonest methods of nasopharyngeal cancer treatment. In this method, depending on how advanced one tumor is, 2 to 6 Gy dose as intracavitary brachytherapy is prescribed. Due to high dose rate and tumor location, accuracy evaluation of treatment planning system (TPS) is particularly important. Common methods used in TPS dosimetry are based on computations in a homogeneous phantom. Heterogeneous phantoms, especially patient-specific voxel phantoms can increase dosimetric accuracy. Materials and Methods In this study, using CT images taken from a patient and ctcreate-which is a part of the DOSXYZnrc computational code, patient-specific phantom was made. Dose distribution was plotted by DOSXYZnrc and compared with TPS one. Also, by extracting the voxels absorbed dose in treatment volume, dose-volume histograms (DVH) was plotted and compared with Oncentra™ TPS DVHs. Results The results from calculations were compared with data from Oncentra™ treatment planning system and it was observed that TPS calculation predicts lower dose in areas near the source, and higher dose in areas far from the source relative to MC code. Absorbed dose values in the voxels also showed that TPS reports D90 value is 40% higher than the Monte Carlo method. Conclusion Today, most treatment planning systems use TG-43 protocol. This protocol may results in errors such as neglecting tissue heterogeneity, scattered radiation as well as applicator attenuation. Due to these errors, AAPM emphasized departing from TG-43 protocol and approaching new brachytherapy protocol TG-186 in which patient-specific phantom is used and heterogeneities are affected in dosimetry. PMID:25973408

  2. Impact of PET and MRI threshold-based tumor volume segmentation on patient-specific targeted radionuclide therapy dosimetry using CLR1404.

    PubMed

    Besemer, Abigail E; Titz, Benjamin; Grudzinski, Joseph J; Weichert, Jamey P; Kuo, John S; Robins, H Ian; Hall, Lance T; Bednarz, Bryan P

    2017-07-06

    Variations in tumor volume segmentation methods in targeted radionuclide therapy (TRT) may lead to dosimetric uncertainties. This work investigates the impact of PET and MRI threshold-based tumor segmentation on TRT dosimetry in patients with primary and metastatic brain tumors. In this study, PET/CT images of five brain cancer patients were acquired at 6, 24, and 48 h post-injection of 124 I-CLR1404. The tumor volume was segmented using two standardized uptake value (SUV) threshold levels, two tumor-to-background ratio (TBR) threshold levels, and a T1 Gadolinium-enhanced MRI threshold. The dice similarity coefficient (DSC), jaccard similarity coefficient (JSC), and overlap volume (OV) metrics were calculated to compare differences in the MRI and PET contours. The therapeutic 131 I-CLR1404 voxel-level dose distribution was calculated from the 124 I-CLR1404 activity distribution using RAPID, a Geant4 Monte Carlo internal dosimetry platform. The TBR, SUV, and MRI tumor volumes ranged from 2.3-63.9 cc, 0.1-34.7 cc, and 0.4-11.8 cc, respectively. The average  ±  standard deviation (range) was 0.19  ±  0.13 (0.01-0.51), 0.30  ±  0.17 (0.03-0.67), and 0.75  ±  0.29 (0.05-1.00) for the JSC, DSC, and OV, respectively. The DSC and JSC values were small and the OV values were large for both the MRI-SUV and MRI-TBR combinations because the regions of PET uptake were generally larger than the MRI enhancement. Notable differences in the tumor dose volume histograms were observed for each patient. The mean (standard deviation) 131 I-CLR1404 tumor doses ranged from 0.28-1.75 Gy GBq -1 (0.07-0.37 Gy GBq -1 ). The ratio of maximum-to-minimum mean doses for each patient ranged from 1.4-2.0. The tumor volume and the interpretation of the tumor dose is highly sensitive to the imaging modality, PET enhancement metric, and threshold level used for tumor volume segmentation. The large variations in tumor doses clearly demonstrate the need for standard protocols for multimodality tumor segmentation in TRT dosimetry.

  3. Impact of PET and MRI threshold-based tumor volume segmentation on patient-specific targeted radionuclide therapy dosimetry using CLR1404

    NASA Astrophysics Data System (ADS)

    Besemer, Abigail E.; Titz, Benjamin; Grudzinski, Joseph J.; Weichert, Jamey P.; Kuo, John S.; Robins, H. Ian; Hall, Lance T.; Bednarz, Bryan P.

    2017-08-01

    Variations in tumor volume segmentation methods in targeted radionuclide therapy (TRT) may lead to dosimetric uncertainties. This work investigates the impact of PET and MRI threshold-based tumor segmentation on TRT dosimetry in patients with primary and metastatic brain tumors. In this study, PET/CT images of five brain cancer patients were acquired at 6, 24, and 48 h post-injection of 124I-CLR1404. The tumor volume was segmented using two standardized uptake value (SUV) threshold levels, two tumor-to-background ratio (TBR) threshold levels, and a T1 Gadolinium-enhanced MRI threshold. The dice similarity coefficient (DSC), jaccard similarity coefficient (JSC), and overlap volume (OV) metrics were calculated to compare differences in the MRI and PET contours. The therapeutic 131I-CLR1404 voxel-level dose distribution was calculated from the 124I-CLR1404 activity distribution using RAPID, a Geant4 Monte Carlo internal dosimetry platform. The TBR, SUV, and MRI tumor volumes ranged from 2.3-63.9 cc, 0.1-34.7 cc, and 0.4-11.8 cc, respectively. The average  ±  standard deviation (range) was 0.19  ±  0.13 (0.01-0.51), 0.30  ±  0.17 (0.03-0.67), and 0.75  ±  0.29 (0.05-1.00) for the JSC, DSC, and OV, respectively. The DSC and JSC values were small and the OV values were large for both the MRI-SUV and MRI-TBR combinations because the regions of PET uptake were generally larger than the MRI enhancement. Notable differences in the tumor dose volume histograms were observed for each patient. The mean (standard deviation) 131I-CLR1404 tumor doses ranged from 0.28-1.75 Gy GBq-1 (0.07-0.37 Gy GBq-1). The ratio of maximum-to-minimum mean doses for each patient ranged from 1.4-2.0. The tumor volume and the interpretation of the tumor dose is highly sensitive to the imaging modality, PET enhancement metric, and threshold level used for tumor volume segmentation. The large variations in tumor doses clearly demonstrate the need for standard protocols for multimodality tumor segmentation in TRT dosimetry.

  4. FDG-PET Assessment of the Effect of Head and Neck Radiotherapy on Parotid Gland Glucose Metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roach, Michael C.; Turkington, Timothy G.; Department of Biomedical Engineering, Duke University Medical Center, Duke University, Durham, NC

    Purpose: Functional imaging with [F-18]-fluorodeoxyglucose positron emission tomography (FDG-PET) provides the opportunity to define the physiology of the major salivary glands before and after radiation therapy. The goal of this retrospective study was to identify the radiation dose-response relationship of parotid gland glucose metabolism in patients with head and neck squamous cell carcinoma (HNSCC). Materials and Methods: Forty-nine adults with HNSCC were identified who had curative intent intensity-modulated radiation therapy (IMRT) and FDG-PET imaging before and after treatment. Using a graphical user interface, contours were delineated for the parotid glands on axial CT slices while all authors were blinded tomore » paired PET slices. Average and maximal standard uptake values (SUV) were measured within these anatomic regions. Changes in SUV and volume after radiation therapy were correlated with parotid gland dose-volume histograms from IMRT plans. Results: The average parotid gland volume was 30.7 mL and contracted 3.9 {+-} 1.9% with every increase of 10 Gy in mean dose (p = 0.04). However, within the first 3 months after treatment, there was a uniform reduction of 16.5% {+-} 7.3% regardless of dose. The average SUV{sub mean} of the glands was 1.63 {+-} 0.48 pretreatment and declined by 5.2% {+-} 2.5% for every increase of 10 Gy in mean dose (p = 0.04). The average SUV{sub max} was 4.07 {+-} 2.85 pretreatment and decreased in a sigmoid manner with mean dose. A threshold of 32 Gy for mean dose existed, after which SUV{sub max} declined rapidly. Conclusion: Radiation dose responses of the parotid glands can be measured by integrated CT/FDG-PET scans. Retrospective analysis showed sigmoidal declines in the maximum metabolism but linear declines in the average metabolism of the glands with dose. Future studies should correlate this decline in FDG uptake with saliva production to improve treatment planning.« less

  5. Impact of a commercially available model-based dose calculation algorithm on treatment planning of high-dose-rate brachytherapy in patients with cervical cancer

    PubMed Central

    Abe, Kota; Kadoya, Noriyuki; Sato, Shinya; Hashimoto, Shimpei; Nakajima, Yujiro; Miyasaka, Yuya; Ito, Kengo; Umezawa, Rei; Yamamoto, Takaya; Takahashi, Noriyoshi; Takeda, Ken; Jingu, Keiichi

    2018-01-01

    Abstract We evaluated the impact of model-based dose calculation algorithms (MBDCAs) on high-dose-rate brachytherapy (HDR-BT) treatment planning for patients with cervical cancer. Seven patients with cervical cancer treated using HDR-BT were studied. Tandem and ovoid applicators were used in four patients, a vaginal cylinder in one, and interstitial needles in the remaining two patients. MBDCAs were applied to the Advanced Collapsed cone Engine (ACE; Elekta, Stockholm, Sweden). All plans, which were originally calculated using TG-43, were re-calculated using both ACE and Monte Carlo (MC) simulations. Air was used as the rectal material. The mean difference in the rectum D2cm3 between ACErec-air and MCrec-air was 8.60 ± 4.64%, whereas that in the bladder D2cm3 was −2.80 ± 1.21%. Conversely, in the small group analysis (n = 4) using water instead of air as the rectal material, the mean difference in the rectum D2cm3 between TG-43 and ACErec-air was 11.87 ± 2.65%, whereas that between TG-43 and ACErec-water was 0.81 ± 2.04%, indicating that the use of water as the rectal material reduced the difference in D2cm3 between TG-43 and ACE. Our results suggested that the differences in the dose–volume histogram (DVH) parameters of TG-43 and ACE were large for the rectum when considerable air (gas) volume was present in it, and that this difference was reduced when the air (gas) volume was reduced. Also, ACE exhibited better dose calculation accuracy than that of TG-43 in this situation. Thus, ACE may be able to calculate the dose more accurately than TG-43 for HDR-BT in treating cervical cancers, particularly for patients with considerable air (gas) volume in the rectum. PMID:29378024

  6. Evaluating which plan quality metrics are appropriate for use in lung SBRT.

    PubMed

    Yaparpalvi, Ravindra; Garg, Madhur K; Shen, Jin; Bodner, William R; Mynampati, Dinesh K; Gafar, Aleiya; Kuo, Hsiang-Chi; Basavatia, Amar K; Ohri, Nitin; Hong, Linda X; Kalnicki, Shalom; Tome, Wolfgang A

    2018-02-01

    Several dose metrics in the categories-homogeneity, coverage, conformity and gradient have been proposed in literature for evaluating treatment plan quality. In this study, we applied these metrics to characterize and identify the plan quality metrics that would merit plan quality assessment in lung stereotactic body radiation therapy (SBRT) dose distributions. Treatment plans of 90 lung SBRT patients, comprising 91 targets, treated in our institution were retrospectively reviewed. Dose calculations were performed using anisotropic analytical algorithm (AAA) with heterogeneity correction. A literature review on published plan quality metrics in the categories-coverage, homogeneity, conformity and gradient was performed. For each patient, using dose-volume histogram data, plan quality metric values were quantified and analysed. For the study, the radiation therapy oncology group (RTOG) defined plan quality metrics were: coverage (0.90 ± 0.08); homogeneity (1.27 ± 0.07); conformity (1.03 ± 0.07) and gradient (4.40 ± 0.80). Geometric conformity strongly correlated with conformity index (p < 0.0001). Gradient measures strongly correlated with target volume (p < 0.0001). The RTOG lung SBRT protocol advocated conformity guidelines for prescribed dose in all categories were met in ≥94% of cases. The proportion of total lung volume receiving doses of 20 Gy and 5 Gy (V 20 and V 5 ) were mean 4.8% (±3.2) and 16.4% (±9.2), respectively. Based on our study analyses, we recommend the following metrics as appropriate surrogates for establishing SBRT lung plan quality guidelines-coverage % (ICRU 62), conformity (CN or CI Paddick ) and gradient (R 50% ). Furthermore, we strongly recommend that RTOG lung SBRT protocols adopt either CN or CI Padddick in place of prescription isodose to target volume ratio for conformity index evaluation. Advances in knowledge: Our study metrics are valuable tools for establishing lung SBRT plan quality guidelines.

  7. Automatically-generated rectal dose constraints in intensity-modulated radiation therapy for prostate cancer

    NASA Astrophysics Data System (ADS)

    Hwang, Taejin; Kim, Yong Nam; Kim, Soo Kon; Kang, Sei-Kwon; Cheong, Kwang-Ho; Park, Soah; Yoon, Jai-Woong; Han, Taejin; Kim, Haeyoung; Lee, Meyeon; Kim, Kyoung-Joo; Bae, Hoonsik; Suh, Tae-Suk

    2015-06-01

    The dose constraint during prostate intensity-modulated radiation therapy (IMRT) optimization should be patient-specific for better rectum sparing. The aims of this study are to suggest a novel method for automatically generating a patient-specific dose constraint by using an experience-based dose volume histogram (DVH) of the rectum and to evaluate the potential of such a dose constraint qualitatively. The normal tissue complication probabilities (NTCPs) of the rectum with respect to V %ratio in our study were divided into three groups, where V %ratio was defined as the percent ratio of the rectal volume overlapping the planning target volume (PTV) to the rectal volume: (1) the rectal NTCPs in the previous study (clinical data), (2) those statistically generated by using the standard normal distribution (calculated data), and (3) those generated by combining the calculated data and the clinical data (mixed data). In the calculated data, a random number whose mean value was on the fitted curve described in the clinical data and whose standard deviation was 1% was generated by using the `randn' function in the MATLAB program and was used. For each group, we validated whether the probability density function (PDF) of the rectal NTCP could be automatically generated with the density estimation method by using a Gaussian kernel. The results revealed that the rectal NTCP probability increased in proportion to V %ratio , that the predictive rectal NTCP was patient-specific, and that the starting point of IMRT optimization for the given patient might be different. The PDF of the rectal NTCP was obtained automatically for each group except that the smoothness of the probability distribution increased with increasing number of data and with increasing window width. We showed that during the prostate IMRT optimization, the patient-specific dose constraints could be automatically generated and that our method could reduce the IMRT optimization time as well as maintain the IMRT plan quality.

  8. Comparison of treatment plans: a retrospective study by the method of radiobiological evaluation

    NASA Astrophysics Data System (ADS)

    Puzhakkal, Niyas; Kallikuzhiyil Kochunny, Abdullah; Manthala Padannayil, Noufal; Singh, Navin; Elavan Chalil, Jumanath; Kulangarakath Umer, Jamshad

    2016-09-01

    There are many situations in radiotherapy where multiple treatment plans need to be compared for selection of an optimal plan. In this study we performed the radiobiological method of plan evaluation to verify the treatment plan comparison procedure of our clinical practice. We estimated and correlated various radiobiological dose indices with physical dose metrics for a total of 30 patients representing typical cases of head and neck, prostate and brain tumors. Three sets of plans along with a clinically approved plan (final plan) treated by either Intensity Modulated Radiation Therapy (IMRT) or Rapid Arc (RA) techniques were considered. The study yielded improved target coverage for final plans, however, no appreciable differences in doses and the complication probabilities of organs at risk were noticed. Even though all four plans showed adequate dose distributions, from dosimetric point of view, the final plan had more acceptable dose distribution. The estimated biological outcome and dose volume histogram data showed least differences between plans for IMRT when compared to RA. Our retrospective study based on 120 plans, validated the radiobiological method of plan evaluation. The tumor cure or normal tissue complication probabilities were found to be correlated with the corresponding physical dose indices.

  9. Bladder accumulated dose in image-guided high-dose-rate brachytherapy for locally advanced cervical cancer and its relation to urinary toxicity

    NASA Astrophysics Data System (ADS)

    Zakariaee, Roja; Hamarneh, Ghassan; Brown, Colin J.; Gaudet, Marc; Aquino-Parsons, Christina; Spadinger, Ingrid

    2016-12-01

    The purpose of this study was to estimate locally accumulated dose to the bladder in multi-fraction high-dose-date (HDR) image-guided intracavitary brachytherapy (IG-ICBT) for cervical cancer, and study the locally-accumulated dose parameters as predictors of late urinary toxicity. A retrospective study of 60 cervical cancer patients who received five HDR IG-ICBT sessions was performed. The bladder outer and inner surfaces were segmented for all sessions and a bladder-wall contour point-set was created in MATLAB. The bladder-wall point-sets for each patient were registered using a deformable point-set registration toolbox called coherent point drift (CPD), and the fraction doses were accumulated. Various dosimetric and volumetric parameters were calculated using the registered doses, including r{{\\text{D}}n \\text{c{{\\text{m}}\\text{3}}}} (minimum dose to the most exposed n-cm3 volume of bladder wall), r V n Gy (wall volume receiving at least m Gy), and r\\text{EQD}{{2}n \\text{c{{\\text{m}}\\text{3}}}} (minimum equivalent biologically weighted dose to the most exposed n-cm3 of bladder wall), where n  =  1/2/5/10 and m  =  3/5/10. Minimum dose to contiguous 1 and 2 cm3 hot-spot volumes was also calculated. The unregistered dose volume histogram (DVH)-summed equivalent of r{{\\text{D}}n \\text{c{{\\text{m}}3}}} and r\\text{EQD}{{2}n \\text{c{{\\text{m}}3}}} parameters (i.e. s{{\\text{D}}n \\text{c{{\\text{m}}\\text{3}}}} and s\\text{EQD}{{2}n \\text{c{{\\text{m}}3}}} ) were determined for comparison. Late urinary toxicity was assessed using the LENT-SOMA scale, with toxicity Grade 0-1 categorized as Controls and Grade 2-4 as Cases. A two-sample t-test was used to identify the differences between the means of Control and Case groups for all parameters. A binomial logistic regression was also performed between the registered dose parameters and toxicity grouping. Seventeen patients were in the Case and 43 patients in the Control group. Contiguous values were on average 16 and 18% smaller than parameters for 1 and 2 cm3 volumes, respectively. Contiguous values were on average 26 and 27% smaller than parameters. The only statistically significant finding for Case versus Control based on both methods of analysis was observed for r V3 Gy (p  =  0.01). DVH-summed parameters based on unregistered structure volumes overestimated the bladder dose in our patients, particularly when contiguous high dose volumes were considered. The bladder-wall volume receiving at least 3 Gy of accumulated dose may be a parameter of interest in further investigations of Grade 2+  urinary toxicity.

  10. Structure Size Enhanced Histogram

    NASA Astrophysics Data System (ADS)

    Wesarg, Stefan; Kirschner, Matthias

    Direct volume visualization requires the definition of transfer functions (TFs) for the assignment of opacity and color. Multi-dimensional TFs are based on at least two image properties, and are specified by means of 2D histograms. In this work we propose a new type of a 2D histogram which combines gray value with information about the size of the structures. This structure size enhanced (SSE) histogram is an intuitive approach for representing anatomical features. Clinicians — the users we are focusing on — are much more familiar with selecting features by their size than by their gradient magnitude value. As a proof of concept, we employ the SSE histogram for the definition of two-dimensional TFs for the visualization of 3D MRI and CT image data.

  11. Cognitive Function Before and After Intensity-Modulated Radiation Therapy in Patients With Nasopharyngeal Carcinoma: A Prospective Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsiao, Kuan-Yin; Department of Medical Imaging and Radiological Science, I-Shou University, Kaohsiung, Taiwan; Yeh, Shyh-An, E-mail: yehsa@hotmail.co

    Purpose: To evaluate the effects of radiation therapy (RT) on neurocognitive function in patients with nasopharyngeal carcinoma (NPC). Methods and Materials: Thirty patients with NPC treated with intensity-modulated RT were included. Dose-volume histograms of the temporal lobes were obtained in every patient. Neurocognitive tests were administered individually to each patient 1 day before initiation of RT and at least 12 months after completion of RT. Cognitive functioning status was evaluated as change in scores over time. Results: Among the total of 30 patients, 23 patients (76.7%) had significantly lower post-RT cognitive functioning scores compared with their pre-RT scores (p =more » 0.033). The cognitive functioning scores had significantly declined in the domains of short-term memory, language abilities, and list-generating fluency (p = 0.020, 0.023, and 0.001, respectively). Compared with patients with a mean dose to the temporal lobes of 36 Gy or less, patients with a mean dose of greater than 36 Gy had a significantly greater reduction in cognitive functioning scores (p = 0.017). Patients in whom V60 of the temporal lobes (i.e., the percentage of the temporal lobe volume that had received >60 Gy) was greater than 10% also had a greater reduction in cognitive functioning scores than those in whom V60 was 10% or less (p = 0.039). Conclusions: The results of our study indicated that RT could have deleterious effects on cognitive function in patients with NPC. Efforts should be made to reduce the radiation dose and irradiated volume of temporal lobes without compromising the coverage of target volume.« less

  12. Impact of pelvic nodal irradiation with intensity-modulated radiotherapy on treatment of prostate cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Robert A.; Hannoun-Levi, Jean-Michel; Horwitz, Eric

    2006-10-01

    Purpose: The aim of this study was to evaluate the feasibility of treating the pelvic lymphatic regions during prostate intensity-modulated radiotherapy (IMRT) with respect to our routine acceptance criteria. Methods and Materials: A series of 10 previously treated prostate patients were randomly selected and the pelvic lymphatic regions delineated on the fused magnetic resonance/computed tomography data sets. A targeting progression was formed from the prostate and proximal seminal vesicles only to the inclusion of all pelvic lymphatic regions and presacral region resulting in 5 planning scenarios of increasing geometric difficulty. IMRT plans were generated for each stage for two acceleratormore » manufacturers. Dose volume histogram data were analyzed with respect to dose to the planning target volumes, rectum, bladder, bowel, and normal tissue. Analysis was performed for the number of segments required, monitor units, 'hot spots,' and treatment time. Results: Both rectal endpoints were met for all targets. Bladder endpoints were not met and the bowel endpoint was met in 40% of cases with the inclusion of the extended and presacral lymphatics. A significant difference was found in the number of segments and monitor units with targeting progression and between accelerators, with the smaller beamlets yielding poorer results. Treatment times between the 2 linacs did not exhibit a clinically significant difference when compared. Conclusions: Many issues should be considered with pelvic lymphatic irradiation during IMRT delivery for prostate cancer including dose per fraction, normal structure dose/volume limits, planning target volumes generation, localization, treatment time, and increased radiation leakage. We would suggest that, at a minimum, the endpoints used in this work be evaluated before beginning IMRT pelvic nodal irradiation.« less

  13. Active Breathing Control for Hodgkin's Disease in Childhood and Adolescence: Feasibility, Advantages, and Limits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Claude, Line; Malet, Claude Phys.; Pommier, Pascal

    2007-04-01

    Purpose: The challenge in early Hodgkin's disease (HD) in children is to maintain good survival rates while sparing organs at risk. This study assesses the feasibility of active breathing control (ABC) in children, and compares normal tissue irradiation with and without ABC. Methods and Materials: Between May 2003 and June 2004, seven children with HD with mediastinal involvement, median age 15, were treated by chemotherapy and involved-field radiation therapy. A free-breathing computed tomography simulation scan and one additional scan during deep inspiration using ABC were performed. A comparison between planning treatment with clinical target volume including supraclavicular regions, mediastinum, andmore » hila was performed, both in free breathing and using ABC. Results: For a prescription of 36 Gy, pulmonary dose-volume histograms revealed a mean reduction in lung volume irradiated at more than 20 Gy (V20) and 30 Gy (V30) of 25% and 26%, respectively, using ABC (p = 0.016). The mean volume of heart irradiated at 30 Gy or more decreased from 15% to 12% (nonsignificant). The mean dose delivered to breasts in girls was small in both situations (less than 2 Gy) and stable with or without ABC. Considering axillary irradiation, the mean dose delivered to breasts remained low (<9 Gy), without significant difference using ABC or not. The mean radiation dose delivered to thyroid was stable using ABC or not. Conclusions: Using ABC is feasible in childhood. The use of ABC decreases normal lung tissue irradiation. Concerning heart irradiation, a minimal gain is also shown. No significant change has been demonstrated concerning breast and thyroid irradiation.« less

  14. Evaluations of secondary cancer risk in spine radiotherapy using 3DCRT, IMRT, and VMAT: A phantom study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rehman, Jalil ur, E-mail: jalil_khanphy@yahoo.com; Department of Radiation Physics, UT MD Anderson Cancer Center, Houston, TX; Tailor, Ramesh C.

    2015-04-01

    This study evaluated the secondary cancer risk from volumetric-modulated arc therapy (VMAT) for spine radiotherapy compared with intensity-modulated radiotherapy (IMRT) and 3-dimensional conformal radiotherapy (3DCRT). Computed tomography images of an Radiological Physics Center spine anthropomorphic phantom were exported to a treatment planning system (Pinnacle{sup 3}, version 9.4). Radiation treatment plans for spine were prepared using VMAT (dual-arc), 7-field IMRT (beam angles: 110°, 130°, 150°, 180°, 210°, 230°, and 250°), and 4-field 3DCRT technique. The mean and maximum doses, dose-volume histograms, and volumes receiving more than 2 and 4 Gy to organs at risk (OARs) were calculated and compared. The lifetimemore » risk for secondary cancers was estimated according to the National Cancer Registry Programme Report 116. VMAT delivered the lowest maximum dose to the esophagus (4.03 Gy), bone (8.11 Gy), heart (2.11 Gy), spinal cord (6.45 Gy), and whole lung (5.66 Gy) as compared with other techniques (IMRT and 3DCRT). The volumes of OAR (esophagus) receiving more than 4 Gy were 0% for VMAT, 27.06% for IMRT, and up to 32.35% for 3DCRT. The estimated risk for secondary cancer in the respective OAR is considerably lower in VMAT compared with other techniques. The results of maximum doses and volumes of OARs suggest that the risk of secondary cancer induction for the spine in VMAT is lower than IMRT and 3DCRT, whereas VMAT has the best target coverage compared with the other techniques.« less

  15. Radiation-induced CT number changes in GTV and parotid glands during the course of radiation therapy for nasopharyngeal cancer

    PubMed Central

    Xu, Shouping; Wu, Zhaoxia; Yang, Cungeng; Ma, Lin; Qu, Baolin; Chen, Guangpei; Yao, Weirong; Wang, Shi; Liu, Yaqiang

    2016-01-01

    Objective: To investigate the changes in CT number (CTN) in gross tumour volume (GTV) and organs at risk (OARs) during the course of radiation therapy (RT) for nasopharyngeal cancer (NPC). Methods: Daily megavoltage CT (MVCT) data collected from 30 patients with NPC treated with a prescription dose of 70 Gy in 30–33 fractions using helical tomotherapy were retrospectively analyzed. The contours of GTV and OARs on daily MVCTs were obtained by populating the planning contours from planning CT to daily MVCTs with manual editing, if necessary. The changes of GTV and OAR volumes and the histograms of CTN in the GTV and OARs during the course of RT delivery were analyzed. Results: Volumes of GTV and parotid glands were reduced during the course of radiation treatment, with an average shrinkage rate of 0.23% per day (range, 0.02–0.8%) and 1.2% per day (range, 0.2–2.3%), respectively. The mean CTN changes in GTV and ipsilateral and contralateral parotid glands were reduced by 52 ± 35 HU, 18 ± 20 HU and 17 ± 22 HU, respectively. For GTV, the CTN and GTV volume decreases were found to be correlated with each other (p < 0.0001). No noticeable CTN change was found in the spinal cord and non-specified tissue irradiated with low doses. Conclusion: The CTN changes in GTV and parotids are measurable during the delivery of fractionated radiotherapy for NPC, were associated with the doses received (the number of fractions delivered) and were patient specific. Advances in knowledge: The CTN change during radiotherapy is dose dependent and is measurable for NPC. PMID:27033059

  16. Modeling Early Postnatal Brain Growth and Development with CT: Changes in the Brain Radiodensity Histogram from Birth to 2 Years.

    PubMed

    Cauley, K A; Hu, Y; Och, J; Yorks, P J; Fielden, S W

    2018-04-01

    The majority of brain growth and development occur in the first 2 years of life. This study investigated these changes by analysis of the brain radiodensity histogram of head CT scans from the clinical population, 0-2 years of age. One hundred twenty consecutive head CTs with normal findings meeting the inclusion criteria from children from birth to 2 years were retrospectively identified from 3 different CT scan platforms. Histogram analysis was performed on brain-extracted images, and histogram mean, mode, full width at half maximum, skewness, kurtosis, and SD were correlated with subject age. The effects of scan platform were investigated. Normative curves were fitted by polynomial regression analysis. Average total brain volume was 360 cm 3 at birth, 948 cm 3 at 1 year, and 1072 cm 3 at 2 years. Total brain tissue density showed an 11% increase in mean density at 1 year and 19% at 2 years. Brain radiodensity histogram skewness was positive at birth, declining logarithmically in the first 200 days of life. The histogram kurtosis also decreased in the first 200 days to approach a normal distribution. Direct segmentation of CT images showed that changes in brain radiodensity histogram skewness correlated with, and can be explained by, a relative increase in gray matter volume and an increase in gray and white matter tissue density that occurs during this period of brain maturation. Normative metrics of the brain radiodensity histogram derived from routine clinical head CT images can be used to develop a model of normal brain development. © 2018 by American Journal of Neuroradiology.

  17. Non-small cell lung cancer: Whole-lesion histogram analysis of the apparent diffusion coefficient for assessment of tumor grade, lymphovascular invasion and pleural invasion.

    PubMed

    Tsuchiya, Naoko; Doai, Mariko; Usuda, Katsuo; Uramoto, Hidetaka; Tonami, Hisao

    2017-01-01

    Investigating the diagnostic accuracy of histogram analyses of apparent diffusion coefficient (ADC) values for determining non-small cell lung cancer (NSCLC) tumor grades, lymphovascular invasion, and pleural invasion. We studied 60 surgically diagnosed NSCLC patients. Diffusion-weighted imaging (DWI) was performed in the axial plane using a navigator-triggered single-shot, echo-planar imaging sequence with prospective acquisition correction. The ADC maps were generated, and we placed a volume-of-interest on the tumor to construct the whole-lesion histogram. Using the histogram, we calculated the mean, 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles of ADC, skewness, and kurtosis. Histogram parameters were correlated with tumor grade, lymphovascular invasion, and pleural invasion. We performed a receiver operating characteristics (ROC) analysis to assess the diagnostic performance of histogram parameters for distinguishing different pathologic features. The ADC mean, 10th, 25th, 50th, 75th, 90th, and 95th percentiles showed significant differences among the tumor grades. The ADC mean, 25th, 50th, 75th, 90th, and 95th percentiles were significant histogram parameters between high- and low-grade tumors. The ROC analysis between high- and low-grade tumors showed that the 95th percentile ADC achieved the highest area under curve (AUC) at 0.74. Lymphovascular invasion was associated with the ADC mean, 50th, 75th, 90th, and 95th percentiles, skewness, and kurtosis. Kurtosis achieved the highest AUC at 0.809. Pleural invasion was only associated with skewness, with the AUC of 0.648. ADC histogram analyses on the basis of the entire tumor volume are able to stratify NSCLCs' tumor grade, lymphovascular invasion and pleural invasion.

  18. Development and validation of automatic tools for interactive recurrence analysis in radiation therapy: optimization of treatment algorithms for locally advanced pancreatic cancer.

    PubMed

    Kessel, Kerstin A; Habermehl, Daniel; Jäger, Andreas; Floca, Ralf O; Zhang, Lanlan; Bendl, Rolf; Debus, Jürgen; Combs, Stephanie E

    2013-06-07

    In radiation oncology recurrence analysis is an important part in the evaluation process and clinical quality assurance of treatment concepts. With the example of 9 patients with locally advanced pancreatic cancer we developed and validated interactive analysis tools to support the evaluation workflow. After an automatic registration of the radiation planning CTs with the follow-up images, the recurrence volumes are segmented manually. Based on these volumes the DVH (dose volume histogram) statistic is calculated, followed by the determination of the dose applied to the region of recurrence and the distance between the boost and recurrence volume. We calculated the percentage of the recurrence volume within the 80%-isodose volume and compared it to the location of the recurrence within the boost volume, boost + 1 cm, boost + 1.5 cm and boost + 2 cm volumes. Recurrence analysis of 9 patients demonstrated that all recurrences except one occurred within the defined GTV/boost volume; one recurrence developed beyond the field border/outfield. With the defined distance volumes in relation to the recurrences, we could show that 7 recurrent lesions were within the 2 cm radius of the primary tumor. Two large recurrences extended beyond the 2 cm, however, this might be due to very rapid growth and/or late detection of the tumor progression. The main goal of using automatic analysis tools is to reduce time and effort conducting clinical analyses. We showed a first approach and use of a semi-automated workflow for recurrence analysis, which will be continuously optimized. In conclusion, despite the limitations of the automatic calculations we contributed to in-house optimization of subsequent study concepts based on an improved and validated target volume definition.

  19. SU-F-T-46: The Effect of Inter-Seed Attenuation and Tissue Composition in Prostate 125I Brachytherapy Dose Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamura, K; Araki, F; Ohno, T

    Purpose: To investigate the difference of dose distributions with/without the effect of inter-seed attenuation and tissue compositions in prostate {sup 125}I brachytherapy dose calculations, using Monte Carlo simulations of Particle and Heavy Ion Transport code System (PHITS). Methods: The dose distributions in {sup 125}I prostate brachytherapy were calculated using PHITS for non-simultaneous and simultaneous alignments of STM1251 sources in water or prostate phantom for six patients. The PHITS input file was created from DICOM-RT file which includes source coordinates and structures for clinical target volume (CTV) and organs at risk (OARs) of urethra and rectum, using in-house Matlab software. Photonmore » and electron cutoff energies were set to 1 keV and 100 MeV, respectively. The dose distributions were calculated with the kerma approximation and the voxel size of 1 × 1 × 1 mm{sup 3}. The number of incident photon was set to be the statistical uncertainty (1σ) of less than 1%. The effect of inter-seed attenuation and prostate tissue compositions was evaluated from dose volume histograms (DVHs) for each structure, by comparing to results of the AAPM TG-43 dose calculation (without the effect of inter-seed attenuation and prostate tissue compositions). Results: The dose reduction due to the inter-seed attenuation by source capsules was approximately 2% for CTV and OARs compared to those of TG-43. In additions, by considering prostate tissue composition, the D{sub 90} and V{sub 100} of CTV reduced by 6% and 1%, respectively. Conclusion: It needs to consider the dose reduction due to the inter-seed attenuation and tissue composition in prostate {sup 125}I brachytherapy dose calculations.« less

  20. Implementation of a dose gradient method into optimization of dose distribution in prostate cancer 3D-CRT plans

    PubMed Central

    Giżyńska, Marta K.; Kukołowicz, Paweł F.; Kordowski, Paweł

    2014-01-01

    Aim The aim of this work is to present a method of beam weight and wedge angle optimization for patients with prostate cancer. Background 3D-CRT is usually realized with forward planning based on a trial and error method. Several authors have published a few methods of beam weight optimization applicable to the 3D-CRT. Still, none on these methods is in common use. Materials and methods Optimization is based on the assumption that the best plan is achieved if dose gradient at ICRU point is equal to zero. Our optimization algorithm requires beam quality index, depth of maximum dose, profiles of wedged fields and maximum dose to femoral heads. The method was tested for 10 patients with prostate cancer, treated with the 3-field technique. Optimized plans were compared with plans prepared by 12 experienced planners. Dose standard deviation in target volume, and minimum and maximum doses were analyzed. Results The quality of plans obtained with the proposed optimization algorithms was comparable to that prepared by experienced planners. Mean difference in target dose standard deviation was 0.1% in favor of the plans prepared by planners for optimization of beam weights and wedge angles. Introducing a correction factor for patient body outline for dose gradient at ICRU point improved dose distribution homogeneity. On average, a 0.1% lower standard deviation was achieved with the optimization algorithm. No significant difference in mean dose–volume histogram for the rectum was observed. Conclusions Optimization shortens very much time planning. The average planning time was 5 min and less than a minute for forward and computer optimization, respectively. PMID:25337411

  1. Dose planning objectives in anal canal cancer IMRT: the TROG ANROTAT experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Elizabeth, E-mail: elizabeth@mebrown.net; Cray, Alison; Haworth, Annette

    2015-06-15

    Intensity modulated radiotherapy (IMRT) is ideal for anal canal cancer (ACC), delivering high doses to irregular tumour volumes whilst minimising dose to surrounding normal tissues. Establishing achievable dose objectives is a challenge. The purpose of this paper was to utilise data collected in the Assessment of New Radiation Oncology Treatments and Technologies (ANROTAT) project to evaluate the feasibility of ACC IMRT dose planning objectives employed in the Australian situation. Ten Australian centres were randomly allocated three data sets from 15 non-identifiable computed tomography data sets representing a range of disease stages and gender. Each data set was planned by twomore » different centres, producing 30 plans. All tumour and organ at risk (OAR) contours, prescription and dose constraint details were provided. Dose–volume histograms (DVHs) for each plan were analysed to evaluate the feasibility of dose planning objectives provided. All dose planning objectives for the bone marrow (BM) and femoral heads were achieved. Median planned doses exceeded one or more objectives for bowel, external genitalia and bladder. This reached statistical significance for bowel V30 (P = 0.04), V45 (P < 0.001), V50 (P < 0.001), external genitalia V20 (P < 0.001) and bladder V35 (P < 0.001), V40 (P = 0.01). Gender was found to be the only significant factor in the likelihood of achieving the bowel V50 (P = 0.03) and BM V30 constraints (P = 0.04). The dose planning objectives used in the ANROTAT project provide a good starting point for ACC IMRT planning. To facilitate clinical implementation, it is important to prioritise OAR objectives and recognise factors that affect the achievability of these objectives.« less

  2. Effect of beam arrangement on oral cavity dose in external beam radiotherapy of nasopharyngeal carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Vincent W.C.; Yang Zhining; Zhang Wuzhe

    This study compared the oral cavity dose between the routine 7-beam intensity-modulated radiotherapy (IMRT) beam arrangement and 2 other 7-beam IMRT with the conventional radiotherapy beam arrangements in the treatment of nasopharyngeal carcinoma (NPC). Ten NPC patients treated by the 7-beam routine IMRT technique (IMRT-7R) between April 2009 and June 2009 were recruited. Using the same computed tomography data, target information, and dose constraints for all the contoured structures, 2 IMRT plans with alternative beam arrangements (IMRT-7M and IMRT-7P) by avoiding the anterior facial beam and 1 conventional radiotherapy plan (CONRT) were computed using the Pinnacle treatment planning system. Dose-volumemore » histograms were generated for the planning target volumes (PTVs) and oral cavity from which the dose parameters and the conformity index of the PTV were recorded for dosimetric comparisons among the plans with different beam arrangements. The dose distributions to the PTVs were similar among the 3 IMRT beam arrangements, whereas the differences were significant between IMRT-7R and CONRT plans. For the oral cavity dose, the 3 IMRT beam arrangements did not show significant difference. Compared with IMRT-7R, CONRT plan showed a significantly lower mean dose, V30 and V-40, whereas the V-60 was significantly higher. The 2 suggested alternative beam arrangements did not significantly reduce the oral cavity dose. The impact of varying the beam angles in IMRT of NPC did not give noticeable effect on the target and oral cavity. Compared with IMRT, the 2-D conventional radiotherapy irradiated a greater high-dose volume in the oral cavity.« less

  3. Optimization for high-dose-rate brachytherapy of cervical cancer with adaptive simulated annealing and gradient descent.

    PubMed

    Yao, Rui; Templeton, Alistair K; Liao, Yixiang; Turian, Julius V; Kiel, Krystyna D; Chu, James C H

    2014-01-01

    To validate an in-house optimization program that uses adaptive simulated annealing (ASA) and gradient descent (GD) algorithms and investigate features of physical dose and generalized equivalent uniform dose (gEUD)-based objective functions in high-dose-rate (HDR) brachytherapy for cervical cancer. Eight Syed/Neblett template-based cervical cancer HDR interstitial brachytherapy cases were used for this study. Brachytherapy treatment plans were first generated using inverse planning simulated annealing (IPSA). Using the same dwell positions designated in IPSA, plans were then optimized with both physical dose and gEUD-based objective functions, using both ASA and GD algorithms. Comparisons were made between plans both qualitatively and based on dose-volume parameters, evaluating each optimization method and objective function. A hybrid objective function was also designed and implemented in the in-house program. The ASA plans are higher on bladder V75% and D2cc (p=0.034) and lower on rectum V75% and D2cc (p=0.034) than the IPSA plans. The ASA and GD plans are not significantly different. The gEUD-based plans have higher homogeneity index (p=0.034), lower overdose index (p=0.005), and lower rectum gEUD and normal tissue complication probability (p=0.005) than the physical dose-based plans. The hybrid function can produce a plan with dosimetric parameters between the physical dose-based and gEUD-based plans. The optimized plans with the same objective value and dose-volume histogram could have different dose distributions. Our optimization program based on ASA and GD algorithms is flexible on objective functions, optimization parameters, and can generate optimized plans comparable with IPSA. Copyright © 2014 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  4. CT-image-based conformal brachytherapy of breast cancer. The significance of semi-3-D and 3-D treatment planning.

    PubMed

    Polgár, C; Major, T; Somogyi, A; Takácsi-Nagy, Z; Mangel, L C; Forrai, G; Sulyok, Z; Fodor, J; Németh, G

    2000-03-01

    To compare the conventional 2-D, the simulator-guided semi-3-D and the recently developed CT-guided 3-D brachytherapy treatment planning in the interstitial radiotherapy of breast cancer. In 103 patients with T1-2, N0-1 breast cancer the tumor bed was clipped during breast conserving surgery. Fifty-two of them received boost brachytherapy after 46 to 50 Gy teletherapy and 51 patients were treated with brachytherapy alone via flexible implant tubes. Single, double and triple plane implant was used in 6, 89 and 8 cases, respectively. The dose of boost brachytherapy and sole brachytherapy prescribed to dose reference points was 3 times 4.75 Gy and 7 times 5.2 Gy, respectively. The positions of dose reference points varied according to the level (2-D, semi-3-D and 3-D) of treatment planning performed. The treatment planning was based on the 3-D reconstruction of the surgical clips, implant tubes and skin points. In all cases the implantations were planned with a semi-3-D technique aided by simulator. In 10 cases a recently developed CT-guided 3-D planning system was used. The semi-3-D and 3-D treatment plans were compared to hypothetical 2-D plans using dose-volume histograms and dose non-uniformity ratios. The values of mean central dose, mean skin dose, minimal clip dose, proportion of underdosaged clips and mean target surface dose were evaluated. The accuracy of tumor bed localization and the conformity of planning target volume and treated volume were also analyzed in each technique. With the help of conformal semi-3-D and 3-D brachytherapy planning we could define reference dose points, active source positions and dwell times individually. This technique decreased the mean skin dose with 22.2% and reduced the possibility of geographical miss. We could achieve the best conformity between the planning target volume and the treated volume with the CT-image based 3-D treatment planning, at the cost of worse dose homogeneity. The mean treated volume was reduced by 25.1% with semi-3-D planning, however, it was increased by 16.2% with 3-D planning, compared to the 2-D planning. The application of clips into the tumor bed and the conformal (semi-3-D and 3-D) planning help to avoid geographical miss. CT is suitable for 3-D brachytherapy planning. Better local control with less side effects might be achieved with these new techniques. Conformal 3-D brachytherapy calls for new treatment planning concepts, taking the irregular 3-D shape of the target volume into account. The routine clinical application of image-based 3-D brachytherapy is a real aim in the very close future.

  5. Predictors of Liver Toxicity Following Stereotactic Body Radiation Therapy for Hepatocellular Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velec, Michael; Haddad, Carol R.; Craig, Tim

    Purpose: To identify risk factors associated with a decline in liver function after stereotactic body radiation therapy (SBRT) for hepatocellular carcinoma. Methods and Materials: Data were analyzed from patients with hepatocellular carcinoma treated on clinical trials of 6-fraction SBRT. Liver toxicity was defined as an increase in Child-Pugh (CP) score ≥2 three months after SBRT. Clinical factors, SBRT details, and liver dose-volume histogram (DVH) parameters were tested for association with toxicity using logistic regression. CP class B patients were analyzed separately. Results: Among CP class A patients, 101 were evaluable, with a baseline score of A5 (72%) or A6 (28%).more » Fifty-three percent had portal vein thrombus. The median liver volume was 1286 cc (range, 766-3967 cc), and the median prescribed dose was 36 Gy (range, 27-54 Gy). Toxicity was seen in 26 patients (26%). Thrombus, baseline CP of A6, and lower platelet count were associated with toxicity on univariate analysis, as were several liver DVH-based parameters. Absolute and spared liver volumes were not significant. On multivariate analysis for CP class A patients, significant associations were found for baseline CP score of A6 (odds ratio [OR], 4.85), lower platelet count (OR, 0.90; median, 108 × 10{sup 9}/L vs 150 × 10{sup 9}/L), higher mean liver dose (OR, 1.33; median, 16.9 Gy vs 14.7 Gy), and higher dose to 800 cc of liver (OR, 1.11; median, 14.3 Gy vs 6.0 Gy). With 13 CP-B7 patients included or when dose to 800 cc of liver was replaced with other DVH parameters (eg, dose to 700 or 900 cc of liver) in the multivariate analysis, effective volume and portal vein thrombus were associated with an increased risk. Conclusions: Baseline CP scores and higher liver doses (eg, mean dose, effective volume, doses to 700-900 cc) were strongly associated with liver function decline 3 months after SBRT. A lower baseline platelet count and portal vein thrombus were also associated with an increased risk.« less

  6. Three-Dimensional Radiobiologic Dosimetry: Application of Radiobiologic Modeling to Patient-Specific 3-Dimensional Imaging–Based Internal Dosimetry

    PubMed Central

    Prideaux, Andrew R.; Song, Hong; Hobbs, Robert F.; He, Bin; Frey, Eric C.; Ladenson, Paul W.; Wahl, Richard L.; Sgouros, George

    2010-01-01

    Phantom-based and patient-specific imaging-based dosimetry methodologies have traditionally yielded mean organ-absorbed doses or spatial dose distributions over tumors and normal organs. In this work, radiobiologic modeling is introduced to convert the spatial distribution of absorbed dose into biologically effective dose and equivalent uniform dose parameters. The methodology is illustrated using data from a thyroid cancer patient treated with radioiodine. Methods Three registered SPECT/CT scans were used to generate 3-dimensional images of radionuclide kinetics (clearance rate) and cumulated activity. The cumulated activity image and corresponding CT scan were provided as input into an EGSnrc-based Monte Carlo calculation: The cumulated activity image was used to define the distribution of decays, and an attenuation image derived from CT was used to define the corresponding spatial tissue density and composition distribution. The rate images were used to convert the spatial absorbed dose distribution to a biologically effective dose distribution, which was then used to estimate a single equivalent uniform dose for segmented volumes of interest. Equivalent uniform dose was also calculated from the absorbed dose distribution directly. Results We validate the method using simple models; compare the dose-volume histogram with a previously analyzed clinical case; and give the mean absorbed dose, mean biologically effective dose, and equivalent uniform dose for an illustrative case of a pediatric thyroid cancer patient with diffuse lung metastases. The mean absorbed dose, mean biologically effective dose, and equivalent uniform dose for the tumor were 57.7, 58.5, and 25.0 Gy, respectively. Corresponding values for normal lung tissue were 9.5, 9.8, and 8.3 Gy, respectively. Conclusion The analysis demonstrates the impact of radiobiologic modeling on response prediction. The 57% reduction in the equivalent dose value for the tumor reflects a high level of dose nonuniformity in the tumor and a corresponding reduced likelihood of achieving a tumor response. Such analyses are expected to be useful in treatment planning for radionuclide therapy. PMID:17504874

  7. Comparison of Respiratory-Gated and Respiratory-Ungated Planning in Scattered Carbon Ion Beam Treatment of the Pancreas Using Four-Dimensional Computed Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mori, Shinichiro, E-mail: shinshin@nirs.go.j; Yanagi, Takeshi; Hara, Ryusuke

    2010-01-15

    Purpose: We compared respiratory-gated and respiratory-ungated treatment strategies using four-dimensional (4D) scattered carbon ion beam distribution in pancreatic 4D computed tomography (CT) datasets. Methods and Materials: Seven inpatients with pancreatic tumors underwent 4DCT scanning under free-breathing conditions using a rapidly rotating cone-beam CT, which was integrated with a 256-slice detector, in cine mode. Two types of bolus for gated and ungated treatment were designed to cover the planning target volume (PTV) using 4DCT datasets in a 30% duty cycle around exhalation and a single respiratory cycle, respectively. Carbon ion beam distribution for each strategy was calculated as a function ofmore » respiratory phase by applying the compensating bolus to 4DCT at the respective phases. Smearing was not applied to the bolus, but consideration was given to drill diameter. The accumulated dose distributions were calculated by applying deformable registration and calculating the dose-volume histogram. Results: Doses to normal tissues in gated treatment were minimized mainly on the inferior aspect, which thereby minimized excessive doses to normal tissues. Over 95% of the dose, however, was delivered to the clinical target volume at all phases for both treatment strategies. Maximum doses to the duodenum and pancreas averaged across all patients were 43.1/43.1 GyE (ungated/gated) and 43.2/43.2 GyE (ungated/gated), respectively. Conclusions: Although gated treatment minimized excessive dosing to normal tissue, the difference between treatment strategies was small. Respiratory gating may not always be required in pancreatic treatment as long as dose distribution is assessed. Any application of our results to clinical use should be undertaken only after discussion with oncologists, particularly with regard to radiotherapy combined with chemotherapy.« less

  8. Normal tissue complication probability modeling of radiation-induced hypothyroidism after head-and-neck radiation therapy.

    PubMed

    Bakhshandeh, Mohsen; Hashemi, Bijan; Mahdavi, Seied Rabi Mehdi; Nikoofar, Alireza; Vasheghani, Maryam; Kazemnejad, Anoshirvan

    2013-02-01

    To determine the dose-response relationship of the thyroid for radiation-induced hypothyroidism in head-and-neck radiation therapy, according to 6 normal tissue complication probability models, and to find the best-fit parameters of the models. Sixty-five patients treated with primary or postoperative radiation therapy for various cancers in the head-and-neck region were prospectively evaluated. Patient serum samples (tri-iodothyronine, thyroxine, thyroid-stimulating hormone [TSH], free tri-iodothyronine, and free thyroxine) were measured before and at regular time intervals until 1 year after the completion of radiation therapy. Dose-volume histograms (DVHs) of the patients' thyroid gland were derived from their computed tomography (CT)-based treatment planning data. Hypothyroidism was defined as increased TSH (subclinical hypothyroidism) or increased TSH in combination with decreased free thyroxine and thyroxine (clinical hypothyroidism). Thyroid DVHs were converted to 2 Gy/fraction equivalent doses using the linear-quadratic formula with α/β = 3 Gy. The evaluated models included the following: Lyman with the DVH reduced to the equivalent uniform dose (EUD), known as LEUD; Logit-EUD; mean dose; relative seriality; individual critical volume; and population critical volume models. The parameters of the models were obtained by fitting the patients' data using a maximum likelihood analysis method. The goodness of fit of the models was determined by the 2-sample Kolmogorov-Smirnov test. Ranking of the models was made according to Akaike's information criterion. Twenty-nine patients (44.6%) experienced hypothyroidism. None of the models was rejected according to the evaluation of the goodness of fit. The mean dose model was ranked as the best model on the basis of its Akaike's information criterion value. The D(50) estimated from the models was approximately 44 Gy. The implemented normal tissue complication probability models showed a parallel architecture for the thyroid. The mean dose model can be used as the best model to describe the dose-response relationship for hypothyroidism complication. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Volumetric modulated arc therapy vs. c-IMRT for the treatment of upper thoracic esophageal cancer.

    PubMed

    Zhang, Wu-Zhe; Zhai, Tian-Tian; Lu, Jia-Yang; Chen, Jian-Zhou; Chen, Zhi-Jian; Li, De-Rui; Chen, Chuang-Zhen

    2015-01-01

    To compare plans using volumetric-modulated arc therapy (VMAT) with conventional sliding window intensity-modulated radiation therapy (c-IMRT) to treat upper thoracic esophageal cancer (EC). CT datasets of 11 patients with upper thoracic EC were identified. Four plans were generated for each patient: c-IMRT with 5 fields (5F) and VMAT with a single arc (1A), two arcs (2A), or three arcs (3A). The prescribed doses were 64 Gy/32 F for the primary tumor (PTV64). The dose-volume histogram data, the number of monitoring units (MUs) and the treatment time (TT) for the different plans were compared. All of the plans generated similar dose distributions for PTVs and organs at risk (OARs), except that the 2A- and 3A-VMAT plans yielded a significantly higher conformity index (CI) than the c-IMRT plan. The CI of the PTV64 was improved by increasing the number of arcs in the VMAT plans. The maximum spinal cord dose and the planning risk volume of the spinal cord dose for the two techniques were similar. The 2A- and 3A-VMAT plans yielded lower mean lung doses and heart V50 values than the c-IMRT. The V20 and V30 for the lungs in all of the VMAT plans were lower than those in the c-IMRT plan, at the expense of increasing V5, V10 and V13. The VMAT plan resulted in significant reductions in MUs and TT. The 2A-VMAT plan appeared to spare the lungs from moderate-dose irradiation most effectively of all plans, at the expense of increasing the low-dose irradiation volume, and also significantly reduced the number of required MUs and the TT. The CI of the PTVs and the OARs was improved by increasing the arc-number from 1 to 2; however, no significant improvement was observed using the 3A-VMAT, except for an increase in the TT.

  10. A dose-volume analysis of magnetic resonance imaging-aided high-dose-rate image-based interstitial brachytherapy for uterine cervical cancer.

    PubMed

    Yoshida, Ken; Yamazaki, Hideya; Takenaka, Tadashi; Kotsuma, Tadayuki; Yoshida, Mineo; Furuya, Seiichi; Tanaka, Eiichi; Uegaki, Tadaaki; Kuriyama, Keiko; Matsumoto, Hisanobu; Yamada, Shigetoshi; Ban, Chiaki

    2010-07-01

    To investigate the feasibility of our novel image-based high-dose-rate interstitial brachytherapy (HDR-ISBT) for uterine cervical cancer, we evaluated the dose-volume histogram (DVH) according to the recommendations of the Gynecological GEC-ESTRO Working Group for image-based intracavitary brachytherapy (ICBT). Between June 2005 and June 2007, 18 previously untreated cervical cancer patients were enrolled. We implanted magnetic resonance imaging (MRI)-available plastic applicators by our unique ambulatory technique. Total treatment doses were 30-36 Gy (6 Gy per fraction) combined with external beam radiotherapy (EBRT). Treatment plans were created based on planning computed tomography with MRI as a reference. DVHs of the high-risk clinical target volume (HR CTV), intermediate-risk CTV (IR CTV), and the bladder and rectum were calculated. Dose values were biologically normalized to equivalent doses in 2-Gy fractions (EQD(2)). The median D90 (HR CTV) and D90 (IR CTV) per fraction were 6.8 Gy (range, 5.5-7.5) and 5.4 Gy (range, 4.2-6.3), respectively. The median V100 (HR CTV) and V100 (IR CTV) were 98.4% (range, 83-100) and 81.8% (range, 64-93.8), respectively. When the dose of EBRT was added, the median D90 and D100 of HR CTV were 80.6 Gy (range, 65.5-96.6) and 62.4 Gy (range, 49-83.2). The D(2cc) of the bladder was 62 Gy (range, 51.4-89) and of the rectum was 65.9 Gy (range, 48.9-76). Although the targets were advanced and difficult to treat effectively by ICBT, MRI-aided image-based ISBT showed favorable results for CTV and organs at risk compared with previously reported image-based ICBT results. (c) 2010 Elsevier Inc. All rights reserved.

  11. Predictors of High-Grade Esophagitis after Definitive 3D Conformal Therapy, Intensity Modulated Radiation Therapy, or Proton Beam Therapy for Non-Small Cell Lung Cancer

    PubMed Central

    Gomez, Daniel R.; Tucker, Susan L.; Martel, Mary K.; Mohan, Radhe; Balter, Peter A.; Guerra, Jose Luis Lopez; Liu, Hongmei; Komaki, Ritsuko; Cox, James D.; Liao, Zhongxing

    2014-01-01

    Introduction We analyzed the ability of various patient- and treatment-related factors to predict radiation-induced esophagitis (RE) in patients with non-small cell lung cancer (NSCLC) treated with three-dimensional (3D) conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), or proton beam therapy (PBT). Methods and Materials Patients were treated for NSCLC with 3D-CRT, IMRT, or PBT at MD Anderson from 2000 to 2008 and had full dose-volume histogram (DVH) data available. The endpoint was severe (grade ≥3) RE. The Lyman-Kutcher-Burman (LKB) model was used to analyze RE as a function of the fractional esophageal DVH, with clinical variables included as dose-modifying factors. Results Overall, 652 patients were included: 405 treated with 3D-CRT, 139 with IMRT, and 108 with PBT; corresponding rates of grade ≥3 RE were 8%, 28%, and 6%, with a median time to onset of 42 days (range 11–93 days). A fit of the fractional-DVH LKB model demonstrated that the volume parameter n was significantly different (p=0.046) than 1, indicating that high doses to small volumes are more predictive than mean esophageal dose. The model fit was better for 3D-CRT and PBT than for IMRT. Including receipt of concurrent chemotherapy as a dose-modifying factor significantly improved the LKB model (p=0.005), and the model was further improved by including a variable representing treatment with >30 fractions. Examining individual types of chemotherapy agents revealed a trend toward receipt of concurrent taxanes and increased risk of RE (p=0.105). Conclusions The fractional dose (dose rate) and number of fractions (total dose) distinctly affect the risk of severe RE estimated using the LKB model, and concurrent chemotherapy improves the model fit. This risk of severe RE is underestimated by this model in patients receiving IMRT. PMID:22920974

  12. Dynamic Collimator Angle Adjustments During Volumetric Modulated Arc Therapy to Account for Prostate Rotations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boer, Johan de; Wolf, Anne Lisa; Szeto, Yenny Z.

    2015-04-01

    Purpose: Rotations of the prostate gland induce considerable geometric uncertainties in prostate cancer radiation therapy. Collimator and gantry angle adjustments can correct these rotations in intensity modulated radiation therapy. Modern volumetric modulated arc therapy (VMAT) treatments, however, include a wide range of beam orientations that differ in modulation, and corrections require dynamic collimator rotations. The aim of this study was to implement a rotation correction strategy for VMAT dose delivery and validate it for left-right prostate rotations. Methods and Materials: Clinical VMAT treatment plans of 5 prostate cancer patients were used. Simulated left-right prostate rotations between +15° and −15° weremore » corrected by collimator rotations. We compared corrected and uncorrected plans by dose volume histograms, minimum dose (D{sub min}) to the prostate, bladder surface receiving ≥78 Gy (S78) and rectum equivalent uniform dose (EUD; n=0.13). Each corrected plan was delivered to a phantom, and its deliverability was evaluated by γ-evaluation between planned and delivered dose, which was reconstructed from portal images acquired during delivery. Results: On average, clinical target volume minimum dose (D{sub min}) decreased up to 10% without corrections. Negative left-right rotations were corrected almost perfectly, whereas D{sub min} remained within 4% for positive rotations. Bladder S78 and rectum EUD of the corrected plans matched those of the original plans. The average pass rate for the corrected plans delivered to the phantom was 98.9% at 3% per 3 mm gamma criteria. The measured dose in the planning target volume approximated the original dose, rotated around the simulated left-right angle, well. Conclusions: It is feasible to dynamically adjust the collimator angle during VMAT treatment delivery to correct for prostate rotations. This technique can safely correct for left-right prostate rotations up to 15°.« less

  13. Dosimetric comparison of volumetric modulated Arc therapy, step-and-shoot, and sliding window IMRT for prostate cancer

    NASA Astrophysics Data System (ADS)

    Schnell, Erich; Herman, Tania De La Fuente; Young, Julie; Hildebrand, Kim; Algan, Ozer; Syzek, Elizabeth; Herman, Terence; Ahmad, Salahuddin

    2012-10-01

    This study aims to evaluate treatment plans generated by Step-and-Shoot (SS), Sliding Window (SW) and Volumetric Modulated Arc Therapy (VMAT) in order to assess the differences in dose volume histograms of planning target volume (PTV) and organs at risk (OAR), conformity indices, radiobiological evaluations, and plan quality for prostate cancer cases. Six prostate cancer patients treated in our center were selected for this retrospective study. Treatment plans were generated with Eclipse version 8.9 using 10 MV photon beams. For VMAT, Varian Rapid Arc with 1 or 2 arcs, and for SS and SW IMRT, 7-9 fields were used. Each plan had three PTVs with prescription doses of 81, 59.4, and 45 Gy to prostate, to prostate and lymph nodes, and to pelvis, respectively. Doses to PTV and OAR and the conformal indices (COIN) were compared among three techniques. The equivalent uniform dose (EUD), tumor control probability (TCP) and normal tissue complication probability (NTCP) were calculated and compared. The mean doses to the PTV prostate on average were 83 Gy and the percent differences of mean dose among all techniques were below 0.28. For bladder and rectum, the percent differences of mean dose among all techniques were below 2.2. The COIN did not favour any particular delivery method over the other. The TCP was higher with SS and SW for four patients and higher with VMAT for two patients. The NTCP for the rectum was the lowest with VMAT in five out of the six patients. The results show similar target coverage in general.

  14. Radiation dose delivered to the proximal penis as a predictor of the risk of erectile dysfunction after three-dimensional conformal radiotherapy for localized prostate cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wernicke, A. Gabriella; Valicenti, Richard; DiEva, Kelly

    2004-12-01

    Purpose/objective: In this study, we evaluated in a serial manner whether radiation dose to the bulb of the penis is predictive of erectile dysfunction, ejaculatory difficulty (EJ), and overall satisfaction with sex life (quality of life) by using serial validated self-administered questionnaires. Methods and materials: Twenty-nine potent men with AJCC Stage II prostate cancer treated with three-dimensional conformal radiation therapy alone to a median dose 72.0 Gy (range: 66.6-79.2 Gy) were evaluated by determining the doses received by the penile bulb. The penile bulb was delineated volumetrically, and the dose-volume histogram was obtained on each patient. Results: The median follow-upmore » time was 35 months (range, 16-43 months). We found that for D{sub 30}, D{sub 45}, D{sub 60}, and D{sub 75} (doses to a percent volume of PB: 30%, 45%, 60%, and 75%), higher than the corresponding median dose (defined as high-dose group) correlated with an increased risk of impotence (erectile dysfunction firmness score = 0) (odds ratio [OR] = 7.5, p = 0.02; OR = 7.5, p = 0.02; OR = 8.6, p = 0.008; and OR = 6.9, p = 0.015, respectively). Similarly, for EJD D{sub 30}, D{sub 45}, D{sub 60}, and D{sub 75}, doses higher than the corresponding median ones correlated with worsening ejaculatory function score (EJ = 0 or 1) (OR = 8, p = 0.013; OR = 8, p 0.013; OR = 9.2, p = 0.015; and OR = 8, p = 0.026, respectively). For quality of life, low ({<=}median dose) dose groups of patients improve over time, whereas high-dose groups of patients worsen. Conclusions: This study supports the existence of a penile bulb dose-volume relationship underlying the development of radiation-induced erectile dysfunction. Our data may guide the use of inverse treatment planning to maximize the probability of maintaining sexual potency after radiation therapy.« less

  15. SU-E-T-811: Volumetric Modulated Arc Therapy Vs. C-IMRT for the Treatment of Upper Thoracic Esophageal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, W; Wu, L; Lu, J

    2015-06-15

    Purpose: To compare plans using volumetric-modulated arc therapy (VMAT) with conventional sliding window intensity-modulated radiation therapy (c-IMRT) to treat upper thoracic esophageal cancer (EC). Methods: CT datasets of 11 patients with upper thoracic EC were identified. Four plans were generated for each patient: c-IMRT with 5 fields (5F) and VMAT with a single arc (1A), two arcs (2A), or three arcs (3A). The prescribed doses were 64 Gy/32 F for the primary tumor (planning target volume 64, PTV64). The dose-volume histogram data, the number of monitoring units (MUs) and the treatment time (TT) for the different plans were compared. Results:more » All of the plans generated similar dose distributions for PTVs and organs at risk (OARs), except that the 2A- and 3A-VMAT plans yielded a significantly higher conformity index (CI) than the c-IMRT plan. The CI of the PTV64 was improved by increasing the number of arcs in the VMAT plans. The maximum spinal cord dose and the planning risk volume of the spinal cord dose for the two techniques were similar. The 2A- and 3A-VMAT plans yielded lower mean lung doses and heart V50 than the c-IMRT. The V20 and V30 for the lungs in all of the VMAT plans were lower than those in the c-IMRT plan, at the expense of increasing V5, V10 and V13. The VMAT plan resulted in significant reductions in MUs and TT. Conclusion: The 2A-VMAT plan appeared to spare the lungs from moderate-dose irradiation most effectively of all plans, at the expense of increasing the low-dose irradiation volume, and also significantly reduced the number of required MUs and the TT. The CI of the PTVs and the OARs was improved by increasing the arc-number from 1 to 2. however, no significant improvement was observed using the 3A-VMAT, except for an increase in the TT. This work was sponsored by Shantou University Medical College Clinical Research Enhancement Initiative(NO.201424)« less

  16. Inter-patient image registration algorithms to disentangle regional dose bioeffects.

    PubMed

    Monti, Serena; Pacelli, Roberto; Cella, Laura; Palma, Giuseppe

    2018-03-20

    Radiation therapy (RT) technological advances call for a comprehensive reconsideration of the definition of dose features leading to radiation induced morbidity (RIM). In this context, the voxel-based approach (VBA) to dose distribution analysis in RT offers a radically new philosophy to evaluate local dose response patterns, as an alternative to dose-volume-histograms for identifying dose sensitive regions of normal tissue. The VBA relies on mapping patient dose distributions into a single reference case anatomy which serves as anchor for local dosimetric evaluations. The inter-patient elastic image registrations (EIRs) of the planning CTs provide the deformation fields necessary for the actual warp of dose distributions. In this study we assessed the impact of EIR on the VBA results in thoracic patients by identifying two state-of-the-art EIR algorithms (Demons and B-Spline). Our analysis demonstrated that both the EIR algorithms may be successfully used to highlight subregions with dose differences associated with RIM that substantially overlap. Furthermore, the inclusion for the first time of covariates within a dosimetric statistical model that faces the multiple comparison problem expands the potential of VBA, thus paving the way to a reliable voxel-based analysis of RIM in datasets with strong correlation of the outcome with non-dosimetric variables.

  17. Neurovascular bundle–sparing radiotherapy for prostate cancer using MRI-CT registration: A dosimetric feasibility study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cassidy, R.J., E-mail: richardjcassidy@emory.edu; Yang, X.; Liu, T.

    Purpose: Sexual dysfunction after radiotherapy for prostate cancer remains an important late adverse toxicity. The neurovascular bundles (NVB) that lie posterolaterally to the prostate are typically spared during prostatectomy, but in traditional radiotherapy planning they are not contoured as an organ-at-risk with dose constraints. Our goal was to determine the dosimetric feasibility of “NVB-sparing” prostate radiotherapy while still delivering adequate dose to the prostate. Methods: Twenty-five consecutive patients with prostate cancer (with no extraprostatic disease on pelvic magnetic resonance imaging [MRI]) who that were treated with external beam radiotherapy, with the same primary planning target volume margins, to a dosemore » of 79.2 Gy were evaluated. Pelvic MRI and simulation computed tomography scans were registered using dedicated software to allow for bilateral NVB target delineation on T2-weighted MRI. A volumetric modulated arc therapy plan was generated using the NVB bilaterally with 2 mm margin as an organ to spare and compared to the patient’s previously delivered plan. Dose-volume histogram endpoints for NVB, rectum, bladder, and planning target volume 79.2 were compared between the 2 plans using a 2-tailed paired t-test. Results: The V70 for the NVB was significantly lower on the NVB-sparing plan (p <0.01), while rectum and bladder endpoints were similar. Target V100% was similar but V{sub 105%} was higher for the NVB-sparing plans (p <0.01). Conclusions: “NVB-sparing” radiotherapy is dosimetrically feasible using CT-MRI registration, and for volumetric modulated arc therapy technology — target coverage is acceptable without increased dose to other normal structures, but with higher target dose inhomogeneity. The clinical impact of “NVB-sparing” radiotherapy is currently under study at our institution.« less

  18. Comparison of three-dimensional vs. conventional radiotherapy in saving optic tract in paranasal sinus tumors.

    PubMed

    Kamian, S; Kazemian, A; Esfahani, M; Mohammadi, E; Aghili, M

    2010-01-01

    To assess the possibility of delivering a homogeneous irradiation with respect to maximal tolerated dose to the optic pathway for paranasal sinus (PNS) tumors. Treatment planning with conformal three-dimensional (3D) and conventional two-dimensional (2D) was done on CT scans of 20 patients who had early or advanced PNS tumors. Four cases had been previously irradiated. Dose-volume histograms (DVH) for the planning target volume (PTV) and the visual pathway including globes, chiasma and optic nerves were compared between the 2 treatment plannings. The area under curve (AUC) in the DVH of the globes on the same side and contralateral side of tumor involvement was significantly higher in 2D planning (p <0.05), which caused higher integral dose to both globes. Also, the AUC in the DVH of chiasma was higher in 2D treatment planning (p=0.002). The integral dose to the contralateral optic nerve was significantly lower with 3D planning (p=0.007), but there was no significant difference for the optic nerve which was on the same side of tumor involvement (p >0.05). The AUC in the DVH of PTV was not significant (201.1 + or - 16.23 mm(3) in 2D planning vs. 201.15 + or - 15.09 mm(3) in 3D planning). The volume of PTV which received 90% of the prescribed dose was 96.9 + or - 4.41 cm(3) in 2D planning and 97.2 + or - 2.61 cm(3) in 3D planning (p >0.05). 3D conformal radiotherapy (RT) for PNS tumors enables the delivery of radiation to the tumor with respect to critical organs with a lower toxicity to the optic pathway.

  19. Robustness of IPSA optimized high-dose-rate prostate brachytherapy treatment plans to catheter displacements

    PubMed Central

    Whitaker, May

    2016-01-01

    Purpose Inverse planning simulated annealing (IPSA) optimized brachytherapy treatment plans are characterized with large isolated dwell times at the first or last dwell position of each catheter. The potential of catheter shifts relative to the target and organs at risk in these plans may lead to a more significant change in delivered dose to the volumes of interest relative to plans with more uniform dwell times. Material and methods This study aims to determine if the Nucletron Oncentra dwell time deviation constraint (DTDC) parameter can be optimized to improve the robustness of high-dose-rate (HDR) prostate brachytherapy plans to catheter displacements. A set of 10 clinically acceptable prostate plans were re-optimized with a DTDC parameter of 0 and 0.4. For each plan, catheter displacements of 3, 7, and 14 mm were retrospectively applied and the change in dose volume histogram (DVH) indices and conformity indices analyzed. Results The robustness of clinically acceptable prostate plans to catheter displacements in the caudal direction was found to be dependent on the DTDC parameter. A DTDC value of 0 improves the robustness of planning target volume (PTV) coverage to catheter displacements, whereas a DTDC value of 0.4 improves the robustness of the plans to changes in hotspots. Conclusions The results indicate that if used in conjunction with a pre-treatment catheter displacement correction protocol and a tolerance of 3 mm, a DTDC value of 0.4 may produce clinically superior plans. However, the effect of the DTDC parameter in plan robustness was not observed to be as strong as initially suspected. PMID:27504129

  20. Robustness of IPSA optimized high-dose-rate prostate brachytherapy treatment plans to catheter displacements.

    PubMed

    Poder, Joel; Whitaker, May

    2016-06-01

    Inverse planning simulated annealing (IPSA) optimized brachytherapy treatment plans are characterized with large isolated dwell times at the first or last dwell position of each catheter. The potential of catheter shifts relative to the target and organs at risk in these plans may lead to a more significant change in delivered dose to the volumes of interest relative to plans with more uniform dwell times. This study aims to determine if the Nucletron Oncentra dwell time deviation constraint (DTDC) parameter can be optimized to improve the robustness of high-dose-rate (HDR) prostate brachytherapy plans to catheter displacements. A set of 10 clinically acceptable prostate plans were re-optimized with a DTDC parameter of 0 and 0.4. For each plan, catheter displacements of 3, 7, and 14 mm were retrospectively applied and the change in dose volume histogram (DVH) indices and conformity indices analyzed. The robustness of clinically acceptable prostate plans to catheter displacements in the caudal direction was found to be dependent on the DTDC parameter. A DTDC value of 0 improves the robustness of planning target volume (PTV) coverage to catheter displacements, whereas a DTDC value of 0.4 improves the robustness of the plans to changes in hotspots. The results indicate that if used in conjunction with a pre-treatment catheter displacement correction protocol and a tolerance of 3 mm, a DTDC value of 0.4 may produce clinically superior plans. However, the effect of the DTDC parameter in plan robustness was not observed to be as strong as initially suspected.

  1. A dosimetric comparison of {sup 169}Yb versus {sup 192}Ir for HDR prostate brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lymperopoulou, G.; Papagiannis, P.; Sakelliou, L.

    2005-12-15

    For the purpose of evaluating the use of {sup 169}Yb for prostate High Dose Rate brachytherapy (HDR), a hypothetical {sup 169}Yb source is assumed with the exact same design of the new microSelectron source replacing the {sup 192}Ir active core by pure {sup 169}Yb metal. Monte Carlo simulation is employed for the full dosimetric characterization of both sources and results are compared following the AAPM TG-43 dosimetric formalism. Monte Carlo calculated dosimetry results are incorporated in a commercially available treatment planning system (SWIFT{sup TM}), which features an inverse treatment planning option based on a multiobjective dose optimization engine. The qualitymore » of prostate HDR brachytherapy using the real {sup 192}Ir and hypothetical {sup 169}Yb source is compared in a comprehensive analysis of different prostate implants in terms of the multiobjective dose optimization solutions as well as treatment quality indices such as Dose Volume Histograms (DVH) and the Conformal Index (COIN). Given that scattering overcompensates for absorption in intermediate photon energies and distances in the range of interest to prostate HDR brachytherapy, {sup 169}Yb proves at least equivalent to {sup 192}Ir irrespective of prostate volume. This has to be evaluated in view of the shielding requirements for the {sup 169}Yb energies that are minimal relative to that for {sup 192}Ir.« less

  2. Cone beam computed tomography-derived adaptive radiotherapy for radical treatment of esophageal cancer.

    PubMed

    Hawkins, Maria A; Brooks, Corrinne; Hansen, Vibeke N; Aitken, Alexandra; Tait, Diana M

    2010-06-01

    To investigate the potential for reduction in normal tissue irradiation by creating a patient specific planning target volume (PTV) using cone beam computed tomography (CBCT) imaging acquired in the first week of radiotherapy for patients receiving radical radiotherapy. Patients receiving radical RT for carcinoma of the esophagus were investigated. The PTV is defined as CTV(tumor, nodes) plus esophagus outlined 3 to 5 cm cranio-caudally and a 1.5-cm circumferential margin is added (clinical plan). Prefraction CBCT are acquired on Days 1 to 4, then weekly. No correction for setup error made. The images are imported into the planning system. The tumor and esophagus for the length of the PTV are contoured on each CBCT and 5 mm margin is added. A composite volume (PTV1) is created using Week 1 composite CBCT volumes. The same process is repeated using CBCT Week 2 to 6 (PTV2). A new plan is created using PTV1 (adaptive plan). The coverage of the 95% isodose of PTV1 is evaluated on PTV2. Dose-volume histograms (DVH) for lungs, heart, and cord for two plans are compared. A total of 139 CBCT for 14 cases were analyzed. For the adaptive plan the coverage of the 95% prescription isodose for PTV1 = 95.6% +/- 4% and the PTV2 = 96.8% +/- 4.1% (t test, 0.19). Lungs V20 (15.6 Gy vs. 10.2 Gy) and heart mean dose (26.9 Gy vs. 20.7 Gy) were significantly smaller for the adaptive plan. A reduced planning volume can be constructed within the first week of treatment using CBCT. A single plan modification can be performed within the second week of treatment with considerable reduction in organ at risk dose. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Small Bowel Dose Parameters Predicting Grade ≥3 Acute Toxicity in Rectal Cancer Patients Treated With Neoadjuvant Chemoradiation: An Independent Validation Study Comparing Peritoneal Space Versus Small Bowel Loop Contouring Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Robyn, E-mail: robynbanerjee@gmail.com; Chakraborty, Santam; Nygren, Ian

    Purpose: To determine whether volumes based on contours of the peritoneal space can be used instead of individual small bowel loops to predict for grade ≥3 acute small bowel toxicity in patients with rectal cancer treated with neoadjuvant chemoradiation therapy. Methods and Materials: A standardized contouring method was developed for the peritoneal space and retrospectively applied to the radiation treatment plans of 67 patients treated with neoadjuvant chemoradiation therapy for rectal cancer. Dose-volume histogram (DVH) data were extracted and analyzed against patient toxicity. Receiver operating characteristic analysis and logistic regression were carried out for both contouring methods. Results: Grade ≥3more » small bowel toxicity occurred in 16% (11/67) of patients in the study. A highly significant dose-volume relationship between small bowel irradiation and acute small bowel toxicity was supported by the use of both small bowel loop and peritoneal space contouring techniques. Receiver operating characteristic analysis demonstrated that, for both contouring methods, the greatest sensitivity for predicting toxicity was associated with the volume receiving between 15 and 25 Gy. Conclusion: DVH analysis of peritoneal space volumes accurately predicts grade ≥3 small bowel toxicity in patients with rectal cancer receiving neoadjuvant chemoradiation therapy, suggesting that the contours of the peritoneal space provide a reasonable surrogate for the contours of individual small bowel loops. The study finds that a small bowel V15 less than 275 cc and a peritoneal space V15 less than 830 cc are associated with a less than 10% risk of grade ≥3 acute toxicity.« less

  4. Poster — Thur Eve — 32: Stereotactic Body Radiation Therapy for Peripheral Lung Lesion: Treatment Planning and Quality Assurance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Shuying; Oliver, Michael; Wang, Xiaofang

    2014-08-15

    Stereotactic body radiation therapy (SBRT), due to its high precision for target localizing, has become widely used to treat tumours at various locations, including the lungs. Lung SBRT program was started at our institution a year ago. Eighteen patients with peripheral lesions up to 3 cm diameter have been treated with 48 Gy in 4 fractions. Based on four-dimensional computed tomography (4DCT) simulation, internal target volume (ITV) was delineated to encompass the respiratory motion of the lesion. A margin of 5 mm was then added to create the planning target volume (PTV) for setup uncertainties. There was no expansion frommore » gross tumour volume (GTV) to clinical target volume (CTV). Pinnacle 9.6 was used as the primary treatment planning system. Volumetric modulated arc therapy (VMAT) technique, with one or two coplanar arcs, generally worked well. For quality assurance (QA), each plan was exported to Eclipse 10 and dose calculation was repeated. Dose volume histograms (DVHs) of the targets and organs at risk (OARs) were then compared between the two treatment planning systems. Winston-Lutz tests were carried out as routine machine QA. Patient-specific QA included ArcCheck measurement with an insert, where an ionization chamber was placed at the centre to measure dose at the isocenter. For the first several patients, and subsequently for the plans with extremely strong modulation, Gafchromic film dosimetry was also employed. For each patient, a mock setup was scheduled prior to treatments. Daily pre- and post-CBCT were acquired for setup and assessment of intra-fractional motion, respectively.« less

  5. SU-F-T-348: The Impact of Model Library Population On RapidPlan Based Dose-Volume Histograms (DVHs) Prediction for Rectal Cancer Patients Treated with Volumetric-Modulated Radiotherapy (VMAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, K; Zhou, L; Chen, Z

    Purpose: RapidPlan uses a library consisting of expert plans from different patients to create a model that can predict achievable dose-volume histograms (DVHs) for new patients. The goal of this study is to investigate the impacts of model library population (plan numbers) on the DVH prediction for rectal cancer patients treated with volumetric-modulated radiotherapy (VMAT) Methods: Ninety clinically accepted rectal cancer patients’ VMAT plans were selected to establish 3 models, named as Model30, Model60 and Model90, with 30,60, and 90 plans in the model training. All plans had sufficient target coverage and bladder and femora sparings. Additional 10 patients weremore » enrolled to test the DVH prediction differences with these 3 models. The predicted DVHs from these 3 models were compared and analyzed. Results: Predicted V40 (Vx, percent of volume that received x Gy for the organs at risk) and Dmean (mean dose, cGy) of the bladder were 39.84±13.38 and 2029.4±141.6 for the Model30,37.52±16.00 and 2012.5±152.2 for the Model60, and 36.33±18.35 and 2066.5±174.3 for the Model90. Predicted V30 and Dmean of the left femur were 23.33±9.96 and 1443.3±114.5 for the Model30, 21.83±5.75 and 1436.6±61.9 for the Model60, and 20.31±4.6 and 1415.0±52.4 for the Model90.There were no significant differences among the 3 models for the bladder and left femur predictions. Predicted V40 and Dmean of the right femur were 19.86±10.00 and 1403.6±115.6 (Model30),18.97±6.19 and 1401.9±68.78 (Model60), and 21.08±7.82 and 1424.0±85.3 (Model90). Although a slight lower DVH prediction of the right femur was found on the Model60, the mean differences for V30 and mean dose were less than 2% and 1%, respectively. Conclusion: There were no significant differences among Model30, Model60 and Model90 for predicting DVHs on rectal patients treated with VMAT. The impact of plan numbers for model library might be limited for cancers with similar target shape.« less

  6. Is Dose Deformation–Invariance Hypothesis Verified in Prostate IGRT?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, Antoine, E-mail: antoine.simon@univ-rennes1.fr; Laboratoire Traitement du Signal et de l'Image, Université de Rennes 1, 35000 Rennes; Le Maitre, Amandine

    Purpose: To assess dose uncertainties resulting from the dose deformation–invariance hypothesis in prostate cone beam computed tomography (CT)–based image guided radiation therapy (IGRT), namely to evaluate whether rigidly propagated planned dose distribution enables good estimation of fraction dose distributions. Methods and Materials: Twenty patients underwent a CT scan for planning intensity modulated radiation therapy–IGRT delivering 80 Gy to the prostate, followed by weekly CT scans. Two methods were used to obtain the dose distributions on the weekly CT scans: (1) recalculating the dose using the original treatment plan; and (2) rigidly propagating the planned dose distribution. The cumulative doses were then estimatedmore » in the organs at risk for each dose distribution by deformable image registration. The differences between recalculated and propagated doses were finally calculated for the fraction and the cumulative dose distributions, by use of per-voxel and dose-volume histogram (DVH) metrics. Results: For the fraction dose, the mean per-voxel absolute dose difference was <1 Gy for 98% and 95% of the fractions for the rectum and bladder, respectively. The maximum dose difference within 1 voxel reached, however, 7.4 Gy in the bladder and 8.0 Gy in the rectum. The mean dose differences were correlated with gas volume for the rectum and patient external contour variations for the bladder. The mean absolute differences for the considered volume receiving greater than or equal to dose x (V{sub x}) of the DVH were between 0.37% and 0.70% for the rectum and between 0.53% and 1.22% for the bladder. For the cumulative dose, the mean differences in the DVH were between 0.23% and 1.11% for the rectum and between 0.55% and 1.66% for the bladder. The largest dose difference was 6.86%, for bladder V{sub 80Gy}. The mean dose differences were <1.1 Gy for the rectum and <1 Gy for the bladder. Conclusions: The deformation–invariance hypothesis was corroborated for the organs at risk in prostate IGRT except in cases of a large disappearance or appearance of rectal gas for the rectum and large external contour variations for the bladder.« less

  7. Meta-analysis of incidence of early lung toxicity in 3-dimensional conformal irradiation of breast carcinomas

    PubMed Central

    2013-01-01

    Background This meta-analysis aims to ascertain the significance of early lung toxicity with 3-Dimensional (3D) conformal irradiation for breast carcinomas and identify the sub-groups of patients with increased risk. Methods Electronic databases, reference sections of major oncological textbooks and identified studies were searched for synonyms of breast radiotherapy and radiation pneumonitis (RP). Major studies in thoracic irradiation were reviewed to identify factors frequently associated with RP. Meta-analysis for RP incidence estimation and odds ratio calculation were carried out. Results The overall incidence of Clinical and Radiological RP is 14% and 42% respectively. Ten studies were identified. Dose-volume Histogram (DVH) related dosimetric factors (Volume of lung receiving certain dose, Vdose and Mean lung Dose, MLD), supraclavicular fossa (SCF) irradiation and age are significantly associated with RP, but not sequential chemotherapy and concomitant use of Tamoxifen. A poorly powered study in IMN group contributed to the negative finding. Smoking has a trend towards protective effect against RP. Conclusion Use of other modalities may be considered when Ipsilateral lung V20Gy > 30% or MLD > 15 Gy. Extra caution is needed in SCF and IMN irradiation as they are likely to influence these dosimetric parameters. PMID:24229418

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Shulian; Liao Zhongxing; Vaporciyan, Ara A.

    Purpose: To assess the association of clinical and especially dosimetric factors with the incidence of postoperative pulmonary complications among esophageal cancer patients treated with concurrent chemoradiation therapy followed by surgery. Method and Materials: Data from 110 esophageal cancer patients treated between January 1998 and December 2003 were analyzed retrospectively. All patients received concurrent chemoradiotherapy followed by surgery; 72 patients also received irinotecan-based induction chemotherapy. Concurrent chemotherapy was 5-fluorouracil-based and in 97 cases included taxanes. Radiotherapy was delivered to a total dose of 41.4-50.4 Gy at 1.8-2.0 Gy per fraction with a three-dimensional conformal technique. Surgery (three-field, Ivor-Lewis, or transhiatal esophagectomy)more » was performed 27-123 days (median, 45 days) after completion of radiotherapy. The following dosimetric parameters were generated from the dose-volume histogram (DVH) for total lung: lung volume, mean dose to lung, relative and absolute volumes of lung receiving more than a threshold dose (relative V{sub dose} and absolute V{sub dose}), and absolute volume of lung receiving less than a threshold dose (volume spared, or VS{sub dose}). Occurrence of postoperative pulmonary complications, defined as pneumonia or acute respiratory distress syndrome (ARDS) within 30 days after surgery, was the endpoint for all analyses. Fisher's exact test was used to investigate the relationship between categorical factors and incidence of postoperative pulmonary complications. Logistic analysis was used to analyze the relationship between continuous factors (e.g., V{sub dose} or VS{sub dose}) and complication rate. Logistic regression with forward stepwise inclusion of factors was used to perform multivariate analysis of those factors having univariate significance (p < 0.05). The Mann-Whitney test was used to compare length of hospital stay in patients with and without lung complications and to compare lung volumes, VS5 values, and absolute and relative V5 values in male vs. female patients. Pearson correlation analysis was used to determine correlations between dosimetric factors. Results: Eighteen (16.4%) of the 110 patients developed postoperative pulmonary complications. Two of these died of progressive pneumonia. Hospitalizations were significantly longer for patients with postoperative pulmonary complications than for those without (median, 15 days vs. 11 days, p = 0.003). On univariate analysis, female gender (p = 0.017), higher mean lung dose (p = 0.036), higher relative volume of lung receiving {>=}5 Gy (V5) (p = 0.023), and smaller volumes of lung spared from doses {>=}5-35 Gy (VS5-VS35) (p < 0.05) were all significantly associated with an increased incidence of postoperative pulmonary complications. No other clinical factors were significantly associated with the incidence of postoperative pulmonary complications in this cohort. On multivariate analysis, the volume of lung spared from doses {>=}5 Gy (VS5) was the only significant independent factor associated with postoperative pulmonary complications (p = 0.005). Conclusions: Dosimetric factors but not clinical factors were found to be strongly associated with the incidence of postoperative pulmonary complications in this cohort of esophageal cancer patients treated with concurrent chemoradiation plus surgery. The volume of the lung spared from doses of {>=}5 Gy was the only independent dosimetric factor in multivariate analysis. This suggests that ensuring an adequate volume of lung unexposed to radiation might reduce the incidence of postoperative pulmonary complications.« less

  9. Investigation of clinical and dosimetric factors associated with postoperative pulmonary complications in esophageal cancer patients treated with concurrent chemoradiotherapy followed by surgery.

    PubMed

    Wang, Shu-lian; Liao, Zhongxing; Vaporciyan, Ara A; Tucker, Susan L; Liu, Helen; Wei, Xiong; Swisher, Stephen; Ajani, Jaffer A; Cox, James D; Komaki, Ritsuko

    2006-03-01

    To assess the association of clinical and especially dosimetric factors with the incidence of postoperative pulmonary complications among esophageal cancer patients treated with concurrent chemoradiation therapy followed by surgery. Data from 110 esophageal cancer patients treated between January 1998 and December 2003 were analyzed retrospectively. All patients received concurrent chemoradiotherapy followed by surgery; 72 patients also received irinotecan-based induction chemotherapy. Concurrent chemotherapy was 5-fluorouracil-based and in 97 cases included taxanes. Radiotherapy was delivered to a total dose of 41.4-50.4 Gy at 1.8-2.0 Gy per fraction with a three-dimensional conformal technique. Surgery (three-field, Ivor-Lewis, or transhiatal esophagectomy) was performed 27-123 days (median, 45 days) after completion of radiotherapy. The following dosimetric parameters were generated from the dose-volume histogram (DVH) for total lung: lung volume, mean dose to lung, relative and absolute volumes of lung receiving more than a threshold dose (relative V(dose) and absolute V(dose)), and absolute volume of lung receiving less than a threshold dose (volume spared, or VS(dose)). Occurrence of postoperative pulmonary complications, defined as pneumonia or acute respiratory distress syndrome (ARDS) within 30 days after surgery, was the endpoint for all analyses. Fisher's exact test was used to investigate the relationship between categorical factors and incidence of postoperative pulmonary complications. Logistic analysis was used to analyze the relationship between continuous factors (e.g., V(dose) or VS(dose)) and complication rate. Logistic regression with forward stepwise inclusion of factors was used to perform multivariate analysis of those factors having univariate significance (p < 0.05). The Mann-Whitney test was used to compare length of hospital stay in patients with and without lung complications and to compare lung volumes, VS5 values, and absolute and relative V5 values in male vs. female patients. Pearson correlation analysis was used to determine correlations between dosimetric factors. Eighteen (16.4%) of the 110 patients developed postoperative pulmonary complications. Two of these died of progressive pneumonia. Hospitalizations were significantly longer for patients with postoperative pulmonary complications than for those without (median, 15 days vs. 11 days, p = 0.003). On univariate analysis, female gender (p = 0.017), higher mean lung dose (p = 0.036), higher relative volume of lung receiving > or = 5 Gy (V5) (p = 0.023), and smaller volumes of lung spared from doses > or = 5-35 Gy (VS5-VS35) (p < 0.05) were all significantly associated with an increased incidence of postoperative pulmonary complications. No other clinical factors were significantly associated with the incidence of postoperative pulmonary complications in this cohort. On multivariate analysis, the volume of lung spared from doses > or = 5 Gy (VS5) was the only significant independent factor associated with postoperative pulmonary complications (p = 0.005). Dosimetric factors but not clinical factors were found to be strongly associated with the incidence of postoperative pulmonary complications in this cohort of esophageal cancer patients treated with concurrent chemoradiation plus surgery. The volume of the lung spared from doses of > or = 5 Gy was the only independent dosimetric factor in multivariate analysis. This suggests that ensuring an adequate volume of lung unexposed to radiation might reduce the incidence of postoperative pulmonary complications.

  10. Magnetic resonance (MR) imaging for tumor staging and definition of tumor volumes on radiation treatment planning in nonsmall cell lung cancer: A prospective radiographic cohort study of single center clinical outcome.

    PubMed

    Zhao, Dan; Hu, Qiaoqiao; Qi, Liping; Wang, Juan; Wu, Hao; Zhu, Guangying; Yu, Huiming

    2017-02-01

    We investigate the impact of magnetic resonance (MR) on the staging and radiotherapy planning for patients with nonsmall cell lung cancer (NSCLC).A total of 24 patients with NSCLC underwent MRI, which was fused with radiotherapy planning CT using rigid registration. Gross tumor volume (GTV) was delineated not only according to CT image alone (GTVCT), but also based on both CT and MR image (GTVCT/MR). For each patient, 2 conformal treatment plans were made according to GTVCT and GTVCT/MR, respectively. Dose-volume histograms (DVH) for lesion and normal organs were generated using both GTVCT and GTVCT/MR treatment plans. All patients were irradiated according to GTVCT/MR plan.Median volume of the GTVCT/MR and GTVCT were 105.42 cm and 124.45 cm, respectively, and the mean value of GTVCT/MR was significantly smaller than that of GTVCT (145.71 ± 145.04 vs 174.30 ± 150.34, P < 0.01). Clinical stage was modified in 9 patients (37.5%). The objective response rate (ORR) was 83.3% and the l-year overall survival (OS) was 87.5%.MR is a useful tool in radiotherapy treatment planning for NSCLC, which improves the definition of tumor volume, reduces organs at risk dose and does not increase the local recurrence rate.

  11. MO-F-CAMPUS-T-05: Correct Or Not to Correct for Rotational Patient Set-Up Errors in Stereotactic Radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briscoe, M; Ploquin, N; Voroney, JP

    2015-06-15

    Purpose: To quantify the effect of patient rotation in stereotactic radiation therapy and establish a threshold where rotational patient set-up errors have a significant impact on target coverage. Methods: To simulate rotational patient set-up errors, a Matlab code was created to rotate the patient dose distribution around the treatment isocentre, located centrally in the lesion, while keeping the structure contours in the original locations on the CT and MRI. Rotations of 1°, 3°, and 5° for each of the pitch, roll, and yaw, as well as simultaneous rotations of 1°, 3°, and 5° around all three axes were applied tomore » two types of brain lesions: brain metastasis and acoustic neuroma. In order to analyze multiple tumour shapes, these plans included small spherical (metastasis), elliptical (acoustic neuroma), and large irregular (metastasis) tumour structures. Dose-volume histograms and planning target volumes were compared between the planned patient positions and those with simulated rotational set-up errors. The RTOG conformity index for patient rotation was also investigated. Results: Examining the tumour volumes that received 80% of the prescription dose in the planned and rotated patient positions showed decreases in prescription dose coverage of up to 2.3%. Conformity indices for treatments with simulated rotational errors showed decreases of up to 3% compared to the original plan. For irregular lesions, degradation of 1% of the target coverage can be seen for rotations as low as 3°. Conclusions: This data shows that for elliptical or spherical targets, rotational patient set-up errors less than 3° around any or all axes do not have a significant impact on the dose delivered to the target volume or the conformity index of the plan. However the same rotational errors would have an impact on plans for irregular tumours.« less

  12. An Improved Model for Predicting Radiation Pneumonitis Incorporating Clinical and Dosimetric Variables;Lung cancer; Radiation pneumonitis; Dose-volume histogram; Angiotensin converting enzyme inhibitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, Peter, E-mail: peter.jenkins@glos.nhs.uk; Watts, Joanne

    2011-07-15

    Purpose: Single dose-volume metrics are of limited value for the prediction of radiation pneumonitis (RP) in day-to-day clinical practice. We investigated whether multiparametric models that incorporate clinical and physiologic factors might have improved accuracy. Methods and Materials: The records of 160 patients who received radiation therapy for non-small-cell lung cancer were reviewed. All patients were treated to the same dose and with an identical technique. Dosimetric, pulmonary function, and clinical parameters were analyzed to determine their ability to predict for the subsequent development of RP. Results: Twenty-seven patients (17%) developed RP. On univariate analysis, the following factors were significantly correlatedmore » with the risk of pneumonitis: fractional volume of lung receiving >5-20 Gy, absolute volume of lung spared from receiving >5-15 Gy, mean lung dose, craniocaudal position of the isocenter, transfer coefficient for carbon monoxide (KCOc), total lung capacity, coadministration of angiotensin converting enzyme inhibitors, and coadministration of angiotensin receptor antagonists. By combining the absolute volume of lung spared from receiving >5 Gy with the KCOc, we defined a new parameter termed Transfer Factor Spared from receiving >5 Gy (TFS{sub 5}). The area under the receiver operator characteristic curve for TFS{sub 5} was 0.778, increasing to 0.846 if patients receiving modulators of the renin-angiotensin system were excluded from the analysis. Patients with a TFS{sub 5} <2.17 mmol/min/kPa had a risk of RP of 30% compared with 5% for the group with a TFS{sub 5} {>=}2.17. Conclusions: TFS{sub 5} represents a simple parameter that can be used in routine clinical practice to more accurately segregate patients into high- and low-risk groups for developing RP.« less

  13. SU-F-P-35: A Multi-Institutional Plan Quality Checking Tool Built On Oncospace: A Shared Radiation Oncology Database System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowers, M; Robertson, S; Moore, J

    Purpose: Late toxicity from radiation to critical structures limits the possible dose in Radiation Therapy. Perfectly conformal treatment of a target is not realizable, so the clinician must accept a certain level of collateral radiation to nearby OARs. But how much? General guidelines exist for healthy tissue sparing which guide RT treatment planning, but are these guidelines good enough to create the optimal plan given the individualized patient anatomy? We propose a means to evaluate the planned dose level to an OAR using a multi-institutional data-store of previously treated patients, so a clinician might reconsider planning objectives. Methods: The toolmore » is built on Oncospace, a federated data-store system, which consists of planning data import, web based analysis tools, and a database containing:1) DVHs: dose by percent volume delivered to each ROI for each patient previously treated and included in the database.2) Overlap Volume Histograms (OVHs): Anatomical measure defined as the percent volume of an ROI within a given distance to target structures.Clinicians know what OARs are important to spare. For any ROI, Oncospace knows for which patients’ anatomy that ROI was harder to plan in the past (the OVH is less). The planned dose should be close to the least dose of previous patients. The tool displays the dose those OARs were subjected to, and the clinician can make a determination about the planning objectives used.Multiple institutions contribute to the Oncospace Consortium, and their DVH and OVH data are combined and color coded in the output. Results: The Oncospace website provides a plan quality display tool which identifies harder to treat patients, and graphically displays the dose delivered to them for comparison with the proposed plan. Conclusion: The Oncospace Consortium manages a data-store of previously treated patients which can be used for quality checking new plans. Grant funding by Elekta.« less

  14. Dosimetric comparison of standard three-dimensional conformal radiotherapy followed by intensity-modulated radiotherapy boost schedule (sequential IMRT plan) with simultaneous integrated boost-IMRT (SIB IMRT) treatment plan in patients with localized carcinoma prostate.

    PubMed

    Bansal, A; Kapoor, R; Singh, S K; Kumar, N; Oinam, A S; Sharma, S C

    2012-07-01

    DOSIMETERIC AND RADIOBIOLOGICAL COMPARISON OF TWO RADIATION SCHEDULES IN LOCALIZED CARCINOMA PROSTATE: Standard Three-Dimensional Conformal Radiotherapy (3DCRT) followed by Intensity Modulated Radiotherapy (IMRT) boost (sequential-IMRT) with Simultaneous Integrated Boost IMRT (SIB-IMRT). Thirty patients were enrolled. In all, the target consisted of PTV P + SV (Prostate and seminal vesicles) and PTV LN (lymph nodes) where PTV refers to planning target volume and the critical structures included: bladder, rectum and small bowel. All patients were treated with sequential-IMRT plan, but for dosimetric comparison, SIB-IMRT plan was also created. The prescription dose to PTV P + SV was 74 Gy in both strategies but with different dose per fraction, however, the dose to PTV LN was 50 Gy delivered in 25 fractions over 5 weeks for sequential-IMRT and 54 Gy delivered in 27 fractions over 5.5 weeks for SIB-IMRT. The treatment plans were compared in terms of dose-volume histograms. Also, Tumor Control Probability (TCP) and Normal Tissue Complication Probability (NTCP) obtained with the two plans were compared. The volume of rectum receiving 70 Gy or more (V > 70 Gy) was reduced to 18.23% with SIB-IMRT from 22.81% with sequential-IMRT. SIB-IMRT reduced the mean doses to both bladder and rectum by 13% and 17%, respectively, as compared to sequential-IMRT. NTCP of 0.86 ± 0.75% and 0.01 ± 0.02% for the bladder, 5.87 ± 2.58% and 4.31 ± 2.61% for the rectum and 8.83 ± 7.08% and 8.25 ± 7.98% for the bowel was seen with sequential-IMRT and SIB-IMRT plans respectively. For equal PTV coverage, SIB-IMRT markedly reduced doses to critical structures, therefore should be considered as the strategy for dose escalation. SIB-IMRT achieves lesser NTCP than sequential-IMRT.

  15. Intensity modulated radiotherapy with fixed collimator jaws for locoregional left-sided breast cancer irradiation.

    PubMed

    Wang, Juanqi; Yang, Zhaozhi; Hu, Weigang; Chen, Zhi; Yu, Xiaoli; Guo, Xiaomao

    2017-05-16

    The purpose of this study is to evaluate the intensity modulated radiotherapy (IMRT) with the fixed collimator jaws technique (FJT) for the left breast and regional lymph node. The targeted breast tissue and the lymph nodes, and the normal tissues were contoured for 16 left-sided breast cancer patients previously treated with radiotherapy after lumpectomy. For each patient, treatment plans using different planning techniques, i.e., volumetric modulated arc therapy (VMAT), tangential IMRT (tangential-IMRT), and IMRT with FJT (FJT-IMRT) were developed for dosimetric comparisons. A dose of 50Gy was prescribed to the planning target volume. The dose-volume histograms were generated, and the paired t-test was used to analyze the dose differences. FJT-IMRT had similar mean heart volume receiving 30Gy (V30 Gy) with tangential-IMRT (1.5% and 1.6%, p = 0.41), but inferior to the VMAT (0.8%, p < 0.001). In the average heart mean dose comparison, FJT-IMRT had the lowest value, and it was 0.6Gy lower than that for the VMAT plans (p < 0.01). A significant dose increase in the contralateral breast and lung was observed in VMAT plans. Compared with tangential-IMRT and VMAT plans, FJT-IMRT reduced the mean dose of thyroid, humeral head and cervical esophageal by 47.6% (p < 0.01) and 45.7% (p < 0.01), 74.3% (p =< 0.01) and 73% (p =< 0.01), and 26.7% (p =< 0.01) and 29.2% (p =< 0.01). In conclusion, compared with tangential-IMRT and VMAT, FJT-IMRT plan has the lowest thyroid, humeral head and cervical esophageal mean dose and it can be a reasonable treatment option for a certain subgroup of patients, such as young left-breast cancer patients and/or patients with previous thyroid disease.

  16. Assessment of Volumetric-Modulated Arc Therapy for Constant and Variable Dose Rates

    PubMed Central

    De Ornelas-Couto, Mariluz; Mihaylov, Ivaylo; Dogan, Nesrin

    2017-01-01

    Purpose: The aim of this study is to compare the effects of dose rate on volumetric-modulated arc therapy plans to determine optimal dose rates for prostate and head and neck (HN) cases. Materials and Methods: Ten prostate and ten HN cases were retrospectively studied. For each case, seven plans were generated: one variable dose rate (VDR) and six constant dose rate (CDR) (100–600 monitor units [MUs]/min) plans. Prescription doses were: 80 Gy to planning target volume (PTV) for the prostate cases, and 70, 60, and 54 Gy to PTV1, PTV2, and PTV3, respectively, for HN cases. Plans were normalized to 95% of the PTV and PTV1, respectively, with the prescription dose. Plans were assessed using Dose-Volume-Histogram metrics, homogeneity index, conformity index, MUs, and delivery time. Results: For the prostate cases, significant differences were found for rectum D35 between VDR and all CDR plans, except CDR500. Furthermore, VDR was significantly different than CDR100 and 200 for bladder D50. Delivery time for all CDR plans and MUs for CDR400–600 were significantly higher when compared to VDR. HN cases showed significant differences between VDR and CDR100, 500 and 600 for D2 to the cord and brainstem. Significant differences were found for delivery time and MUs for all CDR plans, except CDR100 for number of MUs. Conclusion: The most significant differences were observed in delivery time and number of MUs. All-in-all, the best CDR for prostate cases was found to be 300 MUs/min and 200 or 300 MUs/min for HN cases. However, VDR plans are still the choice in terms of MU efficiency and plan quality. PMID:29296033

  17. MO-C-17A-10: Comparison of Dose Deformable Accumulation by Using Parallel and Serial Approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Z; Li, M; Wong, J

    Purpose: The uncertainty of dose accumulation over multiple CT datasets with deformable fusion may have significant impact on clinical decisions. In this study, we investigate the difference of two dose summation approaches involving deformable fusion. Methods: Five patients, four external beam and one brachytherapy(BT), were chosen for the study. The BT patient was treated with CT-based HDR. The CT image sets acquired in the imageguidance process (8-11 CTs/patient) were used to determine the dose delivered to the four external beam patients. (prostate, pelvis, lung and head and neck). For the HDR patient (cervix), five CT image sets and the correspondingmore » BT plans were used. In total 44 CT datasets and RT dose/plans were imported into the image fusion software MiM (6.0.4) for analysis.For each of the five clinical cases, the dose from each fraction was accumulated into the primary CT dataset by using both Parallel and Serial approaches. The dose-volume histogram (DVH) for CTV and selected organs-at-risks (OAR) were generated. The D95(CTV), OAR(mean) and OAR(max) for the four external beam cases the D90(CTV), and the max dose to bladder and rectum for the BT case were compared. Results: For the four external beam patients, the difference in D95(CTV) were <1.2% PD between the parallel and the serial approaches. The differences of the OAR(mean) and the OAR(max ) range from 0 to 3.7% and <1% PD respectively. For the HDR patient, the dose difference for D90 is 11% PD while that of the max dose to bladder and rectum were 11.5% and 23.3% respectively. Conclusion: For external beam treatments, the parallel and serial approaches have <5% difference probably because tumor volume and OAR have less changes from fraction to fraction. For the brachytherapy case, >10% dose difference between the two approaches was observed as significant volume changes of tumor and OAR were observed among treatment fractions.« less

  18. Comparison of PDR brachytherapy and external beam radiation therapy in the case of breast cancer

    NASA Astrophysics Data System (ADS)

    Teymournia, L.; Berger, D.; Kauer-Dorner, D.; Poljanc, K.; Seitz, W.; Aiginger, H.; Kirisits, C.

    2009-04-01

    Pulsed dose rate brachytherapy (PDR) was compared to external beam radiation therapy (EBRT) in the case of breast cancer. The benefits were figured out by evaluation of dosimetric parameters and calculating the normal tissue complication probability (NTCP). PDR plans were set up for five randomly chosen left-sided breast cancer patients delivering a total dose of 50.4 Gy to the target (dose rate 0.8 Gy h-1). For EBRT five left-sided breast cancer patients were planned using 3D-conformal tangential photon beams with a prescribed total dose of 50 Gy (2 Gy/fraction) to the total breast volume. For plan ranking and NTCP calculation the physical dose was first converted into the biologically effective dose (BED) and then into the normalized total dose (NTD) using the linear quadratic model with an α/β ratio of 3 Gy. In PDR the relative effectiveness (RE) was calculated for each dose bin of the differential dose volume histogram to get the BED. NTCPs were calculated for the ipsilateral lung and the heart as contoured on CT slices based on the Lyman model and the Kutcher reduction scheme. Dosimetric parameters as Vth (percentage of the total volume exceeding a threshold dose) and Jackson's fdam (fraction of the organ damaged) were also used to figure out the benefits. The comparison of calculated NTCPs in PDR and EBRT showed no difference between these two modalities. All values were below 0.01%. fdam derived from EBRT was always higher (mean value 8.95% versus 1.21% for the lung). The mean V10 and V20 of the lung related to BED were 6.32% and 1.72% for PDR versus 11.72% and 9.59% for EBRT. When using dosimetric parameters as Vth and fdam, PDR was mostly superior to EBRT in respect of sparing normal tissues. NTCP calculation as a single method of modality ranking showed a lack of information, especially when normal tissue was exposed to low radiation doses.

  19. Gliomas: Application of Cumulative Histogram Analysis of Normalized Cerebral Blood Volume on 3 T MRI to Tumor Grading

    PubMed Central

    Kim, Hyungjin; Choi, Seung Hong; Kim, Ji-Hoon; Ryoo, Inseon; Kim, Soo Chin; Yeom, Jeong A.; Shin, Hwaseon; Jung, Seung Chai; Lee, A. Leum; Yun, Tae Jin; Park, Chul-Kee; Sohn, Chul-Ho; Park, Sung-Hye

    2013-01-01

    Background Glioma grading assumes significant importance in that low- and high-grade gliomas display different prognoses and are treated with dissimilar therapeutic strategies. The objective of our study was to retrospectively assess the usefulness of a cumulative normalized cerebral blood volume (nCBV) histogram for glioma grading based on 3 T MRI. Methods From February 2010 to April 2012, 63 patients with astrocytic tumors underwent 3 T MRI with dynamic susceptibility contrast perfusion-weighted imaging. Regions of interest containing the entire tumor volume were drawn on every section of the co-registered relative CBV (rCBV) maps and T2-weighted images. The percentile values from the cumulative nCBV histograms and the other histogram parameters were correlated with tumor grades. Cochran’s Q test and the McNemar test were used to compare the diagnostic accuracies of the histogram parameters after the receiver operating characteristic curve analysis. Using the parameter offering the highest diagnostic accuracy, a validation process was performed with an independent test set of nine patients. Results The 99th percentile of the cumulative nCBV histogram (nCBV C99), mean and peak height differed significantly between low- and high-grade gliomas (P = <0.001, 0.014 and <0.001, respectively) and between grade III and IV gliomas (P = <0.001, 0.001 and <0.001, respectively). The diagnostic accuracy of nCBV C99 was significantly higher than that of the mean nCBV (P = 0.016) in distinguishing high- from low-grade gliomas and was comparable to that of the peak height (P = 1.000). Validation using the two cutoff values of nCBV C99 achieved a diagnostic accuracy of 66.7% (6/9) for the separation of all three glioma grades. Conclusion Cumulative histogram analysis of nCBV using 3 T MRI can be a useful method for preoperative glioma grading. The nCBV C99 value is helpful in distinguishing high- from low-grade gliomas and grade IV from III gliomas. PMID:23704910

  20. Variability in CT lung-nodule quantification: Effects of dose reduction and reconstruction methods on density and texture based features.

    PubMed

    Lo, P; Young, S; Kim, H J; Brown, M S; McNitt-Gray, M F

    2016-08-01

    To investigate the effects of dose level and reconstruction method on density and texture based features computed from CT lung nodules. This study had two major components. In the first component, a uniform water phantom was scanned at three dose levels and images were reconstructed using four conventional filtered backprojection (FBP) and four iterative reconstruction (IR) methods for a total of 24 different combinations of acquisition and reconstruction conditions. In the second component, raw projection (sinogram) data were obtained for 33 lung nodules from patients scanned as a part of their clinical practice, where low dose acquisitions were simulated by adding noise to sinograms acquired at clinical dose levels (a total of four dose levels) and reconstructed using one FBP kernel and two IR kernels for a total of 12 conditions. For the water phantom, spherical regions of interest (ROIs) were created at multiple locations within the water phantom on one reference image obtained at a reference condition. For the lung nodule cases, the ROI of each nodule was contoured semiautomatically (with manual editing) from images obtained at a reference condition. All ROIs were applied to their corresponding images reconstructed at different conditions. For 17 of the nodule cases, repeat contours were performed to assess repeatability. Histogram (eight features) and gray level co-occurrence matrix (GLCM) based texture features (34 features) were computed for all ROIs. For the lung nodule cases, the reference condition was selected to be 100% of clinical dose with FBP reconstruction using the B45f kernel; feature values calculated from other conditions were compared to this reference condition. A measure was introduced, which the authors refer to as Q, to assess the stability of features across different conditions, which is defined as the ratio of reproducibility (across conditions) to repeatability (across repeat contours) of each feature. The water phantom results demonstrated substantial variability among feature values calculated across conditions, with the exception of histogram mean. Features calculated from lung nodules demonstrated similar results with histogram mean as the most robust feature (Q ≤ 1), having a mean and standard deviation Q of 0.37 and 0.22, respectively. Surprisingly, histogram standard deviation and variance features were also quite robust. Some GLCM features were also quite robust across conditions, namely, diff. variance, sum variance, sum average, variance, and mean. Except for histogram mean, all features have a Q of larger than one in at least one of the 3% dose level conditions. As expected, the histogram mean is the most robust feature in their study. The effects of acquisition and reconstruction conditions on GLCM features vary widely, though trending toward features involving summation of product between intensities and probabilities being more robust, barring a few exceptions. Overall, care should be taken into account for variation in density and texture features if a variety of dose and reconstruction conditions are used for the quantification of lung nodules in CT, otherwise changes in quantification results may be more reflective of changes due to acquisition and reconstruction conditions than in the nodule itself.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsh, I; Otto, M; Weichert, J

    Purpose: The focus of this work is to perform Monte Carlo-based dosimetry for several pediatric cancer xenografts in mice treated with a novel radiopharmaceutical {sup 131}I-CLR1404. Methods: Four mice for each tumor cell line were injected with 8–13 µCi/g of the {sup 124}124I-CLR1404. PET/CT images of each individual mouse were acquired at 5–6 time points over the span of 96–170 hours post-injection. Following acquisition, the images were co-registered, resampled, rescaled, corrected for partial volume effects (PVE), and masked. For this work the pre-treatment PET images of {sup 124}I-CLR1404 were used to predict therapeutic doses from {sup 131}I-CLR1404 at each timemore » point by assuming the same injection activity and accounting for the difference in physical decay rates. Tumors and normal tissues were manually contoured using anatomical and functional images. The CT and the PET images were used in the Geant4 (v9.6) Monte Carlo simulation to define the geometry and source distribution, respectively. The total cumulated absorbed dose was calculated by numerically integrating the dose-rate at each time point over all time on a voxel-by-voxel basis. Results: Spatial distributions of the absorbed dose rates and dose volume histograms as well as mean, minimum, maximum, and total dose values for each ROI were generated for each time point. Conclusion: This work demonstrates how mouse-specific MC-based dosimetry could potentially provide more accurate characterization of efficacy of novel radiopharmaceuticals in radionuclide therapy. This work is partially funded by NIH grant CA198392.« less

  2. Helical Tomotherapy With Simultaneous Integrated Boost After Laparoscopic Staging in Patients With Cervical Cancer: Analysis of Feasibility and Early Toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marnitz, Simone, E-mail: simone.marnitz@charite.de; Koehler, Christhardt; Burova, Elena

    Purpose: To demonstrate the feasibility and safety of the simultaneous integrated boost technique for dose escalation in combination with helical tomotherapy in patients with cervical cancer. Methods and Materials: Forty patients (International Federation of Gynecology and Obstetrics Stage IB1 pN1-IVA) underwent primary chemoradiation with helical tomotherapy. Before therapy, 29/40 patients underwent laparoscopic pelvic and para-aortic lymphadenectomy. In 21%, 31%, and 3% of the patients, pelvic, pelvic and para-aortic, and skip metastases in the para-aortic region could be confirmed. All patients underwent radiation with 1.8-50.4 Gy to the tumor region and the pelvic (para-aortic) lymph node region (planning target volume-A), andmore » a simultaneous boost with 2.12-59.36 Gy to the boost region (planning target volume-B). The boost region was defined using titan clips during laparoscopic staging. In all other patients, standardized borders for the planning target volume-B were defined. High-dose-rate brachytherapy was performed in 39/40 patients. The mean biologic effective dose to the macroscopic tumor ranged from 87.5 to 97.5 Gy. Chemotherapy consisted of weekly cisplatin 40 mg/m{sup 2}. Dose-volume histograms and acute gastrointestinal, genitourinary, and hematologic toxicity were evaluated. Results: The mean treatment time was 45 days. The mean doses to the small bowel, rectum, and bladder were 28.5 {+-} 6.1 Gy, 47.9 {+-} 3.8 Gy, and 48 {+-} 3 Gy, respectively. Hematologic toxicity Grade 3 occurred in 20% of patients, diarrhea Grade 2 in 5%, and diarrhea Grade 3 in 2.5%. There was no Grade 3 genitourinary toxicity. All patients underwent curettage 3 months after chemoradiation, which confirmed complete pathologic response in 38/40 patients. Conclusions: The concept of simultaneous integrated boost for dose escalation in patients with cervical cancer is feasible, with a low rate of acute gastrointestinal and genitourinary toxicity. Whether dose escalation can be translated into improved outcome will be assessed after a longer follow-up time.« less

  3. SU-E-T-625: Potential for Reduced Radiation Induced Toxicity for the Treatment of Inoperable Non-Small-Cell Lung Cancer Using RapidArc Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokhrel, D; Sood, S; Badkul, R

    2015-06-15

    Purpose: To investigate the feasibility of using RapidArc (RA) treatment planning to reduce irradiation volume of normal lung and other organs at risk (OARs) in the treatment of inoperable non-small-cell lung cancer (NSCLC) patients. Methods: A retrospective treatment planning and delivery study was performed to compare target coverage and the volumes of the normal lung, spinal cord, heart and esophagus on 4D-CT scan above their dose tolerances delivered by RA vs. IMRT for ten inoperable NSCLC patients (Stage I-IIIB). RA plans consisted of either one-full or two-partial co-planar arcs used to treat 95% of the planning target volume (PTV) withmore » 6MV beam to a prescription of 66Gy in 33 fractions. IMRT plans were generated using 5–7 co-planar fields with 6MV beam. PTV coverage, dose-volume histograms, homogeneity/conformity indices (CI), total number of monitor units(MUs), beam-on time and delivery accuracy were compared between the two treatment plans. Results: Similar target coverage was obtained between the two techniques. RA (CI=1.02) provided more conformal plans without loss of homogeneity compared to IMRT plans (CI=1.12). Compared to IMRT, RA achieved a significant median dose reduction in V10 (3%), V20 (8%), and mean lung dose (3%) on average, respectively. On average, V5 was comparable between the two treatment plans. RA reduced mean esophagus (6%), mean heart (18%), and maximum spinal cord dose (7%), on average, respectively. Total number of MUs and beam-on time were each reduced almost by a factor of 2 when compared to IMRT-patient comfort, reduced intra-fraction-motion and leakage dose. The average IMRT and RA QA pass rate was about 98% for both types of plans for 3%/3mm criterion. Conclusion: Compared to IMRT plans, RA provided not only comparable target coverage, but also improved conformity, treatment time, and significant reduction in irradiation of OARs. This may potentially allow for target dose escalation without increase in normal tissue toxicity.« less

  4. SU-E-T-551: PTV Is the Worst-Case of CTV in Photon Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrington, D; Liu, W; Park, P

    2014-06-01

    Purpose: To examine the supposition of the static dose cloud and adequacy of the planning target volume (PTV) dose distribution as the worst-case representation of clinical target volume (CTV) dose distribution for photon therapy in head and neck (H and N) plans. Methods: Five diverse H and N plans clinically delivered at our institution were selected. Isocenter for each plan was shifted positively and negatively in the three cardinal directions by a displacement equal to the PTV expansion on the CTV (3 mm) for a total of six shifted plans per original plan. The perturbed plan dose was recalculated inmore » Eclipse (AAA v11.0.30) using the same, fixed fluence map as the original plan. The dose distributions for all plans were exported from the treatment planning system to determine the worst-case CTV dose distributions for each nominal plan. Two worst-case distributions, cold and hot, were defined by selecting the minimum or maximum dose per voxel from all the perturbed plans. The resulting dose volume histograms (DVH) were examined to evaluate the worst-case CTV and nominal PTV dose distributions. Results: Inspection demonstrates that the CTV DVH in the nominal dose distribution is indeed bounded by the CTV DVHs in the worst-case dose distributions. Furthermore, comparison of the D95% for the worst-case (cold) CTV and nominal PTV distributions by Pearson's chi-square test shows excellent agreement for all plans. Conclusion: The assumption that the nominal dose distribution for PTV represents the worst-case dose distribution for CTV appears valid for the five plans under examination. Although the worst-case dose distributions are unphysical since the dose per voxel is chosen independently, the cold worst-case distribution serves as a lower bound for the worst-case possible CTV coverage. Minor discrepancies between the nominal PTV dose distribution and worst-case CTV dose distribution are expected since the dose cloud is not strictly static. This research was supported by the NCI through grant K25CA168984, by The Lawrence W. and Marilyn W. Matteson Fund for Cancer Research, and by the Fraternal Order of Eagles Cancer Research Fund, the Career Development Award Program at Mayo Clinic.« less

  5. Prostate volumetric‐modulated arc therapy: dosimetry and radiobiological model variation between the single‐arc and double‐arc technique

    PubMed Central

    Jiang, Runqing

    2013-01-01

    This study investigates the dosimetry and radiobiological model variation when a second photon arc was added to prostate volumetric‐modulated arc therapy (VMAT) using the single‐arc technique. Dosimetry and radiobiological model comparison between the single‐arc and double‐arc prostate VMAT plans were performed on five patients with prostate volumes ranging from 29−68.1 cm3. The prescription dose was 78 Gy/39 fractions and the photon beam energy was 6 MV. Dose‐volume histogram, mean and maximum dose of targets (planning and clinical target volume) and normal tissues (rectum, bladder and femoral heads), dose‐volume criteria in the treatment plan (D99% of PTV; D30%,D50%,V17Gy and V35Gy of rectum and bladder; D5% of femoral heads), and dose profiles along the vertical and horizontal axis crossing the isocenter were determined using the single‐arc and double‐arc VMAT technique. For comparison, the monitor unit based on the RapidArc delivery method, prostate tumor control probability (TCP), and rectal normal tissue complication probability (NTCP) based on the Lyman‐Burman‐Kutcher algorithm were calculated. It was found that though the double‐arc technique required almost double the treatment time than the single‐arc, the double‐arc plan provided a better rectal and bladder dose‐volume criteria by shifting the delivered dose in the patient from the anterior–posterior direction to the lateral. As the femoral head was less radiosensitive than the rectum and bladder, the double‐arc technique resulted in a prostate VMAT plan with better prostate coverage and rectal dose‐volume criteria compared to the single‐arc. The prostate TCP of the double‐arc plan was found slightly increased (0.16%) compared to the single‐arc. Therefore, when the rectal dose‐volume criteria are very difficult to achieve in a single‐arc prostate VMAT plan, it is worthwhile to consider the double‐arc technique. PACS number: 87.55.D‐, 87.55.dk, 87.55.K‐, 87.55.Qr

  6. Bin recycling strategy for improving the histogram precision on GPU

    NASA Astrophysics Data System (ADS)

    Cárdenas-Montes, Miguel; Rodríguez-Vázquez, Juan José; Vega-Rodríguez, Miguel A.

    2016-07-01

    Histogram is an easily comprehensible way to present data and analyses. In the current scientific context with access to large volumes of data, the processing time for building histogram has dramatically increased. For this reason, parallel construction is necessary to alleviate the impact of the processing time in the analysis activities. In this scenario, GPU computing is becoming widely used for reducing until affordable levels the processing time of histogram construction. Associated to the increment of the processing time, the implementations are stressed on the bin-count accuracy. Accuracy aspects due to the particularities of the implementations are not usually taken into consideration when building histogram with very large data sets. In this work, a bin recycling strategy to create an accuracy-aware implementation for building histogram on GPU is presented. In order to evaluate the approach, this strategy was applied to the computation of the three-point angular correlation function, which is a relevant function in Cosmology for the study of the Large Scale Structure of Universe. As a consequence of the study a high-accuracy implementation for histogram construction on GPU is proposed.

  7. Commissioning and validation of COMPASS system for VMAT patient specific quality assurance

    NASA Astrophysics Data System (ADS)

    Pimthong, J.; Kakanaporn, C.; Tuntipumiamorn, L.; Laojunun, P.; Iampongpaiboon, P.

    2016-03-01

    Pre-treatment patient specific quality assurance (QA) of advanced treatment techniques such as volumetric modulated arc therapy (VMAT) is one of important QA in radiotherapy. The fast and reliable dosimetric device is required. The objective of this study is to commission and validate the performance of COMPASS system for dose verification of VMAT technique. The COMPASS system is composed of an array of ionization detectors (MatriXX) mounted to the gantry using a custom holder and software for the analysis and visualization of QA results. We validated the COMPASS software for basic and advanced clinical application. For the basic clinical study, the simple open field in various field sizes were validated in homogeneous phantom. And the advanced clinical application, the fifteen prostate and fifteen nasopharyngeal cancers VMAT plans were chosen to study. The treatment plans were measured by the MatriXX. The doses and dose-volume histograms (DVHs) reconstructed from the fluence measurements were compared to the TPS calculated plans. And also, the doses and DVHs computed using collapsed cone convolution (CCC) Algorithm were compared with Eclipse TPS calculated plans using Analytical Anisotropic Algorithm (AAA) that according to dose specified in ICRU 83 for PTV.

  8. Validation of a track repeating algorithm for intensity modulated proton therapy: clinical cases study

    NASA Astrophysics Data System (ADS)

    Yepes, Pablo P.; Eley, John G.; Liu, Amy; Mirkovic, Dragan; Randeniya, Sharmalee; Titt, Uwe; Mohan, Radhe

    2016-04-01

    Monte Carlo (MC) methods are acknowledged as the most accurate technique to calculate dose distributions. However, due its lengthy calculation times, they are difficult to utilize in the clinic or for large retrospective studies. Track-repeating algorithms, based on MC-generated particle track data in water, accelerate dose calculations substantially, while essentially preserving the accuracy of MC. In this study, we present the validation of an efficient dose calculation algorithm for intensity modulated proton therapy, the fast dose calculator (FDC), based on a track-repeating technique. We validated the FDC algorithm for 23 patients, which included 7 brain, 6 head-and-neck, 5 lung, 1 spine, 1 pelvis and 3 prostate cases. For validation, we compared FDC-generated dose distributions with those from a full-fledged Monte Carlo based on GEANT4 (G4). We compared dose-volume-histograms, 3D-gamma-indices and analyzed a series of dosimetric indices. More than 99% of the voxels in the voxelized phantoms describing the patients have a gamma-index smaller than unity for the 2%/2 mm criteria. In addition the difference relative to the prescribed dose between the dosimetric indices calculated with FDC and G4 is less than 1%. FDC reduces the calculation times from 5 ms per proton to around 5 μs.

  9. Non-small cell lung cancer: Whole-lesion histogram analysis of the apparent diffusion coefficient for assessment of tumor grade, lymphovascular invasion and pleural invasion

    PubMed Central

    Tsuchiya, Naoko; Doai, Mariko; Usuda, Katsuo; Uramoto, Hidetaka

    2017-01-01

    Purpose Investigating the diagnostic accuracy of histogram analyses of apparent diffusion coefficient (ADC) values for determining non-small cell lung cancer (NSCLC) tumor grades, lymphovascular invasion, and pleural invasion. Materials and methods We studied 60 surgically diagnosed NSCLC patients. Diffusion-weighted imaging (DWI) was performed in the axial plane using a navigator-triggered single-shot, echo-planar imaging sequence with prospective acquisition correction. The ADC maps were generated, and we placed a volume-of-interest on the tumor to construct the whole-lesion histogram. Using the histogram, we calculated the mean, 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles of ADC, skewness, and kurtosis. Histogram parameters were correlated with tumor grade, lymphovascular invasion, and pleural invasion. We performed a receiver operating characteristics (ROC) analysis to assess the diagnostic performance of histogram parameters for distinguishing different pathologic features. Results The ADC mean, 10th, 25th, 50th, 75th, 90th, and 95th percentiles showed significant differences among the tumor grades. The ADC mean, 25th, 50th, 75th, 90th, and 95th percentiles were significant histogram parameters between high- and low-grade tumors. The ROC analysis between high- and low-grade tumors showed that the 95th percentile ADC achieved the highest area under curve (AUC) at 0.74. Lymphovascular invasion was associated with the ADC mean, 50th, 75th, 90th, and 95th percentiles, skewness, and kurtosis. Kurtosis achieved the highest AUC at 0.809. Pleural invasion was only associated with skewness, with the AUC of 0.648. Conclusions ADC histogram analyses on the basis of the entire tumor volume are able to stratify NSCLCs' tumor grade, lymphovascular invasion and pleural invasion. PMID:28207858

  10. Influence of image slice thickness on rectal dose-response relationships following radiotherapy of prostate cancer

    NASA Astrophysics Data System (ADS)

    Olsson, C.; Thor, M.; Liu, M.; Moissenko, V.; Petersen, S. E.; Høyer, M.; Apte, A.; Deasy, J. O.

    2014-07-01

    When pooling retrospective data from different cohorts, slice thicknesses of acquired computed tomography (CT) images used for treatment planning may vary between cohorts. It is, however, not known if varying slice thickness influences derived dose-response relationships. We investigated this for rectal bleeding using dose-volume histograms (DVHs) of the rectum and rectal wall for dose distributions superimposed on images with varying CT slice thicknesses. We used dose and endpoint data from two prostate cancer cohorts treated with three-dimensional conformal radiotherapy to either 74 Gy (N = 159) or 78 Gy (N = 159) at 2 Gy per fraction. The rectum was defined as the whole organ with content, and the morbidity cut-off was Grade ≥2 late rectal bleeding. Rectal walls were defined as 3 mm inner margins added to the rectum. DVHs for simulated slice thicknesses from 3 to 13 mm were compared to DVHs for the originally acquired slice thicknesses at 3 and 5 mm. Volumes, mean, and maximum doses were assessed from the DVHs, and generalized equivalent uniform dose (gEUD) values were calculated. For each organ and each of the simulated slice thicknesses, we performed predictive modeling of late rectal bleeding using the Lyman-Kutcher-Burman (LKB) model. For the most coarse slice thickness, rectal volumes increased (≤18%), whereas maximum and mean doses decreased (≤0.8 and ≤4.2 Gy, respectively). For all a values, the gEUD for the simulated DVHs were ≤1.9 Gy different than the gEUD for the original DVHs. The best-fitting LKB model parameter values with 95% CIs were consistent between all DVHs. In conclusion, we found that the investigated slice thickness variations had minimal impact on rectal dose-response estimations. From the perspective of predictive modeling, our results suggest that variations within 10 mm in slice thickness between cohorts are unlikely to be a limiting factor when pooling multi-institutional rectal dose data that include slice thickness variations within this range. Presented in part at the European Society for Therapeutic Radiotherapy and Oncology Annual Meeting, April 5-8, 2014, Vienna, Austria.

  11. Radiotherapy for Early Mediastinal Hodgkin Lymphoma According to the German Hodgkin Study Group (GHSG): The Roles of Intensity-Modulated Radiotherapy and Involved-Node Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koeck, Julia, E-mail: Julia_Koeck@gmx.net; Abo-Madyan, Yasser; Department of Radiation Oncology, Faculty of Medicine, Cairo University, Cairo

    2012-05-01

    Purpose: Cure rates of early Hodgkin lymphoma (HL) are high, and avoidance of late complications and second malignancies have become increasingly important. This comparative treatment planning study analyzes to what extent target volume reduction to involved-node (IN) and intensity-modulated (IM) radiotherapy (RT), compared with involved-field (IF) and three-dimensional (3D) RT, can reduce doses to organs at risk (OAR). Methods and Materials: Based on 20 computed tomography (CT) datasets of patients with early unfavorable mediastinal HL, we created treatment plans for 3D-RT and IMRT for both the IF and IN according to the guidelines of the German Hodgkin Study Group (GHSG).more » As OAR, we defined heart, lung, breasts, and spinal cord. Dose-volume histograms (DVHs) were evaluated for planning target volumes (PTVs) and OAR. Results: Average IF-PTV and IN-PTV were 1705 cm{sup 3} and 1015 cm{sup 3}, respectively. Mean doses to the PTVs were almost identical for all plans. For IF-PTV/IN-PTV, conformity was better with IMRT and homogeneity was better with 3D-RT. Mean doses to the heart (17.94/9.19 Gy for 3D-RT and 13.76/7.42 Gy for IMRT) and spinal cord (23.93/13.78 Gy for 3D-RT and 19.16/11.55 Gy for IMRT) were reduced by IMRT, whereas mean doses to lung (10.62/8.57 Gy for 3D-RT and 12.77/9.64 Gy for IMRT) and breasts (left 4.37/3.42 Gy for 3D-RT and 6.04/4.59 Gy for IMRT, and right 2.30/1.63 Gy for 3D-RT and 5.37/3.53 Gy for IMRT) were increased. Volume exposed to high doses was smaller for IMRT, whereas volume exposed to low doses was smaller for 3D-RT. Pronounced benefits of IMRT were observed for patients with lymph nodes anterior to the heart. IN-RT achieved substantially better values than IF-RT for almost all OAR parameters, i.e., dose reduction of 20% to 50%, regardless of radiation technique. Conclusions: Reduction of target volume to IN most effectively improves OAR sparing, but is still considered investigational. For the time being, IMRT should be considered for large PTVs especially when the anterior mediastinum is involved.« less

  12. Voluntary Deep Inspiration Breath-hold Reduces the Heart Dose Without Compromising the Target Volume Coverage During Radiotherapy for Left-sided Breast Cancer.

    PubMed

    Al-Hammadi, Noora; Caparrotti, Palmira; Naim, Carole; Hayes, Jillian; Rebecca Benson, Katherine; Vasic, Ana; Al-Abdulla, Hissa; Hammoud, Rabih; Divakar, Saju; Petric, Primoz

    2018-03-01

    During radiotherapy of left-sided breast cancer, parts of the heart are irradiated, which may lead to late toxicity. We report on the experience of single institution with cardiac-sparing radiotherapy using voluntary deep inspiration breath hold (V-DIBH) and compare its dosimetric outcome with free breathing (FB) technique. Left-sided breast cancer patients, treated at our department with postoperative radiotherapy of breast/chest wall +/- regional lymph nodes between May 2015 and January 2017, were considered for inclusion. FB-computed tomography (CT) was obtained and dose-planning performed. Cases with cardiac V25Gy ≥ 5% or risk factors for heart disease were coached for V-DIBH. Compliant patients were included. They underwent additional CT in V-DIBH for planning, followed by V-DIBH radiotherapy. Dose volume histogram parameters for heart, lung and optimized planning target volume (OPTV) were compared between FB and BH. Treatment setup shifts and systematic and random errors for V-DIBH technique were compared with FB historic control. Sixty-three patients were considered for V-DIBH. Nine (14.3%) were non-compliant at coaching, leaving 54 cases for analysis. When compared with FB, V-DIBH resulted in a significant reduction of mean cardiac dose from 6.1 +/- 2.5 to 3.2 +/- 1.4 Gy (p < 0.001), maximum cardiac dose from 51.1 +/- 1.4 to 48.5 +/- 6.8 Gy (p = 0.005) and cardiac V25Gy from 8.5 +/- 4.2 to 3.2 +/- 2.5% (p < 0.001). Heart volumes receiving low (10-20 Gy) and high (30-50 Gy) doses were also significantly reduced. Mean dose to the left anterior coronary artery was 23.0 (+/- 6.7) Gy and 14.8 (+/- 7.6) Gy on FB and V-DIBH, respectively (p < 0.001). Differences between FB- and V-DIBH-derived mean lung dose (11.3 +/- 3.2 vs. 10.6 +/- 2.6 Gy), lung V20Gy (20.5 +/- 7 vs. 19.5 +/- 5.1 Gy) and V95% for the OPTV (95.6 +/- 4.1 vs. 95.2 +/- 6.3%) were non-significant. V-DIBH-derived mean shifts for initial patient setup were ≤ 2.7 mm. Random and systematic errors were ≤ 2.1 mm. These results did not differ significantly from historic FB controls. When compared with FB, V-DIBH demonstrated high setup accuracy and enabled significant reduction of cardiac doses without compromising the target volume coverage. Differences in lung doses were non-significant.

  13. A study on quantitative analysis of field size and dose by using gating system in 4D conformal radiation treatment

    NASA Astrophysics Data System (ADS)

    Ji, Youn-Sang; Dong, Kyung-Rae; Kim, Chang-Bok; Chung, Woon-Kwan; Cho, Jae-Hwan; Lee, Hae-Kag

    2012-10-01

    This study evaluated the gating-based 4-D conformal radiation therapy (4D-CT) treatment planning by a comparison with the common 3-D conformal radiation therapy (3D-CT) treatment planning and examined the change in treatment field size and dose to the tumors and adjacent normal tissues because an unnecessary dose is also included in the 3-D treatment planning for the radiation treatment of tumors in the chest and abdomen. The 3D-CT and gating-based 4D-CT images were obtained from patients who had undergone radiation treatment for chest and abdomen tumors in the oncology department. After establishing a treatment plan, the CT treatment and planning system were used to measure the change in field size for analysis. A dose volume histogram (DVH) was used to calculate the appropriate dose to planning target volume (PTV) tumors and adjacent normal tissue. The difference in the treatment volume of the chest was 0.6 and 0.83 cm on the X- and Y-axis, respectively, for the gross tumor volume (GTV). Accordingly, the values in the 4D-CT treatment planning were smaller and the dose was more concentrated by 2.7% and 0.9% on the GTV and clinical target volume (CTV), respectively. The normal tissues in the surrounding normal tissues were reduced by 3.0%, 7.2%, 0.4%, 1.7%, 2.6% and 0.2% in the bronchus, chest wall, esophagus, heart, lung and spinal cord, respectively. The difference in the treatment volume of the abdomen was 0.72 cm on the X-axis and 0.51 cm on the Y-axis for the GTV; and 1.06 cm on the X-axis and 1.85 cm on the Y-axis for the PTV. Therefore, the values in the 4D-CT treatment planning were smaller. The dose was concentrated by 6.8% and 4.3% on the GTV and PTV, respectively, whereas the adjacent normal tissues in the cord, Lt. kidney, Rt. kidney, small bowels and whole liver were reduced by 3.2%, 4.2%, 1.5%, 6.2% and 12.7%, respectively. The treatment field size was smaller in volume in the case of the 4D-CT treatment planning. In the DVH, the 4D-CT treatment planning showed a higher dose concentration on the part to be treated than the 3D-CT treatment planning with a lower dose to the adjacent normal tissues. Overall, the gating-based 4D-CT treatment planning is believed to be more helpful than the 3D-CT treatment planning.

  14. Dosimetric comparison of helical tomotherapy, RapidArc, and a novel IMRT & Arc technique for esophageal carcinoma.

    PubMed

    Martin, Spencer; Chen, Jeff Z; Rashid Dar, A; Yartsev, Slav

    2011-12-01

    To compare radiotherapy treatment plans for mid- and distal-esophageal cancer with primary involvement of the gastroesophageal (GE) junction using a novel IMRT & Arc technique (IMRT & Arc), helical tomotherapy (HT), and RapidArc (RA1 and RA2). Eight patients treated on HT for locally advanced esophageal cancer with radical intent were re-planned for RA and IMRT&Arc. RA plans employed single and double arcs (RA1 and RA2, respectively), while IMRT&Arc plans had four fixed-gantry IMRT fields and a conformal arc. Dose-volume histogram statistics, dose uniformity, and dose homogeneity were analyzed to compare treatment plans. RA2 plans showed significant improvement over RA1 plans in terms of OAR dose and PTV dose uniformity and homogeneity. HT plan provided best dose uniformity (p=0.001) and dose homogeneity (p=0.002) to planning target volume (PTV), while IMRT&Arc and RA2 plans gave lowest dose to lungs among four radiotherapy techniques with acceptable PTV dose coverage. Mean V(10) of the lungs was significantly reduced by the RA2 plans compared to IMRT&Arc (40.3%, p=0.001) and HT (66.2%, p<0.001) techniques. Mean V(15) of the lungs for the RA2 plans also showed significant improvement over the IMRT&Arc (25.2%, p=0.042) and HT (34.8%, p=0.027) techniques. These improvements came at the cost of higher doses to the heart volume compared to HT and IMRT&Arc techniques. Mean lung dose (MLD) for the IMRT&Arc technique (21.2 ± 5.0% of prescription dose) was significantly reduced compared to HT (26.3%, p=0.004), RA1 (23.3%, p=0.028), and RA2 (23.2%, p=0.017) techniques. The IMRT&Arc technique is a good option for treating esophageal cancer with thoracic involvement. It achieved optimal low dose to the lungs and heart with acceptable PTV coverage. HT is a good option for treating esophageal cancer with little thoracic involvement as it achieves superior dose conformality and uniformity. The RA2 technique provided for improved treatment plans using additional arcs with low doses to the lungs at the cost of increased heart dose. Plan quality could still be improved through the use of additional arcs. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. Clinical and Dosimetric Predictors of Late Rectal Syndrome After 3D-CRT for Localized Prostate Cancer: Preliminary Results of a Multicenter Prospective Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiorino, Claudio; Fellin, Gianni; Rancati, Tiziana

    2008-03-15

    Purpose: To assess the predictors of late rectal toxicity in a prospectively investigated group of patients treated at 70-80 Gy for prostate cancer (1.8-2 Gy fractions) with three-dimensional conformal radiotherapy. Methods and Materials: A total of 1,132 patients were entered into the study between 2002 and 2004. Three types of rectal toxicity, evaluated by a self-administered questionnaire, mainly based on the subjective objective management, analytic late effects of normal tissue system, were considered: stool frequency/tenesmus/pain, fecal incontinence, and bleeding. The data from 506 patients with a follow-up of 24 months were analyzed. The correlation between a number of clinical andmore » dosimetric parameters and Grade 2 or greater toxicity was investigated by univariate and multivariate (MVA) logistic analyses. Results: Of the 1,132 patients, 21, 15, and 30 developed stool frequency/tenesmus/pain, fecal incontinence, and bleeding, respectively. Stool frequency/tenesmus/pain correlated with previous abdominal/pelvic surgery (MVA, p = 0.05, odds ratio [OR], 3.3). With regard to incontinence, MVA showed the volume receiving {>=}40 Gy (V{sub 40}) (p = 0.035, OR, 1.037) and surgery (p = 0.02, OR, 4.4) to be the strongest predictors. V{sub 40} to V{sub 70} were highly predictive of bleeding; V{sub 70} showed the strongest impact on MVA (p = 0.03), together with surgery (p = 0.06, OR, 2.5), which was also the main predictor of Grade 3 bleeding (p = 0.02, OR, 4.2). Conclusions: The predictive value of the dose-volume histogram was confirmed for bleeding, consistent with previously suggested constraints (V{sub 50} <55%, V{sub 60} <40%, V{sub 70} <25%, and V{sub 75} <5%). A dose-volume histogram constraint for incontinence can be suggested (V{sub 40} <65-70%). Previous abdominal/pelvic surgery correlated with all toxicity types; thus, a modified constraint for bleeding (V{sub 70} <15%) can be suggested for patients with a history of abdominal/pelvis surgery, although further validation on a larger population with longer follow-up is needed.« less

  16. Intensity- and energy-modulated electron radiotherapy by means of an xMLC for head and neck shallow tumors

    NASA Astrophysics Data System (ADS)

    Salguero, Francisco Javier; Arráns, Rafael; Atriana Palma, Bianey; Leal, Antonio

    2010-03-01

    The purpose of this paper is to assess the feasibility of delivering intensity- and energy-modulated electron radiation treatment (MERT) by a photon multileaf collimator (xMLC) and to evaluate the improvements obtained in shallow head and neck (HN) tumors. Four HN patient cases covering different clinical situations were planned by MERT, which used an in-house treatment planning system that utilized Monte Carlo dose calculation. The cases included one oronasal, two parotid and one middle ear tumors. The resulting dose-volume histograms were compared with those obtained from conventional photon and electron treatment techniques in our clinic, which included IMRT, electron beam and mixed beams, most of them using fixed-thickness bolus. Experimental verification was performed with plane-parallel ionization chambers for absolute dose verification, and a PTW ionization chamber array and radiochromic film for relative dosimetry. A MC-based treatment planning system for target with compromised volumes in depth and laterally has been validated. A quality assurance protocol for individual MERT plans was launched. Relative MC dose distributions showed a high agreement with film measurements and absolute ion chamber dose measurements performed at a reference point agreed with MC calculations within 2% in all cases. Clinically acceptable PTV coverage and organ-at-risk sparing were achieved by using the proposed MERT approach. MERT treatment plans, based on delivery of intensity-modulated electron beam using the xMLC, for superficial head and neck tumors, demonstrated comparable or improved PTV dose homogeneity with significantly lower dose to normal tissues. The clinical implementation of this technique will be able to offer a viable alternative for the treatment of shallow head and neck tumors.

  17. PET/MRI of Hepatic 90Y Microsphere Deposition Determines Individual Tumor Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, Kathryn J.; Maughan, Nichole M.; Laforest, Richard

    PurposeThe purpose of our study is to determine if there is a relationship between dose deposition measured by PET/MRI and individual lesion response to yttrium-90 ({sup 90}Y) microsphere radioembolization.Materials and Methods26 patients undergoing lobar treatment with {sup 90}Y microspheres underwent PET/MRI within 66 h of treatment and had follow-up imaging available. Adequate visualization of tumor was available in 24 patients, and contours were drawn on simultaneously acquired PET/MRI data. Dose volume histograms (DVHs) were extracted from dose maps, which were generated using a voxelized dose kernel. Similar contours to capture dimensional and volumetric change of tumors were drawn on follow-up imaging.more » Response was analyzed using both RECIST and volumetric RECIST (vRECIST) criteria.ResultsA total of 8 hepatocellular carcinoma (HCC), 4 neuroendocrine tumor (NET), 9 colorectal metastases (CRC) patients, and 3 patients with other metastatic disease met inclusion criteria. Average dose was useful in predicting response between responders and non-responders for all lesion types and for CRC lesions alone using both response criteria (p < 0.05). D70 (minimum dose to 70 % of volume) was also useful in predicting response when using vRECIST. No significant trend was seen in the other tumor types. For CRC lesions, an average dose of 29.8 Gy offered 76.9 % sensitivity and 75.9 % specificity for response.ConclusionsPET/MRI of {sup 90}Y microsphere distribution showed significantly higher DVH values for responders than non-responders in patients with CRC. DVH analysis of {sup 90}Y microsphere distribution following treatment may be an important predictor of response and could be used to guide future adaptive therapy trials.« less

  18. Dosimetric Analysis of Organs at Risk During Expiratory Gating in Stereotactic Body Radiation Therapy for Pancreatic Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taniguchi, Cullen M.; Murphy, James D.; Eclov, Neville

    2013-03-15

    Purpose: To determine how the respiratory phase impacts dose to normal organs during stereotactic body radiation therapy (SBRT) for pancreatic cancer. Methods and Materials: Eighteen consecutive patients with locally advanced, unresectable pancreatic adenocarcinoma treated with SBRT were included in this study. On the treatment planning 4-dimensional computed tomography (CT) scan, the planning target volume (PTV), defined as the gross tumor volume plus 3-mm margin, the duodenum, and the stomach were contoured on the end-expiration (CT{sub exp}) and end-inspiration (CT{sub insp}) phases for each patient. A separate treatment plan was constructed for both phases with the dose prescription of 33 Gymore » in 5 fractions with 95% coverage of the PTV by the 100% isodose line. The dose-volume histogram (DVH) endpoints, volume of duodenum that received 20 Gy (V{sub 20}), V{sub 25}, and V{sub 30} and maximum dose to 5 cc of contoured organ (D{sub 5cc}), D{sub 1cc}, and D{sub 0.1cc}, were evaluated. Results: Dosimetric parameters for the duodenum, including V{sub 25}, V{sub 30}, D{sub 1cc}, and D{sub 0.1cc} improved by planning on the CT{sub exp} compared to those on the CT{sub insp}. There was a statistically significant overlap of the PTV with the duodenum but not the stomach during the CT{sub insp} compared to the CT{sub exp} (0.38 ± 0.17 cc vs 0.01 ± 0.01 cc, P=.048). A larger expansion of the PTV, in accordance with a Danish phase 2 trial, showed even more overlapping volume of duodenum on the CT{sub insp} compared to that on the CT{sub exp} (5.5 ± 0.9 cc vs 3.0 ± 0.8 cc, P=.0003) but no statistical difference for any stomach dosimetric DVH parameter. Conclusions: Dose to the duodenum was higher when treating on the inspiratory than on the expiratory phase. These data suggest that expiratory gating may be preferable to inspiratory breath-hold and free breathing strategies for minimizing risk of toxicity.« less

  19. Evaluation of multiple institutions' models for knowledge-based planning of volumetric modulated arc therapy (VMAT) for prostate cancer.

    PubMed

    Ueda, Yoshihiro; Fukunaga, Jun-Ichi; Kamima, Tatsuya; Adachi, Yumiko; Nakamatsu, Kiyoshi; Monzen, Hajime

    2018-03-20

    The aim of this study was to evaluate the performance of a commercial knowledge-based planning system, in volumetric modulated arc therapy for prostate cancer at multiple radiation therapy departments. In each institute, > 20 cases were assessed. For the knowledge-based planning, the estimated dose (ED) based on geometric and dosimetric information of plans was generated in the model. Lower and upper limits of estimated dose were saved as dose volume histograms for each organ at risk. To verify whether the models performed correctly, KBP was compared with manual optimization planning in two cases. The relationships between the EDs in the models and the ratio of the OAR volumes overlapping volume with PTV to the whole organ volume (V overlap /V whole ) were investigated. There were no significant dosimetric differences in OARs and PTV between manual optimization planning and knowledge-based planning. In knowledge-based planning, the difference in the volume ratio of receiving 90% and 50% of the prescribed dose (V90 and V50) between institutes were more than 5.0% and 10.0%, respectively. The calculated doses with knowledge-based planning were between the upper and lower limits of ED or slightly under the lower limit of ED. The relationships between the lower limit of ED and V overlap /V whole were different among the models. In the V90 and V50 for the rectum, the maximum differences between the lower limit of ED among institutes were 8.2% and 53.5% when V overlap /V whole for the rectum was 10%. In the V90 and V50 for the bladder, the maximum differences of the lower limit of ED among institutes were 15.1% and 33.1% when V overlap /V whole for the bladder was 10%. Organs' upper and lower limits of ED in the models correlated closely with the V overlap /V whole . It is important to determine whether the models in KBP match a different institute's plan design before the models can be shared.

  20. Histogram-based normalization technique on human brain magnetic resonance images from different acquisitions.

    PubMed

    Sun, Xiaofei; Shi, Lin; Luo, Yishan; Yang, Wei; Li, Hongpeng; Liang, Peipeng; Li, Kuncheng; Mok, Vincent C T; Chu, Winnie C W; Wang, Defeng

    2015-07-28

    Intensity normalization is an important preprocessing step in brain magnetic resonance image (MRI) analysis. During MR image acquisition, different scanners or parameters would be used for scanning different subjects or the same subject at a different time, which may result in large intensity variations. This intensity variation will greatly undermine the performance of subsequent MRI processing and population analysis, such as image registration, segmentation, and tissue volume measurement. In this work, we proposed a new histogram normalization method to reduce the intensity variation between MRIs obtained from different acquisitions. In our experiment, we scanned each subject twice on two different scanners using different imaging parameters. With noise estimation, the image with lower noise level was determined and treated as the high-quality reference image. Then the histogram of the low-quality image was normalized to the histogram of the high-quality image. The normalization algorithm includes two main steps: (1) intensity scaling (IS), where, for the high-quality reference image, the intensities of the image are first rescaled to a range between the low intensity region (LIR) value and the high intensity region (HIR) value; and (2) histogram normalization (HN),where the histogram of low-quality image as input image is stretched to match the histogram of the reference image, so that the intensity range in the normalized image will also lie between LIR and HIR. We performed three sets of experiments to evaluate the proposed method, i.e., image registration, segmentation, and tissue volume measurement, and compared this with the existing intensity normalization method. It is then possible to validate that our histogram normalization framework can achieve better results in all the experiments. It is also demonstrated that the brain template with normalization preprocessing is of higher quality than the template with no normalization processing. We have proposed a histogram-based MRI intensity normalization method. The method can normalize scans which were acquired on different MRI units. We have validated that the method can greatly improve the image analysis performance. Furthermore, it is demonstrated that with the help of our normalization method, we can create a higher quality Chinese brain template.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, Jun, E-mail: jun-lian@med.unc.edu; Chera, Bhishamjit S.; Chang, Sha

    Purpose: To build a statistical model to quantitatively correlate the anatomic features of structures and the corresponding dose-volume histogram (DVH) of head and neck (HN) Tomotherapy (Tomo) plans. To study if the model built upon one intensity modulated radiation therapy (IMRT) technique (such as conventional Linac) can be used to predict anticipated organs-at-risk (OAR) DVH of patients treated with a different IMRT technique (such as Tomo). To study if the model built upon the clinical experience of one institution can be used to aid IMRT planning for another institution. Methods: Forty-four Tomotherapy intensity modulate radiotherapy plans of HN cases (Tomo-IMRT)more » from Institution A were included in the study. A different patient group of 53 HN fixed gantry IMRT (FG-IMRT) plans was selected from Institution B. The analyzed OARs included the parotid, larynx, spinal cord, brainstem, and submandibular gland. Two major groups of anatomical features were considered: the volumetric information and the spatial information. The volume information includes the volume of target, OAR, and overlapped volume between target and OAR. The spatial information of OARs relative to PTVs was represented by the distance-to-target histogram (DTH). Important anatomical and dosimetric features were extracted from DTH and DVH by principal component analysis. Two regression models, one for Tomotherapy plan and one for IMRT plan, were built independently. The accuracy of intratreatment-modality model prediction was validated by a leave one out cross-validation method. The intertechnique and interinstitution validations were performed by using the FG-IMRT model to predict the OAR dosimetry of Tomo-IMRT plans. The dosimetry of OARs, under the same and different institutional preferences, was analyzed to examine the correlation between the model prediction and planning protocol. Results: Significant patient anatomical factors contributing to OAR dose sparing in HN Tomotherapy plans have been analyzed and identified. For all the OARs, the discrepancies of dose indices between the model predicted values and the actual plan values were within 2.1%. Similar results were obtained from the modeling of FG-IMRT plans. The parotid gland was spared in a comparable fashion during the treatment planning of two institutions. The model based on FG-IMRT plans was found to predict the median dose of the parotid of Tomotherapy plans quite well, with a mean error of 2.6%. Predictions from the FG-IMRT model suggested the median dose of the larynx, median dose of the brainstem and D2 of the brainstem could be reduced by 10.5%, 12.8%, and 20.4%, respectively, in the Tomo-IMRT plans. This was found to be correlated to the institutional differences in OAR constraint settings. Re-planning of six Tomotherapy patients confirmed the potential of optimization improvement predicted by the FG-IMRT model was correct. Conclusions: The authors established a mathematical model to correlate the anatomical features and dosimetric indexes of OARs of HN patients in Tomotherapy plans. The model can be used for the setup of patient-specific OAR dose sparing goals and quality control of planning results. The institutional clinical experience was incorporated into the model which allows the model from one institution to generate a reference plan for another institution, or another IMRT technique.« less

  2. Salivary gland sparing and improved target irradiation by conformal and intensity modulated irradiation of head and neck cancer.

    PubMed

    Eisbruch, Avraham; Ship, Jonathan A; Dawson, Laura A; Kim, Hyungjin M; Bradford, Carol R; Terrell, Jeffrey E; Chepeha, Douglas B; Teknos, Theodore N; Hogikyan, Norman D; Anzai, Yoshimi; Marsh, Lon H; Ten Haken, Randall K; Wolf, Gregory T

    2003-07-01

    The goals of this study were to facilitate sparing of the major salivary glands while adequately treating tumor targets in patients requiring comprehensive bilateral neck irradiation (RT), and to assess the potential for improved xerostomia. Since 1994 techniques of target irradiation and locoregional tumor control with conformal and intensity modulated radiation therapy (IMRT) have been developed. In patients treated with these modalities, the salivary flow rates before and periodically after RT have been measured selectively from each major salivary gland and the residual flows correlated with glands' dose volume histograms (DVHs). In addition, subjective xerostomia questionnaires have been developed and validated. The pattern of locoregional recurrence has been examined from computed tomography (CT) scans at the time of recurrence, transferring the recurrence volumes to the planning CT scans, and regenerating the dose distributions at the recurrence sites. Treatment plans for target coverage and dose homogeneity using static, multisegmental IMRT were found to be significantly better than standard RT plans. In addition, significant parotid gland sparing was achieved in the conformal plans. The relationships among dose, irradiated volume, and the residual saliva flow rates from the parotid glands were characterized by dose and volume thresholds. A mean radiation dose of 26 Gy was found to be the threshold for preserved stimulated saliva flow. Xerostomia questionnaire scores suggested that xerostomia was significantly reduced in patients irradiated with bilateral neck, parotid-sparing RT, compared to patients with similar tumors treated with standard RT. Examination of locoregional tumor recurrence patterns revealed that the large majority of recurrences occurred inside targets, in areas that had been judged to be at high risk and that had received RT doses according to the perceived risk. Tangible gains in salivary gland sparing and target coverage are being achieved, and an improvement in some measures of quality of life is suggested by our findings. Additional reduction of xerostomia may be achieved by further sparing of the salivary glands and the non-involved oral cavity. A mean parotid gland dose of < or = 26 Gy should be a planning objective if significant parotid function preservation is desired. The pattern of recurrence suggests that careful escalation of the dose to areas judged to be at highest risk may improve tumor control.

  3. SU-E-T-13: A Comparative Dosimetric Study On Radio-Dynamic Therapy for Pelvic Cancer Treatment: Strategies for Bone Marrow Dose and Volume Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, C; Renmin Hospital of Wuhan University, Wuhan, Hubei Province; Wang, B

    Purpose: Radio-dynamic therapy (RDT) is a potentially effective modality for local and systemic cancer treatment. Using RDT, the administration of a radio-sensitizer enhances the biological effect of high-energy photons. Although the sensitizer uptake ratio of tumor to normal tissue is normally high, one cannot simply neglect its effect on critical structures. In this study, we aim to explore planning strategies to improve bone marrow sparing without compromising the plan quality for RDT treatment of pelvic cancers. Methods: Ten cervical and ten prostate cancer patients who previously received radiotherapy at our institution were selected for this study. For each patient, ninemore » plans were created using the Varian Eclipse treatmentplanning-system (TPS) with 3D-CRT, IMRT, and VMAT delivery techniques containing various gantry angle combinations and optimization parameters (dose constraints to the bone marrow). To evaluate the plans for bone marrow sparing, the dose-volume parameters V5, V10, V15, V20, V30, and V40 for bone marrow were examined. Effective doseenhancement factors for the sensitizer were used to weigh the dose-volume histograms for various tissues from individual fractions. Results: The planning strategies had different impacts on bone marrow sparing for the cervical and prostate cases. For the cervical cases, provided the bone marrow constraints were properly set during optimization, the dose to bone marrow sparing was found to be comparable between different IMRT and VMAT plans regardless of the gantry angle selection. For the prostate cases, however, careful selection of gantry angles could dramatically improve the bone marrow sparing, although the dose distribution in bone marrow was clinically acceptable for all prostate plans that we created. Conclusion: For intensity-modulated RDT planning for cervical cancer, planners should set bone marrow constraints properly to avoid any adverse damage, while for prostate cancer one can carefully select gantry angles to improve bone marrow sparing when necessary.« less

  4. Peripheral Dose Heterogeneity Due to the Thread Effect in Total Marrow Irradiation With Helical Tomotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Yutaka; Verneris, Michael R.; Dusenbery, Kathryn E.

    Purpose: To report potential dose heterogeneity leading to underdosing at different skeletal sites in total marrow irradiation (TMI) with helical tomotherapy due to the thread effect and provide possible solutions to reduce this effect. Methods and Materials: Nine cases were divided into 2 groups based on patient size, defined as maximum left-to-right arm distance (mLRD): small mLRD (≤47 cm) and large mLRD (>47 cm). TMI treatment planning was conducted by varying the pitch and modulation factor while a jaw size (5 cm) was kept fixed. Ripple amplitude, defined as the peak-to-trough dose relative to the average dose due to themore » thread effect, and the dose–volume histogram (DVH) parameters for 9 cases with various mLRD was analyzed in different skeletal regions at off-axis (eg, bones of the arm or femur), at the central axis (eg, vertebrae), and planning target volume (PTV), defined as the entire skeleton plus 1-cm margin. Results: Average ripple amplitude for a pitch of 0.430, known as one of the magic pitches that reduce thread effect, was 9.2% at 20 cm off-axis. No significant differences in DVH parameters of PTV, vertebrae, or femur were observed between small and large mLRD groups for a pitch of ≤0.287. Conversely, in the bones of the arm, average differences in the volume receiving 95% and 107% dose (V95 and V107, respectively) between large and small mLRD groups were 4.2% (P=.016) and 16% (P=.016), respectively. Strong correlations were found between mLRD and ripple amplitude (rs=.965), mLRD and V95 (rs=−.742), and mLRD and V107 (rs=.870) of bones of the arm. Conclusions: Thread effect significantly influences DVH parameters in the bones of the arm for large mLRD patients. By implementing a favorable pitch value and adjusting arm position, peripheral dose heterogeneity could be reduced.« less

  5. PTV margin determination in conformal SRT of intracranial lesions

    PubMed Central

    Parker, Brent C.; Shiu, Almon S.; Maor, Moshe H.; Lang, Frederick F.; Liu, H. Helen; White, R. Allen; Antolak, John A.

    2002-01-01

    The planning target volume (PTV) includes the clinical target volume (CTV) to be irradiated and a margin to account for uncertainties in the treatment process. Uncertainties in miniature multileaf collimator (mMLC) leaf positioning, CT scanner spatial localization, CT‐MRI image fusion spatial localization, and Gill‐Thomas‐Cosman (GTC) relocatable head frame repositioning were quantified for the purpose of determining a minimum PTV margin that still delivers a satisfactory CTV dose. The measured uncertainties were then incorporated into a simple Monte Carlo calculation for evaluation of various margin and fraction combinations. Satisfactory CTV dosimetric criteria were selected to be a minimum CTV dose of 95% of the PTV dose and at least 95% of the CTV receiving 100% of the PTV dose. The measured uncertainties were assumed to be Gaussian distributions. Systematic errors were added linearly and random errors were added in quadrature assuming no correlation to arrive at the total combined error. The Monte Carlo simulation written for this work examined the distribution of cumulative dose volume histograms for a large patient population using various margin and fraction combinations to determine the smallest margin required to meet the established criteria. The program examined 5 and 30 fraction treatments, since those are the only fractionation schemes currently used at our institution. The fractionation schemes were evaluated using no margin, a margin of just the systematic component of the total uncertainty, and a margin of the systematic component plus one standard deviation of the total uncertainty. It was concluded that (i) a margin of the systematic error plus one standard deviation of the total uncertainty is the smallest PTV margin necessary to achieve the established CTV dose criteria, and (ii) it is necessary to determine the uncertainties introduced by the specific equipment and procedures used at each institution since the uncertainties may vary among locations. PACS number(s): 87.53.Kn, 87.53.Ly PMID:12132939

  6. Applicator-guided volumetric-modulated arc therapy for low-risk endometrial cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cilla, Savino, E-mail: savinocilla@gmail.com; Macchia, Gabriella; Sabatino, Domenico

    2013-04-01

    The aim of this study was to report the feasibility of volumetric-modulated arc therapy (VMAT) in the postoperative irradiation of the vaginal vault. Moreover, the VMAT technique was compared with 3D conformal radiotherapy (3D-CRT) and fixed-field intensity-modulated radiotherapy (IMRT), in terms of target coverage and organs at risk sparing. The number of monitor units and the delivery time were analyzed to score the treatment efficiency. All plans were verified in a dedicated solid water phantom using a 2D array of ionization chambers. Twelve patients with endometrial carcinoma who underwent radical hystero-adenexectomy and fixed-field IMRT treatments were retrospectively included in thismore » analysis; for each patient, plans were compared in terms of dose-volume histograms, homogeneity index, and conformity indexes. All techniques met the prescription goal for planning target volume coverage, with VMAT showing the highest level of conformity at all dose levels. VMAT resulted in significant reduction of rectal and bladder volumes irradiated at all dose levels compared with 3D-CRT. No significant differences were found with respect to IMRT. Moreover, a significant improvement of the dose conformity was reached by VMAT technique not only at the 95% dose level (0.74 vs. 0.67 and 0.62) but also at 50% and 75% levels of dose prescription. In addition, VMAT plans showed a significant reduction of monitor units by nearly 28% with respect to IMRT, and reduced treatment time from 11 to <3 minutes for a single 6-Gy fraction. In conclusion, VMAT plans can be planned and carried out with high quality and efficiency for the irradiation of vaginal vault alone, providing similar or better sparing of organs at risk to fixed-field IMRT and resulting in the most efficient treatment option. VMAT is currently our standard approach for radiotherapy of low-risk endometrial cancer.« less

  7. Dosimetric and radiobiological consequences of computed tomography-guided adaptive strategies for intensity modulated radiation therapy of the prostate.

    PubMed

    Battista, Jerry J; Johnson, Carol; Turnbull, David; Kempe, Jeff; Bzdusek, Karl; Van Dyk, Jacob; Bauman, Glenn

    2013-12-01

    To examine a range of scenarios for image-guided adaptive radiation therapy of prostate cancer, including different schedules for megavoltage CT imaging, patient repositioning, and dose replanning. We simulated multifraction dose distributions with deformable registration using 35 sets of megavoltage CT scans of 13 patients. We computed cumulative dose-volume histograms, from which tumor control probabilities and normal tissue complication probabilities (NTCPs) for rectum were calculated. Five-field intensity modulated radiation therapy (IMRT) with 18-MV x-rays was planned to achieve an isocentric dose of 76 Gy to the clinical target volume (CTV). The differences between D95, tumor control probability, V70Gy, and NTCP for rectum, for accumulated versus planned dose distributions, were compared for different target volume sizes, margins, and adaptive strategies. The CTV D95 for IMRT treatment plans, averaged over 13 patients, was 75.2 Gy. Using the largest CTV margins (10/7 mm), the D95 values accumulated over 35 fractions were within 2% of the planned value, regardless of the adaptive strategy used. For tighter margins (5 mm), the average D95 values dropped to approximately 73.0 Gy even with frequent repositioning, and daily replanning was necessary to correct this deficit. When personalized margins were applied to an adaptive CTV derived from the first 6 treatment fractions using the STAPLE (Simultaneous Truth and Performance Level Estimation) algorithm, target coverage could be maintained using a single replan 1 week into therapy. For all approaches, normal tissue parameters (rectum V(70Gy) and NTCP) remained within acceptable limits. The frequency of adaptive interventions depends on the size of the CTV combined with target margins used during IMRT optimization. The application of adaptive target margins (<5 mm) to an adaptive CTV determined 1 week into therapy minimizes the need for subsequent dose replanning. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Temporal Lobe Reactions After Radiotherapy With Carbon Ions: Incidence and Estimation of the Relative Biological Effectiveness by the Local Effect Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlampp, Ingmar; Karger, Christian P.; Jaekel, Oliver

    2011-07-01

    Purpose: To identify predictors for the development of temporal lobe reactions (TLR) after carbon ion radiation therapy (RT) for radiation-resistant tumors in the central nervous system and to evaluate the predictions of the local effect model (LEM) used for calculation of the biologically effective dose. Methods and Materials: This retrospective study reports the TLR rates in patients with skull base chordomas and chondrosarcomas irradiated with carbon ions at GSI, Darmstadt, Germany, in the years 2002 and 2003. Calculation of the relative biological effectiveness and dose optimization of treatment plans were performed on the basis of the LEM. Clinical examinations andmore » magnetic resonance imaging (MRI) were performed at 3, 6, and 12 months after RT and annually thereafter. Local contrast medium enhancement in temporal lobes, as detected on MRI, was regarded as radiation-induced TLR. Dose-volume histograms of 118 temporal lobes in 59 patients were analyzed, and 16 therapy-associated and 2 patient-associated factors were statistically evaluated for their predictive value for the occurrence of TLR. Results: Median follow-up was 2.5 years (range, 0.3--6.6 years). Age and maximum dose applied to at least 1 cm{sup 3} of the temporal lobe (D{sub max,V-1cm}3, maximum dose in the remaining temporal lobe volume, excluding the volume 1 cm{sup 3} with the highest dose) were found to be the most important predictors for TLR. Dose response curves of D{sub max,V-1cm}3 were calculated. The biologically equivalent tolerance doses for the 5% and 50% probabilities to develop TLR were 68.8 {+-} 3.3 Gy equivalents (GyE) and 87.3 {+-} 2.8 GyE, respectively. Conclusions: D{sub max,V-1cm}3 is predictive for radiation-induced TLR. The tolerance doses obtained seem to be consistent with published data for highly conformal photon and proton irradiations. We could not detect any clinically relevant deviations between clinical findings and expectations based on predictions of the LEM.« less

  9. SU-E-T-163: Evaluation of Dose Distributions Recalculated with Per-Field Measurement Data Under the Condition of Respiratory Motion During IMRT for Liver Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, J; Yoon, M; Nam, T

    2014-06-01

    Purpose: The dose distributions within the real volumes of tumor targets and critical organs during internal target volume-based intensity-modulated radiation therapy (ITV-IMRT) for liver cancer were recalculated by applying the effects of actual respiratory organ motion, and the dosimetric features were analyzed through comparison with gating IMRT (Gate-IMRT) plan results. Methods: The 4DCT data for 10 patients who had been treated with Gate-IMRT for liver cancer were selected to create ITV-IMRT plans. The ITV was created using MIM software, and a moving phantom was used to simulate respiratory motion. The period and range of respiratory motion were recorded in allmore » patients from 4DCT-generated movie data, and the same period and range were applied when operating the dynamic phantom to realize coincident respiratory conditions in each patient. The doses were recalculated with a 3 dose-volume histogram (3DVH) program based on the per-field data measured with a MapCHECK2 2-dimensional diode detector array and compared with the DVHs calculated for the Gate-IMRT plan. Results: Although a sufficient prescription dose covered the PTV during ITV-IMRT delivery, the dose homogeneity in the PTV was inferior to that with the Gate-IMRT plan. We confirmed that there were higher doses to the organs-at-risk (OARs) with ITV-IMRT, as expected when using an enlarged field, but the increased dose to the spinal cord was not significant and the increased doses to the liver and kidney could be considered as minor when the reinforced constraints were applied during IMRT plan optimization. Conclusion: Because Gate-IMRT cannot always be considered an ideal method with which to correct the respiratory motional effect, given the dosimetric variations in the gating system application and the increased treatment time, a prior analysis for optimal IMRT method selection should be performed while considering the patient's respiratory condition and IMRT plan results.« less

  10. Dosimetric impact of cylinder size in high-dose rate vaginal cuff brachytherapy (VCBT) for primary endometrial cancer.

    PubMed

    Zhang, Hualin; Gopalakrishnan, Mahesh; Lee, Plato; Kang, Zhuang; Sathiaseelan, Vythialingam

    2016-09-08

    The purpose of this study was to evaluate the dosimetric impact of cylinder size in high-dose-rate (HDR) vaginal cuff brachytherapy (VCBT). Sample plans of HDR VCBT in a list of cylinders ranging from 2.5 to 4 cm in diameter at 0.5 cm incre-ment were created and analyzed. The doses were prescribed either at the 0.5cm depth with 5.5 Gy for 4 fractions or at the cylinder surface with 8.8 Gy for 4 frac-tions, in various treatment lengths. A 0.5 cm shell volume called PTV_Eval was contoured for each plan and served as the target volume for dosimetric evaluation. The cumulative and differential dose volume histograms (c-DVH and d-DVH), mean doses (D-mean) and the doses covering 90% (D90), 10% (D10), and 5% (D5) of PTV_Eval were calculated. In the 0.5 cm depth regimen, the DVH curves were found to have shifted toward the lower dose zone when a larger cylinder was used, but in the surface regimen the DVH curves shifted toward the higher dose zone as the cylinder size increased. The D-means of the both regimens were between 6.9 and 7.8 Gy and dependent on the cylinder size but independent of the treatment length. A 0.5 cm variation of diameter could result in a 4% change of D-mean. Average D90s were 5.7 (ranging from 5.6 to 5.8 Gy) and 6.1 Gy (from 5.7 to 6.4 Gy), respectively, for the 0.5 cm and surface regimens. Average D10 and D5 were 9.2 and 11 Gy, respectively, for the 0.5 cm depth regimen, and 8.9 and 9.7 Gy, respectively, for the surface regimen. D-mean, D90, D10, and D5 for other prescription doses could be calculated from the lookup tables of this study. Results indicated that the cylinder size has moderate dosimetric impact, and that both regimens are comparable in dosimetric quality. © 2016 The Authors.

  11. Survey of fish impingement at power plants in the United States. Volume II. Inland waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, III, Richard F.; Sharma, Rajendra K.

    1977-03-01

    Impingement of fish at cooling-water intakes of 33 power plants located on inland waters other than the Great Lakes has been surveyed and data are presented. Descriptions of site, plant, and intake design and operation are provided. Reports in this volume summarize impingement data for individual plants in tabular and histogram formats. Information was available from differing sources such as the utilities themselves, public documents, regulatory agencies, and others. Thus, the extent of detail in the reports varies greatly from plant to plant. Histogram preparation involved an extrapolation procedure that has inadequacies. The reader is cautioned in the use ofmore » information presented in this volume to determine intake-design acceptability or intensity of impacts on ecosystems. No conclusions are presented herein; data comparisons are made in Volume IV.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stupka, Richard C.; Sharma, Rajendra K.

    Impingement of fish at cooling-water intakes of 32 power plants, located on estuaries and coastal waters has been surveyed and data are presented. Descriptions of site, plant, and intake design and operation are provided. Reports in this volume summarize impingement data for individual plants in tabular and histogram formats. Information was available from differing sources such as the utilities themselves, public documents, regulatory agencies, and others. Thus, the extent of detail in the reports varies greatly from plant to plant. Histogram preparation involved an extrapolation procedure that has inadequacies. The reader is cautioned in the use of information presented inmore » this volume to determine intake-design acceptability or intensity of impacts on ecosystems. No conclusions are presented herein; data comparisons are made in Volume IV.« less

  13. Correlating planned radiation dose to the cochlea with primary site and tumor stage in patients with head and neck cancer treated with intensity-modulated radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jeanette; Qureshi, Muhammad M.; Kovalchuk, Nataliya

    The aim of the study was to determine tumor characteristics that predict higher planned radiation (RT) dose to the cochlea in patients with head and neck cancer (HNC) treated with intensity-modulated radiotherapy (IMRT). From 2004 to 2012, 99 patients with HNC underwent definitive IMRT to a median dose of 69.96 Gy in 33 fractions, with the right and left cochlea-vestibular apparatus contoured for IMRT optimization as avoidance structures. If disease involvement was adjacent to the cochlea, preference was given to tumor coverage by prescription dose. Descriptive statistics were calculated for dose-volume histogram planning data, and mean planning dose to themore » cochlea (from left or right cochlea, receiving the greater amount of RT dose) was correlated to primary site and tumor stage. Mean (standard deviation) cochlear volume was 1.0 (0.60) cm{sup 3} with maximum and mean planned doses of 31.9 (17.5) Gy and 22.1 (13.7) Gy, respectively. Mean planned dose (Gy) to cochlea by tumor site was as follows: oral cavity (18.6, 14.4), oropharynx (21.7, 9.1), nasopharynx (36.3, 10.4), hypopharynx (14.9, 7.1), larynx (2.1, 0.62), others including the parotid gland, temporal bone, and paranasal sinus (33.6, 24.0), and unknown primary (25.6, 6.7). Average mean planned dose (Gy) to the cochlea in T0-T2 and T3-T4 disease was 22.0 and 29.2 Gy, respectively (p = 0.019). By site, a significant difference was noted for nasopharynx and others (31.6 and 50.7, p = 0.012) but not for oropharynx, oral cavity, and hypopharynx. Advanced T category predicted for higher mean cochlear dose, particularly for nasopharyngeal, parotid gland, temporal bone, and paranasal sinus HNC sites.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadsell, M; Holcombe, C; Chin, E

    Introduction: As diagnostic techniques become more sensitive and targeting methods grow in accuracy, target volumes continue to shrink and SBRT becomes more prevalent. Due to this fact, patient-specific QA must also enhance resolution and accuracy in order to verify dose delivery in these volumes. It has been suggested that when measuring small fields at least two separate detectors be used to verify delivered dose. Therefore, we have instituted a secondary patient QA verification for small (<3cm) SBRT fields using Gafchromic EBT2 film. Methods: Films were cross-calibrated using a Farmer chamber in plastic water at reference conditions as defined by TG-51.more » Films were scanned, and an RGB calibration curve was created according to best practices published by Ashland, Inc. Four SBRT cases were evaluated both with the Scandidos Delta4 and with EBT2 films sandwiched in plastic water. Raw values obtained from the film were converted to dose using an in-house algorithm employing all three color channels to increase accuracy and dosimetric range. Gamma and dose profile comparisons to Eclipse dose calculations were obtained using RIT and compared to values obtained with the Delta4. Results: Film gamma pass rates at 2% and 2mm were similar to those obtained with the Delta4. However, dose difference histograms showed better absolute dose agreement, with the average mean film dose agreeing with calculation to 0.3% and the Delta4 only agreeing to 3.1% across the cases. Additionally, films provided more resolution than the Delta4 and thus their dose profiles better succeeded in diagnosing dose calculation inaccuracies. Conclusion: We believe that the implementation of secondary patient QA using EBT2 film analyzed with all three color channels is an invaluable tool for evaluation of small SBRT fields. Furthermore, we have shown that this method can sometimes provide a more detailed and faithful reproduction of plan dose than the Delta4.« less

  15. Extracting the normal lung dose-response curve from clinical DVH data: a possible role for low dose hyper-radiosensitivity, increased radioresistance

    NASA Astrophysics Data System (ADS)

    Gordon, J. J.; Snyder, K.; Zhong, H.; Barton, K.; Sun, Z.; Chetty, I. J.; Matuszak, M.; Ten Haken, R. K.

    2015-09-01

    In conventionally fractionated radiation therapy for lung cancer, radiation pneumonitis’ (RP) dependence on the normal lung dose-volume histogram (DVH) is not well understood. Complication models alternatively make RP a function of a summary statistic, such as mean lung dose (MLD). This work searches over damage profiles, which quantify sub-volume damage as a function of dose. Profiles that achieve best RP predictive accuracy on a clinical dataset are hypothesized to approximate DVH dependence. Step function damage rate profiles R(D) are generated, having discrete steps at several dose points. A range of profiles is sampled by varying the step heights and dose point locations. Normal lung damage is the integral of R(D) with the cumulative DVH. Each profile is used in conjunction with a damage cutoff to predict grade 2 plus (G2+) RP for DVHs from a University of Michigan clinical trial dataset consisting of 89 CFRT patients, of which 17 were diagnosed with G2+ RP. Optimal profiles achieve a modest increase in predictive accuracy—erroneous RP predictions are reduced from 11 (using MLD) to 8. A novel result is that optimal profiles have a similar distinctive shape: enhanced damage contribution from low doses (<20 Gy), a flat contribution from doses in the range ~20-40 Gy, then a further enhanced contribution from doses above 40 Gy. These features resemble the hyper-radiosensitivity / increased radioresistance (HRS/IRR) observed in some cell survival curves, which can be modeled using Joiner’s induced repair model. A novel search strategy is employed, which has the potential to estimate RP dependence on the normal lung DVH. When applied to a clinical dataset, identified profiles share a characteristic shape, which resembles HRS/IRR. This suggests that normal lung may have enhanced sensitivity to low doses, and that this sensitivity can affect RP risk.

  16. Carcinoma of the anal canal: Intensity modulated radiation therapy (IMRT) versus three-dimensional conformal radiation therapy (3DCRT).

    PubMed

    Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham

    2013-12-01

    Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147-53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRT plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose-volume histogram (DVH) doses were consistently lower. The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques.

  17. Dosimetric effects of patient rotational setup errors on prostate IMRT treatments

    NASA Astrophysics Data System (ADS)

    Fu, Weihua; Yang, Yong; Li, Xiang; Heron, Dwight E.; Saiful Huq, M.; Yue, Ning J.

    2006-10-01

    The purpose of this work is to determine dose delivery errors that could result from systematic rotational setup errors (ΔΦ) for prostate cancer patients treated with three-phase sequential boost IMRT. In order to implement this, different rotational setup errors around three Cartesian axes were simulated for five prostate patients and dosimetric indices, such as dose-volume histogram (DVH), tumour control probability (TCP), normal tissue complication probability (NTCP) and equivalent uniform dose (EUD), were employed to evaluate the corresponding dosimetric influences. Rotational setup errors were simulated by adjusting the gantry, collimator and horizontal couch angles of treatment beams and the dosimetric effects were evaluated by recomputing the dose distributions in the treatment planning system. Our results indicated that, for prostate cancer treatment with the three-phase sequential boost IMRT technique, the rotational setup errors do not have significant dosimetric impacts on the cumulative plan. Even in the worst-case scenario with ΔΦ = 3°, the prostate EUD varied within 1.5% and TCP decreased about 1%. For seminal vesicle, slightly larger influences were observed. However, EUD and TCP changes were still within 2%. The influence on sensitive structures, such as rectum and bladder, is also negligible. This study demonstrates that the rotational setup error degrades the dosimetric coverage of target volume in prostate cancer treatment to a certain degree. However, the degradation was not significant for the three-phase sequential boost prostate IMRT technique and for the margin sizes used in our institution.

  18. Effect of Cisplatin on Parotid Gland Function in Concomitant Radiochemotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hey, Jeremias; Setz, Juergen; Gerlach, Reinhard

    2009-12-01

    Purpose: To determine the influence of concomitant radiochemotherapy with cisplatin on parotid gland tissue complication probability. Methods and Materials: Patients treated with either radiotherapy (n = 61) or concomitant radiochemotherapy with cisplatin (n = 36) for head-and-neck cancer were prospectively evaluated. The dose and volume distributions of the parotid glands were noted in dose-volume histograms. Stimulated salivary flow rates were measured before, during the 2nd and 6th weeks and at 4 weeks and 6 months after the treatment. The data were fit using the normal tissue complication probability model of Lyman. Complication was defined as a reduction of the salivarymore » flow rate to less than 25% of the pretreatment flow rate. Results: The normal tissue complication probability model parameter TD{sub 50} (the dose leading to a complication probability of 50%) was found to be 32.2 Gy at 4 weeks and 32.1 Gy at 6 months for concomitant radiochemotherapy and 41.1 Gy at 4 weeks and 39.6 Gy at 6 months for radiotherapy. The tolerated dose for concomitant radiochemotherapy was at least 7 to 8 Gy lower than for radiotherapy alone at TD{sub 50}. Conclusions: In this study, the concomitant radiochemotherapy tended to cause a higher probability of parotid gland tissue damage. Advanced radiotherapy planning approaches such as intensity-modulated radiotherapy may be partiticularly important for parotid sparing in radiochemotherapy because of cisplatin-related increased radiosensitivity of glands.« less

  19. True progression versus pseudoprogression in the treatment of glioblastomas: a comparison study of normalized cerebral blood volume and apparent diffusion coefficient by histogram analysis.

    PubMed

    Song, Yong Sub; Choi, Seung Hong; Park, Chul-Kee; Yi, Kyung Sik; Lee, Woong Jae; Yun, Tae Jin; Kim, Tae Min; Lee, Se-Hoon; Kim, Ji-Hoon; Sohn, Chul-Ho; Park, Sung-Hye; Kim, Il Han; Jahng, Geon-Ho; Chang, Kee-Hyun

    2013-01-01

    The purpose of this study was to differentiate true progression from pseudoprogression of glioblastomas treated with concurrent chemoradiotherapy (CCRT) with temozolomide (TMZ) by using histogram analysis of apparent diffusion coefficient (ADC) and normalized cerebral blood volume (nCBV) maps. Twenty patients with histopathologically proven glioblastoma who had received CCRT with TMZ underwent perfusion-weighted imaging and diffusion-weighted imaging (b = 0, 1000 sec/mm(2)). The corresponding nCBV and ADC maps for the newly visible, entirely enhancing lesions were calculated after the completion of CCRT with TMZ. Two observers independently measured the histogram parameters of the nCBV and ADC maps. The histogram parameters between the true progression group (n = 10) and the pseudoprogression group (n = 10) were compared by use of an unpaired Student's t test and subsequent multivariable stepwise logistic regression analysis to determine the best predictors for the differential diagnosis between the two groups. Receiver operating characteristic analysis was employed to determine the best cutoff values for the histogram parameters that proved to be significant predictors for differentiating true progression from pseudoprogression. Intraclass correlation coefficient was used to determine the level of inter-observer reliability for the histogram parameters. The 5th percentile value (C5) of the cumulative ADC histograms was a significant predictor for the differential diagnosis between true progression and pseudoprogression (p = 0.044 for observer 1; p = 0.011 for observer 2). Optimal cutoff values of 892 × 10(-6) mm(2)/sec for observer 1 and 907 × 10(-6) mm(2)/sec for observer 2 could help differentiate between the two groups with a sensitivity of 90% and 80%, respectively, a specificity of 90% and 80%, respectively, and an area under the curve of 0.880 and 0.840, respectively. There was no other significant differentiating parameter on the nCBV histograms. Inter-observer reliability was excellent or good for all histogram parameters (intraclass correlation coefficient range: 0.70-0.99). The C5 of the cumulative ADC histogram can be a promising parameter for the differentiation of true progression from pseudoprogression of newly visible, entirely enhancing lesions after CCRT with TMZ for glioblastomas.

  20. True Progression versus Pseudoprogression in the Treatment of Glioblastomas: A Comparison Study of Normalized Cerebral Blood Volume and Apparent Diffusion Coefficient by Histogram Analysis

    PubMed Central

    Song, Yong Sub; Park, Chul-Kee; Yi, Kyung Sik; Lee, Woong Jae; Yun, Tae Jin; Kim, Tae Min; Lee, Se-Hoon; Kim, Ji-Hoon; Sohn, Chul-Ho; Park, Sung-Hye; Kim, Il Han; Jahng, Geon-Ho; Chang, Kee-Hyun

    2013-01-01

    Objective The purpose of this study was to differentiate true progression from pseudoprogression of glioblastomas treated with concurrent chemoradiotherapy (CCRT) with temozolomide (TMZ) by using histogram analysis of apparent diffusion coefficient (ADC) and normalized cerebral blood volume (nCBV) maps. Materials and Methods Twenty patients with histopathologically proven glioblastoma who had received CCRT with TMZ underwent perfusion-weighted imaging and diffusion-weighted imaging (b = 0, 1000 sec/mm2). The corresponding nCBV and ADC maps for the newly visible, entirely enhancing lesions were calculated after the completion of CCRT with TMZ. Two observers independently measured the histogram parameters of the nCBV and ADC maps. The histogram parameters between the true progression group (n = 10) and the pseudoprogression group (n = 10) were compared by use of an unpaired Student's t test and subsequent multivariable stepwise logistic regression analysis to determine the best predictors for the differential diagnosis between the two groups. Receiver operating characteristic analysis was employed to determine the best cutoff values for the histogram parameters that proved to be significant predictors for differentiating true progression from pseudoprogression. Intraclass correlation coefficient was used to determine the level of inter-observer reliability for the histogram parameters. Results The 5th percentile value (C5) of the cumulative ADC histograms was a significant predictor for the differential diagnosis between true progression and pseudoprogression (p = 0.044 for observer 1; p = 0.011 for observer 2). Optimal cutoff values of 892 × 10-6 mm2/sec for observer 1 and 907 × 10-6 mm2/sec for observer 2 could help differentiate between the two groups with a sensitivity of 90% and 80%, respectively, a specificity of 90% and 80%, respectively, and an area under the curve of 0.880 and 0.840, respectively. There was no other significant differentiating parameter on the nCBV histograms. Inter-observer reliability was excellent or good for all histogram parameters (intraclass correlation coefficient range: 0.70-0.99). Conclusion The C5 of the cumulative ADC histogram can be a promising parameter for the differentiation of true progression from pseudoprogression of newly visible, entirely enhancing lesions after CCRT with TMZ for glioblastomas. PMID:23901325

  1. Dose Volume Histogram (DVH) Analysis in Intensity Modulation Radiation Therapy (IMRT) Treatments for Prostate Cancers

    NASA Astrophysics Data System (ADS)

    Pyakuryal, Anil

    2009-05-01

    Studies have shown that as many as 8 out of 10 men had prostate cancer by age 80.Prostate cancer begins with small changes (prostatic intraepithelial neoplasia(PIN)) in size and shape of prostate gland cells,known as prostate adenocarcinoma.With advent in technology, prostate cancer has been the most widely used application of IMRT with the longest follow-up periods.Prostate cancer fits the ideal target criteria for IMRT of adjacent sensitive dose-limiting tissue (rectal, bladder).A retrospective study was performed on 10 prostate cancer patients treated with radiation to a limited pelvic field with a standard 4 field arrangements at dose 45 Gy, and an IMRT boost field to a total isocenter dose of 75 Gy.Plans were simulated for 4 field and the supplementary IMRT treatments with proposed dose delivery at 1.5 Gy/fraction in BID basis.An automated DVH analysis software, HART (S. Jang et al., 2008,Med Phys 35,p.2812)was used to perform DVH assessments in IMRT plans.A statistical analysis of dose coverage at targets in prostate gland and neighboring critical organs,and the plan indices(homogeneity, conformality etc) evaluations were also performed using HART extracted DVH statistics.Analyzed results showed a better correlation with the proposed outcomes (TCP, NTCP) of the treatments.

  2. Evaluation of Dosimetry Check software for IMRT patient-specific quality assurance.

    PubMed

    Narayanasamy, Ganesh; Zalman, Travis; Ha, Chul S; Papanikolaou, Niko; Stathakis, Sotirios

    2015-05-08

    The purpose of this study is to evaluate the use of the Dosimetry Check system for patient-specific IMRT QA. Typical QA methods measure the dose in an array dosimeter surrounded by homogenous medium for which the treatment plan has been recomputed. With the Dosimetry Check system, fluence measurements acquired on a portal dosimeter is applied to the patient's CT scans. Instead of making dose comparisons in a plane, Dosimetry Check system produces isodose lines and dose-volume histograms based on the planning CT images. By exporting the dose distribution from the treatment planning system into the Dosimetry Check system, one is able to make a direct comparison between the calculated dose and the planned dose. The versatility of the software is evaluated with respect to the two IMRT techniques - step and shoot and volumetric arc therapy. The system analyzed measurements made using EPID, PTW seven29, and IBA MatriXX, and an intercomparison study was performed. Plans from patients previously treated at our institution with treated anatomical site on brain, head & neck, liver, lung, and prostate were analyzed using Dosimetry Check system for any anatomical site dependence. We have recommendations and possible precautions that may be necessary to ensure proper QA with the Dosimetry Check system.

  3. Integral radiation dose to normal structures with conformal external beam radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoyama, Hidefumi; Westerly, David Clark; Mackie, Thomas Rockwell

    2006-03-01

    Background: This study was designed to evaluate the integral dose (ID) received by normal tissue from intensity-modulated radiotherapy (IMRT) for prostate cancer. Methods and Materials: Twenty-five radiation treatment plans including IMRT using a conventional linac with both 6 MV (6MV-IMRT) and 20 MV (20MV-IMRT), as well as three-dimensional conformal radiotherapy (3DCRT) using 6 MV (6MV-3DCRT) and 20 MV (20MV-3DCRT) and IMRT using tomotherapy (6MV) (Tomo-IMRT), were created for 5 patients with localized prostate cancer. The ID (mean dose x tissue volume) received by normal tissue (NTID) was calculated from dose-volume histograms. Results: The 6MV-IMRT resulted in 5.0% lower NTID thanmore » 6MV-3DCRT; 20 MV beam plans resulted in 7.7%-11.2% lower NTID than 6MV-3DCRT. Tomo-IMRT NTID was comparable to 6MV-IMRT. Compared with 6MV-3DCRT, 6MV-IMRT reduced IDs to the rectal wall and penile bulb by 6.1% and 2.7%, respectively. Tomo-IMRT further reduced these IDs by 11.9% and 16.5%, respectively. The 20 MV did not reduce IDs to those structures. Conclusions: The difference in NTID between 3DCRT and IMRT is small. The 20 MV plans somewhat reduced NTID compared with 6 MV plans. The advantage of tomotherapy over conventional IMRT and 3DCRT for localized prostate cancer was demonstrated in regard to dose sparing of rectal wall and penile bulb while slightly decreasing NTID as compared with 6MV-3DCRT.« less

  4. Diffusion profiling of tumor volumes using a histogram approach can predict proliferation and further microarchitectural features in medulloblastoma.

    PubMed

    Schob, Stefan; Beeskow, Anne; Dieckow, Julia; Meyer, Hans-Jonas; Krause, Matthias; Frydrychowicz, Clara; Hirsch, Franz-Wolfgang; Surov, Alexey

    2018-05-31

    Medulloblastomas are the most common central nervous system tumors in childhood. Treatment and prognosis strongly depend on histology and transcriptomic profiling. However, the proliferative potential also has prognostical value. Our study aimed to investigate correlations between histogram profiling of diffusion-weighted images and further microarchitectural features. Seven patients (age median 14.6 years, minimum 2 years, maximum 20 years; 5 male, 2 female) were included in this retrospective study. Using a Matlab-based analysis tool, histogram analysis of whole apparent diffusion coefficient (ADC) volumes was performed. ADC entropy revealed a strong inverse correlation with the expression of the proliferation marker Ki67 (r = - 0.962, p = 0.009) and with total nuclear area (r = - 0.888, p = 0.044). Furthermore, ADC percentiles, most of all ADCp90, showed significant correlations with Ki67 expression (r = 0.902, p = 0.036). Diffusion histogram profiling of medulloblastomas provides valuable in vivo information which potentially can be used for risk stratification and prognostication. First of all, entropy revealed to be the most promising imaging biomarker. However, further studies are warranted.

  5. Optimal bladder filling during high-dose-rate intracavitary brachytherapy for cervical cancer: a dosimetric study

    PubMed Central

    Shetty, Saurabha; Majumder, Dipanjan; Adurkar, Pranjal; Swamidas, Jamema; Engineer, Reena; Chopra, Supriya; Shrivastava, Shyamkishore

    2017-01-01

    Purpose The aim of this study is to compare 3D dose volume histogram (DVH) parameters of bladder and other organs at risk with different bladder filling protocol during high-dose-rate intracavitary brachytherapy (HDR-ICBT) in cervical cancer, and to find optimized bladder volume. Material and methods This dosimetric study was completed with 21 patients who underwent HDR-ICBT with computed tomography/magnetic resonance compatible applicator as a routine treatment. Computed tomography planning was done for each patient with bladder emptied (series 1), after 50 ml (series 2), and 100 ml (series 3) bladder filling with a saline infusion through the bladder catheter. Contouring was done on the Eclipse Planning System. 7 Gy to point A was prescribed with the standard loading patterns. Various 3D DVH parameters including 0.1 cc, 1 cc, 2 cc doses and mean doses to the OAR’s were noted. Paired t-test was performed. Results The mean (± SD) bladder volume was 64.5 (± 25) cc, 116.2 (± 28) cc, and 172.9 (± 29) cc, for series 1, 2, and 3, respectively. The 0.1 cm3,1 cm3, 2 cm3 mean bladder doses for series 1, series 2, and series 3 were 9.28 ± 2.27 Gy, 7.38 ± 1.72 Gy, 6.58 ± 1.58 Gy; 9.39 ± 2.28 Gy, 7.85 ± 1.85 Gy, 7.05 ± 1.59 Gy, and 10.09 ± 2.46 Gy, 8.33 ± 1.75 Gy, 7.6 ± 1.55 Gy, respectively. However, there was a trend towards higher bladder doses in series 3. Similarly, for small bowel dose 0.1 cm3, 1 cm3, and 2 cm3 in series 1, 2, and 3 were 5.44 ± 2.2 Gy, 4.41 ± 1.84 Gy, 4 ± 1.69 Gy; 4.57 ± 2.89 Gy, 3.78 ± 2.21 Gy, 3.35 ± 2.02 Gy, and 4.09 ± 2.38 Gy, 3.26 ± 1.8 Gy, 3.05 ± 1.58 Gy. Significant increase in small bowel dose in empty bladder (series 1) compared to full bladder (series 3) (p = 0.03) was noted. However, the rectal and sigmoid doses were not significantly affected with either series. Conclusions Bladder filling protocol with 50 ml and 100 ml was well tolerated and achieved a reasonably reproducible bladder volume during cervical brachytherapy. In our analysis so far, there is no significant impact of bladder filling on DVH parameters, although larger bladders tend to have higher doses. Small bowel doses are lesser with higher bladder volumes. Further evaluation and validation are necessary. PMID:28533798

  6. Comparison of IMRT versus 3D-CRT in the treatment of esophagus cancer: A systematic review and meta-analysis.

    PubMed

    Xu, Dandan; Li, Guowen; Li, Hongfei; Jia, Fei

    2017-08-01

    Esophageal cancer (EC) is a common cancer with high mortality because of its rapid progression and poor prognosis. Radiotherapy is one of the most effective treatments for EC. Three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) are 2 recently developed radiotherapy techniques. IMRT is believed to be more effective than 3D-CRT in target coverage, dose homogeneity, and reducing toxicity to normal organs. However, these advantages have not been demonstrated in the treatment of EC. This meta-analysis was performed to compare IMRT and 3D-CRT in the treatment of EC in terms of dose-volume histograms and outcomes including survival and toxicity. A literature search was performed in PubMed, Embase, and the Cochrane library databases from their inceptions to Dec 30, 2016. Two authors independently assessed the included studies and extracted data. The average percent irradiated volumes of adjacent noncancerous organs were calculated and compared between IMRT and 3D-CRT. The odds ratio of overall survival (OS), and radiation pneumonitis and radiation esophagitis was also evaluated. Totally 7 studies were included. Of them, 5 studies (80 patients) were included in the dosimetric comparison, 3 studies (871 patients) were included in the OS analysis, and 2 studies (205 patients) were included in the irradiation toxicity analysis. For lung in patients receiving doses ≥20 Gy and heart in patients receiving dose = 50 Gy, the average irradiated volumes of IMRT were less than those from 3D-CRT. IMRT resulted in a higher OS than 3D-CRT. However, no significant difference was observed in the incidence of radiation pneumonitis and radiation esophagitis between 2 radiotherapy techniques. Our data suggest that IMRT-delivered high radiation dose produces significantly less average percent volumes of irradiated lung and heart than 3D-CRT. IMRT is superior to 3D-CRT in the OS of EC while shows no benefit on radiation toxicity.

  7. An investigation of the impact of variations of DVH calculation algorithms on DVH dependant radiation therapy plan evaluation metrics

    NASA Astrophysics Data System (ADS)

    Kennedy, A. M.; Lane, J.; Ebert, M. A.

    2014-03-01

    Plan review systems often allow dose volume histogram (DVH) recalculation as part of a quality assurance process for trials. A review of the algorithms provided by a number of systems indicated that they are often very similar. One notable point of variation between implementations is in the location and frequency of dose sampling. This study explored the impact such variations can have on DVH based plan evaluation metrics (Normal Tissue Complication Probability (NTCP), min, mean and max dose), for a plan with small structures placed over areas of high dose gradient. Dose grids considered were exported from the original planning system at a range of resolutions. We found that for the CT based resolutions used in all but one plan review systems (CT and CT with guaranteed minimum number of sampling voxels in the x and y direction) results were very similar and changed in a similar manner with changes in the dose grid resolution despite the extreme conditions. Differences became noticeable however when resolution was increased in the axial (z) direction. Evaluation metrics also varied differently with changing dose grid for CT based resolutions compared to dose grid based resolutions. This suggests that if DVHs are being compared between systems that use a different basis for selecting sampling resolution it may become important to confirm that a similar resolution was used during calculation.

  8. Correlation Between Echinoidea Size and Threat Level

    NASA Astrophysics Data System (ADS)

    Bakshi, S.; Lee, A.; Heim, N.; Payne, J.

    2017-12-01

    Echinoidea (or sea urchins), are small, spiny, globular, animals that populate the seafloors of nearly the entire planet. Echinoidea have existed on Earth since the Ordovician period, and from their archaic origin there is much to be learned about the relationship between Echinoidea body size and how it affects the survivability of the individual. The goal of this project is to determine how Echinoidea dimensions such as body volume, area, and length compare across extinct and extant species by plotting Echinoidea data in R. We will use stratigraphic data as a source to find which species of sea urchin from our data is extinct. We will then create three sets of three histograms of the size data for each type of measurement. One set will include histograms for sea urchin length, area, and volume. The other set will include histograms for extinct sea urchin length, area, and volume. The last set will include histograms for extant sea urchin length, area, and volume. Our data showed that extant sea urchins had a larger size, and extinct sea urchins were smaller. Our length data showed that the average length of all sea urchins were 54.95791 mm, the average length of extinct sea urchins were 51.0337 mm, and the average length of extant sea urchins were 66.12774 mm. There is a generally increasing trend of size over time, except for a small outlier about 350 million years ago, where echinoderm extinction selected towards larger species and biovolume was abnormally high. Our data also showed that over the past 200 million years, echinoderm extinction selectivity drove slightly smaller sea urchins towards extinction, further supporting the idea that a larger size was and still is advantageous for echinoderms.

  9. SU-E-T-454: Impact of Calculation Grid Size On Dosimetry and Radiobiological Parameters for Head and Neck IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, S; Das, I; Indiana University Health Methodist Hospital, Indianapolis, IN

    2014-06-01

    Purpose: IMRT has become standard of care for complex treatments to optimize dose to target and spare normal tissues. However, the impact of calculation grid size is not widely known especially dose distribution, tumor control probability (TCP) and normal tissue complication probability (NTCP) which is investigated in this study. Methods: Ten head and neck IMRT patients treated with 6 MV photons were chosen for this study. Using Eclipse TPS, treatment plans were generated for different grid sizes in the range 1–5 mm for the same optimization criterion with specific dose-volume constraints. The dose volume histogram (DVH) was calculated for allmore » IMRT plans and dosimetric data were compared. ICRU-83 dose points such as D2%, D50%, D98%, as well as the homogeneity and conformity indices (HI, CI) were calculated. In addition, TCP and NTCP were calculated from DVH data. Results: The PTV mean dose and TCP decreases with increasing grid size with an average decrease in mean dose by 2% and TCP by 3% respectively. Increasing grid size from 1–5 mm grid size, the average mean dose and NTCP for left parotid was increased by 6.0% and 8.0% respectively. Similar patterns were observed for other OARs such as cochlea, parotids and spinal cord. The HI increases up to 60% and CI decreases on average by 3.5% between 1 and 5 mm grid that resulted in decreased TCP and increased NTCP values. The number of points meeting the gamma criteria of ±3% dose difference and ±3mm DTA was higher with a 1 mm on average (97.2%) than with a 5 mm grid (91.3%). Conclusion: A smaller calculation grid provides superior dosimetry with improved TCP and reduced NTCP values. The effect is more pronounced for smaller OARs. Thus, the smallest possible grid size should be used for accurate dose calculation especially in H and N planning.« less

  10. Predictors of High-grade Esophagitis After Definitive Three-dimensional Conformal Therapy, Intensity-modulated Radiation Therapy, or Proton Beam Therapy for Non-small cell Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez, Daniel R., E-mail: dgomez@mdanderson.org; Tucker, Susan L.; Martel, Mary K.

    2012-11-15

    Introduction: We analyzed the ability of various patient- and treatment-related factors to predict radiation-induced esophagitis (RE) in patients with non-small cell lung cancer (NSCLC) treated with three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), or proton beam therapy (PBT). Methods and Materials: Patients were treated for NSCLC with 3D-CRT, IMRT, or PBT at MD Anderson from 2000 to 2008 and had full dose-volume histogram (DVH) data available. The endpoint was severe (grade {>=}3) RE. The Lyman-Kutcher-Burman (LKB) model was used to analyze RE as a function of the fractional esophageal DVH, with clinical variables included as dose-modifying factors. Results:more » Overall, 652 patients were included: 405 patients were treated with 3D-CRT, 139 with IMRT, and 108 with PBT; corresponding rates of grade {>=}3 RE were 8%, 28%, and 6%, respectively, with a median time to onset of 42 days (range, 11-93 days). A fit of the fractional DVH LKB model demonstrated that the fractional effective dose was significantly different (P=.046) than 1 (fractional mean dose) indicating that high doses to small volumes are more predictive than mean esophageal dose. The model fit was better for 3D-CRT and PBT than for IMRT. Including receipt of concurrent chemotherapy as a dose-modifying factor significantly improved the LKB model (P=.005), and the model was further improved by including a variable representing treatment with >30 fractions. Examining individual types of chemotherapy agents revealed a trend toward receipt of concurrent taxanes and increased risk of RE (P=.105). Conclusions: Fractional dose (dose rate) and number of fractions (total dose) distinctly affect the risk of severe RE, estimated using the LKB model, and concurrent chemotherapy improves the model fit. This risk of severe RE is underestimated by this model in patients receiving IMRT.« less

  11. Predictors of high-grade esophagitis after definitive three-dimensional conformal therapy, intensity-modulated radiation therapy, or proton beam therapy for non-small cell lung cancer.

    PubMed

    Gomez, Daniel R; Tucker, Susan L; Martel, Mary K; Mohan, Radhe; Balter, Peter A; Lopez Guerra, Jose Luis; Liu, Hongmei; Komaki, Ritsuko; Cox, James D; Liao, Zhongxing

    2012-11-15

    We analyzed the ability of various patient- and treatment-related factors to predict radiation-induced esophagitis (RE) in patients with non-small cell lung cancer (NSCLC) treated with three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), or proton beam therapy (PBT). Patients were treated for NSCLC with 3D-CRT, IMRT, or PBT at MD Anderson from 2000 to 2008 and had full dose-volume histogram (DVH) data available. The endpoint was severe (grade≥3) RE. The Lyman-Kutcher-Burman (LKB) model was used to analyze RE as a function of the fractional esophageal DVH, with clinical variables included as dose-modifying factors. Overall, 652 patients were included: 405 patients were treated with 3D-CRT, 139 with IMRT, and 108 with PBT; corresponding rates of grade≥3 RE were 8%, 28%, and 6%, respectively, with a median time to onset of 42 days (range, 11-93 days). A fit of the fractional DVH LKB model demonstrated that the fractional effective dose was significantly different (P=.046) than 1 (fractional mean dose) indicating that high doses to small volumes are more predictive than mean esophageal dose. The model fit was better for 3D-CRT and PBT than for IMRT. Including receipt of concurrent chemotherapy as a dose-modifying factor significantly improved the LKB model (P=.005), and the model was further improved by including a variable representing treatment with >30 fractions. Examining individual types of chemotherapy agents revealed a trend toward receipt of concurrent taxanes and increased risk of RE (P=.105). Fractional dose (dose rate) and number of fractions (total dose) distinctly affect the risk of severe RE, estimated using the LKB model, and concurrent chemotherapy improves the model fit. This risk of severe RE is underestimated by this model in patients receiving IMRT. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Comparison of the extent of hippocampal sparing according to the tilt of a patient's head during WBRT using linear accelerator-based IMRT and VMAT.

    PubMed

    Moon, Sun Young; Yoon, Myonggeun; Chung, Mijoo; Chung, Weon Kuu; Kim, Dong Wook

    2016-05-01

    In this paper, we report the results of our investigation into whole brain radiotherapy (WBRT) using linear accelerator-based intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) in lung cancer patients with a high risk of metastasis to the brain. Specifically, we assessed the absorbed dose and the rate of adverse effects for several organs at risk (OAR), including the hippocampus, according to the tilt of a patient's head. We arbitrarily selected five cases where measurements were made with the patients' heads tilted forward and five cases without such tilt. We set the entire brain as the planning target volume (PTV), and the hippocampi, the lenses, the eyes, and the cochleae as the main OAR, and formulated new plans for IMRT (coplanar, non-coplanar) and VMAT (coplanar, non-coplanar). Using the dose-volume histogram (DVH), we calculated and compared the effective uniform dose (EUD), normal tissue complication probability (NTCP) of the OAR and the mean and the maximum doses of hippocampus. As a result, if the patient tilted the head forward when receiving the Linac-based treatment, for the same treatment effect in the PTV, we confirmed that a lower dose entered the OAR, such as the hippocampus, eye, lens, and cochlea. Moreover, the damage to the hippocampus was expected to be the least when receiving coplanar VMAT with the head tilted forward. Accordingly, if patients tilt their heads forward when undergoing Linac-based WBRT, we anticipate that a smaller dose would be transmitted to the OAR, resulting in better quality of life following treatment. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  13. Quality of Intensity Modulated Radiation Therapy Treatment Plans Using a ⁶⁰Co Magnetic Resonance Image Guidance Radiation Therapy System.

    PubMed

    Wooten, H Omar; Green, Olga; Yang, Min; DeWees, Todd; Kashani, Rojano; Olsen, Jeff; Michalski, Jeff; Yang, Deshan; Tanderup, Kari; Hu, Yanle; Li, H Harold; Mutic, Sasa

    2015-07-15

    This work describes a commercial treatment planning system, its technical features, and its capabilities for creating (60)Co intensity modulated radiation therapy (IMRT) treatment plans for a magnetic resonance image guidance radiation therapy (MR-IGRT) system. The ViewRay treatment planning system (Oakwood Village, OH) was used to create (60)Co IMRT treatment plans for 33 cancer patients with disease in the abdominal, pelvic, thorax, and head and neck regions using physician-specified patient-specific target coverage and organ at risk (OAR) objectives. Backup plans using a third-party linear accelerator (linac)-based planning system were also created. Plans were evaluated by attending physicians and approved for treatment. The (60)Co and linac plans were compared by evaluating conformity numbers (CN) with 100% and 95% of prescription reference doses and heterogeneity indices (HI) for planning target volumes (PTVs) and maximum, mean, and dose-volume histogram (DVH) values for OARs. All (60)Co IMRT plans achieved PTV coverage and OAR sparing that were similar to linac plans. PTV conformity for (60)Co was within <1% and 3% of linac plans for 100% and 95% prescription reference isodoses, respectively, and heterogeneity was on average 4% greater. Comparisons of OAR mean dose showed generally better sparing with linac plans in the low-dose range <20 Gy, but comparable sparing for organs with mean doses >20 Gy. The mean doses for all (60)Co plan OARs were within clinical tolerances. A commercial (60)Co MR-IGRT device can produce highly conformal IMRT treatment plans similar in quality to linac IMRT for a variety of disease sites. Additional work is in progress to evaluate the clinical benefit of other novel features of this MR-IGRT system. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. An evaluation system for electronic retrospective analyses in radiation oncology: implemented exemplarily for pancreatic cancer

    NASA Astrophysics Data System (ADS)

    Kessel, Kerstin A.; Jäger, Andreas; Bohn, Christian; Habermehl, Daniel; Zhang, Lanlan; Engelmann, Uwe; Bougatf, Nina; Bendl, Rolf; Debus, Jürgen; Combs, Stephanie E.

    2013-03-01

    To date, conducting retrospective clinical analyses is rather difficult and time consuming. Especially in radiation oncology, handling voluminous datasets from various information systems and different documentation styles efficiently is crucial for patient care and research. With the example of patients with pancreatic cancer treated with radio-chemotherapy, we performed a therapy evaluation by using analysis tools connected with a documentation system. A total number of 783 patients have been documented into a professional, web-based documentation system. Information about radiation therapy, diagnostic images and dose distributions have been imported. For patients with disease progression after neoadjuvant chemoradiation, we designed and established an analysis workflow. After automatic registration of the radiation plans with the follow-up images, the recurrence volumes are segmented manually. Based on these volumes the DVH (dose-volume histogram) statistic is calculated, followed by the determination of the dose applied to the region of recurrence. All results are stored in the database and included in statistical calculations. The main goal of using an automatic evaluation system is to reduce time and effort conducting clinical analyses, especially with large patient groups. We showed a first approach and use of some existing tools, however manual interaction is still necessary. Further steps need to be taken to enhance automation. Already, it has become apparent that the benefits of digital data management and analysis lie in the central storage of data and reusability of the results. Therefore, we intend to adapt the evaluation system to other types of tumors in radiation oncology.

  15. MRI-based treatment planning with pseudo CT generated through atlas registration.

    PubMed

    Uh, Jinsoo; Merchant, Thomas E; Li, Yimei; Li, Xingyu; Hua, Chiaho

    2014-05-01

    To evaluate the feasibility and accuracy of magnetic resonance imaging (MRI)-based treatment planning using pseudo CTs generated through atlas registration. A pseudo CT, providing electron density information for dose calculation, was generated by deforming atlas CT images previously acquired on other patients. The authors tested 4 schemes of synthesizing a pseudo CT from single or multiple deformed atlas images: use of a single arbitrarily selected atlas, arithmetic mean process using 6 atlases, and pattern recognition with Gaussian process (PRGP) using 6 or 12 atlases. The required deformation for atlas CT images was derived from a nonlinear registration of conjugated atlas MR images to that of the patient of interest. The contrasts of atlas MR images were adjusted by histogram matching to reduce the effect of different sets of acquisition parameters. For comparison, the authors also tested a simple scheme assigning the Hounsfield unit of water to the entire patient volume. All pseudo CT generating schemes were applied to 14 patients with common pediatric brain tumors. The image similarity of real patient-specific CT and pseudo CTs constructed by different schemes was compared. Differences in computation times were also calculated. The real CT in the treatment planning system was replaced with the pseudo CT, and the dose distribution was recalculated to determine the difference. The atlas approach generally performed better than assigning a bulk CT number to the entire patient volume. Comparing atlas-based schemes, those using multiple atlases outperformed the single atlas scheme. For multiple atlas schemes, the pseudo CTs were similar to the real CTs (correlation coefficient, 0.787-0.819). The calculated dose distribution was in close agreement with the original dose. Nearly the entire patient volume (98.3%-98.7%) satisfied the criteria of chi-evaluation (<2% maximum dose and 2 mm range). The dose to 95% of the volume and the percentage of volume receiving at least 95% of the prescription dose in the planning target volume differed from the original values by less than 2% of the prescription dose (root-mean-square, RMS < 1%). The PRGP scheme did not perform better than the arithmetic mean process with the same number of atlases. Increasing the number of atlases from 6 to 12 often resulted in improvements, but statistical significance was not always found. MRI-based treatment planning with pseudo CTs generated through atlas registration is feasible for pediatric brain tumor patients. The doses calculated from pseudo CTs agreed well with those from real CTs, showing dosimetric accuracy within 2% for the PTV when multiple atlases were used. The arithmetic mean process may be a reasonable choice over PRGP for the synthesis scheme considering performance and computational costs.

  16. MRI-based treatment planning with pseudo CT generated through atlas registration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uh, Jinsoo, E-mail: jinsoo.uh@stjude.org; Merchant, Thomas E.; Hua, Chiaho

    2014-05-15

    Purpose: To evaluate the feasibility and accuracy of magnetic resonance imaging (MRI)-based treatment planning using pseudo CTs generated through atlas registration. Methods: A pseudo CT, providing electron density information for dose calculation, was generated by deforming atlas CT images previously acquired on other patients. The authors tested 4 schemes of synthesizing a pseudo CT from single or multiple deformed atlas images: use of a single arbitrarily selected atlas, arithmetic mean process using 6 atlases, and pattern recognition with Gaussian process (PRGP) using 6 or 12 atlases. The required deformation for atlas CT images was derived from a nonlinear registration ofmore » conjugated atlas MR images to that of the patient of interest. The contrasts of atlas MR images were adjusted by histogram matching to reduce the effect of different sets of acquisition parameters. For comparison, the authors also tested a simple scheme assigning the Hounsfield unit of water to the entire patient volume. All pseudo CT generating schemes were applied to 14 patients with common pediatric brain tumors. The image similarity of real patient-specific CT and pseudo CTs constructed by different schemes was compared. Differences in computation times were also calculated. The real CT in the treatment planning system was replaced with the pseudo CT, and the dose distribution was recalculated to determine the difference. Results: The atlas approach generally performed better than assigning a bulk CT number to the entire patient volume. Comparing atlas-based schemes, those using multiple atlases outperformed the single atlas scheme. For multiple atlas schemes, the pseudo CTs were similar to the real CTs (correlation coefficient, 0.787–0.819). The calculated dose distribution was in close agreement with the original dose. Nearly the entire patient volume (98.3%–98.7%) satisfied the criteria of chi-evaluation (<2% maximum dose and 2 mm range). The dose to 95% of the volume and the percentage of volume receiving at least 95% of the prescription dose in the planning target volume differed from the original values by less than 2% of the prescription dose (root-mean-square, RMS < 1%). The PRGP scheme did not perform better than the arithmetic mean process with the same number of atlases. Increasing the number of atlases from 6 to 12 often resulted in improvements, but statistical significance was not always found. Conclusions: MRI-based treatment planning with pseudo CTs generated through atlas registration is feasible for pediatric brain tumor patients. The doses calculated from pseudo CTs agreed well with those from real CTs, showing dosimetric accuracy within 2% for the PTV when multiple atlases were used. The arithmetic mean process may be a reasonable choice over PRGP for the synthesis scheme considering performance and computational costs.« less

  17. MRI-based treatment planning with pseudo CT generated through atlas registration

    PubMed Central

    Uh, Jinsoo; Merchant, Thomas E.; Li, Yimei; Li, Xingyu; Hua, Chiaho

    2014-01-01

    Purpose: To evaluate the feasibility and accuracy of magnetic resonance imaging (MRI)-based treatment planning using pseudo CTs generated through atlas registration. Methods: A pseudo CT, providing electron density information for dose calculation, was generated by deforming atlas CT images previously acquired on other patients. The authors tested 4 schemes of synthesizing a pseudo CT from single or multiple deformed atlas images: use of a single arbitrarily selected atlas, arithmetic mean process using 6 atlases, and pattern recognition with Gaussian process (PRGP) using 6 or 12 atlases. The required deformation for atlas CT images was derived from a nonlinear registration of conjugated atlas MR images to that of the patient of interest. The contrasts of atlas MR images were adjusted by histogram matching to reduce the effect of different sets of acquisition parameters. For comparison, the authors also tested a simple scheme assigning the Hounsfield unit of water to the entire patient volume. All pseudo CT generating schemes were applied to 14 patients with common pediatric brain tumors. The image similarity of real patient-specific CT and pseudo CTs constructed by different schemes was compared. Differences in computation times were also calculated. The real CT in the treatment planning system was replaced with the pseudo CT, and the dose distribution was recalculated to determine the difference. Results: The atlas approach generally performed better than assigning a bulk CT number to the entire patient volume. Comparing atlas-based schemes, those using multiple atlases outperformed the single atlas scheme. For multiple atlas schemes, the pseudo CTs were similar to the real CTs (correlation coefficient, 0.787–0.819). The calculated dose distribution was in close agreement with the original dose. Nearly the entire patient volume (98.3%–98.7%) satisfied the criteria of chi-evaluation (<2% maximum dose and 2 mm range). The dose to 95% of the volume and the percentage of volume receiving at least 95% of the prescription dose in the planning target volume differed from the original values by less than 2% of the prescription dose (root-mean-square, RMS < 1%). The PRGP scheme did not perform better than the arithmetic mean process with the same number of atlases. Increasing the number of atlases from 6 to 12 often resulted in improvements, but statistical significance was not always found. Conclusions: MRI-based treatment planning with pseudo CTs generated through atlas registration is feasible for pediatric brain tumor patients. The doses calculated from pseudo CTs agreed well with those from real CTs, showing dosimetric accuracy within 2% for the PTV when multiple atlases were used. The arithmetic mean process may be a reasonable choice over PRGP for the synthesis scheme considering performance and computational costs. PMID:24784377

  18. Normal Tissue Complication Probability Modeling of Radiation-Induced Hypothyroidism After Head-and-Neck Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakhshandeh, Mohsen; Hashemi, Bijan, E-mail: bhashemi@modares.ac.ir; Mahdavi, Seied Rabi Mehdi

    Purpose: To determine the dose-response relationship of the thyroid for radiation-induced hypothyroidism in head-and-neck radiation therapy, according to 6 normal tissue complication probability models, and to find the best-fit parameters of the models. Methods and Materials: Sixty-five patients treated with primary or postoperative radiation therapy for various cancers in the head-and-neck region were prospectively evaluated. Patient serum samples (tri-iodothyronine, thyroxine, thyroid-stimulating hormone [TSH], free tri-iodothyronine, and free thyroxine) were measured before and at regular time intervals until 1 year after the completion of radiation therapy. Dose-volume histograms (DVHs) of the patients' thyroid gland were derived from their computed tomography (CT)-basedmore » treatment planning data. Hypothyroidism was defined as increased TSH (subclinical hypothyroidism) or increased TSH in combination with decreased free thyroxine and thyroxine (clinical hypothyroidism). Thyroid DVHs were converted to 2 Gy/fraction equivalent doses using the linear-quadratic formula with {alpha}/{beta} = 3 Gy. The evaluated models included the following: Lyman with the DVH reduced to the equivalent uniform dose (EUD), known as LEUD; Logit-EUD; mean dose; relative seriality; individual critical volume; and population critical volume models. The parameters of the models were obtained by fitting the patients' data using a maximum likelihood analysis method. The goodness of fit of the models was determined by the 2-sample Kolmogorov-Smirnov test. Ranking of the models was made according to Akaike's information criterion. Results: Twenty-nine patients (44.6%) experienced hypothyroidism. None of the models was rejected according to the evaluation of the goodness of fit. The mean dose model was ranked as the best model on the basis of its Akaike's information criterion value. The D{sub 50} estimated from the models was approximately 44 Gy. Conclusions: The implemented normal tissue complication probability models showed a parallel architecture for the thyroid. The mean dose model can be used as the best model to describe the dose-response relationship for hypothyroidism complication.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, H

    Purpose: To evaluate the dosimetric metrics of HDR Ring and Tandem applicator Brachytherapy for primary cervical cancers. Methods: The dosimetric metrics of high-risk clinical target volumes (HDR-CTV) of 12 patients (in total 60 fractions/plans) treated with the HDR ring and tandem applicators were retrospectively analyzed. Ring diameter is from 2.6 to 3.4 cm, tandem length is from 4 to 6 cm, and the angle is either 45 or 60 degrees. The first fraction plan was MR guided, the MR images were then used as a reference for contouring the HR-CTV in CT images of following 4 fractions. The nominal prescriptionmore » dose was between 5.2 and 5.8 Gy at the point A. The plans were adjusted to cover at least 90% of the HR-CTV by 90% of the prescription dose and to reduce the doses to the bladder, rectum and bowel-bag. Minimum target dose of D100 and D90 were converted into the biologically equivalent EBRT dose D90-iso and D100-iso (using α/β=10 Gy, 2 Gy/fx). Equivalent uniform doses (EUD) based on the average cancer killing across the target volume were calculated by the modified linear quadratic model (MLQ) from the differential dose volume histogram (DVH) tables. Results: The average D90iso of all plans is 8.1 Gy (ranging from 6.2 to 15 Gy, median 7.8 Gy); the average D100iso is just 4.1 Gy (ranging from 1.8 to 7.8 Gy; median 3.9 Gy). The average EUD is 7.0 Gy (ranging from 6.1 to 9.6 Gy, median 6.9 Gy), which is 87% of the D90iso, and 170% of the D100iso. Conclusion: The EUDs is smaller than D90iso but greater than D100iso. Because the EUD takes into account the intensive cancer cell killing in the high dose zone of HR-CTV, MLQ calculated EUD apparently is more relevant than D90 and D100 to describe the HDR brachytherapy treatment quality.« less

  20. A Quality Assurance Method that Utilizes 3D Dosimetry and Facilitates Clinical Interpretation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oldham, Mark, E-mail: mark.oldham@duke.edu; Thomas, Andrew; O'Daniel, Jennifer

    2012-10-01

    Purpose: To demonstrate a new three-dimensional (3D) quality assurance (QA) method that provides comprehensive dosimetry verification and facilitates evaluation of the clinical significance of QA data acquired in a phantom. Also to apply the method to investigate the dosimetric efficacy of base-of-skull (BOS) intensity-modulated radiotherapy (IMRT) treatment. Methods and Materials: Two types of IMRT QA verification plans were created for 6 patients who received BOS IMRT. The first plan enabled conventional 2D planar IMRT QA using the Varian portal dosimetry system. The second plan enabled 3D verification using an anthropomorphic head phantom. In the latter, the 3D dose distribution wasmore » measured using the DLOS/Presage dosimetry system (DLOS = Duke Large-field-of-view Optical-CT System, Presage Heuris Pharma, Skillman, NJ), which yielded isotropic 2-mm data throughout the treated volume. In a novel step, measured 3D dose distributions were transformed back to the patient's CT to enable calculation of dose-volume histograms (DVH) and dose overlays. Measured and planned patient DVHs were compared to investigate clinical significance. Results: Close agreement between measured and calculated dose distributions was observed for all 6 cases. For gamma criteria of 3%, 2 mm, the mean passing rate for portal dosimetry was 96.8% (range, 92.0%-98.9%), compared to 94.9% (range, 90.1%-98.9%) for 3D. There was no clear correlation between 2D and 3D passing rates. Planned and measured dose distributions were evaluated on the patient's anatomy, using DVH and dose overlays. Minor deviations were detected, and the clinical significance of these are presented and discussed. Conclusions: Two advantages accrue to the methods presented here. First, treatment accuracy is evaluated throughout the whole treated volume, yielding comprehensive verification. Second, the clinical significance of any deviations can be assessed through the generation of DVH curves and dose overlays on the patient's anatomy. The latter step represents an important development that advances the clinical relevance of complex treatment QA.« less

  1. Volumetric Modulated Arc Therapy vs. c-IMRT for the Treatment of Upper Thoracic Esophageal Cancer

    PubMed Central

    Lu, Jia-Yang; Chen, Jian-Zhou; Chen, Zhi-Jian; Li, De-Rui; Chen, Chuang-Zhen

    2015-01-01

    Objective To compare plans using volumetric-modulated arc therapy (VMAT) with conventional sliding window intensity-modulated radiation therapy (c-IMRT) to treat upper thoracic esophageal cancer (EC). Methods CT datasets of 11 patients with upper thoracic EC were identified. Four plans were generated for each patient: c-IMRT with 5 fields (5F) and VMAT with a single arc (1A), two arcs (2A), or three arcs (3A). The prescribed doses were 64 Gy/32 F for the primary tumor (PTV64). The dose-volume histogram data, the number of monitoring units (MUs) and the treatment time (TT) for the different plans were compared. Results All of the plans generated similar dose distributions for PTVs and organs at risk (OARs), except that the 2A- and 3A-VMAT plans yielded a significantly higher conformity index (CI) than the c-IMRT plan. The CI of the PTV64 was improved by increasing the number of arcs in the VMAT plans. The maximum spinal cord dose and the planning risk volume of the spinal cord dose for the two techniques were similar. The 2A- and 3A-VMAT plans yielded lower mean lung doses and heart V50 values than the c-IMRT. The V20 and V30 for the lungs in all of the VMAT plans were lower than those in the c-IMRT plan, at the expense of increasing V5, V10 and V13. The VMAT plan resulted in significant reductions in MUs and TT. Conclusion The 2A-VMAT plan appeared to spare the lungs from moderate-dose irradiation most effectively of all plans, at the expense of increasing the low-dose irradiation volume, and also significantly reduced the number of required MUs and the TT. The CI of the PTVs and the OARs was improved by increasing the arc-number from 1 to 2; however, no significant improvement was observed using the 3A-VMAT, except for an increase in the TT. PMID:25815477

  2. SU-E-T-625: Robustness Evaluation and Robust Optimization of IMPT Plans Based on Per-Voxel Standard Deviation of Dose Distributions.

    PubMed

    Liu, W; Mohan, R

    2012-06-01

    Proton dose distributions, IMPT in particular, are highly sensitive to setup and range uncertainties. We report a novel method, based on per-voxel standard deviation (SD) of dose distributions, to evaluate the robustness of proton plans and to robustly optimize IMPT plans to render them less sensitive to uncertainties. For each optimization iteration, nine dose distributions are computed - the nominal one, and one each for ± setup uncertainties along x, y and z axes and for ± range uncertainty. SD of dose in each voxel is used to create SD-volume histogram (SVH) for each structure. SVH may be considered a quantitative representation of the robustness of the dose distribution. For optimization, the desired robustness may be specified in terms of an SD-volume (SV) constraint on the CTV and incorporated as a term in the objective function. Results of optimization with and without this constraint were compared in terms of plan optimality and robustness using the so called'worst case' dose distributions; which are obtained by assigning the lowest among the nine doses to each voxel in the clinical target volume (CTV) and the highest to normal tissue voxels outside the CTV. The SVH curve and the area under it for each structure were used as quantitative measures of robustness. Penalty parameter of SV constraint may be varied to control the tradeoff between robustness and plan optimality. We applied these methods to one case each of H&N and lung. In both cases, we found that imposing SV constraint improved plan robustness but at the cost of normal tissue sparing. SVH-based optimization and evaluation is an effective tool for robustness evaluation and robust optimization of IMPT plans. Studies need to be conducted to test the methods for larger cohorts of patients and for other sites. This research is supported by National Cancer Institute (NCI) grant P01CA021239, the University Cancer Foundation via the Institutional Research Grant program at the University of Texas MD Anderson Cancer Center, and MD Anderson’s cancer center support grant CA016672. © 2012 American Association of Physicists in Medicine.

  3. The use of TCP based EUD to rank and compare lung radiotherapy plans: in-silico study to evaluate the correlation between TCP with physical quality indices.

    PubMed

    Chaikh, Abdulhamid; Balosso, Jacques

    2017-06-01

    To apply the equivalent uniform dose (EUD) radiobiological model to estimate the tumor control probability (TCP) scores for treatment plans using different radiobiological parameter settings, and to evaluate the correlation between TCP and physical quality indices of the treatment plans. Ten radiotherapy treatment plans for lung cancer were generated. The dose distributions were calculated using anisotropic analytical algorithm (AAA). Dose parameters and quality indices derived from dose volume histograms (DVH) for target volumes were evaluated. The predicted TCP was computed using EUD model with tissue-specific parameter (a=-10). The assumed radiobiological parameter setting for adjuvant therapy [tumor dose to control 50% of the tumor (TCD 50 ) =36.5 Gy and γ 50 =0.72] and curative intent (TCD 50 =51.24 Gy and γ 50 =0.83) were used. The bootstrap method was used to estimate the 95% confidence interval (95% CI). The coefficients (ρ) from Spearman's rank test were calculated to assess the correlation between quality indices with TCP. Wilcoxon paired test was used to calculate P value. The 95% CI of TCP were 70.6-81.5 and 46.6-64.7, respectively, for adjuvant radiotherapy and curative intent. The TCP outcome showed a positive and good correlation with calculated dose to 95% of the target volume (D95%) and minimum dose (Dmin). Consistently, TCP correlate negatively with heterogeneity indices. This study confirms that more relevant and robust radiobiological parameters setting should be integrated according to cancer type. The positive correlation with quality indices gives chance to improve the clinical out-come by optimizing the treatment plans to maximize the Dmin and D95%. This attempt to increase the TCP should be carried out with the respect of dose constraints for organs at risks. However, the negative correlation with heterogeneity indices shows that the optimization of beam arrangements could be also useful. Attention should be paid to obtain an appropriate optimization of initial plans, when comparing and ranking radiotherapy plans using TCP models, to avoid over or underestimated for TCP outcome.

  4. Reirradiation for second primary or recurrent cancers of the head and neck: Dosimetric and outcome analysis.

    PubMed

    Garg, Shivank; Kilburn, Jeremy M; Lucas, John T; Randolph, David; Urbanic, James J; Hinson, William H; Kearns, William T; Porosnicu, Mercedes; Greven, Kathryn

    2016-04-01

    The purpose of this study was to examine outcomes, toxicity, and dosimetric characteristics of patients treated with reirradiation for head and neck cancers. Fifty patients underwent ≥2 courses of radiation therapy (RT) postoperatively or definitively with or without chemotherapy. Composite dose volume histograms (DVHs) for selected anatomic structures were correlated with grade ≥3 late toxicity. Median initial and retreatment radiation dose was 64 and 60 Gy, respectively. Median overall survival (OS), progression-free survival (PFS), and 1-year PFS rates were 18 months, 11 months, and 45%, respectively, with 13 months median follow-up. Thirty-four percent of patients experienced grade ≥3 late toxicity with 1 death from carotid blowout. The DVH corresponding to the carotid blowout fell above the third quartile compared with other patients. Our analysis is the first to systematically evaluate the dose to the carotid artery using composite dosimetry in head and neck reirradiation patients, and demonstrates a promising technique for evaluating the dose to other normal tissue structures. © 2015 Wiley Periodicals, Inc. Head Neck 38: E961-E969, 2016. © 2015 Wiley Periodicals, Inc.

  5. Comparison of optimization algorithms in intensity-modulated radiation therapy planning

    NASA Astrophysics Data System (ADS)

    Kendrick, Rachel

    Intensity-modulated radiation therapy is used to better conform the radiation dose to the target, which includes avoiding healthy tissue. Planning programs employ optimization methods to search for the best fluence of each photon beam, and therefore to create the best treatment plan. The Computational Environment for Radiotherapy Research (CERR), a program written in MATLAB, was used to examine some commonly-used algorithms for one 5-beam plan. Algorithms include the genetic algorithm, quadratic programming, pattern search, constrained nonlinear optimization, simulated annealing, the optimization method used in Varian EclipseTM, and some hybrids of these. Quadratic programing, simulated annealing, and a quadratic/simulated annealing hybrid were also separately compared using different prescription doses. The results of each dose-volume histogram as well as the visual dose color wash were used to compare the plans. CERR's built-in quadratic programming provided the best overall plan, but avoidance of the organ-at-risk was rivaled by other programs. Hybrids of quadratic programming with some of these algorithms seems to suggest the possibility of better planning programs, as shown by the improved quadratic/simulated annealing plan when compared to the simulated annealing algorithm alone. Further experimentation will be done to improve cost functions and computational time.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benassi, Michaela; Di Murro, Luana; Tolu, Barbara, E-mail: barbara.tolu@gmail.com

    This study aims at optimizing treatment planning in young patients affected by lymphoma (Stage II to III) by using an inclined board (IB) that allows reducing doses to the organs at risk. We evaluated 19 young patients affected by stage I to III lymphomas, referred to our Department for consolidation radiotherapy (RT) treatment on the mediastinum. Patients underwent 2 planning computed tomography (CT) scans performed in different positions: flat standard position and inclined position. A direct comparison between the different treatment plans was carried out analyzing dosimetric parameters obtained from dose-volume histograms generated for each plan. Comparison was performed tomore » evaluate the sparing obtained on breast and heart. Dosimetric evaluation was performed for the following organs at risk (OARs): mammary glands, lungs, and heart. A statistically significant advantage was reported for V{sub 5}, V{sub 20}, and V{sub 30} for the breast when using the inclined board. A similar result was obtained for V{sub 5} and V{sub 10} on the heart. No advantage was observed in lung doses. The use of a simple device, such as an inclined board, allows the optimization of treatment plan, especially in young female patients, by ensuring a significant reduction of the dose delivered to breast and heart.« less

  7. Differentiating between Glioblastoma and Primary CNS Lymphoma Using Combined Whole-tumor Histogram Analysis of the Normalized Cerebral Blood Volume and the Apparent Diffusion Coefficient.

    PubMed

    Bao, Shixing; Watanabe, Yoshiyuki; Takahashi, Hiroto; Tanaka, Hisashi; Arisawa, Atsuko; Matsuo, Chisato; Wu, Rongli; Fujimoto, Yasunori; Tomiyama, Noriyuki

    2018-05-31

    This study aimed to determine whether whole-tumor histogram analysis of normalized cerebral blood volume (nCBV) and apparent diffusion coefficient (ADC) for contrast-enhancing lesions can be used to differentiate between glioblastoma (GBM) and primary central nervous system lymphoma (PCNSL). From 20 patients, 9 with PCNSL and 11 with GBM without any hemorrhagic lesions, underwent MRI, including diffusion-weighted imaging and dynamic susceptibility contrast perfusion-weighted imaging before surgery. Histogram analysis of nCBV and ADC from whole-tumor voxels in contrast-enhancing lesions was performed. An unpaired t-test was used to compare the mean values for each type of tumor. A multivariate logistic regression model (LRM) was performed to classify GBM and PCNSL using the best parameters of ADC and nCBV. All nCBV histogram parameters of GBMs were larger than those of PCNSLs, but only average nCBV was statistically significant after Bonferroni correction. Meanwhile, ADC histogram parameters were also larger in GBM compared to those in PCNSL, but these differences were not statistically significant. According to receiver operating characteristic curve analysis, the nCBV average and ADC 25th percentile demonstrated the largest area under the curve with values of 0.869 and 0.838, respectively. The LRM combining these two parameters differentiated between GBM and PCNSL with a higher area under the curve value (Logit (P) = -21.12 + 10.00 × ADC 25th percentile (10 -3 mm 2 /s) + 5.420 × nCBV mean, P < 0.001). Our results suggest that whole-tumor histogram analysis of nCBV and ADC combined can be a valuable objective diagnostic method for differentiating between GBM and PCNSL.

  8. Uranium in US surface, ground, and domestic waters. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drury, J.S.; Reynolds, S.; Owen, P.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium conentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms.

  9. Intravoxel Incoherent Motion–derived Histogram Metrics for Assessment of Response after Combined Chemotherapy and Radiation Therapy in Rectal Cancer: Initial Experience and Comparison between Single-Section and Volumetric Analyses

    PubMed Central

    Vargas, Hebert Alberto; Lakhman, Yulia; Sudre, Romain; Do, Richard K. G.; Bibeau, Frederic; Azria, David; Assenat, Eric; Molinari, Nicolas; Pierredon, Marie-Ange; Rouanet, Philippe; Guiu, Boris

    2016-01-01

    Purpose To determine the diagnostic performance of intravoxel incoherent motion (IVIM) parameters and apparent diffusion coefficient (ADC) to assess response to combined chemotherapy and radiation therapy (CRT) in patients with rectal cancer by using histogram analysis derived from whole-tumor volumes and single-section regions of interest (ROIs). Materials and Methods The institutional review board approved this retrospective study of 31 patients with rectal cancer who underwent magnetic resonance (MR) imaging before and after CRT, including diffusion-weighted imaging with 34 b values prior to surgery. Patient consent was not required. ADC, perfusion-related diffusion fraction (f), slow diffusion coefficient (D), and fast diffusion coefficient (D*) were calculated on MR images acquired before and after CRT by using biexponential fitting. ADC and IVIM histogram metrics and median values were obtained by using whole-tumor volume and single-section ROI analyses. All ADC and IVIM parameters obtained before and after CRT were compared with histopathologic findings by using t tests with Holm-Sidak correction. Receiver operating characteristic curves were generated to evaluate the diagnostic performance of IVIM parameters derived from whole-tumor volume and single-section ROIs for prediction of histopathologic response. Results Extreme values aside, results of histogram analysis of ADC and IVIM were equivalent to median values for tumor response assessment (P > .06). Prior to CRT, none of the median ADC and IVIM diffusion metrics correlated with subsequent tumor response (P > .36). Median D and ADC values derived from either whole-volume or single-section analysis increased significantly after CRT (P ≤ .01) and were significantly higher in good versus poor responders (P ≤ .02). Median IVIM f and D* values did not significantly change after CRT and were not associated with tumor response to CRT (P > .36). Interobserver agreement was excellent for whole-tumor volume analysis (range, 0.91–0.95) but was only moderate for single-section ROI analysis (range, 0.50–0.63). Conclusion Median D and ADC values obtained after CRT were useful for discrimination between good and poor responders. Histogram metrics did not add to the median values for assessment of tumor response. Volumetric analysis demonstrated better interobserver reproducibility when compared with single-section ROI analysis. © RSNA, 2016 Online supplemental material is available for this article. PMID:26919562

  10. SU-F-J-104: Weekly MRI for Dose Assessment of Organs at Risk During Treatment of HN Cancer of the Oropharynx

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ludwig, K; Li, J; Venigalla, P

    2016-06-15

    Purpose: Investigate the feasibility of using weekly MRI to assess dose to organs at risk utilizing deformable image registration. Methods: Sixteen H&N patients with oropharyngeal cancer were imaged on a 3T MR scanner using T2W and mDIXON sequence. Patients were imaged on a weekly basis in treatment position. Parotids (LP & RP), submandibular glands (LS, RS), and oral cavity (OC) were delineated on the weekly MR and reviewed by a board certified radiation oncologist. The original planning CT (pCT), RT-Dose, and RT-Structures were deformed and registered to each weekly MRIs. The deformed CTs and RT-Structures were imported to the treatmentmore » planning system (TPS) and rigidly registered to the pCT. Forward dose calculation of the original RT-Plan was used to estimate the delivered dose on the deformed CT. The dose volume histograms (DVH) statistics were performed to compare planned dose, deformed dose, and forward calculated dose. In addition, Dice similarity metric (DSM) was used to compare deformed and reference structures. Results: The average (min,max) DSM between deformed and reference structures was 0.71 (0.69,0.93); 0.70 (0.64,0.89); 0.65 (0.48,0.86); 0.63 (0.37,0.89); and 0.63 (0.58,0.87); for LP, RP, LS, RS, and OC respectively. The respective average relative structures volumes changed at a weekly rate of −4.99%; −4.40%; +3.45%; +1.46%; −1.39%, respectively. The percentage difference %(min,max) between estimated delivered dose and planned dose was +3.94 (−51.3,+30.5); +6.33 (−58.6,+82.7); +2.46 (−38.9,+37.6,); +2.38(−49.0,+28.9); +3.55(−17.0,+43.1). Conclusion: The recalculated dose based on weekly MRI deviated from planned dose for all OARs. Meanwhile, the deformed dose did not reflect the subtle changes in OARs as compared to the recalculated dose. This study demonstrates the feasibility of using weekly MRI to monitor volumetric changes which has important implications on actual delivered dose.« less

  11. Radiation-induced rib fracture after stereotactic body radiotherapy with a total dose of 54-56 Gy given in 9-7 fractions for patients with peripheral lung tumor: impact of maximum dose and fraction size.

    PubMed

    Aoki, Masahiko; Sato, Mariko; Hirose, Katsumi; Akimoto, Hiroyoshi; Kawaguchi, Hideo; Hatayama, Yoshiomi; Ono, Shuichi; Takai, Yoshihiro

    2015-04-22

    Radiation-induced rib fracture after stereotactic body radiotherapy (SBRT) for lung cancer has been recently reported. However, incidence of radiation-induced rib fracture after SBRT using moderate fraction sizes with a long-term follow-up time are not clarified. We examined incidence and risk factors of radiation-induced rib fracture after SBRT using moderate fraction sizes for the patients with peripherally located lung tumor. During 2003-2008, 41 patients with 42 lung tumors were treated with SBRT to 54-56 Gy in 9-7 fractions. The endpoint in the study was radiation-induced rib fracture detected by CT scan after the treatment. All ribs where the irradiated doses were more than 80% of prescribed dose were selected and contoured to build the dose-volume histograms (DVHs). Comparisons of the several factors obtained from the DVHs and the probabilities of rib fracture calculated by Kaplan-Meier method were performed in the study. Median follow-up time was 68 months. Among 75 contoured ribs, 23 rib fractures were observed in 34% of the patients during 16-48 months after SBRT, however, no patients complained of chest wall pain. The 4-year probabilities of rib fracture for maximum dose of ribs (Dmax) more than and less than 54 Gy were 47.7% and 12.9% (p = 0.0184), and for fraction size of 6, 7 and 8 Gy were 19.5%, 31.2% and 55.7% (p = 0.0458), respectively. Other factors, such as D2cc, mean dose of ribs, V10-55, age, sex, and planning target volume were not significantly different. The doses and fractionations used in this study resulted in no clinically significant rib fractures for this population, but that higher Dmax and dose per fraction treatments resulted in an increase in asymptomatic grade 1 rib fractures.

  12. SU-F-T-433: Evaluation of a New Dose Mimicking Application for Clinical Flexibility and Reliability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, D; Nair, C Kumaran; Wright, C

    2016-06-15

    Purpose: Clinical workflow and machine down time occasionally require patients to be temporarily treated on a system other than the initial treatment machine. A new commercial dose mimicking application provides automated cross-platform treatment planning to expedite this clinical flexibility. The aim of this work is to evaluate the feasibility of automatic plan creation and establish a robust clinical workflow for prostate and pelvis patients. Methods: Five prostate and five pelvis patients treated with helical plans were selected for re-planning with the dose mimicking application, covering both simple and complex scenarios. Two-arc VMAT and 7- and 9-field IMRT plans were generatedmore » for each case, with the objective function of achieving similar dose volume histogram from the initial helical plans. Dosimetric comparisons include target volumes and organs at risk (OARs) (rectum, bladder, small bowel, femoral heads, etc.). Dose mimicked plans were evaluated by a radiation oncologist, and patient-specific QAs were performed to validate delivery. Results: Overall plan generation and transfer required around 30 minutes of dosimetrist’s time once the dose-mimicking protocol is setup for each site. The resulting VMAT and 7- and 9-field IMRT plans achieved equivalent PTV coverage and homogeneity (D99/DRx = 97.3%, 97.2%, 97.2% and HI = 6.0, 5.8, and 5.9, respectively), compared to helical plans (97.6% and 4.6). The OAR dose discrepancies were up to 6% in rectum Dmean, but generally lower in bladder, femoral heads, bowel and penile bulb. In the context of 1–5 fractions, the radiation oncologist evaluated the dosimetric changes as not clinically significant. All delivery QAs achieved >90% pass with a 3%/3mm gamma criteria. Conclusion: The automated dose-mimicking workflow offers a strategy to avoid missing treatment fractions due to machine down time with non-clinically significant changes in dosimetry. Future work will further optimize dose mimicking plans and investigate other cross-platform treatment delivery options.« less

  13. Comparative dosimetric and radiobiological assessment among a nonstandard RapidArc, standard RapidArc, classical intensity-modulated radiotherapy, and 3D brachytherapy for the treatment of the vaginal vault in patients affected by gynecologic cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pedicini, Piernicola, E-mail: ppiern@libero.it; Caivano, Rocchina; Fiorentino, Alba

    2012-01-01

    To evaluate a nonstandard RapidArc (RA) modality as alternative to high-dose-rate brachytherapy (HDR-BRT) or IMRT treatments of the vaginal vault in patients with gynecological cancer (GC). Nonstandard (with vaginal applicator) and standard (without vaginal applicator) RapidArc plans for 27 women with GC were developed to compare with HDR-BRT and IMRT. Dosimetric and radiobiological comparison were performed by means of dose-volume histogram and equivalent uniform dose (EUD) for planning target volume (PTV) and organs at risk (OARs). In addition, the integral dose and the overall treatment times were evaluated. RA, as well as IMRT, results in a high uniform dose onmore » PTV compared with HDR-BRT. However, the average of EUD for HDR-BRT was significantly higher than those with RA and IMRT. With respect to the OARs, standard RA was equivalent of IMRT but inferior to HDR-BRT. Furthermore, nonstandard RA was comparable with IMRT for bladder and sigmoid and better than HDR-BRT for the rectum because of a significant reduction of d{sub 2cc}, d{sub 1cc}, and d{sub max} (p < 0.01). Integral doses were always higher than HDR-BRT, although the values were very low. Delivery times were about the same and more than double for HDR-BRT compared with IMRT and RA, respectively. In conclusion, the boost of dose on vaginal vault in patients affected by GC delivered by a nonstandard RA technique was a reasonable alternative to the conventional HDR-BRT because of a reduction of delivery time and rectal dose at substantial comparable doses for the bladder and sigmoid. However HDR-BRT provides better performance in terms of PTV coverage as evidenced by a greater EUD.« less

  14. Sci—Thur AM: YIS - 11: Estimation of Bladder-Wall Cumulative Dose in Multi-Fraction Image-Based Gynaecological Brachytherapy Using Deformable Point Set Registration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakariaee, R; Brown, C J; Hamarneh, G

    2014-08-15

    Dosimetric parameters based on dose-volume histograms (DVH) of contoured structures are routinely used to evaluate dose delivered to target structures and organs at risk. However, the DVH provides no information on the spatial distribution of the dose in situations of repeated fractions with changes in organ shape or size. The aim of this research was to develop methods to more accurately determine geometrically localized, cumulative dose to the bladder wall in intracavitary brachytherapy for cervical cancer. The CT scans and treatment plans of 20 cervical cancer patients were used. Each patient was treated with five high-dose-rate (HDR) brachytherapy fractions ofmore » 600cGy prescribed dose. The bladder inner and outer surfaces were delineated using MIM Maestro software (MIM Software Inc.) and were imported into MATLAB (MathWorks) as 3-dimensional point clouds constituting the “bladder wall”. A point-set registration toolbox for MATLAB, Coherent Point Drift (CPD), was used to non-rigidly transform the bladder-wall points from four of the fractions to the coordinate system of the remaining (reference) fraction, which was chosen to be the emptiest bladder for each patient. The doses were accumulated on the reference fraction and new cumulative dosimetric parameters were calculated. The LENT-SOMA toxicity scores of these patients were studied against the cumulative dose parameters. Based on this study, there was no significant correlation between the toxicity scores and the determined cumulative dose parameters.« less

  15. 'Boomerang' technique: an improved method for conformal treatment of locally advanced nasopharyngeal cancer.

    PubMed

    Corry, June; Hornby, Colin; Fisher, Richard; D'Costa, Ieta; Porceddu, Sandro; Rischin, Danny; Peters, Lester J

    2004-06-01

    The primary aim of the present study was to assess radiation dosimetry and subsequent clinical outcomes in patients with locally advanced nasopharyngeal cancer using a novel radiation technique termed the 'Boomerang'. Dosimetric comparisons were made with both conventional and intensity modulated radiation therapy (IMRT) techniques. This is a study of 22 patients treated with this technique from June 1995 to October 1998. The technique used entailed delivery of 36 Gy in 18 fractions via parallel opposed fields, then 24 Gy in 12 fractions via asymmetric rotating arc fields for a total of 60 Gy in 30 fractions. Patients also received induction and concurrent chemotherapy. The radiation dosimetry was excellent. Dose-volume histograms showed that with the arc fields, 90% of the planning target volume received 94% of the prescribed dose. Relative to other conventional radiation therapy off-cord techniques, the Boomerang technique results in a 27% greater proportion of the prescribed dose being received by 90% of the planning target volume. This translates into an overall 10% greater dose received for the same prescribed dose. At 3 years, the actuarial loco-regional control rate, the failure-free survival rate and the overall survival rate were 91, 75 and 91%, respectively. At 5 years, the actuarial loco-regional control rate, the failure-free survival rate and the overall survival rate were 74, 62 and 71%, respectively. The Boomerang technique provided excellent radiation dosimetry with correspondingly good loco-regional control rates (in conjunction with chemotherapy) and very acceptable acute and late toxicity profiles. Because treatment can be delivered with conventional standard treatment planning and delivery systems, it is a validated treatment option for centres that do not have the capability or capacity for IMRT. A derivative of the Boomerang technique, excluding the parallel opposed component, is now our standard for patients with locally advanced nasopharyngeal cancer when IMRT is not available.

  16. Histogram based analysis of lung perfusion of children after congenital diaphragmatic hernia repair.

    PubMed

    Kassner, Nora; Weis, Meike; Zahn, Katrin; Schaible, Thomas; Schoenberg, Stefan O; Schad, Lothar R; Zöllner, Frank G

    2018-05-01

    To investigate a histogram based approach to characterize the distribution of perfusion in the whole left and right lung by descriptive statistics and to show how histograms could be used to visually explore perfusion defects in two year old children after Congenital Diaphragmatic Hernia (CDH) repair. 28 children (age of 24.2±1.7months; all left sided hernia; 9 after extracorporeal membrane oxygenation therapy) underwent quantitative DCE-MRI of the lung. Segmentations of left and right lung were manually drawn to mask the calculated pulmonary blood flow maps and then to derive histograms for each lung side. Individual and group wise analysis of histograms of left and right lung was performed. Ipsilateral and contralateral lung show significant difference in shape and descriptive statistics derived from the histogram (Wilcoxon signed-rank test, p<0.05) on group wise and individual level. Subgroup analysis (patients with vs without ECMO therapy) showed no significant differences using histogram derived parameters. Histogram analysis can be a valuable tool to characterize and visualize whole lung perfusion of children after CDH repair. It allows for several possibilities to analyze the data, either describing the perfusion differences between the right and left lung but also to explore and visualize localized perfusion patterns in the 3D lung volume. Subgroup analysis will be possible given sufficient sample sizes. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Impact of spot charge inaccuracies in IMPT treatments.

    PubMed

    Kraan, Aafke C; Depauw, Nicolas; Clasie, Ben; Giunta, Marina; Madden, Tom; Kooy, Hanne M

    2017-08-01

    Spot charge is one parameter of pencil-beam scanning dose delivery system whose accuracy is typically high but whose required value has not been investigated. In this work we quantify the dose impact of spot charge inaccuracies on the dose distribution in patients. Knowing the effect of charge errors is relevant for conventional proton machines, as well as for new generation proton machines, where ensuring accurate charge may be challenging. Through perturbation of spot charge in treatment plans for seven patients and a phantom, we evaluated the dose impact of absolute (up to 5× 10 6 protons) and relative (up to 30%) charge errors. We investigated the dependence on beam width by studying scenarios with small, medium and large beam sizes. Treatment plan statistics included the Γ passing rate, dose-volume-histograms and dose differences. The allowable absolute charge error for small spot plans was about 2× 10 6 protons. Larger limits would be allowed if larger spots were used. For relative errors, the maximum allowable error size for small, medium and large spots was about 13%, 8% and 6% for small, medium and large spots, respectively. Dose distributions turned out to be surprisingly robust against random spot charge perturbation. Our study suggests that ensuring spot charge errors as small as 1-2% as is commonly aimed at in conventional proton therapy machines, is clinically not strictly needed. © 2017 American Association of Physicists in Medicine.

  18. SU-F-T-625: Optimal Treatment Planning Strategy Among Arc Arrangements for Prostate SBRT with VMAT Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, J; Kim, J; Eom, K

    Purpose: The purpose of this study is to determine the optimal treatment planning strategy among the different arc arrangements for prostate stereotactic body radiotherapy (SBRT) plans with volumetric modulated arc therapy (VMAT). Methods: Ten patients with prostate cancer were selected. The SBRT-VMAT plans for each patient were generated with single-full (181° to 179°; 1FA), single-partial (240° to 120°; 1PA), double-full (181° to 179° and 179° to 181°; 2FA), and double-partial (240° to 120° and 120° to 240°; 2PA) arc arrangements. The prescription dose was 42.7 Gy in 7 fractions. Dose distribution was calculated using a 10-MV flattening-filter-free beam and themore » Acuros XB algorithm. Dosimetric parameters of target volume and organs at risk (OARs) were evaluated from cumulative dose-volume histograms on prostate SBRT-VMAT plans between single-arc (1FA and 1PA) and double-arc (2FA and 2PA) arrangements. Results: All plans using four arc arrangements were highly conformal with conformity index (CI)<1.05 and conformation number (CN)=0.91, and the doses to target volume were homogeneous (homogeneity index (HI)= 0.09 0.12). Pertaining to the dose to the OARs, there were significant differences in the rectum, left and right femoral head doses while having no difference in the bladder dose. The partial-arc (1PA and 2PA) had relatively high reductions for the mean rectum dose compared to full-arc (1FA and 2FA). The near-to-maximum dose (D2%) and mean dose of the left and right femoral head were always lower on prostate SBRT-VMAT plan using the full-arc, when compared to the partial-arc arrangement. Conclusion: This study confirmed that prostate SBRT-VMAT using 1PA was feasible fast delivery time and produced equivalent target coverage and better rectum sparing, although the D2% and mean dose of the left and right femoral head increased slightly. Therefore, the results of this study suggest that the use of 1PA is an attractive choice for delivering prostate SBRT-VMAT.« less

  19. From AAA to Acuros XB-clinical implications of selecting either Acuros XB dose-to-water or dose-to-medium.

    PubMed

    Zifodya, Jackson M; Challens, Cameron H C; Hsieh, Wen-Long

    2016-06-01

    When implementing Acuros XB (AXB) as a substitute for anisotropic analytic algorithm (AAA) in the Eclipse Treatment Planning System, one is faced with a dilemma of reporting either dose to medium, AXB-Dm or dose to water, AXB-Dw. To assist with decision making on selecting either AXB-Dm or AXB-Dw for dose reporting, a retrospective study of treated patients for head & neck (H&N), prostate, breast and lung is presented. Ten patients, previously treated using AAA plans, were selected for each site and re-planned with AXB-Dm and AXB-Dw. Re-planning was done with fixed monitor units (MU) as well as non-fixed MUs. Dose volume histograms (DVH) of targets and organs at risk (OAR), were analyzed in conjunction with ICRU-83 recommended dose reporting metrics. Additionally, comparisons of plan homogeneity indices (HI) and MUs were done to further highlight the differences between the algorithms. Results showed that, on average AAA overestimated dose to the target volume and OARs by less than 2.0 %. Comparisons between AXB-Dw and AXB-Dm, for all sites, also showed overall dose differences to be small (<1.5 %). However, in non-water biological media, dose differences between AXB-Dw and AXB-Dm, as large as 4.6 % were observed. AXB-Dw also tended to have unexpectedly high 3D maximum dose values (>135 % of prescription dose) for target volumes with high density materials. Homogeneity indices showed that AAA planning and optimization templates would need to be adjusted only for the H&N and Lung sites. MU comparison showed insignificant differences between AXB-Dw relative to AAA and between AXB-Dw relative to AXB-Dm. However AXB-Dm MUs relative to AAA, showed an average difference of about 1.3 % signifying an underdosage by AAA. In conclusion, when dose is reported as AXB-Dw, the effect that high density structures in the PTV has on the dose distribution should be carefully considered. As the results show overall small dose differences between the algorithms, when transitioning from AAA to AXB, no significant change to existing prescription protocols is expected. As most of the clinical experience is dose-to-water based and calibration protocols and clinical trials are also dose-to-water based and there still exists uncertainties in converting CT number to medium, selecting AXB-Dw is strongly recommended.

  20. SU-F-T-121: Abdominal Compression Effectively Reduces the Interplay Effect and Enables Pencil Beam Scanning Proton Therapy of Liver Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souris, K; University of Pennsylvania, Philadelphia, PA; Glick, A

    Purpose: To study if abdominal compression can reduce breathing motion and mitigate interplay effect in pencil beam scanning proton therapy (PBSPT) treatment of liver tumors in order to better spare healthy liver volumes compared with photon therapy. Methods: Ten patients, six having large tumors initially treated with IMRT and four having small tumors treated with SBRT, were replanned for PBSPT. ITV and beam-specific PTVs based on 4D-CT were used to ensure target coverage in PBSPT. The use of an abdominal compression belt and volumetric repainting was investigated to mitigate the interplay effect between breathing motion and PBSPT dynamic delivery. Anmore » in-house Matlab script has been developed to simulate this interplay effect. The dose is computed on each phase individually by sorting all spots according to their simulated delivery timing. The final dose distribution is then obtained by accumulating all dose maps to a reference phase. Results: For equivalent target coverage PBSPT reduced average healthy liver dose by 9.5% of the prescription dose compared with IMRT/SBRT. Abdominal compression of 113.2±42.2 mmHg was effective for all 10 patients and reduced average motion by 2.25 mm. As a result, the average ITV volume decreased from 128.2% to 123.1% of CTV volume. Similarly, the average beam-specific PTV volume decreased from 193.2% to 183.3%. For 8 of the 10 patients, the average motion was reduced below 5 mm, and up to 3 repainting were sufficient to mitigate interplay. For the other two patients with larger residual motion, 4–5 repainting were needed. Conclusion: We recommend evaluation of the 4DCT motion histogram following simulation and the interplay effect following treatment planning in order to personalize the use of compression and volumetric repainting for each patient. Abdominal compression enables safe and more effective PBS treatment of liver tumors by reduction of motion and interplay effect. Kevin Souris is supported by IBA and Televie Grant from F.R.S.-FNRS. Liyong Lin is partially supported by Varian.« less

  1. SU-F-T-500: The Effectiveness of a Patient Specific Bolus Made by Using Three-Dimensional Printing Technique in Photon Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujimoto, K; Yuasa, Y; Shiinoki, T

    Purpose: A commercially available bolus (commercial-bolus) would not completely contact with the irregular shape of a patient’s skin. The purposes of this study were to customize a patient specific three-dimensional (3D) bolus using a 3D printer (3D-bolus) and to evaluate its clinical feasibility for photon radiotherapy. Methods: The 3D-bolus was designed using a treatment planning system (TPS) in DICOM-RT format. To print the 3D bolus, the file was converted into stereolithography format. To evaluate its physical characteristics, plans were created for water equivalent phantoms without the bolus, with the 3D-bolus printed in a flat form, and with the virtual bolusmore » which supposed a commercial-bolus. These plans were compared with the percent depth dose (PDD) measured from the TPS. Furthermore, to evaluate its clinical feasibility, the treatment plans were created for RANDO phantoms without the bolus and with the 3D-bolus which was customized for contacting with the surface of the phantom. Both plans were compared with the dose volume histogram (DVH) of the target volume. Results: In the physical evaluation, dmax of the plan without the bolus, with the 3D-bolus, and with the virtual bolus were 2.2 cm, 1.6 cm, and 1.7 cm, respectively. In the evaluation of clinical feasibility, for the plan without the bolus, Dmax, Dmin, Dmean, D90%, and V90% of the target volume were 102.6 %, 1.6 %, 88.8 %, 57.2 %, and 69.3 %, respectively. By using the 3D-bolus, the prescription dose could be delivered to at least 90 % of the target volume, Dmax, Dmin, Dmean, D90%, and V90% of the target volume were 104.3 %, 91.6 %, 92.1 %, 91.7 %, and 98.0 %, respectively. The 3D-bolus has the potential to be useful for providing effective dose coverage in the buildup region. Conclusion: A 3D-bolus produced using 3D printing technique is comparable to a commercially available bolus.« less

  2. Dosimetric comparison of single-beam multi-arc and 2-beam multi-arc VMAT optimization in the Monaco treatment planning system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalet, Alan M., E-mail: amkalet@uw.edu; Seattle Cancer Care Alliance, Seattle, Washington; Richardson, Hannah L.

    The purpose of this study was to evaluate the dosimetric and practical effects of the Monaco treatment planning system “max arcs-per-beam” optimization parameter in pelvic radiotherapy treatments. We selected for this study a total of 17 previously treated patients with a range of pelvic disease sites including prostate (9), bladder (1), uterus (3), rectum (3), and cervix (1). For each patient, 2 plans were generated, one using an arc-per-beam setting of “1” and another with an arc-per-beam setting of “2” using the volumes and constraints established from the initial clinical treatments. All constraints and dose coverage objects were kept themore » same between plans, and all plans were normalized to 99.7% to ensure 100% of the planning target volume (PTV) received 95% of the prescription dose. Plans were evaluated for PTV conformity, homogeneity, number of monitor units, number of control points, and overall plan acceptability. Treatment delivery time, patient-specific quality assurance procedures, and the impact on clinical workflow were also assessed. We found that for complex-shaped target volumes (small central volumes with extending arms to cover nodal regions), the use of 2 arc-per-beam (2APB) parameter setting achieved significantly lower average dose-volume histogram values for the rectum V{sub 20} (p = 0.0012) and bladder V{sub 30} (p = 0.0036) while meeting the high dose target constraints. For simple PTV shapes, we found reduced monitor units (13.47%, p = 0.0009) and control points (8.77%, p = 0.0004) using 2APB planning. In addition, we found a beam delivery time reduction of approximately 25%. In summary, the dosimetric benefit, although moderate, was improved over a 1APB setting for complex PTV, and equivalent in other cases. The overall reduced delivery time suggests that the use of mulitple arcs per beam could lead to reduced patient-on-table time, increased clinical throughput, and reduced medical physics quality assurance effort.« less

  3. Volumetric modulated arc radiotherapy for esophageal cancer.

    PubMed

    Vivekanandan, Nagarajan; Sriram, Padmanaban; Kumar, S A Syam; Bhuvaneswari, Narayanan; Saranya, Kamalakannan

    2012-01-01

    A treatment planning study was performed to evaluate the performance of volumetric arc modulation with RapidArc (RA) against 3D conformal radiation therapy (3D-CRT) and conventional intensity-modulated radiation therapy (IMRT) techniques for esophageal cancer. Computed tomgraphy scans of 10 patients were included in the study. 3D-CRT, 4-field IMRT, and single-arc and double-arc RA plans were generated with the aim to spare organs at risk (OAR) and healthy tissue while enforcing highly conformal target coverage. The planning objective was to deliver 54 Gy to the planning target volume (PTV) in 30 fractions. Plans were evaluated based on target conformity and dose-volume histograms of organs at risk (lung, spinal cord, and heart). The monitor unit (MU) and treatment delivery time were also evaluated to measure the treatment efficiency. The IMRT plan improves target conformity and spares OAR when compared with 3D-CRT. Target conformity improved with RA plans compared with IMRT. The mean lung dose was similar in all techniques. However, RA plans showed a reduction in the volume of the lung irradiated at V(₂₀Gy) and V(₃₀Gy) dose levels (range, 4.62-17.98%) compared with IMRT plans. The mean dose and D(₃₅%) of heart for the RA plans were better than the IMRT by 0.5-5.8%. Mean V(₁₀Gy) and integral dose to healthy tissue were almost similar in all techniques. But RA plans resulted in a reduced low-level dose bath (15-20 Gy) in the range of 14-16% compared with IMRT plans. The average MU needed to deliver the prescribed dose by RA technique was reduced by 20-25% compared with IMRT technique. The preliminary study on RA for esophageal cancers showed improvements in sparing OAR and healthy tissue with reduced beam-on time, whereas only double-arc RA offered improved target coverage compared with IMRT and 3D-CRT plans. Copyright © 2012 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  4. Improving plan quality for prostate volumetric-modulated arc therapy.

    PubMed

    Wright, Katrina; Ferrari-Anderson, Janet; Barry, Tamara; Bernard, Anne; Brown, Elizabeth; Lehman, Margot; Pryor, David

    2017-01-01

    We critically evaluated the quality and consistency of volumetric-modulated arc therapy (VMAT) prostate planning at a single institution to quantify objective measures for plan quality and establish clear guidelines for plan evaluation and quality assurance. A retrospective analysis was conducted on 34 plans generated on the Pinnacle 3 version 9.4 and 9.8 treatment planning system to deliver 78 Gy in 39 fractions to the prostate only using VMAT. Data were collected on contoured structure volumes, overlaps and expansions, planning target volume (PTV) and organs at risk volumes and relationship, dose volume histogram, plan conformity, plan homogeneity, low-dose wash, and beam parameters. Standard descriptive statistics were used to describe the data. Despite a standardized planning protocol, we found variability was present in all steps of the planning process. Deviations from protocol contours by radiation oncologists and radiation therapists occurred in 12% and 50% of cases, respectively, and the number of optimization parameters ranged from 12 to 27 (median 17). This contributed to conflicts within the optimization process reflected by the mean composite objective value of 0.07 (range 0.01 to 0.44). Methods used to control low-intermediate dose wash were inconsistent. At the PTV rectum interface, the dose-gradient distance from the 74.1 Gy to 40 Gy isodose ranged from 0.6 cm to 2.0 cm (median 1.0 cm). Increasing collimator angle was associated with a decrease in monitor units and a single full 6 MV arc was sufficient for the majority of plans. A significant relationship was found between clinical target volume-rectum distance and rectal tolerances achieved. A linear relationship was determined between the PTV volume and volume of 40 Gy isodose. Objective values and composite objective values were useful in determining plan quality. Anatomic geometry and overlap of structures has a measurable impact on the plan quality achieved for prostate patients being treated with VMAT. By evaluating multiple planning variables, we have been able to determine important factors influencing plan quality and develop predictive models for quality metrics that have been incorporated into our new protocol and will be tested and refined in future studies. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  5. Predicting the nodal status in gastric cancers: The role of apparent diffusion coefficient histogram characteristic analysis.

    PubMed

    Liu, Song; Zhang, Yujuan; Xia, Jie; Chen, Ling; Guan, Wenxian; Guan, Yue; Ge, Yun; He, Jian; Zhou, Zhengyang

    2017-10-01

    To explore the application of histogram analysis in preoperative T and N staging of gastric cancers, with a focus on characteristic parameters of apparent diffusion coefficient (ADC) maps. Eighty-seven patients with gastric cancers underwent diffusion weighted magnetic resonance imaging (b=0, 1000s/mm 2 ), which generated ADC maps. Whole-volume histogram analysis was performed on ADC maps and 7 characteristic parameters were obtained. All those patients underwent surgery and postoperative pathologic T and N stages were determined. Four parameters, including skew, kurtosis, s-sD av and sample number, showed significant differences among gastric cancers at different T and N stages. Most parameters correlated with T and N stages significantly and worked in differentiating gastric cancers at different T or N stages. Especially skew yielded a sensitivity of 0.758, a specificity of 0.810, and an area under the curve (AUC) of 0.802 for differentiating gastric cancers with and without lymph node metastasis (P<0.001). All the parameters, except AUC low , showed good or excellent inter-observer agreement with intra-class correlation coefficients ranging from 0.710 to 0.991. Characteristic parameters derived from whole-volume ADC histogram analysis could help assessing preoperative T and N stages of gastric cancers. Copyright © 2017. Published by Elsevier Inc.

  6. Population dose commitments due to radioactive releases from nuclear power plant sites in 1982. Volume 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, D.A.; Peloquin, R.A.

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1982. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 51 sites. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each site is a histogram showing the fraction of the total population within 2 to 80 km around each sitemore » receiving various average dose commitments from the airborne pathways. The total dose commitments from both liquid and airborne pathways ranged from a high of 30 person-rem to a low of 0.007 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 3 person-rem. The total population dose for all sites was estimated at 130 person-rem for the 100 million people considered at risk. The average individual dose commitment from all pathways on a site basis ranged from a low of 6 x 10/sup -7/ mrem to a high of 0.06 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites.« less

  7. Evaluation of clinical hypothyroidism risk due to irradiation of thyroid and pituitary glands in radiotherapy of nasopharyngeal cancer patients.

    PubMed

    Lin, Zhixiong; Wang, Xiaoyan; Xie, Wenjia; Yang, Zhining; Che, Kaijun; Wu, Vincent W C

    2013-12-01

    Radiation-induced thyroid dysfunction after radiotherapy for nasopharyngeal cancer (NPC) has been reported. This study investigated the radiation effects of the thyroid and pituitary glands on thyroid function after radiotherapy for NPC. Sixty-five NPC patients treated with radiotherapy were recruited. Baseline thyroid hormone levels comprising free triiodothyronine (fT3), free thyroxine (fT4) and thyroid-stimulating hormone (TSH) were taken before treatment and at 3, 6, 12 and 18 months. A seven-beam intensity-modulated radiotherapy plan was generated for each patient. Thyroid and pituitary gland dose volume histograms were generated, dividing the patients into four groups: high (>50 Gy) thyroid and pituitary doses (HTHP group); high thyroid and low pituitary doses (HTLP group); low thyroid and high pituitary doses; and low thyroid and pituitary doses. Incidence of hypothyroidism was analysed. Twenty-two (34%) and 17 patients (26%) received high mean thyroid and pituitary doses, respectively. At 18 months, 23.1% of patients manifested various types of hypothyroidism. The HTHP group showed the highest incidence (83.3%) of hypothyroidism, followed by the HTLP group (50%). NPC patients with high thyroid and pituitary gland doses carried the highest risk of abnormal thyroid physiology. The dose to the thyroid was more influential than the pituitary dose at 18 months after radiotherapy, and therefore more attention should be given to the thyroid gland in radiotherapy planning. © 2013 The Royal Australian and New Zealand College of Radiologists.

  8. Interactive Dose Shaping - efficient strategies for CPU-based real-time treatment planning

    NASA Astrophysics Data System (ADS)

    Ziegenhein, P.; Kamerling, C. P.; Oelfke, U.

    2014-03-01

    Conventional intensity modulated radiation therapy (IMRT) treatment planning is based on the traditional concept of iterative optimization using an objective function specified by dose volume histogram constraints for pre-segmented VOIs. This indirect approach suffers from unavoidable shortcomings: i) The control of local dose features is limited to segmented VOIs. ii) Any objective function is a mathematical measure of the plan quality, i.e., is not able to define the clinically optimal treatment plan. iii) Adapting an existing plan to changed patient anatomy as detected by IGRT procedures is difficult. To overcome these shortcomings, we introduce the method of Interactive Dose Shaping (IDS) as a new paradigm for IMRT treatment planning. IDS allows for a direct and interactive manipulation of local dose features in real-time. The key element driving the IDS process is a two-step Dose Modification and Recovery (DMR) strategy: A local dose modification is initiated by the user which translates into modified fluence patterns. This also affects existing desired dose features elsewhere which is compensated by a heuristic recovery process. The IDS paradigm was implemented together with a CPU-based ultra-fast dose calculation and a 3D GUI for dose manipulation and visualization. A local dose feature can be implemented via the DMR strategy within 1-2 seconds. By imposing a series of local dose features, equal plan qualities could be achieved compared to conventional planning for prostate and head and neck cases within 1-2 minutes. The idea of Interactive Dose Shaping for treatment planning has been introduced and first applications of this concept have been realized.

  9. How to identify rectal sub-regions likely involved in rectal bleeding in prostate cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Dréan, G.; Acosta, O.; Ospina, J. D.; Voisin, C.; Rigaud, B.; Simon, A.; Haigron, P.; de Crevoisier, R.

    2013-11-01

    Nowadays, the de nition of patient-speci c constraints in prostate cancer radiotherapy planning are solely based on dose-volume histogram (DVH) parameters. Nevertheless those DVH models lack of spatial accuracy since they do not use the complete 3D information of the dose distribution. The goal of the study was to propose an automatic work ow to de ne patient-speci c rectal sub-regions (RSR) involved in rectal bleeding (RB) in case of prostate cancer radiotherapy. A multi-atlas database spanning the large rectal shape variability was built from a population of 116 individuals. Non-rigid registration followed by voxel-wise statistical analysis on those templates allowed nding RSR likely correlated with RB (from a learning cohort of 63 patients). To de ne patient-speci c RSR, weighted atlas-based segmentation with a vote was then applied to 30 test patients. Results show the potentiality of the method to be used for patient-speci c planning of intensity modulated radiotherapy (IMRT).

  10. Is thyroid gland an organ at risk in breast cancer patients treated with locoregional radiotherapy? Results of a pilot study.

    PubMed

    Tunio, Mutahir Ali; Al Asiri, Mushabbab; Bayoumi, Yasser; Stanciu, Laura G; Al Johani, Naji; Al Saeed, Eyad Fawzi

    2015-01-01

    Aim was to evaluate the dose distribution within the thyroid gland its association with hypothyroidism in breast cancer (BC) patients receiving supraclavicular (SC) radiation therapy (RT). Consecutive 40 BC patients with baseline normal thyroid function tests (TFTs), were randomized into two groups: (a) Adjuvant chest wall/breast with SC-RT (20 patients) and (b) control group (adjuvant chest wall/breast RT only); 20 patients. The thyroid gland was contoured for each patient. Each patient's dose volume histogram (DVH), mean thyroid volume, the volume percentages of the thyroid absorbing respectively 5, 10, 20, 30, 40, and 50 Gy (V5, V10, V20, V30, V40, and V50), and Dmean (average dose in whole volume of thyroid) were then estimated. TFTs were performed at the time of the last follow-up and compared. Mean thyroid volume of cohort was 19.6 cm(3) (4.02-93.52) and Dmean of thyroid gland in SC-RT and control group was 25.8 Gy (16.4-52.2) and 5.6 Gy (0.7-12.8), respectively. Median values of V5, V10, V20, V30, V40, and V50 were 54%, 51%, 42.8%, 30.8%, 27.8%, and 7.64%, respectively, in SC-RT as compared to control group (V5;4.9%, V10;2.4%, V20;1.75%, V301%, V40;0%, and V50;0%, respectively) with P < 0.0001. At 52 months, a majority of patients (90%) had a normal thyroid function whereas four patients (10%) had hypothyroidism; 3/20 (15%) patients in SC-RT and 1/20 (5%) in control group with P < 0.001. Significant prognostic factors were; SC-RT (P = 0.001), V30 above 50% (P = 0.001), and smaller thyroid volume (P = 0.03). The risk of hypothyroidism in BC patients after SC-RT depends on the thyroid gland volume and V30 >50% and the risk can be minimized by thyroid gland shielding during RT.

  11. SU-F-BRD-01: A Novel 4D Robust Optimization Mitigates Interplay Effect in Intensity-Modulated Proton Therapy for Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, W; Shen, J; Stoker, J

    2015-06-15

    Purpose: To compare the impact of interplay effect on 3D and 4D robustly optimized intensity-modulated proton therapy (IMPT) plans to treat lung cancer. Methods: Two IMPT plans were created for 11 non-small-cell-lung-cancer cases with 6–14 mm spots. 3D robust optimization generated plans on average CTs with the internal gross tumor volume density overridden to deliver 66 CGyE in 33 fractions to the internal target volume (ITV). 4D robust optimization generated plans on 4D CTs with the delivery of prescribed dose to the clinical target volume (CTV). In 4D optimization, the CTV of individual 4D CT phases received non-uniform doses tomore » achieve a uniform cumulative dose. Dose evaluation software was developed to model time-dependent spot delivery to incorporate interplay effect with randomized starting phases of each field per fraction. Patient anatomy voxels were mapped from phase to phase via deformable image registration to score doses. Indices from dose-volume histograms were used to compare target coverage, dose homogeneity, and normal-tissue sparing. DVH indices were compared using Wilcoxon test. Results: Given the presence of interplay effect, 4D robust optimization produced IMPT plans with better target coverage and homogeneity, but slightly worse normal tissue sparing compared to 3D robust optimization (unit: Gy) [D95% ITV: 63.5 vs 62.0 (p=0.014), D5% - D95% ITV: 6.2 vs 7.3 (p=0.37), D1% spinal cord: 29.0 vs 29.5 (p=0.52), Dmean total lung: 14.8 vs 14.5 (p=0.12), D33% esophagus: 33.6 vs 33.1 (p=0.28)]. The improvement of target coverage (D95%,4D – D95%,3D) was related to the ratio RMA3/(TVx10−4), with RMA and TV being respiratory motion amplitude (RMA) and tumor volume (TV), respectively. Peak benefit was observed at ratios between 2 and 10. This corresponds to 125 – 625 cm3 TV with 0.5-cm RMA. Conclusion: 4D optimization produced more interplay-effect-resistant plans compared to 3D optimization. It is most effective when respiratory motion is modest compared to TV. NIH/NCI K25CA168984; Eagles Cancer Research Career Development; The Lawrence W. and Marilyn W. Matteson Fund for Cancer Research; Mayo ASU Seed Grant; The Kemper Marley Foundation.« less

  12. SU-E-T-59: A Novel Multi-Beam Dynamic IMRT with Fixed-Jaw Technique for Left Breast Cancer Patients with Regional Lymph Nodes Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J; Yang, Z; Hu, W

    2015-06-15

    Purpose: This study was to investigate the dosimetric benefit of a novel intensity modulated radiation therapy (IMRT) technique for irradiating the left breast and regional lymph node (RLN). Methods: The breast and RLN (internal mammary node and periclavicular node) and normal tissue were contoured for 16 consecutive left-sided breast cancer patients previously treated with RT after lumpectomy. Nine equi-spaced fields IMRT (9 -field IMRT), tangential multi-beam IMRT (tangential-IMRT) and IMRT with fixed-jaw technique (FJT-IMRT) were developed and compared with three-dimensional conformal RT (3DCRT). Prescribed dose was 50 Gy in 25 fractions. Dose distributions and dose volume histograms were used tomore » evaluate plans. Results: All IMRTs achieved similar target coverage and substantially reduced heart V30 and V20 compared to the 3DCRT. The average heart mean dose had different changes, which were 9.0Gy for 9-field IMRT, 5.7Gy for tangential-IMRT and 4.2Gy for FJT-IMRT. For the contralateral lung and breast, the 9-field IMRT has the highest mean dose; and the FJT-IMRT and tangential-IMRT had similar lower value. For the thyroid, both 9-field IMRT and FJT-IMRT had similar V30 (20% and 22%) and were significantly lower than that of 3DCRT (34%) and tangential-IMRT (46%). Moreover, the thyroid mean dose of FJT-IMRT is the lowest. For cervical esophagus and humeral head, the FJT-IMRT also had the best sparing. Conclusion: All 9-field IMRT, tangential-IMRT and FJT-IMRT had superiority for targets coverage and substantially reduced the heart volume of high dose irradiation. The FJT-IMRT showed advantages of avoiding the contralateral breast and lung irradiation and decreasing the thyroid, humeral head and cervical esophagus radiation dose at the expense of a slight monitor units (MUs) increasing.« less

  13. SU-F-T-537: Prone Breast Accelerated Partial Breast Irradiation Using Non-Coplanar Volumetric Arc Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beninati, G; Barbiere, J; Godfrey, L

    2016-06-15

    Purpose: To demonstrate that Volumetric Modulated Arc Therapy (VMAT) can be an alternative technique to Brachytherapy Accelerated Partial Breast Irradiation (APBI) for treating large breasted women. The non-coplanar VMAT technique uses a commercially available couch and a small number of angles. This technique with the patient in the prone position can reduce high skin and critical structure doses in large breasted women, which are usually associated with Brachytherapy APBI. Methods: Philips Pinnacle treatment planning system with Smart Arc was used to plan a left sided laterally located excision cavity on a standard prone breast patient setup. Three thirty-degree arcs enteredmore » from the lateral side at respective couch angles of 345, 0, and 15 degrees. A fourth thirty degree arc beam entered from the medial side at a couch angle of 0 degrees. The arcs were selected to avoid critical structures as much as possible. A test run was then performed to verify that the beams did not collide with the patient nor support structures. NSABP B-39/RTOG 0413 protocol guidelines were used for dose prescription, normal tissue, and target definition. Results: Dose Volume Histogram analysis indicated that all parameters were equal or better than RTOG recommendations. Of particular note regarding the plan quality:1.(a) For a prescribed dose of 3850cGy the PTV-EVAL target volume receiving 100 percent of the dose(V100) was 93; protocol recommendation is V90 > 90 percent. (b) Maximum dose was 110 percent versus the allowed 120 percent .2. Uninvolved percentage of normal breast V100 and V50 were 17 and 47 versus allowed 35 and 60 percent respectively.3. For the skin, V100 was 5.7cc and the max dose to 0.1 cc was 4190cGy. Conclusion: Prone Breast non-coplanar VMAT APBI can achieve better skin cosmesis and lower critical structure doses than Brachytherapy APBI.« less

  14. SU-F-T-81: Treating Nose Skin Using Energy and Intensity Modulated Electron Beams with Monte Carlo Based Dose Calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, L; Fan, J; Eldib, A

    Purpose: Treating nose skin with an electron beam is of a substantial challenge due to uneven nose surfaces and tissue heterogeneity, and consequently could have a great uncertainty of dose accuracy on the target. This work explored the method using Monte Carlo (MC)-based energy and intensity modulated electron radiotherapy (MERT), which would be delivered with a photon MLC in a standard medical linac (Artiste). Methods: The traditional treatment on the nose skin involves the usage of a bolus, often with a single energy electron beam. This work avoided using the bolus, and utilized mixed energies of electron beams. An in-housemore » developed Monte Carlo (MC)-based dose calculation/optimization planning system was employed for treatment planning. Phase space data (6, 9, 12 and 15 MeV) were used as an input source for MC dose calculations for the linac. To reduce the scatter-caused penumbra, a short SSD (61 cm) was used. A clinical case of the nose skin, which was previously treated with a single 9 MeV electron beam, was replanned with the MERT method. The resultant dose distributions were compared with the plan previously clinically used. The dose volume histogram of the MERT plan is calculated to examine the coverage of the planning target volume (PTV) and critical structure doses. Results: The target coverage and conformality in the MERT plan are improved as compared to the conventional plan. The MERT can provide more sufficient target coverage and less normal tissue dose underneath the nose skin. Conclusion: Compared to the conventional treatment technique, using MERT for the nose skin treatment has shown the dosimetric advantages in the PTV coverage and conformality. In addition, this technique eliminates the necessity of the cutout and bolus, which makes the treatment more efficient and accurate.« less

  15. SU-E-T-09: A Clinical Implementation and Optimized Dosimetry Study of Freiberg Flap Skin Surface Treatment in High Dose Rate Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syh, J; Syh, J; Patel, B

    Purpose: This case study was designated to confirm the optimized plan was used to treat skin surface of left leg in three stages. 1. To evaluate dose distribution and plan quality by alternating of the source loading catheters pattern in flexible Freiberg Flap skin surface (FFSS) applicator. 2. To investigate any impact on Dose Volume Histogram (DVH) of large superficial surface target volume coverage. 3. To compare the dose distribution if it was treated with electron beam. Methods: The Freiburg Flap is a flexible mesh style surface mold for skin radiation or intraoperative surface treatments. The Freiburg Flap consists ofmore » multiple spheres that are attached to each other, holding and guiding up to 18 treatment catheters. The Freiburg Flap also ensures a constant distance of 5mm from the treatment catheter to the surface. Three treatment trials with individual planning optimization were employed: 18 channels, 9 channels of FF and 6 MeV electron beam. The comparisons were highlighted in target coverage, dose conformity and dose sparing of surrounding tissues. Results: The first 18 channels brachytherapy plan was generated with 18 catheters inside the skin-wrapped up flap (Figure 1A). A second 9 catheters plan was generated associated with the same calculation points which were assigned to match prescription for target coverage as 18 catheters plan (Figure 1B). The optimized inverse plan was employed to reduce the dose to adjacent structures such as tibia or fibula. The comparison of DVH’s was depicted on Figure 2. External beam of electron RT plan was depicted in Figure 3. Overcall comparisons among these three were illustrated in Conclusion: The 9-channel Freiburg flap flexible skin applicator offers a reasonably acceptable plan without compromising the coverage. Electron beam was discouraged to use to treat curved skin surface because of low target coverage and high dose in adjacent tissues.« less

  16. Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Hori, Yasuaki; Yasuno, Yoshiaki; Sakai, Shingo; Matsumoto, Masayuki; Sugawara, Tomoko; Madjarova, Violeta; Yamanari, Masahiro; Makita, Shuichi; Yasui, Takeshi; Araki, Tsutomu; Itoh, Masahide; Yatagai, Toyohiko

    2006-03-01

    A set of fully automated algorithms that is specialized for analyzing a three-dimensional optical coherence tomography (OCT) volume of human skin is reported. The algorithm set first determines the skin surface of the OCT volume, and a depth-oriented algorithm provides the mean epidermal thickness, distribution map of the epidermis, and a segmented volume of the epidermis. Subsequently, an en face shadowgram is produced by an algorithm to visualize the infundibula in the skin with high contrast. The population and occupation ratio of the infundibula are provided by a histogram-based thresholding algorithm and a distance mapping algorithm. En face OCT slices at constant depths from the sample surface are extracted, and the histogram-based thresholding algorithm is again applied to these slices, yielding a three-dimensional segmented volume of the infundibula. The dermal attenuation coefficient is also calculated from the OCT volume in order to evaluate the skin texture. The algorithm set examines swept-source OCT volumes of the skins of several volunteers, and the results show the high stability, portability and reproducibility of the algorithm.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirai, Katsuyuki, E-mail: katu.shirai@gmail.com; Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi; Tamaki, Yoshio

    Purpose: To investigate the dose-volume histogram parameters and clinical factors as predictors of pleural effusion in esophageal cancer patients treated with concurrent chemoradiotherapy (CRT). Methods and Materials: Forty-three esophageal cancer patients treated with definitive CRT from January 2001 to March 2007 were reviewed retrospectively on the basis of the following criteria: pathologically confirmed esophageal cancer, available computed tomography scan for treatment planning, 6-month follow-up after CRT, and radiation dose {>=}50 Gy. Exclusion criteria were lung metastasis, malignant pleural effusion, and surgery. Mean heart dose, mean total lung dose, and percentages of heart or total lung volume receiving {>=}10-60 Gy (Heart-V{submore » 10} to V{sub 60} and Lung-V{sub 10} to V{sub 60}, respectively) were analyzed in relation to pleural effusion. Results: The median follow-up time was 26.9 months (range, 6.7-70.2) after CRT. Of the 43 patients, 15 (35%) developed pleural effusion. By univariate analysis, mean heart dose, Heart-V{sub 10} to V{sub 60}, and Lung-V{sub 50} to V{sub 60} were significantly associated with pleural effusion. Poor performance status, primary tumor of the distal esophagus, and age {>=}65 years were significantly related with pleural effusion. Multivariate analysis identified Heart-V{sub 50} as the strongest predictive factor for pleural effusion (p = 0.01). Patients with Heart-V{sub 50} <20%, 20%{<=} Heart-V{sub 50} <40%, and Heart-V{sub 50} {>=}40% had 6%, 44%, and 64% of pleural effusion, respectively (p < 0.01). Conclusion: Heart-V{sub 50} is a useful parameter for assessing the risk of pleural effusion and should be reduced to avoid pleural effusion.« less

  18. Reliability of dose volume constraint inference from clinical data.

    PubMed

    Lutz, C M; Møller, D S; Hoffmann, L; Knap, M M; Alber, M

    2017-04-21

    Dose volume histogram points (DVHPs) frequently serve as dose constraints in radiotherapy treatment planning. An experiment was designed to investigate the reliability of DVHP inference from clinical data for multiple cohort sizes and complication incidence rates. The experimental background was radiation pneumonitis in non-small cell lung cancer and the DVHP inference method was based on logistic regression. From 102 NSCLC real-life dose distributions and a postulated DVHP model, an 'ideal' cohort was generated where the most predictive model was equal to the postulated model. A bootstrap and a Cohort Replication Monte Carlo (CoRepMC) approach were applied to create 1000 equally sized populations each. The cohorts were then analyzed to establish inference frequency distributions. This was applied to nine scenarios for cohort sizes of 102 (1), 500 (2) to 2000 (3) patients (by sampling with replacement) and three postulated DVHP models. The Bootstrap was repeated for a 'non-ideal' cohort, where the most predictive model did not coincide with the postulated model. The Bootstrap produced chaotic results for all models of cohort size 1 for both the ideal and non-ideal cohorts. For cohort size 2 and 3, the distributions for all populations were more concentrated around the postulated DVHP. For the CoRepMC, the inference frequency increased with cohort size and incidence rate. Correct inference rates  >[Formula: see text] were only achieved by cohorts with more than 500 patients. Both Bootstrap and CoRepMC indicate that inference of the correct or approximate DVHP for typical cohort sizes is highly uncertain. CoRepMC results were less spurious than Bootstrap results, demonstrating the large influence that randomness in dose-response has on the statistical analysis.

  19. Proton and helium ion radiotherapy for meningioma tumors: a Monte Carlo-based treatment planning comparison.

    PubMed

    Tessonnier, Thomas; Mairani, Andrea; Chen, Wenjing; Sala, Paola; Cerutti, Francesco; Ferrari, Alfredo; Haberer, Thomas; Debus, Jürgen; Parodi, Katia

    2018-01-09

    Due to their favorable physical and biological properties, helium ion beams are increasingly considered a promising alternative to proton beams for radiation therapy. Hence, this work aims at comparing in-silico the treatment of brain and ocular meningiomas with protons and helium ions, using for the first time a dedicated Monte Carlo (MC) based treatment planning engine (MCTP) thoroughly validated both in terms of physical and biological models. Starting from clinical treatment plans of four patients undergoing proton therapy with a fixed relative biological effectiveness (RBE) of 1.1 and a fraction dose of 1.8 Gy(RBE), new treatment plans were optimized with MCTP for both protons (with variable and fixed RBE) and helium ions (with variable RBE) under the same constraints derived from the initial clinical plans. The resulting dose distributions were dosimetrically compared in terms of dose volume histograms (DVH) parameters for the planning target volume (PTV) and the organs at risk (OARs), as well as dose difference maps. In most of the cases helium ion plans provided a similar PTV coverage as protons with a consistent trend of superior OAR sparing. The latter finding was attributed to the ability of helium ions to offer sharper distal and lateral dose fall-offs, as well as a more favorable differential RBE variation in target and normal tissue. Although more studies are needed to investigate the clinical potential of helium ions for different tumour entities, the results of this work based on an experimentally validated MC engine support the promise of this modality with state-of-the-art pencil beam scanning delivery, especially in case of tumours growing in close proximity of multiple OARs such as meningiomas.

  20. Long-Term Bone Marrow Suppression During Postoperative Chemotherapy in Rectal Cancer Patients After Preoperative Chemoradiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman, Neil B.; Sidhu, Manpreet K.; Baby, Rekha

    Purpose/Objective(s): To quantify ensuing bone marrow (BM) suppression during postoperative chemotherapy resulting from preoperative chemoradiation (CRT) therapy for rectal cancer. Methods and Materials: We retrospectively evaluated 35 patients treated with preoperative CRT followed by postoperative 5-Fluorouracil and oxaliplatin (OxF) chemotherapy for locally advanced rectal cancer. The pelvic bone marrow (PBM) was divided into ilium (IBM), lower pelvis (LPBM), and lumbosacrum (LSBM). Dose volume histograms (DVH) measured the mean doses and percentage of BM volume receiving between 5-40 Gy (i.e.: PBM-V5, LPBM-V5). The Wilcoxon signed rank tests evaluated the differences in absolute hematologic nadirs during neoadjuvant vs. adjuvant treatment. Logistic regressionsmore » evaluated the association between dosimetric parameters and ≥ grade 3 hematologic toxicity (HT3) and hematologic event (HE) defined as ≥ grade 2 HT and a dose reduction in OxF. Receiver Operator Characteristic (ROC) curves were constructed to determine optimal threshold values leading to HT3. Results: During OxF chemotherapy, 40.0% (n=14) and 48% (n=17) of rectal cancer patients experienced HT3 and HE, respectively. On multivariable logistic regression, increasing pelvic mean dose (PMD) and lower pelvis mean dose (LPMD) along with increasing PBM-V (25-40), LPBM-V25, and LPBM-V40 were significantly associated with HT3 and/or HE during postoperative chemotherapy. Exceeding ≥36.6 Gy to the PMD and ≥32.6 Gy to the LPMD strongly correlated with causing HT3 during postoperative chemotherapy. Conclusions: Neoadjuvant RT for rectal cancer has lasting effects on the pelvic BM, which are demonstrable during adjuvant OxF. Sparing of the BM during preoperative CRT can aid in reducing significant hematologic adverse events and aid in tolerance of postoperative chemotherapy.« less

  1. Evaluation of Larynx-Sparing Techniques With IMRT When Treating the Head and Neck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webster, Gareth J.; Rowbottom, Carl G.; Ho, Kean F.

    2008-10-01

    Purpose: Concern exists that widespread implementation of whole-field intensity-modulated radiotherapy (IMRT) for the treatment of head-and-neck cancer has resulted in increased levels of dysphagia relative to those seen with conventional planning. Other investigators have suggested an alternative junctioned-IMRT (J-IMRT) method, which matches an IMRT plan to a centrally blocked neck field to restrict the laryngeal dose and reduce dysphagia. The effect on target coverage and sparing of organs at risk, including laryngeal sparing, in the optimization was evaluated and compared with that achieved using a J-IMRT technique. Methods and Materials: A total of 13 oropharyngeal cancer whole-field IMRT plans weremore » planned with and without including laryngeal sparing in the optimization. A comparison of the target coverage and sparing of organs at risk was made using the resulting dose-volume histograms and dose distribution. The nine plans with disease located superior to the level of the larynx were replanned using a series of J-IMRT techniques to compare the two laryngeal-sparing techniques. Results: An average mean larynx dose of 29.1 Gy was achieved if disease did not extend to the level of the larynx, with 38.8 Gy for disease extending inferiorly and close to the larynx (reduced from 46.2 and 47.7 Gy, respectively, without laryngeal sparing). Additional laryngeal sparing could be achieved with J-IMRT (mean dose 24.4 Gy), although often at the expense of significantly reduced coverage of the target volume and with no improvement to other areas of the IMRT plan. Conclusion: The benefits of J-IMRT can be achieved with whole-field IMRT if laryngeal sparing is incorporated into the class solution. Inclusion of laryngeal sparing had no effect on other parameters in the plan.« less

  2. Long-Term Bone Marrow Suppression During Postoperative Chemotherapy in Rectal Cancer Patients After Preoperative Chemoradiation Therapy.

    PubMed

    Newman, Neil B; Sidhu, Manpreet K; Baby, Rekha; Moss, Rebecca A; Nissenblatt, Michael J; Chen, Ting; Lu, Shou-En; Jabbour, Salma K

    2016-04-01

    To quantify ensuing bone marrow (BM) suppression during postoperative chemotherapy resulting from preoperative chemoradiation (CRT) therapy for rectal cancer. We retrospectively evaluated 35 patients treated with preoperative CRT followed by postoperative 5-Fluorouracil and oxaliplatin (OxF) chemotherapy for locally advanced rectal cancer. The pelvic bone marrow (PBM) was divided into ilium (IBM), lower pelvis (LPBM), and lumbosacrum (LSBM). Dose volume histograms (DVH) measured the mean doses and percentage of BM volume receiving between 5-40 Gy (i.e.: PBM-V5, LPBM-V5). The Wilcoxon signed rank tests evaluated the differences in absolute hematologic nadirs during neoadjuvant vs. adjuvant treatment. Logistic regressions evaluated the association between dosimetric parameters and ≥ grade 3 hematologic toxicity (HT3) and hematologic event (HE) defined as ≥ grade 2 HT and a dose reduction in OxF. Receiver Operator Characteristic (ROC) curves were constructed to determine optimal threshold values leading to HT3. During OxF chemotherapy, 40.0% (n=14) and 48% (n=17) of rectal cancer patients experienced HT3 and HE, respectively. On multivariable logistic regression, increasing pelvic mean dose (PMD) and lower pelvis mean dose (LPMD) along with increasing PBM-V (25-40), LPBM-V25, and LPBM-V40 were significantly associated with HT3 and/or HE during postoperative chemotherapy. Exceeding ≥36.6 Gy to the PMD and ≥32.6 Gy to the LPMD strongly correlated with causing HT3 during postoperative chemotherapy. Neoadjuvant RT for rectal cancer has lasting effects on the pelvic BM, which are demonstrable during adjuvant OxF. Sparing of the BM during preoperative CRT can aid in reducing significant hematologic adverse events and aid in tolerance of postoperative chemotherapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Reliability of dose volume constraint inference from clinical data

    NASA Astrophysics Data System (ADS)

    Lutz, C. M.; Møller, D. S.; Hoffmann, L.; Knap, M. M.; Alber, M.

    2017-04-01

    Dose volume histogram points (DVHPs) frequently serve as dose constraints in radiotherapy treatment planning. An experiment was designed to investigate the reliability of DVHP inference from clinical data for multiple cohort sizes and complication incidence rates. The experimental background was radiation pneumonitis in non-small cell lung cancer and the DVHP inference method was based on logistic regression. From 102 NSCLC real-life dose distributions and a postulated DVHP model, an ‘ideal’ cohort was generated where the most predictive model was equal to the postulated model. A bootstrap and a Cohort Replication Monte Carlo (CoRepMC) approach were applied to create 1000 equally sized populations each. The cohorts were then analyzed to establish inference frequency distributions. This was applied to nine scenarios for cohort sizes of 102 (1), 500 (2) to 2000 (3) patients (by sampling with replacement) and three postulated DVHP models. The Bootstrap was repeated for a ‘non-ideal’ cohort, where the most predictive model did not coincide with the postulated model. The Bootstrap produced chaotic results for all models of cohort size 1 for both the ideal and non-ideal cohorts. For cohort size 2 and 3, the distributions for all populations were more concentrated around the postulated DVHP. For the CoRepMC, the inference frequency increased with cohort size and incidence rate. Correct inference rates  >85 % were only achieved by cohorts with more than 500 patients. Both Bootstrap and CoRepMC indicate that inference of the correct or approximate DVHP for typical cohort sizes is highly uncertain. CoRepMC results were less spurious than Bootstrap results, demonstrating the large influence that randomness in dose-response has on the statistical analysis.

  4. Quantitative evaluation of patient-specific quality assurance using online dosimetry system

    NASA Astrophysics Data System (ADS)

    Jung, Jae-Yong; Shin, Young-Ju; Sohn, Seung-Chang; Min, Jung-Whan; Kim, Yon-Lae; Kim, Dong-Su; Choe, Bo-Young; Suh, Tae-Suk

    2018-01-01

    In this study, we investigated the clinical performance of an online dosimetry system (Mobius FX system, MFX) by 1) dosimetric plan verification using gamma passing rates and dose volume metrics and 2) error-detection capability evaluation by deliberately introduced machine error. Eighteen volumetric modulated arc therapy (VMAT) plans were studied. To evaluate the clinical performance of the MFX, we used gamma analysis and dose volume histogram (DVH) analysis. In addition, to evaluate the error-detection capability, we used gamma analysis and DVH analysis utilizing three types of deliberately introduced errors (Type 1: gantry angle-independent multi-leaf collimator (MLC) error, Type 2: gantry angle-dependent MLC error, and Type 3: gantry angle error). A dosimetric verification comparison of physical dosimetry system (Delt4PT) and online dosimetry system (MFX), gamma passing rates of the two dosimetry systems showed very good agreement with treatment planning system (TPS) calculation. For the average dose difference between the TPS calculation and the MFX measurement, most of the dose metrics showed good agreement within a tolerance of 3%. For the error-detection comparison of Delta4PT and MFX, the gamma passing rates of the two dosimetry systems did not meet the 90% acceptance criterion with the magnitude of error exceeding 2 mm and 1.5 ◦, respectively, for error plans of Types 1, 2, and 3. For delivery with all error types, the average dose difference of PTV due to error magnitude showed good agreement between calculated TPS and measured MFX within 1%. Overall, the results of the online dosimetry system showed very good agreement with those of the physical dosimetry system. Our results suggest that a log file-based online dosimetry system is a very suitable verification tool for accurate and efficient clinical routines for patient-specific quality assurance (QA).

  5. Proton Radiotherapy for Childhood Ependymoma: Initial Clinical Outcomes and Dose Comparisons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, Shannon M.; Safai, Sairos; Trofimov, Alexei

    2008-07-15

    Purpose: To report preliminary clinical outcomes for pediatric patients treated with proton beam radiation for intracranial ependymoma and compare the dose distributions of intensity-modulated radiation therapy with photons (IMRT), three-dimensional conformal proton radiation, and intensity-modulated proton radiation therapy (IMPT) for representative patients. Methods and Materials: All children with intracranial ependymoma confined to the supratentorial or infratentorial brain treated at the Francis H. Burr Proton Facility and Harvard Cyclotron between November 2000 and March 2006 were included in this study. Seventeen patients were treated with protons. Proton, IMRT, and IMPT plans were generated with similar clinical constraints for representative infratentorial andmore » supratentorial ependymoma cases. Tumor and normal tissue dose-volume histograms were calculated and compared. Results: At a median follow-up of 26 months from the start date of radiation therapy, local control, progression-free survival, and overall survival rates were 86%, 80%, and 89%, respectively. Subtotal resection was significantly associated with decreased local control (p = 0.016). Similar tumor volume coverage was achieved with IMPT, proton therapy, and IMRT. Substantial normal tissue sparing was seen with proton therapy compared with IMRT. Use of IMPT will allow for additional sparing of some critical structures. Conclusions: Preliminary disease control with proton therapy compares favorably with the literature. Dosimetric comparisons show the advantage of proton radiation compared with IMRT in the treatment of ependymoma. Further sparing of normal structures appears possible with IMPT. Superior dose distributions were accomplished with fewer beam angles with the use of protons and IMPT.« less

  6. Volumetric-modulated arc therapy (RapidArc) vs. conventional fixed-field intensity-modulated radiotherapy for {sup 18}F-FDG-PET-guided dose escalation in oropharyngeal cancer: A planning study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teoh, May, E-mail: m.teoh@nhs.net; Beveridge, Sabeena; Wood, Katie

    2013-04-01

    Fluorine-18-fluorodeoxyglucose-positron emission tomography ({sup 18}F-FDG-PET)–guided focal dose escalation in oropharyngeal cancer may potentially improve local control. We evaluated the feasibility of this approach using volumetric-modulated arc therapy (RapidArc) and compared these plans with fixed-field intensity-modulated radiotherapy (IMRT) focal dose escalation plans. Materials and methods: An initial study of 20 patients compared RapidArc with fixed-field IMRT using standard dose prescriptions. From this cohort, 10 were included in a dose escalation planning study. Dose escalation was applied to {sup 18}F-FDG-PET–positive regions in the primary tumor at dose levels of 5% (DL1), 10% (DL2), and 15% (DL3) above standard radical dose (65 Gymore » in 30 fractions). Fixed-field IMRT and double-arc RapidArc plans were generated for each dataset. Dose-volume histograms were used for plan evaluation and comparison. The Paddick conformity index (CI{sub Paddick}) and monitor units (MU) for each plan were recorded and compared. Both IMRT and RapidArc produced clinically acceptable plans and achieved planning objectives for target volumes. Dose conformity was significantly better in the RapidArc plans, with lower CI{sub Paddick} scores in both primary (PTV1) and elective (PTV2) planning target volumes (largest difference in PTV1 at DL3; 0.81 ± 0.03 [RapidArc] vs. 0.77 ± 0.07 [IMRT], p = 0.04). Maximum dose constraints for spinal cord and brainstem were not exceeded in both RapidArc and IMRT plans, but mean doses were higher with RapidArc (by 2.7 ± 1 Gy for spinal cord and 1.9 ± 1 Gy for brainstem). Contralateral parotid mean dose was lower with RapidArc, which was statistically significant at DL1 (29.0 vs. 29.9 Gy, p = 0.01) and DL2 (29.3 vs. 30.3 Gy, p = 0.03). MU were reduced by 39.8–49.2% with RapidArc (largest difference at DL3, 641 ± 94 vs. 1261 ± 118, p < 0.01). {sup 18}F-FDG-PET–guided focal dose escalation in oropharyngeal cancer is feasible with RapidArc. Compared with conventional fixed-field IMRT, RapidArc can achieve better dose conformity, improve contralateral parotid sparing, and uses fewer MU.« less

  7. SU-F-T-377: Monte Carlo Re-Evaluation of Volumetric-Modulated Arc Plans of Advanced Stage Nasopharygeal Cancers Optimized with Convolution-Superposition Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, K; Leung, R; Law, G

    Background: Commercial treatment planning system Pinnacle3 (Philips, Fitchburg, WI, USA) employs a convolution-superposition algorithm for volumetric-modulated arc radiotherapy (VMAT) optimization and dose calculation. Study of Monte Carlo (MC) dose recalculation of VMAT plans for advanced-stage nasopharyngeal cancers (NPC) is currently limited. Methods: Twenty-nine VMAT prescribed 70Gy, 60Gy, and 54Gy to the planning target volumes (PTVs) were included. These clinical plans achieved with a CS dose engine on Pinnacle3 v9.0 were recalculated by the Monaco TPS v5.0 (Elekta, Maryland Heights, MO, USA) with a XVMC-based MC dose engine. The MC virtual source model was built using the same measurement beam datasetmore » as for the Pinnacle beam model. All MC recalculation were based on absorbed dose to medium in medium (Dm,m). Differences in dose constraint parameters per our institution protocol (Supplementary Table 1) were analyzed. Results: Only differences in maximum dose to left brachial plexus, left temporal lobe and PTV54Gy were found to be statistically insignificant (p> 0.05). Dosimetric differences of other tumor targets and normal organs are found in supplementary Table 1. Generally, doses outside the PTV in the normal organs are lower with MC than with CS. This is also true in the PTV54-70Gy doses but higher dose in the nasal cavity near the bone interfaces is consistently predicted by MC, possibly due to the increased backscattering of short-range scattered photons and the secondary electrons that is not properly modeled by the CS. The straight shoulders of the PTV dose volume histograms (DVH) initially resulted from the CS optimization are merely preserved after MC recalculation. Conclusion: Significant dosimetric differences in VMAT NPC plans were observed between CS and MC calculations. Adjustments of the planning dose constraints to incorporate the physics differences from conventional CS algorithm should be made when VMAT optimization is carried out directly with MC dose engine.« less

  8. Artificial neural network based gynaecological image-guided adaptive brachytherapy treatment planning correction of intra-fractional organs at risk dose variation.

    PubMed

    Jaberi, Ramin; Siavashpour, Zahra; Aghamiri, Mahmoud Reza; Kirisits, Christian; Ghaderi, Reza

    2017-12-01

    Intra-fractional organs at risk (OARs) deformations can lead to dose variation during image-guided adaptive brachytherapy (IGABT). The aim of this study was to modify the final accepted brachytherapy treatment plan to dosimetrically compensate for these intra-fractional organs-applicators position variations and, at the same time, fulfilling the dosimetric criteria. Thirty patients with locally advanced cervical cancer, after external beam radiotherapy (EBRT) of 45-50 Gy over five to six weeks with concomitant weekly chemotherapy, and qualified for intracavitary high-dose-rate (HDR) brachytherapy with tandem-ovoid applicators were selected for this study. Second computed tomography scan was done for each patient after finishing brachytherapy treatment with applicators in situ. Artificial neural networks (ANNs) based models were used to predict intra-fractional OARs dose-volume histogram parameters variations and propose a new final plan. A model was developed to estimate the intra-fractional organs dose variations during gynaecological intracavitary brachytherapy. Also, ANNs were used to modify the final brachytherapy treatment plan to compensate dosimetrically for changes in 'organs-applicators', while maintaining target dose at the original level. There are semi-automatic and fast responding models that can be used in the routine clinical workflow to reduce individually IGABT uncertainties. These models can be more validated by more patients' plans to be able to serve as a clinical tool.

  9. Early experiences of planning stereotactic radiosurgery using 3D printed models of eyes with uveal melanomas

    PubMed Central

    Furdová, Alena; Sramka, Miron; Thurzo, Andrej; Furdová, Adriana

    2017-01-01

    Objective The objective of this study was to determine the use of 3D printed model of an eye with intraocular tumor for linear accelerator-based stereotactic radiosurgery. Methods The software for segmentation (3D Slicer) created virtual 3D model of eye globe with tumorous mass based on tissue density from computed tomography and magnetic resonance imaging data. A virtual model was then processed in the slicing software (Simplify3D®) and printed on 3D printer using fused deposition modeling technology. The material that was used for printing was polylactic acid. Results In 2015, stereotactic planning scheme was optimized with the help of 3D printed model of the patient’s eye with intraocular tumor. In the period 2001–2015, a group of 150 patients with uveal melanoma (139 choroidal melanoma and 11 ciliary body melanoma) were treated. The median tumor volume was 0.5 cm3 (0.2–1.6 cm3). The radiation dose was 35.0 Gy by 99% of dose volume histogram. Conclusion The 3D printed model of eye with tumor was helpful in planning the process to achieve the optimal scheme for irradiation which requires high accuracy of defining the targeted tumor mass and critical structures. PMID:28203052

  10. The accuracy of the out-of-field dose calculations using a model based algorithm in a commercial treatment planning system

    NASA Astrophysics Data System (ADS)

    Wang, Lilie; Ding, George X.

    2014-07-01

    The out-of-field dose can be clinically important as it relates to the dose of the organ-at-risk, although the accuracy of its calculation in commercial radiotherapy treatment planning systems (TPSs) receives less attention. This study evaluates the uncertainties of out-of-field dose calculated with a model based dose calculation algorithm, anisotropic analytical algorithm (AAA), implemented in a commercial radiotherapy TPS, Varian Eclipse V10, by using Monte Carlo (MC) simulations, in which the entire accelerator head is modeled including the multi-leaf collimators. The MC calculated out-of-field doses were validated by experimental measurements. The dose calculations were performed in a water phantom as well as CT based patient geometries and both static and highly modulated intensity-modulated radiation therapy (IMRT) fields were evaluated. We compared the calculated out-of-field doses, defined as lower than 5% of the prescription dose, in four H&N cancer patients and two lung cancer patients treated with volumetric modulated arc therapy (VMAT) and IMRT techniques. The results show that the discrepancy of calculated out-of-field dose profiles between AAA and the MC depends on the depth and is generally less than 1% for in water phantom comparisons and in CT based patient dose calculations for static field and IMRT. In cases of VMAT plans, the difference between AAA and MC is <0.5%. The clinical impact resulting from the error on the calculated organ doses were analyzed by using dose-volume histograms. Although the AAA algorithm significantly underestimated the out-of-field doses, the clinical impact on the calculated organ doses in out-of-field regions may not be significant in practice due to very low out-of-field doses relative to the target dose.

  11. Clinical application of 3D-printed-step-bolus in post-total-mastectomy electron conformal therapy.

    PubMed

    Park, Kwangwoo; Park, Sungjin; Jeon, Mi-Jin; Choi, Jinhyun; Kim, Jun Won; Cho, Yoon Jin; Jang, Won-Seok; Keum, Yo Sup; Lee, Ik Jae

    2017-04-11

    The 3D-printed boluses were used during the radiation therapy of the chest wall in six patients with breast cancer after modified radical mastectomy (MRM). We measured the in-vivo skin doses while both conventional and 3D-printed boluses were placed on the chest wall and compared the mean doses delivered to the ipsilateral lung and the heart. The homogeneity and conformity of the dose distribution in the chest wall for both types of boluses were also evaluated. The uniformity index on the chest skin was improved when the 3D-printed boluses were used, with the overall average skin dose being closer to the prescribed one in the former case (-0.47% versus -4.43%). On comparing the dose-volume histogram (DVH), it was found that the 3D-printed boluses resulted in a reduction in the mean dose to the ipsilateral lung by up to 20%. The precision of dose delivery was improved by 3% with the 3D-printed boluses; in contrast, the conventional step bolus resulted in a precision level of 5%. In conclusion, the use of the 3D-printed boluses resulted in better dose homogeneity and conformity to the chest wall as well as the sparing of the normal organs, especially the lung. This suggested that their routine use on the chest wall as a therapeutic approach during post-mastectomy radiation therapy offers numerous advantages over conventional step boluses.

  12. Equivalence of Gyn GEC-ESTRO guidelines for image guided cervical brachytherapy with EUD-based dose prescription

    PubMed Central

    2013-01-01

    Background To establish a generalized equivalent uniform dose (gEUD) -based prescription method for Image Guided Brachytherapy (IGBT) that reproduces the Gyn GEC-ESTRO WG (GGE) prescription for cervix carcinoma patients on CT images with limited soft tissue resolution. Methods The equivalence of two IGBT planning approaches was investigated in 20 patients who received external beam radiotherapy (EBT) and 5 concomitant high dose rate IGBT treatments. The GGE planning strategy based on dose to the most exposed 2 cm3 (D2cc) was used to derive criteria for the gEUD-based planning of the bladder and rectum. The safety of gEUD constraints in terms of GGE criteria was tested by maximizing dose to the gEUD constraints for individual fractions. Results The gEUD constraints of 3.55 Gy for the rectum and 5.19 Gy for the bladder were derived. Rectum and bladder gEUD-maximized plans resulted in D2cc averages very similar to the initial GGE criteria. Average D2ccs and EUDs from the full treatment course were comparable for the two techniques within both sets of normal tissue constraints. The same was found for the tumor doses. Conclusions The derived gEUD criteria for normal organs result in GGE-equivalent IGBT treatment plans. The gEUD-based planning considers the entire dose distribution of organs in contrast to a single dose-volume-histogram point. PMID:24225184

  13. Clinical application of 3D-printed-step-bolus in post-total-mastectomy electron conformal therapy

    PubMed Central

    Park, Kwangwoo; Park, Sungjin; Jeon, Mi-Jin; Choi, Jinhyun; Kim, Jun Won; Cho, Yoon Jin; Jang, Won-Seok; Keum, Yo Sup; Lee, Ik Jae

    2017-01-01

    The 3D-printed boluses were used during the radiation therapy of the chest wall in six patients with breast cancer after modified radical mastectomy (MRM). We measured the in-vivo skin doses while both conventional and 3D-printed boluses were placed on the chest wall and compared the mean doses delivered to the ipsilateral lung and the heart. The homogeneity and conformity of the dose distribution in the chest wall for both types of boluses were also evaluated. The uniformity index on the chest skin was improved when the 3D-printed boluses were used, with the overall average skin dose being closer to the prescribed one in the former case (-0.47% versus -4.43%). On comparing the dose-volume histogram (DVH), it was found that the 3D-printed boluses resulted in a reduction in the mean dose to the ipsilateral lung by up to 20%. The precision of dose delivery was improved by 3% with the 3D-printed boluses; in contrast, the conventional step bolus resulted in a precision level of 5%. In conclusion, the use of the 3D-printed boluses resulted in better dose homogeneity and conformity to the chest wall as well as the sparing of the normal organs, especially the lung. This suggested that their routine use on the chest wall as a therapeutic approach during post-mastectomy radiation therapy offers numerous advantages over conventional step boluses. PMID:27784001

  14. Is it sufficient to repeat LINEAR accelerator stereotactic radiosurgery in choroidal melanoma?

    PubMed

    Furdova, A; Horkovicova, K; Justusova, P; Sramka, M

    One day session LINAC based stereotactic radiosurgery (SRS) at LINAC accelerator is a method of "conservative" attitude to treat the intraocular malignant uveal melanoma. We used model Clinac 600 C/D Varian (system Aria, planning system Corvus version 6.2 verification IMRT OmniPro) with 6 MeV X by rigid immobilization of the eye to the Leibinger frame. The stereotactic treatment planning after fusion of CT and MRI was optimized according to the critical structures (lens, optic nerve, also lens and optic nerve at the contralateral side, chiasm). The first plan was compared and the best plan was applied for therapy at C LINAC accelerator. The planned therapeutic dose was 35.0 Gy by 99 % of DVH (dose volume histogram). In our clinical study in the group of 125 patients with posterior uveal melanoma treated with SRS, in 2 patients (1.6 %) was repeated SRS indicated. Patient age of the whole group ranged from 25 to 81 years with a median of 54 TD was 35.0 Gy. In 2 patients after 5 year interval after stereotactic radiosurgery for uveal melanoma stage T1, the tumor volume increased to 50 % of the primary tumor volume and repeated SRS was necessary. To find out the changes in melanoma characteristics after SRS in long term interval after irradiation is necessary to follow up the patient by an ophthalmologist regularly. One step LINAC based stereotactic radiosurgery with a single dose 35.0 Gy is one of treatment options to treat T1 to T3 stage posterior uveal melanoma and to preserve the eye globe. In some cases it is possible to repeat the SRS after more than 5 year interval (Fig. 8, Ref. 23).

  15. Breast Radiotherapy with Mixed Energy Photons; a Model for Optimal Beam Weighting.

    PubMed

    Birgani, Mohammadjavad Tahmasebi; Fatahiasl, Jafar; Hosseini, Seyed Mohammad; Bagheri, Ali; Behrooz, Mohammad Ali; Zabiehzadeh, Mansour; Meskani, Reza; Gomari, Maryam Talaei

    2015-01-01

    Utilization of high energy photons (>10 MV) with an optimal weight using a mixed energy technique is a practical way to generate a homogenous dose distribution while maintaining adequate target coverage in intact breast radiotherapy. This study represents a model for estimation of this optimal weight for day to day clinical usage. For this purpose, treatment planning computed tomography scans of thirty-three consecutive early stage breast cancer patients following breast conservation surgery were analyzed. After delineation of the breast clinical target volume (CTV) and placing opposed wedge paired isocenteric tangential portals, dosimeteric calculations were conducted and dose volume histograms (DVHs) were generated, first with pure 6 MV photons and then these calculations were repeated ten times with incorporating 18 MV photons (ten percent increase in weight per step) in each individual patient. For each calculation two indexes including maximum dose in the breast CTV (Dmax) and the volume of CTV which covered with 95% Isodose line (VCTV, 95%IDL) were measured according to the DVH data and then normalized values were plotted in a graph. The optimal weight of 18 MV photons was defined as the intersection point of Dmax and VCTV, 95%IDL graphs. For creating a model to predict this optimal weight multiple linear regression analysis was used based on some of the breast and tangential field parameters. The best fitting model for prediction of 18 MV photons optimal weight in breast radiotherapy using mixed energy technique, incorporated chest wall separation plus central lung distance (Adjusted R2=0.776). In conclusion, this study represents a model for the estimation of optimal beam weighting in breast radiotherapy using mixed photon energy technique for routine day to day clinical usage.

  16. Treatment-Related Morbidity in Prostate Cancer: A Comparison of 3-Dimensional Conformal Radiation Therapy With and Without Image Guidance Using Implanted Fiducial Markers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Jasmeet, E-mail: drsingh.j@gmail.com; Greer, Peter B.; White, Martin A.

    Purpose: To estimate the prevalence of rectal and urinary dysfunctional symptoms using image guided radiation therapy (IGRT) with fiducials and magnetic resonance planning for prostate cancer. Methods and Materials: During the implementation stages of IGRT between September 2008 and March 2010, 367 consecutive patients were treated with prostatic irradiation using 3-dimensional conformal radiation therapy with and without IGRT (non-IGRT). In November 2010, these men were asked to report their bowel and bladder symptoms using a postal questionnaire. The proportions of patients with moderate to severe symptoms in these groups were compared using logistic regression models adjusted for tumor and treatmentmore » characteristic variables. Results: Of the 282 respondents, the 154 selected for IGRT had higher stage tumors, received higher prescribed doses, and had larger volumes of rectum receiving high dosage than did the 128 selected for non-IGRT. The follow-up duration was 8 to 26 months. Compared with the non-IGRT group, improvement was noted in all dysfunctional rectal symptoms using IGRT. In multivariable analyses, IGRT improved rectal pain (odds ratio [OR] 0.07 [0.009-0.7], P=.02), urgency (OR 0.27 [0.11-0.63], P=<.01), diarrhea (OR 0.009 [0.02-0.35], P<.01), and change in bowel habits (OR 0.18 [0.06-0.52], P<.010). No correlation was observed between rectal symptom levels and dose-volume histogram data. Urinary dysfunctional symptoms were similar in both treatment groups. Conclusions: In comparison with men selected for non-IGRT, a significant reduction of bowel dysfunctional symptoms was confirmed in men selected for IGRT, even though they had larger volumes of rectum treated to higher doses.« less

  17. [Database supported electronic retrospective analyses in radiation oncology: establishing a workflow using the example of pancreatic cancer].

    PubMed

    Kessel, K A; Habermehl, D; Bohn, C; Jäger, A; Floca, R O; Zhang, L; Bougatf, N; Bendl, R; Debus, J; Combs, S E

    2012-12-01

    Especially in the field of radiation oncology, handling a large variety of voluminous datasets from various information systems in different documentation styles efficiently is crucial for patient care and research. To date, conducting retrospective clinical analyses is rather difficult and time consuming. With the example of patients with pancreatic cancer treated with radio-chemotherapy, we performed a therapy evaluation by using an analysis system connected with a documentation system. A total number of 783 patients have been documented into a professional, database-based documentation system. Information about radiation therapy, diagnostic images and dose distributions have been imported into the web-based system. For 36 patients with disease progression after neoadjuvant chemoradiation, we designed and established an analysis workflow. After an automatic registration of the radiation plans with the follow-up images, the recurrence volumes are segmented manually. Based on these volumes the DVH (dose volume histogram) statistic is calculated, followed by the determination of the dose applied to the region of recurrence. All results are saved in the database and included in statistical calculations. The main goal of using an automatic analysis tool is to reduce time and effort conducting clinical analyses, especially with large patient groups. We showed a first approach and use of some existing tools, however manual interaction is still necessary. Further steps need to be taken to enhance automation. Already, it has become apparent that the benefits of digital data management and analysis lie in the central storage of data and reusability of the results. Therefore, we intend to adapt the analysis system to other types of tumors in radiation oncology.

  18. Recalculation of dose for each fraction of treatment on TomoTherapy.

    PubMed

    Thomas, Simon J; Romanchikova, Marina; Harrison, Karl; Parker, Michael A; Bates, Amy M; Scaife, Jessica E; Sutcliffe, Michael P F; Burnet, Neil G

    2016-01-01

    The VoxTox study, linking delivered dose to toxicity requires recalculation of typically 20-37 fractions per patient, for nearly 2000 patients. This requires a non-interactive interface permitting batch calculation with multiple computers. Data are extracted from the TomoTherapy(®) archive and processed using the computational task-management system GANGA. Doses are calculated for each fraction of radiotherapy using the daily megavoltage (MV) CT images. The calculated dose cube is saved as a digital imaging and communications in medicine RTDOSE object, which can then be read by utilities that calculate dose-volume histograms or dose surface maps. The rectum is delineated on daily MV images using an implementation of the Chan-Vese algorithm. On a cluster of up to 117 central processing units, dose cubes for all fractions of 151 patients took 12 days to calculate. Outlining the rectum on all slices and fractions on 151 patients took 7 h. We also present results of the Hounsfield unit (HU) calibration of TomoTherapy MV images, measured over an 8-year period, showing that the HU calibration has become less variable over time, with no large changes observed after 2011. We have developed a system for automatic dose recalculation of TomoTherapy dose distributions. This does not tie up the clinically needed planning system but can be run on a cluster of independent machines, enabling recalculation of delivered dose without user intervention. The use of a task management system for automation of dose calculation and outlining enables work to be scaled up to the level required for large studies.

  19. Investigations of different kilovoltage x-ray energy for three-dimensional converging stereotactic radiotherapy system: Monte Carlo simulations with CT data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deloar, Hossain M.; Kunieda, Etsuo; Kawase, Takatsugu

    2006-12-15

    We are investigating three-dimensional converging stereotactic radiotherapy (3DCSRT) with suitable medium-energy x rays as treatment for small lung tumors with better dose homogeneity at the target. A computed tomography (CT) system dedicated for non-coplanar converging radiotherapy was simulated with BEAMnrc (EGS4) Monte-Carlo code for x-ray energy of 147.5, 200, 300, and 500 kilovoltage (kVp). The system was validated by comparing calculated and measured percentage of depth dose in a water phantom for the energy of 120 and 147.5 kVp. A thorax phantom and CT data from lung tumors (<20 cm{sup 3}) were used to compare dose homogeneities of kVp energiesmore » with MV energies of 4, 6, and 10 MV. Three non-coplanar arcs (0 deg. and {+-}25 deg. ) around the center of the target were employed. The Monte Carlo dose data format was converted to the XiO RTP format to compare dose homogeneity, differential, and integral dose volume histograms of kVp and MV energies. In terms of dose homogeneity and DVHs, dose distributions at the target of all kVp energies with the thorax phantom were better than MV energies, with mean dose absorption at the ribs (human data) of 100%, 85%, 50%, 30% for 147.5, 200, 300, and 500 kVp, respectively. Considering dose distributions and reduction of the enhanced dose absorption at the ribs, a minimum of 500 kVp is suitable for the lung kVp 3DCSRT system.« less

  20. Biological effective dose for comparison and combination of external beam and low-dose rate interstitial brachytherapy prostate cancer treatment plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jani, Ashesh B.; Hand, Christopher M.; Lujan, Anthony E.

    2004-03-31

    We report a methodology for comparing and combining dose information from external beam radiotherapy (EBRT) and interstitial brachytherapy (IB) components of prostate cancer treatment using the biological effective dose (BED). On a prototype early-stage prostate cancer patient treated with EBRT and low-dose rate I-125 brachytherapy, a 3-dimensional dose distribution was calculated for each of the EBRT and IB portions of treatment. For each component of treatment, the BED was calculated on a point-by-point basis to produce a BED distribution. These individual BED distributions could then be summed for combined therapies. BED dose-volume histograms (DVHs) of the prostate, urethra, rectum, andmore » bladder were produced and compared for various combinations of EBRT and IB. Transformation to BED enabled computation of the relative contribution of each modality to the prostate dose, as the relative weighting of EBRT and IB was varied. The BED-DVHs of the prostate and urethra demonstrated dramatically increased inhomogeneity with the introduction of even a small component of IB. However, increasing the IB portion relative to the EBRT component resulted in lower dose to the surrounding normal structures, as evidenced by the BED-DVHs of the bladder and rectum. Conformal EBRT and low-dose rate IB conventional dose distributions were successfully transformed to the common 'language' of BED distributions for comparison and for merging prostate cancer radiation treatment plans. The results of this analysis can assist physicians in quantitatively determining the best combination and weighting of radiation treatment modalities for individual patients.« less

  1. SU-E-T-561: Monte Carlo-Based Organ Dose Reconstruction Using Pre-Contoured Human Model for Hodgkins Lymphoma Patients Treated by Cobalt-60 External Beam Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, J; Pelletier, C; Lee, C

    Purpose: Organ doses for the Hodgkin’s lymphoma patients treated with cobalt-60 radiation were estimated using an anthropomorphic model and Monte Carlo modeling. Methods: A cobalt-60 treatment unit modeled in the BEAMnrc Monte Carlo code was used to produce phase space data. The Monte Carlo simulation was verified with percent depth dose measurement in water at various field sizes. Radiation transport through the lung blocks were modeled by adjusting the weights of phase space data. We imported a precontoured adult female hybrid model and generated a treatment plan. The adjusted phase space data and the human model were imported to themore » XVMC Monte Carlo code for dose calculation. The organ mean doses were estimated and dose volume histograms were plotted. Results: The percent depth dose agreement between measurement and calculation in water phantom was within 2% for all field sizes. The mean organ doses of heart, left breast, right breast, and spleen for the selected case were 44.3, 24.1, 14.6 and 3.4 Gy, respectively with the midline prescription dose of 40.0 Gy. Conclusion: Organ doses were estimated for the patient group whose threedimensional images are not available. This development may open the door to more accurate dose reconstruction and estimates of uncertainties in secondary cancer risk for Hodgkin’s lymphoma patients. This work was partially supported by the intramural research program of the National Institutes of Health, National Cancer Institute, Division of Cancer Epidemiology and Genetics.« less

  2. Measurement of the permeability, perfusion, and histogram characteristics in relapsing-remitting multiple sclerosis using dynamic contrast-enhanced MRI with extended Tofts linear model.

    PubMed

    Yin, Ping; Xiong, Hua; Liu, Yi; Sah, Shambhu K; Zeng, Chun; Wang, Jingjie; Li, Yongmei; Hong, Nan

    2018-01-01

    To investigate the application value of using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with extended Tofts linear model for relapsing-remitting multiple sclerosis (RRMS) and its correlation with expanded disability status scale (EDSS) scores and disease duration. Thirty patients with multiple sclerosis (MS) underwent conventional magnetic resonance imaging (MRI) and DCE-MRI with a 3.0 Tesla MR scanner. An extended Tofts linear model was used to quantitatively measure MR imaging biomarkers. The histogram parameters and correlation among imaging biomarkers, EDSS scores, and disease duration were also analyzed. The MR imaging biomarkers volume transfer constant (K trans ), volume of the extravascular extracellular space per unit volume of tissue (Ve), fractional plasma volume (V p ), cerebral blood flow (CBF), and cerebral blood volume (CBV) of contrast-enhancing (CE) lesions were significantly higher (P < 0.05) than those of nonenhancing (NE) lesions and normal-appearing white matter (NAWM) regions. The skewness of Ve value in CE lesions was more close to normal distribution. There was no significant correlation among the biomarkers with the EDSS scores and disease duration (P > 0.05). Our study demonstrates that the DCE-MRI with the extended Tofts linear model can measure the permeability and perfusion characteristic in MS lesions and in NAWM regions. The K trans , Ve, Vp, CBF, and CBV of CE lesions were significantly higher than that of NE lesions. The skewness of Ve value in CE lesions was more close to normal distribution, indicating that the histogram can be helpful to distinguish the pathology of MS lesions.

  3. Image-guided radiotherapy using megavoltage cone-beam computed tomography for treatment of paraspinous tumors in the presence of orthopedic hardware

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Eric K.; Larson, David A.; Aubin, Michele

    Purpose: This report describes a new image-guided radiotherapy (IGRT) technique using megavoltage cone-beam computed tomography (MV-CBCT) to treat paraspinous tumors in the presence of orthopedic hardware. Methods and Materials: A patient with a resected paraspinous high-grade sarcoma was treated to 59.4 Gy with an IMRT plan. Daily MV-CBCT imaging was used to ensure accurate positioning. The displacement between MV-CBCT and planning CT images were determined daily and applied remotely to the treatment couch. The dose-volume histograms of the original and a hypothetical IMRT plan (shifted by the average daily setup errors) were compared to estimate the impact on dosimetry. Results:more » The mean setup corrections in the lateral, longitudinal, and vertical directions were 3.6 mm (95% CI, 2.6-4.6 mm), 4.1 mm (95% CI, 3.2-5.0 mm), and 1.0 mm (95% CI, 0.6-1.3 mm), respectively. Without corrected positioning, the dose to 0.1 cc of the spinal cord increased by 9.4 Gy, and the doses to 95% of clinical target volumes 1 and 2 were reduced by 4 Gy and 4.8 Gy, respectively. Conclusions: Megavoltage-CBCT provides a new alternative image-guided radiotherapy approach for treatment of paraspinous tumors in the presence of orthopedic hardware by providing 3D anatomic information in the treatment position, with clear imaging of metallic objects and without compromising soft-tissue information.« less

  4. Carcinoma of the anal canal: Intensity modulated radiation therapy (IMRT) versus three-dimensional conformal radiation therapy (3DCRT)

    PubMed Central

    Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham

    2013-01-01

    Introduction Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147–53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. Methods A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRT plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. Results The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose–volume histogram (DVH) doses were consistently lower. Conclusion The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques. PMID:26229623

  5. Carcinoma of the anal canal: Intensity modulated radiation therapy (IMRT) versus three-dimensional conformal radiation therapy (3DCRT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham

    Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147–53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRTmore » plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose–volume histogram (DVH) doses were consistently lower. The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques.« less

  6. Histogram analysis of apparent diffusion coefficient for monitoring early response in patients with advanced cervical cancers undergoing concurrent chemo-radiotherapy.

    PubMed

    Meng, Jie; Zhu, Lijing; Zhu, Li; Ge, Yun; He, Jian; Zhou, Zhengyang; Yang, Xiaofeng

    2017-11-01

    Background Apparent diffusion coefficient (ADC) histogram analysis has been widely used in determining tumor prognosis. Purpose To investigate the dynamic changes of ADC histogram parameters during concurrent chemo-radiotherapy (CCRT) in patients with advanced cervical cancers. Material and Methods This prospective study enrolled 32 patients with advanced cervical cancers undergoing CCRT who received diffusion-weighted (DW) magnetic resonance imaging (MRI) before CCRT, at the end of the second and fourth week during CCRT and one month after CCRT completion. The ADC histogram for the entire tumor volume was generated, and a series of histogram parameters was obtained. Dynamic changes of those parameters in cervical cancers were investigated as early biomarkers for treatment response. Results All histogram parameters except AUC low showed significant changes during CCRT (all P < 0.05). There were three variable trends involving different parameters. The mode, 5th, 10th, and 25th percentiles showed similar early increase rates (33.33%, 33.99%, 34.12%, and 30.49%, respectively) at the end of the second week of CCRT. The pre-CCRT 5th and 25th percentiles of the complete response (CR) group were significantly lower than those of the partial response (PR) group. Conclusion A series of ADC histogram parameters of cervical cancers changed significantly at the early stage of CCRT, indicating their potential in monitoring early tumor response to therapy.

  7. Dosimetric comparison of a 6-MV flattening-filter and a flattening-filter-free beam for lung stereotactic ablative radiotherapy treatment

    NASA Astrophysics Data System (ADS)

    Kim, Yon-Lae; Chung, Jin-Beom; Kim, Jae-Sung; Lee, Jeong-Woo; Kim, Jin-Young; Kang, Sang-Won; Suh, Tae-Suk

    2015-11-01

    The purpose of this study was to test the feasibility of clinical usage of a flattening-filter-free (FFF) beam for treatment with lung stereotactic ablative radiotherapy (SABR). Ten patients were treated with SABR and a 6-MV FFF beam for this study. All plans using volumetric modulated arc therapy (VMAT) were optimized in the Eclipse treatment planning system (TPS) by using the Acuros XB (AXB) dose calculation algorithm and were delivered by using a Varian TrueBeam ™ linear accelerator equipped with a high-definition (HD) multi-leaf collimator. The prescription dose used was 48 Gy in 4 fractions. In order to compare the plan using a conventional 6-MV flattening-filter (FF) beam, the SABR plan was recalculated under the condition of the same beam settings used in the plan employing the 6-MV FFF beam. All dose distributions were calculated by using Acuros XB (AXB, version 11) and a 2.5-mm isotropic dose grid. The cumulative dosevolume histograms (DVH) for the planning target volume (PTV) and all organs at risk (OARs) were analyzed. Technical parameters, such as total monitor units (MUs) and the delivery time, were also recorded and assessed. All plans for target volumes met the planning objectives for the PTV ( i.e., V95% > 95%) and the maximum dose ( i.e., Dmax < 110%) revealing adequate target coverage for the 6-MV FF and FFF beams. Differences in DVH for target volumes (PTV and clinical target volume (CTV)) and OARs on the lung SABR plans from the interchange of the treatment beams were small, but showed a marked reduction (52.97%) in the treatment delivery time. The SABR plan with a FFF beam required a larger number of MUs than the plan with the FF beam, and the mean difference in MUs was 4.65%. This study demonstrated that the use of the FFF beam for lung SABR plan provided better treatment efficiency relative to 6-MV FF beam. This strategy should be particularly beneficial for high dose conformity to the lung and decreased intra-fraction movements because of the shorter treatment delivery time. Future studies are necessary to assess the clinical outcome and the toxicity.

  8. MR-OPERA: A Multicenter/Multivendor Validation of Magnetic Resonance Imaging-Only Prostate Treatment Planning Using Synthetic Computed Tomography Images.

    PubMed

    Persson, Emilia; Gustafsson, Christian; Nordström, Fredrik; Sohlin, Maja; Gunnlaugsson, Adalsteinn; Petruson, Karin; Rintelä, Niina; Hed, Kristoffer; Blomqvist, Lennart; Zackrisson, Björn; Nyholm, Tufve; Olsson, Lars E; Siversson, Carl; Jonsson, Joakim

    2017-11-01

    To validate the dosimetric accuracy and clinical robustness of a commercially available software for magnetic resonance (MR) to synthetic computed tomography (sCT) conversion, in an MR imaging-only workflow for 170 prostate cancer patients. The 4 participating centers had MriPlanner (Spectronic Medical), an atlas-based sCT generation software, installed as a cloud-based service. A T2-weighted MR sequence, covering the body contour, was added to the clinical protocol. The MR images were sent from the MR scanner workstation to the MriPlanner platform. The sCT was automatically returned to the treatment planning system. Four MR scanners and 2 magnetic field strengths were included in the study. For each patient, a CT-treatment plan was created and approved according to clinical practice. The sCT was rigidly registered to the CT, and the clinical treatment plan was recalculated on the sCT. The dose distributions from the CT plan and the sCT plan were compared according to a set of dose-volume histogram parameters and gamma evaluation. Treatment techniques included volumetric modulated arc therapy, intensity modulated radiation therapy, and conventional treatment using 2 treatment planning systems and different dose calculation algorithms. The overall (multicenter/multivendor) mean dose differences between sCT and CT dose distributions were below 0.3% for all evaluated organs and targets. Gamma evaluation showed a mean pass rate of 99.12% (0.63%, 1 SD) in the complete body volume and 99.97% (0.13%, 1 SD) in the planning target volume using a 2%/2-mm global gamma criteria. Results of the study show that the sCT conversion method can be used clinically, with minimal differences between sCT and CT dose distributions for target and relevant organs at risk. The small differences seen are consistent between centers, indicating that an MR imaging-only workflow using MriPlanner is robust for a variety of field strengths, vendors, and treatment techniques. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Dosimetric comparison between intensity-modulated with coplanar field and 3D conformal radiotherapy with noncoplanar field for postocular invasion tumor.

    PubMed

    Wenyong, Tu; Lu, Liu; Jun, Zeng; Weidong, Yin; Yun, Li

    2010-01-01

    This study presents a dosimetric optimization effort aiming to compare noncoplanar field (NCF) on 3 dimensions conformal radiotherapy (3D-CRT) and coplanar field (CF) on intensity-modulated radiotherapy (IMRT) planning for postocular invasion tumor. We performed a planning study on the computed tomography data of 8 consecutive patients with localized postocular invasion tumor. Four fields NCF 3D-CRT in the transverse plane with gantry angles of 0-10 degrees , 30-45 degrees , 240-270 degrees , and 310-335 degrees degrees were isocentered at the center of gravity of the target volume. The geometry of the beams was determined by beam's eye view. The same constraints were prepared with between CF IMRT optimization and NCF 3D-CRT treatment. The maximum point doses (D max) for the different optic pathway structures (OPS) with NCF 3D-CRT treatment should differ in no more than 3% from those with the NCF IMRT plan. Dose-volume histograms (DVHs) were obtained for all targets and organ at risk (OAR) with both treatment techniques. Plans with NCF 3D-CRT and CF IMRT constraints on target dose in homogeneity were computed, as well as the conformity index (CI) and homogeneity index (HI) in the target volume. The PTV coverage was optimal with both NCF 3D-CRT and CF IMRT plans in the 8 tumor sites. No difference was noted between the two techniques for the average D(max) and D(min) dose. NCF 3D-CRT and CF IMRT will yield similar results on CI. However, HI was a significant difference between NCF 3D-CRT and CF IMRT plan (p < 0.001). Physical endpoints for target showed the mean target dose to be low in the CF IMRT plan, caused by a large target dose in homogeneity (p < 0.001). The impact of NCF 3D-CRT versus CF IMRT set-up is very slight. NCF3D-CRT is one of the treatment options for postocular invasion tumor. However, constraints for OARs are needed. 2010 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  10. Using Generalized Equivalent Uniform Dose Atlases to Combine and Analyze Prospective Dosimetric and Radiation Pneumonitis Data From 2 Non-Small Cell Lung Cancer Dose Escalation Protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Fan; Yorke, Ellen D.; Belderbos, Jose S.A.

    2013-01-01

    Purpose: To demonstrate the use of generalized equivalent uniform dose (gEUD) atlas for data pooling in radiation pneumonitis (RP) modeling, to determine the dependence of RP on gEUD, to study the consistency between data sets, and to verify the increased statistical power of the combination. Methods and Materials: Patients enrolled in prospective phase I/II dose escalation studies of radiation therapy of non-small cell lung cancer at Memorial Sloan-Kettering Cancer Center (MSKCC) (78 pts) and the Netherlands Cancer Institute (NKI) (86 pts) were included; 10 (13%) and 14 (17%) experienced RP requiring steroids (RPS) within 6 months after treatment. gEUD wasmore » calculated from dose-volume histograms. Atlases for each data set were created using 1-Gy steps from exact gEUDs and RPS data. The Lyman-Kutcher-Burman model was fit to the atlas and exact gEUD data. Heterogeneity and inconsistency statistics for the fitted parameters were computed. gEUD maps of the probability of RPS rate {>=}20% were plotted. Results: The 2 data sets were homogeneous and consistent. The best fit values of the volume effect parameter a were small, with upper 95% confidence limit around 1.0 in the joint data. The likelihood profiles around the best fit a values were flat in all cases, making determination of the best fit a weak. All confidence intervals (CIs) were narrower in the joint than in the individual data sets. The minimum P value for correlations of gEUD with RPS in the joint data was .002, compared with P=.01 and .05 for MSKCC and NKI data sets, respectively. gEUD maps showed that at small a, RPS risk increases with gEUD. Conclusions: The atlas can be used to combine gEUD and RPS information from different institutions and model gEUD dependence of RPS. RPS has a large volume effect with the mean dose model barely included in the 95% CI. Data pooling increased statistical power.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moteabbed, Maryam, E-mail: mmoteabbed@partners.org; Trofimov, Alexei; Sharp, Gregory C.

    Purpose: To quantify and compare the impact of interfractional setup and anatomic variations on proton therapy (PT) and intensity modulated radiation therapy (IMRT) for prostate cancer. Methods and Materials: Twenty patients with low-risk or intermediate-risk prostate cancer randomized to receive passive-scattering PT (n=10) and IMRT (n=10) were selected. For both modalities, clinical treatment plans included 50.4 Gy(RBE) to prostate and proximal seminal vesicles, and prostate-only boost to 79.2 Gy(RBE) in 1.8 Gy(RBE) per fraction. Implanted fiducials were used for prostate localization and endorectal balloons were used for immobilization. Patients in PT and IMRT arms received weekly computed tomography (CT) and cone beam CTmore » (CBCT) scans, respectively. The planned dose was recalculated on each weekly image, scaled, and mapped onto the planning CT using deformable registration. The resulting accumulated dose distribution over the entire treatment course was compared with the planned dose using dose-volume histogram (DVH) and γ analysis. Results: The target conformity index remained acceptable after accumulation. The largest decrease in the average prostate D{sub 98} was 2.2 and 0.7 Gy for PT and IMRT, respectively. On average, the mean dose to bladder increased by 3.26 ± 7.51 Gy and 1.97 ± 6.84 Gy for PT and IMRT, respectively. These values were 0.74 ± 2.37 and 0.56 ± 1.90 for rectum. Differences between changes in DVH indices were not statistically significant between modalities. All volume indices remained within the protocol tolerances after accumulation. The average pass rate for the γ analysis, assuming tolerances of 3 mm and 3%, for clinical target volume, bladder, rectum, and whole patient for PT/IMRT were 100/100, 92.6/99, 99.2/100, and 97.2/99.4, respectively. Conclusion: The differences in target coverage and organs at risk dose deviations for PT and IMRT were not statistically significant under the guidelines of this protocol.« less

  12. Radiation dose to the lymph drainage area in esophageal cancer with involved-field irradiation.

    PubMed

    Shen, Wenbin; Gao, Hongmei; Zhu, Shuchai; Li, Youmei; Li, Juan; Liu, Zhikun; Su, Jinwei

    2016-01-01

    The aim of this study was to quantify the radiation dose to the corresponding lymph drainage area in esophageal cancer using three-dimensional conformal radiation therapy (3D-CRT) with involvED-field IRradiation (IFI) and to analyze associated factors. A retrospective analysis oF 81 patients with esophageal cancer was conducted. According to the location of the lesions, the lymph drainage area was delineated and the dosimetric parameters were calculated. The 1-, 3-, 5- and 8-year survival rates of the patients were 67.90, 33.33, 20.99 and 11.11%, respectively. Based on the dose-volume histogram in the treatment plan, we calculated the volume percentage of the planning target volume including clinically positive lymph nodes (PTV-N) receiving radiation doses of 30, 35, 40, 45 and 50 Gy (V PTV-N30-50 ). The median values of V PTV-N30-50 were 73, 70, 67, 64 and 58%, respectively. The prescribed dose size exhibited no correlation with V PTV-N30-35 , but did exhibit a significant correlation with V PTV-N40-50 ; the radiation field was not correlated with V PTV-N30-45 , but exhibited a significant correlation with V PTV-N50 ; The length of the lesion on esophageal barium meal X-ray and the PTV were significantly correlated with V PTV-N30-50 . The analysis of variance revealed that the V PTV-NX value in the upper thoracic segment was higher compared with that in the middle and lower thoracic segments; V PTV-N30-35 values differed significantly according to the different locations of the lesions, whereas V PTV-N40-50 values exhibited no significant differences. The value of V PTV-NX exerted no significant effect on long-term patient survival. Therefore, the corresponding lymph drainage area of esophageal cancer IS subjected to a certain Radiation dose when patients undergo 3D-CRT with IFI, which may play a role in the prevention of regional nodal metastasis. However, this hypothesis requires confirmation by further clinical studies.

  13. Radiation dose to the lymph drainage area in esophageal cancer with involved-field irradiation

    PubMed Central

    SHEN, WENBIN; GAO, HONGMEI; ZHU, SHUCHAI; LI, YOUMEI; LI, JUAN; LIU, ZHIKUN; SU, JINWEI

    2016-01-01

    The aim of this study was to quantify the radiation dose to the corresponding lymph drainage area in esophageal cancer using three-dimensional conformal radiation therapy (3D-CRT) with involvED-field IRradiation (IFI) and to analyze associated factors. A retrospective analysis oF 81 patients with esophageal cancer was conducted. According to the location of the lesions, the lymph drainage area was delineated and the dosimetric parameters were calculated. The 1-, 3-, 5- and 8-year survival rates of the patients were 67.90, 33.33, 20.99 and 11.11%, respectively. Based on the dose-volume histogram in the treatment plan, we calculated the volume percentage of the planning target volume including clinically positive lymph nodes (PTV-N) receiving radiation doses of 30, 35, 40, 45 and 50 Gy (VPTV-N30-50). The median values of VPTV-N30-50 were 73, 70, 67, 64 and 58%, respectively. The prescribed dose size exhibited no correlation with VPTV-N30-35, but did exhibit a significant correlation with VPTV-N40-50; the radiation field was not correlated with VPTV-N30-45, but exhibited a significant correlation with VPTV-N50; The length of the lesion on esophageal barium meal X-ray and the PTV were significantly correlated with VPTV-N30–50. The analysis of variance revealed that the VPTV-NX value in the upper thoracic segment was higher compared with that in the middle and lower thoracic segments; VPTV-N30-35 values differed significantly according to the different locations of the lesions, whereas VPTV-N40-50 values exhibited no significant differences. The value of VPTV-NX exerted no significant effect on long-term patient survival. Therefore, the corresponding lymph drainage area of esophageal cancer IS subjected to a certain Radiation dose when patients undergo 3D-CRT with IFI, which may play a role in the prevention of regional nodal metastasis. However, this hypothesis requires confirmation by further clinical studies. PMID:26870295

  14. Dosimetric comparison of standard three-dimensional conformal radiotherapy followed by intensity-modulated radiotherapy boost schedule (sequential IMRT plan) with simultaneous integrated boost–IMRT (SIB IMRT) treatment plan in patients with localized carcinoma prostate

    PubMed Central

    Bansal, A.; Kapoor, R.; Singh, S. K.; Kumar, N.; Oinam, A. S.; Sharma, S. C.

    2012-01-01

    Aims: Dosimeteric and radiobiological comparison of two radiation schedules in localized carcinoma prostate: Standard Three-Dimensional Conformal Radiotherapy (3DCRT) followed by Intensity Modulated Radiotherapy (IMRT) boost (sequential-IMRT) with Simultaneous Integrated Boost IMRT (SIB-IMRT). Material and Methods: Thirty patients were enrolled. In all, the target consisted of PTV P + SV (Prostate and seminal vesicles) and PTV LN (lymph nodes) where PTV refers to planning target volume and the critical structures included: bladder, rectum and small bowel. All patients were treated with sequential-IMRT plan, but for dosimetric comparison, SIB-IMRT plan was also created. The prescription dose to PTV P + SV was 74 Gy in both strategies but with different dose per fraction, however, the dose to PTV LN was 50 Gy delivered in 25 fractions over 5 weeks for sequential-IMRT and 54 Gy delivered in 27 fractions over 5.5 weeks for SIB-IMRT. The treatment plans were compared in terms of dose–volume histograms. Also, Tumor Control Probability (TCP) and Normal Tissue Complication Probability (NTCP) obtained with the two plans were compared. Results: The volume of rectum receiving 70 Gy or more (V > 70 Gy) was reduced to 18.23% with SIB-IMRT from 22.81% with sequential-IMRT. SIB-IMRT reduced the mean doses to both bladder and rectum by 13% and 17%, respectively, as compared to sequential-IMRT. NTCP of 0.86 ± 0.75% and 0.01 ± 0.02% for the bladder, 5.87 ± 2.58% and 4.31 ± 2.61% for the rectum and 8.83 ± 7.08% and 8.25 ± 7.98% for the bowel was seen with sequential-IMRT and SIB-IMRT plans respectively. Conclusions: For equal PTV coverage, SIB-IMRT markedly reduced doses to critical structures, therefore should be considered as the strategy for dose escalation. SIB-IMRT achieves lesser NTCP than sequential-IMRT. PMID:23204659

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ai, H; Zhang, H

    Purpose: To evaluate normal tissue toxicity in patients with head and neck cancer by calculating average survival fraction (SF) and equivalent uniform dose (EUD) for normal tissue cells. Methods: 20 patients with head and neck cancer were included in this study. IMRT plans were generated using EclipseTM treatment planning system by dosimetrist following clinical radiotherapy treatment guidelines. The average SF for three different normal tissue cells of each concerned structure can be calculated from dose spectrum acquired from differential dose volume histogram (DVH) using linear quadratic model. The three types of normal tissues include radiosensitive, moderately radiosensitive and radio-resistant thatmore » represents 70%, 50% and 30% survival fractions, respectively, for a 2-Gy open field. Finally, EUDs for three types of normal tissue of each structure were calculated from average SF. Results: The EUDs of the brainstem, spinal cord, parotid glands, brachial plexus and etc were calculated. Our analysis indicated that the brainstem can absorb as much as 14.3% of prescription dose to the tumor if the cell line is radiosensitive. In addition, as much as 16.1% and 18.3% of prescription dose were absorbed by the brainstem for moderately radiosensitive and radio-resistant cells, respectively. For the spinal cord, the EUDs reached up to 27.6%, 35.0% and 42.9% of prescribed dose for the three types of radiosensitivities respectively. Three types of normal cells for parotid glands can get up to 65.6%, 71.2% and 78.4% of prescription dose, respectively. The maximum EUDs of brachial plexsus were calculated as 75.4%, 76.4% and 76.7% of prescription for three types of normal cell lines. Conclusion: The results indicated that EUD can be used to quantify and evaluate the radiation damage to surrounding normal tissues. Large variation of normal tissue EUDs may come from variation of target volumes and radiation beam orientations among the patients.« less

  16. Knowledge-based IMRT planning for individual liver cancer patients using a novel specific model.

    PubMed

    Yu, Gang; Li, Yang; Feng, Ziwei; Tao, Cheng; Yu, Zuyi; Li, Baosheng; Li, Dengwang

    2018-03-27

    The purpose of this work is to benchmark RapidPlan against clinical plans for liver Intensity-modulated radiotherapy (IMRT) treatment of patients with special anatomical characteristics, and to investigate the prediction capability of the general model (Model-G) versus our specific model (Model-S). A library consisting of 60 liver cancer patients with IMRT planning was used to set up two models (Model-S, Model-G), using the RapidPlan knowledge-based planning system. Model-S consisted of 30 patients with special anatomical characteristics where the distance from planning target volume (PTV) to the right kidney was less than three centimeters and Model-G was configurated using all 60 patients in this library. Knowledge-based IMRT plans were created for the evaluation group formed of 13 patients similar to those included in Model-S by Model-G, Model-S and manually (M), named RPG-plans, RPS-plans and M-plans, respectively. The differences in the dose-volume histograms (DVHs) were compared, not only between RP-plans and their respective M-plans, but also between RPG-plans and RPS-plans. For all 13 patients, RapidPlan could automatically produce clinically acceptable plans. Comparing RP-plans to M-plans, RP-plans improved V 95% of PTV and had greater dose sparing in the right kidney. For the normal liver, RPG-plans delivered similar doses, while RPS-plans delivered a higher dose than M-plans. With respect to RapidPlan models, RPS-plans had better conformity index (CI) values and delivered lower doses to the right kidney V 20Gy and maximizing point doses to spinal cord, while delivering higher doses to the normal liver. The study shows that RapidPlan can create high-quality plans, and our specific model can improve the CI of PTV, resulting in more sparing of OAR in IMRT for individual liver cancer patients.

  17. A GPU-accelerated and Monte Carlo-based intensity modulated proton therapy optimization system.

    PubMed

    Ma, Jiasen; Beltran, Chris; Seum Wan Chan Tseung, Hok; Herman, Michael G

    2014-12-01

    Conventional spot scanning intensity modulated proton therapy (IMPT) treatment planning systems (TPSs) optimize proton spot weights based on analytical dose calculations. These analytical dose calculations have been shown to have severe limitations in heterogeneous materials. Monte Carlo (MC) methods do not have these limitations; however, MC-based systems have been of limited clinical use due to the large number of beam spots in IMPT and the extremely long calculation time of traditional MC techniques. In this work, the authors present a clinically applicable IMPT TPS that utilizes a very fast MC calculation. An in-house graphics processing unit (GPU)-based MC dose calculation engine was employed to generate the dose influence map for each proton spot. With the MC generated influence map, a modified least-squares optimization method was used to achieve the desired dose volume histograms (DVHs). The intrinsic CT image resolution was adopted for voxelization in simulation and optimization to preserve spatial resolution. The optimizations were computed on a multi-GPU framework to mitigate the memory limitation issues for the large dose influence maps that resulted from maintaining the intrinsic CT resolution. The effects of tail cutoff and starting condition were studied and minimized in this work. For relatively large and complex three-field head and neck cases, i.e., >100,000 spots with a target volume of ∼ 1000 cm(3) and multiple surrounding critical structures, the optimization together with the initial MC dose influence map calculation was done in a clinically viable time frame (less than 30 min) on a GPU cluster consisting of 24 Nvidia GeForce GTX Titan cards. The in-house MC TPS plans were comparable to a commercial TPS plans based on DVH comparisons. A MC-based treatment planning system was developed. The treatment planning can be performed in a clinically viable time frame on a hardware system costing around 45,000 dollars. The fast calculation and optimization make the system easily expandable to robust and multicriteria optimization.

  18. Should image rotation be addressed during routine cone-beam CT quality assurance?

    NASA Astrophysics Data System (ADS)

    Ayan, Ahmet S.; Lin, Haibo; Yeager, Caitlyn; Deville, Curtiland; McDonough, James; Zhu, Timothy C.; Anderson, Nathan; Bar Ad, Voichita; Lu, Hsiao-Ming; Both, Stefan

    2013-02-01

    The purpose of this study is to investigate whether quality assurance (QA) for cone-beam computed tomography (CBCT) image rotation is necessary in order to ensure the accuracy of CBCT based image-guided radiation therapy (IGRT) and adaptive radiotherapy (ART). Misregistration of angular coordinates during CBCT acquisition may lead to a rotated reconstructed image. If target localization is performed based on this image, an under- or over-dosage of the target volume (TV) and organs at risk (OARs) may occur. Therefore, patient CT image sets were rotated by 1° up to 3° and the treatment plans were recalculated to quantify changes in dose-volume histograms. A computer code in C++ was written to model the TV displacement and overlap area of an ellipse shape at the target and dose prescription levels corresponding to the image rotation. We investigated clinical scenarios in IGRT and ART in order to study the implications of image rotation on dose distributions for: (1) lateral TV and isocenter (SBRT), (2) central TV and isocenter (IMRT), (3) lateral TV and isocenter (IMRT). Mathematical analysis showed the dose coverage of TV depends on its shape, size, location, and orientation relative to the isocenter. Evaluation of three first scenario for θ = 1° showed variations in TV D95 in the context of IGRT and ART when compared to the original plan were within 2.7 ± 2.6% and 7.7 ± 6.9% respectively while variations in the second and third scenarios were less significant (<0.5%) for the angular range evaluated. However a larger degree of variation was found in terms of minimum and maximum doses for target and OARs. The rotation of CBCT image data sets may have significant dosimetric consequences in IGRT and ART. The TV's location relative to isocenter and shape determine the extent of alterations in dose indicators. Our findings suggest that a CBCT QA criterion of 1° would be a reasonable action level to ensure accurate dose delivery.

  19. Verification of the grid size and angular increment effects in lung stereotactic body radiation therapy using the dynamic conformal arc technique

    NASA Astrophysics Data System (ADS)

    Park, Hae-Jin; Suh, Tae-Suk; Park, Ji-Yeon; Lee, Jeong-Woo; Kim, Mi-Hwa; Oh, Young-Taek; Chun, Mison; Noh, O. Kyu; Suh, Susie

    2013-06-01

    The dosimetric effects of variable grid size and angular increment were systematically evaluated in the measured dose distributions of dynamic conformal arc therapy (DCAT) for lung stereotactic body radiation therapy (SBRT). Dose variations with different grid sizes (2, 3, and 4 mm) and angular increments (2, 4, 6, and 10°) for spherical planning target volumes (PTVs) were verified in a thorax phantom by using EBT2 films. Although the doses for identical PTVs were predicted for the different grid sizes, the dose discrepancy was evaluated using one measured dose distribution with the gamma tool because the beam was delivered in the same set-up for DCAT. The dosimetric effect of the angular increment was verified by comparing the measured dose area histograms of organs at risk (OARs) at each angular increment. When the difference in the OAR doses is higher than the uncertainty of the film dosimetry, the error is regarded as the angular increment effect in discretely calculated doses. In the results, even when a 2-mm grid size was used with an elaborate dose calculation, 4-mm grid size led to a higher gamma pass ratio due to underdosage, a steep-dose descent gradient, and lower estimated PTV doses caused by the smoothing effect in the calculated dose distribution. An undulating dose distribution and a difference in the maximum contralateral lung dose of up to 14% were observed in dose calculation using a 10° angular increment. The DCAT can be effectively applied for an approximately spherical PTV in a relatively uniform geometry, which is less affected by inhomogeneous materials and differences in the beam path length.

  20. SU-E-T-616: Comparison of Plan Dose Accuracy for Anterior Vs. Lateral Fields in Proton Therapy of Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moteabbed, M; Trofimov, A; Testa, M

    2014-06-01

    Purpose: With the anticipated introduction of in vivo range verification methods, the use of anterior fields for proton therapy of prostate cancer may become an attractive treatment option, and improve upon the dose distributions achievable with conventional lateral-opposed fields. This study aimed to evaluate and compare the planned dose accuracy for lateral versus anterior oblique field arrangements. Methods: Four patients with low/intermediate risk prostate cancer, participating in a clinical trial at our institution, were selected for this study. All patients were treated using lateral-opposed fields (LAT). The clinical target volume (CTV) received a total dose of 79.2 Gy in 44more » fractions. Anterior oblique research plans (ANT) were created using the clinical planning system, and featured beams with ±35-degree gantry angle, 1.2 cm aperture margins, 3-mm range compensator smearing and no range uncertainty margins. Monte Carlo (MC) simulations were performed for both beam arrangements using TOPAS. Dose volume histograms were analyzed and compared for planned and MC dose distributions. Differences between MC and planned DVH parameters were computed as a percentage of the total prescribed dose. Results: For all patients, CTV dose was systematically lower (∼2–2.5%) for MC than the plan. This discrepancy was slightly larger (∼0.5%) for LAT compared to ANT plans for all cases. Although the dose differences for bladder and anterior rectal wall remained within 0.7% for all LAT cases, they were slightly larger for ANT plans, especially for case 3 due to larger patient size and MC-plan range difference. The EUD difference for femoral heads was within 0.6% for both LAT and ANT cases. Conclusion: The dose calculated by the treatment planning system using pencil beam algorithm agrees with MC to within 2.5% and is comparable for lateral and anterior scenarios. The dose agreement in the anterior rectal wall is range- and hence, patient-dependent for ANT treatments.« less

  1. A computational method for estimating the dosimetric effect of intra-fraction motion on step-and-shoot IMRT and compensator plans

    NASA Astrophysics Data System (ADS)

    Waghorn, Ben J.; Shah, Amish P.; Ngwa, Wilfred; Meeks, Sanford L.; Moore, Joseph A.; Siebers, Jeffrey V.; Langen, Katja M.

    2010-07-01

    Intra-fraction organ motion during intensity-modulated radiation therapy (IMRT) treatment can cause differences between the planned and the delivered dose distribution. To investigate the extent of these dosimetric changes, a computational model was developed and validated. The computational method allows for calculation of the rigid motion perturbed three-dimensional dose distribution in the CT volume and therefore a dose volume histogram-based assessment of the dosimetric impact of intra-fraction motion on a rigidly moving body. The method was developed and validated for both step-and-shoot IMRT and solid compensator IMRT treatment plans. For each segment (or beam), fluence maps were exported from the treatment planning system. Fluence maps were shifted according to the target position deduced from a motion track. These shifted, motion-encoded fluence maps were then re-imported into the treatment planning system and were used to calculate the motion-encoded dose distribution. To validate the accuracy of the motion-encoded dose distribution the treatment plan was delivered to a moving cylindrical phantom using a programmed four-dimensional motion phantom. Extended dose response (EDR-2) film was used to measure a planar dose distribution for comparison with the calculated motion-encoded distribution using a gamma index analysis (3% dose difference, 3 mm distance-to-agreement). A series of motion tracks incorporating both inter-beam step-function shifts and continuous sinusoidal motion were tested. The method was shown to accurately predict the film's dose distribution for all of the tested motion tracks, both for the step-and-shoot IMRT and compensator plans. The average gamma analysis pass rate for the measured dose distribution with respect to the calculated motion-encoded distribution was 98.3 ± 0.7%. For static delivery the average film-to-calculation pass rate was 98.7 ± 0.2%. In summary, a computational technique has been developed to calculate the dosimetric effect of intra-fraction motion. This technique has the potential to evaluate a given plan's sensitivity to anticipated organ motion. With knowledge of the organ's motion it can also be used as a tool to assess the impact of measured intra-fraction motion after dose delivery.

  2. Comparison of Utility of Histogram Apparent Diffusion Coefficient and R2* for Differentiation of Low-Grade From High-Grade Clear Cell Renal Cell Carcinoma.

    PubMed

    Zhang, Yu-Dong; Wu, Chen-Jiang; Wang, Qing; Zhang, Jing; Wang, Xiao-Ning; Liu, Xi-Sheng; Shi, Hai-Bin

    2015-08-01

    The purpose of this study was to compare histogram analysis of apparent diffusion coefficient (ADC) and R2* for differentiating low-grade from high-grade clear cell renal cell carcinoma (RCC). Forty-six patients with pathologically confirmed clear cell RCC underwent preoperative BOLD and DWI MRI of the kidneys. ADCs based on the entire tumor volume were calculated with b value combinations of 0 and 800 s/mm(2). ROI-based R2* was calculated with eight TE combinations of 6.7-22.8 milliseconds. Histogram analysis of tumor ADCs and R2* values was performed to obtain mean; median; width; and fifth, 10th, 90th, and 95th percentiles and histogram inhomogeneity, kurtosis, and skewness for all lesions. Thirty-three low-grade and 13 high-grade clear cell RCCs were found at pathologic examination. The TNM classification and tumor volume of clear cell RCC significantly correlated with histogram ADC and R2* (ρ = -0.317 to 0.506; p < 0.05). High-grade clear cell RCC had significantly lower mean, median, and 10th percentile ADCs but higher inhomogeneity and median R2* than low-grade clear cell RCC (all p < 0.05). Compared with other histogram ADC and R2* indexes, 10th percentile ADC had the highest accuracy (91.3%) in discriminating low- from high-grade clear cell RCC. R2* in discriminating hemorrhage was achieved with a threshold of 68.95 Hz. At this threshold, high-grade clear cell RCC had a significantly higher prevalence of intratumor hemorrhage (high-grade, 76.9%; low-grade, 45.4%; p < 0.05) and larger hemorrhagic area than low-grade clear cell RCC (high-grade, 34.9% ± 31.6%; low-grade, 8.9 ± 16.8%; p < 0.05). A close relation was found between MRI indexes and pathologic findings. Histogram analysis of ADC and R2* allows differentiation of low- from high-grade clear cell RCC with high accuracy.

  3. Increased therapeutic ratio by 18FDG-PET CT planning in patients with clinical CT stage N2-N3M0 non-small-cell lung cancer: a modeling study.

    PubMed

    van Der Wel, Antoinet; Nijsten, Sebastiaan; Hochstenbag, Monique; Lamers, Rob; Boersma, Liesbeth; Wanders, Rinus; Lutgens, Ludy; Zimny, Michael; Bentzen, Søren M; Wouters, Brad; Lambin, Philippe; De Ruysscher, Dirk

    2005-03-01

    With this modeling study, we wanted to estimate the potential gain from incorporating fluorodeoxyglucose-positron emission tomography (FDG-PET) scanning in the radiotherapy treatment planning of CT Stage N2-N3M0 non-small-cell lung cancer (NSCLC) patients. Twenty-one consecutive patients with clinical CT Stage N2-N3M0 NSCLC were studied. For each patient, two three-dimensional conformal treatment plans were made: one with a CT-based planning target volume (PTV) and one with a PET-CT-based PTV, both to deliver 60 Gy in 30 fractions. From the dose-volume histograms and dose distributions on each plan, the dosimetric factors predicting esophageal and lung toxicity were analyzed and compared. For each patient, the maximal tolerable prescribed radiation dose for the CT PTV vs. PET-CT PTV was calculated according to the constraints for the lung, esophagus, and spinal cord. From these results, the tumor control probability (TCP) was estimated, assuming a clinical dose-response curve with a median toxic dose of 84.5 Gy and a gamma(50) of 2.0. Dose-response curves were modeled, taking into account geographic misses according to the accuracy of CT and PET in our institutions. The gross tumor volume of the nodes decreased from 13.7 +/- 3.8 cm(3) on the CT scan to 9.9 +/- 4.0 cm(3) on the PET-CT scan (p = 0.011). All dose-volume characteristics for the esophagus and lungs decreased in favor of PET-CT. The esophageal V(45) (the volume of the esophagus receiving 45 Gy) decreased from 45.2% +/- 4.9% to 34.0% +/- 5.8% (p = 0.003), esophageal V(55) (the volume of the esophagus receiving 55 Gy) from 30.6% +/- 3.2% to 21.9% +/- 3.8% (p = 0.004), mean esophageal dose from 29.8 +/- 2.5 Gy to 23.7 +/- 3.1 Gy (p = 0.004), lung V(20) (the volume of the lungs minus the PTV receiving 20 Gy) from 24.9% +/- 2.3% to 22.3% +/- 2.2% (p = 0.012), and mean lung dose from 14.7 +/- 1.3 Gy to 13.6 +/- 1.3 Gy (p = 0.004). For the same toxicity levels of the lung, esophagus, and spinal cord, the dose could be increased from 56.0 +/- 5.4 Gy with CT planning to 71.0 +/- 13.7 Gy with PET planning (p = 0.038). The TCP corresponding to these doses was estimated to be 14.2% +/- 5.6% for CT and 22.8% +/- 7.1% for PET-CT planning (p = 0.026). Adjusting for geographic misses by PET-CT vs. CT planning yielded TCP estimates of 12.5% and 18.3% (p = 0.009) for CT and PET-CT planning, respectively. In this group of clinical CT Stage N2-N3 NSCLC patients, use of FDG-PET scanning information in radiotherapy planning reduced the radiation exposure of the esophagus and lung, and thus allowed significant radiation dose escalation while respecting all relevant normal tissue constraints. This, together with a reduced risk of geographic misses using PET-CT, led to an estimated increase in TCP from 13% to 18%. The results of this modeling study support clinical trials investigating incorporation of FDG-PET information in CT-based radiotherapy planning.

  4. Anatomy-corresponding method of IMRT verification.

    PubMed

    Winiecki, Janusz; Zurawski, Zbigniew; Drzewiecka, Barbara; Slosarek, Krzysztof

    2010-01-01

    During a proper execution of dMLC plans, there occurs an undesired but frequent effect of the dose locally accumulated by tissue being significantly different than expected. The conventional dosimetric QA procedures give only a partial picture of the quality of IMRT treatment, because their solely quantitative outcomes usually correspond more to the total area of the detector than the actually irradiated volume. The aim of this investigation was to develop a procedure of dynamic plans verification which would be able to visualize the potential anomalies of dose distribution and specify which tissue they exactly refer to. The paper presents a method discovered and clinically examined in our department. It is based on a Gamma Evaluation concept and allows accurate localization of deviations between predicted and acquired dose distributions, which were registered by portal as well as film dosimetry. All the calculations were performed on the self-made software GammaEval, the γ-images (2-dimensional distribution of γ-values) and γ-histograms were created as quantitative outcomes of verification. Over 150 maps of dose distribution have been analyzed and the cross-examination of the gamma images with DRRs was performed. It seems, that the complex monitoring of treatment would be possible owing to the images obtained as a cross-examination of γ-images and corresponding DRRs.

  5. The effects of intra-fraction organ motion on the delivery of intensity-modulated field with a multileaf collimator.

    PubMed

    Chui, Chen-Shou; Yorke, Ellen; Hong, Linda

    2003-07-01

    Intensity-modulated radiation therapy can be conveniently delivered with a multileaf collimator. With this method, the entire field is not delivered at once, but rather it is composed of many subfields defined by the leaf positions as a function of beam on time. At any given instant, only these subfields are delivered. During treatment, if the organ moves, part of the volume may move in or out of these subfields. Due to this interplay between organ motion and leaf motion the delivered dose may be different from what was planned. In this work, we present a method that calculates the effects of organ motion on delivered dose. The direction of organ motion may be parallel or perpendicular to the leaf motion, and the effect can be calculated for a single fraction or for multiple fractions. Three breast patients and four lung patients were included in this study,with the amplitude of the organ motion varying from +/- 3.5 mm to +/- 10 mm, and the period varying from 4 to 8 seconds. Calculations were made for these patients with and without organ motion, and results were examined in terms of isodose distribution and dose volume histograms. Each calculation was repeated ten times in order to estimate the statistical uncertainties. For selected patients, calculations were also made with conventional treatment technique. The effects of organ motion on conventional techniques were compared relative to that on IMRT techniques. For breast treatment, the effect of organ motion primarily broadened the penumbra at the posterior field edge. The dose in the rest of the treatment volume was not significantly affected. For lung treatment, the effect also broadened the penumbra and degraded the coverage of the planning target volume (PTV). However, the coverage of the clinical target volume (CTV) was not much affected, provided the PTV margin was adequate. The same effects were observed for both IMRT and conventional treatment techniques. For the IMRT technique, the standard deviations of ten samples of a 30-fraction calculation were very small for all patients, implying that over a typical treatment course of 30 fractions, the delivered dose was very close to the expected value. Hence, under typical clinical conditions, the effect of organ motion on delivered dose can be calculated without considering the interplay between the organ motion and the leaf motion. It can be calculated as the weighted average of the dose distribution without organ motion with the distribution of organ motion. Since the effects of organ motion on dose were comparable for both IMRT and conventional techniques, the PTV margin should remain the same for both techniques.

  6. Intensity Modulated Radiation Treatment of Prostate Cancer Guided by High Field MR Spectroscopic Imaging

    DTIC Science & Technology

    2006-05-01

    d). (e) In the histogram analysis eld units are observed initially for voxels located on the d to 250 Hounsfield units.ses (a) el the tration...CT10, CT20, and CT30. Histogram ximum difference of 250 Hounsfield units . Only 0.01% d units.d imag ts a mand finite-element model. The fluid flow...cause Hounsfield unit calibration problems. While this does not seem to influence the image registration, the use of CBCT for dose calculation should

  7. A knowledge-based approach to improving and homogenizing intensity modulated radiation therapy planning quality among treatment centers: an example application to prostate cancer planning.

    PubMed

    Good, David; Lo, Joseph; Lee, W Robert; Wu, Q Jackie; Yin, Fang-Fang; Das, Shiva K

    2013-09-01

    Intensity modulated radiation therapy (IMRT) treatment planning can have wide variation among different treatment centers. We propose a system to leverage the IMRT planning experience of larger institutions to automatically create high-quality plans for outside clinics. We explore feasibility by generating plans for patient datasets from an outside institution by adapting plans from our institution. A knowledge database was created from 132 IMRT treatment plans for prostate cancer at our institution. The outside institution, a community hospital, provided the datasets for 55 prostate cancer cases, including their original treatment plans. For each "query" case from the outside institution, a similar "match" case was identified in the knowledge database, and the match case's plan parameters were then adapted and optimized to the query case by use of a semiautomated approach that required no expert planning knowledge. The plans generated with this knowledge-based approach were compared with the original treatment plans at several dose cutpoints. Compared with the original plan, the knowledge-based plan had a significantly more homogeneous dose to the planning target volume and a significantly lower maximum dose. The volumes of the rectum, bladder, and femoral heads above all cutpoints were nominally lower for the knowledge-based plan; the reductions were significantly lower for the rectum. In 40% of cases, the knowledge-based plan had overall superior (lower) dose-volume histograms for rectum and bladder; in 54% of cases, the comparison was equivocal; in 6% of cases, the knowledge-based plan was inferior for both bladder and rectum. Knowledge-based planning was superior or equivalent to the original plan in 95% of cases. The knowledge-based approach shows promise for homogenizing plan quality by transferring planning expertise from more experienced to less experienced institutions. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Dosimetric comparison using different multileaf collimeters in intensity-modulated radiotherapy for upper thoracic esophageal cancer.

    PubMed

    Gong, Youling; Wang, Shichao; Zhou, Lin; Liu, Yongmei; Xu, Yong; Lu, You; Bai, Sen; Fu, Yuchuan; Xu, Qingfeng; Jiang, Qingfeng

    2010-07-15

    To study the impacts of multileaf collimators (MLC) width [standard MLC width of 10 mm (sMLC) and micro-MLC width of 4 mm (mMLC)] in the intensity-modulated radiotherapy (IMRT) planning for the upper thoracic esophageal cancer (UTEC). 10 patients with UTEC were retrospectively planned with the sMLC and the mMLC. The monitor unites (MUs) and dose volume histogram-based parameters [conformity index (CI) and homogeneous index (HI)] were compared between the IMRT plans with sMLC and with mMLC. The IMRT plans with the mMLC were more efficient (average MUs: 703.1 +/- 68.3) than plans with the sMLC (average MUs: 833.4 +/- 73.8) (p < 0.05). Also, compared to plans with the sMLC, the plans with the mMLC showed advantages in dose coverage of the planning gross tumor volume (Pgtv) (CI 0.706 +/- 0.056/HI 1.093 +/- 0.021) and the planning target volume (PTV) (CI 0.707 +/- 0.029/HI 1.315 +/- 0.013) (p < 0.05). In addition, the significant dose sparing in the D5 (3260.3 +/- 374.0 vs 3404.5 +/- 374.4)/gEUD (1815.1 +/- 281.7 vs 1849.2 +/- 297.6) of the spinal cord, the V10 (33.2 +/- 6.5 vs 34.0 +/- 6.7), V20 (16.0 +/- 4.6 vs 16.6 +/- 4.7), MLD (866.2 +/- 174.1 vs 887.9 +/- 172.1) and gEUD (938.6 +/- 175.2 vs 956.8 +/- 171.0) of the lungs were observed in the plans with the mMLC, respectively (p < 0.05). Comparing to the sMLC, the mMLC not only demonstrated higher efficiencies and more optimal target coverage, but also considerably improved the dose sparing of OARs in the IMRT planning for UTEC.

  9. Improving IMRT delivery efficiency using intensity limits during inverse planning.

    PubMed

    Coselmon, Martha M; Moran, Jean M; Radawski, Jeffrey D; Fraass, Benedick A

    2005-05-01

    Inverse planned intensity modulated radiotherapy (IMRT) fields can be highly modulated due to the large number of degrees of freedom involved in the inverse planning process. Additional modulation typically results in a more optimal plan, although the clinical rewards may be small or offset by additional delivery complexity and/or increased dose from transmission and leakage. Increasing modulation decreases delivery efficiency, and may lead to plans that are more sensitive to geometrical uncertainties. The purpose of this work is to assess the use of maximum intensity limits in inverse IMRT planning as a simple way to increase delivery efficiency without significantly affecting plan quality. Nine clinical cases (three each for brain, prostate, and head/neck) were used to evaluate advantages and disadvantages of limiting maximum intensity to increase delivery efficiency. IMRT plans were generated using in-house protocol-based constraints and objectives for the brain and head/neck, and RTOG 9406 dose volume objectives in the prostate. Each case was optimized at a series of maximum intensity ratios (the product of the maximum intensity and the number of beams divided by the prescribed dose to the target volume), and evaluated in terms of clinical metrics, dose-volume histograms, monitor units (MU) required per fraction (SMLC and DMLC delivery), and intensity map variation (a measure of the beam modulation). In each site tested, it was possible to reduce total monitor units by constraining the maximum allowed intensity without compromising the clinical acceptability of the plan. Monitor unit reductions up to 38% were observed for SMLC delivery, while reductions up to 29% were achieved for DMLC delivery. In general, complicated geometries saw a smaller reduction in monitor units for both delivery types, although DMLC delivery required significantly more monitor units in all cases. Constraining the maximum intensity in an inverse IMRT plan is a simple way to improve delivery efficiency without compromising plan objectives.

  10. Different rectal toxicity tolerance with and without simultaneous conventionally-fractionated pelvic lymph node treatment in patients receiving hypofractionated prostate radiotherapy.

    PubMed

    McDonald, Andrew M; Baker, Christopher B; Popple, Richard A; Shekar, Kiran; Yang, Eddy S; Jacob, Rojymon; Cardan, Rex; Kim, Robert Y; Fiveash, John B

    2014-06-03

    To investigate added morbidity associated with the addition of pelvic elective nodal irradiation (ENI) to hypofractionated radiotherapy to the prostate. Two-hundred twelve patients, treated with hypofractionated radiotherapy to the prostate between 2004 and 2011, met the inclusion criteria for the analysis. All patients received 70 Gy to the prostate delivered over 28 fractions and 103 (49%) received ENI consisting of 50.4 Gy to the pelvic lymphatics delivered simultaneously in 1.8 Gy fractions. The mean dose-volume histograms were compared between the two subgroups defined by use of ENI, and various dose-volume parameters were analyzed for effect on late lower gastrointestinal (GI) and genitourinary (GU) toxicity. Acute grade 2 lower GI toxicity occurred in 38 (37%) patients receiving ENI versus 19 (17%) in those who did not (p = 0.001). The Kaplan-Meier estimate of grade ≥ 2 lower GI toxicity at 3 years was 15.3% for patients receiving ENI versus 5.3% for those who did not (p = 0.026). Each rectal isodose volume was increased for patients receiving ENI up to 50 Gy (p ≤ 0.021 for each 5 Gy increment). Across all patients, the absolute V70 of the rectum was the only predictor of late GI toxicity. When subgroups, defined by the use of ENI, were analyzed separately, rectal V70 was only predictive of late GI toxicity for patients who received ENI. For patients receiving ENI, V70 > 3 cc was associated with an increased risk of late GI events. Elective nodal irradiation increases the rates of acute and late GI toxicity when delivered simultaneously with hypofractioanted prostate radiotherapy. The use of ENI appears to sensitize the rectum to hot spots, therefore we recommend added caution to minimize the volume of rectum receiving 100% of the prescription dose in these patients.

  11. Different rectal toxicity tolerance with and without simultaneous conventionally-fractionated pelvic lymph node treatment in patients receiving hypofractionated prostate radiotherapy

    PubMed Central

    2014-01-01

    Purpose To investigate added morbidity associated with the addition of pelvic elective nodal irradiation (ENI) to hypofractionated radiotherapy to the prostate. Methods and materials Two-hundred twelve patients, treated with hypofractionated radiotherapy to the prostate between 2004 and 2011, met the inclusion criteria for the analysis. All patients received 70 Gy to the prostate delivered over 28 fractions and 103 (49%) received ENI consisting of 50.4 Gy to the pelvic lymphatics delivered simultaneously in 1.8 Gy fractions. The mean dose-volume histograms were compared between the two subgroups defined by use of ENI, and various dose-volume parameters were analyzed for effect on late lower gastrointestinal (GI) and genitourinary (GU) toxicity. Results Acute grade 2 lower GI toxicity occurred in 38 (37%) patients receiving ENI versus 19 (17%) in those who did not (p = 0.001). The Kaplan-Meier estimate of grade ≥ 2 lower GI toxicity at 3 years was 15.3% for patients receiving ENI versus 5.3% for those who did not (p = 0.026). Each rectal isodose volume was increased for patients receiving ENI up to 50 Gy (p ≤ 0.021 for each 5 Gy increment). Across all patients, the absolute V70 of the rectum was the only predictor of late GI toxicity. When subgroups, defined by the use of ENI, were analyzed separately, rectal V70 was only predictive of late GI toxicity for patients who received ENI. For patients receiving ENI, V70 > 3 cc was associated with an increased risk of late GI events. Conclusions Elective nodal irradiation increases the rates of acute and late GI toxicity when delivered simultaneously with hypofractioanted prostate radiotherapy. The use of ENI appears to sensitize the rectum to hot spots, therefore we recommend added caution to minimize the volume of rectum receiving 100% of the prescription dose in these patients. PMID:24893842

  12. Comparison of IMRT versus 3D-CRT in the treatment of esophagus cancer

    PubMed Central

    Xu, Dandan; Li, Guowen; Li, Hongfei; Jia, Fei

    2017-01-01

    Abstract Background: Esophageal cancer (EC) is a common cancer with high mortality because of its rapid progression and poor prognosis. Radiotherapy is one of the most effective treatments for EC. Three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) are 2 recently developed radiotherapy techniques. IMRT is believed to be more effective than 3D-CRT in target coverage, dose homogeneity, and reducing toxicity to normal organs. However, these advantages have not been demonstrated in the treatment of EC. This meta-analysis was performed to compare IMRT and 3D-CRT in the treatment of EC in terms of dose–volume histograms and outcomes including survival and toxicity. Methods: A literature search was performed in PubMed, Embase, and the Cochrane library databases from their inceptions to Dec 30, 2016. Two authors independently assessed the included studies and extracted data. The average percent irradiated volumes of adjacent noncancerous organs were calculated and compared between IMRT and 3D-CRT. The odds ratio of overall survival (OS), and radiation pneumonitis and radiation esophagitis was also evaluated. Results: Totally 7 studies were included. Of them, 5 studies (80 patients) were included in the dosimetric comparison, 3 studies (871 patients) were included in the OS analysis, and 2 studies (205 patients) were included in the irradiation toxicity analysis. For lung in patients receiving doses ≥20 Gy and heart in patients receiving dose = 50 Gy, the average irradiated volumes of IMRT were less than those from 3D-CRT. IMRT resulted in a higher OS than 3D-CRT. However, no significant difference was observed in the incidence of radiation pneumonitis and radiation esophagitis between 2 radiotherapy techniques. Conclusion: Our data suggest that IMRT-delivered high radiation dose produces significantly less average percent volumes of irradiated lung and heart than 3D-CRT. IMRT is superior to 3D-CRT in the OS of EC while shows no benefit on radiation toxicity. PMID:28767597

  13. Intensity Modulated Proton and Photon Therapy for Early Prostate Cancer With or Without Transperineal Injection of a Polyethylen Glycol Spacer: A Treatment Planning Comparison Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Damien C., E-mail: damien.weber@unige.ch; Zilli, Thomas; Vallee, Jean Paul

    2012-11-01

    Purpose: Rectal toxicity is a serious adverse effect in early-stage prostate cancer patients treated with curative radiation therapy (RT). Injecting a spacer between Denonvilliers' fascia increases the distance between the prostate and the anterior rectal wall and may thus decrease the rectal radiation-induced toxicity. We assessed the dosimetric impact of this spacer with advanced delivery RT techniques, including intensity modulated RT (IMRT), volumetric modulated arc therapy (VMAT), and intensity modulated proton beam RT (IMPT). Methods and Materials: Eight prostate cancer patients were simulated for RT with or without spacer. Plans were computed for IMRT, VMAT, and IMPT using the Eclipsemore » treatment planning system using both computed tomography spacer+ and spacer- data sets. Prostate {+-} seminal vesicle planning target volume [PTV] and organs at risk (OARs) dose-volume histograms were calculated. The results were analyzed using dose and volume metrics for comparative planning. Results: Regardless of the radiation technique, spacer injection decreased significantly the rectal dose in the 60- to 70-Gy range. Mean V{sub 70Gy} and V{sub 60Gy} with IMRT, VMAT, and IMPT planning were 5.3 {+-} 3.3%/13.9 {+-} 10.0%, 3.9 {+-} 3.2%/9.7 {+-} 5.7%, and 5.0 {+-} 3.5%/9.5 {+-} 4.7% after spacer injection. Before spacer administration, the corresponding values were 9.8 {+-} 5.4% (P=.012)/24.8 {+-} 7.8% (P=.012), 10.1 {+-} 3.0% (P=.002)/17.9 {+-} 3.9% (P=.003), and 9.7 {+-} 2.6% (P=.003)/14.7% {+-} 2.7% (P=.003). Importantly, spacer injection usually improved the PTV coverage for IMRT. With this technique, mean V{sub 70.2Gy} (P=.07) and V{sub 74.1Gy} (P=0.03) were 100 {+-} 0% to 99.8 {+-} 0.2% and 99.1 {+-} 1.2% to 95.8 {+-} 4.6% with and without Spacer, respectively. As a result of spacer injection, bladder doses were usually higher but not significantly so. Only IMPT managed to decrease the rectal dose after spacer injection for all dose levels, generally with no observed increase to the bladder dose. Conclusions: Regardless of the radiation technique, a substantial decrease of rectal dose was observed after spacer injection for curative RT to the prostate.« less

  14. The Impact of the Grid Size on TomoTherapy for Prostate Cancer

    PubMed Central

    Kawashima, Motohiro; Kawamura, Hidemasa; Onishi, Masahiro; Takakusagi, Yosuke; Okonogi, Noriyuki; Okazaki, Atsushi; Sekihara, Tetsuo; Ando, Yoshitaka; Nakano, Takashi

    2017-01-01

    Discretization errors due to the digitization of computed tomography images and the calculation grid are a significant issue in radiation therapy. Such errors have been quantitatively reported for a fixed multifield intensity-modulated radiation therapy using traditional linear accelerators. The aim of this study is to quantify the influence of the calculation grid size on the dose distribution in TomoTherapy. This study used ten treatment plans for prostate cancer. The final dose calculation was performed with “fine” (2.73 mm) and “normal” (5.46 mm) grid sizes. The dose distributions were compared from different points of view: the dose-volume histogram (DVH) parameters for planning target volume (PTV) and organ at risk (OAR), the various indices, and dose differences. The DVH parameters were used Dmax, D2%, D2cc, Dmean, D95%, D98%, and Dmin for PTV and Dmax, D2%, and D2cc for OARs. The various indices used were homogeneity index and equivalent uniform dose for plan evaluation. Almost all of DVH parameters for the “fine” calculations tended to be higher than those for the “normal” calculations. The largest difference of DVH parameters for PTV was Dmax and that for OARs was rectal D2cc. The mean difference of Dmax was 3.5%, and the rectal D2cc was increased up to 6% at the maximum and 2.9% on average. The mean difference of D95% for PTV was the smallest among the differences of the other DVH parameters. For each index, whether there was a significant difference between the two grid sizes was determined through a paired t-test. There were significant differences for most of the indices. The dose difference between the “fine” and “normal” calculations was evaluated. Some points around high-dose regions had differences exceeding 5% of the prescription dose. The influence of the calculation grid size in TomoTherapy is smaller than traditional linear accelerators. However, there was a significant difference. We recommend calculating the final dose using the “fine” grid size. PMID:28974860

  15. Using a knowledge-based planning solution to select patients for proton therapy.

    PubMed

    Delaney, Alexander R; Dahele, Max; Tol, Jim P; Kuijper, Ingrid T; Slotman, Ben J; Verbakel, Wilko F A R

    2017-08-01

    Patient selection for proton therapy by comparing proton/photon treatment plans is time-consuming and prone to bias. RapidPlan™, a knowledge-based-planning solution, uses plan-libraries to model and predict organ-at-risk (OAR) dose-volume-histograms (DVHs). We investigated whether RapidPlan, utilizing an algorithm based only on photon beam characteristics, could generate proton DVH-predictions and whether these could correctly identify patients for proton therapy. Model PROT and Model PHOT comprised 30 head-and-neck cancer proton and photon plans, respectively. Proton and photon knowledge-based-plans (KBPs) were made for ten evaluation-patients. DVH-prediction accuracy was analyzed by comparing predicted-vs-achieved mean OAR doses. KBPs and manual plans were compared using salivary gland and swallowing muscle mean doses. For illustration, patients were selected for protons if predicted Model PHOT mean dose minus predicted Model PROT mean dose (ΔPrediction) for combined OARs was ≥6Gy, and benchmarked using achieved KBP doses. Achieved and predicted Model PROT /Model PHOT mean dose R 2 was 0.95/0.98. Generally, achieved mean dose for Model PHOT /Model PROT KBPs was respectively lower/higher than predicted. Comparing Model PROT /Model PHOT KBPs with manual plans, salivary and swallowing mean doses increased/decreased by <2Gy, on average. ΔPrediction≥6Gy correctly selected 4 of 5 patients for protons. Knowledge-based DVH-predictions can provide efficient, patient-specific selection for protons. A proton-specific RapidPlan-solution could improve results. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Volumetric Modulated Arc Radiotherapy for Vestibular Schwannomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagerwaard, Frank J.; Meijer, Otto W.M.; Hoorn, Elles A.P. van der

    2009-06-01

    Purpose: To evaluate volumetric modulated arc radiotherapy (RapidArc [RA]), a novel approach allowing for rapid treatment delivery, for the treatment of vestibular schwannoma (VS). Methods and Materials: The RA plans were generated for a small (0.5 cm{sup 3}), intermediate (2.8 cm{sup 3}), and large (14.8 cm{sup 3}) VS. The prescription dose was 12.5 Gy to the encompassing 80% isodose. The RA plans were compared with conventional radiosurgery plans using both a single dynamic conformal arc (1DCA) and five noncoplanar dynamic conformal arcs (5DCA). Conformity indices (CI) and dose-volume histograms of critical organs were compared. The RA plan for the medium-sizedmore » VS was measured in a phantom using Gafchromic EBT films and compared with calculated dose distributions. Results: The RA planning was completed within 30 min in all cases, and calculated treatment delivery time (after patient setup) was 5 min vs. 20 min for 5DCA. A superior CI was achieved with RA, with a substantial decrease in low-dose irradiation of the normal brain achieved relative to 5DCA plans. Maximum doses to critical organs were similar for RA and 5DCA but were higher for 1DCA. Film measurements showed the differences between calculated and measured doses to be smaller than 1.5% in the high-dose area and smaller than 3% in the low-dose area. Conclusion: The RA plans consistently achieved a higher CI and decrease in areas of low-dose irradiation. This, together with shorter treatment delivery times, has led to RA replacing our conventional five-arc radiosurgery technique for VS.« less

  17. SU-F-T-501: Dosimetric Comparison of Single Arc-Per-Beam and Two Arc-Per-Beam VMAT Optimization in the Monaco Treatment Planning System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalet, A; Cao, N; Meyer, J

    Purpose: The purpose of this study was to evaluate the dosimetric and practical effects of the Monaco treatment planning system “max arcs-per-beam” optimization parameter in pelvic radiotherapy treatments. Methods: A total of 17 previously treated patients were selected for this study with a range of pelvic disease site including prostate(9), bladder(1), uterus(3), rectum(3), and cervix(1). For each patient, two plans were generated, one using a arc-per-beam setting of ‘1’ and another with setting of ‘2’. The setting allows the optimizer to add a gantry direction change, creating multiple arc passes per beam sequence. Volumes and constraints established from the initialmore » clinical treatments were used for planning. All constraints and dose coverage objects were kept the same between plans, and all plans were normalized to 99.7% to ensure 100% of the PTV received 95% of the prescription dose. We evaluated the PTV conformity index, homogeneity index, total monitor units, number of control points, and various dose volume histogram (DVH) points for statistical comparison (alpha=0.05). Results: We found for the 10 complex shaped target volumes (small central volumes with extending bilateral ‘arms’ to cover nodal regions) that the use of 2 arcs-per-beam achieved significantly lower average DVH values for the bladder V20 (p=0.036) and rectum V30 (p=0.001) while still meeting the high dose target constraints. DVH values for the simpler, more spherical PTVs were not found significantly different. Additionally, we found a beam delivery time reduction of approximately 25%. Conclusion: In summary, the dosimetric benefit, while moderate, was improved over a 1 arc-per-beam setting for complex PTVs, and equivalent in other cases. The overall reduced delivery time suggests that the use of multiple arcs-per-beam could lead to reduced patient on table time, increased clinical throughput, and reduced medical physics quality assurance effort.« less

  18. Comparative study of pulsed-continuous arterial spin labeling and dynamic susceptibility contrast imaging by histogram analysis in evaluation of glial tumors.

    PubMed

    Arisawa, Atsuko; Watanabe, Yoshiyuki; Tanaka, Hisashi; Takahashi, Hiroto; Matsuo, Chisato; Fujiwara, Takuya; Fujiwara, Masahiro; Fujimoto, Yasunori; Tomiyama, Noriyuki

    2018-06-01

    Arterial spin labeling (ASL) is a non-invasive perfusion technique that may be an alternative to dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) for assessment of brain tumors. To our knowledge, there have been no reports on histogram analysis of ASL. The purpose of this study was to determine whether ASL is comparable with DSC-MRI in terms of differentiating high-grade and low-grade gliomas by evaluating the histogram analysis of cerebral blood flow (CBF) in the entire tumor. Thirty-four patients with pathologically proven glioma underwent ASL and DSC-MRI. High-signal areas on contrast-enhanced T 1 -weighted images or high-intensity areas on fluid-attenuated inversion recovery images were designated as the volumes of interest (VOIs). ASL-CBF, DSC-CBF, and DSC-cerebral blood volume maps were constructed and co-registered to the VOI. Perfusion histogram analyses of the whole VOI and statistical analyses were performed to compare the ASL and DSC images. There was no significant difference in the mean values for any of the histogram metrics in both of the low-grade gliomas (n = 15) and the high-grade gliomas (n = 19). Strong correlations were seen in the 75th percentile, mean, median, and standard deviation values between the ASL and DSC images. The area under the curve values tended to be greater for the DSC images than for the ASL images. DSC-MRI is superior to ASL for distinguishing high-grade from low-grade glioma. ASL could be an alternative evaluation method when DSC-MRI cannot be used, e.g., in patients with renal failure, those in whom repeated examination is required, and in children.

  19. A dual resolution measurement based Monte Carlo simulation technique for detailed dose analysis of small volume organs in the skull base region

    NASA Astrophysics Data System (ADS)

    Yeh, Chi-Yuan; Tung, Chuan-Jung; Chao, Tsi-Chain; Lin, Mu-Han; Lee, Chung-Chi

    2014-11-01

    The purpose of this study was to examine dose distribution of a skull base tumor and surrounding critical structures in response to high dose intensity-modulated radiosurgery (IMRS) with Monte Carlo (MC) simulation using a dual resolution sandwich phantom. The measurement-based Monte Carlo (MBMC) method (Lin et al., 2009) was adopted for the study. The major components of the MBMC technique involve (1) the BEAMnrc code for beam transport through the treatment head of a Varian 21EX linear accelerator, (2) the DOSXYZnrc code for patient dose simulation and (3) an EPID-measured efficiency map which describes non-uniform fluence distribution of the IMRS treatment beam. For the simulated case, five isocentric 6 MV photon beams were designed to deliver a total dose of 1200 cGy in two fractions to the skull base tumor. A sandwich phantom for the MBMC simulation was created based on the patient's CT scan of a skull base tumor [gross tumor volume (GTV)=8.4 cm3] near the right 8th cranial nerve. The phantom, consisted of a 1.2-cm thick skull base region, had a voxel resolution of 0.05×0.05×0.1 cm3 and was sandwiched in between 0.05×0.05×0.3 cm3 slices of a head phantom. A coarser 0.2×0.2×0.3 cm3 single resolution (SR) phantom was also created for comparison with the sandwich phantom. A particle history of 3×108 for each beam was used for simulations of both the SR and the sandwich phantoms to achieve a statistical uncertainty of <2%. Our study showed that the planning target volume (PTV) receiving at least 95% of the prescribed dose (VPTV95) was 96.9%, 96.7% and 99.9% for the TPS, SR, and sandwich phantom, respectively. The maximum and mean doses to large organs such as the PTV, brain stem, and parotid gland for the TPS, SR and sandwich MC simulations did not show any significant difference; however, significant dose differences were observed for very small structures like the right 8th cranial nerve, right cochlea, right malleus and right semicircular canal. Dose volume histogram (DVH) analyses revealed much smoother DVH curves for the dual resolution sandwich phantom when compared to the SR phantom. In conclusion, MBMC simulations using a dual resolution sandwich phantom improved simulation spatial resolution for skull base IMRS therapy. More detailed dose analyses for small critical structures can be made available to help in clinical judgment.

  20. Dosimetric effect of Elekta Beam Modulator micromultileaf in three-dimensional conformal radiotherapy and intensity-modulated radiotherapy for prostate cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carosi, Alessandra, E-mail: alessandra.carosi@katamail.com; Ingrosso, Gianluca; Ponti, Elisabetta

    2014-07-01

    The purpose of this study is to analyze the dosimetric effect of Elekta Beam Modulator in 3-dimensional conformal radiation therapy (3DCRT) and in intensity-modulated radiation therapy (IMRT) for localized prostate cancer. We compared treatment plans developed with 2 different Elekta multileaf collimators (MLC): Beam Modulator micro-MLC (mMLC) (4-mm leaf width at the isocenter) and standard MLC (10-mm leaf width at the isocenter). The comparison was performed for 15 patients with localized prostate cancer in 3DCRT and IMRT delivery; a total of 60 treatment plans were processed. The dose-volume histograms were used to provide the quantitative comparison between plans. In particular,more » we analyzed differences between rectum and bladder sparing in terms of a set of appropriate Vx (percentage of organ at risk [OAR] volume receiving the x dose) and differences between target conformity and coverage in terms of coverage factor and conformation number. Our analysis demonstrates that in 3DCRT there is an advantage in the use of Elekta Beam Modulator mMLC in terms of organ sparing; in particular, a significant decrease in rectal V{sub 60} and V{sub 50} (p = 0.001) and in bladder V{sub 70} and V{sub 65} (p = 0.007 and 0.002, respectively) was found. Moreover, a better target dose conformity was obtained (p = 0.002). IMRT plans comparison demonstrated no significant differences between the use of the 4 or 10-mm MLCs. Our analysis shows that in 3DCRT the use of the Elekta Beam Modulator mMLC gives a gain in target conformity and in OARs dose sparing whereas in IMRT plans there is no advantage.« less

Top