Sample records for dose-dependent manner interestingly

  1. Uncaria rhynchophylla induces angiogenesis in vitro and in vivo.

    PubMed

    Choi, Do-Young; Huh, Jeong-Eun; Lee, Jae-Dong; Cho, Eun-Mi; Baek, Yong-Hyeon; Yang, Ha-Ru; Cho, Yoon-Je; Kim, Kang-Il; Kim, Deog-Yoon; Park, Dong-Suk

    2005-12-01

    Angiogenesis consists of the proliferation, migration, and differentiation of endothelial cells, and angiogenic factors and matrix protein interactions modulate this process. The aim of this study was to determine the angiogenic properties of Uncaria rhynchophylla. Uncaria rhynchophylla significantly enhanced human umbilical vein endothelial cells (HUVECs) proliferation in a dose-dependent manner. Neutralization of vascular endothelial growth factor (VEGF) or basic fibroblast growth factor (bFGF) by monoclonal antibody suppressed the Uncaria rhynchophylla stimulatory effect on proliferation. In addition, Uncaria rhynchophylla significantly increased chemotactic-migration on gelatin and tubular structures on Matrigel of HUVECs in a dose-dependent manner. Interestingly, Uncaria rhynchophylla dose-dependently increased VEGF, and bFGF gene expression and protein secretion of HUVEC. The angiogenic activity of Uncaria rhynchophylla was confirmed using an in vivo Matrigel angiogenesis model, showing promotion of blood vessel formation. These results suggest that Uncaria rhynchophylla could potentially used to accelerate vascular wound healing or to promote the growth of collateral blood vessel in ischemic tissues.

  2. Prevalence of bisphosphonate-related osteonecrosis of the jaw-like lesions is increased in a chemotherapeutic dose-dependent manner in mice.

    PubMed

    Kuroshima, Shinichiro; Sasaki, Muneteru; Nakajima, Kazunori; Tamaki, Saki; Hayano, Hiroki; Sawase, Takashi

    2018-07-01

    Bisphosphonate-related osteonecrosis of the jaw (BRONJ) worsens oral health-related quality of life. Most BRONJ occurs in multiple myeloma or metastatic breast cancer patients treated with bisphosphonate/chemotherapeutic combination therapies. Cyclophosphamide (CY), an alkylating chemotherapeutic drug, is used to treat multiple myeloma, although its use has been recently reduced. The aim of this study was to clarify the effects of CY dose on tooth extraction socket healing when CY is used with or without bisphosphonate in mice. Low-dose CY (50 mg/kg; CY-L), moderate-dose CY (100 mg/kg; CY-M), high-dose CY (150 mg/kg; CY-H), and bisphosphonate [Zometa (ZA): 0.05 mg/kg] were administered for 7 weeks. Each dose of CY and ZA in combination was also administered for 7 weeks. Both maxillary first molars were extracted at 3 weeks after the initiation of drug administration. Euthanasia was performed at 4 weeks post-extraction. Gross wound healing, microcomputed tomography analysis, histomorphometry, and immunohistochemistry were used to quantitatively evaluate osseous and soft tissue wound healing of tooth extraction sockets. ZA monotherapy induced no BRONJ-like lesions in mice. CY monotherapy rarely induced open wounds, though delayed osseous wound healing occurred in a CY dose-dependent manner. In contrast, CY/ZA combination therapy prevalently induced BRONJ-like lesions with compromised osseous and soft tissue healing in a CY dose-dependent manner. Interestingly, anti-angiogenesis was noted regardless of CY dose and ZA administration, even though only CY-M/ZA and CY-H/ZA combination therapies induced BRONJ-like lesions. Our findings suggest that high-dose CY may be associated with the development of BRONJ following tooth extraction only when CY is used together with ZA. In addition to anti-angiogenesis, other factors may contribute to the pathoetiology of BRONJ. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. The inhibitory effect of vitamin K on RANKL-induced osteoclast differentiation and bone resorption.

    PubMed

    Wu, Wei-Jie; Kim, Min Seuk; Ahn, Byung-Yong

    2015-10-01

    To further understand the correlation between vitamin K and bone metabolism, the effects of vitamins K1, menaquinone-4 (MK-4), and menaquinone-7 (MK-7) on RANKL-induced osteoclast differentiation and bone resorption were comparatively investigated. Vitamin K2 groups (MK-4 and MK-7) were found to significantly inhibit RANKL-medicated osteoclast cell formation of bone marrow macrophages (BMMs) in a dose-dependent manner, without any evidence of cytotoxicity. The mRNA expression of specific osteoclast differentiation markers, such as c-Fos, NFATc1, OSCAR, and TRAP, as well as NFATc1 protein expression and TRAP activity in RANKL-treated BMMs were inhibited by vitamin K2, although MK-4 exhibited a significantly greater efficiency compared to MK-7. In contrast, the same dose of vitamin K1 had no inhibitory effect on RANKL-induced osteoclast cell formation, but increased the expression of major osteoclastogenic genes. Interestingly, vitamins K1, MK-4 and MK-7 all strongly inhibited osteoclastic bone resorption (p < 0.01) in a dose dependent manner. These results suggest that vitamins K1, MK-4 and MK-7 have anti-osteoporotic properties, while their regulation effects on osteoclastogenesis are somewhat different.

  4. Poncirin Induces Apoptosis in AGS Human Gastric Cancer Cells through Extrinsic Apoptotic Pathway by up-Regulation of Fas Ligand.

    PubMed

    Saralamma, Venu Venkatarame Gowda; Nagappan, Arulkumar; Hong, Gyeong Eun; Lee, Ho Jeong; Yumnam, Silvia; Raha, Suchismita; Heo, Jeong Doo; Lee, Sang Joon; Lee, Won Sup; Kim, Eun Hee; Kim, Gon Sup

    2015-09-18

    Poncirin, a natural bitter flavanone glycoside abundantly present in many species of citrus fruits, has various biological benefits such as anti-oxidant, anti-microbial, anti-inflammatory and anti-cancer activities. The anti-cancer mechanism of Poncirin remains elusive to date. In this study, we investigated the anti-cancer effects of Poncirin in AGS human gastric cancer cells (gastric adenocarcinoma). The results revealed that Poncirin could inhibit the proliferation of AGS cells in a dose-dependent manner. It was observed Poncirin induced accumulation of sub-G1 DNA content, apoptotic cell population, apoptotic bodies, chromatin condensation, and DNA fragmentation in a dose-dependent manner in AGS cells. The expression of Fas Ligand (FasL) protein was up-regulated dose dependently in Poncirin-treated AGS cells Moreover, Poncirin in AGS cells induced activation of Caspase-8 and -3, and subsequent cleavage of poly(ADP-ribose) polymerase (PARP). Inhibitor studies' results confirm that the induction of caspase-dependent apoptotic cell death in Poncirin-treated AGS cells was led by the Fas death receptor. Interestingly, Poncirin did not show any effect on mitochondrial membrane potential (ΔΨm), pro-apoptotic proteins (Bax and Bak) and anti-apoptotic protein (Bcl-xL) in AGS-treated cells followed by no activation in the mitochondrial apoptotic protein caspase-9. This result suggests that the mitochondrial-mediated pathway is not involved in Poncirin-induced cell death in gastric cancer. These findings suggest that Poncirin has a potential anti-cancer effect via extrinsic pathway-mediated apoptosis, possibly making it a strong therapeutic agent for human gastric cancer.

  5. Inhibition of gamma-radiation induced DNA damage in plasmid pBR322 by TMG, a water-soluble derivative of vitamin E.

    PubMed

    Rajagopalan, Rema; Wani, Khalida; Huilgol, Nagaraj G; Kagiya, Tsutomu V; Nair, Cherupally K Krishnan

    2002-06-01

    Alpha-tocopherol monoglucoside (TMG), a water-soluble derivative of alpha-tocopherol, has been examined for its ability to protect DNA against radiation-induced strand breaks. Gamma radiation, up to a dose of 6 Gy (dose rate, 0.7 Gy/minute), induced a dose-dependent increase in single strand breaks (SSBs) in plasmid pBR322 DNA. TMG inhibited the formation of gamma-radiation induced DNA single strand breaks (SSBs) in a concentration-dependent manner; 500 microM of TMG protected the single strand breaks completely. It also protected thymine glycol formation induced by gamma-radiation in a dose-dependent manner, based on an estimation of thymine glycol by HPLC.

  6. Unheated Cannabis sativa extracts and its major compound THC-acid have potential immuno-modulating properties not mediated by CB1 and CB2 receptor coupled pathways.

    PubMed

    Verhoeckx, Kitty C M; Korthout, Henrie A A J; van Meeteren-Kreikamp, A P; Ehlert, Karl A; Wang, Mei; van der Greef, Jan; Rodenburg, Richard J T; Witkamp, Renger F

    2006-04-01

    There is a great interest in the pharmacological properties of cannabinoid like compounds that are not linked to the adverse effects of Delta(9)-tetrahydrocannabinol (THC), e.g. psychoactive properties. The present paper describes the potential immuno-modulating activity of unheated Cannabis sativa extracts and its main non-psychoactive constituent Delta(9)-tetrahydrocanabinoid acid (THCa). By heating Cannabis extracts, THCa was shown to be converted into THC. Unheated Cannabis extract and THCa were able to inhibit the tumor necrosis factor alpha (TNF-alpha) levels in culture supernatants from U937 macrophages and peripheral blood macrophages after stimulation with LPS in a dose-dependent manner. This inhibition persisted over a longer period of time, whereas after prolonged exposure time THC and heated Cannabis extract tend to induce the TNF-alpha level. Furthermore we demonstrated that THCa and THC show distinct effects on phosphatidylcholine specific phospholipase C (PC-PLC) activity. Unheated Cannabis extract and THCa inhibit the PC-PLC activity in a dose-dependent manner, while THC induced PC-PLC activity at high concentrations. These results suggest that THCa and THC exert their immuno-modulating effects via different metabolic pathways.

  7. Dose-dependent biodistribution of prenatal exposure to rutile-type titanium dioxide nanoparticles on mouse testis

    NASA Astrophysics Data System (ADS)

    Kubo-Irie, Miyoko; Uchida, Hiroki; Mastuzawa, Shotaro; Yoshida, Yasuko; Shinkai, Yusuke; Suzuki, Kenichiro; Yokota, Satoshi; Oshio, Shigeru; Takeda, Ken

    2014-02-01

    Titanium dioxide nanoparticles (nano-TiO2), believed to be inert and safe, are used in many products especially rutile-type in cosmetics. Detection, localization, and count of nanoparticles in tissue sections are of considerable current interest. Here, we evaluate the dose-dependent biodistribution of rutile-type nano-TiO2 exposure during pregnancy on offspring testes. Pregnant mice were subcutaneously injected five times with 0.1 ml of sequentially diluted of nano-TiO2 powder, 35 nm with primary diameter, suspensions (1, 10, 100, or 1,000 μg/ml), and received total doses of 0.5, 5, 50, and 500 μg, respectively. Prior to injection, the size distribution of nano-TiO2 was analyzed by dynamic light scattering measurement. The average diameter was increased in a dose-dependent manner. The most diluted concentration, 1 μg/ml suspension, contained small agglomerates averaging 193.3 ± 5.4 nm in diameter. The offspring testes were examined at 12 weeks postpartum. Individual particle analysis in testicular sections under scanning and transmission electron microscopy enabled us to understand the biodistribution. The correlation between nano-TiO2 doses injected to pregnant mice, and the number of agglomerates in the offspring testes was demonstrated to be dose-dependent by semiquantitative evaluation. However, the agglomerate size was below 200 nm in the testicular sections of all recipient groups, independent from the injected dose during pregnancy.

  8. Rational design of an improved tissue-engineered vascular graft: determining the optimal cell dose and incubation time.

    PubMed

    Lee, Yong-Ung; Mahler, Nathan; Best, Cameron A; Tara, Shuhei; Sugiura, Tadahisa; Lee, Avione Y; Yi, Tai; Hibino, Narutoshi; Shinoka, Toshiharu; Breuer, Christopher

    2016-03-01

    We investigated the effect of cell seeding dose and incubation time on tissue-engineered vascular graft (TEVG) patency. Various doses of bone marrow-derived mononuclear cells (BM-MNCs) were seeded onto TEVGs, incubated for 0 or 12 h, and implanted in C57BL/6 mice. Different doses of human BM-MNCs were seeded onto TEVGs and measured for cell attachment. The incubation time showed no significant effect on TEVG patency. However, TEVG patency was significantly increased in a dose-dependent manner. In the human graft, more bone marrow used for seeding resulted in increased cell attachment in a dose-dependent manner. Increasing the BM-MNC dose and reducing incubation time is a viable strategy for improving the performance and utility of the graft.

  9. Cadmium induces histopathological injuries and ultrastructural changes in the liver of freshwater turtle (Chinemys reevesii).

    PubMed

    Huo, Junfeng; Dong, Aiguo; Wang, Yonghui; Lee, Shaochin; Ma, Cungen; Wang, Lan

    2017-11-01

    The study investigated the histopathological and ultrastructural lesions of liver of freshwater turtle Chinemys reevesii exposed to Cadmium (Cd). The animals were exposed to 0 mg kg -1 (0.85% normal saline (NS)), 7.5 mg kg -1 , 15 mg kg -1 , 30 mg kg -1 Cd chloride separately by intraperitoneal injection. Liver samples were collected for examination of lesions under light and electronic microscopes. Results showed that liver tissues from Cd -treated animals presented various degrees of histopathological lesions. Liver cells showed swollen, degeneration and necrosis with dose-dependent manner. Under electronic microscope, nucleus, mitochondria and rough endoplasmic reticulum presented various degrees of lesions with dose-dependent manner. In conclusion, Cd has significant toxicity on liver tissue of the freshwater turtle, which occurs in a dose-dependent manner. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Protective role of Delphinium denudatum (Jadwar) against morphine induced tolerance and dependence in mice.

    PubMed

    Zafar, S; Ahmad, M A; Siddiqui, T A

    2001-11-01

    Chronic treatment with Delphinium denudatum (Dd) (Jadwar) (family: Ranunculaceae, 200-1600 mg/kg) suppressed morphine withdrawal jumps in a dose-dependent manner, a sign of the development of dependence to opiate as assessed by naloxone (2 mg/kg) precipitation withdrawal on day 10 of testing in mice. Repeated administration of Dd (200-1600 mg/kg) for 9 days attenuated the development of tolerance to the analgesic effect of morphine (10 mg/kg), also produces significant change in tail-flick latency from the saline pretreated group in a dose-dependent manner.

  11. Dopamine modulates male sexual behavior in Japanese quail in part via actions on noradrenergic receptors.

    PubMed

    Cornil, Charlotte A; Dejace, Christel; Ball, Gregory F; Balthazart, Jacques

    2005-08-30

    In rats, dopamine (DA) facilitates male sexual behavior through its combined action on D1- and D2-like receptors, in the medial preoptic area (MPOA) as well as other brain areas. In Japanese quail, systemic injections of dopaminergic drugs suggested a similar pharmacology but central injections have never been performed. Recent electrophysiological experiments demonstrated that DA effects in the MPOA of quail are mediated mainly through the activation of alpha2-noradrenergic receptors. Previous studies of DA action on behavior used specific dopaminergic agonists/antagonists and therefore unintentionally avoided the potential cross-reaction with alpha2-receptors. The present study was thus designed to investigate directly the effects of DA on male sexual behavior and to test whether the interaction of DA with heterologous receptors affects this behavior. Intracerebroventricular (i.c.v.) injection of DA or NE inhibited copulation in a dose-dependent manner. Systemic injections of yohimbine, an alpha2-noradrenergic antagonist, modulated copulation in a bimodal manner depending on the dose injected. Interestingly, a behaviorally ineffective dose of yohimbine markedly reduced the inhibitory effects of DA when injected 15min before. Together, these results show for the first time that i.c.v. injections of DA itself inhibit male sexual behavior in quail and suggest that the interaction of DA with alpha2-receptors has behavioral significance.

  12. Protective effect of chelerythrine against ethanol-induced gastric ulcer in mice.

    PubMed

    Li, Wei-Feng; Hao, Ding-Jun; Fan, Ting; Huang, Hui-Min; Yao, Huan; Niu, Xiao-Feng

    2014-02-05

    The quaternary benzo[c]phenanthridine alkaloid, chelerythrine (CHE), is of great practical and research interest because of its pronounced, widespread physiological effects, primarily antimicrobial and anti-inflammatory, arising from its ability to interact with proteins and DNA. Although CHE was originally shown to possess anti-inflammatory properties, its effects on acute gastric ulcer have not been previously explored. The aim of the present study is to evaluate the protective effect of CHE on ethanol induced gastric ulcer in mice. Administration of CHE at doses of 1, 5 and 10mg/kg bodyweight prior to ethanol ingestion dose-dependently inhibited gastric ulcer. The gastric mucosal lesion was assessed by ulcer area, gastric juice acidity, myeloperoxidase (MPO) activities, macroscopic and histopathological examinations. CHE significantly reduced the gastric ulcer index, myeloperoxidase activities, macroscopic and histological score in a dose-dependent manner. In addition, CHE also significantly inhibited nitric oxide (NO) concentration, pro-inflammatory interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) level in serum and gastric mucosal in the mice exposed to ethanol induced ulceration in a dose-dependent manner. In addition, immunohistochemical analysis revealed that CHE markedly attenuated the overexpression of nuclear factor-κB in gastric mucosa of mice. It was concluded that CHE represents a potential therapeutic option to reduce the risk of gastric ulceration. In addition, acute toxicity study revealed no abnormal sign to the mice treated with CHE (15mg/kg). These findings suggest that the gastroprotective activity of CHE might contribute in adjusting the inflammatory cytokine by regulating the NF-κB signalling pathway. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Glucose and insulin do not decrease in a dose-dependent manner after increasing doses of mixed fibers that are consumed in muffins for breakfast.

    PubMed

    Willis, Holly J; Thomas, William; Eldridge, Alison L; Harkness, Laura; Green, Hilary; Slavin, Joanne L

    2011-01-01

    Conventional wisdom suggests that fiber consumption leads to lower postprandial glucose and insulin response. We hypothesized that increasing doses of mixed, viscous fiber would lower glucose and insulin levels in a dose-dependent manner. Healthy men (n = 10) and women (n = 10) with a body mass index of 24 ± 2 (mean ± SEM) participated in this double-blind, crossover study. On 4 separate visits, fasting subjects consumed an approximately 2093 kJ (500 calorie) muffin with 0, 4, 8, or 12 g of mixed fibers. Blood was drawn to measure glucose and insulin at regular intervals throughout a 3-hour test period. Area under the curve (AUC) glucose was significantly lower after 0 g of fiber than after 4, 8, or 12 g of fiber (arbitrary AUC units ± SEM: 25.3 ± 5.2 vs 44.6 ± 7.7, 49.7 ± 7.9, 51.5 ± 6.6, respectively; P < .006). Area under the curve glucose increased with increasing fiber doses (P for trend = .0003). Area under the curve insulin was higher after the 4-g dose than after the 0-, 8-, and 12-g doses (arbitrary AUC units ± SEM: 84.4 ± 8.0 vs 60.1 ± 6.5, 69.4 ± 8.7, 69.7 ± 8.5, respectively; P < .05); it did not change in a dose-dependent manner. Area under the curve glucose and AUC insulin did not correlate with each other. Glucose and insulin did not decrease in a dose-dependent manner after 0, 4, 8, and 12 g of mixed fibers were consumed in muffins for breakfast. The lack of differences was largely based on the individual variation in glucose response. Caution should be used when making general claims about the expected impact of fiber on glucose and insulin levels. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Flavonoids from Theobroma cacao down-regulate inflammatory mediators.

    PubMed

    Ramiro, Emma; Franch, Angels; Castellote, Cristina; Pérez-Cano, Francisco; Permanyer, Joan; Izquierdo-Pulido, Maria; Castell, Margarida

    2005-11-02

    In the present study, we report the effects of a cocoa extract on the secretion and RNA expression of various proinflammatory mediators by macrophages. Monocyte chemoattractant protein 1 and tumor necrosis factor alpha (TNFalpha) were significantly and dose-dependently diminished by cocoa extract, and this effect was higher than that produced by equivalent concentrations of epicatechin but was lower than that produced by isoquercitrin. Interestingly, cocoa extract added prior to cell activation resulted in a significantly greater inhibition of TNFalpha secretion. Both cocoa extract and epicatechin decreased TNFalpha, interleukin (IL) 1alpha, and IL-6 mRNA expression, suggesting that their inhibitory effect on cytokine secretion is produced, in part, at the transcriptional level. Cocoa extract also significantly decreased NO secretion in a dose-dependent manner and with a greater effect than that produced by epicatechin. In conclusion, our study shows that cocoa flavonoids not only inhibit NO release from macrophages but also down-regulate inflammatory cytokines and chemokines.

  15. Herbivore-Specific, Density-Dependent Induction of Plant Volatiles: Honest or “Cry Wolf” Signals?

    PubMed Central

    Shiojiri, Kaori; Ozawa, Rika; Kugimiya, Soichi; Uefune, Masayoshi; van Wijk, Michiel; Sabelis, Maurice W.; Takabayashi, Junji

    2010-01-01

    Plants release volatile chemicals upon attack by herbivorous arthropods. They do so commonly in a dose-dependent manner: the more herbivores, the more volatiles released. The volatiles attract predatory arthropods and the amount determines the probability of predator response. We show that seedlings of a cabbage variety (Brassica oleracea var. capitata, cv Shikidori) also show such a response to the density of cabbage white (Pieris rapae) larvae and attract more (naive) parasitoids (Cotesia glomerata) when there are more herbivores on the plant. However, when attacked by diamondback moth (Plutella xylostella) larvae, seedlings of the same variety (cv Shikidori) release volatiles, the total amount of which is high and constant and thus independent of caterpillar density, and naive parasitoids (Cotesia vestalis) of diamondback moth larvae fail to discriminate herbivore-rich from herbivore-poor plants. In contrast, seedlings of another cabbage variety of B. oleracea (var. acephala: kale) respond in a dose-dependent manner to the density of diamondback moth larvae and attract more parasitoids when there are more herbivores. Assuming these responses of the cabbage cultivars reflect behaviour of at least some genotypes of wild plants, we provide arguments why the behaviour of kale (B. oleracea var acephala) is best interpreted as an honest signaling strategy and that of cabbage cv Shikidori (B. oleracea var capitata) as a “cry wolf” signaling strategy, implying a conflict of interest between the plant and the enemies of its herbivores: the plant profits from being visited by the herbivore's enemies, but the latter would be better off by visiting other plants with more herbivores. If so, evolutionary theory on alarm signaling predicts consequences of major interest to students of plant protection, tritrophic systems and communication alike. PMID:20808961

  16. Effect of noni (Morinda citrifolia Linn.) fruit and its bioactive principles scopoletin and rutin on rat vas deferens contractility: an ex vivo study.

    PubMed

    Pandy, Vijayapandi; Narasingam, Megala; Kunasegaran, Thubasni; Murugan, Dharmani Devi; Mohamed, Zahurin

    2014-01-01

    This study examined the effect of methanolic extract of Morinda citrifolia Linn. (MMC) and its bioactive principles, scopoletin and rutin, on dopamine- and noradrenaline-evoked contractility in isolated rat vas deferens preparations. MMC (1-40 mg/mL), scopoletin (1-200 μg/mL), and rutin hydrate (0.6-312.6 μg/mL) dose-dependently inhibited the contractility evoked by submaximal concentrations of both dopamine and noradrenaline, respectively. Haloperidol and prazosin, reference dopamine D2, and α 1-adrenoceptors antagonists significantly reversed the dopamine- and noradrenaline-induced contractions, respectively, in a dose-dependent manner. Interestingly, MMC per se at higher doses (60-100 mg/mL) showed dose-dependent contractile response in rat vas deferens which was partially inhibited by high doses of haloperidol but not by prazosin. These results demonstrated the biphasic effects of MMC on dopaminergic system; that is, antidopaminergic effect at lower concentrations (<40 mg/mL) and dopaminergic agonistic effect at higher concentrations (>60 mg/mL). However, similar contractile response at high doses of scopoletin (0.5-5 mg/mL) and rutin hydrate (0.5-5 mg/mL) per se was not observed. Therefore, it can be concluded that the bioactive principles of MMC, scopoletin, and rutin might be responsible for the antidopaminergic and antiadrenergic activities of MMC.

  17. Pleiotropic effects of fenofibrate therapy on rats with hypertriglycemia.

    PubMed

    Sun, Bing; Xie, Yuan; Jiang, Jinfa; Wang, Yiping; Xu, Xiaolin; Zhao, Cuimei; Huang, Feifei

    2015-04-14

    Cardio-protective effect of fibrate therapy is controversial and current research is to evaluate the effect of fenofibrate therapy on rats with hypertriglycemia. Rats with hypertriglycemia were produced by 10% fructose administration (10 ml daily) for 4 weeks. After model has been successfully produced as reflected by increased triglyceride level, different doses of fenofibrate, namely low dose (50 mg/kg body weight) and high dose (100 mg/kg body weight), were orally prescribed for 2 weeks. At baseline, 4 weeks of fructose administration and 2 weeks of fenofibrate therapy, parameters of interest were evaluated and compared. At baseline, no significant differences of parameter were observed between groups. After 4 weeks of fructose prescription, triglyceride level increased in company with high density lipoprotein cholesterol (HDL-C) and apoprotein A1 (ApoA1) decreased. C-reactive protein (CRP) and malondialdehyde (MDA) levels were also elevated. Endothelial function was impaired as reflected by reduced nitric oxide (NO) production and elevated serum asymmetric dimethylarginine (ADMA) level. All these changes were significant as compared to the control group (P<0.05), suggesting that short-term of triglyceride elevation could potently initiate atherosclerosis. With 2 weeks of fenofibrate therapy, in comparison to un-treated group, triglyceride level was significantly reduced in parallel with HDL-C and ApoA1 elevation. Inflammation and oxidation were also profoundly ameliorated as reflected by CRP and MDA reduction. Notably, NO production was enhanced in company with serum ADMA level decrease. Overall, these improvements manifested in a dose-dependent manner, which was supported by multivariate regression analysis showing that after adjusted to other variables, the dose of fenofibrate therapy remained significantly associated with NO production and serum ADMA level, with OR of 1.042 (high-dose versus low-dose, 95% CI 1.028-1.055, P<0.05). Fenofibrate therapy not only could reduce triglyceride level but also confer pleiotropic effects in terms of endothelium-protection and amelioration of inflammation and oxidation in a dose-dependent manner.

  18. Geraniol attenuates α-synuclein expression and neuromuscular impairment through increase dopamine content in MPTP intoxicated mice by dose dependent manner.

    PubMed

    Rekha, Karamkolly R; Selvakumar, Govindasamy P; Santha, Karunanithi; Inmozhi Sivakamasundari, Ramu

    2013-11-01

    Parkinson's disease (PD) is characterized by progressive loss of dopamine (DA) neurons in the nigrostriatal system and by the presence of Lewy bodies (LB), proteinaceous inclusions mainly composed of filamentous α-synuclein (α-Syn) aggregates. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was adopted to generate PD models in C57BL/6 mice. In the present study, we investigated the effect of geraniol (GE) against α-Syn aggregation on MPTP induced mouse model of PD in dose dependant manner. When pretreatment of GE improved neuromuscular impairment, TH expressions and decreases α-Syn expressions in MPTP intoxicated PD mice by dose dependent manner. In addition, we confirmed that sub-chronic administration of MPTP in mice leads to permanent neuromuscular deficits and depletion of dopamine and its metabolites. Our results suggest that GE is beneficial for the treatment of PD associated with neuromuscular disability and LB aggregation. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  19. Efficacy and safety of tranexamic acid as an emetic in dogs.

    PubMed

    Kakiuchi, Hitoshi; Kawarai-Shimamura, Asako; Fujii, Yoko; Aoki, Takuma; Yoshiike, Masaki; Arai, Hayato; Nakamura, Atsushi; Orito, Kensuke

    2014-12-01

    To determine dose dependency of tranexamic acid-induced emesis and the time course of the antifibrinolytic potency of tranexamic acid in dogs. 10 Beagles. In a dose-escalating experiment, ascending doses of tranexamic acid (10, 20, and 30 mg/kg, IV) were administered at 5-minute intervals until vomiting was observed. In a separate single-dose experiment, ascending doses of tranexamic acid (20, 30, 40, and 50 mg/kg, IV) were administered at 1-week intervals until vomiting was observed. Time to onset of vomiting and number of vomiting episodes were measured in both experiments. In a coagulation experiment, a single 50 mg/kg bolus of tranexamic acid was administered, and blood was obtained 1 hour before and 20 minutes, 3 hours, and 24 hours after administration. Antifibrinolytic potency of tranexamic acid was evaluated by use of a modified rotational thromboelastography method. Tranexamic acid induced vomiting in a dose-dependent manner. Vomiting frequency was ≤ 2 episodes, and vomiting concluded ≤ 250 seconds after administration. Antifibrinolytic potency of tranexamic acid was significantly higher at 20 minutes following administration, but not different by 24 hours, when compared with the potency measured before administration. No adverse effects were observed in any experiment. IV administration of tranexamic acid induced emesis in a dose-dependent manner. The antifibrinolytic potency of tranexamic acid decreased in a time-dependent manner and was resolved ≤ 24 hours after administration. Further studies are warranted to investigate the emetic and other adverse effects of tranexamic acid in dogs of various breeds and ages.

  20. Inhibition of Estrogen-Induced Growth of Breast Cancer by Targeting Mitrochondrial Oxidants

    DTIC Science & Technology

    2007-04-01

    expected estradiol induced oxidants production in MCF-7 cells in dose dependent manner (Fig. 1). 0 50 100 150 200 250 300 DMSO 100pg 10ng 100ng...dose dependent manner. This is in agreement with previous findings (Foster et al., 2001). 0 50 100 150 200 250 300 DMSO 100pg/ml 10ng/ml 100ng/ml C...significantly inhibited E2-induced cell growth by as much as 50 % after a 72 h treatment. The reduction of E2-induced cell growth observed with NAC and

  1. Pb2+ Modulates Ca2+ Membrane Permeability In Paramecium

    NASA Astrophysics Data System (ADS)

    Bernal-Martínez, Juan; Ortega Soto, Arturo

    2004-09-01

    Intracellular recording experiments in current clamp configuration were done to evaluate whether Pb2+ modulates ionic membrane permeability in the fresh water Paramecium tetraurelia. It was found that Pb2+ triggers in a dose-dependent manner, a burst of spontaneous action potentials followed by a robust and sustained after hyper-polarization. In addition, Pb2+ increased the frequency of firing the spontaneous Ca2+-Action Potential and also, the duration of Ca2+-Action Potential, in a dose and reversibly-dependent manner. These results suggest that Pb2+ increases calcium membrane permeability of Paramecium and probably activates a calcium-dependent-potassium conductance in the ciliate.

  2. Effect of Noni (Morinda citrifolia Linn.) Fruit and Its Bioactive Principles Scopoletin and Rutin on Rat Vas Deferens Contractility: An Ex Vivo Study

    PubMed Central

    Narasingam, Megala; Murugan, Dharmani Devi; Mohamed, Zahurin

    2014-01-01

    This study examined the effect of methanolic extract of Morinda citrifolia Linn. (MMC) and its bioactive principles, scopoletin and rutin, on dopamine- and noradrenaline-evoked contractility in isolated rat vas deferens preparations. MMC (1–40 mg/mL), scopoletin (1–200 μg/mL), and rutin hydrate (0.6–312.6 μg/mL) dose-dependently inhibited the contractility evoked by submaximal concentrations of both dopamine and noradrenaline, respectively. Haloperidol and prazosin, reference dopamine D2, and α 1-adrenoceptors antagonists significantly reversed the dopamine- and noradrenaline-induced contractions, respectively, in a dose-dependent manner. Interestingly, MMC per se at higher doses (60–100 mg/mL) showed dose-dependent contractile response in rat vas deferens which was partially inhibited by high doses of haloperidol but not by prazosin. These results demonstrated the biphasic effects of MMC on dopaminergic system; that is, antidopaminergic effect at lower concentrations (<40 mg/mL) and dopaminergic agonistic effect at higher concentrations (>60 mg/mL). However, similar contractile response at high doses of scopoletin (0.5–5 mg/mL) and rutin hydrate (0.5–5 mg/mL) per se was not observed. Therefore, it can be concluded that the bioactive principles of MMC, scopoletin, and rutin might be responsible for the antidopaminergic and antiadrenergic activities of MMC. PMID:25045753

  3. Caffeine intake increases plasma ketones: an acute metabolic study in humans.

    PubMed

    Vandenberghe, Camille; St-Pierre, Valérie; Courchesne-Loyer, Alexandre; Hennebelle, Marie; Castellano, Christian-Alexandre; Cunnane, Stephen C

    2017-04-01

    Brain glucose uptake declines during aging and is significantly impaired in Alzheimer's disease. Ketones are the main alternative brain fuel to glucose so they represent a potential approach to compensate for the brain glucose reduction. Caffeine is of interest as a potential ketogenic agent owing to its actions on lipolysis and lipid oxidation but whether it is ketogenic in humans is unknown. This study aimed to evaluate the acute ketogenic effect of 2 doses of caffeine (2.5; 5.0 mg/kg) in 10 healthy adults. Caffeine given at breakfast significantly stimulated ketone production in a dose-dependent manner (+88%; +116%) and also raised plasma free fatty acids. Whether caffeine has long-term ketogenic effects or could enhance the ketogenic effect of medium chain triglycerides remains to be determined.

  4. Evidence for a possible neurotransmitter/neuromodulator role of tyramine on the locust oviducts.

    PubMed

    Donini, Andrew; Lange, Angela B

    2004-04-01

    Visualization of the tyraminergic innervation of the oviducts was demonstrated by immunohistochemistry, and the presence of tyramine was confirmed using high-performance liquid chromatography coupled to electrochemical detection. Oviducts incubated in high-potassium saline released tyramine in a calcium-dependent manner. Stimulation of the oviducal nerves also resulted in tyramine release, suggesting that tyramine might function as a neurotransmitter/neuromodulator at the locust oviducts. Tyramine decreased the basal tension, and also attenuated proctolin-induced contractions in a dose-dependent manner over a range of doses between 10(-7) and 10(-4) M. Low concentrations of tyramine attenuated forskolin-stimulated cyclic AMP levels in a dose-dependent manner. This effect was not blocked by yohimbine. High concentrations of tyramine increased basal cyclic AMP levels of locust oviducts in a dose-dependent manner; however, the increases in cyclic AMP were only evident at the highest concentrations tested, 5 x 10(-5) and 10(-4) M tyramine. The tyramine-induced increase in cyclic AMP shared a similar pharmacological profile with the octopamine-induced increase in cyclic AMP. Tyramine increased the amplitude of excitatory junction potentials at low concentrations while hyperpolarizing the membrane potential by 2-5 mV. A further increase in the amplitude of the excitatory junction potentials and the occurrence of an active response was seen upon washing tyramine from the preparation. These results suggest that tyramine can activate at least three different endogenous receptors on the locust oviducts a putative tyramine receptor at low concentrations, a different tyramine receptor to inhibit muscle contraction, and an octopamine receptor at high concentrations.

  5. Ox-LDL Promotes Migration and Adhesion of Bone Marrow-Derived Mesenchymal Stem Cells via Regulation of MCP-1 Expression

    PubMed Central

    Wang, Congrui; Wang, Huaibin; Lu, Ming; Li, Yonghai; Feng, Huigen; Yuan, Zhiqing

    2013-01-01

    Bone marrow-derived mesenchymal stem cells (bmMSCs) are the most important cell source for stem cell transplant therapy. The migration capacity of MSCs is one of the determinants of the efficiency of MSC-based transplant therapy. Our recent study has shown that low concentrations of oxidized low-density lipoprotein (ox-LDL) can stimulate proliferation of bmMSCs. In this study, we investigated the effects of ox-LDL on bmMSC migration and adhesion, as well as the related mechanisms. Our results show that transmigration rates of bmMSCs and cell-cell adhesion between bmMSCs and monocytes are significantly increased by treatments with ox-LDL in a dose- and time-dependent manner. Expressions of ICAM-1, PECAM-1, and VCAM-1 as well as the levels of intracellular Ca2+ are also markedly increased by ox-LDL in a dose-dependent manner. Cytoskeleton analysis shows that ox-LDL treatment benefits to spreading of bmMSCs and organization of F-actin fibers after being plated for 6 hours. More interestingly, treatments with ox-LDL also markedly increase expressions of LOX-1, MCP-1, and TGF-β; however, LOX-1 antibody and MCP-1 shRNA markedly inhibit ox-LDL-induced migration and adhesion of bmMSCs, which suggests that ox-LDL-induced bmMSC migration and adhesion are dependent on LOX-1 activation and MCP-1 expression. PMID:23956504

  6. Effect of ammonium metavanadate on the murine immune response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, M.D.; Wei, C.I.; Tan, H.

    1986-01-01

    Female B/sub 6/C/sub 3/F/sub 1/ mice were exposed to ammonium metavanadate (NH/sub 4/VO/sub 3/) by intraperitoneal injection every 3 d at 2.5, 5.0, or 10 mg V/kg for 3, 6, or 9 w and were then assayed for alterations in immunoresponsiveness. Resistance to Escherichia coli endotoxin lethality increased in a dose-dependent manner up to 6 w of exposure, while resistance to viable gram-positive Listeria lethality was depressed in a dose-dependent manner. Comparison of LD20 values indicated a 250-fold decrease in resistance to Listeria at the lowest vanadium exposure and a 40% increase in resistance to endotoxin after the highest vanadiummore » exposure. Peritoneal macrophage phagocytic capacities were decreased in a dose-dependent manner, but viabilities remained unaffected. Rosetting capacity of splenic lymphocytes was increased following vanadium exposure. Liver and splenic enlargement was observed, and examination of splenic tissue indicated enhanced formation of megakaryocytes and red blood cell precursors. Subchronic exposure to vanadium may thus disrupt the normal function of the immune system.« less

  7. Dose- and Time-Dependent Transcriptional Response of Ishikawa Cells Exposed to Genistein

    PubMed Central

    Naciff, Jorge M.; Khambatta, Zubin S.; Carr, Gregory J.; Tiesman, Jay P.; Singleton, David W.; Khan, Sohaib A.; Daston, George P.

    2016-01-01

    To further define the utility of the Ishikawa cells as a reliable in vitro model to determine the potential estrogenic activity of chemicals of interest, transcriptional changes induced by genistein (GES) in Ishikawa cells at various doses (10 pM, 1 nM, 100 nM, and 10 μM) and time points (8, 24, and 48 h) were identified using a comprehensive microarray approach. Trend analysis indicated that the expression of 5342 unique genes was modified by GES in a dose- and time-dependent manner (P ≤ 0.0001). However, the majority of gene expression changes induced in Ishikawa cells were elicited by the highest dose of GES evaluated (10 μM). The GES’ estrogenic activity was identified by comparing the Ishikawa cells’ response to GES versus 17 α-ethynyl estradiol (EE, at equipotent doses, ie, 10 μM vs 1 μM, respectively) and was defined by changes in the expression of 284 unique genes elicited by GES and EE in the same direction, although the magnitude of the change for some genes was different. Further, comparing the response of the Ishikawa cells exposed to high doses of GES and EE versus the response of the juvenile rat uterus exposed to EE, we identified 66 unique genes which were up- or down regulated in a similar manner in vivo as well as in vitro. Genistein elicits changes in multiple molecular pathways affecting various biological processes particularly associated with cell organization and biogenesis, regulation of translation, cell proliferation, and intracellular transport; processes also affected by estrogen exposure in the uterus of the rat. These results indicate that Ishikawa cells are capable of generating a biologically relevant estrogenic response and offer an in vitro model to assess this mode of action. PMID:26865667

  8. Dose- and Time-Dependent Transcriptional Response of Ishikawa Cells Exposed to Genistein.

    PubMed

    Naciff, Jorge M; Khambatta, Zubin S; Carr, Gregory J; Tiesman, Jay P; Singleton, David W; Khan, Sohaib A; Daston, George P

    2016-05-01

    To further define the utility of the Ishikawa cells as a reliable in vitro model to determine the potential estrogenic activity of chemicals of interest, transcriptional changes induced by genistein (GES) in Ishikawa cells at various doses (10 pM, 1 nM, 100 nM, and 10 μM) and time points (8, 24, and 48 h) were identified using a comprehensive microarray approach. Trend analysis indicated that the expression of 5342 unique genes was modified by GES in a dose- and time-dependent manner (P ≤ 0.0001). However, the majority of gene expression changes induced in Ishikawa cells were elicited by the highest dose of GES evaluated (10 μM). The GES' estrogenic activity was identified by comparing the Ishikawa cells' response to GES versus 17 α-ethynyl estradiol (EE, at equipotent doses, ie, 10 μM vs 1 μM, respectively) and was defined by changes in the expression of 284 unique genes elicited by GES and EE in the same direction, although the magnitude of the change for some genes was different. Further, comparing the response of the Ishikawa cells exposed to high doses of GES and EE versus the response of the juvenile rat uterus exposed to EE, we identified 66 unique genes which were up- or down regulated in a similar manner in vivo as well as in vitro Genistein elicits changes in multiple molecular pathways affecting various biological processes particularly associated with cell organization and biogenesis, regulation of translation, cell proliferation, and intracellular transport; processes also affected by estrogen exposure in the uterus of the rat. These results indicate that Ishikawa cells are capable of generating a biologically relevant estrogenic response and offer an in vitro model to assess this mode of action. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. New insight into mitochondrial changes in vascular endothelial cells irradiated by gamma ray.

    PubMed

    Hu, Shunying; Gao, Yajing; Zhou, Hao; Kong, Fanxuan; Xiao, Fengjun; Zhou, Pingkun; Chen, Yundai

    2017-05-01

    To investigate alterations of mitochondria in irradiated endothelial cells to further elucidate the mechanism underlying radiation-induced heart disease. Experiments were performed using human umbilical vein endothelial cells (HUVECs). HUVECs were irradiated with single gamma ray dose of 0, 5, 10 and 20 Gy, respectively. Apoptosis was assessed by flow cytometry at 24, 48 and 72 h post-irradiation, respectively. The intracellular reactive oxygen species (ROS) was measured with 2',7'-dichlorofluorescein-diacetate (DCFH-DA) at 24 h post-irradiation. Mitochondrial membrane potential (ΔΨm) by JC-1 and the opening of mitochondrial permeability transition pore (mPTP) by a calcein-cobalt quenching method were detected at 24 h post-irradiation in order to measure changes of mitochondria induced by gamma ray irradiation. Gamma ray irradiation increased HUVECs apoptosis in a dose-dependent and time-dependent manner. Irradiation also promoted ROS production in HUVECs in a dose-dependent manner. At 24 h post-irradiation, the results showed that irradiation decreases ΔΨm, however, paradoxically, flow cytometry showed green fluorescence instensity higher in irradiated HUVECs than in control HUVECs in an irradiation dose-dependent manner which indicated gamma ray irradiation inhibited mPTP opening in HUVECs. Gamma ray irradiation induces apoptosis and ROS production of endothelial cells, and decreases ΔΨm meanwhile contradictorily inhibiting the opening of mPTP.

  10. Characterization of Changes in Gene Expression and Biochemical Pathways at Low Levels of Benzene Exposure

    PubMed Central

    Thomas, Reuben; Hubbard, Alan E.; McHale, Cliona M.; Zhang, Luoping; Rappaport, Stephen M.; Lan, Qing; Rothman, Nathaniel; Vermeulen, Roel; Guyton, Kathryn Z.; Jinot, Jennifer; Sonawane, Babasaheb R.; Smith, Martyn T.

    2014-01-01

    Benzene, a ubiquitous environmental pollutant, causes acute myeloid leukemia (AML). Recently, through transcriptome profiling of peripheral blood mononuclear cells (PBMC), we reported dose-dependent effects of benzene exposure on gene expression and biochemical pathways in 83 workers exposed across four airborne concentration ranges (from <1 ppm to >10 ppm) compared with 42 subjects with non-workplace ambient exposure levels. Here, we further characterize these dose-dependent effects with continuous benzene exposure in all 125 study subjects. We estimated air benzene exposure levels in the 42 environmentally-exposed subjects from their unmetabolized urinary benzene levels. We used a novel non-parametric, data-adaptive model selection method to estimate the change with dose in the expression of each gene. We describe non-parametric approaches to model pathway responses and used these to estimate the dose responses of the AML pathway and 4 other pathways of interest. The response patterns of majority of genes as captured by mean estimates of the first and second principal components of the dose-response for the five pathways and the profiles of 6 AML pathway response-representative genes (identified by clustering) exhibited similar apparent supra-linear responses. Responses at or below 0.1 ppm benzene were observed for altered expression of AML pathway genes and CYP2E1. Together, these data show that benzene alters disease-relevant pathways and genes in a dose-dependent manner, with effects apparent at doses as low as 100 ppb in air. Studies with extensive exposure assessment of subjects exposed in the low-dose range between 10 ppb and 1 ppm are needed to confirm these findings. PMID:24786086

  11. A spectrum of exercise training reduces soluble Aβ in a dose-dependent manner in a mouse model of Alzheimer's disease.

    PubMed

    Moore, Kaitlin M; Girens, Renee E; Larson, Sara K; Jones, Maria R; Restivo, Jessica L; Holtzman, David M; Cirrito, John R; Yuede, Carla M; Zimmerman, Scott D; Timson, Benjamin F

    2016-01-01

    Physical activity has long been hypothesized to influence the risk and pathology of Alzheimer's disease. However, the amount of physical activity necessary for these benefits is unclear. We examined the effects of three months of low and high intensity exercise training on soluble Aβ40 and Aβ42 levels in extracellular enriched fractions from the cortex and hippocampus of young Tg2576 mice. Low (LOW) and high (HI) intensity exercise training animals ran at speeds of 15m/min on a level treadmill and 32 m/min at a 10% grade, respectively for 60 min per day, five days per week, from three to six months of age. Sedentary mice (SED) were placed on a level, non-moving, treadmill for the same duration. Soleus muscle citrate synthase activity increased by 39% in the LOW group relative to SED, and by 71% in the HI group relative to LOW, indicating an exercise training effect in these mice. Soluble Aβ40 concentrations decreased significantly in an exercise training dose-dependent manner in the cortex. In the hippocampus, concentrations were decreased significantly in the HI group relative to LOW and SED. Soluble Aβ42 levels also decreased significantly in an exercise training dose-dependent manner in both the cortex and hippocampus. Five proteins involved in Aβ clearance (neprilysin, IDE, MMP9, LRP1 and HSP70) were elevated by exercise training with its intensity playing a role in each case. Our data demonstrate that exercise training reduces extracellular soluble Aβ in the brains of Tg2576 mice in a dose-dependent manner through an up-regulation of Aβ clearance. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Flavonoids and Tannins from Smilax china L. Rhizome Induce Apoptosis Via Mitochondrial Pathway and MDM2-p53 Signaling in Human Lung Adenocarcinoma Cells.

    PubMed

    Fu, San; Yang, Yanfang; Liu, Dan; Luo, Yan; Ye, Xiaochuan; Liu, Yanwen; Chen, Xin; Wang, Song; Wu, Hezhen; Wang, Yuhang; Hu, Qiwei; You, Pengtao

    2017-01-01

    In vitro evidence indicates that Smilax china L. rhizome (SCR) can inhibit cell proliferation. Therefore, in the present study, we analyzed the effects in vitro of SCR extracts on human lung adenocarcinoma A549 cells. Our results showed that A549 cell growth was inhibited in a dose- and time-dependent manner after treatment with SCR extracts. Total flavonoids and total tannins from SCR induced A549 apoptosis in a dose-dependent manner, as shown by our flow cytometry analysis, which was consistent with the alterations in nuclear morphology we observed. In addition, the total apoptotic rate induced by total tannins was higher than the rate induced by total flavonoids at the same dose. Cleaved-caspase-3 protein levels in A549 cells after treatment with total flavonoids or total tannins were increased in a dose-dependent manner, followed by the activation of caspase-8 and caspase-9, finally triggering to PARP cleavage. Furthermore, total flavonoids and total tannins increased the expression of Bax, decreased the expression of Bcl-2, and promoted cytochrome [Formula: see text] release. Moreover, MDM2 and p-MDM2 proteins were decreased, while p53 and p-p53 proteins were increased, both in a dose-dependent manner, after A549 treatment with total flavonoids and total tannins. Finally, cleaved-caspase-3 protein levels in the total flavonoids or total tannins-treated H1299 (p53 null) and p53-knockdown A549 cells were increased. Our results indicated that total flavonoids and total tannins from SCR exerted a remarkable effect in reducing A549 growth through their action on mitochondrial pathway and disruption of MDM2-p53 balance. Hence, our findings demonstrated a potential application of total flavonoids and total tannins from SCR in the treatment of human lung adenocarcinoma.

  13. Antioxidant activities of saponins extracted from Radix Trichosanthis: an in vivo and in vitro evaluation

    PubMed Central

    2014-01-01

    Background Radix Trichosanthis (RT), the dry root tuber of Trichosanthis kirilowii Maxim (Cucurbitaceae), is a traditional Chinese medicine. Although a wide range of saponin pharmacological properties has been identified, to our knowledge, this may be the first report to investigate the crude saponins from RT. The purpose of this study was to delineate the antioxidant activity both in vitro and in vivo by using ethyl acetate (EtOAc), n-butanol, and the mixture of n-butanol and EtOAc fractions. Methods In vitro antioxidant activity was detected by using DPPH free radical, hydrogen peroxide scavenging, and reducing power assays. After pretreatment with different fractions saponins at 2 mg/kg/d and 3 mg/kg/d of crude drug, respectively, an established CCl4 induced acute cytotoxicity model was used to evaluate the in vivo antioxidant potential by detection of superoxide dismutase (SOD), malonaldehyde (MDA), lactate dehydrogenase (LDH), and total antioxidant capacity (T-AOC) levels. Results The in vitro assay showed that the antioxidant activity of all the three fractions was promising. The reducing power of the EtOAc and the mixture of n-butanol and EtOAc extracts increased in a dose dependent manner. However, both the n-butanol and the mixture of n-butanol and EtOAc fractions in low dose exhibited in a time dependent manner with prolonged reaction time. As for hydrogen peroxide scavenging capability, the n-butanol fraction mainly demonstrated a time dependent manner, whereas EtOAc fraction showed a dose dependent manner. However, in case of in vivo assay, an increase of SOD and T-AOC and decrease of MDA and LDH levels were only observed in n-butanol (2 mg/kg/d of crude drug) extracts pretreatment group. Conclusions RT saponins in n-butanol fraction might be a potential antioxidant candidate, as CCl4-induced oxidative stress has been found to be alleviated, which may be associated with the time dependent manner of n-butanol saponins in a low dose. Further studies will be needed to investigate the active individual components in n-butanol extract, in vivo antioxidant activities and antioxidant mechanisms. PMID:24597831

  14. Bombesin stimulates invasion and migration of Isreco1 colon carcinoma cells in a Rho-dependent manner.

    PubMed

    Saurin, Jean-Christophe; Fallavier, Marjorie; Sordat, Bernard; Gevrey, Jean-Claude; Chayvialle, Jean-Alain; Abello, Jacques

    2002-08-15

    The membrane receptor for the neuropeptide bombesin/gastrin-releasing peptide (GRP) is expressed by a large fraction of human colorectal carcinoma cells. We reported previously a stimulation of cell adhesion and lamellipodia formation by the neuropeptide bombesin in the human, bombesin/GRP receptor-expressing, Isreco1 colorectal cancer cell line (J. C. Saurin et al., Cancer Res., 59: 962-967, 1999). Using invasion and motility assays, we demonstrate in this report that bombesin can both enhance the invasive capacity of Isreco1 cells in a dose-dependent manner (maximal effect at 1 nM) and stimulate the closure of wounds performed on confluent Isreco1 cells. These effects were reversed fully by the specific bombesin/GRP receptor antagonist D-Phe(6)-Bn(6-13)OMe used at 1 micro M. MMP-9 and urokinase-type plasminogen activator were expressed by Isreco1 cells, and bombesin did not significantly alter their level of secretion. Interestingly, exoenzyme C3 (10 micro g/ml) decreased cell invasiveness induced by bombesin by 70% and completely inhibited the migration of Isreco1 cells. Similarly, the Rho-kinase inhibitor Y-27632 dose-dependently reduced the effect of bombesin on cell invasion. Moreover, pull-down assays for GTP-bound RhoA demonstrated that bombesin was able to activate the small G-protein in Isreco1 cells. These results show that the neuropeptide bombesin is able to modulate invasiveness of Isreco1 colorectal carcinoma cells in vitro through a Rho-dependent pathway, leading to an increase in cell locomotion without a significant effect on tumor-cell associated proteolytic activity. These findings indicate that bombesin/GRP receptor expression may contribute to the cellular events that are critical for invasion/migration of colorectal carcinoma cells.

  15. Immunostimulatory Activity of Opuntia ficus-indica var. Saboten Cladodes Fermented by Lactobacillus plantarum and Bacillus subtilis in RAW 264.7 Macrophages.

    PubMed

    Hwang, Joon-Ho; Lim, Sang-Bin

    2017-02-01

    To increase the functionality of Opuntia ficus-indica var. saboten cladodes, it was fermented by Lactobacillus plantarum and Bacillus subtilis. Eighty percent methanol extracts were investigated for their effects on nitric oxide (NO) production, cytokine secretion, nuclear factor-κB (NF-κB) activity, and mitogen-activated protein kinase (MAPK) phosphorylation in RAW 264.7 cells. Methanol extracts of L. plantarum culture medium (LPCME) and B. subtilis culture medium (BSCME) did not affect lipopolysaccharide (LPS)-induced NO production but, at 500 μg/mL, increased interferon (IFN)-γ-induced NO production by 55.2 and 66.5 μM, respectively, in RAW 264.7 cells. In RAW 264.7 cells not treated with LPS and IFN-γ, LPCME did not affect NO production, but BSCME increased NO production significantly in a dose-dependent manner. In addition, BSCME induced the expression of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in RAW 264.7 cells in a dose-dependent manner. BSCME at 500 μg/mL increased TNF-α and IL-1β mRNA levels by 83.8% and 82.2%, respectively. BSCME increased NF-κB-dependent luciferase activity in a dose-dependent manner; 500 μg/mL BSCME increased activity 9.1-fold compared with the control. BSCME induced the phosphorylation of p38, c-JUN NH 2 -terminal protein kinase (JNK), and extracellular signal-regulated kinase (ERK) in a dose-dependent manner, but did not affect total ERK levels. In conclusion, BSCME exerted immunostimulatory effects, which were mediated by MAPK phosphorylation and NF-κB activation, resulting in increased TNF-α and IL-1β gene expression in RAW 264.7 macrophages. Therefore, BSCM shows promise for use as an immunostimulatory therapeutic.

  16. Genotoxicity of dill (Anethum graveolens L.), peppermint (Menthaxpiperita L.) and pine (Pinus sylvestris L.) essential oils in human lymphocytes and Drosophila melanogaster.

    PubMed

    Lazutka, J R; Mierauskiene, J; Slapsyte, G; Dedonyte, V

    2001-05-01

    Genotoxic properties of the essential oils extracted from dill (Anethum graveolens L.) herb and seeds, peppermint (Menthaxpiperita L.) herb and pine (Pinus sylvestris L.) needles were studied using chromosome aberration (CA) and sister chromatid exchange (SCE) tests in human lymphocytes in vitro, and Drosophila melanogaster somatic mutation and recombination test (SMART) in vivo. In the CA test, the most active essential oil was from dill seeds, then followed essential oils from dill herb, peppermint herb and pine needles, respectively. In the SCE test, the most active essential oils were from dill herb and seeds followed by essential oils from pine needles and peppermint herb. Essential oils from dill herb and seeds and pine needles induced CA and SCE in a clear dose-dependent manner, while peppermint essential oil induced SCE in a dose-independent manner. All essential oils were cytotoxic for human lymphocytes. In the SMART test, a dose-dependent increase in mutation frequency was observed for essential oils from pine and dill herb. Peppermint essential oil induced mutations in a dose-independent manner. Essential oil from dill seeds was almost inactive in the SMART test.

  17. Curcumin induces autophagic cell death in Spodoptera frugiperda cells.

    PubMed

    Veeran, Sethuraman; Shu, Benshui; Cui, Gaofeng; Fu, Shengjiao; Zhong, Guohua

    2017-06-01

    The increasing interest in the role of autophagy (type II cell death) in the regulation of insect toxicology has propelled study of investigating autophagic cell death pathways. Turmeric, the rhizome of the herb Curcuma longa (Mañjaḷ in Tamil, India and Jiānghuáng in Chinese) have been traditionally used for the pest control either alone or combination with other botanical pesticides. However, the mechanisms by which Curcuma longa or curcumin exerts cytotoxicity in pests are not well understood. In this study, we investigated the potency of Curcuma longa (curcumin) as a natural pesticide employing Sf9 insect line. Autophagy induction effect of curcumin on Spodoptera frugiperda (Sf9) cells was investigated using various techniques including cell proliferation assay, morphology analysis with inverted phase contrast microscope and Transmission Electron Microscope (TEM) analysis. Autophagy was evaluated using the fluorescent dye monodansylcadaverine (MDC). Cell death measurement was examined using 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) within the concentrations of 5-15μg/mL. Curcumin inhibited the growth of the Sf9 cells and induced autophagic cell death in a time and dose dependent manner. Staining the cells with MDC showed the presence of autophagic vacuoles while increased in a dose and time dependent manner. At the ultrastructural level transmission electron microscopy, cells revealed massive autophagy vacuole accumulation and absence of chromatin condensation. Protein expression levels of ATG8-I and ATG8-II, well-established markers of autophagy related protein were elevated in a time dependent manner after curcumin treatment. The present study proves that curcumin induces autophagic cell death in Sf9 insect cell line and this is the first report of cytotoxic effect of curcumin in insect cells and that will be utilized as natural pesticides in future. Copyright © 2017. Published by Elsevier Inc.

  18. Hedonic sensitivity to low-dose ketamine is modulated by gonadal hormones in a sex-dependent manner

    PubMed Central

    Saland, Samantha K.; Schoepfer, Kristin J.; Kabbaj, Mohamed

    2016-01-01

    We recently reported a greater sensitivity of female rats to rapid antidepressant-like effects of ketamine compared to male rats, and that ovarian-derived estradiol (E2) and progesterone (P4) are essential for this response. However, to what extent testosterone may also contribute, and whether duration of response to ketamine is modulated in a sex- and hormone-dependent manner remains unclear. To explore this, we systematically investigated the influence of testosterone, estradiol and progesterone on initiation and maintenance of hedonic response to low-dose ketamine (2.5 mg/kg) in intact and gonadectomized male and female rats. Ketamine induced a sustained increase in sucrose preference of female, but not male, rats in an E2P4-dependent manner. Whereas testosterone failed to alter male treatment response, concurrent administration of P4 alone in intact males enhanced hedonic response low-dose ketamine. Treatment responsiveness in female rats only was associated with greater hippocampal BDNF levels, but not activation of key downstream signaling effectors. We provide novel evidence supporting activational roles for ovarian-, but not testicular-, derived hormones in mediating hedonic sensitivity to low-dose ketamine in female and male rats, respectively. Organizational differences may, in part, account for the persistence of sex differences following gonadectomy and selective involvement of BDNF in treatment response. PMID:26888470

  19. [Effects of sinensetin on proliferation and apoptosis of human gastric cancer AGS cells].

    PubMed

    Dong, Yang; Ji, Guang; Cao, Aili; Shi, Jianrong; Shi, Hailian; Xie, Jianqun; Wu, Dazheng

    2011-03-01

    To study the effects and mechanisms of sinensetin on proliferation and apoptosis of human AGS gastric cancer cells. MTT assay was used to detect the growth inhibition rates of human AGS gastric cancer cells treated with sinsesectin in different concentrations and times. The cell cycle distribution was measured by flow cytometry. The apoptosis was examined by Annexin-FITC/PI staining and DNA fragment analysis. The apoptosis morphology was observed by inverted fluorescence microscope after Hoechst 33342 staining. The protein expressions of p21 and p53 were detected by western blot. MTT assay showed that sinensetin inhibited the growth of AGS gastric cancer cells in a dose- and time-dependent manner. Sinensetin blocked AGS cells in G2/ M and increased the apoptosis rates of AGS cells in a dose-dependent manner. DNA ladder was observed in cells treated with 60 micromol x L(-1) sinensetin for 48 h. The typical apoptotic morphological changes including cell nucleus shrinkage, chromatin condensation and apoptotic bodies were observed when treated with different dose of sinensetin. Western blot showed that sinensetin increased expressions of p53 and p21 in a dose-dependent manner. Sinensetin could inhibit human AGS gastric cancer cells proliferation and induce cell cycle block in G2/M phase and apoptosis. The up regulation of p53 and p21 protein might be one of the mechanisms.

  20. Anti-rheumatic drug iguratimod (T-614) alleviates cancer-induced bone destruction via down-regulating interleukin-6 production in a nuclear factor-κB-dependent manner.

    PubMed

    Sun, Yue; Ye, Da-Wei; Zhang, Peng; Wu, Ying-Xing; Wang, Bang-Yan; Peng, Guang; Yu, Shi-Ying

    2016-10-01

    Cytokines are believed to be involved in a "vicious circle" of progressive interactions in bone metastasis. Iguratimod is a novel anti-rheumatic drug which is reported to have the capability of anti-cytokines. In this study, a rat model was constructed to investigate the effect of iguratimod on bone metastasis and it was found that iguratimod alleviated cancer-induced bone destruction. To further explore whether an anti-tumor activity of iguratimod contributes to the effect of bone resorption suppression, two human breast cancer cell lines MDA-MB-231 and MCF-7 were studied. The effect of iguratimod on tumor proliferation was detected by CCK-8 assay and flow cytometry. The effects of iguratimod on migration and invasion of cancer cells were determined by wound-healing and Transwell assays. Results showed that high dose (30 μg/mL) iguratimod slightly suppressed the proliferation of cancer cells but failed to inhibit their migration and invasion capacity. Interestingly, iguratimod decreased the transcription level of IL-6 in MDA-MB-231 cells in a concentration-dependent manner. Moreover, iguratimod partially impaired NF-κB signaling by suppressing the phosphorylation of NF-κB p65 subunit. Our findings indicated that iguratimod may alleviate bone destruction by partially decreasing the expression of IL-6 in an NF-κB-dependent manner, while it has little effect on the tumor proliferation and invasion.

  1. Necroptosis contributes to methamphetamine-induced cytotoxicity in rat cortical neurons.

    PubMed

    Xiong, Kun; Liao, Huidan; Long, Lingling; Ding, Yanjun; Huang, Jufang; Yan, Jie

    2016-09-01

    Necroptosis, a programmed necrosis, is involved in various types of neurodegenerative diseases. In this study, we investigated whether necroptosis contributed to neuronal damage in a methamphetamine injury model. Primary cultures of embryonic cortical neurons from Sprague-Dawley rats were subjected to different doses of methamphetamine with/without pre-treatment with a specific necroptosis inhibitor, Necrostatin-1. Necrosis was assessed by determining lactate dehydrogenase release and by Annexin V/propidium iodide double staining, while the neuronal ultra-structure was examined by electron microscopy. Tumor necrosis factor-α protein levels were determined by enzyme-linked immunosorbent assay. At early stages (12h) of post-treatment with methamphetamine, significant necrosis occurred and the viability of neurons decreased in a dose- and time-dependent manner in this model of acute neuronal injury. Pretreatment with Necrostatin-1 led to significant neuronal preservation compared with the methamphetamine-treated groups. Furthermore, tumor necrosis factor-α expression increased in a dose-dependent manner following methamphetamine exposure. Methamphetamine induced necrosis in rat cortical neurons in vitro, both time and dose dependently, and necroptosis may be an important newly identified mode of cortical neuronal death caused by single high-dose methamphetamine administration. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Opposing roles for GABAA and GABAC receptors in short-term memory formation in young chicks.

    PubMed

    Gibbs, M E; Johnston, G A R

    2005-01-01

    The inhibitory neurotransmitter GABA has both inhibitory and enhancing effects on short-term memory for a bead discrimination task in the young chick. Low doses of GABA (1-3 pmol/hemisphere) injected into the multimodal association area of the chick forebrain, inhibit strongly reinforced memory, whereas higher doses (30-100 pmol/hemisphere) enhance weakly reinforced memory. The effect of both high and low doses of GABA is clearly on short-term memory in terms of both the time of injection and in the time that the memory loss occurs. We argue on the basis of relative sensitivities to GABA and to selective GABA receptor antagonists that low doses of GABA act at GABAC receptors (EC50 approximately 1 microM) and the higher doses of GABA act via GABAA receptors (EC50 approximately 10 microM). The selective GABAA receptor antagonist bicuculline inhibited strongly reinforced memory in a dose and time dependent manner, whereas the selective GABAC receptor antagonists TPMPA and P4MPA enhanced weakly reinforced in a dose and time dependent manner. Confirmation that different levels of GABA affect different receptor subtypes was demonstrated by the shift in the GABA dose-response curves to the selective antagonists. It is clear that GABA is involved in the control of short-term memory formation and its action, enhancing or inhibiting, depends on the level of GABA released at the time of learning.

  3. Evaluation of Gamma Radiation-Induced Biochemical Changes in Skin for Dose Assesment: A Study on Small Experimental Animals.

    PubMed

    Kumar Soni, Sandeep; Basu, Mitra; Agrawal, Priyanka; Bhatnagar, Aseem; Chhillar, Neelam

    2018-05-24

    Researchers have been evaluating several approaches to assess acute radiation injury/toxicity markers owing to radiation exposure. Keeping in mind this background, we assumed that whole-body irradiation in single fraction in graded doses can affect the antioxidant profile in skin that could be used as an acute radiation injury/toxicity marker. Sprague-Dawley rats were treated with CO-60 gamma radiation (dose: 1-5 Gy; dose rate: 0.85 Gy/minute). Skin samples were collected (before and after radiation up to 72 hours) and analyzed for glutathione (GSH), glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), and lipid peroxidation (LPx). Intra-group comparison showed significant differences in GSH, GPx, SOD, and CAT, and they declined in a dose-dependent manner from 1 to 5 Gy (P value0.05). This study suggests that skin antioxidants were sensitive toward radiation even at a low radiation dose, which can be used as a predictor of radiation injury and altered in a dose-dependent manner. These biochemical parameters may have wider application in the evaluation of radiation-induced skin injury and dose assessment. (Disaster Med Public Health Preparedness. 2018;page 1 of 6).

  4. Long-term treatment with green tea polyphenols modifies the gut microbiome of female sprague-dawley rats.

    PubMed

    Wang, Jincheng; Tang, Lili; Zhou, Hongyuan; Zhou, Jun; Glenn, Travis C; Shen, Chwan-Li; Wang, Jia-Sheng

    2018-06-01

    Green tea polyphenols (GTP) have been shown to exert a spectrum of health benefits to animals and humans. It is plausible that the beneficial effects of GTP are a result of its interaction with the gut microbiota. This study evaluated the effect of long-term treatment with GTP on the gut microbiota of experimental rats and the potential linkage between changes of the gut microbiota with the beneficial effects of GTP. Six-month-old Sprague-Dawley rats were randomly allocated into three dosing regimens (0, 0.5%, and 1.5% of GTP) and followed for 6 months. At the end of month 3 or month 6, half of the animals from each group were sacrificed and their colon contents were collected for microbiome analysis using 16S ribosomal RNA and shotgun metagenomic community sequencing. GTP treatment significantly decreased the biodiversity and modified the microbial community in a dose-dependent manner; similar patterns were observed at both sampling times. Multiple operational taxonomic units and phylotypes were modified: the phylotypes Bacteroidetes and Oscillospira, previously linked to the lean phenotype in human and animal studies, were enriched; and Peptostreptococcaceae previously linked to colorectal cancer phenotype was depleted in GTP treated groups in a dose-dependent manner. Several microbial gene orthologs were modified, among which genes related to energy production and conversion were consistently enriched in samples from month 6 in a dose-dependent manner. This study showed that long-term treatment with GTP induced a dose-dependent modification of the gut microbiome in experimental rats, which might be linked to beneficial effects of GTP. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Anti-inflammatory activity of 6-hydroxy-2,7-dimethoxy-1,4-henanthraquinone from tuberous roots of yam (Dioscorea batatas) through inhibition of prostaglandin D₂ and leukotriene C₄ production in mouse bone marrow-derived mast cells.

    PubMed

    Jin, Meihua; Lu, Yue; Yang, Ju Hye; Jo, Tae Hyung; Park, Young In; Lee, Chong-Kil; Park, Sang-Jo; Son, Kun Ho; Chang, Hyeun Wook

    2011-09-01

    6-Hydroxy-2,7-dimethoxy-1,4-phenanthraquinone (PAQ) isolated from the tuberous roots of Yam (Dioscorea batatas) inhibited cyclooxygenase-2 (COX-2) and cyclooxygenase-1 (COX-1) dependent prostaglandin D(2) (PGD(2)) generation in mouse bone marrow-derived mast cells in a concentration-dependent manner with IC(50) values of 0.08 μM and 0.27 μM, respectively. In the Western blotting with specific anti-COX-2 antibodies, the decrease of the quantity of PGD(2) was accompanied by a decrease in the COX-2 protein level. But PAQ did not affect COX-1 protein level. In addition, this compound inhibited 5-lipoxygenase (5-LOX) dependent production of leukotriene C(4) in a dose-dependent manner, with an IC(50) of 0.032 μM. These results demonstrate that PAQ has a dual COX-2/5-LOX inhibitory activity. This compound also inhibited the degranulation reaction in a dose-dependent manner with an IC(50) of 2.7 μM. Thus, these results suggest that PAQ may be useful in regulating mast cell-mediated inflammatory diseases.

  6. Superoxide radical-generating compounds activate a predicted promoter site for paraquat-inducible genes of the Chromobacterium violaceum bacterium in a dose-dependent manner.

    PubMed

    Gabriel, J E; Guerra-Slompo, E P; de Souza, E M; de Carvalho, F A L; Madeira, H M F; de Vasconcelos, A T R

    2015-08-21

    The purpose of the present study was to functionally evaluate the influence of superoxide radical-generating compounds on the heterologous induction of a predicted promoter region of open reading frames for paraquat-inducible genes (pqi genes) revealed during genome annotation analyses of the Chromobacterium violaceum bacterium. A 388-bp fragment corresponding to a pqi gene promoter of C. violaceum was amplified using specific primers and cloned into a conjugative vector containing the Escherichia coli lacZ gene without a promoter. Assessments of the expression of the β-galactosidase enzyme were performed in the presence of menadione (MEN) and phenazine methosulfate (PMS) compounds at different final concentrations to evaluate the heterologous activation of the predicted promoter region of interest in C. violaceum induced by these substrates. Under these experimental conditions, the MEN reagent promoted highly significant increases in the expression of the β-galactosidase enzyme modulated by activating the promoter region of the pqi genes at all concentrations tested. On the other hand, significantly higher levels in the expression of the β-galactosidase enzyme were detected exclusively in the presence of the PMS reagent at a final concentration of 50 μg/mL. The findings described in the present study demonstrate that superoxide radical-generating compounds can activate a predicted promoter DNA motif for pqi genes of the C. violaceum bacterium in a dose-dependent manner.

  7. The essential oil of bergamot enhances the levels of amino acid neurotransmitters in the hippocampus of rat: implication of monoterpene hydrocarbons.

    PubMed

    Morrone, Luigi A; Rombolà, Laura; Pelle, Cinzia; Corasaniti, Maria T; Zappettini, Simona; Paudice, Paolo; Bonanno, Giambattista; Bagetta, Giacinto

    2007-04-01

    The effects of bergamot essential oil (BEO) on the release of amino acid neurotransmitters in rat hippocampus have been studied by in vivo microdialysis and by in vitro superfusion of isolated nerve terminals. Intraperitoneal administration of BEO (100microl/kg) significantly elevated the extracellular concentration of aspartate, glycine and taurine in a Ca(2+)-dependent manner. A dose-relation study generated a bell-shaped curve. When perfused into the hippocampus via the dialysis probe (20microl/20min), BEO produced a significant increase of extracellular aspartate, glycine, taurine as well as of GABA and glutamate. The augmentation of all amino acids was Ca(2+)-independent. Focally injected 1:1 diluted BEO preferentially caused extracellular increase of glutamate. Interestingly, this release appeared to be strictly Ca(2+)-dependent. BEO concentration-dependently enhanced the release of [(3)H]D-aspartate from superfused hippocampal synaptosomes. Similar results were obtained by monitoring the BEO-evoked release of endogenous glutamate. At relatively high concentrations, the BEO-induced [(3)H]d-aspartate release was almost entirely prevented by the glutamate transporter blocker dl-threo-beta-benzyloxyaspartic acid (DL-TBOA) and was Ca(2+)-independent. At relatively low concentrations the release of [(3)H]D-aspartate was only in part ( approximately 50%) DL-TBOA-sensitive and Ca(2+)-independent; the remaining portion of release was dependent on extracellular Ca(2+). Interestingly, the monoterpene hydrocarbon-free fraction of the essential oil appeared to be inactive while the bergapten-free fraction superimposed the releasing effect of BEO supporting the deduction that psoralens may not be implicated. To conclude, BEO contains into its volatile fraction still unidentified monoterpene hydrocarbons able to stimulate glutamate release by transporter reversal and/or by exocytosis, depending on the dose administered.

  8. Chestnut astringent skin extract, an alpha-amylase inhibitor, retards carbohydrate absorption in rats and humans.

    PubMed

    Tsujita, Takahiro; Takaku, Takeshi; Suzuki, Tsuneo

    2008-02-01

    Inhibitors of carbohydrate-hydrolyzing enzyme play an important role to control postprandial blood glucose levels. In this paper, we investigated the effect of an ethanol extract from chestnut astringent skin (CAS) on alpha-amylase. Chestnut astringent skin extract strongly inhibited human and porcine pancreatic alpha-amylase. We also investigated the effect of CAS extract on carbohydrate absorption in rats and humans. Oral administration of CAS extract to normal rats fed corn starch (2 g/kg body weight), significantly suppressed the increase of blood glucose levels after starch loading in a dose-dependent manner. The effective dose of CAS extract required to achieve 20 and 40% suppression of the rise in blood glucose level was estimated to be 40 and 155 mg/kg body weight, respectively. Chestnut astringent skin extract also suppressed the rise in plasma insulin level and the fall in plasma non-esterified fatty acid level. In the type 2 diabetic rat model, CAS extract significantly suppressed the rise in blood glucose level after starch loading in a dose-dependent manner. Chestnut astringent skin extract also suppressed the rise in plasma glucose level after boiled rice loading in a dose-dependent manner in humans. The amount of CAS extract required to achieve 11 and 23% suppression in the rise in plasma glucose level was 300 and 600 mg/person, respectively. These results suggest that CAS extract retards absorption of carbohydrate and reduces post-prandial hyperglycemia.

  9. Reduction of spermatogenesis in mice after tributyltin administration.

    PubMed

    Chen, Yufang; Zuo, Zhenghong; Chen, Shuzhen; Yan, Feihuang; Chen, Yixin; Yang, Zengming; Wang, Chonggang

    2008-09-29

    Organotin compounds, such as tributyltin (TBT) used as an antifouling biocide, can induce masculinization in female mollusks. However, few studies addressing the effect of TBT on spermatogenesis in mammalian have been reported. This study was conducted to investigate the effects of TBT at low doses (0.5, 5, and 50 microg/kg, respectively) on spermatogenesis in mice as exposed from puberty and gave insight into the mechanism. After exposure for 30 days, the gonadosomatic index (GSI) was significantly decreased. The testosterone levels in the testes were not altered and the 17beta-estradiol levels were significantly decreased in a dose-dependent manner, spermatogenesis of the testis was significantly inhibited. Estrogen receptor (ER-alpha and ER-beta) levels in testes of the mice exposed to TBT were decreased in a dose-dependent manner. The results suggest that ER play an important role in TBT-mediated inhibition of spermatogenesis.

  10. Gpn3 is polyubiquitinated on lysine 216 and degraded by the proteasome in the cell nucleus in a Gpn1-inhibitable manner.

    PubMed

    Méndez-Hernández, Lucía E; Robledo-Rivera, Angelica Y; Macías-Silva, Marina; Calera, Mónica R; Sánchez-Olea, Roberto

    2017-11-01

    Gpn1 associates with Gpn3, and both are required for RNA polymerase II nuclear targeting. Global studies have identified by mass spectrometry that human Gpn3 is ubiquitinated on lysines 189 and 216. Our goals here were to determine the type, physiological importance, and regulation of Gpn3 ubiquitination. After inhibiting the proteasome with MG132, Gpn3-Flag was polyubiquitinated on K216, but not K189, in HEK293T cells. Gpn3-Flag exhibited nucleo-cytoplasmic shuttling, but polyubiquitination and proteasomal degradation of Gpn3-Flag occurred only in the cell nucleus. Polyubiquitination-deficient Gpn3-Flag K216R displayed a longer half-life than Gpn3-Flag in two cell lines. Interestingly, Gpn1-EYFP inhibited Gpn3-Flag polyubiquitination in a dose-dependent manner. In conclusion, Gpn1-inhibitable, nuclear polyubiquitination on lysine 216 regulates the half-life of Gpn3 by tagging it for proteasomal degradation. © 2017 Federation of European Biochemical Societies.

  11. DIMETHYLARSINIC ACID ALTERS EXPRESSION OF OXIDATIVE STRESS AND DNA REPAIR GENES IN A DOSE DEPENDENT MANNER IN THE TRANSITIONAL EPITHELIUM OF THE URINARY BLADDER FROM FEMALE F344 RATS.

    EPA Science Inventory

    Dose-dependent alteration of oxidative stress and DNA repair gene expression by Dimethylarsinic acid [DMA(V)] in transitional epithelium of urinary bladder from female F344 rats.
    Arsenic (As) is a major concern as millions of people are at risk from drinking arsenic contaminat...

  12. Dietary selenomethionine increases exon-specific DNA methylation of the p53 gene in rat liver and colon mucosa.

    PubMed

    Zeng, Huawei; Yan, Lin; Cheng, Wen-Hsing; Uthus, Eric O

    2011-08-01

    The regulation of site-specific DNA methylation of tumor suppressor genes has been considered as a leading mechanism by which certain nutrients exert their anticancer property. This study was to investigate whether selenium (Se) affects the methylation of globe genomic DNA and the exon-specific p53 gene. Three groups of rats (n = 6-7/group) were fed the AIN-93G basal diet supplemented with 0 [Se deficient (D)], 0.15 [Se adequate (A)], or 4 mg [Se supranutritional (S)] (Se as l-selenomethionine)/kg diet for 104 d, respectively. Rats fed the A or S diet had greater plasma and liver glutathione peroxidase activity, liver thioredoxin reductase activity, and plasma homocysteine concentration than those fed the D diet. However, compared with the A diet, rats fed the S diet did not further increase these Se-dependent enzyme activities or homocysteine concentration. In contrast, Se concentrations in kidney, liver, gastrocnemius muscle, and plasma were increased in a Se-dose-dependent manner. Interestingly, rats fed the S diet had significantly less global liver genomic DNA methylation than those fed the D diet. However, the S diet significantly increased the methylation of the p53 gene (exons 5-8) but not the β-actin gene (exons 2-3) DNA in liver and colon mucosa compared with those fed the D diet. Taken together, long-term Se consumption not only affects selenoprotein enzyme activities, homocysteine, tissue Se concentrations, and global genomic DNA methylation but also increases exon-specific DNA methylation of the p53 gene in a Se-dose-dependent manner in rat liver and colon mucosa.

  13. The role of endothelium in the vasorelaxant effects of the essential oil of Ocimum gratissimum in aorta and mesenteric vascular bed of rats.

    PubMed

    Pires, Alana F; Madeira, Socorro V Frota; Soares, Pedro M G; Montenegro, Claudia M; Souza, Emmanuel P; Resende, Angela C; Soares de Moura, Roberto; Assreuy, Ana M S; Criddle, David N

    2012-10-01

    This study investigated the endothelium-dependent vasorelaxant effects of the essential oil of Ocimum gratissimum (EOOG) in aortas and mesenteric vascular beds isolated from rats. EOOG (3-300 µg/mL) relaxed the tonic contractions induced by phenylephrine (0.1 µmol/L) in isolated aortas in a concentration-dependent manner in both endothelium-containing and endothelium-denuded preparations. This effect was partially reversed by L-NAME (100 µmol/L) but not by indomethacin (10 µmol/L) or TEA (5 mmol/L). In mesenteric vascular beds, bolus injections of EOOG (30, 50, 100, and 300 ng) decreased the perfusion pressure induced by noradrenaline (6 µmol/L) in endothelium-intact preparations but not in those treated with deoxycholate. L-NAME (300 µmol/L) but not TEA (1 mmol/L) or indomethacin (3 µmol/L) significantly reduced the vasodilatory response to EOOG at all of the doses tested. Our data showed that EOOG exerts a dose-dependent vasodilatory response in the resistance blood vessels of rat mesenteric vascular beds and in the capacitance blood vessel, the rat aorta. This action is completely dependent on endothelial nitric oxide (NO) release in the mesenteric vascular beds but only partially dependent on NO in the aorta. These novel effects of EOOG highlight interesting differences between resistance and capacitance blood vessels.

  14. Enhanced Medial Collateral Ligament Healing using Mesenchymal Stem Cells: Dosage Effects on Cellular Response and Cytokine Profile

    PubMed Central

    Saether, Erin E.; Chamberlain, Connie S.; Leiferman, Ellen M.; Kondratko-Mittnacht, Jaclyn R.; Li, Wan Ju; Brickson, Stacey L.; Vanderby, Ray

    2013-01-01

    Mesenchymal stem cells (MSCs) have potential therapeutic applications for musculoskeletal injuries due to their ability to differentiate into several tissue cell types and modulate immune and inflammatory responses. These immune-modulatory properties were examined in vivo during early stage rat medial collateral ligament healing. Two different cell doses (low dose 1×106 or high dose 4×106 MSCs) were administered at the time of injury and compared with normal ligament healing at days 5 and 14 post-injury. At both times, the high dose MSC group demonstrated a significant decrease in M2 macrophages compared to controls. At day 14, fewer M1 macrophages were detected in the low dose group compared to the high dose group. These results, along with significant changes in procollagen I, proliferating cells, and endothelialization suggest that MSCs can alter the cellular response during healing in a dose-dependent manner. The higher dose ligaments also had increased expression of several pro-inflammatory cytokines at day 5 (IL-1β, IFNγ, IL-2) and increased expression of IL-12 at day 14. Mechanical testing at day 14 revealed increased failure strength and stiffness in low dose ligaments compared to controls. Based on these improved mechanical properties, MSCs enhanced functional healing when applied at a lower dose. Different doses of MSCs uniquely affected the cellular response and cytokine expression in healing ligaments. Interestingly, the lower dose of cells proved to be most effective in improving functional properties. PMID:24174129

  15. Mitigation of paracetamol-induced reproductive damage by chrysin in male rats via reducing oxidative stress.

    PubMed

    Aksu, E H; Özkaraca, M; Kandemir, F M; Ömür, A D; Eldutar, E; Küçükler, S; Çomaklı, S

    2016-12-01

    Paracetamol (PRC) is a nonsteroidal anti-inflammatory drug used widely as a painkiller for various diseases and as the symptomatic flu cure in several countries worldwide. PRC toxicity may occur under conditions of the overdose usage. Chrysin (CR) is a flavonoid that is naturally present in several plants, honey and propolis. The aim of this study was to investigate the effects of CR (at the doses of 25 mg kg -1 and 50 mg kg -1 ) pre-treatment over seven consecutive days against PRC-induced reproductive toxicity in male rats. Our results showed that PRC toxicity decreased the sperm motility, and increased dead sperm rate, abnormal sperm cell rate, apoptosis and MDA levels in testicular tissues. Pre-treatment with CR at the dose of 25 and 50 mg kg -1 for 7 days mitigated side effects of acute PRC toxicity in male reproductive system proportionally in a dose-dependent manner. This possible protection mechanism might be dependent on the antioxidant activity of CR. In conclusion, pre-treatment with CR at the dose of 25 and 50 mg kg -1 for 7 days can be the beneficial against PRC-induced reproductive toxicity proportionally in a dose-dependent manner. © 2016 Blackwell Verlag GmbH.

  16. Safety, tolerability, and cerebrospinal fluid penetration of ursodeoxycholic Acid in patients with amyotrophic lateral sclerosis.

    PubMed

    Parry, Gareth J; Rodrigues, Cecilia M P; Aranha, Marcia M; Hilbert, Sarah J; Davey, Cynthia; Kelkar, Praful; Low, Walter C; Steer, Clifford J

    2010-01-01

    Amyotrophic lateral sclerosis is a progressive degenerative disease, which typically leads to death in 3 to 5 years. Neuronal cell death offers a potential target for therapeutic intervention. Ursodeoxycholic acid is a cytoprotective, endogenous bile acid that has been shown to be neuroprotective in experimental Huntington and Alzheimer diseases, retinal degeneration, and ischemic and hemorrhagic stroke. The objective of this research was to study the safety and the tolerability of ursodeoxycholic acid in amyotrophic lateral sclerosis and document effective and dose-dependent cerebrospinal fluid penetration. Eighteen patients were randomly assigned to receive ursodeoxycholic acid at doses of 15, 30, and 50 mg/kg of body weight per day. Serum and cerebrospinal fluid were obtained for analysis after 4 weeks of treatment. Treatment-emergent clinical and laboratory events were monitored weekly. Our data indicated that ursodeoxycholic acid is well tolerated by all subjects at all doses. We also showed that ursodeoxycholic acid is well absorbed after oral administration and crosses the blood-brain barrier in a dose-dependent manner. These results show excellent safety and tolerability of ursodeoxycholic acid. The drug penetrates the cerebrospinal fluid in a dose-dependent manner. A large, placebo-controlled clinical trial is needed to assess the efficacy of ursodeoxycholic acid in treating amyotrophic lateral sclerosis.

  17. Antimicrobial activity of an aspartic protease from Salpichroa origanifolia fruits.

    PubMed

    Díaz, M E; Rocha, G F; Kise, F; Rosso, A M; Guevara, M G; Parisi, M G

    2018-05-08

    Plant proteases play a fundamental role in several processes like growth, development and in response to biotic and abiotic stress. In particular, aspartic proteases (AP) are expressed in different plant organs and have antimicrobial activity. Previously, we purified an AP from Salpichroa origanifolia fruits called salpichroin. The aim of this work was to determine the cytotoxic activity of this enzyme on selected plant and human pathogens. For this purpose, the growth of the selected pathogens was analysed after exposure to different concentrations of salpichroin. The results showed that the enzyme was capable of inhibiting Fusarium solani and Staphylococcus aureus in a dose-dependent manner. It was determined that 1·2 μmol l -1 of salpichroin was necessary to inhibit 50% of conidial germination, and the minimal bactericidal concentration was between 1·9 and 2·5 μmol l -1 . Using SYTOX Green dye we were able to demonstrate that salpichroin cause membrane permeabilization. Moreover, the enzyme treated with its specific inhibitor pepstatin A did not lose its antibacterial activity. This finding demonstrates that the cytotoxic activity of salpichroin is due to the alteration of the cell plasma membrane barrier but not due to its proteolytic activity. Antimicrobial activity of the AP could represent a potential alternative for the control of pathogens that affect humans or crops of economic interest. This study provides insights into the antimicrobial activity of an aspartic protease isolated from Salpichroa origanifolia fruits on plant and human pathogens. The proteinase inhibited Fusarium solani and Staphylococcus aureus in a dose-dependent manner due to the alteration of the cell plasma membrane barrier but not due to its proteolytic activity. Antimicrobial activity of salpichroin suggests its potential applications as an important tool for the control of pathogenic micro-organisms affecting humans and crops of economic interest. Therefore, it would represent a new alternative to avoid the problems of environmental pollution and antimicrobial resistance. © 2018 The Society for Applied Microbiology.

  18. Hydrostatic Compress Force Enhances the Viability and Decreases the Apoptosis of Condylar Chondrocytes through Integrin-FAK-ERK/PI3K Pathway.

    PubMed

    Ma, Dandan; Kou, Xiaoxing; Jin, Jing; Xu, Taotao; Wu, Mengjie; Deng, Liquan; Fu, Lusi; Liu, Yi; Wu, Gang; Lu, Haiping

    2016-11-07

    Reduced mechanical stimuli in many pathological cases, such as hemimastication and limited masticatory movements, can significantly affect the metabolic activity of mandibular condylar chondrocytes and the growth of mandibles. However, the molecular mechanisms for these phenomena remain unclear. In this study, we hypothesized that integrin-focal adhesion kinase (FAK)-ERK (extracellular signal-regulated kinase)/PI3K (phosphatidylinositol-3-kinase) signaling pathway mediated the cellular response of condylar chondrocytes to mechanical loading. Primary condylar chondrocytes were exposed to hydrostatic compressive forces (HCFs) of different magnitudes (0, 50, 100, 150, 200, and 250 kPa) for 2 h. We measured the viability, morphology, and apoptosis of the chondrocytes with different treatments as well as the gene, protein expression, and phosphorylation of mechanosensitivity-related molecules, such as integrin α2, integrin α5, integrin β1, FAK, ERK, and PI3K. HCFs could significantly increase the viability and surface area of condylar chondrocytes and decrease their apoptosis in a dose-dependent manner. HCF of 250 kPa resulted in a 1.51 ± 0.02-fold increase of cell viability and reduced the ratio of apoptotic cells from 18.10% ± 0.56% to 7.30% ± 1.43%. HCFs could significantly enhance the mRNA and protein expression of integrin α2, integrin α5, and integrin β1 in a dose-dependent manner, but not ERK1, ERK2, or PI3K. Instead, HCF could significantly increase phosphorylation levels of FAK, ERK1/2, and PI3K in a dose-dependent manner. Cilengitide, the potent integrin inhibitor, could dose-dependently block such effects of HCFs. HCFs enhances the viability and decreases the apoptosis of condylar chondrocytes through the integrin-FAK-ERK/PI3K pathway.

  19. Hydrostatic Compress Force Enhances the Viability and Decreases the Apoptosis of Condylar Chondrocytes through Integrin-FAK-ERK/PI3K Pathway

    PubMed Central

    Ma, Dandan; Kou, Xiaoxing; Jin, Jing; Xu, Taotao; Wu, Mengjie; Deng, Liquan; Fu, Lusi; Liu, Yi; Wu, Gang; Lu, Haiping

    2016-01-01

    Reduced mechanical stimuli in many pathological cases, such as hemimastication and limited masticatory movements, can significantly affect the metabolic activity of mandibular condylar chondrocytes and the growth of mandibles. However, the molecular mechanisms for these phenomena remain unclear. In this study, we hypothesized that integrin-focal adhesion kinase (FAK)-ERK (extracellular signal–regulated kinase)/PI3K (phosphatidylinositol-3-kinase) signaling pathway mediated the cellular response of condylar chondrocytes to mechanical loading. Primary condylar chondrocytes were exposed to hydrostatic compressive forces (HCFs) of different magnitudes (0, 50, 100, 150, 200, and 250 kPa) for 2 h. We measured the viability, morphology, and apoptosis of the chondrocytes with different treatments as well as the gene, protein expression, and phosphorylation of mechanosensitivity-related molecules, such as integrin α2, integrin α5, integrin β1, FAK, ERK, and PI3K. HCFs could significantly increase the viability and surface area of condylar chondrocytes and decrease their apoptosis in a dose-dependent manner. HCF of 250 kPa resulted in a 1.51 ± 0.02-fold increase of cell viability and reduced the ratio of apoptotic cells from 18.10% ± 0.56% to 7.30% ± 1.43%. HCFs could significantly enhance the mRNA and protein expression of integrin α2, integrin α5, and integrin β1 in a dose-dependent manner, but not ERK1, ERK2, or PI3K. Instead, HCF could significantly increase phosphorylation levels of FAK, ERK1/2, and PI3K in a dose-dependent manner. Cilengitide, the potent integrin inhibitor, could dose-dependently block such effects of HCFs. HCFs enhances the viability and decreases the apoptosis of condylar chondrocytes through the integrin-FAK-ERK/PI3K pathway. PMID:27827993

  20. Aluminium oxide nanoparticles induced morphological changes, cytotoxicity and oxidative stress in Chinook salmon (CHSE-214) cells.

    PubMed

    Srikanth, Koigoora; Mahajan, Amit; Pereira, Eduarda; Duarte, Armando Costa; Venkateswara Rao, Janapala

    2015-10-01

    Aluminium oxide nanoparticles (Al2 O3 NPs) are increasingly used in diverse applications that has raised concern about their safety. Recent studies suggested that Al2 O3 NPs induced oxidative stress may be the cause of toxicity in algae, Ceriodaphnia dubia, Caenorhabditis elegans and Danio rerio. However, there is paucity on the toxicity of Al2 O3 NPs on fish cell lines. The current study was aimed to investigate Al2 O3 NPs induced cytotoxicity, oxidative stress and morphological abnormality of Chinnok salmon cells (CHSE-214). A dose-dependent decline in cell viability was observed in CHSE-214 cells exposed to Al2 O3 NPs. Oxidative stress induced by Al2 O3 NPs in CHSE-214 cells has resulted in the significant reduction of superoxide dismutase, catalase and glutathione in a dose-dependent manner. However, a significant increase in glutathione sulfo-transferase and lipid peroxidation was observed in CHSE-214 cells exposed to Al2 O3 NPs in a dose-dependent manner. Significant morphological changes in CHSE-214 cells were observed when exposed to Al2 O3 NPs at 6, 12 and 24 h. The cells started to detach and appear spherical at 6 h followed by loss of cellular contents resulting in the shrinking of the cells. At 24 h, the cells started to disintegrate and resulted in cell death. Our data demonstrate that Al2 O3 NPs induce cytotoxicity and oxidative stress in a dose-dependent manner in CHSE-214 cells. Thus, our current work may serve as a base-line study for future evaluation of toxicity studies using CHSE-214 cells. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Anti-inflammatory and PPAR transactivational properties of flavonoids from the roots of Sophora flavescens.

    PubMed

    Quang, Tran Hong; Ngan, Nguyen Thi Thanh; Minh, Chau Van; Kiem, Phan Van; Tai, Bui Huu; Nhiem, Nguyen Xuan; Thao, Nguyen Phuong; Luyen, Bui Thi Thuy; Yang, Seo Young; Kim, Young Ho

    2013-09-01

    Anti-inflammatory and peroxisome proliferator-activated receptors (PPARs) transactivational effects of nine compounds (1 - 9) from the roots of Sophora flavescens were evaluated using NF-κB-luciferase, reverse transcriptase polymerase chain reaction, peroxisome proliferator response element (PPRE)-luciferase, and GAL-4-PPAR chimera assays. Compounds 4 and 8 significantly inhibited TNFα-induced NF-κB transcriptional activity in HepG2 cells in a dose-dependent manner, with IC₅₀ values of 4.0 and 4.4 μM, respectively. Furthermore, the transcriptional inhibitory function of these compounds was confirmed by a decrease in cyclooxgenase 2 and inducible nitric oxide synthase gene expression levels in HepG2 cells. Compounds 1, 3, 5, 6, 8, and 9 significantly activated the transcription of PPARs in a dose-dependent manner, with EC₅₀ values ranging from 1.1 to 13.0 μM. Compounds 1, 3, 5, 6, 8, and 9 exhibited dose-dependent PPARα transactivational activity, with EC₅₀ values in a range of 0.9 - 16.0 μM. Compounds 1, 3, 8, and 9 also significantly upregulated PPARγ activity in a dose-dependent manner, with EC₅₀ values of 10.5, 6.6, 15.7, and 1.6 μM, whereas compounds 1, 8, and 9 demonstrated transactivational PPARβ(δ) effects with EC₅₀ values of 11.4, 10.3, and 1.5 μM, respectively. These results provide a scientific rationale for the use of the roots of S. flavescens and warrant further studies to develop new agents for the prevention and treatment of inflammatory and metabolic diseases. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Tangeretin, a citrus polymethoxyflavonoid, induces apoptosis of human gastric cancer AGS cells through extrinsic and intrinsic signaling pathways.

    PubMed

    Dong, Yang; Cao, Aili; Shi, Jianrong; Yin, Peihao; Wang, Li; Ji, Guang; Xie, Jianqun; Wu, Dazheng

    2014-04-01

    Tangeretin, a natural polymethoxyflavone present in citrus peel oil, is known to have anticancer activities in breast cancer, colorectal carcinoma and lung carcinoma, yet, the underlying mechanisms of tangeretin in human gastric cancer AGS cells have not been investigated to date. In the present study, the apoptotic mechanisms of tangeretin in AGS cells were explored. It was observed that tangeretin increased the apoptotic rates of AGS cells following treatment with tangeretin for 48 h in a dose-dependent manner by Annexin V-FITC and PI double staining. In addition, characteristic apoptotic morphology such as nuclear shrinkage and apoptotic bodies was observed after Hoechst 33258 staining. Flow cytometric assay showed that treatment of AGS cells with tangeretin decreased the mitochondrial membrane potential (MMP) in a dose-dependent manner, which indicated that mitochondrial dysfunction was involved in the tangeretin-induced apoptosis. Caspase-3, -8 and -9 activities were increased by tangeretin in a dose-dependent manner. Western blotting showed that the protein levels of pro-apoptotic proteins including cleaved caspase-3, cleaved caspase-8, cleaved caspase-9, Bax, Bid, tBid, p53, p21/cip1, Fas and FasL were significantly upregulated by tangeretin. In addition, PFT-α (a p53 inhibitor) reduced the apoptotic rates and the expression of p53, p21, caspase-3 and caspase-9 induced by tangeretin, indicating that tangeretin-induced apoptosis was p53-dependent. In conclusion, these results suggest that tangeretin induces the apoptosis of AGS cells mainly through p53-dependent mitochondrial dysfunction and the Fas/FasL-mediated extrinsic pathway.

  3. Pertussis toxin-sensitive G-protein mediates the alpha 2-adrenergic receptor inhibition of melatonin release in photoreceptive chick pineal cell cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratt, B.L.; Takahashi, J.S.

    The avian pineal gland is a photoreceptive organ that has been shown to contain postjunctional alpha 2-adrenoceptors that inhibit melatonin synthesis and/or release upon receptor activation. Physiological response and (32P)ADP ribosylation experiments were performed to investigate whether pertussis toxin-sensitive guanine nucleotide-binding proteins (G-proteins) were involved in the transduction of the alpha 2-adrenergic signal. For physiological response studies, the effects of pertussis toxin on melatonin release in dissociated cell cultures exposed to norepinephrine were assessed. Pertussis toxin blocked alpha 2-adrenergic receptor-mediated inhibition in a dose-dependent manner. Pertussis toxin-induced blockade appeared to be noncompetitive. One and 10 ng/ml doses of pertussis toxinmore » partially blocked and a 100 ng/ml dose completely blocked norepinephrine-induced inhibition. Pertussis toxin-catalyzed (32P)ADP ribosylation of G-proteins in chick pineal cell membranes was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Membranes were prepared from cells that had been pretreated with 0, 1, 10, or 100 ng/ml pertussis toxin. In the absence of pertussis toxin pretreatment, two major proteins of 40K and 41K mol wt (Mr) were labeled by (32P)NAD. Pertussis toxin pretreatment of pineal cells abolished (32P) radiolabeling of the 40K Mr G-protein in a dose-dependent manner. The norepinephrine-induced inhibition of both cAMP efflux and melatonin release, as assessed by RIA of medium samples collected before membrane preparation, was also blocked in a dose-dependent manner by pertussis toxin. Collectively, these results suggest that a pertussis toxin-sensitive 40K Mr G-protein labeled by (32P)NAD may be functionally associated with alpha 2-adrenergic signal transduction in chick pineal cells.« less

  4. Dose-dependent heart rate reducing effect of nizatidine, a histamine H2-receptor antagonist.

    PubMed Central

    Hinrichsen, H; Halabi, A; Fuhrmann, G; Kirch, W

    1993-01-01

    1. Twelve healthy subjects were treated in a randomised placebo-controlled crossover study with placebo, 150 mg, 300 mg, and 600 mg nizatidine, 100 mg pirenzepine, and 300 mg nizatidine plus 100 mg pirenzepine for 1 week each. 2. On the seventh treatment day, heart rate, blood pressure, systolic time intervals, impedance cardiographic and Doppler ultrasound variables were measured. 3. Stroke volume and blood pressure were not altered by nizatidine and/or pirenzepine. By contrast, heart rate and cardiac output significantly (P < 0.05) decreased in a dose-dependent manner 1.5 and 3 h after administration of 300 and 600 mg nizatidine. Treatment with 150 mg nizatidine led to similar though non-significant trends. 4. While a slightly insignificant rise in heart rate was detected with pirenzepine alone, heart rate and cardiac output remained unchanged upon combined nizatidine and pirenzepine treatment as compared with placebo and baseline values. 5. In conclusion, nizatidine reduced heart rate and cardiac output in a dose-dependent manner, whereas this negative chronotropic effect was counteracted by concurrent administration of the anti-cholinergic drug pirenzepine. PMID:8099802

  5. Calcium signals and caspase-12 participated in paraoxon-induced apoptosis in EL4 cells.

    PubMed

    Li, Lan; Cao, Zhiheng; Jia, Pengfei; Wang, Ziren

    2010-04-01

    In order to investigate whether calcium signals participate in paraoxon (POX)-induced apoptosis in EL4 cells, real-time laser scanning confocal microscopy (LSCM) was used to detect Ca(2+) changes during the POX application. Apoptotic rates of EL4 cells and caspase-12 expression were also evaluated. POX (1-10nM) increased intracellular calcium concentration ([Ca(2+)]i) in EL4 cells in a dose-dependent manner at early stage (0-2h) of POX application, and apoptotic rates of EL4 cells after treatment with POX for 16h were also increased in a dose-dependent manner. Pre-treatment with EGTA, heparin or procaine attenuated POX-induced [Ca(2+)]i elevation and apoptosis. Additionally, POX up-regulated caspase-12 expression in a dose-dependent manner, and pre-treatment with EGTA, heparin or procaine significantly inhibited POX-induced increase of caspase-12 expression. Our results suggested that POX induced [Ca(2+)]i elevation in EL4 cells at the early stage of POX-induced apoptosis, which might involve Ca(2+) efflux from the endoplasmic reticulum (ER) and Ca(2+) influx from extracellular medium. Calcium signals and caspase-12 were important upstream messengers in POX-induced apoptosis in EL4 cells. The ER-associated pathway possibly operated in this apoptosis. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  6. Oxytocin prevents cartilage matrix destruction via regulating matrix metalloproteinases.

    PubMed

    Wu, Yixin; Wu, Tongyu; Xu, Binbin; Xu, Xiaoyan; Chen, Honggan; Li, Xiyao

    2017-05-06

    Degradation of the extracellular matrix type II Collagen (Col II) induced by proinflammatory cytokines such as tumor necrosis factor-α (TNF-α) is an important hallmark of Osteoarthritis (OA). Oxytocin (OT) is a well-known neurohypophysical hormone that is synthesized in the paraventricular (PVN) and supraoptic nuclei (SON) of the hypothalamus. In this study, we have found that oxytocin receptor (OTR) was expressed in human primary chondrocytes, and the expression of which was reduced in chondrocytes from OA patients and in response to TNF-α treatment in a dose dependent manner. Notably, it was shown that TNF-α -induced degradation of Col II was restored by treatment with OT in a dose-dependent manner. In addition, TNF-α treatment (10 ng/mL) highly elevated the expression of MMP-1 and MMP-13 in SW1353 chondrocytes, which were reversed by OT in a dose dependent manner at both gene and protein expression levels. In addition, it was demonstrated that the JAK2/STAT1 pathway was involved in the restoration effects of OT in the degradation of Col II. Lastly, knockdown of OTR abolished the inhibitory effects of OT on the degradation of col II and the induction of MMP-1 and MMP-13 expression, suggesting the involvement of OTR. Our study implied the therapeutic potential of OT for cartilage degradation. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Effect of tributyltin on testicular development in Sebastiscus marmoratus and the mechanism involved.

    PubMed

    Zhang, Jiliang; Zuo, Zhenghong; He, Chengyong; Cai, Jiali; Wang, Yuqing; Chen, Yixin; Wang, Chonggang

    2009-07-01

    Organotin compounds, such as tributyltin (TBT), that have been used as antifouling biocides can induce masculinization in female mollusks. However, few studies addressing the effects of TBT on fishes have been reported. The present study was conducted to investigate the effects of TBT at environmentally relevant concentrations (1, 10, and 100 ng/L) on testicular development in Sebastiscus marmoratus and to gain insight into its mechanism of action. After exposure for 48 d, the gonadosomatic index had decreased in a dose-dependent manner. Although the testosterone levels in the testes were elevated and the 17beta-estradiol levels were decreased, spermatogenesis was suppressed. Moreover, gamma-glutamyl transpeptidase activity (which is used as a Sertoli cell marker) was decreased in a dose-dependent manner after TBT exposure, and serious interstitial fibrosis was observed in the interlobular septa of the testes in the 100 ng/L TBT test group. Increases in the retinoid X receptors and peroxisome proliferator activated receptor gamma expression and the progressive enlargement of lipid droplets in the testes were observed after TBT exposure. Estrogen receptor alpha levels in the testes of the fish exposed to TBT decreased in a dose-dependent manner. The reduction of estrogen receptor alpha mRNA resulted from the decrease of 17beta-estradiol levels, and the progressive enlargement of lipid droplets may have contributed to the dysfunction of the Sertoli cells, which then disrupted spermatogenesis.

  8. Oxymatrine inhibits the proliferation of prostate cancer cells in vitro and in vivo

    PubMed Central

    WU, CUNZAO; HUANG, WEIPING; GUO, YONG; XIA, PENG; SUN, XIANBIN; PAN, XIAODONG; HU, WEILIE

    2015-01-01

    Oxymatrine is an alkaloid, which is derived from the traditional Chinese herb, Sophora flavescens Aiton. Oxymatrine has been shown to exhibit anti-inflammatory, antiviral, and anticancer properties. The present study aimed to investigate the anticancer effects of oxymatrine in human prostate cancer cells, and the underlying molecular mechanisms of these effects. An MTT assay demonstrated that oxymatrine significantly inhibited the proliferation of prostate cancer cells in a time- and dose-dependent manner. In addition, flow cytometry and a terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling assay suggested that oxymatrine treatment may induce prostate cancer cell apoptosis in a dose-dependent manner. Furthermore, western blot analysis demonstrated a significant increase in the expression of p53 and bax, and a significant decrease in that of Bcl-2, in prostrate cancer cells in a dose-dependent manner. In vivo analysis demonstrated that oxymatrine inhibited tumor growth following subcutaneous inoculation of prostate cancer cells into nude mice. The results of the present study suggested that the antitumor properties of oxymatrine, may be associated with the inhibition of cell proliferation, and induction of apoptosis, via the regulation of apoptosis-associated gene expression. Therefore, the results may provide a novel approach for the development of prostate cancer therapy using oxymatrine, which is derived from the traditional Chinese herb, Sophora flavescens. PMID:25672672

  9. Glucosamine Modulates T Cell Differentiation through Down-regulating N-Linked Glycosylation of CD25*

    PubMed Central

    Chien, Ming-Wei; Lin, Ming-Hong; Huang, Shing-Hwa; Fu, Shin-Huei; Hsu, Chao-Yuan; Yen, B. Lin-Ju; Chen, Jiann-Torng; Chang, Deh-Ming; Sytwu, Huey-Kang

    2015-01-01

    Glucosamine has immunomodulatory effects on autoimmune diseases. However, the mechanism(s) through which glucosamine modulates different T cell subsets and diseases remain unclear. We demonstrate that glucosamine impedes Th1, Th2, and iTreg but promotes Th17 differentiation through down-regulating N-linked glycosylation of CD25 and subsequently inhibiting its downstream Stat5 signaling in a dose-dependent manner. The effect of glucosamine on T helper cell differentiation was similar to that induced by anti-IL-2 treatment, further supporting an IL-2 signaling-dependent modulation. Interestingly, excess glucose rescued this glucosamine-mediated regulation, suggesting a functional competition between glucose and glucosamine. High-dose glucosamine significantly decreased Glut1 N-glycosylation in Th1-polarized cells. This finding suggests that both down-regulated IL-2 signaling and Glut1-dependent glycolytic metabolism contribute to the inhibition of Th1 differentiation by glucosamine. Finally, glucosamine treatment inhibited Th1 cells in vivo, prolonged the survival of islet grafts in diabetic recipients, and exacerbated the severity of EAE. Taken together, our results indicate that glucosamine interferes with N-glycosylation of CD25, and thereby attenuates IL-2 downstream signaling. These effects suggest that glucosamine may be an important modulator of T cell differentiation and immune homeostasis. PMID:26468284

  10. MK-801 increases locomotor activity in a context-dependent manner in zebrafish.

    PubMed

    Tran, Steven; Muraleetharan, Arrujyan; Fulcher, Niveen; Chatterjee, Diptendu; Gerlai, Robert

    2016-01-01

    Zebrafish have become a popular animal model for behavioral neuroscience with an increasing number of studies examining the effects of pharmacological compounds targeting the brain. Exposure to MK-801, a non-competitive N-methyl-d-aspartate receptor antagonist has been shown to increase locomotor activity in zebrafish. However, others have failed to replicate this finding as several contradicting studies report no changes in locomotor activity following exposure to similar doses. In the current study we reconcile these behavioral reports by demonstrating that zebrafish do not exhibit changes in locomotor activity during exposure to non-sedative doses of MK-801. Interestingly, zebrafish do exhibit significant increases in locomotion if pre-treated with MK-801 followed by subsequent testing in a novel environment, which suggests the effects of MK-801 are context-dependent. In addition, we examine the potential role of the dopaminergic system in mediating MK-801's locomotor stimulant effect by quantifying the levels of dopamine and its metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) in the brains of zebrafish following a 30 min exposure to 10 μM of MK-801 (the dose found to induce the largest increase in locomotor activity). Our findings indicate that the MK-801-induced increase in locomotor activity is not accompanied by changes in whole-brain levels of dopamine or DOPAC. Overall, our results suggest that MK-801's context-dependent locomotor stimulant effect may be independent of whole-brain dopaminergic activation. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Low‑dose radiation‑induced apoptosis in human leukemia K562 cells through mitochondrial pathways.

    PubMed

    Xin, Yong; Zhang, Hai-Bin; Tang, Tian-You; Liu, Gui-Hong; Wang, Jian-She; Jiang, Guan; Zhang, Long-Zhen

    2014-09-01

    High‑dose total body irradiation (TBI) has an established role as preparative regimen for bone‑marrow transplantation in the treatment of chronic myelogenous leukemia (CML), but this regimen still has a relatively high rate of acute and late toxicity. Low‑dose radiation (LDR) induces apoptosis of tumor cells and has numerous beneficial effects on normal tissues, including radiation homeostasis and adaptive response. Based on the previous evidence, in the present study, K562 cells were exposed to LDR, high‑dose radiation (HDR), and LDR in combination with HDR to investigate the possible mechanism of the apoptotic effect and hypersensitivity induced by LDR. The apoptotic rate increased in all radiation groups in a time‑dependent manner. An upregulation of Bax protein expression and a downregulation of Bcl‑xl in a dose‑dependent manner in human leukemia K562 cells was observed. However, the expression of p53 protein did not change in all of the radiation cell groups. The mitochondrial membrane potential (ΔΨm) in K562 cells decreased in all of the radiation cell groups in a dose‑dependent manner. Furthermore, the decrease of ΔΨm was enhanced in the LDR/HDR group compared with that in the LDR or HDR groups. The activity of caspase‑3 was enhanced in all of the radiation groups. In the LDR/HDR group, the activity of caspase‑3 was higher than that in the HDR or LDR groups. The present study provided preliminary experimental evidence of LDR being beneficial in combination with TBI in the treatment of CML.

  12. Time dependent pre-treatment EPID dosimetry for standard and FFF VMAT.

    PubMed

    Podesta, Mark; Nijsten, Sebastiaan M J J G; Persoon, Lucas C G G; Scheib, Stefan G; Baltes, Christof; Verhaegen, Frank

    2014-08-21

    Methods to calibrate Megavoltage electronic portal imaging devices (EPIDs) for dosimetry have been previously documented for dynamic treatments such as intensity modulated radiotherapy (IMRT) using flattened beams and typically using integrated fields. While these methods verify the accumulated field shape and dose, the dose rate and differential fields remain unverified. The aim of this work is to provide an accurate calibration model for time dependent pre-treatment dose verification using amorphous silicon (a-Si) EPIDs in volumetric modulated arc therapy (VMAT) for both flattened and flattening filter free (FFF) beams. A general calibration model was created using a Varian TrueBeam accelerator, equipped with an aS1000 EPID, for each photon spectrum 6 MV, 10 MV, 6 MV-FFF, 10 MV-FFF. As planned VMAT treatments use control points (CPs) for optimization, measured images are separated into corresponding time intervals for direct comparison with predictions. The accuracy of the calibration model was determined for a range of treatment conditions. Measured and predicted CP dose images were compared using a time dependent gamma evaluation using criteria (3%, 3 mm, 0.5 sec). Time dependent pre-treatment dose verification is possible without an additional measurement device or phantom, using the on-board EPID. Sufficient data is present in trajectory log files and EPID frame headers to reliably synchronize and resample portal images. For the VMAT plans tested, significantly more deviation is observed when analysed in a time dependent manner for FFF and non-FFF plans than when analysed using only the integrated field. We show EPID-based pre-treatment dose verification can be performed on a CP basis for VMAT plans. This model can measure pre-treatment doses for both flattened and unflattened beams in a time dependent manner which highlights deviations that are missed in integrated field verifications.

  13. Antiviral effect of lithium chloride on infection of cells by canine parvovirus.

    PubMed

    Zhou, Pei; Fu, Xinliang; Yan, Zhongshan; Fang, Bo; Huang, San; Fu, Cheng; Hong, Malin; Li, Shoujun

    2015-11-01

    Canine parvovirus type 2 causes significant viral disease in dogs, with high morbidity, high infectivity, and high mortality. Lithium chloride is a potential antiviral drug for viruses. We determined the antiviral effect of Lithium Chloride on canine parvovirus type 2 in feline kidney cells. The viral DNA and proteins of canine parvovirus were suppressed in a dose-dependent manner by lithium chloride. Further investigation verified that viral entry into cells was inhibited in a dose-dependent manner by lithium chloride. These results indicated that lithium chloride could be a potential antiviral drug for curing dogs with canine parvovirus infection. The specific steps of canine parvovirus entry into cells that are affected by lithium chloride and its antiviral effect in vivo should be explored in future studies.

  14. [The anti-tumour effect of Wuxing soup and its mechanism in inducing apoptosis of tumour cells mediated by calcium].

    PubMed

    Mo, Fei; Hu, Jing-Ying; Gan, Yu; Zhao, Yang-Xing; Zhao, Xin-Tai

    2008-09-01

    To confirm the anti-cancer effect and mechanism of Wuxing soup. Inhibition of cellular growth under Wuxing soup treatment was observed by MTT; Apoptosis was detected by gel electrophoresis, transmission electron microscopy and FACS; The concentration of calcium was measured by fluorescence probe. After SGC-7901 cell being treated by Wuxing soup, it showed that: 1) Wuxing soup could specifically inhibit cancer cells proliferation in a time and dose dependent manner; 2) Typical apoptotic morphological changes and DNA ladder of SGC-7901 cells were observed; 3) calcium inhibitor Bapta AM could reduce the apoptotic rate and protect SGC-7901 cells in a dose dependent manner. Wuxing soup has an effective inhibition on cancer cells, and can induce SGC-7901 cells to apoptosis by calcium.

  15. Sodium Lauryl Sulfate Increases the Efficacy of a Topical Formulation of Foscarnet against Herpes Simplex Virus Type 1 Cutaneous Lesions in Mice

    PubMed Central

    Piret, Jocelyne; Désormeaux, André; Cormier, Hélène; Lamontagne, Julie; Gourde, Pierrette; Juhász, Julianna; Bergeron, Michel G.

    2000-01-01

    The influence of sodium lauryl sulfate (SLS) on the efficacies of topical gel formulations of foscarnet against herpes simplex virus type 1 (HSV-1) cutaneous infection has been evaluated in mice. A single application of the gel formulation containing 3% foscarnet given 24 h postinfection exerted only a modest effect on the development of herpetic skin lesions. Of prime interest, the addition of 5% SLS to this gel formulation markedly reduced the mean lesion score. The improved efficacy of the foscarnet formulation containing SLS could be attributed to an increased penetration of the antiviral agent into the epidermis. In vitro, SLS decreased in a concentration-dependent manner the infectivities of herpesviruses for Vero cells. SLS also inhibited the HSV-1 strain F-induced cytopathic effect. Combinations of foscarnet and SLS resulted in subsynergistic to subantagonistic effects, depending on the concentration used. Foscarnet in phosphate-buffered saline decreased in a dose-dependent manner the viability of cultured human skin fibroblasts. This toxic effect was markedly decreased when foscarnet was incorporated into the polymer matrix. The presence of SLS in the gel formulations did not alter the viabilities of these cells. The use of gel formulations containing foscarnet and SLS could represent an attractive approach to the treatment of herpetic mucocutaneous lesions, especially those caused by acyclovir-resistant strains. PMID:10952566

  16. Linagliptin: farmacology, efficacy and safety in type 2 diabetes treatment

    PubMed Central

    2013-01-01

    Type 2 diabetes mellitus (T2DM) has a high prevalence and incidence around the world. The complex pathophysiology mechanism is among the barriers for diabetes treatment. Type 2 diabetes patients have dysfunction in incretin hormones (as glucagon-like peptide-1 or GLP-1, and glucose-dependent insulinotropic polypeptide or GIP). By inhibiting the dipeptidyl peptidase-4 (DPP-4) enzyme, it is possible to slow the inactivation of GLP-1 and GIP, promoting blood glucose level reduction in a glucose-dependent manner. Linagliptin is a highly specific and potent inhibitor of DPP-4 that is currently indicated for the treatment of type 2 diabetes. Clinical studies with linagliptin demonstrated efficacy in reducing glycated hemoglobin (HbA1c) levels in type 2 diabetes patients, while maintaining a placebo-like safety and tolerability profile. Linagliptin has an interesting pharmacokinetic profile in terms of its predominantly non-renal elimination and the main implication of this characteristic is that no dose adjustment is necessary in patients with renal disease. Also, no dose adjustment is required in patients with hepatic insufficiency, as well in elderly or obese patients. This article will review the pharmacokinetic profile, efficacy data and safety aspects of linagliptin in type 2 diabetes patients. PMID:23697612

  17. Neurotoxicity of trimethyltin in rat cochlear organotypic cultures

    PubMed Central

    Yu, Jintao; Ding, Dalian; Sun, Hong; Salvi, Richard; Roth, Jerome A.

    2015-01-01

    Trimethyltin (TMT), which has a variety of applications in industry and agricultural is a neurotoxin that is known to affect the auditory system as well as central nervous system (CNS) of humans and experimental animals. However, the mechanisms underlying TMT-induced auditory dysfunction are poorly understood. To gain insights into the neurotoxic effect of TMT on the peripheral auditory system, we treated cochlear organotypic cultures with concentrations of TMT ranging from 5 to 100 μM for 24 h. Interestingly, TMT preferentially damaged auditory nerve fibers and spiral ganglion neurons in a dose-dependent manner, but had no noticeable effects on the sensory hair cells at the doses employed. TMT-induced damage to auditory neurons was associated with significant soma shrinkage, nuclear condensation and activation of caspase-3, biomarkers indicative of apoptotic cell death. Our findings show that TMT is exclusively neurotoxicity in rat cochlear organotypic culture and that TMT-induced auditory neuron death occurs through a caspase-mediated apoptotic pathway. PMID:25957118

  18. Immunomodulatory effects of ethanol extract of germinated ice plant (Mesembryanthemum crystallinum)

    PubMed Central

    Choi, Joo-Hee; Jo, Sung-Gang; Jung, Seoung-Ki; Park, Woo-Tae; Kim, Keun-Young; Park, Yong-Wook

    2017-01-01

    The purpose of this study was to investigate the immunomodulatory activity of ice plant (Mesembryanthemum crystallinum) extract (IPE) in vitro and in vivo. Raji (a human B cell line) and Jurkat (a human T cell line) cells were treated with various doses of IPE and cell proliferation was measured by WST assay. Results showed that IPE promoted the proliferation of both Raji and Jurkat cells in a dose-dependent manner. IPE also enhanced IL-6 and TNF-α production in macrophages in the presence of lipopolysaccharide (LPS), although IPE alone did not induce cytokine production. Moreover, IPE treatment upregulated iNOS gene expression in macrophages in a time- and dose-dependent manner and led to the production of nitric oxide in macrophages in the presence of IFNγ. In vivo studies revealed that oral administration of IPE for 2 weeks increased the differentiation of CD4+, CD8+, and CD19+ cells in splenocytes. These findings suggested that IPE has immunomodulatory effects and could be developed as an immunomodulatory supplement. PMID:28400837

  19. Effects of rosuvastatin on the production and activation of matrix metalloproteinase-2 and migration of cultured rat vascular smooth muscle cells induced by homocysteine.

    PubMed

    Shi, Ya-fei; Chi, Ju-fang; Tang, Wei-liang; Xu, Fu-kang; Liu, Long-bin; Ji, Zheng; Lv, Hai-tao; Guo, Hang-yuan

    2013-08-01

    To test the influence of homocysteine on the production and activation of matrix metalloproteinase-2 (MMP-2) and tissue inhibitors of matrix metalloproteinase-2 (TIMP-2) and on cell migration of cultured rat vascular smooth muscle cells (VSMCs). Also, to explore whether rosuvastatin can alter the abnormal secretion and activation of MMP-2 and TIMP-2 and migration of VSMCs induced by homocysteine. Rat VSMCs were incubated with different concentrations of homocysteine (50-5000 μmol/L). Western blotting and gelatin zymography were used to investigate the expressions and activities of MMP-2 and TIMP-2 in VSMCs in culture medium when induced with homocysteine for 24, 48, and 72 h. Transwell chambers were employed to test the migratory ability of VSMCs when incubated with homocysteine for 48 h. Different concentrations of rosuvastatin (10(-9)-10(-5) mol/L) were added when VSMCs were induced with 1000 μmol/L homocysteine. The expressions and activities of MMP-2 and TIMP-2 were examined after incubating for 24, 48, and 72 h, and the migration of VSMCs was also examined after incubating for 48 h. Homocysteine (50-1000 μmol/L) increased the production and activation of MMP-2 and expression of TIMP-2 in a dose-dependent manner. However, when incubated with 5000 μmol/L homocysteine, the expression of MMP-2 was up-regulated, but its activity was down-regulated. Increased homocysteine-induced production and activation of MMP-2 were reduced by rosuvastatin in a dose-dependent manner whereas secretion of TIMP-2 was not significantly altered by rosuvastatin. Homocysteine (50-5000 μmol/L) stimulated the migration of VSMCs in a dose-dependent manner, but this effect was eliminated by rosuvastatin. Homocysteine (50-1000 μmol/L) significantly increased the production and activation of MMP-2, the expression of TIMP-2, and the migration of VSMCs in a dose-dependent manner. Additional extracellular rosuvastatin can decrease the excessive expression and activation of MMP-2 and abnormal migration of VSMCs induced by homocysteine.

  20. Adenosine triphosphate regulates the activity of guinea pig Cav1.2 channel by direct binding to the channel in a dose-dependent manner.

    PubMed

    Feng, Rui; Xu, Jianjun; Minobe, Etsuko; Kameyama, Asako; Yang, Lei; Yu, Lifeng; Hao, Liying; Kameyama, Masaki

    2014-05-01

    The present study is to investigate the mechanism by which ATP regulates Cav1.2 channel activity. Ventricular tissue was obtained from adult guinea pig hearts using collagenase. Ca(2+) channel activity was monitored using the patch-clamp technique. Proteins were purified using wheat germ agglutinin-Sepharose, and the concentration was determined using the Coomassie brilliant blue technique. ATP binding to the Cav1.2 channel was examined using the photoaffinity method. EDA-ATP-biotin maintains Ca(2+) channel activity in inside-out membrane patches. ATP directly bound to the Cav1.2 channel in a dose-dependent manner, and at least two molecules of ATP bound to one molecule of the Cav1.2 channel. Low levels of calmodulin (CaM) increased ATP binding to the Cav1.2 channel, but higher levels of CaM decreased ATP binding to the Cav1.2 channel. In addition, Ca(2+) was another regulator for ATP binding to the Cav1.2 channel. Furthermore, ATP bound to GST-fusion peptides of NH2-terminal region (amino acids 6-140) and proximal COOH-terminal region (amino acids 1,509-1,789) of the main subunit (α1C) of the Cav1.2 channel. Our data suggest that ATP might regulate Cav1.2 channel activity by directly binding to the Cav1.2 channel in a dose-dependent manner. In addition, the ATP-binding effect to the Cav1.2 channel was both CaM- and Ca(2+) dependent.

  1. Involvement of Resveratrol and ω-3 Polyunsaturated Fatty Acids on Sirtuin 1 Gene Expression in THP1 Cells.

    PubMed

    Tsuchiya, Takafumi; Endo, Ayano; Tsujikado, Kyoko; Inukai, Toshihiko

    2017-10-01

    Resveratrol, a kind of polyphenol, has the potential to activate the longevity gene in several cells, in the same manner as calorie restriction. We investigated the effect of resveratrol and ω-3-line polyunsaturated fatty acid on surtuin 1 (SIRT1) gene expression in human monocytes (THP1) cells. We examined the gene expression of THP1 cells using real-time polymerase chain reaction and Western blotting analysis. Resveratol, eicosapentaenoic acid (EPA) and docosahexaeanoic acid (DHA) as n-3 polyunsaturated fatty acid were added on THP1 cells. We observed the changes in the SIRT1 gene expression in those cells, under various doses of agents and in time courses. Then, we examined the interaction of glucose and mannitol on those agents׳ effect of the gene expression. The concentration range of glucose and mannitol was from 5-20mM, respectively. The SIRT1 gene expression could be defined in 24 and 48 hours both in real-time polymerase chain reaction analysis and in Western blotting. Resveratrol showed SIRT1 gene expression in a dose-dependent manner in the range of 0-20μM in both analyses. Although EPA at 10μM showed marked increase in SIRT1 gene expression compared to control condition in Western blotting, this phenomenon was not in dose-dependent manner. DHA did not exhibit any augmentation of SIRT1 gene expression in a dose-dependent manner in the range of 0-20μM in both analyses. We refined the dose-dependent inhibition of the SIRT1 gene expression within 20mM glucose medium. Although 20mM did not exhibit any inhibition, 10μM resveratrol induced the gene expression compared to control medium. Both 5 and 15mM mannitol medium did not significantly alter basic gene expression and 10μM resveratrol-induced gene expression. The present results suggest that resveratrol and EPA, but not DHA, markedly activated the SIRT1 gene expression in THP1 cells, and that high glucose medium could inhibit the basic gene expression, but not powerful resveratrol-induced gene expression, in those cells. Copyright © 2017 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  2. Extract of Vernonia condensata, Inhibits Tumor Progression and Improves Survival of Tumor-allograft Bearing Mouse

    PubMed Central

    Thomas, Elizabeth; Gopalakrishnan, Vidya; Somasagara, Ranganatha R.; Choudhary, Bibha; Raghavan, Sathees C.

    2016-01-01

    Medicinal plants are considered as one of the ideal sources for cancer therapy due to their bioactive contents and low toxicity to humans. Vernonia genus is one of the common medicinal plants, which has wide spread usage in food and medicine. However, there are limited studies to explore its anticancer properties. In the current study, we have used Vernonia condensata, to explore its anticancer activity using various approaches. Here, we show that extract prepared from Vernonia condensata (VCE) exhibits cytotoxic properties against various cancer cells in a dose- and time-dependent manner. Interestingly, when treated with VCE, there was no significant cytotoxicity in peripheral blood mononuclear cells (PBMCs). Flow cytometry analysis revealed that although VCE induced cell death, arrest was not observed. VCE treatment led to disruption of mitochondrial membrane potential in a concentration dependent manner resulting in activation of apoptosis culminating in cell death. Immunoblotting studies revealed that VCE activated intrinsic pathway of apoptosis. More importantly, VCE treatment resulted in tumor regression leading to significant enhancement in life span in treated mice, without showing any detectable side effects. Therefore, for the first time our study reveals the potential of extract from Vernonia condensata to be used as an anticancer agent. PMID:27009490

  3. Low- and high-LET radiation drives clonal expansion of lung progenitor cells in vivo

    PubMed Central

    Farin, Alicia M.; Manzo, Nicholas D.; Kirsch, David G.; Stripp, Barry R.

    2015-01-01

    Abundant populations of epithelial progenitor cells maintain the epithelium along the proximal-to-distal axis of the airway. Exposure of lung tissue to ionizing radiation leads to tissue remodeling and potential cancer initiation or progression. However, little is known about the effects of ionizing radiation on airway epithelial progenitor cells. We hypothesized that ionizing radiation exposure will alter the behavior of airway epithelial progenitor cells in a radiation dose- and quality-dependent manner. To address this hypothesis, we cultured primary airway epithelial cells isolated from mice exposed to various doses of 320 kVp X-ray or 600 MeV/nucleon 56Fe ions in a 3D epithelial-fibroblast co-culture system. Colony-forming efficiency of the airway epithelial progenitor cells was assessed at culture day 14. In vivo clonogenic and proliferative potentials of airway epithelial progenitor cells were measured after exposure to ionizing radiation by lineage tracing and IdU incorporation. Exposure to both X-rays and 56Fe resulted in a dose dependent decrease in the ability of epithelial progenitors to form colonies in vitro. In vivo evidence for increased clonogenic expansion of epithelial progenitors was observed after exposure to both X-rays and 56Fe. Interestingly, we found no significant increase in the epithelial proliferative index, indicating that ionizing radiation does not promote increased turnover of the airway epithelium. Therefore, we propose a model in which radiation induces a dose-dependent decrease in the pool of available progenitor cells, leaving fewer progenitors able to maintain the airway long-term. This work provides novel insights into the effects of ionizing radiation exposure on airway epithelial progenitor cell behavior. PMID:25564721

  4. Rosuvastatin enhances the catabolism of LDL apoB-100 in subjects with combined hyperlipidemia in a dose dependent manner

    USDA-ARS?s Scientific Manuscript database

    Dose-associated effects of rosuvastatin on the metabolism of apolipoprotein (apo) B-100 in triacylglycerol rich lipoprotein (TRL, d < 1.019 g/ml) and low density lipoprotein (LDL) and of apoA-I in high density lipoprotein (HDL) were assessed in subjects with combined hyperlipidemia. Our primary hypo...

  5. Hepatic glutathione metabolism and lipid peroxidation in response to excess dietary selenomethionine and selenite in mallard ducklings

    USGS Publications Warehouse

    Hoffman, D.J.; Heinz, G.H.; Krynitsky, A.J.

    1989-01-01

    Selenium from selenomethionine accumulated in a dose-dependent manner in the liver, resulting in a decrease in hepatic-reduced glutathione with a corresponding decrease in total hepatic thiols. There was a dose-dependent increase in the oxidized to reduced glutathione ratio, and an increase in lipid peroxidation. These findings indicate that Se in the diet at 10 ppm and higher causes significant sublethal alterations in mallard ducklings, and 20-40 ppm causes significant hepatotoxicity.

  6. Evaluation of ameliorative potential of supranutritional selenium on enrofloxacin-induced testicular toxicity.

    PubMed

    Rungsung, Soya; Khan, Adil Mehraj; Sood, Naresh Kumar; Rampal, Satyavan; Singh Saini, Simrat Pal

    2016-05-25

    The study was designed to assess the ameliorative potential of selenium (Se) on enrofloxacin-induced testicular toxicity in rats. There was a significant decrease in body weight and non-significant decrease in mean testicular weight of enrofloxacin treated rats. In enrofloxacin treated rats, total sperm count and viability decreased where as sperm abnormalities increased. Testicular histopathology revealed dose dependent dysregulation of spermatogenesis and presence of necrotic debris in seminiferous tubules which was marginally improved with Se. Enrofloxacin also produced a dose dependent decrease in testosterone level. The activity of testicular antioxidant enzymes decreased where as lipid peroxidation increased in a dose-dependent manner. Se supplementation partially restored oxidative stress and sperm damage and did not affect the plasma concentrations of enrofloxacin or ciprofloxacain. The results indicate that enrofloxacin produces a dose-dependent testicular toxicity in rats that is moderately ameliorated with supranutritional Se. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Evaluation of CNS activities of aerial parts of Cynodon dactylon Pers. in mice.

    PubMed

    Pal, Dilipkumar

    2008-01-01

    The dried extracts of aerial parts of Cynodon dactylon Pers. (Graminae) were evaluated for CNS activities in mice. The ethanol extract of aerial parts of C. dactylon (EECD) was found to cause significant depression in general behavioral profiles in mice. EECD significantly potentiated the sleeping time in mice induced by standard hypnotics viz. pentobarbitone sodium, diazepam, and meprobamate in a dose dependant manner. EECD showed significant analgesic properties as evidenced by the significant reduction in the number of writhes and stretches induced in mice by 1.2% acetic acid solution. It also potentiated analgesia induced by morphine and pethidine in mice. EECD inhibited the onset and the incidence of convulsion in a dose dependent manner against pentylenetetrazole (PTZ)-induced convulsion. The present study indicates that EECD has significant CNS depressant activities.

  8. Consequences of copper treatment on pigeon pea photosynthesis, osmolytes and antioxidants defense.

    PubMed

    Sharma, Poonam; Sirhindi, Geetika; Singh, Anil Kumar; Kaur, Harpreet; Mushtaq, Ruqia

    2017-10-01

    An attempt was made to explore the effect of copper sulphate treatment on growth, photosynthesis, osmolytes and antioxidants in 15 days old seedlings of C. cajan (Pigeonpea). C. cajan seedlings were grown in 0, 1, 5 and 10 mM concentrations of copper sulphate in petriplates lined with Whatman filter paper for 15 days. Root length and shoot length was decreased in a dose dependent manner with highest decrease of 82.80 and 45.92% in 10 mM Cu stress. Photosynthetic efficiency (qP, qN and Y) was decreased in a dose dependent manner whereas NPQ was increased in 1 and 5 mM and decreased in 10 mM Cu. Photosynthetic pigments viz total chlorophyll and carotenoids were increased in low concentrations and decreased in high concentrations of Cu. Osmolytes such as proline, glycine betaine and sugars were found to be increased in a dose dependent manner. Similarly antioxidants such as superoxide dismutase and catalase increased to 129.17 and 169.7%, respectively under Cu stress. Vitamin C and vitamin E was also increased in different concentrations of Cu to a significant level. It can be concluded from the present study that C. cajan can tolerate Cu stress up to 5 mM by adjusting the proportion of proline, glycine betaine, sugars and vitamins along with increasing the activity of some of the antioxidant enzymes.

  9. Proinflammatory activation of macrophages by bisphenol A-glycidyl-methacrylate involved NFκB activation via PI3K/Akt pathway.

    PubMed

    Kuan, Yu-Hsiang; Huang, Fu-Mei; Li, Yi-Ching; Chang, Yu-Chao

    2012-11-01

    Bisphenol A-glycidyl-methacrylate (BisGMA), a dental composite resin and dentin bonding agent, might prompt inflammatory effects to adjacent tissues. Macrophages are a major cellular component of the inflammatory sites. Little is known about the mechanisms of BisGMA on macrophages activation. The aim of this study was to evaluate BisGMA on proinflammatory mediators generation of murine macrophage RAW264.7 cells. IL-1β and IL-6 were analyzed by enzyme-linked immunosorbent assay. Nitric oxide, extracellular superoxide anion, and intracellular reaction oxygen species were measured by Griess assay, ferricytochrome c, and 2',7'-dichlorofluorescein assay, respectively. Expression of iNOS, p-p65, IκB, and p-Akt was analyzed by Western blotting. BisGMA augmented the generation of IL-1β, IL-6, nitric oxide and the expression of iNOS in a time- and dose-dependent manner (p<0.05). BisGMA enhanced the generation of intracellular and extracellular ROS in a dose-dependent manner (p<0.05). The levels of p65 phosphorylation, IκB degradation, and Akt phosphorylation were found to be increased in a time- and dose-dependent manner (p<0.05). These results indicate that BisGMA could induce nitric oxide, ROS, and inflammatory cytokines in macrophages. In addition, BisGMA may active macrophage via NF-κB activation, IκB degradation, and p-Akt activation. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  10. P2X and P2Y Receptors Mediate Contraction Induced by Electrical Field Stimulation in Feline Esophageal Smooth Muscle.

    PubMed

    Cho, Young Rae; Jang, Hyeon Soon; Kim, Won; Park, Sun Young; Sohn, Uy Dong

    2010-10-01

    It is well-known that electrical field stimulation (EFS)-induced contraction is mediated by a cholinergic mechanism and other neurotransmitters. NO, ATP, calcitonin gene-related peptide (CGRP), and substance P are released by EFS. To investigate the purinergic mechanism involved in the EFS-induced contraction, purinegic receptors antagonists were used. Suramine, a non-selective P2 receptor antagonist, reduced the contraction induced by EFS. NF023 (10(-7)~10(-4) M), a selective P2X antagonist, inhibited the contraction evoked by EFS. Reactive blue (10(-6)~10(-4) M), selective P2Y antagonist, also blocked the contraction in a dose-dependent manner. In addition, P2X agonist α,β-methylene 5'-adenosine triphosphate (αβMeATP, 10(-7)~10(-5) M) potentiated EFS-induced contraction in a dose-dependent manner. P2Y agonist adenosine 5'-[β-thio]diphosphate trilithium salt (ADPβS, 10(-7)~10(-5) M) also potentiated EFS-induced contractions in a dose-dependent manner. Ecto-ATPase activator apyrase (5 and 10 U/ml) reduced EFS-induced contractions. Inversely, 6-N,N-diethyl-D-β,γ-dibromomethylene 5'-triphosphate triammonium (ARL 67156, 10(-4) M) increased EFS-induced contraction. These data suggest that endogenous ATP plays a role in EFS-induced contractions which are mediated through both P2X-receptors and P2Y-receptors stimulation in cat esophageal smooth muscle.

  11. A novel cantharidin analog N-Benzylcantharidinamide reduces the expression of MMP-9 and invasive potentials of Hep3B via inhibiting cytosolic translocation of HuR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ji-Yeon; Chung, Tae-Wook; Choi, Hee-Jung

    2014-05-02

    Highlights: • We examined the inhibition of N-Benzylcantharidinamide on MMP-9-mediated invasion. • Unlike cantharidin, N-Benzylcantharidinamide has very low toxicity on Hep3B cells. • The reduced MMP-9 expression was due to HuR-mediated decrease of mRNA stability. • We suggest N-Benzylcantharidinamide as a novel inhibitor of MMP-9-related invasion. - Abstract: Invasion and metastasis are major causes of malignant tumor-associated mortality. The present study aimed to investigate the molecular events underlying inhibitory effect of N-Benzylcantharidinamide, a novel synthetic analog of cantharidin, on matrix metalloproteinase-9 (MMP-9)-mediated invasion in highly metastatic hepatocellular carcinoma Hep3B cells. In this investigation, among six analogs of cantharidin, only N-Benzylcantharidinamidemore » has the inhibitory action on MMP-9 expression at non-toxic dose. The MMP-9 expression and invasion of Hep3B cells were significantly suppressed by treatment of N-Benzylcantharidinamide in a dose-dependent manner. On the other hand, the transcriptional activity of MMP-9 promoter and nuclear levels of NF-κB and AP-1 as the main transcriptional factors inducing MMP-9 expression were not affected by it although the level of MMP-9 mRNA was reduced by treatment of N-Benzylcantharidinamide. Interestingly, the stability of MMP-9 mRNA was significantly reduced by N-Benzylcantharidinamide-treatment. In addition, the cytosolic translocation of human antigen R (HuR), which results in the increase of MMP-9 mRNA stability through interaction of HuR with 3′-untranslated region of MMP-9 mRNA, was suppressed by treatment of N-Benzylcantharidinamide, in a dose-dependent manner. Taken together, it was demonstrated, for the first time, that N-Benzylcantharidinamide suppresses MMP-9 expression by reducing HuR-mediated MMP-9 mRNA stability for the inhibition of invasive potential in highly metastatic Hep3B cells.« less

  12. Possible biochemical effects following inhibition of ethanol-induced gastric mucosa damage by Gymnema sylvestre in male Wistar albino rats.

    PubMed

    Al-Rejaie, Salim S; Abuohashish, Hatem M; Ahmed, Mohammed M; Aleisa, Abdulaziz M; Alkhamees, Osama

    2012-12-01

    Gymnema sylvestre (GS) R. Br. (Gymnema) (Asclepiadaceae) has been used from ancient times as a folk medicine for the treatment of diabetes, obesity, urinary disorder, and stomach stimulation. The present study was designed to investigate the effects of G. sylvestre leaves ethanol extract on gastric mucosal injury in rats. Gastric mucosal damage was induced by 80% ethanol in 36 h fasted rats. The effect of G. sylvestre on gastric secretions induced in Shay rats was estimated. In stomach, wall mucus, non-protein sulfhydryl groups (NP-SH), malondialdehyde (MDA), total proteins and nucleic acids levels were estimated. Histopathological changes were observed. G. sylvestre pretreatment at doses of 100, 200 and 400 mg/kg provided 27, 49, and 63% protection against the ulcerogenic effect of ethanol, respectively. Pylorus ligation accumulated 10.24 mL gastric secretions with 66.56 mEq of acidity in control rats. Pretreatment with G. sylvestre significantly inhibited the secretions volume and acidity in dose-dependent manner. Ethanol caused significant depletion in stomach-wall mucus (p < 0.001), total proteins (p < 0.01), nucleic acids (p < 0.001), and NP-SH (p < 0.001) levels. Pretreatment with G. sylvestre showed protection against these depleted levels in dose-dependent manner. The MDA levels increased from 19.02 to 29.22 nmol/g by ethanol ingestion and decreased with G. sylvestre pretreatments in dose-dependent manner. The protective effect of G. sylvestre observed in the present study is attributed to its effect on mucus production, increase in nucleic acid and NP-SH levels, which appears to be mediated through its free radical scavenging ability and/or possible cytoprotective properties.

  13. Inhibition of Histone Deacetylases (HDACs) and mTOR Signaling: Novel Strategies Toward the Treatment of Prostate Cancer

    DTIC Science & Technology

    2011-04-01

    castrate resistant pros- tate cancer that initially undergoes a latency period (possibly quiescent low proliferating tumors as docu- mented in the...our results demonstrate that low dose concurrent panobinostat/everolimus combination therapy is well tolerated and results in greater anti-tumor...and dose dependent manner, where as Myc-CaP cell lines were resistant to the cytotoxic effects of everolimus. Treatment with low dose (non

  14. Cystathionine beta synthase gene dose dependent vascular remodeling in murine model of hyperhomocysteinemia.

    PubMed

    Tyagi, Neetu; Qipshidze, Natia; Sen, Utpal; Rodriguez, Walter; Ovechkin, Alexander; Tyagi, Suresh C

    2011-09-30

    Although children born with severe homocystinurea (i.e. cystathionine beta synthase homozygote knockout, CBS-/-) develop deleterious vascular complications with structural malformation and do not live past teenage, the heterozygote (CBS-/+) lives with apparently normal phenotype. Interestingly, this differential role of CBS expression in vascular remodeling is unclear. Peroxisome proliferator activated receptor gamma (PPARγ) is nuclear transcription factor that mitigates vascular complications. The hypothesis was that homocysteine (Hcy) decreased thioredoxin (Trx), peroxiredoxin (Prx), increased NADPH oxidase (NOX1), mitochondrial nitric oxide synthase (mtNOS) activity and reactive oxygen species (ROS) in mitochondria in a CBS gene dose-dependent manner. ROS transduced matrix metalloproteinase (MMP) activation causing thickening (fibrosis) of the basement membrane, rendering ineffective endothelial nitric oxide synthase (eNOS) and promoted endothelial-smooth muscle disconnection/uncoupling by antagonizing PPARγ. Wild type (WT-CBS+/+), CBS-/+ and CBS -/- mice were treated with or without ciglitazone (CZ, a PPARγ agonist) in food at birth. Aortic nuclear PPARγ expression was measured by EMSA. Aortic mtNOS activity and ROS production was measured using NO- and H(2)O(2)-electrodes, respectively. Aorta was analyzed for Trx, Prx, by Western blot, and PCR. MMP activity was by in situ zymography. Aortic function was measured in tissue myobath. The results suggested 90% morbidity in CBS-/- allele at 12 wks. However, treatment with the PPARγ agonist, CZ significantly reduced the morbidity to 20%. In addition, CZ restored the PPARγ activity in CBS-/+ and -/- mice to normal levels. The oxidative stress was alleviated by CZ treatment. In situ labeling with mito-tracker suggests co-localization of ROS with mitochondrial mitophagy. The mtNOS activity was increased in HHcy compared to WT. The data support the notion that Hcy decreases redoxins, increases mtNOS activity and ROS/oxidase in mitochondrial mitophagy in a gene dose-dependent manner of CBS. ROS transduces MMP activation, rendering ineffective eNOS and promotes endothelial-smooth muscle disconnection/uncoupling by antagonizing PPARγ. We suggest that the children born with severe ho-mocystineurea may do better if treated with PPARγ agonist.

  15. Astaxanthin Inhibits Proliferation of Human Gastric Cancer Cell Lines by Interrupting Cell Cycle Progression.

    PubMed

    Kim, Jung Ha; Park, Jong-Jae; Lee, Beom Jae; Joo, Moon Kyung; Chun, Hoon Jai; Lee, Sang Woo; Bak, Young-Tae

    2016-05-23

    Astaxanthin is a carotenoid pigment that has antioxidant, antitumoral, and anti-inflammatory properties. In this in vitro study, we investigated the mechanism of anticancer effects of astaxanthin in gastric carcinoma cell lines. The human gastric adenocarcinoma cell lines AGS, KATO-III, MKN-45, and SNU-1 were treated with various concentrations of astaxanthin. A cell viability test, cell cycle analysis, and immunoblotting were performed. The viability of each cancer cell line was suppressed by astaxanthin in a dose-dependent manner with significantly decreased proliferation in KATO-III and SNU-1 cells. Astaxanthin increased the number of cells in the G0/G1 phase but reduced the proportion of S phase KATO-III and SNU-1 cells. Phosphorylated extracellular signal-regulated kinase (ERK) was decreased in an inverse dose-dependent correlation with astaxanthin concentration, and the expression of p27(kip-1) increased the KATO-III and SNU-1 cell lines in an astaxanthin dose-dependent manner. Astaxanthin inhibits proliferation by interrupting cell cycle progression in KATO-III and SNU-1 gastric cancer cells. This may be caused by the inhibition of the phosphorylation of ERK and the enhanced expression of p27(kip-1).

  16. Agglucetin, a tetrameric C-type lectin-like venom protein, regulates endothelial cell survival and promotes angiogenesis by activating integrin {alpha}v{beta}3 signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, W.-J.

    2008-05-02

    Agglucetin, a platelet glycoprotein (GP)Ib binding protein from Formosan Agkistrodon acutus (A. acutus) venom, could sustain human umbilical vein endothelial cell (HUVEC) proliferation and HUVEC adhering to immobilized agglucetin showed extensive spreading, which was strongly abrogated by integrin antagonists 7E3 and triflavin. Flow cytometric analyses confirmed the expression of GPIb complex on HUVEC is absent and fluorescein isothiocyanate (FITC)-agglucetin binds to HUVEC in a dose-dependent and saturable manner. Furthermore, native agglucetin specifically and dose-dependently inhibited the binding of FITC-23C6, an anti-{alpha}v{beta}3 monoclonal antibody (mAb), but not antibodies against {alpha}2 and {alpha}5, toward HUVEC and purified {alpha}v{beta}3 also bound to immobilizedmore » agglucetin-{beta} in a dose-dependent manner. Moreover, agglucetin exhibited a pro-angiogenic effect in vitro, as well as the focal adhesion kinase (FAK)-associated signaling molecules responsible for HUVEC activation were initiated by agglucetin. In conclusion, agglucetin, acting as a survival factor, promotes endothelial adhesion and angiogenesis by triggering {alpha}v{beta}3 signaling through FAK/phosphatidylinositol 3-kinase (PI3K)/Akt pathway.« less

  17. Skeletal response to corticosteroid deficiency and excess in growing male rats

    NASA Technical Reports Server (NTRS)

    Li, M.; Shen, Y.; Halloran, B. P.; Baumann, B. D.; Miller, K.; Wronski, T. J.

    1996-01-01

    The study was designed to investigate bone histomorphometric changes induced by corticosteroid deficiency and supplementation at different dose levels in the rat skeleton. Male rats were adrenalectomized (ADX) or sham-operated and divided into six groups. At 2 days after surgery, sham-operated control rats (CON + PLA) and one group of ADX rats (ADX + PLA) were implanted subcutaneously (s.c.) with placebo pellets. ADX rats in the remaining four groups (ADX + C25, ADX + C50, ADX + C100, and ADX + C300) were implanted sc with corticosterone pellets designed to release 25, 50, 100, or 300 mg of the hormone over a 60 day period. Each ADX rat was also implanted sc with an aldosterone pellet (2.5 mg) similarly designed to release its contents over the same time period. All rats were killed at 3 weeks after implantation of pellets. Terminal blood samples were collected for serum biochemistry and the proximal tibial metaphyses (PTM), tibial diaphyses, and first lumbar vertebrae (LV) were processed undecalcified for quantitative bone histomorphometry. A dose-dependent increase in serum corticosterone concentration was observed in ADX rats implanted with hormone pellets. In comparison to CON + PLA rats, ADX + PLA rats had lower cancellous bone volume associated with a stimulation in longitudinal bone growth, an increase in mineral apposition rate, and a trend for increased osteoclast and osteoblast surfaces in PTM. In contrast, cancellous bone of ADX + C25 rats was preserved at nearly the CON + PLA level. However, the higher doses of corticosterone increased cancellous bone mass, but decreased longitudinal bone growth and all indices of bone resorption and formation in a dose-dependent manner in PTM. Similar cancellous bone changes were observed in the LV of corticosterone-treated rats, with the exception of a lack of an hormonal effect on cancellous bone mass. In the tibial diaphysis, corticosterone inhibited periosteal bone formation in a dose-dependent manner, but did not affect cortical bone mass. The results indicate that corticosteroid deficiency induces cancellous osteopenia, whereas supplementation with a near physiologic dose of the hormone prevents this bone loss in ADX rats. Furthermore, corticosteroid excess inhibits bone growth and bone turnover in a dose-dependent manner, but does not induce cancellous osteopenia in growing male rats.

  18. Site-Specific Phosphorylation of Ikaros Induced by Low-Dose Ionizing Radiation Regulates Cell Cycle Progression of B Lymphoblast Through CK2 and AKT Activation.

    PubMed

    Cho, Seong-Jun; Kang, Hana; Kim, Min Young; Lee, Jung Eun; Kim, Sung Jin; Nam, Seon Young; Kim, Ji Young; Kim, Hee Sun; Pyo, Suhkneung; Yang, Kwang Hee

    2016-04-01

    To determine how low-dose ionizing radiation (LDIR) regulates B lympho-proliferation and its molecular mechanism related with Ikaros, transcription factor. Splenocytes and IM-9 cells were uniformly irradiated with various doses of a (137)Cs γ-source, and cell proliferation was analyzed. To determine the LDIR-specific phosphorylation of Ikaros, immunoprecipitation and Western blot analysis were performed. To investigate the physiologic function of LDIR-mediatied Ikaros phosphorylation, Ikaros mutants at phosphorylation sites were generated, and cell cycle analysis was performed. First, we found that LDIR enhances B lymphoblast proliferation in an Ikaros-dependent manner. Moreover, we found that LDIR elevates the phosphorylation level of Ikaros protein. Interestingly, we showed that CK2 and AKT are involved in LDIR-induced Ikaros phosphorylation and capable of regulating DNA binding activity of Ikaros via specific phosphorylation. Finally, we identified LDIR-specific Ikaros phosphorylation sites at S391/S393 and showed that the Ikaros phosphorylations at these sites control Ikaros's ability to regulate G1/S cell cycle progression. Low-dose ionizing radiation specifically phosphorylates Ikaros protein at Ser 391/393 residues to regulate cell cycle progression in B lymphoblast. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Genistein induced anticancer effects on pancreatic cancer cell lines involves mitochondrial apoptosis, G0/G1cell cycle arrest and regulation of STAT3 signalling pathway.

    PubMed

    Bi, Yi-Liang; Min, Min; Shen, Wei; Liu, Yan

    2018-01-15

    Genistein is a natural flavonoid that has been reported to exhibit anticancer effects against different types of cancers which include, but are not limited to, breast and oral squamous cell carcinoma. The present study was designed to evaluate the anticancer effects of the natural flavonoid genistein against pancreatic cancer cell lines and to explore the underlying mechanism. Antiproliferative activity was investigated by MTT assay. Apoptosis was detected by DAPI and annexin V/PI staining. DNA damage was assessed by comet assay. Reactive oxygen species (ROS) and reduction of mitochondrial membrane potential (MMP) were determined by flow cytometry. Cell migration was examined by wound healing assay. Protien expressions were determined by western blotting. Antiproliferative assay revealed that genistein reduced the cell viability of pancreatic cancer cells in a dose dependent manner with an IC 50 of 20 and 25 µM against Mia-PaCa2 and PANC-1 cancer cell lines respectively. However, its antiproliferative effects were less pronounced against non-cancerous pancreatic ductal epithelial cell line (H6C7) as evident from the IC 50 of 120 µM. Genistein induced significant morphological changes in pancreatic cancer cells and triggered cell cycle arrest in G 0 /G 1 phase. DAPI staining and flow cytometric analysis revealed that genistein induced apoptosis in a dose dependent manner through generation of substantial amounts of ROS and reduction of MMP. However, treatment of the pancreatic cancer with genistein and ascorbic acid could abrogate the effects of genistein on cell viability. Protien expression analysis revealed that genistein upregulated cytosolic cytochrome c, Bax, cleaved Caspase-3 and cleaved caspase-9 expressions with concomitant downregulation of Bcl-2 expression. Moreover, genistein inhibited the phosphorylation of signal transducer and activator of transcription STAT3 proteins and downregulated the expression of survivin, cyclin D1 and ALDH1A1 in Mia-PaCa2 cells in a dose dependent manner. Interestingly, genistein could inhibit the cell migration potential of the Mia-PaCa2 cells which was further associated with the downregulation of metalloproteinases (MPP-2 and MPP-9). Taken together, we propose that genistein exerts anticancer activity in pancreatic cancer cells through induction of ROS mediated mitochondrial apoptosis, cell cycle arrest and regulation of STAT3 and may therefore prove beneficial in the management of pancreatic cancers cancer. Copyright © 2017 Elsevier GmbH. All rights reserved.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Seong-Jun; Kang, Hana; Kim, Min Young

    Purpose: To determine how low-dose ionizing radiation (LDIR) regulates B lympho-proliferation and its molecular mechanism related with Ikaros, transcription factor. Methods and Materials: Splenocytes and IM-9 cells were uniformly irradiated with various doses of a {sup 137}Cs γ-source, and cell proliferation was analyzed. To determine the LDIR-specific phosphorylation of Ikaros, immunoprecipitation and Western blot analysis were performed. To investigate the physiologic function of LDIR-mediatied Ikaros phosphorylation, Ikaros mutants at phosphorylation sites were generated, and cell cycle analysis was performed. Results: First, we found that LDIR enhances B lymphoblast proliferation in an Ikaros-dependent manner. Moreover, we found that LDIR elevates the phosphorylationmore » level of Ikaros protein. Interestingly, we showed that CK2 and AKT are involved in LDIR-induced Ikaros phosphorylation and capable of regulating DNA binding activity of Ikaros via specific phosphorylation. Finally, we identified LDIR-specific Ikaros phosphorylation sites at S391/S393 and showed that the Ikaros phosphorylations at these sites control Ikaros's ability to regulate G1/S cell cycle progression. Conclusion: Low-dose ionizing radiation specifically phosphorylates Ikaros protein at Ser 391/393 residues to regulate cell cycle progression in B lymphoblast.« less

  1. AcMNPV ChiA protein disrupts the peritrophic membrane and alters midgut physiology of Bombyx mori larvae.

    PubMed

    Rao, Rosa; Fiandra, Luisa; Giordana, Barbara; de Eguileor, Magda; Congiu, Terenzio; Burlini, Nedda; Arciello, Stefania; Corrado, Giandomenico; Pennacchio, Francesco

    2004-11-01

    Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) chitinase A (ChiA) is a protein which promotes the final liquefaction of infected host larvae. The potential of this viral molecule as a new tool for insect control is explored here. The ChiA gene was isolated from the AcMNPV genome by PCR and expressed in E. coli. The recombinant protein, purified by affinity chromatography, showed both exo- and endo-chitinase activities and produced perforations on the peritrophic membrane (PM) of Bombyx mori larvae which increased in number and in size, in a dose-dependent manner. This structural alteration resulted into a significant increase of PM permeability to methylene blue and to the small neuropeptide proctolin. When the fifth instar larvae of B. mori were fed on a artificial diet supplemented with the recombinant ChiA, 100% mortality was observed at a dose of 1 microg/g of larval body weight (LW), while at sub-lethal doses of 0.56 microg/g LW, a reduced larval growth was recorded. These results indicate that AcMNPV-ChiA may offer interesting new opportunities for pest control.

  2. Dose-dependent effects of homologous seminal plasma on motility and kinematic characteristics of post-thaw stallion epididymal spermatozoa.

    PubMed

    Neuhauser, S; Dörfel, S; Handler, J

    2015-05-01

    Preservation of epididymal spermatozoa is important to save genetic material of endangered species and breeds, or in case of unexpected injury, which will end the breeding career of valuable sires. Seminal plasma (SP) influences sperm quality in a dose-dependent manner and its addition to preserved semen immediately before insemination may be beneficial for sperm fertility. Increased plasma membrane stability of epididymal spermatozoa reduces freezing injury of cells, and the addition of SP after freezing and thawing might have activating and protecting effects on spermatozoa within the female genital tract. In this study, epididymal spermatozoa were harvested by retrograde flush of the epididymal cauda immediately after routine castration and frozen. Seminal plasma was collected from other six stallions. Homologous SP (SP from the same species, but from a different animal) was added to frozen-thawed epididymal spermatozoa at concentrations of 0, 5, 20, 50 and 80% SP. Addition of SP increased sperm motility and influenced kinematic values in a dose-dependent manner (p < 0.05). Motility improved at concentrations of 20 and 50% SP, but did not further increase at 80% SP. There was no difference in sperm motility among SP from six different donor stallions regardless of the concentrations of SP (p > 0.05). Total and progressive motility of ten frozen-thawed epididymal spermatozoa samples collected from different stallions after dilution with extender and 5, 20, 50 or 80% SP differed significantly (p < 0.05). In conclusion, addition of homologous SP to frozen-thawed stallion epididymal spermatozoa immediately improved motility in a dose-dependent manner regardless of semen quality of SP donor stallions. This might positively influence fertility when SP is added before insemination. Moreover, there seems to be a threshold level of SP concentration for optimal improvement of sperm motility. © 2015 American Society of Andrology and European Academy of Andrology.

  3. Gene expression profiling of breast cancer cell lines treated with proton and electron radiations.

    PubMed

    Bravatà, Valentina; Minafra, Luigi; Cammarata, Francesco Paolo; Pisciotta, Pietro; Lamia, Debora; Marchese, Valentina; Manti, Lorenzo; Cirrone, Giuseppe Ap; Gilardi, Maria Carla; Cuttone, Giacomo; Forte, Giusi Irma; Russo, Giorgio

    2018-06-11

    Technological advances in radiation therapy are evolving with the use of hadrons, such as protons, indicated for tumors where conventional radiotherapy does not give significant advantages or for tumors located in sensitive regions, which need the maximum of dose-saving of the surrounding healthy tissues. The genomic response to conventional and non conventional Linear Energy Transfer exposure is a poor investigated topic and became an issue of radiobiological interest. The aim of this work was to analyze and compare molecular responses in term of gene expression profiles, induced by electron and proton irradiation in breast cancer cell lines. We studied the gene expression profiling differences by cDNA microarray activated in response to electron and proton irradiation with different Linear Energy Transfer values, among three breast cell lines (the tumorigenic MCF7 and MDA-MB-231 and the non tumorigenic MCF10A), exposed to the same sub-lethal dose of 9 Gy. Gene expression profiling pathway analyses showed the activation of different signaling and molecular networks in a cell line and radiation type-dependent manner. MCF10A and MDA-MB-231 cell lines were found to induce factors and pathways involved in the immunological process control. Here we describe in a detailed way the gene expression profiling and pathways activated after electron and proton irradiation in breast cancer cells. Summarizing, although specific pathways are activated in a radiation type-dependent manner, each cell line activates overall similar molecular networks in response to both these two types of ionizing radiation. Advances in knowledge: In the era of personalized medicine and breast cancer target-directed intervention, we trust that this study could drive radiation therapy towards personalized treatments, evaluating possible combined treatments, based on the molecular characterization.

  4. Despite differences in cytosolic calcium regulation, lidocaine toxicity is similar in adult and neonatal rat dorsal root ganglia in vitro.

    PubMed

    Doan, Lisa V; Eydlin, Olga; Piskoun, Boris; Kline, Richard P; Recio-Pinto, Esperanza; Rosenberg, Andrew D; Blanck, Thomas J J; Xu, Fang

    2014-01-01

    Neuraxial local anesthetics may have neurological complications thought to be due to neurotoxicity. A primary site of action of local anesthetics is the dorsal root ganglia (DRG) neuron. Physiologic differences have been noted between young and adult DRG neurons; hence, the authors examined whether there were any differences in lidocaine-induced changes in calcium and lidocaine toxicity in neonatal and adult rat DRG neurons. DRG neurons were cultured from postnatal day 7 (P7) and adult rats. Lidocaine-induced changes in cytosolic calcium were examined with the calcium indicator Fluo-4. Cells were incubated with varying concentrations of lidocaine and examined for viability using calcein AM and ethidium homodimer-1 staining. Live imaging of caspase-3/7 activation was performed after incubation with lidocaine. The mean KCl-induced calcium transient was greater in P7 neurons (P < 0.05), and lidocaine significantly inhibited KCl-induced calcium responses in both ages (P < 0.05). Frequency distribution histograms of KCl-evoked calcium increases were more heterogeneous in P7 than in adult neurons. With lidocaine, KCl-induced calcium transients in both ages became more homogeneous but remained different between the groups. Interestingly, cell viability was decreased by lidocaine in a dose-dependent manner similarly in both ages. Lidocaine treatment also activated caspase-3/7 in a dose- and time-dependent manner similarly in both ages. Despite physiological differences in P7 and adult DRG neurons, lidocaine cytotoxicity is similar in P7 and adult DRG neurons in vitro. Differences in lidocaine- and KCl-evoked calcium responses suggest the similarity in lidocaine cytotoxicity involves other actions in addition to lidocaine-evoked effects on cytosolic calcium responses.

  5. Despite Differences in Cytosolic Calcium Regulation, Lidocaine Toxicity Is Similar in Adult and Neonatal Rat Dorsal Root Ganglia in Vitro

    PubMed Central

    Doan, Lisa V.; Eydlin, Olga; Piskoun, Boris; Kline, Richard P; Recio-Pinto, Esperanza; Rosenberg, Andrew D; Blanck, Thomas JJ; Xu, Fang

    2013-01-01

    Background Neuraxial local anesthetics may have neurological complications thought to be due to neurotoxicity. A primary site of action for local anesthetics is the dorsal root ganglia (DRG) neuron. Physiologic differences have been noted between young and adult DRG neurons; hence, we examined whether there were differences in lidocaine-induced changes in calcium and lidocaine toxicity in neonatal and adult rat DRG neurons. Methods DRG neurons were cultured from postnatal day 7 (P7) and adult rats. Lidocaine-induced changes in cytosolic calcium were examined with the calcium indicator Fluo-4. Cells were incubated with varying concentrations of lidocaine and examined for viability using calcein AM and ethidium homodimer-1 staining. Live imaging of caspase-3/7 activation was performed after incubation with lidocaine. Results The mean KCl-induced calcium transient was greater in P7 neurons (p < 0.05), and lidocaine significantly inhibited KCl-induced calcium responses in both ages (p < 0.05). Frequency distribution histograms of KCl-evoked calcium increases were more heterogeneous in P7 than in adult neurons. With lidocaine, KCl-induced calcium transients in both ages became more homogeneous but remained different between the groups. Interestingly cell viability was decreased by lidocaine in a dose-dependent manner similarly in both ages. Lidocaine treatment also activated caspase-3/7 in a dose- and time-dependent manner similarly in both ages. Conclusions Despite physiological differences in P7 and adult DRG neurons, lidocaine cytotoxicity is similar in P7 and adult DRG neurons in vitro. Differences in lidocaine- and KCl-evoked calcium responses suggest the similarity in lidocaine cytotoxicity involves other actions in addition to lidocaine-evoked effects on cytosolic calcium responses. PMID:23851347

  6. Bioactive Extract from Moringa oleifera Inhibits the Pro-inflammatory Mediators in Lipopolysaccharide Stimulated Macrophages

    PubMed Central

    Fard, Masoumeh Tangestani; Arulselvan, Palanisamy; Karthivashan, Govindarajan; Adam, Siti Khadijah; Fakurazi, Sharida

    2015-01-01

    Introduction: Inflammation is a well-known physiological response to protect the body against infection and restore tissue injury. Nevertheless, the chronic inflammation can trigger various inflammatory associated diseases/disorder. Moringa oleifera is a widely grown plant in most tropical countries and it has been recognized traditionally for several medicinal benefits. Objectives: The objective of this study was to investigate the anti-inflammatory properties of M. oleifera extract on lipopolysaccharide (LPS) - stimulated macrophages. Materials and Methods: The anti-inflammatory effect of M. oleifera hydroethanolic bioactive leaves extracts was evaluated by assessing the inhibition of nitric oxide (NO) production during Griess reaction and the expression of pro-inflammatory mediators in macrophages. Results: Interestingly, we found that M. oleifera hydroethanolic bioactive leaves extract significantly inhibited the secretion of NO production and other inflammatory markers such as prostaglandin E2, tumor necrosis factor alpha, interleukin (IL)-6, and IL-1β. Meanwhile, the bioactive extract has induced the production of IL-10 in a dose-dependent manner. In addition, M. oleifera hydroethanolic bioactive leaves extract effectively suppressed the protein expression of inflammatory markers inducible NO synthase, cyclooxygenase-2, and nuclear factor kappa-light-chain-enhancer of activated B-cells p65 in LPS-induced RAW264.7 macrophages in a dose-dependent manner. Conclusion: These findings support the traditional use of M. oleifera plant as an effective treatment for inflammation associated diseases/disorders. SUMMARY Hydroethanolic extracts of Moringa oleifera effectively inhibit the NO production in LPS induced inflammatory model.M. oleifera crude extracts successfully modulate the production of pro-inflammatory mediators in LPS stimulated macrophages.M. oleifera extracts suppressed the expression of inflammatory mediators in LPS stimulated macrophages. PMID:27013794

  7. Hepatoprotective activity of Amaranthus spinosus in experimental animals.

    PubMed

    Zeashan, Hussain; Amresh, G; Singh, Satyawan; Rao, Chandana Venkateswara

    2008-11-01

    The hepatoprotective and antioxidant activity of 50% ethanolic extract of whole plant of Amaranthus spinosus (ASE) was evaluated against carbon tetrachloride (CCl4) induced hepatic damage in rats. The ASE at dose of 100, 200 and 400 mg/kg were administered orally once daily for fourteen days. The substantially elevated serum enzymatic levels of serum glutamate oxaloacetate transaminase (AST), serum glutamate pyruvate transaminase (ALT), serum alkaline phosphatase (SALP) and total bilirubin were restored towards normalization significantly by the ASE in a dose dependent manner. Higher dose exhibited significant hepatoprotective activity against carbon tetrachloride induced hepatotoxicity in rats. The biochemical observations were supplemented with histopathological examination of rat liver sections. Meanwhile, in vivo antioxidant activities as malondialdehyde (MDA), hydroperoxides, reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) were also screened which were also found significantly positive in a dose dependent manner. The results of this study strongly indicate that whole plants of A. spinosus have potent hepatoprotective activity against carbon tetrachloride induced hepatic damage in experimental animals. This study suggests that possible mechanism of this activity may be due to the presence of flavonoids and phenolics compound in the ASE which may be responsible to hepatoprotective activity.

  8. Diuretic effects of medetomidine compared with xylazine in healthy dogs.

    PubMed

    Talukder, Md Hasanuzzaman; Hikasa, Yoshiaki

    2009-07-01

    This study aimed to investigate and compare the effects of medetomidine and xylazine on diuretic and hormonal variables in healthy dogs. Five dogs, used in each of 11 groups, were injected intramuscularly with physiological saline solution (control), 5, 10, 20, 40, and 80 microg/kg of medetomidine, and 0.25, 0.5, 1, 2, and 4 mg/kg of xylazine. Urine and blood samples were taken 11 times over 24 h. Both medetomidine and xylazine increased urine production in a dose-dependent manner up to 4 h after injection, but the increase was much less with medetomidine than with xylazine at the tested doses. Urine specific gravity, pH, osmolality, and concentrations of creatinine, sodium, potassium, chloride, and arginine vasopressin (AVP) were decreased in a dose-dependent manner with both medetomidine and xylazine. Plasma osmolality and concentrations of sodium, potassium, and chloride were increased significantly with both drugs. Total amounts of urine AVP excreted and plasma AVP concentrations were significantly decreased by higher doses of medetomidine but were not significantly decreased by xylazine. Higher doses of both drugs significantly increased the plasma concentration of atrial natriuretic peptide (ANP), but the effect was greater with medetomidine than with xylazine. The results revealed that both drugs induce a profound diuresis, but medetomidine's effect is less dose-dependent than xylazine's effect. Although changes in plasma concentrations of AVP and ANP may partially influence the diuresis induced by medetomidine, other factors may be involved in the mechanism of the diuretic response to both drugs. Thus, both agents can be used clinically for transient but effective diuresis accompanied by sedation.

  9. Effects of sub-acute methanol extract treatment of Calliandra portoricensis root bark on antioxidant defence capacity in an experimental rat model.

    PubMed

    Siemuri, Ese O; Akintunde, Jacob K; Salemcity, Anuoluwapo J

    2015-07-01

    The attendant side effects associated with some synthetic drugs used in the management of diseases have led to the search for safer alternative therapies that are relatively cheaper with minimal side effects. The methanol extract of Calliandra portoricensis root bark (CPRB) was orally administered at the doses of 5, 10, 20, and 25 mg/kg body weight for 14 consecutive days of 5 rats in each group. The control rats were given distilled water. The 95% methanol extract of CPRB significantly (p<0.05) scavenged NO• and OH• radicals compared to vitamin C. The level of lipid peroxidative products (malondialdehyde, MDA) was significantly (p<0.05) attenuated in a dose-dependent manner. Antioxidant enzymes including superoxide dismutase and catalase were significantly (p<0.05) exercabated in both liver and kidney in a dose-dependent manner. Furthermore, serum AST, alanine aminotransaminase and γ-glutamyltransferase (GGT) activity depicted non-significant (p>0.05) increase in the treated animals. The histological examination showed mild vacuolar, portal congestion and cell infiltration by mononuclear of the hepatic tissues. The study then concluded that a therapeutic dose of the methanol extract of CPRB triggered the antioxidant defence systems in male rats. It is, therefore, recommended that the doses should be carefully and clinically chosen because higher doses may cause some health risks.

  10. Free radical scavenging, antidiarrheal and anthelmintic activity of Pistia stratiotes L. extracts and its phytochemical analysis.

    PubMed

    Bin Karim, Mohammed Faisal; Imam, Hasan; Sarker, Md Moklesur-Rahman; Uddin, Nizam; Hasan, Nahid; Paul, Nirmala; Haque, Tahmina

    2015-05-01

    In this phyto-pharmacological screening of Pistia stratiotes L leaf and root extracts each separately in two different solvents demonstrated its potential medicinal value. Apparent antioxidant value is demonstrated by DPPH, Nitric oxide scavenging and Ferric ion reducing method. Additionally, total flavonoid and phenolic compounds were measured. The leaf methanolic extract scavenged both nitric oxide (NO) and DPPH radical with a dose dependent manner. But the pet ether fraction of root was found to have highest efficacy in Fe(3±) reducing power assay. Flavonoid was found to contain highest in the pet ether fraction of root (411.35mg/g) in terms of quercetin equivalent, similarly highest amount (34.96mg/g) of total phenolic compounds (assayed as gallic acid equivalents) were found to contain in the same fraction. The methanolic fractions appeared less cytotoxic compared to pet ether extracts. The plant extracts caused a dose dependent decrease in faecal droppings in both castor oil and magnesium sulphate induced diarrhea, where as leaf extracts in each solvent appeared most effective. Also, the plant extracts showed anthelmintic activity in earthworm by inducing paralysis and death in a dose dependent manner. At highest doses (50 mg/ml) all fractions were almost effective as the positive control piperazine citrate (10 mg/ml). Thus, besides this cytotoxic effect it's traditional claim for therapeutic use can never be overlooked.

  11. Antioxidant protects blood-testis barrier against synchrotron radiation X-ray-induced disruption

    PubMed Central

    Zhang, Tingting; Liu, Tengyuan; Shao, Jiaxiang; Sheng, Caibin; Hong, Yunyi; Ying, Weihai; Xia, Weiliang

    2015-01-01

    Synchrotron radiation (SR) X-ray has wide biomedical applications including high resolution imaging and brain tumor therapy due to its special properties of high coherence, monochromaticity and high intensity. However, its interaction with biological tissues remains poorly understood. In this study, we used the rat testis as a model to investigate how SR X-ray would induce tissue responses, especially the blood-testis barrier (BTB) because BTB dynamics are critical for spermatogenesis. We irradiated the male gonad with increasing doses of SR X-ray and obtained the testicles 1, 10 and 20 d after the exposures. The testicle weight and seminiferous tubule diameter reduced in a dose- and time-dependent manner. Cryosections of testes were stained with tight junction (TJ) component proteins such as occludin, claudin-11, JAM-A and ZO-1. Morphologically, increasing doses of SR X-ray consistently induced developing germ cell sloughing from the seminiferous tubules, accompanied by shrinkage of the tubules. Interestingly, TJ constituent proteins appeared to be induced by the increasing doses of SR X-ray. Up to 20 d after SR X-ray irradiation, there also appeared to be time-dependent changes on the steady-state level of these protein exhibiting differential patterns at 20-day after exposure, with JAM-A/claudin-11 still being up-regulated whereas occludin/ZO-1 being down-regulated. More importantly, the BTB damage induced by 40 Gy of SR X-ray could be significantly attenuated by antioxidant N-Acetyl-L-Cysteine (NAC) at a dose of 125 mg/kg. Taken together, our studies characterized the changes of TJ component proteins after SR X-ray irradiation, illustrating the possible protective effects of antioxidant NAC to BTB integrity. PMID:26413412

  12. Antibacterial Effect of Gallic Acid against Aeromonas hydrophila and Aeromonas sobria Through Damaging Membrane Integrity.

    PubMed

    Lu, Jing; Wang, Zhenning; Ren, Mengrou; Huang, Guoren; Fang, Baochen; Bu, Xiujuan; Liu, Yanhui; Guan, Shuang

    In the study, we investigated the antibacterial activity and mechanism of gallic acid against Aeromonas hydrophila and Aeromonas sobria. Gallic acid showed strong antimicrobial activity against the two bacteria. Furthermore, the antibacterial mechanism of gallic acid (0, 3, 6, 12 mM) was performed by membrane integrity assay and scanning electron microscopy (SEM) assay. The results showed that gallic acid notably increased the released material absorption value at 260, 280 nm and electric conductivity in a dose-dependent manner. Moreover, the SEM assay showed that gallic acid induced severe shrink of bacterial intima and irregular morphology in a dose-dependent manner. The SDS-PAGE profiles further confirmed that gallic acid could damage bacterial cells. These results indicated gallic acid exhibited antibacterial effect by destroying membrane integrity of A. hydrophila and A. sobria. Hence, gallic acid has great potential as a new natural food preservative in food fresh-keeping and storage.

  13. In vitro effects of 5-hydroxytryptophan, indoleamines and leptin on arylalkylamine N-acetyltransferase (AA-NAT) activity in pineal organ of the fish, Clarias gariepinus (Burchell, 1822) during different phases of the breeding cycle.

    PubMed

    Gupta, B B P; Yanthan, L; Singh, Ksh Manisana

    2010-08-01

    Arylalkylamine N-acetyltransferase (AA-NAT) is the rate-limiting enzyme of melatonin biosynthetic pathway. In vitro effects of 5-hydroxytryptophan (5-HTP) and indoleamines (serotonin, N-acetylserotonin and melatonin) were studied on AA-NAT activity in the pineal organ of the fish, C. gariepinus during different phases of its annual breeding cycle. Further, in vitro effects of leptin on AA-NAT activity in the pineal organ were studied in fed and fasted fishes during summer and winter seasons. Treatments with 5-HTP and indoleamines invariably stimulated pineal AA-NAT activity in a dose-dependent manner during all the phases. However, leptin increased AA-NAT activity in a dose-dependent manner only in the pineal organ of the fed fishes, but not of the fasted fishes irrespective of the seasons.

  14. HMGB1: a novel protein that induced platelets active and aggregation via Toll-like receptor-4, NF-κB and cGMP dependent mechanisms.

    PubMed

    Yang, Xinyu; Wang, Haichao; Zhang, Menmen; Liu, Jin; Lv, Ben; Chen, Fangping

    2015-08-06

    Thrombotic diseases are a group of prevalent and life-threatening diseases. Selective inhibition of pathological thrombosis holds the key to treat variety of thrombotic diseases. The pathological thrombosis can be induced by either tissue necrosis and deregulated inflammation. HMGB1, as an important proinflammatory cytokine and a late mediator, also involves on thrombosis disease. However, the underlying mechanisms are not fully understood. Immunofluorescence, ELISA assay, Platelet Aggregation, Thromboelastogram (TEG) analyzes. Flow cytometric analysis and Western blot analysis were used to investigated the role of HMGB1 in platelet aggregation and obtained following observations. By doing so, we obtained the following observations: i) Highly purified HMGB1 recombinant protein induces platelet aggregation and secretion in a dose-dependent manner in the presence of serum. ii) Low concentration of extracellular HMGB1 could synergistically promote subthreshold concentration of collagen or thrombin induced platelet aggregation. iii) Extracellular HMGB1 promoted platelet aggregation in a platelet-expressed GPIIb/IIIa-dependent manner. iv) We proposed that extracellular HMGB1 seems to promote the phosphorylation of GPIIb/IIIa and subsequent platelet aggregation via TLR4/NF-κB and cGMP pathway. In this study, we provide evidence for the hypothesis that HMGB1 interact with platelet might play an important role in the haemostasis and thrombotic diseases. Our research might be provide an interesting avenue for the treatment of thrombotic diseases in the future.

  15. Potentiation of lymphocyte proliferative responses by nickel sulfide

    NASA Technical Reports Server (NTRS)

    Jaramillo, A.; Sonnenfeld, G.

    1992-01-01

    Crystalline nickel sulfide (NiS) induced a spleen cell proliferation that resembles a mixed lymphocyte reaction (MLR). It depended on cell-cell interaction, induced high levels of interleukin-1 (IL-1) and interleukin-2 (IL-2) and the responding cell subpopulation was composed of CD4+ T lymphocytes. Furthermore, the proliferation was inhibited in a dose-dependent manner by magnesium. Crystalline NiS also increased significantly the spleen cell proliferative response to concanavalin A (Con A) and lipopolysaccharide (LPS) with magnesium potentiating the combined effects of crystalline NiS and mitogens. Interestingly, crystalline NiS did not show any effect on the induction of IL-2 by Con A. The results described herein suggest that crystalline NiS can potentiate both antigenic (MLR) and mitogenic (Con A and LPS) proliferative responses in vitro. Crystalline NiS appears to potentiate these responses by acting in the form of ionic nickel on several intracellular targets for which magnesium ions have different noncompetitive interactions. The effects of magnesium on the potentiating action of crystalline NiS are different depending upon the type of primary stimulatory signal for proliferation (mitogenic or antigenic).

  16. Phloretin Inhibits Platelet-derived Growth Factor-BB-induced Rat Aortic Smooth Muscle Cell Proliferation, Migration, and Neointimal Formation After Carotid Injury.

    PubMed

    Wang, Dong; Wang, Qingjie; Yan, Gaoliang; Qiao, Yong; Tang, Chengchun

    2015-05-01

    Abnormal vascular smooth muscle cell proliferation and migration are key factors in many cardiovascular diseases. Here, we investigated the effects of phloretin on platelet-derived growth factor homodimer (PDGF-BB)-induced rat aortic smooth muscle cell (RASMC) proliferation, migration, and neointimal formation after carotid injury. Phloretin significantly inhibited the PDGF-BB-stimulated RASMC proliferation in a concentration-dependent manner (10-100 μM). Also, PDGF-BB-stimulated RASMC migration was inhibited by phloretin at 50 μM. Pretreating RASMC with phloretin dose-dependently inhibited PDGF-BB-induced Akt and p38 mitogen-activated protein kinases activation. Furthermore, phloretin increased p27 and decreased cyclin-dependent kinase 2, CDK4 expression, and p-Rb activation in PDGF-BB-stimulated RASMC in a concentration-dependent manner (10-50 μM). PDGF-BB-induced cell adhesion molecules and matrix metalloproteinase-9 expression were blocked by phloretin at 50 μM. Preincubation with phloretin dose-dependently reduced the intracellular reactive oxygen species production. In vivo study showed that phloretin (20 mg/kg) significantly reduced neointimal formation 14 days after carotid injury in rats. Thus, phloretin may have potential as a treatment against atherosclerosis and restenosis after vascular injury.

  17. Is Perineural Invasion of Head and Neck Squamous Cell Carcinomas Linked to Tobacco Consumption?

    PubMed

    Baumeister, Philipp; Welz, Christian; Jacobi, Christian; Reiter, Maximilian

    2018-05-01

    Perineural invasion (PNI) is an underrecognized path of cancer spread, and its causes and mechanisms are poorly understood. Recent research indicates a mutual attraction of neuronal and cancer cells, largely dependent on neurotrophic factors and their receptors. Interestingly, the release of neurotrophic factors occurs upon cigarette smoke/nicotine exposure in a dose-dependent manner, and serum levels correlate with current smoking, number of smoking years, and smoking severity. Among cell types capable of neurotrophic factors secretion are lung and oral fibroblasts. In our study of 178 patients with head and neck squamous cell carcinoma, tumors of current and former smokers showed PNI significantly more often than tumors of never smokers. Moreover, PNI was a marker for aggressive tumor growth. Surprisingly, PNI was more significant for survival than p16 status. Our study warrants further research on PNI in head and neck squamous cell carcinoma with special emphasis on the impact of tobacco consumption to identify suitable candidates for therapeutic interventions.

  18. The endocrine disruptor diethylstilbestrol induces adipocyte differentiation and promotes obesity in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Chan-Juan; Cheng, Xue-Jia; Xia, Hong-Fei, E-mail: hongfeixia@yahoo.com.cn

    Epidemiology studies indicate that exposure to endocrine disruptors during developmental “window” contributes to adipogenesis and the development of obesity. Implication of endocrine disruptor such as diethylstilbestrol (DES) on adipose tissue development has been poorly investigated. Here we evaluated the effects of DES on adipocyte differentiation in vitro and in vivo, and explored potential mechanism involved in its action. DES induced 3T3-L1 preadipocyte differentiation in a dose-dependent manner, and activated the expression of estrogen receptor (ER) and peroxisome proliferator-acivated receptor (PPAR) γ as well as its target genes required for adipogenesis in vitro. ER mediated the enhancement of DES-induced PPARγ activity.more » Moreover, DES perturbed key regulators of adipogenesis and lipogenic pathway in vivo. In utero exposure to low dose of DES significantly increased body weight, liver weight and fat mass in female offspring at postnatal day (PND) 60. In addition, serum triglyceride and glucose levels were also significantly elevated. These results suggest that perinatal exposure to DES may be expected to increase the incidence of obesity in a sex-dependent manner and can act as a potential chemical stressor for obesity and obesity-related disorders. -- Highlights: ► DES induced adipocyte differentiation in a dose-dependent manner in 3T3-L1 cells. ► DES activated adipogenic critical regulators and markers in vitro and in vivo. ► Perinatal exposure to DES led to the obese phenotype in female offspring. ► DES might be a potential chemical stressor for obesity and obesity-related disorders.« less

  19. Ecotoxicological evaluation of tributyltin toxicity to the equilateral venus clam, Gomphina veneriformis (Bivalvia: Veneridae).

    PubMed

    Park, Kiyun; Kim, Rosa; Park, Jung Jun; Shin, Hyun Chool; Lee, Jung Sick; Cho, Hyeon Seo; Lee, Yeon Gyu; Kim, Jongkyu; Kwak, Inn-Sil

    2012-03-01

    Tributyltin (TBT) is the most common pesticide in marine and freshwater environments. To evaluate the potential ecological risk posed by TBT, we measured biological responses such as growth rate, gonad index, sex ratio, the percentage of intersex gonads, filtration rate, and gill abnormalities in the equilateral venus clam (Gomphina veneriformis). Additionally, the biochemical and molecular responses were evaluated in G. veneriformis exposed to various concentrations of TBT. The growth of G. veneriformis was significantly delayed in a dose-dependent manner after exposure to all tested TBT concentrations. After TBT was administered to G. veneriformis, the gonad index decreased and the sex balance was altered. The percentage of intersex gonads also increased significantly in treated females, whereas no intersex gonads were detected in the solvent control group. Additionally, intersex gonads were detected in male G. veneriformis specimens exposed to relatively high TBT concentrations (20 μg L⁻¹). The filtration rate was also reduced in a dose-dependent manner in TBT-exposed G. veneriformis. We also noted abnormal gill morphology in TBT-exposed G. veneriformis. Furthermore, increases in antioxidant enzyme activities were observed in TBT-exposed G. veneriformis clams, regardless of dosage. Vitellogenin gene expression also increased significantly in a dose-dependent manner in G. veneriformis exposed to TBT. These results provide valuable information regarding our understanding of the toxicology of TBT in G. veneriformis. Moreover, the responses of biological and molecular factors could be utilized as information for risk assessments and marine monitoring of TBT toxicity. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  20. Cytotoxic and apoptotic activities of black widow spiderling extract against HeLa cells

    PubMed Central

    Peng, Xiaozhen; Dai, Zhipan; Lei, Qian; Liang, Long; Yan, Shuai; Wang, Xianchun

    2017-01-01

    Black widow spiders contain toxic components not only in the venom glands but also in other parts of the spider body, including the legs and abdomen. Additionally, both the eggs and newborn spiderlings of the black widow spider contain venom. It is important to investigate their potential effects on cancer cells. In the present study, the effects of newborn black widow spiderling extract on human HeLa cells were evaluated in vitro. When applied at different concentrations, the total extract decreased HeLa cell viability in a dose-dependent manner, with an IC50 value of 158 µg/ml. Flow cytometry indicated that treatment of HeLa cells with the total extract of the spiderlings induced apoptosis in HeLa cells in a dose-dependent manner and led to cell cycle arrest in the S-phase. Additionally, application of the total extract at different concentrations increased apoptosis-related caspase 3 activity in a dose-dependent manner. HeLa cells treated with the total extract appeared to be morphologically changed, exhibiting membrane blebbing, nuclear fragmentation and condensation of chromatin. Further separation and activity screening demonstrated that the cytotoxic and apoptotic activities of the total extract were attributable mainly to its high molecular mass proteins, one of which was purified and characterized to determine its anti-tumor activities on HeLa cells. The results of the present study therefore have expanded understanding regarding the effect of spider toxins on cancer cells and suggested that components of black widow spiderlings may be developed as a promising novel agent to treat cancer. PMID:28587399

  1. Cytotoxic and apoptotic activities of black widow spiderling extract against HeLa cells.

    PubMed

    Peng, Xiaozhen; Dai, Zhipan; Lei, Qian; Liang, Long; Yan, Shuai; Wang, Xianchun

    2017-06-01

    Black widow spiders contain toxic components not only in the venom glands but also in other parts of the spider body, including the legs and abdomen. Additionally, both the eggs and newborn spiderlings of the black widow spider contain venom. It is important to investigate their potential effects on cancer cells. In the present study, the effects of newborn black widow spiderling extract on human HeLa cells were evaluated in vitro . When applied at different concentrations, the total extract decreased HeLa cell viability in a dose-dependent manner, with an IC 50 value of 158 µg/ml. Flow cytometry indicated that treatment of HeLa cells with the total extract of the spiderlings induced apoptosis in HeLa cells in a dose-dependent manner and led to cell cycle arrest in the S-phase. Additionally, application of the total extract at different concentrations increased apoptosis-related caspase 3 activity in a dose-dependent manner. HeLa cells treated with the total extract appeared to be morphologically changed, exhibiting membrane blebbing, nuclear fragmentation and condensation of chromatin. Further separation and activity screening demonstrated that the cytotoxic and apoptotic activities of the total extract were attributable mainly to its high molecular mass proteins, one of which was purified and characterized to determine its anti-tumor activities on HeLa cells. The results of the present study therefore have expanded understanding regarding the effect of spider toxins on cancer cells and suggested that components of black widow spiderlings may be developed as a promising novel agent to treat cancer.

  2. Silver nanoparticles disrupt germline stem cell maintenance in the Drosophila testis

    NASA Astrophysics Data System (ADS)

    Ong, Cynthia; Lee, Qian Ying; Cai, Yu; Liu, Xiaoli; Ding, Jun; Yung, Lin-Yue Lanry; Bay, Boon-Huat; Baeg, Gyeong-Hun

    2016-02-01

    Silver nanoparticles (AgNPs), one of the most popular nanomaterials, are commonly used in consumer products and biomedical devices, despite their potential toxicity. Recently, AgNP exposure was reported to be associated with male reproductive toxicity in mammalian models. However, there is still a limited understanding of the effects of AgNPs on spermatogenesis. The fruit fly Drosophila testis is an excellent in vivo model to elucidate the mechanisms underlying AgNP-induced defects in spermatogenesis, as germ lineages can be easily identified and imaged. In this study, we evaluated AgNP-mediated toxicity on spermatogenesis by feeding Drosophila with AgNPs at various concentrations. We first observed a dose-dependent uptake of AgNPs in vivo. Concomitantly, AgNP exposure caused a significant decrease in the viability and delay in the development of Drosophila in a dose-dependent manner. Furthermore, AgNP-treated male flies showed a reduction in fecundity, and the resulting testes contained a decreased number of germline stem cells (GSCs) compared to controls. Interestingly, testes exposed to AgNPs exhibited a dramatic increase in reactive oxygen species levels and showed precocious GSC differentiation. Taken together, our study suggests that AgNP exposure may increase ROS levels in the Drosophila testis, leading to a reduction of GSC number by promoting premature GSC differentiation.

  3. [Effects of berberine on mRNA expression levels of PPARγ and adipocytokines in insulin-resistant adipocytes].

    PubMed

    Tu, Jun; Luo, Xin-Xin; Li, Bing-Tao; Li, Yu; Xu, Guo-Liang

    2016-06-01

    Adipocytokines are closely associated with insulin resistance (IR) in adipose tissues, and they are more and more seriously taken in the study of the development of diabetes. This experiment was mainly to study the effect of berberine on mRNA expression levels of PPARγ and adipocytokines in insulin resistant adipocytes, and investigate the molecular mechanism of berberine in enhancing insulin sensitization and application advantages of droplet digital PCR (ddPCR). ddPCR absolute quantification analysis was taken in this experiment to simply and intuitively determine the appropriate reference genes. ddPCR and quantitative Real-time PCR (qPCR) were used to compare the effect of different doses of berberine (10, 20, 50, 100 μmol•L⁻¹) on mRNA expression levels of PPARγ, adiponectin, resistin and leptin in IR 3T3-L1adipocytes. Antagonist GW9662 was added to study the inherent correlation between PPARγ and adiponectin mRNA expression levels. ddPCR results showed that the expression level of β-actin in adipocytes was stable, and suitable as reference gene for normalization of quantitative PCR data. Both of ddPCR and qPCR results showed that, as compared with IR models, the mRNA expression levels of adiponectin were decreased in the treatment with berberine (10, 20, 50, 100 μmol•L⁻¹) in a dose-dependent manner (P<0.01); the expression of PPARγ was decreased by 20, 50, 100 μmol•L⁻¹ berberine in a dose-dependent manner in qPCR assay (P<0.01) and decreased only by 50 and 100 μmol•L⁻¹ berberine in ddPCR assay (P<0.05). PPARγ specific antagonist GW9662 intervention experiment showed that adiponectin gene expression was directly relevant with PPARγ (P<0.05). ddPCR probe assay showed that various doses of berberine could significantly reduce mRNA expression levels of resistin and leptin (P<0.01) in a dose-dependent manner. In conclusion, berberine enhanced insulin sensitization effect not by up-regulating adiponect in expression of transcriptional level in PPARγ-dependent manner, but may by the elevated multimerization of adiponectin in the posttranslational regulation level. Berberine down-regulated the resistin and leptin expression levels, which could alleviate lipolysis and improve IR in adipocytes. ddPCR provided better sensitivity and linear range than qPCR, with obvious technical advantages for the detection of low abundance expression of target genes. Copyright© by the Chinese Pharmaceutical Association.

  4. Flavonoids apigenin and quercetin inhibit melanoma growth and metastatic potential.

    PubMed

    Caltagirone, S; Rossi, C; Poggi, A; Ranelletti, F O; Natali, P G; Brunetti, M; Aiello, F B; Piantelli, M

    2000-08-15

    Flavonoids are a class of polyphenolic compounds widely distributed in the plant kingdom, which display a variety of biological activities, including chemoprevention and tumor growth inhibition. Our aim was to investigate the effects of several polyphenols on the growth and metastatic potential of B16-BL6 melanoma cells in vivo. Intraperitoneal administration of quercetin, apigenin, (-)-epigallocathechin-3-gallate (EGCG), resveratrol, and the anti-estrogen tamoxifen, at the time of i.m. injection of B16-BL6 cells into syngeneic mice, resulted in a significant, dose-dependent delay of tumor growth, without toxicity. The relative descending order of potency was EGCG > apigenin = quercetin = tamoxifen > resveratrol > control. Furthermore, polyphenols significantly potentiated the inhibitory effect of a non-toxic dose of cisplatin. When tested for the ability to inhibit lung colonization, quercetin, apigenin, and tamoxifen (but not EGCG or resveratrol) significantly decreased the number of B16-BL6 colonies in the lungs in a dose-dependent manner, with quercetin and apigenin being more effective than tamoxifen. Interestingly, quercetin, apigenin, and tamoxifen (but not EGCG or resveratrol) significantly decreased the invasion of B16-BL6 cells in vitro, with quercetin and apigenin being more effective than tamoxifen. This suggests that anti-invasive activity is one of the mechanisms underlying inhibition of lung colonization by quercetin and apigenin. In conclusion, quercetin and apigenin inhibit melanoma growth and invasive and metastatic potential; therefore, they may constitute a valuable tool in the combination therapy of metastatic melanoma. Copyright 2000 Wiley-Liss, Inc.

  5. Astaxanthin Inhibits Proliferation of Human Gastric Cancer Cell Lines by Interrupting Cell Cycle Progression

    PubMed Central

    Kim, Jung Ha; Park, Jong-Jae; Lee, Beom Jae; Joo, Moon Kyung; Chun, Hoon Jai; Lee, Sang Woo; Bak, Young-Tae

    2016-01-01

    Background/Aims Astaxanthin is a carotenoid pigment that has antioxidant, antitumoral, and anti-inflammatory properties. In this in vitro study, we investigated the mechanism of anticancer effects of astaxanthin in gastric carcinoma cell lines. Methods The human gastric adenocarcinoma cell lines AGS, KATO-III, MKN-45, and SNU-1 were treated with various concentrations of astaxanthin. A cell viability test, cell cycle analysis, and immunoblotting were performed. Results The viability of each cancer cell line was suppressed by astaxanthin in a dose-dependent manner with significantly decreased proliferation in KATO-III and SNU-1 cells. Astaxanthin increased the number of cells in the G0/G1 phase but reduced the proportion of S phase KATO-III and SNU-1 cells. Phosphorylated extracellular signal-regulated kinase (ERK) was decreased in an inverse dose-dependent correlation with astaxanthin concentration, and the expression of p27kip-1 increased the KATO-III and SNU-1 cell lines in an astaxanthin dose-dependent manner. Conclusions Astaxanthin inhibits proliferation by interrupting cell cycle progression in KATO-III and SNU-1 gastric cancer cells. This may be caused by the inhibition of the phosphorylation of ERK and the enhanced expression of p27kip-1. PMID:26470770

  6. Formononetin suppresses the proliferation of human non-small cell lung cancer through induction of cell cycle arrest and apoptosis.

    PubMed

    Yang, Yi; Zhao, Yi; Ai, Xinghao; Cheng, Baijun; Lu, Shun

    2014-01-01

    Formononetin is a novel herbal isoflavonoid isolated from Astragalus membranaceus and possesses antitumorigenic properties. In the present study, we investigated the anti-proliferative effects of formononetin on human non-small cell lung cancer (NSCLC), and further elucidated the molecular mechanism underlying the anti-tumor property. MTT assay showed that formononetin treatment significantly inhibited the proliferation of two NSCLC cell lines including A549 and NCI-H23 in a time- and dose-dependent manner. Flow cytometric analysis demonstrated that formononetin induced G1-phase cell cycle arrest and promoted cell apoptosis in NSCLC cells. On the molecular level, we observed that exposure to formononetin altered the expression levels of cell cycle arrest-associated proteins p21, cyclin A and cyclin D1. Meanwhile, the apoptosis-related proteins cleaved caspase-3, bax and bcl-2 were also changed following treatment with formononetin. In addition, the expression level of p53 was dose-dependently upregulated after administration with formononetin. We also found that formononetin treatment increased the phosphorylation of p53 at Ser15 and Ser20 and enhances its transcriptional activity in a dose-dependent manner. Collectively, these results demonstrated that formononetin might be a potential chemopreventive drug for lung cancer therapy through induction of cell cycle arrest and apoptosis in NSCLC cells.

  7. Antioxidant and anticancer activity of Artemisia princeps var. orientalis extract in HepG2 and Hep3B hepatocellular carcinoma cells.

    PubMed

    Choi, Eun-Jeong; Kim, Gun-Hee

    2013-10-01

    The aim of the present study was to investigate antioxidant and the anticancerigen activity of a methanol extract from Artemisia princeps var. orientalis (APME), a well-known traditional herbal medicine in Asia, in hepatocellular cancer cells. To evaluate the antioxidant activity of APME, reactive oxygen species (ROS) and the antioxidant enzymes, superoxide dismutase (SOD) and catalase were investigated in HepG2 cells exposed to APME (5, 100, and 200 µg/mL) for 72 h. Then, to evaluate the anticancer activity of APME, we investigated the proliferation and apoptosis induction of HepG2 and Hep3B cells exposed to APME (1-200 µg/mL) for 24, 48, and 72 h. APME dose-dependently reduced the generation of ROS in the presence of H2O2 compared with control cells. Furthermore, it increased catalase and SOD activity. Moreover, APME inhibited cell proliferation in a dose- and time-dependent manner, but at concentrations lower than 100 µg/mL, the inhibition was less dose-dependent than time-dependent. HepG2 and Hep3B cells exposed to 5, 100, and 200 µg/mL APME for 72 h underwent cell cycle arrest and apoptosis. Exposure to APME resulted in a significant increase in the number of cells in G1 phase and a decrease in the G2/M phase cell population. In addition, APME induced P53 expression of HepG2 cells in a dose-dependent manner, and played a role in the downregulation of Bcl-2 and upregulation of Bax in both HepG2 and Hep3B cells. These results indicate the potential role of APME as an antioxidant and anticancerigen agent in hepatocarcinoma cell lines.

  8. Dose and dose rate effects of whole-body proton-irradiation on lymphocyte blastogenesis and hematological variables: part II

    NASA Technical Reports Server (NTRS)

    Pecaut, Michael J.; Gridley, Daila S.; Smith, Anna L.; Nelson, Gregory A.

    2002-01-01

    The goal of part II of this study was to evaluate functional characteristics of leukocytes and circulating blood cell parameters after whole-body proton irradiation at varying doses and at low- and high-dose-rates (LDR and HDR, respectively). C57BL/6 mice (n=51) were irradiated and euthanized at 4 days post-exposure for assay. Significant radiation dose- (but not dose-rate-) dependent decreases were observed in splenocyte responses to T and B cell mitogens when compared to sham-irradiated controls (P<0.001). Spontaneous blastogenesis, also significantly dose-dependent, was increased in both blood and spleen (P<0.001). Red blood cell counts, hemoglobin concentration, and hematocrit were decreased in a dose-dependent manner (P<0.05), whereas thrombocyte numbers were only slightly affected. Comparison of proton- and gamma-irradiated groups (both receiving 3 Gy at HDR) showed a higher level of spontaneous blastogenesis in blood leukocytes and a lower splenocyte response to concanavalin A following proton irradiation (P<0.05). There were no dose rate effects. Collectively, the data demonstrate that the measurements in blood and spleen were largely dependent upon the total dose of proton radiation and that an 80-fold difference in the dose rate was not a significant factor. A difference, however, was found between protons and gamma-rays in the degree of change induced in some of the measurements.

  9. Diuretic effects of medetomidine compared with xylazine in healthy dogs

    PubMed Central

    Talukder, Md. Hasanuzzaman; Hikasa, Yoshiaki

    2009-01-01

    This study aimed to investigate and compare the effects of medetomidine and xylazine on diuretic and hormonal variables in healthy dogs. Five dogs, used in each of 11 groups, were injected intramuscularly with physiological saline solution (control), 5, 10, 20, 40, and 80 μg/kg of medetomidine, and 0.25, 0.5, 1, 2, and 4 mg/kg of xylazine. Urine and blood samples were taken 11 times over 24 h. Both medetomidine and xylazine increased urine production in a dose-dependent manner up to 4 h after injection, but the increase was much less with medetomidine than with xylazine at the tested doses. Urine specific gravity, pH, osmolality, and concentrations of creatinine, sodium, potassium, chloride, and arginine vasopressin (AVP) were decreased in a dose-dependent manner with both medetomidine and xylazine. Plasma osmolality and concentrations of sodium, potassium, and chloride were increased significantly with both drugs. Total amounts of urine AVP excreted and plasma AVP concentrations were significantly decreased by higher doses of medetomidine but were not significantly decreased by xylazine. Higher doses of both drugs significantly increased the plasma concentration of atrial natriuretic peptide (ANP), but the effect was greater with medetomidine than with xylazine. The results revealed that both drugs induce a profound diuresis, but medetomidine’s effect is less dose-dependent than xylazine’s effect. Although changes in plasma concentrations of AVP and ANP may partially influence the diuresis induced by medetomidine, other factors may be involved in the mechanism of the diuretic response to both drugs. Thus, both agents can be used clinically for transient but effective diuresis accompanied by sedation. PMID:19794896

  10. 15-Deoxy-{delta}{sup 12,14}-prostaglandin J{sub 2}-induced down-regulation of endothelial nitric oxide synthase in association with HSP70 induction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Jinah; Lee, Hyun-Il; Chang, Young-Sun

    2007-05-25

    A natural ligand of peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}), 15-deoxy-{delta}{sup 12,14}-prostaglandin J{sub 2} (15d-PGJ{sub 2}), decreases endothelial nitric oxide synthase (eNOS) expression by an unknown mechanism. Here we found that 15d-PGJ{sub 2}-induced eNOS reduction is inversely associated with heat shock protein 70 (HSP70) induction in endothelial cells. Treatment of cells with 15d-PGJ{sub 2} decreased eNOS protein expression in a concentration- and time-dependent manner, but independently of PPAR{gamma} with no effect on mRNA levels. Although 15d-PGJ{sub 2} elicited endothelial apoptosis, inhibition of both pan-caspases and cathepsins failed to reverse reduction of eNOS protein. Interestingly, we observed that 15d-PGJ{sub 2} induced HSP70more » in a dose-dependent manner. Immunoprecipitation and heat shock treatment demonstrated that eNOS reduction was strongly related to HSP70 induction. Cellular fractionation revealed that treatment with 15d-PGJ{sub 2} increased eNOS distribution 2.5-fold from soluble to insoluble fractions. These findings provide new insights into mechanisms whereby eNOS regulation by 15d-PGJ{sub 2} is related to HSP70 induction.« less

  11. Black rice (Oryza sativa L. var. japonica) hydrolyzed peptides induce expression of hyaluronan synthase 2 gene in HaCaT keratinocytes.

    PubMed

    Sim, Gwan Sub; Lee, Dong-Hwan; Kim, Jin-Hwa; An, Sung-Kwan; Choe, Tae-Boo; Kwon, Tae-Jong; Pyo, Hyeong-Bae; Lee, Bum-Chun

    2007-02-01

    Black rice (Oryza sativa L. var. japonica) has been used in folk medicine in Asia. To understand the effects of black rice hydrolyzed peptides (BRP) from germinated black rice, we assessed the expression levels of about 20,000 transcripts in BRP-treated HaCaT keratinocytes using human 1A oligo microarray analysis. As a result, the BRP treatment showed a differential expression ratio of more than 2-fold: 745 were activated and 1,011 were repressed. One of the most interesting findings was a 2-fold increase in hyaluronan synthase 2 (HAS2) gene expression by BRP. Semiquantitative RT-PCR showed that BRP increased HAS2 mRNA in dose-dependent manners. ELISA showed that BRP effectively increased hyaluronan (HA) production in HaCaT keratinocytes.

  12. Therapeutic potential of an anti-high mobility group box-1 monoclonal antibody in epilepsy.

    PubMed

    Zhao, Junli; Wang, Yi; Xu, Cenglin; Liu, Keyue; Wang, Ying; Chen, Liying; Wu, Xiaohua; Gao, Feng; Guo, Yi; Zhu, Junming; Wang, Shuang; Nishibori, Masahiro; Chen, Zhong

    2017-08-01

    Brain inflammation is a major factor in epilepsy, and the high mobility group box-1 (HMGB1) protein is known to contribute significantly to the generation of seizures. Here, we investigated the therapeutic potential of an anti-HMGB1 monoclonal antibody (mAb) in epilepsy. anti-HMGB1 mAb attenuated both acute seizure models (maximal electroshock seizure, pentylenetetrazole-induced and kindling-induced), and chronic epilepsy model (kainic acid-induced) in a dose-dependent manner. Meanwhile, the anti-HMGB1 mAb also attenuated seizure activities of human brain slices obtained from surgical resection from drug-resistant epilepsy patients. The mAb showed an anti-seizure effect with a long-term manner and appeared to be minimal side effects at even very high dose (no disrupted physical EEG rhythm and no impaired basic physical functions, such as body growth rate and thermoregulation). This anti-seizure effect of mAb results from its inhibition of translocated HMGB1 from nuclei following seizures, and the anti-seizure effect was absent in toll-like receptor 4 knockout (TLR4 -/- ) mice. Interestingly, the anti-HMGB1 mAb also showed a disease-modifying anti-epileptogenetic effect on epileptogenesis after status epileptics, which is indicated by reducing seizure frequency and improving the impaired cognitive function. These results indicate that the anti-HMGB1 mAb should be viewed as a very promising approach for the development of novel therapies to treat refractory epilepsy. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. In vitro immunomodulatory effects of cuphiin D1 on human mononuclear cells.

    PubMed

    Wang, Ching-Chiung; Chen, Lih-Geeng; Yang, Ling-Ling

    2002-01-01

    Cuphiin D1 (CD1), a macrocyclic hydrolyzable tannin isolated from Cuphea hyssopifolia, has been shown to exert antitumor activity both in vitro and in vivo. Moreover, the antitumor effects of CD1 are not only related to its cytotoxicity to carcinoma cell lines, but also depend on host-mediated mechanisms. In the present study, CD1 was investigated for its effects on the proliferation and cytokine secretion of human peripheral blood mononuclear cells (PBMCs). At concentrations of from 6.25 to 50 micrograms/ml, it enhanced the 3H-thymidine incorporation of concanavalin A (Con A)-stimulated PBMCs in a dose-dependent manner. Excretion of IL-1 beta, IL-2 and TNF-alpha by CD1-stimulated PBMCs was markedly increased in a dose-dependent manner. The results show that CD1 could stimulate PBMCs release of IL-1 beta, IL-2 and TNF-alpha and then activate T cells. Therefore, CD1-activated T cells via IL-1 beta in vitro might account for the host-mediated CD1 mechanism of action.

  14. [Inhibitive effect of matrine modification X on the growth of human nasopharyngeal carcinoma CNE2 cell xenografts in nude mice].

    PubMed

    Shi, Shujing; Tang, Anzhou; Yin, Shaolin; Wang, Lisheng; Xie, Mao; Yi, Xiang

    2014-11-01

    To evaluate the inhibitive effect of matrine modification X on the growth of human nasopharyngeal carcinoma CNE2 cell xenografts in nude mice. Tumor model was established by subcutaneous inoculation of nasopharyngeal carcinoma cell CNE2 into nude mice, which was used to evaluate the antitumor effect of matrine modification X in vivo. The expression levels of Bax, Bcl-2, Caspase3 were detected by real-time PCR and western blot. The growth of xenografts in nude mice was significantly suppressed after application of matrine modification X in a dose-dependent manner. The inhibition rates were 32.55% and 44.89% when treated at medium and high dose respectively. Real-time fluorescence quantitative-PCR and Western Blot results showed that the expression of Bax and Caspase3 increased, while the expression of Bcl-2 decreased in a dose-dependent manner. The change of high dose group was obvious, and the difference was statistically significant (P < 0.05). Matrine modification X could significantly inhibit the growth of human nasopharyngeal carcinoma CNE2 cell xenografts in nude mice, probably by inducing the apoptosis of nasopharyngeal carcinoma cells, and the possible mechanism is related to regulating the expression level of Bax/Bcl-2 and Casepase3.

  15. Dietary proanthocyanidins boost hepatic NAD(+) metabolism and SIRT1 expression and activity in a dose-dependent manner in healthy rats.

    PubMed

    Aragonès, Gerard; Suárez, Manuel; Ardid-Ruiz, Andrea; Vinaixa, Maria; Rodríguez, Miguel A; Correig, Xavier; Arola, Lluís; Bladé, Cinta

    2016-04-22

    Proanthocyanidins (PACs) have been reported to modulate multiple targets by simultaneously controlling many pivotal metabolic pathways in the liver. However, the precise mechanism of PAC action on the regulation of the genes that control hepatic metabolism remains to be clarified. Accordingly, we used a metabolomic approach combining both nuclear magnetic resonance and mass spectrometry analysis to evaluate the changes induced by different doses of grape-seed PACs in the liver of healthy rats. Here, we report that PACs significantly increased the hepatic nicotinamide adenine dinucleotide (NAD(+)) content in a dose-dependent manner by specifically modulating the hepatic concentrations of the major NAD(+) precursors as well as the mRNA levels of the genes that encode the enzymes involved in the cellular metabolism of NAD(+). Notably, Sirtuin 1 (Sirt1) gene expression was also significantly up-regulated in a dose-response pattern. The increase in both the NAD(+) availability and Sirt1 mRNA levels, in turn, resulted in the hepatic activation of SIRT1, which was significantly associated with improved protection against hepatic triglyceride accumulation. Our data clearly indicates that PAC consumption could be a valid tool to enhance hepatic SIRT1 activity through the modulation of NAD(+) levels.

  16. Dietary proanthocyanidins boost hepatic NAD+ metabolism and SIRT1 expression and activity in a dose-dependent manner in healthy rats

    PubMed Central

    Aragonès, Gerard; Suárez, Manuel; Ardid-Ruiz, Andrea; Vinaixa, Maria; Rodríguez, Miguel A.; Correig, Xavier; Arola, Lluís; Bladé, Cinta

    2016-01-01

    Proanthocyanidins (PACs) have been reported to modulate multiple targets by simultaneously controlling many pivotal metabolic pathways in the liver. However, the precise mechanism of PAC action on the regulation of the genes that control hepatic metabolism remains to be clarified. Accordingly, we used a metabolomic approach combining both nuclear magnetic resonance and mass spectrometry analysis to evaluate the changes induced by different doses of grape-seed PACs in the liver of healthy rats. Here, we report that PACs significantly increased the hepatic nicotinamide adenine dinucleotide (NAD+) content in a dose-dependent manner by specifically modulating the hepatic concentrations of the major NAD+ precursors as well as the mRNA levels of the genes that encode the enzymes involved in the cellular metabolism of NAD+. Notably, Sirtuin 1 (Sirt1) gene expression was also significantly up-regulated in a dose-response pattern. The increase in both the NAD+ availability and Sirt1 mRNA levels, in turn, resulted in the hepatic activation of SIRT1, which was significantly associated with improved protection against hepatic triglyceride accumulation. Our data clearly indicates that PAC consumption could be a valid tool to enhance hepatic SIRT1 activity through the modulation of NAD+ levels. PMID:27102823

  17. The effect of tunicamycin on the glucose uptake, growth, and cellular adhesion in the protozoan parasite Crithidia fasciculata.

    PubMed

    Rojas, Robert; Segovia, Christopher; Trombert, Annette Nicole; Santander, Javier; Manque, Patricio

    2014-10-01

    Crithidia fasciculata represents a very interesting model organism to study biochemical, cellular, and genetic processes unique to members of the family of the Trypanosomatidae. Thus, C. fasciculata parasitizes several species of insects and has been widely used to test new therapeutic strategies against parasitic infections. By using tunicamycin, a potent inhibitor of glycosylation in asparaginyl residues of glycoproteins (N-glycosylation), we demonstrate that N-glycosylation in C. fasciculata cells is involved in modulating glucose uptake, dramatically impacting growth, and cell adhesion. C. fasciculata treated with tunicamycin was severely affected in their ability to replicate and to adhere to polystyrene substrates and losing their ability to aggregate into small and large groups. Moreover, under tunicamycin treatment, the parasites were considerably shorter and rounder and displayed alterations in cytoplasmic vesicles formation. Furthermore, glucose uptake was significantly impaired in a tunicamycin dose-dependent manner; however, no cytotoxic effect was observed. Interestingly, this effect was reversible. Thus, when tunicamycin was removed from the culture media, the parasites recovered its growth rate, cell adhesion properties, and glucose uptake. Collectively, these results suggest that changes in the tunicamycin-dependent glycosylation levels can influence glucose uptake, cell growth, and adhesion in the protozoan parasite C. fasciculata.

  18. Immunostimulative Activity of Low Molecular Weight Chitosans in RAW264.7 Macrophages

    PubMed Central

    Wu, Ning; Wen, Zheng-Shun; Xiang, Xing-Wei; Huang, Yan-Na; Gao, Yang; Qu, You-Le

    2015-01-01

    Chitosan and its derivatives such as low molecular weight chitosans (LMWCs) have been reported to exert many biological activities, such as antioxidant and antitumor effects. However, complex and molecular weight dependent effects of chitosan remain controversial and the mechanisms that mediate these complex effects are still poorly defined. This study was carried out to investigate the immunostimulative effect of different molecular weight chitosan in RAW264.7 macrophages. Our data suggested that two LMWCs (molecular weight of 3 kDa and 50 kDa) both possessed immunostimulative activity, which was dependent on dose and, at the higher doses, also on the molecular weight. LMWCs could significantly enhance the the pinocytic activity, and induce the production of tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), interferon-γ (IFN-γ), nitric oxide (NO) and inducible nitric oxide synthase (iNOS) in a molecular weight and concentration-dependent manner. LMWCs were further showed to promote the expression of the genes including iNOS, TNF-α. Taken together, our findings suggested that LMWCs elicited significantly immunomodulatory response through up-regulating mRNA expression of proinflammatory cytokines and activated RAW264.7 macrophage in a molecular weight- and concentration-dependent manner. PMID:26437419

  19. Dose-dependent decrease in anti-oxidant capacity of whole blood after irradiation: A novel potential marker for biodosimetry.

    PubMed

    Sun, Lue; Inaba, Yohei; Sato, Keizo; Hirayama, Aki; Tsuboi, Koji; Okazaki, Ryuji; Chida, Koichi; Moritake, Takashi

    2018-05-09

    Many reports have demonstrated that radiation stimulates reactive oxygen species (ROS) production by mitochondria for a few hours to a few days after irradiation. However, these studies were performed using cell lines, and there is a lack of information about redox homeostasis in irradiated animals and humans. Blood redox homeostasis reflects the body condition well and can be used as a diagnostic marker. However, most redox homeostasis studies have focused on plasma or serum, and the anti-oxidant capacity of whole blood has scarcely been investigated. Here, we report changes in the anti-oxidant capacity of whole blood after X-ray irradiation using C57BL/6 J mice. Whole-blood anti-oxidant capacity was measured by electron spin resonance (ESR) spin trapping using a novel spin-trapping agent, 2-diphenylphosphinoyl-2-methyl-3,4-dihydro-2H-pyrrole N-oxide (DPhPMPO). We found that whole-blood anti-oxidant capacity decreased in a dose-dependent manner (correlation factor, r > 0.9; P < 0.05) from 2 to 24 days after irradiation with 0.5-3 Gy. We further found that the red blood cell (RBC) glutathione level decreased and lipid peroxidation level increased in a dose-dependent manner from 2 to 6 days after irradiation. These findings suggest that blood redox state may be a useful biomarker for estimating exposure doses during nuclear and/or radiation accidents.

  20. New insights into the mechanism and actions of growth hormone (GH) in poultry.

    PubMed

    Vasilatos-Younken, R; Wang, X H; Zhou, Y; Day, J R; McMurtry, J P; Rosebrough, R W; Decuypere, E; Buys, N; Darras, V; Beard, J L; Tomas, F

    1999-10-01

    Despite well documented anabolic effects of GH in mammals, a clear demonstration of such responses in domestic poultry is lacking. Recently, comprehensive dose-response studies of GH have been conducted in broilers during late post-hatch development (8 to 9 weeks of age). GH reduced feed intake (FI) and body weight gain in a dose-dependent manner, whereas birds pair-fed to the level of voluntary FI of GH-infused birds did not differ from controls. The reduction in voluntary FI may involve centrally mediated mechanisms, as hypothalamic neuropeptide Y protein and mRNA were reduced with GH, coincident with the maximal depression in FI. Growth of breast muscle was also reduced in a dose-dependent manner. Circulating IGF-I was not enhanced by GH, despite evidence that early events in the GH signaling pathway were intact. A GH dose-dependent increase in circulating 3,3',5-triiodothyronine(T3) paralleled decreases in hepatic 5D-III monodeiodinase activity, whereas 5'D-I activity was not altered. This confirms that a marked hyperthyroid response to GH occurs in late posthatch chickens, resulting from a decrease in the degradative pathway of T3 metabolism. This secondary hyperthyroidism would account for the decreased skeletal muscle mass (52) and lack of enhanced IGF-I (53) in GH-treated birds. Based upon these studies, it is now evident that GH does in fact have significant effects in poultry, but metabolic responses may confound the anabolic potential of the hormone.

  1. Evaluation of ammonium perchlorate in the endocrine disruptor screening and testing program's male pubertal protocol: ability to detect effects on thyroid endpoints.

    PubMed

    Stoker, T E; Ferrell, J M; Laws, S C; Cooper, R L; Buckalew, A

    2006-11-10

    The U.S. EPA Endocrine Disruptor Screening Program (EDSP) Tier 1 male pubertal protocol was designed as a screen to detect endocrine-disrupting chemicals which may alter reproductive development or thyroid function. One purpose of this in vivo screening protocol is to detect thyrotoxicants via a number of different mechanisms of action, such as thyroid hormone synthesis or clearance. Here we evaluate the ability of this EDSP male pubertal protocol to detect the known thyrotoxicant ammonium perchlorate as an endocrine disruptor. Ammonium perchlorate is a primary ingredient in rocket fuel, fertilizers, paints, and lubricants. Over the past 50 years, potassium perchlorate has been used to treat hyperthyroidism in humans. Perchlorate alters thyroid hormone secretion by competitively inhibiting iodide uptake by the thyroid gland. In this study, ammonium perchlorate was administered at 62.5, 125, 250, and 500 mg/kg to male Wistar rats based on a pilot study of oral dosing. Doses of 125-500 mg/kg perchlorate decreased T4 in a dose-dependent manner. TSH was significantly increased in a dose-responsive manner at the same doses, while T3 was unchanged at any dose. Thyroid histology was significantly altered at all doses, even at the 62.5 mg/kg, with a clear dose-dependent decrease in colloid area and increase in follicular cell height. No effects on preputial separation, a marker of pubertal progression, or reproductive tract development were observed at any dose. These results demonstrate that the male pubertal protocol is useful for detecting thyrotoxicants which target the thyroid axis by this mechanism (altered uptake of iodide). This study also found that perchlorate exposure during this period did not alter any of the reproductive developmental endpoints.

  2. Time and dose-response effects of honokiol on UVB-induced skin cancer development.

    PubMed

    Guillermo, Ruth F; Chilampalli, Chandeshwari; Zhang, Xiaoying; Zeman, David; Fahmy, Hesham; Dwivedi, Chandradhar

    2012-06-01

    Honokiol has shown chemopreventive effects in chemically-induced and UVB-induced skin cancer in mice. In this investigation, we assessed the time-effects of a topical low dose of honokiol (30 μg), and then the effects of different honokiol doses (30, 45, and 60 μg) on a UVB-induced skin cancer model to find an optimal dose and time for desirable chemopreventive effects. UVB radiation (30 mJ/cm(2), 5 days/week for 25 or 27 weeks) was used to induce skin carcinogenesis in SKH-1 mice. For the time-response experiment 30 μg honokiol in acetone was applied topically to the animals before the UVB exposure (30 min, 1 h, and 2 h) and after the UVB exposure (immediately, 30 min, and 1 h). Control groups were treated with acetone. For the dose-response study, animals were treated topically with acetone or honokiol (30, 45, and 60 μg) one hour before the UVB exposure. In the time-response experiment, honokiol inhibited skin tumor multiplicity by 49-58% while reducing tumor volumes by 70-89%. In the dose-response study, honokiol (30, 45, and 60 μg) significantly decreased skin tumor multiplicity by 36-78% in a dose-dependent manner, while tumor area was reduced by 76-94%. Honokiol (60 μg) significantly reduced tumor incidence by 40% as compared to control group. Honokiol applied in very low doses (30 μg) either before or after UVB radiation shows chemopreventive effects. Honokiol (30, 45, and 60 μg) prevents UVB-induced skin cancer in a dose-dependent manner. Honokiol can be an effective chemopreventive agent against skin cancer.

  3. 17β-Estradiol regulates cell proliferation, colony formation, migration, invasion and promotes apoptosis by upregulating miR-9 and thus degrades MALAT-1 in osteosarcoma cell MG-63 in an estrogen receptor-independent manner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Dengfeng; Yang, Hui; Lin, Jing

    2015-02-20

    In bone, different concentration of estrogen leads to various of physiological processes in osteoblast, such as the proliferation, migration, and apoptosis in an estrogen receptor-dependent manner. But little was known about the estrogen effects on osteosarcoma (OS). In this study, OS cell MG-63 was treated with low (1 nM) or high (100 nM) dose of 17β-Estradiol (E2) with the presence or absence of estrogen receptor α (ERα), for evaluating the E2 effects on proliferation, migration, invasion, colony formation and apoptosis. Consistent with a previous study, high dose of E2 treatment dramatically downregulated expressing level of long non-coding RNA metastasis associated lung adenocarcinomamore » transcript 1 (MALAT-1). The observation of upregulation of miR-9 after a high dose of E2 treatment indicated the cause of MALAT-1 reduction. Downregulation of MALAT-1 promoted the combination of SFPQ/PTBP2 complex. It was also observed that the proliferation, migration, invasion, colony formation and apoptosis of OS cells were remarkably affected by high dose of E2 treatment, but not by low dose, in an ERα independent manner. Furthermore, the abolishment of the effects on these physiological processes caused by ectopic expression of miR-9 ASOs suggested the necessity of miR-9 in MALAT-1 regulation. Here we found that the high dose of E2 treatment upregulated miR-9 thus posttranscriptionally regulated MALAT-1 RNA level in OS cells, and then the downregulation of MALAT-1 inhibited cell proliferation, migration, invasion and epithelial–mesenchymal transition (EMT) processes in the E2-dose dependent and ER-independent ways. - Highlights: • E2 affects osteosarcoma cell MG-63 in an Estrogen receptor-independent way. • High dose of E2 treatment upregulates miR-9 which target to MALAT-1 RNA. • Upregulated miR-9 degrades MALAT-1 and thus affects combination of SFPQ/PTBP2. • E2 treatment block cell proliferation, colony formation, mobility, and enhance apoptosis.« less

  4. Neuron-derived orphan receptor 1 promoted human pulmonary artery smooth muscle cells proliferation.

    PubMed

    Wang, Chang-Guo; Lei, Wei; Li, Chang; Zeng, Da-Xiong; Huang, Jian-An

    2015-05-01

    As a transcription factor of the nuclear receptor superfamily, neuron-derived orphan receptor 1 (NOR1) is induced rapidly in response to various extracellular stimuli. But, it is still unclear its role in pulmonary artery smooth muscle cells proliferation. Human PASMCs were cultured in vitro and stimulated by serum. The special antisense oligodeoxynucleotides (AS-ODNs) were used to knockdown human NOR1 gene expression. Real-time PCR and Western-blot were used to evaluate the gene expression and protein levels. Fetal bovine serum (FBS) induced human PASMCs proliferation in a dose dependent manner. Furthermore, FBS promoted NOR1 gene expression in a dose dependent manner and a time dependent manner. 10% FBS induced a maximal NOR1 mRNA levels at 2 h. FBS also induced a significant higher NOR1 protein levels as compared with control. The NOR1 over-expressed plasmid significantly promoted DNA synthesis and cells proliferation. Moreover, the special AS-ODNs against human NOR1 not only prevented NOR1 expression but also inhibited DNA synthesis and cells proliferation significantly. The NOR1 over-expression plasmid could up-regulate cyclin D1 expression markedly, but the AS-ODNs inhibited cyclin D1 expression significantly. So, we concluded that NOR1 could promote human PASMCs proliferation. Cyclin D1 might be involved in this process.

  5. Quinine-induced tinnitus in rats.

    PubMed

    Jastreboff, P J; Brennan, J F; Sasaki, C T

    1991-10-01

    Quinine ingestion reportedly induces tinnitus in humans. To expand our salicylate-based animal model of tinnitus, a series of conditioned suppression experiments was performed on 54 male-pigmented rats using quinine injections to induce tinnitus. Quinine induced changes in both the extent of suppression and recovery of licking, which followed a pattern that paralleled those produced after salicylate injections, and which may be interpreted as the result of tinnitus perception in animals. These changes depended on the dose and time schedule of quinine administration. Additionally, the calcium channel blocker, nimodipine, abolished the quinine-induced effect in a dose-dependent manner.

  6. Arginase inhibition reduces interleukin-1β-stimulated vascular smooth muscle cell proliferation by increasing nitric oxide synthase-dependent nitric oxide production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Jeongyeon; Ryoo, Sungwoo, E-mail: ryoosw08@kangwon.ac.kr

    2013-06-07

    Highlights: •Arginase inhibition suppressed proliferation of IL-1β-stimulated VSMCs in dose-dependent manner. •NO production from IL-1β-induced iNOS expression was augmented by arginase inhibition, reducing VSMC proliferation. •Incubation with cGMP analogues abolished IL-1β-dependent proliferation of VSMCs. -- Abstract: We investigated whether arginase inhibition suppressed interleukin (IL)-1β-stimulated proliferation in vascular smooth muscle cells (VSMCs) and the possible mechanisms involved. IL-1β stimulation increased VSMC proliferation, while the arginase inhibitor BEC and transfection of the antisense (AS) oligonucleotide against arginase I decreased VSMC proliferation and was associated with increased protein content of the cell cycle regulator p21Waf1/Cip1. IL-1β incubation induced inducible nitric oxide synthase (iNOS)more » mRNA expression and protein levels in a dose-dependent manner, but did not affect arginase I and II expression. Consistent with this data, IL-1β stimulation resulted in increase in NO production that was significantly augmented by arginase inhibition. The specific iNOS inhibitor 1400W abolished IL-1β-mediated NO production and further accentuated IL-1β-stimulated cell proliferation. Incubation with NO donors GSNO and DETA/NO in the presence of IL-1β abolished VSMCs proliferation and increased p21Waf1/Cip1 protein content. Furthermore, incubation with the cGMP analogue 8-Br-cGMP prevented IL-1β-induced VSMCs proliferation. In conclusion, arginase inhibition augmented iNOS-dependent NO production that resulted in suppression of IL-1β-induced VSMCs proliferation in a cGMP-dependent manner.« less

  7. [Apoptosis of multiple myeloid cells induced by polysaccharides extracts from Hedyotis diffusa and its mechanism].

    PubMed

    Lin, Sheng-yun; Shen, Chu-yun; Jiang, Jian-ping; Wu, Li-qiang; Dai, Tie-ying; Qian, Wen-bing; Meng, Hai-tao

    2013-04-01

    To explore the proliferation inhibition and apoptosis effects of polysaccharides extracts from Hedyotis diffusa (PEHD) on multiple myeloma (MM) cell line RPMI 8226 cells in vitro, so as to provide experimental theory for the clinical application in the treatment of MM. MTT assay was used to examine the effects of PEHD on cell growth. The apoptotic cells were analyzed by flow cytometry with AnnexinⅤ/PI staining. Hoechst staining was used to observe the morphological changes of RPMI 8226 cell apoptosis. The expression levels of caspase-3,-8,-9, PARP, nucleoprotein NF-κB protein and other channel protein were assayed by Western blotting method. The growth of RPMI 8226 cells were suppressed after treatment with PEHD, the highest inhibition rate reached to 92.3%, the results in the doses from 1 to 4 mg/ml showed a dose-and-time-dependent manner. The proportion of apoptotic cells in 1, 2 and 3 mg/ml PEHD treatment groups for 24 h were 22.52%, 62.31% and 69.94%, respectively, and significantly higher than that of control 8.93%. After treated with PEHD, apoptotic body appeared in RPMI 8226 cells nucleus and the number of apoptotic body increased in a dose-dependent manner. With the increasing of PEHD concentration, the expression of caspase-8,-9,-3 and PARP protein increased. The expression of Mcl-1, Bcl-xl, Bid and Bim protein decreased gradually, but the expression of Bax, Bak and Bad protein increased, and the expression of p-AKT protein (60 kDa) and NF-κB obviously decreased. PEHD could inhibited the growth of RPMI 8226 cells and displayed a dose-and-time-dependent manner, its mechanism may involve cell apoptosis induction, which was associated with the activation of caspase-8, caspase-9, and caspase-3 protein and the down-regulation of p-AKT and NF-κB protein expression.

  8. Curcumin induces apoptosis and cell cycle arrest via the activation of reactive oxygen species-independent mitochondrial apoptotic pathway in Smad4 and p53 mutated colon adenocarcinoma HT29 cells.

    PubMed

    Agarwal, Ayushi; Kasinathan, Akiladdevi; Ganesan, Ramamoorthi; Balasubramanian, Akhila; Bhaskaran, Jahnavi; Suresh, Samyuktha; Srinivasan, Revanth; Aravind, K B; Sivalingam, Nageswaran

    2018-03-01

    Curcumin is a natural dietary polyphenol compound that has various pharmacological activities such as antiproliferative and cancer-preventive activities on tumor cells. Indeed, the role reactive oxygen species (ROS) generated by curcumin on cell death and cell proliferation inhibition in colon cancer is poorly understood. In the present study, we hypothesized that curcumin-induced ROS may promote apoptosis and cell cycle arrest in colon cancer. To test this hypothesis, the apoptosis-inducing potential and cell cycle inhibition effect of ROS induced by curcumin was investigated in Smd4 and p53 mutated HT-29 colon adenocarcinoma cells. We found that curcumin treatment significantly increased the level of ROS in HT-29 cells in a dose- and time-dependent manner. Furthermore, curcumin treatment markedly decreased the cell viability and proliferation potential of HT-29 cells in a dose- and time-dependent manner. Conversely, generation of ROS and inhibitory effect of curcumin on HT-29 cells were abrogated by N-acetylcysteine treatment. In addition, curcumin treatment did not show any cytotoxic effects on HT-29 cells. Furthermore, curcumin-induced ROS generation caused the DNA fragmentation, chromatin condensation, and cell nuclear shrinkage and significantly increased apoptotic cells in a dose- and time-dependent manner in HT-29 cells. However, pretreatment of N-acetylcysteine inhibited the apoptosis-triggering effect of curcumin-induced ROS in HT-29 cells. In addition, curcumin-induced ROS effectively mediated cell cycle inhibition in HT-29 cells. In conclusion, our data provide the first evidence that curcumin induces ROS independent apoptosis and cell cycle arrest in colon cancer cells that carry mutation on Smad4 and p53. Copyright © 2018. Published by Elsevier Inc.

  9. Shikonin Inhibites Migration and Invasion of Thyroid Cancer Cells by Downregulating DNMT1

    PubMed Central

    Zhang, Yue; Sun, Bin; Huang, Zhi

    2018-01-01

    Background Shikonin is a component of Chinese herbal medicine. The aim of this study was to investigate the effects of shikonin on cell migration of papillary thyroid cancer cells of the TPC-1 cell line in vitro and expression levels of the phosphate and tensin homolog deleted on chromosome 10 (PTEN) and DNA methyltransferase 1 (DNMT1) genes. Material/Methods The Cell Counting Kit-8 (CCK-8) assay was performed to evaluate the proliferation of TPC-1 papillary thyroid cancer cells, and the normal thyroid cells, HTori-3, in vitro. A transwell motility assay was used to analyze the migration of TPC-1 cells. Western blot was performed to determine the expression levels of PTEN and DNMT1 genes. A methylation-specific polymerase chain reaction (PCR) (MSP) assay was used to evaluate the methylation of PTEN. Results Following treatment with shikonin, the cell survival rate of TPC-1 cells decreased in a dose-dependent manner; the inhibitory effects on HTori-3 cells were less marked. Shikonin inhibited TPC-1 cell migration and invasion in a dose-dependent manner. The methylation of PTEN was suppressed by shikonin, which also reduced the expression of DNMT1 in a dose-dependent manner, and increased the expression of PTEN. Overexpression of DNMT1 promoted the migration of TPC-1 cells and the methylation of PTEN. Levels of protein expression of PTEN in TPC-1 cells treated with shikonin decreased, and were increased by DNMT1 knockdown. Conclusions Shikonin suppressed the expression of DNMT1, reduced PTEN gene methylation, and increased PTEN protein expression, leading to the inhibition of TPC-1 cell migration. PMID:29389913

  10. Dual effects of phloretin on aflatoxin B1 metabolism: activation and detoxification of aflatoxin B1.

    PubMed

    Gao, Shang Shang; Chen, Xiao Yan; Zhu, Ri Zhe; Choi, Byung-Min; Kim, Sun Jun; Kim, Bok-Ryang

    2012-01-01

    Typically, chemopreventive agents involve either induction of phase II detoxifying enzymes and/or inhibition of cytochrome P450 enzymes (CYPs) that are required for the activation of procarcinogens. In this study, we investigated the protective effects of phloretin against aflatoxin B1 (AFB1) activation to the ultimate carcinogenic intermediate, AFB(1)-8, 9-epoxide (AFBO), and its subsequent detoxification. Phloretin markedly inhibited formation of the epoxide with human liver microsomes in a dose-dependent manner. Phloretin also inhibited the activities of nifedipine oxidation and ethoxyresorufin O-deethylase (EROD) in human liver microsomes. These data show that phloretin strongly inhibits CYP1A2 and CYP3A4 activities, which are involved in the activation of AFB1. Phloretin increased glutathione S-transferase (GST) activity of alpha mouse liver 12 (AML 12) cells in a dose-dependent manner. GST activity toward AFBO in cell lysates treated with 20 μM phloretin was 23-fold that of untreated control cell lysates. The expression of GSTA3, GSTA4, GSTM1, GSTP1 and GSTT1 was induced by phloretin in a dose-dependent manner in AML 12 cells. GSTP1, GSTM1, and GSTT1 were able to significantly increase the conjugation of AFBO with glutathione. Concurrently, induction of the GST isozyme genes was partially associated with the Nrf2/ARE pathway. Taken together, the results demonstrate that phloretin has a strong chemopreventive effect against AFB1 through its inhibitory effect on CYP1A2, CYP3A4, and its inductive effect on GST activity. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  11. An orally active motilin receptor antagonist, MA-2029, inhibits motilin-induced gastrointestinal motility, increase in fundic tone, and diarrhea in conscious dogs without affecting gastric emptying.

    PubMed

    Ozaki, Ken-ichi; Onoma, Mitsu; Muramatsu, Hiroyasu; Sudo, Hirokazu; Yoshida, Shoshin; Shiokawa, Rie; Yogo, Kenji; Kamei, Kenshi; Cynshi, Osamu; Kuromaru, Osamu; Peeters, Theo L; Takanashi, Hisanori

    2009-08-01

    The pharmacological properties of MA-2029, a selective and competitive motilin receptor antagonist, were investigated in conscious dogs after oral administration. Gastrointestinal contractile activity was recorded by chronically implanted force transducers. The proximal gastric volume was measured with a barostat under constant pressure. Gastric emptying was examined using the paracetamol absorption test. MA-2029 (0.3-10 mg/kg, p.o.) administered in the interdigestive state inhibited gastrointestinal contractions induced by motilin (3 microg/kg, i.v.) in a dose-dependent manner. MA-2029 (0.3-3 mg/kg, p.o.) also inhibited the occurrence of spontaneous phase III contractions, even though MA-2029 had no effect on basal gastrointestinal motility or basal gastric emptying even at 10 and 30 mg/kg p.o. The inhibitory effect of MA-2029 on motilin-induced gastrointestinal motility corresponded to its plasma concentration. Motilin (0.3 microg/kg/h, i.v. infusion) reduced the proximal gastric volume by about 50% of control during isobaric distension. This effect was also inhibited by MA-2029 (1-10 mg/kg, p.o.) in a dose-dependent manner. In the digestive state, injection of motilin (3 microg/kg, i.v.) induced diarrhea in 9 of 11 dogs. MA-2029 (1-30 mg/kg, p.o.) reduced the incidence of diarrhea induced by motilin in a dose-dependent manner. The results indicate that MA-2029 inhibits hypermotility induced by motilin in conscious dogs without having an effect on the basal gastrointestinal tone or gastric emptying rate. MA-2029 may be useful in treating gastrointestinal disorders in which the pathogenesis involves the elevation of circulating motilin.

  12. Assessment of phosphamidon-induced apoptosis in human peripheral blood mononuclear cells: protective effects of N-acetylcysteine and curcumin.

    PubMed

    Ahmed, Tanzeel; Tripathi, Ashok K; Ahmed, Rafat S; Banerjee, Basu Dev

    2010-01-01

    The molecular mechanism for noncholinergic toxicity of phosphamidon, an extensively used organophosphate pesticide, is still not clear. The aim of the present study is to find the possible molecular mechanism of this pesticide to induce apoptosis and the role of different drugs for attenuation of such effects. Human peripheral blood mononuclear cells (PBMC) were incubated with increasing concentrations of phosphamidon (0-20 μM) for 6-24 h. The MTT assay reveals that phosphamidon induces cytotoxicity in a dose-dependent manner. Cellular glutathione (GSH) is depleted in a dose-dependent manner from 55% to 70% at concentrations between 10 and 20 μM. The percentage of cells that bind to Annexin-V, which is a representative of cells either undergoing apoptosis or necrosis during 24 h incubation, increases in a dose-dependent manner. Above 5 μM, significant necrosis of cells was observed. DNA fragmentation assay revealed that at low concentration of phosphamidon (1 μM), no appreciable change in DNA fragmentation was seen; however, distinct fragmentation was observed beyond 2.5 μM. Phosphamidon was found to cause significant depletion of GSH, which correlates well with the percentage of cells undergoing apoptosis. An increasing trend in levels of cytochrome c was observed with increasing concentration of phosphamidon, indicating that the apoptotic effect of phosphamidon is mediated through cytochrome c release. Coadministration of the antioxidants N-acetylcysteine and curcumin attenuated phosphamidon-induced apoptosis. This further supports our hypothesis that oxidative stress, as indicated by GSH depletion, results in the induction of apoptosis by release of cytochrome c. Copyright 2010 Wiley Periodicals, Inc.

  13. Pharmacologic inhibition of lactate production prevents myofibroblast differentiation.

    PubMed

    Kottmann, Robert Matthew; Trawick, Emma; Judge, Jennifer L; Wahl, Lindsay A; Epa, Amali P; Owens, Kristina M; Thatcher, Thomas H; Phipps, Richard P; Sime, Patricia J

    2015-12-01

    Myofibroblasts are one of the primary cell types responsible for the accumulation of extracellular matrix in fibrosing diseases, and targeting myofibroblast differentiation is an important therapeutic strategy for the treatment of pulmonary fibrosis. Transforming growth factor-β (TGF-β) has been shown to be an important inducer of myofibroblast differentiation. We previously demonstrated that lactate dehydrogenase and its metabolic product lactic acid are important mediators of myofibroblast differentiation, via acid-induced activation of latent TGF-β. Here we explore whether pharmacologic inhibition of LDH activity can prevent TGF-β-induced myofibroblast differentiation. Primary human lung fibroblasts from healthy patients and those with pulmonary fibrosis were treated with TGF-β and or gossypol, an LDH inhibitor. Protein and RNA were analyzed for markers of myofibroblast differentiation and extracellular matrix generation. Gossypol inhibited TGF-β-induced expression of the myofibroblast marker α-smooth muscle actin (α-SMA) in a dose-dependent manner in both healthy and fibrotic human lung fibroblasts. Gossypol also inhibited expression of collagen 1, collagen 3, and fibronectin. Gossypol inhibited LDH activity, the generation of extracellular lactic acid, and the rate of extracellular acidification in a dose-dependent manner. Furthermore, gossypol inhibited TGF-β bioactivity in a dose-dependent manner. Concurrent treatment with an LDH siRNA increased the ability of gossypol to inhibit TGF-β-induced myofibroblast differentiation. Gossypol inhibits TGF-β-induced myofibroblast differentiation through inhibition of LDH, inhibition of extracellular accumulation of lactic acid, and inhibition of TGF-β bioactivity. These data support the hypothesis that pharmacologic inhibition of LDH may play an important role in the treatment of pulmonary fibrosis. Copyright © 2015 the American Physiological Society.

  14. Effects of Histone Deacetylase Inhibitor Panobinostat (LBH589) on Bone Marrow Mononuclear Cells of Relapsed or Refractory Multiple Myeloma Patients and Its Mechanisms

    PubMed Central

    Ma, Yanping; Liu, Wenhua; Zhang, Ling; Jia, Gu

    2017-01-01

    Background The aim of this study was to explore the impact of LBH589 alone or in combination with proteasome inhibitor bortezomib on multiple myeloma (MM) cell proliferation and its mechanism. Material/Methods MM cell line U266 and RRMM-BMMNC were treated with different concentrations of LBH589 alone or in combination with bortezomib. Cell proliferation was detected by MTT assay. Cell cycle and apoptosis was analyzed by flow cytometry. The protein and mRNA level of related genes was determined by Western blotting and qRT-PCR respectively. Results U266 cell and RRMM-BMMNC proliferation were inhibited by different concentrations of LBH589 (0, 10, 20, and 50 nmol/L) alone or 50 nmol/L of LBH589 in combination with bortezomib (10 and 20 nmol/L) in a dose- and time-dependent manner. LBH589 significantly induced G0/G1phase arrest and apoptosis in RRMM-BMMNC in a dose-dependent manner. The effects were significantly higher in all combined groups than in single-agent groups (all P<0.05). The mRNA level of Caspase3 and APAF1 were up-regulated gradually, while TOSO gene expression in RRMM-BMMNC was down-regulated gradually in a dose- and time-dependent manner. Moreover, LBH589 significantly induced hyperacetylation of histone H4, the protein level of PARP notably increased, and the level of Bcl-X decreased. Conclusions LBH589 can inhibit MM cell growth, block the cell cycle, and induce cell apoptosis, which has an anti-resistant effect on multidrug-resistant cells. LBH589 in combination with bortezomib has a synergistic effect on myeloma cells; its mechanism and reversal of drug resistance mechanism is involved in multiple changes in gene expression. PMID:29080899

  15. The effects of cannabinoids on serum cortisol and prolactin in humans

    PubMed Central

    Ranganathan, Mohini; Braley, Gabriel; Pittman, Brian; Cooper, Thomas; Perry, Edward; Krystal, John; D’Souza, Deepak Cyril

    2010-01-01

    Background Cannabis is one of the most widely used illicit substances, and there is growing interest in the therapeutic applications of cannabinoids. While known to modulate neuroendocrine function, the precise acute and chronic dose-related effects of cannabinoids in humans are not well-known. Furthermore, the existing literature on the neuroendocrine effects of cannabinoids is limited by small sample sizes (n=6–22), heterogeneous samples with regard to cannabis exposure (lumping users and nonusers), lack of controlling for chronic cannabis exposure, differing methodologies, and limited dose–response data. Delta-9-tetrahydrocannabinol (Δ-9-THC) was hypothesized to produce dose-related increases in plasma cortisol levels and decreases in plasma prolactin levels. Furthermore, relative to controls, frequent users of cannabis were hypothesized to show altered baseline levels of these hormones and blunted Δ-9-THC-induced changes of these hormones. Materials and methods Pooled data from a series of laboratory studies with multiple doses of intravenous Δ-9-THC in healthy control subjects (n=36) and frequent users of cannabis (n=40) was examined to characterize the acute, chronic, and acute on chronic effects of cannabinoids on plasma cortisol and prolactin levels. Hormone levels were measured before (baseline) and 70 min after administration of each dose of Δ-9-THC. Data were analyzed using linear mixed models with +70 min hormonal levels as the dependant variable and baseline hormonal level as the covariate. Results At socially relevant doses, Δ-9-THC raised plasma cortisol levels in a dose-dependent manner but frequent users showed blunted increases relative to healthy controls. Frequent users also had lower baseline plasma prolactin levels relative to healthy controls. Conclusions These group differences may be related to the development of tolerance to the neuroendocrine effects of cannabinoids. Alternatively, these results may reflect inherent differences in neuroendocrine function in frequent users of cannabis and not a consequence of cannabis use. PMID:19083209

  16. Plasma growth hormone (GH), insulin and amino acid responses to arginine with or without aspartic acid in pigs. Effect of the dose.

    PubMed

    Cochard, A; Guilhermet, R; Bonneau, M

    1998-01-01

    The aim of the present study was to examine, for the first time in pigs, the dose-dependent effect of arginine (ARG) on growth hormone (GH) and insulin release and the effect of the combined ARG and aspartic acid (ASP) treatment on GH and insulin release. ARG (0.5 or 1 g/kg body weight) with or without an equimolar supplement of ASP (0.38 or 0.76 g/kg, respectively) was administered in piglets via the duodenum. ARG increased plasma arginine, ornithine, urea, proline and branched chain amino acid concentrations. ASP increased specifically plasma aspartic acid, glutamic acid, alanine and citrulline concentrations. Plasma insulin increased with no apparent difference between treatments. Maximum GH level and the area under the GH curve (AUC) were increased in a dose-dependent manner in response to ARG treatment. GH response to the combined ARG and ASP treatment (ARGASP) was delayed compared to ARG alone and was not dose-dependent. AUC for GH after ARGASP treatments were intermediate between those observed after the two ARG doses. Our data suggest that high ASP doses transiently inhibit and delay ARG-induced GH release in pigs and that an equimolar supplement of ASP stimulates or inhibits ARG-induced GH release depending on the dose used.

  17. The effects of caffeine on wound healing.

    PubMed

    Ojeh, Nkemcho; Stojadinovic, Olivera; Pastar, Irena; Sawaya, Andrew; Yin, Natalie; Tomic-Canic, Marjana

    2016-10-01

    The purine alkaloid caffeine is a major component of many beverages such as coffee and tea. Caffeine and its metabolites theobromine and xanthine have been shown to have antioxidant properties. Caffeine can also act as adenosine-receptor antagonist. Although it has been shown that adenosine and antioxidants promote wound healing, the effect of caffeine on wound healing is currently unknown. To investigate the effects of caffeine on processes involved in epithelialisation, we used primary human keratinocytes, HaCaT cell line and ex vivo model of human skin. First, we tested the effects of caffeine on cell proliferation, differentiation, adhesion and migration, processes essential for normal wound epithelialisation and closure. We used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) proliferation assay to test the effects of seven different caffeine doses ranging from 0·1 to 5 mM. We found that caffeine restricted cell proliferation of keratinocytes in a dose-dependent manner. Furthermore, scratch wound assays performed on keratinocyte monolayers indicated dose-dependent delays in cell migration. Interestingly, adhesion and differentiation remained unaffected in monolayer cultures treated with various doses of caffeine. Using a human ex vivo wound healing model, we tested topical application of caffeine and found that it impedes epithelialisation, confirming in vitro data. We conclude that caffeine, which is known to have antioxidant properties, impedes keratinocyte proliferation and migration, suggesting that it may have an inhibitory effect on wound healing and epithelialisation. Therefore, our findings are more in support of a role for caffeine as adenosine-receptor antagonist that would negate the effect of adenosine in promoting wound healing. © 2014 The Authors. International Wound Journal © 2014 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  18. Concentration rather than dose defines the local brain toxicity of agents that are effectively distributed by convection-enhanced delivery.

    PubMed

    Zhang, Rong; Saito, Ryuta; Mano, Yui; Kanamori, Masayuki; Sonoda, Yukihiko; Kumabe, Toshihiro; Tominaga, Teiji

    2014-01-30

    Convection-enhanced delivery (CED) has been developed as a potentially effective drug-delivery strategy into the central nervous system. In contrast to systemic intravenous administration, local delivery achieves high concentration and prolonged retention in the local tissue, with increased chance of local toxicity, especially with toxic agents such as chemotherapeutic agents. Therefore, the factors that affect local toxicity should be extensively studied. With the assumption that concentration-oriented evaluation of toxicity is important for local CED, we evaluated the appearance of local toxicity among different agents after delivery with CED and studied if it is dose dependent or concentration dependent. Local toxicity profile of chemotherapeutic agents delivered via CED indicates BCNU was dose-dependent, whereas that of ACNU was concentration-dependent. On the other hand, local toxicity for doxorubicin, which is not distributed effectively by CED, was dose-dependent. Local toxicity for PLD, which is extensively distributed by CED, was concentration-dependent. Traditional evaluation of drug induced toxicity was dose-oriented. This is true for systemic intravascular delivery. However, with local CED, toxicity of several drugs exacerbated in concentration-dependent manner. From our study, local toxicity of drugs that are likely to distribute effectively tended to be concentration-dependent. Concentration rather than dose may be more important for the toxicity of agents that are effectively distributed by CED. Concentration-oriented evaluation of toxicity is more important for CED. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Evaluation of antipyretic potential of Vernonia cinerea extract in rats.

    PubMed

    Gupta, Malaya; Mazumder, U K; Manikandan, L; Bhattacharya, S; Haldar, P K; Roy, S

    2003-08-01

    The methanol extract of the whole plant of Vernonia cinerea (MEVC) was evaluated for its antipyretic potential on normal body temperature and yeast-induced pyrexia in rats. MEVC significantly reduced the normal body temperature at doses of 250 and 500 mg/kg body weight p.o. MEVC also lowered the elevated body temperature in the case of yeast-induced pyrexia in a dose dependent manner. The antipyretic effect of the extract at a dose of 500 mg/kg was identical to that of the standard drug paracetamol. Copyright 2003 John Wiley & Sons, Ltd.

  20. A non-human primate model of radiation-induced cachexia.

    PubMed

    Cui, Wanchang; Bennett, Alexander W; Zhang, Pei; Barrow, Kory R; Kearney, Sean R; Hankey, Kim G; Taylor-Howell, Cheryl; Gibbs, Allison M; Smith, Cassandra P; MacVittie, Thomas J

    2016-03-31

    Cachexia, or muscle wasting, is a serious health threat to victims of radiological accidents or patients receiving radiotherapy. Here, we propose a non-human primate (NHP) radiation-induced cachexia model based on clinical and molecular pathology findings. NHP exposed to potentially lethal partial-body irradiation developed symptoms of cachexia such as body weight loss in a time- and dose-dependent manner. Severe body weight loss as high as 20-25% was observed which was refractory to nutritional intervention. Radiographic imaging indicated that cachectic NHP lost as much as 50% of skeletal muscle. Histological analysis of muscle tissues showed abnormalities such as presence of central nuclei, inflammation, fatty replacement of skeletal muscle, and muscle fiber degeneration. Biochemical parameters such as hemoglobin and albumin levels decreased after radiation exposure. Levels of FBXO32 (Atrogin-1), ActRIIB and myostatin were significantly changed in the irradiated cachectic NHP compared to the non-irradiated NHP. Our data suggest NHP that have been exposed to high dose radiation manifest cachexia-like symptoms in a time- and dose-dependent manner. This model provides a unique opportunity to study the mechanism of radiation-induced cachexia and will aid in efficacy studies of mitigators of this disease.

  1. Protective Effect of 4-(3,4-Dihydroxyphenyl)-3-Buten-2-One from Phellinus linteus on Naproxen-Induced Gastric Antral Ulcers in Rats.

    PubMed

    Kim, Jeong-Hwan; Kwon, Hyun Ju; Kim, Byung Woo

    2016-05-28

    The present study investigated the protective effect of naturally purified 4-(3,4- dihydroxyphenyl)-3-buten-2-one (DHP) from Phellinus linteus against naproxen-induced gastric antral ulcers in rats. To verify the protective effect of DHP on naproxen-induced gastric antral ulcers, various doses (1, 5, and 10 μg/kg) of DHP were pretreated for 3 days, and then gastric damage was caused by 80 mg/kg naproxen applied for 3 days. DHP prevented naproxen-induced gastric antral ulcers in a dose-dependent manner. In particular, 10 μg/kg DHP showed the best protective effect against naproxen-induced gastric antral ulcers. Moreover, DHP significantly attenuated the naproxen-induced lipid peroxide level in gastric mucosa and increased the activities of radical scavenging enzymes, such as superoxide dismutase, catalase, and glutathione peroxidase, in a dose-dependent manner. A histological examination clearly demonstrated that the gastric antral ulcer induced by naproxen nearly disappeared after the pretreatment of DHP. These results suggest that DHP can inhibit naproxen-induced gastric antral ulcers through prevention of lipid peroxidation and activation of radical scavenging enzymes.

  2. Effect of soy saponin on the growth of human colon cancer cells

    PubMed Central

    Tsai, Cheng-Yu; Chen, Yue-Hwa; Chien, Yi-Wen; Huang, Wen-Hsuan; Lin, Shyh-Hsiang

    2010-01-01

    AIM: To investigate the effect of extracted soybean saponins on the growth of human colon cancer cells. METHODS: WiDr human colon cancer cells were treated with 150, 300, 600 or 1200 ppm of soy saponin to determine the effect on cell growth, cell morphology, alkaline phosphatase (AP) and protein kinase C (PKC) activities, and P53 protein, c-Fos and c-Jun gene expression. RESULTS: Soy saponin decreased the number of viable cells in a dose-dependent manner and suppressed 12-O-tetradecanol-phorbol-13-acetate-stimulated PKC activity (P < 0.05). Cells treated with saponins developed cytoplasmic vesicles and the cell membrane became rougher and more irregular in a dose-dependent manner, and eventually disassembled. At 600 and 1200 ppm, the activity of AP was increased (P < 0.05). However, the apoptosis markers such as c-Jun and c-Fos were not significantly affected by saponin. CONCLUSION: Soy saponin may be effective in preventing colon cancer by affecting cell morphology, cell proliferation enzymes, and cell growth. PMID:20632438

  3. [Saponin 6 of Anemone Taipaiensis inhibits proliferation and induces apoptosis of U87 MG cells].

    PubMed

    Ji, Chenchen; Cheng, Guang; Tang, Haifeng; Zhang, Yun; Hu, Yiyang; Zheng, Minhua; Fei, Zhou

    2015-04-01

    To investigate the effect of saponin 6 of Anemone Taipaiensis on the proliferation of human U87 MG glioma cells and the possible mechanism. U87 MG cells were treated with different concentrations of saponin 6 (0.0, 1.6, 3.2, 6.4, 12.8 μg/mL) for 24 hours or 48 hours. Cell viability was measured by MTT assay; the apoptosis rate was detected by flow cytometry combined with annexin V-FITC /PI staining; Western blotting was applied to determine the protein level of activated caspase-3. Compared with control groups, saponin 6 significantly inhibited U87 MG cell proliferation in a time- and dose-depended manner. Apoptosis rate of U87 MG cells and the expression of activated caspase-3 were raised with the increasing concentration of saponin 6. Saponin 6 of Anemone Taipaiensis could depress cell proliferation in a dose-depended manner, increase the expression of activated caspase-3 and promote apoptosis in U87 MG cells.

  4. JS-K promotes apoptosis by inducing ROS production in human prostate cancer cells.

    PubMed

    Qiu, Mingning; Chen, Lieqian; Tan, Guobin; Ke, Longzhi; Zhang, Sai; Chen, Hege; Liu, Jianjun

    2017-03-01

    Reactive oxygen species (ROS) are chemical species that alter redox status, and are responsible for inducing carcinogenesis. The purpose of the present study was to assess the effects of the glutathione S transferase-activated nitric oxide donor prodrug, JS-K, on ROS accumulation and on proliferation and apoptosis in human prostate cancer cells. Cell proliferation and apoptosis, ROS accumulation and the activation of the mitochondrial signaling pathway were measured. The results demonstrated that JS-K may inhibit prostate cancer cell growth in a dose- and time-dependent manner, and induce ROS accumulation and apoptosis in a dose-dependent manner. With increasing concentrations of JS-K, expression of pro-apoptotic proteins increased, but Bcl-2 expression decreased. Additionally, the antioxidant N-acetylcysteine reversed JS-K-induced cell apoptosis; conversely, the pro-oxidant glutathione disulfide exacerbated JS-K-induced apoptosis. In conclusion, the data suggest that JS-K induces prostate cancer cell apoptosis by increasing ROS levels.

  5. JS-K promotes apoptosis by inducing ROS production in human prostate cancer cells

    PubMed Central

    Qiu, Mingning; Chen, Lieqian; Tan, Guobin; Ke, Longzhi; Zhang, Sai; Chen, Hege; Liu, Jianjun

    2017-01-01

    Reactive oxygen species (ROS) are chemical species that alter redox status, and are responsible for inducing carcinogenesis. The purpose of the present study was to assess the effects of the glutathione S transferase-activated nitric oxide donor prodrug, JS-K, on ROS accumulation and on proliferation and apoptosis in human prostate cancer cells. Cell proliferation and apoptosis, ROS accumulation and the activation of the mitochondrial signaling pathway were measured. The results demonstrated that JS-K may inhibit prostate cancer cell growth in a dose- and time-dependent manner, and induce ROS accumulation and apoptosis in a dose-dependent manner. With increasing concentrations of JS-K, expression of pro-apoptotic proteins increased, but Bcl-2 expression decreased. Additionally, the antioxidant N-acetylcysteine reversed JS-K-induced cell apoptosis; conversely, the pro-oxidant glutathione disulfide exacerbated JS-K-induced apoptosis. In conclusion, the data suggest that JS-K induces prostate cancer cell apoptosis by increasing ROS levels. PMID:28454225

  6. 3D printed alendronate-releasing poly(caprolactone) porous scaffolds enhance osteogenic differentiation and bone formation in rat tibial defects.

    PubMed

    Kim, Sung Eun; Yun, Young-Pil; Shim, Kyu-Sik; Kim, Hak-Jun; Park, Kyeongsoon; Song, Hae-Ryong

    2016-09-29

    The aim of this study was to evaluate the in vitro osteogenic effects and in vivo new bone formation of three-dimensional (3D) printed alendronate (Aln)-releasing poly(caprolactone) (PCL) (Aln/PCL) scaffolds in rat tibial defect models. 3D printed Aln/PCL scaffolds were fabricated via layer-by-layer deposition. The fabricated Aln/PCL scaffolds had high porosity and an interconnected pore structure and showed sustained Aln release. In vitro studies showed that MG-63 cells seeded on the Aln/PCL scaffolds displayed increased alkaline phosphatase (ALP) activity and calcium content in a dose-dependent manner when compared with cell cultures in PCL scaffolds. In addition, in vivo animal studies and histologic evaluation showed that Aln/PCL scaffolds implanted in a rat tibial defect model markedly increased new bone formation and mineralized bone tissues in a dose-dependent manner compared to PCL-only scaffolds. Our results show that 3D printed Aln/PCL scaffolds are promising templates for bone tissue engineering applications.

  7. [Effect of taspine derivatives on human liver cancer SMMC7721].

    PubMed

    Zhang, Yan-min; Wang, Nan; Dai, Bing-ling; He, Lang-chong

    2011-07-01

    To analyse the inhibition effect of taspine derivatives on human Liver cancer SMMC7721 cell and its mechanism. The effects of five taspine derivatives on SMMC7721 cell growth were determined by MTT. The flow cytometry was used to determine the cell cycle. The effects of Tas-D1 on the EGF and VEGF in SMMC7721 cell were determined by ELISA. The mRNA level of EGF and VEGF in SMMC7721 cell was determined by RT-PCR. The MTT assay demonstrated that the taspine derivative Tas-D1 significantly inhibited the growth of SMMC7721 cell in a dose-dependent manner. Cell was stopped at S phase by Tas-D1. Tas-D1 inhibited the expression of EGF and VEGF and their mRNA in a dose-dependent manner (P<0.05). The taspine derivative Tas-D1 can inhibit the growth of human Liver cancer SMMC7721 cell and change cell cycle, which may be related to the inhibition of EGF and VEGF expression.

  8. Dose-dependent effect of fluoride on clinical and subclinical indices of fluorosis in school going children and its mitigation by supply of safe drinking water for 5 years: an Indian study.

    PubMed

    Khandare, Arjun L; Validandi, Vakdevi; Gourineni, Shankar Rao; Gopalan, Viswanathan; Nagalla, Balakrishna

    2018-02-02

    Fluorosis is a public health problem in India; to know its prevalence and severity along with its mitigation measures is very important. The present study has been undertaken with the aim to assess the F dose-dependent clinical and subclinical symptoms of fluorosis and reversal of the disease by providing safe drinking water. For this purpose, a cross-sectional study was undertaken in 1934 schoolgoing children, Nalgonda district. Study villages were categorized into control (category I, F = 0.87 mg/L), affected (category II, F = 2.53 mg/L, and category III, F = 3.77 mg/L), and intervention categories (category IV, F = < 1.0 mg/L). School children were enrolled for dental grading by modified Dean Index criteria. Anthropometric measurements (height and weight) were used to assess nutritional status of the children. The biochemical parameters like serum T3, T4, TSH, PTH, ALP, 25-OH vitamin D, and 1,25-(OH) 2 vitamin D were analyzed. The results showed a positive correlation between the drinking water and urinary fluoride (UF) in different categories. However, there was a significant decrease in the UF levels in the intervention category IV compared to affected group (category III). Fluoride altered the clinical (dental fluorosis and stunting) and subclinical indices (urine and blood) of fluorosis in a dose-dependent manner. In conclusion, the biochemical indices were altered in a dose-dependent manner and intervention with safe drinking water for 5 years in intervention group-mitigated clinical and subclinical symptoms of fluorosis.

  9. Immunomodulatory effect of Moringa peregrina leaves, ex vivo and in vivo study

    PubMed Central

    Al-Oran, Sawsan Atallah; Hassuneh, Mona Rushdie; Al-Qaralleh, Haitham Naief; Rayyan, Walid Abu; Al-Thunibat, Osama Yosef; Mallah, Eyad; Abu-Rayyan, Ahmed; Salem, Shadi

    2017-01-01

    This study was conducted to assess the in vivo and ex vivo immunomodulatory effect of the ethanol leaves extract of Moringa peregrina in Balb/c mice. For this study, five groups of 5 Balb/c mice were given a single acute subtoxic oral dose of the ethanolic extract at 1.13, 11.30, 23.40 and 113.4 mg/kg and the immunomodulatory effect was assessed on the 6th day following the ingestion. In the (non-functional) assessment, the effect of the extract on the body weight, relative lymphoid organ weight, splenic cellularity and peripheral blood hematologic parameters were evaluated. While in the immunomodulation assessment (functional), we investigated the effect of the extract on the proliferative capacity of splenic lymphocytes and peripheral T and B lymphocytes using mitogen blastogenesis, mixed allogeneic MLR and IgM-Plaque forming cells assays. The ingestion of M. peregrina extract caused a significant increase in the body weight, weight and number of cells of spleen and lymph nodes of the treated mice. Furthermore, the count of RBCs, WBCs, platelets, hemoglobin concentration and PCV % were increased by the extract treatment in a dose-dependent manner. M. peregrina enhanced the proliferative responses of splenic lymphocytes for both T cell and B-cell mitogens. Likewise, the mixed lymphocyte reaction MLR assay has revealed a T-cell dependent proliferation enhancement in the extract treated mice. Moreover, the oral administration of M. peregrina leaves extracts significantly increased PFCs/106 splenocytes in a dose-dependent manner. In conclusion, subtoxic acute doses of M. peregrina extract demonstrated significant potential as an immunomodulatory agent even at the lowest dose of 1.13 mg/kg. PMID:29204086

  10. Dose-dependent metabolic disposition of hydroxytyrosol and formation of mercapturates in rats.

    PubMed

    Kotronoulas, Aristotelis; Pizarro, Nieves; Serra, Aida; Robledo, Patricia; Joglar, Jesús; Rubió, Laura; Hernaéz, Alvaro; Tormos, Carmen; Motilva, Ma José; Fitó, Montserrat; Covas, Maria-Isabel; Solà, Rosa; Farré, Magí; Saez, Guillermo; de la Torre, Rafael

    2013-11-01

    Hydroxytyrosol (HT), one of the major polyphenols present in olive oil, is known to possess a high antioxidant capacity. The aim of the present study was to investigate dose dependent (0, 1, 10 and 100 mg/kg) alterations in the metabolism of HT in rats since it has been reported that metabolites may contribute to biological effects. Special attention was paid to the activation of the semiquinone-quinone oxidative cycle and the formation of adducts with potential deleterious effects. Thus, we developed a novel analytical methodology to monitor the in vivo formation of the HT mercapturate, N-acetyl-5-S-cysteinyl-hydroxytyrosol in urine samples. Biomarkers of hepatic and renal toxicity were evaluated within the dose range tested. Following HT administration, dose-dependent effects were observed for the recovery of all the metabolites studied. At the lowest dose of 1 mg/kg, the glucuronidation pathway was the most relevant (25-30%), with lower recoveries for sulfation (14%), while at the highest dose of 100 mg/kg, sulfation was the most prevalent (75%). In addition, we report for the first time the formation of the mercapturate conjugate of HT in a dose-dependent manner. The biochemical data did not reveal significant toxic effects of HT at any of the doses studied. An increase in the GSH/GSSG ratio at the highest dose was observed indicating that the products of HT autoxidation are counteracted by glutathione, resulting in their detoxification. These results indicate that the metabolic disposition of HT is highly dependent on the dose ingested. Copyright © 2013. Published by Elsevier Ltd.

  11. Reduction of antiproliferative capacities, cell-based antioxidant capacities and phytochemical contents of common beans and soybeans upon thermal processing.

    PubMed

    Xu, Baojun; Chang, Sam K C

    2011-12-01

    The effects of boiling and steaming processes on the antiproliferative and cellular antioxidant properties, as well as phytochemicals, of two types of common beans (pinto and black beans) and two types of soybeans (yellow and black) were investigated. All thermal-processing methods caused significant (p<0.05) decreases in total phenolic content (TPC), total saponin content (TSC) and phytic acid content (PAC) values in all bean types (except for TPC values in pressure-steamed yellow soybeans) as compared to those of the raw beans. All types of uncooked raw beans exhibited cellular antioxidant activities (CAA) in dose-dependent manners. Black soybeans exhibited the greatest CAA, followed by black beans, pinto beans and yellow soybeans. The CAA of cooked beans were generally diminished or eliminated by thermal processing. The hydrophilic extracts from raw pinto beans, black beans and black soybeans exhibited antiproliferation capacities against human gastric (AGS) and colorectal (SW480) cancer cells in dose-dependent manners. The raw yellow soybeans exhibited dose-dependent antiproliferation activities against the SW480 cells. Most of the cooked beans lost their antiproliferation capacities as observed in the raw beans. These results indicate that different processing methods may have various effects on phytochemical profiles and bioactivities. Overall, thermal processing caused a significant reduction of the health-promotion effects of beans. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Enhancement of Chaperone Activity of Plant-Specific Thioredoxin through γ-Ray Mediated Conformational Change.

    PubMed

    Lee, Seung Sik; Jung, Hyun Suk; Park, Soo-Kwon; Lee, Eun Mi; Singh, Sudhir; Lee, Yuno; Lee, Kyun Oh; Lee, Sang Yeol; Chung, Byung Yeoup

    2015-11-13

    AtTDX, a thioredoxin-like plant-specific protein present in Arabidopsis is a thermo-stable and multi-functional enzyme. This enzyme is known to act as a thioredoxin and as a molecular chaperone depending upon its oligomeric status. The present study examines the effects of γ-irradiation on the structural and functional changes of AtTDX. Holdase chaperone activity of AtTDX was increased and reached a maximum at 10 kGy of γ-irradiation and declined subsequently in a dose-dependent manner, together with no effect on foldase chaperone activity. However, thioredoxin activity decreased gradually with increasing irradiation. Electrophoresis and size exclusion chromatography analysis showed that AtTDX had a tendency to form high molecular weight (HMW) complexes after γ-irradiation and γ-ray-induced HMW complexes were tightly associated with a holdase chaperone activity. The hydrophobicity of AtTDX increased with an increase in irradiation dose till 20 kGy and thereafter decreased further. Analysis of the secondary structures of AtTDX using far UV-circular dichroism spectra revealed that the irradiation remarkably increased the exposure of β-sheets and random coils with a dramatic decrease in α-helices and turn elements in a dose-dependent manner. The data of the present study suggest that γ-irradiation may be a useful tool for increasing holdase chaperone activity without adversely affecting foldase chaperone activity of thioredoxin-like proteins.

  13. Formononetin suppresses the proliferation of human non-small cell lung cancer through induction of cell cycle arrest and apoptosis

    PubMed Central

    Yang, Yi; Zhao, Yi; Ai, Xinghao; Cheng, Baijun; Lu, Shun

    2014-01-01

    Formononetin is a novel herbal isoflavonoid isolated from Astragalus membranaceus and possesses antitumorigenic properties. In the present study, we investigated the anti-proliferative effects of formononetin on human non-small cell lung cancer (NSCLC), and further elucidated the molecular mechanism underlying the anti-tumor property. MTT assay showed that formononetin treatment significantly inhibited the proliferation of two NSCLC cell lines including A549 and NCI-H23 in a time- and dose-dependent manner. Flow cytometric analysis demonstrated that formononetin induced G1-phase cell cycle arrest and promoted cell apoptosis in NSCLC cells. On the molecular level, we observed that exposure to formononetin altered the expression levels of cell cycle arrest-associated proteins p21, cyclin A and cyclin D1. Meanwhile, the apoptosis-related proteins cleaved caspase-3, bax and bcl-2 were also changed following treatment with formononetin. In addition, the expression level of p53 was dose-dependently upregulated after administration with formononetin. We also found that formononetin treatment increased the phosphorylation of p53 at Ser15 and Ser20 and enhances its transcriptional activity in a dose-dependent manner. Collectively, these results demonstrated that formononetin might be a potential chemopreventive drug for lung cancer therapy through induction of cell cycle arrest and apoptosis in NSCLC cells. PMID:25674209

  14. Down-regulation of telomerase activity in DLD-1 human colorectal adenocarcinoma cells by tocotrienol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eitsuka, Takahiro; Nakagawa, Kiyotaka; Miyazawa, Teruo

    2006-09-15

    As high telomerase activity is detected in most cancer cells, inhibition of telomerase by drug or dietary food components is a new strategy for cancer prevention. Here, we investigated the inhibitory effect of vitamin E, with particular emphasis on tocotrienol (unsaturated vitamin E), on human telomerase in cell-culture study. As results, tocotrienol inhibited telomerase activity of DLD-1 human colorectal adenocarcinoma cells in time- and dose-dependent manner, interestingly, with {delta}-tocotrienol exhibiting the highest inhibitory activity. Tocotrienol inhibited protein kinase C activity, resulting in down-regulation of c-myc and human telomerase reverse transcriptase (hTERT) expression, thereby reducing telomerase activity. In contrast to tocotrienol,more » tocopherol showed very weak telomerase inhibition. These results provide novel evidence for First time indicating that tocotrienol acts as a potent candidate regulator of telomerase and supporting the anti-proliferative function of tocotrienol.« less

  15. Mechanisms of Dihydroartemisinin and Dihydroartemisinin/Holotransferrin Cytotoxicity in T-Cell Lymphoma Cells

    PubMed Central

    Zhao, Xindong; Zhao, Chunting; Zhao, Hongguo; Huo, Lanfen

    2015-01-01

    The validated therapeutic effects of dihydroartemisinin (DHA) in solid tumors have encouraged us to explore its potential in treating T-cell lymphoma. We found that Jurkat cells (a T-cell lyphoma cell line) were sensitive to DHA treatment with a IC50 of dihydroartemisinin. The cytotoxic effect of DHA in Jurkat cells showed a dose- and time- dependent manner. Interestingly, the cytotoxic effect of DHA was further enhanced by holotransferrin (HTF) due to the high expression of transferrin receptors in T-cell lymphoma. Mechanistically, DHA significantly increased the production of intracellular reactive oxygen species, which led to cell cycle arrest and apoptosis. The DHA treatment also inhibited the expression of protumorgenic factors including VEGF and telomerase catalytic subunit. Our results have proved the therapeutic effect of DHA in T-cell lymphoma. Especially in combination with HTF, DHA may provide a novel efficient approach in combating the deadly disease. PMID:26502166

  16. Dose-dependent effects of the clinical anesthetic isoflurane on Octopus vulgaris: a contribution to cephalopod welfare.

    PubMed

    Polese, Gianluca; Winlow, William; Di Cosmo, Anna

    2014-12-01

    Recent progress in animal welfare legislation relating to invertebrates has provoked interest in methods for the anesthesia of cephalopods, for which different approaches to anesthesia have been tried but in most cases without truly anesthetizing the animals. For example, several workers have used muscle relaxants or hypothermia as forms of "anesthesia." Several inhalational anesthetics are known to act in a dose-dependent manner on the great pond snail Lymnaea stagnalis, a pulmonate mollusk. Here we report, for the first time, on the effects of clinical doses of the well-known inhalational clinical anesthetic isoflurane on the behavioral responses of the common octopus Octopus vulgaris. In each experiment, isoflurane was equilibrated into a well-aerated seawater bath containing a single adult O. vulgaris. Using a web camera, we recorded each animal's response to touch stimuli eliciting withdrawal of the arms and siphon and observed changes in the respiratory rate and the chromatophore pattern over time (before, during, and after application of the anesthetic). We found that different animals of the same size responded with similar behavioral changes as the isoflurane concentration was gradually increased. After gradual application of 2% isoflurane for a maximum of 5 min (at which time all the responses indicated deep anesthesia), the animals recovered within 45-60 min in fresh aerated seawater. Based on previous findings in gastropods, we believe that the process of anesthesia induced by isoflurane is similar to that previously observed in Lymnaea. In this study we showed that isoflurane is a good, reversible anesthetic for O. vulgaris, and we developed a method for its use.

  17. Dose Dependent Side Effect of Superparamagnetic Iron Oxide Nanoparticle Labeling on Cell Motility in Two Fetal Stem Cell Populations

    PubMed Central

    Diana, Valentina; Bossolasco, Patrizia; Moscatelli, Davide; Silani, Vincenzo; Cova, Lidia

    2013-01-01

    Multipotent stem cells (SCs) could substitute damaged cells and also rescue degeneration through the secretion of trophic factors able to activate the endogenous SC compartment. Therefore, fetal SCs, characterized by high proliferation rate and devoid of ethical concern, appear promising candidate, particularly for the treatment of neurodegenerative diseases. Super Paramagnetic Iron Oxide nanoparticles (SPIOn), routinely used for pre-clinical cell imaging and already approved for clinical practice, allow tracking of transplanted SCs and characterization of their fate within the host tissue, when combined with Magnetic Resonance Imaging (MRI). In this work we investigated how SPIOn could influence cell migration after internalization in two fetal SC populations: human amniotic fluid and chorial villi SCs were labeled with SPIOn and their motility was evaluated. We found that SPIOn loading significantly reduced SC movements without increasing production of Reactive Oxygen Species (ROS). Moreover, motility impairment was directly proportional to the amount of loaded SPIOn while a chemoattractant-induced recovery was obtained by increasing serum levels. Interestingly, the migration rate of SPIOn labeled cells was also significantly influenced by a degenerative surrounding. In conclusion, this work highlights how SPIOn labeling affects SC motility in vitro in a dose-dependent manner, shedding the light on an important parameter for the creation of clinical protocols. Establishment of an optimal SPIOn dose that enables both a good visualization of grafted cells by MRI and the physiological migration rate is a main step in order to maximize the effects of SC therapy in both animal models of neurodegeneration and clinical studies. PMID:24244310

  18. Differences in DNA-damage in non-smoking men and women exposed to environmental tobacco smoke (ETS).

    PubMed

    Collier, Abby C; Dandge, Sachin D; Woodrow, James E; Pritsos, Chris A

    2005-07-28

    There is much data implicating environmental tobacco smoke (ETS) in the development and progression of disease, notably cancer, yet the mechanisms for this remain unclear. As ETS is both a pro-oxidant stressor and carcinogen, we investigated the relationship of ETS exposure to intracellular and serum levels of DNA-damage, both oxidative 8-hydroxy-2-deoxyguanosine (8OHdG) and general, in non-smokers from non-smoking households, occupationally exposed to ETS. General DNA-damage consisting of single and double strand breaks, alkali-labile sites and incomplete base-excision repair, increased significantly in a dose-dependent manner with ETS exposure in men (P=0.015, n=32, Pearson) but not women (P=0.736, n=17). Intracellular 8OHdG-DNA-damage and general DNA-damage were both greater in men than women (P=0.0005 and 0.016, respectively) but 8OHdG serum levels did not differ between the genders. Neither 8OHdG-DNA-damage nor serum levels correlated with increasing ETS exposure. This is the first study to demonstrate dose-dependent increases in DNA-damage from workplace ETS exposure. Perhaps most interesting was that despite equivalent ETS exposure, significantly greater DNA-damage occurred in men than women. These data may begin to provide a mechanistic rationale for the generally higher incidence of some diseases in males due to tobacco smoke and/or other genotoxic stressors.

  19. Resveratrol Inhibited Hydroquinone-Induced Cytotoxicity in Mouse Primary Hepatocytes

    PubMed Central

    Wang, Da-Hong; Ootsuki, Yoshie; Fujita, Hirofumi; Miyazaki, Masahiro; Yie, Qinxia; Tsutsui, Ken; Sano, Kuniaki; Masuoka, Noriyoshi; Ogino, Keiki

    2012-01-01

    Hydroquinone (1,4-benzenediol) has been widely used in clinical situations and the cosmetic industry because of its depigmenting effects. Most skin-lightening hydroquinone creams contain 4%–5% hydroquinone. We have investigated the role of resveratrol in prevention of hydroquinone induced cytotoxicity in mouse primary hepatocytes. We found that 400 µM hydroquinone exposure alone induced apoptosis of the cells and also resulted in a significant drop of cell viability compared with the control, and pretreatment of resveratrol to a final concentration of 0.5 mM 1 h before hydroquinone exposure did not show a significant improvement in the survival rate of the hepatocytes, however, relatively higher concentrations of resveratrol (≥1 mM) inhibited apoptosis of the mouse primary hepatocytes and increased cell viability in a dose-dependent manner, and in particular the survival rate of the hepatocytes was recovered from 28% to near 100% by 5 mM resveratrol. Interestingly, pretreatment with resveratrol for longer time (24 h), even in very low concentrations (50 µM, 100 µM), blocked the damage of hydroquinone to the cells. We also observed that resveratrol pretreatment suppressed hydroquinone-induced expression of cytochrome P450 2E1 mRNA dose-dependently. The present study suggests that resveratrol protected the cells against hydroquinone-induced toxicity through its antioxidant function and possibly suppressive effect on the expression of cytochrome P450 2E1. PMID:23202692

  20. Resveratrol inhibited hydroquinone-induced cytotoxicity in mouse primary hepatocytes.

    PubMed

    Wang, Da-Hong; Ootsuki, Yoshie; Fujita, Hirofumi; Miyazaki, Masahiro; Yie, Qinxia; Tsutsui, Ken; Sano, Kuniaki; Masuoka, Noriyoshi; Ogino, Keiki

    2012-09-19

    Hydroquinone (1,4-benzenediol) has been widely used in clinical situations and the cosmetic industry because of its depigmenting effects. Most skin-lightening hydroquinone creams contain 4%-5% hydroquinone. We have investigated the role of resveratrol in prevention of hydroquinone induced cytotoxicity in mouse primary hepatocytes. We found that 400 µM hydroquinone exposure alone induced apoptosis of the cells and also resulted in a significant drop of cell viability compared with the control, and pretreatment of resveratrol to a final concentration of 0.5 mM 1 h before hydroquinone exposure did not show a significant improvement in the survival rate of the hepatocytes, however, relatively higher concentrations of resveratrol (≥1 mM) inhibited apoptosis of the mouse primary hepatocytes and increased cell viability in a dose-dependent manner, and in particular the survival rate of the hepatocytes was recovered from 28% to near 100% by 5 mM resveratrol. Interestingly, pretreatment with resveratrol for longer time (24 h), even in very low concentrations (50 µM, 100 µM), blocked the damage of hydroquinone to the cells. We also observed that resveratrol pretreatment suppressed hydroquinone-induced expression of cytochrome P450 2E1 mRNA dose-dependently. The present study suggests that resveratrol protected the cells against hydroquinone-induced toxicity through its antioxidant function and possibly suppressive effect on the expression of cytochrome P450 2E1.

  1. Actin cytoskeleton as a putative target of the neem limonoid Azadirachtin A.

    PubMed

    Anuradha, Aritakula; Annadurai, Ramaswamy S; Shashidhara, L S

    2007-06-01

    Limonoids isolated from the Indian neem tree (Azadirachta indica) have been gaining global acceptance in agricultural applications and in contemporary medicine for their myriad but discrete properties. However, their mode of action is still not very well understood. We have studied the mode of action of Azadirachtin A, the major limonoid of neem seed extracts, using Drosophila melanogaster as the model system. Azadirachtin A induces moderate-to-severe phenotypes in different tissues in a dose-dependent manner. At the cellular level, Azadirachtin A induces depolymerization of Actin leading to arrest of cells and subsequently apoptosis in a caspase-independent manner. Azadirachtin A-induced phenotypes were rescued by the over-expression of Cyclin E in a tissue-dependent manner. Cyclin E, which caused global rescue of Azadirachtin A-induced phenotypes, also effected rearrangement of the actin filaments. These results suggest that probably actin is a target of Azadirachtin A activity.

  2. Hepatoprotective potential of ethanolic extract of Ziziphus oenoplia (L.) Mill roots against antitubercular drugs induced hepatotoxicity in experimental models.

    PubMed

    Rao, Ch V; Rawat, A K S; Singh, Anil P; Singh, Arpita; Verma, Neeraj

    2012-04-01

    To evaluate the hepatoprotective potential of ethanolic (50%) extract of Ziziphus oenoplia (L.) Mill (Z. oenoplia) root against isoniazid (INH) and rifampicin (RIF) induced liver damage in animal models. Five groups of six rats each were selected for the study. Ethanolic extract at a dose of 150 and 300 mg/kg as well as silymarin (100 mg/kg) were administered orally once daily for 21 d in INH + RIF treated groups. The serum levels of glutamic oxaloacetic transaminase (SGOT), glutamate pyruvate transaminase (SGPT), alkaline phosphatase (SALP), and bilirubin were estimated along with activities of superoxide dismutase, catalase, glutathione S-transferase, glutathione peroxidase, and hepatic melondialdehyde formation. Histopathological analysis was carried out to assess injury to the liver. The considerably elevated serum enzymatic activities of glutamic oxaloacetic transaminase, glutamate pyruvate transaminase, alkaline phosphatase and bilirubin due to INH + RIF treatment were restored towards normal in a dose dependent manner after the treatment with ethanolic extract of Z. oenoplia roots. Meanwhile, the decreased activities of superoxide dismutase, catalase, glutathione S-transferase and glutathione peroxidase were also restored towards normal dose dependently. In addition, ethanolic extract also significantly prevented the elevation of hepatic melondialdehyde formation in the liver of INH + RIF intoxicated rats in a dose dependent manner. The biochemical observations were supplemented with histopathological examination of rat liver sections. The results of this study strongly indicate that ethanolic extract of Z. oenoplia has a potent hepatoprotective action against INH + RIF induced hepatic damage in rats. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  3. Discovery of a small-molecule binder of the oncoprotein gankyrin that modulates gankyrin activity in the cell

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Anasuya; O'Connor, Cornelius J.; Zhang, Fengzhi; Galvagnion, Celine; Galloway, Warren R. J. D.; Tan, Yaw Sing; Stokes, Jamie E.; Rahman, Taufiq; Verma, Chandra; Spring, David R.; Itzhaki, Laura S.

    2016-04-01

    Gankyrin is an ankyrin-repeat oncoprotein whose overexpression has been implicated in the development of many cancer types. Elevated gankyrin levels are linked to aberrant cellular events including enhanced degradation of tumour suppressor protein p53, and inhibition of gankyrin activity has therefore been identified as an attractive anticancer strategy. Gankyrin interacts with several partner proteins, and a number of these protein-protein interactions (PPIs) are of relevance to cancer. Thus, molecules that bind the PPI interface of gankyrin and interrupt these interactions are of considerable interest. Herein, we report the discovery of a small molecule termed cjoc42 that is capable of binding to gankyrin. Cell-based experiments demonstrate that cjoc42 can inhibit gankyrin activity in a dose-dependent manner: cjoc42 prevents the decrease in p53 protein levels normally associated with high amounts of gankyrin, and it restores p53-dependent transcription and sensitivity to DNA damage. The results represent the first evidence that gankyrin is a “druggable” target with small molecules.

  4. Structure-Based Design of Orally Bioavailable 1H-Pyrrolo[3,2-c]pyridine Inhibitors of Mitotic Kinase Monopolar Spindle 1 (MPS1)

    PubMed Central

    2013-01-01

    The protein kinase MPS1 is a crucial component of the spindle assembly checkpoint signal and is aberrantly overexpressed in many human cancers. MPS1 is one of the top 25 genes overexpressed in tumors with chromosomal instability and aneuploidy. PTEN-deficient breast tumor cells are particularly dependent upon MPS1 for their survival, making it a target of significant interest in oncology. We report the discovery and optimization of potent and selective MPS1 inhibitors based on the 1H-pyrrolo[3,2-c]pyridine scaffold, guided by structure-based design and cellular characterization of MPS1 inhibition, leading to 65 (CCT251455). This potent and selective chemical tool stabilizes an inactive conformation of MPS1 with the activation loop ordered in a manner incompatible with ATP and substrate-peptide binding; it displays a favorable oral pharmacokinetic profile, shows dose-dependent inhibition of MPS1 in an HCT116 human tumor xenograft model, and is an attractive tool compound to elucidate further the therapeutic potential of MPS1 inhibition. PMID:24256217

  5. Structure-based design of orally bioavailable 1H-pyrrolo[3,2-c]pyridine inhibitors of mitotic kinase monopolar spindle 1 (MPS1).

    PubMed

    Naud, Sébastien; Westwood, Isaac M; Faisal, Amir; Sheldrake, Peter; Bavetsias, Vassilios; Atrash, Butrus; Cheung, Kwai-Ming J; Liu, Manjuan; Hayes, Angela; Schmitt, Jessica; Wood, Amy; Choi, Vanessa; Boxall, Kathy; Mak, Grace; Gurden, Mark; Valenti, Melanie; de Haven Brandon, Alexis; Henley, Alan; Baker, Ross; McAndrew, Craig; Matijssen, Berry; Burke, Rosemary; Hoelder, Swen; Eccles, Suzanne A; Raynaud, Florence I; Linardopoulos, Spiros; van Montfort, Rob L M; Blagg, Julian

    2013-12-27

    The protein kinase MPS1 is a crucial component of the spindle assembly checkpoint signal and is aberrantly overexpressed in many human cancers. MPS1 is one of the top 25 genes overexpressed in tumors with chromosomal instability and aneuploidy. PTEN-deficient breast tumor cells are particularly dependent upon MPS1 for their survival, making it a target of significant interest in oncology. We report the discovery and optimization of potent and selective MPS1 inhibitors based on the 1H-pyrrolo[3,2-c]pyridine scaffold, guided by structure-based design and cellular characterization of MPS1 inhibition, leading to 65 (CCT251455). This potent and selective chemical tool stabilizes an inactive conformation of MPS1 with the activation loop ordered in a manner incompatible with ATP and substrate-peptide binding; it displays a favorable oral pharmacokinetic profile, shows dose-dependent inhibition of MPS1 in an HCT116 human tumor xenograft model, and is an attractive tool compound to elucidate further the therapeutic potential of MPS1 inhibition.

  6. Bioactive compounds from crocodile (Crocodylus siamensis) white blood cells induced apoptotic cell death in hela cells.

    PubMed

    Patathananone, Supawadee; Thammasirirak, Sompong; Daduang, Jureerut; Chung, Jing Gung; Temsiripong, Yosapong; Daduang, Sakda

    2016-08-01

    Crocodile (Crocodylus siamensis) white blood cell extracts (WBCex) were examined for anticancer activity in HeLa cell lines using the MTT assay. The percentage viability of HeLa cells significantly deceased after treatment with WBCex in a dose- and time-dependent manner. The IC50 dose was suggested to be approximately 225 μg/mL protein. Apoptotic cell death occurred in a time-dependent manner based on investigation by flow cytometry using annexin V-FITC and PI staining. DAPI nucleic acid staining indicated increased chromatin condensation. Caspase-3, -8 and -9 activities also increased, suggesting the induction of the caspase-dependent apoptotic pathway. Furthermore, the mitochondrial membrane potential (ΔΨm ) of HeLa cells was lost as a result of increasing levels of Bax and reduced levels of Bcl-2, Bcl-XL, Bcl-Xs, and XIAP. The decreased ΔΨm led to the release of cytochrome c and the activation of caspase-9 and -3. Apoptosis-inducing factor translocated into the nuclei, and endonuclease G (Endo G) was released from the mitochondria. These results suggest that anticancer agents in WBCex can induce apoptosis in HeLa cells via both caspase-dependent and -independent pathways. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 986-997, 2016. © 2015 Wiley Periodicals, Inc.

  7. Inhibitory effects of epigallocatechin-3-gallate on cell proliferation and the expression of HIF-1α and P-gp in the human pancreatic carcinoma cell line PANC-1.

    PubMed

    Zhu, Zhenni; Wang, Yu; Liu, Zhiqing; Wang, Fan; Zhao, Qiu

    2012-05-01

    The aim of this study was to verify the inhibitory effects of epigallocatechin-3-gallate (EGCG) on cell proliferation and the expression of hypoxia-inducible factor 1 (HIF-1α) and multidrug resistance protein 1 (MDR1/P-gp) in the human pancreatic carcinoma cell line PANC-1, thereby, reversing drug resistance of pancreatic carcinoma and improving its sensitivity to cancer chemotherapy. The human pancreatic carcinoma cell line PANC-1 was incubated under hypoxic conditions with different concentrations of epigallocatechin-3-gallate (EGCG) for indicated hours. The effects of EGCG on the mRNA or protein expression of HIF-1α and MDR1 were determined by RT-PCR or western blotting. Cellular proliferation and viability assays were measured using Cell Counting Kit-8. Western blotting revealed that EGCG inhibits the expression of the HIF-1α protein in a dose-dependent manner, while RT-PCR showed that it does not have any effects on HIF-1α mRNA. In addition, EGCG attenuated the mRNA and protein levels of P-gp in a dose-dependent manner, reaching a peak at the highest concentration. Furthermore, EGCG inhibited the proliferation of PANC-1 cells in a concentration- and time-dependent manner. The attenuation of HIF-1α and the consequently reduced P-gp could contribute to the inhibitory effects of EGCG on the proliferation of PANC-1 cells.

  8. From topical antidote against skin irritants to a novel counter-irritating and anti-inflammatory peptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, Berta; Erlanger-Rosengarten, Avigail; Proscura, Elena

    2008-06-15

    The primary purpose of the present study was to investigate the mechanism of the counter-irritating activity of topical iodine against skin lesions induced by chemical and thermal stimuli. The hypothesis that iodine exerts its activity by inducing an endogenous anti-inflammatory factor was confirmed by exposing guinea pig skin to heat stimulus followed by topical iodine treatment and skin extraction. Injection of the extract into naive guinea pigs reduced heat-induced irritation by 69%. The protective factor, identified as a new nonapeptide (histone H2A 36-44, H-Lys-Gly-Asn-Tyr-Ala-Glu-Arg-Ileu-Ala-OH), caused reduction of 40% in irritation score in heat-exposed guinea pigs. The murine analog (H-Lys-Gly-His-Tyr-Ala-Glu-Arg-Val-Gly-OH, termedmore » IIIM1) reduced sulfur mustard (SM)-induced ear swelling at a dose-dependent bell-shape manner reaching peak activity of 1 mg/kg. Cultured keratinocytes transfected with the peptide were more resistant towards SM than the control cells. The peptide suppressed oxidative burst in activated neutrophils in a concentration-dependent manner. In addition, the peptide reduced glucose oxidase-induced skin edema in mice at a dose-dependent bell-shape manner. Apart from thermal and chemical-induced skin irritation this novel peptide might be of potential use in chronic dermal disorders such as psoriasis and pemphigus as well as non-dermal inflammatory diseases like multiple sclerosis, arthritis and colitis.« less

  9. Effects of methylmercury and alcohol exposure in Drosophila melanogaster: Potential risks in neurodevelopmental disorders.

    PubMed

    Chauhan, Ved; Chauhan, Abha

    2016-06-01

    Extensive evidence suggests the role of oxidative stress in autism and other neurodevelopmental disorders. In this study, we investigated whether methylmercury (MeHg) and/or alcohol exposure has deleterious effects in Drosophila melanogaster (fruit flies). A diet containing different concentrations of MeHg in Drosophila induced free radical generation and increased lipid peroxidation (markers of oxidative stress) in a dose-dependent manner. This effect of MeHg on oxidative stress was enhanced by further exposure to alcohol. It was observed that alcohol alone could also induce free radical generation in flies. After alcohol exposure, MeHg did not affect the immobilization of flies, but it increased the recovery time in a concentration-dependent manner. MeHg significantly inhibited the activity of alcohol dehydrogenase (ADH) in a dose-dependent manner. Linear regression analysis showed a significant negative correlation between ADH activity and recovery time upon alcohol exposure in the flies fed a diet with MeHg. This relationship between ADH activity and recovery time after alcohol exposure was confirmed by adding 4-methyl pyrazole (an inhibitor of ADH) to the diet for the flies. These results suggest that consumption of alcohol by pregnant mothers who are exposed to MeHg may lead to increased oxidative stress and to increased length of time for alcohol clearance, which may have a direct impact on the development of the fetus, thereby increasing the risk of neurodevelopmental disorders. Published by Elsevier Ltd.

  10. GESTATIONAL PFOA EXPOSURE OF MICE IS ASSOCIATED WITH ALTERED MAMMARY GLAND DEVELOPMENT IN DAMS AND FEMALE OFFSPRING

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA), with diverse and widespread commercial and industrial applications, has been detected in human and wildlife sera. Previous mouse studies linked prenatal PFOA exposure to decreased neonatal body weights (BWs) and survival in a dose-dependent manner. ...

  11. Melanogenesis-inducing effect of cirsimaritin through increases in microphthalmia-associated transcription factor and tyrosinase expression.

    PubMed

    Kim, Hyo Jung; Kim, Il Soon; Dong, Yin; Lee, Ik-Soo; Kim, Jin Sook; Kim, Jong-Sang; Woo, Je-Tae; Cha, Byung-Yoon

    2015-04-20

    The melanin-inducing properties of cirsimaritin were investigated in murine B16F10 cells. Cirsimaritin is an active flavone with methoxy groups, which is isolated from the branches of Lithocarpus dealbatus. Tyrosinase activity and melanin content in murine B16F10 melanoma cells were increased by cirsimaritin in a dose-dependent manner. Western blot analysis revealed that tyrosinase, tyrosinase-related protein (TRP) 1, TRP2 protein levels were enhanced after treatment with cirsimaritin for 48 h. Cirsimaritin also upregulated the expression of microphthalmia-associated transcription factor (MITF) after 24 h of treatment. Furthermore, cirsimaritin induced phosphorylation of cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) in a dose-dependent manner after treatment for 15 min. The cirsimaritin-mediated increase of tyrosinase activity was significantly attenuated by H89, a cAMP-dependent protein kinase A inhibitor. These findings indicate that cirsimaritin stimulates melanogenesis in B16F10 cells by activation of CREB as well as upregulation of MITF and tyrosinase expression, which was activated by cAMP signaling. Finally, the melanogenic effect of cirsimaritin was confirmed in human epidermal melanocytes. These results support the putative application of cirsimaritin in ultraviolet photoprotection and hair coloration treatments.

  12. Arsenic disulfide induced apoptosis and concurrently promoted erythroid differentiation in cytokine-dependent myelodysplastic syndrome-progressed leukemia cell line F-36p with complex karyotype including monosomy 7.

    PubMed

    Hu, Xiao-mei; Tanaka, Sachiko; Onda, Kenji; Yuan, Bo; Toyoda, Hiroo; Ma, Rou; Liu, Feng; Hirano, Toshihiko

    2014-05-01

    Acute myeloid leukemia progressed from myelodysplastic syndrome (MDS/AML) is generally incurable with poor prognosis for complex karyotype including monosomy 7 (-7). Qinghuang Powder (, QHP), which includes Qing Dai (Indigo naturalis) and Xiong Huang (realgar) in the formula, is effective in treating MDS or MDS/AML even with the unfavorable karyotype, and its therapeutic efficacy could be enhanced by increasing the Xiong huang content in the formula, while Xiong huang contains > 90% arsenic disulfide (As2S2). F-36p cell line was established from a MDS/AML patient with complex karyotype including -7, and was in cytokine-dependent. The present study was to investigate the effects of As2S2 on F-36p cells. Cell proliferation was measured by an 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Cell apoptosis was identified by Annexin V-staining. Cell viability was determined by a propidium iodide (PI) exclusion. Erythroid differentiation was evaluated by the expression of cell surface antigen CD235a (GpA). After treatment with As2S2 at concentrations of 0.5 to 16 μmol/L for 72 h, As2S2 inhibited the proliferation of F-36p cells. The 50% inhibitory concentrations (IC50) of As2S2 against the proliferation of F-36p cells was 6 μmol/L. The apoptotic cells significantly increased in a dose-dependent mannar (P<0.05). The cell viabilities were significantly inhibited by As2S2 dose-dependent in a dose-dependent manner (P<0.05). Significant increases of CD235a-positive cells were concurrently observed (P<0.05) also in a dose-dependent manner. As2S2 could inhibit proliferation and viability, induce apoptosis, and concurrently promote erythroid differentiation dose-dependently in F-36p cells. As2S2 can inhibit proliferation and viability, induce apoptosis, and concurrently promote erythroid differentiation in cytokine-dependent MDS-progressed human leukemia cell line F-36p with complex karyotype including -7. The data suggest that QHP and/or As2S2 could be a potential candidate in the treatment of MDS or MDS/AML even with unfavorable cytogenetics.

  13. In vivo antimalarial activity of crude extracts and solvent fractions of leaves of Strychnos mitis in Plasmodium berghei infected mice.

    PubMed

    Fentahun, Selamawit; Makonnen, Eyasu; Awas, Tesfaye; Giday, Mirutse

    2017-01-05

    Malaria is a major public health problem in the world which is responsible for death of millions particularly in sub-Saharan Africa. Today, the control of malaria has become gradually more complex due to the spread of drug-resistant parasites. Medicinal plants are the unquestionable source of effective antimalarials. The present study aimed to evaluate antiplasmodial activity and acute toxicity of the plant Strychnos mitis in Plasmodium berghei infected mice. Standard procedures were employed to investigate acute toxicity and 4-day suppressive effect of crude aqueous and hydro-methanolic extracts of the leaves of Strychnos mitis against P. berghei in Swiss albino mice. Water, n-hexane and chloroform fractions, obtained from crude hydro-methanolic extract, were also tested for their suppressive effect against P. berghei. All crude extracts revealed no obvious acute toxicity in mice up to the highest dose administered (2000 mg/kg). All crude and solvent fractions of the leaves of Strychnos mitis inhibited parasitaemia significantly (p < 0.01). At the highest dose of 600 mg/kg, both aqueous and hydro-methanolic extracts demonstrated higher performance with 95.5 and 93.97% parasitaemia suppression, respectively. All doses of crude extracts and fractions of leaves of Strychnos mitis prolonged survival time of infected mice dose dependently. The highest two doses of the crude aqueous and hydro-methanolic extracts, and chloroform and aqueous fractions prevented weight loss in a dose dependent manner. Whereas, all doses of n-hexane fraction prevented loss of body weight but not in a dose dependent manner. The crude aqueous extract at the doses of 400 mg/kg and 600 mg/kg and hydro-methanolic extract at all dose levels significantly (p < 0.01) prevented packed cell volume reduction. Crude aqueous extract at a dose of 600 mg/kg and hydro-methanolic extract at all dose levels significantly prevented temperature reduction. Phytochemical screening of the crude aqueous and hydro-methanolic extracts revealed the presence of alkaloids, anthraquinones, glycosides, terpenoids, saponins, tannins and phenols. The results of this study provide support the traditional therapeutic use of Strychnos mitis for treatment of malaria. However, further in-depth study is needed to evaluate the potential of the plant towards the development of new antimalarial agent.

  14. Scorpion (Odontobuthus doriae) venom induces apoptosis and inhibits DNA synthesis in human neuroblastoma cells.

    PubMed

    Zargan, Jamil; Sajad, Mir; Umar, Sadiq; Naime, M; Ali, Shakir; Khan, Haider A

    2011-02-01

    Scorpion and its organs have been used to cure epilepsy, rheumatism, and male impotency since medieval times. Scorpion venom which contains different compounds like enzyme and non-enzyme proteins, ions, free amino acids, and other organic inorganic substances have been reported to posses antiproliferative, cytotoxic, apoptogenic, and immunosuppressive properties. We for the first time report the apoptotic and antiproliferative effects of scorpion venom (Odontobuthus doriae) in human neuroblastoma cells. After exposure of cells to medium containing varying concentrations of venom (10, 25, 50, 100, and 200 μg/ml), cell viability decreased to 90.75, 75.53, 55.52, 37.85, and 14.30%, respectively, after 24 h. Cells expressed morphological changes like swelling, inhibition of neurite outgrowth, irregular shape, aggregation, rupture of membrane, and release of cytosolic contents after treatment with venom. Lactate dehydrogenase (LDH) level increased in 50 and 100 μg/ml as compared to control, but there was no significant increase in LDH level at a dose of 10 and 20 μg/ml. Two concentrations viz. 50 and 100 μ/ml were selected because of the profound effect of these concentrations on the cellular health and population. Treatment with these two concentrations induced reactive nitrogen intermediates and depolarization in mitochondria. While caspase-3 activity increased in a concentration-dependent manner, only 50 μg/ml was able to fragment DNA. It was interesting to note that at higher dose, i.e., 100 μg/ml, the cells were killed, supposedly by acute necrosis. DNA synthesis evidenced by bromodeoxyuridine (BrdU) incorporation was inhibited in a concentration-dependent manner. The cells without treatment incorporated BrdU with high affinity confirming their cancerous nature whereas very less incorporation was noticed in treated cells. Our results show apoptotic and antiproliferative potential of scorpion venom (O. doriae) in human neuroblastoma cells. These properties make scorpion venom a valuable therapeutic agent in cancer research.

  15. Intravenous administration of bone marrow-derived multipotent mesenchymal stromal cells enhances the recruitment of CD11b{sup +} myeloid cells to the lungs and facilitates B16-F10 melanoma colonization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souza, Lucas E.B., E-mail: lucasebsouza@usp.br; Hemotherapy Center of Ribeirão Preto, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP; Almeida, Danilo C., E-mail: gudaalmeida@gmail.com

    The discovery that the regenerative properties of bone marrow multipotent mesenchymal stromal cells (BM-MSCs) could collaterally favor neoplastic progression has led to a great interest in the function of these cells in tumors. However, the effect of BM-MSCs on colonization, a rate-limiting step of the metastatic cascade, is unknown. In this study, we investigated the effect of BM-MSCs on metastatic outgrowth of B16-F10 melanoma cells. In in vitro experiments, direct co-culture assays demonstrated that BM-MSCs stimulated the proliferation of B16-F10 cells in a dose-dependent manner. For in vivo experiments, luciferase-expressing B16-F10 cells were injected through tail vein and mice weremore » subsequently treated with four systemic injections of BM-MSCs. In vivo bioluminescent imaging during 16 days demonstrated that BM-MSCs enhanced the colonization of lungs by B16-F10 cells, which correlated with a 2-fold increase in the number of metastatic foci. Flow cytometry analysis of lungs demonstrated that although mice harboring B16-F10 metastases displayed more endothelial cells, CD4 T and CD8 T lymphocytes in the lungs in comparison to metastases-free mice, BM-MSCs did not alter the number of these cells. Interestingly, BM-MSCs inoculation resulted in a 2-fold increase in the number of CD11b{sup +} myeloid cells in the lungs of melanoma-bearing animals, a cell population previously described to organize “premetastatic niches” in experimental models. These findings indicate that BM-MSCs provide support to B16-F10 cells to overcome the constraints that limit metastatic outgrowth and that these effects might involve the interplay between BM-MSCs, CD11b{sup +} myeloid cells and tumor cells. - Highlights: • BM-MSCs enhanced B16-F10 proliferation in a dose-dependent manner in vitro. • BM-MSCs facilitated lung colonization by B16-F10 melanoma cells. • BM-MSCs administration did not alter the number of endothelial cells and T lymphocytes in the lungs. • BM-MSCs enhanced the recruitment of CD11b{sup +} myeloid cells during tumor colonization.« less

  16. Antioxidant and anticancer activity of Artemisia princeps var. orientalis extract in HepG2 and Hep3B hepatocellular carcinoma cells

    PubMed Central

    Choi, Eun-Jeong

    2013-01-01

    Objective The aim of the present study was to investigate antioxidant and the anticancerigen activity of a methanol extract from Artemisia princeps var. orientalis (APME), a well-known traditional herbal medicine in Asia, in hepatocellular cancer cells. Methods To evaluate the antioxidant activity of APME, reactive oxygen species (ROS) and the antioxidant enzymes, superoxide dismutase (SOD) and catalase were investigated in HepG2 cells exposed to APME (5, 100, and 200 µg/mL) for 72 h. Then, to evaluate the anticancer activity of APME, we investigated the proliferation and apoptosis induction of HepG2 and Hep3B cells exposed to APME (1-200 µg/mL) for 24, 48, and 72 h. Results APME dose-dependently reduced the generation of ROS in the presence of H2O2 compared with control cells. Furthermore, it increased catalase and SOD activity. Moreover, APME inhibited cell proliferation in a dose- and time-dependent manner, but at concentrations lower than 100 µg/mL, the inhibition was less dose-dependent than time-dependent. HepG2 and Hep3B cells exposed to 5, 100, and 200 µg/mL APME for 72 h underwent cell cycle arrest and apoptosis. Exposure to APME resulted in a significant increase in the number of cells in G1 phase and a decrease in the G2/M phase cell population. In addition, APME induced P53 expression of HepG2 cells in a dose-dependent manner, and played a role in the downregulation of Bcl-2 and upregulation of Bax in both HepG2 and Hep3B cells. Conclusions These results indicate the potential role of APME as an antioxidant and anticancerigen agent in hepatocarcinoma cell lines. PMID:24255577

  17. Antimalarial Activity of Orally Administered Curcumin Incorporated in Eudragit®-Containing Liposomes.

    PubMed

    Martí Coma-Cros, Elisabet; Biosca, Arnau; Lantero, Elena; Manca, Maria Letizia; Caddeo, Carla; Gutiérrez, Lucía; Ramírez, Miriam; Borgheti-Cardoso, Livia Neves; Manconi, Maria; Fernàndez-Busquets, Xavier

    2018-05-04

    Curcumin is an antimalarial compound easy to obtain and inexpensive, having shown little toxicity across a diverse population. However, the clinical use of this interesting polyphenol has been hampered by its poor oral absorption, extremely low aqueous solubility and rapid metabolism. In this study, we have used the anionic copolymer Eudragit ® S100 to assemble liposomes incorporating curcumin and containing either hyaluronan (Eudragit-hyaluronan liposomes) or the water-soluble dextrin Nutriose ® FM06 (Eudragit-nutriosomes). Upon oral administration of the rehydrated freeze-dried nanosystems administered at 25/75 mg curcumin·kg −1 ·day −1 , only Eudragit-nutriosomes improved the in vivo antimalarial activity of curcumin in a dose-dependent manner, by enhancing the survival of all Plasmodium yoelii -infected mice up to 11/11 days, as compared to 6/7 days upon administration of an equal dose of the free compound. On the other hand, animals treated with curcumin incorporated in Eudragit-hyaluronan liposomes did not live longer than the controls, a result consistent with the lower stability of this formulation after reconstitution. Polymer-lipid nanovesicles hold promise for their development into systems for the oral delivery of curcumin-based antimalarial therapies.

  18. Chlorogenic Acid Inhibits Human Platelet Activation and Thrombus Formation

    PubMed Central

    Fuentes, Eduardo; Caballero, Julio; Alarcón, Marcelo; Rojas, Armando; Palomo, Iván

    2014-01-01

    Background Chlorogenic acid is a potent phenolic antioxidant. However, its effect on platelet aggregation, a critical factor in arterial thrombosis, remains unclear. Consequently, chlorogenic acid-action mechanisms in preventing platelet activation and thrombus formation were examined. Methods and Results Chlorogenic acid in a dose-dependent manner (0.1 to 1 mmol/L) inhibited platelet secretion and aggregation induced by ADP, collagen, arachidonic acid and TRAP-6, and diminished platelet firm adhesion/aggregation and platelet-leukocyte interactions under flow conditions. At these concentrations chlorogenic acid significantly decreased platelet inflammatory mediators (sP-selectin, sCD40L, CCL5 and IL-1β) and increased intraplatelet cAMP levels/PKA activation. Interestingly, SQ22536 (an adenylate cyclase inhibitor) and ZM241385 (a potent A2A receptor antagonist) attenuated the antiplatelet effect of chlorogenic acid. Chlorogenic acid is compatible to the active site of the adenosine A2A receptor as revealed through molecular modeling. In addition, chlorogenic acid had a significantly lower effect on mouse bleeding time when compared to the same dose of aspirin. Conclusions Antiplatelet and antithrombotic effects of chlorogenic acid are associated with the A2A receptor/adenylate cyclase/cAMP/PKA signaling pathway. PMID:24598787

  19. Dose-dependent effects of lesogaberan on reflux measures in patients with refractory gastroesophageal reflux disease: a randomized, placebo-controlled study.

    PubMed

    Miner, Philip B; Silberg, Debra G; Ruth, Magnus; Miller, Frank; Pandolfino, John

    2014-11-18

    The γ-aminobutyric acid type B-receptor agonist lesogaberan (AZD3355) has been developed for use in patients with gastroesophageal reflux disease (GERD) symptoms despite proton pump inhibitor (PPI) therapy (partial responders). This study aimed to explore the dose-response effect of lesogaberan on reflux episodes in partial responders. In this randomized, single-centre, double-blind, crossover, placebo-controlled study, partial responders taking optimised PPI therapy were given 30, 90, 120 and 240 mg doses of lesogaberan. Each dose was given twice (12 h apart) during a 24-h period, during which impedance-pH measurements were taken. Twenty-five patients were included in the efficacy analysis and 27 in the safety analysis. The effect of lesogaberan on the mean number of reflux episodes was dose-dependent, and all doses significantly reduced the mean number of reflux episodes relative to placebo. Lesogaberan also dose-dependently reduced the mean number of acid reflux episodes (except the 30 mg dose) and weakly acid reflux episodes (all doses) significantly, relative to placebo. Regardless of dose, lesogaberan had a similar effect on the percentage of time with esophageal pH < 4 [mean reduction: 68.5% (30 mg), 54.2% (90 mg), 65.9% (120 mg), 72.1% (240 mg); p < 0.05 except 90 mg dose]. No adverse events led to discontinuation and no serious adverse events occurred during active treatment. Lesogaberan inhibited reflux in a dose-dependent manner in partial responders taking optimised PPI therapy, and these effects were significant versus placebo. All lesogaberan doses were well tolerated and were not associated with clinically relevant adverse events. ClinicalTrials.gov identifier: NCT01043185.

  20. Dose effect on the uptake and accumulation of hydroxytyrosol and its metabolites in target tissues in rats.

    PubMed

    López de las Hazas, Maria-Carmen; Rubió, Laura; Kotronoulas, Aristotelis; de la Torre, Rafael; Solà, Rosa; Motilva, Maria-José

    2015-07-01

    Hydroxytyrosol (HT) is the most prominent phenolic compound of virgin olive oil and due to its scientifically validated biological activities it is entering to the market as a potentially useful supplement for cardiovascular disease prevention. The aim of the present study was to investigate the relationship between the HT dose intake and its tissue uptake in rats, and thus, providing complementary information in relation to the target-dose relationship. Rats were given a refined olive oil enriched with HT at different doses (1, 10, and 100 mg/kg) and they were sacrificed after 5 h to ensure the cell tissue uptake of HT and its metabolites. Plasma samples and different organs as liver, kidney, heart and brain were obtained, and HT metabolites were analyzed by UPLC-MS/MS. The results showed that HT and its metabolites could be accumulated in a dose-dependent manner basically in the liver, kidney, and brain and were detected in these tissues even at nutritionally relevant human doses. The detection of free HT in liver and kidney was noteworthy. To date, this appears to be the only biologically active form, and thus, it provides relevant information for optimizing the potential applications of HT to prevent certain hepatic and renal diseases. In recent years, HT and its derivatives have led to a great interest from the virgin olive oil producers and manufacturers of nutraceutical supplements. The increasing interest in HT is mainly due to the European Food Safety Agency (EFSA) Panel on Dietetic Products, Nutrition, and Allergies (NDA) scientific opinion that established a cause-and-effect relationship between the consumption of olive oil polyphenols and protection of LDL particles from oxidative damage . Based on this positive opinion, the health claim "Olive oil polyphenols contribute to the protection of blood lipids from oxidative stress" was included in the list of health claims , being the only authorized health claim in the European Union regarding polyphenols and health. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Ethanolic Neem (Azadirachta indica) Leaf Extract Prevents Growth of MCF-7 and HeLa Cells and Potentiates the Therapeutic Index of Cisplatin

    PubMed Central

    Sharma, Chhavi; Vas, Andrea J.; Goala, Payal; Gheewala, Taher M.; Rizvi, Tahir A.

    2014-01-01

    The present study was designed to gain insight into the antiproliferative activity of ethanolic neem leaves extract (ENLE) alone or in combination with cisplatin by cell viability assay on human breast (MCF-7) and cervical (HeLa) cancer cells. Nuclear morphological examination and cell cycle analysis were performed to determine the mode of cell death. Further, to identify its molecular targets, the expression of genes involved in apoptosis, cell cycle progression, and drug metabolism was analyzed by RT-PCR. Treatment of MCF-7, HeLa, and normal cells with ENLE differentially suppressed the growth of cancer cells in a dose- and time-dependent manner through apoptosis. Additionally, lower dose combinations of ENLE with cisplatin resulted in synergistic growth inhibition of these cells compared to the individual drugs (combination index <1). ENLE significantly modulated the expression of bax, cyclin D1, and cytochrome P450 monooxygenases (CYP 1A1 and CYP 1A2) in a time-dependent manner in these cells. Conclusively, these results emphasize the chemopreventive ability of neem alone or in combination with chemotherapeutic treatment to reduce the cytotoxic effects on normal cells, while potentiating their efficacy at lower doses. Thus, neem may be a prospective therapeutic agent to combat gynecological cancers. PMID:24624140

  2. Evaluation of the reversal of multidrug resistance by MDR1 ribonucleic acid interference in a human colon cancer model using a Renilla luciferase reporter gene and coelenterazine.

    PubMed

    Jeon, Yong Hyun; Bae, Seon-ae; Lee, Yong Jin; Lee, You La; Lee, Sang-Woo; Yoon, Ghil-Suk; Ahn, Byeong-Cheol; Ha, Jeoung-Hee; Lee, Jaetae

    2010-12-01

    The reversal effect of multidrug resistance (MDR1) gene expression by adenoviral vector-mediated MDR1 ribonucleic acid interference was assessed in a human colon cancer animal model using bioluminescent imaging with Renilla luciferase (Rluc) gene and coelenterazine, a substrate for Rluc or MDR1 gene expression. A fluorescent microscopic examination demonstrated an increased green fluorescent protein signal in Ad-shMDR1- (recombinant adenovirus that coexpressed MDR1 small hairpin ribonucleic acid [shRNA] and green fluorescent protein) infected HCT-15/Rluc cells in a virus dose-dependent manner. Concurrently, with an increasing administered virus dose (0, 15, 30, 60, and 120 multiplicity of infection), Rluc activity was significantly increased in Ad-shMDR1-infected HCT-15/Rluc cells in a virus dose-dependent manner. In vivo bioluminescent imaging showed about 7.5-fold higher signal intensity in Ad-shMDR1-infected tumors than in control tumors (p < .05). Immunohistologic analysis demonstrated marked reduction of P-glycoprotein expression in infected tumor but not in control tumor. In conclusion, the reversal of MDR1 gene expression by MDR1 shRNA was successfully evaluated by bioluminescence imaging with Rluc activity using an in vivo animal model with a multidrug resistance cancer xenograft.

  3. Red-koji fermented red ginseng ameliorates high fat diet-induced metabolic disorders in mice.

    PubMed

    Kim, Chang Man; Yi, Seong Joon; Cho, Il Je; Ku, Sae Kwang

    2013-10-30

    Fermentation of medicinal herbs improves their pharmacological efficacy. In this study, we investigated the effects of red-koji fermented red ginseng (fRG) on high-fat diet (HFD)-mediated metabolic disorders, and those effects were compared to those of non-fermented red ginseng (RG). fRG (500, 250 or 125 mg/kg), RG (250 mg/kg), simvastatin (10 mg/kg), silymarin (100 mg/kg) and metformin (250 mg/kg) were orally administered from 1 week after initiation of HFD supply for 84 days. The diameter of adipocytes in periovarian and abdominal fat pads and the thickness of the abdominal fat were significantly decreased by fRG treatment, while HFD-mediated weight gain was partly alleviated by fRG in a dose-dependent manner. Moreover, biochemical and histomorphometrical analyses clearly indicated that fRG significantly inhibited HFD-induced metabolic disorders such as hyperglycemia, hyperlipidemia, hepatopathy and nephropathy in a dose-dependent manner. More favorable pharmacological effects on HFD-mediated metabolic disorders were also observed with fRG compared to an equal dose of RG. This finding provides direct evidence that the pharmacological activities of RG were enhanced by red-koji fermentation, and fRG could be a neutraceutical resource for the alleviation of obesity-mediated metabolic disorders.

  4. In vitro anticancer activities of osthole against renal cell carcinoma cells.

    PubMed

    Liu, Lei; Mao, Jun; Wang, Qifei; Zhang, Zhiwei; Wu, Guangzhen; Tang, Qizhen; Zhao, Bin; Li, Lianhong; Li, Quanlin

    2017-10-01

    Renal cell carcinoma (RCC) is a common urinary malignancy that is resistant to chemotherapy and radiotherapy. Osthole, a monomer compound extracted from a traditional Chinese herb, has potent anti-tumor effects on various types of cancer cells. However, the therapeutic effects of osthole on RCC remain unclear. In our study, osthole could suppress the proliferation and colony formation of two RCC cell lines, ACHN and 786-O cells, in a dose-dependent manner. Treatment with osthole resulted in a significant, dose-dependent increase in the expression of pro-apoptotic proteins (cleaved caspase-3 and Bax) and decreased expression of anti-apoptotic proteins (Bcl-2 and survivin), which were consistent with evidence of apoptotic nuclear morphology revealed by DAPI staining. Pre-treatment with osthole attenuated the migratory and invasive abilities of RCC cells in a dose-dependent manner, as evidenced by a reduction in migrating cells in a Transwell assay and a decreased wound closure ratio in a scratch assay as compared with the control. Additionally, osthole down-regulated the expression of migration/invasion-related proteins matrix metalloproteinase (MMP)-2 and MMP-9. Osthole significantly up-regulated epithelial biomarkers (E-cadherin and beta-catenin) and down-regulated mesenchymal biomarkers (N-cadherin and vimentin). Furthermore, our results suggest that osthole suppressed the expression of epithelial-mesenchymal transition transcriptional factors Smad-3, Snail-1, and Twist-1. Taken together, the results of this study suggest that osthole might be a potential novel herbal agent against RCC. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Force properties of skinned cardiac muscle following increasing volumes of aerobic exercise in rats.

    PubMed

    Boldt, Kevin Rudi; Rios, Jaqueline Lourdes; Joumaa, Venus; Herzog, Walter

    2018-05-03

    The positive effects of chronic endurance exercise training on health and performance have been well documented. These positive effects have been evaluated primarily at the structural level, and work has begun to evaluate mechanical adaptations of the myocardium. However, it remains poorly understood how the volume of exercise training affects cardiac adaptation. In order to gain some understanding, we subjected three-month-old Sprague-Dawley rats (N=23) to treadmill running for eleven weeks at one of three exercise volumes (moderate, high, and extra high). Following training, hearts were excised and mechanical testing was completed on skinned trabecular fiber bundles. Performance on a maximal fitness test was dose-dependent upon training volume, where greater levels of training led to greater performance. No differences were observed between animals from any group for active stress production. Heart mass and passive stress increases in a dose-dependent manner for animals in the control, moderate, and high duration groups. However, hearts from animals in the extra high duration group presented with inhibited responses for heart mass and passive stress, despite performing greatest on a graded treadmill fitness test. These results suggest that heart mass and passive stress adapt in a dose-dependent manner, until exercise becomes excessive and adaptation is inhibited. Our findings are in agreement with the beneficial role exercise has in cardiac adaptation. However, excessive exercise comes with risks of maladaptation which must be weighed against the desire to increase performance.

  6. Adiponectin influences progesterone production from MA-10 Leydig cells in a dose-dependent manner.

    PubMed

    Landry, David; Paré, Aurélie; Jean, Stéphanie; Martin, Luc J

    2015-04-01

    Obesity in men is associated with lower testosterone levels, related to reduced sperm concentration and the development of various diseases with aging. Hormones produced by the adipose tissue may have influences on both metabolism and reproductive function. Among them, the production and secretion of adiponectin is inversely correlated to total body fat. Adiponectin receptors (AdipoR1 and AdipoR2) have been found to be expressed in testicular Leydig cells (producing testosterone). Since StAR and Cyp11a1 are essential for testosterone synthesis and adiponectin has been shown to regulate StAR mRNA in swine granulosa cells, we hypothesized that adiponectin might also regulate these genes in Leydig cells. Our objective was to determine whether adiponectin regulates StAR and Cyp11a1 genes in Leydig cells and to better define its mechanisms of action. Methods used in the current study are qPCR for the mRNA levels, transfections for promoter activities, and enzyme-linked immunosorbent assay for the progesterone concentration. We have found that adiponectin cooperates with cAMP-dependent stimulation to activate StAR and Cyp11a1 mRNA expressions in a dose-dependent manner in MA-10 Leydig cells as demonstrated by transfection of a luciferase reporter plasmid. These results led to a significant increase in progesterone production from MA-10 cells. Thus, our data suggest that high doses of adiponectin typical of normal body weight may promote testosterone production from Leydig cells.

  7. In vitro effects of diethylstilbestrol, genistein, 4-tert-butylphenol, and 4-tert-octylphenol on steroidogenic activity of isolated immature rat ovarian follicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myllymaeki, Sari; Haavisto, Tapio; Vainio, Minna

    2005-04-01

    Isolated rat ovarian follicles grow and produce steroid hormones in vitro and so provide a good model for studying the effects of hormonally active compounds on follicular steroidogenesis. We have evaluated the effects of diethylstilbestrol (DES), genistein (GEN) and two alkylphenols, 4-tert-butylphenol (BP) and 4-tert-octylphenol (OP) on the growth, survival, and steroid hormone and cAMP production by isolated 14-day-old rat (Sprague-Dawley) ovarian follicles. During a 5-day culture, FSH was obligatory for follicle growth and increased estradiol and testosterone secretion in a dose-dependent manner. DES (10{sup -6} M) caused the strongest decline in estradiol and testosterone levels but did not havemore » detectable effects on either cAMP production or aromatase enzyme activity. GEN caused a prominent decrease in cAMP and testosterone levels without significant changes in secreted estradiol. The latter, apparently, was due to a dose-dependent stimulation of aromatase enzyme activity in the presence of genistein. Both BP and OP decreased estradiol and testosterone secretion in a dose-dependent manner while no effect on aromatase activity was observed. OP, unlike BP, decreased forskolin-induced cAMP levels. Xenoestrogens at the used concentrations did not interfere with the growth and survival of the follicles. The results indicate that isolated ovarian follicles representing intact morphological and functional units offer a sensitive model system for elucidating the female-specific reproductive effects of environmental chemicals.« less

  8. Pharmacokinetics of escin Ia in rats after intravenous administration.

    PubMed

    Wu, Xiu-Jun; Cui, Xiang-Yong; Tian, Lian-tian; Gao, Feng; Guan, Xin; Gu, Jing-Kai

    2014-10-28

    Escin, a natural mixture of triterpene saponins, is commonly utilized for the treatment of chronic venous insufficiency, hemorrhoids, inflammation and edema. Escin Ia is the chief active ingredient in escin and plays key role in mediating its pharmacological effects. Adequate pharmacokinetic data are essential for proper application of escin agent in clinical practice. However, pharmacokinetic properties of escin Ia are still poorly understood and this conflicts with the growing use of escin agent over the years. The goal of this study is to investigate the pharmacokinetic behavior of escin Ia in rats after low, medium and high-dose intravenous administration. Wistar rats were divided into 3 groups (n=6 per group) and escin Ia was administered via the caudal vein at doses of 0.5, 1.0 and 2.0 mg/kg, respectively. Subsequently, the concentrations of escin Ia and its metabolite isoescin Ia, a positional isomer of escin Ia, in rats׳ plasma were measured by an established liquid chromatography tandem mass spectrometry (LC-MS/MS) method at various time points following the administration of the drug. Main pharmacokinetic parameters were calculated by non-compartmental analysis using the TopFit 2.0 software package (Thomae GmbH, Germany). After intravenous administration, the Cmax and AUC of escin Ia increased in a dose-proportional manner at the dose of 0.5 mg/kg and 1.0 mg/kg, while increased in a more than dose-proportional manner at the doses of 1.0 mg/kg and 2.0 mg/kg. The t₁/₂ was significantly longer with increased intravenous doses, while other parameters such as CL and Vd also exhibit disagreement among three doses. Taken together, our data showed dose-dependent pharmacokinetic profile of escin Ia in rats after intravenous administration at the doses of 0.5-2.0 mg/kg. After intravenous administration, escin Ia was rapidly and extensively converted to isoescin Ia. The results suggested dose-dependent pharmacokinetics of escin Ia at the doses of 0.5-2.0 mg/kg after intravenous administration. Escin Ia is isomerized to isoescin Ia rapidly and extensively regardless of the doses. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Direct interaction between caffeic acid phenethyl ester and human neutrophil elastase inhibits the growth and migration of PANC-1 cells.

    PubMed

    Duan, Jianhui; Xiaokaiti, Yilixiati; Fan, Shengjun; Pan, Yan; Li, Xin; Li, Xuejun

    2017-05-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignant tumors of the digestive system, but the mechanisms of its development and progression are unclear. Inflammation is thought to be fundamental to pancreatic cancer development and caffeic acid phenethyl ester (CAPE) is an active component of honey bee resin or propolis with anti-inflammatory and anticancer activities. We investigated the inhibitory effects of CAPE on cell growth and migration induced by human neutrophil elastase (HNE) and report that HNE induced cancer cell migration at low doses and growth at higher doses. In contrast, lower CAPE doses inhibited migration and higher doses of CAPE inhibited the growth induced by HNE. HNE activity was significantly inhibited by CAPE (7.5-120 µM). Using quantitative real-time PCR and western blotting, we observed that CAPE (18-60 µM) did not affect transcription and translation of α1-antitrypsin (α1-AT), an endogenous HNE inhibitor. However, in an in silico drug target docking model, we found that CAPE directly bound to the binding pocket of HNE (25.66 kcal/mol) according to CDOCKER, and the residue of the catalytic site stabilized the interaction between CAPE and HNE as evidenced by molecular dynamic simulation. Response unit (RU) values of surface plasmon resonance (SPR) significantly increased with incremental CAPE doses (7.5-120 µM), indicating that CAPE could directly bind to HNE in a concentration-dependent manner. Thus, CAPE is an effective inhibitor of HNE via direct interaction whereby it inhibits the migration and growth of PANC-1 cells in a dose-dependent manner.

  10. Tier-2 studies on monocrotaline immunotoxicity in C57BL/6 mice.

    PubMed

    Deyo, J A; Kerkvliet, N I

    1991-01-01

    Monocrotaline (MCT) is a member of a class of naturally occurring phytotoxins known as pyrrolizidine alkaloids, and is a toxicological concern to both man and his livestock. The purpose of these studies was to evaluate the effect of a 14-day oral MCT (0-100 mg/kg per day) exposure on the functional integrity of various immunocyte effector systems in C57BL/6 mice, as well as to investigate potential mechanisms for its immunotoxicity. Decreases in lymphoid organ weights and cellularity, and resident peritoneal exudate cell (PEC) number were only observed after exposure to the highest dose of 100 mg/kg MCT. This dose also inhibited NK cell cytotoxicity, while the total number of NK lytic units per spleen was decreased (-53%) after exposure to 50 mg/kg MCT. Following i.p. injection of SRBC, the percentage of PEC macrophages containing engulfed SRBC was significantly increased in MCT-exposed mice, while the percentage of large vacuolated (activated) macrophages was decreased in a dose-dependent manner. Exposure to MCT significantly decreased the total number of Ig+ cells without altering the number of CD4+ and CD8+ cells. The antibody responses (PFC/10(6) spleen cells) to two T cell-independent antigens, TNP-LPS and DNP-Ficoll, were significantly decreased at all MCT doses, and the degree of suppression of both responses was identical at coincident doses. MCT exposure (25 mg/kg) significantly suppressed the blastogenic response to the T cell mitogen concanavalin A (-38%), and to the B cell mitogen lipopolysaccharide (-58%). These results indicate that exposure to MCT can alter the functional integrity of various immune effector responses in a dose-dependent manner, and suggest that the B cell may be a relatively more sensitive target of MCT immunotoxicity compared to T cells, macrophages and NK cells.

  11. An Experimental Itch Model in Monkeys

    PubMed Central

    Ko, M. C. Holden; Naughton, Norah N.

    2007-01-01

    Background The most common side effect of spinal opioid administration is pruritus, which has been treated with a variety of agents with variable success. Currently, there are few animal models developed to study this side effect. The aim of this study was to establish a nonhuman primate model to pharmacologically characterize the effects of intrathecal administration of morphine. Methods Eight adult rhesus monkeys were used. Scratching responses were videotaped and counted by observers who were blinded to experimental conditions. Antinociception was measured by a warm-water (50°C) tail-withdrawal assay. The dose-response of intrathecal morphine (1-320 μg) for both scratching and antinociception in all subjects was established. An opioid antagonist, nalmefene, was administered either intravenously or subcutaneously to assess its efficacy against intrathecal morphine. Results Intrathecal morphine (1-32 μg) increased scratching in a dose-dependent manner. Higher doses of intrathecal morphine (10-100 μg) produced thermal antinociception in a dose-dependent manner. On the other hand, nalmefene (10-32 μg/kg intravenously) attenuated maximum scratching responses among subjects. Pretreatment with nalmefene (32μg/kg subcutaneously) produced approximately 10-fold rightward shifts of intrathecal morphine dose-response curves for both behavioral effects. Conclusions These data indicate that intrathecal morphine-induced scratching and antinociception are mediated by opioid receptors. The magnitude of nalmefene antagonism of intrathecal morphine is consistent with μ opioid receptor mediation. This experimental itch model is useful for evaluating different agents that may suppress scratching without interfering with antinociception. It may also facilitate the clarification of mechanisms underlying these phenomena. PMID:10719958

  12. Modulation of inflammatory bowel disease in a mouse model following infection with Trichinella spiralis

    USDA-ARS?s Scientific Manuscript database

    Infection of mice with Trichinella spiralis redirects the mucosal immune system from a Th1 to a protective Th2 response with a reduction in the severity of trinitrobenzesulfonic acid-induced colonic damage. T. spiralis infection induced IL-10 production in a dose-dependent manner in oxazolone (OXZ)-...

  13. Wnt/β-catenin signaling enhances osteoblastogenic differentiation from human periodontal ligament fibroblasts.

    PubMed

    Heo, Jung Sun; Lee, Seung-Youp; Lee, Jeong-Chae

    2010-11-01

    Wnt/β-catenin signaling has been known to influence bone formation and homeostasis. In this study, we investigated the canonical Wnt signaling regulation of osteogenic differentiation from periodontal ligament (PDL) fibroblasts. Stimulating PDL fibroblasts with lithium chloride (LiCl), a canonical Wnt activator, significantly increased mineralized nodule and alkaline phosphatase (ALP) activity in a time- and dose-dependent manner. LiCl up-regulated protein expression of osteogenic transcription factors, including the runt-related gene 2, Msx2, and Osterix 2, in the PDL fibroblasts. Treatment of these cells with LiCl also increased the mRNA levels of ALP, FosB, and Fra1 in a dose-dependent manner. Blockage of canonical Wnt signaling by treating the cells with DKK1 inhibited Wnt1-stimulated mRNA expression of these osteogenic factors. Furthermore, pretreatment with DKK1 reduced the ALP activity and matrix mineralization stimulated by Wnt1. Collectively, these results suggest that canonical Wnt signaling leads to the differentiation of PDL fibroblasts into osteogenic lineage with the attendant stimulation of osteogenic transcription factors.

  14. NANOPARTICLE DELIVERED BIOSENSOR FOR REACTIVE OXYGEN SPECIES IN DIABETES

    PubMed Central

    Prow, Tarl W.; Bhutto, Imran; Grebe, Rhonda; Uno, Koichi; Merges, Carol; Mcleod, D. Scott; Lutty, Gerard A.

    2008-01-01

    The cell’s own antioxidant response element (ARE) can be used to evaluate the complications of diabetes mellitus. The hypothesis that a synthetic ARE could be used as a genetic switch, or biosensor, to turn on and off therapeutic genes is tested herein. Mitochondrial oxidative stress (MOS) has been hypothesized as one of the earliest insults in diabetes. Fluorescent probes used to monitor MOS revealed that the addition of glucose at physiological levels to cultures of endothelial cells was able to induce MOS above normal levels and in a dose dependant manner. Additional data showed that increased glucose levels activated the ARE-GFP in a dose dependant manner. These data support the hypothesis that the induction of MOS is more sensitive to hyperglycemia than the induction of the ARE. Delivery of an ARE-GFP construct with nanoparticles to the eye was successful using sub-retinal injection. This ARE-GFP/nanoparticle construct was functional and reported the activation of the ARE in diabetic rat retinal pigment epithelium (RPE). These data support the use of nanoparticle delivered biosensors for monitoring the oxidative status of tissues in vivo. PMID:18252237

  15. Nanoparticle-delivered biosensor for reactive oxygen species in diabetes.

    PubMed

    Prow, Tarl W; Bhutto, Imran; Grebe, Rhonda; Uno, Koichi; Merges, Carol; McLeod, D Scott; Lutty, Gerard A

    2008-02-01

    The cell's own antioxidant response element (ARE) can be used to evaluate the complications of diabetes mellitus. The hypothesis that a synthetic ARE could be used as a genetic switch, or biosensor, to turn on and off therapeutic genes is tested herein. Mitochondrial oxidative stress (MOS) has been hypothesized as one of the earliest insults in diabetes. Fluorescent probes used to monitor MOS revealed that the addition of glucose at physiological levels to cultures of endothelial cells was able to induce MOS above normal levels and in a dose-dependant manner. Additional data showed that increased glucose levels activated the ARE-GFP in a dose-dependant manner. These data support the hypothesis that the induction of MOS is more sensitive to hyperglycemia than the induction of the ARE. Delivery of an ARE-GFP construct with nanoparticles to the eye was successful using sub-retinal injection. This ARE-GFP/nanoparticle construct was functional and reported the activation of the ARE in diabetic rat retinal pigment epithelium (RPE). These data support the use of nanoparticle-delivered biosensors for monitoring the oxidative status of tissues in vivo.

  16. β-Amino-n-butyric Acid Regulates Seedling Growth and Disease Resistance of Kimchi Cabbage

    PubMed Central

    Kim, Yeong Chae; Kim, Yeon Hwa; Lee, Young Hee; Lee, Sang Woo; Chae, Yun-Soek; Kang, Hyun-Kyung; Yun, Byung-Wook; Hong, Jeum Kyu

    2013-01-01

    Non-protein amino acid, β-amino-n-butyric acid (BABA), has been involved in diverse physiological processes including seedling growth, stress tolerance and disease resistance of many plant species. In the current study, treatment of kimchi cabbage seedlings with BABA significantly reduced primary root elongation and cotyledon development in a dose-dependent manner, which adverse effects were similar to the plant response to exogenous abscisic acid (ABA) application. BABA was synergistically contributing ABA-induced growth arrest during the early seedling development. Kimchi cabbage leaves were highly damaged and seedling growth was delayed by foliar spraying with high concentrations of BABA (10 to 20 mM). BABA played roles differentially in in vitro fungal conidial germination, mycelial growth and conidation of necrotroph Alternaria brassicicola causing black spot disease and hemibiotroph Colletotrichum higginsianum causing anthracnose. Pretreatment with BABA conferred induced resistance of the kimchi cabbage against challenges by the two different classes of fungal pathogens in a dose-dependent manner. These results suggest that BABA is involved in plant development, fungal development as well as induced fungal disease resistance of kimchi cabbage plant. PMID:25288957

  17. 18β-glycyrrhetinic acid inhibits migration and invasion of human gastric cancer cells via the ROS/PKC-α/ERK pathway.

    PubMed

    Cai, Hongke; Chen, Xi; Zhang, Jianbo; Wang, Jijian

    2018-01-01

    18β-glycyrrhetinic acid (18β-GA) is a bioactive component of licorice root which exerts pharmacological activities including anti-inflammatory, antiviral, anti-oxidative and anti-cancer effects. The current study further investigated the molecular mechanisms associated with the inhibitory effects of 18β-GA on tumor metastasis in human gastric cancer cells. The results indicated that 18β-GA significantly reduced invasion and migration activities and suppressed MMP-2 and 9 activities on SGC-7901cells in a dose-dependent manner. Further study showed 18β-GA upregulated E-cadherin expression but downregulated vimentin expression. The results also showed that 18β-GA inhibited ROS formation, PKC-α expression and the phosphorylation of ERK in a dose-dependent manner. In conclusion, this study revealed that 18β-GA inhibits migration and invasion via the ROS/PKC-α/ERK signaling pathway in gastric cancer cells. This suggests that 18β-GA has the potential to be used as an effective chemopreventive agent for the prevention of gastric cancer metastasis.

  18. Delayed adverse effects of neonatal exposure to diethylstilbestrol and their dose dependency in female rats.

    PubMed

    Yoshida, Midori; Takahashi, Miwa; Inoue, Kaoru; Hayashi, Seigo; Maekawa, Akihiko; Nishikawa, Akiyoshi

    2011-08-01

    Neonatal exposure to estrogenic chemicals causes irreversible complex damage to the hypothalamus-pituitary-gonadal axis and reproductive system in females. Some lesions are noted after maturation as delayed adverse effects. We investigated the characteristics and dose dependence of delayed effects using female rats neonatally exposed to diethylstilbestrol (DES). Female Donryu rats were subcutaneously injected with a single dose of DES of 0 (control), 0.15, 1.5, 15, 150, or 1,500 µg/kg bw after birth. All except the lowest dose had estrogenic activity in a uterotrophic assay. All rats at 1500 µg/kg and some at 150 µg/kg showed abnormal morphologies in the genital tract, indicating they were androgenized before maturation. Although no morphological abnormalities were noted at 15 µg/kg or lower, onset of persistent estrus was significantly accelerated in the 1.5, 15, and 150 µg/kg groups with dose dependency, and the latest onset was from seventeen to twenty-one weeks of age at 1.5 µg/kg. The neonatal exposure to DES increased uterine adenocarcinoma development only at 150 µg/kg, although uterine anomalies were detected at 1,500 µg/kg. These results indicate that neonatal exposure to DES, which exerts estrogenic activity in vivo, induces delayed adverse effects in female rats in a dose-dependent manner. Early onset of persistent estrus appears to be the most sensitive parameter.

  19. Deferasirox at therapeutic doses is associated with dose-dependent hypercalciuria.

    PubMed

    Wong, Phillip; Polkinghorne, Kevan; Kerr, Peter G; Doery, James C G; Gillespie, Matthew T; Larmour, I; Fuller, Peter J; Bowden, Donald K; Milat, Frances

    2016-04-01

    Deferasirox is an oral iron chelator used widely in the treatment of thalassemia major and other transfusion-dependent hemoglobinopathies. Whilst initial long-term studies established the renal safety of deferasirox, there are now increasing reports of hypercalciuria and renal tubular dysfunction. In addition, urolithiasis with rapid loss of bone density in patients with β thalassemia major has been reported. We conducted a cross-sectional cohort study enrolling 152 adult patients comprising of β thalassemia major (81.5%), sickle cell disease (8%), thalassemia intermedia (2%), HbH disease (6.5%) and E/β thalassemia (2%). Cases were matched with normal control subjects on age, gender and serum creatinine. Iron chelator use was documented and urine calcium to creatinine ratios measured. At the time of analysis, 88.8% of patients were receiving deferasirox and 11.2% were on deferoxamine. Hypercalciuria was present in 91.9% of subjects on deferasirox in a positive dose-dependent relationship. This was not seen with subjects receiving deferoxamine. At a mean dose of 30.2±8.8mg/kg/day, deferasirox was associated with an almost 4 fold increase in urine calcium to creatinine ratio (UCa/Cr). Hypercalciuria was present at therapeutic doses of deferasirox in a dose-dependent manner and warrants further investigation and vigilance for osteoporosis, urolithiasis and other markers of renal dysfunction. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Antihyperglycemic effect of syringaldehyde in streptozotocin-induced diabetic rats.

    PubMed

    Huang, Chia-Hsin; Chen, Mei-Fen; Chung, Hsien-Hui; Cheng, Juei-Tang

    2012-08-24

    The antihyperglycemic effect of syringaldehyde (1), purified from the stems of Hibiscus taiwanensis, was investigated in streptozotocin-induced diabetic rats (STZ-diabetic rats) showing type-1 like diabetes mellitus. Bolus intravenous injection of 1 showed antihyperglycemic activity in a dose-dependent manner in STZ-diabetic rats. An effective dose of 7.2 mg/kg of 1 attenuated significantly the increase of plasma glucose induced by an intravenous glucose challenge test in normal rats. A glucose uptake test showed that 1 exhibits an increase of glucose uptake activity in a concentration-related manner. Moreover, an effect by 1 was shown for insulin sensitivity in STZ-diabetic rats. The compound was found to increase insulin sensitivity in STZ-diabetic rats. These results suggest that syringaldehyde (1) can increase glucose utilization and insulin sensitivity to lower plasma glucose in diabetic rats.

  1. Influence of serotonin and melatonin on some parameters of gastrointestinal activity.

    PubMed

    Bubenik, G A; Dhanvantari, S

    1989-01-01

    In vitro melatonin (M) reduced the tone of gut muscles and counteracted the tonic effect of serotonin (5-HT). In vivo 0.1 to 4 mg of 5-HT (contained in beeswax implants) decreased the food transit time (FTT) in a dose-dependent manner, but higher doses (5 and 6 mg) increased the FTT. Melatonin injected intraperitoneally into mice bearing 5-HT implants (2 mg per animal) blocked partly the serotonin effect and increased FTT by 50%; however, no dose-dependent effect was observed when doses between 0.01 and 1 mg were used. Surprisingly, M injected into intact mice decreased FTT to levels comparable to those observed in 5-HT implanted, M-treated mice. Again, this significant decrease was not dose-dependent between 0.02 and 1 mg. Although in vitro the maximal inhibition of serotonin-induced spasm was achieved when the M:5-HT ratio was 50-100:1, in vivo the effective ratio was about 1:1. This may indicate that part of M action on the gut movement is mediated by extraintestinal mechanisms. A hypothetical, counterbalancing system of M and 5-HT regulation of gut activity (similar to adrenaline-acetylcholine system) is proposed.

  2. Dose and dose rate effects of whole-body gamma-irradiation: I. Lymphocytes and lymphoid organs

    NASA Technical Reports Server (NTRS)

    Pecaut, M. J.; Nelson, G. A.; Gridley, D. S.

    2001-01-01

    The major goal of part I of this study was to compare varying doses and dose rates of whole-body gamma-radiation on lymphoid cells and organs. C57BL/6 mice (n = 75) were exposed to 0, 0.5, 1.5, and 3.0 Gy gamma-rays (60Co) at 1 cGy/min (low-dose rate, LDR) and 80 cGy/min (high-dose rate, HDR) and euthanized 4 days later. A significant dose-dependent loss of spleen mass was observed with both LDR and HDR irradiation; for the thymus this was true only with HDR. Decreasing leukocyte and lymphocyte numbers occurred with increasing dose in blood and spleen at both dose rates. The numbers (not percentages) of CD3+ T lymphocytes decreased in the blood in a dose-dependent manner at both HDR and LDR. Splenic T cell counts decreased with dose only in HDR groups; percentages increased with dose at both dose rates. Dose-dependent decreases occurred in CD4+ T helper and CD8+ T cytotoxic cell counts at HDR and LDR. In the blood the percentages of CD4+ cells increased with increasing dose at both dose rates, whereas in the spleen the counts decreased only in the HDR groups. The percentages of the CD8+ population remained stable in both blood and spleen. CD19+ B cell counts and percentages in both compartments declined markedly with increasing HDR and LDR radiation. NK1.1+ natural killer cell numbers and proportions remained relatively stable. Overall, these data indicate that the observed changes were highly dependent on the dose, but not dose rate, and that cells in the spleen are more affected by dose rate than those in blood. The results also suggest that the response of lymphocytes in different body compartments may be variable.

  3. Dose-dependent effects of hydrocortisone infusion on autobiographical memory recall

    PubMed Central

    Young, Kymberly; Drevets, Wayne C.; Schulkin, Jay; Erickson, Kristine

    2011-01-01

    The glucocorticoid hormone cortisol has been shown to impair episodic memory performance. The present study examined the effect of two doses of hydrocortisone (synthetic cortisol) administration on autobiographical memory retrieval. Healthy volunteers (n=66) were studied on two separate visits, during which they received placebo and either moderate-dose (0.15 mg/kg IV; n=33) or high-dose (0.45 mg/kg IV; n=33) hydrocortisone infusion. From 75 to 150 min post-infusion subjects performed an Autobiographical Memory Test and the California Verbal Learning Test (CVLT). The high-dose hydrocortisone administration reduced the percent of specific memories recalled (p = 0.04), increased the percent of categorical (nonspecific) memories recalled, and slowed response times for categorical memories (p <0.001), compared to placebo performance (p < 0.001). Under moderate-dose hydrocortisone the autobiographical memory performance did not change significantly with respect to percent of specific or categorical memories recalled or reaction times. Performance on the CVLT was not affected by hydrocortisone. These findings suggest that cortisol affects accessibility of autobiographical memories in a dose-dependent manner. Specifically, administration of hydrocortisone at doses analogous to those achieved under severe psychosocial stress impaired the specificity and speed of retrieval of autobiographical memories. PMID:21942435

  4. Thiazolidinediones abrogate cervical cancer growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wuertz, Beverly R., E-mail: knier003@umn.edu; Darrah, Lindsay, E-mail: ldarrah@obgynmn.com; Wudel, Justin, E-mail: drwudel@drwudel.com

    Peroxisome proliferator-activated receptor gamma (PPAR γ) is activated by thiazolidinedione drugs (TZDs) and can promote anti-cancer properties. We used three TZDs (pioglitazone, rosiglitazone, and ciglitazone) to target cervical cancer cell lines and a nude mouse animal model. Each agent increased activation of PPAR γ, as judged by a luciferase reporter gene assay in three HPV-associated cell lines (CaSki, SiHa, and HeLa cells) while decreasing cellular proliferation in a dose-dependent manner. They also promoted Oil Red O accumulation in treated cell lines and upregulated the lipid differentiation marker adipsin. Interestingly, xenograft HeLa tumors in nude mice treated with 100 mg/kg/day pioglitazonemore » exhibited decreased growth compared to control mice or mice treated with standard cervical chemotherapy. In conclusion, TZDs slow tumor cell growth in vitro and in vivo with decreases in cell proliferation and increases in PPAR γ and adipsin. These agents may be interesting treatments or treatment adjuncts for HPV-associated cancers or perhaps even precancerous conditions. - Highlights: • Thiazolidinediones decreases cervical cancer proliferation. • Pioglitazone increases cervical cancer differentiation. • Pioglitazone decreases tumor growth in mice. • Pioglitazone may be a useful treatment adjunct.« less

  5. Susceptibility of promastigotes and intracellular amastigotes from distinct Leishmania species to the calpain inhibitor MDL28170.

    PubMed

    de Sousa Araújo, Pedro Soares; de Oliveira, Simone Santiago Carvalho; d'Avila-Levy, Claudia Masini; Dos Santos, André Luis Souza; Branquinha, Marta Helena

    2018-05-04

    Despite the available drug options, leishmaniasis treatment remains unsatisfactory. The repurposing of calpain inhibitors originally developed for human diseases became an interesting alternative, since Leishmania cells express calpain-related proteins. The susceptibility of six Leishmania species (L. amazonensis, L. braziliensis, L. major, L. mexicana, L. chagasi, and L. donovani) to the calpain inhibitor MDL28170 was determined. Promastigote and intracellular amastigote viability in the presence of MDL28170 was evaluated. MDL28170 was able to reduce promastigote proliferation in a dose-dependent manner for all the parasites. A significant reduction on the general parasite metabolism was detected, as judged by resazurin assay, as well as induced important morphological alterations, including rounding promastigotes and loss of the flagellum. MDL28170 was also able to reduce the number of intracellular amastigotes in RAW macrophages. The susceptibility of both parasite stages (promastigotes and amastigotes) to MDL28170 was similar for all Leishmania species tested. MDL28170 showed a much higher toxicity to Leishmania amastigotes when compared with mammalian macrophages, displaying selectivity index values varying from 13.1 to 39.8. These results suggest that the development of calpain inhibitors may represent an interesting alternative in the treatment of leishmaniasis.

  6. Low-temperature plasma-induced antiproliferative effects on multi-cellular tumor spheroids

    NASA Astrophysics Data System (ADS)

    Plewa, Joseph-Marie; Yousfi, Mohammed; Frongia, Céline; Eichwald, Olivier; Ducommun, Bernard; Merbahi, Nofel; Lobjois, Valérie

    2014-04-01

    Biomedical applications of low-temperature plasmas are of growing interest, especially in the field of plasma-induced anti-tumor effects. The present work is aimed at investigating the regionalized antiproliferative effects of low-temperature plasmas on a multicellular tumor spheroid (MCTS), a model that mimics the 3D organization and regionalization of a microtumor region. We report that a low-temperature plasma jet, using helium flow in open air, inhibits HCT116 colon carcinoma MCTS growth in a dose-dependent manner. This growth inhibition is associated with the loss of Ki67, and the regionalized accumulation of DNA damage detected by histone H2AX phosphorylation. This regionalized genotoxic effect leads to massive cell death and loss of the MCTS proliferative region. The use of reactive oxygen species (ROS), scavenger N-acetyl cysteine (NAC) and plasma-conditioned media demonstrate that the ROS generated in the media after exposure to low-temperature plasma play a major role in these observed effects. These findings strengthen the interest in the use of MCTS for the evaluation of antiproliferative strategies, and open new perspectives for studies dedicated to demonstrate the potential of low-temperature plasma in cancer therapy.

  7. Original Research: Potential ocular protection and dynamic observation of Polygonatum sibiricum polysaccharide against streptozocin-induced diabetic rats' model.

    PubMed

    Wang, Yi; Qin, Shucun; Pen, Guoqing; Chen, Di; Han, Chao; Miao, Chunrun; Lu, Baojin; Su, Chao; Feng, Shanlong; Li, Wen; Han, Jingjing; Cho, Nam C; Si, Yanhong

    2017-01-01

    Ocular complications associated with diabetes mellitus are progressive and becoming one of the most important causes of morbidity worldwide. The purpose of the study is to evaluate the protective effect of Polygonatum sibiricum polysaccharide, an important component of Polygonatum sibiricum, on ocular complications in streptozotocin-induced diabetes mellitus rats. Sprague Dawley rats were made diabetic with streptozotocin(60 mg/kg, i.v.) and then the rats were treated with Polygonatum sibiricum polysaccharide 200, 400 and 800 mg/kg.d by gavage for 12 weeks. Biochemical analysis indicated that Polygonatum sibiricum polysaccharide lowered the levels of fasting blood glucose and glycated hemoglobin in blood and elevated the levels of insulin and C-peptide in plasma of diabetes mellitus rats in a dose-dependent manner. Physical measurements revealed that Polygonatum sibiricum polysaccharide improved clinical symptoms of polydipsia, polyphagia, polyuria and weight loss in diabetes mellitus rats. The content of malondialdehyde and activity of superoxide dismutase in plasma were determined, and the data showed Polygonatum sibiricum polysaccharide suppressed oxidative stress reaction. Lens opacification was observed using slit lamp illumination, and the data showed Polygonatum sibiricum polysaccharide delayed cataract progression in a dose-dependent manner. Electroretinogram showed Polygonatum sibiricum polysaccharide treatment reversed the decrease of electroretinogram b and OPs2 waves' amplitudes. Flash-visual evoked potential test indicated that the peak time of P2 wave was prolonged, and the amplitude of N2-P2 was lowered in diabetes mellitus group, and Polygonatum sibiricum polysaccharide suppressed these changes. Fundus fluorescein angiography showed Polygonatum sibiricum polysaccharide alleviated the retinal vasculopathy in a dose-dependent manner. In conclusion, these results suggest that the administration of Polygonatum sibiricum polysaccharide slows the progression of diabetic retinopathy and cataract through alleviating hyperglycemia and reducing oxidative stress in streptozotocin-induced diabetes mellitus rats. © 2016 by the Society for Experimental Biology and Medicine.

  8. Production of reactive oxygen species by withaferin A causes loss of type collagen expression and COX-2 expression through the PI3K/Akt, p38, and JNK pathways in rabbit articular chondrocytes.

    PubMed

    Yu, Seon-Mi; Kim, Song-Ja

    2013-11-01

    Withaferin A (WFA) is a major chemical constituent of Withania somnifera, also known as Indian ginseng. Many recent reports have provided evidence of its anti-tumor, anti-inflammation, anti-oxidant, and immune modulatory activities. Although the compound appears to have a large number of effects, its defined mechanisms of action have not yet been determined. We investigated the effects of WFA on loss of type collagen expression and inflammation in rabbit articular chondrocytes. WFA increased the production of reactive oxygen species, suggesting the induction of oxidative stress, in a dose-dependent manner. Also, we confirmed that WFA causes loss of type collagen expression and inflammation as determined by a decrease of type II collagen expression and an increase of cyclooxygenase-2 (COX-2) expression via western blot analysis in a dose- and time- dependent manner. WFA also reduced the synthesis of sulfated proteoglycan via Alcian blue staining and caused the synthesis of prostaglandin E2 (PGE2) via assay kit in dose- and time-dependent manners. Treatment with N-acetyl-L-cysteine (NAC), an antioxidant, inhibited WFA-induced loss of type II collagen expression and increase in COX-2 expression, accompanied by inhibition of reactive oxygen species production. WFA increased phosphorylation of both Akt and p38. Inhibition of PI3K/Akt, p38, and JNK with LY294002 (LY), SB203580 (SB), or SP600125 (SP) in WFA-treated cells rescued the expression of type II collagen and suppressed the expression of COX-2. These results demonstrate that WFA induces loss of type collagen expression and inflammation via PI3K/Akt, p38, and JNK by generating reactive oxygen species in rabbit articular chondrocytes. © 2013 Published by Elsevier Inc.

  9. Original Research: Potential ocular protection and dynamic observation of Polygonatum sibiricum polysaccharide against streptozocin-induced diabetic rats’ model

    PubMed Central

    Wang, Yi; Qin, Shucun; Pen, Guoqing; Chen, Di; Han, Chao; Miao, Chunrun; Lu, Baojin; Su, Chao; Feng, Shanlong; Li, Wen; Han, Jingjing

    2016-01-01

    Ocular complications associated with diabetes mellitus are progressive and becoming one of the most important causes of morbidity worldwide. The purpose of the study is to evaluate the protective effect of Polygonatum sibiricum polysaccharide, an important component of Polygonatum sibiricum, on ocular complications in streptozotocin-induced diabetes mellitus rats. Sprague Dawley rats were made diabetic with streptozotocin(60 mg/kg, i.v.) and then the rats were treated with Polygonatum sibiricum polysaccharide 200, 400 and 800 mg/kg.d by gavage for 12 weeks. Biochemical analysis indicated that Polygonatum sibiricum polysaccharide lowered the levels of fasting blood glucose and glycated hemoglobin in blood and elevated the levels of insulin and C-peptide in plasma of diabetes mellitus rats in a dose-dependent manner. Physical measurements revealed that Polygonatum sibiricum polysaccharide improved clinical symptoms of polydipsia, polyphagia, polyuria and weight loss in diabetes mellitus rats. The content of malondialdehyde and activity of superoxide dismutase in plasma were determined, and the data showed Polygonatum sibiricum polysaccharide suppressed oxidative stress reaction. Lens opacification was observed using slit lamp illumination, and the data showed Polygonatum sibiricum polysaccharide delayed cataract progression in a dose-dependent manner. Electroretinogram showed Polygonatum sibiricum polysaccharide treatment reversed the decrease of electroretinogram b and OPs2 waves’ amplitudes. Flash-visual evoked potential test indicated that the peak time of P2 wave was prolonged, and the amplitude of N2-P2 was lowered in diabetes mellitus group, and Polygonatum sibiricum polysaccharide suppressed these changes. Fundus fluorescein angiography showed Polygonatum sibiricum polysaccharide alleviated the retinal vasculopathy in a dose-dependent manner. In conclusion, these results suggest that the administration of Polygonatum sibiricum polysaccharide slows the progression of diabetic retinopathy and cataract through alleviating hyperglycemia and reducing oxidative stress in streptozotocin-induced diabetes mellitus rats. PMID:27510582

  10. Cow's milk increases the activities of human nuclear receptors peroxisome proliferator-activated receptors alpha and delta and retinoid X receptor alpha involved in the regulation of energy homeostasis, obesity, and inflammation.

    PubMed

    Suhara, W; Koide, H; Okuzawa, T; Hayashi, D; Hashimoto, T; Kojo, H

    2009-09-01

    The nuclear peroxisome proliferator-activated receptors (PPAR) have been shown to play crucial roles in regulating energy homeostasis including lipid and carbohydrate metabolism, inflammatory responses, and cell proliferation, differentiation, and survival. Because PPAR agonists have the potential to prevent or ameliorate diseases such as hyperlipidemia, diabetes, atherosclerosis, and obesity, we have explored new natural agonists for PPAR. For this purpose, cow's milk was tested for agonistic activity toward human PPAR subtypes using a reporter gene assay. Milk increased human PPARalpha activity in a dose-dependent manner with a 3.2-fold increase at 0.5% (vol/vol). It also enhanced human PPARdelta activity in a dose-dependent manner with an 11.5-fold increase at 0.5%. However, it only slightly affected human PPARgamma activity. Ice cream, butter, and yogurt also increased the activities of PPARalpha and PPARdelta, whereas vegetable cream affected activity of PPARdelta but not PPARalpha. Skim milk enhanced the activity of PPAR to a lesser degree than regular milk. Milk and fresh cream increased the activity of human retinoid X receptor (RXR)alpha as well as PPARalpha and PPARdelta, whereas neither affected vitamin D3 receptor, estrogen receptors alpha and beta, or thyroid receptors alpha and beta. Both milk and fresh cream were shown by quantitative real-time PCR to increase the quantity of mRNA for uncoupling protein 2 (UCP2), an energy expenditure gene, in a dose-dependent manner. The increase in UCP2 mRNA was found to be reduced by treatment with PPARdelta-short interfering (si)RNA. This study unambiguously clarified at the cellular level that cow's milk increased the activities of human PPARalpha, PPARdelta, and RXRalpha. The possible role in enhancing the activities of PPARalpha, PPARdelta, and RXRalpha, and the health benefits of cow's milk were discussed.

  11. Adenosine A2A receptor agonist prevents cardiac remodeling and dysfunction in spontaneously hypertensive male rats after myocardial infarction

    PubMed Central

    da Silva, Jaqueline S; Gabriel-Costa, Daniele; Sudo, Roberto T; Wang, Hao; Groban, Leanne; Ferraz, Emanuele B; Nascimento, José Hamilton M; Fraga, Carlos Alberto M; Barreiro, Eliezer J; Zapata-Sudo, Gisele

    2017-01-01

    Background This work evaluated the hypothesis that 3,4-methylenedioxybenzoyl-2-thienylhydrazone (LASSBio-294), an agonist of adenosine A2A receptor, could be beneficial for preventing cardiac dysfunction due to hypertension associated with myocardial infarction (MI). Methods Male spontaneously hypertensive rats (SHR) were randomly divided into four groups (six animals per group): sham-operation (SHR-Sham), and myocardial infarction rats (SHR-MI) were treated orally either with vehicle or LASSBio-294 (10 and 20 mg.kg−1.d−1) for 4 weeks. Echocardiography and in vivo hemodynamic parameters measured left ventricle (LV) structure and function. Exercise tolerance was evaluated using a treadmill test. Cardiac remodeling was accessed by LV collagen deposition and tumor necrosis factor α expression. Results Early mitral inflow velocity was significantly reduced in the SHR-MI group, and there was significant recovery in a dose-dependent manner after treatment with LASSBio-294. Exercise intolerance observed in the SHR-MI group was prevented by 10 mg.kg−1.d−1 of LASS-Bio-294, and exercise tolerance exceeded that of the SHR-Sham group at 20 mg.kg−1.d−1. LV end-diastolic pressure increased after MI, and this was prevented by 10 and 20 mg.kg−1.d−1 of LASSBio-294. Sarcoplasmic reticulum Ca2+ ATPase levels were restored in a dose-dependent manner after treatment with LASSBio-294. Fibrosis and inflammatory processes were also counteracted by LASSBio-294, with reductions in LV collagen deposition and tumor necrosis factor α expression. Conclusion In summary, oral administration of LASSBio-294 after MI in a dose-dependent manner prevented the development of cardiac dysfunction, demonstrating this compound’s potential as an alternative treatment for heart failure in the setting of ischemic heart disease with superimposed chronic hypertension. PMID:28293100

  12. Erythrocyte Omega-3 Fatty Acid Content in Elite Athletes in Response to Omega-3 Supplementation: A Dose-Response Pilot Study

    PubMed Central

    Rueda, Félix; Pons, Victoria; Banquells, Montserrat; Cordobilla, Begoña; Domingo, Joan Carles

    2017-01-01

    Introduction Supplementation of Omega-3 fatty acids (n-3FA) in athletes is related to the anti-inflammatory and/or antioxidant effect and consequently its action on all the processes of tissue restoration and adaptation to physical stress. Objective Evaluate the Omega-3 Index (O3Ix) response, in red blood cells, to supplemental EPA + DHA intake in the form of high purity and stable composition gums (G), in elite summer athletes. Method Twenty-four summer sport athletes of both sexes, pertaining to the Olympic Training Center in Spain, were randomized to two groups (2G = 760 or 3G = 1140 mg of n-3 FA in Omegafort OKids, Ferrer Intl.) for 4 months. Five athletes and four training staff volunteers were control group. Results The O3Ix was lower than 8% in 93.1% of all the athletes. The supplementation worked in a dose-dependent manner: 144% for the 3G dose and 135% for the 2G, both p < 0.001, with a 3% significant decrease of Omega-6 FAs. No changes were observed for the control group. Conclusions Supplementation with n-3FA increases the content of EPA DHA in the red blood cells at 4 months in a dose-dependent manner. Athletes with lower basal O3Ix were more prone to increment their levels. The study is registered with Protocol Registration and Results System (ClinicalTrials.gov) number NCT02610270. PMID:28656110

  13. Antioxidant, analgesic and anti-inflammatory activities of the methanolic extract of Piper betle leaves.

    PubMed

    Alam, Badrul; Akter, Fahima; Parvin, Nahida; Sharmin Pia, Rashna; Akter, Sharmin; Chowdhury, Jesmin; Sifath-E-Jahan, Kazi; Haque, Ekramul

    2013-01-01

    The present study was designed to evaluate the antioxidant, analgesic, and anti-inflammatory activities of the methanolic extract of Piper betle leaves (MPBL). MPBL was evaluated for anti-inflammatory activity using carrageenan-induced hind paw edema model. Analgesic activity of MPBL was evaluated by hot plate, writhing, and formalin tests. Total phenolic and flavonoids content, total antioxidant activity, scavenging of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, peroxynitrate (ONOO) as well as inhibition of total ROS generation, and assessment of reducing power were used to evaluate antioxidant potential of MPBL. The extract of MPBL, at the dose of 100 and 200 mg/kg, produced a significant (p<0.05) increase in pain threshold in hot plate method whereas significantly (p<0.05) reduced the writhing caused by acetic acid and the number of licks induced by formalin in a dose-dependent manner. The same ranges of doses of MPBL caused significant (p<0.05) inhibition of carrageenan-induced paw edema after 4 h in a dose-dependent manner. In DPPH, ONOO(-), and total ROS scavenging method, MPBL showed good antioxidant potentiality with the IC50 value of 16.33±1.02, 25.16±0.61 , and 41.72±0.48 µg/ml, respectively with a significant (p<0.05) good reducing power. The findings of the study suggested that MPBL has strong analgesic, anti-inflammatory, and antioxidant effects, conforming the traditional use of this plant for inflammatory pain alleviation to its antioxidant potentiality.

  14. Pharmacological Evaluation of Naproxen Metal Complexes on Antinociceptive, Anxiolytic, CNS Depressant, and Hypoglycemic Properties

    PubMed Central

    Das, Narhari; Abdur Rahman, S. M.

    2016-01-01

    Purpose. The present study was designed to investigate the antinociceptive, anxiolytic, CNS depressant, and hypoglycemic effects of the naproxen metal complexes. Methods. The antinociceptive activity was evaluated by acetic acid-induced writhing method and radiant heat tail-flick method while anxiolytic activity was evaluated by elevated plus maze model. The CNS depressant activity of naproxen metal complexes was assessed using phenobarbitone-induced sleeping time test and the hypoglycemic test was performed using oral glucose tolerance test. Results. Metal complexes significantly (P < 0.001) reduced the number of abdominal muscle contractions induced by 0.7% acetic acid solution in a dose dependent manner. At the dose of 25 mg/kg body weight p.o. copper, cobalt, and zinc complexes exhibited higher antinociceptive activity having 59.15%, 60.56%, and 57.75% of writhing inhibition, respectively, than the parent ligand naproxen (54.93%). In tail-flick test, at both doses of 25 and 50 mg/kg, the copper, cobalt, silver, and zinc complexes showed higher antinociceptive activity after 90 minutes than the parent drug naproxen. In elevated plus maze (EPM) model the cobalt and zinc complexes of naproxen showed significant anxiolytic effects in dose dependent manner, while the copper, cobalt, and zinc complexes showed significant CNS depressant and hypoglycemic activity. Conclusion. The present study demonstrated that copper, cobalt, and zinc complexes possess higher antinociceptive, anxiolytic, CNS depressant, and hypoglycemic properties than the parent ligand. PMID:27478435

  15. Cardioprotective effects of gallic acid in diabetes-induced myocardial dysfunction in rats

    PubMed Central

    Patel, Snehal S.; Goyal, Ramesh K.

    2011-01-01

    Background: Normalization of hyperglycemia, hyperlipidemia, and oxidative stress is an important objective in preventing diabetes-induced cardiac dysfunction. Objective: This study was undertaken to examine the effects of gallic acid in myocardial dysfunctions associated with type-1 diabetes. Materials and Methods: Diabetes was induced by single intravenous injection of streptozotocin (STZ, 50 mg/kg i.v.). Gallic acid was administered daily at three different doses (100, 50, and 25 mg/kg p.o.) for 8 weeks at the end of which blood samples were collected and analyzed for various biochemical parameters. Results: Injection of STZ produced significant loss of body weight (BW), polyphagia, polydypsia, hyperglycemia, hypoinsulinemia, hyperlipidemia, hypertension, bradycardia, and myocardial functional alterations. Treatment with gallic acid significantly lowered fasting glucose, the AUCglucose level in a dose-dependent manner; however, the insulin level was not increased significantly at same the dose and prevented loss of BW, polyphagia, and polydypsia in diabetic rats. It also prevented STZ-induced hyperlipidemia, hypertension, bradycardia, structural alterations in cardiac tissue such as increase in force of contraction, left ventricular weight to body weight ratio, collagen content, protein content, serum lactate dehydrogenase, and creatinine kinase levels in a dose-dependent manner. Further, treatment also produced reduction in lipid peroxidation and increase in antioxidant parameters in heart of diabetic rats. Conclusion: The results of this study suggest that gallic acid to be beneficial for the treatment of myocardial damage associated with type-1 diabetes. PMID:22224046

  16. Association of brominated proteins and changes in protein expression in the rat kidney with subcarcinogenic to carcinogenic doses of bromate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolisetty, Narendrababu; Bull, Richard J.; Muralidhara, Srinivasa

    2013-10-15

    The water disinfection byproduct bromate (BrO{sub 3}{sup −}) produces cytotoxic and carcinogenic effects in rat kidneys. Our previous studies demonstrated that BrO{sub 3}{sup −} caused sex-dependent differences in renal gene and protein expression in rats and the elimination of brominated organic carbon in their urine. The present study examined changes in renal cell apoptosis and protein expression in male and female F344 rats treated with BrO{sub 3}{sup −} and associated these changes with accumulation of 3-bromotyrosine (3-BT)-modified proteins. Rats were treated with 0, 11.5, 46 and 308 mg/L BrO{sub 3}{sup −} in drinking water for 28 days and renal sectionsmore » were prepared and examined for apoptosis (TUNEL-staining), 8-oxo-deoxyguanosine (8-oxoG), 3-BT, osteopontin, Kim-1, clusterin, and p-21 expression. TUNEL-staining in renal proximal tubules increased in a dose-related manner beginning at 11.5 mg BrO{sub 3}{sup −}/L in female rats and 46 mg/L in males. Increased 8-oxoG staining was observed at doses as low as 46 mg/L. Osteopontin expression also increased in a dose-related manner after treatment with 46 mg/L, in males only. In contrast, Kim-1 expression increased in a dose-related manner in both sexes, although to a greater extent in females at the highest dose. Clusterin and p21 expression also increased in a dose-related manner in both sexes. The expression of 3-BT-modified proteins only increased in male rats, following a pattern previously reported for accumulation of α-2{sub u}-globulin. Increases in apoptosis in renal proximal tubules of male and female rats at the lowest doses suggest a common mode of action for renal carcinogenesis for the two sexes that is independent of α-2{sub u}-globulin nephropathy. - Highlights: • Bromate induced nephrotoxicity in both male and female rats by similar mechanisms. • Apoptosis was seen in both male and female rats at the lowest doses tested. • Bromate-induced apoptosis correlated to 8-oxo-deoxyguanosine formation. • Bromate increased the level of 3-bromotyrosine-modified proteins in male rats only. • These data identify possible novel mechanisms for bromate-induced nephrotoxicity.« less

  17. Erythrina excelsa exhibits estrogenic effects in vivo and in vitro and is cytotoxic on breast and colon cancer cell lines.

    PubMed

    Tchoukouegno Ngueu, Sadrine; Tchoumtchoua, Job; Njamen, Dieudonné; Halabalaki, Maria; Laudenbach-Leschowski, Ute; Diel, Patrick

    2016-01-01

    Eythrina excelsa Baker (Fabaceae) is a medicinal plant used to treat various ailments including those of the female genital tract. The objective of this study is to investigate the estrogenic and cytotoxic effects of the ethanol extract of the stem bark of E. excelsa. Erythrina excelsa was evaluated in vitro using the yeast estrogen screen (YES). The extract was then tested in a 3-day uterotrophic assay on ovariectomised Wistar rats at doses of 50 and 100 mg/kg BW/d. Cytotoxic effects were assessed on breast (MCF-7) and colon (HT-29) cancer cell lines using the MTT cell viability assay. Additionally, a LC-PDA-ESI (+)-HRMS and HRMS/MS method was developed and applied for the identification of representative secondary metabolites scaffolds in the extract. In the YES, the extract stimulated the transactivation of the estrogen receptor in a dose-dependent manner with an EC50 value of 1.8 μg/mL. In rats, E. excelsa increased uterine wet weight, uterine epithelial height, and the mRNA expression of estrogen-responsive genes in the uterus and liver at 50 whereas at 100 mg/kg BW/d anti-estrogenic effects were observed. In the MTT-assay, a dose-dependent decrease of the viability of both cell lines was observed with EC50 values of 13.6 μg/mL (MCF-7) and 27.7 μg/mL (HT-29). The phytochemical analysis revealed that the extract is rich in isoflavonoids, mainly prenylated and pyran-derivatives thereof. Erythrina excelsa is rich in prenylated and pyran-substituted isoflavonoids, exhibits estrogenic/anti-estrogenic and cytotoxic effects and warrant sufficient interest for deeper investigations.

  18. Antibacterial activity of polyphenolic fraction of Kombucha against Vibrio cholerae: targeting cell membrane.

    PubMed

    Bhattacharya, D; Ghosh, D; Bhattacharya, S; Sarkar, S; Karmakar, P; Koley, H; Gachhui, R

    2018-02-01

    The present study was undertaken to determine the mechanism of antibacterial activity of a polyphenolic fraction, composed of mainly catechin and isorhamnetin, previously isolated from Kombucha, a 14-day fermented beverage of sugared black tea, against the enteropathogen Vibrio cholerae N16961. Bacterial growth was found to be seriously impaired by the polyphenolic fraction in a dose-dependent manner. Scanning Electron Microscopy demonstrated morphological alterations in bacterial cells when exposed to the polyphenolic fraction in a concentration-dependent manner. Permeabilization assays confirmed that the fraction disrupted bacterial membrane integrity in both time- and dose-dependent manners, which were proportional to the production of intracellular reactive oxygen species (ROS). Furthermore, each of the polyphenols catechin and isorhamnetin showed the ability to permeate bacterial cell membranes by generating oxidative stress, thereby suggesting their role in the antibacterial potential of Kombucha. Thus, the basic mechanism of antibacterial activity of the Kombucha polyphenolic fraction against V. cholerae involved bacterial membrane permeabilization and morphological changes, which might be due to the generation of intracellular ROS. To the best of our knowledge, this is the first report on the investigation of antibacterial mechanism of Kombucha, which is mostly attributed to its polyphenolic content. The emergence of multidrug-resistant Vibrio cholerae strains has hindered an efficient anti-Vibrio therapy. This study has demonstrated the membrane damage-mediated antibacterial mechanism of Kombucha, a popular fermented beverage of sugared tea, which is mostly attributed to its polyphenolic content. This study also implies the exploitation of Kombucha as a potential new source of bioactive polyphenols against V. cholerae. © 2017 The Society for Applied Microbiology.

  19. Systemic SMAD7 Gene Therapy Increases Striated Muscle Mass and Enhances Exercise Capacity in a Dose-Dependent Manner.

    PubMed

    Maricelli, Joseph W; Bishaw, Yemeserach M; Wang, Bo; Du, Min; Rodgers, Buel D

    2018-03-01

    Striated muscle wasting occurs with a variety of disease indications, contributing to mortality and compromising life quality. Recent studies indicate that the recombinant adeno-associated virus (serotype 6) Smad7 gene therapeutic, AVGN7, enhances skeletal and cardiac muscle mass and prevents cancer-induced wasting of both tissues. This is accomplished by attenuating ActRIIb intracellular signaling and, as a result, the physiological actions of myostatin and other ActRIIb ligands. AVGN7 also enhances isolated skeletal muscle twitch force, but is unknown to improve systemic muscle function similarly, especially exercise capacity. A 2-month-long dose-escalation study was therefore conducted using 5 × 10 11 , 1 × 10 12 , and 5 × 10 12 vg/mouse and different tests of systemic muscle function. Body mass, skeletal muscle mass, heart mass, and forelimb grip strength were all increased in a dose-dependent manner, as was the fiber cross-sectional area of tibialis anterior muscles. Maximal oxygen consumption (VO 2 max), a measure of metabolic rate, was similarly enhanced during forced treadmill running, and although the total distance traveled was only elevated by the highest dose, all doses reduced the energy expenditure rate compared to control mice injected with an empty vector. Such improvements in VO 2 max are consistent with physiological cardiac hypertrophy, which is highly beneficial and a normal adaptive response to exercise. This was particularly evident at the lowest dose tested, which had minimal significant effects on skeletal muscle mass and/or function, but increased heart weight and exercise capacity. These results together suggest that AVGN7 enhances striated muscle mass and systemic muscle function. They also define minimally effective and optimal doses for future preclinical trials and toxicology studies and in turn will aid in establishing dose ranges for clinical trials.

  20. A Combination of Buprenorphine and Naltrexone Blocks Compulsive Cocaine Intake in Rodents Without Producing Dependence

    PubMed Central

    Wee, Sunmee; Vendruscolo, Leandro F.; Misra, Kaushik K.; Schlosburg, Joel E.; Koob, George F.

    2012-01-01

    Buprenorphine, a synthetic opioid that acts at both μ and κ opioid receptors, can decrease cocaine use in individuals with opioid addiction. However, the potent agonist action of buprenorphine at μ opioid receptors raises its potential for creating opioid dependence in non–opioid-dependent cocaine abusers. Here, we tested the hypothesis that a combination of buprenorphine and naltrexone (a potent μ opioid antagonist with weaker δ and κ antagonist properties) could block compulsive cocaine self-administration without producing opioid dependence. The effects of buprenorphine and various doses of naltrexone on cocaine self-administration were assessed in rats that self-administered cocaine under conditions of either short access (noncompulsive cocaine seeking) or extended access (compulsive cocaine seeking). Buprenorphine alone reproducibly decreased cocaine self-administration. Although this buprenorphine-alone effect was blocked in a dose-dependent manner by naltrexone in both the short-access and the extended-access groups, the combination of the lowest dose of naltrexone with buprenorphine blocked cocaine self-administration in the extended-access group but not in the short-access group. Rats given this low dose of naltrexone with buprenorphine did not exhibit the physical opioid withdrawal syndrome seen in rats treated with buprenorphine alone, and naltrexone at this dose did not block κ agonist–induced analgesia. The results suggest that the combination of buprenorphine and naltrexone at an appropriate dosage decreases compulsive cocaine self-administration with minimal liability to produce opioid dependence and may be useful as a treatment for cocaine addiction. PMID:22875830

  1. A combination of buprenorphine and naltrexone blocks compulsive cocaine intake in rodents without producing dependence.

    PubMed

    Wee, Sunmee; Vendruscolo, Leandro F; Misra, Kaushik K; Schlosburg, Joel E; Koob, George F

    2012-08-08

    Buprenorphine, a synthetic opioid that acts at both μ and κ opioid receptors, can decrease cocaine use in individuals with opioid addiction. However, the potent agonist action of buprenorphine at μ opioid receptors raises its potential for creating opioid dependence in non-opioid-dependent cocaine abusers. Here, we tested the hypothesis that a combination of buprenorphine and naltrexone (a potent μ opioid antagonist with weaker δ and κ antagonist properties) could block compulsive cocaine self-administration without producing opioid dependence. The effects of buprenorphine and various doses of naltrexone on cocaine self-administration were assessed in rats that self-administered cocaine under conditions of either short access (noncompulsive cocaine seeking) or extended access (compulsive cocaine seeking). Buprenorphine alone reproducibly decreased cocaine self-administration. Although this buprenorphine-alone effect was blocked in a dose-dependent manner by naltrexone in both the short-access and the extended-access groups, the combination of the lowest dose of naltrexone with buprenorphine blocked cocaine self-administration in the extended-access group but not in the short-access group. Rats given this low dose of naltrexone with buprenorphine did not exhibit the physical opioid withdrawal syndrome seen in rats treated with buprenorphine alone, and naltrexone at this dose did not block κ agonist-induced analgesia. The results suggest that the combination of buprenorphine and naltrexone at an appropriate dosage decreases compulsive cocaine self-administration with minimal liability to produce opioid dependence and may be useful as a treatment for cocaine addiction.

  2. Emulsification Increases the Acute Ketogenic Effect and Bioavailability of Medium-Chain Triglycerides in Humans

    PubMed Central

    Courchesne-Loyer, Alexandre; Lowry, Carolyn-Mary; St-Pierre, Valérie; Vandenberghe, Camille; Fortier, Mélanie; Castellano, Christian-Alexandre; Wagner, J Richard; Cunnane, Stephen C

    2017-01-01

    Abstract Background: Lower-brain glucose uptake is commonly present before the onset of cognitive deterioration associated with aging and may increase the risk of Alzheimer disease. Ketones are the brain's main alternative energy substrate to glucose. Medium-chain triglycerides (MCTs) are rapidly β-oxidized and are ketogenic but also have gastrointestinal side effects. We assessed whether MCT emulsification into a lactose-free skim-milk matrix [emulsified MCTs (MCT-Es)] would improve ketogenesis, reduce side effects, or both compared with the same oral dose of MCTs consumed without emulsification [nonemulsified MCTs (MCT-NEs)]. Objectives: Our aims were to show that, in healthy adults, MCT-Es will induce higher ketonemia and have fewer side effects than MCT-NEs and the effects of MCT-NEs and MCT-Es on ketogenesis and plasma medium-chain fatty acids (MCFAs) will be dose-dependent. Methods: Using a metabolic study day protocol, 10 healthy adults were each given 3 separate doses (10, 20, or 30 g) of MCT-NEs or MCT-Es with a standard breakfast or no treatment [control (CTL)]. Blood samples were taken every 30 min for 4 h to measure plasma ketones (β-hydroxybutyrate and acetoacetate), octanoate, decanoate, and other metabolites. Participants completed a side-effects questionnaire at the end of each study day. Results: Compared with CTL, MCT-NEs increased ketogenesis by 2-fold with no significant differences between doses. MCT-Es increased total plasma ketones by 2- to 4-fold in a dose-dependent manner. Compared with MCT-NEs, MCT-Es increased plasma MCFA bioavailability (F) by 2- to 3-fold and decreased the number of side effects by ∼50%. Conclusions: Emulsification increased the ketogenic effect and decreased side effects in a dose-dependent manner for single doses of MCTs ≤30 g under matching conditions. Further investigation is needed to establish whether emulsification could sustain ketogenesis and minimize side effects and therefore be used as a treatment to change brain ketone availability over a prolonged period of time. This trial was registered at clinicaltrials.gov as NCT02409927.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, J.E.; Klaine, S.J.

    The field cricket, Acheta domesticus, was used as a test organism to determine the effects of heavy metal exposure on cellular immunity. Insects were separated by sex and exposed to cadmium chloride or mercuric chloride at concentrations of 0, 2.5, and 5.0 ug/g. Exposures consisted of injecting the chemicals into the hemocoel of each insect on days 0, 2, and 4. Hemolymph was collected on day 7 of the study to determine total hemocyte counts, protein levels, and phenoloxidase activity in individual insects. Cadmium chloride decreased the total number of hemocytes in male crickets at 2.5 and 5.0 ug/g andmore » in female crickets at 5.0 ug/g. Protein levels increased in a dose dependent manner in the males but only slightly increased in the females. Mercuric chloride caused a dose-dependent increase in total hemocytes in both male and female crickets. In addition, mercuric chloride caused a dose-dependent increase in protein levels in males but not females.« less

  4. Haloperidol Disrupts Opioid-Antinociceptive Tolerance and Physical Dependence

    PubMed Central

    Yang, Cheng; Chen, Yan; Tang, Lei

    2011-01-01

    Previous studies from our laboratory and others have implicated a critical role of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in opioid tolerance and dependence. Translational research targeting the CaMKII pathway is challenging, if not impossible, because of a lack of selective inhibitors. We discovered in a preliminary study that haloperidol, a butyrophenone antipsychotic drug, inhibited CaMKII, which led us to hypothesize that haloperidol can attenuate opioid tolerance and dependence by inhibiting CaMKII. The hypothesis was tested in two rodent models of opioid tolerance and dependence. Pretreatment with haloperidol (0.2–1.0 mg/kg i.p.) prevented the development of morphine tolerance and dependence in a dose-dependent manner. Short-term treatment with haloperidol (0.06–0.60 mg/kg i.p.) dose-dependently reversed the established morphine-antinociceptive tolerance and physical dependence. Correlating with behavioral effects, pretreatment or short-term treatment with haloperidol dose-dependently inhibited morphine-induced up-regulation of supraspinal and spinal CaMKIIα activity. Moreover, haloperidol given orally was also effective in attenuating morphine-induced CaMKIIα activity, antinociceptive tolerance, and physical dependence. Taken together, these data suggest that haloperidol attenuates opioid tolerance and dependence by suppressing CaMKII activity. Because haloperidol is a clinically used drug that can be taken orally, we propose that the drug may be of use in attenuating opioid tolerance and dependence. PMID:21436292

  5. DHA down-regulates phenobarbital-induced cytochrome P450 2B1 gene expression in rat primary hepatocytes by attenuating CAR translocation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, C.-C.; Lii, C.-K.; Liu, K.-L.

    The constitutive androstane receptor (CAR) plays an important role in regulating the expression of detoxifying enzymes, including cytochrome P450 2B (CYP 2B). Phenobarbital (PB) induction of human CYP 2B6 and mouse CYP 2b10 has been shown to be mediated by CAR. Our previous study showed that PB-induced CYP 2B1 expression in rat primary hepatocytes is down-regulated by both n-6 and n-3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA); however, the mechanism for this down-regulation by DHA was previously unknown. The objective of the present study was to determine whether change in CAR translocation is involved in the down-regulation bymore » n-6 and n-3 PUFAs of PB-induced CYP 2B1 expression in rat primary hepatocytes. We used 100 {mu}M arachidonic acid, linoleic acid, eicosapentaenoic acid, and DHA to test this hypothesis. PB triggered the translocation of CAR from the cytosol into the nucleus in a dose-dependent and time-dependent manner in our hepatocyte system, and the CAR distribution in rat primary hepatocytes was significantly affected by DHA. DHA treatment decreased PB-inducible accumulation of CAR in the nuclear fraction and increased it in the cytosolic fraction in a dose-dependent manner. The down-regulation of CYP 2B1 expression by DHA occurred in a dose-dependent manner, and a similar pattern was found for the nuclear accumulation of CAR. The results of immunoprecipitation showed a CAR/RXR heterodimer bound to nuclear receptor binding site 1 (NR-1) of the PB-responsive enhancer module (PBREM) of the CYP 2B1gene. The EMSA results showed that PB-induced CAR binding to NR-1 was attenuated by DHA. Taken together, these results suggest that attenuation of CAR translocation and decreased subsequent binding to NR-1 are involved in DHA's down-regulation of PB-induced CYP 2B1 expression.« less

  6. Apoptosis induction by silica nanoparticles mediated through reactive oxygen species in human liver cell line HepG2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Javed; Ahamed, Maqusood, E-mail: maqusood@gmail.com; Akhtar, Mohd Javed

    Silica nanoparticles are increasingly utilized in various applications including agriculture and medicine. In vivo studies have shown that liver is one of the primary target organ of silica nanoparticles. However, possible mechanisms of hepatotoxicity caused by silica nanoparticles still remain unclear. In this study, we explored the reactive oxygen species (ROS) mediated apoptosis induced by well-characterized 14 nm silica nanoparticles in human liver cell line HepG2. Silica nanoparticles (25–200 μg/ml) induced a dose-dependent cytotoxicity in HepG2 cells. Silica nanoparticles were also found to induce oxidative stress in dose-dependent manner indicated by induction of ROS and lipid peroxidation and depletion ofmore » glutathione (GSH). Quantitative real-time PCR and immunoblotting results showed that both the mRNA and protein expressions of cell cycle checkpoint gene p53 and apoptotic genes (bax and caspase-3) were up-regulated while the anti-apoptotic gene bcl-2 was down-regulated in silica nanoparticles treated cells. Moreover, co-treatment of ROS scavenger vitamin C significantly attenuated the modulation of apoptotic markers along with the preservation of cell viability caused by silica nanoparticles. Our data demonstrated that silica nanoparticles induced apoptosis in human liver cells, which is ROS mediated and regulated through p53, bax/bcl-2 and caspase pathways. This study suggests that toxicity mechanisms of silica nanoparticles should be further investigated at in vivo level. -- Highlights: ► We explored the mechanisms of toxicity caused by silica NPs in human liver HepG2 cells. ► Silica NPs induced a dose-dependent cytotoxicity in HepG2 cells. ► Silica NPs induced ROS generation and oxidative stress in a dose-dependent manner. ► Silica NPs were also modulated apoptosis markers both at mRNA and protein levels. ► ROS mediated apoptosis induced by silica NPs was preserved by vitamin C.« less

  7. Prostaglandins mediate the stimulatory effects of endothelin-1 on cAMP accumulation and inositol-1,4,5-trisphosphate production and contraction in cat iris sphincter.

    PubMed

    Yousufzai, S Y; Ye, Z; Abdel-Latif, A A

    1995-12-01

    We previously reported that in the iris sphincter smooth muscle, endothelin-1 (ET-1) activates both adenylyl cyclase and the phosphoinositide cascade and that the changes in the levels of cAMP and inositol-1,4,5-trisphosphate (IP3) produced are species specific. In the present study, we examined the mechanism of the ET-1 effects in cat iris sphincter. In general, we found that ET-1 (0.1 microM) increased prostaglandin E2 (PGE2) release by 156%, cAMP accumulation by 310%, IP3 production by 88% and induced contraction; that PGE2 increased cAMP accumulation, IP3 production and contraction; and that the effects of ET-1 are inhibited by indomethacin (Indo), suggesting that arachidonic acid metabolites may mediate the responses to the peptide. Kinetic studies revealed the following: (1) The effect of ET-1 on cAMP accumulation is rapid (within 30 sec), dose dependent (EC50 = 5.8 nM) and completely abolished by Indo (Ki = 0.16 microM), a cyclooxygenase inhibitor, but not by nordihydroguairetic acid, a lipoxygenase inhibitor, implying the involvement of PGs. (2) ET-1 dose-dependently evoked PGe2 release (EC50 = 1.8 nM), IP3 production (EC50 = 4.5 nM) and contraction (EC50 = 5 nM) and that all of these responses were inhibited by Indo. (3) PGE2 increased cAMP accumulation in a dose-dependent manner with an EC50 of 1.5 x 10(-7) M, and PGD2 and PGF2 alpha had little effect on the cyclic nucleotide. (4) PGE2 (1 microM), increased IP3 production by 55% and induced muscle contraction in a dose-dependent manner (EC50 = 40 nM). We conclude from these data that in cat iris sphincter PGs may mediate ET-1-induced cAMP accumulation, IP3 production and smooth muscle contraction.

  8. Adaptogenic and nootropic activities of aqueous extract of Vitis vinifera (grape seed): an experimental study in rat model

    PubMed Central

    Sreemantula, Satyanarayana; Nammi, Srinivas; Kolanukonda, Rajabhanu; Koppula, Sushruta; Boini, Krishna M

    2005-01-01

    Background The aerial parts of Vitis vinifera (common grape or European grape) have been widely used in Ayurveda to treat a variety of common and stress related disorders. In the present investigation, the seed extract of V. vinifera was evaluated for antistress activity in normal and stress induced rats. Furthermore, the extract was studied for nootropic activity in rats and in-vitro antioxidant potential to correlate its antistress activity. Methods For the evaluation of antistress activity, groups of rats (n = 6) were subjected to forced swim stress one hour after daily treatment of V. vinifera extract. Urinary vanillylmandelic acid (VMA) and ascorbic acid were selected as non-invasive biomarkers to assess the antistress activity. The 24 h urinary excretion of vanillylmandelic acid (VMA) and ascorbic acid were determined by spectrophotometric methods in all groups under normal and stressed conditions. The nootropic activity of the extract as determined from acquisition, retention and retrieval in rats was studied by conditioned avoidance response using Cook's pole climbing apparatus. The in vitro antioxidant activity was determined based on the ability of V. vinifera to scavenge hydroxyl radicals. Results Daily administration of V. vinifera at doses of 100, 200 and 300 mg/kg body weight one hour prior to induction of stress inhibited the stress induced urinary biochemical changes in a dose dependent manner. However, no change in the urinary excretion of VMA and ascorbic acid was observed in normal animals at all the doses studied. The cognition, as determined by the acquisition, retention and recovery in rats was observed to be dose dependent. The extract also produced significant inhibition of hydroxyl radicals in comparison to ascorbic acid in a dose dependent manner. Conclusion The present study provides scientific support for the antistress (adaptogenic), antioxidant and nootropic activities of V. vinifera seed extract and substantiate the traditional claims for the usage of grape fruits and seeds in stress induced disorders. PMID:15656916

  9. Fibrinogen Induces Biofilm Formation by Streptococcus suis and Enhances Its Antibiotic Resistance▿

    PubMed Central

    Bonifait, Laetitia; Grignon, Louis; Grenier, Daniel

    2008-01-01

    In this study, we showed that supplementing the culture medium with fibrinogen induced biofilm formation by Streptococcus suis in a dose-dependent manner. Biofilm-grown S. suis cells were much more resistant to penicillin G than planktonic cells. S. suis bound fibrinogen to its surface, a property that likely contributes to biofilm formation. PMID:18539785

  10. Fibrinogen induces biofilm formation by Streptococcus suis and enhances its antibiotic resistance.

    PubMed

    Bonifait, Laetitia; Grignon, Louis; Grenier, Daniel

    2008-08-01

    In this study, we showed that supplementing the culture medium with fibrinogen induced biofilm formation by Streptococcus suis in a dose-dependent manner. Biofilm-grown S. suis cells were much more resistant to penicillin G than planktonic cells. S. suis bound fibrinogen to its surface, a property that likely contributes to biofilm formation.

  11. In utero exposure to di(n)butyl phthalate reduces testicular testosterone and testis size in a dose-dependent manner in Harlan Sprague Dawley fetal rats

    EPA Science Inventory

    Phthalate esters are widely used to impart flexibility to plastics (e.g. plastic medical devices and children’s toys) as well as other uses in health and beauty products and some pharmaceuticals. Certain phthalate esters cause reproductive malformations and decrease androgen-dep...

  12. Metabolic changes assessed by MRS accurately reflect brain function during drug-induced epilepsy in mice in contrast to fMRI-based hemodynamic readouts.

    PubMed

    Seuwen, Aline; Schroeter, Aileen; Grandjean, Joanes; Rudin, Markus

    2015-10-15

    Functional proton magnetic resonance spectroscopy (1H-MRS) enables the non-invasive assessment of neural activity by measuring signals arising from endogenous metabolites in a time resolved manner. Proof-of-principle of this approach has been demonstrated in humans and rats; yet functional 1H-MRS has not been applied in mice so far, although it would be of considerable interest given the many genetically engineered models of neurological disorders established in this species only. Mouse 1H-MRS is challenging as the high demands on spatial resolution typically result in long data acquisition times not commensurable with functional studies. Here, we propose an approach based on spectroscopic imaging in combination with the acquisition of the free induction decay to maximize signal intensity. Highly resolved metabolite maps have been recorded from mouse brain with 12 min temporal resolution. This enabled monitoring of metabolic changes following the administration of bicuculline, a GABA-A receptor antagonist. Changes in levels of metabolites involved in energy metabolism (lactate and phosphocreatine) and neurotransmitters (glutamate) were investigated in a region-dependent manner and shown to scale with the bicuculline dose. GABAergic inhibition induced spectral changes characteristic for increased neurotransmitter turnover and oxidative stress. In contrast to metabolic readouts, BOLD and CBV fMRI responses did not scale with the bicuculline dose indicative of the failure of neurovascular coupling. Nevertheless fMRI measurements supported the notion of increased oxidative stress revealed by functional MRS. Hence, the combined analysis of metabolic and hemodynamic changes in response to stimulation provides complementary insight into processes associated with neural activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Dual Effects of N,N-dimethylformamide on Cell Proliferation and Apoptosis in Breast Cancer

    PubMed Central

    Zhang, Jihong; Zhou, Daibing; Zhang, Lingyun; Lin, Qunbo; Ren, Weimin; Zhang, Jinguo; Nadeem, Lubna; Xu, Guoxiong

    2017-01-01

    N,N-dimethylformamide (DMF) has been widely used as an organic solvent in industries. DMF is a potential medication. However, the antitumorigenic role of DMF in breast cancer remains unclear. Here, we examined dose-dependent effects of DMF on proliferation and apoptosis in breast cancer MCF-7 and nontumorous MCF-12A cells. We found that DMF had a growth inhibitory effect in MCF-12A cells in a dose-dependent manner. By contrast, however, DMF had dual effects on cell proliferation and apoptosis in MCF-7 cells. DMF at a high dose (100 mM) significantly inhibited MCF-7 cell growth while at a low dose (1 mM) significantly stimulated MCF-7 cell growth (both P < .05). The inhibitory effect of DMF on cell proliferation was accompanied by the decrease of cyclin D1 and cyclin E1 protein expression, leading to the cell cycle arrest at the G0/G1 phase. Furthermore, a high-dose DMF significantly increased the number of early apoptotic cells by increasing cleaved caspase-9 and proapoptotic protein Bax expression and decreased the ratio of Bcl-xL/Bax (P < .01). Thus, our data demonstrated for the first time that DMF has dual effects on breast cancer cell behaviors depending upon its dose. Caution must be warranted in determining its effective dose for targeting breast cancer. PMID:29238273

  14. In vitro evaluation of antiproliferative and cytotoxic properties of pterostilbene against human colon cancer cells.

    PubMed

    Wawszczyk, Joanna; Kapral, Małgorzata; Hollek, Andrzej; Węglarz, Ludmiła

    2014-01-01

    Colon cancer has been remaining the second leading cause of cancer mortality in Poland in the last years. Epidemiological, preclinical and clinical studies reveal that dietary phytochemicals may exert chemopreventive and therapeutic effect against colorectal cancer. There is a growing interest in identifying new biologically active agents from dietary sources in this respect. Pterostilbene (trans-3,5-dimethoxy-4-hydroxystilbene) is a naturally occurring stilbene, that has been found to have antioxidative, anti-inflammatory and antipro- liferative properties. Compared to other stilbenes, pterostilbene has greater bioavailability, and so, a greater potential for clinical applications. Recent studies showed that pterostilbene exhibits the hallmark characteristics of an anticancer agent. The aim of this study was to analyze antiproliferative and cytotoxic effects of pterostilbene on human colon cancer Caco-2 cells. They were cultured using standard techniques and exposed to increasing doses of pterostilbene (5-100 μM) for 48 and 72 h. Cell proliferation was determined by sulforhodamine B assay. The growth of treated cells was expressed as a percentage of that of untreated control cells. Pterostilbene decreased proliferation rate of Caco-2 cells in a dose- and time-dependent manner. Its concentrations = 25 μM did not affect cell growth after 48 h treatment period. Significant growth inhibition was observed in cultures incubated with higher concentrations of pterostilbene (40-100 μM). Pterostilbene at all concentrations used (5-100 μM) caused significant inhibition of cell proliferation when the experimental time period was elongated to 72 h. The maximum growth reduction was observed at 100 mM pterostilbene. The cytotoxicity of pterostilbene was evaluated in 48 h cultures based on lactate dehydrogenase (LDH) leakage into the culture medium and showed dose-related pattern. The findings of this study showed significant dose-dependent antiproliferative and cytotoxic effects of pterostilbene against human colon cancer cells in vitro.

  15. Proteomic Changes of Tissue-Tolerable Plasma Treated Airway Epithelial Cells and Their Relation to Wound Healing.

    PubMed

    Lendeckel, Derik; Eymann, Christine; Emicke, Philipp; Daeschlein, Georg; Darm, Katrin; O'Neil, Serena; Beule, Achim G; von Woedtke, Thomas; Völker, Uwe; Weltmann, Klaus-Dieter; Jünger, Michael; Hosemann, Werner; Scharf, Christian

    2015-01-01

    The worldwide increasing number of patients suffering from nonhealing wounds requires the development of new safe strategies for wound repair. Recent studies suggest the possibility of nonthermal (cold) plasma application for the acceleration of wound closure. An in vitro wound healing model with upper airway S9 epithelial cells was established to determine the macroscopically optimal dosage of tissue-tolerable plasma (TTP) for wound regeneration, while a 2D-difference gel electrophoresis (2D-DIGE) approach was used to quantify the proteomic changes in a hypothesis-free manner and to evaluate the balance of beneficial and adverse effects due to TTP application. Plasma doses from 30 s up to 360 s were tested in relation to wound closure after 24 h, 48 h, 72 h, 96 h, and 120 h, in which lower doses (30, 60, and 120 s) resulted in dose-dependent improved wound healing rate compared to untreated cells. Thereby, the 120 s dose caused significantly the best wound healing properties after 96 and 120 h. The proteome analysis combined with IPA revealed that a lot of affected stress adaptation responses are linked to oxidative stress response emphasizing oxidative stress as a possible key event in the regeneration process of epithelial cells as well as in the adaptation to plasma exposure. Further cellular and molecular functions like proliferation and apoptosis were significantly up- or downregulated by all TTP treatments but mostly by the 120 s dose. For the first time, we were able to show plasma effects on cellular adaptation of upper airway epithelial S9 cells improving wound healing. This is of particular interest for plasma application, for example, in the surgery field of otorhinolaryngology or internal medicine.

  16. Induction of caspase-dependent extrinsic apoptosis by apigenin through inhibition of signal transducer and activator of transcription 3 (STAT3) signalling in HER2-overexpressing BT-474 breast cancer cells.

    PubMed

    Seo, Hye-Sook; Jo, Jae Kyung; Ku, Jin Mo; Choi, Han-Seok; Choi, Youn Kyung; Woo, Jong-Kyu; Kim, Hyo In; Kang, Soo-Yeon; Lee, Kang Min; Nam, Koong Won; Park, Namkyu; Jang, Bo-Hyoung; Shin, Yong Cheol; Ko, Seong-Gyu

    2015-10-23

    Phytoestrogen intake is known to be beneficial to decrease breast cancer incidence and progression. But its molecular mechanisms of action are still unknown. The present study aimed to examine the effect of apigenin on proliferation and apoptosis in HER2-expressing breast cancer cells. In our experiments, apigenin inhibited the proliferation of BT-474 cells in a dose- and time-dependent manner. Apigenin also inhibited clonogenic survival (anchorage-dependent and -independent) of BT-474 cells in a dose-dependent manner. These growth inhibitions were accompanied with an increase in sub-G0/G1 apoptotic populations. Apigenin-induced extrinsic a caspase-dependent apoptosis up-regulating the levels of cleaved caspase-8 and cleaved caspase-3, and inducing the cleavage of poly (ADP-ribose) polymerase (PARP). Whereas, apigenin did not induce apoptosis via intrinsic mitochondrial apoptosis pathway since this compound did not decrease mitochondrial membrane potential without affecting the levels of B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (BAX). Apigenin reduced the expression of phospho-JAK1, phospho-JAK2 and phospho-STAT3 and decreased signal transducer and activator of transcription 3 (STAT3) dependent luciferase reporter gene activity in BT-474 cells. Apigenin inhibited CoCl2-induced VEGF secretion and decreased the nuclear translocation of STAT3. Our study indicates that apigenin induces apoptosis through inhibition of STAT3 signalling and could serve as a useful compound to prevent or treat HER2-overexpressing breast cancer. © 2015 Authors.

  17. Induction of caspase-dependent extrinsic apoptosis by apigenin through inhibition of signal transducer and activator of transcription 3 (STAT3) signalling in HER2-overexpressing BT-474 breast cancer cells

    PubMed Central

    Seo, Hye-Sook; Jo, Jae Kyung; Ku, Jin Mo; Choi, Han-Seok; Choi, Youn Kyung; Woo, Jong-Kyu; in Kim, Hyo; Kang, Soo-yeon; Lee, Kang min; Nam, Koong Won; Park, Namkyu; Jang, Bo-Hyoung; Shin, Yong Cheol; Ko, Seong-Gyu

    2015-01-01

    Phytoestrogen intake is known to be beneficial to decrease breast cancer incidence and progression. But its molecular mechanisms of action are still unknown. The present study aimed to examine the effect of apigenin on proliferation and apoptosis in HER2-expressing breast cancer cells. In our experiments, apigenin inhibited the proliferation of BT-474 cells in a dose- and time-dependent manner. Apigenin also inhibited clonogenic survival (anchorage-dependent and -independent) of BT-474 cells in a dose-dependent manner. These growth inhibitions were accompanied with an increase in sub-G0/G1 apoptotic populations. Apigenin-induced extrinsic a caspase-dependent apoptosis up-regulating the levels of cleaved caspase-8 and cleaved caspase-3, and inducing the cleavage of poly (ADP-ribose) polymerase (PARP). Whereas, apigenin did not induce apoptosis via intrinsic mitochondrial apoptosis pathway since this compound did not decrease mitochondrial membrane potential without affecting the levels of B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (BAX). Apigenin reduced the expression of phospho-JAK1, phospho-JAK2 and phospho-STAT3 and decreased signal transducer and activator of transcription 3 (STAT3) dependent luciferase reporter gene activity in BT-474 cells. Apigenin inhibited CoCl2-induced VEGF secretion and decreased the nuclear translocation of STAT3. Our study indicates that apigenin induces apoptosis through inhibition of STAT3 signalling and could serve as a useful compound to prevent or treat HER2-overexpressing breast cancer. PMID:26500281

  18. Assessing The Impact Of Cancer Therapies On Ovarian Reserve

    PubMed Central

    Gracia, Clarisa R.; Sammel, Mary D.; Freeman, Ellen; Prewitt, Maureen; Carlson, Claire; Ray, Anushree; Vance, Ashley; Ginsberg, Jill P.

    2013-01-01

    Objective To determine whether measures of ovarian reserve differ between females exposed to cancer therapies in a dose-dependent manner as compared to healthy controls of similar age and late-reproductive age. Design Cross-sectional analysis of data from a prospective cohort study Setting University Medical Center Patients 71 cancer survivors age 15-39; 67 healthy, similarly aged unexposed subjects; 69 regularly menstruating women of late-reproductive age (40-52 years). Interventions: None Main Outcome measures Early follicular phase hormones (FSH, Estradiol, Inhibin B, AMH) and ovarian ultrasound measurements (ovarian volume and Antral Follicle Counts) were compared using multivariable linear regression. Results In adjusted models, FSH, AMH and AFC differed between exposed vs. unexposed (FSH 11.12mIU/ml vs. 7.25mIU/ml, p=0.001; AMH 0.81ng/ml vs. 2.85ng/ml, p<0.001; AFC: 14.55 vs. 27.20, p<0.001. In participants with an FSH<10, survivors had lower levels of AMH and AFC compared to controls. Alkylating agent dose score was associated with increased levels of FSH (p= 0.016) and decreased levels of AMH (p=0.003). Exposure to pelvic radiation was associated with impairment in FSH, AMH, AFC and ovarian volume. AMH was similar in women previously exposed to high-dose cancer therapy and 40-42 year old controls. Conclusions Measures of ovarian reserve are impaired in a dose-dependent manner among cancer survivors compared to unexposed females of similar age. Reproductive hormone levels in menstruating survivors exposed to high-dose therapy are similar to late-reproductive women. The predictive value of measures for pregnancy and menopause must be studied. PMID:22137491

  19. Chronic administration of phenytoin induces efflux transporter overexpression in rats.

    PubMed

    Alvariza, Silvana; Fagiolino, Pietro; Vázquez, Marta; Feria-Romero, Iris; Orozco-Suárez, Sandra

    2014-12-01

    Efflux transporters overexpression has been proposed as one of the responsible mechanism for refractory epilepsy by preventing access of the antiepileptic drug to the brain. In this work we investigated whether phenytoin (PHT), could induce efflux transporters overexpression, at different biological barriers and to evaluate the implication it could have on its pharmacokinetics and therapeutic/toxic response. Forty-two adult females Sprague Dawley divided in five groups were treated with oral doses of 25, 50 and 75mg/kg/6h of PHT for 3 days and two additionally groups were treated with intraperitoneal (ip) doses of 25mg/kg/6h or 100mg/kg/24h. At day 4 PHT plasma concentrations were measured and, obtained several organs, brain, parotid gland, liver and duodenum in which were analyzed for the Pgp expression. At day 4 PHT plasma concentrations were measured and several tissues: brain, parotid gland, liver and duodenum were obtained in order to analyze Pgp expression. In order to evaluate the oral bioavailability of PHT, two groups were administered with oral or intraperitoneal doses of 100mg/kg and plasma level were measured. An induction of the expression of efflux transporter mediated by phenytoin in a concentration-and-time dependent manner was found when increasing oral and ip doses of phenytoin, One week after the interruption of ip treatment a basal expression of transporters was recovered. Overexpression of efflux transporters can be mediated by inducer agents like PHT in a local-concentration dependent manner, and it is reversible once the substance is removed from the body. The recovery of basal Pgp expression could allow the design of dosing schedules that optimize anticonvulsant therapy. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  20. Hormetic effects of noncoplanar PCB exposed to human lung fibroblast cells (HELF) and possible role of oxidative stress.

    PubMed

    Hashmi, Muhammad Zaffar; Khan, Kiran Yasmin; Hu, Jinxing; Naveedullah; Su, Xiaomei; Abbas, Ghulam; Yu, Chunna; Shen, Chaofeng

    2015-12-01

    Hormesis, a biphasic dose-response phenomenon, which is characterized by stimulation of an end point at a low-dose and inhibition at a high-dose. In the present study we used human lungs fibroblast (HELF) cells as a test model to evaluate the role of oxidative stress (OS) in hormetic effects of non coplanar PCB 101. Results from 3-(4,5-dime-thylthiazol-2-yl)-2,5-diphenyltetrazo-lium bromide (MTT) assay indicated that PCB101 at lower concentrations (10(-5) to 10(-1) μg mL(-1) ) stimulated HELF cell proliferation and inhibited at high concentrations (1, 5, 10, and 20 μg mL(-1) ) in a dose- and time-dependent manner. Reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase (SOD) (except 48 h) showed a significant increase at higher concentrations of PCB 101 than those at the lower concentrations with the passage of time. Antioxidant enzymes such as glutathione peroxidase (GSH-Px) exhibited decreasing trends in dose and time dependent manner. Lipid peroxidation assay resulted in a significant increase (P < 0.05) of MDA level in PCB 101-treated HELF cells compared with controls, suggesting that OS plays a key role in PCB 101-induced toxicity. Comet assay indicated a significant increase in genotoxicity at higher concentrations of PCB 101 exposure compared to lower concentrations. Overall, we found that HELF cell proliferation was higher at low ROS level and vice versa, which revealed activation of cell signaling-mediated hormetic mechanisms. The results suggested that PCB 101 has hormetic effects to HELF cells and these were associated with oxidative stress. © 2014 Wiley Periodicals, Inc.

  1. Therapeutic effect of umbelliferon-α-D-glucopyranosyl-(2(I)→1(II))-α-D-glucopyranoside on adjuvant-induced arthritic rats.

    PubMed

    Kumar, Vikas; Anwar, Firoz; Verma, Amita; Mujeeb, Mohd

    2015-06-01

    The aim and objective of the present investigation was to evaluate the antiarthritic and antioxidant effect of umbelliferon-α-D-glucopyranosyl-(2I→1II)-α-D-glucopyranoside (UFD) in chemically induced arthritic rats. The different doses of the UFD were tested against the turpentine oil (TO), formaldehyde induced acute arthritis and complete fruend's adjuvant (CFA) induced chronic arthritis in Wistar rats. Arthritic assessment and body weight was measured at regular interval till 28 days. On day 28, all the groups animals were anaesthetized, blood were collected from the puncturing the ratro orbital and estimated the hematological parameters. The animals were sacrificed; synovial tissue was extracted and estimated the malonaldehyde (MDA), glutathione (GSH), glutathione peroxidase (GPx) and superoxide dismutase (SOD). The different doses of the UFD showed the protective effect against turpentine oil, formaldehyde induced acute arthritis and CFA induced chronic arthritis at dose dependent manner. Acute model of arthritis such as TOand formaldehyde induced inflammation due to releasing of the inflammatory mediators; significantly inhibited by the UFD at dose dependent manner. CFA induced arthritic rats treated with the different doses of the UFD showed the inhibitory effect on the delayed increase in joint diameter as seen in arthritic control group rats. UFD significantly improved the arthritic index, body weight and confirmed the antiarthritic effect. UFD showed the effect on the hematological parameter such as improved the level of the RBC, Hb and decline the level of the EBC, ESR and confirmed the immune suppressive effect. UFD significantly improved the level of the endogenous antioxidant and confirmed the antioxidant effect. This present investigation suggests that the UFD has prominent antiarthritic impact which can be endorsed to its antiarthritic and antioxidant effects.

  2. Anti-tumor effects and apoptosis induction by Realgar bioleaching solution in Sarcoma-180 cells in vitro and transplanted tumors in mice in vivo.

    PubMed

    Xie, Qin-Jian; Cao, Xin-Li; Bai, Lu; Wu, Zheng-Rong; Ma, Ying-Ping; Li, Hong-Yu

    2014-01-01

    Realgar which contains arsenic components has been used in traditional Chinese medicine (TCM) as an anticancer drug. However, neither Realgar nor its formula are soluble in water. As a result, high dose of Realgar has to be administered to achieve an effective blood medicine concentration, and this is associated with adverse side effects. The objective of the present study was to increase the solubility of a formula using hydrometallurgy technology as well as investigating its effects on in vitro and in vivo cell proliferation and apoptosis in Sarcoma-180 cell line. Antiproliferative activity of Realgar Bioleaching Solution (RBS) was evaluated by MTT assay. Further, effects of RBS on cell proliferation and apoptosis were studied using flow cytometry and transmission electron microscopy. Kunming mice were administered RBS in vivo, where arsenic specifically targeted solid tumors. The results indicated that RBS extract potently inhibited the tumor growth of Sarcoma-180 cell line in a dose-dependent manner. Flow cytometry and transmission electron microscopy further indicated that RBS significantly induced cell apoptosis through the inhibition of cell cycle pathway in a dose-dependent manner. Further, on RBS administration to mice, arsenic was specifically targeted to solid tumors RBS could substitute for traditional Realgar or its formula to work as a potent tool in cancer treatment.

  3. Effects of acute phencyclidine administration on arginine metabolism in the hippocampus and prefrontal cortex in rats.

    PubMed

    Knox, Logan T; Jing, Yu; Collie, Nicola D; Zhang, Hu; Liu, Ping

    2014-06-01

    Phencyclidine (PCP), a non-competitive N-methyl-d-aspartate glutamate receptor antagonist, induces schizophrenic symptoms in healthy individuals, and altered arginine metabolism has been implicated in schizophrenia. The present study investigated the effects of a single subcutaneous injection of PCP (2, 5 or 10 mg/kg) on arginine metabolism in the sub-regions of the hippocampus and prefrontal cortex in male young adult Sprague-Dawley rats. Animals' general behaviour was assessed in the open field apparatus 30 min after the treatment, and the brain tissues were collected at the time point of 60 min post-treatment. Behaviourally, PCP resulted in reduced exploratory activity in a dose-dependent manner, and severe stereotype behaviour and ataxia at the highest dose. Neurochemically, PCP significantly altered the nitric oxide synthase and arginase activities, the l-arginine, agmatine, spermine, glutamate and GABA levels, and the glutamine/glutamate and glutamate/GABA ratios in a dose-dependent and/or region-specific manner. Cluster analyses showed that l-arginine and its main metabolites l-citrulline, l-ornithine and agmatine formed distinct groups, which changed as a function of PCP mainly in the hippocampus. Multiple regression analysis revealed significant neurochemical-behavioural correlations. These results demonstrate, for the first time, that a single acute administration of PCP affects animals' behaviour and arginine metabolism in the brain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Curcumin Blocks Naproxen-Induced Gastric Antral Ulcerations through Inhibition of Lipid Peroxidation and Activation of Enzymatic Scavengers in Rats.

    PubMed

    Kim, Jeong-Hwan; Jin, Soojung; Kwon, Hyun Ju; Kim, Byung Woo

    2016-08-28

    Curcumin is a polyphenol derived from the plant Curcuma longa, which is used for the treatment of diseases associated with oxidative stress and inflammation. The present study was undertaken to determine the protective effect of curcumin against naproxen-induced gastric antral ulcerations in rats. Different doses (10, 50, and 100 mg/kg) of curcumin or vehicle (curcumin, 0 mg/kg) were pretreated for 3 days by oral gavage, and then gastric mucosal lesions were caused by 80 mg/kg naproxen applied for 3 days. Curcumin significantly inhibited the naproxen-induced gastric antral ulcer area and lipid peroxidation in a dose-dependent manner. In addition, curcumin markedly increased activities of radical scavenging enzymes, such as superoxide dismutase (SOD), catalase, and glutathione peroxidase in a dose-dependent manner. Specifically, 100 mg/kg curcumin completely protected the gastric mucosa against the loss in the enzyme, resulting in a drastic increase of activities of radical scavenging enzymes up to more than the level of untreated normal rats. Histological examination obviously showed that curcumin prevents naproxen-induced gastric antral ulceration as a result of direct protection of the gastric mucosa. These results suggest that curcumin blocks naproxen-induced gastric antral ulcerations through prevention of lipid peroxidation and activation of radical scavenging enzymes, and it may offer a potential remedy of gastric antral ulcerations.

  5. The macrocyclic peptide natural product CJ-15,208 is orally active and prevents reinstatement of extinguished cocaine-seeking behavior.

    PubMed

    Aldrich, Jane V; Senadheera, Sanjeewa N; Ross, Nicolette C; Ganno, Michelle L; Eans, Shainnel O; McLaughlin, Jay P

    2013-03-22

    The macrocyclic tetrapeptide natural product CJ-15,208 (cyclo[Phe-d-Pro-Phe-Trp]) exhibited both dose-dependent antinociception and kappa opioid receptor (KOR) antagonist activity after oral administration. CJ-15,208 antagonized a centrally administered KOR selective agonist, providing strong evidence it crosses the blood-brain barrier to reach KOR in the CNS. Orally administered CJ-15,208 also prevented both cocaine- and stress-induced reinstatement of extinguished cocaine-seeking behavior in the conditioned place preference assay in a time- and dose-dependent manner. Thus, CJ-15,208 is a promising lead compound with a unique activity profile for potential development, particularly as a therapeutic to prevent relapse to drug-seeking behavior in abstinent subjects.

  6. Osteoclasts but not osteoblasts are affected by a calcified surface treated with zoledronic acid in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schindeler, Aaron; Little, David G.; Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney

    2005-12-16

    Bisphosphonates are potent inhibitors of osteoclast-mediated bone resorption. Recent interest has centered on the effects of bisphosphonates on osteoblasts. Chronic dosing of osteoblasts with solubilized bisphosphonates has been reported to enhance osteogenesis and mineralization in vitro. However, this methodology poorly reflects the in vivo situation, where free bisphosphonate becomes rapidly bound to mineralized bone surfaces. To establish a more clinically relevant cell culture model, we cultured bone cells on calcium phosphate coated quartz discs pre-treated with the potent nitrogen-containing bisphosphonate, zoledronic acid (ZA). Binding studies utilizing [{sup 14}C]-labeled ZA confirmed that the bisphosphonate bound in a concentration-dependent manner over themore » 1-50 {mu}M dose range. When grown on ZA-treated discs, the viability of bone-marrow derived osteoclasts was greatly reduced, while the viability and mineralization of the osteoblastic MC3T3-E1 cell line were largely unaffected. This suggests that only bone resorbing cells are affected by bound bisphosphonate. However, this system does not account for transient exposure to unbound bisphosphonate in the hours following a clinical dosing. To model this event, we transiently treated osteoblasts with ZA in the absence of a calcified surface. Osteoblasts proved highly resistant to all transitory treatment regimes, even when utilizing ZA concentrations that prevented mineralization and/or induced cell death when dosed chronically. This study represents a pharmacologically more relevant approach to modeling bisphosphonate treatment on cultured bone cells and implies that bisphosphonate therapies may not directly affect osteoblasts at bone surfaces.« less

  7. 28Si total body irradiation injures bone marrow hematopoietic stem cells via induction of cellular apoptosis

    NASA Astrophysics Data System (ADS)

    Chang, Jianhui; Feng, Wei; Wang, Yingying; Allen, Antiño R.; Turner, Jennifer; Stewart, Blair; Raber, Jacob; Hauer-Jensen, Martin; Zhou, Daohong; Shao, Lijian

    2017-05-01

    Long-term space mission exposes astronauts to a radiation environment with potential health hazards. High-energy charged particles (HZE), including 28Si nuclei in space, have deleterious effects on cells due to their characteristics with high linear energy transfer and dense ionization. The influence of 28Si ions contributes more than 10% to the radiation dose equivalent in the space environment. Understanding the biological effects of 28Si irradiation is important to assess the potential health hazards of long-term space missions. The hematopoietic system is highly sensitive to radiation injury and bone marrow (BM) suppression is the primary life-threatening injuries after exposure to a moderate dose of radiation. Therefore, in the present study we investigated the acute effects of low doses of 28Si irradiation on the hematopoietic system in a mouse model. Specifically, 6-month-old C57BL/6 J mice were exposed to 0.3, 0.6 and 0.9 Gy 28Si (600 MeV) total body irradiation (TBI). The effects of 28Si TBI on BM hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) were examined four weeks after the exposure. The results showed that exposure to 28Si TBI dramatically reduced the frequencies and numbers of HSCs in irradiated mice, compared to non-irradiated controls, in a radiation dose-dependent manner. In contrast, no significant changes were observed in BM HPCs regardless of radiation doses. Furthermore, irradiated HSCs exhibited a significant impairment in clonogenic ability. These acute effects of 28Si irradiation on HSCs may be attributable to radiation-induced apoptosis of HSCs, because HSCs, but not HPCs, from irradiated mice exhibited a significant increase in apoptosis in a radiation dose-dependent manner. However, exposure to low doses of 28Si did not result in an increased production of reactive oxygen species and DNA damage in HSCs and HPCs. These findings indicate that exposure to 28Si irradiation leads to acute HSC damage.

  8. Dual transcriptional-translational cascade permits cellular level tuneable expression control

    PubMed Central

    Morra, Rosa; Shankar, Jayendra; Robinson, Christopher J.; Halliwell, Samantha; Butler, Lisa; Upton, Mathew; Hay, Sam; Micklefield, Jason; Dixon, Neil

    2016-01-01

    The ability to induce gene expression in a small molecule dependent manner has led to many applications in target discovery, functional elucidation and bio-production. To date these applications have relied on a limited set of protein-based control mechanisms operating at the level of transcription initiation. The discovery, design and reengineering of riboswitches offer an alternative means by which to control gene expression. Here we report the development and characterization of a novel tunable recombinant expression system, termed RiboTite, which operates at both the transcriptional and translational level. Using standard inducible promoters and orthogonal riboswitches, a multi-layered modular genetic control circuit was developed to control the expression of both bacteriophage T7 RNA polymerase and recombinant gene(s) of interest. The system was benchmarked against a number of commonly used E. coli expression systems, and shows tight basal control, precise analogue tunability of gene expression at the cellular level, dose-dependent regulation of protein production rates over extended growth periods and enhanced cell viability. This novel system expands the number of E. coli expression systems for use in recombinant protein production and represents a major performance enhancement over and above the most widely used expression systems. PMID:26405200

  9. Treatment planning for internal emitter therapy: Methods, applications and clinical implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sgouros, G.

    1999-01-01

    Treatment planning involves three basic steps: (1) a procedure must be devised that will provide the most relevant information, (2) the procedure must be applied and (3) the resulting information must be translated into a definition of the optimum implementation. There are varying degrees of treatment planning that may be implemented in internal emitter therapy. As in chemotherapy, the information from a Phase 1 study may be used to treat patients based upon body surface area. If treatment planning is included on a patient-specific basis, a pretherapy, trace-labeled, administration of the radiopharmaceutical is generally required. The data collected following themore » tracer dose may range from time-activity curves of blood and whole-body for use in blood, marrow or total body absorbed dose estimation to patient imaging for three-dimensional internal emitter dosimetry. The most ambitious approach requires a three-dimensional set of images representing radionuclide distribution (SPECT or PET) and a corresponding set of images representing anatomy (CT or MRI). The absorbed dose (or dose-rate) distribution may be obtained by convolution of a point kernel with the radioactivity distribution or by direct Monte Carlo calculation. A critical requirement for both techniques is the development of an overall structure that makes it possible, in a routine manner, to input the images, to identify the structures of interest and to display the results of the dose calculations in a clinically relevant manner. 52 refs., 4 figs., 1 tab.« less

  10. Elevated Radiation Exposure Associated With Above Surface Flat Detector Mini C-Arm Use.

    PubMed

    Martin, Dennis P; Chapman, Talia; Williamson, Christopher; Tinsley, Brian; Ilyas, Asif M; Wang, Mark L

    2017-11-01

    This study aims to test the hypothesis that: (1) radiation exposure is increased with the intended use of Flat Surface Image Intensifier (FSII) units above the operative surface compared with the traditional below-table configuration; (2) this differential increases in a dose-dependent manner; and (3) radiation exposure varies with body part and proximity to the radiation source. A surgeon mannequin was seated at a radiolucent hand table, positioned for volar distal radius plating. Thermoluminescent dosimeters measured exposure to the eyes, thyroid, chest, hand, and groin, for 1- and 15-minute trials from a mini C-arm FSII unit positioned above and below the operating surface. Background radiation was measured by control dosimeters placed within the operating theater. At 1-minute of exposure, hand and eye dosages were significantly greater with the flat detector positioned above the table. At 15-minutes of exposure, hand radiation dosage exceeded that of all other anatomic sites with the FSII in both positions. Hand exposure was increased in a dose-dependent manner with the flat detector in either position, whereas groin exposure saw a dose-dependent only with the flat detector beneath the operating table. These findings suggest that the surgeon's hands and eyes may incur greater radiation exposure compared with other body parts, during routine mini C-arm FSII utilization in its intended position above the operating table. The clinical impact of these findings remains unclear, and future long-term radiation safety investigation is warranted. Surgeons should take precautions to protect critical body parts, particularly when using FSII technology above the operating with prolonged exposure time.

  11. In vitro anticancer property of a novel thalidomide analogue through inhibition of NF-kappaB activation in HL-60 cells.

    PubMed

    Li, Min; Sun, Wan; Yang, Ya-ping; Xu, Bo; Yi, Wen-yuan; Ma, Yan-xia; Li, Zhong-jun; Cui, Jing-rong

    2009-01-01

    To investigate the anticancer property and possible mechanism of action of a novel sugar-substituted thalidomide derivative (STA-35) on HL-60 cells in vitro. TNF-alpha-induced NF-kappaB activation was determined using a reporter gene assay. The MTT assay was used to measure cytotoxicity of the compound. The appearance of apoptotic Sub-G1 cells was detected by flow cytometry analysis. PARP cleavage and protein expression of NF-kappaB p65 and its inhibitor IkappaB were viewed by Western blotting. TA-35 (1-20 micromol/L) suppressed TNF-alpha-induced NF-kappaB activation in transfected cells (HEK293/pNiFty-SEAP) in a dose- (1-20 micromol/L) and time-dependent (0-48 h) manner. It was also shown that STA-35 exerted a dose-dependent inhibitory effect on HL-60 cell proliferation with an IC(50) value of 9.05 micromol/L. In addition, STA-35 induced apoptosis in HL-60 cells, as indicated by the appearance of a Sub-G1 peak in the cell cycle distribution, as well as poly ADP-ribose polymerase (PARP) cleavage. Subsequently, both NF-kappaB p65 and its inhibitor IkappaB gradually accumulated in cytoplasmic extracts in a dose- and time-dependent manner, indicating the blockage of NF-kappaB translocation induced by TNF-alpha from the cytoplasm to the nucleus. A novel sugar-substituted thalidomide derivative, STA-35, is potent toward HL-60 cells in vitro and induces apoptosis by the suppression of NF-kappaB activation.

  12. DNA Damage Protecting Activity and Free Radical Scavenging Activity of Anthocyanins from Red Sorghum (Sorghum bicolor) Bran

    PubMed Central

    Devi, P. Suganya; Kumar, M. Saravana; Das, S. Mohan

    2012-01-01

    There is increasing interest in natural food colorants like carotenoids and anthocyanins with functional properties. Red sorghum bran is known as a rich source for anthocyanins. The anthocyanin contents extracted from red sorghum bran were evaluated by biochemical analysis. Among the three solvent system used, the acidified methanol extract showed a highest anthocyanin content (4.7 mg/g of sorghum bran) followed by methanol (1.95 mg/g) and acetone (1 mg/g). Similarly, the highest total flavonoids (143 mg/g) and total phenolic contents (0.93 mg/g) were obtained in acidified methanol extracts than methanol and acetone extracts. To study the health benefits of anthocyanin from red sorghum bran, the total antioxidant activity was evaluated by biochemical and molecular methods. The highest antioxidant activity was observed in acidified methanol extracts of anthocyanin in dose-dependent manner. The antioxidant activity of the red sorghum bran was directly related to the total anthocyanin found in red sorghum bran. PMID:22400119

  13. Dose-dependent bioavailability indicators for curcumin and two of its novel derivatives.

    PubMed

    Abd el Aziz, Mohamed; El-Asmer, Mohamed; Rezq, Ameen; Al-Malki, Abdulrahman; Kumosani, Taha; Fouad, Hanan; Ahmed, Hanan; Taha, Fatma; Hassouna, Amira; Hafez, Hafez

    2014-01-01

    Novel water-soluble curcumin derivatives have been developed to overcome low in vivo bioavailability of curcumin. The aim of this work is to assess the potential utility of certain downstream targets as bioavailability indicators of systemic activity of pure curcumin and two novel water-soluble curcumin derivatives (NCD) by constructing dose-dependent response curves and to prove whether this novel curcumin derivatives retained, improved, or abolished biological activity of pure curcumin when applied in vivo. Pure curcumin (CUR), curcumin-carboxy derivative (NCD-1), and curcumin protein conjugate (NCD-2) were administered orally to rats at escalating doses: 37, 74, 148, and 296 μM/kg body weight, respectively. Plasma levels of GST activity, cavernous tissue levels of cGMP, and enzymatic activity of both HO-1 and GST were assessed one and half and 24 hours after oral administration of curcumin formulae. This study showed that there was a progressive elevation of cavernous tissue levels of cGMP and enzymatic activity of both HO-1 and GST in a dose-dependent manner that was maintained for 24 h with CUR, NCD-1, and NCD-2. Plasma GST activity was decreased by the lowest doses on the curve. The three dose-dependent bioavailability indicators as surrogates of curcumin and two of its novel derivatives are valid in the studied range of concentration and extended time. The novel curcumin derivatives still conserve with improvement the biological activity of natural curcumin when applied in vivo. © 2013 International Union of Biochemistry and Molecular Biology.

  14. Dose Response of Endotoxin on Hepatocyte and Muscle Mitochondrial Respiration In Vitro

    PubMed Central

    Brandt, Sebastian; Porta, Francesca; Jakob, Stephan M.; Takala, Jukka; Djafarzadeh, Siamak

    2015-01-01

    Introduction. Results on mitochondrial dysfunction in sepsis are controversial. We aimed to assess effects of LPS at wide dose and time ranges on hepatocytes and isolated skeletal muscle mitochondria. Methods. Human hepatocellular carcinoma cells (HepG2) were exposed to placebo or LPS (0.1, 1, and 10 μg/mL) for 4, 8, 16, and 24 hours and primary human hepatocytes to 1 μg/mL LPS or placebo (4, 8, and 16 hours). Mitochondria from porcine skeletal muscle samples were exposed to increasing doses of LPS (0.1–100 μg/mg) for 2 and 4 hours. Respiration rates of intact and permeabilized cells and isolated mitochondria were measured by high-resolution respirometry. Results. In HepG2 cells, LPS reduced mitochondrial membrane potential and cellular ATP content but did not modify basal respiration. Stimulated complex II respiration was reduced time-dependently using 1 μg/mL LPS. In primary human hepatocytes, stimulated mitochondrial complex II respiration was reduced time-dependently using 1 μg/mL LPS. In isolated porcine skeletal muscle mitochondria, stimulated respiration decreased at high doses (50 and 100 μg/mL LPS). Conclusion. LPS reduced cellular ATP content of HepG2 cells, most likely as a result of the induced decrease in membrane potential. LPS decreased cellular and isolated mitochondrial respiration in a time-dependent, dose-dependent and complex-dependent manner. PMID:25649304

  15. An attempt to evaluate the effect of vitamin K3 using as an enhancer of anticancer agents.

    PubMed

    Matzno, Sumio; Yamaguchi, Yuka; Akiyoshi, Takeshi; Nakabayashi, Toshikatsu; Matsuyama, Kenji

    2008-06-01

    The possibility of vitamin K3 (VK3) as an anticancer agent was assessed. VK3 dose-dependently diminished the cell viability (measured as esterase activity) with IC50 of 13.7 microM and Hill coefficient of 3.1 in Hep G2 cells. It also decreased the population of S phase and arrested cell cycle in the G2/M phase in a dose-dependent manner. G2/M arrest was regulated by the increment of cyclin A/cdk1 and cyclin A/cdk2 complex, and contrasting cyclin B/cdk1 complex decrease. Finally, combined application demonstrated that VK3 significantly enhanced the cytotoxicity of etoposide, a G2 phase-dependent anticancer agent, whereas it reduced the cytotoxic activity of irinotecan, a S phase-dependent agent. These findings suggest that VK3 induces G2/M arrest by inhibition of cyclin B/cdk1 complex formation, and is thus useful as an enhancer of G2 phase-dependent drugs in hepatic cancer chemotherapy.

  16. Effects of irradiation source and dose level on quality characteristics of processed meat products

    NASA Astrophysics Data System (ADS)

    Ham, Youn-Kyung; Kim, Hyun-Wook; Hwang, Ko-Eun; Song, Dong-Heon; Kim, Yong-Jae; Choi, Yun-Sang; Song, Beom-Seok; Park, Jong-Heum; Kim, Cheon-Jei

    2017-01-01

    The effect of irradiation source (gamma-ray, electron-beam, and X-ray) and dose levels on the physicochemical, organoleptic and microbial properties of cooked beef patties and pork sausages was studied, during 10 days of storage at 30±1 °C. The processed meat products were irradiated at 0, 2.5, 5, 7.5, and 10 kGy by three different irradiation sources. The pH of cooked beef patties and pork sausages was unaffected by irradiation sources or their doses. The redness of beef patties linearly decreased with increasing dose level (P<0.05), obviously by e-beam irradiation compared to gamma-ray and X-ray (P<0.05). The redness of pork sausages was increased by gamma-ray irradiation, whereas it decreased by e-beam irradiation depending on absorbed dose level. No significant changes in overall acceptability were observed for pork sausages regardless of irradiation source (P>0.05), while gamma-ray irradiated beef patties showed significantly decreased overall acceptability in a dose-dependent manner (P<0.05). Lipid oxidation of samples was accelerated by irradiation depending on irradiation sources and dose levels during storage at 30 °C. E-beam reduced total aerobic bacteria of beef patties more effectively, while gamma-ray considerably decreased microbes in pork sausages as irradiation dose increased. The results of this study indicate that quality attributes of meat products, in particular color, lipid oxidation, and microbial properties are significantly influenced by the irradiation sources.

  17. Dose-Dependent Effects of Theta Burst rTMS on Cortical Excitability and Resting-State Connectivity of the Human Motor System

    PubMed Central

    Nettekoven, Charlotte; Volz, Lukas J.; Kutscha, Martha; Pool, Eva-Maria; Rehme, Anne K.; Eickhoff, Simon B.; Fink, Gereon R.

    2014-01-01

    Theta burst stimulation (TBS), a specific protocol of repetitive transcranial magnetic stimulation (rTMS), induces changes in cortical excitability that last beyond stimulation. TBS-induced aftereffects, however, vary between subjects, and the mechanisms underlying these aftereffects to date remain poorly understood. Therefore, the purpose of this study was to investigate whether increasing the number of pulses of intermittent TBS (iTBS) (1) increases cortical excitability as measured by motor-evoked potentials (MEPs) and (2) alters functional connectivity measured using resting-state fMRI, in a dose-dependent manner. Sixteen healthy, human subjects received three serially applied iTBS blocks of 600 pulses over the primary motor cortex (M1 stimulation) and the parieto-occipital vertex (sham stimulation) to test for dose-dependent iTBS effects on cortical excitability and functional connectivity (four sessions in total). iTBS over M1 increased MEP amplitudes compared with sham stimulation after each stimulation block. Although the increase in MEP amplitudes did not differ between the first and second block of M1 stimulation, we observed a significant increase after three blocks (1800 pulses). Furthermore, iTBS enhanced resting-state functional connectivity between the stimulated M1 and premotor regions in both hemispheres. Functional connectivity between M1 and ipsilateral dorsal premotor cortex further increased dose-dependently after 1800 pulses of iTBS over M1. However, no correlation between changes in MEP amplitudes and functional connectivity was detected. In summary, our data show that increasing the number of iTBS stimulation blocks results in dose-dependent effects at the local level (cortical excitability) as well as at a systems level (functional connectivity) with a dose-dependent enhancement of dorsal premotor cortex-M1 connectivity. PMID:24828639

  18. Bax Translocation Mediated Mitochondrial Apoptosis and Caspase Dependent Photosensitizing Effect of Ficus religiosa on Cancer Cells

    PubMed Central

    Thankayyan R, Santhosh Kumar; Sithul, Hima; Sreeharshan, Sreeja

    2012-01-01

    The main aim of the present work was to investigate the potential effect of acetone extract of Ficus religosa leaf (FAE) in multiple apoptosis signalling in human breast cancer cells. FAE treatment significantly induced dose and time dependent, irreversible inhibition of breast cancer cell growth with moderate toxicity to normal breast epithelial cells. This observation was validated using Sulforhodamine B assay. Cell cycle analysis by Flow cytometry showed cell cycle arrest in G1 phase and induction of sub-G0 peak. FAE induced chromatin condensation and displayed an increase in apoptotic population in Annexin V-FITC/PI (Fluorescein isothiocyanate/Propidium iodide) double staining. FAE stimulated the loss of mitochondrial membrane potential in multiple breast cancer cell lines when compared to normal diploid cells. To understand the role of Bax in FAE induced apoptosis, we employed a sensitive cell based platform of MCF-7 cells expressing Bax-EGFP. Bax translocation to mitochondria was accompanied by the disruption of mitochondrial membrane potential and marked elevation in LEHDase activity (Caspase 9). Consistent with this data, FAE induced Caspase activation as evidenced by ratio change in FRET Caspase sensor expressing MCF-7 cell line and cleavage of prominent Caspases and PARP. Interestingly, FAE accelerated cell death in a mitochondrial dependent manner in continuous live cell imaging mode indicating its possible photosensitizing effect. Intracellular generation of reactive oxygen species (ROS) by FAE played a critical role in mediating apoptotic cell death and photosensitizing activity. FAE induced dose and time dependent inhibition of cancer cell growth which was associated with Bax translocation and mitochondria mediated apoptosis with the activation of Caspase 9 dependent Caspase cascade. FAE also possessed strong photosensitizing effect on cancer cell line that was mediated through rapid mitochondrial transmembrane potential loss and partial Caspase activation involving generation of intracellular ROS. PMID:22792212

  19. Arsenic as an endocrine disruptor: arsenic disrupts retinoic acid receptor-and thyroid hormone receptor-mediated gene regulation and thyroid hormone-mediated amphibian tail metamorphosis.

    PubMed

    Davey, Jennifer C; Nomikos, Athena P; Wungjiranirun, Manida; Sherman, Jenna R; Ingram, Liam; Batki, Cavus; Lariviere, Jean P; Hamilton, Joshua W

    2008-02-01

    Chronic exposure to excess arsenic in drinking water has been strongly associated with increased risks of multiple cancers, diabetes, heart disease, and reproductive and developmental problems in humans. We previously demonstrated that As, a potent endocrine disruptor at low, environmentally relevant levels, alters steroid signaling at the level of receptor-mediated gene regulation for all five steroid receptors. The goal of this study was to determine whether As can also disrupt gene regulation via the retinoic acid (RA) receptor (RAR) and/or the thyroid hormone (TH) receptor (TR) and whether these effects are similar to previously observed effects on steroid regulation. Human embryonic NT2 or rat pituitary GH3 cells were treated with 0.01-5 microM sodium arsenite for 24 hr, with or without RA or TH, respectively, to examine effects of As on receptor-mediated gene transcription. At low, noncytotoxic doses, As significantly altered RAR-dependent gene transcription of a transfected RAR response element-luciferase construct and the native RA-inducible cytochrome P450 CYP26A gene in NT2 cells. Likewise, low-dose As significantly altered expression of a transfected TR response element-luciferase construct and the endogenous TR-regulated type I deiodinase (DIO1) gene in a similar manner in GH3 cells. An amphibian ex vivo tail metamorphosis assay was used to examine whether endocrine disruption by low-dose As could have specific pathophysiologic consequences, because tail metamorphosis is tightly controlled by TH through TR. TH-dependent tail shrinkage was inhibited in a dose-dependent manner by 0.1- 4.0 microM As. As had similar effects on RAR- and TR-mediated gene regulation as those previously observed for the steroid receptors, suggesting a common mechanism or action. Arsenic also profoundly affected a TR-dependent developmental process in a model animal system at very low concentrations. Because RAR and TH are critical for both normal human development and adult function and their dysregulation is associated with many disease processes, disruption of these hormone receptor-dependent processes by As is also potentially relevant to human developmental problems and disease risk.

  20. Bioaccumulation and toxicity of selenium compounds in the green alga Scenedesmus quadricauda

    PubMed Central

    Umysová, Dáša; Vítová, Milada; Doušková, Irena; Bišová, Kateřina; Hlavová, Monika; Čížková, Mária; Machát, Jiří; Doucha, Jiří; Zachleder, Vilém

    2009-01-01

    Background Selenium is a trace element performing important biological functions in many organisms including humans. It usually affects organisms in a strictly dosage-dependent manner being essential at low and toxic at higher concentrations. The impact of selenium on mammalian and land plant cells has been quite extensively studied. Information about algal cells is rare despite of the fact that they could produce selenium enriched biomass for biotechnology purposes. Results We studied the impact of selenium compounds on the green chlorococcal alga Scenedesmus quadricauda. Both the dose and chemical forms of Se were critical factors in the cellular response. Se toxicity increased in cultures grown under sulfur deficient conditions. We selected three strains of Scenedesmus quadricauda specifically resistant to high concentrations of inorganic selenium added as selenite (Na2SeO3) – strain SeIV, selenate (Na2SeO4) – strain SeVI or both – strain SeIV+VI. The total amount of Se and selenomethionine in biomass increased with increasing concentration of Se in the culturing media. The selenomethionine made up 30–40% of the total Se in biomass. In both the wild type and Se-resistant strains, the activity of thioredoxin reductase, increased rapidly in the presence of the form of selenium for which the given algal strain was not resistant. Conclusion The selenium effect on the green alga Scenedesmus quadricauda was not only dose dependent, but the chemical form of the element was also crucial. With sulfur deficiency, the selenium toxicity increases, indicating interference of Se with sulfur metabolism. The amount of selenium and SeMet in algal biomass was dependent on both the type of compound and its dose. The activity of thioredoxin reductase was affected by selenium treatment in dose-dependent and toxic-dependent manner. The findings implied that the increase in TR activity in algal cells was a stress response to selenium cytotoxicity. Our study provides a new insight into the impact of selenium on green algae, especially with regard to its toxicity and bioaccumulation. PMID:19445666

  1. G2013 modulates TLR4 signaling pathway in IRAK-1 and TARF-6 dependent and miR-146a independent manner.

    PubMed

    Hajivalili, M; Pourgholi, F; Majidi, J; Aghebati-Maleki, L; Movassaghpour, A A; Samadi Kafil, H; Mirshafiey, A; Yousefi, M

    2016-04-30

    Inflammation is inseparable part of different diseases especially cancer and autoimmunity. During inflammation process toll like receptor 4(TLR4) responds to lipopolysaccharide (LPS), one of the bacterial components, and TLR4 signaling leads to interleukine-1 receptor associated kinase-1 (IRAK1) and tumor necrosis factor (TNF) receptor associated factor6 (TRAF6) activation which ultimately results in nuclear factor- ĸB (NF-ĸB) activation as the main transcription factor of inflammatory cytokines. Conversely, NF-ĸB over activation induces miR-146a in innate immune cells which can consequently reduce TRAF6, IRAK1, and NF-ĸB activation in a negative feedback. G2013 is a novel designed non-steroidal anti-inflammatory drug (NSAID) which was recently shown to be effective in experimental autoimmune encephalomyelitis (EAE) mouse model. The aim of this study was to evaluate G2013 effects on inflammatory (IRAK1 and TRAF6) and anti-inflammatory (miR-146a) factors of TLR4 signaling pathway. For this purpose, cytotoxicity of G2013 has been evaluated by MTT assay. Expression level of miR-146a in PBMCs and IRAK1 along with TRAF6 in HEK-293 TLR4 cells have been determined using real time PCR. Our results showed that IC50 of G2013 was 25μg/ml, thus 5 and 25 μg/ml concentrations used for further treatments as low dose and high dose concentrations. Our results showed that IRAK1 expression reduced between 5 to 8 fold after treatment by G2013 in a dose dependent manner (p<0.001). In parallel TRAF6 expression declined between 3 to 10 fold dose dependently (p<0.05). However, miR-146a expression was not affected after treatment with low dose and high dose of G2013. In conclusion our data showed that G2013 can regulate TLR4 signaling pathway during inflammation by reducing downstream signaling molecules, IRAK1 and TRAF6 without altering miR-146a expression.

  2. Myricetin and Quercetin Are Naturally-Occurring Co-substrates of Cyclooxygenases In Vivo1

    PubMed Central

    Bai, Hyoung-Woo; Zhu, Bao T.

    2009-01-01

    Bioflavonoids are ubiquitously present in the plant kingdom, and some of them are presently being sold as healthy dietary supplements around the world. Recently, it was shown that some of the dietary polyphenols were strong stimulators of the catalytic activity of cyclooxygenase I and II, resulting in increased formation of certain prostaglandin (PG) products in vitro and also in intact cells in culture. In the present study, we investigated the effect of two representative dietary compounds, quercetin and myricetin, on plasma and tissue levels of several PG products in normal Sprague-Dawley rats. We found that these two dietary bioflavonoids could strongly stimulate the formation of PG products in vivo in a time-dependent manner, and the stimulatory effect of these two bioflavonoids was dose-dependent with a unique biphasic pattern. At lower doses (<0.3 mg/kg b.w.), they strongly stimulated the formation of PGE2, but at higher doses (>0.3 mg/kg b.w.), there was a dose-dependent reduction of the stimulatory effect. These results provide support for the hypothesis that some of the bioflavonoids are naturally-occurring physiological co-substrates for the cyclooxygenases in vivo. PMID:19897347

  3. Antioxidant, analgesic and anti-inflammatory activities of the methanolic extract of Piper betle leaves

    PubMed Central

    Alam, Badrul; Akter, Fahima; Parvin, Nahida; Sharmin Pia, Rashna; Akter, Sharmin; Chowdhury, Jesmin; Sifath-E-Jahan, Kazi; Haque, Ekramul

    2013-01-01

    Objective: The present study was designed to evaluate the antioxidant, analgesic, and anti-inflammatory activities of the methanolic extract of Piper betle leaves (MPBL). Materials and Methods: MPBL was evaluated for anti-inflammatory activity using carrageenan-induced hind paw edema model. Analgesic activity of MPBL was evaluated by hot plate, writhing, and formalin tests. Total phenolic and flavonoids content, total antioxidant activity, scavenging of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, peroxynitrate (ONOO) as well as inhibition of total ROS generation, and assessment of reducing power were used to evaluate antioxidant potential of MPBL. Results: The extract of MPBL, at the dose of 100 and 200 mg/kg, produced a significant (p<0.05) increase in pain threshold in hot plate method whereas significantly (p<0.05) reduced the writhing caused by acetic acid and the number of licks induced by formalin in a dose-dependent manner. The same ranges of doses of MPBL caused significant (p<0.05) inhibition of carrageenan-induced paw edema after 4 h in a dose-dependent manner. In DPPH, ONOO-, and total ROS scavenging method, MPBL showed good antioxidant potentiality with the IC50 value of 16.33±1.02, 25.16±0.61 , and 41.72±0.48 µg/ml, respectively with a significant (p<0.05) good reducing power. Conclusion: The findings of the study suggested that MPBL has strong analgesic, anti-inflammatory, and antioxidant effects, conforming the traditional use of this plant for inflammatory pain alleviation to its antioxidant potentiality. PMID:25050265

  4. Study on the diuretic activity of Euphorbia fusiformis Buch.-Ham. in albino rats.

    PubMed

    Ashok, B K; Bhat, Savitha D; Shukla, V J; Ravishankar, B

    2011-07-01

    The present study was undertaken to evaluate diuretic activity of Euphorbia fusiformis root powder in Wistar strain albino rats. Randomly selected animals were divided into three groups of six animals each. The root powder was suspended in distilled water and administered orally at a dose of 90 mg/kg therapeutically equivalent dose (TED) and 180 mg/kg (TED × 02) to overnight fasted rats. The diuretic activity was evaluated by determination of urine volume and urinary electrolyte concentrations. Test drug showed significant increase in urine volume and urinary electrolyte excretion in a dose-dependant manner. Thus, from this study, it can be concluded that roots of E. fusiformis possess diuretic activity.

  5. Effects of Intra-Amygdala Infusion of CB1 Receptor Agonists on the Reconsolidation of Fear-Potentiated Startle

    ERIC Educational Resources Information Center

    Lin, Hui-Ching; Mao, Sheng-Chun; Gean, Po-Wu

    2006-01-01

    The cannabinoid CB1 receptor has been shown to be critically involved in the extinction of fear memory. Systemic injection of a CB1 receptor antagonist prior to extinction training blocked extinction. Conversely, administration of the cannabinoid uptake inhibitor AM404 facilitated extinction in a dose-dependent manner. Here we show that bilateral…

  6. Osthole prevents cerebral ischemia-reperfusion injury via the Notch signaling pathway.

    PubMed

    Guan, Junhong; Wei, Xiangtai; Qu, Shengtao; Lv, Tao; Fu, Qiang; Yuan, Ye

    2017-08-01

    Stroke is a common cerebrovascular disease in aging populations, and constitutes the second highest principle cause of mortality and the principle cause of permanent disability, and ischemic stroke is the primary form. Osthole is a coumarin derivative extracted from the fruits of Cnidium monnieri (L.) Cusson. In this study, we established a rat model of middle cerebral artery occlusion/reperfusion (MCAO/R) in vivo and found that MCAO/R caused cerebral infarction, hippocampus neuronal injury and apoptosis, and also activated the Notch 1 signaling pathway. However, treatment with osthole further enhanced the activity of Notch 1 signaling and reduced the cerebral infarction as well as the hippocampus neuronal injury and apoptosis induced by MCAO/R in a dose-dependent manner. The same results were observed in a primary neuronal oxygen glucose deficiency/reperfusion (OGD/R) model in vitro, and the effect of osthole could be blocked by an inhibitor of Notch 1 signaling, N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine tert-butyl ester (DAPT). Therefore, we demonstrated that osthole injection prevented rat ischemia-reperfusion injury via activating the Notch 1 signaling pathway in vivo and in vitro in a dose-dependent manner, which may be significant for clinical treatment of ischemic stroke.

  7. Anti-platelet activity of a three-finger toxin (3FTx) from Indian monocled cobra (Naja kaouthia) venom.

    PubMed

    Chanda, Chandrasekhar; Sarkar, Angshuman; Sistla, Srinivas; Chakrabarty, Dibakar

    2013-11-22

    A low molecular weight anti-platelet peptide (6.9 kDa) has been purified from Naja kaouthia venom and was named KT-6.9. MALDI-TOF/TOF mass spectrometry analysis revealed the homology of KT-6.9 peptide sequence with many three finger toxin family members. KT-6.9 inhibited human platelet aggregation process in a dose dependent manner. It has inhibited ADP, thrombin and arachidonic acid induced platelet aggregation process in dose dependent manner, but did not inhibit collagen and ristocetin induced platelet aggregation. Strong inhibition (70%) of the ADP induced platelet aggregation by KT-6.9 suggests competition with ADP for its receptors on platelet surface. Anti-platelet activity of KT-6.9 was found to be 25 times stronger than that of anti-platelet drug clopidogrel. Binding of KT-6.9 to platelet surface was confirmed by surface plasma resonance analysis using BIAcore X100. Binding was also observed by a modified sandwich ELISA method using anti-KT-6.9 antibodies. KT-6.9 is probably the first 3 FTx from Indian monocled cobra venom reported as a platelet aggregation inhibitor. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Cadmium inhibits neurite outgrowth in differentiating human SH-SY5Y neuroblastoma cells.

    PubMed

    Pak, Eun Joo; Son, Gi Dong; Yoo, Byung Sun

    2014-01-01

    Cadmium, a highly ubiquitous heavy metal, is well known to induce neurotoxicity. However, the underlying mechanism of cadmium-mediated neurotoxicity remains unclear. We have studied cadmium inhibition of neurite outgrowth using human SH-SY5Y neuroblastoma cells induced to differentiate by all-trans-retinoic acid (RA). Cadmium, at a concentration of 3 μmol/L, had no significant effect on the viability of differentiating SH-SY5Y cells. However, the neurite outgrowth of the differentiating SH-SY5Y cells 48 hours after cadmium treatment (1-3 μmol/L cadmium) was significantly inhibited in a dose-dependent manner. Treatment of RA-stimulated differentiating SH-SY5Y cells with 1 to 3 μmol/L cadmium resulted in decreased level of cross-reactivities with 43-kDa growth-associated protein (GAP-43) in a dose-dependent manner. The reactive oxygen species (ROS) scavenger, NAC (N-acetyl-l-cysteine), recovered the expression of GAP-43 in cadmium-treated cells. The results indicate that cadmium is able to inhibit neurite outgrowth of differentiating SH-SY5Y cells and that this effect might result from ROS generation by cadmium. © The Author(s) 2014.

  9. Oral administration of curcumin suppresses production of matrix metalloproteinase (MMP)-1 and MMP-3 to ameliorate collagen-induced arthritis: inhibition of the PKCdelta/JNK/c-Jun pathway.

    PubMed

    Mun, Se Hwan; Kim, Hyuk Soon; Kim, Jie Wan; Ko, Na Young; Kim, Do Kyun; Lee, Beob Yi; Kim, Bokyung; Won, Hyung Sik; Shin, Hwa-Sup; Han, Jeung-Whan; Lee, Hoi Young; Kim, Young Mi; Choi, Wahn Soo

    2009-09-01

    We investigated whether oral administration of curcumin suppressed type II collagen-induced arthritis (CIA) in mice and its effect and mechanism on matrix metalloproteinase (MMP)-1 and MMP-3 production in CIA mice, RA fibroblast-like synoviocytes (FLS), and chondrocytes. CIA in mice was suppressed by oral administration of curcumin in a dose-dependent manner. Macroscopic observations were confirmed by histological examinations. Histological changes including infiltration of immune cells, synovial hyperplasia, cartilage destruction, and bone erosion in the hind paw sections were extensively suppressed by curcumin. The histological scores were consistent with clinical arthritis indexes. Production of MMP-1 and MMP-3 were inhibited by curcumin in CIA hind paw sections and tumor necrosis factor (TNF)-alpha-stimulated FLS and chondrocytes in a dose-dependent manner. As for the mechanism, curcumin inhibited activating phosphorylation of protein kinase Cdelta (PKCdelta) in CIA, FLS, and chondrocytes. Curcumin also suppressed the JNK and c-Jun activation in those cells. This study suggests that the suppression of MMP-1 and MMP-3 production by curcumin in CIA is mediated through the inhibition of PKCdelta and the JNK/c-Jun signaling pathway.

  10. Effects of excess biotin administration on the growth and urinary excretion of water-soluble vitamins in young rats.

    PubMed

    Sawamura, Hiromi; Fukuwatari, Tsutomu; Shibata, Katsumi

    2007-12-01

    To determine the effects of excess biotin administration on growth and water-soluble vitamin metabolism, weaning rats were fed on a 20% casein diet containing 0.00002% biotin, or same diet with 0.04, 0.08, 0.10, 0.20, 0.50, 0.80 or 1.0% added biotin for 28 days. More than 0.08% biotin administration decreased the food intake and body weight gain compared with the levels in control rats. An accumulation of biotin in such tissues as the liver, brain and kidney increased in a dose-dependent manner, and the both bound and free biotin contents in the liver also increased in a dose-dependent manner. An excess administration of biotin did not affect the urinary excretion of other water-soluble vitamins, suggesting no effect on the metabolism of other water-soluble vitamins. The results of the food intake and body weight gain indicated that the lowest observed adverse effect level for young rats was 79.2 mg/kg body weight/day, while the no observed adverse effect level was 38.4 mg/kg/day. These results suggested immediately setting a tolerable upper intake level for biotin.

  11. Lipotoxicity in HepG2 cells triggered by free fatty acids

    PubMed Central

    Yao, Hong-Rui; Liu, Jun; Plumeri, Daniel; Cao, Yong-Bing; He, Ting; Lin, Ling; Li, Yu; Jiang, Yuan-Ying; Li, Ji; Shang, Jing

    2011-01-01

    The goal of this study was to investigate the lipid accumulation and lipotoxicity of free fatty acids (FFAs) induced in HepG2 cells. HepG2 cells were co-incubated with various concentrations of FFAs for 24h and the intracellular lipid contents were observed by Oil Red O and Nile Red staining methods. The lipotoxicity of HepG2 cells were then detected by Hoechest 33342/PI, Annexin V-FITC/PI double-staining and 3-(4,5-dimethylthiazol-2-yl)-2,5-di phenyltetrazolium bromide (MTT) experiment tests. The experiments showed a lipid accumulation and lipotoxicity by increasing FFA concentration gradients. Through cell morphological observation and quantitative analysis, FFAs have shown to increase in a dose-dependent manner compared with the control group. The data collected from hoechst 33342/PI, annexin V-FITC/PI double staining and also MTT experiments showed that cell apoptosis and necrosis significantly increased with increasing FFA concentrations. Apoptosis was not obvious in the 1 mM FFAs-treated group compared to the other two groups. In a certain concentration range, FFAs induced intracellular lipid accumulation and lipotoxicity of HepG2 cells in a dose-dependent manner. PMID:21654881

  12. Exploration of intrinsic and extrinsic apoptotic pathways in zearalenone-treated rat sertoli cells.

    PubMed

    Xu, Ming-Long; Hu, Jin; Guo, Bao-Ping; Niu, Ya-Ru; Xiao, Cheng; Xu, Yin-Xue

    2016-12-01

    Zearalenone (ZEA) is a nonsteroidal estrogenic mycotoxin produced mainly by Fusarium. ZEA causes reproductive disorders and is both cytotoxic and genotoxic in animals; however, little is known regarding the molecular mechanism(s) leading to ZEA toxicity. Sertoli cells are somatic cells that support the development of spermatogenic cells. The objective of this study was to explore the effects of ZEA on the proliferation, apoptosis, and necrosis of rat Sertoli cells to uncover signaling pathways underlying ZEA cytotoxicity. ZEA reduced the proliferation of rat Sertoli cells in a dose-dependent manner, as indicated by a CCK8 assay, while flow cytometry revealed that ZEA caused both apoptosis and necrosis. Immunoblotting revealed that ZEA treatment increased the ratio of Bax/Bcl-2, as well as the expression of FasL and caspases-3, -8, and -9, in a dose-dependent manner. Collectively, these data suggest that ZEA induced apoptosis and necrosis in rat Sertoli cells via extrinsic and intrinsic apoptotic pathways. This study provides new insights into the molecular mechanisms by which ZEA exhibits cytotoxicity. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1731-1739, 2016. © 2015 Wiley Periodicals, Inc.

  13. MET inhibitor PHA-665752 suppresses the hepatocyte growth factor-induced cell proliferation and radioresistance in nasopharyngeal carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Tongxin; Li, Qi; Sun, Quanquan

    2014-06-20

    Highlights: • We demonstrated that irradiation induced MET overexpression and activation. • The aberrant MET signal mediated by HGF induced proliferation and radioresistance of NPC cells. • MET inhibitor PHA-665752 effectively suppressed HGF induced cell proliferation and radioresistance in NPC cells. • PHA-665752 suppressed the three downstream pathway of HGF/MET signal in a dose-dependent manner. - Abstract: Although ionizing radiation (IR) has provided considerable improvements in nasopharyngeal carcinoma (NPC), in subsets of patients, radioresistance is still a major problem in the treatment. In this study, we demonstrated that irradiation induced MET overexpression and activation, and the aberrant MET signal mediatedmore » by hepatocyte growth factor (HGF) induced radioresistance. We also found that MET inhibitor PHA-665752 effectively suppressed HGF induced cell proliferation and radioresistance in NPC cells. Further investigation indicated that PHA-665752 suppressed the phosphorylation of the Akt, ERK1/2, and STAT3 proteins in a dose-dependent manner. Our data indicated that the combination of IR with a MET inhibitor, such as PHA-665752, might be a promising therapeutic strategy for NPC.« less

  14. Ethanol immunosuppression in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplan, D.R.

    Ethanol in concentrations equivalent to levels achieved by the ingestion of moderate to large amounts of alcoholic beverages has been shown to inhibit mitogen and anti-CD3 stimulated human T lymphocyte proliferation. This inhibition was monophasic suggesting that ethanol affected a single limiting component of T cell proliferation. In experiments designed to test the effect of ethanol on various aspects of proliferation, it was demonstrated that ethanol inhibited the capacity of exogenously supplied interleukin 2 to stimulate proliferation of T cells that had previously acquired interleukin 2 receptors in a monophasic, dose-dependent manner. Moreover, there was no suppression of interleukin 2more » production or interleukin 2 receptor acquisition. Thus, ethanol was shown to mediate immunosuppression by a mechanism specific to one component of proliferation. Additive inhibition of T cell proliferation was seen with ethanol plus cyclosporin A which inhibits interleukin 2 production. The level of inhibition with 250 ng/ml cyclosporin A alone was equivalent to the level seen with 62 ng/ml cyclosporin A plus 20 mM (94 mg%) ethanol. Ethanol also suppressed an immune effector mechanism. NK cytotoxicity was depressed in a monophasic, dose-dependent manner. Thus, ethanol might be considered as a possible adjunct in immunosuppressive therapy.« less

  15. Dietary vitamin A regulates wingless-related MMTV integration site signaling to alter the hair cycle.

    PubMed

    Suo, Liye; Sundberg, John P; Everts, Helen B

    2015-05-01

    Alopecia areata (AA) is an autoimmune hair loss disease caused by a cell-mediated immune attack of the lower portion of the cycling hair follicle. Feeding mice 3-7 times the recommended level of dietary vitamin A accelerated the progression of AA in the graft-induced C3H/HeJ mouse model of AA. In this study, we also found that dietary vitamin A, in a dose dependent manner, activated the hair follicle stem cells (SCs) to induce the development and growth phase of the hair cycle (anagen), which may have made the hair follicle more susceptible to autoimmune attack. Our purpose here is to determine the mechanism by which dietary vitamin A regulates the hair cycle. We found that vitamin A in a dose-dependent manner increased nuclear localized beta-catenin (CTNNB1; a marker of canonical wingless-type Mouse Mammary Tumor Virus integration site family (WNT) signaling) and levels of WNT7A within the hair follicle bulge in these C3H/HeJ mice. These findings suggest that feeding mice high levels of dietary vitamin A increases WNT signaling to activate hair follicle SCs. © 2014 by the Society for Experimental Biology and Medicine.

  16. Oolong tea prevents cardiomyocyte loss against hypoxia by attenuating p-JNK mediated hypertrophy and enhancing P-IGF1R, p-akt, and p-Badser136 activity and by fortifying NRF2 antioxidation system.

    PubMed

    Shibu, Marthandam Asokan; Kuo, Chia-Hua; Chen, Bih-Cheng; Ju, Da-Tong; Chen, Ray-Jade; Lai, Chao-Hung; Huang, Pei-Jane; Viswanadha, Vijaya Padma; Kuo, Wei-Wen; Huang, Chih-Yang

    2018-02-01

    Tea, the most widely consumed natural beverage has been associated with reduced mortality risk from cardiovascular disease. Oolong tea is a partially fermented tea containing high levels of catechins, their degree of oxidation varies between 20%-80% causing differences in their active metabolites. In this study we examined the effect of oolong tea extract (OTE) obtained by oxidation at low-temperature for short-time against hypoxic injury and found that oolong tea provides cyto-protective effects by suppressing the JNK mediated hypertrophic effects and by enhancing the innate antioxidant mechanisms in neonatal cardiomyocytes and in H9c2 cells. OTE effectively attenuates 24 h hypoxia-triggered cardiomyocyte loss by suppressing caspase-3-cleavage and apoptosis in a dose-dependent manner. OTE also enhances the IGFIR/p-Akt associated survival-mechanism involving the elevation of p-Bad ser136 in a dose-dependent manner to aid cellular adaptations against hypoxic challenge. The results show the effects and mechanism of Oolong tea to provide cardio-protective benefits during hypoxic conditions. © 2017 Wiley Periodicals, Inc.

  17. Persimmon-Tannin, an α-Amylase Inhibitor, Retards Carbohydrate Absorption in Rats.

    PubMed

    Tsujita, Takahiro

    2016-01-01

    Inhibitors of carbohydrate-hydrolyzing enzymes play an important role in controlling postprandial blood glucose levels. Thus the effect of persimmon tannin on pancreatic α-amylase and intestinal α-glucosidase has been investigated. Persimmon tannin inhibits pancreatic α-amylase and intestinal α-glucosidase in a concentration-dependent manner with the 50% inhibition concentration (IC50) for amylase, maltase and sucrase being 1.7 μg/mL, 632 μg/mL and 308 μg/mL, respectively. The effect of persimmon-tannin extract on carbohydrate absorption in rats has also been investigated. Oral administration of persimmon tannin to normal rats fed cornstarch (2 g/kg body weight) significantly suppressed the increase in blood glucose levels and the area under the curve (AUC) after starch loading in a dose-dependent manner. The effective dose of persimmon tannin required to achieve 50% suppression of the rise in blood glucose level was estimated to be 300 mg/kg body weight. Administration of persimmon tannin to rats fed maltose or sucrose delayed the increase of blood glucose level and slightly suppressed AUC, but not significantly. These results suggest that persimmon tannin retards absorption of carbohydrate and reduces post-prandial hyperglycemia mainly through inhibition of α-amylase.

  18. Pirfenidone induces intercellular adhesion molecule-1 (ICAM-1) down-regulation on cultured human synovial fibroblasts

    PubMed Central

    Kaneko, M; Inoue, H; Nakazawa, R; Azuma, N; Suzuki, M; Yamauchi, S; Margolin, S B; Tsubota, K; Saito, I

    1998-01-01

    Pirfenidone has been shown to modify some cytokine regulatory actions and inhibit fibroblast biochemical reactions resulting in inhibition of proliferation and collagen matrix synthesis by fibroblast. We have investigated the effect of pirfenidone on the expression of cell adhesion molecules. The synovial fibroblasts were treated with IL-1α in the presence or absence of pirfenidone (range 0–1000 μm), and assayed for the expression of adhesion molecules such as ICAM-1 and endothelial-leucocyte adhesion molecule-1 (E-selectin) by cell ELISA. Pirfenidone significantly down-regulated the expression of ICAM-1 on cultured synovial fibroblasts in a dose-dependent manner. In contrast, expression of E-selectin was not affected. Furthermore, we examined whether pirfenidone affects the cellular binding between cultured lymphocytes and IL-1α-stimulated synovial fibroblasts by in vitro binding assay and found their mutual binding was significantly suppressed in a dose-dependent manner by pirfenidone. It is speculated that down-regulation of ICAM-1 might be one of the novel mechanisms of action of pirfenidone. These data indicate a novel mechanism of action for pirfenidone to reduce the activation of synovial fibroblasts. PMID:9697986

  19. Effects of rutin on acrylamide-induced neurotoxicity

    PubMed Central

    2014-01-01

    Background Rutin is an important flavonoid that is consumed in the daily diet. The cytoprotective effects of rutin, including antioxidative, and neuroprotective have been shown in several studies. Neurotoxic effects of acrylamide (ACR) have been established in humans and animals. In this study, the protective effects of rutin in prevention and treatment of neural toxicity of ACR were studied. Results Rutin significantly reduced cell death induced by ACR (5.46 mM) in time- and dose-dependent manners. Rutin treatment decreased the ACR-induced cytotoxicity significantly in comparison to control (P <0.01, P < 0.001). Rutin (100 and 200 mg/kg) could prevent decrease of body weight in rats. In combination treatments with rutin (50, 100 and 200 mg/kg), vitamin E (200 mg/kg) and ACR, gait abnormalities significantly decreased in a dose-dependent manner (P < 0.01 and P < 0.001). The level of malondialdehyde significantly decreased in the brain tissue of rats in both preventive and therapeutic groups that received rutin (100 and 200 mg/kg). Conclusion It seems that rutin could be effective in reducing neurotoxicity and the neuroprotective effect of it might be mediated via antioxidant activity. PMID:24524427

  20. Nattokinase improves blood flow by inhibiting platelet aggregation and thrombus formation

    PubMed Central

    Jang, Ja-Young; Kim, Tae-Su; Cai, Jingmei; Kim, Jihyun; Kim, Youngeun; Shin, Kyungha; Kim, Kwang Sei; Park, Sung Kyeong; Lee, Sung-Pyo; Choi, Ehn-Kyoung

    2013-01-01

    The effects of nattokinase on the in vitro platelet aggregation and in vivo thrombosis were investigated in comparison with aspirin. Rabbit platelet-rich plasma was incubated with nattokinase and aggregation inducers collagen and thrombin, and the platelet aggregation rate was analyzed. Nattokinase significantly inhibited both the collagen- and thrombin-induced platelet aggregations. Nattokinase also reduced thromboxane B2 formation from collagen-activated platelets in a concentration-dependent manner. Rats were orally administered with nattokinase for 1 week, and their carotid arteries were exposed. Arterial thrombosis was induced by applying 35% FeCl3-soaked filter paper for 10 min, and the blood flow was monitored with a laser Doppler probe. Nattokinase delayed the FeCl3-induced arterial occlusion in a dose-dependent manner, doubling the occlusion time at 160 mg/kg. In addition, a high dose (500 mg/kg) of nattokinase fully prevented the occlusion, as achieved with aspirin (30 mg/kg). The results indicate that nattokinase extracted from fermented soybean inhibit platelet aggregation by blocking thromboxane formation, and thereby delay thrombosis following oxidative arterial wall injury. Therefore, it is suggested that nattokinase could be a good candidate without adverse effects for the improvement of blood flow. PMID:24396387

  1. Nattokinase improves blood flow by inhibiting platelet aggregation and thrombus formation.

    PubMed

    Jang, Ja-Young; Kim, Tae-Su; Cai, Jingmei; Kim, Jihyun; Kim, Youngeun; Shin, Kyungha; Kim, Kwang Sei; Park, Sung Kyeong; Lee, Sung-Pyo; Choi, Ehn-Kyoung; Rhee, Man Hee; Kim, Yun-Bae

    2013-12-01

    The effects of nattokinase on the in vitro platelet aggregation and in vivo thrombosis were investigated in comparison with aspirin. Rabbit platelet-rich plasma was incubated with nattokinase and aggregation inducers collagen and thrombin, and the platelet aggregation rate was analyzed. Nattokinase significantly inhibited both the collagen- and thrombin-induced platelet aggregations. Nattokinase also reduced thromboxane B2 formation from collagen-activated platelets in a concentration-dependent manner. Rats were orally administered with nattokinase for 1 week, and their carotid arteries were exposed. Arterial thrombosis was induced by applying 35% FeCl3-soaked filter paper for 10 min, and the blood flow was monitored with a laser Doppler probe. Nattokinase delayed the FeCl3-induced arterial occlusion in a dose-dependent manner, doubling the occlusion time at 160 mg/kg. In addition, a high dose (500 mg/kg) of nattokinase fully prevented the occlusion, as achieved with aspirin (30 mg/kg). The results indicate that nattokinase extracted from fermented soybean inhibit platelet aggregation by blocking thromboxane formation, and thereby delay thrombosis following oxidative arterial wall injury. Therefore, it is suggested that nattokinase could be a good candidate without adverse effects for the improvement of blood flow.

  2. Effects of Litchi chinensis fruit isolates on prostaglandin E2 and nitric oxide production in J774 murine macrophage cells

    PubMed Central

    2012-01-01

    Background Litchi chinensis is regarded as one of the 'heating' fruits in China, which causes serious inflammation symptoms to people. Methods In the current study, the effects of isolates of litchi on prostaglandin E2 (PGE2) and nitric oxide (NO) production in J774 murine macrophage cells were investigated. Results The AcOEt extract (EAE) of litchi was found effective on stimulating PGE2 production, and three compounds, benzyl alcohol, hydrobenzoin and 5-hydroxymethyl-2-furfurolaldehyde (5-HMF), were isolated and identified from the EAE. Benzyl alcohol caused markedly increase in PGE2 and NO production, compared with lipopolysaccharide (LPS) as positive control, and in a dose-dependent manner. Hydrobenzoin and 5-HMF were found in litchi for the first time, and both of them stimulated PGE2 and NO production moderately in a dose-dependent manner. Besides, regulation of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) mRNA expression and NF-κB (p50) activation might be involved in mechanism of the stimulative process. Conclusion The study showed, some short molecular compounds in litchi play inflammatory effects on human. PMID:22380404

  3. Antinociceptive activity of a polysaccharide from the roots of Sophora flavescens.

    PubMed

    Jia, Ruimei; Li, Quancheng; Shen, Weixi; Zhang, Jiuwei; Zheng, Lihong; Wang, Guonian

    2016-12-01

    A polysaccharide (SFWP), with a molecular weight of 51kDa, was successfully purified from the roots of Sophora flavescens and the antinociceptive actions of SFWP were evaluated using acetic acid induced writhing, tail flick, and formalin tests in mice. GC-MS results showed that SFWP had a backbone composed of (1→2)-linked Glc, (1→2,6)-inkedGal and (1→3,6)-inked Man residues, which were terminated with (1→)-inked Xyl and (1→)-inked Ara at O-6 of (1→2,6)-inkedGal and (1→3,6)-inked Man along the main chain, in the ratio of 2.0: 1.02: 1.09: 1.10: 0.98. Data showed that SFWP (100, 200 and 400mg/kg) significantly reduced the number of writhings induced by acetic acid in a dose-dependent manner. However, SFWP did not produce analgesia in tail-flick test. Moreover SFWP strongly attenuated the formalin-induced flinching behaviour in the second phases but not in the first phase in a dose-dependent manner. These results revealed that SFWP could be used safely to attenuate both inflammatory and peripheral neuropathic pain. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Post Chlorine gas exposure administration of nitrite prevents lung injury: effect of administration modality

    PubMed Central

    Samal, Andrey A.; Honavar, Jaideep; Brandon, Angela; Bradley, Kelley M.; Doran, Stephen; Liu, Yanping; Dunaway, Chad; Steele, Chad; Postlethwait, Edward M.; Squadrito, Giuseppe L.; Fanucchi, Michelle V.; Matalon, Sadis; Patel, Rakesh P.

    2012-01-01

    Cl2 gas toxicity is complex and occurs during, and post exposure leading to acute lung injury (ALI) and reactive airway syndrome (RAS). Moreover, Cl2 exposure can occur in diverse situations encompassing mass casualty scenarios underscoring the need for post-exposure therapies that are efficacious and amenable to rapid and easy administration. In this study, we compared the efficacy of a single dose, post (30min) Cl2 exposure administration of nitrite (1mg/kg) via intraperitoneal (IP) or intramuscular (IM) injection in rats, to decrease ALI. Exposure of rats to Cl2 gas (400ppm, 30min) significantly increased ALI and caused RAS 6–24h post exposure as indexed by BAL sampling of lung surface protein, PMN and increased airway resistance and elastance prior to and post methacholine challenge. IP nitrite decreased Cl2 - dependent increases in BAL protein but not PMN. In contrast IM nitrite decreased BAL PMN levels without decreasing BAL protein in a xanthine oxidoreductase independent manner. Histological evaluation of airways 6h post exposure showed significant bronchial epithelium exfoliation and inflammatory injury in Cl2 exposed rats. Both IP and IM nitrite improved airway histology compared to Cl2 gas alone, but more coverage of the airway by cuboidal or columnar epithelium was observed with IM compared to IP nitrite. Airways were rendered more sensitive to methacholine induced resistance and elastance after Cl2 gas exposure. Interestingly, IM nitrite, but not IP nitrite, significantly decreased airway sensitivity to methacholine challenge. Further evaluation and comparison of IM and IP therapy showed a two-fold increase in circulating nitrite levels with the former, which was associated with reversal of post-Cl2 exposure dependent increases in circulating leukocytes. Halving the IM nitrite dose resulted in no effect in PMN accumulation but significant reduction of of BAL protein levels indicating distinct nitrite dose dependence for inhibition of Cl2 dependent lung permeability and inflammation. These data highlight the potential for nitrite as a post-exposure therapeutic for Cl2 gas induced lung injury and also suggest that administration modality is a key consideration in nitrite therapeutics. PMID:22917977

  5. Interdependence of Platelet-Derived Growth Factor and Estrogen-Signaling Pathways in Inducing Neonatal Rat Testicular Gonocytes Proliferation1

    PubMed Central

    Thuillier, Raphael; Mazer, Monty; Manku, Gurpreet; Boisvert, Annie; Wang, Yan; Culty, Martine

    2010-01-01

    We previously found that platelet-derived growth factor (PDGF) and 17beta-estradiol stimulate gonocyte proliferation in a dose-dependent, nonadditive manner. In the present study, we report that gonocytes express RAF1, MAP2K1, and MAPK1/3. Inhibition of RAF1 and MAP2K1/2, but not phosphoinositide-3-kinase, blocked PDGF-induced proliferation. AG-370, an inhibitor of PDGF receptor kinase activity, suppressed not only PDGF-induced proliferation but also that induced by 17beta-estradiol. In addition, RAF1 and MAP2K1/2 inhibitors blocked 17beta-estradiol-activated proliferation. The estrogen receptor antagonist ICI 182780 inhibited both the effects of 17beta-estradiol and PDGF. PDGF lost its stimulatory effect when steroid-depleted serum or no serum was used. Similarly, 17beta-estradiol did not induce gonocyte proliferation in the absence of PDGF. The xenoestrogens genistein, bisphenol A, and DES, but not coumestrol, stimulated gonocyte proliferation in a dose-dependent and PDGF-dependent manner similarly to 17beta-estradiol. Their effects were blocked by ICI 182780, suggesting that they act via the estrogen receptor. AG-370 blocked genistein and bisphenol A effects, demonstrating their requirement of PDGF receptor activation in a manner similar to 17beta-estradiol. These results demonstrate the interdependence of PDGF and estrogen pathways in stimulating in vitro gonocyte proliferation, suggesting that this critical step in gonocyte development might be regulated in vivo by the coordinated action of PDGF and estrogen. Thus, the inappropriate exposure of gonocytes to xenoestrogens might disrupt the crosstalk between the two pathways and potentially interfere with gonocyte development. PMID:20089883

  6. Evaluating antithrombotic activity of HY023016 on rat hypercoagulable model.

    PubMed

    Chen, Qiu-Fang; Li, Yun-Zhan; Wang, Xin-Hui; Su, You-Rui; Cui, Shuang; Miao, Ming-Xing; Jiang, Zhen-Zhou; Jiang, Mei-Ling; Jiang, Ai-Dou; Chen, Xiang; Xu, Yun-Gen; Gong, Guo-Qing

    2016-06-15

    The generation of thrombus is not considered as an isolated progression without other pathologic processes, which may also enhance procoagulant state. The purpose of this study was to assess whether HY023016, a novel dabigatran prodrug and an oral direct thrombin inhibitor, or dabigatran etexilate, another thrombin inhibitor can improve the state of whole blood hypercoagulability in vitro/vivo. By using whole blood flow cytometry we explored the effects of HY023016 and dabigatran etexilate on thrombin and ADP-induced human platelet-leukocyte aggregation generated in vitro. With the method of continuous infusion of thrombin intravenous, we successfully established a rat hypercoagulable model and evaluated the effect of HY023016 or dabigatran etexilate in vivo. HY023016 was able to inhibit thrombin- or ADP-induced platelet P-selectin or CD40L expression, leukocyte CD11b expression and formation of platelet-leukocyte aggregates in dose-dependent manner. Dabigatran etexilate was unable to affect ADP-induced platelet P-selectin or CD40L expression, leukocyte CD11b expression and formation of platelet-leukocyte aggregates. Based on rat hypercoagulable model, dabigatran etexilate could reverse thrombin-induced circulatory system hypercoagulable state in a concentration-dependent manner. Dabigatran etexilate also inhibited electrical stimulation induced formation of arterial thrombus in rat under hypercoagulable state, and extracorporal circulation-induced formation of thrombus in dose-dependent manner. Compared with dabigatran etexilate, HY023016 showed nearly equal or even better antithrombotic activity, regardless of reversing the cycle of rat hypercoagulable state or inhibiting platelet-leukocyte aggregation. In surrmary, HY023016 could effectively improve hypercoagulable state of circulatory system. Copyright © 2016. Published by Elsevier B.V.

  7. A protocol for the delivery of cannabidiol (CBD) and combined CBD and ∆9-tetrahydrocannabinol (THC) by vaporisation

    PubMed Central

    2014-01-01

    Background Significant interest has emerged in the therapeutic and interactive effects of different cannabinoids. Cannabidiol (CBD) has been shown to have anxiolytic and antipsychotic effects with high doses administered orally. We report a series of studies conducted to determine the vaporisation efficiency of high doses of CBD, alone and in combination with ∆9-tetrahydrocannabinol (THC), to achieve faster onset effects in experimental and clinical trials and emulate smoked cannabis. Methods Purified THC and CBD (40 mg/ml and 100 mg/ml respectively) were loaded onto a liquid absorbing pad in a Volcano® vaporiser, vaporised and the vapours quantitatively analysed. Preliminary studies determined 200 mg CBD to be the highest dose effectively vaporised at 230°C, yielding an availability of approximately 40% in the vapour phase. Six confirmatory studies examined the quantity of each compound delivered when 200 mg or 4 mg CBD was loaded together with 8 mg of THC. Results THC showed 55% availability when vaporised alone or with low dose CBD, while large variation in the availability of high dose CBD impacted upon the availability of THC when co-administered, with each compound affecting the vaporisation efficiency of the other in a dynamic and dose-dependent manner. We describe optimised protocols that enable delivery of 160 mg CBD through vaporisation. Conclusions While THC administration by vaporisation is increasingly adopted in experimental studies, often with oral predosing with CBD to examine interactive effects, no studies to date have reported the administration of CBD by vaporisation. We report the detailed methodology aimed at optimising the efficiency of delivery of therapeutic doses of CBD, alone and in combination with THC, by vaporisation. These protocols provide a technical advance that may inform methodology for clinical trials in humans, especially for examining interactions between THC and CBD and for therapeutic applications of CBD. Trial registration Current Controlled Trials ISRCTN24109245 PMID:25319497

  8. A protocol for the delivery of cannabidiol (CBD) and combined CBD and ∆9-tetrahydrocannabinol (THC) by vaporisation.

    PubMed

    Solowij, Nadia; Broyd, Samantha J; van Hell, Hendrika H; Hazekamp, Arno

    2014-10-16

    Significant interest has emerged in the therapeutic and interactive effects of different cannabinoids. Cannabidiol (CBD) has been shown to have anxiolytic and antipsychotic effects with high doses administered orally. We report a series of studies conducted to determine the vaporisation efficiency of high doses of CBD, alone and in combination with ∆9-tetrahydrocannabinol (THC), to achieve faster onset effects in experimental and clinical trials and emulate smoked cannabis. Purified THC and CBD (40 mg/ml and 100 mg/ml respectively) were loaded onto a liquid absorbing pad in a Volcano vaporiser, vaporised and the vapours quantitatively analysed. Preliminary studies determined 200 mg CBD to be the highest dose effectively vaporised at 230 ° C, yielding an availability of approximately 40% in the vapour phase. Six confirmatory studies examined the quantity of each compound delivered when 200 mg or 4 mg CBD was loaded together with 8 mg of THC. THC showed 55% availability when vaporised alone or with low dose CBD, while large variation in the availability of high dose CBD impacted upon the availability of THC when co-administered, with each compound affecting the vaporisation efficiency of the other in a dynamic and dose-dependent manner. We describe optimised protocols that enable delivery of 160 mg CBD through vaporisation. While THC administration by vaporisation is increasingly adopted in experimental studies, often with oral predosing with CBD to examine interactive effects, no studies to date have reported the administration of CBD by vaporisation. We report the detailed methodology aimed at optimising the efficiency of delivery of therapeutic doses of CBD, alone and in combination with THC, by vaporisation. These protocols provide a technical advance that may inform methodology for clinical trials in humans, especially for examining interactions between THC and CBD and for therapeutic applications of CBD. Current Controlled Trials ISRCTN24109245.

  9. PM2.5 promotes human bronchial smooth muscle cell migration via the sonic hedgehog signaling pathway.

    PubMed

    Ye, Xiuqin; Hong, Wei; Hao, Binwei; Peng, Gongyong; Huang, Lingmei; Zhao, Zhuxiang; Zhou, Yumin; Zheng, Mengning; Li, Chenglong; Liang, Chunxiao; Yi, Erkang; Pu, Jinding; Li, Bing; Ran, Pixin

    2018-03-02

    The contribution of airway remodeling in chronic obstructive pulmonary disease (COPD) has been well documented, with airway smooth muscle cell proliferation and migration playing a role in the remodeling process. Here, we aimed to verify the effects of fine particulate matter (PM2.5) on human bronchial smooth muscle cell (HBSMC) migration and to explore the underlying signaling pathways. HBSMC apoptosis, proliferation and migration were measured using flow cytometry, cell counting and transwell migration assays, respectively. The role of the hedgehog pathway in cell migration was assessed by western blotting to measure the expression of Sonic hedgehog (Shh), Gli1 and Snail. Furthermore, siRNA was used to knock down Gli1 or Snail expression. PM2.5 induced HBSMC apoptosis in a dose-dependent manner, although certain concentrations of PM2.5 did not induce HBSMC proliferation or apoptosis. Interestingly, cell migration was stimulated by PM2.5 doses far below those that induced apoptosis. Additional experiments revealed that these PM2.5 doses enhanced the expression of Shh, Gli1 and Snail in HBSMCs. Furthermore, PM2.5-induced cell migration and protein expression were enhanced by recombinant Shh and attenuated by cyclopamine. Similar results were obtained by knocking down Gli1 or Snail. These findings suggest that PM2.5, which may exert its effects through the Shh signaling pathway, is necessary for the migration of HBSMCs. These data define a novel role for PM2.5 in airway remodeling in COPD.

  10. The Effect of Lactobacillus casei 32G on the Mouse Cecum Microbiota and Innate Immune Response Is Dose and Time Dependent

    PubMed Central

    Aktas, Busra; De Wolfe, Travis J.; Tandee, Kanokwan; Safdar, Nasia; Darien, Benjamin J.; Steele, James L.

    2015-01-01

    Lactobacilli have been associated with a variety of immunomodulatory effects and some of these effects have been related to changes in gastrointestinal microbiota. However, the relationship between probiotic dose, time since probiotic consumption, changes in the microbiota, and immune system requires further investigation. The objective of this study was to determine if the effect of Lactobacillus casei 32G on the murine gastrointestinal microbiota and immune function are dose and time dependent. Mice were fed L. casei 32G at doses of 106, 107, or 108 CFU/day/mouse for seven days and were sacrificed 0.5h, 3.5h, 12h, or 24h after the last administration. The ileum tissue and the cecal content were collected for immune profiling by qPCR and microbiota analysis, respectively. The time required for L. casei 32G to reach the cecum was monitored by qPCR and the 32G bolus reaches the cecum 3.5h after the last administration. L. casei 32G altered the cecal microbiota with the predominance of Lachnospiraceae IS, and Oscillospira decreasing significantly (p < 0.05) in the mice receiving 108 CFU/mouse 32G relative to the control mice, while a significant (p < 0.05) increase was observed in the prevalence of lactobacilli. The lactobacilli that increased were determined to be a commensal lactobacilli. Interestingly, no significant difference in the overall microbiota composition, regardless of 32G doses, was observed at the 12h time point. A likely explanation for this observation is the level of feed derived-nutrients resulting from the 12h light/dark cycle. 32G results in consistent increases in Clec2h expression and reductions in TLR-2, alpha-defensins, and lysozyme. Changes in expression of these components of the innate immune system are one possible explanation for the observed changes in the cecal microbiota. Additionally, 32G administration was observed to alter the expression of cytokines (IL-10rb and TNF-α) in a manner consistent with an anti-inflammatory response. PMID:26714177

  11. Dose-dependent cytotoxicity evaluation of graphite nanoparticles for diamond-like carbon film application on artificial joints.

    PubMed

    Liao, T T; Deng, Q Y; Wu, B J; Li, S S; Li, X; Wu, J; Leng, Y X; Guo, Y B; Huang, N

    2017-01-24

    While a diamond-like carbon (DLC)-coated joint prosthesis represents the implant of choice for total hip replacement in patients, it also leads to concern due to the cytotoxicity of wear debris in the form of graphite nanoparticles (GNs), ultimately limiting its clinical use. In this study, the cytotoxicity of various GN doses was evaluated. Mouse macrophages and osteoblasts were incubated with GNs (<30 nm diameter), followed by evaluation of cytotoxicity by means of assessing inflammatory cytokines, results of alkaline phosphatase assays, and related signaling protein expression. Cytotoxicity evaluation showed that cell viability decreased in a dose-dependent manner (10-100 μg ml -1 ), and steeply declined at GNs concentrations greater than 30 μg ml -1 . Noticeable cytotoxicity was observed as the GN dose exceeded this threshold due to upregulated receptor of activator of nuclear factor kB-ligand expression and downregulated osteoprotegerin expression. Meanwhile, activated macrophage morphology was observed as a result of the intense inflammatory response caused by the high doses of GNs (>30 μg ml -1 ), as observed by the increased release of TNF-α and IL-6. The results suggest that GNs had a significant dose-dependent cytotoxicity in vitro, with a lethal dose of 30 μg ml -1 leading to dramatic increases in cytotoxicity. Our GN cytotoxicity evaluation indicates a safe level for wear debris-related arthropathy and could propel the clinical application of DLC-coated total hip prostheses.

  12. Modulatory effects of perforin gene dosage on pathogen-associated blood-brain barrier (BBB) disruption.

    PubMed

    Willenbring, Robin C; Jin, Fang; Hinton, David J; Hansen, Mike; Choi, Doo-Sup; Pavelko, Kevin D; Johnson, Aaron J

    2016-08-31

    CD8 T cell-mediated blood-brain barrier (BBB) disruption is dependent on the effector molecule perforin. Human perforin has extensive single nucleotide variants (SNVs), the significance of which is not fully understood. These SNVs can result in reduced, but not ablated, perforin activity or expression. However, complete loss of perforin expression or activity results in the lethal disease familial hemophagocytic lymphohistiocytosis type 2 (FHL 2). In this study, we address the hypothesis that a single perforin allele can alter the severity of BBB disruption in vivo using a well-established model of CNS vascular permeability in C57Bl/6 mice. The results of this study provide insight into the significance of perforin SNVs in the human population. We isolated the effect a single perforin allele has on CNS vascular permeability through the use of perforin-heterozygous (perforin+/-) C57BL/6 mice in the peptide-induced fatal syndrome (PIFS) model of immune-mediated BBB disruption. Seven days following Theiler's murine encephalomyelitis virus (TMEV) CNS infection, neuroinflammation and TMEV viral control were assessed through flow cytometric analysis and quantitative real-time PCR of the viral genome, respectively. Following immune-mediated BBB disruption, gadolinium-enhanced T1-weighted MRI, with 3D volumetric analysis, and confocal microscopy were used to define CNS vascular permeability. Finally, the open field behavior test was used to assess locomotor activity of mice following immune-mediated BBB disruption. Perforin-null mice had negligible CNS vascular permeability. Perforin-WT mice have extensive CNS vascular permeability. Interestingly, perforin-heterozygous mice had an intermediate level of CNS vascular permeability as measured by both gadolinium-enhanced T1-weighted MRI and fibrinogen leakage in the brain parenchyma. Differences in BBB disruption were not a result of increased CNS immune infiltrate. Additionally, TMEV was controlled in a perforin dose-dependent manner. Furthermore, a single perforin allele is sufficient to induce locomotor deficit during immune-mediated BBB disruption. Perforin modulates BBB disruption in a dose-dependent manner. This study demonstrates a potentially advantageous role for decreased perforin expression in reducing BBB disruption. This study also provides insight into the effect SNVs in a single perforin allele could have on functional deficit in neurological disease.

  13. Antitumor Effects of Flavopiridol on Human Uterine Leiomyoma In Vitro and in a Xenograft Model

    PubMed Central

    Lee, Hyun-Gyo; Baek, Jong-Woo; Shin, So-Jin; Kwon, Sang-Hoon; Cha, Soon-Do; Park, Won-Jin; Chung, Rosa; Choi, Eun-Som; Lee, Gun-Ho

    2014-01-01

    Dysregulated cyclin-dependent kinases (CDKs) are considered a potential target for cancer therapy. Flavopiridol is a potent CDK inhibitor. In this study, the antiproliferative effect of the flavonoid compound flavopiridol and its mechanism in human uterine leiomyoma cells were investigated. The present study focused on the effect of flavopiridol in cell proliferation and cell cycle progression in primary cultured human uterine leiomyoma cells. Cell viability and cell proliferation assays were conducted. Flow cytometry was performed to determine the effect of flavopiridol on cell cycle. The expression of cell cycle regulatory-related proteins was evaluated by Western blotting. Cell viability and proliferation of uterine leiomyoma cells were significantly reduced by flavopiridol treatment in a dose-dependent manner. Flow cytometry results showed that flavopiridol induced G1 phase arrest. Flavopiridol-induced growth inhibition in uterine leiomyoma cells was associated with increased expression of p21cip/wafl and p27kip1 in a dose-dependent manner. Downregulation of CDK2/4 and Cyclin A with a concomitant increase in dephosphorylation of retinoblastoma was observed. This study demonstrates that flavopiridol inhibits cell proliferation by initiating G1 cell cycle arrest in human uterine leiomyoma. We also found that flavopiridol is effective in inhibiting xenografted human uterine leiomyoma growth. These results indicate that flavopiridol could prove to be a promising chemopreventive and therapeutic agent for human uterine leiomyoma. PMID:24572052

  14. 1,8-cineole inhibits both proliferation and elongation of BY-2 cultured tobacco cells.

    PubMed

    Yoshimura, Hiroko; Sawai, Yu; Tamotsu, Satoshi; Sakai, Atsushi

    2011-03-01

    Volatile monoterpenes such as 1,8-cineole inhibit the growth of Brassica campestris seedlings in a dose-dependent manner, and the growth-inhibitory effects are more severe for roots than hypocotyls. The preferential inhibition of root growth may be explained if the compounds inhibit cell proliferation more severely than cell elongation because root growth requires both elongation and proliferation of the constituent cells, whereas hypocotyl growth depends exclusively on elongation of existing cells. In order to examine this possibility, BY-2 suspension-cultured tobacco (Nicotiana tabacum) cells were treated with 1,8-cineole, and the inhibitory effects on cell proliferation and on cell elongation were assessed quantitatively. Treatment with 1,8-cineole lowered both the mitotic index and elongation of the cells in a dose-dependent manner, and the half-maximal inhibitory concentration (IC₅₀) for cell elongation was lower than that for cell proliferation. Moreover, 1,8-cineole also inhibited starch synthesis, with IC₅₀ lower than that for cell proliferation. Thus, the inhibitory effects of 1,8-cineole were not specific to cell proliferation; rather, 1,8-cineole seemed inhibitory to a variety of physiological activities when it was in direct contact with target cells. Based on these results, possible mechanisms for the mode of action of 1,8-cineole and for its preferential inhibition on root growth are discussed.

  15. Millimeter wave treatment induces apoptosis via activation of the mitochondrial-dependent pathway in human osteosarcoma cells.

    PubMed

    Wu, Guangwen; Chen, Xuzheng; Peng, Jun; Cai, Qiaoyan; Ye, Jinxia; Xu, Huifeng; Zheng, Chunsong; Li, Xihai; Ye, Hongzhi; Liu, Xianxiang

    2012-05-01

    Millimeter wave (MW) is an electromagnetic wave with a wavelength between 1 and 10 mm and a frequency of 30-300 GHz that causes multiple biological effects and has been used as a major component in physiotherapies for the clinical treatment of various types of diseases including cancers. However, the precise molecular mechanism of the anticancer activity of millimeter wave remains to be elucidated. In the present study, we investigated the cellular effects of the MW in the U-2OS human osteosarcoma cell line. Our results showed that MW induced cell morphological changes and reduced cell viability in a dose- and time-dependent manner suggesting that MW inhibited the growth of U-2OS cells as demonstrated. Hoechst 33258 staining and Annexin V/propidium iodide double staining exhibited the typical nuclear features of apoptosis and increased the proportion of apoptotic Annexin V-positive cells in a dose-dependent manner, respectively. In addition, MW treatment caused loss of plasma membrane asymmetry, release of cytochrome c, collapse of mitochondrial membrane potential, activation of caspase-9 and -3, and increase of the ratio of pro-apoptotic Bax to anti-apoptotic Bcl-2. Taken together, the results indicate that the U-2OS cell growth inhibitory activity of MW was due to mitochondrial-mediated apoptosis, which may partly explain the anticancer activity of millimeter wave treatment.

  16. Global regulation of post-translational modifications on core histones.

    PubMed

    Galasinski, Scott C; Louie, Donna F; Gloor, Kristen K; Resing, Katheryn A; Ahn, Natalie G

    2002-01-25

    Full-length masses of histones were analyzed by mass spectrometry to characterize post-translational modifications of bulk histones and their changes induced by cell stimulation. By matching masses of unique peptides with full-length masses, H4 and the variants H2A.1, H2B.1, and H3.1 were identified as the main histone forms in K562 cells. Mass changes caused by covalent modifications were measured in a dose- and time-dependent manner following inhibition of phosphatases by okadaic acid. Histones H2A, H3, and H4 underwent changes in mass consistent with altered acetylation and phosphorylation, whereas H2B mass was largely unchanged. Unexpectedly, histone H4 became almost completely deacetylated in a dose-dependent manner that occurred independently of phosphorylation. Okadaic acid also partially blocked H4 hyperacetylation induced by trichostatin-A, suggesting that the mechanism of deacetylation involves inhibition of H4 acetyltransferase activity, following perturbation of cellular phosphatases. In addition, mass changes in H3 in response to okadaic acid were consistent with phosphorylation of methylated, acetylated, and phosphorylated forms. Finally, kinetic differences were observed with respect to the rate of phosphorylation of H2A versus H4, suggesting differential regulation of phosphorylation at sites on these proteins, which are highly related by sequence. These results provide novel evidence that global covalent modifications of chromatin-bound histones are regulated through phosphorylation-dependent mechanisms.

  17. Antioxidant effects of methylprednisolone and hydrocortisone on the impairment of endothelium dependent relaxation induced by reactive oxygen species in rabbit abdominal aorta

    PubMed Central

    Lee, Hee Jong; Song, Hyun Hoo; Jeong, Mi Ae; Yeom, Jong Hoon; Kim, Dong Won

    2013-01-01

    Background The reperfusion following ischemia produces reactive oxygen species (ROS). We studied the influences of methylprednisolone (MPD) and hydrocortisone (CRT) on ROS effects using the endothelium of rabbit abdominal aorta. Methods Isolated rabbit aortic rings were suspended in an organ bath filled with Krebs-Henseleit (K-H) solution. After precontraction with norepinephrine, changes in arterial tension were recorded following the cumulative administration of acetylcholine (ACh). The percentages of ACh-induced relaxation of aortic rings before and after exposure to ROS, generated by electrolysis of K-H solution, were used as the control and experimental values, respectively. The aortic rings were pretreated with MPD or CRT at the same concentrations, and the effects of these agents were compared with the effects of ROS scavenger inhibitors: superoxide dismutase inhibitor, diethylthiocarbamate (DETCA), and the catalase inhibitor, 3-amino-1,2,4-triazole (3AT). Results Both MPD and CRT maintained endothelium-dependent relaxation induced by ACh in a dose-related manner in spite of ROS attack. The restored ACh-induced relaxation of MPD and CRT group was not attenuated by pretreatment of 3AT and DETCA. Conclusions MPD and CRT preserve the endothelium-dependent vasorelaxation against the attack of ROS, in a dose-related manner. Endothelial protection mechanisms of MPD and CRT may be not associated with hydrogen peroxide and superoxide scavenging. PMID:23372887

  18. Early Biochemical Effects of an Organic Mercury Fungicide on Infants: ``Dose Makes the Poison''

    NASA Astrophysics Data System (ADS)

    Gotelli, Carlos A.; Astolfi, Emilio; Cox, Christopher; Cernichiari, Elsa; Clarkson, Thomas W.

    1985-02-01

    Phenylmercury absorbed through the skin from contaminated diapers affected urinary excretion in infants in Buenos Aires. The effects were reversible and quantitatively related to the concentration of urinary mercury. Excretion of γ -glutamyl transpeptidase, an enzyme in the brush borders of renal tubular cells, increased in a dose-dependent manner when mercury excretion exceeded a ``threshold'' value. Urine volume also increased but at a higher threshold with respect to mercury. The results support the threshold concept of the systemic toxicity of metals. γ -Glutamyl transpeptidase is a useful and sensitive marker for preclinical effects of toxic metals.

  19. The Macrocyclic Peptide Natural Product CJ-15,208 is Orally Active and Prevents Reinstatement of Extinguished Cocaine Seeking Behavior1

    PubMed Central

    Aldrich, Jane V.; Senadheera, Sanjeewa N.; Ross, Nicolette C.; Ganno, Michelle L.; Eans, Shainnel O.; McLaughlin, Jay P.

    2013-01-01

    The macrocyclic tetrapeptide natural product CJ-15,208 (cyclo[Phe-D-Pro-Phe-Trp]) exhibited both dose-dependent antinociception and kappa opioid receptor (KOR) antagonist activity after oral administration. CJ-15,208 antagonized a centrally administered KOR selective agonist, providing strong evidence it crosses the blood-brain barrier to reach KOR in the CNS. Orally administered CJ-15,208 also prevented both cocaine- and stress-induced reinstatement of extinguished cocaine seeking behavior in the conditioned place preference assay in a time- and dose-dependent manner. Thus, CJ-15,208 is a promising lead compound with a unique activity profile for potential development, particularly as a therapeutic to prevent relapse to drug seeking behavior in abstinent subjects. PMID:23327691

  20. Illicit use of LSD or psilocybin, but not MDMA or nonpsychedelic drugs, is associated with mystical experiences in a dose-dependent manner.

    PubMed

    Lyvers, Michael; Meester, Molly

    2012-01-01

    Psychedelic drugs have long been known to be capable of inducing mystical or transcendental experiences. However, given the common "recreational" nature of much present-day psychedelic use, with typical doses tending to be lower than those commonly taken in the 1960s, the extent to which illicit use of psychedelics today is associated with mystical experiences is not known. Furthermore the mild psychedelic MDMA ("Ecstasy") is more popular today than "full" psychedelics such as LSD or psilocybin, and the contribution of illicit MDMA use to mystical experiences is not known. The present study recruited 337 adults from the website and newsletter of the Multidisciplinary Association for Psychedelic Studies (MAPS), most of whom reported use of a variety of drugs both licit and illicit including psychedelics. Although only a quarter of the sample reported "spiritual" motives for using psychedelics, use of LSD and psilocybin was significantly positively related to scores on two well-known indices of mystical experiences in a dose-related manner, whereas use of MDMA, cannabis, cocaine, opiates and alcohol was not. Results suggest that even in today's context of "recreational" drug use, psychedelics such as LSD and psilocybin, when taken at higher doses, continue to induce mystical experiences in many users.

  1. Bioactive Compounds from Posidonia oceanica (L.) Delile Impair Malignant Cell Migration through Autophagy Modulation.

    PubMed

    Leri, Manuela; Ramazzotti, Matteo; Vasarri, Marzia; Peri, Sara; Barletta, Emanuela; Pretti, Carlo; Degl'Innocenti, Donatella

    2018-04-21

    Posidonia oceanica (L.) Delile is a marine plant with interesting biological properties potentially ascribed to the synergistic combination of bioactive compounds. Our previously described extract, obtained from the leaves of P. oceanica , showed the ability to impair HT1080 cell migration by targeting both expression and activity of gelatinases. Commonly, the lack of knowledge about the mechanism of action of phytocomplexes may be an obstacle regarding their therapeutic use and development. The aim of this study was to gain insight into the molecular signaling through which such bioactive compounds impact on malignant cell migration and gelatinolytic activity. The increase in autophagic vacuoles detected by confocal microscopy suggested an enhancement of autophagy in a time and dose dependent manner. This autophagy activation was further confirmed by monitoring pivotal markers of autophagy signaling as well as by evidencing an increase in IGF-1R accumulation on cell membranes. Taken together, our results confirm that the P. oceanica phytocomplex is a promising reservoir of potent and cell safe molecules able to defend against malignancies and other diseases in which gelatinases play a major role in progression. In conclusion, the attractive properties of this phytocomplex may be of industrial interest in regard to the development of novel health-promoting and pharmacological products for the treatment or prevention of several diseases.

  2. Chemical characterization, antioxidant, immune-regulating and anticancer activities of a novel bioactive polysaccharide from Chenopodium quinoa seeds.

    PubMed

    Hu, Yichen; Zhang, Jinming; Zou, Liang; Fu, Chaomei; Li, Peng; Zhao, Gang

    2017-06-01

    Chenopodium quinoa, a promising nutraceutical cereal, has attracted increasing research interest, yet its polysaccharides remains to get few systematic studies. In this study, we employed orthogonal experimental design to optimize the ultrasound-assisted extraction process for highest yield of C. quinoa polysaccharides. A novel C. quinoa polysaccharide (CQP) fraction with high content and low molecular weight (8852Da) was subsequently purified by column chromatography, constituted by galacturonic acid and glucose monosaccharides. The purified CQP exhibited significantly antioxidant effect against DPPH + and ABTS + , with even higher efficiency than some other reported polysaccharides. Moreover, CQP could promote the RAW264.7 macrophage proliferation, while suppress the nitri oxide production on inflammatory RAW264.7 macrophage in a dose- and time-dependent manner. In view of the pathological correlation of free radical, inflammation and carcinogenesis, the anticancer effect of CQP was further investigated on human liver cancer SMMC 7721 and breast cancer MCF-7 cells. Interestingly, CQP displayed cytotoxicity against cancer cells, while none proliferation inhibition on normal cells. These results suggest that the bioactive polysaccharide from C. quinoa provided the promising potential as a natural antioxidant, immune-regulating and anticancer candidate for food and even drug application. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Cucurbitacin B purified from Ecballium elaterium (L.) A. Rich from Tunisia inhibits α5β1 integrin-mediated adhesion, migration, proliferation of human glioblastoma cell line and angiogenesis.

    PubMed

    Touihri-Barakati, Imen; Kallech-Ziri, Olfa; Ayadi, Wiem; Kovacic, Hervé; Hanchi, Belgacem; Hosni, Karim; Luis, José

    2017-02-15

    Integrins are essential protagonists in the complex multistep process of cancer progression and are thus attractive targets for the development of anticancer agents. Cucurbitacin B, a triterpenoid purified from the leaves of Tunisian Ecballium elaterium exhibited an anticancer effect and displayed anti-integrin activity on human glioblastoma U87 cells, without being cytotoxic at concentrations up to 500nM. Here we show that cucurbitacin B affected the adhesion and migration of U87 cells to fibronectin in a dose-dependent manner with IC50 values of 86.2nM and 84.6nM, respectively. Time-lapse videomicroscopy showed that cucurbitacin B significantly reduced U87 cells motility and affected directional persistence. Cucurbitacin B also inhibited proliferation with IC50 value of 70.1nM using Crystal Violet assay. Moreover, cucurbitacin B efficiently inhibited in vitro human microvascular endothelial cells (HMEC) angiogenesis with concentration up to 10nM. Interestingly, we demonstrate for the first time that this effect was specifically mediated by α5β1 integrins. These findings reveal a novel mechanism of action for cucurbitacin B, which displays a potential interest as a specific anti-integrin drug. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Antihepatoma activity of Physalis angulata and P. peruviana extracts and their effects on apoptosis in human Hep G2 cells.

    PubMed

    Wu, Shu-Jing; Ng, Lean-Teik; Chen, Ching-Hsein; Lin, Doung-Liang; Wang, Shyh-Shyan; Lin, Chun-Ching

    2004-03-05

    Physalis angulata and P. peruviana are herbs widely used in folk medicine. In this study, the aqueous and ethanol extracts prepared from the whole plant of these species were evaluated for their antihepatoma activity. Using XTT assay, three human hepatoma cells, namely Hep G2, Hep 3B and PLC/PRF/5 were tested. The results showed that ethanol extract of P. peruviana (EEPP) possessed the lowest IC50 value against the Hep G2 cells. Interestingly, all extracts showed no cytotoxic effect on normal mouse liver cells. Treatment with carbonyl cyanide m-chlorophenyl hydrazone, a protonophore, caused a reduction of membrane potential (Deltapsim) by mitochondrial membrane depolarization. At high concentrations, EEPP was shown to induce cell cycle arrest and apoptosis through mitochondrial dysfunction as demonstrated by the following observations: (i) EEPP induced the collapse of Deltapsim and the depletion of glutathione content in a dose dependent manner; (ii) pretreatment with the antioxidant (1.0 microg/ml vitamin E) protected cells from EEPP-induced release of ROS; and (iii) at concentrations 10 to 50 microg/ml, EEPP displayed a dose-dependent accumulation of the Sub-G1 peak (hypoploid) and caused G0/G1-phase arrest. Apoptosis was elicited when the cells were treated with 50 microg/ml EEPP as characterized by the appearance of phosphatidylserine on the outer surface of the plasma membrane. The results conclude that EEPP possesses potent antihepatoma activity and its effect on apoptosis is associated with mitochondrial dysfunction.

  5. Formononetin promotes cell cycle arrest via downregulation of Akt/Cyclin D1/CDK4 in human prostate cancer cells.

    PubMed

    Li, Tianyu; Zhao, Xinge; Mo, Zengnan; Huang, Weihua; Yan, Haibiao; Ling, Zhian; Ye, Yu

    2014-01-01

    Formononetin is an O-methylated isoflavone isolated from the root of Astragalus membranaceus. It has already been reported that formononetin could inhibit cell proliferation and induce cell apoptosis in several cancers, including prostate cancer. This study aimed to further investigate whether cell cycle arrest is involved in formononetin-mediated antitumor effect in human prostate cancer cells, along with the underlying molecular mechanism. Human prostate cancer cells PC-3 and DU145 were respectively treated with various concentrations of formononetin. The inhibitory effect of formononetin on proliferation of prostate cancer cells was determined using MTT assays and flow cytometry. Next, formononetin-induced alterations in cyclin D1, CDK4 and Akt expression in PC-3 cells were detected by real-time PCR and western blot. Formononetin dose-dependently inhibited prostate cancer cell proliferation via the induction of cell cycle arrest at G0/G1 phase in vitro, which was more evident in PC-3 cells. Meanwhile, concomitant with reduced phosphorylation of Akt in PC-3 cells, formononetin remarkably downregulated expression levels of cyclin D1 and CDK4 in a dose-dependent manner. More interestingly, in the in vivo studies, formononetin showed a noticeable inhibition of tumor growth in recipient mice. Formononetin could exhibit inhibitory activity against human prostate cancer cells in vivo and in vitro, which is associated with G1 cell cycle arrest by inactivation of Akt/cyclin D1/CDK4. Therefore, formononetin may be used as a candidate agent for clinical treatment of prostate cancer in the future.

  6. Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis

    PubMed Central

    Cosenza, Stella; Toupet, Karine; Maumus, Marie; Luz-Crawford, Patricia; Blanc-Brude, Olivier; Jorgensen, Christian; Noël, Danièle

    2018-01-01

    Objectives: Mesenchymal stem cells (MSCs) release extracellular vesicles (EVs) that display a therapeutic effect in inflammatory disease models. Although MSCs can prevent arthritis, the role of MSCs-derived EVs has never been reported in rheumatoid arthritis. This prompted us to compare the function of exosomes (Exos) and microparticles (MPs) isolated from MSCs and investigate their immunomodulatory function in arthritis. Methods: MSCs-derived Exos and MPs were isolated by differential ultracentrifugation. Immunosuppressive effects of MPs or Exos were investigated on T and B lymphocytes in vitro and in the Delayed-Type Hypersensitivity (DTH) and Collagen-Induced Arthritis (CIA) models. Results: Exos and MPs from MSCs inhibited T lymphocyte proliferation in a dose-dependent manner and decreased the percentage of CD4+ and CD8+ T cell subsets. Interestingly, Exos increased Treg cell populations while parental MSCs did not. Conversely, plasmablast differentiation was reduced to a similar extent by MSCs, Exos or MPs. IFN-γ priming of MSCs before vesicles isolation did not influence the immunomodulatory function of isolated Exos or MPs. In DTH, we observed a dose-dependent anti-inflammatory effect of MPs and Exos, while in the CIA model, Exos efficiently decreased clinical signs of inflammation. The beneficial effect of Exos was associated with fewer plasmablasts and more Breg-like cells in lymph nodes. Conclusions: Both MSCs-derived MPs and Exos exerted an anti-inflammatory role on T and B lymphocytes independently of MSCs priming. However, Exos were more efficient in suppressing inflammation in vivo. Our work is the first demonstration of the therapeutic potential of MSCs-derived EVs in inflammatory arthritis. PMID:29507629

  7. Intra-oral administration of rebamipide liquid prevents tongue injuries induced by X-ray irradiation in rats.

    PubMed

    Nakashima, Takako; Uematsu, Naoya; Sakurai, Kazushi

    2017-07-01

    Oral mucositis is a common and serious side effect in patients who undergo cytotoxic cancer therapies. The purpose of this study was to investigate the preventive effects of rebamipide on radiation-induced glossitis model in rats. Glossitis was induced by a single dose of 15 Gy of X-rays to the snouts of rats (day 0). A novel form of rebamipide liquid comprising its submicronized crystals was administered intra-orally. The preventive effect of rebamipide on tongue injuries was macroscopically evaluated on day 7 following irradiation. The pretreatment period, dosing frequency, and dose dependency of rebamipide were examined. Two percent rebamipide liquid, administered six times a day for 14 days from day -7 to day 6, significantly decreased the ulcer-like area. However, no significant effect was observed when rebamipide was given either from day -4 or from day -1. Four or six times daily, 2% rebamipide liquid significantly inhibited the ulcer-like injury area ratio, but not when given twice daily. Rebamipide liquid, 1, 2, and 4% six times daily significantly reduced the area ratios of total injury and ulcer-like injury in a dose-dependent manner. Gene expression and protein levels of proinflammatory cytokines and chemokines were dramatically elevated in the irradiated tongues of control rats on day 7 without rebamipide liquid treatment. They were dose-dependently and significantly suppressed in rebamipide-treated groups. Intra-oral administration of rebamipide liquid prevented oral mucositis dose-dependently accompanied by the suppression of inflammatory expression in the radiation-induced rats' glossitis model.

  8. CB1 receptor-mediated signaling underlies the hippocampal synaptic, learning, and memory deficits following treatment with JWH-081, a new component of spice/K2 preparations.

    PubMed

    Basavarajappa, Balapal S; Subbanna, Shivakumar

    2014-02-01

    Recently, synthetic cannabinoids have been sprayed onto plant material, which is subsequently packaged and sold as "Spice" or "K2" to mimic the effects of marijuana. A recent report identified several synthetic additives in samples of "Spice/K2", including JWH-081, a synthetic ligand for the cannabinoid receptor 1 (CB1). The deleterious effects of JWH-081 on brain function are not known, particularly on CB1 signaling, synaptic plasticity, learning and memory. Here, we evaluated the effects of JWH-081 on pCaMKIV, pCREB, and pERK1/2 signaling events followed by long-term potentiation (LTP), hippocampal-dependent learning and memory tasks using CB1 receptor wild-type (WT) and knockout (KO) mice. Acute administration of JWH-081 impaired CaMKIV phosphorylation in a dose-dependent manner, whereas inhibition of CREB phosphorylation in CB1 receptor WT mice was observed only at higher dose of JWH-081 (1.25 mg/kg). JWH-081 at higher dose impaired CaMKIV and CREB phosphorylation in a time-dependent manner in CB1 receptor WT mice but not in KO mice and failed to alter ERK1/2 phosphorylation. In addition, SR treated or CB1 receptor KO mice have a lower pCaMKIV/CaMKIV ratio and higher pCREB/CREB ratio compared with vehicle or WT littermates. In hippocampal slices, JWH-081 impaired LTP in CB1 receptor WT but not in KO littermates. Furthermore, JWH-081 at higher dose impaired object recognition, spontaneous alternation and spatial memory on the Y-maze in CB1 receptor WT mice but not in KO mice. Collectively our findings suggest that deleterious effects of JWH-081 on hippocampal function involves CB1 receptor mediated impairments in CaMKIV and CREB phosphorylation, LTP, learning and memory in mice. © 2013 Wiley Periodicals, Inc.

  9. Cross-talk between interferon-gamma and interleukin-18 in melanogenesis.

    PubMed

    Zhou, Jia; Ling, Jingjing; Wang, Yong; Shang, Jing; Ping, Fengfeng

    2016-10-01

    Skin is the largest organ in our body and strategically placed to provide a metabolically active biological barrier against a range of noxious stressors. A lot of inflammatory cytokines, which are increased after ultraviolet (UV) irradiation produced by keratinocytes or other immunocytes, are closely related to pigmentary changes, including interleukin-18 (IL-18) and interferon-γ (IFN-γ). In this study, the effect of cross-talk between IL-18 and IFN-γ on melanogenesis was investigated. Treatment with IL-18 resulted in a dose-dependent increase of melanogenesis, while IFN-γ made an opposite effect. This influence of IL-18 and IFN-γ was mediated by regulations of microphthalmia-associated transcription factor (MITF) and its downstream enzymatic cascade expressions. Furthermore, IFN-γ inhibited basal and IL-18-induced melanogenesis. IFN-γ increased signal transducer and activator of transcription-1 (STAT-1) phosphorylation to play its position in regulating melanin pigmentation, and its inhibitory effect could be prevented by Janus Kinase 1 (JAK 1) inhibitor. IFN-γ could inhibit melanogenesis by decreasing melanocyte dendrite formation. In addition, IFN-γ inhibited the expressions of Rab Pases to suppress the mature and transport of melanosomes. IL-18 could rapidly induce Akt and PTEN phosphorylation and p65 expression in B16F10 cells. When treatment with IL-18 and IFN-γ together, the phosphorylation level of Protein Kinase B (Akt) and phosphatase and tensin homolog deleted on chromosome ten (PTEN) and expression of p65 NF-κB were inhibited, compared with treated with IL-18 only. Our studies indicated that IFN-γ could directly induce B16F10 cells apoptosis in vitro. Furthermore, we demonstrated that IFN-γ markedly up-regulated IL-18 binding protein (BP) production in normal human foreskin-derived epidermal keratinocytes in dose-dependent manner. UVB irradiation induced protease-activated receptor-2 (PAR-2) expression in NHEK, IFN-γ could inhibit this enhancement in a dose-dependent manner. These data suggest that IFN-γ plays a role in regulating inflammation- or UV-induced pigmentary changes, in direct/indirect manner. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Interaction of plant chimeric calcium/calmodulin-dependent protein kinase with a homolog of eukaryotic elongation factor-1alpha

    NASA Technical Reports Server (NTRS)

    Wang, W.; Poovaiah, B. W.

    1999-01-01

    A chimeric Ca2+/calmodulin-dependent protein kinase (CCaMK) was previously cloned and characterized in this laboratory. To investigate the biological functions of CCaMK, the yeast two-hybrid system was used to isolate genes encoding proteins that interact with CCaMK. One of the cDNA clones obtained from the screening (LlEF-1alpha1) has high similarity with the eukaryotic elongation factor-1alpha (EF-1alpha). CCaMK phosphorylated LlEF-1alpha1 in a Ca2+/calmodulin-dependent manner. The phosphorylation site for CCaMK (Thr-257) was identified by site-directed mutagenesis. Interestingly, Thr-257 is located in the putative tRNA-binding region of LlEF-1alpha1. An isoform of Ca2+-dependent protein kinase (CDPK) phosphorylated multiple sites of LlEF-1alpha1 in a Ca2+-dependent but calmodulin-independent manner. Unlike CDPK, CCaMK phosphorylated only one site, and this site is different from CDPK phosphorylation sites. This suggests that the phosphorylation of EF-1alpha by these two kinases may have different functional significance. Although the phosphorylation of LlEF-1alpha1 by CCaMK is Ca2+/calmodulin-dependent, in vitro binding assays revealed that CCaMK binds to LlEF-1alpha1 in a Ca2+-independent manner. This was further substantiated by coimmunoprecipitation of CCaMK and EF-1alpha using the protein extract from lily anthers. Dissociation of CCaMK from EF-1alpha by Ca2+ and phosphorylation of EF-1alpha by CCaMK in a Ca2+/calmodulin-dependent manner suggests that these interactions may play a role in regulating the biological functions of EF-1alpha.

  11. Spermidine promotes stress resistance in Drosophila melanogaster through autophagy-dependent and -independent pathways.

    PubMed

    Minois, N; Carmona-Gutierrez, D; Bauer, M A; Rockenfeller, P; Eisenberg, T; Brandhorst, S; Sigrist, S J; Kroemer, G; Madeo, F

    2012-10-11

    The naturally occurring polyamine spermidine (Spd) has recently been shown to promote longevity across species in an autophagy-dependent manner. Here, we demonstrate that Spd improves both survival and locomotor activity of the fruit fly Drosophila melanogaster upon exposure to the superoxide generator and neurotoxic agent paraquat. Although survival to a high paraquat concentration (20 mM) was specifically increased in female flies only, locomotor activity and survival could be rescued in both male and female animals when exposed to lower paraquat levels (5 mM). These effects are dependent on the autophagic machinery, as Spd failed to confer resistance to paraquat-induced toxicity and locomotor impairment in flies deleted for the essential autophagic regulator ATG7 (autophagy-related gene 7). Spd treatment did also protect against mild doses of another oxidative stressor, hydrogen peroxide, but in this case in an autophagy-independent manner. Altogether, this study establishes that the protective effects of Spd can be exerted through different pathways that depending on the oxidative stress scenario do or do not involve autophagy.

  12. N-acetylcysteine inhibits induction of nitric oxide synthase in 3T3-L1 adipocytes.

    PubMed

    Araki, Shunsuke; Dobashi, Kazushige; Kubo, Kazuyasu; Kawagoe, Rinko; Yamamoto, Yukiyo; Shirahata, Akira

    2007-12-01

    The present study was designed to determine whether N-acetylcysteine (NAC), a potent antioxidant, modulates nitric oxide (NO) production stimulated by lipopolysaccharide (LPS) and tumor necrosis factor-alpha (TNF-alpha) in adipocytes. Stimulation by the combination of 5 microg/ml of LPS and 100 ng/ml of TNF-alpha (LT) significantly enhanced NO production in 3T3-L1 adipocytes. Preincubation of the cells with NAC (5-20 mM) for 24 h suppressed the increased NO production in a dose-dependent manner. The production of NO was decreased by 49% at the concentration of 20 mM of NAC. The decrease in NO production by NAC was accompanied by a decrease in inducible nitric oxide synthase (iNOS) protein, detected by immunoblot analysis, and iNOS mRNA, determined by real-time reverse-transcriptase coupled polymerase chain reaction analysis. Nuclear factor-kappa B (NF-kappa B) was significantly activated by LT-treatment, while the pretreatment with 20 mM of NAC prevented the activity by 42%. Pyrrolidine dithiocarbamate (PDTC), a NF-kappaB inhibitor, also inhibited the LT-mediated NO production dose-dependently. One hundred microM of PDTC inhibited the NO production by 46%. We also investigated the effect of NAC and PDTC on the production of interleukein-6 (IL-6), which is regulated transcriptionally by NF-kappa B in 3T3-L1 adipocytes. IL-6 production was markedly increased by LT stimulus, and the enhanced secretion of IL-6 was suppressed in a dose-dependent manner by pretreatment with NAC or PDTC. These results suggest that NAC regulates iNOS expression and NO production in adipocytes through the modulating activation of NF-kappa B.

  13. A meta-analysis of the effects of Lactobacillus buchneri on the fermentation and aerobic stability of corn and grass and small-grain silages.

    PubMed

    Kleinschmit, D H; Kung, L

    2006-10-01

    The results of adding Lactobacillus buchneri to silages from 43 experiments in 23 sources reporting standard errors were summarized using meta-analysis. The effects of inoculation were summarized by type of crop (corn or grass and small grains) and the treatments were classified into the following categories: 1) untreated silage with nothing applied (LB0), 2) silage treated with L. buchneri at < or = 100,000 cfu/g of fresh forage (LB1), and 3) silage treated with L. buchneri at > 100,000 cfu/g (LB2). In both types of crops, inoculation with L. buchneri decreased concentrations of lactic acid, and this response was dose-dependent in corn but not in grass and small-grain silages. Treatment with L. buchneri markedly increased the concentrations of acetic acid in both crops in a dose-dependent manner. The numbers of yeasts were lower in silages treated with LB1 and further decreased in silages treated with LB2 compared with untreated silages. Untreated corn silage spoiled after 25 h of exposure to air but corn silage treated with LB1 did not spoil until 35 h, and this stability was further enhanced to 503 h with LB2. In grass and small-grain silages, yeasts were nearly undetectable; however, inoculation improved aerobic stability in a dose-dependent manner (206, 226, and 245 h for LB0, LB1, and LB2, respectively). The recovery of DM after ensiling was lower for LB2 (94.5%) when compared with LB0 (95.5%) in corn silage and was lower for both LB1 (94.8%) and LB2 (95.3%) when compared with LB0 (96.6%) in grass and small-grain silages.

  14. Unexpected T cell regulatory activity of anti-histone H1 autoantibody: Its mode of action in regulatory T cell-dependent and -independent manners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takaoka, Yuki; Kawamoto, Seiji, E-mail: skawa@hiroshima-u.ac.jp; Katayama, Akiko

    2013-02-08

    Highlights: ► Anti-histone H1 autoantibody (anti-H1) acts on T cells to inhibit their activation. ► Anti-H1 suppresses T cell activation in Treg cell-dependent and -independent manners. ► Suboptimal dose of anti-H1 enhances suppressor function of Treg cells. ► High dose of anti-H1 directly inhibits T cell receptor signaling. -- Abstract: Induction of anti-nuclear antibodies against DNA or histones is a hallmark of autoimmune disorders, but their actual contribution to disease predisposition remains to be clarified. We have previously reported that autoantibodies against histone H1 work as a critical graft survival factor in a rat model of tolerogeneic liver transplantation. Heremore » we show that an immunosuppressive anti-histone H1 monoclonal antibody (anti-H1 mAb) acts directly on T cells to inhibit their activation in response to T cell receptor (TCR) ligation. Intriguingly, the T cell activation inhibitory activity of anti-H1 mAb under suboptimal dosages required regulatory T (Treg) cells, while high dose stimulation with anti-H1 mAb triggered a Treg cell-independent, direct negative regulation of T cell activation upon TCR cross-linking. In the Treg cell-dependent mode of immunosuppressive action, anti-H1 mAb did not induce the expansion of CD4{sup +}Foxp3{sup +} Treg cells, but rather potentiated their regulatory capacity. These results reveal a previously unappreciated T cell regulatory role of anti-H1 autoantibody, whose overproduction is generally thought to be pathogenic in the autoimmune settings.« less

  15. Excess aldosterone-induced changes in insulin signaling molecules and glucose oxidation in gastrocnemius muscle of adult male rat.

    PubMed

    Selvaraj, Jayaraman; Sathish, Sampath; Mayilvanan, Chinnaiyan; Balasubramanian, Karundevi

    2013-01-01

    Emerging evidences demonstrate that excess aldosterone and insulin interact at target tissues. It has been shown that increased levels of aldosterone contribute to the development of insulin resistance and thus act as a risk factor for the development of type-2 diabetes mellitus. However, the molecular mechanisms involved in this scenario are yet to be identified. This study was designed to assess the dose-dependent effects of aldosterone on insulin signal transduction and glucose oxidation in the skeletal muscle (gastrocnemius) of adult male rat. Healthy adult male albino rats of Wistar strain (Rattus norvegicus) weighing 180-200 g were used in this study. Rats were divided into four groups. Group I: control (treated with 1 % ethanol only), group II: aldosterone treated (10 μg /kg body weight, twice daily for 15 days), group III: aldosterone treated (20 μg /kg body weight, twice daily for 15 days), and group IV: aldosterone treated (40 μg/kg body weight, twice daily for 15 days). Excess aldosterone caused glucose intolerance in a dose-dependent manner. Serum insulin and aldosterone were significantly increased, whereas serum testosterone was decreased. Aldosterone treatment impaired the rate of glucose uptake, oxidation, and insulin signal transduction in the gastrocnemius muscle through defective expression of IR, IRS-1, Akt, AS160, and GLUT4 genes. Phosphorylation of IRS-1, β-arrestin-2, and Akt was also reduced in a dose-dependent manner. Excess aldosterone results in glucose intolerance as a result of impaired insulin signal transduction leading to decreased glucose uptake and oxidation in skeletal muscle. In addition to this, it is inferred that excess aldosterone may act as one of the causative factors for the onset of insulin resistance and thus increased incidence of type-2 diabetes.

  16. Clinical Usefulness of the Histoculture Drug Response Assay for Prostate Cancer and Benign Prostate Hypertrophy (BPH).

    PubMed

    Hoffman, Robert M

    2018-01-01

    The histoculture drug response assay (HDRA) has been adapted to determine androgen sensitivity in Gelfoam histoculture of human benign prostatic tissue as well as prostate cancer. Gelfoam histoculture was used to measure androgen-independent and androgen-dependent growth of benign and malignant prostate tissue. The androgen-sensitivity index was significantly higher in 23 paired specimens of prostate cancer compared to benign prostate hypertrophy (BPH). Genistein decreased the androgen-sensitivity index of BPH and prostate cancer in Gelfoam ® histoculture in a dose-dependent manner.

  17. The Effects of Gamma and Proton Radiation Exposure on Hematopoietic Cell Counts in the Ferret Model

    PubMed Central

    Sanzari, Jenine K.; Wan, X. Steven; Krigsfeld, Gabriel S.; Wroe, Andrew J.; Gridley, Daila S.; Kennedy, Ann R.

    2014-01-01

    Exposure to total-body radiation induces hematological changes, which can detriment one's immune response to wounds and infection. Here, the decreases in blood cell counts after acute radiation doses of γ-ray or proton radiation exposure, at the doses and dose-rates expected during a solar particle event (SPE), are reported in the ferret model system. Following the exposure to γ-ray or proton radiation, the ferret peripheral total white blood cell (WBC) and lymphocyte counts decreased whereas neutrophil count increased within 3 hours. At 48 hours after irradiation, the WBC, neutrophil, and lymphocyte counts decreased in a dose-dependent manner but were not significantly affected by the radiation type (γ-rays verses protons) or dose rate (0.5 Gy/minute verses 0.5 Gy/hour). The loss of these blood cells could accompany and contribute to the physiological symptoms of the acute radiation syndrome (ARS). PMID:25356435

  18. Evaluation of Chromosomal Instability in Diabetic Rats Treated with Naringin

    PubMed Central

    A. Bakheet, Saleh; M. Attia, Sabry

    2011-01-01

    We used the bone marrow DNA strand breaks, micronucleus formations, spermatocyte chromosomal aberrations, and sperm characteristic assays to investigate the chromosomal instability in somatic and germinal cells of diabetic rats treated with multiple doses of naringin. The obtained results revealed that naringin was neither cytotoxic nor genotoxic for the rats at all tested doses. Moreover, naringin significantly reduced the diabetes-induced chromosomal instability in somatic and germinal cells in a dose-dependent manner. In addition, diabetes induced marked biochemical alterations characteristic of oxidative stress including enhanced lipid peroxidation, accumulation of oxidized glutathione, reduction in reduced glutathione, and accumulation of intracellular reactive oxygen species. Treatment with naringin ameliorated these biochemical markers dose-dependently. In conclusion, naringin confers an appealing protective effect against diabetes-induced chromosomal instability towards rat somatic and germinal cells which might be explained partially via diminishing the de novo free radical generation induced by hyperglycemia. Thus, naringin might be a good candidate to reduce genotoxic risk associated with hyperglycemia and may provide decreases in the development of secondary malignancy and abnormal reproductive outcomes risks, which seems especially important for diabetic patients. PMID:21941606

  19. Anti-dengue efficacy of bioactive andrographolide from Andrographis paniculata (Lamiales: Acanthaceae) against the primary dengue vector Aedes aegypti (Diptera: Culicidae).

    PubMed

    Edwin, Edward-Sam; Vasantha-Srinivasan, Prabhakaran; Senthil-Nathan, Sengottayan; Thanigaivel, Annamalai; Ponsankar, Athirstam; Pradeepa, Venkatraman; Selin-Rani, Selvaraj; Kalaivani, Kandaswamy; Hunter, Wayne B; Abdel-Megeed, Ahmed; Duraipandiyan, Veeramuthu; Al-Dhabi, Naif Abdullah

    2016-11-01

    The current study investigated the toxic effect of the leaf extract compound andrographolide from Andrographis paniculata (Burm.f) against the dengue vector Ae. aegypti. GC-MS analysis revealed that andrographolide was recognized as the major chemical constituent with the prominent peak area compared with other compounds. All isolated toxic compounds were purified and confirmed through RP-HPLC against chemical standards. The larvicidal assays established at 25ppm of bioactive compound against the treated instars of Ae. Aegypti showed prominent mortality compared to other treated concentrations. The percent mortality of larvae was directly proportional to concentration. The lethal concentration (LC50) was observed at 12ppm treatment concentration. The bioactive andrographolide considerably reduced the detoxifying enzyme regulations of α- and β- carboxylesterases. In contrast, the levels of GST and CYP450 significantly increase in a dose dependent manner. The andrographolide also showed strong oviposition deterrence effects at the sub-lethal dose of 12ppm. Similarly, the mean number of eggs were also significantly reduced in a dose dependent manner. At the concentration of 12ppm the effective percentage of repellency was greater than 90% with a protection time of 15-210min, compared with control. The histopathology study displayed that larvae treated with bioactive andrographolide had cytopathic effects in the midgut epithelium compared with the control. The present study established that bioactive andrographolide served as a potential useful for dengue vector management. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Cinnamic acid exerts anti-diabetic activity by improving glucose tolerance in vivo and by stimulating insulin secretion in vitro.

    PubMed

    Hafizur, Rahman M; Hameed, Abdul; Shukrana, Mishkat; Raza, Sayed Ali; Chishti, Sidra; Kabir, Nurul; Siddiqui, Rehan A

    2015-02-15

    Although the anti-diabetic activity of cinnamic acid, a pure compound from cinnamon, has been reported but its mechanism(s) is not yet clear. The present study was designed to explore the possible mechanism(s) of anti-diabetic activity of cinnamic acid in in vitro and in vivo non-obese type 2 diabetic rats. Non-obese type 2 diabetes was developed by injecting 90 mg/kg streptozotocin in 2-day-old Wistar pups. Cinnamic acid and cinnamaldehyde were administered orally to diabetic rats for assessing acute blood glucose lowering effect and improvement of glucose tolerance. Additionally, insulin secretory activity of cinnamic acid and cinnamaldehyde was evaluated in isolated mice islets. Cinnamic acid, but not cinnamaldehyde, decreased blood glucose levels in diabetic rats in a time- and dose-dependent manner. Oral administration of cinnamic acid with 5 and 10 mg/kg doses to diabetic rats improved glucose tolerance in a dose-dependent manner. The improvement by 10 mg/kg cinnamic acid was comparable to that of standard drug glibenclamide (5 mg/kg). Further in vitro studies showed that cinnamaldehyde has little or no effect on glucose-stimulated insulin secretion; however, cinnamic acid significantly enhanced glucose-stimulated insulin secretion in isolated islets. In conclusion, it can be said that cinnamic acid exerts anti-diabetic activity by improving glucose tolerance in vivo and stimulating insulin secretion in vitro. Copyright © 2015 Elsevier GmbH. All rights reserved.

  1. Protective effect of ethyl acetate fraction of Rhododendron arboreum flowers against carbon tetrachloride-induced hepatotoxicity in experimental models

    PubMed Central

    Verma, Neeraj; Singh, Anil P.; Amresh, G.; Sahu, P. K.; Rao, Ch. V.

    2011-01-01

    Objective: To evaluate the hepatoprotective potential of ethyl acetate fraction of Rhododendron arboreum (Family: Ericaceae) in Wistar rats against carbon tetrachloride (CCl4)-induced liver damage in preventive and curative models. Materials and Methods: Fraction at a dose of 100, 200, and 400 mg/kg was administered orally once daily for 14 days in CCl4-treated groups (II, III, IV, V and VI). The serum levels of glutamic oxaloacetic transaminase (SGOT), glutamate pyruvate transaminase (SGPT), alkaline phosphatase (SALP), γ-glutamyltransferase (γ -GT), and bilirubin were estimated along with activities of glutathione S-transferase (GST), glutathione reductase, hepatic malondialdehyde formation, and glutathione content. Result and Discussion: The substantially elevated serum enzymatic activities of SGOT, SGPT, SALP, γ-GT, and bilirubin due to CCl4 treatment were restored toward normal in a dose-dependent manner. Meanwhile, the decreased activities of GST and glutathione reductase were also restored toward normal. In addition, ethyl acetate fraction also significantly prevented the elevation of hepatic malondialdehyde formation and depletion of reduced glutathione content in the liver of CCl4-intoxicated rats in a dose-dependent manner. Silymarin used as standard reference also exhibited significant hepatoprotective activity on post-treatment against CCl4-induced hepatotoxicity in rats. The biochemical observations were supplemented with histopathological examination of rat liver sections. The results of this study strongly indicate that ethyl acetate fraction has a potent hepatoprotective action against CCl4-induced hepatic damage in rats. PMID:21713093

  2. Protective effect of ethyl acetate fraction of Rhododendron arboreum flowers against carbon tetrachloride-induced hepatotoxicity in experimental models.

    PubMed

    Verma, Neeraj; Singh, Anil P; Amresh, G; Sahu, P K; Rao, Ch V

    2011-05-01

    To evaluate the hepatoprotective potential of ethyl acetate fraction of Rhododendron arboreum (Family: Ericaceae) in Wistar rats against carbon tetrachloride (CCl(4))-induced liver damage in preventive and curative models. Fraction at a dose of 100, 200, and 400 mg/kg was administered orally once daily for 14 days in CCl(4)-treated groups (II, III, IV, V and VI). The serum levels of glutamic oxaloacetic transaminase (SGOT), glutamate pyruvate transaminase (SGPT), alkaline phosphatase (SALP), γ-glutamyltransferase (γ -GT), and bilirubin were estimated along with activities of glutathione S-transferase (GST), glutathione reductase, hepatic malondialdehyde formation, and glutathione content. The substantially elevated serum enzymatic activities of SGOT, SGPT, SALP, γ-GT, and bilirubin due to CCl(4) treatment were restored toward normal in a dose-dependent manner. Meanwhile, the decreased activities of GST and glutathione reductase were also restored toward normal. In addition, ethyl acetate fraction also significantly prevented the elevation of hepatic malondialdehyde formation and depletion of reduced glutathione content in the liver of CCl(4)-intoxicated rats in a dose-dependent manner. Silymarin used as standard reference also exhibited significant hepatoprotective activity on post-treatment against CCl(4)-induced hepatotoxicity in rats. The biochemical observations were supplemented with histopathological examination of rat liver sections. The results of this study strongly indicate that ethyl acetate fraction has a potent hepatoprotective action against CCl(4)-induced hepatic damage in rats.

  3. Impact of ketorolac administration around ovarian stimulation on in vivo and in vitro fertilization and subsequent embryo development.

    PubMed

    Jee, Byung Chul; Youm, Hye Won; Lee, Jae Ho; Kim, Jee Hyun; Suh, Chang Suk; Kim, Seok Hyun

    2013-05-01

    We performed this study to investigate the effect of ketorolac (a non-steroidal anti-inflammatory drug) administration around ovarian stimulation on in vivo and in vitro fertilization process. Sixty-four female mice (ICR) were injected with ketorolac (0, 7.5, 15 and 30 µg/d) for 3 d starting from the day of eCG treatment. In experiment 1, 41 mice were triggered by hCG and then mated; two-cell embryos were obtained and in vitro development up to blastocyst was observed. In experiment 2, 23 mice were triggered by hCG and mature oocytes were collected; in vitro fertilization rate and subsequent embryo development up to blastocyst was recorded. In experiment 1, the blastocyst-forming rates per in vivo fertilized two-cell embryo showed an inverse relationship with a dosage of ketorolac (97.6%, 64.2%, 35.4% and 25.9%). In experiment 2, degenerated oocytes were frequently observed in a dose-dependent manner (4.3%, 22.9%, 22.4% and 75.0%). Lower fertilization rates were noted in all the three ketorolac-treating groups; blastocyst-forming rate was significantly lower in 30-µg-treating group when compared with the control group. Administration of ketorolac around ovarian stimulation significantly affects the development of in vivo fertilized embryo in a dose-dependent manner. High-dose ketorolac could result in a poor oocyte quality and decreased embryo developmental competence.

  4. Induction of Biogenic Magnetization and Redox Control by a Component of the Target of Rapamycin Complex 1 Signaling Pathway

    PubMed Central

    Nishida, Keiji; Silver, Pamela A.

    2012-01-01

    Most organisms are simply diamagnetic, while magnetotactic bacteria and migratory animals are among organisms that exploit magnetism. Biogenic magnetization not only is of fundamental interest, but also has industrial potential. However, the key factor(s) that enable biogenic magnetization in coordination with other cellular functions and metabolism remain unknown. To address the requirements for induction and the application of synthetic bio-magnetism, we explored the creation of magnetism in a simple model organism. Cell magnetization was first observed by attraction towards a magnet when normally diamagnetic yeast Saccharomyces cerevisiae were grown with ferric citrate. The magnetization was further enhanced by genetic modification of iron homeostasis and introduction of ferritin. The acquired magnetizable properties enabled the cells to be attracted to a magnet, and be trapped by a magnetic column. Superconducting quantum interference device (SQUID) magnetometry confirmed and quantitatively characterized the acquired paramagnetism. Electron microscopy and energy-dispersive X-ray spectroscopy showed electron-dense iron-containing aggregates within the magnetized cells. Magnetization-based screening of gene knockouts identified Tco89p, a component of TORC1 (Target of rapamycin complex 1), as important for magnetization; loss of TCO89 and treatment with rapamycin reduced magnetization in a TCO89-dependent manner. The TCO89 expression level positively correlated with magnetization, enabling inducible magnetization. Several carbon metabolism genes were also shown to affect magnetization. Redox mediators indicated that TCO89 alters the intracellular redox to an oxidized state in a dose-dependent manner. Taken together, we demonstrated that synthetic induction of magnetization is possible and that the key factors are local redox control through carbon metabolism and iron supply. PMID:22389629

  5. Artemisia leaf extract induces apoptosis in human endometriotic cells through regulation of the p38 and NFκB pathways.

    PubMed

    Kim, Ji-Hyun; Jung, Seung-Hyun; Yang, Yeong-In; Ahn, Ji-Hye; Cho, Jin-Gyeong; Lee, Kyung-Tae; Baek, Nam-In; Choi, Jung-Hye

    2013-02-13

    Artemisia leaves have long been used for the treatment of gynecological disorders, including infertility and dysmenorrhea, which can be commonly caused by endometriosis. In the present study, we investigated the effect of Artemisia princeps extract (APE) on the cell growth and apoptosis of human endometriotic cells. MTT assays and FACS analysis using PI and Annexin staining were performed to study cell viability, cell cycle progression, and apoptosis. We also explored the mechanism of APE-induced effects by evaluating the activation of caspases, Akt, p38, and NFκB. The expressions of XIAP, Bcl-2, and Bcl-xL were measured by real-time RT-PCR and Western blot analyses. APE significantly inhibited the cell viability of 11Z and 12Z human endometriotic epithelial cells. Interestingly, endometriotic cells were more sensitive to APE treatment than immortalized endometrial cells (HES). Treatment with APE induced apoptosis of 11Z cells in a time-dependent manner, as shown by accumulation of sub G1 and apoptotic cell populations. In addition, treatment with APE stimulated the activation of caspase -3, -8, and -9 in a dose- and time-dependent manner. Furthermore, p38 was activated by APE treatment, and the p38 inhibitor SB203580 markedly inhibited APE-induced cell death in 11Z cells. Moreover, treatment with APE suppressed the activation of NFκB and the expressions of anti-apoptotic factors such as XIAP, Bcl-2, and Bcl-xL. These results indicate that APE is a potential anti-endometriotic agent, acting to induce apoptosis of endometrial cells through the modulation of the p38 and NFκB pathways. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Synthetic hepcidin causes rapid dose-dependent hypoferremia and is concentrated in ferroportin-containing organs.

    PubMed

    Rivera, Seth; Nemeth, Elizabeta; Gabayan, Victoria; Lopez, Miguel A; Farshidi, Dina; Ganz, Tomas

    2005-09-15

    Hepcidin is the principal iron regulatory hormone and its overproduction contributes to anemia of inflammation (AI). In vitro, hepcidin binds to and induces the degradation of the exclusive iron exporter ferroportin. We explored the effects and distribution of synthetic hepcidin in the mouse. A single intraperitoneal injection of hepcidin caused a rapid fall of serum iron in a dose-dependent manner, with a 50-microg dose resulting in iron levels 80% lower than in control mice. The full effect was seen within only 1 hour, consistent with a blockade of iron export from tissue stores and from macrophages involved in iron recycling. Serum iron remained suppressed for more than 48 hours after injection. Using radiolabeled hepcidin, we demonstrated that the serum concentration of hepcidin at the 50-microg dose was 1.4 microM, consistent with the inhibitory concentration of 50% (IC50) of hepcidin measured in vitro. Radiolabeled hepcidin accumulated in the ferroportin-rich organs, liver, spleen, and proximal duodenum. Our study highlights the central role of the hepcidin-ferroportin interaction in iron homeostasis. The rapid and sustained action of a single dose of hepcidin makes it an appealing agent for the prevention of iron accumulation in hereditary hemochromatosis.

  7. Mechanisms of morphine enhancement of spontaneous seizure activity.

    PubMed

    Saboory, Ehsan; Derchansky, Miron; Ismaili, Mohammed; Jahromi, Shokrollah S; Brull, Richard; Carlen, Peter L; El Beheiry, Hossam

    2007-12-01

    High-dose opioid therapy can precipitate seizures; however, the mechanism of such a dangerous adverse effect remains poorly understood. The aim of our study was to determine whether the neuroexcitatory activity of high-dose morphine is mediated by selective stimulation of opioid receptors. Mice hippocampi were resected intact and bathed in low magnesium artificial cerebrospinal fluid to induce spontaneous seizure-like events recorded from CA1 neurons. Application of morphine had a biphasic effect on the recorded spontaneous seizure-like events. In a low concentration (10 microM), morphine depressed electrographic seizure activity. Higher morphine concentrations (30 and 100 microM) enhanced seizure activity in an apparent dose-dependent manner. Naloxone, a nonselective opiate antagonist blocked the proconvulsant action of morphine. Selective mu and kappa opiate receptor agonists and antagonists enhanced and suppressed the spontaneous seizure activity, respectively. On the contrary, delta opioid receptor ligands did not have an effect. The proseizure effect of morphine is mediated through selective stimulation of mu and kappa opiate receptors but not the activation of the delta receptor system. The observed dose-dependent mechanism of morphine neuroexcitation underscores careful adjustment and individualized opioid dosing in the clinical setting.

  8. Adaptation and Sensitization to Proteotoxic Stress

    PubMed Central

    Leak, Rehana K.

    2014-01-01

    Although severe stress can elicit toxicity, mild stress often elicits adaptations. Here we review the literature on stress-induced adaptations versus stress sensitization in models of neurodegenerative diseases. We also describe our recent findings that chronic proteotoxic stress can elicit adaptations if the dose is low but that high-dose proteotoxic stress sensitizes cells to subsequent challenges. In these experiments, long-term, low-dose proteasome inhibition elicited protection in a superoxide dismutase-dependent manner. In contrast, acute, high-dose proteotoxic stress sensitized cells to subsequent proteotoxic challenges by eliciting catastrophic loss of glutathione. However, even in the latter model of synergistic toxicity, several defensive proteins were upregulated by severe proteotoxicity. This led us to wonder whether high-dose proteotoxic stress can elicit protection against subsequent challenges in astrocytes, a cell type well known for their resilience. In support of this new hypothesis, we found that the astrocytes that survived severe proteotoxicity became harder to kill. The adaptive mechanism was glutathione dependent. If these findings can be generalized to the human brain, similar endogenous adaptations may help explain why neurodegenerative diseases are so delayed in appearance and so slow to progress. In contrast, sensitization to severe stress may explain why defenses eventually collapse in vulnerable neurons. PMID:24659932

  9. Eupafolin, a flavonoid isolated from Artemisia princeps, induced apoptosis in human cervical adenocarcinoma HeLa cells.

    PubMed

    Chung, Kyung-Sook; Choi, Jung-Hye; Back, Nam-In; Choi, Myung-Sook; Kang, Eun-Kyung; Chung, Hae-Gon; Jeong, Tae-Sook; Lee, Kyung-Tae

    2010-09-01

    Although eupafolin, a flavone found in Artemisia princeps Pampanini, has been shown to inhibit the growth of several human cancer cells, its mode of action is poorly understood. In this study, we investigated the pro-apoptotic activities of eupafolin in human cervical carcinoma HeLa cells. It was found that eupafolin induced apoptosis in a dose-dependent manner, as evidenced by DNA fragmentation and the accumulation of positive cells for annexin V. In addition, eupafolin triggered the activations of caspases-3, -6, -7, -8, and -9 and the cleavages of their substrates, such as, poly (ADP-ribose) polymerase and lamin A/C. Furthermore, treatment with eupafolin resulted in a loss of mitochondrial membrane potential (DeltaPsi(m)), increased the release of cytochrome c to the cytosol, and altered the expression levels of B-cell lymphoma 2 (Bcl-2) family proteins. Interestingly, caspase-8, an initiator caspase, was activated after the loss of DeltaPsi(m) and the activations of caspases-3 and -9. Moreover, treatment with z-DEVD-fmk (a specific caspase-3 inhibitor) and the overexpression of Bcl-2 prevented eupafolin-stimulated caspase-8 activation. Altogether, these results suggest that the eupafolin-induced apoptosis in HeLa cells is mediated by caspase-dependent pathways, involving caspases-3, -9, and -8, which are initiated by the Bcl-2-dependent loss of DeltaPsi(m).

  10. Nanoparticles modulate autophagic effect in a dispersity-dependent manner

    NASA Astrophysics Data System (ADS)

    Huang, Dengtong; Zhou, Hualu; Gao, Jinhao

    2015-09-01

    Autophagy plays a key role in human health and disease, especially in cancer and neurodegeneration. Many autophagy regulators are developed for therapy. Diverse nanomaterials have been reported to induce autophagy. However, the underlying mechanisms and universal rules remain unclear. Here, for the first time, we show a reliable and general mechanism by which nanoparticles induce autophagy and then successfully modulate autophagy via tuning their dispersity. Various well-designed univariate experiments demonstrate that nanomaterials induce autophagy in a dispersity-dependent manner. Aggregated nanoparticles induce significant autophagic effect in comparison with well-dispersed nanoparticles. As the highly stable nanoparticles may block autophagic degradation in autolysosomes, endocytosis and intracellular accumulation of nanoparticles can be responsible for this interesting phenomenon. Our results suggest dispersity-dependent autophagic effect as a common cellular response to nanoparticles, reveal the relationship between properties of nanoparticles and autophagy, and offer a new alternative way to modulate autophagy.

  11. Melanosome uptake is associated with the proliferation and differentiation of keratinocytes.

    PubMed

    Choi, Hye-In; Sohn, Kyung-Cheol; Hong, Dong-Kyun; Lee, Young; Kim, Chang Deok; Yoon, Tae-Jin; Park, Jin Woon; Jung, Sunggyun; Lee, Jeung-Hoon; Lee, Young Ho

    2014-01-01

    Melanosomes are synthesized in melanocytes and transferred to neighboring keratinocytes. However, the associations of melanosome uptake with the proliferation and differentiation of keratinocytes are not fully understood. We examined the associations of melanosome uptake with keratinocyte differentiation and proliferation. SV40T-transformed human epidermal keratinocytes (SV-HEKs) were treated with isolated melanosomes. The effects of melanosome uptake on the proliferation and differentiation of the keratinocytes were analyzed by Western blotting and flow cytometry. The relationship between melanosome uptake and keratinocyte differentiation status was verified by determining the melanin content in the cells. Melanosomes reduced the proliferation of SV-HEKs in a dose-dependent manner, but did not induce differentiation. Melanosome uptake was higher in differentiating keratinocytes compared to non-differentiating keratinocytes, and inhibited significantly by PAR-2 inhibitor. Melanosomes inhibit keratinocyte proliferation. Moreover, melanosome uptake is influenced by keratinocyte differentiation status, being highest in mid-stage differentiating keratinocytes in a PAR-2 dependent manner.

  12. Histaminergic Receptors Modulate Spinal Cord Injury-Induced Neuronal Nitric Oxide Synthase Upregulation and Cord Pathology: New Roles of Nanowired Drug Delivery for Neuroprotection.

    PubMed

    Sharma, Hari S; Patnaik, Ranjana; Muresanu, Dafin F; Lafuente, José V; Ozkizilcik, Asya; Tian, Z Ryan; Nozari, Ala; Sharma, Aruna

    2017-01-01

    The possibility that histamine influences the spinal cord pathophysiology following trauma through specific receptor-mediated upregulation of neuronal nitric oxide synthase (nNOS) was examined in a rat model. A focal spinal cord injury (SCI) was inflicted by a longitudinal incision into the right dorsal horn of the T10-11 segments. The animals were allowed to survive 5h. The SCI significantly induced breakdown of the blood-spinal cord barrier to protein tracers, reduced the spinal cord blood flow at 5h, and increased the edema formation and massive upregulation of nNOS expression. Pretreatment with histamine H1 receptor antagonist mepyramine (1mg, 5mg, and 10mg/kg, i.p., 30min before injury) failed to attenuate nNOS expression and spinal cord pathology following SCI. On the other hand, blockade of histamine H2 receptors with cimetidine or ranitidine (1mg, 5mg, or 10mg/kg) significantly reduced these early pathophysiological events and attenuated nNOS expression in a dose-dependent manner. Interestingly, TiO 2 -naowire delivery of cimetidine or ranitidine (5mg doses) exerted superior neuroprotective effects on SCI-induced nNOS expression and cord pathology. It appears that effects of ranitidine were far superior than cimetidine at identical doses in SCI. On the other hand, pretreatment with histamine H3 receptor agonist α-methylhistamine (1mg, 2mg, or 5mg/kg, i.p.) that inhibits histamine synthesis and release in the central nervous system thwarted the spinal cord pathophysiology and nNOS expression when used in lower doses. Interestingly, histamine H3 receptor antagonist thioperamide (1mg, 2mg, or 5mg/kg, i.p.) exacerbated nNOS expression and cord pathology after SCI. These novel observations suggest that blockade of histamine H2 receptors or stimulation of histamine H3 receptors attenuates nNOS expression and induces neuroprotection in SCI. Taken together, our results are the first to demonstrate that histamine-induced pathophysiology of SCI is mediated via nNOS expression involving specific histamine receptors. © 2017 Elsevier Inc. All rights reserved.

  13. L-carnosine affects the growth of Saccharomyces cerevisiae in a metabolism-dependent manner.

    PubMed

    Cartwright, Stephanie P; Bill, Roslyn M; Hipkiss, Alan R

    2012-01-01

    The dipeptide L-carnosine (β-alanyl-L-histidine) has been described as enigmatic: it inhibits growth of cancer cells but delays senescence in cultured human fibroblasts and extends the lifespan of male fruit flies. In an attempt to understand these observations, the effects of L-carnosine on the model eukaryote, Saccharomyces cerevisiae, were examined on account of its unique metabolic properties; S. cerevisiae can respire aerobically, but like some tumor cells, it can also exhibit a metabolism in which aerobic respiration is down regulated. L-Carnosine exhibited both inhibitory and stimulatory effects on yeast cells, dependent upon the carbon source in the growth medium. When yeast cells were not reliant on oxidative phosphorylation for energy generation (e.g. when grown on a fermentable carbon source such as 2% glucose), 10-30 mM L-carnosine slowed growth rates in a dose-dependent manner and increased cell death by up to 17%. In contrast, in media containing a non-fermentable carbon source in which yeast are dependent on aerobic respiration (e.g. 2% glycerol), L-carnosine did not provoke cell death. This latter observation was confirmed in the respiratory yeast, Pichia pastoris. Moreover, when deletion strains in the yeast nutrient-sensing pathway were treated with L-carnosine, the cells showed resistance to its inhibitory effects. These findings suggest that L-carnosine affects cells in a metabolism-dependent manner and provide a rationale for its effects on different cell types.

  14. Gastroprotective effects of arctigenin of Arctium lappa L. on a rat model of gastric ulcers

    PubMed Central

    Li, Xiao-Mei; Miao, Yu; Su, Qin-Yong; Yao, Jing-Chun; Li, Hong-Hua; Zhang, Gui-Min

    2016-01-01

    In the present study, the gastroprotective effects of arctigenin of Fructus Arctii were evaluated and the possible underlying mechanisms of action were elucidated. Arctigenin (high-performance liquid chromatography purity, >99.0%) was isolated and purified from the seeds of Arctium lappa L. The anti-ulcerogenic activity of arctigenin against ulcers induced by absolute ethanol and acetic acid was evaluated in a Sprague-Dawley rat model. In addition, the antioxidant activity was assessed by measuring malondialdehyde (MDA) levels in an ethanol-induced model and the anti-inflammatory effects were assessed by measuring five factors in an acetic acid-induced model. In the ethanol-induced model, arctigenin inhibited gastric lesions in a dose-dependent manner, by 53.04, 53.91 and 64.43% at doses of 0.05, 0.15 and 0.45 mg/kg, respectively. In addition, arctigenin reduced MDA (P<0.01) and increased superoxide dismutase (P<0.01) levels in serum when compared with the vehicle group. The lesion index induced by acetic acid was significantly inhibited by all doses of arctigenin (0.05, 0.15 and 0.45 mg/kg; P<0.01) in comparison to the vehicle group and in a dose-dependent manner. In addition, it was shown that the expression levels of tumor necrosis factor-α, interleukin-6 (IL-6), IL-10 and C-reactive protein were significantly decreased (P<0.05) in the arctigenin group compared with the vehicle group. Thus, the current study indicated that arctigenin exerted anti-ulcer activity, which may be associated with its reduction in oxidative and inflammatory damage. All the results indicate that arctigenin may be used as an effective therapeutic agent to prevent gastric ulcers. PMID:27882222

  15. Cumulative and antagonistic effects of a mixture of the antiandrogens vinclozolin and iprodione in the pubertal male rat.

    PubMed

    Blystone, Chad R; Lambright, Christy S; Cardon, Mary C; Furr, Johnathan; Rider, Cynthia V; Hartig, Phillip C; Wilson, Vickie S; Gray, Leon E

    2009-09-01

    Vinclozolin and iprodione are dicarboximide fungicides that display antiandrogenic effects in the male rat, which suggests that a mixture would lead to cumulative effects on androgen-sensitive end points. Iprodione is a steroid synthesis inhibitor, but androgen receptor antagonist activity, which is displayed by vinclozolin, has not been fully evaluated. Here, we demonstrate that iprodione binds to the human androgen receptor (IC(50) = 86.0 microM), reduces androgen-dependent gene expression, and reduces androgen-sensitive tissue weights in castrated male rats (Hershberger assay). Since vinclozolin and iprodione affect common targets in the pubertal male rat, we tested the hypothesis that a mixture would have cumulative antiandrogenic effects. An iprodione dose, that does not significantly affect androgen-dependent morphological end points, was combined with vinclozolin doses (2 x 5 factorial design). Sprague-Dawley rats were dosed by gavage with vinclozolin at 0, 10, 30, 60, and 100 mg/kg/day with and without 50 mg iprodione/kg/day from postnatal day (PND) 23 to 55-57 (n = 8 per group). The age at puberty (preputial separation [PPS]), organ weights, serum hormones, and ex vivo testis steroid hormone production were measured. Vinclozolin delayed PPS, reduced androgen-sensitive organ weights, and increased serum testosterone. The addition of iprodione enhanced the vinclozolin inhibition of PPS (PND 47.5 vs.49.1; two-way ANOVA: iprodione main effect p = 0.0002). The dose response for several reproductive and nonreproductive organ weights was affected in a cumulative manner. In contrast, iprodione antagonized the vinclozolin-induced increase in serum testosterone. These results demonstrate that these fungicides interact on common targets in a tissue-specific manner when coadministered to the pubertal male rat.

  16. Profound prevention of experimental brain metastases of breast cancer by temozolomide in an MGMT-dependent manner

    PubMed Central

    Palmieri, Diane; Duchnowska, Renata; Woditschka, Stephan; Hua, Emily; Qian, Yongzhen; Biernat, Wojciech; Sosińska-Mielcarek, Katarzyna; Gril, Brunilde; Stark, Andreas; Hewitt, Stephen; Liewehr, David J; Steinberg, Seth M; Jassem, Jacek; Steeg, Patricia S

    2014-01-01

    Purpose Brain metastases of breast cancer cause neurocognitive damage and are incurable. We evaluated a role for temozolomide in the prevention of brain metastases of breast cancer in experimental brain metastasis models. Experimental Design Temozolomide was administered in mice following earlier injection of brain-tropic human epidermal growth factor receptor 2 (HER2)-positive Jimt1-BR3 and triple negative 231-BR-EGFP sublines, the latter with and without expression of 06-methylguanine-DNA methyltransferase (MGMT). Additionally, the percentage of MGMT-positive tumor cells in 62 patient-matched sets of breast cancer primary tumors and resected brain metastases was determined immunohistochemically. Results Temozolomide, when dosed at 50, 25, 10 or 5 mg/kg, 5 days/week, beginning 3 days after inoculation, completely prevented the formation of experimental brain metastases from MGMT-negative 231-BR-EGFP cells. At a 1 mg/kg dose, temozolomide prevented 68% of large brain metastases, and was ineffective at a dose of 0.5 mg/kg. When the 50 mg/kg dose was administered beginning on days 18 or 24, temozolomide efficacy was reduced or absent. Temozolomide was ineffective at preventing brain metastases in MGMT-transduced 231-BR-EGFP and MGMT-expressing Jimt-1-BR3 sublines. In 62 patient-matched sets of primary breast tumors and resected brain metastases, 43.5% of the specimens had concordant low MGMT expression, while in another 14.5% of sets high MGMT staining in the primary tumor corresponded with low staining in the brain metastasis. Conclusions Temozolomide profoundly prevented the outgrowth of experimental brain metastases of breast cancer in an MGMT-dependent manner. These data provide compelling rationale for investigating the preventive efficacy of temozolomide in a clinical setting. PMID:24634373

  17. Profound prevention of experimental brain metastases of breast cancer by temozolomide in an MGMT-dependent manner.

    PubMed

    Palmieri, Diane; Duchnowska, Renata; Woditschka, Stephan; Hua, Emily; Qian, Yongzhen; Biernat, Wojciech; Sosińska-Mielcarek, Katarzyna; Gril, Brunilde; Stark, Andreas M; Hewitt, Stephen M; Liewehr, David J; Steinberg, Seth M; Jassem, Jacek; Steeg, Patricia S

    2014-05-15

    Brain metastases of breast cancer cause neurocognitive damage and are incurable. We evaluated a role for temozolomide in the prevention of brain metastases of breast cancer in experimental brain metastasis models. Temozolomide was administered in mice following earlier injection of brain-tropic HER2-positive JIMT-1-BR3 and triple-negative 231-BR-EGFP sublines, the latter with and without expression of O(6)-methylguanine-DNA methyltransferase (MGMT). In addition, the percentage of MGMT-positive tumor cells in 62 patient-matched sets of breast cancer primary tumors and resected brain metastases was determined immunohistochemically. Temozolomide, when dosed at 50, 25, 10, or 5 mg/kg, 5 days per week, beginning 3 days after inoculation, completely prevented the formation of experimental brain metastases from MGMT-negative 231-BR-EGFP cells. At a 1 mg/kg dose, temozolomide prevented 68% of large brain metastases, and was ineffective at a dose of 0.5 mg/kg. When the 50 mg/kg dose was administered beginning on days 18 or 24, temozolomide efficacy was reduced or absent. Temozolomide was ineffective at preventing brain metastases in MGMT-transduced 231-BR-EGFP and MGMT-expressing JIMT-1-BR3 sublines. In 62 patient-matched sets of primary breast tumors and resected brain metastases, 43.5% of the specimens had concordant low MGMT expression, whereas in another 14.5% of sets high MGMT staining in the primary tumor corresponded with low staining in the brain metastasis. Temozolomide profoundly prevented the outgrowth of experimental brain metastases of breast cancer in an MGMT-dependent manner. These data provide compelling rationale for investigating the preventive efficacy of temozolomide in a clinical setting. ©2014 American Association for Cancer Research.

  18. Differential effects of antipsychotic and propsychotic drugs on prepulse inhibition and locomotor activity in Roman high- (RHA) and low-avoidance (RLA) rats

    PubMed Central

    Oliveras, Ignasi; Sánchez-González, Ana; Sampedro-Viana, Daniel; Piludu, Maria Antonietta; Río-Alamos, Cristóbal; Giorgi, Osvaldo; Corda, Maria G.; Aznar, Susana; González-Maeso, Javier; Gerbolés, Cristina; Blázquez, Gloria; Cañete, Toni; Tobeña, Adolf

    2017-01-01

    Rationale Animal models with predictive and construct validity are necessary for developing novel and efficient therapeutics for psychiatric disorders. Objectives We have carried out a pharmacological characterization of the Roman high-(RHA-I) and low-avoidance (RLA-I) rat strains with different acutely administered propsychotic (DOI, MK-801) and antipsychotic drugs (haloperidol, clozapine), as well as apomorphine, on prepulse inhibition (PPI) of startle and locomotor activity (activity cages). Results RHA-I rats display a consistent deficit of PPI compared with RLA-I rats. The typical antipsychotic haloperidol (dopamine D2 receptor antagonist) reversed the PPI deficit characteristic of RHA-I rats (in particular at 65 and 70 dB prepulse intensities) and reduced locomotion in both strains. The atypical antipsychotic clozapine (serotonin/dopamine receptor antagonist) did not affect PPI in either strain, but decreased locomotion in a dose-dependent manner in both rat strains. The mixed dopamine D1/D2 agonist, apomorphine, at the dose of 0.05 mg/kg, decreased PPI in RHA-I, but not RLA-I rats. The hallucinogen drug DOI (5-HT2A agonist; 0.1–1.0 mg/kg) disrupted PPI in RLA-I rats in a dose-dependent manner at the 70 dB prepulse intensity, while in RHA-Irats, only the 0.5 mg/kg dose impaired PPI at the 80 dB prepulse intensity. DOI slightly decreased locomotion in both strains. Finally, clozapine attenuated the PPI impairment induced by the NMDA receptor antagonist MK-801 only in RLA-I rats. Conclusions These results add experimental evidence to the view that RHA-I rats represent a model with predictive and construct validity of some dopamine and 5-HT2A receptor-related features of schizophrenia. PMID:28154892

  19. Development and application of GC-MS method for monitoring of long-term exposure to the pesticide cypermethrin.

    PubMed

    Kavvalakis, Matthaios P; Tzatzarakis, Manolis N; Alegakis, Athanasios K; Vynias, Dionysios; Tsakalof, Andreas K; Tsatsakis, Aristidis M

    2014-06-01

    Cypermethrin (CPMN) is a synthetic pyrethroid used as an insecticide in large-scale commercial agricultural applications as well as for domestic purposes. In the present study a gas chromatography-mass spectrometry (GC-MS) based method was developed and validated for the quantitation of CPMN metabolites, 3-phenoxybenzoic acid (3-PBA) and cis- and trans- 3-(2,2-dichlorovinyl)-2,2-dimethyl-1-cyclopropane (cis- and trans- Cl2 CA). The developed method was applied for the monitoring of CPMN metabolites in hair of laboratory animals (rabbits) intentionally exposed per os to CPMN at 40 (low dose) and 80 (high dose) mg/kg weight/day for 16 weeks. The analytical method comprises three main steps: isolation of analytes from hair, analytes derivatization, and subsequent instrumental analysis by GC-MS. The limits of detection ensured by the method are 4.0, 3.9 and 1.0 pg/mg hair for cis-Cl2 CA, trans-Cl2 CA and 3-PBA, respectively. The instrument responce is linear (r(2)  > 0.99) in the investigated concentrations range from 25 to 1000 pg/mg. With and between-run precision as well as accuracy were estimated and found satisfactory. Analytes were efficiently isolated by solid-liquid extraction from hair with recoveries greater than 84.8% for cis-Cl2 CA, 87.2% for trans-Cl2 CA and 96.4% for 3-PBA. Rabbit's hair showed increasing levels for all metabolites (metabolites accumulation in a time and dose dependent manner) over time and in a dose-dependent manner. The developed experimental procedure could be used for biomonitoring of population exposure to CPMN. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Alteration in plasma and striatal levels of d-serine after d-serine administration with or without nicergoline: An in vivo microdialysis study.

    PubMed

    Onozato, Mayu; Nakazawa, Hiromi; Ishimaru, Katsuyuki; Nagashima, Chihiro; Fukumoto, Minori; Hakariya, Hitomi; Sakamoto, Tatsuya; Ichiba, Hideaki; Fukushima, Takeshi

    2017-09-01

    d-Serine (d-Ser), a co-agonist of N -methyl-d-aspartate receptor (NMDAR), is effective for treating schizophrenia. The present study investigated changes in plasma and striatal d-Ser levels in Sprague-Dawley (SD) rats after intraperitoneal d-Ser administration alone or together with nicergoline (Nic), a commercial cerebral ameliorating drug, using in vivo microdialysis (MD) to explore the function of Nic. Phosphate-buffered saline (PBS) or Nic (0, 1.0, or 3.0 mg/kg) followed by d-Ser (5.0, 10.0, 20.0, and 50.0 mg/kg for PBS or 20.0 mg/kg for Nic) was administered intraperitoneally to male SD rats, and the profiles of d-Ser levels in plasma and striatal MD samples were examined by high-performance liquid chromatography (HPLC) with fluorescence detection. The area under the curve (AUC) for the MD and plasma samples was also calculated and statistically compared among groups. AUC values of d-Ser increased in a d-Ser dose-dependent manner in plasma samples, while a proportional increase in the AUC values of striatal MD samples was only observed in d-Ser doses up to 20 mg/kg. The Nic co-administered group showed a significant increase in the AUC of plasma d-Ser in a Nic dose-dependent manner, but the AUC in striatal d-Ser significantly decreased with increasing Nic doses suggesting that Nic may prevent excess d-Ser from penetrating the central nervous system (CNS). Nic may prevent an excessive distribution of exogenous d-Ser, such as that from a dietary origin, into the CNS by suppressing excitatory neurotransmission through NMDAR.

  1. Gastroprotective effects of arctigenin of Arctium lappa L. on a rat model of gastric ulcers.

    PubMed

    Li, Xiao-Mei; Miao, Yu; Su, Qin-Yong; Yao, Jing-Chun; Li, Hong-Hua; Zhang, Gui-Min

    2016-11-01

    In the present study, the gastroprotective effects of arctigenin of Fructus Arctii were evaluated and the possible underlying mechanisms of action were elucidated. Arctigenin (high-performance liquid chromatography purity, >99.0%) was isolated and purified from the seeds of Arctium lappa L. The anti-ulcerogenic activity of arctigenin against ulcers induced by absolute ethanol and acetic acid was evaluated in a Sprague-Dawley rat model. In addition, the antioxidant activity was assessed by measuring malondialdehyde (MDA) levels in an ethanol-induced model and the anti-inflammatory effects were assessed by measuring five factors in an acetic acid-induced model. In the ethanol-induced model, arctigenin inhibited gastric lesions in a dose-dependent manner, by 53.04, 53.91 and 64.43% at doses of 0.05, 0.15 and 0.45 mg/kg, respectively. In addition, arctigenin reduced MDA (P<0.01) and increased superoxide dismutase (P<0.01) levels in serum when compared with the vehicle group. The lesion index induced by acetic acid was significantly inhibited by all doses of arctigenin (0.05, 0.15 and 0.45 mg/kg; P<0.01) in comparison to the vehicle group and in a dose-dependent manner. In addition, it was shown that the expression levels of tumor necrosis factor-α, interleukin-6 (IL-6), IL-10 and C-reactive protein were significantly decreased (P<0.05) in the arctigenin group compared with the vehicle group. Thus, the current study indicated that arctigenin exerted anti-ulcer activity, which may be associated with its reduction in oxidative and inflammatory damage. All the results indicate that arctigenin may be used as an effective therapeutic agent to prevent gastric ulcers.

  2. Modulation of ethoxyresorufin O-deethylase and glutathione S-transferase activities in Nile tilapia (Oreochromis niloticus) by polycyclic aromatic hydrocarbons containing two to four rings: implications in biomonitoring aquatic pollution.

    PubMed

    Pathiratne, Asoka; Hemachandra, Chamini K

    2010-08-01

    Despite ubiquity of polycyclic aromatic hydrocarbons (PAHs) in the tropical environments, little information is available concerning responses of tropical fish to PAHs and associated toxicity. In the present study, effects of five PAHs containing two to four aromatic rings on hepatic CYP1A dependent ethoxyresorufin O-deethylase (EROD), glutathione S-transferase (GST) and serum sorbitol dehydrogenase (SDH) activities in Nile tilapia, a potential fish species for biomonitoring pollution in tropical waters, were evaluated. Results showed that EROD activities were induced by the PAHs containing four aromatic rings (pyrene and chrysene) in a dose dependent manner. However PAHs with two to three aromatic rings (naphthalene, phenanthrene and fluoranthene) caused no effect or inhibition of EROD activities depending on the dose and the duration. Fluoranthene was the most potent inhibitor. SDH results demonstrated that high doses of fluoranthene induced hepatic damage. GST activity was induced by the lowest dose of phenanthrene, fluoranthene and chrysene but high doses had no effect. The results indicate that induction of EROD enzyme in Nile tilapia is a useful biomarker of exposure to PAHs such as pyrene and chrysene. However EROD inhibiting PAHs such as fluoranthene in the natural environment may modulate the EROD inducing potential of other PAHs thereby influencing PAH exposure assessments.

  3. Matrix metalloproteinase-10 is upregulated by thrombin in endothelial cells and increased in patients with enhanced thrombin generation.

    PubMed

    Orbe, Josune; Rodríguez, José A; Calvayrac, Olivier; Rodríguez-Calvo, Ricardo; Rodríguez, Cristina; Roncal, Carmen; Martínez de Lizarrondo, Sara; Barrenetxe, Jaione; Reverter, Juan C; Martínez-González, José; Páramo, José A

    2009-12-01

    Thrombin is a multifunctional serine protease that promotes vascular proinflammatory responses whose effect on endothelial MMP-10 expression has not previously been evaluated. Thrombin induced endothelial MMP-10 mRNA and protein levels, through a protease-activated receptor-1 (PAR-1)-dependent mechanism, in a dose- and time-dependent manner. This effect was mimicked by a PAR-1 agonist peptide (TRAP-1) and antagonized by an anti-PAR-1 blocking antibody. MMP-10 induction was dependent on extracellular regulated kinase1/2 (ERK1/2) and c-jun N-terminal kinase (JNK) pathways. By serial deletion analysis, site-directed mutagenesis and electrophoretic mobility shift assay an AP-1 site in the proximal region of MMP-10 promoter was found to be critical for thrombin-induced MMP-10 transcriptional activity. Thrombin and TRAP-1 upregulated MMP-10 in murine endothelial cells in culture and in vivo in mouse aorta. This effect of thrombin was not observed in PAR-1-deficient mice. Interestingly, circulating MMP-10 levels (P<0.01) were augmented in patients with endothelial activation associated with high (disseminated intravascular coagulation) and moderate (previous acute myocardial infarction) systemic thrombin generation. Thrombin induces MMP-10 through a PAR-1-dependent mechanism mediated by ERK1/2, JNK, and AP-1 activation. Endothelial MMP-10 upregulation could be regarded as a new proinflammatory effect of thrombin whose pathological consequences in thrombin-related disorders and plaque stability deserve further investigation.

  4. Daucosterol inhibits cancer cell proliferation by inducing autophagy through reactive oxygen species-dependent manner.

    PubMed

    Zhao, Chuanke; She, Tiantian; Wang, Lixin; Su, Yahui; Qu, Like; Gao, Yujing; Xu, Shuo; Cai, Shaoqing; Shou, Chengchao

    2015-09-15

    This study aims to evaluate the anti-cancer effect of daucosterol and explore its possible mechanism. MTT and colony formation assay were performed to determine the effect of daucosterol on cancer cell proliferation in vitro. H22 allograft model was used for the assessment of its anti-cancer activity in vivo. Intracellular generation of reactive oxygen species (ROS) was measured using DCFH-DA probe with flow cytometry system and a laser scanning confocal microscope. LC3 (microtubule-associated protein 1 light chain 3)-II conversion was monitored with immunofluorescence and immunoblotting to demonstrate daucosterol-induced autophagy. We found that daucosterol inhibits the proliferation of human breast cancer cell line MCF-7 and gastric cancer cell lines MGC803, BGC823 and AGS in a dose-dependent manner. Furthermore, daucosterol inhibits murine hepatoma H22 cell growth in ICR mice. Daucosterol treatment induces intracellular ROS generation and autophagy, but not apoptotic cell death. Treatment with ROS scavenger GSH (reduced glutathione), NAC (N-acetyl-l-cysteine) or autophagy inhibitor 3-Methyladenine (3-MA) counteracted daucosterol-induced autophagy and growth inhibition in BGC823 and MCF-7 cancer cells. Daucosterol inhibits cancer cell proliferation by inducing autophagy through ROS-dependent manner and could be potentially developed as an anti-cancer agent. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Aqueous ethanol extract of the fruit of Xylopia aethiopica (Annonaceae) exhibits anti-anaphylactic and anti-inflammatory actions in mice.

    PubMed

    Obiri, David D; Osafo, Newman

    2013-07-30

    Xylopia aethiopica has been traditionally used in the form of the dried fruit decoction to treat bronchitis, asthma, arthritis and rheumatism in Ghana, Nigeria and Cameroon. Aim of the study is to evaluate the anti-anaphylactic and anti-inflammatory effects of a 70% aqueous ethanol extract of the fruits of Xylopia aethiopica. Systemic anaphylaxis was induced by the injection of either compound 48/80 or lipopolysaccharide, LPS and survival rates of mice monitored for 1 h or 7 days respectively while IgE-mediated anaphylaxis in a local allergic reaction was studied in the pinnal inflammation model in mice. Clonidine-induced catalepsy in mice was used to evaluate the indirect antihistamine effect of Xylopia aethiopica, XAE. The effects of XAE assessed on the maximal and total oedema responses in the carrageenan-induced paw oedema in mice was used to evaluate the anti-inflammatory action of the extract. Administered at 30, 100, 300 and 1000 mg kg(-1) p.o., XAE dose dependently suppressed compound 48/80-induced mouse systemic anaphylactic shock and offered 63% protection to mice against LPS-induced endotoxic shock at a dose of 300 mg kg(-1). In addition, the extract (30-300 mg kg(-1)) in a dose dependent manner significantly inhibited by 23-62% the mouse pinnal inflammation. Clonidine-induced catalepsy in mice was significantly suppressed in a dose and time dependent manner when administered both prophylactically and therapeutically. In the same doses, when administered before the induction of the mouse carrageenan-induced paw oedema, the mean maximal swelling attained during 6 h was reduced to 41.02±6.94%, 35.61±4.30%, and 29.09±4.90% of the inflamed control response respectively and total paw swellings induced over the 6 h were also dose-dependently and significantly suppressed to 74.84±14.84%, 63.95±9.37%, and 48.13±10.90% of the inflamed control response respectively. Administered after the induction of the carrageenan paw oedema the mean maximal swelling attained during 6 h was suppressed to 49.84±3.95%, 43.62±1.01%, and 35.97±1.34% of the inflamed control response respectively while the total paw swellings induced over the 6 h were also dose-dependently and significantly suppressed at 100 and 300 mg kg(-1) to 72.39±4.38% and 60.81±3.25% of the inflamed control response respectively. These findings suggest that XAE inhibits mast cell-dependent immediate allergic reactions and exhibit anti-inflammatory actions through the inhibition of histamine release from mast cells via stabilizing the cell membrane. Our results contribute towards validation of the traditional use of Xylopia aethiopica in the treatment of bronchitis, asthma, arthritis and rheumatism. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Effects of multiple ascending doses of the glucagon receptor antagonist PF-06291874 in patients with type 2 diabetes mellitus.

    PubMed

    Kazierad, D J; Bergman, A; Tan, B; Erion, D M; Somayaji, V; Lee, D S; Rolph, T

    2016-08-01

    To assess the pharmacokinetics, pharmacodynamics, safety and tolerability of multiple ascending doses of the glucagon receptor antagonist PF-06291874 in patients with type 2 diabetes mellitus (T2DM). Patients were randomized to oral PF-06291874 or placebo on a background of either metformin (Part A, Cohorts 1-5: 5-150 mg once daily), or metformin and sulphonylurea (Part B, Cohorts 1-2: 15 or 30 mg once daily) for 14-28 days. A mixed-meal tolerance test (MMTT) was administered on days -1 (baseline), 14 and 28. Assessments were conducted with regard to pharmacokinetics, various pharmacodynamic variables, safety and tolerability. Circulating amino acid concentrations were also measured. PF-06291874 exposure was approximately dose-proportional with a half-life of ∼19.7-22.7 h. Day 14 fasting plasma glucose and mean daily glucose values were reduced from baseline in a dose-dependent manner, with placebo-corrected decreases of 34.3 and 42.4 mg/dl, respectively, at the 150 mg dose. After the MMTT, dose-dependent increases in glucagon and total glucagon-like peptide-1 (GLP-1) were observed, although no meaningful changes were noted in insulin, C-peptide or active GLP-1 levels. Small dose-dependent increases in LDL cholesterol were observed, along with reversible increases in serum aminotransferases that were largely within the laboratory reference range. An increase in circulating gluconeogenic amino acids was also observed on days 2 and 14. All dose levels of PF-06291874 were well tolerated. PF-06291874 was well tolerated, has a pharmacokinetic profile suitable for once-daily dosing, and results in reductions in glucose with minimal risk of hypoglycaemia. © 2016 John Wiley & Sons Ltd.

  7. Inhibitory effect of mast cell-mediated immediate-type allergic reactions in rats by spirulina.

    PubMed

    Kim, H M; Lee, E H; Cho, H H; Moon, Y H

    1998-04-01

    We investigated the effect of spirulina on mast cell-mediated immediate-type allergic reactions. Spirulina dose-dependently inhibited the systemic allergic reaction induced by compound 48/80 in rats. Spirulina inhibited compound 48/80-induced allergic reaction 100% with doses of 100-1000 microg/g body weight, i.p. Spirulina (10-1000 microg/g body weight, i.p.) also significantly inhibited local allergic reaction activated by anti-dinitrophenyl (DNP) IgE. When rats were pretreated with spirulina at a concentration ranging from 0.01 to 1000 microg/g body weight, i.p., the serum histamine levels were reduced in a dose-dependent manner. Spirulina (0.001 to 10 microg/mL) dose-dependently inhibited histamine release from rat peritoneal mast cells (RPMC) activated by compound 48/80 or anti-DNP IgE. The level of cyclic AMP in RPMC, when spirulina (10 microg/mL) was added, transiently and significantly increased about 70-fold at 10 sec compared with that of control cells. Moreover, spirulina (10 microg/mL) had a significant inhibitory effect on anti-DNP IgE-induced tumor necrosis factor-alpha production. These results indicate that spirulina inhibits mast cell-mediated immediate-type allergic reactions in vivo and in vitro.

  8. Intrathecal Huperzine A Increases Thermal Escape Latency and Decreases Flinching Behavior in the Formalin Test in Rats

    PubMed Central

    Park, Paula; Schachter, Steven; Yaksh, Tony

    2010-01-01

    Huperzine A (HupA) is an alkaloid isolated from the Chinese club moss Huperzia serrata and has been used for improving memory, cognitive and behavioral function in patients with Alzheimer's disease in China. It has NMDA antagonist and anticholinesterase activity and has shown anticonvulsant and antinociceptive effects in preliminary studies when administered intraperitoneally to mice. To better characterize the antinociceptive effects of HupA at the spinal level, Holtzman rats were implanted with intrathecal catheters to measure thermal escape latency using Hargreaves thermal escape testing system and flinching behavior using the formalin test. Intrathecal (IT) administration of HupA showed a dose-dependent increase in thermal escape latency with an ED50 of 0.57 μg. Atropine reversed the increase in thermal escape latency produced by 10 μg HupA, indicating an antinociceptive mechanism through muscarinic cholinergic receptors. The formalin test showed that HupA decreased flinching behavior in a dose-dependent manner. Atropine also reversed the decrease in flinching behavior caused by 10 μg HupA. A dose-dependent increase of side effects including scratching, biting, and chewing tails was observed, although antinociceptive effects were observed in doses that did not produce any adverse effects. PMID:20026382

  9. The effects of alpha2-adrenoceptor agents on anti-hyperalgesic effects of carbamazepine and oxcarbazepine in a rat model of inflammatory pain.

    PubMed

    Vucković, Sonja M; Tomić, Maja A; Stepanović-Petrović, Radica M; Ugresić, Nenad; Prostran, Milica S; Bosković, Bogdan

    2006-11-01

    In this study, the effects of yohimbine (alpha2-adrenoceptor antagonist) and clonidine (alpha2-adrenoceptor agonist) on anti-hyperalgesia induced by carbamazepine and oxcarbazepine in a rat model of inflammatory pain were investigated. Carbamazepine (10-40 mg/kg; i.p.) and oxcarbazepine (40-160 mg/kg; i.p.) caused a significant dose-dependent reduction of the paw inflammatory hyperalgesia induced by concanavalin A (Con A, intraplantarly) in a paw pressure test in rats. Yohimbine (1-3 mg/kg; i.p.) significantly depressed the anti-hyperalgesic effects of carbamazepine and oxcarbazepine, in a dose- and time-dependent manner. Both drug mixtures (carbamazepine-clonidine and oxcarbazepine-clonidine) administered in fixed-dose fractions of the ED50 (1/2, 1/4 and 1/8) caused significant and dose-dependent reduction of the hyperalgesia induced by Con A. Isobolographic analysis revealed a significant synergistic (supra-additive) anti-hyperalgesic effect of both combinations tested. These results indicate that anti-hyperalgesic effects of carbamazepine and oxcarbazepine are, at least partially, mediated by activation of adrenergic alpha2-receptors. In addition, synergistic interaction for anti-hyperalgesia between carbamazepine and clonidine, as well as oxcarbazepine and clonidine in a model of inflammatory hyperalgesia, was demonstrated.

  10. Intrathecal huperzine A increases thermal escape latency and decreases flinching behavior in the formalin test in rats.

    PubMed

    Park, Paula; Schachter, Steven; Yaksh, Tony

    2010-02-05

    Huperzine A (HupA) is an alkaloid isolated from the Chinese club moss Huperzia serrata and has been used for improving memory, cognitive and behavioral function in patients with Alzheimer's disease in China. It has NMDA antagonist and anticholinesterase activity and has shown anticonvulsant and antinociceptive effects in preliminary studies when administered intraperitoneally to mice. To better characterize the antinociceptive effects of HupA at the spinal level, Holtzman rats were implanted with intrathecal catheters to measure thermal escape latency using Hargreaves thermal escape testing system and flinching behavior using the formalin test. Intrathecal (IT) administration of HupA showed a dose-dependent increase in thermal escape latency with an ED50 of 0.57 microg. Atropine reversed the increase in thermal escape latency produced by 10 microg HupA, indicating an antinociceptive mechanism through muscarinic cholinergic receptors. The formalin test showed that HupA decreased flinching behavior in a dose-dependent manner. Atropine also reversed the decrease in flinching behavior caused by 10 microg HupA. A dose-dependent increase of side effects including scratching, biting, and chewing tails was observed, although antinociceptive effects were observed in doses that did not produce any adverse effects. (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  11. Abstract ID: 176 Geant4 implementation of inter-atomic interference effect in small-angle coherent X-ray scattering for materials of medical interest.

    PubMed

    Paternò, Gianfranco; Cardarelli, Paolo; Contillo, Adriano; Gambaccini, Mauro; Taibi, Angelo

    2018-01-01

    Advanced applications of digital mammography such as dual-energy and tomosynthesis require multiple exposures and thus deliver higher dose compared to standard mammograms. A straightforward manner to reduce patient dose without affecting image quality would be removal of the anti-scatter grid, provided that the involved reconstruction algorithms are able to take the scatter figure into account [1]. Monte Carlo simulations are very well suited for the calculation of X-ray scatter distribution and can be used to integrate such information within the reconstruction software. Geant4 is an open source C++ particle tracking code widely used in several physical fields, including medical physics [2,3]. However, the coherent scattering cross section used by the standard Geant4 code does not take into account the influence of molecular interference. According to the independent atomic scattering approximation (the so-called free-atom model), coherent radiation is indistinguishable from primary radiation because its angular distribution is peaked in the forward direction. Since interference effects occur between x-rays scattered by neighbouring atoms in matter, it was shown experimentally that the scatter distribution is affected by the molecular structure of the target, even in amorphous materials. The most important consequence is that the coherent scatter distribution is not peaked in the forward direction, and the position of the maximum is strongly material-dependent [4]. In this contribution, we present the implementation of a method to take into account inter-atomic interference in small-angle coherent scattering in Geant4, including a dedicated data set of suitable molecular form factor values for several materials of clinical interest. Furthermore, we present scatter images of simple geometric phantoms in which the Rayleigh contribution is rigorously evaluated. Copyright © 2017.

  12. SU-F-T-06: Development of a Formalism for Practical Dose Measurements in Brachytherapy in the German Standard DIN 6803

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hensley, F; Chofor, N; Schoenfeld, A

    2016-06-15

    Purpose: In the steep dose gradients in the vicinity of a radiation source and due to the properties of the changing photon spectra, dose measurements in Brachytherapy usually have large uncertainties. Working group DIN 6803-3 is presently discussing recommendations for practical brachytherapy dosimetry incorporating recent theoretical developments in the description of brachytherapy radiation fields as well as new detectors and phantom materials. The goal is to prepare methods and instruments to verify dose calculation algorithms and for clinical dose verification with reduced uncertainties. Methods: After analysis of the distance dependent spectral changes of the radiation field surrounding brachytherapy sources, themore » energy dependent response of typical brachytherapy detectors was examined with Monte Carlo simulations. A dosimetric formalism was developed allowing the correction of their energy dependence as function of source distance for a Co-60 calibrated detector. Water equivalent phantom materials were examined with Monte Carlo calculations for their influence on brachytherapy photon spectra and for their water equivalence in terms of generating equivalent distributions of photon spectra and absorbed dose to water. Results: The energy dependence of a detector in the vicinity of a brachytherapy source can be described by defining an energy correction factor kQ for brachytherapy in the same manner as in existing dosimetry protocols which incorporates volume averaging and radiation field distortion by the detector. Solid phantom materials were identified which allow precise positioning of a detector together with small correctable deviations from absorbed dose to water. Recommendations for the selection of detectors and phantom materials are being developed for different measurements in brachytherapy. Conclusion: The introduction of kQ for brachytherapy sources may allow more systematic and comparable dose measurements. In principle, the corrections can be verified or even determined by measurement in a water phantom and comparison with dose distributions calculated using the TG43 dosimetry formalism. Project is supported by DIN Deutsches Institut fuer Normung.« less

  13. Nonmutagenicity of betel leaf and its antimutagenic action against environmental mutagens.

    PubMed

    Nagabhushan, M; Amonkar, A J; D'Souza, A V; Bhide, S V

    1987-01-01

    Betel leaf (Piper betel) water and acetone extract are nonmutagenic in S. typhimurium strains with and without S9 mix. Both the extracts suppress the mutagenicity of betel quid mutagens in a dose dependent manner. Moreover both the extracts of betel leaf reduce the mutagenicity of benzo(a)pyrene and dimethylbenzanthracene. Acetone extract is more potent than water extract in inhibiting mutagenicity of environmental mutagens.

  14. A cytocidal tissue kallikrein isolated from mouse submandibular glands.

    PubMed

    Murakami, K; Ikigai, H; Nagumo, N; Tomita, M; Shimamura, T

    1989-11-06

    A cytocidal factor against mouse thymocytes was purified from the submandibular glands of female BALB/c mice using Sephadex G-50 gel filtration chromatography and reverse-phase HPLC. SDS-PAGE and amino acid sequence analysis revealed that the cytocidal factor was mouse glandular kallikrein (mGK)-6. mGK-6 showed an optimal enzyme activity at pH 10 and a cytocidal activity against thymocytes in a dose-dependent manner.

  15. Hydrogen fermentation properties of undiluted cow dung.

    PubMed

    Yokoyama, Hiroshi; Waki, Miyoko; Ogino, Akifumi; Ohmori, Hideyuki; Tanaka, Yasuo

    2007-07-01

    Anaerobic treatment of undiluted cow dung (15% total solids), so-called dry fermentation, produced hydrogen (743 ml-H(2)/kg-cow dung) at an optimum temperature of 60 degrees C, with butyrate and acetate formation. The hydrogen production was inhibited by the addition of NH(4)(+) in a dose-dependent manner. A bacterium with similarity to Clostridium cellulosi was detected in the fermented dung by a 16S rDNA analysis.

  16. Shikonin induces apoptosis of HaCaT cells via the mitochondrial, Erk and Akt pathways

    PubMed Central

    JING, HUILING; SUN, WENYAN; FAN, JINGHUA; ZHANG, YANMIN; YANG, JIAO; JIA, JINJING; LI, JICHANG; GUO, JIAQI; LUO, SUJU; ZHENG, YAN

    2016-01-01

    Shikonin, which is a major ingredient of the traditional Chinese herb Lithospermum erythrorhizon, possesses various biological functions, including antimicrobial, anti-inflammatory, and antitumor activities. The present study aimed to determine the molecular mechanisms underlying the effects of shikonin on HaCaT cell apoptosis. Treatment with shikonin significantly inhibited the viability of HaCaT cells in a dose- and time-dependent manner, and promoted cell cycle arrest at G0/G1 phase and apoptosis. In addition, shikonin treatment reduced the mitochondrial membrane potential and induced reactive oxygen species generation. The results of a western blot analysis demonstrated that shikonin significantly activated caspase 3 expression, downregulated B-cell lymphoma 2 (Bcl-2) expression, and upregulated Bcl-2-associated X protein and Bcl-2 homologous antagonist killer expression in a dose-dependent manner in HaCaT cells. Furthermore, shikonin decreased extracellular signal-regulated kinase (Erk) and Akt phosphorylation. These results indicated that shikonin may exert its anti-proliferative effects by inducing apoptosis via activation of the mitochondrial signaling pathway and inactivation of the Akt and Erk pathways in HaCaT cells. Therefore, the present study suggested that shikonin may have potential as a component of therapeutic strategies for the treatment of skin diseases. PMID:26935874

  17. Arachidonic acid induces macrophage cell cycle arrest through the JNK signaling pathway.

    PubMed

    Shen, Ziying; Ma, Yunqing; Ji, Zhonghao; Hao, Yang; Yan, Xuan; Zhong, Yuan; Tang, Xiaochun; Ren, Wenzhi

    2018-02-09

    Arachidonic acid (AA) has potent pro-apoptotic effects on cancer cells at a low concentration and on macrophages at a very high concentration. However, the effects of AA on the macrophage cell cycle and related signaling pathways have not been fully investigated. Herein we aim to observe the effect of AA on macrophages cell cycle. AA exposure reduced the viability and number of macrophages in a dose- and time-dependent manner. The reduction in RAW264.7 cell viability was not caused by apoptosis, as indicated by caspase-3 and activated caspase-3 detection. Further research illustrated that AA exposure induced RAW264.7 cell cycle arrested at S phase, and some cell cycle-regulated proteins were altered accordingly. Moreover, JNK signaling was stimulated by AA, and the stimulation was partially reversed by a JNK signaling inhibitor in accordance with cell cycle-related factors. In addition, nuclear and total Foxo1/3a and phosphorylated Foxo1/3a were elevated by AA in a dose- and time-dependent manner, and this elevation was suppressed by the JNK signaling inhibitor. Our study demonstrated that AA inhibits macrophage viability by inducing S phase cell cycle arrest. The JNK signaling pathway and the downstream FoxO transcription factors are involved in AA-induced RAW264.7 cell cycle arrest.

  18. DNA methyltransferase inhibitor CDA-II inhibits myogenic differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zirong; Department of Molecular Genetics and Microbiology, Shands Cancer Center, University of Florida, Gainesville, FL 32610; Jin, Guorong

    2012-06-08

    Highlights: Black-Right-Pointing-Pointer CDA-II inhibits myogenic differentiation in a dose-dependent manner. Black-Right-Pointing-Pointer CDA-II repressed expression of muscle transcription factors and structural proteins. Black-Right-Pointing-Pointer CDA-II inhibited proliferation and migration of C2C12 myoblasts. -- Abstract: CDA-II (cell differentiation agent II), isolated from healthy human urine, is a DNA methyltransferase inhibitor. Previous studies indicated that CDA-II played important roles in the regulation of cell growth and certain differentiation processes. However, it has not been determined whether CDA-II affects skeletal myogenesis. In this study, we investigated effects of CDA-II treatment on skeletal muscle progenitor cell differentiation, migration and proliferation. We found that CDA-II blocked differentiationmore » of murine myoblasts C2C12 in a dose-dependent manner. CDA-II repressed expression of muscle transcription factors, such as Myogenin and Mef2c, and structural proteins, such as myosin heavy chain (Myh3), light chain (Mylpf) and MCK. Moreover, CDA-II inhibited C1C12 cell migration and proliferation. Thus, our data provide the first evidence that CDA-II inhibits growth and differentiation of muscle progenitor cells, suggesting that the use of CDA-II might affect skeletal muscle functions.« less

  19. Solanine induced apoptosis and increased chemosensitivity to Adriamycin in T-cell acute lymphoblastic leukemia cells.

    PubMed

    Yi, Ying-Jie; Jia, Xiu-Hong; Wang, Jian-Yong; Chen, Jie-Ru; Wang, Hong; Li, You-Jie

    2018-05-01

    Solanine is an alkaloid and is the main extract of the traditional Chinese herb, Solanum nigrum Linn . It has been reported that Solanine has anti-inflammatory and antitumor properties. The present study aimed to investigate the antitumor effect of Solanine in Jurkat cells and demonstrate the molecular mechanism of antitumor activity of Solanine. A Cell Counting Kit-8 assay demonstrated that Solanine inhibited the proliferation of Jurkat cells in a dose-and time-dependent manner. Cell apoptosis was measured by flow cytometry. Flow cytometry revealed that Solanine induced apoptosis in a dose-dependent manner in Jurkat cells. Reverse transcription-quantitative polymerase chain reaction demonstrated that Solanine modulated the mRNA levels of B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X protein (Bax). Additionally, Bcl-2 and Bax expression was measured using western blot analysis. Western blot analysis revealed a significant increase in the expression of Bax and decrease in the expression of Bcl-2. Solanine increased the chemosensitivity of Jurkat cells to Adriamycin. In summary, the present results indicated that the antitumor activity of Solanine was associated with inhibition of cell proliferation, induction of apoptosis and increasing cytotoxicity of Adriamycin. Therefore, Solanine may have potential as a novel agent for the treatment of acute lymphocytic leukemia.

  20. Therapeutic effect of Linum usitatissimum (flaxseed/linseed) fixed oil on acute and chronic arthritic models in albino rats.

    PubMed

    Kaithwas, Gaurav; Majumdar, Dipak K

    2010-06-01

    The present study was undertaken to assess the activity/anti-inflammatory potential of Linum usitatissimum fixed oil against castor oil-induced diarrhoea, turpentine oil-induced joint oedema, formaldehyde and Complete Freund's Adjuvant (CFA)-induced arthritis in Wistar albino rats. The oil intraperitoneally, significantly inhibited the castor oil-induced diarrhoea and turpentine oil-induced exudative joint oedema in a dose-dependent manner. Significant inhibitory effect of L. usitatissimum fixed oil was observed in formaldehyde-induced proliferative global oedematous arthritis when given intraperitoneally, with significant checking of the serum glutamic oxaloacetic acid transaminase and serum glutamic pyruvic acid transaminase. Further, L. usitatissimum fixed oil showed a significant dose-dependent protective effect against CFA-induced arthritis as well. Secondary lesions produced by CFA due to a delayed hypersensitivity reaction were also reduced in a significant manner. Anti-inflammatory activity of L. usitatissimum fixed oil can be attributed to the presence of alpha linolenic acid (57.38%, an omega-3 fatty acid, 18:3, n-3) having dual inhibitory effect on arachidonate metabolism resulting in suppressed production of proinflammatory n-6 eicosanoids (PGE(2), LTB(4)) and diminished vascular permeability. These observations suggest possible therapeutic potential of L. usitatissimum fixed oil in inflammatory disorders like rheumatoid arthritis.

  1. Withaferin A modulates the Spindle assembly checkpoint by degradation of Mad2-Cdc20 complex in colorectal cancer cell lines.

    PubMed

    Das, Tania; Roy, Kumar Singha; Chakrabarti, Tulika; Mukhopadhyay, Sibabrata; Roychoudhury, Susanta

    2014-09-01

    Withania somnifera L. Dunal (Ashwagandha) is used over centuries in the ayurvedic medicines in India. Withaferin A, a withanolide, is the major compound present in leaf extract of the plant which shows anticancer activity against leukemia, breast cancer and colorectal cancer. It arrests the ovarian cancer cells in the G2/M phase in dose dependent manner. In the current study we show the effect of Withaferin A on cell cycle regulation of colorectal cancer cell lines HCT116 and SW480 and its effect on cell fate. Treatment of these cells with this compound leads to apoptosis in a dose dependent manner. It causes the G2/M arrest in both the cell lines. We show that Withaferin A (WA) causes mitotic delay by blocking Spindle assembly checkpoint (SAC) function. Apoptosis induced by Withaferin A is associated with proteasomal degradation of Mad2 and Cdc20, an important constituent of the Spindle Checkpoint Complex. Further overexpression of Mad2 partially rescues the deleterious effect of WA by restoring proper anaphase initiation and keeping more number of cells viable. We hypothesize that Withaferin A kills cancer cells by delaying the mitotic exit followed by inducing chromosome instability. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Curcumin inhibits proliferation and induces apoptosis of human colorectal cancer cells by activating the mitochondria apoptotic pathway.

    PubMed

    Guo, Li-da; Chen, Xue-Jie; Hu, Yu-Hong; Yu, Zhi-Jun; Wang, Duo; Liu, Jing-Ze

    2013-03-01

    Curcumin, a natural plant extract from Curcuma longa, is known for its anti-carcinogenic and chemopreventive effects on a variety of experimental cancer models. In this study, we evaluated the effects of curcumin and elucidated its mechanism in human colorectal carcinoma cells. Cell viability assay showed that curcumin significantly inhibited the growth of LoVo cells. Curcumin treatment induced the apoptosis accompanied by ultra-structural changes and release of lactate dehydrogenase in a dose-dependent manner. Moreover, treatment with 0-30 µg/mL curcumin decreased the mitochondrial membrane potential and activated the caspase-3 and caspase-9 in a dose- and time-dependent manner. Nuclear and annexin V/PI staining showed that curcumin induced the apoptosis of LoVo cells. FACS analysis revealed that curcumin could induce the cell cycle arrest of LoVo cells at the S phase. Furthermore, western blotting analysis indicated that curcumin induced the release of cytochrome c, a significant increase of Bax and p53 and a marked reduction of Bcl-2 and survivin in LoVo cells. Taken together, our results suggested that curcumin inhibited the growth of LoVo cells by inducing apoptosis through a mitochondria-mediated pathway. Copyright © 2012 John Wiley & Sons, Ltd.

  3. Atomic force microscope-related study membrane-associated cytotoxicity in human pterygium fibroblasts induced by mitomycin C.

    PubMed

    Cai, Xiaofang; Yang, Xiaoxi; Cai, Jiye; Wu, Shixian; Chen, Qian

    2010-03-25

    Mitomycin C (MMC) has been shown to have a therapeutic effect against human pterygium fibroblasts (HPFs) by inducing apoptosis. However, there is little data about the effect of it on plasma membrane. In the present study, the cytotoxicity of MMC to HPFs including inhibiting cell growth, inducing apoptosis and bringing about membrane toxicity was investigated. It was found that MMC could significantly suppress the proliferation of HPFs in a dose-dependent manner by CCK-8 assay. Flow cytometric analysis also revealed that treatment with MMC resulted in increased percentages of apoptotic cells in a dose-dependent manner. Membrane lipid peroxidation level, lactate dehydrogenase (LDH) leakage, membrane surface topography, and membrane rigidity alterations were investigated to assess the membrane toxicity induced by MMC. Treatment with MMC at different concentrations accelerated membrane lipid peroxidation and potentiated LDH leakage, which was consistent with disturbance of membrane surface and decrease of membrane elasticity detected by atomic force microscopy. All the above changes led to the disturbed intracellular Ca(2+) homeostasis, which was an important signal triggering apoptosis. Hence, the membrane toxicity induced by MMC might play an important role in the process of apoptotic induction and the calcium channel may be one of the apoptosis mechanisms.

  4. Nonylphenol regulates cyclooxygenase-2 expression via Ros-activated NF-κB pathway in sertoli TM4 cells.

    PubMed

    Liu, Xiaozhen; Nie, Shaoping; Huang, Danfei; Xie, Mingyong

    2015-09-01

    The aim of this study was to investigate the signaling pathways involved in the cyclooxygenase (COX)-2 regulation induced by nonylphenol (NP) in mouse testis Sertoli TM4 cells. Our results showed that treatment of TM4 cells with NP increased COX-2 protein expression and interleukin-6 (IL)-6 and prostaglandin E2 (PGE2) secretion in a dose-dependent manner. Pretreatment with reactive oxygen species (ROS) scavenger, N-acetylcysteine (NAC), attenuated NP-induced ROS production, COX-2 expression, and IL-6 and PGE2 release in TM4 cells. Exposure to NP stimulated activation of NF-κB, whereas the NF-κB inhibitor, pyrrolidine dithiocarbamate, attenuated NP-enhanced COX-2 expression and IL-6 and PGE2 release in TM4 cells in a dose-dependent manner. Furthermore, NAC blocked NP-induced activation of NF-κB. In addition, inhibition of COX-2 mitigated NP-induced IL-6 release. In conclusion, NP induced ROS generation, activation of NF-κB pathway, COX-2 upregulation, and IL-6 and PGE2 secretion in TM4 cells. NP may regulate COX-2 expression via ROS-activated NF-κB pathway in Sertoli TM4 cells. © 2014 Wiley Periodicals, Inc.

  5. Annatto Tocotrienol Induces a Cytotoxic Effect on Human Prostate Cancer PC3 Cells via the Simultaneous Inhibition of Src and Stat3.

    PubMed

    Sugahara, Ryosuke; Sato, Ayami; Uchida, Asuka; Shiozawa, Shinya; Sato, Chiaki; Virgona, Nantiga; Yano, Tomohiro

    2015-01-01

    Prostate cancer is one of the most frequently occurring cancers and often acquires the potential of androgen-independent growth as a malignant phenotype. Androgen-independent prostate cancer has severe chemoresistance towards conventional chemotherapeutic agents, so a new treatment approach is required for curing such prostate cancer. In this context, the present study was undertaken to check if annatto tocotrienol (main component δ-tocotrienol) could suppress cell growth in human prostate cancer (PC3, androgen-independent type) cells via the inhibition of Src and Stat3. The tocotrienol showed cytotoxic effects on PC3 cells in a dose-dependent manner, and the effect depended on G1 arrest in the cell cycle and subsequent induction of apoptosis. In a cytotoxic dose, the tocotrienol suppressed cellular growth via the simultaneous inhibition of Src and Stat3. Similarly, the treatment combination of both Src and Stat3 inhibitors induced cytotoxic effects in PC3 cells in an additive manner compared to each by itself. With respect to cell cycle regulation and the induction of apoptosis, the combination treatment showed a similar effect to that of the tocotrienol treatment. These results suggest that annatto tocotrienol effectively induces cytotoxicity in androgen-independent prostate cancer cells via the suppression of Src and Stat3.

  6. Evaluation of Antioxidant and DNA Damage Protection Activity of the Hydroalcoholic Extract of Desmostachya bipinnata L. Stapf

    PubMed Central

    Bhimathati, Solomon Sunder Raj

    2014-01-01

    Desmostachya bipinnata Stapf (Poaceae/Gramineae) is an official drug of ayurvedic pharmacopoeia. Various parts of this plant were used extensively in traditional and folklore medicine to cure various human ailments. The present study was aimed to evaluate the antioxidant and DNA damage protection activity of hydroalcoholic extract of Desmostachya bipinnata both in vitro and in vivo, to provide scientific basis for traditional usage of this plant. The extract showed significant antioxidant activity in a dose-dependent manner with an IC50 value of 264.18 ± 3.47 μg/mL in H2O2 scavenging assay and prevented the oxidative damage to DNA in presence of DNA damaging agent (Fenton's reagent) at a concentration of 50 μg/mL. Also, the presence of extract protected yeast cells in a dose-dependent manner against DNA damaging agent (Hydroxyurea) in spot assay. Moreover, the presence of extract exhibited significant antioxidant activity in vivo by protecting yeast cells against oxidative stressing agent (H2O2). Altogether, the results of current study revealed that Desmostachya bipinnata is a potential source of antioxidants and lends pharmacological credence to the ethnomedical use of this plant in traditional system of medicine, justifying its therapeutic application for free-radical-induced diseases. PMID:24574873

  7. Evaluation of antioxidant and DNA damage protection activity of the hydroalcoholic extract of Desmostachya bipinnata L. Stapf.

    PubMed

    Golla, Upendarrao; Bhimathati, Solomon Sunder Raj

    2014-01-01

    Desmostachya bipinnata Stapf (Poaceae/Gramineae) is an official drug of ayurvedic pharmacopoeia. Various parts of this plant were used extensively in traditional and folklore medicine to cure various human ailments. The present study was aimed to evaluate the antioxidant and DNA damage protection activity of hydroalcoholic extract of Desmostachya bipinnata both in vitro and in vivo, to provide scientific basis for traditional usage of this plant. The extract showed significant antioxidant activity in a dose-dependent manner with an IC50 value of 264.18±3.47  μg/mL in H2O2 scavenging assay and prevented the oxidative damage to DNA in presence of DNA damaging agent (Fenton's reagent) at a concentration of 50  μg/mL. Also, the presence of extract protected yeast cells in a dose-dependent manner against DNA damaging agent (Hydroxyurea) in spot assay. Moreover, the presence of extract exhibited significant antioxidant activity in vivo by protecting yeast cells against oxidative stressing agent (H2O2). Altogether, the results of current study revealed that Desmostachya bipinnata is a potential source of antioxidants and lends pharmacological credence to the ethnomedical use of this plant in traditional system of medicine, justifying its therapeutic application for free-radical-induced diseases.

  8. Effects of Koumine on Adjuvant- and Collagen-Induced Arthritis in Rats.

    PubMed

    Yang, Jian; Cai, Hong-Da; Zeng, Yu-Lan; Chen, Ze-Hong; Fang, Meng-Han; Su, Yan-Ping; Huang, Hui-Hui; Xu, Ying; Yu, Chang-Xi

    2016-10-28

    To examine the effect of koumine, a Gelsemium alkaloid, on two experimental models of rheumatoid arthritis (RA), rats with adjuvant-induced arthritis (AIA) and collagen-induced arthritis (CIA) were administered koumine (0.6, 3, or 15 mg/kg/day) or vehicle through gastric gavage (i.g.). Clinical evaluation was performed via measurements of hind paw volume, arthritis index (AI) score, mechanical withdrawal threshold, organ weight, and by radiographic and histological examinations. Levels of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and antitype II collagen (CII) antibody were also examined. In rats with AIA, koumine reduced the AI score and mechanical allodynia of the injected hind paw in a dose-dependent manner and significantly inhibited increase in thymus and liver weights. In rats with CIA, koumine inhibited increase in hind paw volume, AI score, and mechanical allodynia in a dose-dependent manner and reduced joint space narrowing. Furthermore, koumine also attenuated the increase in the expression of IL-1β and TNF-α, as well as the robust increase of serum anti-CII antibodies in response to immunization. These results suggested that koumine effectively attenuated arthritis progression in two rat models of RA and that this therapeutic effect may be associated with its immunoregulatory action.

  9. Drug transport mechanism of oral antidiabetic nanomedicines.

    PubMed

    Gundogdu, Evren; Yurdasiper, Aysu

    2014-01-01

    Over the last few decades, extensive efforts have been made worldwide to develop nanomedicine delivery systems, especially via oral route for antidiabetic drugs. Absorption of insulin is hindered by epithelial cells of gastrointestinal tract, acidic gastric pH and digestive enzymes. Recent reports have identified and explained the beneficial role of several structural molecules like mucoadhesive polymers (polyacrylic acid, sodium alginate, chitosan) and other copolymers for the efficient transport and release of insulin to its receptors. Insulin nanomedicines based on alginate-dextran sulfate core with a chitosan-polyethylene glycol-albumin shell reduced glycaemia in a dose dependent manner. Orally available exendin-4 formulations exerted their effects in a time dependent manner. Insulin nanoparticles formed by using alginate and dextran sulfate nucleating around calcium and binding to poloxamer, stabilized by chitosan, and subsequently coated with albumin showed a threefold increase of the hypoglycemic effect in comparison to free insulin in animal models. Solid lipid nanoparticles showed an enhancement of the bioavailability of repaglinide (RG) within optimized solid lipid nanoparticle formulations when compared with RG alone. Nanoparticles represent multiparticulate delivery systems designed to obtain prolonged or controlled drug delivery and to improve bioavailability as well as stability. Nanoparticles can also offer advantages like limiting fluctuations within therapeutic range, reducing side effects, protecting drugs from degradation, decreasing dosing frequency, and improving patient compliance and convenience.

  10. Physcion induces mitochondria-driven apoptosis in colorectal cancer cells via downregulating EMMPRIN.

    PubMed

    Chen, Xuehong; Gao, Hui; Han, Yantao; Ye, Junli; Xie, Jing; Wang, Chunbo

    2015-10-05

    Physcion, an anthraquinone derivative widely isolated and characterized from both terrestrial and marine sources, has anti-tumor effects on a variety of carcinoma cells, mainly through inhibition of cell proliferation, apoptosis induction and cell cycle arrest. However, little is known about the mechanisms underlying its role in tumor progression. In the present study, we investigated the molecular mechanisms involved in physcion-induced apoptosis in human colorectal cancer (CRC) lines HCT116. Our results showed that physcion inhibited tumor cell viability in a dose- and time-dependent manner, and induced cell apoptosis via intrinsic mitochondrial pathway. Our results also revealed that physcion treatment significantly inhibited extracelluar matrix metalloproteinase inducer (EMMPRIN) expression in HCT116 cells in a dose-dependent manner and overexpression of EMMPRIN protein markedly reduced physcion-induced cell apoptosis. Furthermore, our results strongly indicated the modulating effect of physcion on EMMPRIN is correlated with AMP-activated protein kinase (AMPK)/Hypoxia-inducible factor 1α (HIF-1α) signaling pathway. Our data provide the first experimental evidence that physcion induces mitochondrial apoptosis in CRC cells by downregulating of EMMPRIN via AMPK/HIF-1α signaling pathway and suggest a new mechanism to explain its anti-tumor effects. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Attenuated migration by green tea extract (-)-epigallocatechin gallate (EGCG): involvement of 67 kDa laminin receptor internalization in macrophagic cells.

    PubMed

    Ren, Xuezhi; Guo, Xingzhi; Chen, Li; Guo, Minxia; Peng, Ning; Li, Rui

    2014-08-01

    Excessive activation of the microglia in the brain is involved in the development of several neurodegenerative diseases. Previous studies have indicated that (-)-epigallocatechin gallate (EGCG), a major active constituent of green tea, exhibits potent suppressive effects on the activation of microglia. As the 67 kDa laminin receptor (67LR) is a key element in cellular activation and migration, we investigated the effect of EGCG on cell migration and 67LR in lipopolysaccharide (LPS)-activated macrophagic RAW264.7 cells. The presence of EGCG (1-25 μM) markedly attenuated LPS-induced cell migration in a dose-dependent manner. However, the total amount of 67LR protein in the RAW264.7 cells was unaffected by EGCG, as revealed by Western blot analysis. In addition, confocal immunofluorescence microscopy indicated that EGCG caused a marked membrane translocation of 67LR from the membrane surface towards the cytoplasm. Cell-surface biotinylation analysis confirmed that EGCG induced a significant internalization of 67LR by 24-68% in a dose-dependent manner. This study helps to explain the pharmacological action of EGCG on 67LR, suggesting its potential use in the treatment of diseases associated with macrophage/microglia activation, such as neurodegenerative diseases and cancer.

  12. X-ray induced alterations in the differentiation and mineralization potential of murine preosteoblastic cells

    NASA Astrophysics Data System (ADS)

    Hu, Yueyuan; Lau, Patrick; Baumstark-Khan, Christa; Hellweg, Christine E.; Reitz, Günther

    2012-05-01

    To evaluate the effects of ionizing radiation (IR) on murine preosteoblastic cell differentiation, we directed OCT-1 cells to the osteoblastic lineage by treatment with a combination of β-glycerophosphate (β-GP), ascorbic acid (AA), and dexamethasone (Dex). In vitro mineralization was evaluated based on histochemical staining and quantification of the hydroxyapatite content of the extracellular bone matrix. Expression of mRNA encoding Runx2, transforming growth factor β1 (TGF-β1), osteocalcin (OCN), and p21CDKN1A was analyzed. Exposure to IR reduced the growth rate and diminished cell survival of OCT-1 cells under standard conditions. Notably, calcium content analysis revealed that deposition of mineralized matrix increased significantly under osteogenic conditions after X-ray exposure in a time-dependent manner. In this study, higher radiation doses exert significant overall effects on TGF-β1, OCN, and p21CDKN1A gene expression, suggesting that gene expression following X-ray treatment is affected in a dose-dependent manner. Additionally, we verified that Runx2 was suppressed within 24 h after irradiation at 2 and 4 Gy. Although further studies are required to verify the molecular mechanism, our observations strongly suggest that treatment with IR markedly alters the differentiation and mineralization process of preosteoblastic cells.

  13. Proanthocyanidins from Uncaria rhynchophylla induced apoptosis in MDA-MB-231 breast cancer cells while enhancing cytotoxic effects of 5-fluorouracil.

    PubMed

    Chen, Xiao-Xin; Leung, George Pak-Heng; Zhang, Zhang-Jin; Xiao, Jian-Bo; Lao, Li-Xing; Feng, Feng; Mak, Judith Choi-Wo; Wang, Ying; Sze, Stephen Cho-Wing; Zhang, Kalin Yan-Bo

    2017-09-01

    Breast cancer is the most frequently diagnosed cancer and cause of cancer death in women worldwide. Current treatments often result in systematic toxicity and drug resistance. Combinational use of non-toxic phytochemicals with chemotherapeutic agents to enhance the efficacy and reduce toxicity would be one promising approach. In this study, bioactive proanthocyanidins from Uncaria rhynchophylla (UPAs) were isolated and their anti-breast cancer effects alone and in combination with 5- fluorouracil (5-FU) were investigated in MDA-MB-231 breast cancer cells. The results showed that UPAs significantly inhibited cell viability and migration ability in a dose-dependent manner. Moreover, UPAs induced apoptosis in a dose-dependent manner which was associated with increased cellular reactive oxygen species production, loss of mitochondrial membrane potential, increases of Bax/Bcl-2 ratio and levels of cleaved caspase 3. Treatments of the cells with UPAs resulted in an increase in G2/M cell cycle arrest. Cytotoxic effects of 5-FU against MDA-MB-231 cells were enhanced by UPAs. The combination treatment of UPAs and 5-FU for 48 h elicited a synergistic cytotoxic effect on MDA-MB-231 cells. Altogether, these data suggest that UPAs are potential therapeutic agents for breast cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Immune modulation properties of herbal plant leaves: Phyllanthus niruri aqueous extract on immune cells of tuberculosis patient - in vitro study.

    PubMed

    Putri, Denise Utami; Rintiswati, Ning; Soesatyo, Marsetyawan Hne; Haryana, Sofia Mubarika

    2018-02-01

    Disease progression in Tuberculosis (TB) is dependent on host's immune system. Phyllanthus niruri, a traditional herb, has long been used to boost immune system in Indonesian society. This study aimed to observe the potential role of P. niruri in inducing immune cells activity in TB patients by in vitro approach. Peripheral blood mononuclear cells (PBMCs) and macrophages were collected from active pulmonary TB patients. After stimulation with graded doses of P. niruri aqueous extract, cell proliferation, phagocytic activity and nitric oxide (NO) release were analysed. P. niruri aqueous extract induced proliferation of PBMCs, increased NO release, and improved macrophages phagocytic activity. These effects were observed in a dose-dependent manner. This may lead to further research for the potential role of P. niruri as immunomodulatory adjuvant therapy for TB patients.

  15. Single Low-Dose Ionizing Radiation Induces Genotoxicity in Adult Zebrafish and its Non-Irradiated Progeny.

    PubMed

    Lemos, J; Neuparth, T; Trigo, M; Costa, P; Vieira, D; Cunha, L; Ponte, F; Costa, P S; Metello, L F; Carvalho, A P

    2017-02-01

    This study investigated to what extent a single exposure to low doses of ionizing radiation can induce genotoxic damage in irradiated adult zebrafish (Danio rerio) and its non-irradiated F1 progeny. Four groups of adult zebrafish were irradiated with a single dose of X-rays at 0 (control), 100, 500 and 1000 mGy, respectively, and couples of each group were allowed to reproduce following irradiation. Blood of parental fish and whole-body offspring were analysed by the comet assay for detection of DNA damage. The level of DNA damage in irradiated parental fish increased in a radiation dose-dependent manner at day 1 post-irradiation, but returned to the control level thereafter. The level of DNA damage in the progeny was directly correlated with the parental irradiation dose. Results highlight the genotoxic risk of a single exposure to low-dose ionizing radiation in irradiated individuals and also in its non-irradiated progeny.

  16. Rhubarb tannins extract inhibits the expression of aquaporins 2 and 3 in magnesium sulphate-induced diarrhoea model.

    PubMed

    Liu, Chunfang; Zheng, Yanfang; Xu, Wen; Wang, Hui; Lin, Na

    2014-01-01

    Tannins, a group of major active components of Chinese rhubarb and widely distributed in nature, have a significant antidiarrhoeal activity. Aquaporins (AQPs) 2 and 3 play important roles in regulating water transfer during diarrhoea. The present study aims to determine the effect of the total tannins extract of rhubarb on aquaporins (AQPs) 2 and 3 in diarrhoea mice and HT-29 cells both induced by magnesium sulphate (MgSO4). Our results showed that rhubarb tannins extract (RTE) significantly decreased the faecal water content in colon and evaluation index of defecation of diarrhoea mice. Interestingly, RTE could markedly reduce the mRNA and protein expression levels of AQPs 2 and 3 in apical and lateral mucosal epithelial cells in the colons of diarrhoea mice and HT-29 cells both induced by MgSO4 in a dose-dependent manner. Furthermore, RTE suppressed the production of cyclic monophosphate- (cAMP-) dependent protein kinase A catalytic subunits α (PKA C-α) and phosphorylated cAMP response element-binding protein (p-CREB, Ser133) in MgSO4-induced HT-29 cells. Our data showed for the first time that RTE inhibit AQPs 2 and 3 expression in vivo and in vitro via downregulating PKA/p-CREB signal pathway, which accounts for the antidiarrhoeal effect of RTE.

  17. Edaravone prevents neurotoxicity of mutant L166P DJ-1 in Parkinson's disease.

    PubMed

    Li, Bing; Yu, Dawei; Xu, Zhiying

    2013-10-01

    Parkinson's disease (PD), which is estimated to affect approximately 1 % of the population over the age of 65, is the second most common neurodegenerative disorder after Alzheimer's disease. It was reported that pathogenic mutations in DJ-1 lead to autosomal recessive early-onset familial Parkinsonism. The L166P mutant of DJ-1 is the most commonly studied loss-of-function mutation in early onset familial PD, but the underlying mechanisms are still unknown. Edaravone is a powerful free radical scavenger used in clinical treatment for cerebral ischemic stroke. In the present study, we investigated the effects of edaravone on the neurotoxicity in PD-induced isoforms of DJ-1 containing the mutation L166P. Our results indicated that edaravone was able to significantly attenuate oxidative stress and improve mitochondrial function. Furthermore, edaravone was found to reduce apoptosis in Neuro2a cells through modulation of mitochondria-dependent apoptosis pathways. Interestingly, our result also demonstrated that edaravone was able to up-regulate VMAT2 expression in N2a cells in a dose-dependent manner. Our findings enhance the understanding of the neuro-protective effects of edaravone in cell models and suggest that edaravone offers significant protection in a PD-related in vitro model.

  18. Human T-cell leukemia virus type 1 Tax interacts with Chk1 and attenuates DNA-damage induced G2 arrest mediated by Chk1.

    PubMed

    Park, Hyeon Ung; Jeong, Jae-Hoon; Chung, Jay H; Brady, John N

    2004-06-24

    Checkpoint kinase 1 (Chk1) mediates diverse cellular responses to genotoxic stress, regulating the network of genome-surveillance pathways that coordinate cell cycle progression with DNA repair. Chk1 is essential for mammalian development and viability, and has been shown to be important for both S and G(2) checkpoints. We now present evidence that the HTLV-1 Tax protein interacts directly with Chk1 and impairs its kinase activities in vitro and in vivo. The direct and physical interaction of Chk1 and Tax was observed in HTLV-1-infected T cells (C81, HuT 102 and MT-2) and transfected fibroblasts (293 T) by coimmunoprecipitation and by in vitro GST pull-down assays. Interestingly, Tax inhibited the kinase activity of Chk1 protein in in vitro and in vivo kinase assays. Consistent with these results, Tax inhibited the phosphorylation-dependent degradation of Cdc25A and G(2) arrest in response to gamma-irradiation (IR) in a dose-dependent manner in vivo. The G(2) arrest did not require Chk2 or p53. These studies provide the first example of a viral transforming protein targeting Chk1 and provide important insights into checkpoint pathway regulation.

  19. Effects of 18beta-glycyrrhetinic acid on the junctional complex and steroidogenesis in rat adrenocortical cells.

    PubMed

    Huang, Shih-Horng; Wu, Jiahn-Chun; Hwang, Ra-Der; Yeo, Hui-Lin; Wang, Seu-Mei

    2003-09-01

    Cellular junctions play important roles in cell differentiation, signal transduction, and cell function. This study investigated their function in steroid secretion by adrenal cells. Immunofluorescence staining revealed the presence of gap junctions and adherens junctions between adrenal cells. The major gap junction protein, connexin43, was seen as a linear dotted pattern of the typical gap junction plaques, in contrast to alpha-, beta-, and gamma-catenin, which were seen as continuous, linear staining of cell-cell adherens junction. Treatment with 18beta-glycyrrhetinic acid, a gap junction inhibitor, reduced the immunoreactivity of these proteins in a time- and dose-dependent manner, and caused the gap junction and adherens junction to separate longitudinally from the cell-cell contact sites, indicating the structural interdependency of these two junctions. Interestingly, 18beta-glycyrrhetinic acid stimulated a two- to three-fold increase in steroid production in these adrenal cells lacking intact cell junctions. These data raise the question of the necessity for cell communication for the endocrine function of adrenal cells. Pharmacological analyses indicated that the steroidogenic effect of 18beta-glycyrrhetinic acid was partially mediated by extracellular signal-related kinase and calcium/calmodulin-dependent kinase, a pathway distinct from the protein kinase A signaling pathway already known to mediate steroidogenesis in adrenal cells. Copyright 2003 Wiley-Liss, Inc.

  20. Antioxidant and Proapoptotic Activities of Sclerocarya birrea [(A. Rich.) Hochst.] Methanolic Root Extract on the Hepatocellular Carcinoma Cell Line HepG2

    PubMed Central

    Armentano, Maria Francesca; Bisaccia, Faustino; Miglionico, Rocchina; Russo, Daniela; Nolfi, Nicoletta; Carmosino, Monica; Andrade, Paula B.; Valentão, Patrícia; Diop, Moussoukhoye Sissokho

    2015-01-01

    The main goal of this study was to characterize the in vitro antioxidant activity and the apoptotic potential of S. birrea methanolic root extract (MRE). Among four tested extracts, obtained with different solvents, MRE showed the highest content of polyphenols, flavonoids, and tannins together with antioxidant activities tested with superoxide, nitric oxide, ABTS, and beta-carotene bleaching assays. Moreover, the cytotoxic effect of MRE was evaluated on the hepatocarcinoma cell line HepG2. In these cells, MRE treatment induced apoptosis and generated reactive oxygen species (ROS) in dose-dependent manner. The cytotoxic effect promoted by MRE was prevented by pretreatment of HepG2 cells with N-acetyl-L-cysteine (NAC), suggesting that oxidative stress was pivotal in MRE-mediated cell death. Moreover, we showed that the MRE treatment induced the mitochondrial membrane depolarization and the cytochrome c release from mitochondria into the cytosol. It suggests that the apoptosis occurred in a mitochondrial-dependent pathway. Interestingly, MRE showed a sensibly lower cytotoxicity, associated with a low increase of ROS, in normal human dermal fibroblasts compared to HepG2 cells. It is suggested that the methanolic root extract of S. Birrea is able to selectively increase intracellular ROS levels in cancer cells, promoting cell death. PMID:26075245

  1. A novel protein from edible fungi Cordyceps militaris that induces apoptosis.

    PubMed

    Bai, Ke-Chun; Sheu, Fuu

    2018-01-01

    Cordyceps militaris is a dietary therapeutic fungus that is an important model species in Cordyceps research. In this study, we purified a novel protein from the fruit bodies of C. militaris and designated it as Cordyceps militaris protein (CMP). CMP has a molecular mass of 18.0 kDa and is not glycosylated. Interestingly, CMP inhibited cell viability in murine primary cells and other cell lines in a time- and dose-dependent manner. Using trypan blue staining and a lactate dehydrogenase release assay, we showed that CMP caused cell death in the murine hepatoma cell line BNL 1MEA.7R.1. Furthermore, the frequency of BNL 1MEA.7R.1 cells at the sub-G1 stage was increased by CMP. Apoptosis, as determined by Annexin V and propidium iodide analysis, indicated that CMP could mediate BNL 1MEA.7R.1 apoptosis, but not necrosis. After coincubation with CMP, a decrease in mitochondria potential was detected using 3,3'-dihexyloxacarbocyanine iodide. These results suggest that CMP is a harmful protein that induces apoptosis through a mitochondrion-dependent pathway. Stability experiments demonstrated that heat treatment and alkalization degraded CMP and further destroyed its cell-death-inducing ability, implying that cooking is necessary for food containing C. militaris. Copyright © 2017. Published by Elsevier B.V.

  2. Antioxidant and proapoptotic activities of Sclerocarya birrea [(A. Rich.) Hochst.] methanolic root extract on the hepatocellular carcinoma cell line HepG2.

    PubMed

    Armentano, Maria Francesca; Bisaccia, Faustino; Miglionico, Rocchina; Russo, Daniela; Nolfi, Nicoletta; Carmosino, Monica; Andrade, Paula B; Valentão, Patrícia; Diop, Moussoukhoye Sissokho; Milella, Luigi

    2015-01-01

    The main goal of this study was to characterize the in vitro antioxidant activity and the apoptotic potential of S. birrea methanolic root extract (MRE). Among four tested extracts, obtained with different solvents, MRE showed the highest content of polyphenols, flavonoids, and tannins together with antioxidant activities tested with superoxide, nitric oxide, ABTS, and beta-carotene bleaching assays. Moreover, the cytotoxic effect of MRE was evaluated on the hepatocarcinoma cell line HepG2. In these cells, MRE treatment induced apoptosis and generated reactive oxygen species (ROS) in dose-dependent manner. The cytotoxic effect promoted by MRE was prevented by pretreatment of HepG2 cells with N-acetyl-L-cysteine (NAC), suggesting that oxidative stress was pivotal in MRE-mediated cell death. Moreover, we showed that the MRE treatment induced the mitochondrial membrane depolarization and the cytochrome c release from mitochondria into the cytosol. It suggests that the apoptosis occurred in a mitochondrial-dependent pathway. Interestingly, MRE showed a sensibly lower cytotoxicity, associated with a low increase of ROS, in normal human dermal fibroblasts compared to HepG2 cells. It is suggested that the methanolic root extract of S. Birrea is able to selectively increase intracellular ROS levels in cancer cells, promoting cell death.

  3. Dose-dependent effects of theta burst rTMS on cortical excitability and resting-state connectivity of the human motor system.

    PubMed

    Nettekoven, Charlotte; Volz, Lukas J; Kutscha, Martha; Pool, Eva-Maria; Rehme, Anne K; Eickhoff, Simon B; Fink, Gereon R; Grefkes, Christian

    2014-05-14

    Theta burst stimulation (TBS), a specific protocol of repetitive transcranial magnetic stimulation (rTMS), induces changes in cortical excitability that last beyond stimulation. TBS-induced aftereffects, however, vary between subjects, and the mechanisms underlying these aftereffects to date remain poorly understood. Therefore, the purpose of this study was to investigate whether increasing the number of pulses of intermittent TBS (iTBS) (1) increases cortical excitability as measured by motor-evoked potentials (MEPs) and (2) alters functional connectivity measured using resting-state fMRI, in a dose-dependent manner. Sixteen healthy, human subjects received three serially applied iTBS blocks of 600 pulses over the primary motor cortex (M1 stimulation) and the parieto-occipital vertex (sham stimulation) to test for dose-dependent iTBS effects on cortical excitability and functional connectivity (four sessions in total). iTBS over M1 increased MEP amplitudes compared with sham stimulation after each stimulation block. Although the increase in MEP amplitudes did not differ between the first and second block of M1 stimulation, we observed a significant increase after three blocks (1800 pulses). Furthermore, iTBS enhanced resting-state functional connectivity between the stimulated M1 and premotor regions in both hemispheres. Functional connectivity between M1 and ipsilateral dorsal premotor cortex further increased dose-dependently after 1800 pulses of iTBS over M1. However, no correlation between changes in MEP amplitudes and functional connectivity was detected. In summary, our data show that increasing the number of iTBS stimulation blocks results in dose-dependent effects at the local level (cortical excitability) as well as at a systems level (functional connectivity) with a dose-dependent enhancement of dorsal premotor cortex-M1 connectivity. Copyright © 2014 the authors 0270-6474/14/346849-11$15.00/0.

  4. Arsenic as an Endocrine Disruptor: Arsenic Disrupts Retinoic Acid Receptor–and Thyroid Hormone Receptor–Mediated Gene Regulation and Thyroid Hormone–Mediated Amphibian Tail Metamorphosis

    PubMed Central

    Davey, Jennifer C.; Nomikos, Athena P.; Wungjiranirun, Manida; Sherman, Jenna R.; Ingram, Liam; Batki, Cavus; Lariviere, Jean P.; Hamilton, Joshua W.

    2008-01-01

    Background Chronic exposure to excess arsenic in drinking water has been strongly associated with increased risks of multiple cancers, diabetes, heart disease, and reproductive and developmental problems in humans. We previously demonstrated that As, a potent endocrine disruptor at low, environmentally relevant levels, alters steroid signaling at the level of receptor-mediated gene regulation for all five steroid receptors. Objectives The goal of this study was to determine whether As can also disrupt gene regulation via the retinoic acid (RA) receptor (RAR) and/or the thyroid hormone (TH) receptor (TR) and whether these effects are similar to previously observed effects on steroid regulation. Methods and results Human embryonic NT2 or rat pituitary GH3 cells were treated with 0.01–5 μM sodium arsenite for 24 hr, with or without RA or TH, respectively, to examine effects of As on receptor-mediated gene transcription. At low, noncytotoxic doses, As significantly altered RAR-dependent gene transcription of a transfected RAR response element–luciferase construct and the native RA-inducible cytochrome P450 CYP26A gene in NT2 cells. Likewise, low-dose As significantly altered expression of a transfected TR response element–luciferase construct and the endogenous TR-regulated type I deiodinase (DIO1) gene in a similar manner in GH3 cells. An amphibian ex vivo tail metamorphosis assay was used to examine whether endocrine disruption by low-dose As could have specific pathophysiologic consequences, because tail metamorphosis is tightly controlled by TH through TR. TH-dependent tail shrinkage was inhibited in a dose-dependent manner by 0.1– 4.0 μM As. Conclusions As had similar effects on RAR- and TR-mediated gene regulation as those previously observed for the steroid receptors, suggesting a common mechanism or action. Arsenic also profoundly affected a TR-dependent developmental process in a model animal system at very low concentrations. Because RAR and TH are critical for both normal human development and adult function and their dysregulation is associated with many disease processes, disruption of these hormone receptor–dependent processes by As is also potentially relevant to human developmental problems and disease risk. PMID:18288313

  5. [Molecular mechanisms of cytoprotective action of the plant proanthocyanidins in gastric lesions].

    PubMed

    Zaiachkivs'ka, O S

    2006-01-01

    The molecular defence mechanisms against ethanol- and stress-induced (WRS) gastric lesions under the action of plant proanthocyanidins from grapefruit-seed extract (GSE) were investigated. Pre-treatment with GSE (8-64 mg/kg/day) in dose-dependent manner attenuated gastric lesions induced by 100% ethanol and WRS; the doses of GCE reducing these lesions by 50% (ID50) were 28 and 36 mg/kg/day, respectively and this protective effect was similar to that obtained with PGE2 analogue. Lesions reduction was also accompanied by improvement of gastric blood flow, antiradical action, increased mucosal generation of PGE2, antioxidant activity.

  6. A potential drug interaction between phenobarbital and dolutegravir: A case report.

    PubMed

    Hikasa, Shinichi; Sawada, Akihiro; Seino, Hitomi; Shimabukuro, Shota; Hideta, Kyoko; Uwa, Noriko; Higasa, Satoshi; Tokugawa, Tazuko; Kimura, Takeshi

    2018-06-01

    In this report, we describe a human immunodeficiency virus (HIV)-infected patient in whom changes in phenobarbital (PB) dosage resulted in associated changes in plasma concentrations of dolutegravir (DTG). His plasma concentrations of DTG were 0.934, 0.584, 1.003 and 3.25 μg/mL, respectively, with concomitant daily PB doses of 40, 70, 30 and 0 mg, respectively. This case suggests that PB can lead to a remarkable reduction in the plasma concentration of DTG in a dose-dependent manner. Copyright © 2018 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  7. Thioridazine dose-related effects on biomechanical force platform measures of sway in young and old men.

    PubMed

    Liu, Y J; Stagni, G; Walden, J G; Shepherd, A M; Lichtenstein, M J

    1998-04-01

    Thioridazine (TDZ) is associated with an increased risk of falls. The purpose of this study was to determine whether (1) thioridazine increases Biomechanics Force Platform (BFP) measures of sway in a dose-related manner, (2) there is a difference in sway between young and old men, (3) there is a correlation between sway and orthostatic changes in BP and HR. Seven younger (aged 20-42) and five older (aged 70-76) healthy male volunteers received, in a randomized order double-blind design, a single oral dose of 0, 25, and 50 mg of TDZ on three separate days at least 7 days apart and 75 mg on the fourth day of the study. Sway and blood pressure were measured for 24 hours. A general clinical research center. Biomechanics force platform measures of postural sway were measured as the movement of the center of pressure. The elliptical area (EA) and average velocity (AV) were calculated with eyes open and eyes closed. Blood pressure and heart rate were measured for 5 minutes supine and 5 minutes standing. Thioridazine increases BFP sway in a dose-dependent manner. EA increased from 0.56 (SD = .51) cm2 for placebo to 0.88 (SD = 1.09) cm2 for 75 mg TDZ. AV increased from 1.07 (SD = .27) cm/sec, placebo, to 1.43 (SD = .55) cm/sec, 75 mg TDZ. Older men swayed more than younger men. Changes followed the expected time course for TDZ. EA and AV were associated with HR and BP, e.g., SBP versus ln(EA) and ln(AV) (r = -0.21 and r = -0.22, respectively; P < .0001). Thioridazine increases validated measures of fall risk dose dependently in young and old men. This may explain the effects of neuroleptic drugs on fall risk in older people.

  8. Evaluation of the RBC Pig-a and PIGRET assays using single doses of hydroxyurea and melphalan in rats.

    PubMed

    Adachi, Hideki; Uematsu, Yasuaki; Yamada, Toru

    2016-11-15

    To evaluate the suitability of the rat Pig-a assay on reticulocytes (PIGRET assay) as a short-term test, red blood cell (RBC) Pig-a and PIGRET assays after single doses with hydroxyurea (HU) and melphalan (L-PAM) were conducted and the results of both assays were compared. HU was administered once orally to male SD rats at 250, 500 and 1000mg/kg, and both assays were conducted using peripheral blood withdrawn from the jugular vein at 1, 2 and 4 weeks after dosing. L-PAM was administered at 1.25, 2.5 and 5mg/kg in the same manner. L-PAM produced significant dose-dependent increases in mutant frequencies in the PIGRET assay after single oral doses, but did not produce dose-dependent increases in mutant frequencies in the RBC Pig-a assay. These results suggest that the PIGRET assay is more sensitive for the evaluation of the mutagenic potential of L-PAM than the RBC Pig-a assay. In contrast, HU, a clastogenic but not DNA-reactive compound, gave negative results in both assays. The results with these 2 chemicals indicate that the single-dose PIGRET assay in rats has the potential to properly detect DNA-reactive compounds that directly cause DNA damage in a short-term assay. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Transient impairment of hippocampus-dependent learning and memory in relatively low-dose of acute radiation syndrome is associated with inhibition of hippocampal neurogenesis.

    PubMed

    Kim, Joong-Sun; Lee, Hae-June; Kim, Jong Choon; Kang, Seong Soo; Bae, Chun-Sik; Shin, Taekyun; Jin, Jae-Kwang; Kim, Sung Ho; Wang, Hongbing; Moon, Changjong

    2008-09-01

    Neurogenesis in the adult hippocampus, which occurs constitutively, is vulnerable to ionizing radiation. In the relatively low-dose exposure of acute radiation syndrome (ARS), the change in the adult hippocampal function is poorly understood. This study analyzed the changes in apoptotic cell death and neurogenesis in the DGs of hippocampi from adult ICR mice with single whole-body gamma-irradiation using the TUNEL method and immunohistochemical markers of neurogenesis, Ki-67 and doublecortin (DCX). In addition, the hippocampus-dependent learning and memory tasks after single whole-body gamma-irradiation were examined in order to evaluate the hippocampus-related behavioral dysfunction in the relatively low-dose exposure of ARS. The number of TUNEL-positive apoptotic nuclei in the dentate gyrus (DG) was increased 6-12 h after acute gamma-irradiation (a single dose of 0.5 to 4 Gy). In contrast, the number of Ki-67- and DCX-positive cells began to decrease significantly 6 h postirradiation, reaching its lowest level 24 h after irradiation. The level of Ki-67 and DCX immunoreactivity decreased in a dose-dependent manner within the range of irradiation applied (0-4 Gy). In passive avoidance and object recognition memory test, the mice trained 1 day after acute irradiation (2 Gy) showed significant memory deficits, compared with the sham controls. In conclusion, the pattern of the hippocampus-dependent memory dysfunction is consistent with the change in neurogenesis after acute irradiation. It is suggested that a relatively low dose of ARS in adult ICR mice is sufficiently detrimental to interrupt the functioning of the hippocampus, including learning and memory, possibly through the inhibition of neurogenesis.

  10. 3,3′,4,4′,5-Pentachlorobiphenyl (PCB 126) Decreases Hepatic and Systemic Ratios of Epoxide to Diol Metabolites of Unsaturated Fatty Acids in Male Rats

    PubMed Central

    Wu, Xianai; Yang, Jun; Morisseau, Christophe; Robertson, Larry W.; Hammock, Bruce; Lehmler, Hans-Joachim

    2016-01-01

    Disruption of the homeostasis of oxygenated regulatory lipid mediators (oxylipins), potential markers of exposure to aryl hydrocarbon receptor (AhR) agonists, such as 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126), is associated with a range of diseases, including nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Here we test the hypothesis that PCB 126 exposure alters the levels of oxylipins in rats. Male Sprague-Dawley rats (5-weeks old) were treated over a 3-month period every 2 weeks with intraperitoneal injections of PCB 126 in corn oil (cumulative doses of 0, 19.8, 97.8, and 390 µg/kg b.w.; 6 injections total). PCB 126 treatment caused a reduction in growth rates at the highest dose investigated, a dose-dependent decrease in thymus weights, and a dose-dependent increase in liver weights. Liver PCB 126 levels increased in a dose-dependent manner, while levels in plasma were below or close to the detection limit. The ratios of several epoxides to diol metabolites formed via the cytochrome P450 (P450) monooxygenase/soluble epoxide hydrolase (sEH) pathway from polyunsaturated fatty acids displayed a dose-dependent decrease in the liver and plasma, whereas levels of oxylipins formed by other metabolic pathways were generally not altered by PCB 126 treatment. The effects of PCB 126 on epoxide-to-diol ratios were associated with an increased CYP1A activity in liver microsomes and an increased sEH activity in liver cytosol and peroxisomes. These results suggest that oxylipins are potential biomarkers of exposure to PCB 126 and that the P450/sEH pathway is a therapeutic target for PCB 126-mediated hepatotoxicity that warrants further attention. PMID:27208083

  11. Erysodine, a competitive antagonist at neuronal nicotinic acetylcholine receptors, decreases ethanol consumption in alcohol-preferring UChB rats.

    PubMed

    Quiroz, Gabriel; Guerra-Díaz, Nicolás; Iturriaga-Vásquez, Patricio; Rivera-Meza, Mario; Quintanilla, María Elena; Sotomayor-Zárate, Ramón

    2018-09-03

    Alcohol abuse is a worldwide health problem with high economic costs to health systems. Emerging evidence suggests that modulation of brain nicotinic acetylcholine receptors (nAChRs) may be a therapeutic target for alcohol dependence. In this work, we assess the effectiveness of four doses of erysodine (1.5, 2.0, 4.0 or 8.0 mg/kg/day, i.p.), a competitive antagonist of nAChRs, on voluntary ethanol consumption behavior in alcohol-preferring UChB rats, administered during three consecutive days. Results show that erysodine administration produces a dose-dependent reduction in ethanol consumption respect to saline injection (control group). The highest doses of erysodine (4 and 8 mg/kg) reduce (45 and 66%, respectively) the ethanol intake during treatment period and first day of post-treatment compared to control group. While, the lowest doses of erysodine (1.5 and 2 mg/kg) only reduce ethanol intake during one day of treatment period. These effective reductions in ethanol intake were 23 and 29% for 1.5 and 2 mg/kg erysodine, respectively. Locomotor activity induced by a high dose of erysodine (10 mg/kg) was similar to those observed with saline injection in control rats, showing that the reduction in ethanol intake was not produced by hypolocomotor effect induced by erysodine. This is the first report showing that erysodine reduces ethanol intake in UChB rats in a dose-dependent manner. Our results highlight the role of nAChRs in the reward effects of ethanol and its modulation as a potentially effective pharmacological alternative for alcohol dependence treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. The phosphodiesterase-4 inhibitor roflumilast decreases ethanol consumption in C57BL/6J mice.

    PubMed

    Liu, Xin; Hao, Pi-Da; Yang, Ming-Feng; Sun, Jing-Yi; Mao, Lei-Lei; Fan, Cun-Dong; Zhang, Zong-Yong; Li, Da-Wei; Yang, Xiao-Yi; Sun, Bao-Liang; Zhang, Han-Ting

    2017-08-01

    Alcohol use disorders have become one of the most damaging psychiatric disorders in the world; however, there are no ideal treatments in clinic. Phosphodiesterase-4 (PDE4), an enzyme that specifically hydrolyzes intracellular cyclic AMP (cAMP), has been involved in alcohol use disorders. Roflumilast is the first PDE4 inhibitor approved for treatment of chronic obstructive pulmonary diseases in clinic. It was of particular interest to researchers to determine whether roflumilast altered ethanol consumption. The present study tried to determine the effects of roflumilast on ethanol intake and preference. We used the two-bottle choice paradigm to assess ethanol intake and preference in C57BL/6J mice treated with roflumilast (1, 3, or 10 mg/kg) or rolipram (0.5 mg/kg; positive control). The effect of roflumilast was verified using the ethanol drinking-in-dark (DID) test. Locomotor activity was examined using the open-field test. Intake of sucrose or quinine was also tested to determine whether natural reward preference and aversive stimuli were involved in the effect of PDE4 inhibitors. Similar to rolipram, roflumilast decreased ethanol intake and preference in two-bottle choice and DID tests in a dose-dependent manner, with significant changes at the dose of 10 mg/kg; in contrast, roflumilast did not affect sucrose or quinine drinking, although it decreased locomotor activity at the high dose within 3 h of treatment. These data provide novel demonstration for the effect of roflumilast on ethanol consumption and suggest that roflumilast may be beneficial for treatment of alcoholism.

  13. Exosomes carring gag/env of ALV-J possess negative effect on immunocytes.

    PubMed

    Wang, Guihua; Wang, Zhenzhen; Zhuang, Pingping; Zhao, Xiaomin; Cheng, Ziqiang

    2017-11-01

    J subgroup avian leukosis virus (ALV-J) is an exogenous retrovirus of avian. A key feature of ALV-J infection is leading to severe immunosuppressive characteristic of diseases. Viral components of retrovirus were reported closely associated with immunosuppression, and several similarities between exosomes and retrovirus preparations have lead to the hypotheses of retrovirus hijacker exosomes pathway. In this study, we purified exosomes from DF-1 cells infected and uninfected by ALV-J. Electron microscopy and mass spectrometry (MS) analysis showed that ALV-J not only increased the production of exosomes from ALV-J infected DF-1 cells (Exo-J) but also stimulated some proteins expression, especially ALV-J components secreted in exosomes. Immunosuppressive domain peptide (ISD) of envelope subunit transmembrane (TM) and gag of ALV-J were secreted in Exo-J. It has been reported that HIV gag was budded from endosome-like domains of the T cell plasma membrane. But env protein was first detected in exosomes from retrovirus infected cells. We found that Exo-J caused negative effects on splenocytes in a dose-dependant manner by flow cytometric analysis. And low dose of Exo-J activated immune activity of splenocytes, while high dose possessed immunosuppressive properties. Interestingly, Exo-J has no significant effects on the immunosuppression induced by ALV-J, and the immunosuppressive effects induced by Exo-J lower than that by ALV-J. Taken together, our data indicated that Exo-J supplied a microenvironment for the replication and transformation of ALV-J. Copyright © 2017. Published by Elsevier Ltd.

  14. Protective effect of metoclopramide against organophosphate-induced apoptosis in the murine skin fibroblast L929.

    PubMed

    Jaber, Basem M; Petroianu, Georg A; Rizvi, Syed A; Borai, Anwar; Saleh, Nada A; Hala, Sharif M; Saleh, Ayman M

    2018-03-01

    This study was performed to evaluate the protective efficacy of metoclopramide (MCP) against the organophosphates paraoxon (POX)- and malathion (MLT)-induced apoptosis in the murine L929 skin fibroblasts. L929 cells were exposed to either POX (10 nm) or 1.0 μm MLT in the absence and presence of increased concentrations of MCP. The protective effect of MCP on these organophosphate-stimulated apoptotic events was evaluated by flow cytometry analysis after staining with annexin-V/propidium iodide, processing and activation of the executioner caspase-3, cleavage of the poly-ADP ribose polymerase, fragmentation of the nucleosomal DNA and disruption of the mitochondrial membrane potential (Δψ). Our results showed that increased doses of MCP alone (≥10 μm) did not induce apoptosis or activation of caspase-3. Pretreatment of the cells with MCP attenuated all the apoptotic events triggered by the organophosphate compounds in a dose-dependent manner reaching ~70-80% protection when they were preincubated at 1 and 5 μm of the drug before the addition of POX and MLT, respectively. Interestingly, MCP did not offer a significant protective effect against the cytotoxicity of tumor necrosis factor-α, cisplatinum, etoposide or paclitaxel, which stimulate apoptosis by various mechanisms, suggesting that the anti-apoptotic effect of the drug is specific to organophosphates. The strong and specific anti-apoptotic activity of subclinical doses of MCP against the cytotoxicity of organophosphate compounds suggests its potential clinical application in treating their poisoning. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Cranial irradiation compromises neuronal architecture in the hippocampus.

    PubMed

    Parihar, Vipan Kumar; Limoli, Charles L

    2013-07-30

    Cranial irradiation is used routinely for the treatment of nearly all brain tumors, but may lead to progressive and debilitating impairments of cognitive function. Changes in synaptic plasticity underlie many neurodegenerative conditions that correlate to specific structural alterations in neurons that are believed to be morphologic determinants of learning and memory. To determine whether changes in dendritic architecture might underlie the neurocognitive sequelae found after irradiation, we investigated the impact of cranial irradiation (1 and 10 Gy) on a range of micromorphometric parameters in mice 10 and 30 d following exposure. Our data revealed significant reductions in dendritic complexity, where dendritic branching, length, and area were routinely reduced (>50%) in a dose-dependent manner. At these same doses and times we found significant reductions in the number (20-35%) and density (40-70%) of dendritic spines on hippocampal neurons of the dentate gyrus. Interestingly, immature filopodia showed the greatest sensitivity to irradiation compared with more mature spine morphologies, with reductions of 43% and 73% found 30 d after 1 and 10 Gy, respectively. Analysis of granule-cell neurons spanning the subfields of the dentate gyrus revealed significant reductions in synaptophysin expression at presynaptic sites in the dentate hilus, and significant increases in postsynaptic density protein (PSD-95) were found along dendrites in the granule cell and molecular layers. These findings are unique in demonstrating dose-responsive changes in dendritic complexity, synaptic protein levels, spine density and morphology, alterations induced in hippocampal neurons by irradiation that persist for at least 1 mo, and that resemble similar types of changes found in many neurodegenerative conditions.

  16. Curcumin Attenuates Opioid Tolerance and Dependence by Inhibiting Ca2+/Calmodulin-Dependent Protein Kinase II α Activity

    PubMed Central

    Hu, Xiaoyu; Huang, Fang; Szymusiak, Magdalena

    2015-01-01

    Chronic use of opioid analgesics has been hindered by the development of opioid addiction and tolerance. We have reported that curcumin, a natural flavonoid from the rhizome of Curcuma longa, attenuated opioid tolerance, although the underlying mechanism remains unclear. In this study, we tested the hypothesis that curcumin may inhibit Ca2+/calmodulin-dependent protein kinase II α (CaMKIIα), a protein kinase that has been previously proposed to be critical for opioid tolerance and dependence. In this study, we used state-of-the-art polymeric formulation technology to produce poly(lactic-co-glycolic acid) (PLGA)-curcumin nanoparticles (nanocurcumin) to overcome the drug’s poor solubility and bioavailability, which has made it extremely difficult for studying in vivo pharmacological actions of curcumin. We found that PLGA-curcumin nanoparticles reduced the dose requirement by 11- to 33-fold. Pretreatment with PLGA-curcumin (by mouth) prevented the development of opioid tolerance and dependence in a dose-dependent manner, with ED50 values of 3.9 and 3.2 mg/kg, respectively. PLGA-curcumin dose-dependently attenuated already-established opioid tolerance (ED50 = 12.6 mg/kg p.o.) and dependence (ED50 = 3.1 mg/kg p.o.). Curcumin or PLGA-curcumin did not produce antinociception by itself or affect morphine (1–10 mg/kg) antinociception. Moreover, we found that the behavioral effects of curcumin on opioid tolerance and dependence correlated with its inhibition of morphine-induced CaMKIIα activation in the brain. These results suggest that curcumin may attenuate opioid tolerance and dependence by suppressing CaMKIIα activity. PMID:25515789

  17. Hepatitis C Virus Induces Regulatory T Cells by Naturally Occurring Viral Variants to Suppress T Cell Responses

    PubMed Central

    Cusick, Matthew F.; Schiller, Jennifer J.; Gill, Joan C.; Eckels, David D.

    2011-01-01

    Regulatory T cell markers are increased in chronically infected individuals with the hepatitis C virus (HCV), but to date, the induction and maintenance of Tregs in HCV infection has not been clearly defined. In this paper, we demonstrate that naturally occurring viral variants suppress T cell responses to cognate NS3358-375 in an antigen-specific manner. Of four archetypal variants, S370P induced regulatory T cell markers in comparison to NS3358-375-stimulated CD4 T cells. Further, the addition of variant-specific CD4 T cells back into a polyclonal culture in a dose-dependent manner inhibited the T cell response. These results suggest that HCV is able to induce antigen-specific regulatory T cells to suppress the antiviral T cell response in an antigen-specific manner, thus contributing to a niche within the host that could be conducive to HCV persistence. PMID:21197453

  18. In vitro evaluation of the antiviral activity of the synthetic epigallocatechin gallate analog-epigallocatechin gallate (EGCG) palmitate against porcine reproductive and respiratory syndrome virus.

    PubMed

    Zhao, Chunjian; Liu, Shuaihua; Li, Chunying; Yang, Lei; Zu, Yuangang

    2014-02-21

    In this study, epigallocatechin gallate (EGCG) palmitate was synthesized and its anti-porcine reproductive and respiratory syndrome virus (PRRSV) activity was studied. Specifically, EGCG palmitate was evaluated for its ability to inhibit PRRSV infection in MARC-145 cells when administered as pre-, post-, or co-treatment. EGCG and ribavirin were used as controls. The results showed that a 50% cytotoxic concentration (CC50) of EGCG, EGCG palmitate, and ribavirin was achieved at 2,359.71, 431.42, and 94.06 μM, respectively. All three drugs inhibited PRRSV in a dose-dependent manner regardless of the treatment protocol. EGCG palmitate exhibited higher cytotoxicity than EGCG, but lower cytotoxicity than ribavirin. EGCG palmitate anti-PRRSV activity was significantly higher than that of EGCG and ribavirin, both as pre-treatment and post-treatment. Under the former conditions and a tissue culture infectious dose of 10 and 100, the selectivity index (SI) of EGCG palmitate in the inhibition of PRRSV was 3.8 and 2.9 times higher than that of ribavirin when administered as a pre-treatment, while the SI of EGCG palmitate in the inhibition of PRRSV was 3.0 and 1.9 times higher than ribavirin when administered as a post-treatment. Therefore, EGCG palmitate is potentially effective as an anti-PRRSV agent and thus of interest to the pharmaceutical industry.

  19. Thrombin-induced p38 mitogen-activated protein kinase activation is mediated by epidermal growth factor receptor transactivation pathway

    PubMed Central

    Kanda, Yasunari; Mizuno, Katsushige; Kuroki, Yasutomi; Watanabe, Yasuhiro

    2001-01-01

    Thrombin is a potent mitogen for vascular smooth muscle cells (VSMC) and has been implicated its pathogenic role in vascular remodelling. However, the signalling pathways by which thrombin mediates its mitogenic response are not fully understood.We have previously reported that thrombin activates p38 mitogen-activated protein kinase (p38 MAPK) by a tyrosine kinase-dependent mechanism, and that p38 MAPK has a role in thrombin-induced mitogenic response in rat VSMC.In the present study, we examine the involvement of epidermal growth factor (EGF) receptor in thrombin-induced p38 MAPK activation. We found that thrombin induced EGF receptor tyrosine phosphorylation (transactivation) in A10 cells, a clonal VSMC cell line. A selective inhibitor of EGF receptor kinase (AG1478) inhibited the p38 MAPK activation in a dose-dependent manner, whereas it had no effect on the response to platelet-derived growth factor (PDGF). EGF receptor phosphorylation induced by thrombin was inhibited by BAPTA-AM and GF109203X, which suggest a requirement for intracellular Ca2+ increase and protein kinase C.We next examined the effect of AG1478 on thrombin-induced DNA synthesis. AG1478 inhibited thrombin-induced DNA synthesis in a dose-dependent manner. In contrast, PDGF-induced DNA synthesis was not affected by AG1478.In conclusion, these data suggest that the EGF receptor transactivation and subsequent p38 MAPK activation is required for thrombin-induced proliferation of VSMC. PMID:11309236

  20. Anti-inflammatory activity of methylene chloride fraction from Glehnia littoralis extract via suppression of NF-kappa B and mitogen-activated protein kinase activity.

    PubMed

    Yoon, Taesook; Cheon, Myeong Sook; Lee, A Yeong; Lee, Do Yeon; Moon, Byeong Cheol; Chun, Jin Mi; Choo, Byung Kil; Kim, Ho Kyoung

    2010-01-01

    Glehnia littoralis (Umbelliferae) has been used traditionally in Korean, Japanese, and Chinese medicine for the treatment of immune-related diseases; however, its anti-inflammatory activity and underlying mechanism remain to be defined. We investigated the anti-inflammatory effect and inhibitory mechanism on inflammation by the methylene chloride fraction from Glehnia littoralis extract (MCF-GLE), which was more effective than Glehnia littoralis extract (GLE). MCF-GLE inhibited 12-O-Tetradecanoyl-phorbol-13-acetate (TPA)-induced inflammation in an inflammatory edema mouse model. Also, MCF-GLE strongly inhibited the releases of nitric oxide (NO), prostaglandin E(2) (PGE(2)), tumor necrosis factor-alpha (TNF-alpha), and interleukin-1beta (IL-1beta) and significantly suppressed the mRNA and protein expression of inducible nitric oxide synthase and cyclooxygenase-2 in lipopolysaccharide-stimulated RAW 264.7 macrophage cells in a dose-dependent manner. Furthermore, MCF-GLE suppressed NF-kappaB activation and IkappaB-alpha degradation. MCF-GLE also attenuated the activation of ERK and JNK in a dose-dependent manner. These results indicate that MCF-GLE has an inhibitory effect on the in vivo and in vitro inflammatory reaction and is a possible therapeutic agent. Our results suggest that the anti-inflammatory properties of MCF-GLE may result from the inhibition of pro-inflammatory mediators, such as NO, PGE(2), TNF-alpha, and IL-1beta via suppression of NF-kappaB- and mitogen-activated protein kinases-dependent pathways.

  1. Targeting of Antithrombin in Hemophilia A or B with RNAi Therapy.

    PubMed

    Pasi, K John; Rangarajan, Savita; Georgiev, Pencho; Mant, Tim; Creagh, Michael D; Lissitchkov, Toshko; Bevan, David; Austin, Steve; Hay, Charles R; Hegemann, Inga; Kazmi, Rashid; Chowdary, Pratima; Gercheva-Kyuchukova, Liana; Mamonov, Vasily; Timofeeva, Margarita; Soh, Chang-Heok; Garg, Pushkal; Vaishnaw, Akshay; Akinc, Akin; Sørensen, Benny; Ragni, Margaret V

    2017-08-31

    Current hemophilia treatment involves frequent intravenous infusions of clotting factors, which is associated with variable hemostatic protection, a high treatment burden, and a risk of the development of inhibitory alloantibodies. Fitusiran, an investigational RNA interference (RNAi) therapy that targets antithrombin (encoded by SERPINC1), is in development to address these and other limitations. In this phase 1 dose-escalation study, we enrolled 4 healthy volunteers and 25 participants with moderate or severe hemophilia A or B who did not have inhibitory alloantibodies. Healthy volunteers received a single subcutaneous injection of fitusiran (at a dose of 0.03 mg per kilogram of body weight) or placebo. The participants with hemophilia received three injections of fitusiran administered either once weekly (at a dose of 0.015, 0.045, or 0.075 mg per kilogram) or once monthly (at a dose of 0.225, 0.45, 0.9, or 1.8 mg per kilogram or a fixed dose of 80 mg). The study objectives were to assess the pharmacokinetic and pharmacodynamic characteristics and safety of fitusiran. No thromboembolic events were observed during the study. The most common adverse events were mild injection-site reactions. Plasma levels of fitusiran increased in a dose-dependent manner and showed no accumulation with repeated administration. The monthly regimen induced a dose-dependent mean maximum antithrombin reduction of 70 to 89% from baseline. A reduction in the antithrombin level of more than 75% from baseline resulted in median peak thrombin values at the lower end of the range observed in healthy participants. Once-monthly subcutaneous administration of fitusiran resulted in dose-dependent lowering of the antithrombin level and increased thrombin generation in participants with hemophilia A or B who did not have inhibitory alloantibodies. (Funded by Alnylam Pharmaceuticals; ClinicalTrials.gov number, NCT02035605 .).

  2. Ocular allergy modulation to hi-dose antigen sensitization is a Treg-dependent process.

    PubMed

    Lee, Hyun Soo; Schlereth, Simona; Khandelwal, Payal; Saban, Daniel R

    2013-01-01

    A reproducible method to inhibit allergic immune responses is accomplished with hi-dose Ag sensitization, via intraperitoneal (IP) injection. However, the role of CD4+ CD25+ FoxP3+ T regulatory cells (Treg) in this process is unknown, as is whether such modulation extends to ocular allergy. We therefore determined herein whether hi-dose sensitization modulates ocular allergy, and whether CD4+ CD25+ FoxP3+ Treg are involved. C57BL/6 mice were IP sensitized via low-dose (100 µg) versus hi-dose (1000 µg) ovalbumin (OVA), in aluminum hydroxide (1 mg) and pertussis-toxin (300 ng). Other mice received anti-CD25 Ab (PC61) to ablate Treg during sensitization. In another experiment, Treg from hi-dose sensitized mice were adoptively transferred into low-dose sensitized mice. Once daily OVA challenges were administered. Clinical signs, IgE, T cell cytokines, and eosinophils were assessed. Data revealed that hi-dose, but not low-dose, sensitization led to allergy modulation, indicated by decreased clinical signs, serum IgE levels, Th2 recall responses, and eosinophil recruitment. T cells from hi-dose sensitized mice showed a robust increase in TGF-b production, and Treg from these mice were able to efficiently suppress effector T cell proliferation in vitro. In addition, in vivo Treg ablation in hi-dose sensitized mice revoked allergy modulation. Lastly, Treg from hi-dose sensitized mice were able to adoptively transfer allergy modulation to their low-dose sensitized counterparts. Collectively, these findings indicate that modulation to hi-dose sensitization, which is extended to ocular allergy, occurs in a Treg-dependent manner. In addition, our data suggest that hi-dose sensitization may henceforth facilitate the further examination of CD4+ CD25+ FoxP3+ Treg in allergic disease.

  3. Sesquiterpene furan compound CJ-01, a novel chitin synthase 2 inhibitor from Chloranthus japonicus SIEB.

    PubMed

    Yim, Nam Hui; Hwang, Eui Il; Yun, Bong Sik; Park, Ki Duk; Moon, Jae Sun; Lee, Sang Han; Sung, Nack Do; Kim, Sung Uk

    2008-05-01

    A novel sesquiterpene furan compound CJ-01 was isolated from the methanol extract of the whole plant of Chloranthus japonicus SIEB. by monitoring the inhibitory activity of chitin synthase 2 from Saccharomyces cerevisiae. Based on spectroscopic analysis, the structure of compound CJ-01 was determined as 3,4,8a-trimethyl-4a,7,8,8a-tetrahydro-4a-naphto[2,3-b]furan-9-one. The compound inhibited chitin synthase 2 of Saccharomyces cerevisiae in a dose-dependent manner with an IC50 of 39.6 microg/ml, whereas it exhibited no inhibitory activities against chitin synthase 1 and 3 of S. cerevisiae up to 280 microg/ml. CJ-01 has 1.7-fold stronger inhibitory activity than polyoxin D (IC50=70 microg/ml), a well-known chitin synthase inhibitor. These results indicate that the compound is a specific inhibitor of chitin synthase 2 from S. cerevisiae. In addition, CJ-01 showed antifungal activities against various human and phytopathogenic fungi. Therefore, the compound might be an interesting lead to develop effective antifungal agents.

  4. Methylene blue induces macroautophagy through 5′ adenosine monophosphate-activated protein kinase pathway to protect neurons from serum deprivation

    PubMed Central

    Xie, Luokun; Li, Wenjun; Winters, Ali; Yuan, Fang; Jin, Kunlin; Yang, Shaohua

    2013-01-01

    Methylene blue has been shown to be neuroprotective in multiple experimental neurodegenerative disease models. However, the mechanisms underlying the neuroprotective effects have not been fully elucidated. Previous studies have shown that macroautophagy has multiple beneficial roles for maintaining normal cellular homeostasis and that induction of macroautophagy after myocardial ischemia is protective. In the present study we demonstrated that methylene blue could protect HT22 hippocampal cell death induced by serum deprivation, companied by induction of macroautophagy. We also found that methylene blue-mediated neuroprotection was abolished by macroautophagy inhibition. Interestingly, 5′ adenosine monophosphate-activated protein kinase (AMPK) signaling, but not inhibition of mammalian target of rapamycin signaling, was activated at 12 and 24 h after methylene blue treatment in a dose-dependent manner. Methylene blue-induced macroautophagy was blocked by AMPK inhibitor. Consistent with in vitro data, macroautophagy was induced in the cortex and hippocampus of mouse brains treated with methylene blue. Our findings suggest that methylene blue-induced neuroprotection is mediated, at least in part, by macroautophagy though activation of AMPK signaling. PMID:23653592

  5. Methylene blue induces macroautophagy through 5' adenosine monophosphate-activated protein kinase pathway to protect neurons from serum deprivation.

    PubMed

    Xie, Luokun; Li, Wenjun; Winters, Ali; Yuan, Fang; Jin, Kunlin; Yang, Shaohua

    2013-01-01

    Methylene blue has been shown to be neuroprotective in multiple experimental neurodegenerative disease models. However, the mechanisms underlying the neuroprotective effects have not been fully elucidated. Previous studies have shown that macroautophagy has multiple beneficial roles for maintaining normal cellular homeostasis and that induction of macroautophagy after myocardial ischemia is protective. In the present study we demonstrated that methylene blue could protect HT22 hippocampal cell death induced by serum deprivation, companied by induction of macroautophagy. We also found that methylene blue-mediated neuroprotection was abolished by macroautophagy inhibition. Interestingly, 5' adenosine monophosphate-activated protein kinase (AMPK) signaling, but not inhibition of mammalian target of rapamycin signaling, was activated at 12 and 24 h after methylene blue treatment in a dose-dependent manner. Methylene blue-induced macroautophagy was blocked by AMPK inhibitor. Consistent with in vitro data, macroautophagy was induced in the cortex and hippocampus of mouse brains treated with methylene blue. Our findings suggest that methylene blue-induced neuroprotection is mediated, at least in part, by macroautophagy though activation of AMPK signaling.

  6. Naltrexone Reverses Ethanol Preference and Protein Kinase C Activation in Drosophila melanogaster

    PubMed Central

    Koyyada, Rajeswari; Latchooman, Nilesh; Jonaitis, Julius; Ayoub, Samir S.; Corcoran, Olivia; Casalotti, Stefano O.

    2018-01-01

    Alcohol use disorder (AUD) is a major health, social and economic problem for which there are few effective treatments. The opiate antagonist naltrexone is currently prescribed clinically with mixed success. We have used naltrexone in an established behavioral assay (CAFE) in Drosophila melanogaster that measures the flies' preference for ethanol-containing food. We have confirmed that Drosophila exposed to ethanol develop a preference toward this drug and we demonstrate that naltrexone, in a dose dependant manner, reverses the ethanol-induced ethanol preference. This effect is not permanent, as preference for alcohol returns after discontinuing naltrexone. Additionally, naltrexone reduced the alcohol-induced increase in protein kinase C activity. These findings are of interest because they confirm that Drosophila is a useful model for studying human responses to addictive drugs. Additionally because of the lack of a closely conserved opiate system in insects, our results could either indicate that a functionally related system does exist in insects or that in insects, and potentially also in mammals, naltrexone binds to alternative sites. Identifying such sites could lead to improved treatment strategies for AUD. PMID:29593550

  7. An Inhibitor of Mutant IDH1 Delays Growth and Promotes Differentiation of Glioma Cells

    PubMed Central

    Rohle, Dan; Popovici-Muller, Janeta; Palaskas, Nicolaos; Turcan, Sevin; Grommes, Christian; Campos, Carl; Tsoi, Jennifer; Clark, Owen; Oldrini, Barbara; Komisopoulou, Evangelia; Kunii, Kaiko; Pedraza, Alicia; Schalm, Stefanie; Silverman, Lee; Miller, Alexandra; Wang, Fang; Yang, Hua; Chen, Yue; Kernytsky, Andrew; Rosenblum, Marc K.; Liu, Wei; Biller, Scott A.; Su, Shinsan M.; Brennan, Cameron W.; Chan, Timothy A.; Graeber, Thomas G.; Yen, Katharine E.; Mellinghoff, Ingo K.

    2013-01-01

    The recent discovery of mutations in metabolic enzymes has rekindled interest in harnessing the altered metabolism of cancer cells for cancer therapy. One potential drug target is isocitrate dehydrogenase 1 (IDH1), which is mutated in multiple human cancers. Here, we examine the role of mutant IDH1 in fully transformed cells with endogenous IDH1 mutations. A selective R132H-IDH1 inhibitor (AGI-5198) identified through a high-throughput screen blocked, in a dose-dependent manner, the ability of the mutant enzyme (mIDH1) to produce R-2-hydroxyglutarate (R-2HG). Under conditions of near-complete R-2HG inhibition, the mIDH1 inhibitor induced demethylation of histone H3K9me3 and expression of genes associated with gliogenic differentiation. Blockade of mIDH1 impaired the growth of IDH1-mutant—but not IDH1–wild-type—glioma cells without appreciable changes in genome-wide DNA methylation. These data suggest that mIDH1 may promote glioma growth through mechanisms beyond its well-characterized epigenetic effects. PMID:23558169

  8. Polyphenolic extract from Hibiscus sabdariffa reduces body fat by inhibiting hepatic lipogenesis and preadipocyte adipogenesis.

    PubMed

    Kao, Erl-Shyh; Yang, Mon-Yuan; Hung, Chia-Hung; Huang, Chien-Ning; Wang, Chau-Jong

    2016-01-01

    Diets high in fat lead to excess lipid accumulation in adipose tissue, which is a crucial factor in the development of obesity, hepatitis, and hyperlipidemia. In this study, we investigated the anti-obesity effect of Hibiscus sabdariffa extract (HSE) in vivo. Hamsters fed a high-fat diet (HFD) develop symptoms of obesity, which were determined based on body weight changes and changes in plasma and serum triglycerides, free fatty acid concentrations, total cholesterol levels, LDL-C levels, HDL-C levels, and adipocyte tissue weight. HFD-fed hamsters were used to investigate the effects of HSE on symptoms of obesity such as adipogenesis and fatty liver, loss of blood glucose regulation, and serum ion imbalance. Interestingly, HSE treatment effectively reduced the effects of the HFD in hamsters in a dose-dependent manner. Further, after inducing maturation of preadipocytes, Hibiscus sabdariffa polyphenolic extract (HPE) was shown to suppress the adipogenesis of adipocytes. However, HPE does not affect the viability of preadipocytes. Therefore, both HSE and HPE are effective and viable treatment strategies for preventing the development and treating the symptoms of obesity.

  9. Linear response theory for annealing of radiation damage in semiconductor devices

    NASA Technical Reports Server (NTRS)

    Litovchenko, Vitaly

    1988-01-01

    A theoretical study of the radiation/annealing response of MOS ICs is described. Although many experiments have been performed in this field, no comprehensive theory dealing with radiation/annealing response has been proposed. Many attempts have been made to apply linear response theory, but no theoretical foundation has been presented. The linear response theory outlined here is capable of describing a broad area of radiation/annealing response phenomena in MOS ICs, in particular, both simultaneous irradiation and annealing, as well as short- and long-term annealing, including the case when annealing is nearing completion. For the first time, a simple procedure is devised to determine the response function from experimental radiation/annealing data. In addition, this procedure enables us to study the effect of variable temperature and dose rate, effects which are of interest in spaceflight. In the past, the shift in threshold potential due to radiation/annealing has usually been assumed to depend on one variable: the time lapse between an impulse dose and the time of observation. While such a suggestion of uniformity in time is certainly true for a broad range of radiation annealing phenomena, it may not hold for some ranges of the variables of interest (temperature, dose rate, etc.). A response function is projected which is dependent on two variables: the time of observation and the time of the impulse dose. This dependence on two variables allows us to extend the theory to the treatment of a variable dose rate. Finally, the linear theory is generalized to the case in which the response is nonlinear with impulse dose, but is proportional to some impulse function of dose. A method to determine both the impulse and response functions is presented.

  10. Apigenin Attenuates Melanoma Cell Migration by Inducing Anoikis through Integrin and Focal Adhesion Kinase Inhibition.

    PubMed

    Hasnat, Md Abul; Pervin, Mehnaz; Lim, Ji Hong; Lim, Beong Ou

    2015-11-27

    Apigenin, a nonmutagenic flavonoid, has been found to have antitumor properties and is therefore particularly relevant for the development of chemotherapeutic agents for cancers. In this study, time- and dose-dependent cell viability and cytotoxicity were assessed to determine the effects of apigenin on A2058 and A375 melanoma cells. Melanoma cells were pretreated with different concentrations of apigenin and analyzed for morphological changes, anoikis induction, cell migration, and levels of proteins associated with apoptosis. Apigenin reduced integrin protein levels and inhibited the phosphorylation of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK1/2), which induce anoikis in human cutaneous melanoma cells. Apigenin exhibited dose-dependent inhibition of melanoma cell migration, unlike untreated controls. Furthermore, apigenin treatment increased apoptotic factors such as caspase-3 and cleaved poly(ADP-ribose) polymerase in a dose-dependent manner, demonstrating the metastasis of melanoma cells. Our results provide a new insight into the mechanisms by which apigenin prevents melanoma metastasis by sensitizing anoikis induced by the loss of integrin proteins in the FAK/ERK1/2 signaling pathway. These findings elucidate the related mechanisms and suggest the potential of apigenin in developing clinical treatment strategies against malignant melanoma.

  11. Effect of dexamethasone on expression of glucocorticoid receptor in human monocyte cell line THP-1.

    PubMed

    Li, Bo; Bai, Xiangjun; Wanh, Haiping

    2006-01-01

    The effect of dexamethasone with different concentrations and different stimulating periods on the expression of glucocorticoid receptors (GRalpha, GRbeta) protein was investigated in human monocyte cell line THP-1. The cultured human monocyte line THP-1 cells were stimulated by dexamethasone with different concentrations and different periods. The expression of GRalpha and GRbeta protein was detected by Western blotting. The results showed that the expression of GRalpha and GRbeta was detected in the THP-1 cells. The quantity of GRalpha expression was reduced by dexamethasone under the same concentration with the prolongation of the stimulating periods. The quantity of GRbeta expression was increased by dexamethasone treatment in a time- and dose-dependent manner. It was concluded that dexamethasone stimulation time-dependently reduced the GRalpha expression in THP-1 cells. Dexamethasone stimulation time- and dose-dependently increased the GRbeta expression in THP-1 cells. The expression of GRalpha and GRbeta was regulated by glucocorticoid.

  12. Hormonal regulation of phosphatidylcholine synthesis by reversible modulation of cytidylyltransferase.

    PubMed Central

    Kelly, K L; Gutierrez, G; Martin, A

    1988-01-01

    The effect of both lipolytic and antilipolytic hormones on the turnover of phosphatidylcholine in freshly isolated rat adipocytes was investigated. Treatment of adipocytes with agonists such as glucagon or isoprenaline that stimulate lipolysis through a cyclic AMP-dependent mechanism caused an increase in the incorporation of [Me-3H]choline into phosphatidylcholine. Pulse-chase studies indicated that the stimulation was due to an increase in the conversion of choline into phosphatidylcholine, which was both time- and dose-dependent. The stimulatory effect of isoprenaline was inhibited in a dose-dependent manner by oxytocin or insulin. Oxytocin inhibited the incorporation of [Me-3H]choline into phosphatidylcholine in both the presence and the absence of isoprenaline, whereas in the absence of isoprenaline insulin increased the incorporation of [Me-3H]choline into phosphatidylcholine. The effects of isoprenaline, oxytocin and insulin on the incorporation of [3H]choline into phosphatidylcholine were paralleled by changes in the activity of CTP:phosphocholine cytidylyltransferase. PMID:2849424

  13. Effect of advanced glycosylation end products (AGEs) on proliferation of human bone marrow mesenchymal stem cells (MSCs) in vitro.

    PubMed

    Lu, Yi-Qun; Lu, Yan; Li, Hui-Juan; Cheng, Xing-Bo

    2012-10-01

    This study aims to explore the effect of advanced glycosylation end products (AGEs) on proliferation of human bone marrow mesenchymal stem cells in vitro and the underlying mechanism. Bone marrow cell proliferation was determined by WST-8 assay using Cell Counting Kit-8 under the intervention of AGEs. In addition, the content of maldondialdehyde (MDA) and the activity of superoxide dismutase (SOD) were also measured. The proliferation activity of mesenchymal stem cells (MSCs) was significantly inhibited when AGEs were added to culture medium, and this effect was dose-dependent and time-dependent. As the concentration of AGEs-bovine serum albumin increased, the content of intracellular MDA was significantly increased, but the activity of SOD in cell homogenates was significantly suppressed, which also showed a dose-dependent manner. AGEs could significantly inhibit the proliferation of MSCs in vitro by improving the oxidative stress in MSCs and breaking the homeostasis of intracellular environment.

  14. Analgesic activity of Nelsonia canescens (Lam.) Spreng.root in albino rats

    PubMed Central

    Mohaddesi, Behzad; Dwivedi, Ravindra; Ashok, B. K.; Aghera, Hetal; Acharya, Rabinarayan; Shukla, V. J.

    2013-01-01

    Present study was undertaken to evaluate analgesic activity of root of Nelsonia canescens (Lam.) Spreng, a folklore medicinal plant used as the one of the source plant of Rasna. Study was carried out at two dose levels (270 mg/kg and 540 mg/kg) in albino rats. Analgesic activity was evaluated in formalin induced paw licking, and tail flick methods whereas indomethacin and pentazocine were used as standard analgesic drugs, respectively. At both the dose levels, test drug non-significantly decreased paw licking response at both time intervals. In tail flick model, the administration of the test drug increased pain threshold response in a dose dependent manner. In therapeutically equivalent dose level, analgesic activity was observed only after 180 min while in TED ×2 treated group analgesia was observed at 30 min and lasted even up to 240 min. The results suggested that N.canescens root possess moderate analgesic activity. PMID:24250136

  15. Antiviral effects of Stichopus japonicus acid mucopolysaccharide on hepatitis B virus transgenic mice

    NASA Astrophysics Data System (ADS)

    Xin, Yongning; Li, Wei; Lu, Linlin; Zhou, Li; Victor, David W.; Xuan, Shiying

    2016-08-01

    Hepatitis B virus (HBV) is a significant global pathogen and efficient cure for HBV patients is still a challenging goal. We previously reported that acidic mucopolysaccharide from stichopus japonicus selenka (SJAMP) could inhibit HBsAg and HBeAg expression in vitro. However, the potential anti-HBV effects of SJAMP in vivo have not yet been explored. In this study, we show that SJAMP exhibits potent anti-HBV activity in HBV transgenic mice in a dose-dependent manner. Specifically, sixty HBV transgenic male BALB/c mice were randomly selected to receive the treatment of PBS, low dose SJAMP (30 mg kg-1), middle dose SJAMP (40 mg kg-1), high dose SJAMP (50 mg kg-1) and IFN (45 IU kg-1) for 30 d. SJAMP treatment suppressed serum HBV-DNA, and liver HBsAg and HBcAg levels in HBV-transgenic mice. The present study highlights the potential application of SJAMP in HBV therapy.

  16. Morphine potentiates seizures induced by GABA antagonists and attenuates seizures induced by electroshock in the rat.

    PubMed

    Foote, F; Gale, K

    1983-11-25

    In a naloxone-reversible, dose-dependent manner, morphine (10-50 mg/kg i.p.) protected against seizures induced by maximal electroshock and increased the incidence and severity of seizures induced by bicuculline, in rats. Morphine also potentiated seizures induced by isoniazid and by picrotoxin. Thus, opiate activity influences the expression of seizures in contrasting ways depending upon the mode of seizure induction. Since morphine consistently potentiated seizures induced by interference with GABA transmission, it appears that GABAergic systems may be of particular significance for the elucidation of the varied effects of morphine on seizure susceptibility.

  17. Novel action and mechanism of auranofin in inhibition of vascular endothelial growth factor receptor-3-dependent lymphangiogenesis.

    PubMed

    Chen, Xiaodong; Zhou, Huanjiao Jenny; Huang, Qunhua; Lu, Lin; Min, Wang

    2014-01-01

    Auranofin is a gold compound initially developed for the treatment of rheumatoid arthritis. Recent data suggest that auranofin has promise in the treatment of other inflammatory and proliferative diseases. However, the mechanisms of action of auranofin have not been well defined. In the present study, we identify vascular endothelial growth factor receptor-3 (VEGFR3), an endothelial cell (EC) surface receptor essential for angiogiogenesis and lymphangiogenesis, as a novel target of auranofin. In both primary EC and EC cell lines, auranofin induces downregulation of VEGFR3 in a dose-dependent manner. Auranofin at high doses (≥1 µM) decreases cellular survival protein thioredoxin reductase (TrxR2), TrxR2-dependent Trx2 and transcription factor NF-κB whereas increases stress signaling p38MAPK, leading to EC apoptosis. However, auranofin at low doses (≤0.5 µM) specifically induces downregulation of VEGFR3 and VEGFR3-mediated EC proliferation and migration, two critical steps required for in vivo lymphangiogenesis. Mechanistically, we show that auranofin-induced VEGFR3 downregulation is blocked by antioxidant N-acetyl-L-cysteine (NAC) and lysosome inhibitor chloroquine, but is promoted by proteasomal inhibitor MG132. These results suggest that auranofin induces VEGFR3 degradation through a lysosome-dependent pathway. Auranofin may be a potent therapeutic agent for the treatment of lymphangiogenesis-dependent diseases such as lymphedema and cancer metastasis.

  18. Endothelium-dependent and independent vasorelaxant effects of aqueous extract of Tridax procumbens Lin. leaf in rat aortic rings.

    PubMed

    Salahdeen, Hussein M; Idowu, Gbolahan O; Murtala, Babatunde A

    2012-12-01

    Tridax procumbens leaf extract induced aortic relaxation in a concentration-dependent manner, for both phenylephrine (PE) and KCl- induced contractions in isolated rat aortic rings. The relaxation effect of the extract on PE-induced contraction was 57% greater than that on KCl- induced contraction. The extract caused dose-dependent relaxations in precontracted isolated rat aorta with phenylephrine; the relaxation was attenuated by the removal of endothelium. However, the relaxation responses to sodium nitroprusside were not significantly abolished by the removal of endothelium. The vasorelaxatory effect of the extract was completely abolished in presence of L-NAME. The results indicate that the vasorelaxant effect of T. procumbens extract is probably mediated by both endothelium-dependent and-independent mechanisms.

  19. Eradication of melanoma in vitro and in vivo via targeting with a Killer-Red-containing telomerase-dependent adenovirus.

    PubMed

    Takehara, Kiyoto; Yano, Shuya; Tazawa, Hiroshi; Kishimoto, Hiroyuki; Narii, Nobuhiro; Mizuguchi, Hiroyuki; Urata, Yasuo; Kagawa, Shunsuke; Fujiwara, Toshiyoshi; Hoffman, Robert M

    2017-08-18

    Melanoma is a highly recalcitrant cancer and transformative therapy is necessary for the cure of this disease. We recently developed a telomerase-dependent adenovirus containing the fluorescent protein Killer-Red. In the present report, we first determined the efficacy of Killer-Red adenovirus combined with laser irradiation on human melanoma cell lines in vitro. Cell viability of human melanoma cells was reduced in a dose-dependent and irradiation-time-dependent manner. We used an intradermal xenografted melanoma model in nude mice to determine efficacy of the Killer-Red adenovirus. Intratumoral injection of Killer-Red adenovirus, combined with laser irradiation, eradicated the melanoma indicating the potential of a new paradigm of cancer therapy.

  20. Effect of antiretroviral therapy use and adherence on the risk of hyperlipidemia among HIV-infected patients, in the highly active antiretroviral therapy era

    PubMed Central

    Tsai, Fuu-Jen; Cheng, Chi-Fung; Lai, Chih-Ho; Wu, Yang-Chang; Ho, Mao-Wang; Wang, Jen-Hsien; Tien, Ni; Liu, Xiang; Tsang, Hsinyi; Lin, Ting-Hsu; Liao, Chiu-Chu; Huang, Shao-Mei; Li, Ju-Pi; Lin, Jung-Chun; Lin, Chih-Chien; Chen, Jin-Hua; Liang, Wen-Miin; Lin, Ying-Ju

    2017-01-01

    HIV-infected patients exposed to antiretroviral therapy (ART) have an increased risk for hyperlipidemia and cardiovascular disease. We performed a longitudinal, comprehensive, and population-based study to investigate the cumulative effect of different types of ART regimens on hyperlipidemia risk in the Taiwanese HIV/ART cohort. A total of 13,370 HIV-infected patients (2,674 hyperlipidemia and 10,696 non-hyperlipidemia patients) were recruited after matching for age, gender, and the first diagnosis date of HIV infection by using the National Health Insurance Research Database in Taiwan. Hyperlipidemia risk associated with cumulative ART use, ART adherence, and their combination was assessed. The matched hyperlipidemia group had a larger number of patients using ART and a higher incidence of comorbidities, specifically, respiratory disease and diabetes. Patients with high ART dosage and dose-dependent manner adherence, respectively, demonstrated an increased risk of hyperlipidemia. For single ART regimens, patients receiving nucleoside reverse-transcriptase inhibitors (NRTI/NRTI)- containing regimen had the highest hyperlipidemia risk, followed by protease inhibitor (PI)- containing and non-NRTI- containing regimens. For combination ART regimens, patients receiving a NRTI/NRTI + PI regimen had the highest hyperlipidemia risk. An increased cumulative drug dose was observed in patients who received the PI, NRTI/NRTI, NRTI, and NNRTI regimens in the hyperlipidemia group, when compared to the non-hyperlipidemia group. In conclusion, ART cumulative use, adherence, and regimen may affect hyperlipidemia risk among HIV-infected patients in a dose-dependent manner. PMID:29290955

  1. Lactobacillus salivarius REN inhibits rat oral cancer induced by 4-nitroquioline 1-oxide.

    PubMed

    Zhang, Ming; Wang, Fang; Jiang, Lu; Liu, Ruihai; Zhang, Lian; Lei, Xingen; Li, Jiyou; Jiang, Jingli; Guo, Huiyuan; Fang, Bing; Zhao, Liang; Ren, Fazheng

    2013-07-01

    Despite significant advances in cancer therapy, cancer-related mobility and mortality are still rising. Alternative strategies such as cancer prevention thus become essential. Probiotics represent an emerging option for cancer prevention, but studies are limited to colon cancers. The efficiency of probiotics in the prevention of other cancers and the correlative mechanism remains to be explored. A novel probiotics Lactobacillus salivarius REN (L. salivarius REN) was isolated from centenarians at Bama of China, which showed highly potent antigenotoxicity in an initial assay. 4-nitroquioline 1-oxide (4NQO)-induced oral cancer model was introduced to study the anticancer activity of L. salivarius REN in vivo. The results indicated that oral administration of probiotic L. salivarius REN or its secretions could effectively suppress 4NQO-induced oral carcinogenesis in the initial and postinitial stage, and the inhibition was in a dose-dependent manner. A significant decrease of neoplasm incidence (65%-0%) was detected in rats fed with the high dose of L. salivarius REN [5 × 10(10) CFU/kg body weight (bw)/d]. In vivo evidences indicated that the probiotics inhibited 4NQO-induced oral cancer by protecting DNA against oxidative damage and downregulating COX-2 expression. L. salivarius REN treatment significantly decreased the expression of proliferating cell nuclear antigen (PCNA) and induced apoptosis in a dose-dependent manner. Our findings suggest that probiotics may act as potential agents for oral cancer prevention. This is the first report showing the inhibitory effect of the probiotics on oral carcinogenesis. ©2013 AACR.

  2. Effects of glucose, insulin and triiodothyroxine on leptin and leptin receptor expression and the effects of leptin on activities of enzymes related to glucose metabolism in grass carp (Ctenopharyngodon idella) hepatocytes.

    PubMed

    Lu, Rong-Hua; Zhou, Yi; Yuan, Xiao-Chen; Liang, Xu-Fang; Fang, Liu; Bai, Xiao-Li; Wang, Min; Zhao, Yu-Hua

    2015-08-01

    Leptin is an important regulator of appetite and energy expenditure in mammals, but its role in fish metabolism control is poorly understood. Our previous studies demonstrated that leptin has an effect on the regulation of food intake and energy expenditure as well as lipid metabolism (stimulation of lipolysis and inhibition of adipogenesis) in the grass carp Ctenopharyngodon idella. To further investigate the role of leptin in fish, the effects of glucose, insulin and triiodothyroxine (T3) on the expression levels of leptin and leptin receptor (Lepr) and the effects of leptin on the activities of critical glucose metabolism enzymes in grass carp hepatocytes were evaluated in the present study. Our data indicated that leptin gene expression was induced by glucose in a dose-dependent manner, while Lepr gene expression exhibited a biphasic change. A high dose of insulin (100 ng/mL) significantly up-regulated the expression of leptin and Lepr. Leptin expression was markedly up-regulated by a low concentration of T3 but inhibited by a high concentration of T3. T3 up-regulated Lepr expression in a dose-dependent manner. Together, these data suggest that leptin had a close relationship with three factors (glucose, insulin and T3) and might participate in the regulation of glucose metabolism in grass carp. In addition, we also found that leptin affected the activities of key enzymes that are involved in glucose metabolism, which might be mediated by insulin receptor substrate-phosphoinositol 3-kinase signaling.

  3. Ultrastructural and DNA damaging effects of lead nitrate in the liver.

    PubMed

    Narayana, K; Al-Bader, Maie

    2011-01-01

    A ubiquitous environmental toxicant - lead is known to affect several organ systems. This study was designed to investigate the effects of lead nitrate exposure on liver structure and DNA fragmentation. Adult male Wistar rats were treated orally with lead nitrate at the dose levels of 0%, 0.5% and 1% for 60 days and sacrificed on the next day. The liver was processed for thick sections and evaluated after toludine blue staining and by electron microscopy after staining with uranyl acetate and lead citrate. The DNA damage was assessed by DNA fragmentation assay. The liver weight was not significantly affected in the experimental groups. Hepatocyte nuclei were not shrunk, instead lead was mitogenic to hepatocytes as indicated by an increase in the number of binucleated hepatocytes (P<0.05). The number of mitochondria per hepatocyte decreased in a dose-dependent manner (P<0.05). Qualitatively, the necrotic changes such as small to large-sized cytoplasmic vacuoles often displacing the organelles, decrease in hepatocyte microvilli, degeneration of mitochondria, and vacuolar encroachment of nuclei and dilatation of sinusoids were observed. The qualitative changes were induced in a dose-dependent manner. Kupffer cells or Ito cells did not present any notable structural changes. Although the electrophoretic flow of DNA fragments was observed in lead-treated groups, these changes were not significantly different from that in control as evaluated by optical density. In conclusion, lead induces necrotic changes with simultaneous mitogenic activity; however, it does not induce significant DNA damage in the liver. Copyright © 2009 Elsevier GmbH. All rights reserved.

  4. A Comparison of the Effects of Benzalkonium Chloride on Ocular Surfaces between C57BL/6 and BALB/c Mice

    PubMed Central

    Yang, Qian; Zhang, Yafang; Liu, Xiuping; Wang, Nan; Song, Zhenyu; Wu, Kaili

    2017-01-01

    Models of benzalkonium chloride (BAC)-induced ocular disruption have been created and are widely used in various animals. This study aimed to compare the effects of BAC on the ocular surfaces of C57BL/6 and BALB/c mice. C57BL/6 and BALB/c mice were treated separately with BAC eye-drops at different concentrations. Eyes were evaluated by scoring epithelial disruption, corneal opacity and neovascularization in vivo, and by histological assays with hematoxylin/eosin (H/E) and periodic acid-Schiff stainings and by determining the expression of inflammatory factors in vitro on Days 7 and 14. The in vivo corneal epithelial disruption, corneal edema/opacity and neovascularization, which were in accordance with the results of the H/E staining and peaked at Day 7, were observed in a dose-dependent manner in the BAC-treated mice, with more severe signs in the C57BL/6 mice than the BALB/c mice. The loss of conjunctival goblet cells in the conjunctivas and the increasing expression of monocyte chemoattractant protein 1 (MCP-1), growth-regulated protein alpha (GROa) and macrophage inflammatory protein-1 alpha (MIP-1a) in the corneas were found in a dose-dependent manner in both strains of mice. Topical application of BAC can dramatically disrupt the ocular surfaces of C57BL/6 and BALB/c mice, and the disruptions were much more severe in the C57BL/6 mice that received high doses of BAC. PMID:28245636

  5. Ortho-aminoazotoluene activates mouse constitutive androstane receptor (mCAR) and increases expression of mCAR target genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smetanina, Mariya A., E-mail: maria.smetanina@gmail.com; Laboratory of Gene Expression Control, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, prospekt Lavrentyeva 10, Novosibirsk 630090; Group of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, prospekt Lavrentyeva 8, Novosibirsk 630090

    2'-3-dimethyl-4-aminoazobenzene (ortho-aminoazotoluene, OAT) is an azo dye and a rodent carcinogen that has been evaluated by the International Agency for Research on Cancer (IARC) as a possible (class 2B) human carcinogen. Its mechanism of action remains unclear. We examined the role of the xenobiotic receptor Constitutive Androstane Receptor (CAR, NR1I3) as a mediator of the effects of OAT. We found that OAT increases mouse CAR (mCAR) transactivation in a dose-dependent manner. This effect is specific because another closely related azo dye, 3'-methyl-4-dimethyl-aminoazobenzene (3'MeDAB), did not activate mCAR. Real-time Q-PCR analysis in wild-type C57BL/6 mice revealed that OAT induces the hepaticmore » mRNA expression of the following CAR target genes: Cyp2b10, Cyp2c29, Cyp3a11, Ugt1a1, Mrp4, Mrp2 and c-Myc. CAR-null (Car{sup -/-}) mice showed no increased expression of these genes following OAT treatment, demonstrating that CAR is required for their OAT dependent induction. The OAT-induced CAR-dependent increase of Cyp2b10 and c-Myc expression was confirmed by Western blotting. Immunohistochemistry analysis of wild-type and Car{sup -/-} livers showed that OAT did not acutely induce hepatocyte proliferation, but at much later time points showed an unexpected CAR-dependent proliferative response. These studies demonstrate that mCAR is an OAT xenosensor, and indicate that at least some of the biological effects of this compound are mediated by this nuclear receptor. - Highlights: > The azo dye and mouse carcinogen OAT is a very effective mCAR activator. > OAT increases mCAR transactivation in a dose-dependent manner. > OAT CAR-dependently increases the expression of a specific subset of CAR target genes. > OAT induces an unexpectedly deferred, but CAR-dependent hepatocyte proliferation.« less

  6. Platelet-derived growth factor regulates K-Cl cotransport in vascular smooth muscle cells.

    PubMed

    Zhang, Jing; Lauf, Peter K; Adragna, Norma C

    2003-03-01

    Platelet-derived growth factor (PDGF), a potent serum mitogen for vascular smooth muscle cells (VSMCs), plays an important role in membrane transport regulation and in atherosclerosis. K-Cl cotransport (K-Cl COT/KCC), the coupled-movement of K and Cl, is involved in ion homeostasis. VSMCs possess K-Cl COT activity and the KCC1 and KCC3 isoforms. Here, we report on the effect of PDGF on K-Cl COT activity and mRNA expression in primary cultures of rat VSMCs. K-Cl COT was determined as the Cl-dependent Rb influx and mRNA expression by semiquantitative RT-PCR. Twenty four-hour serum deprivation inhibited basal K-Cl COT activity. Addition of PDGF increased total protein content and K-Cl COT activity in a time-dependent manner. PDGF activated K-Cl COT in a dose-dependent manner, both acutely (10 min) and chronically (12 h). AG-1296, a selective inhibitor of the PDGF receptor tyrosine kinase, abolished these effects. Actinomycin D and cycloheximide had no effect on the acute PDGF activation of K-Cl COT, suggesting posttranslational regulation by the drug. Furthermore, PDGF increased KCC1 and decreased KCC3 mRNA expression in a time-dependent manner. These results indicate that chronic activation of K-Cl COT activity by PDGF may involve regulation of the two KCC mRNA isoforms, with KCC1 playing a dominant role in the mechanism of PDGF-mediated activation.

  7. Synthetic detergents induced-biochemical and histological changes in skin of guinea pigs.

    PubMed

    Agarwal, C; Mathur, A K; Gupta, B N; Singh, A; Shanker, R

    1990-06-01

    The linear alkylbenzene sulphonate (LAS) based synthetic detergents-induced decrease in lipid peroxydation and increase in histamine content in exposed skin of guinea pigs in a dose-dependent manner. Histopathological alterations of exposed skin included moderate degree of hyperkeratinization at lower concentration but necrosis, scarring, sloughing as well as discontinuity of epidermis at higher concentrations. The results shows that the contact of skin with detergents causes dermal toxicity.

  8. Human serum provided additional values in growth factors supplemented medium for human chondrocytes monolayer expansion and engineered cartilage construction.

    PubMed

    Chua, K H; Aminuddin, B S; Fuzina, N H; Ruszymah, B H I

    2004-05-01

    We have previously formulated an optimized human chondrocytes growth medium based on 2% fetal bovine serum supplementation. For clinical usage, the animal serum must be replaced by patient own serum. We investigated the effects of human serum concentration for human nasal septum chondrocytes monolayer culture and cartilage reconstruction. Human serum demonstrated a dose dependent manner in promoting chondrocytes growth and cartilage engineering.

  9. Secondary metabolites from Marchantia paleacea calluses and their allelopathic effects on Arabidopsis seed growth.

    PubMed

    Wang, Lei; Wang, Li-Ning; Zhao, Yu; Lou, Hong-Xiang; Cheng, Ai-Xia

    2013-01-01

    Rapid-growth Marchantia paleacea calluses were induced on MSK2 medium through surface sterilisation of the capsula. Ten known compounds including two steroids (1-2), six bibenzyls (3, 5-9), a flavonoid (10), and a terpenoid (4) were isolated from these calluses. The allelopathic effect of the six bibenzyls was assessed in Arabidopsis thaliana. Results revealed that bibenzyls could inhibit seedling growth in a dose-dependent manner.

  10. Differential regulation of smooth muscle contraction in rabbit internal anal sphincter by substance P and bombesin.

    PubMed

    Bitar, K N; Hillemeier, C; Biancani, P

    1990-01-01

    Substance P and bombesin induce contraction of isolated IAS smooth muscle cells by different intracellular mechanisms. The cells contracted in a dose dependent manner to both peptides. The kinetics of contraction were different. Substance P induced contraction peaked at 30 seconds and declined in a time dependent manner while bombesin induced contraction peaked at 30 seconds and was maintained for up to 8 minutes. The absence of extracellular calcium in the medium (0 calcium and 2 mM EGTA) had no affect on substance P induced contraction while it blocked bombesin induced contraction. Substance P induced contraction was blocked by the calmodulin antagonist W7 (10(-9)M) and was not affected by the PKC antagonist H7 (10(-6)M). Bombesin induced contraction was blocked by the PKC antagonist H7 and was not affected by the calmodulin antagonist W7. Our data indicate that substance P induces a transient contraction utilizing intracellular calcium and a calmodulin dependent pathway, while bombesin induces a sustained contraction utilizing calcium from extracellular sources and a calmodulin independent pathway.

  11. Prevotella intermedia induces prostaglandin E2 via multiple signaling pathways.

    PubMed

    Guan, S-M; Fu, S-M; He, J-J; Zhang, M

    2011-01-01

    Prostaglandin E(2) (PGE(2)) plays important roles in the bone resorption of inflammatory diseases such as rheumatoid arthritis and periodontitis via specific prostaglandin receptors (i.e., EP1-EP4). In this study, the authors examined whether Prevotella intermedia regulates PGE(2) production and EP expression in human periodontal ligament fibroblasts (hPDLs); they also explored the potential signaling pathways involved in PGE(2) production. P. intermedia induced PGE(2) production and cyclooxygenase-2 (COX-2) expression in a dose- and time-dependent manner. Indomethacin and NS-398 completely abrogated the P. intermedia-induced PGE(2) production without modulating COX-2 expression. Specific inhibitors of extracellular signal-regulated kinase, c-Jun N-terminal kinase, p38, phosphatidylinositol 3-kinase, and protein kinase C--but not c-AMP and protein kinase A--significantly attenuated the P. intermedia-induced COX-2 and PGE(2) expression. P. intermedia reduced EP1 expression in a concentration- and time-dependent manner. The results indicate that the COX-2-dependent induction of PGE(2) by P. intermedia in hPDLs is mediated by multiple signaling pathways.

  12. Mesoporous silica nanoparticles trigger mitophagy in endothelial cells and perturb neuronal network activity in a size- and time-dependent manner.

    PubMed

    Orlando, Antonina; Cazzaniga, Emanuela; Tringali, Maria; Gullo, Francesca; Becchetti, Andrea; Minniti, Stefania; Taraballi, Francesca; Tasciotti, Ennio; Re, Francesca

    2017-01-01

    Mesoporous silica nanoparticles (MSNPs) are excellent candidates for biomedical applications and drug delivery to different human body areas, the brain included. Although toxicity at cellular level has been investigated, we are still far from using MSNPs in the clinic, because the mechanisms involved in the cellular responses activated by MSNPs have not yet been elucidated. This study used an in vitro multiparametric approach to clarify relationships among size, dose, and time of exposure of MSNPs (0.05-1 mg/mL dose range), and cellular responses by analyzing the morphology, viability, and functionality of human vascular endothelial cells and neurons. The results showed that 24 hours of exposure of endothelial cells to 250 nm MSNPs exerted higher toxicity in terms of mitochondrial activity and membrane integrity than 30 nm MSN at the same dose. This was due to induced cell autophagy (in particular mitophagy), probably consequent to MSNP cellular uptake (>20%). Interestingly, after 24 hours of treatment with 30 nm MSNPs, very low MSNP uptake (<1%) and an increase in nitric oxide production (30%, P <0.01) were measured. This suggests that MSNPs were able to affect endothelial functionality from outside the cells. These differences could be attributed to the different protein-corona composition of the MSNPs used, as suggested by sodium dodecyl sulfate polyacrylamide-gel electrophoresis analysis of the plasma proteins covering the MSNP surface. Moreover, doses of MSNPs up to 0.25 mg/mL perturbed network activity by increasing excitability, as detected by multielectrode-array technology, without affecting neuronal cell viability. These results suggest that MSNPs may be low-risk if prepared with a diameter <30 nm and if they reach human tissues at doses <0.25 mg/mL. These important advances could help the rational design of NPs intended for biomedical uses, demonstrating that careful toxicity evaluation is necessary before using MSNPs in patients.

  13. Proteomic Changes of Tissue-Tolerable Plasma Treated Airway Epithelial Cells and Their Relation to Wound Healing

    PubMed Central

    Lendeckel, Derik; Eymann, Christine; Emicke, Philipp; Daeschlein, Georg; Darm, Katrin; O'Neil, Serena; Beule, Achim G.; von Woedtke, Thomas; Völker, Uwe; Weltmann, Klaus-Dieter; Jünger, Michael; Hosemann, Werner; Scharf, Christian

    2015-01-01

    Background. The worldwide increasing number of patients suffering from nonhealing wounds requires the development of new safe strategies for wound repair. Recent studies suggest the possibility of nonthermal (cold) plasma application for the acceleration of wound closure. Methods. An in vitro wound healing model with upper airway S9 epithelial cells was established to determine the macroscopically optimal dosage of tissue-tolerable plasma (TTP) for wound regeneration, while a 2D-difference gel electrophoresis (2D-DIGE) approach was used to quantify the proteomic changes in a hypothesis-free manner and to evaluate the balance of beneficial and adverse effects due to TTP application. Results. Plasma doses from 30 s up to 360 s were tested in relation to wound closure after 24 h, 48 h, 72 h, 96 h, and 120 h, in which lower doses (30, 60, and 120 s) resulted in dose-dependent improved wound healing rate compared to untreated cells. Thereby, the 120 s dose caused significantly the best wound healing properties after 96 and 120 h. The proteome analysis combined with IPA revealed that a lot of affected stress adaptation responses are linked to oxidative stress response emphasizing oxidative stress as a possible key event in the regeneration process of epithelial cells as well as in the adaptation to plasma exposure. Further cellular and molecular functions like proliferation and apoptosis were significantly up- or downregulated by all TTP treatments but mostly by the 120 s dose. Conclusions. For the first time, we were able to show plasma effects on cellular adaptation of upper airway epithelial S9 cells improving wound healing. This is of particular interest for plasma application, for example, in the surgery field of otorhinolaryngology or internal medicine. PMID:26539504

  14. [Valsartan inhibits angiotensin II-Notch signaling of mesangial cells induced by high glucose].

    PubMed

    Yuan, Qin; Lyu, Chuan; Wu, Can; Lei, Sha; Shao, Ying; Wang, Qiuyue

    2016-01-01

    To explore the role of angiotensin II (Ang II)-Notch signaling in high glucose-induced secretion of extracellular matrix of rat mesangial cells (RMCs) and to further investigate the protective effect of valsartan (one of Ang II receptor blockers) on kidney. Subcultured RMCs were divided into groups as follows: normal glucose group (5.5 mmol/L glucose); high glucose group (30 mmol/L glucose); high concentration of mannitol as osmotic control group (5.5 mmol/L glucose and 24.5 mmol/L mannitol); normal glucose plus 1 μmol/L N-[N-(3, 5-difluorophenacetyl)-L-alanyl ]-S-phenylglycine t-butyl ester (DAPT) group; normal glucose plus (1, 5, 10) μmol/L valsartan group; high glucose plus 1 μmol/L DAPT group; high glucose plus (1, 5, 10) μmol/L valsartan group. Cells and supernatants were harvested after 12, 24 and 48 hours. Notch1 expression was examined by Western blotting. Secretion of transforming growth factor (TGF-β) and fibronectin (FN) were detected by ELISA. Compared to the normal glucose group, Notch1 expression was elevated in the high glucose group after 12 hours, and peaked at 24 hours. Besides, secretion of TGF-β and FN were much higher in the high glucose group than in the normal glucose group in a time-dependent manner. Compared to the untreated group, Notch1 expression decreased in a dose-dependent manner in the valsartan or DAPT treated group under high glucose after 24 hours. After pre-treatment by either valsartan or DAPT in the high glucose group, secretion of TGF-β and FN obviously decreased as compared to the untreated group. Hyperglycemia could stimulate activation of Notch signaling in cultured RMCs, which may increase secretion of downstream fibrotic factors such as TGF-β and FN. Valsartan may decrease the secretion of downstream FN in a dose-dependent manner via inhibiting AngII-Notch signaling.

  15. Single- and Repeat-dose Oral Toxicity Studies of Lithospermum erythrorhizon Extract in Dogs

    PubMed Central

    Hwang, Jae-Sik; Kim, Myoung-Jun; Choi, Young Whan; Han, Kyoung-Goo; Kang, Jong-Koo

    2015-01-01

    Lithospermum erythrorhizon has long been used in traditional Asian medicine for the treatment of diseases, including skin cancer. The oral toxicity of a hexane extract of Lithospermum erythrorhizon root (LEH) was investigated in Beagle dogs by using single escalating doses, two-week dose range-finding, and 4-week oral repeat dosing. In the single dose-escalating oral toxicity study, no animal died, showed adverse clinical signs, or changes in body weight gain at LEH doses of up to 2,000 mg/kg. In a 2 week dose range-finding study, no treatment-related adverse effects were detected by urinalysis, hematology, blood biochemistry, organ weights, or gross and histopathological examinations at doses of up to 500 mg LEH/kg/day. In the 4 week repeat-dose toxicity study, a weight loss or decreased weight gain was observed at 300 mg/kg/day. Although levels of serum triglyceride and total bilirubin were increased in a dose dependent manner, there were no related morphological changes. Based on these findings, the sub-acute no observable adverse effect level for 4-week oral administration of LEH in Beagles was 100 mg/kg/day. PMID:25874036

  16. Single- and Repeat-dose Oral Toxicity Studies of Lithospermum erythrorhizon Extract in Dogs.

    PubMed

    Nam, Chunja; Hwang, Jae-Sik; Kim, Myoung-Jun; Choi, Young Whan; Han, Kyoung-Goo; Kang, Jong-Koo

    2015-03-01

    Lithospermum erythrorhizon has long been used in traditional Asian medicine for the treatment of diseases, including skin cancer. The oral toxicity of a hexane extract of Lithospermum erythrorhizon root (LEH) was investigated in Beagle dogs by using single escalating doses, two-week dose range-finding, and 4-week oral repeat dosing. In the single dose-escalating oral toxicity study, no animal died, showed adverse clinical signs, or changes in body weight gain at LEH doses of up to 2,000 mg/kg. In a 2 week dose range-finding study, no treatment-related adverse effects were detected by urinalysis, hematology, blood biochemistry, organ weights, or gross and histopathological examinations at doses of up to 500 mg LEH/kg/day. In the 4 week repeat-dose toxicity study, a weight loss or decreased weight gain was observed at 300 mg/kg/day. Although levels of serum triglyceride and total bilirubin were increased in a dose dependent manner, there were no related morphological changes. Based on these findings, the sub-acute no observable adverse effect level for 4-week oral administration of LEH in Beagles was 100 mg/kg/day.

  17. Methylene Blue Facilitates Memory Retention in Zebrafish in a Dose-Dependent Manner.

    PubMed

    Echevarria, David J; Caramillo, Erika M; Gonzalez-Lima, Francisco

    2016-12-01

    Methylene blue (MB) is an FDA-grandfathered drug with memory-enhancing effects at low doses, but opposite effects at high doses. We investigated the effects of four MB doses (0.1, 0.5, 5.0, or 10.0 μM) on zebrafish memory retention in the T-maze task. After training fish to swim into a certain arm of the T-maze, the fish were placed into a tank containing one of the four MB doses or a control tank containing blue food dye. Subsequently, fish were placed into the T-maze for memory retention testing. Results indicated that MB produced hormetic dose-response effects on memory. Fish that received the 0.5 μM dose performed significantly better at the T-maze than those that received higher doses. Fish who received 5.0 μM did not exhibit a significant difference in performance from control fish, and the fish that received the 10.0 μM dose performed significantly worse than lower doses. These findings support the utility of zebrafish in comparative research and their potential value for testing of MB and other neuropsychopharmacological treatments in animal models of memory disorders.

  18. Mechanisms of carcinogensis: dose response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gehring, P.J.; Blau, G.E.

    There is great controversy whether the carcinogenicity of chemicals is dose-dependent and whether a threshold dose exists below which cancer will not be induced by exposure. Evidence for dose-dependency exists and is believed to be accepted generally if extricated as it should be from the threshold concept. The threshold concept conflict is not likely to be resolved in the foreseeable future; proponents and opponents argue their case in a manner similar to those arguing religion. In this paper the various arguments are reviewed. Subsequently, a chemical process model for carcinogenesis is developed based on the generally accepted evidence that themore » carcinogenic activity of many chemicals can be related to electrophilic alkylation of DNA. Using this model, some incidence of cancer, albeit negligible, will be predicted regardless how low the dose. However, the model revelas that the incidence of cancer induced by real-life exposures is likely to be greatly overestimated by currently used stochastic statistical extrapolations. Even more important, modeling of the chemical processes involved in the fate of a carcinogenic chemical in the body reveals experimental approaches to elucidating the mechanism(s) of carcinogenesis and ultimately a more scientifically sound basis for assessing the hazard of low-level exposure to a chemical carcinogen.« less

  19. Evaluation of the Anxiolytic Activity of NR-ANX-C (a Polyherbal Formulation) in Ethanol Withdrawal-Induced Anxiety Behavior in Rats.

    PubMed

    Mohan, L; Rao, U S C; Gopalakrishna, H N; Nair, V

    2011-01-01

    The present study investigates the anxiolytic activity of NR-ANX-C, a standardized polyherbal formulation containing the extracts of Withania somnifera, Ocimum sanctum, Camellia sinensis, Triphala, and Shilajit in ethanol withdrawal- (EW-) induced anxiety behavior in rats. Ethanol dependence in rats was produced by substitution of drinking water with 7.5% v/v alcohol for 10 days. Then, ethanol withdrawal was induced by replacing alcohol with drinking water, 12 hours prior to experimentation. After confirming induction of withdrawal symptoms in the alcohol deprived animals, the anxiolytic activity of the test compound in graded doses (10, 20, and 40 mg/kg) was compared to the standard drug alprazolam (0.08 mg/kg) in the elevated plus maze and bright and dark arena paradigms. In our study, single and repeated dose administration of NR-ANX-C reduced EW-induced anxiety in a dose-dependent manner. Even though the anxiolytic activity was not significant at lower doses, NR-ANX-C at the highest dose tested (40 mg/kg) produced significant anxiolytic activity that was comparable to the standard drug alprazolam. Based on our findings we believe that NR-ANX-C has the potential to be used as an alternative to benzodiazepines in the treatment of EW-induced anxiety.

  20. Evaluation of the Anxiolytic Activity of NR-ANX-C (a Polyherbal Formulation) in Ethanol Withdrawal-Induced Anxiety Behavior in Rats

    PubMed Central

    Mohan, L.; Rao, U. S. C.; Gopalakrishna, H. N.; Nair, V.

    2011-01-01

    The present study investigates the anxiolytic activity of NR-ANX-C, a standardized polyherbal formulation containing the extracts of Withania somnifera, Ocimum sanctum, Camellia sinensis, Triphala, and Shilajit in ethanol withdrawal- (EW-) induced anxiety behavior in rats. Ethanol dependence in rats was produced by substitution of drinking water with 7.5% v/v alcohol for 10 days. Then, ethanol withdrawal was induced by replacing alcohol with drinking water, 12 hours prior to experimentation. After confirming induction of withdrawal symptoms in the alcohol deprived animals, the anxiolytic activity of the test compound in graded doses (10, 20, and 40 mg/kg) was compared to the standard drug alprazolam (0.08 mg/kg) in the elevated plus maze and bright and dark arena paradigms. In our study, single and repeated dose administration of NR-ANX-C reduced EW-induced anxiety in a dose-dependent manner. Even though the anxiolytic activity was not significant at lower doses, NR-ANX-C at the highest dose tested (40 mg/kg) produced significant anxiolytic activity that was comparable to the standard drug alprazolam. Based on our findings we believe that NR-ANX-C has the potential to be used as an alternative to benzodiazepines in the treatment of EW-induced anxiety. PMID:20953426

  1. Glucose ameliorates the metabolic profile and mitochondrial function of platelet concentrates during storage in autologous plasma

    PubMed Central

    Amorini, Angela M.; Tuttobene, Michele; Tomasello, Flora M.; Biazzo, Filomena; Gullotta, Stefano; De Pinto, Vito; Lazzarino, Giuseppe; Tavazzi, Barbara

    2013-01-01

    Background It is essential that the quality of platelet metabolism and function remains high during storage in order to ensure the clinical effectiveness of a platelet transfusion. New storage conditions and additives are constantly evaluated in order to achieve this. Using glucose as a substrate is controversial because of its potential connection with increased lactate production and decreased pH, both parameters triggering the platelet lesion during storage. Materials and methods In this study, we analysed the morphological status and metabolic profile of platelets stored for various periods in autologous plasma enriched with increasing glucose concentrations (13.75, 27.5 and 55 mM). After 0, 2, 4, 6 and 8 days, high energy phosphates (ATP, GTP, ADP, AMP), oxypurines (hypoxanthine, xanthine, uric acid), lactate, pH, mitochondrial function, cell lysis and morphology, were evaluated. Results The data showed a significant dose-dependent improvement of the different parameters in platelets stored with increasing glucose, compared to what detected in controls. Interestingly, this phenomenon was more marked at the highest level of glucose tested and in the period of time generally used for platelet transfusion (0–6 days). Conclusion These results indicate that the addition of glucose during platelet storage ameliorates, in a dose-dependent manner, the biochemical parameters related to energy metabolism and mitochondrial function. Since there was no correspondence between glucose addition, lactate increase and pH decrease in our experiments, it is conceivable that platelet derangement during storage is not directly caused by glucose through an increase of anaerobic glycolysis, but rather to a loss of mitochondrial functions caused by reduced substrate availability. PMID:22682337

  2. Dasatinib inhibits the growth and survival of neoplastic human eosinophils (EOL-1) through targeting of FIP1L1-PDGFRalpha.

    PubMed

    Baumgartner, Christian; Gleixner, Karoline V; Peter, Barbara; Ferenc, Veronika; Gruze, Alexander; Remsing Rix, Lily L; Bennett, Keiryn L; Samorapoompichit, Puchit; Lee, Francis Y; Pickl, Winfried F; Esterbauer, Harald; Sillaber, Christian; Superti-Furga, Giulio; Valent, Peter

    2008-10-01

    Chronic eosinophilic leukemia (CEL) is a myeloproliferative disorder characterized by molecular and/or cytogenetic evidence of clonality of eosinophils, marked eosinophilia, and organ damage. In many patients, the transforming mutation FIP1L1-PDGFRalpha and the related CHIC2 deletion are found. The respective oncoprotein, FIP1L1-PDGFRalpha, is considered to play a major role in malignant cell growth in CEL. The tyrosine kinase (TK) inhibitor imatinib (STI571) has been described to counteract the TK activity of FIP1L1-PDGFRalpha in most patients. However, not all patients with CEL show a response to imatinib. Therefore, several attempts have been made to identify other TK inhibitors that counteract growth of neoplastic eosinophils. We provide evidence that dasatinib, a multi-targeted kinase inhibitor, blocks the growth and survival of EOL-1, an eosinophil leukemia cell line carrying FIP1L1-PDGFRalpha. The effects of dasatinib on proliferation of EOL-1 cells were dose-dependent, with an IC50 of 0.5 to 1 nM, which was found to be in the same range when compared to IC50 values produced with imatinib. Dasatinib was also found to induce apoptosis in EOL-1 cells in a dose-dependent manner (IC50: 1-10 nM). The apoptosis-inducing effects of dasatinib on EOL-1 cells were demonstrable by light microscopy, flow cytometry, and in a TUNEL assay. In Western blot experiments, dasatinib completely blocked the phosphorylation of FIP1L1-PDGFRalpha in EOL-1 cells. Dasatinib inhibits the growth of leukemic eosinophils through targeting of the disease-related oncoprotein FIP1L1-PDGFRalpha. Based on this observation, dasatinib may be considered as a new interesting treatment option for patients with CEL.

  3. The acute effects of cannabinoids on memory in humans: a review.

    PubMed

    Ranganathan, Mohini; D'Souza, Deepak Cyril

    2006-11-01

    Cannabis is one of the most frequently used substances. Cannabis and its constituent cannabinoids are known to impair several aspects of cognitive function, with the most robust effects on short-term episodic and working memory in humans. A large body of the work in this area occurred in the 1970s before the discovery of cannabinoid receptors. Recent advances in the knowledge of cannabinoid receptors' function have rekindled interest in examining effects of exogenous cannabinoids on memory and in understanding the mechanism of these effects. The literature about the acute effects of cannabinoids on memory tasks in humans is reviewed. The limitations of the human literature including issues of dose, route of administration, small sample sizes, sample selection, effects of other drug use, tolerance and dependence to cannabinoids, and the timing and sensitivity of psychological tests are discussed. Finally, the human literature is discussed against the backdrop of preclinical findings. Acute administration of Delta-9-THC transiently impairs immediate and delayed free recall of information presented after, but not before, drug administration in a dose- and delay-dependent manner. In particular, cannabinoids increase intrusion errors. These effects are more robust with the inhaled and intravenous route and correspond to peak drug levels. This profile of effects suggests that cannabinoids impair all stages of memory including encoding, consolidation, and retrieval. Several mechanisms, including effects on long-term potentiation and long-term depression and the inhibition of neurotransmitter (GABA, glutamate, acetyl choline, dopamine) release, have been implicated in the amnestic effects of cannabinoids. Future research in humans is necessary to characterize the neuroanatomical and neurochemical basis of the memory impairing effects of cannabinoids, to dissect out their effects on the various stages of memory and to bridge the expanding gap between the humans and preclinical literature.

  4. Blockage of epithelial to mesenchymal transition and upregulation of let 7b are critically involved in ursolic acid induced apoptosis in malignant mesothelioma cell

    PubMed Central

    Sohn, Eun Jung; Won, Gunho; Lee, Jihyun; Yoon, Sang Wook; Lee, Ilho; Kim, Hee Jeong; Kim, Sung-Hoon

    2016-01-01

    Malignant pleural mesothelioma (MPN), which is caused by asbestos exposure, is one of aggressive lung tumors. In the present study, we elucidated the anti-tumor mechanism of ursolic acid in malignant mesotheliomas. Ursolic acid significantly exerted cytotoxicity in a time and dose dependent manner in H28, H2452 and MSTO-211H mesothelioma cells and inhibited cell proliferation by colony formation assay in a dose-dependent fashion. Also, ursolic acid treatment accumulated the sub-G1 population, attenuated the expression of procapase 9, cyclin D1, pAKT, p-glycogen synthase kinase 3-alpha/beta (pGSK3α/β), β-catenin and nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB) and also cleaved caspase 3 and poly (ADP-ribose) polymerase (PARP) in mesothelioma cells. Furthermore, ursolic acid treatment blocked epithelial and mesenchymal transition (EMT) molecules by activating E-cadherin as an epithelial marker and attenuating Vimentin, and Twist as mesenchymal molecules. Interestingly, miRNA array revealed that 23 miRNAs (>2 folds) including let-7b and miRNA3613-5p, miRNA134 and miRNA196b were significantly upregulated while 33 miRNAs were downregulated in ursolic acid treated H2452 cells. Furthermore, overexpression of let 7b using let-7b mimics enhanced the antitumor effect of ursolic acid to attenuate the expression of procaspases 3, pro-PARP, pAKT, β-catenin and Twist and increase sub-G1 accumulation in H2452 mesothelioma cells. Overall, our findings suggest that ursolic acid induces apoptosis via inhibition of EMT and activation of let7b in mesothelioma cells as a potent chemotherapeutic agent for treatment of malignant mesotheliomas. PMID:28090191

  5. Gene expression profiling of immune-competent human cells exposed to engineered zinc oxide or titanium dioxide nanoparticles.

    PubMed

    Tuomela, Soile; Autio, Reija; Buerki-Thurnherr, Tina; Arslan, Osman; Kunzmann, Andrea; Andersson-Willman, Britta; Wick, Peter; Mathur, Sanjay; Scheynius, Annika; Krug, Harald F; Fadeel, Bengt; Lahesmaa, Riitta

    2013-01-01

    A comprehensive in vitro assessment of two commercial metal oxide nanoparticles, TiO2 and ZnO, was performed using human monocyte-derived macrophages (HMDM), monocyte-derived dendritic cells (MDDC), and Jurkat T cell leukemia-derived cell line. TiO2 nanoparticles were found to be non-toxic whereas ZnO nanoparticles caused dose-dependent cell death. Subsequently, global gene expression profiling was performed to identify transcriptional response underlying the cytotoxicity caused by ZnO nanoparticles. Analysis was done with doses 1 µg/ml and 10 µg/ml after 6 and 24 h of exposure. Interestingly, 2703 genes were significantly differentially expressed in HMDM upon exposure to 10 µg/ml ZnO nanoparticles, while in MDDCs only 12 genes were affected. In Jurkat cells, 980 genes were differentially expressed. It is noteworthy that only the gene expression of metallothioneins was upregulated in all the three cell types and a notable proportion of the genes were regulated in a cell type-specific manner. Gene ontology analysis revealed that the top biological processes disturbed in HMDM and Jurkat cells were regulating cell death and growth. In addition, genes controlling immune system development were affected. Using a panel of modified ZnO nanoparticles, we obtained an additional support that the cellular response to ZnO nanoparticles is largely dependent on particle dissolution and show that the ligand used to modify ZnO nanoparticles modulates Zn(2+) leaching. Overall, the study provides an extensive resource of transcriptional markers for mediating ZnO nanoparticle-induced toxicity for further mechanistic studies, and demonstrates the value of assessing nanoparticle responses through a combined transcriptomics and bioinformatics approach.

  6. Gene Expression Profiling of Immune-Competent Human Cells Exposed to Engineered Zinc Oxide or Titanium Dioxide Nanoparticles

    PubMed Central

    Tuomela, Soile; Autio, Reija; Buerki-Thurnherr, Tina; Arslan, Osman; Kunzmann, Andrea; Andersson-Willman, Britta; Wick, Peter; Mathur, Sanjay; Scheynius, Annika; Krug, Harald F.; Fadeel, Bengt; Lahesmaa, Riitta

    2013-01-01

    A comprehensive in vitro assessment of two commercial metal oxide nanoparticles, TiO2 and ZnO, was performed using human monocyte-derived macrophages (HMDM), monocyte-derived dendritic cells (MDDC), and Jurkat T cell leukemia-derived cell line. TiO2 nanoparticles were found to be non-toxic whereas ZnO nanoparticles caused dose-dependent cell death. Subsequently, global gene expression profiling was performed to identify transcriptional response underlying the cytotoxicity caused by ZnO nanoparticles. Analysis was done with doses 1 µg/ml and 10 µg/ml after 6 and 24 h of exposure. Interestingly, 2703 genes were significantly differentially expressed in HMDM upon exposure to 10 µg/ml ZnO nanoparticles, while in MDDCs only 12 genes were affected. In Jurkat cells, 980 genes were differentially expressed. It is noteworthy that only the gene expression of metallothioneins was upregulated in all the three cell types and a notable proportion of the genes were regulated in a cell type-specific manner. Gene ontology analysis revealed that the top biological processes disturbed in HMDM and Jurkat cells were regulating cell death and growth. In addition, genes controlling immune system development were affected. Using a panel of modified ZnO nanoparticles, we obtained an additional support that the cellular response to ZnO nanoparticles is largely dependent on particle dissolution and show that the ligand used to modify ZnO nanoparticles modulates Zn2+ leaching. Overall, the study provides an extensive resource of transcriptional markers for mediating ZnO nanoparticle-induced toxicity for further mechanistic studies, and demonstrates the value of assessing nanoparticle responses through a combined transcriptomics and bioinformatics approach. PMID:23894303

  7. Comparing Apoptosis and Necrosis Effects of Arctium Lappa Root Extract and Doxorubicin on MCF7 and MDA-MB-231 Cell Lines

    PubMed Central

    Ghafari, Fereshteh; Rajabi, Mohammad Reza; Mazoochi, Tahereh; Taghizadeh, Mohsen; Nikzad, Hossein; Atlasi, Mohammad Ali; Taherian, Aliakbar

    2017-01-01

    Objective: Breast cancer is a heterogeneous disease and very common malignancy in women worldwide. The efficacy of chemotherapy as an important part of breast cancer treatment is limited due to its side effects. While pharmaceutical companies are looking for better chemicals, research on traditional medicines that generally have fewer side effects is quite interesting. In this study, apoptosis and necrosis effect of Arctium lappa and doxorubicin was compared in MCF7, and MDA-MB-231 cell lines. Materials and Methods: MCF7 and MDA-MB-231 cells were cultured in RPMI 1640 containing 10% FBS and 100 U/ml penicillin/streptomycin. MTT assay and an annexin V/propidium iodide (AV/PI) kit were used respectively to compare the survival rate and apoptotic effects of different concentrations of doxorubicin and Arctium lappa root extract on MDA-MB-231 and MCF7 cells. Results: Arctium lappa root extract was able to reduce cell viability of the two cell lines in a dose and time dependent manner similar to doxorubicin. Flow cytometry results showed that similar to doxorubicin, Arctium Lappa root extract had a dose and time dependent apoptosis effect on both cell lines. 10µg/mL of Arctium lappa root extract and 5 µM of doxorubicin showed the highest anti-proliferative and apoptosis effect in MCF7 and MDA231 cells. Conclusion: The MCF7 (ER/PR-) and MDA-MB-231 (ER/PR+) cell lines represent two major breast cancer subtypes. The similar anti-proliferative and apoptotic effects of Arctium lappa root extract and doxorubicin (which is a conventional chemotherapy drug) on two different breast cancer cell lines strongly suggests its anticancer effects and further studies. PMID:28441789

  8. Comparing Apoptosis and Necrosis Effects of Arctium Lappa Root Extract and Doxorubicin on MCF7 and MDA-MB-231 Cell Lines

    PubMed

    Ghafari, Fereshteh; Rajabi, Mohammad Reza; Mazoochi, Tahereh; Taghizadeh, Mohsen; Nikzad, Hossein; Atlasi, Mohammad Ali; Taherian, Aliakbar

    2017-03-01

    Objective: Breast cancer is a heterogeneous disease and very common malignancy in women worldwide. The efficacy of chemotherapy as an important part of breast cancer treatment is limited due to its side effects. While pharmaceutical companies are looking for better chemicals, research on traditional medicines that generally have fewer side effects is quite interesting. In this study, apoptosis and necrosis effect of Arctium lappa and doxorubicin was compared in MCF7, and MDA-MB-231 cell lines. Materials and Methods: MCF7 and MDA-MB-231 cells were cultured in RPMI 1640 containing 10% FBS and 100 U/ml penicillin/streptomycin. MTT assay and an annexin V/propidium iodide (AV/PI) kit were used respectively to compare the survival rate and apoptotic effects of different concentrations of doxorubicin and Arctium lappa root extract on MDA-MB-231 and MCF7 cells. Results: Arctium lappa root extract was able to reduce cell viability of the two cell lines in a dose and time dependent manner similar to doxorubicin. Flow cytometry results showed that similar to doxorubicin, Arctium Lappa root extract had a dose and time dependent apoptosis effect on both cell lines. 10μg/mL of Arctium lappa root extract and 5 μM of doxorubicin showed the highest anti-proliferative and apoptosis effect in MCF7 and MDA231 cells. Conclusion: The MCF7 (ER/PR-) and MDA-MB-231 (ER/PR+) cell lines represent two major breast cancer subtypes. The similar anti-proliferative and apoptotic effects of Arctium lappa root extract and doxorubicin (which is a conventional chemotherapy drug) on two different breast cancer cell lines strongly suggests its anticancer effects and further studies. Creative Commons Attribution License

  9. Novel nootropic drug sunifiram enhances hippocampal synaptic efficacy via glycine-binding site of N-methyl-D-aspartate receptor.

    PubMed

    Moriguchi, Shigeki; Tanaka, Tomoya; Narahashi, Toshio; Fukunaga, Kohji

    2013-10-01

    Sunifiram is a novel pyrrolidone nootropic drug structurally related to piracetam, which was developed for neurodegenerative disorder like Alzheimer's disease. Sunifiram is known to enhance cognitive function in some behavioral experiments such as Morris water maze task. To address question whether sunifiram affects N-methyl-D-aspartate receptor (NMDAR)-dependent synaptic function in the hippocampal CA1 region, we assessed the effects of sunifiram on NMDAR-dependent long-term potentiation (LTP) by electrophysiology and on phosphorylation of synaptic proteins by immunoblotting analysis. In mouse hippocampal slices, sunifiram at 10-100 nM significantly enhanced LTP in a bell-shaped dose-response relationship which peaked at 10 nM. The enhancement of LTP by sunifiram treatment was inhibited by 7-chloro-kynurenic acid (7-ClKN), an antagonist for glycine-binding site of NMDAR, but not by ifenprodil, an inhibitor for polyamine site of NMDAR. The enhancement of LTP by sunifilam was associated with an increase in phosphorylation of α-amino-3-hydroxy-5-methylisozazole-4-propionate receptor (AMPAR) through activation of calcium/calmodulin-dependent protein kinase II (CaMKII) and an increase in phosphorylation of NMDAR through activation of protein kinase Cα (PKCα). Sunifiram treatments at 1-1000 nM increased the slope of field excitatory postsynaptic potentials (fEPSPs) in a dose-dependent manner. The enhancement was associated with an increase in phosphorylation of AMPAR receptor through activation of CaMKII. Interestingly, under the basal condition, sunifiram treatments increased PKCα (Ser-657) and Src family (Tyr-416) activities with the same bell-shaped dose-response curve as that of LTP peaking at 10 nM. The increase in phosphorylation of PKCα (Ser-657) and Src (Tyr-416) induced by sunifiram was inhibited by 7-ClKN treatment. The LTP enhancement by sunifiram was significantly inhibited by PP2, a Src family inhibitor. Finally, when pretreated with a high concentration of glycine (300 μM), sunifiram treatments failed to potentiate LTP in the CA1 region. Taken together, sunifiram stimulates the glycine-binding site of NMDAR with concomitant PKCα activation through Src kinase. Enhancement of PKCα activity triggers to potentiate hippocampal LTP through CaMKII activation. Copyright © 2013 Wiley Periodicals, Inc.

  10. Intracellular Networks of the PI3K/AKT and MAPK Pathways for Regulating Toxoplasma gondii-Induced IL-23 and IL-12 Production in Human THP-1 Cells

    PubMed Central

    Choi, In-Wook; Ismail, Hassan Ahmed Hassan Ahmed; Zhou, Wei; Cha, Guang-Ho; Zhou, Yu; Yuk, Jae-Min; Jo, Eun-Kyeong; Lee, Young-Ha

    2015-01-01

    Interleukin (IL)-23 and IL-12 are closely related in structure, and these cytokines regulate both innate and adaptive immunity. However, the precise signaling networks that regulate the production of each in Toxoplasma gondii-infected THP-1 monocytic cells, particularly the PI3K/AKT and MAPK signaling pathways, remain unknown. In the present study, T. gondii infection upregulated the expression of IL-23 and IL-12 in THP-1 cells, and both cytokines increased with parasite dose. IL-23 secretion was strongly inhibited by TLR2 monoclonal antibody (mAb) treatment in a dose-dependent manner and by TLR2 siRNA transfection, whereas IL-12 secretion was strongly inhibited by TLR4 mAb treatment dose-dependently and by TLR4 siRNA transfection. IL-23 production was dose-dependently inhibited by the PI3K inhibitors LY294002 and wortmannin, whereas IL-12 production increased dose-dependently. THP-1 cells exposed to live T. gondii tachyzoites underwent rapid p38 MAPK, ERK1/2 and JNK activation. IL-23 production was significantly upregulated by the p38 MAPK inhibitor SB203580 dose-dependently, whereas pretreatment with 10 μM SB203580 significantly downregulated IL-12 production. ERK1/2 inhibition by PD98059 was significantly downregulated IL-23 production but upregulated IL-12 production. JNK inhibition by SP600125 upregulated IL-23 production, but IL-12 production was significantly downregulated dose-dependently. T. gondii infection resulted in AKT activation, and AKT phosphorylation was inhibited dose-dependently after pretreatment with PI3K inhibitors. In T. gondii-infected THP-1 cells, ERK1/2 activation was regulated by PI3K; however, the phosphorylation of p38 MAPK and JNK was negatively modulated by the PI3K signaling pathway. Collectively, these results indicate that IL-23 production in T. gondii-infected THP-1 cells was regulated mainly by TLR2 and then by PI3K and ERK1/2; however, IL-12 production was mainly regulated by TLR4 and then by p38 MAPK and JNK. Our findings provide new insight concerning the intracellular networks of the PI3K/AKT and MAPK signaling cascades for regulating T. gondii-induced IL-23 and IL-12 secretion in human monocytic cells. PMID:26528819

  11. Oral administration of leaf extracts of Momordica charantia affect reproductive hormones of adult female Wistar rats

    PubMed Central

    Adewale, Osonuga Odusoga; Oduyemi, Osonuga Ifabunmi; Ayokunle, Osonuga

    2014-01-01

    Objective To determine the effect of graded doses of aqueous leaf extracts of Momordica charantia on fertility hormones of female albino rats. Methods Twenty adult, healthy, female Wistar rats were divided into four groups: low dose (LD), moderate dose (MD) and high dose (HD) groups which received 12.5 g, 25.0 g, 50.0 g of the leaf extract respectively and control group that was given with water ad libatum. Result Estrogen levels reduced by 6.40 nmol/L, 10.80 nmol/L and 28.00 nmol/L in the LD, MD and HD groups respectively while plasma progesterone of rats in the LD, MD and HD groups reduced by 24.20 nmol/L, 40.8 nmol/L and 59.20 nmol/L respectively. Conclusion Our study has shown that the antifertility effect of Momordica charantia is achieved in a dose dependent manner. Hence, cautious use of such medication should be advocated especially when managing couples for infertility. PMID:25183143

  12. Sodium Iodate Selectively Injuries the Posterior Pole of the Retina in a Dose-Dependent Manner: Morphological and Electrophysiological Study

    PubMed Central

    Machalińska, Anna; Lubiński, Wojciech; Kłos, Patrycja; Kawa, Miłosz; Baumert, Bartłomiej; Penkala, Krzysztof; Grzegrzółka, Ryszard; Karczewicz, Danuta; Wiszniewska, Barbara

    2010-01-01

    Sequential morphological and functional features of retinal damage in mice exposed to different doses (40 vs. 20 mg/kg) of sodium iodate (NaIO3) were analyzed. Retinal morphology, apoptosis (TUNEL assay), and function (electroretinography; ERG) were examined at several time points after NaIO3 administration. The higher dose of NaIO3 caused progressive degeneration of the whole retinal area and total suppression of scotopic and photopic ERG. In contrast, the lower dose induced much less severe degeneration in peripheral part of retina along with a moderate decline of b- and a-wave amplitudes in ERG, corroborating the presence of regions within retina that retain their function. The peak of photoreceptor apoptosis was found on the 3rd day, but the lower dose induced more intense reaction within the central retina than in its peripheral region. In conclusion, these results indicate that peripheral area of the retina reveals better resistance to NaIO3 injury than its central part. PMID:20725778

  13. Angiotensin I- and II- and norepinephrine-mediated pressor responses in an ancient holostean fish, the bowfin (Amia calva).

    PubMed

    Butler, D G; Oudit, G Y; Cadinouche, M Z

    1995-06-01

    Dorsal aortic blood pressure (PSYS, systolic; PDIAS, diastolic; and PDA, mean) and heart rate (HR) were measured in resting freshwater bowfins (n = 6), Amia calva L., before and after i.v. injections of 50, 100, 200, 500, and 1000 ng.kg-1 of synthetic [Asn1, Val5]-angiotensin II (ANG II). Baseline PSYS, PDIAS, and PDA were 27.7 +/- 2.8, 22.4 +/- 1.8, and 24.5 +/- 2 mm Hg, respectively. Bowfins were only moderately responsive to ANG II in a stepwise manner and the increase in blood pressure became significant only at the two highest doses; lower doses tended only to increase arterial pressure. Pressor responses due to 200 and 500 ng.kg-1 decayed over a greater time period compared with other doses. alpha-Adrenergic blockade abolished 70% of the ANG II-mediated pressor responses. Eel, salmon, and goosefish angiotensin I (ANG I; 500 ng.kg-1) elicited similar vasopressor responses (magnitude and time course) which were eliminated by prior angiotensin converting enzyme inhibition (captopril; 2-10 mg.kg-1). Bullfrog ANG I evoked a pressor effect, only at a higher dose (5000 ng.kg-1). Consecutive norepinephrine (NE) injections (100, 200, 500, and 1000 ng.kg-1) increased PSYS, PDIAS, and PDA in a dose-dependent manner which was dependent on alpha-adrenoceptors since phentolamine (1-3 mg.kg-1) abolished 80% of the pressor action of NE. PSYS was elevated by 100 ng.kg-1 of NE but PDIAS and PDA were significantly increased only at 200 ng.kg-1 ANG II and NE had no measurable chronotropic effect and resting HR (27.2 +/- 0.8 beats.min-1) was unchanged. Captopril and phentolamine treatments produced rapid hypotension and bradycardia (25-30%) which lasted from 15 to 30 and 20 to 40 min, respectively. The rising and decreasing phases of the NE-mediated pressor responses had shorter durations than ANG II effects. Tachyphylaxis occurred with the high doses of ANG II and NE. The data show that in the ancient bowfin, which evidently lacks renal juxtaglomerular cells, the cardiovascular system can be regulated by the renin-angiotensin system and NE.

  14. Intervention effect and dose-dependent response of tanreqing injection on airway inflammation in lipopolysaccharide-induced rats.

    PubMed

    Dong, Shoujin; Zhong, Yunqing; Yang, Kun; Xiong, Xiaoling; Mao, Bing

    2013-08-01

    To assess the effect of Tanreqing injection on airway inflammation in rats. A rat model of airway inflammation was generated with lipopolysaccharide (LPS). Tanreqing injection was given by intratracheal instillation, and bronchoalveolar lavage fluid (BALF) from the right lung was collected. BALF total cell and neutrophil counts were then determined. In addition, BALF levels of inflammatory cytokines interleukin-13, cytokine-induced neutrophil chemoat-tractant-1, and tumor necrosis factor-alpha were measured using enzyme linked immunosorbent assay. The middle lobe of the right lung was stained with hematoxylin-eosin and histological changes examined. LPS increased airway inflammation, decreased BALF inflammatory cell count, inflammatory cytokine levels, and suppressed leukocyte influx of the lung. The LPS-induced airway inflammation peaked at 24 h, decreased beginning at 48 h, and had decreased markedly by 96 h. Tanreqing injection contains anti-inflammatory properties, and inhibits airway inflammation in a dose-dependent manner.

  15. Ethanol inhibits human bone cell proliferation and function in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friday, K.E.; Howard, G.A.

    1991-06-01

    The direct effects of ethanol on human bone cell proliferation and function were studied in vitro. Normal human osteoblasts from trabecular bone chips were prepared by collagenase digestion. Exposure of these osteoblasts to ethanol in concentrations of 0.05% to 1% for 22 hours induced a dose-dependent reduction in bone cell DNA synthesis as assessed by incorporation of 3H-thymidine. After 72 hours of ethanol exposure in concentrations of 0.01% to 1%, protein synthesis as measured by 3H-proline incorporation into trichbroacetic acid (TCA)-precipitable material was reduced in a dose-dependent manner. Human bone cell protein concentrations and alkaline phosphatase total activity were significantlymore » reduced after exposure to 1% ethanol for 72 hours, but not with lower concentrations of ethanol. This reduction in osteoblast proliferation and activity may partially explain the development of osteopenia in humans consuming excessive amounts of ethanol.« less

  16. Discovery and evaluation of novel anti-inflammatory derivatives of natural bioactive curcumin

    PubMed Central

    Zhang, Yali; Jiang, Xin; Peng, Kesong; Chen, Chengwei; Fu, Lili; Wang, Zhe; Feng, Jianpeng; Liu, Zhiguo; Zhang, Huajie; Liang, Guang; Pan, Zheer

    2014-01-01

    Curcumin is a natural active product that has various pharmacological activities such as anti-inflammatory effects. Here, we report the synthesis and evaluation of 34 monocarbonyl curcumin analogs as novel anti-inflammatory agents. Among the analogs, the symmetrical heterocyclic type displayed the strongest inhibition of lipopolysaccharide (LPS)-stimulated expression of pro-inflammatory cytokines in macrophages. Analogs S1–S5 and AS29 reduced tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) production in a dose-dependent manner and also displayed excellent stability and low cytotoxicity in vitro. In addition, analog S1 dose-dependently inhibited LPS-induced extracellular signal-regulated kinase (ERK) phosphorylation. Furthermore, analogs S1 and S4 displayed a significant protective effect on LPS-induced septic death in mouse models, with 40% and 50% survival rates, respectively. These data demonstrate that the heterocyclic monocarbonyl curcumin analogs have potential therapeutic effects in acute inflammatory diseases. PMID:25395833

  17. Influence of hyaluronic acid on bacterial and fungal species, including clinically relevant opportunistic pathogens.

    PubMed

    Ardizzoni, Andrea; Neglia, Rachele G; Baschieri, Maria C; Cermelli, Claudio; Caratozzolo, Manuela; Righi, Elena; Palmieri, Beniamino; Blasi, Elisabetta

    2011-10-01

    Hyaluronic acid (HA) has several clinical applications (aesthetic surgery, dermatology, orthopaedics and ophtalmology). Following recent evidence, suggesting antimicrobial and antiviral properties for HA, we investigated its effects on 15 ATCC strains, representative of clinically relevant bacterial and fungal species. The in vitro system employed allowed to assess optical density of broth cultures as a measure of microbial load in a time-dependent manner. The results showed that different microbial species and, sometimes, different strains belonging to the same species, are differently affected by HA. In particular, staphylococci, enterococci, Streptococcus mutans, two Escherichia coli strains, Pseudomonas aeruginosa, Candida glabrata and C. parapsilosis displayed a HA dose-dependent growth inhibition; no HA effects were detected in E. coli ATCC 13768 and C. albicans; S. sanguinis was favoured by the highest HA dose. Therefore, the influence of HA on bacteria and fungi warrants further studies aimed at better establishing its relevance in clinical applications.

  18. Erufosine simultaneously induces apoptosis and autophagy by modulating the Akt-mTOR signaling pathway in oral squamous cell carcinoma.

    PubMed

    Kapoor, Vaishali; Zaharieva, Maya M; Das, Satya N; Berger, Martin R

    2012-06-01

    We investigated the anticancer activity of erufosine in oral squamous carcinoma cell lines in terms of cell proliferation, colony formation, induction of autophagy/apoptosis, cell cycle and mTOR signaling pathway. Erufosine showed dose-dependent cytotoxicity in all cell lines, it induced autophagy as well as apoptosis, G2 cell cycle arrest and modulation of cyclin D1 expression. Further erufosine downregulated the phosphorylation of major components of mTOR pathway, like p-Akt at Ser473 and Thr308 residues, p-Raptor, p-mTOR, p-PRAS40 and its downstream substrates p-p70S6K and p-4EBP1 in a dose-dependent manner. The pre-treatment of tumor cells with p-mTOR siRNA increased cytotoxic effects of erufosine comparable to cisplatin but higher than rapamycin. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. Exposure-dependent incorporation of trifluridine into DNA of tumors and white blood cells in tumor-bearing mouse.

    PubMed

    Yamashita, Fumiaki; Komoto, Ikumi; Oka, Hiroaki; Kuwata, Keizo; Takeuchi, Mayuko; Nakagawa, Fumio; Yoshisue, Kunihiro; Chiba, Masato

    2015-08-01

    Trifluridine (TFT) is an antitumor component of a novel nucleoside antitumor agent, TAS-102, which consists of TFT and tipiracil hydrochloride (thymidine phosphorylase inhibitor). Incorporation of TFT into DNA is a probable mechanism of antitumor activity and hematological toxicity. The objective of this study was to examine the TFT incorporation into tumor- and white blood cell-DNA, and to elucidate the mechanism of TFT-related effect and toxicity. TFT effect on the colony formation of mouse bone marrow cells was also investigated. Pharmacokinetics of TFT was determined in nude mice after single oral administration of TAS-102, while the antitumor activity and body weight change were evaluated in the tumor-bearing nude mice after multiple oral administrations for 2 weeks. TFT concentrations in the blood- and tumor-DNA were determined by LC/MS/MS. The colony formation was evaluated by CFU-GM assay. TFT systemic exposure in plasma increased dose-dependently. The tumor growth rate and body weight gain decreased dose-dependently, but TFT concentrations in the DNA of tumor tissues and white blood cells increased dose-dependently. TFT inhibited colony formation of bone marrow cells in a concentration-dependent manner. A significant relationship between systemic exposure of TFT and pharmacological effects including the antitumor activity and body weight change was well explained by the TFT incorporation into DNA. TFT inhibited proliferations of mouse bone marrow cells and human colorectal carcinoma cells implanted to nude mice dose-dependently. The highest tolerable TFT exposure provides the highest antitumor activity, and the hematological toxicity may serve as a potential surrogate indicator of TAS-102 efficacy.

  20. Dexamethasone Enhances 1α,25-Dihydroxyvitamin D3 Effects by Increasing Vitamin D Receptor Transcription*

    PubMed Central

    Hidalgo, Alejandro A.; Deeb, Kristin K.; Pike, J. Wesley; Johnson, Candace S.; Trump, Donald L.

    2011-01-01

    Calcitriol, the active form of vitamin D, in combination with the glucocorticoid dexamethasone (Dex) has been shown to increase the antitumor effects of calcitriol in squamous cell carcinoma. In this study we found that pretreatment with Dex potentiates calcitriol effects by inhibiting cell growth and increasing vitamin D receptor (VDR) and VDR-mediated transcription. Treatment with actinomycin D inhibits Vdr mRNA synthesis, indicating that Dex regulates VDR expression at transcriptional level. Real time PCR shows that treatment with Dex increases Vdr transcripts in a time- and a dose-dependent manner, indicating that Dex directly regulates expression of Vdr. RU486, an inhibitor of glucocorticoids, inhibits Dex-induced Vdr expression. In addition, the silencing of glucocorticoid receptor (GR) abolishes the induction of Vdr by Dex, indicating that Dex increases Vdr transcripts in a GR-dependent manner. A fragment located 5.2 kb upstream of Vdr transcription start site containing two putative glucocorticoid response elements (GREs) was evaluated using a luciferase-based reporter assay. Treatment with 100 nm Dex induces transcription of luciferase driven by the fragment. Deletion of the GRE distal to transcription start site was sufficient to abolish Dex induction of luciferase. Also, chromatin immunoprecipitation reveals recruitment of GR to distal GRE with Dex treatment. We conclude that Dex increases VDR and vitamin D effects by increasing Vdr de novo transcription in a GR-dependent manner. PMID:21868377

  1. Analgesic activity of ZC88, a novel N-type voltage-dependent calcium channel blocker, and its modulation of morphine analgesia, tolerance and dependence.

    PubMed

    Meng, Ge; Wu, Ning; Zhang, Cheng; Su, Rui-Bin; Lu, Xin-Qiang; Liu, Yin; Yun, Liu-Hong; Zheng, Jian-Quan; Li, Jin

    2008-05-31

    ZC88 is a novel non-peptide N-type voltage-sensitive calcium channel blocker synthesized by our institute. In the present study, the oral analgesic activity of ZC88 in animal models of acute and neuropathic pain, and functional interactions between ZC88 and morphine in terms of analgesia, tolerance and dependence were investigated. In mice acetic acid writhing tests, ZC88 (10-80 mg/kg) administered by oral route showed significant antinociceptive effects in a dose-dependent manner. The ED50 values of ZC88 were 14.5 and 14.3 mg/kg in male and female mice, respectively. In sciatic nerve chronic constriction injury rats, mechanical allodynia was ameliorated by oral administration of ZC88 at doses of 14, 28 and 56 mg/kg, suggesting ZC88 relieved allodynic response of neuropathic pain. When concurrently administered with morphine, ZC88 (20-80 mg/kg) dose-dependently potentiated morphine analgesia and attenuated morphine analgesic tolerance in hot-plate tests. ZC88 also prevented chronic exposure to morphine-induced physical dependence and withdrawal, but not morphine-induced psychological dependence in conditioned place preference model. These results suggested that ZC88, a new non-peptide N-type calcium channel blocker, had notable oral analgesia and anti-allodynia for acute and neuropathic pain. ZC88 might be used in pain relief by either application alone or in combination with opioids because it enhanced morphine analgesia while prevented morphine-induced tolerance and physical dependence.

  2. Bioactive Compounds from Posidonia oceanica (L.) Delile Impair Malignant Cell Migration through Autophagy Modulation

    PubMed Central

    Leri, Manuela; Vasarri, Marzia; Peri, Sara; Barletta, Emanuela; Pretti, Carlo; Degl’Innocenti, Donatella

    2018-01-01

    Posidonia oceanica (L.) Delile is a marine plant with interesting biological properties potentially ascribed to the synergistic combination of bioactive compounds. Our previously described extract, obtained from the leaves of P. oceanica, showed the ability to impair HT1080 cell migration by targeting both expression and activity of gelatinases. Commonly, the lack of knowledge about the mechanism of action of phytocomplexes may be an obstacle regarding their therapeutic use and development. The aim of this study was to gain insight into the molecular signaling through which such bioactive compounds impact on malignant cell migration and gelatinolytic activity. The increase in autophagic vacuoles detected by confocal microscopy suggested an enhancement of autophagy in a time and dose dependent manner. This autophagy activation was further confirmed by monitoring pivotal markers of autophagy signaling as well as by evidencing an increase in IGF-1R accumulation on cell membranes. Taken together, our results confirm that the P. oceanica phytocomplex is a promising reservoir of potent and cell safe molecules able to defend against malignancies and other diseases in which gelatinases play a major role in progression. In conclusion, the attractive properties of this phytocomplex may be of industrial interest in regard to the development of novel health-promoting and pharmacological products for the treatment or prevention of several diseases. PMID:29690502

  3. Salicortin inhibits osteoclast differentiation and bone resorption by down-regulating JNK and NF-κB/NFATc1 signaling pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nie, Shaobo; Xu, Jiawei; Zhang, Chenghua

    Receptor activator of nuclear factor (NF)-κB ligand (RANKL)-activated signaling is essential for osteoclast differentiation, activation, and survival. Salicortin is a phenolic glycoside that has been isolated from many plants such as Populus and Salix species, and has been shown to have anti-amnesic and anti-adipogenic effects. In this study, we investigated the effect of salicortin on RANKL-induced osteoclasts formation, bone resorption, and activation of osteoclast-related signaling pathways. Salicortin suppressed RANKL-induced osteoclastogenesis in bone marrow macrophage cultures in a dose-dependent manner, and inhibited osteoclastic bone resorption activity without any cytotoxicity. Salicortin inhibited RANKL-induced c-Jun N-terminal kinase and NF-κB activation, concomitant with retardedmore » IκBα phosphorylation and inhibition of p65 nuclear translocation, leading to impaired transcription of nuclear factor of activated T cells c1 (NFATc1) and expression of osteoclastic-specific genes. Taken together, our findings demonstrate that salicortin inhibits NF-κB and NFATc1 activation, leading to attenuation of osteoclastogenesis and bone resorption. Thus, salicortin may be of interest in developments of treatment for osteoclast related diseases. - Highlights: • Salicortin suppresses osteoclastogenesis in vitro. • Salicortin impairs the JNK and NF-κB/NFATc1 signaling pathway. • Salicortin may be of interest in developments of osteoporosis treatment.« less

  4. MAP30 promotes apoptosis of U251 and U87 cells by suppressing the LGR5 and Wnt/β-catenin signaling pathway, and enhancing Smac expression

    PubMed Central

    Jiang, Yilin; Miao, Junjie; Wang, Dongliang; Zhou, Jingru; Liu, Bo; Jiao, Feng; Liang, Jiangfeng; Wang, Yangshuo; Fan, Cungang; Zhang, Qingjun

    2018-01-01

    Significant antitumor activity of Momordica anti-human immunodeficiency virus protein of 30 kDa (MAP30) purified from Momordica charantia has been the subject of previous research. However, the effective mechanism of MAP30 on malignant glioma cells has not yet been clarified. The aim of the present study was to investigate the effects and mechanism of MAP30 on U87 and U251 cell lines. A Cell Counting Kit-8 assay, wound healing assay and Transwell assay were used to detect the effects on U87 and U251 cells treated with different concentrations of MAP30 (0.5, 1, 2, 4, 8 and 16 µM) over different periods of time. Proliferation, migration and invasion of each cell line were markedly inhibited by MAP30 in a dose- and time-dependent manner. Flow cytometry and fluorescence staining demonstrated that apoptosis increased and the cell cycle was arrested in S-phase in the two investigated cell lines following MAP30 treatment. Western blot analysis demonstrated that leucine-rich-repeat-containing G-protein-coupled receptor 5 (LGR5) expression and key proteins in the Wnt/β-catenin signaling pathway were apparently decreased, whereas second mitochondria-derived activator of caspase (Smac) protein expression significantly increased with MAP30 treatment in the same manner. These results suggest that MAP30 markedly induces apoptosis in U87 and U251 cell lines by suppressing LGR5 and the Wnt/β-catenin signaling pathway, and enhancing Smac expression in a dose- and time-dependent manner. PMID:29556310

  5. Augmenter of Liver Regeneration (alr) Promotes Liver Outgrowth during Zebrafish Hepatogenesis

    PubMed Central

    Li, Yan; Farooq, Muhammad; Sheng, Donglai; Chandramouli, Chanchal; Lan, Tian; Mahajan, Nilesh K.; Kini, R. Manjunatha; Hong, Yunhan; Lisowsky, Thomas; Ge, Ruowen

    2012-01-01

    Augmenter of Liver Regeneration (ALR) is a sulfhydryl oxidase carrying out fundamental functions facilitating protein disulfide bond formation. In mammals, it also functions as a hepatotrophic growth factor that specifically stimulates hepatocyte proliferation and promotes liver regeneration after liver damage or partial hepatectomy. Whether ALR also plays a role during vertebrate hepatogenesis is unknown. In this work, we investigated the function of alr in liver organogenesis in zebrafish model. We showed that alr is expressed in liver throughout hepatogenesis. Knockdown of alr through morpholino antisense oligonucleotide (MO) leads to suppression of liver outgrowth while overexpression of alr promotes liver growth. The small-liver phenotype in alr morphants results from a reduction of hepatocyte proliferation without affecting apoptosis. When expressed in cultured cells, zebrafish Alr exists as dimer and is localized in mitochondria as well as cytosol but not in nucleus or secreted outside of the cell. Similar to mammalian ALR, zebrafish Alr is a flavin-linked sulfhydryl oxidase and mutation of the conserved cysteine in the CxxC motif abolishes its enzymatic activity. Interestingly, overexpression of either wild type Alr or enzyme-inactive AlrC131S mutant promoted liver growth and rescued the liver growth defect of alr morphants. Nevertheless, alr C131S is less efficacious in both functions. Meantime, high doses of alr MOs lead to widespread developmental defects and early embryonic death in an alr sequence-dependent manner. These results suggest that alr promotes zebrafish liver outgrowth using mechanisms that are dependent as well as independent of its sulfhydryl oxidase activity. This is the first demonstration of a developmental role of alr in vertebrate. It exemplifies that a low-level sulfhydryl oxidase activity of Alr is essential for embryonic development and cellular survival. The dose-dependent and partial suppression of alr expression through MO-mediated knockdown allows the identification of its late developmental role in vertebrate liver organogenesis. PMID:22292055

  6. Efficiency of photodynamic therapy using indocyanine green and infrared light on MCF-7 breast cancer cells in vitro

    NASA Astrophysics Data System (ADS)

    Ruhi, Mustafa K.; Ak, Ayşe.; Gülsoy, Murat

    2016-03-01

    Cancer is one of the main reasons of death in all around the world. The main treatments of cancer include surgical intervention, radiation therapy and chemotherapy. These treatments can be applied separately or in a combined manner. Another therapeutic method that is still being researched and recently has started to be used in clinical applications is Photodynamic Therapy (PDT). Most photosensitizers currently being investigated are sensitive to red light. However, it is known that infrared light has a better penetration into the skin or tissue. Indocyanine Green (ICG), which is used in this study, is sensitive to infrared light. The aim of this in vitro study is to investigate the effect of PDT on breast cancer cells by using different doses of ICG and infrared light irradiation. 25, 50 and 100 μM ICG concentrations and 25 and 50 J/cm2 laser energy doses were applied to MCF-7 cell lines. MTT analyses were performed on 24, 48 and 72 hours following the treatments. As a result, inhibition of cell viability was observed in a time and dose dependent manner. It can be concluded that ICG-PDT application is a good alternative to conventional radiation therapy and chemotherapy for breast cancer treatment.

  7. Leucine facilitates insulin signaling through a Gαi protein-dependent signaling pathway in hepatocytes.

    PubMed

    Yang, Xuefeng; Mei, Shuang; Wang, Xiaolei; Li, Xiang; Liu, Rui; Ma, Yan; Hao, Liping; Yao, Ping; Liu, Liegang; Sun, Xiufa; Gu, Haihua; Liu, Zhenqi; Cao, Wenhong

    2013-03-29

    In this study, we addressed the direct effect of leucine on insulin signaling. In investigating the associated mechanisms, we found that leucine itself does not activate the classical Akt- or ERK1/2 MAP kinase-dependent signaling pathways but can facilitate the insulin-induced phosphorylations of Akt(473) and ERK1/2 in a time- and dose-dependent manner in cultured hepatocytes. The leucine-facilitated insulin-induced phosphorylation of Akt at residue 473 was not affected by knocking down the key component of mTORC1 or -2 complexes but was blocked by inhibition of c-Src (PP2), PI3K (LY294002), Gαi protein (pertussis toxin or siRNA against Gαi1 gene, or β-arrestin 2 (siRNA)). Similarly, the leucine-facilitated insulin activation of ERK1/2 was also blunted by pertussis toxin. We further show that leucine facilitated the insulin-mediated suppression of glucose production and expression of key gluconeogenic genes in a Gαi1 protein-dependent manner in cultured primary hepatocytes. Together, these results show that leucine can directly facilitate insulin signaling through a Gαi protein-dependent intracellular signaling pathway. This is the first evidence showing that macronutrients like amino acid leucine can facilitate insulin signaling through G proteins directly.

  8. Leucine Facilitates Insulin Signaling through a Gαi Protein-dependent Signaling Pathway in Hepatocytes*

    PubMed Central

    Yang, Xuefeng; Mei, Shuang; Wang, Xiaolei; Li, Xiang; Liu, Rui; Ma, Yan; Hao, Liping; Yao, Ping; Liu, Liegang; Sun, Xiufa; Gu, Haihua; Liu, Zhenqi; Cao, Wenhong

    2013-01-01

    In this study, we addressed the direct effect of leucine on insulin signaling. In investigating the associated mechanisms, we found that leucine itself does not activate the classical Akt- or ERK1/2 MAP kinase-dependent signaling pathways but can facilitate the insulin-induced phosphorylations of Akt473 and ERK1/2 in a time- and dose-dependent manner in cultured hepatocytes. The leucine-facilitated insulin-induced phosphorylation of Akt at residue 473 was not affected by knocking down the key component of mTORC1 or -2 complexes but was blocked by inhibition of c-Src (PP2), PI3K (LY294002), Gαi protein (pertussis toxin or siRNA against Gαi1 gene, or β-arrestin 2 (siRNA)). Similarly, the leucine-facilitated insulin activation of ERK1/2 was also blunted by pertussis toxin. We further show that leucine facilitated the insulin-mediated suppression of glucose production and expression of key gluconeogenic genes in a Gαi1 protein-dependent manner in cultured primary hepatocytes. Together, these results show that leucine can directly facilitate insulin signaling through a Gαi protein-dependent intracellular signaling pathway. This is the first evidence showing that macronutrients like amino acid leucine can facilitate insulin signaling through G proteins directly. PMID:23404499

  9. Roles of crustacean hyperglycaemic hormone in ionic and metabolic homeostasis in the Christmas Island blue crab, Discoplax celeste.

    PubMed

    Turner, Lucy M; Webster, Simon G; Morris, Stephen

    2013-04-01

    There is a growing body of evidence implicating the involvement of crustacean hyperglycaemic hormone (CHH) in ionic homeostasis in decapod crustaceans. However, little is known regarding hormonally influenced osmoregulatory processes in terrestrial decapods. As many terrestrial decapods experience opposing seasonal demands upon ionoregulatory physiologies, we reasoned that these would make interesting models in which to study the effect of CHH upon these phenomena. In particular, those (tropical) species that also undergo seasonal migrations might be especially informative, as we know relatively little regarding the nature of CHHs in terrestrial decapods, and hormonally mediated responses to seasonal changes in metabolic demands might also be superimposed or otherwise integrated with those associated with ionic homeostasis. Using Discoplax celeste as a model crab that experiences seasonal extremes in water availability, and exhibits diurnal and migratory activity patterns, we identified two CHHs in the sinus gland. We biochemically characterised (cDNA cloning) one CHH and functionally characterised (in terms of dose-dependent hyperglycaemic responses and glucose-dependent negative feedback loops) both CHHs. Whole-animal in situ branchial chamber (22)NaCl perfusion experiments showed that injection of both CHHs increased gill Na(+) uptake in a seasonally dependent manner, and (51)Cr-EDTA clearance experiments demonstrated that CHH increased urine production by the antennal gland. Seasonal and salinity-dependent differences in haemolymph CHH titre further implicated CHH in osmoregulatory processes. Intriguingly, CHH appeared to have no effect on gill Na(+)/K(+)-ATPase or V-ATPase activity, suggesting unknown mechanisms of this hormone's action on Na(+) transport across gill epithelia.

  10. Iron alters cell survival in a mitochondria-dependent pathway in ovarian cancer cells

    PubMed Central

    Bauckman, Kyle; Haller, Edward; Taran, Nicholas; Rockfield, Stephanie; Ruiz-Rivera, Abigail; Nanjundan, Meera

    2015-01-01

    The role of iron in the development of cancer remains unclear. We previously reported that iron reduces cell survival in a Ras/mitogen-activated protein kinase (MAPK)-dependent manner in ovarian cells; however, the underlying downstream pathway leading to reduced survival was unclear. Although levels of intracellular iron, ferritin/CD71 protein and reactive oxygen species did not correlate with iron-induced cell survival changes, we identified mitochondrial damage (via TEM) and reduced expression of outer mitochondrial membrane proteins (translocase of outer membrane: TOM20 and TOM70) in cell lines sensitive to iron. Interestingly, Ru360 (an inhibitor of the mitochondrial calcium uniporter) reversed mitochondrial changes and restored cell survival in HEY ovarian carcinoma cells treated with iron. Further, cells treated with Ru360 and iron also had reduced autophagic punctae with increased lysosomal numbers, implying cross-talk between these compartments. Mitochondrial changes were dependent on activation of the Ras/MAPK pathway since treatment with a MAPK inhibitor restored expression of TOM20/TOM70 proteins. Although glutathione antioxidant levels were reduced in HEY treated with iron, extracellular glutamate levels were unaltered. Strikingly, oxalomalate (inhibitor of aconitase, involved in glutamate production) reversed iron-induced responses in a similar manner to Ru360. Collectively, our results implicate iron in modulating cell survival in a mitochondria-dependent manner in ovarian cancer cells. PMID:25697096

  11. Psilocybin dose-dependently causes delayed, transient headaches in healthy volunteers

    PubMed Central

    Johnson, Matthew W.; Sewell, R. Andrew; Griffiths, Roland R.

    2011-01-01

    Background Psilocybin is a well-characterized classic hallucinogen (psychedelic) with a long history of religious use by indigenous cultures, and nonmedical use in modern societies. Although psilocybin is structurally related to migraine medications, and case studies suggest that psilocybin may be efficacious in treatment of cluster headache, little is known about the relationship between psilocybin and headache. Methods This double-blind study examined a broad range of psilocybin doses (0, 5, 10, 20, and 30 mg/70 kg) on headache in 18 healthy participants. Results Psilocybin frequently caused headache, the incidence, duration, and severity of which increased in a dose-dependent manner. All headaches had delayed onset, were transient, and lasted no more than a day after psilocybin administration. Conclusions Possible mechanisms for these observations are discussed, and include induction of delayed headache through nitric oxide release. These data suggest that headache is an adverse event to be expected with the nonmedical use of psilocybin-containing mushrooms as well as the administration of psilocybin in human research. Headaches were neither severe nor disabling, and should not present a barrier to future psilocybin research. PMID:22129843

  12. Psilocybin dose-dependently causes delayed, transient headaches in healthy volunteers.

    PubMed

    Johnson, Matthew W; Sewell, R Andrew; Griffiths, Roland R

    2012-06-01

    Psilocybin is a well-characterized classic hallucinogen (psychedelic) with a long history of religious use by indigenous cultures, and nonmedical use in modern societies. Although psilocybin is structurally related to migraine medications, and case studies suggest that psilocybin may be efficacious in treatment of cluster headache, little is known about the relationship between psilocybin and headache. This double-blind study examined a broad range of psilocybin doses (0, 5, 10, 20, and 30 mg/70 kg) on headache in 18 healthy participants. Psilocybin frequently caused headache, the incidence, duration, and severity of which increased in a dose-dependent manner. All headaches had delayed onset, were transient, and lasted no more than a day after psilocybin administration. Possible mechanisms for these observations are discussed, and include induction of delayed headache through nitric oxide release. These data suggest that headache is an adverse event to be expected with the nonmedical use of psilocybin-containing mushrooms as well as the administration of psilocybin in human research. Headaches were neither severe nor disabling, and should not present a barrier to future psilocybin research. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. Drosophila melanogaster Natural Variation Affects Growth Dynamics of Infecting Listeria monocytogenes

    PubMed Central

    Hotson, Alejandra Guzmán; Schneider, David S.

    2015-01-01

    We find that in a Listeria monocytogenes/Drosophila melanogaster infection model, L. monocytogenes grows according to logistic kinetics, which means we can measure both a maximal growth rate and growth plateau for the microbe. Genetic variation of the host affects both of the pathogen growth parameters, and they can vary independently. Because growth rates and ceilings both correlate with host survival, both properties could drive evolution of the host. We find that growth rates and ceilings are sensitive to the initial infectious dose in a host genotype–dependent manner, implying that experimental results differ as we change the original challenge dose within a single strain of host. PMID:26438294

  14. Lemna minor plants chronically exposed to ionising radiation: RNA-seq analysis indicates a dose rate dependent shift from acclimation to survival strategies.

    PubMed

    Van Hoeck, Arne; Horemans, Nele; Nauts, Robin; Van Hees, May; Vandenhove, Hildegarde; Blust, Ronny

    2017-04-01

    Ecotoxicological research provides knowledge on ionising radiation-induced responses in different plant species. However, the sparse data currently available are mainly extracted from acute exposure treatments. To provide a better understanding of environmental exposure scenarios, the response to stress in plants must be followed in more natural relevant chronic conditions. We previously showed morphological and biochemical responses in Lemna minor plants continuously exposed for 7days in a dose-rate dependent manner. In this study responses on molecular (gene expression) and physiological (photosynthetic) level are evaluated in L. minor plants exposed to ionising radiation. To enable this, we examined the gene expression profiles of irradiated L. minor plants by using an RNA-seq approach. The gene expression data reveal indications that L. minor plants exposed at lower dose rates, can tolerate the exposure by triggering acclimation responses. In contrast, at the highest dose rate tested, a high number of genes related to antioxidative defense systems, DNA repair and cell cycle were differentially expressed suggesting that only high dose rates of ionising radiation drive L. minor plants into survival strategies. Notably, the photosynthetic process seems to be unaffected in L. minor plants among the tested dose rates. This study, supported by our earlier work, clearly indicates that plants shift from acclimation responses towards survival responses at increasing dose rates of ionising radiation. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Metabolites and JAK/STAT pathway were involved in the liver and spleen damage in male Wistar rats fed with mequindox.

    PubMed

    Wang, Xu; Huang, Xian-Ju; Ihsan, Awais; Liu, Zhao-Ying; Huang, Ling-Li; Zhang, Hua-Hai; Zhang, Hong-Fei; Zhou, Wen; Liu, Qin; Xue, Xi-Juan; Yuan, Zong-Hui

    2011-02-27

    Mequindox (MEQ) is a novel synthetic quinoxaline 1,4-dioxides antibacterial agent and growth promoter in animal husbandry. This study was to investigate whether reactive oxygen species (ROS), the Janus kinase-signal transducer and activator of transcription (JAK/STAT) pathway, suppressors of cytokine signaling (SOCS) and inflammatory cytokines were involved in toxicities of MEQ. Our data demonstrated that high dose of MEQ (275 mg/kg) apparently led to tissue impairment combined with imbalance of redox in liver. In liver and spleen samples, hydroxylation metabolites and desoxymequindox were detected, directly confirming the potential link of N→O group reduction metabolism with its organ toxicity. Moreover, up-regulation of JAK/STAT, SOCS family, tumor necrosis factor (TNF-α) and interleukin-6 (IL-6) were also observed in the high-dose group. Meanwhile, significant changes of oxidative stress indices in liver were observed in the high-dose group. As for NADPH subunit, the mRNA levels of many subunits were significantly up-regulated at low doses but down-regulated in a dose-dependent manner in liver and spleen, suggesting an involvement of NADPH in MEQ metabolism and ROS generation. In conclusion, we reported the dose-dependent long-term toxicity as well as the discussion of the potential mechanism and pathways of MEQ, which raised further awareness of its toxicity following with the dose change. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  16. Involvement of opioid peptides in the regulation of reproduction in the prawn Penaeus indicus

    NASA Astrophysics Data System (ADS)

    Sreenivasula Reddy, P.

    The possible involvement of an endogenous opioid system in the regulation of ovarian development in the prawn Penaeus indicus was investigated. Injection of leucine-enkephalin significantly increased the ovarian index and oocyte diameter in a dose-dependent manner. In contrast, injection of methionine-enkephalin significantly decreased the ovarian index and oocyte diameters. These results provide evidence to support the hypothesis that an opioid system is involved in the regulation of reproduction in crustaceans.

  17. Inhibition by sodium nitroprusside of the expression of inducible nitric oxide synthase in rat neutrophils.

    PubMed Central

    Mariotto, S; Cuzzolin, L; Adami, A; Del Soldato, P; Suzuki, H; Benoni, G

    1995-01-01

    A well-known nitric oxide (NO)-releasing compound, sodium nitroprusside (SNP), decreases in a dose-dependent manner NO synthase (NOS) activity induced in rat neutrophils by treatment with lipopolysaccharide (LPS). This inhibitory action of SNP seems not to be due to its direct effect on the enzyme activity. The strong nitrosonium ion (NO+) character of SNP could be responsible for its inhibition of NOS induction in neutrophils. PMID:7542530

  18. A cytotoxic serine proteinase isolated from mouse submandibular gland.

    PubMed

    Shimamura, T; Nagumo, N; Ikigai, H; Murakami, K; Okubo, S; Toda, M; Ohnishi, R; Tomita, M

    1989-08-01

    We have isolated a novel cytotoxic factor from the submandibular glands of male BALB/c mice by Sephadex G-50 gel filtration chromatography and reverse-phase HPLC. The cytotoxic factor is a serine proteinase, which belongs to the mouse glandular kallikrein (mGK) family, with an Mr of approximately 27,000. The purified serine proteinase showed cytotoxic activity against mouse thymocytes in a dose-dependent manner, and a serine proteinase inhibitor, diisopropyl fluorophosphate, blocked its cytotoxic activity.

  19. Somatostatin, prostaglandin E2 and atropine inhibition of the gastric actions of bombesin in the dog.

    PubMed

    Hirschowitz, B I; Molina, E

    1984-01-01

    Bombesin, acetylcholine, prostaglandins and somatostatin are all thought to be involved in the regulation of gastrin release and gastric secretion. We have studied the effects of low doses of atropine, 16-16(Me)2-prostaglandin E2 (PGE2) and somatostatin-14 on bombesin-stimulated gastrin release and gastric acid and pepsin secretion in conscious fistula dogs. For reference, synthetic gastrin G-17 was studied with and without somatostatin. Bombesin, in a dose-related manner, increased serum gastrin, which in turn stimulated gastric acid and pepsin secretion in a serum gastrin, concentration-dependent manner. Somatostatin inhibited gastrin release by bombesin as well as the secretory stimulation by G-17; the combination of sequential effects resulted in a marked inhibition of bombesin-stimulated gastric acid and pepsin secretion. PGE2 also strongly inhibited gastrin release and acid and pepsin secretion. Atropine had no significant effect on gastrin release, but greatly inhibited gastric secretion. Thus somatostatin and PGE2 inhibited at two sites, gastrin release and gastrin effects, while atropine affected only the latter.

  20. Intravesical application of rebamipide suppresses bladder inflammation in a rat cystitis model.

    PubMed

    Funahashi, Yasuhito; Yoshida, Masaki; Yamamoto, Tokunori; Majima, Tsuyoshi; Takai, Shun; Gotoh, Momokazu

    2014-04-01

    We examined the effects of intravesical application of rebamipide (Otsuka Pharmaceutical, Tokyo, Japan) on bladder inflammation and overactivity in a chemically induced cystitis model. Female Sprague Dawley® rats under isoflurane anesthesia were injected with 150 mg/kg cyclophosphamide in the peritoneum, and 1 mM or 10 mM rebamipide or vehicle was administered in the bladder and remained for 1 hour. Control rats were injected with saline in the peritoneum and vehicle was administered in the bladder. The bladder was harvested at 48 hours. Hematoxylin and eosin staining was performed and the inflammation grade was assessed. The amount of myeloperoxidase was measured using enzyme-linked immunosorbent assay. Proinflammatory cytokines were quantified using reverse transcriptase-polymerase chain reaction. Cystometrogram was done in awake rats 48 hours after cyclophosphamide treatment to measure voiding reflex parameters. Histological evaluation revealed that bladder inflammation in cyclophosphamide treated rats was suppressed by rebamipide in a dose dependent manner. Up-regulated myeloperoxidase, IL-1β, IL-6 and TNF-α expression in cyclophosphamide treated rats was also suppressed in rebamipide treated rats. Cystometrogram demonstrated that the intercontraction interval decreased in cyclophosphamide treated rats but was prolonged by rebamipide. Intravesical application of rebamipide suppressed bladder inflammation and overactivity in a dose dependent manner. This may provide a new treatment strategy for chemotherapy associated cystitis. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

Top