Sample records for dosimeters

  1. Investigation and Implementation of Commercially Available Optically Stimulated Luminescence Dosimeters for Use in Fixed Nuclear Accident Dosimeter Systems.

    PubMed

    Georgeson, David L; Christiansen, Byron H

    2018-06-01

    Idaho National Laboratory transitioned from an external dosimetry system reliant on thermoluminescent dosimeters to one that uses optically stimulated luminescence dosimeters in 2010. This change not only affected the dosimeters worn by personnel, but those found in the nuclear-accident dosimeters used across Idaho National Laboratory. The elimination of on-site use and processing of thermoluminescent dosimeters impacted Idaho National Laboratory's ability to process nuclear-accident dosimeters in a timely manner. This change in processes drove Idaho National Laboratory to develop an alternative method for fixed nuclear-accident dosimeter gamma-dose analyses. This new method was driven by the need to establish a simple, cost-effective, and rapid-turnaround alternative to the thermoluminescent-dosimeter-based fixed nuclear-accident dosimeter system. An adaptation of existing technologies proved to be the most efficient path to this end. The purpose of this article is to delineate the technical basis for replacing the thermoluminescent dosimeter contained within the Idaho National Laboratory fixed nuclear-accident dosimeter system with optically stimulated luminescence-based Landauer, Inc., nanoDot dosimeters.

  2. Radiation dosimeters

    DOEpatents

    Hoelsher, James W.; Hegland, Joel E.; Braunlich, Peter F.; Tetzlaff, Wolfgang

    1992-01-01

    Radiation dosimeters and dosimeter badges. The dosimeter badges include first and second parts which are connected to join using a securement to produce a sealed area in which at least one dosimeter is held and protected. The badge parts are separated to expose the dosimeters to a stimulating laser beam used to read dose exposure information therefrom. The badge is constructed to allow automated disassembly and reassembly in a uniquely fitting relationship. An electronic memory is included to provide calibration and identification information used during reading of the dosimeter. Dosimeter mounts which reduce thermal heating requirements are shown. Dosimeter constructions and production methods using thin substrates and phosphor binder-layers applied thereto are also taught.

  3. Composite material dosimeters

    DOEpatents

    Miller, Steven D.

    1996-01-01

    The present invention is a composite material containing a mix of dosimeter material powder and a polymer powder wherein the polymer is transparent to the photon emission of the dosimeter material powder. By mixing dosimeter material powder with polymer powder, less dosimeter material is needed compared to a monolithic dosimeter material chip. Interrogation is done with excitation by visible light.

  4. Dosimetry in dentistry.

    PubMed

    Asha, M L; Chatterjee, Ingita; Patil, Preeti; Naveen, S

    2015-01-01

    The purpose of this paper was to review various dosimeters used in dentistry and the cumulative results of various studies done with various dosimeters. Several relevant PubMed indexed articles from 1999 to 2013 were electronically searched by typing "dosimeters", "dosimeters in dentistry", "properties of dosimeters", "thermoluminescent and optically stimulated dosimeters", "recent advancements in dosimetry in dentistry." The searches were limited to articles in English to prepare a concise review on dental dosimetry. Titles and abstracts were screened, and articles that fulfilled the criteria of use of dosimeters in dental applications were selected for a full-text reading. Article was divided into four groups: (1) Biological effects of radiation, (2) properties of dosimeters, (3) types of dosimeters and (4) results of various studies using different dosimeters. The present review on dosimetry based on various studies done with dosimeters revealed that, with the advent of radiographic technique the effective dose delivered is low. Therefore, selection of radiological technique plays an important role in dental dose delivery.

  5. SOLID-STATE DOSIMETERS BASED ON OPTICAL THEORY (in Hungarian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patko, J.

    1962-01-01

    A comparison is made of applications of various dosimeters based on solid materials, and their comparative merits are described. Characteristics of the following types of dosimeters effective at various radiation intensities are discussed: condensation chambers for measurements over the range 10/sup -4/-10/ sup 2/ rad, film dosimeters 10/sup -1/-10/sup 5/ rad, thermoluminescent types 10/ sup -3/ - 10/sup 4/ rad, photoluminescent dosimeters 10/sup 1/-- 10/sup 4/ rad, crystal types 10/sup 1/- 10/sup 4/ rad, glass dosimeters 10/sup 3/- 10/sup 7/ rad, synthetic material types 10/sup 5/- 10/sup 9/ rad, and luminescent degradation dosimeters 10/sup 5/-10/sup 8/ rad. Special attention ismore » given to the thermoluminescent dosimeter, which utilizes Mn-activated Ca phosphate. This dosimeter utilizes a glass ampulla instead of a glass vacuum tube and polarography is used to determine the luminescence curve. Simple evaluation equipment is being developed to be used with this dosimeter. Such thermoluminescent dosimeters are generally small in size. Its high sensitivity makes it applicable to low intensity radiation aad after calibration it can again be utilized. Manganese-activated Ca phosphate dosimeters do not show any fading of response in the first hour after use. Use of solid dosimeters, for high- energy measurements« less

  6. [Measurement of the air kerma using dosimeters embedded in an acrylic phantom in interventional radiology.].

    PubMed

    Kawabe, Atsushi; Shibuya, Koichi; Takeda, Yoshihiro

    2006-01-01

    Interventional radiology procedure guidelines and a measurement manual (IVR guidelines) have been published for the maintenance of interventional equipment with an objective of avoiding serious radiation-induced skin injuries. In the IVR guidelines, the positioning of a dosimeter at the interventional reference point is determined, whereas placement of a phantom is not specified. Therefore, the phantom is placed at any convenient location between the dosimeter and image intensifier. The space around the dosimeter reduces detection of scattered radiation. In this study, dosimeters (consisting of a parallel plate ionization chamber, glass dosimeter and OSL dosimeter) were embedded in the phantom surface to detected scattered radiation accurately. As a result, when dosimeters were embedded in the phantom surface, the air kerma was increased compared with that when dosimeters were placed on the phantom. This suggested that embedded dosimeters were able to detect scattered radiation from the phantom.

  7. Development and evaluation of polycrystalline cadmium telluride dosimeters for accurate quality assurance in radiation therapy

    NASA Astrophysics Data System (ADS)

    Oh, K.; Han, M.; Kim, K.; Heo, Y.; Moon, C.; Park, S.; Nam, S.

    2016-02-01

    For quality assurance in radiation therapy, several types of dosimeters are used such as ionization chambers, radiographic films, thermo-luminescent dosimeter (TLD), and semiconductor dosimeters. Among them, semiconductor dosimeters are particularly useful for in vivo dosimeters or high dose gradient area such as the penumbra region because they are more sensitive and smaller in size compared to typical dosimeters. In this study, we developed and evaluated Cadmium Telluride (CdTe) dosimeters, one of the most promising semiconductor dosimeters due to their high quantum efficiency and charge collection efficiency. Such CdTe dosimeters include single crystal form and polycrystalline form depending upon the fabrication process. Both types of CdTe dosimeters are commercially available, but only the polycrystalline form is suitable for radiation dosimeters, since it is less affected by volumetric effect and energy dependence. To develop and evaluate polycrystalline CdTe dosimeters, polycrystalline CdTe films were prepared by thermal evaporation. After that, CdTeO3 layer, thin oxide layer, was deposited on top of the CdTe film by RF sputtering to improve charge carrier transport properties and to reduce leakage current. Also, the CdTeO3 layer which acts as a passivation layer help the dosimeter to reduce their sensitivity changes with repeated use due to radiation damage. Finally, the top and bottom electrodes, In/Ti and Pt, were used to have Schottky contact. Subsequently, the electrical properties under high energy photon beams from linear accelerator (LINAC), such as response coincidence, dose linearity, dose rate dependence, reproducibility, and percentage depth dose, were measured to evaluate polycrystalline CdTe dosimeters. In addition, we compared the experimental data of the dosimeter fabricated in this study with those of the silicon diode dosimeter and Thimble ionization chamber which widely used in routine dosimetry system and dose measurements for radiation therapy.

  8. Fundamentals of Polymer Gel Dosimeters

    NASA Astrophysics Data System (ADS)

    McAuley, Kim B.

    2006-12-01

    The recent literature on polymer gel dosimetry contains application papers and basic experimental studies involving polymethacrylic-acid-based and polyacrylamide-based gel dosimeters. The basic studies assess the relative merits of these two most commonly used dosimeters, and explore the effects of tetrakis hydroxymethyl phosphonium chloride (THPC) antioxidant on dosimeter performance. Polymer gel dosimeters that contain THPC or other oxygen scavengers are called normoxic dosimeters, because they can be prepared under normal atmospheric conditions, rather than in a glove box that excludes oxygen. In this review, an effort is made to explain some of the underlying chemical phenomena that affect dosimeter performance using THPC, and that lead to differences in behaviour between dosimeters made using the two types of monomer systems. Progress on the development of new more effective and less toxic dosimeters is also reported.

  9. Development and characterization of a three-dimensional radiochromic film stack dosimeter for megavoltage photon beam dosimetry.

    PubMed

    McCaw, Travis J; Micka, John A; DeWerd, Larry A

    2014-05-01

    Three-dimensional (3D) dosimeters are particularly useful for verifying the commissioning of treatment planning and delivery systems, especially with the ever-increasing implementation of complex and conformal radiotherapy techniques such as volumetric modulated arc therapy. However, currently available 3D dosimeters require extensive experience to prepare and analyze, and are subject to large measurement uncertainties. This work aims to provide a more readily implementable 3D dosimeter with the development and characterization of a radiochromic film stack dosimeter for megavoltage photon beam dosimetry. A film stack dosimeter was developed using Gafchromic(®) EBT2 films. The dosimeter consists of 22 films separated by 1 mm-thick spacers. A Virtual Water™ phantom was created that maintains the radial film alignment within a maximum uncertainty of 0.3 mm. The film stack dosimeter was characterized using simulations and measurements of 6 MV fields. The absorbed-dose energy dependence and orientation dependence of the film stack dosimeter were investigated using Monte Carlo simulations. The water equivalence of the dosimeter was determined by comparing percentage-depth-dose (PDD) profiles measured with the film stack dosimeter and simulated using Monte Carlo methods. Film stack dosimeter measurements were verified with thermoluminescent dosimeter (TLD) microcube measurements. The film stack dosimeter was also used to verify the delivery of an intensity-modulated radiation therapy (IMRT) procedure. The absorbed-dose energy response of EBT2 film differs less than 1.5% between the calibration and film stack dosimeter geometries for a 6 MV spectrum. Over a series of beam angles ranging from normal incidence to parallel incidence, the overall variation in the response of the film stack dosimeter is within a range of 2.5%. Relative to the response to a normally incident beam, the film stack dosimeter exhibits a 1% under-response when the beam axis is parallel to the film planes. Measured and simulated PDD profiles agree within a root-mean-square difference of 1.3%. In-field film stack dosimeter and TLD measurements agree within 5%, and measurements in the field penumbra agree within 0.5 mm. Film stack dosimeter and TLD measurements have expanded (k = 2) overall measurement uncertainties of 6.2% and 5.8%, respectively. Film stack dosimeter measurements of an IMRT dose distribution have 98% agreement with the treatment planning system dose calculation, using gamma criteria of 3% and 2 mm. The film stack dosimeter is capable of high-resolution, low-uncertainty 3D dose measurements, and can be readily incorporated into an existing film dosimetry program.

  10. Feasibility Study on Applying Radiophotoluminescent Glass Dosimeters for CyberKnife SRS Dose Verification

    PubMed Central

    Hsu, Shih-Ming; Hung, Chao-Hsiung; Liao, Yi-Jen; Fu, Hsiao-Mei; Tsai, Jo-Ting

    2017-01-01

    CyberKnife is one of multiple modalities for stereotactic radiosurgery (SRS). Due to the nature of CyberKnife and the characteristics of SRS, dose evaluation of the CyberKnife procedure is critical. A radiophotoluminescent glass dosimeter was used to verify the dose accuracy for the CyberKnife procedure and validate a viable dose verification system for CyberKnife treatment. A radiophotoluminescent glass dosimeter, thermoluminescent dosimeter, and Kodak EDR2 film were used to measure the lateral dose profile and percent depth dose of CyberKnife. A Monte Carlo simulation for dose verification was performed using BEAMnrc to verify the measured results. This study also used a radiophotoluminescent glass dosimeter coupled with an anthropomorphic phantom to evaluate the accuracy of the dose given by CyberKnife. Measurements from the radiophotoluminescent glass dosimeter were compared with the results of a thermoluminescent dosimeter and EDR2 film, and the differences found were less than 5%. The radiophotoluminescent glass dosimeter has some advantages in terms of dose measurements over CyberKnife, such as repeatability, stability, and small effective size. These advantages make radiophotoluminescent glass dosimeters a potential candidate dosimeter for the CyberKnife procedure. This study concludes that radiophotoluminescent glass dosimeters are a promising and reliable dosimeter for CyberKnife dose verification with clinically acceptable accuracy within 5%. PMID:28046056

  11. Response of personal noise dosimeters to continuous and impulse-like signals

    NASA Astrophysics Data System (ADS)

    Evans, D. J.; Flynn, D. R.; Nedzelnitsky, V.; Burnett, E. D.

    1991-06-01

    A study of the capabilities of noise dosimeters to measure personal exposure to time varying and impulse-like noises was carried out. Ten commercial noise dosimeters were obtained. A laboratory reference noise dosimeter was constructed to provide a demonstrably accurate basis with which to compare the commercial noise dosimeters. Each commercial dosimeter, when ordered from the manufacturer, was specified to have a threshold A-weighted sound level of 80 dB, a criterion sound level of 90 dB, and an exchange rate of 5 dB and/or 3 dB. The performance of the commercial dosimeters was compared with theory and with results obtained from the reference dosimeter. Except in a few isolated cases, the commercial dosimeters were in general agreement with the performance specification of the appropriate American National Standard and with the Occupational Safety and Health Administration (OSHA) regulations.

  12. Development of Eye Dosimeter Using Additive Manufacturing Techniques to Monitor Occupational Eye Lens Exposures to Interventional Radiologists

    NASA Astrophysics Data System (ADS)

    Choi, JungHwan

    In this project, an eye dosimeter was designed for monitoring occupational lens of the eye exposures targeted to interventional radiologists who are often indirectly exposed to scattered radiation from the patient while performing image-guided procedures. The dosimeter was designed with a computer-aided design software to facilitate additive manufacturing techniques to make the dosimeter. The dosimeter consisted of three separate components that are attached to the hinges and the bridge of the occupational worker's protective eyewear. The produced dosimeter was radiologically calibrated to measure the lens dose on an anthropomorphic phantom of the human head. To supplement the physical design, an algorithm was written that prompts the user to input the element responses of the dosimeter, then estimates the average angle, energy, and resulting lens dose of the exposure by comparing the input with the data acquired during the dosimeter calibration procedure. The performance of the calibrated dosimeter (and the algorithm) was evaluated according to guidelines of the American National Standards Institute, and the dosimeter demonstrated a performance that was in compliance with the standard's performance criteria which suggests that the design of the eye dosimeter is feasible.

  13. Development and characterization of a three-dimensional radiochromic film stack dosimeter for megavoltage photon beam dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaw, Travis J., E-mail: mccaw@wisc.edu; Micka, John A.; DeWerd, Larry A.

    Purpose: Three-dimensional (3D) dosimeters are particularly useful for verifying the commissioning of treatment planning and delivery systems, especially with the ever-increasing implementation of complex and conformal radiotherapy techniques such as volumetric modulated arc therapy. However, currently available 3D dosimeters require extensive experience to prepare and analyze, and are subject to large measurement uncertainties. This work aims to provide a more readily implementable 3D dosimeter with the development and characterization of a radiochromic film stack dosimeter for megavoltage photon beam dosimetry. Methods: A film stack dosimeter was developed using Gafchromic{sup ®} EBT2 films. The dosimeter consists of 22 films separated bymore » 1 mm-thick spacers. A Virtual Water™ phantom was created that maintains the radial film alignment within a maximum uncertainty of 0.3 mm. The film stack dosimeter was characterized using simulations and measurements of 6 MV fields. The absorbed-dose energy dependence and orientation dependence of the film stack dosimeter were investigated using Monte Carlo simulations. The water equivalence of the dosimeter was determined by comparing percentage-depth-dose (PDD) profiles measured with the film stack dosimeter and simulated using Monte Carlo methods. Film stack dosimeter measurements were verified with thermoluminescent dosimeter (TLD) microcube measurements. The film stack dosimeter was also used to verify the delivery of an intensity-modulated radiation therapy (IMRT) procedure. Results: The absorbed-dose energy response of EBT2 film differs less than 1.5% between the calibration and film stack dosimeter geometries for a 6 MV spectrum. Over a series of beam angles ranging from normal incidence to parallel incidence, the overall variation in the response of the film stack dosimeter is within a range of 2.5%. Relative to the response to a normally incident beam, the film stack dosimeter exhibits a 1% under-response when the beam axis is parallel to the film planes. Measured and simulated PDD profiles agree within a root-mean-square difference of 1.3%. In-field film stack dosimeter and TLD measurements agree within 5%, and measurements in the field penumbra agree within 0.5 mm. Film stack dosimeter and TLD measurements have expanded (k = 2) overall measurement uncertainties of 6.2% and 5.8%, respectively. Film stack dosimeter measurements of an IMRT dose distribution have 98% agreement with the treatment planning system dose calculation, using gamma criteria of 3% and 2 mm. Conclusions: The film stack dosimeter is capable of high-resolution, low-uncertainty 3D dose measurements, and can be readily incorporated into an existing film dosimetry program.« less

  14. Electron microscopy and computed microtomography studies of in vivo implanted mini-TL dosimeters.

    PubMed

    Strand, S E; Strandh, M; Spanne, P

    1993-01-01

    The need for direct methods of measuring the absorbed dose in vivo increases for systemic radiation therapy, and in more sophisticated methodologies developed for radioimmunotherapy. One method suggested is the use of mini-thermoluminescent dosimeters (TLD). Recent reports indicate a marked loss of signal when the dosimeters are used in vivo. We investigated the exterior surface of the dosimeters with scanning electron microscopy and the interior dosimeter volume with computed microtomography. The results show that the dosimeters initially have crystals uniformly embedded in the teflon matrix, with some of them directly exposed to the environment. After incubation in gel, holes appear in the dosimeter matrix where the crystals should have been. The computed microtomographic images show that crystals remain in the interior of the matrix, producing the remaining signal. We conclude that these dosimeters should be very carefully handled, and for practical use of mini-TLDs in vivo the dosimeters should be calibrated in equivalent milieus. An alternative solution to the problem of decreased TL efficiency, would be to coat the dosimeters with a thin layer, of Teflon, or other suitable material.

  15. Deficiencies of active electronic radiation protection dosimeters in pulsed fields.

    PubMed

    Ankerhold, U; Hupe, O; Ambrosi, P

    2009-07-01

    Nowadays nearly all radiation fields used for X-ray diagnostics are pulsed. These fields are characterised by a high dose rate during the pulse and a short pulse duration in the range of a few milliseconds. The use of active electronic dosimeters has increased in the past few years, but these types of dosimeters might possibly not measure reliably in pulsed radiation fields. Not only personal dosimeters but also area dosimeters that are used mainly for dose rate measurements are concerned. These cannot be substituted by using passive dosimeter types. The characteristics of active electronic dosimeters determined in a continuous radiation field cannot be transferred to those in pulsed fields. Some provisional measurements with typical electronic dosimeters in pulsed radiation fields are presented to reveal this basic problem.

  16. Assessing doses to interventional radiologists using a personal dosimeter worn over a protective apron.

    PubMed

    Stranden, E; Widmark, A; Sekse, T

    2008-05-01

    Interventional radiologists receive significant radiation doses, and it is important to have simple methods for routine monitoring of their exposure. To evaluate the usefulness of a dosimeter worn outside the protective apron for assessments of dose to interventional radiologists. Assessments of effective dose versus dose to dosimeters worn outside the protective apron were achieved by phantom measurements. Doses outside and under the apron were assessed by phantom measurements and measurements on eight radiologists wearing two routine dosimeters for a 2-month period during ordinary working conditions. Finger doses for the same radiologists were recorded using thermoluminescent dosimeters (TLD; DXT-RAD Extremity dosimeters). Typical values for the ratio between effective dose and dosimeter dose were found to be about 0.02 when the radiologist used a thyroid shield and about 0.03 without. The ratio between the dose to the dosimeter under and outside a protective apron was found to be less than 0.04. There was very good correlation between finger dose and dosimeter dose. A personal dosimeter worn outside a protective apron is a good screening device for dose to the eyes and fingers as well as for effective dose, even though the effective dose is grossly overestimated. Relatively high dose to the fingers and eyes remains undetected by a dosimeter worn under the apron.

  17. Characterization of a Fiber Optic Coupled Dosimeter for Clinical Electron Beam Dosimetry

    DTIC Science & Technology

    2010-04-29

    2010 2. REPORT TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Characterization of a Fiber Optic Coupled Dosimeter for...Fiber Optic Coupled Dosimeter for Clinical Electron Beam Dosimetry. Abstract approved: Camille J. Lodwick Fiber-optic-coupled dosimeters ...Rights Reserved CHARACTERIZATION OF A FIBER OPTIC COUPLED DOSIMETER FOR CLINICAL ELECTRON

  18. Feasibility Study of Glass Dosimeter for In Vivo Measurement: Dosimetric Characterization and Clinical Application in Proton Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rah, Jeong-Eun; Oh, Do Hoon; Kim, Jong Won

    Purpose: To evaluate the suitability of the GD-301 glass dosimeter for in vivo dose verification in proton therapy. Methods and Materials: The glass dosimeter was analyzed for its dosimetrics characteristic in proton beam. Dosimeters were calibrated in a water phantom using a stairlike holder specially designed for this study. To determine the accuracy of the glass dosimeter in proton dose measurements, we compared the glass dosimeter and thermoluminescent dosimeter (TLD) dose measurements using a cylindrical phantom. We investigated the feasibility of the glass dosimeter for the measurement of dose distributions near the superficial region for proton therapy plans with amore » varying separation between the target volume and the surface of 6 patients. Results and Discussion: Uniformity was within 1.5%. The dose-response has good linearity. Dose-rate, fading, and energy dependence were found to be within 3%. The beam profile measured using the glass dosimeter was in good agreement with the profile obtained from the ionization chamber. Depth-dose distributions in nonmodulated and modulated proton beams obtained with the glass dosimeter were estimated to be within 3%, which was lower than those with the ionization chamber. In the phantom study, the difference of isocenter dose between the delivery dose calculated by the treatment planning system and that measured by the glass dosimeter was within 5%. With in vivo dosimetry, the calculated surface doses overestimated measurements by 4%-16% using glass dosimeter and TLD. Conclusion: It is recommended that bolus be added for these clinical cases. We also believe that the glass dosimeter has considerable potential for use with in vivo patient proton dosimetry.« less

  19. Feasibility study of glass dosimeter for in vivo measurement: dosimetric characterization and clinical application in proton beams.

    PubMed

    Rah, Jeong-Eun; Oh, Do Hoon; Kim, Jong Won; Kim, Dae-Hyun; Suh, Tae-Suk; Ji, Young Hoon; Shin, Dongho; Lee, Se Byeong; Kim, Dae Yong; Park, Sung Yong

    2012-10-01

    To evaluate the suitability of the GD-301 glass dosimeter for in vivo dose verification in proton therapy. The glass dosimeter was analyzed for its dosimetrics characteristic in proton beam. Dosimeters were calibrated in a water phantom using a stairlike holder specially designed for this study. To determine the accuracy of the glass dosimeter in proton dose measurements, we compared the glass dosimeter and thermoluminescent dosimeter (TLD) dose measurements using a cylindrical phantom. We investigated the feasibility of the glass dosimeter for the measurement of dose distributions near the superficial region for proton therapy plans with a varying separation between the target volume and the surface of 6 patients. Uniformity was within 1.5%. The dose-response has good linearity. Dose-rate, fading, and energy dependence were found to be within 3%. The beam profile measured using the glass dosimeter was in good agreement with the profile obtained from the ionization chamber. Depth-dose distributions in nonmodulated and modulated proton beams obtained with the glass dosimeter were estimated to be within 3%, which was lower than those with the ionization chamber. In the phantom study, the difference of isocenter dose between the delivery dose calculated by the treatment planning system and that measured by the glass dosimeter was within 5%. With in vivo dosimetry, the calculated surface doses overestimated measurements by 4%-16% using glass dosimeter and TLD. It is recommended that bolus be added for these clinical cases. We also believe that the glass dosimeter has considerable potential for use with in vivo patient proton dosimetry. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Deconnable self-reading pocket dosimeter containment with self-contained light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, R.L.; Arnold, G.N.; McBride, R.G.

    1996-10-22

    A container for a self-reading pocket dosimeter includes a transparent tube for receiving the self-reading pocket dosimeter, a light source mounted at one end of the transparent tube, and an eyepiece mounted on an opposite end of the transparent tube for viewing a read-out of the self-reading pocket dosimeter. The container may further include an activation device for selectively supplying power to the light source. The container both protects the dosimeter from being contaminated and provides a light source for viewing the dosimeter. 4 figs.

  1. Deconnable self-reading pocket dosimeter containment with self-contained light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, R.L.; Arnold, G.N.; McBride, R.G.

    1995-12-31

    A container for a self-reading pocket dosimeter includes a transparent tube for receiving the self-reading pocket dosimeter, a light source mounted at one end of the transparent tube, and an eyepiece mounted on an opposite end of the transparent tube for viewing a read-out of the self-reading pocket dosimeter. The container may further include an activation device for selectively supplying power to the light source. The container both protects the dosimeter from being contaminated and provides a light source for viewing the dosimeter.

  2. Deconnable self-reading pocket dosimeter containment with self-contained light

    DOEpatents

    Stevens, Robyn L.; Arnold, Greg N.; McBride, Ryan G.

    1996-01-01

    A container for a self-reading pocket dosimeter includes a transparent tube for receiving the self-reading pocket dosimeter, a light source mounted at one end of the transparent tube, and an eyepiece mounted on an opposite end of the transparent tube for viewing a read-out of the self-reading pocket dosimeter. The container may further include an activation device for selectively supplying power to the light source. The container both protects the dosimeter from being contaminated and provides a light source for viewing the dosimeter.

  3. Dosimetric characteristics of PASSAG as a new polymer gel dosimeter with negligible toxicity

    NASA Astrophysics Data System (ADS)

    Farhood, Bagher; Abtahi, Seyed Mohammad Mahdi; Geraily, Ghazale; Ghorbani, Mehdi; Mahdavi, Seied Rabi; Zahmatkesh, Mohammad Hasan

    2018-06-01

    Despite many advantages of polymer gel dosimeters, their clinical use is only not realized now. Toxicity of polymer gel dosimeters can be considered as one of their main limitations for use in routine clinical applications. In the current study, a new polymer gel dosimeter is introduced with negligible toxicity. For this purpose, 2-Acrylamido-2-Methy-1-PropaneSulfonic acid (AMPS) sodium salt monomer was replaced instead of acrylamide monomer used in PAGAT gel dosimeter by using %6 T and %50 C to the gel formula and the new formulation is called PASSAG (Poly AMPS Sodium Salt and Gelatin) polymer gel dosimeter. The irradiation of gel dosimeters was carried out using a Co-60 therapy machine. MRI technique was used to quantify the dose responses of the PASSAG gel dosimeter. Then, the MRI responses (R2) of the gel dosimeter was analyzed at different dose values, post-irradiation times, and scanning temperatures. The results showed that the new gel formulation has a negligible toxicity and it is also eco-friendly. In addition, carcinogenicity and genetic toxicity tests are negative for the monomer used in PASSAG. The radiological properties of PASSAG gel dosimeter showed that this substance can be considered as a soft tissue/water equivalent material. Furthermore, dosimetric evaluation of the new polymer gel dosimeter revealed an excellent linear R2-dose response in the evaluated dose range (0-15 Gy). The R2-dose sensitivity and dose resolution of PASSAG gel dosimeter were 0.081 s-1Gy-1 (in 0-15 Gy dose range) and 1 Gy (in 0-10 Gy dose range), respectively. Moreover, it was shown that the R2-dose sensitivity and dose resolution of the new gel dosimeter improves over time after irradiation. It was also found that the R2 response of the PASSAG gel dosimeter has less dependency to the 18, 20, and 24 °C scanning temperature in comparison to that of room temperature (22 °C).

  4. TH-CD-201-11: Optimizing the Response and Cost of a DNA Double-Strand Break Dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obeidat, M; Cline, K; Stathakis, S

    Purpose: A DNA double-strand break (DSB) dosimeter was developed to measure the biological effect of radiation. The goal here is to refine the fabrication method of this dosimeter to reproducibly create a low coefficient of variation (CoV) and reduce the cost for the dosimeter. Methods: Our dosimeter consists of 4 kilo-base pair DNA strands (labeled on one end with biotin and on the other with fluorescein) attached to streptavidin magnetic beads. The final step of the DNA dosimeter fabrication is to suspend these attached beads in phosphate-buffered saline (PBS). The amount of PBS used to suspend the attached beads andmore » the relative volume of the DNA strands to the beads both affect the CoV and dosimeter cost. We diluted the beads attached with DNA in different volumes of PBS (100, 200, and 400 µL) to create different concentrations of the DNA dosimeter. Then we irradiated these dosimeters (50 µL samples) in a water-equivalent plastic phantom at 25 and 50 Gy (three samples per dose) and calculated the CoV for each dosimeter concentration. Also, we used different masses of DNA strands (1, 2, 8, 16, 24, and 32 µg) to attach to the same volume of magnetic beads (100 µL) to explore how this affects the cost of the dosimeter. Results: The lowest CoV was produced for the highest concentration of dosimeter (100 µL of PBS), which created CoV of 2.0 and 1.0% for 25 and 50 Gy, respectively. We found that the lowest production cost for the dosimeter occurs by attaching 16 µg of DNA strands with 100 µL of beads. Conclusion: : We optimized the fabrication of the DNA dosimeter to produce low CoV and cost, but we still need to explore ways to further improve the dosimeter for use at lower doses. This work was supported in part by Yarmouk University (Irbid, Jordan) and CPRIT (RP140105)« less

  5. NOTE: Cell-phone interference with pocket dosimeters

    NASA Astrophysics Data System (ADS)

    Djajaputra, David; Nehru, Ramasamy; Bruch, Philip M.; Ayyangar, Komanduri M.; Raman, Natarajan V.; Enke, Charles A.

    2005-05-01

    Accurate reporting of personal dose is required by regulation for hospital personnel that work with radioactive material. Pocket dosimeters are commonly used for monitoring this personal dose. We show that operating a cell phone in the vicinity of a pocket dosimeter can introduce large and erroneous readings of the dosimeter. This note reports a systematic study of this electromagnetic interference. We found that simple practical measures are enough to mitigate this problem, such as increasing the distance between the cell phone and the dosimeter or shielding the dosimeter, while maintaining its sensitivity to ionizing radiation, by placing it inside a common anti-static bag.

  6. SU-E-T-139: Feasibility Study of Glass Dosimeter for in Vivo Measurement: Dosimetric Characterization and Clinical Application in Proton Beams.

    PubMed

    Lah, J; Kim, D; Park, S

    2012-06-01

    To evaluate the suitability of the GD-301 glass dosimeter for use in in vivo dose verification in proton therapy. The glass dosimeter was analyzed for its dosimetric characteristic in proton beam. Dosimeters were calibrated in a water phantom using a stair-like holder specially designed for this study. To determine the accuracy of the glass dosimeter in proton dose measurements, we compared the glass dosimeter and TLD dose measurements of plan delivery using a cylindrical phantom. We investigated the feasibility of the glass dosimeter for the measurement of dose distributions near the superficial region for proton therapy plans with a varying separation between the target volume and the surface of 6 patients. Uniformity was within 1.5%. The dose-response has a good linear. Dose-rate, fading, and energy dependence were found to be within 3%. The beam profile measured using the glass dosimeter was in good agreement with the profile obtained from the ionization chamber. Depth-dose distributions in non-modulated and modulated proton beams obtained with the glass dosimeter were estimated to be within 3%, which was lower than those with the ionization chamber. In the phantom study, the difference of isocenter dose between the delivery dose calculated by the Eclipse and that of the measured by the glass dosimeter was within 5%. In vivo dosimetry of patients, given the results of the glass dosimeter and TLD measurements, calculated doses on the surface of the patient are typically overestimated between 4% and 16%. As such, it is recommended that bolus be added for these clinical cases. We also believe that the glass dosimeter has considerable potential to be used for in vivo patient proton dosimetry. © 2012 American Association of Physicists in Medicine.

  7. Measuring pacemaker dose: a clinical perspective.

    PubMed

    Studenski, Matthew T; Xiao, Ying; Harrison, Amy S

    2012-01-01

    Recently in our clinic, we have seen an increased number of patients presenting with pacemakers and defibrillators. Precautions are taken to develop a treatment plan that minimizes the dose to the pacemaker because of the adverse effects of radiation on the electronics. Here we analyze different dosimeters to determine which is the most accurate in measuring pacemaker or defibrillator dose while at the same time not requiring a significant investment in time to maintain an efficient workflow in the clinic. The dosimeters analyzed here were ion chambers, diodes, metal-oxide-semiconductor field effect transistor (MOSFETs), and optically stimulated luminescence (OSL) dosimeters. A simple phantom was used to quantify the angular and energy dependence of each dosimeter. Next, 8 patients plans were delivered to a Rando phantom with all the dosimeters located where the pacemaker would be, and the measurements were compared with the predicted dose. A cone beam computed tomography (CBCT) image was obtained to determine the dosimeter response in the kilovoltage energy range. In terms of the angular and energy dependence of the dosimeters, the ion chamber and diode were the most stable. For the clinical cases, all the dosimeters match relatively well with the predicted dose, although the ideal dosimeter to use is case dependent. The dosimeters, especially the MOSFETS, tend to be less accurate for the plans, with many lateral beams. Because of their efficiency, we recommend using a MOSFET or a diode to measure the dose. If a discrepancy is observed between the measured and expected dose (especially when the pacemaker to field edge is <10 cm), we recommend analyzing the treatment plan to see whether there are many lateral beams. Follow-up with another dosimeter rather than repeating multiple times with the same type of dosimeter. All dosimeters should be placed after the CBCT has been acquired. Copyright © 2012 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  8. Measuring pacemaker dose: A clinical perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Studenski, Matthew T., E-mail: matthew.studenski@jeffersonhospital.org; Xiao Ying; Harrison, Amy S.

    2012-07-01

    Recently in our clinic, we have seen an increased number of patients presenting with pacemakers and defibrillators. Precautions are taken to develop a treatment plan that minimizes the dose to the pacemaker because of the adverse effects of radiation on the electronics. Here we analyze different dosimeters to determine which is the most accurate in measuring pacemaker or defibrillator dose while at the same time not requiring a significant investment in time to maintain an efficient workflow in the clinic. The dosimeters analyzed here were ion chambers, diodes, metal-oxide-semiconductor field effect transistor (MOSFETs), and optically stimulated luminescence (OSL) dosimeters. Amore » simple phantom was used to quantify the angular and energy dependence of each dosimeter. Next, 8 patients plans were delivered to a Rando phantom with all the dosimeters located where the pacemaker would be, and the measurements were compared with the predicted dose. A cone beam computed tomography (CBCT) image was obtained to determine the dosimeter response in the kilovoltage energy range. In terms of the angular and energy dependence of the dosimeters, the ion chamber and diode were the most stable. For the clinical cases, all the dosimeters match relatively well with the predicted dose, although the ideal dosimeter to use is case dependent. The dosimeters, especially the MOSFETS, tend to be less accurate for the plans, with many lateral beams. Because of their efficiency, we recommend using a MOSFET or a diode to measure the dose. If a discrepancy is observed between the measured and expected dose (especially when the pacemaker to field edge is <10 cm), we recommend analyzing the treatment plan to see whether there are many lateral beams. Follow-up with another dosimeter rather than repeating multiple times with the same type of dosimeter. All dosimeters should be placed after the CBCT has been acquired.« less

  9. Sacramento Regional Response Guide to Radiation Emergencies

    DTIC Science & Technology

    2006-09-01

    emergency operations. Additionally, the utilization of thermo luminescence dosimeters ( TLD ) may be beneficial to track long term exposure for...a radiation area. Stakeholder agency emergency response equipment have been issued electronic dosimeters The purpose of the radiation dosimeter is...Incident.............................................................................84 2. Detection/ Dosimeter Equipment

  10. TH-AB-BRA-11: Using 3D Dosimeters for the Investigation of the Electron Return Effect (ERE) in MR-Guided Radiation Therapy: A Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, G; Lee, H; Alqathami, M

    Purpose: To demonstrate the capability of 3D radiochromic PRESAGE and Fricke-type dosimeters to measure the influence of magnetic fields on dose distribution, including the electron return effect (ERE), for MR-guided radiation therapy applications. Methods: Short cylindrical 3D dosimeters with PRESAGE and Fricke-type formulations were created in-house prior to irradiations in a 1.5T/7MV MR-linac. Each dosimeter was prepared with a concentric cylindrical air cavity with diameters of 1.5 cm and 2.5 cm, and the diameters of the dosimeters were 7.2 cm and 8.8 cm for PRESAGE and Fricke-type respectively. The dosimeters were irradiated within the bore of the MR-linac with themore » flat face of the dosimeters perpendicular to the magnetic field. Dosimeters were irradiated to approximately 9 Gy and 29 Gy to the center of dosimeters with a 15×15 cm{sup 2} field. The PRESAGE dosimeter was scanned using an optical-CT 2 hours post-irradiation; the Fricke-type dosimeter was immediately imaged with the MR component of the MR-linac post-irradiation. Results: Axial slices of the dose distributions show a clear demonstration of the dose enhancement due to the ERE above the cavity and the region of reduced dose below the cavity. The regions of increased and reduced dose are rotated with respect to the radiation beam axis due to the average directional change of the electrons. Measurements from line profiles show the dose enhanced up to ∼0.5 cm around the cavity by up to a factor of 1.3 and 1.4 for PRESAGE and Fricke-type dosimeters respectively. Conclusion: PRESAGE and Fricke-type dosimeters are able to qualitatively measure the ERE with good agreement with previously published simulation and 2D dosimetry demonstrations of the ERE. Further investigation of these 3D dosimeters as promising candidates for quality assurance of MR-guided radiation therapy systems is encouraged to assess changes in response and measurement accuracy due to the magnetic field.« less

  11. Comprehensive Angular Response Study of LLNL Panasonic Dosimeter Configurations and Artificial Intelligence Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, D. K.

    In April of 2016, the Lawrence Livermore National Laboratory External Dosimetry Program underwent a Department of Energy Laboratory Accreditation Program (DOELAP) on-site assessment. The assessment reported a concern that the study performed in 2013 Angular Dependence Study Panasonic UD-802 and UD-810 Dosimeters LLNL Artificial Intelligence Algorithm was incomplete. Only the responses at ±60° and 0° were evaluated and independent data from dosimeters was not used to evaluate the algorithm. Additionally, other configurations of LLNL dosimeters were not considered in this study. This includes nuclear accident dosimeters (NAD) which are placed in the wells surrounding the TLD in the dosimeter holder.

  12. Measurement of Absorbed Dose from Radionuclide Solutions Mixed Intimately with the Fbx Dosimeter.

    NASA Astrophysics Data System (ADS)

    Benedetto, Anthony Richard

    Chemical dosimeters are used widely for accurate measurement of large radiation doses due to external beam irradiation from radioisotope sources and from particle accelerators. Their use for measurement of absorbed doses from radioactive solutions mixed in the dosimeter solution was reported as early as 1952, but the large activities needed to produce suitable absorbance values in the relatively insensitive dosimeters of that time discouraged further work. This manuscript reports the results of an investigation into the suitability of the ferrous sulfate-benzoic acid -xylenol orange (FBX) dosimeter for measurement of small absorbed doses caused by radionuclide solutions dissolved in the dosimeter solution. The FBX dosimeter exhibited a linear dose response as a function of activity for two common radiopharmaceuticals, technetium-99m sodium pertechnetate and iodine-131 sodium iodide. Conditions under which the FBX dosimeter may be used with radionuclide solutions were studied and were found to be amenable to routine use by laboratories possessing relatively unsophisticated instrumentation. It appears likely that any radionuclide could be studied using this dosimeter. Finally, potential applications and future research work are suggested, including measurement of absorbed dose from radiopharmaceuticals using realistic human-like phantoms to assess the risk from clinical nuclear medicine studies.

  13. Water equivalence of NIPAM based polymer gel dosimeters with enhanced sensitivity for x-ray CT

    NASA Astrophysics Data System (ADS)

    Gorjiara, Tina; Hill, Robin; Bosi, Stephen; Kuncic, Zdenka; Baldock, Clive

    2013-10-01

    Two new formulations of N-isopropylacrylamide (NIPAM) based three dimensional (3D) gel dosimeters have recently been developed with improved sensitivity to x-ray CT readout, one without any co-solvent and the other one with isopropanol co-solvent. The water equivalence of the NIPAM gel dosimeters was investigated using different methods to calculate their radiological properties including: density, electron density, number of electrons per grams, effective atomic number, photon interaction probabilities, mass attenuation and energy absorption coefficients, electron collisional, radiative and total mass stopping powers and electron mass scattering power. Monte Carlo modelling was also used to compare the dose response of these gel dosimeters with water for kilovoltage and megavoltage x-ray beams and for megavoltage electron beams. We found that the density and electron density of the co-solvent free gel dosimeter are more water equivalent with less than a 2.6% difference compared to a 5.7% difference for the isopropanol gel dosimeter. Both the co-solvent free and isopropanol solvent gel dosimeters have lower effective atomic numbers than water, differing by 2.2% and 6.5%, respectively. As a result, their photoelectric absorption interaction probabilities are up to 6% and 19% different from water, respectively. Compton scattering and pair production interaction probabilities of NIPAM gel with isopropanol differ by up to 10% from water while for the co-solvent free gel, the differences are 3%. Mass attenuation and energy absorption coefficients of the co-solvent free gel dosimeter and the isopropanol gel dosimeter are up to 7% and 19% lower than water, respectively. Collisional and total mass stopping powers of both gel dosimeters differ by less than 2% from those of water. The dose response of the co-solvent free gel dosimeter is water equivalent (with <1% discrepancy) for dosimetry of x-rays with energies <100 keV while the discrepancy increases (up to 5%) for the isopropanol gel dosimeter over the same energy range. For x-ray beams over the energy range 180 keV-18 MV, both gel dosimeters have less than 2% discrepancy with water. For megavoltage electron beams, the dose differences with water reach 7% and 14% for the co-solvent free gel dosimeter and the isopropanol gel dosimeter, respectively. Our results demonstrate that for x-ray beam dosimetry with photon energies higher than 100 keV and megavoltage electron beams, correction factors are needed for both NIPAM gels to be used as water equivalent dosimeters.

  14. Polymer gel dosimeters with reduced toxicity: a preliminary investigation of the NMR and optical dose response using different monomers

    NASA Astrophysics Data System (ADS)

    Senden, R. J.; DeJean, P.; McAuley, K. B.; Schreiner, L. J.

    2006-07-01

    In this work, three new polymer gel dosimeter recipes were investigated that may be more suitable for widespread applications than polyacrylamide gel dosimeters, since the extremely toxic acrylamide has been replaced with the less harmful monomers N-isopropylacrylamide (NIPAM), diacetone acrylamide and N-vinylformamide. The new gel dosimeters studied contained gelatin (5 wt%), monomer (3 wt%), N,N'-methylene-bis-acrylamide crosslinker (3 wt%) and tetrakis (hydroxymethyl) phosphonium chloride antioxidant (10 mM). The NMR response (R2) of the dosimeters was analysed for conditions of varying dose, dose rate, time post-irradiation, and temperature during irradiation and scanning. It was shown that the dose-response behaviour of the NIPAM/Bis gel dosimeter is comparable to that of normoxic polyacrylamide gel (PAGAT) in terms of high dose-sensitivity and low dependence on dose rate and irradiation temperature, within the ranges considered. The dose-response (R2) of NIPAM/Bis appears to be linear over a greater dose range than the PAGAT gel dosimeter. The effects of time post-irradiation (temporal instability) and temperature during NMR scanning on the R2 response were more significant for NIPAM/Bis dosimeters. Diacetone acrylamide and N-vinylformamide gel dosimeters possessed considerably lower dose-sensitivities. The optical dose-response, measured in terms of the attenuation coefficient for each polymer gel dosimeter, showed potential for the use of optical imaging techniques in future studies.

  15. Personal noise dosimeters: accuracy and reliability in varied settings.

    PubMed

    Cook-Cunningham, Sheri Lynn

    2014-01-01

    This study investigated the accuracy, reliability, and characteristics of three brands of personal noise dosimeters (N = 7 units) in both pink noise (PN) environments and natural environments (NEs) through the acquisition of decibel readings, Leq readings and noise doses. Acquisition periods included repeated PN conditions, choir room rehearsals and participant (N = 3) Leq and noise dosages procured during a day in the life of a music student. Among primary results: (a) All dosimeters exhibited very strong positive correlations for PN measurements across all instruments; (b) all dosimeters were within the recommended American National Standard Institute (ANSI) SI.25-1991 standard of ±2 dB (A) of a reference measurement; and (c) all dosimeters were within the recommended ANSI SI.25-1991 standard of ±2 dB (A) when compared with each other. Results were discussed in terms of using personal noise dosimeters within hearing conservation and research contexts and recommendations for future research. Personal noise dosimeters were studied within the contexts of PN environments and NEs (choral classroom and the day in the life of collegiate music students). This quantitative study was a non-experimental correlation design. Three brands of personal noise dosimeters (Cirrus doseBadge, Quest Edge Eg5 and Etymotic ER200D) were tested in two environments, a PN setting and a natural setting. There were two conditions within each environment. In the PN environment condition one, each dosimeter was tested individually in comparison with two reference measuring devices (Ivie and Easera) while PN was generated by a Whites Instrument PN Tube. In condition two, the PN procedures were replicated for longer periods while all dosimeters measured the sound levels simultaneously. In the NE condition one, all dosimeters were placed side by side on a music stand and recorded sound levels of choir rehearsals over a 7-h rehearsal period. In NE, condition two noise levels were measured during a day in the life of college music students. Three participants each wore two types of dosimeters for an 8-h period during a normal school day. Descriptive statistical analyzes including means, standard deviation and Pearson product-moment correlation. The primary finding is that the dosimeters in this study recorded results within ±2 dB of either a reference measurement or within dosimeters in all four conditions examined. All dosimeters studied measured steady noise source accurately and consistently, with strong positive correlations across all instruments. Measurements acquired during choral rehearsals indicated a maximum of 1.5 dB difference across dosimeters. The Etymotic research personal noise dosimeters (ER200D) could provide individuals and schools of music with a relatively inexpensive tool to monitor sound doses. Findings from this study suggest that the three brands of dosimeters tested will provide reliable Leq levels and hearing dosages in both PN and natural settings.

  16. Energy dependence measurement of small-type optically stimulated luminescence (OSL) dosimeter by means of characteristic X-rays induced with general diagnostic X-ray equipment.

    PubMed

    Takegami, Kazuki; Hayashi, Hiroaki; Okino, Hiroki; Kimoto, Natsumi; Maehata, Itsumi; Kanazawa, Yuki; Okazaki, Tohru; Hashizume, Takuya; Kobayashi, Ikuo

    2016-01-01

    For X-ray inspections by way of general X-ray equipment, it is important to measure an entrance-skin dose. Recently, a small optically stimulated luminescence (OSL) dosimeter was made commercially available by Landauer, Inc. The dosimeter does not interfere with the medical images; therefore, it is expected to be a convenient detector for measuring personal exposure doses. In an actual clinical situation, it is assumed that X-rays of different energies will be detected by a dosimeter. For evaluation of the exposure dose measured by a dosimeter, it is necessary to know the energy dependence of the dosimeter. Our aim in this study was to measure the energy dependence of the OSL dosimeter experimentally in the diagnostic X-ray region. Metal samples weighing several grams were irradiated and, in this way, characteristic X-rays having energies ranging from 8 to 85 keV were generated. Using these mono-energetic X-rays, the dosimeter was irradiated. Simultaneously, the fluence of the X-rays was determined with a CdTe detector. The energy-dependent efficiency of the dosimeter was derived from the measured value of the dosimeter and the fluence. Moreover, the energy-dependent efficiency was calculated by Monte-Carlo simulation. The efficiency obtained in the experiment was in good agreement with that of the simulation. In conclusion, our proposed method, in which characteristic X-rays are used, is valuable for measurement of the energy dependence of a small OSL dosimeter in the diagnostic X-ray region.

  17. Electronic gating circuit and ultraviolet laser excitation permit improved dosimeter sensitivity

    NASA Technical Reports Server (NTRS)

    Eggenberger, D.; King, D.; Longnecker, A.; Schutt, D.

    1968-01-01

    Standard dosimeter reader, modified by adding an electronic gating circuit to trigger the intensity level photomultiplier, increases readout sensitivity of photoluminescent dosimeter systems. The gating circuit is controlled by a second photomultiplier which senses a short ultraviolet pulse from a laser used to excite the dosimeter.

  18. Pocket radiation dosimeter: dosimeter charger assembly

    DOEpatents

    Manning, F.W.

    1982-03-17

    This invention is a novel pocket-type radiation dosimeter comprising an electrometric radiation dosimeter and a charging circuit therefor. The instrument is especially designed to be amenable to mass production, to have a long shelf life, and to be compact, lightweight, and usable by the layman. The dosimeter proper may be of conventional design. The charging circuit includes a shake-type electrostatic generator, a voltage doubler for integrating generator output voltages of one polarity, and a switch operated by an external permanent magnet.

  19. Pocket radiation dosimeter--dosimeter charger assembly

    DOEpatents

    Manning, Frank W.

    1984-01-01

    This invention is a novel pocket-type radiation dosimeter comprising an electrometric radiation dosimeter and a charging circuit therefor. The instrument is especially designed to be amenable to mass production, to have a long shelf life, and to be compact, lightweight, and usable by the layman. The dosimeter proper may be of conventional design. The charging circuit includes a shake-type electrostatic generator, a voltage doubler for integrating generator output voltages of one polarity, and a switch operated by an external permanent magnet.

  20. Surface dose measurement for helical tomotherapy.

    PubMed

    Snir, Jonatan A; Mosalaei, Homeira; Jordan, Kevin; Yartsev, Slav

    2011-06-01

    To compare the surface dose measurements made by different dosimeters for the helical tomotherapy (HT) plan in the case of the target close to the surface. Surface dose measurements in different points for the HT plan to deliver 2 Gy to the planning target volume (PTV) at 5 mm below the surface of the cylindrical phantom were performed by radiochromic films, single use metal oxide semiconductor field-effect transistor (MOSFET) dosimeters, silicon IVD QED diode, and optically stimulated luminescence (OSL) dosimeters. The measured doses by all dosimeters were within 12 +/- 8% difference of each other. Radiochromic films, EBT, and EBT2, provide high spatial resolution, although it is difficult to get accurate measurements of dose. Both the OSL and QED measured similar dose to that of the MOSFET detectors. The QED dosimeter is promising as a reusable on-line wireless dosimeter, while the OSL dosimeters are easier to use, require minimum setup time and are very precise.

  1. Dosimeter and method for using the same

    DOEpatents

    Warner, Benjamin P.; Johns, Deidre M.

    2003-06-24

    A very sensitive dosimeter that detects ionizing radiation is described. The dosimeter includes a breakable sealed container. A solution of a reducing agent is inside the container. The dosimeter has an air-tight dosimeter body with a transparent portion and an opaque portion. The transparent portion includes a transparent chamber that holds the breakable container with the reducing agent. The opaque portion includes an opaque chamber that holds an emulsion of silver salt (AgX) selected from silver chloride, silver bromide, silver iodide, and combinations of them. A passageway in the dosimeter provides fluid communication between the transparent chamber and the opaque chamber. The dosimeter may also include a chemical pH indicator in the breakable container that provides a detectable color change to the solution for a pH of about 3-10. The invention also includes a method of detecting ionizing radiation that involves producing the dosimeter, breaking the breakable container, allowing the solution to flow through the passageway and contact the emulsion, detecting any color change in the solution and using the color change to determine a radiation dosage.

  2. The responses of three kinds of passive dosimeters to secondary cosmic rays in the lower atmosphere.

    PubMed

    Yang, Zhen; Chen, Bo; Zhuo, Weihai; Fan, Dunhuang; Zhao, Chao; Zhang, Yu

    2015-12-01

    For accurate measurements of the secondary cosmic rays by using passive dosimeters, the relative responses of the thermoluminescence dosimeter (TLD), optically stimulated luminescence (OSL) dosimeter, and radiophotoluminescent glass dosimeter (RPLGD) were studied. The cosmic-ray shower generator was used to simulate the secondary cosmic rays at the sea level. Monte Carlo simulations were performed to calculate the air kerma and absorbed doses in each kind of dosimeter. The results showed that compared with their responses to gamma rays of (137)Cs, the relative responses of the TLD, OSL, and RPLGD were 0.786, 0.707, and 0.735 to the hard component of cosmic rays, respectively, and the values were 0.904, 0.838, and 0.857 to the soft component of cosmic rays, respectively. To verify the simulations results, an in situ measurement with the three kinds of dosimeters was performed at the same place. The results indicated that the secondary cosmic rays monitored with the three kinds of dosimeters were well consistent with each other provided their relative responses were taken into account.

  3. The responses of three kinds of passive dosimeters to secondary cosmic rays in the lower atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhen; Chen, Bo, E-mail: bochenfys@fudan.edu.cn; Zhuo, Weihai

    For accurate measurements of the secondary cosmic rays by using passive dosimeters, the relative responses of the thermoluminescence dosimeter (TLD), optically stimulated luminescence (OSL) dosimeter, and radiophotoluminescent glass dosimeter (RPLGD) were studied. The cosmic-ray shower generator was used to simulate the secondary cosmic rays at the sea level. Monte Carlo simulations were performed to calculate the air kerma and absorbed doses in each kind of dosimeter. The results showed that compared with their responses to gamma rays of {sup 137}Cs, the relative responses of the TLD, OSL, and RPLGD were 0.786, 0.707, and 0.735 to the hard component of cosmicmore » rays, respectively, and the values were 0.904, 0.838, and 0.857 to the soft component of cosmic rays, respectively. To verify the simulations results, an in situ measurement with the three kinds of dosimeters was performed at the same place. The results indicated that the secondary cosmic rays monitored with the three kinds of dosimeters were well consistent with each other provided their relative responses were taken into account.« less

  4. The responses of three kinds of passive dosimeters to secondary cosmic rays in the lower atmosphere

    NASA Astrophysics Data System (ADS)

    Yang, Zhen; Chen, Bo; Zhuo, Weihai; Fan, Dunhuang; Zhao, Chao; Zhang, Yu

    2015-12-01

    For accurate measurements of the secondary cosmic rays by using passive dosimeters, the relative responses of the thermoluminescence dosimeter (TLD), optically stimulated luminescence (OSL) dosimeter, and radiophotoluminescent glass dosimeter (RPLGD) were studied. The cosmic-ray shower generator was used to simulate the secondary cosmic rays at the sea level. Monte Carlo simulations were performed to calculate the air kerma and absorbed doses in each kind of dosimeter. The results showed that compared with their responses to gamma rays of 137Cs, the relative responses of the TLD, OSL, and RPLGD were 0.786, 0.707, and 0.735 to the hard component of cosmic rays, respectively, and the values were 0.904, 0.838, and 0.857 to the soft component of cosmic rays, respectively. To verify the simulations results, an in situ measurement with the three kinds of dosimeters was performed at the same place. The results indicated that the secondary cosmic rays monitored with the three kinds of dosimeters were well consistent with each other provided their relative responses were taken into account.

  5. Entrance surface dose measurements using a small OSL dosimeter with a computed tomography scanner having 320 rows of detectors.

    PubMed

    Takegami, Kazuki; Hayashi, Hiroaki; Yamada, Kenji; Mihara, Yoshiki; Kimoto, Natsumi; Kanazawa, Yuki; Higashino, Kousaku; Yamashita, Kazuta; Hayashi, Fumio; Okazaki, Tohru; Hashizume, Takuya; Kobayashi, Ikuo

    2017-03-01

    Entrance surface dose (ESD) measurements are important in X-ray computed tomography (CT) for examination, but in clinical settings it is difficult to measure ESDs because of a lack of suitable dosimeters. We focus on the capability of a small optically stimulated luminescence (OSL) dosimeter. The aim of this study is to propose a practical method for using an OSL dosimeter to measure the ESD when performing a CT examination. The small OSL dosimeter has an outer width of 10 mm; it is assumed that a partial dose may be measured because the slice thickness and helical pitch can be set to various values. To verify our method, we used a CT scanner having 320 rows of detectors and checked the consistencies of the ESDs measured using OSL dosimeters by comparing them with those measured using Gafchromic™ films. The films were calibrated using an ionization chamber on the basis of half-value layer estimation. On the other hand, the OSL dosimeter was appropriately calibrated using a practical calibration curve previously proposed by our group. The ESDs measured using the OSL dosimeters were in good agreement with the reference ESDs from the Gafchromic™ films. Using these data, we also estimated the uncertainty of ESDs measured with small OSL dosimeters. We concluded that a small OSL dosimeter can be considered suitable for measuring the ESD with an uncertainty of 30 % during CT examinations in which pitch factors below 1.000 are applied.

  6. Composite Resin Dosimeters: A New Concept and Design for a Fibrous Color Dosimeter.

    PubMed

    Kinashi, Kenji; Iwata, Takato; Tsuchida, Hayato; Sakai, Wataru; Tsutsumi, Naoto

    2018-04-11

    Polystyrene (PS)-based composite microfibers combined with a photochromic spiropyran dye, 1,3,3-trimethylindolino-6'-nitrobenzopyrylospiran (6-nitro BIPS), and a photostimulable phosphor, europium-doped barium fluorochloride (BaFCl:Eu 2+ ), were developed for the detection of X-ray exposure doses on the order of approximately 1 Gy. To produce the PS-based composite microfibers, we employed a forcespinning method that embeds a high concentration of phosphor in PS in a safe, inexpensive, and simple procedure. On the basis of the optimization of the forcespinning process, fibrous color dosimeters with a high radiation dose sensitivity of 1.2-4.4 Gy were fabricated. The color of the dosimeters was found to transition from white to blue in response to X-ray exposure. The optimized fibrous color dosimeter, made from a solution having a PS/6-nitro BIPS/BaFCl:Eu 2+ /C 2 Cl 4 ratio of 7.0/0.21/28.0/28.0 (wt %) and produced with a 290 mm distance between the needle and collectors, a 0.34 mm 23 G needle nozzle, and a spinneret rotational rate of 3000 rpm, exhibited sensitivity to a dose as low as 1.2 Gy. To realize practical applications, we manufactured the optimized fibrous color dosimeter into a clothlike color dosimeter. The clothlike color dosimeter was mounted on a stuffed bear, and its coloring behavior was demonstrated upon X-ray exposure. After exposure with X-ray, a blue colored and shaped in the form of the letter "[Formula: see text]" clearly appeared on the surface of the clothlike color dosimeter. The proposed fibrous color dosimeters having excellent workability will be an unprecedented dosimetry and contributed to all industries utilizing radiation dosimeters. This new fibrous "composite resin dosimeter" should be able to replace traditional, wearable, and individual radiation dose monitoring devices, such as film badges.

  7. SU-D-213-07: Initial Characterization of a Gel Patch Dosimeter for in Vivo Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matrosic, C; Culberson, W; Rosen, B

    Purpose: In vivo dosimetry, despite being the most direct method for monitoring the dose delivered during radiation therapy and being recommended by several national and international organizations (AAPM, ICRU, NACP), is underutilized in the clinic due to issues associated with dose sensitivity, feasibility, and cost. Given the increasing complexity of radiation therapy modern treatments, there is a compelling need for a robust, affordable in vivo dosimetry option. In this work we present the initial characterization of a novel gel patch in vivo dosimeter. Methods: DEFGEL (6%T) was used to make 1-cm thick small cylindrical patch dosimeters. The optical density ofmore » each dosimeter was read before and after irradiation by an in-house laser densitometer. The dosimeters were irradiated using a Varian Clinac EX linac. Three separate batches of gel patches were used to create dose response curves and evaluate repeatability. The development time of the dosimeter was also evaluated. Results: The dose response of the dosimeter was found to be linear from a range of approximately 1-Gy to 20-Gy, which is a larger window of linearity compared to other in vivo dosimeters. At doses below 1-Gy, the cumulative uncertainties were on the order of the measured data. When compared, the three batches demonstrated repeatability from 1-Gy to approximately 13-Gy, with some variation at higher doses. For doses of >8-Gy, the dosimeter reached full optical density after 4-hours, whereas low doses developed within an hour. Conclusion: Initial results indicate that the gel patch dosimeter is a reliable and simple way to measure a large range of doses, including high doses such as those delivered during hypofractionated treatments (e.g. SBRT or MR-guided radiotherapy). The simple fabrication method for the dosimeter and the use of a laser densitometer would allow for the dosimeter to used and read in-house, cheaply and easily.« less

  8. Characteristics of optically stimulated luminescence dosimeters in the spread-out Bragg peak region of clinical proton beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerns, James R.; Kry, Stephen F.; Sahoo, Narayan

    Purpose: Optically stimulated luminescent detectors (OSLDs) have a number of advantages in radiation dosimetry making them excellent dosimeters for quality assurance and patient dose verification. Although the dosimeters have been investigated in several modalities, relatively little work has been done in examining the dosimeters for use in clinical proton beams. This study examined a number of characteristics of the response of the dosimeters in the spread-out Bragg peak (SOBP) region of clinical proton beams. Methods: Optically stimulated luminescence (OSL) dosimeters from Landauer, Inc., specifically the nanoDot dosimeter, were investigated. These dosimeters were placed in a special phantom with a recessmore » to fit the dosimeters without an air gap. Beams with nominal energies of 160, 200, and 250 MeV were used in the passively-scattered proton beam at the MD Anderson Cancer Center Proton Therapy Center. Dosimetric properties including linearity, field size dependence, energy dependence, residual signal as a function of cumulative dose, and postirradiation fading were investigated by taking measurements at the center of SOBPs. Results: The dosimeters showed 1% supralinearity at 200 cGy and 5% supralinearity at 1000 cGy. No noticeable field size dependence of the detector was found for field sizes from 2 x 2 cm{sup 2} to 18 x 18 cm{sup 2}. Residual signal as a function of cumulative dose showed a small increase for measurements up to 1000 cGy. Readout signal depletion of the dosimeters after consecutive readings showed a slightly larger depletion in protons for doses up to 500 cGy but not by a clinically significant amount. Within the center of various SOBP widths and proton energies the variation in response was less than 2%. An average beam quality factor of 1.089 with experimental standard deviation of 0.007 was determined and applied to the data such that the results were within 1.2% of ion chamber data. Conclusions: The nanoDot OSL dosimeter characteristics were studied in the SOBP region of clinical proton beams. To achieve accurate dosimetric readings, corrections to the dosimeter response were applied. Corrections tended to be minimal or broadly consistent. The nanoDot OSLD was found to be an acceptable dosimeter for measurement in the SOBP region for a range of clinical proton beams.« less

  9. Characteristics of optically stimulated luminescence dosimeters in the spread-out Bragg peak region of clinical proton beams.

    PubMed

    Kerns, James R; Kry, Stephen F; Sahoo, Narayan

    2012-04-01

    Optically stimulated luminescent detectors (OSLDs) have a number of advantages in radiation dosimetry making them excellent dosimeters for quality assurance and patient dose verification. Although the dosimeters have been investigated in several modalities, relatively little work has been done in examining the dosimeters for use in clinical proton beams. This study examined a number of characteristics of the response of the dosimeters in the spread-out Bragg peak (SOBP) region of clinical proton beams. Optically stimulated luminescence (OSL) dosimeters from Landauer, Inc., specifically the nanoDot dosimeter, were investigated. These dosimeters were placed in a special phantom with a recess to fit the dosimeters without an air gap. Beams with nominal energies of 160, 200, and 250 MeV were used in the passively-scattered proton beam at the MD Anderson Cancer Center Proton Therapy Center. Dosimetric properties including linearity, field size dependence, energy dependence, residual signal as a function of cumulative dose, and postirradiation fading were investigated by taking measurements at the center of SOBPs. The dosimeters showed 1% supralinearity at 200 cGy and 5% supralinearity at 1000 cGy. No noticeable field size dependence of the detector was found for field sizes from 2 × 2 cm(2) to 18 × 18 cm(2). Residual signal as a function of cumulative dose showed a small increase for measurements up to 1000 cGy. Readout signal depletion of the dosimeters after consecutive readings showed a slightly larger depletion in protons for doses up to 500 cGy but not by a clinically significant amount. Within the center of various SOBP widths and proton energies the variation in response was less than 2%. An average beam quality factor of 1.089 with experimental standard deviation of 0.007 was determined and applied to the data such that the results were within 1.2% of ion chamber data. The nanoDot OSL dosimeter characteristics were studied in the SOBP region of clinical proton beams. To achieve accurate dosimetric readings, corrections to the dosimeter response were applied. Corrections tended to be minimal or broadly consistent. The nanoDot OSLD was found to be an acceptable dosimeter for measurement in the SOBP region for a range of clinical proton beams.

  10. Comparative study of nuclear magnetic resonance and UV-visible spectroscopy dose-response of polymer gel based on N-(Isobutoxymethyl) acrylamide

    NASA Astrophysics Data System (ADS)

    Lotfy, S.; Basfar, A. A.; Moftah, B.; Al-Moussa, A. A.

    2017-12-01

    A comparative study of nuclear magnetic resonance and UV-visible spectroscopy of dose-response for polymer gel dosimeters was performed. Dosimeters were prepared using N-(Isobutoxymethyl) acrylamide (NIBMA) as a new monomer via radiation induced polymerization for use in radiotherapy planning. The prepared dosimeters were irradiated with doses up to 30 Gy at a constant dose rate of 600 MU/min. Using a medical linear accelerator at irradiation energies of 6, 10 and 18 MV photon beam. The nuclear magnetic resonance (NMR), via spin-spin relaxation rate (R2) for water proton surrounding the polymer formulation and UV-Visible spectroscopy, via the optical absorbance measurements of irradiated dosimeters at selected wavelengths of 500 nm, was used to investigate the dose response of NIBMAGAT gel dosimeters. Scavenge of oxygen was done using tetrakis (hydroxymethyl) phosphonium chloride (THPC). The THPC optimum concentration in the dosimeters formulations were 5 and 10 mM for the NMR and optical absorbance measurements respectively. The quantitative investigation of the dosimeters components reveals the selective formulations based on 4% w/w gelatin, 1% w/w NIBMA, 3% w/w BisAAm, 5 or 10 mM THPC and 17% w/w glycerol which significantly increase the dosimeters dose response. The prepared dosimeters were found to be dose rate and photon beam irradiation energy independent. The stability study shows no change in the relaxation rate or in the optical absorbance of the gel dosimeters up to 8 days post-irradiation. The prepared polymer gel dosimeters at the energies of 6, 10 and 18 MV photon beam irradiation in the range of 1-30 Gy have the linearity of the dose response function in the case of R2 is better than in the case of absorbance measurements; correlation coefficient (r2) equals 0.995 and 0.991, respectively. Dose sensitivity, R2 of NIBMAGAT dosimeters (0.0775 s-1 Gy-1). The absorption band intensity increases linearly with a dose sensitivity of 0.016 cm-1 Gy-1. The detection limit of the present dosimeter analyzed by R2 and absorbance measurements is 1 Gy and 2 Gy respectively. The overall uncertainty measurements of dose approve that by using the absorbance measurements the gel is not useful as a dosimeter like as R2 measurements. It could be a new composition of dosimeters successfully utilized for MRI (Magnetic Resonance Imaging) for radiotherapy treatment planning.

  11. GAMMA AND X-RAY DOSIMETER AND DOSIMETRIC METHOD

    DOEpatents

    Taplin, G.V.; Douglas, C.H.; Sigoloff, S.C.

    1958-08-19

    An improvement in colorimetric gamma and x-ray dosimeter systems and a self-contained. hand carried dostmeter of the afore-mentioned type ts described. A novel point of the invention ltes in the addition of specific quantities of certain normalizing agents to the two phase chlorinated hydro-carbon-aqueous dyc colortmetric dosimeter to eliminate the after reaction and thereby extend the utility of such systein. The structure of the two phase colorimetric dosimeter tubes and the carrying case for the tubes of the portable dosimeter are unique features.

  12. An NMR relaxometry and gravimetric study of gelatin-free aqueous polyacrylamide dosimeters

    NASA Astrophysics Data System (ADS)

    Babic, Steven; Schreiner, L. John

    2006-09-01

    In conformal radiation therapy, a high dose of radiation is given to a target volume to increase the probability of cure, and care is taken to minimize the dose to surrounding healthy tissue. The techniques used to achieve this are very complicated and the precise verification of the resulting three-dimensional (3D) dose distribution is required. Polyacrylamide gelatin (PAG) dosimeters with magnetic resonance imaging and optical computed tomography scanning provide the required 3D dosimetry with high spatial resolution. Many basic studies have characterized these chemical dosimeters that polymerize under irradiation. However, the investigation of the fundamental properties of the radiation-induced polymerization in PAG dosimeters is complicated by the presence of the background gelatin matrix. In this work, a gelatin-free model system for the study of the basic radiation-induced polymerization in PAG dosimeters has been developed. Experiments were performed on gelatin-free dosimeters, named aqueous polyacrylamide (APA) dosimeters, containing equal amounts of acrylamide and N,N'-methylene-bisacrylamide. The APA dosimeters were prepared with four different total monomer concentrations (2, 4, 6 and 8% by weight). Nuclear magnetic resonance (NMR) spin-spin and spin-lattice proton relaxation measurements at 20 MHz, and gravimetric analyses performed on all four dosimeters, show a continuous degree of polymerization over the dose range of 0-25 Gy. The developed NMR model explains the relationship observed between the relaxation data and the amount of crosslinked polymer formed at each dose. This model can be extended with gelatin relaxation data to provide a fundamental understanding of radiation-induced polymerization in the conventional PAG dosimeters.

  13. Technical Note: Improving proton stopping power ratio determination for a deformable silicone-based 3D dosimeter using dual energy CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taasti, Vicki Trier, E-mail: victaa@rm.dk; Høye, Ellen Marie; Hansen, David Christoffer

    Purpose: The aim of this study was to investigate whether the stopping power ratio (SPR) of a deformable, silicone-based 3D dosimeter could be determined more accurately using dual energy (DE) CT compared to using conventional methods based on single energy (SE) CT. The use of SECT combined with the stoichiometric calibration method was therefore compared to DECT-based determination. Methods: The SPR of the dosimeter was estimated based on its Hounsfield units (HUs) in both a SECT image and a DECT image set. The stoichiometric calibration method was used for converting the HU in the SECT image to a SPR valuemore » for the dosimeter while two published SPR calibration methods for dual energy were applied on the DECT images. Finally, the SPR of the dosimeter was measured in a 60 MeV proton by quantifying the range difference with and without the dosimeter in the beam path. Results: The SPR determined from SECT and the stoichiometric method was 1.10, compared to 1.01 with both DECT calibration methods. The measured SPR for the dosimeter material was 0.97. Conclusions: The SPR of the dosimeter was overestimated by 13% using the stoichiometric method and by 3% when using DECT. If the stoichiometric method should be applied for the dosimeter, the HU of the dosimeter must be manually changed in the treatment planning system in order to give a correct SPR estimate. Using a wrong SPR value will cause differences between the calculated and the delivered treatment plans.« less

  14. An NMR relaxometry and gravimetric study of gelatin-free aqueous polyacrylamide dosimeters.

    PubMed

    Babic, Steven; Schreiner, L John

    2006-09-07

    In conformal radiation therapy, a high dose of radiation is given to a target volume to increase the probability of cure, and care is taken to minimize the dose to surrounding healthy tissue. The techniques used to achieve this are very complicated and the precise verification of the resulting three-dimensional (3D) dose distribution is required. Polyacrylamide gelatin (PAG) dosimeters with magnetic resonance imaging and optical computed tomography scanning provide the required 3D dosimetry with high spatial resolution. Many basic studies have characterized these chemical dosimeters that polymerize under irradiation. However, the investigation of the fundamental properties of the radiation-induced polymerization in PAG dosimeters is complicated by the presence of the background gelatin matrix. In this work, a gelatin-free model system for the study of the basic radiation-induced polymerization in PAG dosimeters has been developed. Experiments were performed on gelatin-free dosimeters, named aqueous polyacrylamide (APA) dosimeters, containing equal amounts of acrylamide and N,N'-methylene-bisacrylamide. The APA dosimeters were prepared with four different total monomer concentrations (2, 4, 6 and 8% by weight). Nuclear magnetic resonance (NMR) spin-spin and spin-lattice proton relaxation measurements at 20 MHz, and gravimetric analyses performed on all four dosimeters, show a continuous degree of polymerization over the dose range of 0-25 Gy. The developed NMR model explains the relationship observed between the relaxation data and the amount of crosslinked polymer formed at each dose. This model can be extended with gelatin relaxation data to provide a fundamental understanding of radiation-induced polymerization in the conventional PAG dosimeters.

  15. Development of a wavelength-separated type scintillator with optical fiber (SOF) dosimeter to compensate for the Cerenkov radiation effect

    PubMed Central

    Ishikawa, Masayori; Nagase, Naomi; Matsuura, Taeko; Hiratsuka, Junichi; Suzuki, Ryusuke; Miyamoto, Naoki; Sutherland, Kenneth Lee; Fujita, Katsuhisa; Shirato, Hiroki

    2015-01-01

    Abstract The scintillator with optical fiber (SOF) dosimeter consists of a miniature scintillator mounted on the tip of an optical fiber. The scintillator of the current SOF dosimeter is a 1-mm diameter hemisphere. For a scintillation dosimeter coupled with an optical fiber, measurement accuracy is influenced by signals due to Cerenkov radiation in the optical fiber. We have implemented a spectral filtering technique for compensating for the Cerenkov radiation effect specifically for our plastic scintillator-based dosimeter, using a wavelength-separated counting method. A dichroic mirror was used for separating input light signals. Individual signal counting was performed for high- and low-wavelength light signals. To confirm the accuracy, measurements with various amounts of Cerenkov radiation were performed by changing the incident direction while keeping the Ir-192 source-to-dosimeter distance constant, resulting in a fluctuation of <5%. Optical fiber bending was also addressed; no bending effect was observed for our wavelength-separated SOF dosimeter. PMID:25618136

  16. In situ ion-beam-induced luminescence analysis for evaluating a micrometer-scale radio-photoluminescence glass dosimeter

    NASA Astrophysics Data System (ADS)

    Kawabata, Shunsuke; Kada, Wataru; Parajuli, Raj Kumar; Matsubara, Yoshinori; Sakai, Makoto; Miura, Kenta; Satoh, Takahiro; Koka, Masashi; Yamada, Naoto; Kamiya, Tomihiro; Hanaizumi, Osamu

    2016-06-01

    Micrometer-scale responses of radio-photoluminescence (RPL) glass dosimeters to focused ionized particle radiation were evaluated by combining ion-beam-induced luminescence (IBIL) and proton beam writing (PBW) using a 3 MeV focused proton microbeam. RPL phosphate glass dosimeters doped with ionic Ag or Cu activators at concentrations of 0.2 and 0.1% were fabricated, and their scintillation intensities were evaluated by IBIL spectroscopy under a PBW micropatterning condition. Compared with the Ag-doped dosimeter, the Cu-doped dosimeter was more tolerant of the radiation, while the peak intensity of its luminescence was lower, under the precise dose control of the proton microprobe. Proton-irradiated areas were successfully recorded using these dosimeters and their RPL centers were visualized under 375 nm ultraviolet light. The reproduction of the irradiated region by post-RPL imaging suggests that precise estimation of irradiation dose using microdosimeters can be accomplished by optimizing RPL glass dosimeters for various proton microprobe applications in organic material analysis and in micrometer-scale material modifications.

  17. Water equivalency evaluation of PRESAGE® dosimeters for dosimetry of Cs-137 and Ir-192 brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Gorjiara, Tina; Hill, Robin; Kuncic, Zdenka; Baldock, Clive

    2010-11-01

    A major challenge in brachytherapy dosimetry is the measurement of steep dose gradients. This can be achieved with a high spatial resolution three dimensional (3D) dosimeter. PRESAGE® is a polyurethane based dosimeter which is suitable for 3D dosimetry. Since an ideal dosimeter is radiologically water equivalent, we have investigated the relative dose response of three different PRESAGE® formulations, two with a lower chloride and bromide content than original one, for Cs-137 and Ir-192 brachytherapy sources. Doses were calculated using the EGSnrc Monte Carlo package. Our results indicate that PRESAGE® dosimeters are suitable for relative dose measurement of Cs-137 and Ir-192 brachytherapy sources and the lower halogen content PRESAGE® dosimeters are more water equivalent than the original formulation.

  18. Laser readable thermoluminescent radiation dosimeters and methods for producing thereof

    DOEpatents

    Braunlich, Peter F.; Tetzlaff, Wolfgang

    1989-01-01

    Thin layer thermoluminescent radiation dosimeters for use in laser readable dosimetry systems, and methods of fabricating such thin layer dosimeters. The thin layer thermoluminescent radiation dosimeters include a thin substrate made from glass or other inorganic materials capable of withstanding high temperatures and high heating rates. A thin layer of a thermoluminescent phoshphor material is heat bonded to the substrate using an inorganic binder such as glass. The dosimeters can be mounted in frames and cases for ease in handling. Methods of the invention include mixing a suitable phosphor composition and binder, both being in particulate or granular form. The mixture is then deposited onto a substrate such as by using mask printing techniques. The dosimeters are thereafter heated to fuse and bond the binder and phosphor to the substrate.

  19. Fast-neutron solid-state dosimeter

    DOEpatents

    Kecker, K.H.; Haywood, F.F.; Perdue, P.T.; Thorngate, J.H.

    1975-07-22

    This patent relates to an improved fast-neutron solid-state dosimeter that does not require separation of materials before it can be read out, that utilizes materials that do not melt or otherwise degrade at about 300$sup 0$C readout temperature, that provides a more efficient dosimeter, and that can be reused. The dosimeters are fabricated by intimately mixing a TL material, such as CaSO$sub 4$:Dy, with a powdered polyphenyl, such as p-sexiphenyl, and hot- pressing the mixture to form pellets, followed by out-gassing in a vacuum furnace at 150$sup 0$C prior to first use dosimeters. (auth)

  20. Photon Dosimetry by Luminescence Methods

    ERIC Educational Resources Information Center

    Raeside, D. E.

    1973-01-01

    Discusses the fundamentals of two personnel dosimeters: the lithium fluoride thermoluminescent dosimeter and the silver-activated phosphate glass radiophotoluminescent dosimeter, and indicates the usefulness of this presentation for both teachers and students. (CC)

  1. TU-E-TOUR-I-00: Exhibit Hall Guided Tours-Dosimters for QC in Diagnostic Imaging (Tuesday)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Tour Leader: Xia Jiang, Ohio State University, Columbus, OH Tour Guides: Xia Jiang, Ohio State University, Columbus, OH Kevin Little, The University of Chicago, Chicago, IL Christina Sammet, Lurie Children’s Hospital of Chicago, Chicago, IL Participating Vendors: IBA PTW - New York Radcal Corporation RTI Electronics, Inc. Exhibit Hall Guided Tours is a new program launching this year at the Annual Meeting. The Guided Tours are designed to enhance the interaction between meeting attendees and exhibitors. This year’s Imaging Guided Tours are organized around the theme of dosimeters for quality control in diagnostic imaging. Tours will begin with an introductionmore » and background given by Dr. Xia Jiang, the Tour Leader. The introduction will cover the types and properties of different radiation dosimeters used for quality assurance in clinical radiology. Attendees will then break into smaller groups, each lead by an AAPM-member Tour Guide. The tour groups will visit the exhibit booths of vendors who provide appropriate dosimeters, and a vendor representative will give a presentation to the group about their particular product(s). The vendor representatives as well as the Tour Guides will be available to answer questions. Outline: Types and properties of radiation detectors and dosimeters Ionization chamber dosimeters Solid state dosimeters Dosimeter calibration: Primary and secondary standards dosimetry laboratories Instruments for measuring tube voltage and exposure time Vendor presentations will likely cover features and innovations of different dosimeter systems, as well as their practical use. Learning Objectives: Understand the types and properties of different instrumentations used for quality control in diagnostic imaging. Understand the process of dosimeter calibration. Gain familiarity with the latest commercial dosimeter systems from different vendors.« less

  2. WE-C-TOUR-I-00: Exhibit Hall Guided Tours-Dosimters for QC in Diagnostic Imaging (Wednesday)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Tour Leader: Xia Jiang, Ohio State University, Columbus, OH Tour Guides: Xia Jiang, Ohio State University, Columbus, OH Kevin Little, The University of Chicago, Chicago, IL Adrien Sanchez, University of Chicago, Chicago, IL Participating Vendors: IBA PTW - New York Radcal Corporation RTI Electronics, Inc. Exhibit Hall Guided Tours is a new program launching this year at the Annual Meeting. The Guided Tours are designed to enhance the interaction between meeting attendees and exhibitors. This year’s Imaging Guided Tours are organized around the theme of dosimeters for quality control in diagnostic imaging. Tours will begin with an introduction and backgroundmore » given by Dr. Xia Jiang, the Tour Leader. The introduction will cover the types and properties of different radiation dosimeters used for quality assurance in clinical radiology. Attendees will then break into smaller groups, each lead by an AAPM-member Tour Guide. The tour groups will visit the exhibit booths of vendors who provide appropriate dosimeters, and a vendor representative will give a presentation to the group about their particular product(s). The vendor representatives as well as the Tour Guides will be available to answer questions. Outline: Types and properties of radiation detectors and dosimeters Ionization chamber dosimeters Solid state dosimeters Dosimeter calibration: Primary and secondary standards dosimetry laboratories Instruments for measuring tube voltage and exposure time Vendor presentations will likely cover features and innovations of different dosimeter systems, as well as their practical use. Learning Objectives: Understand the types and properties of different instrumentations used for quality control in diagnostic imaging. Understand the process of dosimeter calibration. Gain familiarity with the latest commercial dosimeter systems from different vendors.« less

  3. WE-C-TOUR-I-01: Dosimters for QC in Diagnostic Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, X.

    Tour Leader: Xia Jiang, Ohio State University, Columbus, OH Tour Guides: Xia Jiang, Ohio State University, Columbus, OH Kevin Little, The University of Chicago, Chicago, IL Adrien Sanchez, University of Chicago, Chicago, IL Participating Vendors: IBA PTW - New York Radcal Corporation RTI Electronics, Inc. Exhibit Hall Guided Tours is a new program launching this year at the Annual Meeting. The Guided Tours are designed to enhance the interaction between meeting attendees and exhibitors. This year’s Imaging Guided Tours are organized around the theme of dosimeters for quality control in diagnostic imaging. Tours will begin with an introduction and backgroundmore » given by Dr. Xia Jiang, the Tour Leader. The introduction will cover the types and properties of different radiation dosimeters used for quality assurance in clinical radiology. Attendees will then break into smaller groups, each lead by an AAPM-member Tour Guide. The tour groups will visit the exhibit booths of vendors who provide appropriate dosimeters, and a vendor representative will give a presentation to the group about their particular product(s). The vendor representatives as well as the Tour Guides will be available to answer questions. Outline: Types and properties of radiation detectors and dosimeters Ionization chamber dosimeters Solid state dosimeters Dosimeter calibration: Primary and secondary standards dosimetry laboratories Instruments for measuring tube voltage and exposure time Vendor presentations will likely cover features and innovations of different dosimeter systems, as well as their practical use. Learning Objectives: Understand the types and properties of different instrumentations used for quality control in diagnostic imaging. Understand the process of dosimeter calibration. Gain familiarity with the latest commercial dosimeter systems from different vendors.« less

  4. TH-CD-BRA-04: Effect of a Strong Magnetic Field On TLDs, OSLDs, and Gafchromic Films Using An Electromagnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J; Rubinstein, A; Ohrt, J

    Purpose: To study the effect of strong magnetic field on three types of dosimeters using an electromagnet inside a Linac vault. Materials and Methods: Three types of dosimeters, thermoluminescent Dosimeters (TLDs), optically stimulated luminescent Dosimeters (OSLDs), and EBT3 Film were used to measure radiation dose response inside an electromagnet that could produce a strong magnetic field (B>1.5 T). The dosimeters were placed inside a plastic phantom between the two poles of the magnet, at approximately 3 meters from the iso-center of an Elekta Versa HD Linac. The B field was calibrated with a Gauss meter (Model: GM-2, AlphaLab Inc). Themore » dosimeters received ∼2 Gy with and without the presence of the 1.5 T magnetic field. The EBT3 films were scanned 24 hours before and 24 hours after irradiation. The TLD dosimeters were read 1 week after irradiation. The OSLDs were read two weeks after irradiation. The ratios of signals of dosimeters irradiated with the B field to the signals without the B field were calculated. Two experiments have been conducted so far. Results: The ratios (averaged over two experiments) of dosimeter signals with vs without B field were 0.994 for films, 0.994 for OSLDs, and 1.002 for TLDs. The statistical uncertainty was ∼3%. Conclusions: The three types of dosimeters (film, TLD, OSLD) seem not affected by the presence of a magnetic field (B=1.5 T) with the uncertainty of ∼3%. They may be suitable for QA purposes in a strong B field up to 1.5 T. More measurements will be conducted for reproducibility testing. We acknowledge research support from Elekta AB.« less

  5. Laser readable thermoluminescent radiation dosimeters and methods for producing thereof

    DOEpatents

    Braunlich, P.F.; Tetzlaff, W.

    1989-04-25

    Thin layer thermoluminescent radiation dosimeters for use in laser readable dosimetry systems, and methods of fabricating such thin layer dosimeters are disclosed. The thin layer thermoluminescent radiation dosimeters include a thin substrate made from glass or other inorganic materials capable of withstanding high temperatures and high heating rates. A thin layer of a thermoluminescent phosphor material is heat bonded to the substrate using an inorganic binder such as glass. The dosimeters can be mounted in frames and cases for ease in handling. Methods of the invention include mixing a suitable phosphor composition and binder, both being in particulate or granular form. The mixture is then deposited onto a substrate such as by using mask printing techniques. The dosimeters are thereafter heated to fuse and bond the binder and phosphor to the substrate. 34 figs.

  6. Development of a Dosimeter System for Unsymmetrical Dimethylhydrazine, Monomethylhydrazine and Hydrazine

    DTIC Science & Technology

    1994-06-27

    the amount of dilution air . Conditioned house- compressed air was used as the diluent. The conditioning procedure consisted of passing the house air ...unsymmetrical dlmethylhydrazine (UDMI-) in air has been developed. The dosimeter consists of a replaceable dosimeter card and a reusable...Department of Defense and NASA require air monitoring for hydrazines in areas where they are handled and/or stored. A real-time dosimeter using vanillin

  7. Guide to U.S. Atmospheric Nuclear Weapon Effects Data

    DTIC Science & Technology

    1993-12-01

    biological warfare agents, and radiation dosimeters . XRD- 163 identifies the test location of each 4-6 biological sample. Reports containing the results...along with position of the animals at the time of the detonation. Vycor Glass Gamma Ray Dosimeters XRD-176 A rugged new dosimeter capable of measuring...gamma doses on animals exposed to high levels of radiation was employed during Able. Dosimeter readings, locations, and animal condition are reported

  8. Measurement of relative depth-dose distribution in radiochromic film dosimeters irradiated with 43-70 keV electron beam for industrial application

    NASA Astrophysics Data System (ADS)

    Matsui, Shinjiro; Hattori, Takeaki; Nonaka, Takashi; Watanabe, Yuki; Morita, Ippei; Kondo, Junichi; Ishikawa, Masayoshi; Mori, Yoshitaka

    2018-05-01

    The relative dose in a layer, which is thinner than the thickness of the dosimeter is evaluated using simulated depth-dose distributions, and the measured responses of dosimeters with acceleration voltages from 43 to 70 kV, via ultra-low-energy electron beam (ULEB) irradiation. By stacking thin film dosimeters, we confirmed that the simulated depth-dose distributions coincided with the measured depth-dose curve within the measurement uncertainty (k = 2). Using the measurement dose of the 47 μm dosimeter and the simulated depth-dose distribution, the dose of 11 μm dosimeters in the surface was evaluated within the measurement uncertainty (k = 2). We also verified the effectiveness of this method for a thinner layer by changing the acceleration voltage of the irradiation source. We evaluated the relative dose for an adjusted depth of energy deposition from 4.4 μm to 22.8 μm. As a result, this method was found to be effective for a thickness, which is less than the thickness of the dosimeter. When irradiation conditions are well known with accuracy, using the confirmed relative depth-dose distributions across any dosimeter thickness range, a dose evaluation, in several μm steps will possibly improve the design of industrial ULEB processes.

  9. [Accuracy Check of Monte Carlo Simulation in Particle Therapy Using Gel Dosimeters].

    PubMed

    Furuta, Takuya

    2017-01-01

    Gel dosimeters are a three-dimensional imaging tool for dose distribution induced by radiations. They can be used for accuracy check of Monte Carlo simulation in particle therapy. An application was reviewed in this article. An inhomogeneous biological sample placing a gel dosimeter behind it was irradiated by carbon beam. The recorded dose distribution in the gel dosimeter reflected the inhomogeneity of the biological sample. Monte Carlo simulation was conducted by reconstructing the biological sample from its CT image. The accuracy of the particle transport by Monte Carlo simulation was checked by comparing the dose distribution in the gel dosimeter between simulation and experiment.

  10. Design of Interrogation Protocols for Radiation Dose Measurements Using Optically-Stimulated Luminescent Dosimeters.

    PubMed

    Abraham, Sara A; Kearfott, Kimberlee J; Jawad, Ali H; Boria, Andrew J; Buth, Tobias J; Dawson, Alexander S; Eng, Sheldon C; Frank, Samuel J; Green, Crystal A; Jacobs, Mitchell L; Liu, Kevin; Miklos, Joseph A; Nguyen, Hien; Rafique, Muhammad; Rucinski, Blake D; Smith, Travis; Tan, Yanliang

    2017-03-01

    Optically-stimulated luminescent dosimeters are capable of being interrogated multiple times post-irradiation. Each interrogation removes a fraction of the signal stored within the optically-stimulated luminescent dosimeter. This signal loss must be corrected to avoid systematic errors in estimating the average signal of a series of optically-stimulated luminescent dosimeter interrogations and requires a minimum number of consecutive readings to determine an average signal that is within a desired accuracy of the true signal with a desired statistical confidence. This paper establishes a technical basis for determining the required number of readings for a particular application of these dosimeters when using certain OSL dosimetry systems.

  11. Development of a wavelength-separated type scintillator with optical fiber (SOF) dosimeter to compensate for the Cerenkov radiation effect.

    PubMed

    Ishikawa, Masayori; Nagase, Naomi; Matsuura, Taeko; Hiratsuka, Junichi; Suzuki, Ryusuke; Miyamoto, Naoki; Sutherland, Kenneth Lee; Fujita, Katsuhisa; Shirato, Hiroki

    2015-03-01

    The scintillator with optical fiber (SOF) dosimeter consists of a miniature scintillator mounted on the tip of an optical fiber. The scintillator of the current SOF dosimeter is a 1-mm diameter hemisphere. For a scintillation dosimeter coupled with an optical fiber, measurement accuracy is influenced by signals due to Cerenkov radiation in the optical fiber. We have implemented a spectral filtering technique for compensating for the Cerenkov radiation effect specifically for our plastic scintillator-based dosimeter, using a wavelength-separated counting method. A dichroic mirror was used for separating input light signals. Individual signal counting was performed for high- and low-wavelength light signals. To confirm the accuracy, measurements with various amounts of Cerenkov radiation were performed by changing the incident direction while keeping the Ir-192 source-to-dosimeter distance constant, resulting in a fluctuation of <5%. Optical fiber bending was also addressed; no bending effect was observed for our wavelength-separated SOF dosimeter. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  12. Topical Review: Polymer gel dosimetry

    PubMed Central

    Baldock, C; De Deene, Y; Doran, S; Ibbott, G; Jirasek, A; Lepage, M; McAuley, K B; Oldham, M; Schreiner, L J

    2010-01-01

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. PMID:20150687

  13. Clinical application of the OneDose™ Patient Dosimetry System for total body irradiation

    NASA Astrophysics Data System (ADS)

    Best, S.; Ralston, A.; Suchowerska, N.

    2005-12-01

    The OneDose™ Patient Dosimetry System (Sicel Technologies) is a new dosimeter based on metal oxide semiconductor field-effect transistor technology and designed for the in vivo measurement of patient dose during radiotherapy. In vivo dosimetry for total body irradiation (TBI) is challenging due to the extended treatment distance, low dose rates and beam spoilers. Phantom results confirm the suitability of the dosimeter for TBI in terms of inherent build-up, post-irradiation fading, accuracy, reproducibility, linearity and temperature dependence. Directional dependence is significant and should be taken into account. The OneDose™ dosimeters were also trialed in vivo for two TBI patients and the dose measured compared to conventional dosimeter measurements using an ionization chamber and thermoluminescent dosimeters (TLD), with agreement to within 2.2% and 3.9%, respectively. Phantom and patient results confirm that the OneDose™ patient dosimetry system is a practical and convenient alternative to TLDs for TBI in vivo dosimetry. For increased confidence in results with this dosimeter, we recommend that two dosimeters be used for each site of interest.

  14. Clinical application of the OneDose Patient Dosimetry System for total body irradiation.

    PubMed

    Best, S; Ralston, A; Suchowerska, N

    2005-12-21

    The OneDose Patient Dosimetry System (Sicel Technologies) is a new dosimeter based on metal oxide semiconductor field-effect transistor technology and designed for the in vivo measurement of patient dose during radiotherapy. In vivo dosimetry for total body irradiation (TBI) is challenging due to the extended treatment distance, low dose rates and beam spoilers. Phantom results confirm the suitability of the dosimeter for TBI in terms of inherent build-up, post-irradiation fading, accuracy, reproducibility, linearity and temperature dependence. Directional dependence is significant and should be taken into account. The OneDose dosimeters were also trialed in vivo for two TBI patients and the dose measured compared to conventional dosimeter measurements using an ionization chamber and thermoluminescent dosimeters (TLD), with agreement to within 2.2% and 3.9%, respectively. Phantom and patient results confirm that the OneDose patient dosimetry system is a practical and convenient alternative to TLDs for TBI in vivo dosimetry. For increased confidence in results with this dosimeter, we recommend that two dosimeters be used for each site of interest.

  15. Optically stimulated luminescence in vivo dosimetry for radiotherapy: physical characterization and clinical measurements in (60)Co beams.

    PubMed

    Mrčela, I; Bokulić, T; Izewska, J; Budanec, M; Fröbe, A; Kusić, Z

    2011-09-21

    A commercial optically stimulated luminescence (OSL) dosimetry system was investigated for in vivo dosimetry in radiation therapy. Dosimetric characteristics of InLight dot dosimeters and a microStar reader (Landauer Inc.) were tested in (60)Co beams. The reading uncertainty of a single dosimeter was 0.6%. The reproducibility of a set of dosimeters after a single irradiation was 1.6%, while in repeated irradiations of the same dosimeters it was found to be 3.5%. When OSL dosimeters were optically bleached between exposures, the reproducibility of repeated measurements improved to 1.0%. Dosimeters were calibrated for the entrance dose measurements and a full set of correction factors was determined. A pilot patient study that followed phantom validation testing included more than 100 measured fields with a mean relative difference of the measured entrance dose from the expected dose of 0.8% and the standard deviation of 2.5%. In conclusion, these results demonstrate that OSL dot dosimeters represent a valid alternative to already established in vivo dosimetry systems.

  16. The thermoluminescence study of epoxy based LiF:Mg,Cu,P dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahangdale, S. R., E-mail: sachin.rahangdale1@gmail.com; Palikundwar, U. A.; Moharil, S. V.

    The LiF:Mg,Cu,P phosphor is the most investigated phosphor in radiation dosimetry. Results on thermoluminescence of the epoxy based LiF:Mg,Cu,P dosimeters irradiated with gamma radiations are presented and compared with results of LiF:Mg,Cu,P powder. The glow curve structure of both LiF powder and dosimeter are same and only difference is found in the glow curve peak temperature. The LiF dosimeters were made from the 5012A and 5012B epoxy. The dosimeters had a mass of about 18 mg, 5.0 mm diameter and 0.5 mm thickness. The sensitivity variation of the dosimeters for exposure to {sup 60}Co gamma rays at different angles of incidence of themore » radiation is found to be within 4%. Its minimum detectable dose is about 3020 µGy. The epoxy based dosimeters withstand different environment and it can be used with general TL reader without need of any special design due to its small size and plane surface.« less

  17. Optically stimulated luminescence in vivo dosimetry for radiotherapy: physical characterization and clinical measurements in 60Co beams

    NASA Astrophysics Data System (ADS)

    Mrčela, I.; Bokulić, T.; Izewska, J.; Budanec, M.; Fröbe, A.; Kusić, Z.

    2011-09-01

    A commercial optically stimulated luminescence (OSL) dosimetry system was investigated for in vivo dosimetry in radiation therapy. Dosimetric characteristics of InLight dot dosimeters and a microStar reader (Landauer Inc.) were tested in 60Co beams. The reading uncertainty of a single dosimeter was 0.6%. The reproducibility of a set of dosimeters after a single irradiation was 1.6%, while in repeated irradiations of the same dosimeters it was found to be 3.5%. When OSL dosimeters were optically bleached between exposures, the reproducibility of repeated measurements improved to 1.0%. Dosimeters were calibrated for the entrance dose measurements and a full set of correction factors was determined. A pilot patient study that followed phantom validation testing included more than 100 measured fields with a mean relative difference of the measured entrance dose from the expected dose of 0.8% and the standard deviation of 2.5%. In conclusion, these results demonstrate that OSL dot dosimeters represent a valid alternative to already established in vivo dosimetry systems.

  18. Pistol-shaped dosimeter charger

    DOEpatents

    Maples, R.A.

    A pistol-shaped charger assembly clamps a cylindrical radiation dosimeter against one edge thereof. A triggerlike lever on the handgrip of the assembly is manually pivoted to actuate a piezoelectric current generator held in the handgrip and thereby charge the dosimeter.

  19. Pistol-shaped dosimeter charger

    DOEpatents

    Maples, Robert A.

    1985-01-01

    A pistol-shaped charger assembly clamps a cylindrical radiation dosimeter against one edge thereof. A triggerlike lever on the handgrip of the assembly is manually pivoted to actuate a piezoelectric current generator held in the handgrip and thereby charge the dosimeter.

  20. Wristwatch dosimeter

    DOEpatents

    Wolf, Michael A.; Waechter, David A.; Umbarger, C. John

    1986-01-01

    The disclosure is directed to a wristwatch dosimeter utilizing a CdTe detector, a microprocessor and an audio and/or visual alarm. The dosimeter is entirely housable with a conventional digital watch case having an additional aperture enabling the detector to receive radiation.

  1. A new radiochromic dosimeter film

    NASA Astrophysics Data System (ADS)

    Sidney, L. N.; Lynch, D. C.; Willet, P. S.

    By employing acid-sensitive leuco dyes in a chlorine-containing polymer matrix, a new radiochromic dosimeter film has been developed for gamma, electron beam, and ultraviolet radiation. These dosimeter films undergo a color change from colorless to royal blue, red fuchsia, or black, depending on dye selection, and have been characterized using a visible spectrophotometer over an absorbed dose range of 1 to 100 kGy. The primary features of the film are improved color stability before and after irradiation, whether stored in the dark or under artificial lights, and improved moisture resistance. The effects of absorbed dose, dose rate, and storage conditions on dosimeter performance are discussed. The dosimeter material may be produced as a free film or coated onto a transparent substrate and optionally backed with adhesive. Potential applications for these materials include gamma sterilization indicator films for food and medical products, electron beam dosimeters, and in-line radiation monitors for electron beam and ultraviolet processing.

  2. Feasibility of smartphone diaries and personal dosimeters to quantitatively study exposure to ultraviolet radiation in a small national sample.

    PubMed

    Køster, Brian; Søndergaard, Jens; Nielsen, Jesper B; Allen, Martin; Bjerregaard, Mette; Olsen, Anja; Bentzen, Joan

    2015-09-01

    In 2007, a national skin cancer prevention campaign was launched to reduce the UV exposure of the Danish population. To improve campaign evaluation a questionnaire validation using UV-dosimeters was initiated. To show the feasibility of dosimeters for national representative studies and of smartphones as a data collection tool. Participants were sent a dosimeter which they wore for 7 days, received a short diary questionnaire by text message each day and subsequently a longer questionnaire. Correlation between responses from questionnaire, smartphone diaries and dosimeters were examined. This study shows a 99.5% return rate (n = 205) of the dosimeters by ordinary mail and high response-rates for a smartphone questionnaire dairy. Correlation coefficients for outdoor-time reported through smartphones and dosimeters as average by week 0.62 (0.39-0.77), P < 0.001 (n = 40). Correlation coefficient for outdoor time estimated by questionnaire and dosimeters were 0.42 (0.11-0.64), P = 0.008. The subjective perception of the weather was the only covariate significantly influencing questionnaire estimates of actual outdoor exposure. We showed that dosimeter studies are feasible in national settings and that smartphones are a useful tool for monitoring and collecting UV behavior data. We found diary data reported on a daily basis through smartphones more strongly associated with actual outdoor time than questionnaire data. Our results demonstrate tools and possible considerations for executing a UV behavior questionnaire validation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Characterization of a commercially-available, optically-stimulated luminescent dosimetry system for use in computed tomography.

    PubMed

    Lavoie, Lindsey; Ghita, Monica; Brateman, Libby; Arreola, Manuel

    2011-09-01

    Optically-stimulated luminescent (OSL) nanoDot dosimeters, commercially available from Landauer, Inc. (Glenwood, IL), were assessed for use in computed tomography (CT) for erasure and reusability, linearity and reproducibility of response, and angular and energy response in different scattering conditions. Following overnight exposure to fluorescent room light, the residual signal on the dosimeters was 2%. The response of the dosimeters to identical exposures was consistent, and reported doses were within 4% of each other. The dosimeters responded linearly with dose up to 1 Gy. The dosimeter response to the CT beams decreased with increased tube voltage, showing up to a -16% difference when compared to a 0.6-cm(3) NIST-traceable calibrated ionization chamber for a 135 kVp CT beam. The largest range in percent difference in dosimeter response to scatter at central and peripheral positions inside CTDI phantoms was 14% at 80 kVp CT tube voltage, when compared to the ionization chamber. The dosimeters responded uniformly to x-ray tube angle over the ranges of increments of 0° to 75° and 105° to 180° when exposed in air, and from 0° to 360° when exposed inside a CTDI phantom. While energy and scatter correction factors should be applied to dosimeter readings for the purpose of determining absolute doses, these corrections are straightforward but depend on the accuracy of the ionization chamber used for cross-calibration. The linearity and angular responses, combined with the ability to reuse the dosimeters, make this OSL system an excellent choice for clinical CT dose measurements.

  4. Performance of KCl:Eu2+ storage phosphor dosimeters for low dose measurements

    PubMed Central

    Li, H. Harold; Hansel, Rachael; Knutson, Nels; Yang, Deshan

    2013-01-01

    Recent research has demonstrated that europium doped potassium chloride (KCl:Eu2+) storage phosphor material has the potential to become the physical foundation of a novel and reusable dosimetry system using either film-like devices or devices similar to thermoluminescent dosimeter (TLD) chips. The purposes of this work are to quantify the performance of KCl:Eu2+ prototype dosimeters for low dose measurements and to demonstrate how it can be incorporated into clinical application for in vivo peripheral dose measurements. Pellet-style KCl:Eu2+ dosimeters, 6 mm in diameter, and 1 mm thick, were fabricated in-house for this study. The dosimeters were read using a laboratory photostimulated luminescence detection system. KCl:Eu2+ prototype storage phosphor dosimeter was capable of measuring a dose-to-water as low as 0.01 cGy from a 6 MV photon beam with a signal-to-noise ratio greater than 6. A pre-readout thermal annealing procedure enabled the dosimeter to be read within an hour post irradiation. After receiving large accumulated doses (~10 kGy), the dosimeters retained linear response in the low dose region with only a 20 percent loss of sensitivity comparing to a fresh sample (zero Gy history). The energy-dependence encountered during low dose peripheral measurements could be accounted for via a single point outside-field calibration per each beam quality. With further development the KCl:Eu2+− based dosimeter could become a versatile and durable dosimetry tool with large dynamic range (sub-cGy to 100 Gy). PMID:23735856

  5. Wrist-watch dosimeter

    DOEpatents

    Wolf, M.A.; Waechter, D.A.; Umbarger, C.J.

    1982-04-16

    The disclosure is directed to a wristwatch dosimeter utilizing a CdTe detector, a microprocessor and an audio and/or visual alarm. The dosimeter is entirely housable within a conventional digital watch case having an additional aperture enabling the detector to receive radiation.

  6. Wristwatch dosimeter

    DOEpatents

    Wolf, M.A.; Waechter, D.A.; Umbarger, C.J.

    1986-08-26

    The disclosure is directed to a wristwatch dosimeter utilizing a CdTe detector, a microprocessor and an audio and/or visual alarm. The dosimeter is entirely housable with a conventional digital watch case having an additional aperture enabling the detector to receive radiation. 10 figs.

  7. SU-E-T-296: Dosimetric Analysis of Small Animal Image-Guided Irradiator Using High Resolution Optical CT Imaging of 3D Dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Na, Y; Qian, X; Wuu, C

    Purpose: To verify the dosimetric characteristics of a small animal image-guided irradiator using a high-resolution of optical CT imaging of 3D dosimeters. Methods: PRESAEGE 3D dosimeters were used to determine dosimetric characteristics of a small animal image-guided irradiator and compared with EBT2 films. Cylindrical PRESAGE dosimeters with 7cm height and 6cm diameter were placed along the central axis of the beam. The films were positioned between 6×6cm{sup 2} cubed plastic water phantoms perpendicular to the beam direction with multiple depths. PRESAGE dosimeters and EBT2 films were then irradiated with the irradiator beams at 220kVp and 13mA. Each of irradiated PRESAGEmore » dosimeters named PA1, PA2, PB1, and PB2, was independently scanned using a high-resolution single laser beam optical CT scanner. The transverse images were reconstructed with a 0.1mm high-resolution pixel. A commercial Epson Expression 10000XL flatbed scanner was used for readout of irradiated EBT2 films at a 0.4mm pixel resolution. PDD curves and beam profiles were measured for the irradiated PRESAGE dosimeters and EBT2 films. Results: The PDD agreements between the irradiated PRESAGE dosimeter PA1, PA2, PB1, PB2 and the EB2 films were 1.7, 2.3, 1.9, and 1.9% for the multiple depths at 1, 5, 10, 15, 20, 30, 40 and 50mm, respectively. The FWHM measurements for each PRESAEGE dosimeter and film agreed with 0.5, 1.1, 0.4, and 1.7%, respectively, at 30mm depth. Both PDD and FWHM measurements for the PRESAGE dosimeters and the films agreed overall within 2%. The 20%–80% penumbral widths of each PRESAGE dosimeter and the film at a given depth were respectively found to be 0.97, 0.91, 0.79, 0.88, and 0.37mm. Conclusion: Dosimetric characteristics of a small animal image-guided irradiator have been demonstrated with the measurements of PRESAGE dosimeter and EB2 film. With the high resolution and accuracy obtained from this 3D dosimetry system, precise targeting small animal irradiation can be achieved.« less

  8. The Development of a Beta-Gamma Personnel Dosimeter

    NASA Astrophysics Data System (ADS)

    Tsakeres, Frank Steven

    The assessment of absorbed dose in mixed beta and gamma radiation fields is an extremely complex task. For many years, the assessment of the absorbed dose to tissue from the weakly penetrating components of a radiation field (i.e., beta particles, electrons) has been largely ignored. Beta radiation fields are encountered routinely in a nuclear facility and may represent the major radiation component under certain accident or emergency conditions. Many attempts have been made to develop an accurate mixed field personnel dosimeter. However, all of these dosimeters have exhibited numerous response problems which have limited their usefulness for personnel dose assessment. Consequently, the determination of the absorbed dose at the epidermal depth (i.e., 7 mg/cm('2)) has been difficult to measure accurately. The objective of this research project was to design, build, and test a sensitive and accurate personnel dosimeter for mixed field applications. The selection of the various dosimeter elements were determined by evaluating several types of phosphors, filters, and backscatter materials. After evaluating the various response characteristics of the badge components, a prototype dosimeter, the CHEMM (CaF(,2):Dy Highly Efficient Multiple Element Multiple Filter) personnel dosimeter, was developed and tested at Georgia Tech, Emory University and the National Bureau of Standards. This dosimeter was comprised of four large CaF(,2):Dy (TLD-200) TLD's and a standard LiF (TLD-100) chip. The weakly penetrating and penetrating components of a radiation field were separated using a series of TLD/filter combinations and a new dose assessment algorithm. The large TLD-200 chips, along with a series of tissue-equivalent filters, were used to determine the absorbed dose due to the weakly penetrating radiation while a LiF/filter combination was used to measure the penetrating component. In addition, a new backscatter material was included in the badge design to better simulate a tissue-equivalent response. The CHEMM personnel dosimeter performance tests were conducted to simulate actual mixed radiation field environments. This dosimeter provided a high degree of sensitivity with accuracies well within the ANSI recommended performance standards for personnel dosimeters. In addition, it was concluded that the CHEMM dosimetry system provided a practical dosimeter alternative with a higher dose assessment accuracy and measurement sensitivity than the personnel dosimetry systems presently used in the nuclear power industry.

  9. SU-G-JeP2-04: Comparison Between Fricke-Type 3D Radiochromic Dosimeters for Real-Time Dose Distribution Measurements in MR-Guided Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, H; Alqathami, M; Wang, J

    Purpose: To assess MR signal contrast for different ferrous ion compounds used in Fricke-type gel dosimeters for real-time dose measurements for MR-guided radiation therapy applications. Methods: Fricke-type gel dosimeters were prepared in 4% w/w gelatin prior to irradiation in an integrated 1.5 T MRI and 7 MV linear accelerator system (MR-Linac). 4 different ferrous ion (Fe2?) compounds (referred to as A, B, C, and D) were investigated for this study. Dosimeter D consisted of ferrous ammonium sulfate (FAS), which is conventionally used for Fricke dosimeters. Approximately half of each cylindrical dosimeter (45 mm diameter, 80 mm length) was irradiated tomore » ∼17 Gy. MR imaging during irradiation was performed with the MR-Linac using a balanced-FFE sequence of TR/TE = 5/2.4 ms. An approximate uncertainty of 5% in our dose delivery was anticipated since the MR-Linac had not yet been fully commissioned. Results: The signal intensities (SI) increased between the un-irradiated and irradiated regions by approximately 8.6%, 4.4%, 3.2%, and 4.3% after delivery of ∼2.8 Gy for dosimeters A, B, C, and D, respectively. After delivery of ∼17 Gy, the SI had increased by 24.4%, 21.0%, 3.1%, and 22.2% compared to the un-irradiated regions. The increase in SI with respect to dose was linear for dosimeters A, B, and D with slopes of 0.0164, 0.0251, and 0.0236 Gy{sup −1} (R{sup 2} = 0.92, 0.97, and 0.96), respectively. Visually, dosimeter A had the greatest optical contrast from yellow to purple in the irradiated region. Conclusion: This study demonstrated the feasibility of using Fricke-type dosimeters for real-time dose measurements with the greatest optical and MR contrast for dosimeter A. We also demonstrated the need to investigate Fe{sup 2+} compounds beyond the conventionally utilized FAS compound in order to improve the MR signal contrast in 3D dosimeters used for MR-guided radiation therapy. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. LH- 102SPS.« less

  10. Investigations of interference between electromagnetic transponders and wireless MOSFET dosimeters: a phantom study.

    PubMed

    Su, Zhong; Zhang, Lisha; Ramakrishnan, V; Hagan, Michael; Anscher, Mitchell

    2011-05-01

    To evaluate both the Calypso Systems' (Calypso Medical Technologies, Inc., Seattle, WA) localization accuracy in the presence of wireless metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters of dose verification system (DVS, Sicel Technologies, Inc., Morrisville, NC) and the dosimeters' reading accuracy in the presence of wireless electromagnetic transponders inside a phantom. A custom-made, solid-water phantom was fabricated with space for transponders and dosimeters. Two inserts were machined with positioning grooves precisely matching the dimensions of the transponders and dosimeters and were arranged in orthogonal and parallel orientations, respectively. To test the transponder localization accuracy with/without presence of dosimeters (hypothesis 1), multivariate analyses were performed on transponder-derived localization data with and without dosimeters at each preset distance to detect statistically significant localization differences between the control and test sets. To test dosimeter dose-reading accuracy with/without presence of transponders (hypothesis 2), an approach of alternating the transponder presence in seven identical fraction dose (100 cGy) deliveries and measurements was implemented. Two-way analysis of variance was performed to examine statistically significant dose-reading differences between the two groups and the different fractions. A relative-dose analysis method was also used to evaluate transponder impact on dose-reading accuracy after dose-fading effect was removed by a second-order polynomial fit. Multivariate analysis indicated that hypothesis 1 was false; there was a statistically significant difference between the localization data from the control and test sets. However, the upper and lower bounds of the 95% confidence intervals of the localized positional differences between the control and test sets were less than 0.1 mm, which was significantly smaller than the minimum clinical localization resolution of 0.5 mm. For hypothesis 2, analysis of variance indicated that there was no statistically significant difference between the dosimeter readings with and without the presence of transponders. Both orthogonal and parallel configurations had difference of polynomial-fit dose to measured dose values within 1.75%. The phantom study indicated that the Calypso System's localization accuracy was not affected clinically due to the presence of DVS wireless MOSFET dosimeters and the dosimeter-measured doses were not affected by the presence of transponders. Thus, the same patients could be implanted with both transponders and dosimeters to benefit from improved accuracy of radiotherapy treatments offered by conjunctional use of the two systems.

  11. Temporal dosimeter and method

    DOEpatents

    Warner, Benjamin P.; Lopez, Thomas A.

    2003-09-30

    The invention includes a temporal dosimeter. One dosimeter embodiment includes a housing that is opaque to visible light but transparent to ionizing radiation. The dosimeter also includes a sensor for recording dosages of ionizing radiation, a drive mechanism, a power source, and rotatable shields that work together to produce a compound aperture to unveil different portions of the sensor at different times to ionizing radiation. Another dosimeter embodiment includes a housing, a sensor, a shield with an aperture portion, and a linear actuator drive mechanism coupled to the sensor for moving the sensor past the aperture portion. The sensor turns as it moves past the aperture, tracing a timeline record of exposure to ionizing radiation along a helical path on the sensor.

  12. Floating Gate CMOS Dosimeter With Frequency Output

    NASA Astrophysics Data System (ADS)

    Garcia-Moreno, E.; Isern, E.; Roca, M.; Picos, R.; Font, J.; Cesari, J.; Pineda, A.

    2012-04-01

    This paper presents a gamma radiation dosimeter based on a floating gate sensor. The sensor is coupled with a signal processing circuitry, which furnishes a square wave output signal, the frequency of which depends on the total dose. Like any other floating gate dosimeter, it exhibits zero bias operation and reprogramming capabilities. The dosimeter has been designed in a standard 0.6 m CMOS technology. The whole dosimeter occupies a silicon area of 450 m250 m. The initial sensitivity to a radiation dose is Hz/rad, and to temperature and supply voltage is kHz/°C and 0.067 kHz/mV, respectively. The lowest detectable dose is less than 1 rad.

  13. Unfolding neutron spectra from simulated response of thermoluminescence dosimeters inside a polyethylene sphere using GRNN neural network

    NASA Astrophysics Data System (ADS)

    Lotfalizadeh, F.; Faghihi, R.; Bahadorzadeh, B.; Sina, S.

    2017-07-01

    Neutron spectrometry using a single-sphere containing dosimeters has been developed recently, as an effective replacement for Bonner sphere spectrometry. The aim of this study is unfolding the neutron energy spectra using GRNN artificial neural network, from the response of thermoluminescence dosimeters, TLDs, located inside a polyethylene sphere. The spectrometer was simulated using MCNP5. TLD-600 and TLD-700 dosimeters were simulated at different positions in all directions. Then the GRNN was used for neutron spectra prediction, using the TLDs' readings. Comparison of spectra predicted by the network with the real spectra, show that the single-sphere dosimeter is an effective instrument in unfolding neutron spectra.

  14. MO-AB-BRA-04: Radiation Measurements with a DNA Double-Strand-Break Dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obeidat, M; Cline, K; Stathakis, S

    Purpose: Many types of dosimeters are used to measure radiation, but none of them directly measures the biological effect of this dose. The purpose here is to create a dosimeter that can measure the probability of double-strand breaks (DSB) for DNA, which is directly related to the biological effect of radiation. Methods: The dosimeter has DNA strands, which are labeled on one end with biotin and on the other with fluorescein. The biotin attaches these strands to magnetic beads. We suspended the DNA dosimeter in phosphate-buffered saline (PBS) as it matches the internal environment of the body. We placed smallmore » volumes (50µL) of the DNA dosimeter into tubes and irradiated these samples in a water-equivalent plastic phantom with several doses (three samples per dose). After irradiating the samples, a magnet was placed against the tubes. The fluorescein attached to broken DNA strands was extracted (called the supernatant) and placed into a different tube. The fluorescein on the unbroken strands remained attached to the beads in the tube and was re-suspended with 50µL of PBS. A fluorescence reader was used to measure the fluorescence for both the re-suspended beads and supernatant. To prove that we are measuring DSB, we tested dosimeter response with two different lengths of attached DNA strands (1 and 4 kilo-base pair). Results: The probability of DSB at the dose levels of 5, 10, 25, and 50 Gy were 0.05, 0.08, 0.12, and 0.19, respectively, while the coefficients of variation were 0.14, 0.07, 0.02, and 0.01, respectively. The 4 kilo-base-pair dosimeter produced 5.3 times the response of the 1 kilo-base-pair dosimeter. Conclusion: The DNA dosimeter yields a measurable response to dose that scales with the DNA strand length. The goal now is to refine the dosimeter fabrication to reproducibly create a low coefficient of variation for the lower doses. This work was supported in part by Yarmouk University (Irbid, Jordan) and CPRIT (RP140105)« less

  15. SU-E-T-171: Characterization of the New Xoft Axxent Electronic Brachytherapy Source Using PRESAGE Dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinmann, A; Followill, D; Ibbott, G

    Purpose: To characterize the Xoft Axxent electronic brachytherapy source using PRESAGE™ dosimeters to obtain independent confirmation of TG-43U1 dosimetry values from previous studies and ascertain its reproducibility in HDR brachytherapy. Methods: PRESAGE™ dosimeters are solid, polyurethane-based dosimeters doped with radiochromic leucodyes that produce a linear optical-density response when exposed to radiation. Eight 1-kg dosimeters were scanned prior to irradiation on an optical-CT scanner to eliminate background signal and any optical imperfections from each dosimeter. To quantify potential imaging artifacts due to oversaturated responses in the immediate range of the source, half of the eight dosimeters were cast with a smallermore » channel diameter of 5.4 mm, and the other half were cast with a larger channel diameter of 15mm. During irradiation, the catheters were placed in the center of each channel. Catheters fit the 5.4mm diameters channels whereas polyurethane plugs were inserted into the larger channels to create a sturdy, immobile catheter which allowed uniform dose distributions. Two dosimeters of each 5.4mm and 15mm were irradiated at either 1517.3 cGy or 2017.5 cGy. Post-irradiation scans were performed within 48 hours of irradiation. A 3D reconstruction based on subtraction of these two images and the relative dose measurements were made using in-house software. Results: Comparing measured radial dose rates with previous results revealed smaller percent errors when PRESAGE™ irradiations were at lower maximum dose. The dosimeters showed small deviations in radial dose function, g{sub p} (r), from previous studies. Among the dosimeters irradiated at 1517.3 cGy, the g{sub p}(r) compared to previous studies fluctuated from 0.0043 to 0.3922. This suggests small fluctuations can drastically change radial dose calculations. Conclusion: The subtraction of pre-irradiation and post-irradiation scans of PRESAGE™ dosimeters using an optical-CT scanner shows promising results in determining 3D dosimetry for Xoft Axxent devices; however, further research is recommended. NIH Grant#: 5-U24-CA081647-13; ROI Grant#: 5R01CA100835.« less

  16. SU-E-T-753: Three-Dimensional Dose Distributions of Incident Proton Particle in the Polymer Gel Dosimeter and the Radiochromic Gel Dosimeter: A Simulation Study with MCNP Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, M; Kim, G; Ji, Y

    Purpose: The purpose of this study is to estimate the three-dimensional dose distributions in the polymer and the radiochromic gel dosimeter, and to identify the detectability of both gel dosimeters by comparing with the water phantom in case of irradiating the proton particles. Methods: The normoxic polymer gel and the LCV micelle radiochromic gel were used in this study. The densities of polymer and the radiochromic gel dosimeter were 1.024 and 1.005 g/cm{sup 3}, respectively. The dose distributions of protons in the polymer and radiochromic gel were simulated using Monte Carlo radiation transport code (MCNPX, Los Alamos National Laboratory). Themore » shape of phantom irradiated by proton particles was a hexahedron with the dimension of 12.4 × 12.4 × 15.0 cm{sup 3}. The energies of proton beam were 50, 80, and 140 MeV energies were directed to top of the surface of phantom. The cross-sectional view of proton dose distribution in both gel dosimeters was estimated with the water phantom and evaluated by the gamma evaluation method. In addition, the absorbed dose(Gy) was also calculated for evaluating the proton detectability. Results: The evaluation results show that dose distributions in both gel dosimeters at intermediated section and Bragg-peak region are similar with that of the water phantom. At entrance section, however, inconsistencies of dose distribution are represented, compared with water. The relative absorbed doses in radiochromic and polymer gel dosimeter were represented to be 0.47 % and 2.26 % difference, respectively. These results show that the radiochromic gel dosimeter was better matched than the water phantom in the absorbed dose evaluation. Conclusion: The polymer and the radiochromic gel dosimeter show similar characteristics in dose distributions for the proton beams at intermediate section and Bragg-peak region. Moreover the calculated absorbed dose in both gel dosimeters represents similar tendency by comparing with that in water phantom.« less

  17. Investigations into the feasibility of optical-CT 3D dosimetry with minimal use of refractively matched fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chisholm, Kelsey; Miles, Devin; Rankine, Leith

    Purpose: In optical-CT, the use of a refractively matched polyurethane solid-tank in place of a fluid bath has the potential to greatly increase practical convenience, reduce cost, and possibly improve the efficacy of flood corrections. This work investigates the feasibility of solid-tank optical-CT imaging for 3D dosimetry through computer simulation. Methods: A MATLAB ray-tracing simulation platform, ScanSim, was used to model a parallel-source telecentric optical-CT imaging system through a polyurethane solid-tank containing a central cylindrical hollow into which PRESAGE radiochromic dosimeters can be placed. A small amount of fluid fills the 1–5 mm gap between the dosimeter and the wallsmore » of the tank. The use of the solid-tank reduces the required amount of fluid by approximately 97%. To characterize the efficacy of solid-tank, optical-CT scanning simulations investigated sensitivity to refractive index (RI) mismatches between dosimeter, solid-tank, and fluid, for a variety of dosimeter (RI = 1.5–1.47) and fluid (RI = 1.55–1.0) combinations. Efficacy was evaluated through the usable radius (r{sub u}) metric, defined as the fraction of the radius of the dosimeter where measured dose is predicted to be within 2% of the ground truth entered into the simulation. Additional simulations examined the effect of increasing gap size (1–5 mm) between the dosimeter and solid-tank well. The effects of changing the lens tolerance (0.5°–5.0°) were also investigated. Results: As the RI mismatch between the dosimeter and solid-tank increased from 0 to 0.02, the usable radius decreased from 97.6% to 50.2%. The optimal fluid RI decreased nonlinearly from 1.5 to 1.34 as the mismatch increased and was up to 9% lower than the tank. Media mismatches between the dosimeter and solid-tank also exacerbate the effects of changing the gap size, with no easily quantifiable relationship with usable radius. Generally, the optimal fluid RI value increases as gap size increases and is closely matched to the dosimeter at large gap sizes (>3 mm). Increasing the telecentric lens tolerance increases the usable radius for all refractive media combinations and improves the maximum usable radius of mismatched media to that of perfectly matched media for tolerances >5.0°. The maximum usable radius can be improved up to a factor of 2 when lens tolerances are small (<1.0°). Conclusions: Dry solid-tank optical-CT imaging in a telecentric system is feasible if the dosimeter RI is a close match with the solid-tank (<0.01 difference), providing accurate dose measurements within ±2% of true dose to over 80% of the dosimeter volume. In order to achieve accurate measurements over 96% of the dosimeter volume (representing out to 2 mm from the dosimeter edge), the dosimeter-tank RI mismatch must be less than 0.005. Optimal results occur when the RI of the dosimeter and tank is the same, in which case the fluid will have the same RI. If mismatches between the tank and dosimeter RI occur, the RI of the matching fluid needs to be fine tuned to achieve the highest usable radius.« less

  18. Investigations into the feasibility of optical-CT 3D dosimetry with minimal use of refractively matched fluids.

    PubMed

    Chisholm, Kelsey; Miles, Devin; Rankine, Leith; Oldham, Mark

    2015-05-01

    In optical-CT, the use of a refractively matched polyurethane solid-tank in place of a fluid bath has the potential to greatly increase practical convenience, reduce cost, and possibly improve the efficacy of flood corrections. This work investigates the feasibility of solid-tank optical-CT imaging for 3D dosimetry through computer simulation. A matlab ray-tracing simulation platform, ScanSim, was used to model a parallel-source telecentric optical-CT imaging system through a polyurethane solid-tank containing a central cylindrical hollow into which PRESAGE radiochromic dosimeters can be placed. A small amount of fluid fills the 1-5 mm gap between the dosimeter and the walls of the tank. The use of the solid-tank reduces the required amount of fluid by approximately 97%. To characterize the efficacy of solid-tank, optical-CT scanning simulations investigated sensitivity to refractive index (RI) mismatches between dosimeter, solid-tank, and fluid, for a variety of dosimeter (RI = 1.5-1.47) and fluid (RI = 1.55-1.0) combinations. Efficacy was evaluated through the usable radius (ru) metric, defined as the fraction of the radius of the dosimeter where measured dose is predicted to be within 2% of the ground truth entered into the simulation. Additional simulations examined the effect of increasing gap size (1-5 mm) between the dosimeter and solid-tank well. The effects of changing the lens tolerance (0.5°-5.0°) were also investigated. As the RI mismatch between the dosimeter and solid-tank increased from 0 to 0.02, the usable radius decreased from 97.6% to 50.2%. The optimal fluid RI decreased nonlinearly from 1.5 to 1.34 as the mismatch increased and was up to 9% lower than the tank. Media mismatches between the dosimeter and solid-tank also exacerbate the effects of changing the gap size, with no easily quantifiable relationship with usable radius. Generally, the optimal fluid RI value increases as gap size increases and is closely matched to the dosimeter at large gap sizes (> 3 mm). Increasing the telecentric lens tolerance increases the usable radius for all refractive media combinations and improves the maximum usable radius of mismatched media to that of perfectly matched media for tolerances > 5.0°. The maximum usable radius can be improved up to a factor of 2 when lens tolerances are small (< 1.0°). Dry solid-tank optical-CT imaging in a telecentric system is feasible if the dosimeter RI is a close match with the solid-tank (< 0.01 difference), providing accurate dose measurements within ± 2% of true dose to over 80% of the dosimeter volume. In order to achieve accurate measurements over 96% of the dosimeter volume (representing out to 2 mm from the dosimeter edge), the dosimeter-tank RI mismatch must be less than 0.005. Optimal results occur when the RI of the dosimeter and tank is the same, in which case the fluid will have the same RI. If mismatches between the tank and dosimeter RI occur, the RI of the matching fluid needs to be fine tuned to achieve the highest usable radius.

  19. Dosimetry for Small Fields in Stereotactic Radiosurgery Using Gafchromic MD-V2-55 Film, TLD-100 and Alanine Dosimeters

    PubMed Central

    Massillon-JL, Guerda; Cueva-Prócel, Diego; Díaz-Aguirre, Porfirio; Rodríguez-Ponce, Miguel; Herrera-Martínez, Flor

    2013-01-01

    This work investigated the suitability of passive dosimeters for reference dosimetry in small fields with acceptable accuracy. Absorbed dose to water rate was determined in nine small radiation fields with diameters between 4 and 35 mm in a Leksell Gamma Knife (LGK) and a modified linear accelerator (linac) for stereotactic radiosurgery treatments. Measurements were made using Gafchromic film (MD-V2-55), alanine and thermoluminescent (TLD-100) dosimeters and compared with conventional dosimetry systems. Detectors were calibrated in terms of absorbed dose to water in 60Co gamma-ray and 6 MV x-ray reference (10×10 cm2) fields using an ionization chamber calibrated at a standards laboratory. Absorbed dose to water rate computed with MD-V2-55 was higher than that obtained with the others dosimeters, possibly due to a smaller volume averaging effect. Ratio between the dose-rates determined with each dosimeter and those obtained with the film was evaluated for both treatment modalities. For the LGK, the ratio decreased as the dosimeter size increased and remained constant for collimator diameters larger than 8 mm. The same behaviour was observed for the linac and the ratio increased with field size, independent of the dosimeter used. These behaviours could be explained as an averaging volume effect due to dose gradient and lack of electronic equilibrium. Evaluation of the output factors for the LGK collimators indicated that, even when agreement was observed between Monte Carlo simulation and measurements with different dosimeters, this does not warrant that the absorbed dose to water rate in the field was properly known and thus, investigation of the reference dosimetry should be an important issue. These results indicated that alanine dosimeter provides a high degree of accuracy but cannot be used in fields smaller than 20 mm diameter. Gafchromic film can be considered as a suitable methodology for reference dosimetry. TLD dosimeters are not appropriate in fields smaller than 10 mm diameters. PMID:23671677

  20. SU-E-T-749: Thorough Calibration of MOSFET Dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plenkovich, D; Thomas, J

    Purpose: To improve the accuracy of the MOSFET calibration procedure by performing the measurement several times and calculating the average value of the calibration factor for various photon and electron energies. Methods: The output of three photon and six electron beams of Varian Trilogy linear accelerator SN 5878 was calibrated. Five reinforced standard sensitivity MOSFET dosimeters were placed in the calibration jig and connected to the Reader Module. As the backscatter material was used 7 cm of Virtual Water. The MOSFET dosimeters were covered with 1.5 cm thick bolus for the regular and SRS 6 MV beams, 3 cm bolusmore » for 15 MV beam, 1.5 cm bolus for 6 MeV electron beam, and 2 cm bolus for the electron energies of 9, 12, 15, 18, and 22 MeV. The dosimeters were exposed to 100 MU, and the calibration factor was determined using the mobileMOSFET software. To improve the accuracy of calibration, this procedure was repeated ten times and the calibration factors were averaged. Results: As the number of calibrations was increasing the variability of calibration factors of different dosimeters was decreasing. After ten calibrations, the calibration factors for all five dosimeters were within 1% of one another for all energies, except 6 MV SRS photons and 6 MeV electrons, for which the variability was 2%. Conclusions: The described process results in calibration factors which are almost independent of modality or energy. Once calibrated, the dosimeters may be used for in-vivo dosimetry or for daily verification of the beam output. Measurement of the radiation dose under bolus and scatter to the eye are examples of frequent use of calibrated MOSFET dosimeters. The calibration factor determined for full build-up is used under these circumstances. To the best of our knowledge, such thorough procedure for calibrating MOSFET dosimeters has not been reported previously. Best Medical Canada provided MOSFET dosimeters for this project.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, X; Wuu, C; Admovics, J

    Purpose: A 3-D radiochromic plastic dosimeter has been used to cross-test the isocentricity of a high resolution image-guided small animal microirradiation platform. In this platform, the mouse stage rotating for cone beam CT imaging is perpendicular to the gantry rotation for sub-millimeter radiation delivery. A 3-D dosimeter can be used to verify both imaging and irradiation coordinates. Methods: A 3-D dosimeter and optical CT scanner were used in this study. In the platform, both mouse stage and gantry can rotate 360° with rotation axis perpendicular to each other. Isocentricity and coincidence of mouse stage and gantry rotations were evaluated usingmore » star patterns. A 3-D dosimeter was placed on mouse stage with center at platform isocenter approximately. For CBCT isocentricity, with gantry moved to 90°, the mouse stage rotated horizontally while the x-ray was delivered to the dosimeter at certain angles. For irradiation isocentricity, the gantry rotated 360° to deliver beams to the dosimeter at certain angles for star patterns. The uncertainties and agreement of both CBCT and irradiation isocenters can be determined from the star patterns. Both procedures were repeated 3 times using 3 dosimeters to determine short-term reproducibility. Finally, dosimeters were scanned using optical CT scanner to obtain the results. Results: The gantry isocentricity is 0.9 ± 0.1 mm and mouse stage rotation isocentricity is about 0.91 ± 0.11 mm. Agreement between the measured isocenters of irradiation and imaging coordinates was determined. The short-term reproducibility test yielded 0.5 ± 0.1 mm between the imaging isocenter and the irradiation isocenter, with a maximum displacement of 0.7 ± 0.1 mm. Conclusion: The 3-D dosimeter can be very useful in precise verification of targeting for a small animal irradiation research. In addition, a single 3-D dosimeter can provide information in both geometric and dosimetric uncertainty, which is crucial for translational studies.« less

  2. Passive radon/thoron personal dosimeter using an electrostatic collector and a diffused-junction detector

    NASA Astrophysics Data System (ADS)

    Bigu, J.; Raz, R.

    1985-01-01

    A solid-state alpha dosimeter has been designed and tested suitable for personal and environmental radon/thoron monitoring. The dosimeter basically consists of an electrostatic collector and an alpha-particle counting system with spectroscopy capabilities. The sensitive volume (˜20 cm3) of the electrostatic collector consists of a cylindrically shaped metal wire screen and a diffused-junction silicon alpha-detector covered with a thin aluminized Mylar sheet. A dc voltage (˜500 V) is applied between the wire screen and the Mylar sheet, with the latter held at negative potential relative to the former. Data can be retrieved during or after sampling by means of a microcomputer (Epson HX20) via a RS-232 communication interface unit. The dosimeter has been calibrated in a large (26 m3) radon/thoron test facility. A linear relationship was found between the dosimeter's alpha-count and both radon gas concentration and radon daughter working level. The dosimeter is mounted on top of an ordinary miner's cap lamp battery and is ideally suited for personal monitoring in underground uranium mines and other working areas. The dosimeter presented here is a considerably improved version of an earlier prototype.

  3. Applicability of Glass Dosimeters for In-vivo Dosimetry in Brachytherapy

    NASA Astrophysics Data System (ADS)

    Moon, Sun Young; Son, Jaeman; Yoon, Myonggeun; Jeang, EunHee; Lim, Young Kyung; Chung, Weon Kyu; Kim, Dong Wook

    2018-06-01

    During brachytherapy, confirming the dose delivered is very important in order to prevent radiation-associated side effects. Therefore, we aimed to confirm the accuracy of dose delivery near the source by inserting glass dosimeters within the applicator. We created an alternative pelvic phantom with the same shape and internal structures as the usual patient. In addition, we created a tandem for insertion of the glass dosimeters and measured the dose near the source by inserting the glass dosimeters into the tandem and evaluating the accuracy of the dwell position and time through the dose near the source. Errors between the values obtained from the five glass dosimeters and the values from the treatment planning system were -6.27, -2.1, -4.18, 6.31, and -0.39%, respectively. The mean error was 3.85%. This value was acceptable considering that the error of the glass dosimeter itself is approximately 3%. Even though a complement of the applicator and the error calibration is required in order to apply this technique clinically, we believe that radiation accidents and overdoses can be prevented through in-vivo dosimetry using a glass dosimeter for brachytherapy.

  4. Feasibility study of glass dosimeter postal dosimetry audit of high-energy radiotherapy photon beams.

    PubMed

    Mizuno, Hideyuki; Kanai, Tatsuaki; Kusano, Yohsuke; Ko, Susumu; Ono, Mari; Fukumura, Akifumi; Abe, Kyoko; Nishizawa, Kanae; Shimbo, Munefumi; Sakata, Suoh; Ishikura, Satoshi; Ikeda, Hiroshi

    2008-02-01

    The characteristics of a glass dosimeter were investigated for its potential use as a tool for postal dose audits. Reproducibility, energy dependence, field size and depth dependence were compared to those of a thermoluminescence dosimeter (TLD), which has been the major tool for postal dose audits worldwide. A glass dosimeter, GD-302M (Asahi Techno Glass Co.) and a TLD, TLD-100 chip (Harshaw Co.) were irradiated with gamma-rays from a (60)Co unit and X-rays from a medical linear accelerator (4, 6, 10 and 20 MV). The dosimetric characteristics of the glass dosimeter were almost equivalent to those of the TLD, in terms of utility for dosimetry under the reference condition, which is a 10 x 10 cm(2) field and 10 cm depth. Because of its reduced fading, compared to the TLD, and easy quality control with the ID number, the glass dosimeter proved to be a suitable tool for postal dose audits. Then, we conducted postal dose surveys of over 100 facilities and got good agreement, with a standard deviation of about 1.3%. Based on this study, postal dose audits throughout Japan will be carried out using a glass dosimeter.

  5. Dosimeter for monitoring vapors and aerosols of organic compounds

    DOEpatents

    Vo-Dinh, Tuan

    1987-01-01

    A dosimeter is provided for collecting and detecting vapors and aerosols of organic compounds. The dosimeter comprises a lightweight, passive device that can be conveniently worn by a person as a badge or placed at a stationary location. The dosimeter includes a sample collector comprising a porous web treated with a chemical for inducing molecular displacement and enhancing phosphorescence. Compounds are collected onto the web by molecular diffusion. The web also serves as the sample medium for detecting the compounds by a room temperature phosphorescence technique.

  6. Photoluminescence and Optically Stimulated Luminescence Studies of LiAlO2 and LiGaO2 Crystals

    DTIC Science & Technology

    2015-03-26

    tests from the past. In terms of personal dosimetry, OSL dosimeters could potentially replace ther- moluminescence dosimeters (TLDs) which are widely...used by individuals conducting research and maintaining nuclear weapons ( OSL dosimeters are a promising alterna- tive to TLDs because they do not...because they contain lithium, unlike Al2O3:C, the most commonly used OSL dosimeter [2]. The large neutron 1 cross section of lithium-6 makes enriched

  7. NASA Crew Personal Active Dosimeters (CPADs): Leveraging Novel Terrestrial Personal Radiation Monitoring Capabilities for Space Exploration

    NASA Technical Reports Server (NTRS)

    Leitgab, Martin; Semones, Edward; Lee, Kerry

    2016-01-01

    The NASA Space Radiation Analysis Group (SRAG) is developing novel Crew Personal Active Dosimeters (CAPDs) for upcoming crewed space exploration missions and beyond. To reduce the resource footprint of the project a COTS dosimeter base is used for the development of CPADs. This base was identified from evaluations of existing COTS personal dosimeters against the concept of operations of future crewed missions and tests against detection requirements for radiation characteristic of the space environment. CPADs exploit operations efficiencies from novel features for space flight personal dosimeters such as real-time dose feedback, and autonomous measuring and data transmission capabilities. Preliminary CPAD design, results of radiation testing and aspects of operational integration will be presented.

  8. Characterization of Thymol blue Radiochromic dosimeters for high dose applications

    NASA Astrophysics Data System (ADS)

    Aldweri, Feras M.; Abuzayed, Manar H.; Al-Ajaleen, Musab S.; Rabaeh, Khalid A.

    2018-03-01

    Thymol blue (TB) solutions and Thymol blue Polyvinyl Alcohol (TB-PVA) films have been introduced as Radiochromic dosimeter for high dose applications. The dosimeters were irradiated with gamma ray (60Co source) from 5 to 30 kGy for film, and from 0.150 kGy to 4 kGy for solution. The optical density of unirradiated and irradiated TB solution as well as TB-PVA film dosimeters were studied in terms of absorbance at 434 nm using UV/VIS spectrophotometer. The effects of scan temperature, light pre-gamma irradiation, dose rate, relative humidity and stability of the absorbance of solutions and films after irradiation were investigated. We found the dose sensitivity of TB solution and TB-PVA film dosimeters increases significantly with increases of the absorbed dose as well as with the increases of TB dye concentrations. The useful dose range of developed TB solutions and TB-PVA films dosimeters is in the range 0.125-1 kGy and of 5-20 kGy, respectively.

  9. Characterization of ferrous-methylthymol blue-polyvinyl alcohol gel dosimeters using nuclear magnetic resonance and optical techniques

    NASA Astrophysics Data System (ADS)

    Rabaeh, Khalid A.; Eyadeh, Molham M.; Hailat, Tariq F.; Aldweri, Feras M.; Alheet, Samer M.; Eid, Rania M.

    2018-07-01

    A new composition of Ferrous sulphate-Metheylthymol blue (MTB)-Polyvinyl alcohol (PVA) dosimeter is introduced in this work and evaluated using nuclear magnetic resonance (NMR) and absorbance spectrophotometry techniques. The Fricke-MTB-PVA dosimeters were irradiated using a medical linear accelerator in a cubic water phantom. The dose response of the dosimeters was investigated using NMR in terms of spin-spin relaxation rate (R2), and ultraviolet and visible regions (UV-Vis) spectrophotometry in terms of absorbance. The dosimeter presents a linear dose response for doses up to 20 Gy with UV-Vis and 40 Gy with NMR method. The sample with 0.1 mM MTB, 5% PVA by weight showed highest dose sensitivity for both techniques. The Fricke-MTB-PVA dosimeter developed in this work has a significant advance over the Fricke-MTB-gelatin system: the NMR sensitivity was remarkably improved; the auto-oxidation rate was seven times lower, and no significant dose rate or photon energy effects were observed.

  10. Evaluation of film and thermoluminescent dosimetry of high-energy electron beams in heterogeneous phantoms.

    PubMed

    el-Khatib, E; Antolak, J; Scrimger, J

    1992-01-01

    Film and thermoluminescent dosimetry (TLD) are investigated in heterogeneous phantoms irradiated by high-energy electron beams. Both film and TLD are practical dosimeters for multiple and moving beam radiotherapy. The accuracy and precision of these dosimeters for radiation dose measurements in homogeneous water-equivalent phantoms has been discussed in the literature. However, film and TLD are often used for dose measurements in heterogeneous phantoms. In those situations perturbations are produced which are related to the density and atomic number of the phantom material and the physical size and orientation of the dosimeter. In our experiments the relative dose measurements in homogeneous phantoms were the same regardless of dosimeter or dosimeter orientation. However, significant differences were observed between the dose measurements within the inhomogeneity. These differences were influenced by the type and orientation of the dosimeter in addition to the properties of the heterogeneity. These differences could be reproduced with Monte Carlo calculations and modeling of the experimental conditions.

  11. Water-equivalent fiber radiation dosimeter with two scintillating materials

    PubMed Central

    Qin, Zhuang; Hu, Yaosheng; Ma, Yu; Lin, Wei; Luo, Xianping; Zhao, Wenhui; Sun, Weimin; Zhang, Daxin; Chen, Ziyin; Wang, Boran; Lewis, Elfed

    2016-01-01

    An inorganic scintillating material plastic optical fiber (POF) dosimeter for measuring ionizing radiation during radiotherapy applications is reported. It is necessary that an ideal dosimeter exhibits many desirable qualities, including water equivalence, energy independence, reproducibility, dose linearity. There has been much recent research concerning inorganic dosimeters. However, little reference has been made to date of the depth-dose characteristics of dosimeter materials. In the case of inorganic scintillating materials, they are predominantly non water-equivalent, with their effective atomic weight (Zeff) being typically much greater than that of water. This has been a barrier in preventing inorganic scintillating material dosimeter from being used in actual clinical applications. In this paper, we propose a parallel-paired fiber light guide structure to solve this problem. Two different inorganic scintillating materials are embedded separately in the parallel-paired fiber. It is shown that the information of water depth and absorbed dose at the point of measurement can be extracted by utilizing their different depth-dose properties. PMID:28018715

  12. Characteristics of a normoxic polymethacrylic acid gel dosimeter for a 72-MeV proton beam

    NASA Astrophysics Data System (ADS)

    Bong, Jihye; Shin, Dongho; Kwon, Soo-Il

    2014-01-01

    The characteristics of a normoxic polymethacrylic acid gel dosimeter for a 72-MeV proton beam were evaluated. A polymer gel dosimeter was synthesized using gelatin, methacrylic acid, hydroquinone, tetrakis(hydroxymethyl) phosphonium chloride, and highly purified distilled water. The dosimeter was manufactured by placement in a polyethylene (PE) container. Irradiated dosimeters were analyzed to determine the transverse relaxation time (T2) using a 1.5-T MRI. A calibration curve was obtained as a function of the absorbed dose. A Bragg curve made by irradiating the gel with mono-energy was compared with the results for a parallel plate ionization chamber. The spread-out Bragg peak (SOBP) range and distal dose fall-off (DDF) were comparatively analyzed by comparing the irradiated gel with a spread-out Bragg peak against with the ion chamber. Lastly, the gel's usefulness as a dosimeter for therapeutic radiation quality assurance was evaluated by obtaining its practical field size, flatness, and symmetry, through comparison of the profiles of the gel and ion chamber.

  13. Determining the applicability of the Landauer nanoDot as a general public dosimeter in a research imaging facility.

    PubMed

    Charlton, Michael A; Thoreson, Kelly F; Cerecero, Jennifer A

    2012-11-01

    The Research Imaging Institute (RII) building at the University of Texas Health Science Center at San Antonio (UTHSCSA) houses two cyclotron particle accelerators, positron emission tomography (PET) machines, and a fluoroscopic unit. As part of the radiation protection program (RPP) and meeting the standard for achieving ALARA (as low as reasonably achievable), it is essential to minimize the ionizing radiation exposure to the general public through the use of controlled areas and area dose monitoring. Currently, thirty-four whole body Luxel+ dosimeters, manufactured by Landauer, are being used in various locations within the RII to monitor dose to the general public. The intent of this research was to determine if the nanoDot, a single point dosimeter, can be used as a general public dosimeter in a diagnostic facility. This was tested by first verifying characteristics of the nanoDot dosimeter including dose linearity, dose rate dependence, angular dependence, and energy dependence. Then, the response of the nanoDot dosimeter to the Luxel+ dosimeter when placed in a continuous, low dose environment was investigated. Finally, the nanoDot was checked for appropriate response in an acute, high dose environment. Based on the results, the current recommendation is that the nanoDot should not replace the Luxel+ dosimeter without further work to determine the energy spectra in the RII building and without considering the limitation of the microStar reader, portable on-site OSL reader, at doses below 0.1 mGy (10 mrad).

  14. Light scattering in optical CT scanning of Presage dosimeters

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Adamovics, J.; Cheeseborough, J. C.; Chao, K. S.; Wuu, C. S.

    2010-11-01

    The intensity of the scattered light from the Presage dosimeters was measured using a Thorlabs PM100D optical power meter (Thorlabs Inc, Newton, NJ) with an optical sensor of 1 mm diameter sensitive area. Five Presage dosimeters were made as cylinders of 15.2 cm, 10 cm, 4 cm diameters and irradiated with 6 MV photons using a Varian Clinac 2100EX. Each dosimeter was put into the scanning tank of an OCTOPUS" optical CT scanner (MGS Research Inc, Madison, CT) filled with a refractive index matching liquid. A laser diode was positioned at one side of the water tank to generate a stationary laser beam of 0.8 mm width. On the other side of the tank, an in-house manufactured positioning system was used to move the optical sensor in the direction perpendicular to the outgoing laser beam from the dosimeters at an increment of 1 mm. The amount of scattered photons was found to be more than 1% of the primary light signal within 2 mm from the laser beam but decreases sharply with increasing off-axis distance. The intensity of the scattered light increases with increasing light attenuations and/or absorptions in the dosimeters. The scattered light at the same off-axis distance was weaker for dosimeters of larger diameters and for larger detector-to-dosimeter distances. Methods for minimizing the effect of the light scattering in different types of optical CT scanners are discussed.

  15. FACTORS AFFECTING THE USE OF CAF2:MN THERMOLUMINESCENT DOSIMETERS FOR LOW-LEVEL ENVIRONMENTAL RADIATION MONITORING

    EPA Science Inventory

    An investigation was made of factors affecting the use of commercially-produced CaF2:Mn thermoluminescent dosimeters for low level environmental radiation monitoring. Calibration factors and self-dosing rates were quantified for 150 thermoluminescent dosimeters. Laboratory studie...

  16. Evaluation of a Colorimetric Personal Dosimeter for Nitrogen Oxide.

    ERIC Educational Resources Information Center

    Diamond, Philip

    A personal colorimetric dosimeter for nitrogen dioxide was developed. Tests were performed to determine the response of these strips to various concentrations of NO2. The dosimeter strips were satisfactory for approximate determinations of total exposure (concentration + time) of nitrogen dioxide. The total exposure was calculated in terms of time…

  17. 10 CFR 34.89 - Location of documents and records.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... problems identified in daily checks of equipment as required by § 34.73(a); (5) Records of alarm system and... as pocket dosimeter and/or electronic personal dosimeters readings as required by § 34.83; (7... calibrations of alarm ratemeters and operability checks of pocket dosimeters and/or electronic personal...

  18. 10 CFR 34.89 - Location of documents and records.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... problems identified in daily checks of equipment as required by § 34.73(a); (5) Records of alarm system and... as pocket dosimeter and/or electronic personal dosimeters readings as required by § 34.83; (7... calibrations of alarm ratemeters and operability checks of pocket dosimeters and/or electronic personal...

  19. Dosimeter for monitoring vapors and aerosols of organic compounds

    DOEpatents

    Vo-Dinh, T.

    1987-07-14

    A dosimeter is provided for collecting and detecting vapors and aerosols of organic compounds. The dosimeter comprises a lightweight, passive device that can be conveniently worn by a person as a badge or placed at a stationary location. The dosimeter includes a sample collector comprising a porous web treated with a chemical for inducing molecular displacement and enhancing phosphorescence. Compounds are collected onto the web by molecular diffusion. The web also serves as the sample medium for detecting the compounds by a room temperature phosphorescence technique. 7 figs.

  20. Measurement of a 200 MeV proton beam using a polyurethane dosimeter

    NASA Astrophysics Data System (ADS)

    Heard, Malcolm; Adamovics, John; Ibbott, Geoffrey

    2006-12-01

    PRESAGETM (Heuris Pharma LLC, Skillman, NJ) is a three-dimensional polyurethane dosimeter containing a leuco dye that generates a color change when irradiated. The dosimeter is solid and does not require a container to maintain its shape. The dosimeter is transparent before irradiation and the maximum absorbance of the leuco dye occurs at 633 nm which is compatible with the OCT-OPUSTM laser CT scanner (MGS Research, Inc., Madison, CT). The purpose of this study was to investigate the response of PRESAGETM to proton beam radiotherapy.

  1. [Fabrication of annealing equipment for optically stimulated luminescence (OSL) dosimeter].

    PubMed

    Nakagawa, Kohei; Hayashi, Hiroaki; Okino, Hiroki; Takegami, Kazuki; Okazaki, Tohru; Kobayashi, Ikuo

    2014-10-01

    The optically stimulated luminescence (OSL) dosimeter is a useful detector for measuring absorbed doses of X-rays. A small-type OSL dosimeter, "nanoDot", has recently been developed by Landauer, Inc., who also manufacture "microStar" reading equipment. However, additional annealing equipment is needed if the nanoDot OSL dosimeter is used repeatedly. The aim of this study was to fabricate suitable annealing equipment using commonly available products. Our device positions four fluorescent light tubes in a close configuration. The heat from the fluorescent light tubes is dissipated using fans. Experiments using diagnostic X-ray equipment were carried out to evaluate the capability of our annealing equipment. The results indicated that our equipment can fully anneal the nanoDot OSL dosimeter with annealing times of approximately 20 hours.

  2. Method and apparatus for reading free falling dosimeter punchcodes

    DOEpatents

    Langsted, James M.

    1992-12-22

    A punchcode reader is provided for reading data encoded in a punchcode hole array on a dosimeter. The dosimeter falls through a passage in the reader containing photosensor detectors disposed along the passage which provide output signals to a microprocessor. The signals are processed to determine the orientation of the dosimeter in the reader, the location and state of punchcode holes in a two row array thereby decoding the encoded data. Multiple rate of fall calculations are made, and if appropriate matching of the punchcode array is not obtained in three tries, an error signal is outputted to the operator. The punchcode reader also provides for storage of data from multiple dosimeters passed through the reader, and for the output of decoded data to an external display or a computer for further processing.

  3. Angular dependence of the MOSFET dosimeter and its impact on in vivo surface dose measurement in breast cancer treatment.

    PubMed

    Qin, S; Chen, T; Wang, L; Tu, Y; Yue, N; Zhou, J

    2014-08-01

    The focus of this study is the angular dependence of two types of Metal Oxide Semiconductor Field Effect Transistor (MOSFET) dosimeters (MOSFET20 and OneDose/OneDosePlus) when used for surface dose measurements. External beam radiationat different gantry angles were delivered to a cubic solid water phantom with a MOSFET placed on the top surface at CAX. The long axis of the MOSFET was oriented along the gantry axis of rotation, with the dosimeter (bubble side) facing the radiation source. MOSFET-measured surface doses were compared against calibrated radiochromic film readings. It was found that both types of MOSFET dosimeters exhibited larger than previously reported angular dependence when measuring surface dose in beams at large oblique angles. For the MOSFET20 dosimeter the measured surface dose deviation against film readings was as high as 17% when the incident angle was 72 degrees to the norm of the phantom surface. It is concluded that some MOSFET dosimeters may have a strong angular dependence when placed on the surface of water-equivalent material, even though they may have an isotropic angular response when surrounded by uniform medium. Extra on-surface calibration maybe necessary before using MOSFET dosimeters for skin dose measurement in tangential fields.

  4. Experimental evaluation of a MOSFET dosimeter for proton dose measurements.

    PubMed

    Kohno, Ryosuke; Nishio, Teiji; Miyagishi, Tomoko; Hirano, Eriko; Hotta, Kenji; Kawashima, Mitsuhiko; Ogino, Takashi

    2006-12-07

    The metal oxide semiconductor field-effect transistor (MOSFET) dosimeter has been widely studied for use as a dosimeter for patient dose verification. The major advantage of this detector is its size, which acts as a point dosimeter, and also its ease of use. The commercially available TN502RD MOSFET dosimeter manufactured by Thomson and Nielsen has never been used for proton dosimetry. Therefore we used the MOSFET dosimeter for the first time in proton dose measurements. In this study, the MOSFET dosimeter was irradiated with 190 MeV therapeutic proton beams. We experimentally evaluated dose reproducibility, linearity, fading effect, beam intensity dependence and angular dependence for the proton beam. Furthermore, the Bragg curve and spread-out Bragg peak were also measured and the linear-energy transfer (LET) dependence of the MOSFET response was investigated. Many characteristics of the MOSFET response for proton beams were the same as those for photon beams reported in previous papers. However, the angular MOSFET responses at 45, 90, 135, 225, 270 and 315 degrees for proton beams were over-responses of about 15%, and moreover the MOSFET response depended strongly on the LET of the proton beam. This study showed that the angular dependence and LET dependence of the MOSFET response must be considered very carefully for quantitative proton dose evaluations.

  5. SU-F-BRF-13: Investigating the Feasibility of Accurate Dose Measurement in a Deforming Radiochromic Dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juang, T; Adamovics, J; Oldham, M

    Purpose: Presage-Def, a deformable radiochromic 3D dosimeter, has been previously shown to have potential for validating deformable image registration algorithms. This work extends this effort to investigate the feasibility of using Presage-Def to validate dose-accumulation algorithms in deforming structures. Methods: Two cylindrical Presage-Def dosimeters (8cm diameter, 4.5cm length) were irradiated in a water-bath with a simple 4-field box treatment. Isocentric dose was 20Gy. One dosimeter served as control (no deformation) while the other was laterally compressed during irradiation by 21%. Both dosimeters were imaged before and after irradiation with a fast (∼10 minutes for 1mm isotropic resolution), broad beam, highmore » resolution optical-CT scanner. Measured dose distributions were compared to corresponding distributions calculated by a commissioned Eclipse planning system. Accuracy in the control was evaluated with 3D gamma (3%/3mm). The dose distribution calculated for the compressed dosimeter in the irradiation geometry cannot be directly compared via profiles or 3D gamma to the measured distribution, which deforms with release from compression. Thus, accuracy under deformation was determined by comparing integral dose within the high dose region of the deformed dosimeter distribution versus calculated dose. Dose profiles were used to study temporal stability of measured dose distributions. Results: Good dose agreement was demonstrated in the control with a 3D gamma passing rate of 96.6%. For the dosimeter irradiated under compression, the measured integral dose in the high dose region (518.0Gy*cm3) was within 6% of the Eclipse-calculated integral dose (549.4Gy*cm3). Elevated signal was noted on the dosimeter edge in the direction of compression. Change in dosimeter signal over 1.5 hours was ≤2.7%, and the relative dose distribution remained stable over this period of time. Conclusion: Presage-Def is promising as a 3D dosimeter capable of accurately measuring dose in a deforming structure, and warrants further study to quantify comprehensive accuracy at different levels of deformation. This work was supported by NIH R01CA100835. John Adamovics is the president of Heuris Inc., which commercializes PRESAGE.« less

  6. SU-F-T-159: Monte Carlo Simulation Studies of Three-Dimensional Dose Distribution for Polymer Gel Dosimeter and Radiochromic Gel Dosimeter in a Proton Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, M; Kim, G; Jung, H

    Purpose: The purpose of this simulation study is to evaluate the proton detectability of gel dosimeters, and estimate the three-dimensional dose distribution of protons in the radiochromic gel and polymer gel dosimeter compared with the dose distribution in water. Methods: The commercial composition ratios of normoxic polymer gel and LCV micelle radiochromic gel were included in this simulation study. The densities of polymer and radiochromic gel were 1.024 and 1.005 g/cm3, respectively. The 50, 80 and 140 MeV proton beam energies were selected. The dose distributions of protons in the polymer and radiochromic gel were simulated using Monte Carlo radiationmore » transport code (MCNPX 2.7.0, Los Alamos Laboratory). The water equivalent depth profiles and the dose distributions of two gel dosimeters were compared for the water. Results: In case of irradiating 50, 80 and 140 MeV proton beam to water phantom, the reference Bragg-peak depths are represented at 2.22, 5.18 and 13.98 cm, respectively. The difference in the water equivalent depth is represented to about 0.17 and 0.37 cm in the radiochromic gel and polymer gel dosimeter, respectively. The proton absorbed doses in the radiochromic gel dosimeter are calculated to 2.41, 3.92 and 6.90 Gy with increment of incident proton energies. In the polymer gel dosimeter, the absorbed doses are calculated to 2.37, 3.85 and 6.78 Gy with increment of incident proton energies. The relative absorbed dose in radiochromic gel (about 0.47 %) is similar to that of water than the relative absorbed dose of polymer gel (about 2.26 %). In evaluating the proton dose distribution, we found that the dose distribution of both gel dosimeters matched that of water in most cases. Conclusion: As the dosimetry device, the radiochromic gel dosimeter has the potential particle detectability and is feasible to use for quality assurance of proton beam therapy beam.« less

  7. Early development and characterization of a DNA-based radiation dosimeter

    NASA Astrophysics Data System (ADS)

    Avarmaa, Kirsten A.

    It is the priority of first responders to minimize damage to persons and infrastructure in the case of a nuclear emergency due to an accident or deliberate terrorist attack -- if this emergency includes a radioactive hazard, first responders require a simple-to-use, accurate and complete dosimeter for radiation protection purposes in order to minimize the health risk to these individuals and the general population at large. This work consists of the early evaluation of the design and performance of a biologically relevant dosimeter which uses DNA material that can respond to the radiation of any particle type. The construct consists of fluorescently tagged strands of DNA. The signalling components of this dosimeter are also investigated for their sensitivity to radiation damage and light exposure. The dual-labelled dosimeter that is evaluated in this work gave a measurable response to gamma radiation at dose levels of 10 Gy for the given detector design and experimental setup. Further testing outside of this work confirmed this finding and indicated a working range of 100 mGy to 10 Gy using a custom-built fluorimeter as part of a larger CRTI initiative. Characterization of the chromatic components of the dosimeter showed that photobleaching is not expected to have an effect on dosimeter performance, but that radiation can damage the non-DNA signalling components at higher dose levels, although this damage is minimal at lower doses over the expected operating ranges. This work therefore describes the early steps in the quantification of the behaviour of the DNA dosimeter as a potential biologically-based device to measure radiation dose.

  8. Reliability of an x-ray system for calibrating and testing personal radiation dosimeters

    NASA Astrophysics Data System (ADS)

    Guimarães, M. C.; Silva, C. R. E.; Rosado, P. H. G.; Cunha, P. G.; Da Silva, T. A.

    2018-03-01

    Metrology laboratories are expected to maintain standardized radiation beams and traceable standard dosimeters to provide reliable calibrations or testing of detectors. Results of the characterization of an x-ray system for performing calibration and testing of radiation dosimeters used for individual monitoring are shown in this work.

  9. Ceric and ferrous dosimeters show precision for 50-5000 rad range

    NASA Technical Reports Server (NTRS)

    Frigerio, N. A.; Henry, V. D.

    1968-01-01

    Ammonium thiocyanate, added to the usual ferrous sulfate dosimeter solution, yielded a very stable, precise and temperature-independent system eight times as sensitive as the classical Fricke system in the 50 to 5000 rad range. The ceric dosimeters, promising for use in mixed radiation fields, respond nearly independently of LET.

  10. Evaluation of discrepancies between thermoluminescent dosimeter and direct-reading dosimeter results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, K.R.

    1993-07-01

    Currently at Oak Ridge National Laboratory (ORNL), the responses of thermoluminescent dosimeters (TLDs) and direct-reading dosimeters (DRDs) are not officially compared or the discrepancies investigated. However, both may soon be required due to the new US Department of Energy (DOE) Radiological Control Manual. In the past, unofficial comparisons of the two dosimeters have led to discrepancies of up to 200%. This work was conducted to determine the reasons behind such discrepancies. For tests conducted with the TLDs, the reported dose was most often lower than the delivered dose, while DRDs most often responded higher than the delivered dose. Trends weremore » identified in personnel DRD readings, and ft was concluded that more training and more control of the DRDs could improve their response. TLD responses have already begun to be improved; a new background subtraction method was implemented in April 1993, and a new dose algorithm is being considered. It was concluded that the DOE Radiological Control Manual requirements are reasonable for identifying discrepancies between dosimeter types, and more stringent administrative limits might even be considered.« less

  11. Three-dimensional radiation dosimetry based on optically-stimulated luminescence

    NASA Astrophysics Data System (ADS)

    Sadel, M.; Høye, E. M.; Skyt, P. S.; Muren, L. P.; Petersen, J. B. B.; Balling, P.

    2017-05-01

    A new approach to three-dimensional (3D) dosimetry based on optically-stimulated luminescence (OSL) is presented. By embedding OSL-active particles into a transparent silicone matrix (PDMS), the well-established dosimetric properties of an OSL material are exploited in a 3D-OSL dosimeter. By investigating prototype dosimeters in standard cuvettes in combination with small test samples for OSL readers, it is shown that a sufficient transparency of the 3D-OSL material can be combined with an OSL response giving an estimated >10.000 detected photons in 1 second per 1mm3 voxel of the dosimeter at a dose of 1 Gy. The dose distribution in the 3D-OSL dosimeters can be directly read out optically without the need for subsequent reconstruction by computational inversion algorithms. The dosimeters carry the advantages known from personal-dosimetry use of OSL: the dose distribution following irradiation can be stored with minimal fading for extended periods of time, and dosimeters are reusable as they can be reset, e.g. by an intense (bleaching) light field.

  12. Enhancement of Dose Response and Nuclear Magnetic Resonance Image of PAGAT Polymer Gel Dosimeter by Adding Silver Nanoparticles

    PubMed Central

    Sabbaghizadeh, Rahim; Shamsudin, Roslinda; Deyhimihaghighi, Najmeh; Sedghi, Arman

    2017-01-01

    In the present study, the normoxic polyacrylamide gelatin and tetrakis hydroxy methyl phosphoniun chloride (PAGAT) polymer gel dosimeters were synthesized with and without the presence of silver (Ag) nanoparticles. The amount of Ag nanoparticles varied from 1 to 3 ml with concentration 3.14 g/l, thus forming two types of PAGAT polymer gel dosimeters before irradiating them with 6 to 25 Gy produced by 1.25-MeV 60Co gamma rays. In this range, the predominant gamma ray interaction with matter is by Compton scattering effect, as the photoelectric absorption effect diminishes. MRI was employed when evaluating the polymerization of the dosimeters and the gray scale of the MRI film was determined via an optical densitometer. Subsequent analyses of optical densities revealed that the extent of polymerization increased with the increase in the absorbed dose, while the increase of penetration depth within the dosimeters has a reverse effect. Moreover, a significant increase in the optical density-dose response (11.82%) was noted for dosimeters containing 2 ml Ag nanoparticles. PMID:28060829

  13. A diffusion-free and linear-energy-transfer-independent nanocomposite Fricke gel dosimeter

    NASA Astrophysics Data System (ADS)

    Maeyama, T.; Fukunishi, N.; Ishikawa, K. L.; Furuta, T.; Fukasaku, K.; Takagi, S.; Noda, S.; Himeno, R.; Fukuda, S.

    2014-03-01

    We report a new magnetic-resonance-imaging (MRI) based nanocomposite Fricke gel (NC-FG) dosimeter system, which is free from two main drawbacks of conventional Fricke gel dosimeters, namely, the diffusion of the radiation products and the linear-energy-transfer (LET) dependence of the radiation sensitivity when used for ion beams. The NC-FG dosimeter was prepared by incorporating 1% (w/w) clay nanoparticles into deaerated Fricke gel. We have dosimetrically characterized the NC-FG by using MRI measurements after irradiation with a monoenergetic 290 MeV/nucleon carbon beam. No diffusion of the radiation products was observed during nine days after the irradiation. Moreover, its response faithfully reproduced the depth-dose distribution measured by an ionization chamber, which indicates the absence of the LET dependence. Also, the NC-FG dosimeter exhibited a good linearity up to 800 Gy.

  14. Method and apparatus for reading free falling dosimeter punchcodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langsted, J.M.

    1992-12-22

    A punchcode reader is provided for reading data encoded in a punchcode hole array on a dosimeter. The dosimeter falls through a passage in the reader containing photosensor detectors disposed along the passage which provide output signals to a microprocessor. The signals are processed to determine the orientation of the dosimeter in the reader, the location and state of punchcode holes in a two row array thereby decoding the encoded data. Multiple rate of fall calculations are made, and if appropriate matching of the punchcode array is not obtained in three tries, an error signal is output to the operator.more » The punchcode reader also provides for storage of data from multiple dosimeters passed through the reader, and for the output of decoded data to an external display or a computer for further processing. 8 figs.« less

  15. Method and apparatus for reading free falling dosimeter punchcodes

    DOEpatents

    Langsted, J.M.

    1992-12-22

    A punchcode reader is provided for reading data encoded in a punchcode hole array on a dosimeter. The dosimeter falls through a passage in the reader containing photosensor detectors disposed along the passage which provide output signals to a microprocessor. The signals are processed to determine the orientation of the dosimeter in the reader, the location and state of punchcode holes in a two row array thereby decoding the encoded data. Multiple rate of fall calculations are made, and if appropriate matching of the punchcode array is not obtained in three tries, an error signal is output to the operator. The punchcode reader also provides for storage of data from multiple dosimeters passed through the reader, and for the output of decoded data to an external display or a computer for further processing. 8 figs.

  16. Effects of elevated temperatures during interruption of irradiation on Harwell Red 4034 PMMA and Kodak Biomax alanine film dosimetry systems

    NASA Astrophysics Data System (ADS)

    Sidereas, P.; Patil, D. S.; Garcia, R.; Tracy, R. P.; Holzman, J. M.

    2007-11-01

    In the industrial setting it is not uncommon for a process interruption to occur during irradiation. In this event, dosimeters may be exposed to prolonged periods of elevated temperature without exposure to ionizing radiation. Once the process is restarted, the same dosimeters are exposed to ionizing radiation in order to achieve target dose. The goal of this experiment was to simulate a process interruption within limits and quantify the effects of a combination of factors (heat, time, and fractionation) on dosimeter response. We present an in-depth experimental study on the response of dosimeters that have been irradiated, stored for a fixed period of time at several temperatures, and then re-irradiated. This study was performed using Harwell Red 4034 polymethylmethacrylate (PMMA) and Kodak BioMax alanine film dosimeters.

  17. Radiation dose enhancement of gold nanoparticle on different polymer gel dosimeters

    NASA Astrophysics Data System (ADS)

    Jabaseelan Samuel, E. James; Srinivasan, K.; Poopathi, V.

    2017-05-01

    In this work, we evaluated the dose enhancement produced by gold nanoparticle on ten different polymer gel dosimeters with a concentration of 7mgAu /g over a wide photon energy range of 15KeV to 20MeV and the results were compared with Soft tissue ICRU-44 produced. Our result showed that maximum DEF was observed at 40KeV, while it was almost negligible at higher energy range. Dose enhancement produced by AuNP on the gel dosimeter medium was varied compared to the reference ICRU-44 tissue, it was ± <1% for PAGAT, NIPAM, nPAG and ± <5% for PABIG, VIPAR, HEAG, BANG1, nMAG & ± <10% for MAGIC, ABAGIC gel dosimeters. Hence, we conclude that choosing the proper gel dosimeter is essential in dose enhancement study.

  18. Monte-Carlo based assessment of MAGIC, MAGICAUG, PAGATUG and PAGATAUG polymer gel dosimeters for ovaries and uterus organ dosimetry in brachytherapy, nuclear medicine and Tele-therapy.

    PubMed

    Adinehvand, Karim; Rahatabad, Fereidoun Nowshiravan

    2018-06-01

    Calculation of 3D dose distribution during radiotherapy and nuclear medicine helps us for better treatment of sensitive organs such as ovaries and uterus. In this research, we investigate two groups of normoxic dosimeters based on meta-acrylic acid (MAGIC and MAGICAUG) and polyacrylamide (PAGATUG and PAGATAUG) for brachytherapy, nuclear medicine and Tele-therapy in their sensitive and critical role as organ dosimeters. These polymer gel dosimeters are compared with soft tissue while irradiated by different energy photons in therapeutic applications. This comparison has been simulated by Monte-Carlo based MCNPX code. ORNL phantom-Female has been used to model the critical organs of kidneys, ovaries and uterus. Right kidney is proposed to be the source of irradiation and another two organs are exposed to this irradiation. Effective atomic numbers of soft tissue, MAGIC, MAGICAUG, PAGATUG and PAGATAUG are 6.86, 7.07, 6.95, 7.28, and 7.07 respectively. Results show the polymer gel dosimeters are comparable to soft tissue for using in nuclear medicine and Tele-therapy. Differences between gel dosimeters and soft tissue are defined as the dose responses. This difference is less than 4.1%, 22.6% and 71.9% for Tele-therapy, nuclear medicine and brachytherapy respectively. The results approved that gel dosimeters are the best choice for ovaries and uterus in nuclear medicine and Tele-therapy respectively. Due to the slight difference between the effective atomic numbers of these polymer gel dosimeters and soft tissue, these polymer gels are not suitable for brachytherapy since the dependence of photon interaction to atomic number, for low energy brachytherapy, had been so effective. Also this dependence to atomic number, decrease for photoelectric and increase for Compton. Therefore polymer gel dosimeters are not a good alternative to soft tissue replacement in brachytherapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. WE-D-17A-02: Evaluation of a Two-Dimensional Optical Dosimeter On Measuring Lateral Profiles of Proton Pencil Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsi, W; Lee, T; Schultz, T

    Purpose: To evaluate the accuracy of a two-dimensional optical dosimeter on measuring lateral profiles for spots and scanned fields of proton pencil beams. Methods: A digital camera with a color image senor was utilized to image proton-induced scintillations on Gadolinium-oxysulfide phosphor reflected by a stainless-steel mirror. Intensities of three colors were summed for each pixel with proper spatial-resolution calibration. To benchmark this dosimeter, the field size and penumbra for 100mm square fields of singleenergy pencil-scan protons were measured and compared between this optical dosimeter and an ionization-chamber profiler. Sigma widths of proton spots in air were measured and compared betweenmore » this dosimeter and a commercial optical dosimeter. Clinical proton beams with ranges between 80 mm and 300 mm at CDH proton center were used for this benchmark. Results: Pixel resolutions vary 1.5% between two perpendicular axes. For a pencil-scan field with 302 mm range, measured field sizes and penumbras between two detection systems agreed to 0.5 mm and 0.3 mm, respectively. Sigma widths agree to 0.3 mm between two optical dosimeters for a proton spot with 158 mm range; having widths of 5.76 mm and 5.92 mm for X and Y axes, respectively. Similar agreements were obtained for others beam ranges. This dosimeter was successfully utilizing on mapping the shapes and sizes of proton spots at the technical acceptance of McLaren proton therapy system. Snow-flake spots seen on images indicated the image sensor having pixels damaged by radiations. Minor variations in intensity between different colors were observed. Conclusions: The accuracy of our dosimeter was in good agreement with other established devices in measuring lateral profiles of pencil-scan fields and proton spots. A precise docking mechanism for camera was designed to keep aligned optical path while replacing damaged image senor. Causes for minor variations between emitted color lights will be investigated.« less

  20. Characterization of MOSFET dosimeters for low-dose measurements in maxillofacial anthropomorphic phantoms.

    PubMed

    Koivisto, Juha H; Wolff, Jan E; Kiljunen, Timo; Schulze, Dirk; Kortesniemi, Mika

    2015-07-08

    The aims of this study were to characterize reinforced metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters to assess the measurement uncertainty, single exposure low-dose limit with acceptable accuracy, and the number of exposures required to attain the corresponding limit of the thermoluminescent dosimeters (TLD). The second aim was to characterize MOSFET dosimeter sensitivities for two dental photon energy ranges, dose dependency, dose rate dependency, and accumulated dose dependency. A further aim was to compare the performance of MOSFETs with those of TLDs in an anthropomorphic phantom head using a dentomaxillofacial CBCT device. The uncertainty was assessed by exposing 20 MOSFETs and a Barracuda MPD reference dosimeter. The MOSFET dosimeter sensitivities were evaluated for two photon energy ranges (50-90 kVp) using a constant dose and polymethylmethacrylate backscatter material. MOSFET and TLD comparative point-dose measurements were performed on an anthropomorphic phantom that was exposed with a clinical CBCT protocol. The MOSFET single exposure low dose limit (25% uncertainty, k = 2) was 1.69 mGy. An averaging of eight MOSFET exposures was required to attain the corresponding TLD (0.3 mGy) low-dose limit. The sensitivity was 3.09 ± 0.13 mV/mGy independently of the photon energy used. The MOSFET dosimeters did not present dose or dose rate sensitivity but, however, presented a 1% decrease of sensitivity per 1000 mV for accumulated threshold voltages between 8300 mV and 17500 mV. The point doses in an anthropomorphic phantom ranged for MOSFETs between 0.24 mGy and 2.29 mGy and for TLDs between 0.25 and 2.09 mGy, respectively. The mean difference was -8%. The MOSFET dosimeters presented statistically insignificant energy dependency. By averaging multiple exposures, the MOSFET dosimeters can achieve a TLD-comparable low-dose limit and constitute a feasible method for diagnostic dosimetry using anthropomorphic phantoms. However, for single in vivo measurements (<1.7 mGy) the sensitivity is too low.

  1. European Community Respiratory Health Survey calibration project of dosimeter driving pressures.

    PubMed

    Ward, R J; Ward, C; Johns, D P; Skoric, B; Abramson, M; Walters, E H

    2002-02-01

    Two potential sources of systematic variation in output from Mefar dosimeters, the system used in the European Community Respiratory Health Survey (ECRHS) study have been evaluated: individual nebulizer characteristics and dosimeter driving pressure. Output variation from 366 new nebulizers produced in two batches for the second ECRHS were evaluated, using a solute tracer method, at a fixed driving pressure. The relationship between dosimeter driving pressure was then characterized and between-centre variation in dosimeter driving pressure was evaluated in an Internet-based survey. A systematic difference between nebulizers manufactured in the two batches was identified. Batch one had a mean+/-SD output of 7.0+/-0.8 mg x s(-1) and batch two, 6.3+/-0.7 mg x s(-1) (p<0.005). There was a wide range of driving pressures generated by Mefar dosimeters as set, ranging between 70-245 kPa, with most outside the quoted manufacturer's specification of 180+/-5%. Nebulizer output was confirmed as linearly related to dosimeter driving pressure (coefficient of determination (R2)=0.99, output=0.0377 x driving pressure-0.4151). The range in driving pressures observed was estimated as consistent with a variation of about one doubling in the provocative dose causing a 20% fall in forced expiratory volume in one second. Systematic variation has been identified that constitutes potentially significant confounders for between-centre comparisons of airway responsiveness in the European Community Respiratory Health Survey, with the dosimeter driving pressure representing the most serious issue. This work confirms the need for appropriate quality control of both nebulizer output and dosimeter driving pressure, in laboratories undertaking field measurements of airway responsiveness. In particular, appropriate data on driving pressures need to be collected and factored into between-centre comparisons. Comprehensive collection of such data to optimize quality control is practicable and has been instigated by the organizing committee for the European Community Respiratory Health Survey II.

  2. TH-CD-201-08: Flexible Dosimeter Bands for Whole-Body Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, T; Fahimian, B; Pratx, G

    Purpose: The two commonly used radiotherapy techniques are total body irradiation (TBI) and the total skin irradiation (TSI). In order to ensure the accuracy of the prescription beams, the dose received throughout the entire body must be checked using dosimetry. However, the available number of data points is limited as the dosimeters are manually placed on the patient. We developed a flexible and wearable dosimeter that can collect 1D continuous dose information around the peripheral of the patients’ body, including areas obscured from the beam path. Methods: The flexible dosimeter bands are fabricated by embedding storage phosphor powders in amore » thin layer of non-toxic silicone based elastomer (PDMS). An additional elastomer layer is formed on top of the phosphor layer to provide additional mechanical support for the dosimeter. Once the curing process is complete, the dosimeter is cut into multiple bands and rolled into spools prior to use. Results: The dose responses are tested using a preclinical cabinet X-ray system, where the readout is performed with a storage phosphor reader. Results show that the dose calibration factor is ∼1400 (A.U./Gy) from the beam center. Also, 1-D dose distribution experiment was performed in water phantoms, where preliminary results demonstrate that the dose in water is indeed attenuated compared to in air. Conclusion: Dose response and high-resolution 1-D dosimetry is demonstrated using the flexible dosimeters. By providing a detailed spatial description of the beam dose profile, we expect that the dosimeter bands may aid in enhancing the current existing modality in dosimetry. Since the dosimeter is flexible (can retract back to its original length), they can be comfortably worn around the patient. Potentially, multiple 1-D dose information can be stitched together and extrapolated to provide a coarse 3-D image of the dose distribution. This work was supported by funding from the Cutaneous Lymphoma Foundation under the CLARIONS grant.« less

  3. A history of radiation detection instrumentation.

    PubMed

    Frame, Paul W

    2004-08-01

    A review is presented of the history of radiation detection instrumentation. Specific radiation detection systems that are discussed include the human senses, photography, calorimetry, color dosimetry, ion chambers, electrometers, electroscopes, proportional counters, Geiger Mueller counters, scalers and rate meters, barium platinocyanide, scintillation counters, semiconductor detectors, radiophotoluminescent dosimeters, thermoluminescent dosimeters, optically stimulated luminescent dosimeters, direct ion storage, electrets, cloud chambers, bubble chambers, and bubble dosimeters. Given the broad scope of this review, the coverage is limited to a few key events in the development of a given detection system and some relevant operating principles. The occasional anecdote is included for interest.

  4. A history of radiation detection instrumentation.

    PubMed

    Frame, Paul W

    2005-06-01

    A review is presented of the history of radiation detection instrumentation. Specific radiation detection systems that are discussed include the human senses, photography, calorimetry, color dosimetry, ion chambers, electrometers, electroscopes, proportional counters, Geiger Mueller counters, scalers and rate meters, barium platinocyanide, scintillation counters, semiconductor detectors, radiophotoluminescent dosimeters, thermoluminescent dosimeters, optically stimulated luminescent dosimeters, direct ion storage, electrets, cloud chambers, bubble chambers, and bubble dosimeters. Given the broad scope of this review, the coverage is limited to a few key events in the development of a given detection system and some relevant operating principles. The occasional anecdote is included for interest.

  5. Polymer gel dosimeter with AQUAJOINT® as hydrogel matrix

    NASA Astrophysics Data System (ADS)

    Maeyama, Takuya; Ishida, Yasuhiro; Kudo, Yoshihiro; Fukasaku, Kazuaki; Ishikawa, Kenichi L.; Fukunishi, Nobuhisa

    2018-05-01

    We report a polymer gel dosimeter based on a new gel matrix (AQUAJOINT®) that is a thermo-irreversible hydrogel formed by mixing two types of water-based liquids at room temperature. Normoxic N-vinylpyrrolidone-based polymer gels were prepared with AQUAJOINT® instead of gelatin. This AQUAJOINT®-based gel dosimeter exhibits a 2.5-fold increase in sensitivity over a gelatin-based gel dosimeter and a linear dose-response in the dose range of 0-8 Gy. This gel has heat resistance in a jar and controlled gel properties such as viscoelastic and mechanical characters, which may be useful for deformable polymer gel dosimetry.

  6. A comprehensive evaluation of the PRESAGE/optical-CT 3D dosimetry system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakhalkar, H. S.; Adamovics, J.; Ibbott, G.

    2009-01-15

    This work presents extensive investigations to evaluate the robustness (intradosimeter consistency and temporal stability of response), reproducibility, precision, and accuracy of a relatively new 3D dosimetry system comprising a leuco-dye doped plastic 3D dosimeter (PRESAGE) and a commercial optical-CT scanner (OCTOPUS 5x scanner from MGS Research, Inc). Four identical PRESAGE 3D dosimeters were created such that they were compatible with the Radiologic Physics Center (RPC) head-and-neck (H and N) IMRT credentialing phantom. Each dosimeter was irradiated with a rotationally symmetric arrangement of nine identical small fields (1x3 cm{sup 2}) impinging on the flat circular face of the dosimeter. A repetitiousmore » sequence of three dose levels (4, 2.88, and 1.28 Gy) was delivered. The rotationally symmetric treatment resulted in a dose distribution with high spatial variation in axial planes but only gradual variation with depth along the long axis of the dosimeter. The significance of this treatment was that it facilitated accurate film dosimetry in the axial plane, for independent verification. Also, it enabled rigorous evaluation of robustness, reproducibility and accuracy of response, at the three dose levels. The OCTOPUS 5x commercial scanner was used for dose readout from the dosimeters at daily time intervals. The use of improved optics and acquisition technique yielded substantially improved noise characteristics (reduced to {approx}2%) than has been achieved previously. Intradosimeter uniformity of radiochromic response was evaluated by calculating a 3D gamma comparison between each dosimeter and axially rotated copies of the same dosimeter. This convenient technique exploits the rotational symmetry of the distribution. All points in the gamma comparison passed a 2% difference, 1 mm distance-to-agreement criteria indicating excellent intradosimeter uniformity even at low dose levels. Postirradiation, the dosimeters were all found to exhibit a slight increase in opaqueness with time. However, the relative dose distribution was found to be extremely stable up to 90 h postirradiation indicating excellent temporal stability. Excellent interdosimeter reproducibility was also observed between the four dosimeters. Gamma comparison maps between each dosimeter and the average distribution of all four dosimeters showed full agreement at the 2% difference, 2 mm distance-to-agreement level. Dose readout from the 3D dosimetry system was found to agree better with independent film measurement than with treatment planning system calculations in penumbral regions and was generally accurate to within 2% dose difference and 2 mm distance-to-agreement. In conclusion, these studies demonstrate excellent precision, accuracy, robustness, and reproducibility of the PRESAGE/optical-CT system for relative 3D dosimetry and support its potential integration with the RPC H and N credentialing phantom for IMRT verification.« less

  7. Relative performance of different types of passive dosimeters employing solid state nuclear track detectors.

    PubMed

    Jamil, K; Al-Ahmady, K K; Fazal-ur-Rehman; Ali, S; Qureshi, A A; Khan, H A

    1997-10-01

    Radon and its progeny, known to be carcinogenic, are a matter of great concern in underground mines and energy conserved air-tight houses. Different shapes of dosimeters using solid state nuclear track detectors (SSNTDs) have been devised to measure radon concentrations in mines and dwellings. Sometimes intercomparison of results is required by various laboratories working with solid state nuclear track detector-based passive dosimeters. The present work includes the determination of various parameters for a set of dosimeters consisting of (1) box-type, (2) pen-type, (3) tube-type, (4) Karlsruhe Diffusion Chamber, and (5) bare-type dosimeters. In this research two types of plastics, allyl-diglycol-carbonate (C12H18O7) and cellulose nitrate (C6H8O8N2) known as CR-39 and CN-85, respectively, have been employed. The detection efficiency for alpha particles from radon and its progeny for CR-39 and CN-85 have been compared. All experiments have been carried out in a custom-designed exposure chamber connected to a radon source. The calibration factors, in terms of Bq m(-3) per unit track density (1.0 cm(-2)) with respect to box-type dosimeter, have been determined for intercomparison and standardization of measured radon concentrations by a set of passive radon dosimeters used in various laboratories of the world.

  8. Small-Field Measurements of 3D Polymer Gel Dosimeters through Optical Computed Tomography.

    PubMed

    Shih, Tian-Yu; Wu, Jay; Shih, Cheng-Ting; Lee, Yao-Ting; Wu, Shin-Hua; Yao, Chun-Hsu; Hsieh, Bor-Tsung

    2016-01-01

    With advances in therapeutic instruments and techniques, three-dimensional dose delivery has been widely used in radiotherapy. The verification of dose distribution in a small field becomes critical because of the obvious dose gradient within the field. The study investigates the dose distributions of various field sizes by using NIPAM polymer gel dosimeter. The dosimeter consists of 5% gelatin, 5% monomers, 3% cross linkers, and 5 mM THPC. After irradiation, a 24 to 96 hour delay was applied, and the gel dosimeters were read by a cone beam optical computed tomography (optical CT) scanner. The dose distributions measured by the NIPAM gel dosimeter were compared to the outputs of the treatment planning system using gamma evaluation. For the criteria of 3%/3 mm, the pass rates for 5 × 5, 3 × 3, 2 × 2, 1 × 1, and 0.5 × 0.5 cm2 were as high as 91.7%, 90.7%, 88.2%, 74.8%, and 37.3%, respectively. For the criteria of 5%/5 mm, the gamma pass rates of the 5 × 5, 3 × 3, and 2 × 2 cm2 fields were over 99%. The NIPAM gel dosimeter provides high chemical stability. With cone-beam optical CT readouts, the NIPAM polymer gel dosimeter has potential for clinical dose verification of small-field irradiation.

  9. Adaptive error detection for HDR/PDR brachytherapy: Guidance for decision making during real-time in vivo point dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kertzscher, Gustavo, E-mail: guke@dtu.dk; Andersen, Claus E., E-mail: clan@dtu.dk; Tanderup, Kari, E-mail: karitand@rm.dk

    Purpose: This study presents an adaptive error detection algorithm (AEDA) for real-timein vivo point dosimetry during high dose rate (HDR) or pulsed dose rate (PDR) brachytherapy (BT) where the error identification, in contrast to existing approaches, does not depend on an a priori reconstruction of the dosimeter position. Instead, the treatment is judged based on dose rate comparisons between measurements and calculations of the most viable dosimeter position provided by the AEDA in a data driven approach. As a result, the AEDA compensates for false error cases related to systematic effects of the dosimeter position reconstruction. Given its nearly exclusivemore » dependence on stable dosimeter positioning, the AEDA allows for a substantially simplified and time efficient real-time in vivo BT dosimetry implementation. Methods: In the event of a measured potential treatment error, the AEDA proposes the most viable dosimeter position out of alternatives to the original reconstruction by means of a data driven matching procedure between dose rate distributions. If measured dose rates do not differ significantly from the most viable alternative, the initial error indication may be attributed to a mispositioned or misreconstructed dosimeter (false error). However, if the error declaration persists, no viable dosimeter position can be found to explain the error, hence the discrepancy is more likely to originate from a misplaced or misreconstructed source applicator or from erroneously connected source guide tubes (true error). Results: The AEDA applied on twoin vivo dosimetry implementations for pulsed dose rate BT demonstrated that the AEDA correctly described effects responsible for initial error indications. The AEDA was able to correctly identify the major part of all permutations of simulated guide tube swap errors and simulated shifts of individual needles from the original reconstruction. Unidentified errors corresponded to scenarios where the dosimeter position was sufficiently symmetric with respect to error and no-error source position constellations. The AEDA was able to correctly identify all false errors represented by mispositioned dosimeters contrary to an error detection algorithm relying on the original reconstruction. Conclusions: The study demonstrates that the AEDA error identification during HDR/PDR BT relies on a stable dosimeter position rather than on an accurate dosimeter reconstruction, and the AEDA’s capacity to distinguish between true and false error scenarios. The study further shows that the AEDA can offer guidance in decision making in the event of potential errors detected with real-timein vivo point dosimetry.« less

  10. Sensitivity and variability of Presage dosimeter formulations in sheet form with application to SBRT and SRS QA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumas, Michael, E-mail: mdumas1127@gmail.com; Rakowski, Joseph T.

    Purpose: To measure sensitivity and stability of the Presage dosimeter in sheet form for various chemical concentrations over a range of clinical photon energies and examine its use for stereotactic body radiation therapy (SBRT) and stereotactic radiosurgery (SRS) QA. Methods: Presage polymer dosimeters were formulated to investigate and optimize their sensitivity and stability. The dosimeter is composed of clear polyurethane base, leucomalachite green (LMG) reporting dye, and bromoform radical initiator in 0.9–1.0 mm thick sheets. The chemicals are mixed together for 2 min, cast in an aluminum mold, and left to cure at 60 psi for a minimum of twomore » days. Dosimeter response was characterized at energies Co-60, 6 MV, 10 MV flattening-filter free, 15 MV, 50 kVp (mean 19.2 keV), and Ir-192. The dosimeters were scanned by a Microtek Scanmaker i800 at 300 dpi, 2{sup 16} bit depth per color channel. Red component images were analyzed with ImageJ and RIT. SBRT QA was done with gamma analysis tolerances of 2% and 2 mm DTA. Results: The sensitivity of the Presage dosimeter increased with increasing concentration of bromoform. Addition of tin catalyst decreased curing time and had negligible effect on sensitivity. LMG concentration should be at least as high as the bromoform, with ideal concentration being 2% wt. Gamma Knife SRS QA measurements of relative output and profile widths were within 2% of manufacturer’s values validated at commissioning, except the 4 mm collimator relative output which was within 3%. The gamma pass rate of Presage with SBRT was 73.7%, compared to 93.1% for EBT2 Gafchromic film. Conclusions: The Presage dosimeter in sheet form was capable of detecting radiation over all tested photon energies and chemical concentrations. The best sensitivity and photostability of the dosimeter were achieved with 2.5% wt. LMG and 8.2% wt. bromoform. Scanner used should not emit any UV radiation as it will expose the dosimeter, as with the Epson 10000 XL scanner. Presage dosimeter in this form was sensitive enough for use in SRS and SBRT QA. The lower gamma pass rate for Presage compared to Gafchromic film can be attributed to the simple equipment used in the fabrication process, which limited the dosimeter’s sensitivity uniformity by agglomeration of air bubbles in the material, nonuniform concentration of chemicals throughout the material, and thickness variations. This demands improvements in mixing tools and molds.« less

  11. Investigations of interference between electromagnetic transponders and wireless MOSFET dosimeters: A phantom study

    PubMed Central

    Su, Zhong; Zhang, Lisha; Ramakrishnan, V.; Hagan, Michael; Anscher, Mitchell

    2011-01-01

    Purpose: To evaluate both the Calypso Systems’ (Calypso Medical Technologies, Inc., Seattle, WA) localization accuracy in the presence of wireless metal–oxide–semiconductor field-effect transistor (MOSFET) dosimeters of dose verification system (DVS, Sicel Technologies, Inc., Morrisville, NC) and the dosimeters’ reading accuracy in the presence of wireless electromagnetic transponders inside a phantom.Methods: A custom-made, solid-water phantom was fabricated with space for transponders and dosimeters. Two inserts were machined with positioning grooves precisely matching the dimensions of the transponders and dosimeters and were arranged in orthogonal and parallel orientations, respectively. To test the transponder localization accuracy with∕without presence of dosimeters (hypothesis 1), multivariate analyses were performed on transponder-derived localization data with and without dosimeters at each preset distance to detect statistically significant localization differences between the control and test sets. To test dosimeter dose-reading accuracy with∕without presence of transponders (hypothesis 2), an approach of alternating the transponder presence in seven identical fraction dose (100 cGy) deliveries and measurements was implemented. Two-way analysis of variance was performed to examine statistically significant dose-reading differences between the two groups and the different fractions. A relative-dose analysis method was also used to evaluate transponder impact on dose-reading accuracy after dose-fading effect was removed by a second-order polynomial fit.Results: Multivariate analysis indicated that hypothesis 1 was false; there was a statistically significant difference between the localization data from the control and test sets. However, the upper and lower bounds of the 95% confidence intervals of the localized positional differences between the control and test sets were less than 0.1 mm, which was significantly smaller than the minimum clinical localization resolution of 0.5 mm. For hypothesis 2, analysis of variance indicated that there was no statistically significant difference between the dosimeter readings with and without the presence of transponders. Both orthogonal and parallel configurations had difference of polynomial-fit dose to measured dose values within 1.75%.Conclusions: The phantom study indicated that the Calypso System’s localization accuracy was not affected clinically due to the presence of DVS wireless MOSFET dosimeters and the dosimeter-measured doses were not affected by the presence of transponders. Thus, the same patients could be implanted with both transponders and dosimeters to benefit from improved accuracy of radiotherapy treatments offered by conjunctional use of the two systems. PMID:21776780

  12. Residual Optically Stimulated Luminescent (OSL) Signals For Al2O3: C and a Readout System With Reproducible Partial Signal Clearance.

    PubMed

    Abraham, Sara A; Kearfott, Kimberlee J

    2018-06-15

    Optically stimulated luminescent dosimeters are devices that, when stimulated with light, emit light in proportion to the integrated ionizing radiation dose. The stimulation of optically stimulated luminescent material results in the loss of a small fraction of signal stored within the dosimetric traps. Previous studies have investigated the signal loss due to readout stimulation and the optical annealing of optically stimulated luminescent dosimeters. This study builds on former research by examining the behavior of optically stimulated luminescent signals after annealing, exploring the functionality of a previously developed signal loss model, and comparing uncertainties for dosimeters reused with or without annealing. For a completely annealed dosimeter, the minimum signal level was 56 ± 8 counts, and readings followed a Gaussian distribution. For dosimeters above this signal level, the fractional signal loss due to the reading process has a linear relationship with the calculated signal. At low signal levels (below 20,000 counts) in this optically stimulated luminescent dosimeter system, calculated signal percent errors increase significantly but otherwise are on average 0.72 ± 0.27%, 0.40 ± 0.19%, 0.33 ± 0.12%, and 0.24 ± 0.07% for 30, 75, 150, and 300 readings, respectively. Theoretical calculations of uncertainties showed that annealing before reusing dosimeters allows for dose errors below 1% with as few as 30 readings. Reusing dosimeters multiple times increases the dose errors especially with low numbers of readouts, so theoretically around 300 readings would be necessary to achieve errors around 1% or below in most scenarios. Note that these dose errors do not include the error associated with the signal-to-dose conversion factor.

  13. SU-F-T-17: A Feasibility Study for the Transit Dosimetry with a Glass Dosimeter in Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, S; Yoon, M; Chung, W

    Purpose: Confirming the dose delivered to a patient is important to make sure the treatment quality and safety of the radiotherapy. Measuring a transit dose of the patient during the radiotherapy could be an interesting way to confirm the patient dose. In this study, we evaluated the feasibility of the transit dosimetry with a glass dosimeter in brachytherapy. Methods: We made a phantom that inserted the glass dosimeters and placed under patient lying on a couch for cervix cancer brachytherapy. The 18 glass dosimeters were placed in the phantom arranged 6 per row. A point putting 1cm vertically from themore » source was prescribed as 500.00 cGy. Solid phantoms of 0, 2, 4, 6, 8, 10 cm were placed between the source and the glass dosimeter. The transit dose was measured each thickness using the glass dosimeters and compared with a treatment planning system (TPS). Results: When the transit dose was smaller than 10 cGy, the average of the differences between measured values and calculated values by TPS was 0.50 cGy and the standard deviation was 0.69 cGy. If the transit dose was smaller than 100 cGy, the average of the error was 1.67 ± 4.01 cGy. The error to a point near the prescription point was −14.02 cGy per 500.00 cGy of the prescription dose. Conclusion: The distances from the sources to skin of the patient generally are within 10 cm for cervix cancer cases in brachytherapy. The results of this preliminary study showed the probability of the glass dosimeter as the transit dosimeter in brachytherapy.« less

  14. Estimation of identification limit for a small-type OSL dosimeter on the medical images by measurement of X-ray spectra.

    PubMed

    Takegami, Kazuki; Hayashi, Hiroaki; Okino, Hiroki; Kimoto, Natsumi; Maehata, Itsumi; Kanazawa, Yuki; Okazaki, Tohru; Hashizume, Takuya; Kobayashi, Ikuo

    2016-07-01

    Our aim in this study is to derive an identification limit on a dosimeter for not disturbing a medical image when patients wear a small-type optically stimulated luminescence (OSL) dosimeter on their bodies during X-ray diagnostic imaging. For evaluation of the detection limit based on an analysis of X-ray spectra, we propose a new quantitative identification method. We performed experiments for which we used diagnostic X-ray equipment, a soft-tissue-equivalent phantom (1-20 cm), and a CdTe X-ray spectrometer assuming one pixel of the X-ray imaging detector. Then, with the following two experimental settings, corresponding X-ray spectra were measured with 40-120 kVp and 0.5-1000 mAs at a source-to-detector distance of 100 cm: (1) X-rays penetrating a soft-tissue-equivalent phantom with the OSL dosimeter attached directly on the phantom, and (2) X-rays penetrating only the soft-tissue-equivalent phantom. Next, the energy fluence and errors in the fluence were calculated from the spectra. When the energy fluence with errors concerning these two experimental conditions was estimated to be indistinctive, we defined the condition as the OSL dosimeter not being identified on the X-ray image. Based on our analysis, we determined the identification limit of the dosimeter. We then compared our results with those for the general irradiation conditions used in clinics. We found that the OSL dosimeter could not be identified under the irradiation conditions of abdominal and chest radiography, namely, one can apply the OSL dosimeter to measurement of the exposure dose in the irradiation field of X-rays without disturbing medical images.

  15. Study of a non-diffusing radiochromic gel dosimeter for 3D radiation dose imaging

    NASA Astrophysics Data System (ADS)

    Marsden, Craig Michael

    2000-12-01

    This thesis investigates the potential of a new radiation gel dosimeter, based on nitro-blue tetrazolium (NBTZ) suspended in a gelatin mold. Unlike all Fricke based gel dosimeters this dosimeter does not suffer from diffusive loss of image stability. Images are obtained by an optical tomography method. Nitro blue tetrazolium is a common biological indicator that when irradiated in an aqueous medium undergoes reduction to a highly colored formazan, which has an absorbance maximum at 525nm. Tetrazolium is water soluble while the formazan product is insoluble. The formazan product sticks to the gelatin matrix and the dose image is maintained for three months. Methods to maximize the sensitivity of the system were evaluated. It was found that a chemical detergent, Triton X-100, in combination with sodium formate, increased the dosimeter sensitivity significantly. An initial G-value of formazan production for a dosimeter composed of 1mM NBTZ, gelatin, and water was on the order of 0.2. The addition of Triton and formate produced a G-value in excess of 5.0. The effects of NBTZ, triton, formate, and gel concentration were all investigated. All the gels provided linear dose vs. absorbance plots for doses from 0 to >100 Gy. It was determined that gel concentration had minimal if any effect on sensitivity. Sensitivity increased slightly with increasing NBTZ concentration. Triton and formate individually and together provided moderate to large increases in dosimeter sensitivity. The dosimeter described in this work can provide stable 3D radiation dose images for all modalities of radiation therapy equipment. Methods to increase sensitivity are developed and discussed.

  16. Antioxidant effect of green tea on polymer gel dosimeter

    NASA Astrophysics Data System (ADS)

    Samuel, E. J. J.; Sathiyaraj, P.; Deena, T.; Kumar, D. S.

    2015-01-01

    Extract from Green Tea (GTE) acts as an antioxidant in acrylamide based polymer gel dosimeter. In this work, PAGAT gel was used for investigation of antioxidant effect of GTE.PAGAT was called PAGTEG (Polyacrylamide green tea extract gel dosimeter) after adding GTE. Free radicals in water cause pre polymerization of polymer gel before irradiation. Polyphenols from GTE are highly effective to absorb the free radicals in water. THPC is used as an antioxidant in polymer gel dosimeter but here we were replaced it by GTE and investigated its effect by spectrophotometer. GTE added PAGAT samples response was lower compared to THPC added sample. To increase the sensitivity of the PAGTEG, sugar was added. This study confirmed that THPC was a good antioxidant for polymer gel dosimeter. However, GTE also can be used as an antioxidant in polymer gel if use less quantity (GTE) and add sugar as sensitivity enhancer.

  17. Validation of an Innovative Satellite-Based UV Dosimeter

    NASA Astrophysics Data System (ADS)

    Morelli, Marco; Masini, Andrea; Simeone, Emilio; Khazova, Marina

    2016-08-01

    We present an innovative satellite-based UV (ultraviolet) radiation dosimeter with a mobile app interface that has been validated by exploiting both ground-based measurements and an in-vivo assessment of the erythemal effects on some volunteers having a controlled exposure to solar radiation.Both validations showed that the satellite-based UV dosimeter has a good accuracy and reliability needed for health-related applications.The app with this satellite-based UV dosimeter also includes other related functionalities such as the provision of safe sun exposure time updated in real-time and end exposure visual/sound alert. This app will be launched on the global market by siHealth Ltd in May 2016 under the name of "HappySun" and available both for Android and for iOS devices (more info on http://www.happysun.co.uk).Extensive R&D activities are on-going for further improvement of the satellite-based UV dosimeter's accuracy.

  18. PRESAGE® as a solid 3-D radiation dosimeter: A review article

    NASA Astrophysics Data System (ADS)

    Khezerloo, Davood; Nedaie, Hassan Ali; Takavar, Abbas; Zirak, Alireza; Farhood, Bagher; Movahedinejhad, Hadi; Banaee, Nooshin; Ahmadalidokht, Isa; Knuap, Courtney

    2017-12-01

    Radiation oncology has been rapidly improved by the application of new equipment and techniques. With the advent of new complex and precise radiotherapy techniques such as intensity modulated radiotherapy, stereotactic radiosurgery, and volumetric modulated arc therapy, the demand for an accurate and feasible three-dimensional (3-D) dosimetry system has increased. The most important features of a 3-D dosimeter, apart from being precise, accurate and reproducible, include also its low cost, feasibility, and availability. In 2004 a new generation of solid plastic dosimeters which demonstrate a radiochromic response to ionizing radiation was introduced. PRESAGE® plastic dosimeter lacks the limitations of previous Ferric and polymer plastic 3-D dosimeters such as diffusion, sensitivity to oxygen, fabrication problems, scanning and read out challenges. In this decade, a large number of efforts have been carried out to enhance PRESAGE® structure and scanning methods. This article attempts to review and reflect on the results of these investigations.

  19. Citizen's dosimeter

    DOEpatents

    Klemic, Gladys [Naperville, IL; Bailey, Paul [Chicago, IL; Breheny, Cecilia [Yonkers, NY

    2008-09-02

    The present invention relates to a citizen's dosimeter. More specifically, the invention relates to a small, portable, personal dosimetry device designed to be used in the wake of a event involving a Radiological Dispersal Device (RDD), Improvised Nuclear Device (IND), or other event resulting in the contamination of large area with radioactive material or where on site personal dosimetry is required. The card sized dosimeter generally comprises: a lower card layer, the lower card body having an inner and outer side; a upper card layer, the layer card having an inner and outer side; an optically stimulated luminescent material (OSLM), wherein the OSLM is sandwiched between the inner side of the lower card layer and the inner side of the upper card layer during dosimeter radiation recording, a shutter means for exposing at least one side of the OSLM for dosimeter readout; and an energy compensation filter attached to the outer sides of the lower and upper card layers.

  20. Determination of the depth dose distribution of proton beam using PRESAGE TM dosimeter

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Das, I. J.; Zhao, Q.; Thomas, A.; Adamovics, J.; Oldman, M.

    2010-11-01

    PRESAGETM dosimeter dosimeter has been proved useful for 3D dosimetry in conventional photon therapy and IMRT [1-5]. Our objective is to examine the use of PRESAGETM dosimeter for verification of depth dose distribution in proton beam therapy. Three PRESAGETM samples were irradiated with a 79 MeV un-modulated proton beam. Percent depth dose profile measured from the PRESAGETM dosimeter is compared with data obtained in a water phantom using a parallel plate Advanced Markus chamber. The Bragg-peak position determined from the PRESAGETM is within 2 mm compared to measurements in water. PRESAGETM shows a highly linear response to proton dose. However, PRESAGETM also reveals an underdosage around the Bragg peak position due to LET effects. Depth scaling factor and quenching correction factor need further investigation. Our initial result shows that PRESAGETM has promising dosimetric characteristics that could be suitable for proton beam dosimetry.

  1. A design solution to increasing the sensitivity of pMOS dosimeters: The stacked RADFET approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelleher, A.; Lane, W.; Adams, L.

    1995-02-01

    pMOS Radiation Sensitive Field Effect Transistors (RADFET`S) have applications as integrating dosimeters in laboratories and medicine to measure the amount of radiation dose absorbed. The suitability of these dosimeters to a certain application depends on the sensitivity of the RADFET being used. To date, this sensitivity is limited to the sensitivity of the gate oxide to radiation. The aim of this paper is to introduce a new design approach which will allow greater sensitivities to be achieved than is currently possible. An additional attractive feature of this design approach is that the sensitivity of the dosimeter may be changed dependingmore » on the total dose which is to be measured; essentially a dosimeter with auto-scaling may be achieved. This study introduces this autoscaling concept along with presenting the optimum RADFET device requirements which are necessary for this new design approach.« less

  2. Optical computed tomography in PRESAGE® three-dimensional dosimetry: Challenges and prospective.

    PubMed

    Khezerloo, Davood; Nedaie, Hassan Ali; Farhood, Bagher; Zirak, Alireza; Takavar, Abbas; Banaee, Nooshin; Ahmadalidokht, Isa; Kron, Tomas

    2017-01-01

    With the advent of new complex but precise radiotherapy techniques, the demands for an accurate, feasible three-dimensional (3D) dosimetry system have been increased. A 3D dosimeter system generally should not only have accurate and precise results but should also feasible, inexpensive, and time consuming. Recently, one of the new candidates for 3D dosimetry is optical computed tomography (CT) with a radiochromic dosimeter such as PRESAGE®. Several generations of optical CT have been developed since the 90s. At the same time, a large attempt has been also done to introduce the robust dosimeters that compatible with optical CT scanners. In 2004, PRESAGE® dosimeter as a new radiochromic solid plastic dosimeters was introduced. In this decade, a large number of efforts have been carried out to enhance optical scanning methods. This article attempts to review and reflect on the results of these investigations.

  3. Dosimetry of Al2O3 optically stimulated luminescent dosimeter at high energy photons and electrons

    NASA Astrophysics Data System (ADS)

    Yusof, M. F. Mohd; Joohari, N. A.; Abdullah, R.; Shukor, N. S. Abd; Kadir, A. B. Abd; Isa, N. Mohd

    2018-01-01

    The linearity of Al2O3 OSL dosimeters (OSLD) were evaluated for dosimetry works in clinical photons and electrons. The measurements were made at a reference depth of Zref according to IAEA TRS 398:2000 codes of practice at 6 and 10 MV photons and 6 and 9 MeV electrons. The measured dose was compared to the thermoluminescence dosimeters (TLD) and ionization chamber commonly used for dosimetry works for higher energy photons and electrons. The results showed that the measured dose in OSL dosimeters were in good agreement with the reported by the ionization chamber in both high energy photons and electrons. A reproducibility test also reported excellent consistency of readings with the OSL at similar energy levels. The overall results confirmed the suitability of OSL dosimeters for dosimetry works involving high energy photons and electrons in radiotherapy.

  4. Polymer gel dosimeter based on itaconic acid.

    PubMed

    Mattea, Facundo; Chacón, David; Vedelago, José; Valente, Mauro; Strumia, Miriam C

    2015-11-01

    A new polymeric dosimeter based on itaconic acid and N, N'-methylenebisacrylamide was studied. The preparation method, compositions of monomer and crosslinking agent and the presence of oxygen in the dosimetric system were analyzed. The resulting materials were irradiated with an X-ray tube at 158cGy/min, 226cGymin and 298cGy/min with doses up to 1000Gy. The dosimeters presented a linear response in the dose range 75-1000Gy, sensitivities of 0.037 1/Gyat 298cGy/min and an increase in the sensitivity with lower dose rates. One of the most relevant outcomes in this study was obtaining different monomer to crosslinker inclusion in the formed gel for the dosimeters where oxygen was purged during the preparation method. This effect has not been reported in other typical dosimeters and could be attributed to the large differences in the reactivity among these species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Compton effect thermally activated depolarization dosimeter

    DOEpatents

    Moran, Paul R.

    1978-01-01

    A dosimetry technique for high-energy gamma radiation or X-radiation employs the Compton effect in conjunction with radiation-induced thermally activated depolarization phenomena. A dielectric material is disposed between two electrodes which are electrically short circuited to produce a dosimeter which is then exposed to the gamma or X radiation. The gamma or X-radiation impinging on the dosimeter interacts with the dielectric material directly or with the metal composing the electrode to produce Compton electrons which are emitted preferentially in the direction in which the radiation was traveling. A portion of these electrons becomes trapped in the dielectric material, consequently inducing a stable electrical polarization in the dielectric material. Subsequent heating of the exposed dosimeter to the point of onset of ionic conductivity with the electrodes still shorted through an ammeter causes the dielectric material to depolarize, and the depolarization signal so emitted can be measured and is proportional to the dose of radiation received by the dosimeter.

  6. Combating WMD Journal. Issue 2

    DTIC Science & Technology

    2008-03-01

    can be conducted utilizing passive detectors such as thermoluminescent dosime- ters (TLDs) or optically stimulated luminescent ( OSL ) dosimeters ...reasonable estimate of the dose. The challenge in high-energy bremsstrahlung fields is that current (standard) dosimeters do not provide for CPE...above a few MeV. CPE can be obtained by placing tissue- equivalent material (such as a build- up cap) around the dosimeter . This Dosimetry Needs

  7. Study of EPR/ESR Dosimetry in Fingernails as a Method for Assessing Dose of Victims of Radiological Accidents/Incidents

    DTIC Science & Technology

    2008-06-17

    dosimeters . .............................................................................................. 117 Figure 4-2. Flow chart illustrating...alanine, various sugars, quartz in rocks and sulfates, as EPR dosimeters [15]. Alternatively, radiation-induced EPR signals have been detected using...the medical response to radiological accidents, as a method for estimating radiation dose without the use of physical dosimeters and using exposed

  8. Adaptation of a Pocket PC for Use as a Wearable Voice Dosimeter

    ERIC Educational Resources Information Center

    Popolo, Peter S.; Svec, Jan G.; Titze, Ingo R.

    2005-01-01

    This article deals with the adaptation of a commercially available Pocket PC for use as a voice dosimeter, a wearable device that measures the vocal dose of teachers or other individuals on the job, at home, and elsewhere during the course of an entire day. An engineering approach for designing a voice dosimeter is described, and design data are…

  9. Comparative analysis of radioecological monitoring dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobolev, A.I.; Pol`skii, O.G.; Shanin, O.B.

    1995-03-01

    This paper describes comparative estimates of radiation doses measured by two types of thermoluminescence dosimeters and two types of background radiation radiometers. The dosimetry systems were tested by simultaneously recording background radiation and standard radiation sources at a radioactive waste storage facility. Statistical analysis of the measurement results is summarized. The maximum recorded exposure dose rate for the experiment was 19 microrads per hour. The DTK-2 dosimeter overestimated dose rates by 6 to 43% and the DTU-2 dosimeter underestimated dose rates by 7 to 21%. Both devices are recommended for radioecological monitoring in populated areas. 4 refs., 3 figs., 5more » tabs.« less

  10. Fiber-type dosimeter with improved illuminator

    DOEpatents

    Fox, Richard J.

    1987-01-01

    A single-piece, molded plastic, Cassigrainian-type condenser arrangement is incorporated in a tubular-shaped personal pocket dosimeter of the type which combines an ionization chamber with an optically-read fiber electrometer to provide improved illumination of the electrometer fiber. The condenser routes incoming light from one end of the dosimeter tubular housing around a central axis charging pin assembly and focuses the light at low angles to the axis so that it falls within the acceptance angle of the electrometer fiber objective lens viewed through an eyepiece lens disposed in the opposite end of the dosimeter. This results in improved fiber illumination and fiber image contrast.

  11. Dose estimation of eye lens for interventional procedures in diagnosis

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Rong; Huang, Chia-Yu; Hsu, Ching-Han; Hsu, Fang-Yuh

    2017-11-01

    The International Commission on Radiological Protection (ICRP) recommended that the equivalent dose limit for the lens of the eye be decreased from 150 mSv/y (ICRP, 2007) to 20 mSv/y averaged over five years (ICRP, 2011). How to accurately measure the eye-lens dose has, therefore, been an issue of interest recently. Interventional radiologists are at a higher risk of radiation-induced eye injury, such as cataracts, than all other occupational radiation workers. The main objective of this study is to investigate the relationship between the doses to the eye lenses of interventional radiologists measured by different commercial eye-lens dosimeters. This study measured a reference eye-lens dose, which involved placing thermoluminescent dosimeter (TLD) chips at the surface of the eye of the Rando Phantom, and the TLD chips were covered by a 3-mm-thick tissue-equivalent bolus. Commercial eye-lens dosimeters, such as a headband dosimeter and standard personnel dose badges, were placed at the positions recommended by the manufacturers. The results show that the personnel dose badge is not an appropriate dosimeter for evaluating eye-lens dose. Dose deviations for different dosimeters are discussed and presented in this study.

  12. Optically stimulated Al2O3:C luminescence dosimeters for teletherapy: Hp(10) performance evaluation.

    PubMed

    Hashim, S; Musa, Y; Ghoshal, S K; Ahmad, N E; Hashim, I H; Yusop, M; Bradley, D A; Kadir, A B A

    2018-05-01

    The performance of optically stimulated luminescence dosimeters (OSLDs, Al 2 O 3 :C) was evaluated in terms of the operational quantity of H P (10) in Co-60 external beam teletherapy unit. The reproducibility, signal depletion, and dose linearity of each dosimeter was investigated. For ten repeated readouts, each dosimeter exposed to 50mSv was found to be reproducible below 1.9 ± 3% from the mean value, indicating good reader stability. Meanwhile, an average signal reduction of 0.5% per readout was found. The dose response revealed a good linearity within the dose range of 5-50mSv having nearly perfect regression line with R 2 equals 0.9992. The accuracy of the measured doses were evaluated in terms of operational quantity H P (10), wherein the trumpet curve method was used respecting the 1990 International Commission on Radiological Protection (ICRP) standard. The accuracy of the overall measurements from all dosimeters was discerned to be within the trumpet curve and devoid of outlier. It is established that the achieved OSL Al 2 O 3 :C dosimeters are greatly reliable for equivalent dose assessment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Cerium nanoparticle effect on sensitivity of Fricke gel dosimeter: Initial investigation

    NASA Astrophysics Data System (ADS)

    Ebenezer Suman Babu, S.; Peace Balasingh, S. Timothy; Benedicta Pearlin, R.; Rabi Raja Singh, I.; Ravindran, B. Paul

    2017-05-01

    Fricke gel dosimeters (FXGs) have been the preferred dosimeters because of its ease in preparation and water and tissue equivalency. Visible changes happen three dimensionally in the dosimeter as the ferrous (Fe2+) ions change into ferric (Fe3+) ions upon irradiation and the measure of this change can be correlated to the dose absorbed. Nanoparticles are promising entities that can improve the sensitivity of the gel dosimeter. Cerium Oxide nanoparticle was investigated for possible enhancement of absorbed dose in the FXG. Various concentrations of the nanoparticle based gel dosimeters were prepared and irradiated for a clinical dose range of 0-3 Gy in a telegamma unit. The optimal concentration of 0.1 mM nanoparticle incorporated in the FXG enhances the radiation sensitivity of the unmodified FXG taken as reference without modifying the background absorbance prior to irradiation. The gel recipe consisted of 5% (wt) gelatin, 50 mM Sulphuric acid, 0.05 mM Xylenol Orange, 0.5 mM Ferrous Ammonium Sulphate and 0.1 mM Cerium (IV) Oxide nanoparticle (< 25 nm particle size) and triple distilled water. The FXGs with nanoparticle showed linear dose response in the dose range tested.

  14. FlexyDos3D: a deformable anthropomorphic 3D radiation dosimeter: radiation properties

    NASA Astrophysics Data System (ADS)

    De Deene, Y.; Skyt, P. S.; Hil, R.; Booth, J. T.

    2015-02-01

    Three dimensional radiation dosimetry has received growing interest with the implementation of highly conformal radiotherapy treatments. The radiotherapy community faces new challenges with the commissioning of image guided and image gated radiotherapy treatments (IGRT) and deformable image registration software. A new three dimensional anthropomorphically shaped flexible dosimeter, further called ‘FlexyDos3D’, has been constructed and a new fast optical scanning method has been implemented that enables scanning of irregular shaped dosimeters. The FlexyDos3D phantom can be actuated and deformed during the actual treatment. FlexyDos3D offers the additional advantage that it is easy to fabricate, is non-toxic and can be molded in an arbitrary shape with high geometrical precision. The dosimeter formulation has been optimized in terms of dose sensitivity. The influence of the casting material and oxygen concentration has also been investigated. The radiophysical properties of this new dosimeter are discussed including stability, spatial integrity, temperature dependence of the dosimeter during radiation, readout and storage, dose rate dependence and tissue equivalence. The first authors Y De Deene and P S Skyt made an equivalent contribution to the experimental work presented in this paper.

  15. TH-C-19A-05: Evaluation of a New Reusable 3D Dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juang, T; Adamovics, J; Oldham, M

    Purpose: PRESAGE is a radiochromic plastic which has demonstrated strong potential for high resolution single-use 3D dosimetry. This study evaluates a new PRESAGE formulation (Presage-RU) in which the radiochromic response is reversible (the dosimeter optically clears after irradiation), enabling the potential for reusability. Methods: Presage-RU dose response and optical-clearing rates were evaluated in both small volume dosimeters (1×1×4.5cm) and a larger cylindrical dosimeter (8cm diameter, 4.5cm length). All dosimeters were allowed to fully optically clear in dark, room temperature conditions between irradiations. Dose response was determined by irradiating small volume samples from 0–8.0Gy and measuring change in optical density. Themore » cylindrical dosimeter was irradiated with a simple 4-field box plan (parallel opposed pairs of 4cm×4cm AP-PA beams and 2cm×4cm lateral beams) to 20Gy. High resolution 3D dosimetry was achieved utilizing optical-CT readout. Readings were tracked up to 14 days to characterize optical clearing. Results: Initial irradiation yielded a response of 0.0119△OD/(Gy*cm) while two subsequent reirradiations yielded a lower but consistent response of 0.0087△OD/(Gy*cm). Strong linearity of dose response was observed for all irradiations. In the large cylindrical dosimeter, the integral dose within the high dose region exhibited an exponential decay in signal over time (halflife= 23.9 hours), with the dosimeter effectively cleared (0.04% of the initial signal) after 10 days. Subsequent irradiation resulted in 19.5% lower initial signal but demonstrated that the exponential clearing rate remained consistent. Results of additional subsequent irradiations will also be presented. Conclusion: This work introduces a new re-usable radiochromic dosimeter (Presage-RU) compatible with high resolution (sub-millimeter) 3D dosimetry. Sensitivity of the initial radiation was observed to be slightly higher than subsequent irradiations, but the clearing time remained constant, indicating the dosimeter can be re-used after 10 days. Presage-RU has potential to dramatically improve cost-effectiveness and thereby lower the barrier for implementing comprehensive, high resolution 3D dosimetry. John Adamovics is the president of Heuris Inc., which commercializes PRESAGE.« less

  16. Surface-enhanced Raman scattering (SERS) dosimeter and probe

    DOEpatents

    Vo-Dinh, Tuan

    1995-01-01

    A dosimeter and probe for measuring exposure to chemical and biological compounds is disclosed. The dosimeter or probe includes a collector which may be analyzed by surface-enhanced Raman spectroscopy. The collector comprises a surface-enhanced Raman scattering-active material having a coating applied thereto to improve the adsorption properties of the collector. The collector may also be used in automated sequential devises, in probe array devices.

  17. Proceedings: TRIAGE of Irradiated Personnel, 25-27 September 1996

    DTIC Science & Technology

    1998-03-01

    thermoluminescent dosimeter project group (PG-29) has recommended grani- (TLD) systems accredited by the National Volun- setron as the deployable...individual phylactic antiemetic medications and regimens dosimeter system currently fielded is the high-range were evaluated prior to adoption of...granisetron. photoluminescent AN/PDR-75. This system con- sists of the ruggedized DT-236 wristband dosimeter Two drugs exceeded the criteria (shown below

  18. Characterization of MOSFET dosimeters for low‐dose measurements in maxillofacial anthropomorphic phantoms

    PubMed Central

    Wolff, Jan E.; Kiljunen, Timo; Schulze, Dirk; Kortesniemi, Mika

    2015-01-01

    The aims of this study were to characterize reinforced metal‐oxide‐semiconductor field‐effect transistor (MOSFET) dosimeters to assess the measurement uncertainty, single exposure low‐dose limit with acceptable accuracy, and the number of exposures required to attain the corresponding limit of the thermoluminescent dosimeters (TLD). The second aim was to characterize MOSFET dosimeter sensitivities for two dental photon energy ranges, dose dependency, dose rate dependency, and accumulated dose dependency. A further aim was to compare the performance of MOSFETs with those of TLDs in an anthropomorphic phantom head using a dentomaxillofacial CBCT device. The uncertainty was assessed by exposing 20 MOSFETs and a Barracuda MPD reference dosimeter. The MOSFET dosimeter sensitivities were evaluated for two photon energy ranges (50–90 kVp) using a constant dose and polymethylmethacrylate backscatter material. MOSFET and TLD comparative point‐dose measurements were performed on an anthropomorphic phantom that was exposed with a clinical CBCT protocol. The MOSFET single exposure low dose limit (25% uncertainty, k=2) was 1.69 mGy. An averaging of eight MOSFET exposures was required to attain the corresponding TLD (0.3 mGy) low‐dose limit. The sensitivity was 3.09±0.13 mV/mGy independently of the photon energy used. The MOSFET dosimeters did not present dose or dose rate sensitivity but, however, presented a 1% decrease of sensitivity per 1000 mV for accumulated threshold voltages between 8300 mV and 17500 mV. The point doses in an anthropomorphic phantom ranged for MOSFETs between 0.24 mGy and 2.29 mGy and for TLDs between 0.25 and 2.09 mGy, respectively. The mean difference was −8%. The MOSFET dosimeters presented statistically insignificant energy dependency. By averaging multiple exposures, the MOSFET dosimeters can achieve a TLD‐comparable low‐dose limit and constitute a feasible method for diagnostic dosimetry using anthropomorphic phantoms. However, for single in vivo measurements (<1.7 mGy) the sensitivity is too low. PACS number: 87.50.wj PMID:26219008

  19. Environmental dosimeter of the thermoluminescent type

    DOEpatents

    Eichner, F.N.; Kocher, L.F.

    1974-01-29

    A dosimeter for accurately monitoring normally low-energy radiation including a thermoluminescent CaF phosphor enclosed within a tantalum capsule is described. The tantalum acts as a filter to weaken the measured dose due to photons having energies below about 0.2 MeV. Tantalum end caps are maintained on the capsule body by a polyolefin sheath formed from heat-contractable tubing. After exposing the dosimeter to environmental radiation, it is placed in a shielded chamber for about 24 h and subsequently annealed at about 80 deg C to release radiation energy accumulated in low-temperature traps. The dosimeter is then disassembled and the phosphors photometrically read at temperatures about 50 deg C to determine the absorbed radiation dose. (Official Gazette)

  20. Dose control in electron beam processing: Comparison of results from a graphite charge collector, routine dosimeters and the ISS alanine-based dosimeter

    NASA Astrophysics Data System (ADS)

    Fuochi, P. G.; Onori, S.; Casali, F.; Chirco, P.

    1993-10-01

    A 12 MeV linear accelerator is currently used for electron beam processing of power semiconductor devices for lifetime control and, on an experimental basis, for food irradiation, sludge treatment etc. In order to control the irradiation process a simple, quick and reliable method for a direct evaluation of dose and fluence in a broad electron beam has been developed. This paper presents the results obtained using a "charge collector" which measures the charge absorbed in a graphite target exposed in air. Calibration of the system with super-Fricke dosimeter and comparison of absorbed dose results obtained with plastic dosimeters and alanine pellets are discussed.

  1. Investigating the accuracy of microstereotactic-body-radiotherapy utilizing anatomically accurate 3D printed rodent-morphic dosimeters.

    PubMed

    Bache, Steven T; Juang, Titania; Belley, Matthew D; Koontz, Bridget F; Adamovics, John; Yoshizumi, Terry T; Kirsch, David G; Oldham, Mark

    2015-02-01

    Sophisticated small animal irradiators, incorporating cone-beam-CT image-guidance, have recently been developed which enable exploration of the efficacy of advanced radiation treatments in the preclinical setting. Microstereotactic-body-radiation-therapy (microSBRT) is one technique of interest, utilizing field sizes in the range of 1-15 mm. Verification of the accuracy of microSBRT treatment delivery is challenging due to the lack of available methods to comprehensively measure dose distributions in representative phantoms with sufficiently high spatial resolution and in 3 dimensions (3D). This work introduces a potential solution in the form of anatomically accurate rodent-morphic 3D dosimeters compatible with ultrahigh resolution (0.3 mm(3)) optical computed tomography (optical-CT) dose read-out. Rodent-morphic dosimeters were produced by 3D-printing molds of rodent anatomy directly from contours defined on x-ray CT data sets of rats and mice, and using these molds to create tissue-equivalent radiochromic 3D dosimeters from Presage. Anatomically accurate spines were incorporated into some dosimeters, by first 3D printing the spine mold, then forming a high-Z bone equivalent spine insert. This spine insert was then set inside the tissue equivalent body mold. The high-Z spinal insert enabled representative cone-beam CT IGRT targeting. On irradiation, a linear radiochromic change in optical-density occurs in the dosimeter, which is proportional to absorbed dose, and was read out using optical-CT in high-resolution (0.5 mm isotropic voxels). Optical-CT data were converted to absolute dose in two ways: (i) using a calibration curve derived from other Presage dosimeters from the same batch, and (ii) by independent measurement of calibrated dose at a point using a novel detector comprised of a yttrium oxide based nanocrystalline scintillator, with a submillimeter active length. A microSBRT spinal treatment was delivered consisting of a 180° continuous arc at 225 kVp with a 20 × 10 mm field size. Dose response was evaluated using both the Presage/optical-CT 3D dosimetry system described above, and independent verification in select planes using EBT2 radiochromic film placed inside rodent-morphic dosimeters that had been sectioned in half. Rodent-morphic 3D dosimeters were successfully produced from Presage radiochromic material by utilizing 3D printed molds of rat CT contours. The dosimeters were found to be compatible with optical-CT dose readout in high-resolution 3D (0.5 mm isotropic voxels) with minimal artifacts or noise. Cone-beam CT image guidance was possible with these dosimeters due to sufficient contrast between high-Z spinal inserts and tissue equivalent Presage material (CNR ∼10 on CBCT images). Dose at isocenter measured with optical-CT was found to agree with nanoscintillator measurement to within 2.8%. Maximum dose in line profiles taken through Presage and film dose slices agreed within 3%, with FWHM measurements through each profile found to agree within 2%. This work demonstrates the feasibility of using 3D printing technology to make anatomically accurate Presage rodent-morphic dosimeters incorporating spinal-mimicking inserts. High quality optical-CT 3D dosimetry is feasible on these dosimeters, despite the irregular surfaces and implanted inserts. The ability to measure dose distributions in anatomically accurate phantoms represents a powerful useful additional verification tool for preclinical microSBRT.

  2. Investigating the accuracy of microstereotactic-body-radiotherapy utilizing anatomically accurate 3D printed rodent-morphic dosimeters

    PubMed Central

    Bache, Steven T.; Juang, Titania; Belley, Matthew D.; Koontz, Bridget F.; Adamovics, John; Yoshizumi, Terry T.; Kirsch, David G.; Oldham, Mark

    2015-01-01

    Purpose: Sophisticated small animal irradiators, incorporating cone-beam-CT image-guidance, have recently been developed which enable exploration of the efficacy of advanced radiation treatments in the preclinical setting. Microstereotactic-body-radiation-therapy (microSBRT) is one technique of interest, utilizing field sizes in the range of 1–15 mm. Verification of the accuracy of microSBRT treatment delivery is challenging due to the lack of available methods to comprehensively measure dose distributions in representative phantoms with sufficiently high spatial resolution and in 3 dimensions (3D). This work introduces a potential solution in the form of anatomically accurate rodent-morphic 3D dosimeters compatible with ultrahigh resolution (0.3 mm3) optical computed tomography (optical-CT) dose read-out. Methods: Rodent-morphic dosimeters were produced by 3D-printing molds of rodent anatomy directly from contours defined on x-ray CT data sets of rats and mice, and using these molds to create tissue-equivalent radiochromic 3D dosimeters from Presage. Anatomically accurate spines were incorporated into some dosimeters, by first 3D printing the spine mold, then forming a high-Z bone equivalent spine insert. This spine insert was then set inside the tissue equivalent body mold. The high-Z spinal insert enabled representative cone-beam CT IGRT targeting. On irradiation, a linear radiochromic change in optical-density occurs in the dosimeter, which is proportional to absorbed dose, and was read out using optical-CT in high-resolution (0.5 mm isotropic voxels). Optical-CT data were converted to absolute dose in two ways: (i) using a calibration curve derived from other Presage dosimeters from the same batch, and (ii) by independent measurement of calibrated dose at a point using a novel detector comprised of a yttrium oxide based nanocrystalline scintillator, with a submillimeter active length. A microSBRT spinal treatment was delivered consisting of a 180° continuous arc at 225 kVp with a 20 × 10 mm field size. Dose response was evaluated using both the Presage/optical-CT 3D dosimetry system described above, and independent verification in select planes using EBT2 radiochromic film placed inside rodent-morphic dosimeters that had been sectioned in half. Results: Rodent-morphic 3D dosimeters were successfully produced from Presage radiochromic material by utilizing 3D printed molds of rat CT contours. The dosimeters were found to be compatible with optical-CT dose readout in high-resolution 3D (0.5 mm isotropic voxels) with minimal artifacts or noise. Cone-beam CT image guidance was possible with these dosimeters due to sufficient contrast between high-Z spinal inserts and tissue equivalent Presage material (CNR ∼10 on CBCT images). Dose at isocenter measured with optical-CT was found to agree with nanoscintillator measurement to within 2.8%. Maximum dose in line profiles taken through Presage and film dose slices agreed within 3%, with FWHM measurements through each profile found to agree within 2%. Conclusions: This work demonstrates the feasibility of using 3D printing technology to make anatomically accurate Presage rodent-morphic dosimeters incorporating spinal-mimicking inserts. High quality optical-CT 3D dosimetry is feasible on these dosimeters, despite the irregular surfaces and implanted inserts. The ability to measure dose distributions in anatomically accurate phantoms represents a powerful useful additional verification tool for preclinical microSBRT. PMID:25652497

  3. Investigating the accuracy of microstereotactic-body-radiotherapy utilizing anatomically accurate 3D printed rodent-morphic dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bache, Steven T.; Juang, Titania; Belley, Matthew D.

    Purpose: Sophisticated small animal irradiators, incorporating cone-beam-CT image-guidance, have recently been developed which enable exploration of the efficacy of advanced radiation treatments in the preclinical setting. Microstereotactic-body-radiation-therapy (microSBRT) is one technique of interest, utilizing field sizes in the range of 1–15 mm. Verification of the accuracy of microSBRT treatment delivery is challenging due to the lack of available methods to comprehensively measure dose distributions in representative phantoms with sufficiently high spatial resolution and in 3 dimensions (3D). This work introduces a potential solution in the form of anatomically accurate rodent-morphic 3D dosimeters compatible with ultrahigh resolution (0.3 mm{sup 3}) opticalmore » computed tomography (optical-CT) dose read-out. Methods: Rodent-morphic dosimeters were produced by 3D-printing molds of rodent anatomy directly from contours defined on x-ray CT data sets of rats and mice, and using these molds to create tissue-equivalent radiochromic 3D dosimeters from Presage. Anatomically accurate spines were incorporated into some dosimeters, by first 3D printing the spine mold, then forming a high-Z bone equivalent spine insert. This spine insert was then set inside the tissue equivalent body mold. The high-Z spinal insert enabled representative cone-beam CT IGRT targeting. On irradiation, a linear radiochromic change in optical-density occurs in the dosimeter, which is proportional to absorbed dose, and was read out using optical-CT in high-resolution (0.5 mm isotropic voxels). Optical-CT data were converted to absolute dose in two ways: (i) using a calibration curve derived from other Presage dosimeters from the same batch, and (ii) by independent measurement of calibrated dose at a point using a novel detector comprised of a yttrium oxide based nanocrystalline scintillator, with a submillimeter active length. A microSBRT spinal treatment was delivered consisting of a 180° continuous arc at 225 kVp with a 20 × 10 mm field size. Dose response was evaluated using both the Presage/optical-CT 3D dosimetry system described above, and independent verification in select planes using EBT2 radiochromic film placed inside rodent-morphic dosimeters that had been sectioned in half. Results: Rodent-morphic 3D dosimeters were successfully produced from Presage radiochromic material by utilizing 3D printed molds of rat CT contours. The dosimeters were found to be compatible with optical-CT dose readout in high-resolution 3D (0.5 mm isotropic voxels) with minimal artifacts or noise. Cone-beam CT image guidance was possible with these dosimeters due to sufficient contrast between high-Z spinal inserts and tissue equivalent Presage material (CNR ∼10 on CBCT images). Dose at isocenter measured with optical-CT was found to agree with nanoscintillator measurement to within 2.8%. Maximum dose in line profiles taken through Presage and film dose slices agreed within 3%, with FWHM measurements through each profile found to agree within 2%. Conclusions: This work demonstrates the feasibility of using 3D printing technology to make anatomically accurate Presage rodent-morphic dosimeters incorporating spinal-mimicking inserts. High quality optical-CT 3D dosimetry is feasible on these dosimeters, despite the irregular surfaces and implanted inserts. The ability to measure dose distributions in anatomically accurate phantoms represents a powerful useful additional verification tool for preclinical microSBRT.« less

  4. Feasibility of reading LiF thermoluminescent dosimeters by electron spin resonance

    NASA Astrophysics Data System (ADS)

    Breen, S. L.; Battista, J. J.

    1999-08-01

    Lithium fluoride is a commonly used solid state dosimeter. During irradiation, electrons and holes become trapped in crystal imperfections; thermoluminescence dosimetry measures their thermally induced recombination. Electron paramagnetic resonance (EPR) spectroscopy can be used to measure the resonant absorption of microwaves by the unpaired electrons trapped in LiF. In an effort to extend the use of LiF dosimeters to smaller sizes and to the harsh environments encountered in internal dosimetry, EPR was evaluated as an alternative technique to read the radiation dose delivered to TLD-100 dosimeters. TLD-100 rods were irradiated with a 60Co source to doses of 10 Gy to 100 Gy. A radiation-induced signal (with a g-value of 2.002) could be detected only at liquid nitrogen temperatures at doses above 20 Gy. The EPR spectrum of irradiated LiF contains three components, one of which correlates positively with dose. However, the low sensitivity of the technique, and difficulty in interpreting the EPR spectrum from polycrystalline dosimeters, preclude its use as a dosimetry technique.

  5. Observations on personnel dosimetry for radiotherapy personnel operating high-energy LINACs.

    PubMed

    Glasgow, G P; Eichling, J; Yoder, R C

    1986-06-01

    A series of measurements were conducted to determine the cause of a sudden increase in personnel radiation exposures. One objective of the measurements was to determine if the increases were related to changing from film dosimeters exchanged monthly to TLD-100 dosimeters exchanged quarterly. While small increases were observed in the dose equivalents of most employees, the dose equivalents of personnel operating medical electron linear accelerators with energies greater than 20 MV doubled coincidentally with the change in the personnel dosimeter program. The measurements indicated a small thermal neutron radiation component around the accelerators operated by these personnel. This component caused the doses measured with the TLD-100 dosimeters to be overstated. Therefore, the increase in these personnel dose equivalents was not due to changes in work habits or radiation environments. Either film or TLD-700 dosimeters would be suitable for personnel monitoring around high-energy linear accelerators. The final choice would depend on economics and personal preference.

  6. Feasibility of reading LiF thermoluminescent dosimeters by electron spin resonance.

    PubMed

    Breen, S L; Battista, J J

    1999-08-01

    Lithium fluoride is a commonly used solid state dosimeter. During irradiation, electrons and holes become trapped in crystal imperfections; thermoluminescence dosimetry measures their thermally induced recombination. Electron paramagnetic resonance (EPR) spectroscopy can be used to measure the resonant absorption of microwaves by the unpaired electrons trapped in LiF. In an effort to extend the use of LiF dosimeters to smaller sizes and to the harsh environments encountered in internal dosimetry, EPR was evaluated as an alternative technique to read the radiation dose delivered to TLD-100 dosimeters. TLD-100 rods were irradiated with a 60Co source to doses of 10 Gy to 100 Gy. A radiation-induced signal (with a g-value of 2.002) could be detected only at liquid nitrogen temperatures at doses above 20 Gy. The EPR spectrum of irradiated LiF contains three components, one of which correlates positively with dose. However, the low sensitivity of the technique, and difficulty in interpreting the EPR spectrum from polycrystalline dosimeters, preclude its use as a dosimetry technique.

  7. Improvements in opti-chromic dosimeters for radiation processing

    NASA Astrophysics Data System (ADS)

    Humpherys, K. C.; Kantz, A. D.

    "Opti-Chromic" dosimeters consisting of radiachromic dye in flourinated polymer tubing have been introduced as a dosimetry system in the range from 10 1 to 5 × 10 4 Gy. Batches of "Opti-Chromic" dosimeters have been produced to evaluate performance under large scale industrial conditions. A systematic study was undertaken to determine the effect of various dosimeter parameters on radiation sensitivity, shelf life, and response characteristics at the higher absorbed doses. These parameters were (A) Type of flourinated polymer tubing; (B) Organic solvent used to activate the radiachromic dye; (C) Concentration of radiachromic dye; (D) Additives to provide proper viscosity, color stability, and high-dose response. Prototype batches were produced and experimental dosimeters exposed to a range of absorbed doses and the response measured as a function of shelf life and dose. The results of the study are presented, and an improved formulation recommended for application to Food Processing. Other formulations may be of value in specific requirements of sensitivity or temperature.

  8. Portable battery-free charger for radiation dosimeters

    DOEpatents

    Manning, Frank W.

    1984-01-01

    This invention is a novel portable charger for dosimeters of the electrometer type. The charger does not require batteries or piezoelectric crystals and is of rugged construction. In a preferred embodiment, the charge includes a housing which carries means for mounting a dosimeter to be charged. The housing also includes contact means for impressing a charging voltage across the mounted dosimeter. Also, the housing carries a trigger for operating a charging system mounted in the housing. The charging system includes a magnetic loop including a permanent magnet for establishing a magnetic field through the loop. A segment of the loop is coupled to the trigger for movement thereby to positions opening and closing the loop. A coil inductively coupled with the loop generates coil-generated voltage pulses when the trigger is operated to open and close the loop. The charging system includes an electrical circuit for impressing voltage pulses from the coil across a capacitor for integrating the pulses and applying the resulting integrated voltage across the above-mentioned contact means for charging the dosimeter.

  9. Thin thermoluminescent dosimeter and method of making same

    DOEpatents

    Simons, Gale G.; DeBey, Timothy M.

    1987-01-01

    An improved thermoluminescent ionizing radiation dosimeter of solid, extremely thin construction for more accurate low energy beta dosimetry is provided, along with a method of fabricating the dosimeter. In preferred forms, the dosimeter is a composite including a backing support (which may be tissue equivalent) and a self-sustaining body of solid thermoluminescent material such as LiF having a thickness of less than about 0.25 millimeters and a volume of at least about 0.0125 mm.sup.3. In preferred fabrication procedures, an initially thick (e.g., 0.89 millimeters) TLD body is wet sanded using 600 grit or less sandpaper to a thickness of less than about 0.25 millimeters, followed by adhesively attaching the sanded body to an appropriate backing. The sanding procedure permits routine production of extremely thin (about 0.05 millimeters) TLD bodies, and moreover serves to significantly reduce non-radiation-induced thermoluminescence. The composite dosimeters are rugged in use and can be subjected to annealing temperatures for increased accuracy.

  10. Digital Mammography Breast Dosimetry Using Copper-Doped Lithium Fluoride (LiF:MCP) Thermoluminescent Dosimeters (TLDs)

    DTIC Science & Technology

    2003-06-18

    Mammography Breast Dosimetry Using Copper-Doped Lithium Fluoride (LiF:MCP) Thermoluminescent Dosimeters ( TLDs ) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...34Digital Mammography Breast Dosimetry Using Copper- Doped Lithium Fluoride (LiF:MCP) Thermoluminescent Dosimeters ( TLDs )" Author: LT John J. Tomon...Title of Thesis: " Digital Mammography Breast Dosimetry Using Copper-Doped Lithium Fluoride (LiF:MCP) Thermoluminescent

  11. Surface-enhanced Raman scattering (SERS) dosimeter and probe

    DOEpatents

    Vo-Dinh, T.

    1995-03-21

    A dosimeter and probe for measuring exposure to chemical and biological compounds is disclosed. The dosimeter or probe includes a collector which may be analyzed by surface-enhanced Raman spectroscopy. The collector comprises a surface-enhanced Raman scattering-active material having a coating applied thereto to improve the adsorption properties of the collector. The collector may also be used in automated sequential devices, in probe array devices. 10 figures.

  12. 1997 NRL Review

    DTIC Science & Technology

    1997-04-01

    are subsequently read out using a low- doped Glasses power, solid-state diode laser. Figure 4 shows a schematic of the OSL dosimeter . The 807-nm A.L...Huston, S, Rychnovsky, and B.L. Justus (near infrared) diode laser light stimulates blue OSL Optical Sciences Division emission from the dosimeter , and...The sensitivity of the hole pairs become trapped and may persist until prototype OSL dosimeter exceeds that of the stimulated to luminesce by the

  13. Length of stain dosimeter

    NASA Astrophysics Data System (ADS)

    Lueck, Dale E.

    1994-04-01

    Payload customers for the Space Shuttle have recently expressed concerns about the possibility of their payloads at an adjacent pad being contaminated by plume effluents from a shuttle at an active pad as they await launch on an inactive pad. As part of a study to satisfy such concerns a ring of inexpensive dosimeters was deployed around the active pad at the inter-pad distance. However, following a launch, dosimeters cannot be read for several hours after the exposure. As a consequence factors such as different substrates, solvent systems, and possible volatilization of HCl from the badges were studied. This observation led to the length of stain (LOS) dosimeters of this invention. Commercial passive LOS dosimeters are sensitive only to the extent of being capable of sensing 2 ppm to 20 ppm if the exposure is 8 hours. To map and quantitate the HCl generated by Shuttle launches, and in the atmosphere within a radius of 1.5 miles from the active pad, a sensitivity of 2 ppm HCl in the atmospheric gases on an exposure of 5 minutes is required. A passive length of stain dosimeter has been developed having a sensitivity rendering it capable of detecting a gas in a concentration as low as 2 ppm on an exposure of five minutes.

  14. Length of stain dosimeter

    NASA Technical Reports Server (NTRS)

    Lueck, Dale E. (Inventor)

    1994-01-01

    Payload customers for the Space Shuttle have recently expressed concerns about the possibility of their payloads at an adjacent pad being contaminated by plume effluents from a shuttle at an active pad as they await launch on an inactive pad. As part of a study to satisfy such concerns a ring of inexpensive dosimeters was deployed around the active pad at the inter-pad distance. However, following a launch, dosimeters cannot be read for several hours after the exposure. As a consequence factors such as different substrates, solvent systems, and possible volatilization of HCl from the badges were studied. This observation led to the length of stain (LOS) dosimeters of this invention. Commercial passive LOS dosimeters are sensitive only to the extent of being capable of sensing 2 ppm to 20 ppm if the exposure is 8 hours. To map and quantitate the HCl generated by Shuttle launches, and in the atmosphere within a radius of 1.5 miles from the active pad, a sensitivity of 2 ppm HCl in the atmospheric gases on an exposure of 5 minutes is required. A passive length of stain dosimeter has been developed having a sensitivity rendering it capable of detecting a gas in a concentration as low as 2 ppm on an exposure of five minutes.

  15. A critical assessment of two types of personal UV dosimeters.

    PubMed

    Seckmeyer, Gunther; Klingebiel, Marcus; Riechelmann, Stefan; Lohse, Insa; McKenzie, Richard L; Liley, J Ben; Allen, Martin W; Siani, Anna-Maria; Casale, Giuseppe R

    2012-01-01

    Doses of erythemally weighted irradiances derived from polysulphone (PS) and electronic ultraviolet (EUV) dosimeters have been compared with measurements obtained using a reference spectroradiometer. PS dosimeters showed mean absolute deviations of 26% with a maximum deviation of 44%, the calibrated EUV dosimeters showed mean absolute deviations of 15% (maximum 33%) around noon during several test days in the northern hemisphere autumn. In the case of EUV dosimeters, measurements with various cut-off filters showed that part of the deviation from the CIE erythema action spectrum was due to a small, but significant sensitivity to visible radiation that varies between devices and which may be avoided by careful preselection. Usually the method of calibrating UV sensors by direct comparison to a reference instrument leads to reliable results. However, in some circumstances the quality of measurements made with simple sensors may be over-estimated. In the extreme case, a simple pyranometer can be used as a UV instrument, providing acceptable results for cloudless skies, but very poor results under cloudy conditions. It is concluded that while UV dosimeters are useful for their design purpose, namely to estimate personal UV exposures, they should not be regarded as an inexpensive replacement for meteorological grade instruments. © 2011 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2011 The American Society of Photobiology.

  16. Assessment of radiation exposure in dental cone-beam computerized tomography with the use of metal-oxide semiconductor field-effect transistor (MOSFET) dosimeters and Monte Carlo simulations.

    PubMed

    Koivisto, J; Kiljunen, T; Tapiovaara, M; Wolff, J; Kortesniemi, M

    2012-09-01

    The aims of this study were to assess the organ and effective dose (International Commission on Radiological Protection (ICRP) 103) resulting from dental cone-beam computerized tomography (CBCT) imaging using a novel metal-oxide semiconductor field-effect transistor (MOSFET) dosimeter device, and to assess the reliability of the MOSFET measurements by comparing the results with Monte Carlo PCXMC simulations. Organ dose measurements were performed using 20 MOSFET dosimeters that were embedded in the 8 most radiosensitive organs in the maxillofacial and neck area. The dose-area product (DAP) values attained from CBCT scans were used for PCXMC simulations. The acquired MOSFET doses were then compared with the Monte Carlo simulations. The effective dose measurements using MOSFET dosimeters yielded, using 0.5-cm steps, a value of 153 μSv and the PCXMC simulations resulted in a value of 136 μSv. The MOSFET dosimeters placed in a head phantom gave results similar to Monte Carlo simulations. Minor vertical changes in the positioning of the phantom had a substantial affect on the overall effective dose. Therefore, the MOSFET dosimeters constitute a feasible method for dose assessment of CBCT units in the maxillofacial region. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Angular dependence of the nanoDot OSL dosimeter.

    PubMed

    Kerns, James R; Kry, Stephen F; Sahoo, Narayan; Followill, David S; Ibbott, Geoffrey S

    2011-07-01

    Optically stimulated luminescent detectors (OSLDs) are quickly gaining popularity as passive dosimeters, with applications in medicine for linac output calibration verification, brachytherapy source verification, treatment plan quality assurance, and clinical dose measurements. With such wide applications, these dosimeters must be characterized for numerous factors affecting their response. The most abundant commercial OSLD is the InLight/OSL system from Landauer, Inc. The purpose of this study was to examine the angular dependence of the nanoDot dosimeter, which is part of the InLight system. Relative dosimeter response data were taken at several angles in 6 and 18 MV photon beams, as well as a clinical proton beam. These measurements were done within a phantom at a depth beyond the build-up region. To verify the observed angular dependence, additional measurements were conducted as well as Monte Carlo simulations in MCNPX. When irradiated with the incident photon beams parallel to the plane of the dosimeter, the nanoDot response was 4% lower at 6 MV and 3% lower at 18 MV than the response when irradiated with the incident beam normal to the plane of the dosimeter. Monte Carlo simulations at 6 MV showed similar results to the experimental values. Examination of the results in Monte Carlo suggests the cause as partial volume irradiation. In a clinical proton beam, no angular dependence was found. A nontrivial angular response of this OSLD was observed in photon beams. This factor may need to be accounted for when evaluating doses from photon beams incident from a variety of directions.

  18. Angular dependence of the nanoDot OSL dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerns, James R.; Kry, Stephen F.; Sahoo, Narayan

    Purpose: Optically stimulated luminescent detectors (OSLDs) are quickly gaining popularity as passive dosimeters, with applications in medicine for linac output calibration verification, brachytherapy source verification, treatment plan quality assurance, and clinical dose measurements. With such wide applications, these dosimeters must be characterized for numerous factors affecting their response. The most abundant commercial OSLD is the InLight/OSL system from Landauer, Inc. The purpose of this study was to examine the angular dependence of the nanoDot dosimeter, which is part of the InLight system. Methods: Relative dosimeter response data were taken at several angles in 6 and 18 MV photon beams, asmore » well as a clinical proton beam. These measurements were done within a phantom at a depth beyond the build-up region. To verify the observed angular dependence, additional measurements were conducted as well as Monte Carlo simulations in MCNPX. Results: When irradiated with the incident photon beams parallel to the plane of the dosimeter, the nanoDot response was 4% lower at 6 MV and 3% lower at 18 MV than the response when irradiated with the incident beam normal to the plane of the dosimeter. Monte Carlo simulations at 6 MV showed similar results to the experimental values. Examination of the results in Monte Carlo suggests the cause as partial volume irradiation. In a clinical proton beam, no angular dependence was found. Conclusions: A nontrivial angular response of this OSLD was observed in photon beams. This factor may need to be accounted for when evaluating doses from photon beams incident from a variety of directions.« less

  19. Angular dependence of the nanoDot OSL dosimeter

    PubMed Central

    Kerns, James R.; Kry, Stephen F.; Sahoo, Narayan; Followill, David S.; Ibbott, Geoffrey S.

    2011-01-01

    Purpose: Optically stimulated luminescent detectors (OSLDs) are quickly gaining popularity as passive dosimeters, with applications in medicine for linac output calibration verification, brachytherapy source verification, treatment plan quality assurance, and clinical dose measurements. With such wide applications, these dosimeters must be characterized for numerous factors affecting their response. The most abundant commercial OSLD is the InLight∕OSL system from Landauer, Inc. The purpose of this study was to examine the angular dependence of the nanoDot dosimeter, which is part of the InLight system.Methods: Relative dosimeter response data were taken at several angles in 6 and 18 MV photon beams, as well as a clinical proton beam. These measurements were done within a phantom at a depth beyond the build-up region. To verify the observed angular dependence, additional measurements were conducted as well as Monte Carlo simulations in MCNPX.Results: When irradiated with the incident photon beams parallel to the plane of the dosimeter, the nanoDot response was 4% lower at 6 MV and 3% lower at 18 MV than the response when irradiated with the incident beam normal to the plane of the dosimeter. Monte Carlo simulations at 6 MV showed similar results to the experimental values. Examination of the results in Monte Carlo suggests the cause as partial volume irradiation. In a clinical proton beam, no angular dependence was found.Conclusions: A nontrivial angular response of this OSLD was observed in photon beams. This factor may need to be accounted for when evaluating doses from photon beams incident from a variety of directions. PMID:21858992

  20. Direct and pulsed current annealing of p-MOSFET based dosimeter: the "MOSkin".

    PubMed

    Alshaikh, Sami; Carolan, Martin; Petasecca, Marco; Lerch, Michael; Metcalfe, Peter; Rosenfeld, Anatoly

    2014-06-01

    Contemporary radiation therapy (RT) is complicated and requires sophisticated real-time quality assurance (QA). While 3D real-time dosimetry is most preferable in RT, it is currently not fully realised. A small, easy to use and inexpensive point dosimeter with real-time and in vivo capabilities is an option for routine QA. Such a dosimeter is essential for skin, in vivo or interface dosimetry in phantoms for treatment plan verification. The metal-oxide-semiconductor-field-effect-transistor (MOSFET) detector is one of the best choices for these purposes, however, the MOSFETs sensitivity and its signal stability degrade after essential irradiation which limits its lifespan. The accumulation of positive charge on the gate oxide and the creation of interface traps near the silicon-silicon dioxide layer is the primary physical phenomena responsible for this degradation. The aim of this study is to investigate MOSFET dosimeter recovery using two proposed annealing techniques: direct current (DC) and pulsed current (PC), both based on hot charged carrier injection into the gate oxide of the p-MOSFET dosimeter. The investigated MOSFETs were reused multiple times using an irradiation-annealing cycle. The effect of the current-annealing parameters was investigated for the dosimetric characteristics of the recovered MOSFET dosimeters such as linearity, sensitivity and initial threshold voltage. Both annealing techniques demonstrated excellent results in terms of maintaining a stable response, linearity and sensitivity of the MOSFET dosimeter. However, PC annealing is more preferable than DC annealing as it offers better dose response linearity of the reused MOSFET and has a very short annealing time.

  1. Method for correcting for isotope burn-in effects in fission neutron dosimeters

    DOEpatents

    Gold, Raymond; McElroy, William N.

    1988-01-01

    A method is described for correcting for effect of isotope burn-in in fission neutron dosimeters. Two quantities are measured in order to quantify the "burn-in" contribution, namely P.sub.Z',A', the amount of (Z', A') isotope that is burned-in, and F.sub.Z', A', the fissions per unit volume produced in the (Z', A') isotope. To measure P.sub.Z', A', two solid state track recorder fission deposits are prepared from the very same material that comprises the fission neutron dosimeter, and the mass and mass density are measured. One of these deposits is exposed along with the fission neutron dosimeter, whereas the second deposit is subsequently used for observation of background. P.sub.Z', A' is then determined by conducting a second irradiation, wherein both the irradiated and unirradiated fission deposits are used in solid state track recorder dosimeters for observation of the absolute number of fissions per unit volume. The difference between the latter determines P.sub.Z', A' since the thermal neutron cross section is known. F.sub.Z', A' is obtained by using a fission neutron dosimeter for this specific isotope, which is exposed along with the original threshold fission neutron dosimeter to experience the same neutron flux-time history at the same location. In order to determine the fissions per unit volume produced in the isotope (Z', A') as it ingrows during the irradiation, B.sub.Z', A', from these observations, the neutron field must generally be either time independent or a separable function of time t and neutron energy E.

  2. Hand and body radiation exposure with the use of mini C-arm fluoroscopy.

    PubMed

    Tuohy, Christopher J; Weikert, Douglas R; Watson, Jeffry T; Lee, Donald H

    2011-04-01

    To determine whole body and hand radiation exposure to the hand surgeon wearing a lead apron during routine intraoperative use of the mini C-arm fluoroscope. Four surgeons (3 hand attending surgeons and 1 hand fellow) monitored their radiation exposure for a total of 200 consecutive cases (50 cases per surgeon) requiring mini C-arm fluoroscopy. Each surgeon measured radiation exposure with a badge dosimeter placed on the outside breast pocket of the lead apron (external whole body exposure), a second badge dosimeter under the lead apron (shielded whole body exposure), and a ring dosimeter (hand exposure). Completed records were noted in 198 cases, with an average fluoroscopy time of 133.52 seconds and average cumulative dose of 19,260 rem-cm(2) per case. The total measured radiation exposures for the (1) external whole body exposure dosimeters were 16 mrem (for shallow depth), 7 mrem (for eye depth), and less than 1 mrem (for deep depth); (2) shielded whole body badge dosimeters recorded less than 1 mrem; and (3) ring dosimeters totaled 170 mrem. The total radial exposure for 4 ring dosimeters that had registered a threshold of 30 mrem or more of radiation exposure was 170 mrem at the skin level, for an average of 42.5 mrem per dosimeter ring or 6.3 mrem per case. This study of whole body and hand radiation exposure from the mini C-arm includes the largest number of surgical cases in the published literature. The measured whole body and hand radiation exposure received by the hand surgeon from the mini C-arm represents a minimal risk of radiation, based on the current National Council on Radiation Protection and Management standards of annual dose limits (5,000 mrem per year for whole body and 50,000 mrem per year to the extremities). Copyright © 2011 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  3. SU-E-I-06: Measurement of Skin Dose from Dental Cone-Beam CT Scans.

    PubMed

    Akyalcin, S; English, J; Abramovitch, K; Rong, J

    2012-06-01

    To directly measure skin dose using point-dosimeters from dental cone-beam CT (CBCT) scans. To compare the results among three different dental CBCT scanners and compare the CBCT results with those from a conventional panoramic and cephalomic dental imaging system. A head anthropomorphic phantom was used with nanoDOT dosimeters attached to specified anatomic landmarks of selected radiosensitive tissues of interest. To ensure reliable measurement results, three dosimeters were used for each location. The phantom was scanned under various modes of operation and scan protocols for typical dental exams on three dental CBCT systems plus a conventional dental imaging system. The Landauer OSL nanoDOT dosimeters were calibrated under the same imaging condition as the head phantom scan protocols, and specifically for each of the imaging systems. Using nanoDOT dosimeters, skin doses at several positions on the surface of an adult head anthropomorphic phantom were measured for clinical dental imaging. The measured skin doses ranged from 0.04 to 4.62mGy depending on dosimeter positions and imaging systems. The highest dose location was at the parotid surface for all three CBCT scanners. The surface doses to the locations of the eyes were ∼4.0mGy, well below the 500mGy threshold for possibly causing cataract development. The results depend on x-ray tube output (kVp and mAs) and also are sensitive to SFOV. Comparing to the conventional dental imaging system operated in panoramic and cephalometric modes, doses from all three CBCT systems were at least an order of magnitude higher. No image artifact was caused by presence of nanoDOT dosimeters in the head phantom images. Direct measurements of skin dose using nanoDOT dosimeters provided accurate skin dose values without any image artifacts. The results of skin dose measurements serve as dose references in guiding future dose optimization efforts in dental CBCT imaging. © 2012 American Association of Physicists in Medicine.

  4. SU-G-BRB-08: Investigation On the Magnetic Field Effect On TLDs, OSLDs, and Gafchromic Films Using An MR-Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Z; Wang, J; O’Brien, D

    Purpose: To investigate whether a strong magnetic field (B=1.5 T) can affect dose responses of thermoluminescent dosimeters (TLDs), optically stimulated luminescence dosimeters (OSLDs) and Gafchromic films using an MR-Linac (Elekta) before and after the magnet was ramped down from 1.5 T to 0 T. Methods: Three types of dosimeters (TLDs, OSLDs, EBT3 films) were divided into two groups. Group 1 was first irradiated in a phantom of Solid Water slabs (Standard Imaging) inside a B=1.5 T field with a 7 MV beam from an MR-Linac system. The radiation output at the location of the dosimeters (isocenter at 10 cm depth)more » was measured using an ion chamber (NE2571, Phoenix Dosimetry). Three doses (150, 300, 600 MU, corresponding to 1.18, 2.36, and 4.74 Gy) were delivered to the dosimeters. A week later the MR magnet was ramped down to zero field and dosimeters in Group 2 were irradiated with the same MUs. Dosimeters of each type were read out during the same session (about 4 weeks post irradiation in the B field, and 3 weeks with no B field). The ratios of signals between Group 1 and Group 2 were calculated. Results: Radiation output measured with the chamber was within 1% before and after ramping down the MR magnet. For TLDs, the ratio of signals with B field to signals without B field averaged over three dose levels was 1.003±0.016; for OSLDs, the ratio was 0.994±0.022; for films, the ratios of two batches (different manufacturing dates) were 0.997 and 0.985. Conclusion: Dose responses of all three dosimeters seem not affected by the presence of a 1.5 T magnetic field within uncertainty of ∼2%. More measurements will be conducted to test reproducibility. We acknowledge research support from Elekta AB.« less

  5. SU-E-I-60: Validation of An Optically Stimulated Luminescent (OSL) Dosimeter for Use in Output Exposure Control Verification of Mammography Imaging Systems.

    PubMed

    Ranger, R; Butler, P; Yahnke, C; Valentino, D

    2012-06-01

    To develop and validate an Optically Stimulated Luminescent (OSL) dosimeter for exposure control verification of x-ray projection mammography imaging systems. The active detection element of the dosimeter is a strip of OSL material 3.0 mm wide, 0.13 mm thick and 30.0 mm long with an overlying aluminum step wedge with thicknesses of 0, 0.2, 0.4 and 0.6 mm Al, encapsulated in a light-tight plastic enclosure with outer dimensions of 10.0 mm wide, 5.4 mm thick, and 54.0 mm long. The dosimeter is used in conjunction with a breast phantom for the purpose of estimating the half-value layer (HVL), entrance surface exposure (ESE), and average glandular dose (AGD) in conventional projection mammography. ESE and HVL were computed based on analysis of exposure profiles obtained from exposed strip dosimeters. The AGD was estimated by multiplying the ESE by the appropriate exposure to dose conversion factor for the thickness and % glandular tissue fraction represented by the phantom and target-filter combination employed. The accuracy and reproducibility of the ESE, HVL and AGD estimates obtained using the dosimeter positioned on the surface of the ACR phantom at the chest wall edge, was evaluated using mammography systems utilizing different imaging receptor technology, i.e. screen-film (SF), computed radiography (CR) and direct radiography (DR) and compared against results obtained using a calibrated ion chamber fitted with a mammography probe. ESE, AGD and HVL results obtained using the OSL mammography QA dosimeter agreed with results obtained using an ion chamber to within 5-10%, depending on the target-filter combination used. Repeat readings were highly consistent with a coefficient of variation = 5%. The OSL mammography QA dosimeter has been shown to effectively estimate ESE, HVL and AGD, demonstrating its usefulness for secondary monitoring of output exposure of mammography imaging systems. © 2012 American Association of Physicists in Medicine.

  6. SU-E-T-368: Effect of a Strong Magnetic Field On Select Radiation Dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathis, M; Wen, Z; Tailor, R

    Purpose: To determine the effect of a strong magnetic field on TLD-100, OSLD (Al{sub 2}O{sub 2}:C), and PRESAGE dosimetry devices. This study will help to determine which types of dosimeters can be used for quality assurance and in-vivo dosimetry measurements in a magnetic resonance imaginglinear accelerator (MRI-linac) system. Methods: The dosimeters were separated into two categories which were either exposed or not exposed to a strong magnetic field. In each category a set of dosimeters was irradiated with 0, 2, or 6 Gy. To expose the dosimeters to a magnetic field the samples in that category were place in amore » Bruker small animal magnetic resonance scanner at a field strength slightly greater than 2.5 T for at least 1 hour preirradiation and at least 1 hour post-irradiation. Irradiations were performed with a 6 MV x-ray beam from a Varian TrueBeam linac with 10×10 cm{sup 2} field at a 600 MU/min dose rate. The samples that received no radiation dose were used as control detectors. Results: The readouts of the dosimeters which were not exposed to a strong magnetic field were compared with the measurements of the dosimetry devices which were exposed to a magnetic field. No significant differences (less than 2% difference) in the performance of TLD, OSLD, or PRESAGE dosimeters due to exposure to a strong magnetic field were observed. Conclusion: Exposure to a strong magnetic field before and after irradiation does not appear to change the dosimetric properties of TLD, OSLD, or PRESAGE which indicates that these dosimeters have potential for use in quality assurance and in-vivo dosimetry in a MRI-linac. We plan to further test the effect of magnetic fields on these devices by irradiating them in the presence of a magnetic fields similar to those produced by a MRI-linac system. Elekta-MD Anderson Cancer Center Research Agreement.« less

  7. AFRRI (Armed Forces Radiobiology Research Institute) Reports, January-March 1985

    DTIC Science & Technology

    1985-01-01

    monkey and human gastric functions Address osl i ,194 Arorlett: July~ (1, 1118. (6). .). and thle drug dosage was close to that ustid inAi~oattno...ionization chambers this requires the use of the two- * dosimeter method. One of the chambers is constructed of A-150 tissue- equivalent (TE) plastic, and...out excessively high flow rates. A photon energy-compensated Geiger- * Muller (GM) dosimeter is often used as the second dosimeter . However

  8. Technology Assessment and Roadmap for the Emergency Radiation Dose Assessment Program (ERDAP)

    DTIC Science & Technology

    2005-06-01

    l2O3:C OSL dosimeters . Overall design is based on similar systems described earlier by Justus et al. (1999) and Huston et al. (2001). Similar apparatus...Radioisotope Contamination 4. Pre-Positioned Physical Dosimeters C. Assessment of Emerging Dosimetry Technologies 1. Biological Measurements 2. Physico...architectures for radiation dose assessment tools. • Focus initial studies on defining the role of pre-positioned dosimeters , optimizing the size and

  9. [Polymer Gel Dosimeter].

    PubMed

    Hayashi, Shin-Ichiro

    2017-01-01

    With rapid advances being made in radiotherapy treatment, three-dimensional (3D) dose measurement techniques of great precision are required more than ever before. It is expected that 3D polymer gel dosimeters will satisfy clinical needs for an effective detector that can measure the complex 3D dose distributions. Polymer gel dosimeters are devices that utilize the radiation-induced polymerization reactions of vinyl monomers in a gel to store information about radiation dose. The 3D absorbed dose distribution can be deduced from the resulting polymer distribution using several imaging modalities, such as MRI, X-ray and optical CTs. In this article, the fundamental characteristics of polymer gel dosimeter are reviewed and some challenging keys are also suggested for the widely spread in clinical use.

  10. Characterization and implementation of OSL dosimeters for use in evaluating the efficacy of organ-based tube current modulation for CT scans of the face and orbits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsh, R. M.; Silosky, M., E-mail: michael.silosky@ucdenver.edu

    Purpose: The purpose of this work was to characterize commercially available optically stimulated luminescent (OSL) dosimeters for general clinical applications and apply the results to the development of a method to evaluate the efficacy of a vendor-specific organ-based tube current modulation application for both phantom and clinical computed tomography (CT) scans of the face and orbits. Methods: This study consisted of three components: (1) thorough characterization of the dosimeters for CT scans in phantom, including evaluations of depletion, fading, angular dependence, and conversion from counts to absorbed dose; (2) evaluation of the efficacy of using plastic glasses to position themore » dosimeters over the eyes in both phantom and clinical studies; and (3) preliminary dosimetry measurements made using organ-based tube current modulation in computed tomography dose index (CTDI) and anthropomorphic phantom studies. Results: (1) Depletion effects were found to have a linear relationship with the output of the OSL dosimeters (R{sup 2} = 0.96). Fading was found to affect dosimeter readings during the first two hours following exposure but had no effect during the remaining 60-h period observed. No significant angular dependence was observed for the exposure conditions used in this study (with p-values ranging from 0.9 to 0.26 for all t-tests). Dosimeter counts varied linearly with absorbed dose when measured in the center and 12 o’clock positions of the CTDI phantoms. These linear models of counts versus absorbed dose had overlapping 95% confidence intervals for the intercepts but not for the slopes. (2) When dosimeters were positioned using safety glasses, there was no adverse effect on image quality, and there was no statistically significant difference between this placement and placement of the dosimeters directly on the eyes of the phantom (p = 0.24). (3) When using organ-based tube current modulation, the dose to the lens of the eye was reduced between 19% and 43%, depending on the scan protocol used and the positioning of the phantom. Furthermore, the amount of dose reduction was significantly affected by the vertical position of the phantom, with the largest reduction in dose seen when the phantom was centered in the gantry. Conclusions: (1) An appropriate correction factor, specific to CT scanning, was developed to account for depletion and fading characteristics of the dosimeters. Additionally, an equation to convert dosimeter counts to absorbed dose was established. (2) The use of plastic safety glasses was validated as an appropriate positioning device when measuring dose to the lens of the eye. (3) The use of organ-based tube current modulation can reduce dose to the lens of the eye during CT scanning. The amount of dose reduction, however, is largely influenced by the positioning of the anatomy in the gantry.« less

  11. Characterization and implementation of OSL dosimeters for use in evaluating the efficacy of organ-based tube current modulation for CT scans of the face and orbits.

    PubMed

    Marsh, R M; Silosky, M

    2015-04-01

    The purpose of this work was to characterize commercially available optically stimulated luminescent (OSL) dosimeters for general clinical applications and apply the results to the development of a method to evaluate the efficacy of a vendor-specific organ-based tube current modulation application for both phantom and clinical computed tomography (CT) scans of the face and orbits. This study consisted of three components: (1) thorough characterization of the dosimeters for CT scans in phantom, including evaluations of depletion, fading, angular dependence, and conversion from counts to absorbed dose; (2) evaluation of the efficacy of using plastic glasses to position the dosimeters over the eyes in both phantom and clinical studies; and (3) preliminary dosimetry measurements made using organ-based tube current modulation in computed tomography dose index (CTDI) and anthropomorphic phantom studies. (1) Depletion effects were found to have a linear relationship with the output of the OSL dosimeters (R(2) = 0.96). Fading was found to affect dosimeter readings during the first two hours following exposure but had no effect during the remaining 60-h period observed. No significant angular dependence was observed for the exposure conditions used in this study (with p-values ranging from 0.9 to 0.26 for all t-tests). Dosimeter counts varied linearly with absorbed dose when measured in the center and 12 o'clock positions of the CTDI phantoms. These linear models of counts versus absorbed dose had overlapping 95% confidence intervals for the intercepts but not for the slopes. (2) When dosimeters were positioned using safety glasses, there was no adverse effect on image quality, and there was no statistically significant difference between this placement and placement of the dosimeters directly on the eyes of the phantom (p = 0.24). (3) When using organ-based tube current modulation, the dose to the lens of the eye was reduced between 19% and 43%, depending on the scan protocol used and the positioning of the phantom. Furthermore, the amount of dose reduction was significantly affected by the vertical position of the phantom, with the largest reduction in dose seen when the phantom was centered in the gantry. (1) An appropriate correction factor, specific to CT scanning, was developed to account for depletion and fading characteristics of the dosimeters. Additionally, an equation to convert dosimeter counts to absorbed dose was established. (2) The use of plastic safety glasses was validated as an appropriate positioning device when measuring dose to the lens of the eye. (3) The use of organ-based tube current modulation can reduce dose to the lens of the eye during CT scanning. The amount of dose reduction, however, is largely influenced by the positioning of the anatomy in the gantry.

  12. Solar UV exposure among outdoor workers in Denmark measured with personal UV-B dosimeters: technical and practical feasibility.

    PubMed

    Grandahl, Kasper; Mortensen, Ole Steen; Sherman, David Zim; Køster, Brian; Lund, Paul-Anker; Ibler, Kristina Sophie; Eriksen, Paul

    2017-10-10

    Exposure to solar ultraviolet radiation is a well-known cause of skin cancer. This is problematic for outdoor workers. In Denmark alone, occupational skin cancer poses a significant health and safety risk for around 400,000 outdoor workers. Objective measures of solar ultraviolet radiation exposure are needed to help resolve this problem. This can be done using personal ultraviolet radiation dosimeters. We consider technical and practical feasibility of measuring individual solar ultraviolet exposure at work and leisure in professions with different á priori temporal high-level outdoor worktime, using aluminium gallium nitride (AlGaN) photodiode detector based personal UV-B dosimeters. Essential technical specifications including the spectral and angular responsivity of the dosimeters are described and pre-campaign dosimeter calibration applicability is verified. The scale and conduct of dosimeter deployment and campaign in-field measurements including failures and shortcomings affecting overall data collection are presented. Nationwide measurements for more than three hundred and fifty workers from several different professions were collected in the summer of 2016. On average, each worker's exposure was measured for a 2-week period, which included both work and leisure. Data samples of exposure at work during a Midsummer day show differences across professions. A construction worker received high-level occupational UV exposure most of the working day, except during lunch hour, accumulating to 5.1 SED. A postal service worker was exposed intermittently around noon and in the afternoon, preceded by no exposure forenoon when packing mail, accumulating to 1.6 SED. A crane fitter was exposed only during lunch hour, accumulating to 0.7 SED. These findings are in line with our specialist knowledge as occupational physicians. Large-scale use of personal UV-B dosimeters for measurement of solar ultraviolet radiation exposure at work and leisure in Denmark is indeed feasible from a technical and practical viewpoint. Samples of exposure data shown support the presumption that the Danish campaign UV-B dosimeter measurement dataset can be used to sum and compare exposure between groups of professions with reliable results to be used in future analysis with clinical as well as epidemiological/questionnaire data. This was despite some dosimeter failures and shortcomings.

  13. Initial Characterization of a Gel Patch Dosimeter for In Vivo Dosimetry

    PubMed Central

    Matrosic, C; Culberson, W; Rosen, B; Madsen, E; Frank, G; Bednarz, B

    2016-01-01

    In vivo dosimetry is a greatly underutilized tool for patient safety in clinical external beam radiotherapy treatments, despite being recommended by several national and international organizations (AAPM, ICRU, IAEA, NACP). The reasons for this underutilization mostly relate to the feasibility and cost of in vivo dosimetry methods. Due to the increase in the number of beam angles and dose per fraction in modern treatments, there is a compelling need for a novel dosimeter that is robust and affordable while able to operate properly in these complex conditions. This work presents a gel patch dosimeter as a novel method of in vivo dosimetry. DEFGEL, a 6%T normoxic polyacrylamide gel, was injected into 1-cm thick acrylic molds to create 1-cm thick small cylindrical patch dosimeters. To evaluate the change in optical density due to radiation induced polymerization, dosimeters were scanned before and after irradiation using an in-house developed laser densitometer. The dose-responses of three separate batches of gel were evaluated and compared to check for linearity and repeatability. The response development time was evaluated to ensure that the patch dosimeter could be high throughput. Additionally, the potential of this system to be used as an in vivo dosimeter was tested with a clinically relevant end-to-end in vivo phantom test. All irradiations were performed with a Varian Clinac 21EX at the University of Wisconsin Medical Radiation Research Center (UWMRRC). The dose response of all three batches of gel was found to be linear within the range of 2–20 Gy. At doses below 0.5 Gy the statistical uncertainties were prohibitively large to make quantitative assessments of the results. The three batches demonstrated good repeatability in the range of 2 Gy to up to 10 Gy, with only slight variations in response at higher doses. For low doses the dosimeter fully developed within an hour while at higher doses they fully developed within four hours. During the in vivo phantom test the predicted patch absorbed dose was 4.23 Gy while the readout dose was evaluated to be 4.37 Gy, which corresponds to a 3.2% discrepancy. The dosimeter and densitometer pairing shows promise as an in vivo dosimetry system, especially for hypofractionated or MRI-guided radiotherapy treatments where higher doses are prescribed. PMID:27088207

  14. Initial characterization of a gel patch dosimeter for in vivo dosimetry

    NASA Astrophysics Data System (ADS)

    Matrosic, C.; Culberson, W.; Rosen, B.; Madsen, E.; Frank, G.; Bednarz, B.

    2016-05-01

    In vivo dosimetry is a greatly underutilized tool for patient safety in clinical external beam radiotherapy treatments, despite being recommended by several national and international organizations (AAPM, ICRU, IAEA, NACP). The reasons for this underutilization mostly relate to the feasibility and cost of in vivo dosimetry methods. Due to the increase in the number of beam angles and dose per fraction in modern treatments, there is a compelling need for a novel dosimeter that is robust and affordable while able to operate properly in these complex conditions. This work presents a gel patch dosimeter as a novel method of in vivo dosimetry. DEFGEL, a 6% T normoxic polyacrylamide gel, was injected into 1 cm thick acrylic molds to create 1 cm thick small cylindrical patch dosimeters. To evaluate the change in optical density due to radiation induced polymerization, dosimeters were scanned before and after irradiation using an in-house developed laser densitometer. The dose-responses of three separate batches of gel were evaluated and compared to check for linearity and repeatability. The response development time was evaluated to ensure that the patch dosimeter could be high throughput. Additionally, the potential of this system to be used as an in vivo dosimeter was tested with a clinically relevant end-to-end in vivo phantom test. All irradiations were performed with a Varian Clinac 21EX at the University of Wisconsin Medical Radiation Research Center (UWMRRC). The dose-response of all three batches of gel was found to be linear within the range of 2-20 Gy. At doses below 0.5 Gy the statistical uncertainties were prohibitively large to make quantitative assessments of the results. The three batches demonstrated good repeatability in the range of 2 Gy to up to 10 Gy, with only slight variations in response at higher doses. For low doses the dosimeter fully developed within an hour while at higher doses they fully developed within four hours. During the in vivo phantom test the predicted patch absorbed dose was 4.23 Gy while the readout dose was evaluated to be 4.37 Gy, which corresponds to a 3.2% discrepancy. The dosimeter and densitometer pairing shows promise as an in vivo dosimetry system, especially for hypofractionated or MRI-guided radiotherapy treatments where higher doses are prescribed.

  15. SU-E-T-353: Effects of Time and Temperature On a Potential Reusable 3D Dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juang, T; Miles, D; Crockett, E

    Purpose: Preliminary studies of a novel, optically-clearing PRESAGE 3D dosimeter formulation (Presage-RU) demonstrated potential reusability. This study investigates the effects of time and temperature on the accuracy and reusability of Presage-RU, and reports on progress toward developing a reusable 3D dosimeter. Methods: Presage-RU was cast as small volume samples (1×1×4.5cm). The effect of dose response sensitivity with reirradiation and time was evaluated by irradiating samples from 0–10Gy, measuring change in optical density (ΔOD), clearing at room temperature (RT) (5–7 days to fully clear), and then repeating for a total of 5 irradiations. Effects of heating on clearing rate were investigatedmore » by irradiating samples to 8Gy, then tracking measurements with samples held at RT, 35°C, and 45°C. Two cylindrical dosimeters (11cm diameter, 9.5cm length) were evaluated for dosimetric accuracy when stored at RT and −3°C prior to irradiation. Plans delivered were 2 overlapping AP fields (RT) and VMAT (-3°C). Results: Heating the dosimeters reduced the clearing half-life from 16.3h at RT to 5.8h (35°C) and 5.1h (45°C), but also increased background ΔOD by 1.7x (35°C) and 2.3x (45°C). Reductions in dose response were more closely linked to age than reirradiation, and storage at RT showed pronounced desensitization from dosimeter edges. These results suggest desensitization from oxygen diffusion. It should be noted that atmospheric diffusion into the dosimeter is not seen in standard, single-use PRESAGE, and is likely caused by differences in the Presage-RU polyurethane matrix. The dosimeter kept in cold storage, however, showed no evidence of desensitization and exhibited accuracy on par with standard PRESAGE with a 3%/3mm 3D gamma passing rate of 98.1%. Conclusions: Presage-RU is sensitive to storage temperatures and time, both of which affect oxygen diffusion and subsequent desensitization. Development shows promising progress with further formulation optimization as the next step toward achieving a successful reusable 3D dosimeter. This work was supported by NIH R01CA100835. John Adamovics is the president of Heuris Inc., which commercializes PRESAGE.« less

  16. Radiation Measured with Different Dosimeters for ISS-Expedition 18-19/ULF2 on Board International Space Station during Solar Minimum

    NASA Technical Reports Server (NTRS)

    Zhou, Dazhuang; Gaza, R.; Roed, Y.; Semones, E.; Lee, K.; Steenburgh, R.; Johnson, S.; Flanders, J.; Zapp, N.

    2010-01-01

    Radiation field of particles in low Earth orbit (LEO) is mainly composed of galactic cosmic rays (GCR), solar energetic particles and particles in SAA (South Atlantic Anomaly). GCR are modulated by solar activity, at the period of solar minimum activity, GCR intensity is at maximum and the main contributor for space radiation is GCR. At present for space radiation measurements conducted by JSC (Johnson Space Center) SRAG (Space Radiation Analysis Group), the preferred active dosimeter sensitive to all LET (Linear Energy Transfer) is the tissue equivalent proportional counter (TEPC); the preferred passive dosimeters are thermoluminescence dosimeters (TLDs) and optically stimulated luminescence dosimeters (OSLDs) sensitive to low LET as well as CR-39 plastic nuclear track detectors (PNTDs) sensitive to high LET. For the method using passive dosimeters, radiation quantities for all LET can be obtained by combining radiation results measured with TLDs/OSLDs and CR-39 PNTDs. TEPC, TLDs/OSLDs and CR-39 detectors were used to measure the radiation field for the ISS (International Space Station) - Expedition 18-19/ULF2 space mission which was conducted from 15 November 2008 to 31 July 2009 - near the period of the recent solar minimum activity. LET spectra (differential and integral fluence, absorbed dose and dose equivalent) and radiation quantities were measured for positions TEPC, TESS (Temporary Sleeping Station, inside the polyethylene lined sleep station), SM-P 327 and 442 (Service Module - Panel 327 and 442). This paper presents radiation LET spectra measured with TEPC and CR-39 PNTDs and radiation dose measured with TLDs/OSLDs as well as the radiation quantities combined from results measured with passive dosimeters.

  17. SU-E-T-274: Does Atmospheric Oxygen Affect the PRESAGE Dosimeter?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alqathami, M; Ibbott, G; Blencowe, A

    Purpose: To experimentally determine the influence of atmospheric oxygen on the efficiency of the PRESAGE dosimeter and its reporting system. Methods: Batches of the reporting system – a mixture of chloroform and leuchomalachite green dye – and PRESAGE were prepared in aerobic and anaerobic conditions. For anaerobic batches, samples were deoxygenated by bubbling nitrogen through the dosimeter precursors or reporting system for 10 min. The dosimeters and reporting systems were prepared in spectrophotometric cuvettes and glass vials, respectively, and were irradiated with 6 MV photons to various radiation doses using a clinical linear accelerator. Changes in optical density of themore » dosimeters and reporting system before and after irradiation were measured using a spectrophotometer. In addition, the concentrations of dissolved oxygen were measured using a dissolved oxygen meter. Results: The experiments revealed that oxygen has little influence on the characteristics of PRESAGE, with the radical initiator oxidizing the leucomalachite green even in the presence of oxygen. However, deoxygenation of the reporting system leads to an increase in sensitivity to radiation dose by ∼ 30% when compared to the non-deoxygenated system. A slight improvement in sensitivity (∼ 5%) was also achieved by deoxygenating the PRESAGE precursor prior to casting. Measurement of the dissolved oxygen revealed low levels (0.4 ppm) in the polyurethane precursor used to fabricate the dosimeters, as compared to water (8.6 ppm). In addition, deoxygenation had no effect on the retention of the post-response absorption value of the PRESAGE dosimeter. Conclusion: The results suggest that the presence of oxygen does not inhibit the radiochromic properties of the PRESAGE system. In addition, there were no observed changes in the dose linearity, absorption spectrum and post-response photofading characteristics of the PRESAGE under the conditions investigated.« less

  18. The development of remote wireless radiation dose monitoring system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jin-woo; Chonbuk National University, Jeonjoo-Si; Jeong, Kyu-hwan

    Internet of things (IoT) technology has recently shown a large flow of IT trends in human life. In particular, our lives are now becoming integrated with a lot of items around the 'smart-phone' with IoT, including Bluetooth, Near Field Communication (NFC), Beacons, WiFi, and Global Positioning System (GPS). Our project focuses on the interconnection of radiation dosimetry and IoT technology. The radiation workers at a nuclear facility should hold personal dosimeters such as a Thermo-Luminescence Dosimeter (TLD), an Optically Stimulated Luminescence Dosimeter (OSL), pocket ionization chamber dosimeters, an Electronic Personal Dosimeter (EPD), or an alarm dosimeter on their body. Somemore » of them have functions that generate audible or visible alarms to radiation workers in a real working area. However, such devices used in radiation fields these days have no functions for communicating with other areas or the responsible personnel in real time. In particular, when conducting a particular task in a high dose area, or a number of repair works within a radiation field, radiation dose monitoring is important for the health of the workers and the work efficiency. Our project aims at the development of a remote wireless radiation dose monitoring system (RWRD) that can be used to monitor the radiation dose in a nuclear facility for radiation workers and a radiation protection program In this project, a radiation dosimeter is the detection device for personal radiation dose, a smart phone is the mobile wireless communication tool, and, Beacon is the wireless starter for the detection, communication, and position of the worker using BLE (Bluetooth Low Energy). In this report, we report the design of the RWRD and a demonstration case in a real radiation field. (authors)« less

  19. An Efficient, Affordable Optically Stimulated Luminescent (OSL) Annealer.

    PubMed

    Abraham, Sara A; Frank, Samuel J; Kearfott, Kimberlee J

    2017-07-01

    Optically stimulated luminescent (OSL) dosimeters are devices used for measuring doses of ionizing radiation. Signal is stored within an OSL material so that when stimulated with light, light of a specific wavelength is emitted in proportion to the integrated ionizing radiation dose. Each interrogation of the material results in the loss of a small fraction of signal, thus allowing multiple interrogations leading to more accurate measurements of dose. In order to reuse a dosimeter, the residual signals from prior doses must be taken into account and subtracted from current readings, adding uncertainty to any future measurements. To reduce these errors when they become large, it is desirable to completely clear the stored signal or anneal the dosimeter. Traditionally, heating the material has accomplished this. In a commercially available dosimeter badge system, the OSL material Al2O3:C is incorporated into a plastic slide that would melt at the necessary high temperatures, which can reach 900 °C, required for annealing. Fortunately, due to the material's high sensitivity to light, OSLs can be optically annealed instead. In order to do this, an affordable OSL dosimeter annealer was designed with inexpensive, exchangeable blue, green, and white high intensity light-emitting diodes (LEDs). Several dosimeters were repeatedly annealed for recorded intervals and then read out. A single dosimeter was partially annealed through repeated interrogations with the LED array from a commercial reader. The signal loss due to the exposure to each light was analyzed to determine the practicality and efficiency of each color. The rate and extent of signal loss was dependent not only on the spectrum of annealing light but on the initial signal levels as well. These findings suggest that blue LEDs are the most promising for effective and rapid clearing of the OSL material Al2O3:C.

  20. Fiber-optic dosimeters for radiation therapy

    NASA Astrophysics Data System (ADS)

    Li, Enbang; Archer, James

    2017-10-01

    According to the figures provided by the World Health Organization, cancer is a leading cause of death worldwide, accounting for 8.8 million deaths in 2015. Radiation therapy, which uses x-rays to destroy or injure cancer cells, has become one of the most important modalities to treat the primary cancer or advanced cancer. The newly developed microbeam radiation therapy (MRT), which uses highly collimated, quasi-parallel arrays of x-ray microbeams (typically 50 μm wide and separated by 400 μm) produced by synchrotron sources, represents a new paradigm in radiotherapy and has shown great promise in pre-clinical studies on different animal models. Measurements of the absorbed dose distribution of microbeams are vitally important for clinical acceptance of MRT and for developing quality assurance systems for MRT, hence are a challenging and important task for radiation dosimetry. On the other hand, during the traditional LINAC based radiotherapy and breast cancer brachytherapy, skin dose measurements and treatment planning also require a high spatial resolution, tissue equivalent, on-line dosimeter that is both economical and highly reliable. Such a dosimeter currently does not exist and remains a challenge in the development of radiation dosimetry. High resolution, water equivalent, optical and passive x-ray dosimeters have been developed and constructed by using plastic scintillators and optical fibers. The dosimeters have peak edge-on spatial resolutions ranging from 50 to 500 microns in one dimension, with a 10 micron resolution dosimeter under development. The developed fiber-optic dosimeters have been test with both LINAC and synchrotron x-ray beams. This work demonstrates that water-equivalent and high spatial resolution radiation detection can be achieved with scintillators and optical fiber systems. Among other advantages, the developed fiber-optic probes are also passive, energy independent, and radiation hard.

  1. Selection and use of TLDS for high precision NERVA shielding measurements

    NASA Technical Reports Server (NTRS)

    Woodsum, H. C.

    1972-01-01

    An experimental evaluation of thermoluminescent dosimeters was performed in order to select high precision dosimeters for a study whose purpose is to measure gamma streaming through the coolant passages of a simulated flight type internal NERVA reactor shield. Based on this study, the CaF2 chip TLDs are the most reproducible dosimeters with reproducibility generally within a few percent, but none of the TLDs tested met the reproducibility criterion of plus or minus 2%.

  2. Measurement of dose given by Co-60 in radiotherapy with TLD-500

    NASA Astrophysics Data System (ADS)

    Tanır, Güneş; Cengiz, Ferhat; Hicabi Bölükdemir, M.

    2012-04-01

    The uses of dosimeters based on optically stimulated luminescence technique have become widespread in clinical applications. In the present study, the dose values given by Cobalt-60 radiotherapy machine were measured with optically stimulated luminescence (OSL) technique using TLD-500 and compared with those of commonly used ionization chamber dosimeter system. The percentage depth dose (DD%) values and graphs were formed. OSL system with TLD-500 can be reliably used as medical and personal dosimeter.

  3. Dosimeter incorporating radiophotoluminescent detectors for thermal neutrons and γ-rays in n-γ fields

    NASA Astrophysics Data System (ADS)

    Salem, Y. O.; Nachab, A.; Roy, C.; Nourreddine, A.

    2016-10-01

    We have developed a dosimeter associating different neutron converters with two radiophotoluminescent detectors to measure thermal neutrons and γ-rays in a mixed n-γ field. Tests show that the H∗(10) and Hp(10) responses to thermal neutrons and γ-rays are linear with detection limits lower than 0.4 mSv. The angular dependence of the dosimeter response is satisfactory and the influence of a phantom on the results is examined.

  4. PNNL Results from 2010 CALIBAN Criticality Accident Dosimeter Intercomparison Exercise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Robin L.; Conrady, Matthew M.

    2011-10-28

    This document reports the results of the Hanford personnel nuclear accident dosimeter (PNAD) and fixed nuclear accident dosimeter (FNAD) during a criticality accident dosimeter intercomparison exercise at the CEA Valduc Center on September 20-23, 2010. Pacific Northwest National Laboratory (PNNL) participated in a criticality accident dosimeter intercomparison exercise at the Commissariat a Energie Atomique (CEA) Valduc Center near Dijon, France on September 20-23, 2010. The intercomparison exercise was funded by the U.S. Department of Energy, Nuclear Criticality Safety Program, with Lawrence Livermore National Laboratory as the lead Laboratory. PNNL was one of six invited DOE Laboratory participants. The other participatingmore » Laboratories were: Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Savannah River Site (SRS), the Y-12 National Security Complex at Oak Ridge, and Sandia National Laboratory (SNL). The goals of PNNL's participation in the intercomparison exercise were to test and validate the procedures and algorithm currently used for the Hanford personnel nuclear accident dosimeters (PNADs) on the metallic reactor, CALIBAN, to test exposures to PNADs from the side and from behind a phantom, and to test PNADs that were taken from a historical batch of Hanford PNADs that had varying degrees of degradation of the bare indium foil. Similar testing of the PNADs was done on the Valduc SILENE test reactor in 2009 (Hill and Conrady, 2010). The CALIBAN results are reported here.« less

  5. Modern dosimetric tools for 60Co irradiation at high containment laboratories

    PubMed Central

    Twardoski, Barri; Feldmann, Heinz; Bloom, Marshall E.; Ward, Joe

    2011-01-01

    Purpose To evaluate an innovative photo-fluorescent film as a routine dosimetric tool during 60Co irradiations at a high containment biological research laboratory, and to investigate whether manufacturer-provided chamber exposure rates can be used to accurately administer a prescribed dose to biological specimens. Materials and methods Photo-fluorescent, lithium fluoride film dosimeters and National Institutes of Standards and Technology (NIST) transfer dosimeters were co-located in a self-shielded 60Co irradiator and exposed to γ-radiation with doses ranging from 5–85 kGy. Film dose-response relationships were developed for varying temperatures simulating conditions present when irradiating infectious biological specimens. Dose measurement results from NIST transfer dosimeters were compared to doses predicted using manufacturer-provided irradiator chamber exposure rates. Results The film dosimeter exhibited a photo-fluorescent response signal that was consistent and nearly linear in relationship to γ-radiation exposure over a wide dose range. The dosimeter response also showed negligible effects from dose fractionization and humidity. Significant disparities existed between manufacturer-provided chamber exposure rates and actual doses administered. Conclusion This study demonstrates the merit of utilizing dosimetric tools to validate the process of exposing dangerous and exotic biological agents to γ-radiation at high containment laboratories. The film dosimeter used in this study can be utilized to eliminate potential for improperly administering γ-radiation doses. PMID:21961968

  6. High-precision dosimetry for radiotherapy using the optically stimulated luminescence technique and thin Al2O3:C dosimeters.

    PubMed

    Yukihara, E G; Yoshimura, E M; Lindstrom, T D; Ahmad, S; Taylor, K K; Mardirossian, G

    2005-12-07

    The potential of using the optically stimulated luminescence (OSL) technique with aluminium oxide (Al(2)O(3):C) dosimeters for a precise and accurate estimation of absorbed doses delivered by high-energy photon beams was investigated. This study demonstrates the high reproducibility of the OSL measurements and presents a preliminary determination of the depth-dose curve in water for a 6 MV photon beam from a linear accelerator. The uncertainty of a single OSL measurement, estimated from the variance of a large sample of dosimeters irradiated with the same dose, was 0.7%. In the depth-dose curve obtained using the OSL technique, the difference between the measured and expected doses was < or =0.7% for depths between 1.5 and 10 cm, and 1.1% for a depth of 15 cm. The readout procedure includes a normalization of the response of the dosimeter with respect to a reference dose in order to eliminate variations in the dosimeter mass, dosimeter sensitivity, and the reader's sensitivity. This may be relevant for quality assurance programmes, since it simplifies the requirements in terms of personnel training to achieve the precision and accuracy necessary for radiotherapy applications. We concluded that the OSL technique has the potential to be reliably incorporated in quality assurance programmes and dose verification.

  7. Dose rate dependence for different dosimeters and detectors: TLD, OSL, EBT films, and diamond detectors.

    PubMed

    Karsch, L; Beyreuther, E; Burris-Mog, T; Kraft, S; Richter, C; Zeil, K; Pawelke, J

    2012-05-01

    The use of laser accelerators in radiation therapy can perhaps increase the low number of proton and ion therapy facilities in some years due to the low investment costs and small size. The laser-based acceleration technology leads to a very high peak dose rate of about 10(11) Gy∕s. A first dosimetric task is the evaluation of dose rate dependence of clinical dosimeters and other detectors. The measurements were done at ELBE, a superconductive linear electron accelerator which generates electron pulses with 5 ps length at 20 MeV. The different dose rates are reached by adjusting the number of electrons in one beam pulse. Three clinical dosimeters (TLD, OSL, and EBT radiochromic films) were irradiated with four different dose rates and nearly the same dose. A faraday cup, an integrating current transformer, and an ionization chamber were used to control the particle flux on the dosimeters. Furthermore two diamond detectors were tested. The dosimeters are dose rate independent up to 4●10(9) Gy∕s within 2% (OSL and TLD) and up to 15●10(9) Gy∕s within 5% (EBT films). The diamond detectors show strong dose rate dependence. TLD, OSL dosimeters, and EBT films are suitable for pulsed beams with a very high pulse dose rate like laser accelerated particle beams.

  8. Dose rate dependence for different dosimeters and detectors: TLD, OSL, EBT films, and diamond detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karsch, L.; Beyreuther, E.; Burris-Mog, T.

    Purpose: The use of laser accelerators in radiation therapy can perhaps increase the low number of proton and ion therapy facilities in some years due to the low investment costs and small size. The laser-based acceleration technology leads to a very high peak dose rate of about 10{sup 11} Gy/s. A first dosimetric task is the evaluation of dose rate dependence of clinical dosimeters and other detectors. Methods: The measurements were done at ELBE, a superconductive linear electron accelerator which generates electron pulses with 5 ps length at 20 MeV. The different dose rates are reached by adjusting the numbermore » of electrons in one beam pulse. Three clinical dosimeters (TLD, OSL, and EBT radiochromic films) were irradiated with four different dose rates and nearly the same dose. A faraday cup, an integrating current transformer, and an ionization chamber were used to control the particle flux on the dosimeters. Furthermore two diamond detectors were tested. Results: The dosimeters are dose rate independent up to 410{sup 9} Gy/s within 2% (OSL and TLD) and up to 1510{sup 9} Gy/s within 5% (EBT films). The diamond detectors show strong dose rate dependence. Conclusions: TLD, OSL dosimeters, and EBT films are suitable for pulsed beams with a very high pulse dose rate like laser accelerated particle beams.« less

  9. Development of Solid Ceramic Dosimeters for the Time-Integrative Passive Sampling of Volatile Organic Compounds in Waters.

    PubMed

    Bonifacio, Riza Gabriela; Nam, Go-Un; Eom, In-Yong; Hong, Yong-Seok

    2017-11-07

    Time-integrative passive sampling of volatile organic compounds (VOCs) in water can now be accomplished using a solid ceramic dosimeter. A nonporous ceramic, which excludes the permeation of water, allowing only gas-phase diffusion of VOCs into the resin inside the dosimeter, effectively captured the VOCs. The mass accumulation of 11 VOCs linearly increased with time over a wide range of aqueous-phase concentrations (16.9 to 1100 μg L -1 ), and the linearity was dependent upon the Henry's constant (H). The average diffusivity of the VOCs in the solid ceramic was 1.46 × 10 -10 m 2 s -1 at 25 °C, which was 4 orders of magnitude lower than that in air (8.09 × 10 -6 m 2 s -1 ). This value was 60% greater than that in the water-permeable porous ceramic (0.92 × 10 -10 m 2 s -1 ), suggesting that its mass accumulation could be more effective than that of porous ceramic dosimeters. The mass accumulation of the VOCs in the solid ceramic dosimeter increased in the presence of salt (≥0.1 M) and with increasing temperature (4 to 40 °C) but varied only slightly with dissolved organic matter concentration. The solid ceramic dosimeter was suitable for the field testing and measurement of time-weighted average concentrations of VOC-contaminated waters.

  10. LOW-COST PERSONNEL DOSIMETER.

    DTIC Science & Technology

    specification was achieved by simplifying and improving the basic Bendix dosimeter design, using plastics for component parts, minimizing direct labor, and making the instrument suitable for automated processing and assembly. (Author)

  11. Performance improvement of pentacosa-diynoic acid label dosimeter for radiation processing technology

    NASA Astrophysics Data System (ADS)

    Abdel-Fattah, A. A.; Soliman, Y. S.

    2017-12-01

    A radiation sensitive material, 10,12-pentacosa-diynoic acid (PCDA), was incorporated into polyvinyl butyral (PVB) films to develop indicators/dosimeters for blood and food irradiation. The present study aims to improve the dosimetric performance of these previously prepared dosimeters and to extend their shelf life by the combination of a radical scavenger, propyl gallate (PG), and a UV absorber, tinuvin-p (TP). The X-ray diffraction (XRD) patterns of the dosimeters were analysed and their dosimetric characteristics were investigated by specular reflectance in the visible spectrum range of 400-700 nm. Upon irradiation, the films turn blue exhibiting two main bands around 670 and 620 nm. Their dose-response functions were fitted by a double exponential growth, 5 parameters, equation. Irradiation temperature influences the dosimeter response at 670 nm without causing thermochromic transition up to 50 °C in poly-PCDA. The useful dose range is 5-4000 Gy depending on the wavelengths of analysis and PCDA content in the films. The overall uncertainty of dose measurement is less than 6% at 2σ.

  12. Evaluation of a LiF:Mg,Ti thermoluminescent ring dosimeter according to the IEC 62387:2012 Standards

    NASA Astrophysics Data System (ADS)

    Oliveira, Edyelle L. B.; de Barros, Vinícius S. M.; Asfora, Viviane K.; Khoury, Helen J.

    2018-03-01

    This work shows results of type testing of a ring radiation dosimeter system under IEC 62387:2012. The personal dosimeter investigated in this work consists of a commercial one element plastic ring which contains an LiF:Mg,Ti thermoluminescent pellet. By applying requirements for statistical fluctuations and linearity, a minimum measurable dose in Hp(0.07) was established. Energy and angular dependence aided in determining energy correction factors and fading requirements were used to select the most appropriate preheat scheme. Type testing of passive radiation monitors was performed in the Radiation Metrology Laboratory (LMRI-DEN/UFPE) of the Federal University of Pernambuco and is a major step in Brazil for the independent evaluation of these dosimeters, currently not available in the country.

  13. Results from Preliminary Checks on AmBe Neutron Source Number 71

    DTIC Science & Technology

    2011-02-01

    radiation and additional lead shielding was used to shield against gamma radiation emissions. Electronic dosimeters , the MGP DMC2000GN and Thermo EPD...DMC2000GN (S/N: 007395) and EPD-N2 (S/N: 07106323) electronic dosimeters were employed as these both are able to measure and record gamma and neutron...the AN/VDR-2 gamma radiation meter and Meridian Model 5085 neutron meter to confirm this and electronic dosimeters would be worn by personnel to

  14. The Demonstration and Science Experiments (DSX): A Fundamental Science Research Mission Advancing Technologies that Enable MEO Spaceflight

    DTIC Science & Technology

    2006-01-01

    dosimeters aboard the TSX5 and DSP satellites in LEO and GEO, respectively. Figure 13. Space weather data from TSX5 and DSP The Space Weather...capabilities are described in detail in the following sub- sections. 3.2.1 Compact Environment Anomaly Sensor (CEASE) Composed of two dosimeters , two...for DSX is that CEASE will capture and downlink the full dose spectra from each dosimeter , whereas prior versions only captured six reduced data

  15. Personnel Radiation Exposure Associated With X-Rays Emanating from U.S. Coast Guard LORAN High Voltage Vacuum Tube Transmitter Units

    DTIC Science & Technology

    2011-07-01

    dosimeter program. Unfortunately, this limited personnel monitoring program did not address the case of an individual who may have performed...and forearms; feet and ankles 18 ¾ Skin of whole body 7 ½ The USCG does maintain a small radiation personnel dosimeter monitoring program for x...ray technicians at USCG medical clinics (USCG, 2006). This medical clinic dosimeter program reflects a civilian standard of practice, where the x-ray

  16. Overview of the AFRL’s Demonstration and Science Experiments (DSX) Program

    DTIC Science & Technology

    2006-09-01

    most of the space weather data to-date has been accumulated in the LEO and GEO regimes, as illustrated in Figure 11 with data from dosimeters aboard...Composed of two dosimeters , two particle telescopes and a Single Event Effect detector, CEASE has the capability to monitor a broad range of space...panel of the payload module. One change for DSX is that CEASE will capture and downlink the full dose spectra from each dosimeter , whereas prior

  17. Dose-equivalent neutron dosimeter

    DOEpatents

    Griffith, R.V.; Hankins, D.E.; Tomasino, L.; Gomaa, M.A.M.

    1981-01-07

    A neutron dosimeter is disclosed which provides a single measurement indicating the amount of potential biological damage resulting from the neutron exposure of the wearer, for a wide range of neutron energies. The dosimeter includes a detecting sheet of track etch detecting material such as a carbonate plastic, for detecting higher energy neutrons, and a radiator layer contaning conversion material such as /sup 6/Li and /sup 10/B lying adjacent to the detecting sheet for converting moderate energy neutrons to alpha particles that produce tracks in the adjacent detecting sheet.

  18. Environmental Monitoring Instrumentation and Monitoring Techniques for Space Shuttle Launches.

    DTIC Science & Technology

    1983-07-01

    Monitoring Instrumentation 32 1. Chemiluminescence HCl 32 2. Passive Dosimeter 34 3. Piezoelectric Quartz Crystal Microbalance 34 iJ ,- r, T , .{ , , : , Z...Sensing for STS Launohes 44 IV. SUISIAiR AND CONCLUSIONS 45 V. IBCOIMXIONS 47 References 49 Appendix A - Dosimeter Tube Monitoring Results 52 B - TenaxR...Monitoring Results 6 3 Summary of GBOMET HCI Data for the Launches of STS-i through 8 STS-5 at KSC 4 Dosimeter Tube Inlet Configuration Comparison 14 5 pH

  19. Effects of refractive index mismatch in optical CT imaging of polymer gel dosimeters.

    PubMed

    Manjappa, Rakesh; Makki S, Sharath; Kumar, Rajesh; Kanhirodan, Rajan

    2015-02-01

    Proposing an image reconstruction technique, algebraic reconstruction technique-refraction correction (ART-rc). The proposed method takes care of refractive index mismatches present in gel dosimeter scanner at the boundary, and also corrects for the interior ray refraction. Polymer gel dosimeters with high dose regions have higher refractive index and optical density compared to the background medium, these changes in refractive index at high dose results in interior ray bending. The inclusion of the effects of refraction is an important step in reconstruction of optical density in gel dosimeters. The proposed ray tracing algorithm models the interior multiple refraction at the inhomogeneities. Jacob's ray tracing algorithm has been modified to calculate the pathlengths of the ray that traverses through the higher dose regions. The algorithm computes the length of the ray in each pixel along its path and is used as the weight matrix. Algebraic reconstruction technique and pixel based reconstruction algorithms are used for solving the reconstruction problem. The proposed method is tested with numerical phantoms for various noise levels. The experimental dosimetric results are also presented. The results show that the proposed scheme ART-rc is able to reconstruct optical density inside the dosimeter better than the results obtained using filtered backprojection and conventional algebraic reconstruction approaches. The quantitative improvement using ART-rc is evaluated using gamma-index. The refraction errors due to regions of different refractive indices are discussed. The effects of modeling of interior refraction in the dose region are presented. The errors propagated due to multiple refraction effects have been modeled and the improvements in reconstruction using proposed model is presented. The refractive index of the dosimeter has a mismatch with the surrounding medium (for dry air or water scanning). The algorithm reconstructs the dose profiles by estimating refractive indices of multiple inhomogeneities having different refractive indices and optical densities embedded in the dosimeter. This is achieved by tracking the path of the ray that traverses through the dosimeter. Extensive simulation studies have been carried out and results are found to be matching that of experimental results.

  20. Characterization of MOSFET dosimeter angular dependence in three rotational axes measured free-in-air and in soft-tissue equivalent material.

    PubMed

    Koivisto, Juha; Kiljunen, Timo; Wolff, Jan; Kortesniemi, Mika

    2013-09-01

    When performing dose measurements on an X-ray device with multiple angles of irradiation, it is necessary to take the angular dependence of metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters into account. The objective of this study was to investigate the angular sensitivity dependence of MOSFET dosimeters in three rotational axes measured free-in-air and in soft-tissue equivalent material using dental photon energy. Free-in-air dose measurements were performed with three MOSFET dosimeters attached to a carbon fibre holder. Soft tissue measurements were performed with three MOSFET dosimeters placed in a polymethylmethacrylate (PMMA) phantom. All measurements were made in the isocenter of a dental cone-beam computed tomography (CBCT) scanner using 5º angular increments in the three rotational axes: axial, normal-to-axial and tangent-to-axial. The measurements were referenced to a RADCAL 1015 dosimeter. The angular sensitivity free-in-air (1 SD) was 3.7 ± 0.5 mV/mGy for axial, 3.8 ± 0.6 mV/mGy for normal-to-axial and 3.6 ± 0.6 mV/mGy for tangent-to-axial rotation. The angular sensitivity in the PMMA phantom was 3.1 ± 0.1 mV/mGy for axial, 3.3 ± 0.2 mV/mGy for normal-to-axial and 3.4 ± 0.2 mV/mGy for tangent-to-axial rotation. The angular sensitivity variations are considerably smaller in PMMA due to the smoothing effect of the scattered radiation. The largest decreases from the isotropic response were observed free-in-air at 90° (distal tip) and 270° (wire base) in the normal-to-axial and tangent-to-axial rotations, respectively. MOSFET dosimeters provide us with a versatile dosimetric method for dental radiology. However, due to the observed variation in angular sensitivity, MOSFET dosimeters should always be calibrated in the actual clinical settings for the beam geometry and angular range of the CBCT exposure.

  1. Characterization of MOSFET dosimeter angular dependence in three rotational axes measured free-in-air and in soft-tissue equivalent material

    PubMed Central

    Koivisto, Juha; Kiljunen, Timo; Wolff, Jan; Kortesniemi, Mika

    2013-01-01

    When performing dose measurements on an X-ray device with multiple angles of irradiation, it is necessary to take the angular dependence of metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters into account. The objective of this study was to investigate the angular sensitivity dependence of MOSFET dosimeters in three rotational axes measured free-in-air and in soft-tissue equivalent material using dental photon energy. Free-in-air dose measurements were performed with three MOSFET dosimeters attached to a carbon fibre holder. Soft tissue measurements were performed with three MOSFET dosimeters placed in a polymethylmethacrylate (PMMA) phantom. All measurements were made in the isocenter of a dental cone-beam computed tomography (CBCT) scanner using 5º angular increments in the three rotational axes: axial, normal-to-axial and tangent-to-axial. The measurements were referenced to a RADCAL 1015 dosimeter. The angular sensitivity free-in-air (1 SD) was 3.7 ± 0.5 mV/mGy for axial, 3.8 ± 0.6 mV/mGy for normal-to-axial and 3.6 ± 0.6 mV/mGy for tangent-to-axial rotation. The angular sensitivity in the PMMA phantom was 3.1 ± 0.1 mV/mGy for axial, 3.3 ± 0.2 mV/mGy for normal-to-axial and 3.4 ± 0.2 mV/mGy for tangent-to-axial rotation. The angular sensitivity variations are considerably smaller in PMMA due to the smoothing effect of the scattered radiation. The largest decreases from the isotropic response were observed free-in-air at 90° (distal tip) and 270° (wire base) in the normal-to-axial and tangent-to-axial rotations, respectively. MOSFET dosimeters provide us with a versatile dosimetric method for dental radiology. However, due to the observed variation in angular sensitivity, MOSFET dosimeters should always be calibrated in the actual clinical settings for the beam geometry and angular range of the CBCT exposure. PMID:23520268

  2. Effects of refractive index mismatch in optical CT imaging of polymer gel dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manjappa, Rakesh; Makki S, Sharath; Kanhirodan, Rajan, E-mail: rajan@physics.iisc.ernet.in

    2015-02-15

    Purpose: Proposing an image reconstruction technique, algebraic reconstruction technique-refraction correction (ART-rc). The proposed method takes care of refractive index mismatches present in gel dosimeter scanner at the boundary, and also corrects for the interior ray refraction. Polymer gel dosimeters with high dose regions have higher refractive index and optical density compared to the background medium, these changes in refractive index at high dose results in interior ray bending. Methods: The inclusion of the effects of refraction is an important step in reconstruction of optical density in gel dosimeters. The proposed ray tracing algorithm models the interior multiple refraction at themore » inhomogeneities. Jacob’s ray tracing algorithm has been modified to calculate the pathlengths of the ray that traverses through the higher dose regions. The algorithm computes the length of the ray in each pixel along its path and is used as the weight matrix. Algebraic reconstruction technique and pixel based reconstruction algorithms are used for solving the reconstruction problem. The proposed method is tested with numerical phantoms for various noise levels. The experimental dosimetric results are also presented. Results: The results show that the proposed scheme ART-rc is able to reconstruct optical density inside the dosimeter better than the results obtained using filtered backprojection and conventional algebraic reconstruction approaches. The quantitative improvement using ART-rc is evaluated using gamma-index. The refraction errors due to regions of different refractive indices are discussed. The effects of modeling of interior refraction in the dose region are presented. Conclusions: The errors propagated due to multiple refraction effects have been modeled and the improvements in reconstruction using proposed model is presented. The refractive index of the dosimeter has a mismatch with the surrounding medium (for dry air or water scanning). The algorithm reconstructs the dose profiles by estimating refractive indices of multiple inhomogeneities having different refractive indices and optical densities embedded in the dosimeter. This is achieved by tracking the path of the ray that traverses through the dosimeter. Extensive simulation studies have been carried out and results are found to be matching that of experimental results.« less

  3. ULTRASONIC NEUTRON DOSIMETER

    DOEpatents

    Truell, R.; de Klerk, J.; Levy, P.W.

    1960-02-23

    A neutron dosimeter is described which utilizes ultrasonic waves in the megacycle region for determination of the extent of neutron damage in a borosilicate glass through ultrasonic wave velocity and attenuation measurements before and after damage.

  4. System for use with solid state dosimeter

    DOEpatents

    Miller, Steven D.; McDonald, Joseph C.; Eichner, Fred N.; Tomeraasen, Paul L.

    1990-01-01

    The present invention constitutes a system for determining the amounts of ionizing radiation to which dosimeters using thermoluminescent materials have been exposed. In accordance with this system, the thermoluminescent materials which comprise the dosimeters are first cooled by contact with a cryogenic substance such as liquified nitrogen. The thermoluminescent materials are then optically stimulated by exposure to ultraviolet light. Thereafter, the amounts of visible light emitted by the thermoluminescent materials are detected and counted as the materials are allowed to warm up to room temperature. The amounts of luminescence exhibited by the materials are related to radiation exposure and provide a sensitive measure of radiation dosage. It has been discovered that the above procedure is most effective when heavily doped thermoluminescent materials are used and that the procedure allows many useful plastic materials to now be employed in dosimeter constructions.

  5. System for use with solid state dosimeter

    DOEpatents

    Miller, S.D.; McDonald, J.C.; Eichner, F.N.; Tomeraasen, P.L.

    1990-09-04

    The present invention constitutes a system for determining the amounts of ionizing radiation to which dosimeters using thermoluminescent materials have been exposed. In accordance with this system, the thermoluminescent materials which comprise the dosimeters are first cooled by contact with a cryogenic substance such as liquefied nitrogen. The thermoluminescent materials are then optically stimulated by exposure to ultraviolet light. Thereafter, the amounts of visible light emitted by the thermoluminescent materials are detected and counted as the materials are allowed to warm up to room temperature. The amounts of luminescence exhibited by the materials are related to radiation exposure and provide a sensitive measure of radiation dosage. It has been discovered that the above procedure is most effective when heavily doped thermoluminescent materials are used and that the procedure allows many useful plastic materials to now be employed in dosimeter constructions. 3 figs.

  6. Development and evaluation of multi-energy PbO dosimeter for quality assurance of image-guide radiation therapy devices

    NASA Astrophysics Data System (ADS)

    Kim, Kyo-Tae; Heo, Ye-Ji; Han, Moo-Jae; Oh, Kyung-Min; Lee, Young-Kyu; Kim, Shin-Wook; Park, Sung-Kwang

    2017-04-01

    In radiation therapy, accurate radiotherapy treatment plan (RTP) reproduction is necessary to optimize the clinical results. Thus, attempts have recently been made to ensure high RTP reproducibility using image-guide radiation therapy (IGRT) technology. However, the clinical use of digital X-ray equipment requires extended quality assurance (QA) for those devices, since the IGRT device quality determines the precision of intensity-modulated radiation therapy. The study described in this paper was focused on developing a multi-energy PbO dosimeter for IGRT device QA. The Schottky-type polycrystalline PbO dosimeter with a Au/PbO/ITO structure was evaluated by comparing its response coincidence, dose linearity, measurement reproducibility, linear attenuation coefficient, and percent depth dose with those of Si diode and standard ionization chamber dosimeters.

  7. The study of N-isopropylacrylamide gel dosimeter doped iodinated contrast agents

    NASA Astrophysics Data System (ADS)

    Chang, Y. J.; Hsieh, L. L.; Liu, M. H.; Liu, J. S.; Hsieh, B. T.

    2013-06-01

    Low toxicity of N-isopropylacrylamide (NIPAM) dosimeter was doped with clinical iodinated contrast medium agents(Iobitridol (Xenetix® 350) and organically bound iodine (Conray® 60) as radiation sensitizers; The suitable gel dosimeter preparation formula in this research was 5 w/w% gelatin, 5 w/w% N-isopropylacrylamide, 3 w/w% N,N-methylene-bis-acrylamide, and 5 mM Tetrakis phosphonium chloride. The spiral CT was irradiator, and 120 kVp was the operating tube voltage. The maximum radiation dose was 0.6 Gy, and optical CT was the gel measurement device used. The results showed SERs with the addition of radiosensitizers were 10.70 (Xenetix® 350) and 9.67 (Conray® 60), respectively. Thus, the polymerized gel dosimeter could be used in the efficacy evaluation of low-energy and low-radiation dose.

  8. Redox-Phen solution: A water equivalent dosimeter for UVA, UVB and X-rays radiation

    NASA Astrophysics Data System (ADS)

    Marini, A.; Ciribolla, C.; Lazzeri, L.; d'Errico, F.

    2018-06-01

    Polysulphone films are the only type of UV passive dosimeters that are widely adopted for research and personal monitoring. Even though many studies concentrated on the development and characterization of these films, they still present some shortcomings. The more important limitations of them are that they can measure only UVB radiations and that they change color at 330 nm, requiring special equipment to read them. To overcome these limitations we developed an aqueous dosimeter that is sensitive to UVA, UVB and X-rays named Redox-Phen solution. This dosimeter is inexpensive and water equivalent, being made of more than 99 wt% of water. It changes color in the visible region upon irradiation, thus it can be measured via simple optical method, and an evaluation of the exposition can be made also by naked eyes.

  9. Estimation of the influence of radical effect in the proton beams using a combined approach with physical data and gel data

    NASA Astrophysics Data System (ADS)

    Haneda, K.

    2016-04-01

    The purpose of this study was to estimate an impact on radical effect in the proton beams using a combined approach with physical data and gel data. The study used two dosimeters: ionization chambers and polymer gel dosimeters. Polymer gel dosimeters have specific advantages when compared to other dosimeters. They can measure chemical reaction and they are at the same time a phantom that can map in three dimensions continuously and easily. First, a depth-dose curve for a 210 MeV proton beam measured using an ionization chamber and a gel dosimeter. Second, the spatial distribution of the physical dose was calculated by Monte Carlo code system PHITS: To verify of the accuracy of Monte Carlo calculation, and the calculation results were compared with experimental data of the ionization chamber. Last, to evaluate of the rate of the radical effect against the physical dose. The simulation results were compared with the measured depth-dose distribution and showed good agreement. The spatial distribution of a gel dose with threshold LET value of proton beam was calculated by the same simulation code. Then, the relative distribution of the radical effect was calculated from the physical dose and gel dose. The relative distribution of the radical effect was calculated at each depth as the quotient of relative dose obtained using physical and gel dose. The agreement between the relative distributions of the gel dosimeter and Radical effect was good at the proton beams.

  10. Personnel neutron dosimetry using electrochemically etched CR-39 foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hankins, D.E.; Homann, S.; Westermark, J.

    1986-09-17

    A personnel neutron dosimetry system has been developed based on the electrochemical etching of CR-39 plastic at elevated temperatures. The doses obtained using this dosimeter system are more accurate than those obtained using other dosimetry systems, especially when varied neutron spectra are encountered. This Cr-39 dosimetry system does not have the severe energy dependence that exists with albedo neutron dosimeters or the fading and reading problems encountered with NTA film. The dosimetry system employs an electrochemical etch procedure that be used to process large numbers of Cr-39 dosimeters. The etch procedure is suitable for operations where the number of personnelmore » requires that many CR-39 dosimeters be processed. Experience shows that one full-time technician can etch and evaluate 2000 foils per month. The energy response to neutrons is fairly flat from about 80 keV to 3.5 MeV, but drops by about a factor of three in the 13 to 16 MeV range. The sensitivity of the dosimetry system is about 7 tracks/cm/sup 2//mrem, with a background equivalent to about 8 mrem for new CR-39 foils. The limit of sensitivity is approximately 10 mrem. The dosimeter has a significant variation in directional dependence, dropping to about 20% at 90/sup 0/. This dosimeter has been used for personnel neutron dosimetry at the Lawrence Livermore National Laboratory for more tha 18 months. 6 refs., 23 figs., 2 tabs.« less

  11. Alternative chitosan-based EPR dosimeter applicable for a relatively wide range of gamma radiation doses

    NASA Astrophysics Data System (ADS)

    Piroonpan, Thananchai; Katemake, Pichayada; Panritdam, Eagkapong; Pasanphan, Wanvimol

    2017-12-01

    Chitosan biopolymer is proposed as an alternative EPR dosimeter. Its ability to be EPR dosimeter was studied in comparison with the conventional alanine, sugars (i.e., glucose and sucrose), formate derivatives (i.e., lithium (Li), magnesium (Mg), and calcium (Ca) formate). Ethylene vinyl acetate (EVA) and paraffin were used as binder for the preparation of composite EPR dosimeter. Dose responses of all materials were investigated in a wide dose range of radiation doses, i.e., low-level (0-1 kGy), medium-level (1-10 kGy) and high-level (10-100 kGy). The EPR dosimeter properties were studied under different parameters, i.e., microwave power, materials contents, absorbed doses, storage conditions and post-irradiation effects. Li-formate showed a simple EPR spectrum and exhibited superior radiation response for low-dose range; whereas chitosan and sucrose exhibited linear dose response in all studied dose ranges. The EPR signals of chitosan exhibited similar stability as glucose, Li-formate and alanine at ambient temperature after irradiation as long as a year. All EPR signals of the studied materials were affected post-irradiation temperature and humidity after gamma irradiation. The EPR signal of chitosan exhibited long-term stability and it was not sensitive to high storage temperatures and humidity values after irradiation. Chitosan has a good merit as the alternative bio-based material for a stable EPR dosimeter in a wide range of radiation-absorbed doses.

  12. a Thermally Desorbable Miniature Passive Dosimeter for Organic Vapors

    NASA Astrophysics Data System (ADS)

    Gonzalez, Jesus Antonio

    A thermally desorbable miniature passive dosimeter (MPD) for organic vapors has been developed in conformity with theoretical and practical aspects of passive dosimeter design. The device was optimized for low sample loadings resulting from short-term and/or low concentration level exposure. This was accomplished by the use of thermal desorption rather than solvent elution, which provided the GC method with significantly higher sensitivity. Laboratory evaluation of this device for factors critical to the performance of passive dosimeters using benzene as the test vapor included: desorption efficiency (97.2%), capacity (1400 ppm-min), sensitivity (7ng/sample or 0.06 ppmv for 15 minutes sampling) accuracy and precision, concentration level, environmental conditions (i.e., air face velocity, relative humidity) and sample stability during short (15 minutes) and long periods of time (15 days). This device has demonstrated that its overall accuracy meets NIOSH and OSHA requirements for a sampling and analytical method for the exposure concentration range of 0.1 to 50 ppm (v/v) and 15 minutes exposures. It was demonstrated that the MPD operates in accordance with theoretically predicted performance and should be adequate for short-term and/or low concentration exposure monitoring of organic vapors in the workplace. In addition a dynamic vapor exposure evaluation system for passive dosimeters have been validated using benzene as the test vapor. The system is capable of generating well defined short-square wave concentration profiles suitable for the evaluation of passive dosimeters for ceiling exposure monitoring.

  13. Dose verification to cochlea during gamma knife radiosurgery of acoustic schwannoma using MOSFET dosimeter.

    PubMed

    Sharma, Sunil D; Kumar, Rajesh; Akhilesh, Philomina; Pendse, Anil M; Deshpande, Sudesh; Misra, Basant K

    2012-01-01

    Dose verification to cochlea using metal oxide semiconductor field effect transistor (MOSFET) dosimeter using a specially designed multi slice head and neck phantom during the treatment of acoustic schwannoma by Gamma Knife radiosurgery unit. A multi slice polystyrene head phantom was designed and fabricated for measurement of dose to cochlea during the treatment of the acoustic schwannoma. The phantom has provision to position the MOSFET dosimeters at the desired location precisely. MOSFET dosimeters of 0.2 mm x 0.2 mm x 0.5 μm were used to measure the dose to the cochlea. CT scans of the phantom with MOSFETs in situ were taken along with Leksell frame. The treatment plans of five patients treated earlier for acoustic schwannoma were transferred to the phantom. Dose and coordinates of maximum dose point inside the cochlea were derived. The phantom along with the MOSFET dosimeters was irradiated to deliver the planned treatment and dose received by cochlea were measured. The treatment planning system (TPS) estimated and measured dose to the cochlea were in the range of 7.4 - 8.4 Gy and 7.1 - 8 Gy, respectively. The maximum variation between TPS calculated and measured dose to cochlea was 5%. The measured dose values were found in good agreement with the dose values calculated using the TPS. The MOSFET dosimeter can be a suitable choice for routine dose verification in the Gamma Knife radiosurgery.

  14. Fully 3D refraction correction dosimetry system.

    PubMed

    Manjappa, Rakesh; Makki, S Sharath; Kumar, Rajesh; Vasu, Ram Mohan; Kanhirodan, Rajan

    2016-02-21

    The irradiation of selective regions in a polymer gel dosimeter results in an increase in optical density and refractive index (RI) at those regions. An optical tomography-based dosimeter depends on rayline path through the dosimeter to estimate and reconstruct the dose distribution. The refraction of light passing through a dose region results in artefacts in the reconstructed images. These refraction errors are dependant on the scanning geometry and collection optics. We developed a fully 3D image reconstruction algorithm, algebraic reconstruction technique-refraction correction (ART-rc) that corrects for the refractive index mismatches present in a gel dosimeter scanner not only at the boundary, but also for any rayline refraction due to multiple dose regions inside the dosimeter. In this study, simulation and experimental studies have been carried out to reconstruct a 3D dose volume using 2D CCD measurements taken for various views. The study also focuses on the effectiveness of using different refractive-index matching media surrounding the gel dosimeter. Since the optical density is assumed to be low for a dosimeter, the filtered backprojection is routinely used for reconstruction. We carry out the reconstructions using conventional algebraic reconstruction (ART) and refractive index corrected ART (ART-rc) algorithms. The reconstructions based on FDK algorithm for cone-beam tomography has also been carried out for comparison. Line scanners and point detectors, are used to obtain reconstructions plane by plane. The rays passing through dose region with a RI mismatch does not reach the detector in the same plane depending on the angle of incidence and RI. In the fully 3D scanning setup using 2D array detectors, light rays that undergo refraction are still collected and hence can still be accounted for in the reconstruction algorithm. It is found that, for the central region of the dosimeter, the usable radius using ART-rc algorithm with water as RI matched medium is 71.8%, an increase of 6.4% compared to that achieved using conventional ART algorithm. Smaller diameter dosimeters are scanned with dry air scanning by using a wide-angle lens that collects refracted light. The images reconstructed using cone beam geometry is seen to deteriorate in some planes as those regions are not scanned. Refraction correction is important and needs to be taken in to consideration to achieve quantitatively accurate dose reconstructions. Refraction modeling is crucial in array based scanners as it is not possible to identify refracted rays in the sinogram space.

  15. Monte Carlo Assessments of Absorbed Doses to the Hands of Radiopharmaceutical Workers Due to Photon Emitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilas, Dan; Eckerman, Keith F; Karagiannis, Harriet

    This paper describes the characterization of radiation doses to the hands of nuclear medicine technicians resulting from the handling of radiopharmaceuticals. Radiation monitoring using ring dosimeters indicates that finger dosimeters that are used to show compliance with applicable regulations may overestimate or underestimate radiation doses to the skin depending on the nature of the particular procedure and the radionuclide being handled. To better understand the parameters governing the absorbed dose distributions, a detailed model of the hands was created and used in Monte Carlo simulations of selected nuclear medicine procedures. Simulations of realistic configurations typical for workers handling radiopharmaceuticals weremore » performedfor a range of energies of the source photons. The lack of charged-particle equilibrium necessitated full photon-electron coupled transport calculations. The results show that the dose to different regions of the fingers can differ substantially from dosimeter readings when dosimeters are located at the base of the finger. We tried to identify consistent patterns that relate the actual dose to the dosimeter readings. These patterns depend on the specific work conditions and can be used to better assess the absorbed dose to different regions of the exposed skin.« less

  16. Dose Assessments to the Hands of Radiopharmaceutical Workers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilas, Dan; Eckerman, Keith F; Sherbini, Sami

    This paper describes the characterization of radiation doses to the hands of nuclear medicine technicians resulting from the handling of radiopharmaceuticals. Radiation monitoring using ring dosimeters indicates that finger dosimeters may overestimate or underestimate the radiation doses to the skin that are used to show compliance with applicable regulations depending on the nature of the particular procedure and the radioisotope being handled. To better understand the parameters governing the absorbed dose distributions, a detailed model of the hands was created and used in Monte Carlo simulations of selected nuclear medicine procedures. Simulations on realistic configurations typical for workers handling radiopharmaceuticalsmore » were performed for a range of energies of the source photons. The lack of charged-particle equilibrium necessitated full photon-electron coupled transport calculations. The results show that the dose to different regions of the fingers can differ substantially from the dosimeters' readings when the dosimeters are located at the base of the finger. We tried to identify consistent patterns that relate the actual dose to the dosimeter readings. These patterns depend on the specific work conditions and can be used to better assess the absorbed dose to different regions of the exposed skin.« less

  17. Prevention of Transfusion-Associated Graft-versus-Host Disease by Irradiation: Technical Aspect of a New Ferrous Sulphate Dosimetric System

    PubMed Central

    Del Lama, Lucas Sacchini; de Góes, Evamberto Garcia; Petchevist, Paulo César Dias; Moretto, Edson Lara; Borges, José Carlos; Covas, Dimas Tadeu; de Almeida, Adelaide

    2013-01-01

    Irradiation of whole blood and blood components before transfusion is currently the only accepted method to prevent Transfusion-Associated Graft-Versus-Host-Disease (TA-GVHD). However, choosing the appropriate technique to determine the dosimetric parameters associated with blood irradiation remains an issue. We propose a dosimetric system based on the standard Fricke Xylenol Gel (FXG) dosimeter and an appropriate phantom. The modified dosimeter was previously calibrated using a 60Co teletherapy unit and its validation was accomplished with a 137Cs blood irradiator. An ionization chamber, standard FXG, radiochromic film and thermoluminescent dosimeters (TLDs) were used as reference dosimeters to determine the dose response and dose rate of the 60Co unit. The dose distributions in a blood irradiator were determined with the modified FXG, the radiochromic film, and measurements by TLD dosimeters. A linear response for absorbed doses up to 54 Gy was obtained with our system. Additionally, the dose rate uncertainties carried out with gel dosimetry were lower than 5% and differences lower than 4% were noted when the absorbed dose responses were compared with ionization chamber, film and TLDs. PMID:23762345

  18. Dose algorithm for EXTRAD 4100S extremity dosimeter for use at Sandia National Laboratories.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potter, Charles Augustus

    An updated algorithm for the EXTRAD 4100S extremity dosimeter has been derived. This algorithm optimizes the binning of dosimeter element ratios and uses a quadratic function to determine the response factors for low response ratios. This results in lower systematic bias across all test categories and eliminates the need for the 'red strap' algorithm that was used for high energy beta/gamma emitting radionuclides. The Radiation Protection Dosimetry Program (RPDP) at Sandia National Laboratories uses the Thermo Fisher EXTRAD 4100S extremity dosimeter, shown in Fig 1.1 to determine shallow dose to the extremities of potentially exposed individuals. This dosimeter consists ofmore » two LiF TLD elements or 'chipstrates', one of TLD-700 ({sup 7}Li) and one of TLD-100 (natural Li) separated by a tin filter. Following readout and background subtraction, the ratio of the responses of the two elements is determined defining the penetrability of the incident radiation. While this penetrability approximates the incident energy of the radiation, X-rays and beta particles exist in energy distributions that make determination of dose conversion factors less straightforward in their determination.« less

  19. Investigation of vacuum pumping on the dose response of the MAGAS normoxic polymer gel dosimeter.

    PubMed

    Venning, A J; Mather, M L; Baldock, C

    2005-06-01

    The effect of vacuum pumping on the dose response of the MAGAS polymer gel dosimeter has been investigated. A delay of several days post-manufacture before irradiation was previously necessary due to the slow oxygen scavenging of ascorbic acid. The MAGAS polymer gel dosimeter was vacuum pumped before gelation to remove dissolved oxygen. The MAGAS polymer gel dosimeter was poured into glass screw-top vials, which were irradiated at various times, post-manufacture to a range of doses. Magnetic resonance imaging techniques were used to determine the R2-dose response and R2-dose sensitivity of the MAGAS polymer gel. The results were compared with a control batch of MAGAS polymer gel that was not vacuum pumped. It was shown that vacuum pumping on the MAGAS polymer gel solution immediately prior to sealing in glass screw-top vials initially increases the R2-dose response and R2-dose sensitivity of the dosimeter. An increase in the R2-dose response and R2-dose sensitivity was observed with increasing time between manufacture and irradiation. Over the range of post-manufacture irradiation times investigated, the greatest R2-dose response and R2-dose sensitivity occurred at 96 hours.

  20. Chemical Dosimeter Tube With Coaxial Sensing Rod

    NASA Technical Reports Server (NTRS)

    Lueck, Dale E.

    1993-01-01

    Improved length-of-stain (LOS) chemical dosimeter indicates total dose of chemical vapor in air. Made with rods and tubes of various diameters to obtain various sensitivities and dynamic ranges. Sensitivity larger and dose range smaller when more room for diffusion in gap between tube and rod. Offers greater resistance to changing of color of exposed dye back to color of unexposed condition, greater sensitivity, and higher degree of repeatability. Developed to measure doses of gaseous HCI, dosimeter modified by use of other dyes to indicate doses of other chemical vapors.

  1. Descriptive Summaries of the Research Development Test & Evaluation. Army Appropriation Fiscal Year 1984. Supporting Data Fiscal Year 1984 Budget Estimate Submitted to Congress--February 1983. Volume II.

    DTIC Science & Technology

    1983-02-01

    of reprogranming action to support procurement of the reader, CP-69, associated with the Individual dosimeter , DT-238. The funding decrease of $23,700...meter has been adapted for Army use, and the Air For- i is participating in the tactical dosimeter program. An installation fallout monitor and alarm...system, the AN/GDQ3. was developed Jointly with the C.~nadian Department of Defense Production. and the DT-236 Individual dosimeter Is being developed

  2. Performance of optically stimulated luminescence Al₂O₃ dosimeter for low doses of diagnostic energy X-rays.

    PubMed

    Lim, Chang Seon; Lee, Sang Bock; Jin, Gye Hwan

    2011-10-01

    Personal dosimeters measure the radiation dose from exposure to hazardous sources outside the body. The present manuscript evaluates the performance of a commercially available optically stimulated luminescence (OSL) Al₂O₃ dosimeter using diagnostic energy X-rays. The OSL system satisfies the ANSI N13.11-2001 performance criteria for low dose diagnostic energy X-rays. Non-uniformity of sensitivity, dose linearity, X-ray energy response, and angular performance are all within the criteria of IEC-62387-1(2007). Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. SU-E-I-09: Application of LiF:Mg,Cu (TLD-100H) Dosimeters for in Diagnostic Radiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sina, S; Zeinali, B; Karimipourfard, M

    Purpose: Accurate dosimetery is very essential in diagnostic radiology. The goal of this study is to verify the application of LiF:Mg,Cu,P (TLD100H) in obtaining the Entrance skin dose (ESD) of patients undergoing diagnostic radiology. The results of dosimetry performed by TLD-100H, were compared with those obtained by TLD100, which is a common dosimeter in diagnostic radiology. Methods: In this study the ESD values were measured using two types of Thermoluminescence dosimeters (TLD-100, and TLD-100H) for 16 patients undergoing diagnostic radiology (lumbar spine imaging). The ESD values were also obtained by putting the two types of TLDs at the surface ofmore » Rando phantom for different imaging techniques and different views (AP, and lateral). The TLD chips were annealed with a standard procedure, and the ECC values for each TLD was obtained by exposing the chips to equal amount of radiation. Each time three TLD chips were covered by thin dark plastic covers, and were put at the surface of the phantom or the patient. The average reading of the three chips was used for obtaining the dose. Results: The results show a close agreement between the dose measuered by the two dosimeters.According to the results of this study, the TLD-100H dosimeters have higher sensitivities (i.e.signal(nc)/dose) than TLD-100.The ESD values varied between 2.71 mGy and 26.29 mGy with the average of 11.89 mGy for TLD-100, and between 2.55 mGy and 27.41 mGy with the average of 12.32 mGy for measurements. Conclusion: The TLD-100H dosimeters are suggested as effective dosimeters for dosimetry in low dose fields because of their higher sensitivities.« less

  4. SU-D-213-06: Dosimetry of Modulated Electron Radiation Therapy Using Fricke Gel Dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gawad, M Abdel; Elgohary, M; Hassaan, M

    Purpose: Modulated electron radiation therapy (MERT) has been proposed as an effective modality for treatment of superficial targets. MERT utilizes multiple beams of different energies which are intensity modulated to deliver optimized dose distribution. Energy independent dosimeters are thus needed for quantitative evaluations of MERT dose distributions and measurements of absolute doses delivered to patients. Thus in the current work we study the feasibility of Fricke gel dosimeters in MERT dosimetry. Methods: Batches of radiation sensitive Fricke gel is fabricated and poured into polymethyl methacrylate cuvettes. The samples were irradiated in solid water phantom and a thick layer of bolusmore » was used as a buildup. A spectrophotometer system was used for measuring the color changes (the absorbance) before and after irradiation and then we calculate net absorbance. We constructed calibration curves to relate the measured absorbance in terms of absorbed dose for all available electron energies. Dosimetric measurements were performed for mixed electron beam delivery and we also performed measurement for segmented field delivery with the dosimeter placed at the junction of two adjacent electron beams of different energies. Dose measured by our gel dosimetry is compared to that calculation from our precise treatment planning system. We also initiated a Monte Carlo study to evaluate the water equivalence of our dosimeters. MCBEAM and MCSIM codes were used for treatment head simulation and phantom dose calculation. PDDs and profiles were calculated for electron beams incident on a phantom designed with 1cm slab of Fricke gel. Results: The calibration curves showed no observed energy dependence with all studied electron beam energies. Good agreement was obtained between dose calculated and that obtained by gel dosimetry. Monte Carlo results illustrated the tissue equivalency of our Gel dosimeters. Conclusion: Fricke Gel dosimeters represent a good option for the dosimetric quality assurance prior to MERT application.« less

  5. SU-E-T-643: Pure Alanine Dosimeter for Verification Dosimetry in IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Karmi, Anan M.; Zraiqat, Fadi

    Purpose: The objective of this study was evaluation of accuracy of pure alanine dosimeters measuring intensity-modulated radiation therapy (IMRT) dose distributions in a thorax phantom. Methods: Alanine dosimeters were prepared in the form of 110 mg pure L-α-alanine powder filled into clear tissue-equivalent polymethylmethacrylate (PMMA) plastic tubes with the dimensions 25 mm length, 3 mm inner diameter, and 1 mm wall thickness. A dose-response calibration curve was established for the alanine by placing the dosimeters at 1.5 cm depth in a 30×30×30 cm{sup 3} solid water phantom and then irradiating on a linac with 6 MV photon beam at 10×10more » cm{sup 2} field size to doses ranging from 1 to 5 Gy. Electron paramagnetic resonance (EPR) spectroscopy was used to determine the absorbed dose in alanine. An IMRT treatment plan was designed for a commercial heterogeneous CIRS thorax phantom and the dose values were calculated at three different points located in tissue, lung, and bone equivalent materials. A set of dose measurements was carried out to compare measured and calculated dose values by placing the alanine dosimeters at those selected locations inside the thorax phantom and delivering the IMRT to the phantom. Results: The alanine dose measurements and the IMRT plan dose calculations were found to be in agreement within ±2%. Specifically, the deviations were −0.5%, 1.3%, and −1.7% for tissue, lung, and bone; respectively. The slightly large deviations observed for lung and bone may be attributed to tissue inhomogeneity, steep dose gradients in these regions, and uncontrollable changes in spectrometer conditions. Conclusion: The results described herein confirmed that pure alanine dosimeter was suitable for in-phantom dosimetry of IMRT beams because of its high sensitivity and acceptable accuracy. This makes the dosimeter a promising option for quality control of the therapeutic beams, complementing the commonly used ionization chambers, TLDs, and films.« less

  6. SU-F-T-304: Complex Multi-PTV Treatment Evaluation Using a Remotely Processed 3D Gel Dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoisak, J; Dragojevic, I; Sutlief, S

    Purpose: A new 3D gel dosimeter (ClearView™, Modus Medical Systems) was investigated for use as a QA tool for stereotactic radiosurgery (SRS) plans exhibiting high dose gradients and spatially separated treatment targets. The unique feature of this gel dosimeter is the remote processing service provided by Modus Medical Systems. Methods: The gel dosimeters were filled in either 10 cm diameter or 15 cm diameter clear plastic jars. The jars were then shipped in ice-cooled containers to our department for irradiation. Clinical SRS plans for treatment of multiple metastases and plans with simulated concave structures were applied to a CT scanmore » of the gel dosimeter. The gel was irradiated in treatment position using modulated arcs and then returned in the cooled container for processing. The 3D gel dose was compared to the DICOM-RT dose from the treatment plan to assess dosimetric and geometric agreement. Results: There was no discernible difference between the planned and measured dose for dose gradients as high as 10%/mm, which was the highest gradient we evaluated. Geometric agreement for distant metastases separated by 6 cm was within 1.5 mm. Among three identically irradiated gels using a plan intended for nine metastases, the 3%/3mm gamma passing rate was 84.5% with a range of 14.7%, measured over the entire volume of the dosimeter. Regions of larger gamma values correlated with geometric offsets between the planned and measured data. Conclusion: The gel dosimeter exhibits the dosimetric and geometric characteristics necessary for 3D evaluation of treatment plan deliverability. The range of observed gamma passing rates suggests a high sensitivity to geometric registration. With proper management of geometric registration between planned and measured data, this service should enable a radiation oncology department to use 3D dosimetry in end-to-end testing or patient plan delivery QA without the expense of an in-house processing system.« less

  7. TU-F-BRE-08: Significant Variations in Measured Small Cone Output Factor for FFF Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudhyadhom, A; Ma, L; Kirby, N

    2014-06-15

    Purpose: To evaluate the measurement accuracy of several dosimeters for small cone output factors in two SRS/SBRT dedicated systems with Flattening Filter Free (FFF) beams: a Varian TrueBeam STx (TB) and an Accuray CyberKnife VSI (CK). Output factors (OFs) were measured for both machines and for CK, compared against a Monte Carlo model. Methods: Dose measurements were taken using three different FFF beams (TB 6XFFF, TB 10XFFF, and CK 6XFFF). Three commonly used types of dosimeters were examined in this work: a micro-ion chamber (Exradin A16), two shielded diodes (PTW TN60008 and PTW TN60017), and radiochromic film (Gafchromic EBT2). Measuredmore » OFs from these dosimeters were compared with each other and OFs measured with an Exradin W1 scintillator. Monte Carlo determined correction factors for the CK beam for the micro-ion chamber and diodes were applied to the respective OF measurements and compared against scintillator measured OFs corrected for volume averaging. Results: OFs measured for the smallest fields using the micro-ion chamber, diodes, scintillator, and film varied substantially (with up to a 16% difference between dosimeters). Micro-ion chamber and film OF measurements were up to 9% and 10%, respectively, lower than scintillator measurements for the smallest fields. OF measurements by diode were up to 6% greater than scintillator measurements for the smallest fields. With correction factors, the micro-ion chamber and diode measured OFs showed good agreement with scintillator measured OFs for the CK 6XFFF beam (within 3% and 1.5%, respectively). Conclusion: Uncorrected small field OFs vary significantly with dosimeter. The accuracy of scintillator measurements for small field OFs may be greater than the other dosimeters studied in this work (when uncorrected). Measurements involving EBT2 film may Result in lower accuracy for smaller fields (less than 10mm). Care should be taken in the choice of the dosimeter used for small field OF measurements.« less

  8. SU-F-T-477: Investigation of DEFGEL Dosimetry Using MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matrosic, C; McMillan, A; Bednarz, B

    Purpose: The DEFGEL dosimeter/phantom allows for the measurement of 3D dose distributions while maintaining tissue equivalence and deformability. Although DEFGEL is traditionally read out with optical CT, the use of MRI would permit the measurement of 3D dose distributions in optically interfering configurations, like while embedded in a phantom. To the knowledge of the authors, this work is the first investigation that uses MRI to measure dose distributions in DEFGEL dosimeters. Methods: The DEFGEL (6%T) formula was used to create 1 cm thick, 4.5 cm diameter cylindrical dosimeters. The dosimeters were irradiated using a Varian Clinac 21EX linac. The MRImore » based transverse relaxation rate (R2) of the gel was measured in a central slice of the dosimeter with a Spin-Echo (SE) pulse sequence on a 3T GE SIGNA PET/MR scanner. The R2 values were fit to a monoexponential dose response equation using in-house software (MATLAB). Results: The data was well fit using a monoexponential fit for R2 as a function of absorbed dose (R{sup 2} = 0.9997). The fitting parameters of the monoexponential fit resulted in a 0.1229 Gy{sub −1}s{sub −1} slope. The data also resulted in an average standard deviation of 1.8% for the R2 values within the evaluated ROI. Conclusion: The close fit for the dose response curve shows that a DEFGEL based dosimeter can be paired with a SE MRI acquisition. The Type A uncertainty of the MRI method shows adequate precision, while the slope of the fit curve is large enough that R2 differences between different gel doses are distinguishable. These results suggest that the gel could potentially be used in configurations where an optical readout is not viable, such as measurements with the gel dosimeter positioned inside larger or optically opaque phantoms. This work is partially funded by NIH grant R01CA190298.« less

  9. Radiation dosimeter utilizing the thermoluminescence of lithium fluoride.

    PubMed

    CAMERON, J R; DANIELS, F; JOHNSON, N; KENNEY, G

    1961-08-04

    A dosimeter, with little wavelength dependence and large useful energy range for electromagnetic radiation, which is simple to use and read, has been developed. It appears to have applications in personnel monitoring as well as radiation research.

  10. Characterisation of TruView™: a new 3-D reusable radiochromic MethylThymolBlue based gel dosimeter for ionising radiations

    NASA Astrophysics Data System (ADS)

    Colnot, J.; Huet, C.; Clairand, I.

    2017-05-01

    TruView™ is a new water-equivalent reusable Fricke gel dosimeter based on MethylThymolBlue reactive dye. Details of the characterisation of the TruView™ MTB gel dosimeter by spectrophotometric measurements and of its reading with the Optical-CT Scanner Vista™ are described. In this study, the different parameters influencing TruView™ dose response have been studied and its performances have been compared to chamber and diodes measurements. This gel presents a linear response with dose up to 20 Gy, independent in the investigated range of photon beam energy and dose rate and also a good intra-batch uniformity. Ions diffusion into the matrix homogenizes the gel after a week, losing dosimetric information but allowing a new irradiation to be performed. However, auto-oxidation happens before and after irradiation, degrading the dosimeter response and stability. Storage and reading conditions affect the response as well.

  11. RADIATION DOSIMETER

    DOEpatents

    Balkwell, W.R. Jr.; Adams, G.D. Jr.

    1960-05-10

    An improvement was made in the determination of amounts of ionizing radiation, particularly low-energy beta particles of less than 1000 rad total dose by means of fluid-phase dosimeter employing a stabilized-- sensitized ferrous-ferric colorimetric system in a sulphuric acid medium. The improvement in the dosimeter consists of adding to the ferrous-ferric system in concentrations of 10/sub -2/ to 10/sup -4/M an organic compound having one or more carboxylic or equivalent groups, such compounds being capable of chelating or complexing the iron ions in the solution. Suitable sensitizing and stabilizing agents are benzoic, phthalic, salicylic, malonic, lactic, maleic, oxalic, citric, succinic, phenolic tartaric, acetic, and adipic acid, as well as other compounds which are added to the solution alone or in certain combinations. As in conventional fluid-phase dosimeters, the absorbed dosage is correlated with a corresponding change in optical density at particular wavelengths of the solution.

  12. Printable UV personal dosimeter: sensitivity as a function of DoD parameters and number of layers of a functional photonic ink

    NASA Astrophysics Data System (ADS)

    Sousa, Felipe L. N.; Mojica-Sánchez, Lizeth C.; Gavazza, Sávia; Florencio, Lourdinha; Vaz, Elaine C. R.; Santa-Cruz, Petrus A.

    2016-04-01

    This work presents ‘intelligent papers’ obtained by functional inks printed on cellulose-sheets by DoD inkjet technology and their performance as a photonic device for UV-radiation dosimetry. The dosimeter operation is based on the photodegradation of the active part of a photonic ink, btfa (4,4,4-trifluoro-1-phenyl-1,3-butanedione) ligands in Eu(III) complex, as a function of the UV dose (Jcm-2), and the one-way device is read by the luminescence quenching of (5D0 → 7F2) Eu3+ transition after UV exposure of the printed paper. The printed dosimeter presented an exponential behavior, measured here up to 10 Jcm-2 for UV-A, UV-B and UV-C, and it was shown that the number of jetted layers could fit the dosimeter sensitivity.

  13. Validation and in vivo assessment of an innovative satellite-based solar UV dosimeter for a mobile app dedicated to skin health.

    PubMed

    Morelli, M; Masini, A; Simeone, E; Khazova, M

    2016-08-31

    We present an innovative satellite-based solar UV (ultraviolet) radiation dosimeter with a mobile app interface that has been validated by exploiting both ground-based measurements and an in vivo assessment of the erythemal effects on some volunteers having controlled exposure to solar radiation. The app with this satellite-based UV dosimeter also includes other related functionalities such as the provision of safe sun exposure time updated in real-time and end exposure visual/sound alert. Both validations showed that the system has a good accuracy and reliability needed for health-related applications. This app will be launched on the market by siHealth Ltd in May 2016 under the name of "HappySun" and is available for both Android and iOS devices (more info on ). Extensive R&D activities are on-going for the further improvement of the satellite-based UV dosimeter's accuracy.

  14. Monitoring of environmental UV radiation by biological dosimeters

    NASA Astrophysics Data System (ADS)

    Rontó, Gy.; Bérces, A.; Gróf, P.; Fekete, A.; Kerékgyártó, T.; Gáspár, S.; Stick, C.

    As a consequence of the stratospheric ozone layer depletion biological systems can be damaged due to increased UV-B radiation. The aim of biological dosimetry is to establish a quantitative basis for the risk assessment of the biosphere. DNA is the most important target molecule of biological systems having special sensitivity against short wavelength components of the environmental radiation. Biological dosimeters are usually simple organisms, or components of them, modeling the cellular DNA. Phage T7 and polycrystalline uracil biological dosimeters have been developed and used in our laboratory for monitoring the environmental radiation in different radiation conditions (from the polar to equatorial regions). Comparisons with Robertson-Berger (RB) meter data, as well as with model calculation data weighted by the corresponding spectral sensitivities of the dosimeters are presented. Suggestion is given how to determine the trend of the increase in the biological risk due to ozone depletion.

  15. Section 9.1 new dosimeters. New dosimetry systems

    NASA Astrophysics Data System (ADS)

    McLaughlin, William L.

    During the past two years there have been significant advances in several forms of radiation measurement systems for radiation processing, covering dose ranges of 1-10 6 Gy. Calorimeters as reference standards for both ionizing photon and electron fields have become well-established. In addition to the older ceric-cerous dosimetry solution analyzed potentiometrically, new liquid-phase dosimeters include those analyzed by spectrophotometry, e.g., improved forms of acidic aqueous solutions of K-Ag dichromate and organic radiochromic dye solutions. It has recently been demonstrated that by using certain refined sugars, e.g., D-(-) ribose, optical rotation response in aqueous solutions can be enhanced for dosimetry at doses > 10 4 Gy. There has been expanded development, use, and formulation (rods, tablets, and thin films) of the amino acid, alanine, as a solid-phase dosimeter analyzed by either ESR spectrometry or by glutamine or alanine spectrophotometry of complexes with ferric ion in the presence of a sulfonphthalein dye (xylenol orange). New commercial types of radiochromic plastic dosimeters, e.g., GafChromic TM, Riso B3 TM, GAMMACHROME YR TM, Radix TM, and Gammex TM, have been introduced and applied in practice. Improvements and broader use of optical waveguide dosimeters, e.g., Opti-Chromic TM, have also been reported, especially in food irradiation applications. Several novel dyed plastic dosimeters are available in large quantities and they lose color due to irradiation. An example is a dyed cellulosic thin film (ATC type DY-42 TM) which can be measured spectrophotometrically or densitometrically up to doses as high as 10 6 Gy.

  16. Electron paramagnetic resonance (EPR) dosimetry using lithium formate in radiotherapy: comparison with thermoluminescence (TL) dosimetry using lithium fluoride rods.

    PubMed

    Vestad, Tor Arne; Malinen, Eirik; Olsen, Dag Rune; Hole, Eli Olaug; Sagstuen, Einar

    2004-10-21

    Solid-state radiation dosimetry by electron paramagnetic resonance (EPR) spectroscopy and thermoluminescence (TL) was utilized for the determination of absorbed doses in the range of 0.5-2.5 Gy. The dosimeter materials used were lithium formate and lithium fluoride (TLD-100 rods) for EPR dosimetry and TL dosimetry, respectively. 60Co gamma-rays and 4, 6, 10 and 15 MV x-rays were employed. The main objectives were to compare the variation in dosimeter reading of the respective dosimetry systems and to determine the photon energy dependence of the two dosimeter materials. The EPR dosimeter sensitivity was constant over the dose range in question, while the TL sensitivity increased by more than 5% from 0.5 to 2.5 Gy, thus displaying a supralinear dose response. The average relative standard deviation in the dosimeter reading per dose was 3.0% and 1.2% for the EPR and TL procedures, respectively. For EPR dosimeters, the relative standard deviation declined significantly from 4.3% to 1.1% over the dose range in question. The dose-to-water energy response for the megavoltage x-ray beams relative to 60Co gamma-rays was in the range of 0.990-0.979 and 0.984-0.962 for lithium formate and lithium fluoride, respectively. The results show that EPR dosimetry with lithium formate provides dose estimates with a precision comparable to that of TL dosimetry (using lithium fluoride) for doses above 2 Gy, and that lithium formate is slightly less dependent on megavoltage photon beam energy than lithium fluoride.

  17. Electron paramagnetic resonance (EPR) dosimetry using lithium formate in radiotherapy: comparison with thermoluminescence (TL) dosimetry using lithium fluoride rods

    NASA Astrophysics Data System (ADS)

    Vestad, Tor Arne; Malinen, Eirik; Rune Olsen, Dag; Olaug Hole, Eli; Sagstuen, Einar

    2004-10-01

    Solid-state radiation dosimetry by electron paramagnetic resonance (EPR) spectroscopy and thermoluminescence (TL) was utilized for the determination of absorbed doses in the range of 0.5-2.5 Gy. The dosimeter materials used were lithium formate and lithium fluoride (TLD-100 rods) for EPR dosimetry and TL dosimetry, respectively. 60Co ggr-rays and 4, 6, 10 and 15 MV x-rays were employed. The main objectives were to compare the variation in dosimeter reading of the respective dosimetry systems and to determine the photon energy dependence of the two dosimeter materials. The EPR dosimeter sensitivity was constant over the dose range in question, while the TL sensitivity increased by more than 5% from 0.5 to 2.5 Gy, thus displaying a supralinear dose response. The average relative standard deviation in the dosimeter reading per dose was 3.0% and 1.2% for the EPR and TL procedures, respectively. For EPR dosimeters, the relative standard deviation declined significantly from 4.3% to 1.1% over the dose range in question. The dose-to-water energy response for the megavoltage x-ray beams relative to 60Co ggr-rays was in the range of 0.990-0.979 and 0.984-0.962 for lithium formate and lithium fluoride, respectively. The results show that EPR dosimetry with lithium formate provides dose estimates with a precision comparable to that of TL dosimetry (using lithium fluoride) for doses above 2 Gy, and that lithium formate is slightly less dependent on megavoltage photon beam energy than lithium fluoride.

  18. Practical calibration curve of small-type optically stimulated luminescence (OSL) dosimeter for evaluation of entrance skin dose in the diagnostic X-ray region.

    PubMed

    Takegami, Kazuki; Hayashi, Hiroaki; Okino, Hiroki; Kimoto, Natsumi; Maehata, Itsumi; Kanazawa, Yuki; Okazaki, Tohru; Kobayashi, Ikuo

    2015-07-01

    For X-ray diagnosis, the proper management of the entrance skin dose (ESD) is important. Recently, a small-type optically stimulated luminescence dosimeter (nanoDot OSL dosimeter) was made commercially available by Landauer, and it is hoped that it will be used for ESD measurements in clinical settings. Our objectives in the present study were to propose a method for calibrating the ESD measured with the nanoDot OSL dosimeter and to evaluate its accuracy. The reference ESD is assumed to be based on an air kerma with consideration of a well-known back scatter factor. We examined the characteristics of the nanoDot OSL dosimeter using two experimental conditions: a free air irradiation to derive the air kerma, and a phantom experiment to determine the ESD. For evaluation of the ability to measure the ESD, a calibration curve for the nanoDot OSL dosimeter was determined in which the air kerma and/or the ESD measured with an ionization chamber were used as references. As a result, we found that the calibration curve for the air kerma was determined with an accuracy of 5 %. Furthermore, the calibration curve was applied to the ESD estimation. The accuracy of the ESD obtained was estimated to be 15 %. The origin of these uncertainties was examined based on published papers and Monte-Carlo simulation. Most of the uncertainties were caused by the systematic uncertainty of the reading system and the differences in efficiency corresponding to different X-ray energies.

  19. Feasibility of dose enhancement assessment: Preliminary results by means of Gd-infused polymer gel dosimeter and Monte Carlo study.

    PubMed

    Santibáñez, M; Guillen, Y; Chacón, D; Figueroa, R G; Valente, M

    2018-04-11

    This work reports the experimental development of an integral Gd-infused dosimeter suitable for Gd dose enhancement assessment along with Monte Carlo simulations applied to determine the dose enhancement by radioactive and X-ray sources of interest in conventional and electronic brachytherapy. In this context, capability to elaborate a stable and reliable Gd-infused dosimeter was the first goal aimed at direct and accurate measurements of dose enhancement due to Gd presence. Dose-response was characterized for standard and Gd-infused PAGAT polymer gel dosimeters by means of optical transmission/absorbance. The developed Gd-infused PAGAT dosimeters demonstrated to be stable presenting similar dose-response as standard PAGAT within a linear trend up to 13 Gy along with good post-irradiation readout stability verified at 24 and 48 h. Additionally, dose enhancement was evaluated for Gd-infused PAGAT dosimeters by means of Monte Carlo (PENELOPE) simulations considering scenarios for isotopic and X-ray generator sources. The obtained results demonstrated the feasibility of obtaining a maximum enhancement around of (14 ± 1)% for 192 Ir source and an average enhancement of (70 ± 13)% for 241 Am. However, dose enhancement up to (267 ± 18)% may be achieved if suitable filtering is added to the 241 Am source. On the other hand, optimized X-ray spectra may attain dose enhancements up to (253 ± 22) %, which constitutes a promising future alternative for replacing radioactive sources by implementing electronic brachytherapy achieving high dose levels. Copyright © 2018. Published by Elsevier Ltd.

  20. Comparative study on skin dose measurement using MOSFET and TLD for pediatric patients with acute lymphatic leukemia.

    PubMed

    Al-Mohammed, Huda I; Mahyoub, Fareed H; Moftah, Belal A

    2010-07-01

    The object of this study was to compare the difference of skin dose measured in patients with acute lymphatic leukemia (ALL) treated with total body irradiation (TBI) using metal oxide semiconductor field-effect transistors (mobile MOSFET dose verification system (TN-RD-70-W) and thermoluminescent dosimeters (TLD-100 chips, Harshaw/ Bicron, OH, USA). Because TLD has been the most-commonly used technique in the skin dose measurement of TBI, the aim of the present study is to prove the benefit of using the mobile MOSFET (metal oxide semiconductor field effect transistor) dosimeter, for entrance dose measurements during the total body irradiation (TBI) over thermoluminescent dosimeters (TLD). The measurements involved 10 pediatric patients ages between 3 and 14 years. Thermoluminescent dosimeters and MOSFET dosimetry were performed at 9 different anatomic sites on each patient. The present results show there is a variation between skin dose measured with MOSFET and TLD in all patients, and for every anatomic site selected, there is no significant difference in the dose delivered using MOSFET as compared to the prescribed dose. However, there is a significant difference for every anatomic site using TLD compared with either the prescribed dose or MOSFET. The results indicate that the dosimeter measurements using the MOSFET gave precise measurements of prescribed dose. However, TLD measurement showed significant increased skin dose of cGy as compared to either prescribed dose or MOSFET group. MOSFET dosimeters provide superior dose accuracy for skin dose measurement in TBI as compared with TLD.

  1. Beam profiles measured with thermoluminescent dosimeters

    NASA Technical Reports Server (NTRS)

    Lucks, H.; Marcowitz, S. M.; Wheeler, R. W.

    1969-01-01

    Beam profilometer, using thermoluminescent dosimeters, gives a quantitative and qualitative representation of the focus of an external protron beam of a synchrotron. The total number of particles in the beam, particle distribution, and the shape of the beam are determined.

  2. Practical new method of measuring thermal-neutron fluence

    NASA Technical Reports Server (NTRS)

    Siebold, J. R.; Warman, E. A.

    1967-01-01

    Thermoluminescence dosimeter technique measures thermal-neutron fluence by encapsulating lithium flouride phosphor powder and exposing it to a neutron environment. The capsule is heated in a dosimeter reader, which results in light emission proportional to the neutron fluence.

  3. Radiation dosimetry with fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Avino, S.; D'Avino, V.; Giorgini, A.; Pacelli, R.; Liuzzi, R.; Cella, L.; Gagliardi, G.; De Natale, P.

    2014-05-01

    The measurement and monitoring of radiation dose delivered in patient tissues is a critical aspect in radiation therapy. Various dosimeters have proven effective in measuring radiations at low doses. However, there is a growing demand for new dosimeters based on small, non-invasive and high resolution devices. Here we report on a miniature dosimeter based on an optical fiber cavity. We demonstrate an ultimate detection limit of 160 mGy with an effective interaction region of 6 x 10-4 mm3. Due to its reliability, compactness and biomedical dose level sensitivity, our system shows itself suitable for applications in radiation therapy dosimetry.

  4. Applicability of Topaz Composites to Electron Dosimetry

    NASA Astrophysics Data System (ADS)

    Bomfim, K. S.; Souza, D. N.

    2010-11-01

    Thermoluminescent dosimetric topaz properties have been investigated and the results have shown that this mineral presents characteristics of a good dosimeter mainly in doses evaluation in radiotherapy with photons beams in radiotherapy. Typical applications of thermoluminescent dosimeters in radiotherapy are: in vivo dosimetry on patients (either as a routine quality assurance procedure or for dose monitoring in special cases); verification of treatment techniques; dosimetry audits; and comparisons among hospitals. The mean aim of this work was to evaluate the efficiency of topaz-Teflon pellets as thermoluminescent dosimeters in high-energy electron beams used to radiotherapy. Topaz-Teflon pellets were used as TLD.

  5. Evaluation of the response to xenon-133 radiations by thermoluminescent dosimeters used during the accident at Three Mile Island.

    PubMed

    Riley, R J; Zanzonico, P B; Masterson, M E; St Germain, J M; Laughlin, J S

    1982-03-01

    An evaluation is presented of the accuracy and sensitivity of three types of TLD's used during the accident at the Three Mile Island Nuclear Station. This evaluation indicated that, due to the method of calibration, all the dosimeters over-responded to 133Xe radiations. The response ranged from slightly above unity to almost two. Exposures of the TLD's were of two types, namely, the characteristic X-rays either were or were not filtered from the beam. The angular sensitivity of the dosimeters is also reported.

  6. X-ray microbeam measurements with a high resolution scintillator fibre-optic dosimeter.

    PubMed

    Archer, James; Li, Enbang; Petasecca, Marco; Dipuglia, Andrew; Cameron, Matthew; Stevenson, Andrew; Hall, Chris; Hausermann, Daniel; Rosenfeld, Anatoly; Lerch, Michael

    2017-09-29

    Synchrotron microbeam radiation therapy is a novel external beam therapy under investigation, that uses highly brilliant synchrotron x-rays in microbeams 50 μm width, with separation of 400 μm, as implemented here. Due to the fine spatial fractionation dosimetry of these beams is a challenging and complicated problem. In this proof-of-concept work, we present a fibre optic dosimeter that uses plastic scintillator as the radiation conversion material. We claim an ideal one-dimensional resolution of 50 μm. Using plastic scintillator and fibre optic makes this dosimeter water-equivalent, a very desirable dosimetric property. The dosimeter was tested at the Australian Synchrotron, on the Imaging and Medical Beam-Line. The individual microbeams were able to be resolved and the peak-to-valley dose ratio and the full width at half maximum of the microbeams was measured. These results are compared to a semiconductor strip detector of the same spatial resolution. A percent depth dose was measured and compared to data acquired by an ionisation chamber. The results presented demonstrate significant steps towards the development of an optical dosimeter with the potential to be applied in quality assurance of microbeam radiation therapy, which is vital if clinical trials are to be performed on human patients.

  7. Characterization of OSL dosimeters for use in dose assessment in Computed Tomography procedures.

    PubMed

    Giansante, Louise; Santos, Josilene C; Umisedo, Nancy K; Terini, Ricardo A; Costa, Paulo R

    2018-03-01

    This study describes the characterization of an Al 2 O 3 :C OSLD (Landauer's Luxel™ tape) for dose evaluation in Computed Tomography. The irradiations were conducted using both a constant potential X-ray equipment and a 64-slice clinical CT scanner, and the readouts were performed using a Risø TL/OSL reader. The following aspects were studied: batch homogeneity, energy response, linearity of dose response, reproducibility, reusability, and effect of uncertainties with the normalization of OSL signals per their response to beta radiation. A group of 330 dosimeters from the 452 irradiated with the same dose presented OSL signals within the interval of 4.7% from the average. The dosimeters presented energy-dependent response in good agreement with results found in the literature. The air kerma response of the OSL signal showed a linear trend for both the constant potential X-ray device and the clinical CT scanner, with differences in their slopes of approximately 10%. Reproducibility, reusability, and effect of beta normalization were analyzed by separating 72 dosimeters in 3 groups. The results obtained in this study together with those of previous works indicate that this type of dosimeter is adequate for dose evaluation in CT clinical applications. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  8. [Measurement of scatter radiation on MDCT equipment using an OSL dosimeter].

    PubMed

    Tomita, Hironobu; Morozumi, Kunihiko

    2004-11-01

    The recent introduction of multi-detector row computed tomography (MDCT) has made it possible to scan the entire abdomen within approximately 10 sec in procedures such as interventional radiology computed tomography (IVRCT), which are associated with operator exposure. Therefore, anxious patients and patients who are not able to remain still can be examined with an assistant. In the present study, radiation exposure to the assistant was estimated, and the distribution of scattered radiation near the gantry was measured using an optically stimulated luminescence (OSL) dosimeter. Simultaneous measurements were obtained using a direction storage (DIS) dosimeter for reference. The maximum value of 1.47 mSv per examination was obtained at the point closest to the gantry's center (50 cm from the center at a height of 150 cm above the floor) . In addition, scattered radiation decreased as the measurement point was moved further from the gantry's center, falling below the limit of detection (0.1 mSv or less) at 200 cm and at the sides of the gantry. OSL dosimeters are also employed as personal dosimeters, permitting reliable values to be obtained easily. They were found to be an effective tool for the measurement of scattered radiation, as in the present study, helping to provide better understanding of the distribution of scattered radiation within the CT room.

  9. Effect of the Scattering Radiation in Air and Two Type of Slap Phantom between PMMA and the ISO Water Phantom for Personal Dosimeters Calibration

    NASA Astrophysics Data System (ADS)

    Kamwang, N.; Rungseesumran, T.; Saengchantr, D.; Monthonwattana, S.; Pungkun, V.

    2017-06-01

    The calibration of personal dosimeter to determine the quantities of the personal dose equivalent, Hp(d), is required to be placed on a suitable phantom in order to provide a reasonable approximation to the radiation backscattering properties as equivalent as part of body. The dosimeter which is worn on the trunk usually calibrated with slap phantom which recommended in ICRU 47 with dimension of 30 cm (w) x 30 cm (h) x 15 cm (t) PMMA slab phantom to achieve uniformity in calibration procedures, on the other hand the International Organization for Standardization (ISO), ISO 4037-3, proposed the ISO water slap phantom, with PMMA walls, same dimension but different wall thickness (front wall 2.5 mm and other side wall 10 mm thick) and fill with water. However, some laboratories are still calibrating a personal dosimeter in air in term of ambient dose equivalent, H*(d). This research study the effect of the scattering radiation in two type of those slap phantoms and in air, to calibrate two type of OSL (XA and LA) and electronic personal dosimeters. The X-ray and Cs-137 radiation field with the energy range from 33 to 662 keV were used. The results of this study will be discussed.

  10. Study of L-aspartic acid for its possible use as a dosimeter in the interval of 3.4-20 kGy at different irradiation temperatures

    NASA Astrophysics Data System (ADS)

    Meléndez-López, Adriana; Negrón-Mendoza, Alicia; Gómez-Vidales, Virginia; Uribe, Roberto M.; Ramos-Bernal, Sergio

    2014-11-01

    Certain commercial applications of radiation processing increase the efficiency of chemical reactions at low temperatures to decrease the free radicals in the bulk material and avoid the synergistic effects of heat. Such applications have motivated the search for a reliable, low-temperature dosimeter for use under the conditions of the irradiation process. For this purpose, polycrystalline samples of L-aspartic acid (2-aminobutanedioic acid) were irradiated with gamma rays at low temperatures and doses in the kiloGray range (3.4-64 kGy). The potential use of the aspartic acid system as a chemical dosimeter is based on the formation of stable free radicals when the amino acid is exposed to ionizing radiation. These radicals can be studied and quantified using electron spin resonance (ESR). The response curves at different temperatures show that the intensity of the ESR spectra (the five characteristic lines) depends on the dose received. The response of the dosimeter increases with increasing temperature, and this relationship is linear up to 20 kGy at 298 K. The decay characteristics show that the change in the ESR signal over time is low and reproducible. In addition, the L-aspartic acid dosimeter is easy to handle and has low cost.

  11. Feasibility of CBCT dosimetry for IMRT using a normoxic polymethacrylic-acid gel dosimeter

    NASA Astrophysics Data System (ADS)

    Bong, Ji Hye; Kwon, Soo-Il; Kim, Kum Bae; Kim, Mi Suk; Jung, Hai Jo; Ji, Young Hoon; Ko, In Ok; Park, Ji Ae; Kim, Kyeong Min

    2013-09-01

    The purpose of this study is to evaluate the availability of cone-beam computed tomography(CBCT) for gel dosimetry. The absorbed dose was analyzed by using intensity-modulated radiation therapy(IMRT) to irradiate several tumor shapes with a calculated dose and several tumor acquiring images with CBCT in order to verify the possibility of reading a dose on the polymer gel dosimeter by means of the CBCT image. The results were compared with those obtained using magnetic resonance imaging(MRI) and CT. The linear correlation coefficients at doses less than 10 Gy for the polymer gel dosimeter were 0.967, 0.933 and 0.985 for MRI, CT and CBCT, respectively. The dose profile was symmetric on the basis of the vertical axis in a circular shape, and the uniformity was 2.50% for the MRI and 8.73% for both the CT and the CBCT. In addition, the gradient in the MR image of the gel dosimeter irradiated in an H shape was 109.88 while the gradients of the CT and the CBCT were 71.95 and 14.62, respectively. Based on better image quality, the present study showed that CBCT dosimetry for IMRT could be restrictively performed using a normoxic polymethacrylic-acid gel dosimeter.

  12. PNNL Measurement Results for the 2016 Criticality Accident Dosimetry Exercise at the Nevada National Security Stite (IER-148)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rathbone, Bruce A.; Morley, Shannon M.; Stephens, John A.

    The Pacific Northwest National Laboratory (PNNL) participated in a criticality accident dosimetry intercomparison exercise held at the Nevada National Security Site (NNSS) May 24-27, 2016. The exercise was administered by Lawrence Livermore National Laboratory (LLNL) and consisted of three exposures performed using the Godiva-IV critical assembly housed in the Device Assembly Facility (DAF) located on the NNSS site. The exercise allowed participants to test the ability of their nuclear accident dosimeters to meet the performance criteria in ANSI/HPS N13.3-2013, Dosimetry for Criticality Accidents and to obtain new measurement data for use in revising dose calculation methods and quick sort screeningmore » methods where appropriate. PNNL participated with new prototype Personal Nuclear Accident Dosimeter (PNAD) and Fixed Nuclear Accident Dosimeter (FNAD) designs as well as the existing historical PNAD design. The new prototype designs incorporate optically stimulated luminescence (OSL) dosimeters in place of thermoluminescence dosimeters (TLDs), among other design changes, while retaining the same set of activation foils historically used. The default dose calculation methodology established decades ago for use with activation foils in PNNL PNADs and FNADs was used to calculate neutron dose results for both the existing and prototype dosimeters tested in the exercise. The results indicate that the effective cross sections and/or dose conversion factors used historically need to be updated to accurately measure the operational quantities recommended for nuclear accident dosimetry in ANSI/HPS N13.3-2013 and to ensure PNAD and FNAD performance meets the ANSI/HPS N13.3-2013 performance criteria. The operational quantities recommended for nuclear accident dosimetry are personal absorbed dose, Dp(10), and ambient absorbed dose, D*(10).« less

  13. Dose evaluation of an NIPAM polymer gel dosimeter using gamma index

    NASA Astrophysics Data System (ADS)

    Chang, Yuan-Jen; Lin, Jing-Quan; Hsieh, Bor-Tsung; Yao, Chun-Hsu; Chen, Chin-Hsing

    2014-11-01

    An N-isopropylacrylamide (NIPAM) polymer gel dosimeter has great potential in clinical applications. However, its three-dimensional dose distribution must be assessed. In this work, a quantitative evaluation of dose distributions was performed to evaluate the NIPAM polymer gel dosimeter using gamma analysis. A cylindrical acrylic phantom filled with NIPAM gel measuring 10 cm (diameter) by 10 cm (height) by 3 mm (thickness) was irradiated by a 4×4 cm2 square light field. The irradiated gel phantom was scanned using an optical computed tomography (optical CT) scanner (OCTOPUS™, MGS Research, Inc., Madison, CT, USA) at 1 mm resolution. The projection data were transferred to an image reconstruction program, which was written using MATLAB (The MathWorks, Natick, MA, USA). The program reconstructed the image of the optical density distribution using the algorithm of a filter back-projection. Three batches of replicated gel phantoms were independently measured. The average uncertainty of the measurements was less than 1%. The gel was found to have a high degree of spatial uniformity throughout the dosimeter and good temporal stability. A comparison of the line profiles of the treatment planning system and of the data measured by optical CT showed that the dose was overestimated in the penumbra region because of two factors. The first is light scattering due to changes in the refractive index at the edge of the irradiated field. The second is the edge enhancement caused by free radical diffusion. However, the effect of edge enhancement on the NIPAM gel dosimeter is not as significant as that on the BANG gel dosimeter. Moreover, the dose uncertainty is affected by the inaccuracy of the gel container positioning process. To reduce the uncertainty of 3D dose distribution, improvements in the gel container holder must be developed.

  14. Some cosmic radiation dose measurements aboard flights connecting Zagreb Airport.

    PubMed

    Vuković, B; Radolić, V; Lisjak, I; Vekić, B; Poje, M; Planinić, J

    2008-02-01

    When primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard A320 and ATR40 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; the neutron dose was measured with the neutron dosimeter consisted of LR-115 track detector and boron foil BN-1 or 10B converter. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed at the flights Zagreb-Paris-Buenos Aires and reversely, when one measured non-neutron cosmic radiation dose; for 26.7 h of flight, the MINI 6100 dosimeter gave an average dose rate of 2.3 microSv/h and the TLD dosimeter registered the dose equivalent of 75 microSv or the average dose rate of 2.7 microSv/h; the neutron dosimeter gave the dose rate of 2.4 microSv/h. In the same month, February 2005, a traveling to Japan (24-h-flight: Zagreb-Frankfurt-Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4microSv/h; the neutron dosimeter gave the dose rate of 2.5 microSv/h. Comparing dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level, we could conclude that the neutron component carried about 50% of the total dose, that was near other known data.

  15. An optically stimulated luminescence dosimeter for measuring patient exposure from imaging guidance procedures.

    PubMed

    Ding, George X; Malcolm, Arnold W

    2013-09-07

    There is a growing interest in patient exposure resulting from an x-ray imaging procedure used in image-guided radiation therapy. This study explores a feasibility to use a commercially available optically stimulated luminescence (OSL) dosimeter, nanoDot, for estimating imaging radiation exposure to patients. The kilovoltage x-ray sources used for kV-cone-beam CT (CBCT) imaging acquisition procedures were from a Varian on-board imager (OBI) image system. An ionization chamber was used to determine the energy response of nanoDot dosimeters. The chamber calibration factors for x-ray beam quality specified by half-value layer were obtained from an Accredited Dosimetry Calibration Laboratory. The Monte Carlo calculated dose distributions were used to validate the dose distributions measured by using the nanoDot dosimeters in phantom and in vivo. The range of the energy correction factors for the nanoDot as a function of photon energy and bow-tie filters was found to be 0.88-1.13 for different kVp and bow-tie filters. Measurement uncertainties of nanoDot were approximately 2-4% after applying the energy correction factors. The tests of nanoDot placed on a RANDO phantom and on patient's skin showed consistent results. The nanoDot is suitable dosimeter for in vivo dosimetry due to its small size and manageable energy dependence. The dosimeter placed on a patient's skin has potential to serve as an experimental method to monitor and to estimate patient exposure resulting from a kilovoltage x-ray imaging procedure. Due to its large variation in energy response, nanoDot is not suitable to measure radiation doses resulting from mixed beams of megavoltage therapeutic and kilovoltage imaging radiations.

  16. An optically stimulated luminescence dosimeter for measuring patient exposure from imaging guidance procedures

    NASA Astrophysics Data System (ADS)

    Ding, George X.; Malcolm, Arnold W.

    2013-09-01

    There is a growing interest in patient exposure resulting from an x-ray imaging procedure used in image-guided radiation therapy. This study explores a feasibility to use a commercially available optically stimulated luminescence (OSL) dosimeter, nanoDot, for estimating imaging radiation exposure to patients. The kilovoltage x-ray sources used for kV-cone-beam CT (CBCT) imaging acquisition procedures were from a Varian on-board imager (OBI) image system. An ionization chamber was used to determine the energy response of nanoDot dosimeters. The chamber calibration factors for x-ray beam quality specified by half-value layer were obtained from an Accredited Dosimetry Calibration Laboratory. The Monte Carlo calculated dose distributions were used to validate the dose distributions measured by using the nanoDot dosimeters in phantom and in vivo. The range of the energy correction factors for the nanoDot as a function of photon energy and bow-tie filters was found to be 0.88-1.13 for different kVp and bow-tie filters. Measurement uncertainties of nanoDot were approximately 2-4% after applying the energy correction factors. The tests of nanoDot placed on a RANDO phantom and on patient's skin showed consistent results. The nanoDot is suitable dosimeter for in vivo dosimetry due to its small size and manageable energy dependence. The dosimeter placed on a patient's skin has potential to serve as an experimental method to monitor and to estimate patient exposure resulting from a kilovoltage x-ray imaging procedure. Due to its large variation in energy response, nanoDot is not suitable to measure radiation doses resulting from mixed beams of megavoltage therapeutic and kilovoltage imaging radiations.

  17. Development of a high efficiency personal/environmental radon dosimeter using polycarbonate detectors.

    PubMed

    Taheri, M; Jafarizadeh, M; Baradaran, S; Zainali, Gh

    2006-12-01

    Passive radon dosimeters, based on alpha particle etched track detectors, are widely used for the assessment of radon exposure. These methods are often applied in radon dosimetry for long periods of time. In this research work, we have developed a highly efficient method of personal/environmental radon dosimetry that is based upon the detection of alpha particles from radon daughters, (218)Po and (214)Po, using a polycarbonate detector (PC). The radon daughters are collected on the filter surface by passing a fixed flow of air through it and the PC detector, placed at a specified distance from the filter, is simultaneously exposed to alpha particles. After exposure, the latent tracks on the detector are made to appear by means of an electrochemical etching process; these are proportional to the radon dose. The air flow rate and the detector-filter distance are the major factors that can affect the performance of the dosimeter. The results obtained in our experimental investigations have shown that a distance of 1.5 cm between the detector and the filter, an absorber layer of Al with a thickness of 12 microm and an air flow rate of 4 l min(-1) offer the best design parameters for a high efficiency radon dosimeter. Then, the designed dosimeter was calibrated against different values of radon exposures and the obtained sensitivity was found to be 2.1 (tracks cm(-2)) (kBq h m(-3))(-1). The most important advantages of this method are that it is reliable, fast and convenient when used for radon dose assessment. In this paper, the optimized parameters of the dosimeter structure and its calibration procedure are presented and discussed.

  18. Measurement of Entrance Surface Dose on an Anthropomorphic Thorax Phantom Using a Miniature Fiber-Optic Dosimeter

    PubMed Central

    Yoo, Wook Jae; Shin, Sang Hun; Jeon, Dayeong; Hong, Seunghan; Sim, Hyeok In; Kim, Seon Geun; Jang, Kyoung Won; Cho, Seunghyun; Youn, Won Sik; Lee, Bongsoo

    2014-01-01

    A miniature fiber-optic dosimeter (FOD) system was fabricated using a plastic scintillating fiber, a plastic optical fiber, and a multi-pixel photon counter to measure real-time entrance surface dose (ESD) during radiation diagnosis. Under varying exposure parameters of a digital radiography (DR) system, we measured the scintillating light related to the ESD using the sensing probe of the FOD, which was placed at the center of the beam field on an anthropomorphic thorax phantom. Also, we obtained DR images using a flat panel detector of the DR system to evaluate the effects of the dosimeter on image artifacts during posteroanterior (PA) chest radiography. From the experimental results, the scintillation output signals of the FOD were similar to the ESDs including backscatter simultaneously obtained using a semiconductor dosimeter. We demonstrated that the proposed miniature FOD can be used to measure real-time ESDs with minimization of DR image artifacts in the X-ray energy range of diagnostic radiology. PMID:24694678

  19. Measurement of entrance surface dose on an anthropomorphic thorax phantom using a miniature fiber-optic dosimeter.

    PubMed

    Yoo, Wook Jae; Shin, Sang Hun; Jeon, Dayeong; Hong, Seunghan; Sim, Hyeok In; Kim, Seon Geun; Jang, Kyoung Won; Cho, Seunghyun; Youn, Won Sik; Lee, Bongsoo

    2014-04-01

    A miniature fiber-optic dosimeter (FOD) system was fabricated using a plastic scintillating fiber, a plastic optical fiber, and a multi-pixel photon counter to measure real-time entrance surface dose (ESD) during radiation diagnosis. Under varying exposure parameters of a digital radiography (DR) system, we measured the scintillating light related to the ESD using the sensing probe of the FOD, which was placed at the center of the beam field on an anthropomorphic thorax phantom. Also, we obtained DR images using a flat panel detector of the DR system to evaluate the effects of the dosimeter on image artifacts during posteroanterior (PA) chest radiography. From the experimental results, the scintillation output signals of the FOD were similar to the ESDs including backscatter simultaneously obtained using a semiconductor dosimeter. We demonstrated that the proposed miniature FOD can be used to measure real-time ESDs with minimization of DR image artifacts in the X-ray energy range of diagnostic radiology.

  20. Characterization and application of two kinds of ESR dosimeters

    NASA Astrophysics Data System (ADS)

    Marchioni, Eric; Pabst, Jean-Yves; Kuntz, Florent

    2002-09-01

    Many previous papers described the use of low-concentration alanine pellets, powder or films for industrial high-dose application, but very few authors presented applications of such dosimeters to the low-dose range used for wastewater, flowers or radiotherapy treatment. The present paper describes the large-scale manufacturing process of high-concentration alanine pellets used for radiotherapy dose control in some French hospitals. The fading process due to sunlight exposure has been evaluated by means of direct UV light irradiation. The major disadvantage of alanine is its strong solubility in water (the pellets are completely dissolved when immersed for 10 min in pure water). The use of barium sulphate, not soluble in water, made it possible to carry out dosimetric measurements even when the dosimeter is completely immersed in water or stored after irradiation in high humidity levels. The paper presents manufacturing process of barium sulphate pellets, their dosimetric characteristics and one application of this dosimeter for the control of the absorbed doses during wastewater treatments.

  1. Food irradiation dosimetry by opti-chromic technique

    NASA Astrophysics Data System (ADS)

    Zhan-Jun, Liu; Radak, B. B.; McLaughlin, W. L.

    The measurement of gamma-radiation quantities, e.g., absorbed dose in materials such as water, plastics, foodstuffs, is a convenient means of quality assurance in radiation processing. A new dosimetry system, called the "Opti-Chromic" dosimeter, is commercially available in large batches for use as a routine measurement system in the absorbed dose range 10 to 2x10 4 Gy. This dose range covers most food irradiation applications. A statistical evaluation was made of the reproducibility of this dosimeter for measuring doses appropriate for the disinfestation and shelf-life extension of many foods, namely 10 to 2x10 3 Gy. In addition, the small dosimeters were used to map absorbed dose distributions in boxes of foods having four different bulk densities (grapefruit, lemons, peanuts, and wheat bran). It is demonstrated that the dosimeters are rugged and stable enough to be used over a wide temperature and humidity range, and, in fact, can be placed in such environments as the inside of citrus fruits without adverse effects on their ability to give satisfactory dose assessment.

  2. Method for preparing dosimeter for measuring skin dose

    DOEpatents

    Jones, Donald E.; Parker, DeRay; Boren, Paul R.

    1982-01-01

    A personnel dosimeter includes a plurality of compartments containing thermoluminescent dosimeter phosphors for registering radiation dose absorbed in the wearer's sensitive skin layer and for registering more deeply penetrating radiation. Two of the phosphor compartments communicate with thin windows of different thicknesses to obtain a ratio of shallowly penetrating radiation, e.g. beta. A third phosphor is disposed within a compartment communicating with a window of substantially greater thickness than the windows of the first two compartments for estimating the more deeply penetrating radiation dose. By selecting certain phosphors that are insensitive to neutrons and by loading the holder material with neutron-absorbing elements, energetic neutron dose can be estimated separately from other radiation dose. This invention also involves a method of injection molding of dosimeter holders with thin windows of consistent thickness at the corresponding compartments of different holders. This is achieved through use of a die insert having the thin window of precision thickness in place prior to the injection molding step.

  3. Dosimeter for measuring skin dose and more deeply penetrating radiation

    DOEpatents

    Jones, Donald E.; Parker, DeRay; Boren, Paul R.

    1981-01-01

    A personnel dosimeter includes a plurality of compartments containing thermoluminescent dosimeter phosphors for registering radiation dose absorbed in the wearer's sensitive skin layer and for registering more deeply penetrating radiation. Two of the phosphor compartments communicate with thin windows of different thicknesses to obtain a ratio of shallowly penetrating radiation, e.g. beta. A third phosphor is disposed within a compartment communicating with a window of substantially greater thickness than the windows of the first two compartments for estimating the more deeply penetrating radiation dose. By selecting certain phosphors that are insensitive to neutrons and by loading the holder material with netruon-absorbing elements, energetic neutron dose can be estimated separately from other radiation dose. This invention also involves a method of injection molding of dosimeter holders with thin windows of consistent thickness at the corresponding compartments of different holders. This is achieved through use of a die insert having the thin window of precision thickness in place prior to the injection molding step.

  4. Radiotherapy fiber dosimeter probes based on silver-only coated hollow glass waveguides

    NASA Astrophysics Data System (ADS)

    Darafsheh, Arash; Melzer, Jeffrey E.; Harrington, James A.; Kassaee, Alireza; Finlay, Jarod C.

    2018-01-01

    Manifestation of Čerenkov radiation as a contaminating signal is a significant issue in radiation therapy dose measurement by fiber-coupled scintillator dosimeters. To enhance the scintillation signal transmission while minimizing Čerenkov radiation contamination, we designed a fiber probe using a silver-only coated hollow waveguide (HWG). The HWG with scintillator inserted in its tip, embedded in tissue-mimicking phantoms, was irradiated with clinical electron and photon beams generated by a medical linear accelerator. Optical spectra of the irradiated tip were taken using a fiber spectrometer, and the signal was deconvolved with a linear fitting algorithm. The resultant decomposed spectra of the scintillator with and without Čerenkov correction were in agreement with measurements performed by a standard electron diode and ion chamber for electron and photon beam dosimetry, respectively, indicating the minimal effect of Čerenkov contamination in the HWG-based dosimeter. Furthermore, compared with a silver/dielectric-coated HWG fiber dosimeter design, we observed higher signal transmission in the design based on the use of silver-only HWG.

  5. Development of an Automated Reader for Analysis and Storage of Personnel Dosimeter Badge Data

    NASA Technical Reports Server (NTRS)

    Meneghelli, B. J.; Hodge, T. R.; Robinson, L. J.; Lueck, D. E.

    1997-01-01

    The collection and archiving of data from personnel dosimeters has become increasingly important in light of the lowered threshold limit values (TLV) for hydrazine (HZ), monomethylhydrazine (MMH), and unsymmetrical dimethylhydrazine (UDMH). The American Conference of Government Industrial Hygienists (ACGIH) lowered the TLV from 100 parts per billion (ppb) to 10 ppb and has caused increased concern over long term exposures of personnel to trace levels of these hypergols and other potentially harmful chemicals. An automated system of reading the exposure levels of personnel dosimeters and storing exposure data for subsequent evaluation has been developed. The reading of personnel dosimeter badges for exposure lo potentially harmful vapor concentrations of hydrazines or other chemicals is performed visually by comparing the color developed by the badge with a calibrated color comparator. The result obtained using visual comparisons of the developed badge color with the comparator may vary widely from user to user. The automated badge reader takes the variability out of the dosimeter reading by accurately comparing the reflectance obtained from a colored spot on the badge with a reading on the same spot prior to any exposure to chemical vapors. The observed difference between the reflectance values is used as part of a calculation of the dose value for the badge based on a stored calibration curve. The badge reader also stores bar-code data unique to each badge, as well as bar-code information on the user, as part of the permanent badge record. The start and stop exposure times for each badge are recorded and can be used as part of the calculated concentration, in ppm, for each badge logged during a recording period. The badge reader is equipped with a number of badge holders, each of which is unique to a specific type of personnel dosimeter badge. This gives the reader maximum flexibility to allow for the reading of several different types of badges. Test results of the badge reader for several different types of personnel dosimeter badges are presented within the body of this paper.

  6. Development of an Automated Reader for Analysis and Storage of Personnel Dosimeter Badge Data

    NASA Technical Reports Server (NTRS)

    Meneghelli, B. J.; Hodge, T. R.; Robinson, L. J.; Lueck, D. E.

    1997-01-01

    The collection and archiving of data from personnel dosimeters has become increasingly important in light of the lowered Threshold Limit Values (TLV) for HydraZine (HZ), MonoMethylHydrazine (MMH), and Unsymmetrical DiMethylHydrazine (UDMH). The American Conference of Government Industrial Hygienists (ACGIH) lowered the TLV from 100 parts per billion (ppb) to IO ppb and has caused increased concern over long term exposures of personnel to trace levels of these hypergols and other potentially harmful chemicals. An automated system of reading the exposure levels of personnel dosimeters and storing exposure data for subsequent evaluation has been developed. The reading of personnel dosimeter badges for exposure to potentially harmful vapor concentrations of hydrazines or other chemicals is performed visually by comparing the color developed by the badge with a calibrated color comparator. The result obtained using visual comparisons of the developed badge color with the comparator may vary widely from user to user. The automated badge reader takes the variability out of the dosimeter reading by accurately comparing the reflectance obtained from a colored spot on the badge with a reading on the same spot prior to any exposure to chemical vapors. The observed difference between the reflectance values is used as part of a calculation of the dose value for the badge based on a stored calibration curve. The badge reader also stores bar-code data unique to each badge, as well as bar-code information on the user, as part of the permanent badge record. The start and stop exposure times for each badge are recorded and can be used as part of the calculated concentration, in ppm, for each badge logged during a recording period. The badge reader is equipped with a number of badge holders, each of which is unique to a specific type of personnel dosimeter badge. This gives the reader maximum flexibility to allow for the reading of several different types of badges. Test results of the badge reader for several different types of personnel dosimeter badges are presented within the body of this paper.

  7. SU-E-T-105: Development of 3D Dose Verification System for Volumetric Modulated Arc Therapy Using Improved Polyacrylamide-Based Gel Dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, K; Fujimoto, S; Akagi, Y

    2014-06-01

    Purpose: The aim of this dosimetric study was to develop 3D dose verification system for volumetric modulated arc therapy (VMAT) using polyacrylamide-based gel (PAGAT) dosimeter improved the sensitivity by magnesium chloride (MgCl{sub 2}). Methods: PAGAT gel containing MgCl{sub 2} as a sensitizer was prepared in this study. Methacrylic-acid-based gel (MAGAT) was also prepared to compare the dosimetric characteristics with PAGAT gel. The cylindrical glass vials (4 cm diameter, 12 cm length) filled with each polymer gel were irradiated with 6 MV photon beam using Novalis Tx linear accelerator (Varian/BrainLAB). The irradiated polymer gel dosimeters were scanned with Signa 1.5 Tmore » MRI system (GE), and dose calibration curves were obtained using T{sub 2} relaxation rate (R{sub 2} = 1/T{sub 2}). Dose rate (100-600 MU min{sup −1}) and fractionation (1-8 fractions) were varied. In addition, a cubic acrylic phantom (10 × 10 × 10 cm{sup 3}) filled with improved PAGAT gel inserted into the IMRT phantom (IBA) was irradiated with VMAT (RapidArc). C-shape structure was used for the VMAT planning by the Varian Eclipse treatment planning system (TPS). The dose comparison of TPS and measurements with the polymer gel dosimeter was accomplished by the gamma index analysis, overlaying the dose profiles for a set of data on selected planes using in-house developed software. Results: Dose rate and fractionation dependence of improved PAGAT gel were smaller than MAGAT gel. A high similarity was found by overlaying the dose profiles measured with improved PAGAT gel dosimeter and the TPS dose, and the mean pass rate of the gamma index analysis using 3%/3 mm criteria was achieved 90% on orthogonal planes for VMAT using improved PAGAT gel dosimeter. Conclusion: In-house developed 3D dose verification system using improved polyacrylamide-based gel dosimeter had a potential as an effective tool for VMAT QA.« less

  8. Errors introduced by dose scaling for relative dosimetry

    PubMed Central

    Watanabe, Yoichi; Hayashi, Naoki

    2012-01-01

    Some dosimeters require a relationship between detector signal and delivered dose. The relationship (characteristic curve or calibration equation) usually depends on the environment under which the dosimeters are manufactured or stored. To compensate for the difference in radiation response among different batches of dosimeters, the measured dose can be scaled by normalizing the measured dose to a specific dose. Such a procedure, often called “relative dosimetry”, allows us to skip the time‐consuming production of a calibration curve for each irradiation. In this study, the magnitudes of errors due to the dose scaling procedure were evaluated by using the characteristic curves of BANG3 polymer gel dosimeter, radiographic EDR2 films, and GAFCHROMIC EBT2 films. Several sets of calibration data were obtained for each type of dosimeters, and a calibration equation of one set of data was used to estimate doses of the other dosimeters from different batches. The scaled doses were then compared with expected doses, which were obtained by using the true calibration equation specific to each batch. In general, the magnitude of errors increased with increasing deviation of the dose scaling factor from unity. Also, the errors strongly depended on the difference in the shape of the true and reference calibration curves. For example, for the BANG3 polymer gel, of which the characteristic curve can be approximated with a linear equation, the error for a batch requiring a dose scaling factor of 0.87 was larger than the errors for other batches requiring smaller magnitudes of dose scaling, or scaling factors of 0.93 or 1.02. The characteristic curves of EDR2 and EBT2 films required nonlinear equations. With those dosimeters, errors larger than 5% were commonly observed in the dose ranges of below 50% and above 150% of the normalization dose. In conclusion, the dose scaling for relative dosimetry introduces large errors in the measured doses when a large dose scaling is applied, and this procedure should be applied with special care. PACS numbers: 87.56.Da, 06.20.Dk, 06.20.fb PMID:22955658

  9. Initial Results from the Radiation Dosimetry Experiment (RaD-X) Balloon Flight Mission

    NASA Technical Reports Server (NTRS)

    Mertens, Christopher J.

    2015-01-01

    The NASA Radiation Dosimetry Experiment (RaD-X) high-altitude balloon mission was successfully launched from Fort Sumner, New Mexico USA on 25 September, 2015. Over 15 hours of science data were obtained from four dosimeters at altitudes above about 25 km. The four dosimeters flown on the RaD-X science payload are a Hawk version 3.0 Tissue Equivalent Proportional Counter (TEPC) manufactured by Far West Technologies, a Liulin dosimeter-spectrometer produced by the Solar Research and Technology Institute, Bulgarian Academy of Sciences, a total ionizing dose detector manufactured by Teledyne Microelectronic Technologies, and the RaySure detector provided by the University of Surrey.

  10. Transferability of ASTM/NIST alanine-polyethylene recipe at ISS. American Society for Testing and Materials/National Institute for Standards and Technology. Istituto Superiore de Sanita

    PubMed

    De Angelis C; Fattibene; Onori; Petetti; Bartolotta; Sansone Santamaria A

    2000-05-01

    Alanine-polyethylene solid state dosimeters were prepared at Istituto Superiore di Sanita (ISS) following the recipe proposed by National Institute of Standards and Technology (NIST) with the goal of testing its transferability. Dosimeters were prepared using 95% alanine and 5% polyethylene, by weight. They are rugged and of increased sensitivity, repeatability and reproducibility as respect to the ISS alanine-paraffin pellets. Reproducibility of about 1% was obtained at 10 Gy and at 3 Gy if one single pellet or a stack of five dosimeters were used, respectively.

  11. Thermoluminescence dosimeter

    DOEpatents

    Zendle, R.

    1983-11-03

    A thermoluminescence dosimeter having a very small rate of decline of sensitivity during subsequent uses after heating is disclosed. The dosimeter includes a detector crystal and a glass enclosure in which the detector crystal is located. The glass enclosure is air tight and is filled with a super dry inert fill gas. The inert fill gas is nonreactive with the detector crystal when the detector crystal is heated to thermoluminescence. The fill gas is selected from the group consisting of air, nitrogen, and argon, suitable admixed with 5 to 25 percent helium. The detector crystal consists essentially of calcium fluoride. The fill gas is preferably contained at a subatmospheric pressure in the glass enclosure.

  12. Linearity and reproducibility response of Fricke dosimetry for low energy X-Ray beam

    NASA Astrophysics Data System (ADS)

    Mantuano, A.; de Amorim, G. J.; David, M. G.; Rosado, P. H. G.; Salata, C.; Magalhães, L. A. G.; deAlmeida, C. E.

    2018-03-01

    The Fricke dosimeter is the most used, liquid chemical dosimeter. It has been shown to be a feasible option for the absorbed dose standard. The present work aims to determinate a dose-response curve of Fricke solution using different doses and reproducibility test comparing the calculated dose to Fricke solution and Ionizing Chamber. Tests were performed using an X-ray irradiator for biological research at Radiological Science Laboratory (LCR/UERJ). The results showed a linear response to different doses of type A uncertainties from 0.08 to 1.2%. Reproducibility test showed type A uncertainties of 0.16% to the dosimeter.

  13. Thermoluminescence dosimeter

    DOEpatents

    Zendle, Robert

    1985-01-01

    A thermoluminescence dosimeter having a very small rate of decline of sensitivity during subsequent uses after heating is disclosed. The dosimeter includes a detector crystal and a glass enclosure in which the detector crystal is located. The glass enclosure is air tight and is filled with a super dry inert fill gas. The inert fill gas is nonreactive with the detector crystal when the detector crystal is heated to thermoluminescence. The fill gas is selected from the group consisting of air, nitrogen, and argon, suitable admixed with 5 to 25 percent helium. The detector crystal consists essentially of calcium fluoride. The fill gas is preferably contained at a subatmospheric pressure in the glass enclosure.

  14. 42 CFR 82.14 - What types of information could be used in dose reconstructions?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) External dosimetry data, including external dosimeter readings (film badge, TLD, neutron dosimeters); and, (2) Pocket ionization chamber data. (c) Internal dosimetry data, including: (1) Urinalysis results; (2) Fecal sample results; (3) In Vivo measurement results; (4) Incident investigation reports; (5...

  15. 42 CFR 82.14 - What types of information could be used in dose reconstructions?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) External dosimetry data, including external dosimeter readings (film badge, TLD, neutron dosimeters); and, (2) Pocket ionization chamber data. (c) Internal dosimetry data, including: (1) Urinalysis results; (2) Fecal sample results; (3) In Vivo measurement results; (4) Incident investigation reports; (5...

  16. 42 CFR 82.14 - What types of information could be used in dose reconstructions?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) External dosimetry data, including external dosimeter readings (film badge, TLD, neutron dosimeters); and, (2) Pocket ionization chamber data. (c) Internal dosimetry data, including: (1) Urinalysis results; (2) Fecal sample results; (3) In Vivo measurement results; (4) Incident investigation reports; (5...

  17. 42 CFR 82.14 - What types of information could be used in dose reconstructions?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) External dosimetry data, including external dosimeter readings (film badge, TLD, neutron dosimeters); and, (2) Pocket ionization chamber data. (c) Internal dosimetry data, including: (1) Urinalysis results; (2) Fecal sample results; (3) In Vivo measurement results; (4) Incident investigation reports; (5...

  18. 42 CFR 82.14 - What types of information could be used in dose reconstructions?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) External dosimetry data, including external dosimeter readings (film badge, TLD, neutron dosimeters); and, (2) Pocket ionization chamber data. (c) Internal dosimetry data, including: (1) Urinalysis results; (2) Fecal sample results; (3) In Vivo measurement results; (4) Incident investigation reports; (5...

  19. Measurements of SNAC2 area dosimeters placed in different configurations around the PROSPERO reactor and comparison with TRIPOLI-4 calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rousseau, G.; Chambru, L.; Authier, N.

    2015-07-01

    In the context of criticality accident alarm system tests, several experiments were carried out in 2013 on the PROSPERO reactor to study the response to neutron and gamma of different devices and dosimeters, particularly on the SNAC2 dosimeter. This article presents the results of this criticality dosimeter in different configurations, and compares the experimental measurements with the results of calculation performed with the TRIPOLI-4 Monte-Carlo Neutral Particles transport code. PROSPERO is a metallic critical assembly managed by the Criticality, Neutron Science and Measurement Department located at the French CEA Research Center of Valduc. The core, surrounded by a reflector ofmore » depleted uranium, is composed of 2 horizontal cylindrical blocks made of a highly enriched uranium alloy which can be placed in contact, and of 4 depleted uranium control rods which allow the reactor to be driven. This reactor, placed in a cell 10 m x 8 m x 6 m high, with 1.4-meter-thick concrete walls, is used as a fast neutron spectrum source and is operated at stable power level in delayed critical state, which can vary from 3 mW to 3 kW. PROSPERO is extensively used for electronic hardening or to study the effect of the neutrons on various materials. The SNAC2 criticality dosimeter is a zone dosimeter allowing the off line measurement of criticality accident neutron doses. This dosimeter consists of the pile up of seven activation foils embedded into a 23 mm diameter x 21 mm height cadmium container. The activation measurement of each foil, using a gamma spectroscopy technique, gives information about the neutron reaction rates. The SNAC2 software allows the spectrum unfolding from these values, taking into account the hypothesis of a particular spectrum shape, in three components: a Maxwell spectrum component for the thermal range, a 1/E component for the epithermal range, and a Watt spectrum component for the high energy range. Moreover, from the neutron spectrum, the SNAC software can calculate the neutron fluence integrated by the dosimeter and the neutron dose. During the 3 weeks measurement campaign many radioprotection devices were used. To modify the spectrum seen by these devices, several shields of various thicknesses made of concrete or polyethylene, with or without cadmium covers, were placed in the PROSPERO cell. These devices allow the study of criticality accident spectra in several environments: from metal to pseudo liquid. The fluxes measured by the SNAC2 devices were compared with TRIPOLI-4 calculations. (authors)« less

  20. Characterization of a new dosimeter for the development of a position-sensitive detector of radioactive sources in industrial NDT equipment

    NASA Astrophysics Data System (ADS)

    Kim, K. T.; Kim, J. H.; Han, M. J.; Heo, Y. J.; Park, S. K.

    2018-02-01

    Imaging technology based on gamma-ray sources has been extensively used in non-destructive testing (NDT) to detect any possible internal defects in products without changing their shapes or functions. However, such technology has been subject to increasingly stricter regulations, and an international radiation-safety management system has been recently established. Consequently, radiation source location in NDT systems has become an essential process, given that it can prevent radiation accidents. In this study, we focused on developing a monitoring system that can detect, in real time, the position of a radioactive source in the source guide tube of a projector. We fabricated a lead iodide (PbI2) dosimeter based on the particle-in-binder method, which has a high production yield and facilitates thickness and shape adjustment. Using a gamma-ray source, we then tested the reproducibility, linearity of the dosimeter response, and the dosimeter's percentage interval distance (PID). It was found that the fabricated PbI2 dosimeter yields highly accurate, reproducible, and linear dose measurements. The PID analysis—conducted to investigate the possibility of developing a monitoring system based on the proposed dosimeter—indicated that the valid detection distance was approximately 11.3 cm. The results of this study are expected to contribute to the development of an easily usable radiation monitoring system capable of significantly reducing the risk of radiation accidents.

  1. Evaluation and comparison of absorbed dose for electron beams by LiF and diamond dosimeters

    NASA Astrophysics Data System (ADS)

    Mosia, G. J.; Chamberlain, A. C.

    2007-09-01

    The absorbed dose response of LiF and diamond thermoluminescent dosimeters (TLDs), calibrated in 60Co γ-rays, has been determined using the MCNP4B Monte Carlo code system in mono-energetic megavoltage electron beams from 5 to 20 MeV. Evaluation of the dose responses was done against the dose responses of published works by other investigators. Dose responses of both dosimeters were compared to establish if any relation exists between them. The dosimeters were irradiated in a water phantom with the centre of their top surfaces (0.32×0.32 cm 2), placed at dmax perpendicular to the radiation beam on the central axis. For LiF TLD, dose responses ranged from 0.945±0.017 to 0.997±0.011. For the diamond TLD, the dose response ranged from 0.940±0.017 to 1.018±0.011. To correct for dose responses by both dosimeters, energy correction factors were generated from dose response results of both TLDs. For LiF TLD, these correction factors ranged from 1.003 up to 1.058 and for diamond TLD the factors ranged from 0.982 up to 1.064. The results show that diamond TLDs can be used in the place of the well-established LiF TLDs and that Monte Carlo code systems can be used in dose determinations for radiotherapy treatment planning.

  2. Does the lead apron and collar always reduce radiation dose?

    PubMed

    Nortje, C J; Harris, A M; Lackovic, K P; Wood, R E

    2001-11-01

    The possibility that personal lead shielding devices can increase absorption of radiation has not been entertained. The purpose of the present investigation specifically was to determine whether pituitary dose might be increased when a leaded apron and thyroid collar are used. Thermoluminescent dosimeters (TLDs) were used to measure absorbed dose. They were calibrated at the kVp used in the clinical situation and a calibration curve relating light output to dose was generated. Lithium fluoride TLD discs were placed in the pituitary gland region of a Rando-Alderson female human phantom. The equivalent of 100 transpharyngeal exposures were delivered. The resultant light output from recovered dosimeters was converted to a uGy value using the calibration curve. The experiment was repeated using a 0.25 mm lead equivalent collar and apron fitted to the phantom in the customary manner. The entire process was repeated in order to have 30 dosimeters for the unshielded and 30 dosimeters for the shielded conditions. A further 30 dosimeters were sham irradiated and served as controls. A statistical comparison between unshielded and shielded conditions was performed. When the leaded apron and thyroid collar were used the absorbed dose to the pituitary gland was increased significantly (P < 0.05). Following this a second group, using a different dosimetry system and a male phantom repeated the experiment. In both cases, the shielded phantom received significantly higher dose to the pituitary region than the unshielded.

  3. Investigation of the response characteristics of OSL albedo neutron dosimeters in a 241AmBe reference neutron field

    NASA Astrophysics Data System (ADS)

    Liamsuwan, T.; Wonglee, S.; Channuie, J.; Esoa, J.; Monthonwattana, S.

    2017-06-01

    The objective of this work was to systematically investigate the response characteristics of optically stimulated luminescence Albedo neutron (OSLN) dosimeters to ensure reliable personal dosimetry service provided by Thailand Institute of Nuclear Technology (TINT). Several batches of InLight® OSLN dosimeters were irradiated in a reference neutron field generated by the in-house 241AmBe neutron irradiator. The OSL signals were typically measured 24 hours after irradiation using the InLight® Auto 200 Reader. Based on known values of delivered neutron dose equivalent, the reading correction factor to be used by the reader was evaluated. Subsequently, batch homogeneity, dose linearity, lower limit of detection and fading of the OSLN dosimeters were examined. Batch homogeneity was evaluated to be 0.12 ± 0.05. The neutron dose response exhibited a linear relationship (R2=0.9974) within the detectable neutron dose equivalent range under test (0.4-3 mSv). For this neutron field, the lower limit of detection was between 0.2 and 0.4 mSv. Over different post-irradiation storage times of up to 180 days, the readings fluctuated within ±5%. Personal dosimetry based on the investigated OSLN dosimeter is considered to be reliable under similar neutron exposure conditions, i.e. similar neutron energy spectra and dose equivalent values.

  4. A comparative evaluation of luminescence detectors: RPL-GD-301, TLD-100 and OSL-AL2O3:C, using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Benali, A.-H.; Medkour Ishak-Boushaki, G.; Nourreddine, A.-M.; Allab, M.; Papadimitroulas, P.

    2017-07-01

    The luminescent dosimeters are widely used in clinical practice, for the monitoring of patient dose in external radiation therapy. Three of the most common dosimeter categories are the thermoluminescence (TLDs), the radiophotoluminescence (RPLs) and the optically stimulated luminescence (OSLs), with similar physical processes on their properties. The aim of the present study is to compare and evaluate the dosimetric properties of three specific luminescent detectors namely: a) RPL glass dosimeter, commercially known as GD-301, b) lithium fluoride TLD-100 (LiF:Mg,Ti) and c) carbon-doped aluminum oxide (Al2O3:C). For this purpose, Monte Carlo simulations were applied, using the MCNP5 code to estimate the responses of these dosimeters in terms of absorbed dose, output factor, the angular and energy dependence. In the present study, we found that the differences between the output factors were less than ± 4.2% for all detector materials RPLGD, TLD and OSLD. The variations in sensitivity for angles up to ± 80 degrees from the central axis of the beam were approximately 0.5%, 0.8% and 1.5% for the TLD-100, GD-301 and Al2O3:C, respectively. The energy dependence of the RPL and OSL dosimeters are stated as less than a 2.2%, and within 5.8% for TLD.

  5. Analysis of measurement deviations for the patient-specific quality assurance using intensity-modulated spot-scanning particle beams

    NASA Astrophysics Data System (ADS)

    Li, Yongqiang; Hsi, Wen C.

    2017-04-01

    To analyze measurement deviations of patient-specific quality assurance (QA) using intensity-modulated spot-scanning particle beams, a commercial radiation dosimeter using 24 pinpoint ionization chambers was utilized. Before the clinical trial, validations of the radiation dosimeter and treatment planning system were conducted. During the clinical trial 165 measurements were performed on 36 enrolled patients. Two or three fields of particle beam were used for each patient. Measurements were typically performed with the dosimeter placed at special regions of dose distribution along depth and lateral profiles. In order to investigate the dosimeter accuracy, repeated measurements with uniform dose irradiations were also carried out. A two-step approach was proposed to analyze 24 sampling points over a 3D treatment volume. The mean value and the standard deviation of each measurement did not exceed 5% for all measurements performed on patients with various diseases. According to the defined intervention thresholds of mean deviation and the distance-to-agreement concept with a Gamma index analysis using criteria of 3.0% and 2 mm, a decision could be made regarding whether the dose distribution was acceptable for the patient. Based measurement results, deviation analysis was carried out. In this study, the dosimeter was used for dose verification and provided a safety guard to assure precise dose delivery of highly modulated particle therapy. Patient-specific QA will be investigated in future clinical operations.

  6. Radiant energy dosimeter for field use

    Treesearch

    A. Broido; A.W. McMasters

    1967-01-01

    Thermal radiation measurements in Project Flambeau fires involved a limited number of conventional radiometers located outside the fire periphery. A simple, cheap, easily-fabricated, light-weight, self-contained, rugged dosimeter was desired to withstand a hot fire environment, including a specific energy input of 5,000 cal cm -2, and to record...

  7. Feasibility study of a photoconductor based dosimeter for quality assurance in radiotherapy

    NASA Astrophysics Data System (ADS)

    Lee, Y. K.; Kim, S. W.; Kim, J. N.; Kang, Y. N.; Kim, J. Y.; Lee, D. S.; Kim, K. T.; Han, M. J.; Ahn, K. J.; Park, S. K.

    2017-09-01

    With the recent market entries of new types of linear accelerators (LINACs) with a multi leaf collimator (MLC) mounted on them, high-precision radiosurgery applying a LINAC to measure high-dose radiation on the target region has been gaining popularity. Systematic and accurate quality assurance (QA) is of vital important for high-precision radiosurgery because of its increased risk of side effects including life-threatening ones such as overexposure of healthy tissues to high-dose radiation beams concentrated on small areas. Therefore, accurate dose and dose-distribution measurements are crucial in the treatment procedure. The accurate measurement of the properties of beams concentrated on small areas requires high-precision dosimeters capable of high-resolution output and dose mapping as well as accurate dosimetry in penumbra regions. In general, the properties of beams concentrated on small areas are measured using thermos luminescent dosimeters (TLD), diode detectors, ion chambers, diamond detectors, or films, and many papers have presented the advantages and disadvantages of each of these detectors for dosimetry. In this study, a solid-state photoconductor dosimeter was developed, and its clinical usability was tested by comparing its relative dosimetric performance with that of a conventional ion chamber. As materials best-suited for radiation dosimeters, four candidates namely lead (II) iodide (PbI2), lead (II) oxide (PbO), mercury (II) iodide (HgI2), and HgI2/ titanium dioxide (TiO2) composite, the performances of which were proved in previous studies, were used. The electrical properties of each candidate material were examined using the sedimentation method, one of the particle-in-binder (PIB) methods, and unit-cell-type prototypes were fabricated. The unit-cell samples thus prepared were cut into specimens of area 1 × 1 cm2 with 400-μ m thickness. The electrical properties of each sample, such as sensitivity, dark current, output current, rising time, falling time, and response delay, were then measured, in addition to the consistency, reproducibility and linearity of each unit-cell. According to the measurement results, HgI2/TiO2 composite outperformed the other candidate materials. A radiation dosimeter with a chamber-type structure was fabricated in this study using a LINAC under accelerating voltages of 6, and 15 MV and compared with a commercial ion chamber. Percent depth dose (PDD) and beam profile were measured on a water phantom at a fixed area of 10 × 10 cm2 by using the fabricated chamber-type dosimeter, and the values were compared with those measured by a commercial ion chamber. Additionally, a homogeneous phantom was fabricated, and the exposure doses of the center points were measured according to a real treatment plan, followed by a comparison of the measured values as relative values. In this paper, we report that the manufactured dosimeter shows similar characteristics in terms of PDD and beam profile and results for the conventional ion chamber. Based on these results, it is demonstrated that the HgI2/TiO2-based dosimeter complies with radiotherapy QA requirements, namely Superior detection characteristics, consistency, dose linearity, reproducibility. Thus, we expect the HgI2/TiO2-based dosimeter to be used commercially in the future.

  8. Study of the absorption spectra of Fricke Xylenol Orange gel dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gambarini, Grazia; Artuso, Emanuele; Liosi, Giulia Maria

    2015-07-01

    A systematic study of the absorption spectra of Fricke Xylenol Orange gel dosimeters has been performed, in the wavelength range from 300 nm to 700 nm. The spectrum of Xylenol Orange (without ferrous sulphate solution) has been achieved, in order to subtract its contribution from the absorption spectra of the irradiated Fricke Xylenol Orange gel dosimeters. The absorbance due to ferric ions chelated by Xylenol Orange has been studied for various irradiation doses. Two absorbance peaks are visible, mainly at low doses: the first peak increases with the dose more slowly than the second one. This effect can explain themore » apparent threshold dose that was frequently evidenced. (authors)« less

  9. Vitamin D Investigation

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The solar dosimeter, a spinoff from NASA solar cell technology, measures the amount of solar radiation to which its wearer is exposed. It was used in a University of Cincinnati Medical Center investigation into the effect of sunlight exposure on maintaining vitamin D status in infants. The infants were exposed to sunlight and records were kept by mothers. Each baby wore a solar dosimeter. The two circular "eyes" in the instrument are silicon photovoltaic detectors which collect solar energy, convert it to electric signals and transmit the charge to E-cells that record the charge by plating silver ions onto an electrode. The time required to plate the silver measures the radiation received. The University found the solar dosimeter to be very effective.

  10. A Practical Science Investigation for Middle School Students: Designing a Simple Cost Effective Chemical Solar Padiation Dosimeter

    ERIC Educational Resources Information Center

    Downs, Nathan; Larsen, Kim; Parisi, Alfio; Schouten, Peter; Brennan, Chris

    2012-01-01

    A practical exercise for developing a simple cost-effective solar ultraviolet radiation dosimeter is presented for use by middle school science students. Specifically, this exercise investigates a series of experiments utilising the historical blue print reaction, combining ammonium iron citrate and potassium hexacyanoferrate to develop an…

  11. Pen Ink as an Ultraviolet Dosimeter

    ERIC Educational Resources Information Center

    Downs, Nathan; Turner, Joanna; Parisi, Alfio; Spence, Jenny

    2008-01-01

    A technique for using highlighter ink as an ultraviolet dosimeter has been developed for use by secondary school students. The technique requires the students to measure the percentage of colour fading in ink drawn onto strips of paper that have been exposed to sunlight, which can be calibrated to measurements of the ultraviolet irradiance using…

  12. Passive, Low Cost Neutron Detectors for Neutron Diagnostics at the National Ignition Facility

    DTIC Science & Technology

    2013-03-01

    Facility PTFE Polytetrafluoroethylene TLD Thermoluminescent Dosimeter α Conversion Coefficient (Conversion...because they required a large investment in automated track counting equipment. Thermoluminescent dosimeters ( TLDs ) remained as a viable option. They...necessary to predict radiation damage to measurement electronics . Due to programmatic and facility limitations, traditional neutron measurement

  13. Feasibility of a semiconductor dosimeter to monitor skin dose in interventional radiology.

    PubMed

    Meyer, P; Regal, R; Jung, M; Siffert, P; Mertz, L; Constantinesco, A

    2001-10-01

    The design and preliminary test results of a semiconductor silicon dosimeter are presented in this article. Use of this dosimeter is foreseen for real-time skin dose control in interventional radiology. The strong energy dependence of this kind of radiation detector is well overcome by filtering the silicon diode. Here, the optimal filter features have been calculated by numerical Monte Carlo simulations. A prototype has been built and tested in a radiological facility. The first experimental results show a good match between the filtered semiconductor diode response and an ionization chamber response, within 2% fluctuation in a 2.2 to 4.1 mm Al half-value layer (HVL) energy range. Moreover, the semiconductor sensor response is linear from 0.02 Gy/min to at least 6.5 Gy/min, covering the whole dose rate range found in interventional radiology. The results show that a semiconductor dosimeter could be used to monitor skin dose during the majority of procedures using x-rays below 150 keV. The use of this device may assist in avoiding radiation-induced skin injuries and lower radiation levels during interventional procedures.

  14. Thermoluminescent dosimetry in electron beams: energy dependence.

    PubMed

    Robar, V; Zankowski, C; Olivares Pla, M; Podgorsak, E B

    1996-05-01

    The response of thermoluminescent dosimeters to electron irradiations depends on the radiation dose, mean electron energy at the position of the dosimeter in phantom, and the size of the dosimeter. In this paper the semi-empirical expression proposed by Holt et al. [Phys. Med. Biol. 20, 559-570 (1975)] is combined with the calculated electron dose fraction to determine the thermoluminescent dosimetry (TLD) response as a function of the mean electron energy and the dosimeter size. The electron and photon dose fractions, defined as the relative contributions of electrons and bremsstrahlung photons to the total dose for a clinical electron beam, are calculated with Monte Carlo techniques using EGS4. Agreement between the calculated and measured TLD response is very good. We show that the considerable reduction in TLD response per unit dose at low electron energies, i.e., at large depths in phantom, is offset by an ever-increasing relative contribution of bremsstrahlung photons to the total dose of clinical electron beams. This renders the TLD sufficiently reliable for dose measurements over the entire electron depth dose distribution despite the dependence of the TLD response on electron beam energy.

  15. Development of a personal dosimetry system based on optically stimulated luminescence of alpha-Al2O3:C for mixed radiation fields.

    PubMed

    Lee, S Y; Lee, K J

    2001-04-01

    To develop a personal optically stimulated luminescence (OSL) dosimetry system for mixed radiation fields using alpha-Al2O3:C, a discriminating badge filter system was designed by taking advantage of its optically stimulable properties and energy dependencies. This was done by designing a multi-element badge system for powder layered alpha-Al2O3:C material and an optical reader system based on high-intensity blue light-emitting diode (LED). The design of the multielement OSL dosimeter badge system developed allows the measurement of a personal dose equivalent value Hp(d) in mixed radiation fields of beta and gamma. Dosimetric properties of the personal OSL dosimeter badge system investigated here were the dose response, energy response and multi-readability. Based on the computational simulations and experiments of the proposed dosimeter design, it was demonstrated that a multi-element dosimeter system with an OSL technology based on alpha-Al2O3:C is suitable to obtain personal dose equivalent information in mixed radiation fields.

  16. Activation of Dosimeters Used in qa of Medical Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Polaczek-Grelik, Kinga; Nowacka, Magdalena; Raczkowski, Maciej

    2017-09-01

    This paper presents the first results of a project intended to investigate γ-radiation activity induced in dosimeters used in clinical practice during routine quality assurance of high-energy photon beams emitted by electron linear accelerators. Two aspects of the activation via photonuclear reactions (X, n) of therapeutic beam and subsequent capture of secondary neutrons (n,γ) are under considerations: the influence of activation on intrinsic background of the dosimeters and exposure of dosimetrists who operate this equipment. The activation of several types of ionization chambers as well as the silicon diodes was studied after long-time exposure (10 000 MUs) of the 15 MV photon beam (Elekta Synergy). Photon fluxes obtained from spectra of γ-rays registered by HPGe spectrometer were subsequently converted to equivalent doses using appropriate coefficients. The main contribution to the induced activity comes from the neutron capture process on Al, Mn and Cu, therefore it decays quite fast with the half-lives of the order of 15 minutes. Nevertheless, the activation of chlorine was also observed. The estimated equivalent doses to skin and eye lens were in the range 0.19 - 0.62 μSv/min. However, no influence on intrinsic background signal of all studied dosimeters was observed. The preliminary results indicate that induced radioactivity of dosimeters is strongly influenced by therapeutic beam quality and neutron source strength of particular linac. This dependence will be studied deeper in order to quantify it more precisely.

  17. How do monomeric components of a polymer gel dosimeter respond to ionising radiation: A steady-state radiolysis towards preparation of a 3D polymer gel dosimeter

    NASA Astrophysics Data System (ADS)

    Kozicki, Marek

    2011-12-01

    Ionising radiation-induced reactions of aqueous single monomer solutions and mixtures of poly(ethylene glycol) diacrylate (PEGDA) and N, N'-methylenebisacrylamide (Bis) in a steady-state condition are presented below and above gelation doses in order to highlight reactions in irradiated 3D polymer gel dosimeters, which are assigned for radiotherapy dosimetry. Both monomers are shown to undergo radical polymerisation and cross-linking, which result in the measured increase in molecular weight and radius of gyration of the formed polydisperse polymer coils. The formation of nanogels was also observed for Bis solutions at a low concentration. In the case of PEGDA-Bis mixtures, co-polymerisation is suggested as well. At a sufficiently high radiation dose, the formation of a polymer network was observed for both monomers and their mixture. For this reason a sol-gel analysis for PEGDA and Bis was performed gravimetrically and a proposition of an alternative to this method employing a nuclear magnetic resonance technique is made. The two monomers were used for preparation of 3D polymer gel dosimeters having the acronyms PABIG and PABIG nx. The latter is presented for the first time in this work and is a type of the formerly established PABIG polymer gel dosimeter. The elementary characteristics of the new composition are presented, underlining the ease of its preparation, low dose threshold, and slightly increased sensitivity but lower quasi-linear range of dose response in comparison to PABIG.

  18. Dosimetry of gamma chamber blood irradiator using PAGAT gel dosimeter and Monte Carlo simulations

    PubMed Central

    Mohammadyari, Parvin; Zehtabian, Mehdi; Sina, Sedigheh; Tavasoli, Ali Reza

    2014-01-01

    Currently, the use of blood irradiation for inactivating pathogenic microbes in infected blood products and preventing graft‐versus‐host disease (GVHD) in immune suppressed patients is greater than ever before. In these systems, dose distribution and uniformity are two important concepts that should be checked. In this study, dosimetry of the gamma chamber blood irradiator model Gammacell 3000 Elan was performed by several dosimeter methods including thermoluminescence dosimeters (TLD), PAGAT gel dosimetry, and Monte Carlo simulations using MCNP4C code. The gel dosimeter was put inside a glass phantom and the TL dosimeters were placed on its surface, and the phantom was then irradiated for 5 min and 27 sec. The dose values at each point inside the vials were obtained from the magnetic resonance imaging of the phantom. For Monte Carlo simulations, all components of the irradiator were simulated and the dose values in a fine cubical lattice were calculated using tally F6. This study shows that PAGAT gel dosimetry results are in close agreement with the results of TL dosimetry, Monte Carlo simulations, and the results given by the vendor, and the percentage difference between the different methods is less than 4% at different points inside the phantom. According to the results obtained in this study, PAGAT gel dosimetry is a reliable method for dosimetry of the blood irradiator. The major advantage of this kind of dosimetry is that it is capable of 3D dose calculation. PACS number: 87.53.Bn PMID:24423829

  19. A phantom study on bladder and rectum dose measurements in brachytherapy of cervix cancer using FBX aqueous chemical dosimeter.

    PubMed

    Bansal, Anil K; Semwal, Manoj K; Arora, Deepak; Sharma, D N; Julka, P K; Rath, G K

    2013-06-01

    The ferrous sulphate-benzoic acid-xylenol orange (FBX) chemical dosimeter, due to its aqueous form can measure average volume doses and hence may overcome the limitations of point dosimetry. The present study was undertaken to validate the use of FBX dosimeter for rectum and bladder dose measurement during intracavitary brachytherapy (ICBT) and transperineal interstitial brachytherapy (TIB). We filled cylindrical polypropylene tubes (PT) and Foley balloons (FB) with FBX solution and used them as substitutes for rectum and bladder dose measurements respectively. A water phantom was fabricated with provision to place the Fletcher-type ICBT and MUPIT template applicators, and FBX filled PT and FB within the phantom. The phantom was then CT scanned for treatment planning and subsequent irradiation. Our results show that the average difference between DVH derived dose value and FBX measured dose is 3.5% (PT) and 13.7% (FB) for ICBT, and 9% (PT) and 9.9% (FB) for TIB. We believe that the FBX system should be able to provide accuracy and precision sufficient for routine quality assurance purposes. The advantage of the FBX system is its water equivalent composition, average volume dose measuring capability, and energy and temperature independent response as compared to TLD or semiconductor dosimeters. However, detailed studies will be needed with regards to its safety before actual in-vivo dose measurements are possible with the FBX dosimeter. Copyright © 2012 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  20. [BeO-OSL detectors for dose measurements in cell cultures].

    PubMed

    Andreeff, M; Sommer, D; Freudenberg, R; Reichelt, U; Henniger, J; Kotzerke, J

    2009-01-01

    The absorbed dose is an important parameter in experiments involving irradiation of cells in vitro with unsealed radionuclides. Typically, this is estimated with a model calculation, although the results thus obtained cannot be verified. Generally used real-time measurement methods are not applicable in this setting. A new detector material with in vitro suitability is the subject of this work. Optically-stimulated luminescence (OSL) dosimeters based on beryllium oxide (BeO) were used for dose measurement in cell cultures exposed to unsealed radionuclides. Their qualitative properties (e. g. energy-dependent count rate sensitivity, fading, contamination by radioactive liquids) were determined and compared to the results of a Monte Carlo simulation (using AMOS software). OSL dosimeters were tested in common cell culture setups with a known geometry. Dose reproducibility of the OSL dosimeters was +/-1.5%. Fading at room temperature was 0.07% per day. Dose loss (optically-stimulated deletion) under ambient lighting conditions was 0.5% per minute. The Monte Carlo simulation for the relative sensitivity at different beta energies provided corresponding results to those obtained with the OSL dosimeters. Dose profile measurements using a 6 well plate and 14 ml PP tube showed that the geometry of the cell culture vessel has a marked influence on dose distribution with 188Re. A new dosimeter system was calibrated with beta-emitters of different energy. It turned out as suitable for measuring dose in liquids. The dose profile measurements obtained are suitably precise to be used as a check against theoretical dose calculations.

  1. Type testing of the Siemens Plessey electronic personal dosemeter.

    PubMed

    Hirning, C R; Yuen, P S

    1995-07-01

    This paper presents the results of a laboratory assessment of the performance of a new type of personal dosimeter, the Electronic Personal Dosemeter made by Siemens Plessey Controls Limited. Twenty pre-production dosimeters and a reader were purchased by Ontario Hydro for the assessment. Tests were performed on radiological performance, including reproducibility, accuracy, linearity, detection threshold, energy response, angular response, neutron response, and response time. There were also tests on the effects of a variety of environmental factors, such as temperature, humidity, pulsed magnetic and electric fields, low- and high-frequency electromagnetic fields, light exposure, drop impact, vibration, and splashing. Other characteristics that were tested were alarm volume, clip force, and battery life. The test results were compared with the relevant requirements of three standards: an Ontario Hydro standard for personal alarming dosimeters, an International Electrotechnical Commission draft standard for direct reading personal dose monitors, and an International Electrotechnical Commission standard for thermoluminescence dosimetry systems for personal monitoring. In general, the performance of the Electronic Personal Dosemeter was found to be quite acceptable: it met most of the relevant requirements of the three standards. However, the following deficiencies were found: slow response time; sensitivity to high-frequency electromagnetic fields; poor resistance to dropping; and an alarm that was not loud enough. In addition, the response of the electronic personal dosimeter to low-energy beta rays may be too low for some applications. Problems were experienced with the reliability of operation of the pre-production dosimeters used in these tests.

  2. Studies on new neutron-sensitive dosimeters using an optically stimulated luminescence technique

    NASA Astrophysics Data System (ADS)

    Kulkarni, M. S.; Luszik-Bhadra, M.; Behrens, R.; Muthe, K. P.; Rawat, N. S.; Gupta, S. K.; Sharma, D. N.

    2011-07-01

    The neutron response of detectors prepared using α-Al 2O 3:C phosphor developed using a melt processing technique and mixed with neutron converters was studied in monoenergetic neutron fields. The detector pellets were arranged in two different pairs: α-Al 2O 3:C + 6LiF/α-Al 2O 3:C + 7LiF and α-Al 2O 3:C + high-density polyethylene/α-Al 2O 3:C + Teflon, for neutron dosimetry using albedo and recoil proton techniques. The optically stimulated luminescence response of the Al 2O 3:C + 6,7LiF dosimeter to radiation from a 252Cf source was 0.21, in terms of personal dose equivalent Hp(10) and relative to radiation from a 137Cs source. This was comparable to results obtained with similar detectors prepared using commercially available α-Al 2O 3:C phosphor. The Hp(10) response of the α-Al 2O 3:C + 6,7LiF dosimeters was found to decrease by more than two orders of magnitude with increasing neutron energy, as expected for albedo dosimeters. The response of the α-Al 2O 3:C + high-density polyethylene/α-Al 2O 3:C + Teflon dosimeters was small, of the order of 1% to 2% in terms of Hp(10) and relative to radiation from a 137Cs source, for neutron energies greater than 1 MeV.

  3. Feasibility of using two-dimensional array dosimeter for in vivo dose reconstruction via transit dosimetry.

    PubMed

    Chung, Heeteak; Li, Jonathan; Samant, Sanjiv

    2011-04-08

    Two-dimensional array dosimeters are commonly used to perform pretreatment quality assurance procedures, which makes them highly desirable for measuring transit fluences for in vivo dose reconstruction. The purpose of this study was to determine if an in vivo dose reconstruction via transit dosimetry using a 2D array dosimeter was possible. To test the accuracy of measuring transit dose distribution using a 2D array dosimeter, we evaluated it against the measurements made using ionization chamber and radiochromic film (RCF) profiles for various air gap distances (distance from the exit side of the solid water slabs to the detector distance; 0 cm, 30 cm, 40 cm, 50 cm, and 60 cm) and solid water slab thicknesses (10 cm and 20 cm). The backprojection dose reconstruction algorithm was described and evaluated. The agreement between the ionization chamber and RCF profiles for the transit dose distribution measurements ranged from -0.2% ~ 4.0% (average 1.79%). Using the backprojection dose reconstruction algorithm, we found that, of the six conformal fields, four had a 100% gamma index passing rate (3%/3 mm gamma index criteria), and two had gamma index passing rates of 99.4% and 99.6%. Of the five IMRT fields, three had a 100% gamma index passing rate, and two had gamma index passing rates of 99.6% and 98.8%. It was found that a 2D array dosimeter could be used for backprojection dose reconstruction for in vivo dosimetry.

  4. Three-dimensional radiation dosimetry using polymer gel and solid radiochromic polymer: From basics to clinical applications

    PubMed Central

    Watanabe, Yoichi; Warmington, Leighton; Gopishankar, N

    2017-01-01

    Accurate dose measurement tools are needed to evaluate the radiation dose delivered to patients by using modern and sophisticated radiation therapy techniques. However, the adequate tools which enable us to directly measure the dose distributions in three-dimensional (3D) space are not commonly available. One such 3D dose measurement device is the polymer-based dosimeter, which changes the material property in response to radiation. These are available in the gel form as polymer gel dosimeter (PGD) and ferrous gel dosimeter (FGD) and in the solid form as solid plastic dosimeter (SPD). Those are made of a continuous uniform medium which polymerizes upon irradiation. Hence, the intrinsic spatial resolution of those dosimeters is very high, and it is only limited by the method by which one converts the dose information recorded by the medium to the absorbed dose. The current standard methods of the dose quantification are magnetic resonance imaging, optical computed tomography, and X-ray computed tomography. In particular, magnetic resonance imaging is well established as a method for obtaining clinically relevant dosimetric data by PGD and FGD. Despite the likely possibility of doing 3D dosimetry by PGD, FGD or SPD, the tools are still lacking wider usages for clinical applications. In this review article, we summarize the current status of PGD, FGD, and SPD and discuss the issue faced by these for wider acceptance in radiation oncology clinic and propose some directions for future development. PMID:28396725

  5. Validation of a Prototype Optical Computed Tomography System

    PubMed Central

    Zakariaee, Seyed Salman; Molazadeh, Mikaeil; Takavar, Abbas; Shirazi, Alireza; Mesbahi, Asghar; Zeinali, Ahad

    2015-01-01

    In radiation cancer treatments, the most of the side effects could be minimized using a proper dosimeter. Gel dosimeter is the only three-dimensional dosimeter and magnetic resonance imaging (MRI) is the gold standard method for gel dosimeter readout. Because of hard accessibility and high cost of sample reading by MRI systems, some other alternative methods were developed. The optical computed tomography (OCT) method could be considered as the most promising alternative method that has been studied widely. In the current study, gel dosimeter scanning using a prototype optical scanner and validation of this optical scanner was performed. Optical absorbance of the irradiated gel samples was determined by both of conventional spectrophotometer and the fabricated OCT system at 632 nm. Furthermore, these irradiated vials were scanned by a 1.5 T MRI. The slope of the curves was extracted as the dose-response sensitivity. The R2-dose sensitivity measured by MRI method was 0.1904 and 0.113 for NIPAM and PAGAT gels, respectively. The optical dose sensitivity obtained by conventional spectrophotometer and the fabricated optical scanner was 0.0453 and 0.0442 for NIPAM gels and 0.0244 and 0.0242 for PAGAT gels, respectively. The scanning results of the absorbed dose values showed that the new OCT and conventional spectrophotometer were in fair agreement. From the results, it could be concluded that the fabricated system is able to quantize the absorbed dose values in polymer gel samples with acceptable accuracy. PMID:26120572

  6. Evaluation of dose delivery accuracy of gamma knife using MRI polymer gel dosimeter in an inhomogeneous phantom

    NASA Astrophysics Data System (ADS)

    Pourfallah T, A.; Alam N, Riahi; M, Allahverdi; M, Ay; M, Zahmatkesh

    2009-05-01

    Polymer gel dosimetry is still the only dosimetry method for directly measuring three-dimensional dose distributions. MRI Polymer gel dosimeters are tissue equivalent and can act as a phantom material. Because of high dose response sensitivity, the MRI was chosen as readout device. In this study dose profiles calculated with treatment-planning software (LGP) and measurements with the MR polymer gel dosimeter for single-shot irradiations were compared. A custom-built 16 cm diameter spherical plexiglas head phantom was used in this study. Inside the phantom, there is a cubic cutout for insertion of gel phantoms and another cutout for inserting the inhomogeneities. The phantoms were scanned with a 1.5T MRI (Siemens syngo MR 2004A 4VA25A) scanner. The multiple spin-echo sequence with 32 echoes was used for the MRI scans. Calibration relations between the spin-spin relaxation rate and the absorbed dose were obtained by using small cylindrical vials, which were filled with the PAGAT polymer gel from the same batch as for the spherical phantom. 1D and 2D data obtained using gel dosimeter for homogeneous and inhomogeneous phantoms were compared with dose obtained using LGP calculation. The distance between relative isodose curves obtained for homogeneous phantom and heterogeneous phantoms exceed the accepted total positioning error (>±2mm). The findings of this study indicate that dose measurement using PAGAT gel dosimeter can be used for verifying dose delivering accuracy in GK unit in presence of inhomogeneities.

  7. Performance characteristics of mobile MOSFET dosimeter for kilovoltage X-rays used in image guided radiotherapy.

    PubMed

    Kumar, A Sathish; Singh, I Rabi Raja; Sharma, S D; Ravindran, B Paul

    2015-01-01

    The main objective of this study was to investigate the characteristics of metal oxide semiconductor field effect transistor (MOSFET) dosimeter for kilovoltage (kV) X-ray beams in order to perform the in vivo dosimetry during image guidance in radiotherapy. The performance characteristics of high sensitivity MOSFET dosimeters were investigated for 80, 90, 100, 110, 120, and 125 kV X-ray beams used for imaging in radiotherapy. This study was performed using Clinac 2100 C/D medical electron linear accelerator with on-board imaging and kV cone beam computed tomography system. The characteristics studied in this work include energy dependence, angular dependence, and linearity. The X-ray beam outputs were measured as per American Association of Physicists in Medicine (AAPM) TG 61 recommendations using PTW parallel plate (PP) ionization chamber, which was calibrated in terms of air kerma (Nk) by the National Standard Laboratory. The MOSFET dosimeters were calibrated against the PP ionization chamber for all the kV X-ray beams and the calibration coefficient was found to be 0.11 cGy/mV with a standard deviation of about ±1%. The response of MOSFET was found to be energy independent for the kV X-ray energies used in this study. The response of the MOSFET dosimeter was also found independent of angle of incidence for the gantry angles in the range of 0° to 360° in-air as well as at 3 cm depth in tissue equivalent phantom.

  8. Surface dose measurements from air gaps under a bolus by using a MOSFET dosimeter in clinical oblique photon beams

    NASA Astrophysics Data System (ADS)

    Chung, Jin-Beom; Kim, Jae-Sung; Kim, In-Ah; Lee, Jeong-Woo

    2012-10-01

    This study is intended to investigate the effects of surface dose from air gaps under the bolus in clinically used oblique photon beams by using a Markus parallel-plate chamber and a metal-oxide semiconductor field-effect transistor (MOSFET) dosimeter. To evaluate the performances of the two detectors, the percentage surface doses of the MOSFET dosimeters in without an air gap under the bolus material were measured and compared with those of the Markus parallel-plate chamber. MOSFET dosimeters at the surface provided results mostly in good agreement with the parallelplate chamber. The MOSFET dosimeters seemed suitable for surface dose measurements having excellent accuracy for clinical used photon beams. The relative surface doses were measured with air gaps (2, 5, 10 mm) and without an air gap under 3 different bolus setups: (1) unbolused (no bolus), (2) 5-mm bolus, and (3) 10-mm bolus. The reductions in the surface dose substantially increased with small field size, thick bolus, and large air gap. The absolute difference in the reductions of the surface dose between the MOSFET dosimeter and the Markus parallel-plate chamber was less than 1.1%. Results at oblique angles of incidence showed larger reductions in surface dose with increasing angle of incidence. The largest reduction in surface dose was recorded for a 6 × 6 cm2 field at a 60° angle of incidence with an 10-mm air gap under a 10-mm bolus. When a 10-mm bolus was used, a reduction in the surface dose with an air gap of up to 10.5% could be achieved by varying the field size and the incident angle. Therefore, air gaps under the bolus should be avoided in radiotherapy treatment, especially for photon beam with highly oblique angles of incidence.

  9. Influence of photon beam energy on the dose enhancement factor caused by gold and silver nanoparticles: An experimental approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guidelli, Eder José, E-mail: ederguidelli@pg.ffclrp.usp.br; Baffa, Oswaldo

    Purpose: Noble metal nanoparticles have found several medical applications in the areas of radiation detection; x-ray contrast agents and cancer radiation therapy. Based on computational methods, many papers have reported the nanoparticle effect on the dose deposition in the surrounding medium. Here the authors report experimental results on how silver and gold nanoparticles affect the dose deposition in alanine dosimeters containing several concentrations of silver and gold nanoparticles, for five different beam energies, using electron spin resonance spectroscopy (ESR). Methods: The authors produced alanine dosimeters containing several mass percentage of silver and gold nanoparticles. Nanoparticle sizes were measured by dynamicmore » light scattering and by transmission electron microscopy. The authors determined the dose enhancement factor (DEF) theoretically, using a widely accepted method, and experimentally, using ESR spectroscopy. Results: The DEF is governed by nanoparticle concentration, size, and position in the alanine matrix. Samples containing gold nanoparticles afford a DEF higher than 1.0, because gold nanoparticle size is homogeneous for all gold concentrations utilized. For samples containing silver particles, the silver mass percentage governs the nanoparticles size, which, in turns, modifies nanoparticle position in the alanine dosimeters. In this sense, DEF decreases for dosimeters containing large and segregated particles. The influence of nanoparticle size-position is more noticeable for dosimeters irradiated with higher beam energies, and dosimeters containing large and segregated particles become less sensitive than pure alanine (DEF < 1). Conclusions: ESR dosimetry gives the DEF in a medium containing metal nanoparticles, although particle concentration, size, and position are closely related in the system. Because this is also the case as in many real systems of materials containing inorganic nanoparticles, ESR is a valuable tool for investigating DEF. Moreover, these results alert to the importance of controlling the size-position of nanoparticles to enhance DEF.« less

  10. SU-F-T-434: Development of a Fan-Beam Optical Scanner Using CMOS Array for Small Field Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brost, E; Warmington, L; Watanabe, Y

    Purpose: To design and construct a second generation optical computed tomography (OCT) system using a fan-beam with a CMOS array detector for the 3D dosimetry with polymer gel and radiochromic solid dosimeters. The system was specifically designed for the small field dosimetry. Methods: The optical scanner used a fan-beam laser, which was produced from a collimated red laser beam (λ=620 nm) with a 15-degree laser-line generating lens. The fan-beam was sent through an index-matching bath which holds the sample stage and a sample. The emerging laser light was detected with a 2.54 cm-long CMOS array detector (512 elements). The samplemore » stage rotated through the full 360 degree projection angles at 0.9-degree increments. Each projection was normalized to the unirradiated sample at the projection angle to correct for imperfections in the dosimeter. A larger sample could be scanned by using a motorized mirror and linearly translating the CMOS detector. The height of the sample stage was varied for a full 3D scanning. The image acquisition and motor motion was controlled by a computer. The 3D image reconstruction was accomplished by a fan-beam reconstruction algorithm. All the software was developed inhouse with MATLAB. Results: The scanner was used on both PRESAGE and PAGAT gel dosimeters. Irreconcilable refraction errors were seen with PAGAT because the fan beam laser line refracted away from the detector when the field was highly varying in 3D. With PRESAGE, this type of error was not seen. Conclusion: We could acquire tomographic images of dose distributions by the new OCT system with both polymer gel and radiochromic solid dosimeters. Preliminary results showed that the system was more suited for radiochromic solid dosimeters since the radiochromic dosimeters exhibited minimal refraction and scattering errors. We are currently working on improving the image quality by thorough characterization of the OCT system.« less

  11. Commissioning optically stimulated luminescence in vivo dosimeters for fast neutron therapy.

    PubMed

    Young, Lori A; Yang, Fei; Woodworth, Davis; McCormick, Zephyr; Sandison, George

    2016-01-01

    Clinical in vivo dosimeters intended for use with photon and electron therapies have not been utilized for fast neutron therapy because they are highly susceptible to neutron damage. The objective of this work was to determine if a commercial optically stimulated luminescence (OSL) in vivo dosimetry system could be adapted for use in fast neutron therapy. A 50.5 MeV fast neutron beam generated by a clinical neutron therapy cyclotron was used to irradiate carbon doped aluminum oxide (Al2O3:C) optically simulated luminescence dosimeters (OSLDs) in a solid water phantom under standard calibration conditions, 150 cm SAD, 1.7 cm depth, and 10.3 × 10.0 cm field size. OSLD fading and electron trap depletion studies were performed with the OSLDs irradiated with 20 and 50 cGy and monitored over a 24-h period to determine the optimal time for reading the dosimeters during calibration. Four OSLDs per group were calibrated over a clinical dose range of 0-150 cGy. OSLD measurement uncertainties were lowered to within ±2%-3% of the expected dose by minimizing the effect of transient fading that occurs with neutron irradiation and maintaining individual calibration factors for each dosimeter. Dose dependent luminescence fading extended beyond the manufacturer's recommended 10 min period for irradiation with photon or electron beams. To minimize OSL variances caused by inconsistent fading among dosimeters, the observed optimal time for reading the OSLDs postirradiation was between 30 and 90 min. No field size, wedge factor, or gantry angle dependencies were observed in the OSLDs irradiated by the studied fast neutron beam. Measurements demonstrated that uncertainties less than ±3% were attainable in OSLDs irradiated with fast neutrons under clinical conditions. Accuracy and precision comparable to clinical OSL measurements observed with photons can be achieved by maintaining individual OSLD calibration factors and minimizing transient fading effects.

  12. Commissioning optically stimulated luminescence in vivo dosimeters for fast neutron therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Lori A., E-mail: layoung@uw.edu; Sandison, George; Yang, Fei

    Purpose: Clinical in vivo dosimeters intended for use with photon and electron therapies have not been utilized for fast neutron therapy because they are highly susceptible to neutron damage. The objective of this work was to determine if a commercial optically stimulated luminescence (OSL) in vivo dosimetry system could be adapted for use in fast neutron therapy. Methods: A 50.5 MeV fast neutron beam generated by a clinical neutron therapy cyclotron was used to irradiate carbon doped aluminum oxide (Al{sub 2}O{sub 3}:C) optically simulated luminescence dosimeters (OSLDs) in a solid water phantom under standard calibration conditions, 150 cm SAD, 1.7more » cm depth, and 10.3 × 10.0 cm field size. OSLD fading and electron trap depletion studies were performed with the OSLDs irradiated with 20 and 50 cGy and monitored over a 24-h period to determine the optimal time for reading the dosimeters during calibration. Four OSLDs per group were calibrated over a clinical dose range of 0–150 cGy. Results: OSLD measurement uncertainties were lowered to within ±2%–3% of the expected dose by minimizing the effect of transient fading that occurs with neutron irradiation and maintaining individual calibration factors for each dosimeter. Dose dependent luminescence fading extended beyond the manufacturer’s recommended 10 min period for irradiation with photon or electron beams. To minimize OSL variances caused by inconsistent fading among dosimeters, the observed optimal time for reading the OSLDs postirradiation was between 30 and 90 min. No field size, wedge factor, or gantry angle dependencies were observed in the OSLDs irradiated by the studied fast neutron beam. Conclusions: Measurements demonstrated that uncertainties less than ±3% were attainable in OSLDs irradiated with fast neutrons under clinical conditions. Accuracy and precision comparable to clinical OSL measurements observed with photons can be achieved by maintaining individual OSLD calibration factors and minimizing transient fading effects.« less

  13. Small Active Radiation Monitor

    NASA Technical Reports Server (NTRS)

    Badhwar, Gautam D.

    2004-01-01

    A device, named small active radiation monitor, allows on-orbit evaluations during periods of increased radiation, after extravehicular activities, or at predesignated times for crews on such long-duration space missions as on the International Space Station. It also permits direct evaluation of biological doses, a task now performed using a combination of measurements and potentially inaccurate simulations. Indeed the new monitor can measure a full array of radiation levels, from soft x-rays to hard galactic cosmic-ray particles. With refinement, it will benefit commercial (nuclear power-plant workers, airline pilots, medical technicians, physicians/dentists, and others) and military personnel as well as the astronauts for whom thermoluminescent dosimeters are inadequate. Civilian and military personnel have long since graduated from film badges to thermoluminescent dosimeters. Once used, most dosimeters must be returned to a central facility for processing, a step that can take days or even weeks. While this suffices for radiation workers for whom exposure levels are typically very low and of brief duration, it does not work for astronauts. Even in emergencies and using express mail, the results can often be delayed by as much as 24 hours. Electronic dosimeters, which are the size of electronic oral thermometers, and tattlers, small electronic dosimeters that sound an alarm when the dose/dose rate exceeds preset values, are also used but suffer disadvantages similar to those of thermoluminescent dosimeters. None of these devices fully answers the need of rapid monitoring during the space missions. Instead, radiation is monitored by passive detectors, which are read out after the missions. Unfortunately, these detectors measure only the absorbed dose and not the biologically relevant dose equivalent. The new monitor provides a real-time readout, a time history of radiation exposures (both absorbed dose and biologically relevant dose equivalent), and a count of the number of particles passing through a unit area. Better still, the monitor can be used anywhere.

  14. Characterization of MOSFET Dosimeter Angular Response Using a Spherical Phantom for Fluoroscopic Dosimetry.

    PubMed

    Wang, Chu; Hill, Kevin; Yoshizumi, Terry

    2016-01-01

    Metal-Oxide Semiconductor Field-Effect Transistor (MOSFET) dosimeters, placed in anthropomorphic phantoms, are a standard method for organ dosimetry in medical x-ray imaging applications. However, many x-ray applications, particularly fluoroscopy procedures, use variable projection angles. During dosimetry, the MOSFET detector active area may not always be perpendicular to the x-ray beam. The goal of this study was to characterize the dosimeter's angular response in the fluoroscopic irradiation involved in pediatric cardiac catheterization procedures, during which a considerable amount of fluoroscopic x-ray irradiation is often applied from various projection angles. A biological x-ray irradiator was used to simulate the beam quality of a biplane fluoroscopy imaging system. A custom-designed acrylic spherical scatter phantom was fabricated to measure dosimeter response (in mV) in two rotational axes, axial (ψ) and normal-to-axial (θ), in 30° increments, as well as four common oblique angles used in cardiac catheterization: a) 90° Left Anterior Oblique (LAO); b) 70° LAO/ 20° Cranial; c) 20° LAO/ 15° Cranial; and d) 30° Right Anterior Oblique (RAO). All results were normalized to the angle where the dosimeter epoxy is perpendicular to the beam or the Posterior-Anterior projection angle in the clinical setup. The relative response in the axial rotation was isotropic (within ± 10% deviation); that in the normal-to-axial rotation was isotropic in all angles except the ψ = 270° angle, where the relative response was 83 ± 9%. No significant deviation in detector response was observed in the four common oblique angles, with their relative responses being: a) 102 ± 3%; b) 90 ± 3%; c) 92 ± 3%; and d) 95 ± 3%, respectively. These angular correction factors will be used in future dosimetry studies for fluoroscopy. The spherical phantom may be useful for other applications, as it allows the measurement of dosimeter response in virtually all angles in the 3-dimensional spherical coordinates.

  15. Optical CT imaging of solid radiochromic dosimeters in mismatched refractive index solutions using a scanning laser and large area detector.

    PubMed

    Dekker, Kurtis H; Battista, Jerry J; Jordan, Kevin J

    2016-08-01

    The practical use of the PRESAGE® solid plastic dosimeter is limited by the inconvenience of immersing it in high-viscosity oils to achieve refractive index matching for optical computed tomography (CT) scanning. The oils are slow to mix and difficult to clean from surfaces, and the dosimeter rotation can generate dynamic Schlieren inhomogeneity patterns in the reference liquid, limiting the rotational and overall scan speed. Therefore, it would be beneficial if lower-viscosity, water-based solutions with slightly unmatched refractive index could be used instead. The purpose of this work is to demonstrate the feasibility of allowing mismatched conditions when using a scanning laser system with a large acceptance angle detector. A fiducial-based ray path measurement technique is combined with an iterative CT reconstruction algorithm to reconstruct images. A water based surrounding liquid with a low viscosity was selected for imaging PRESAGE® solid dosimeters. Liquid selection was optimized to achieve as high a refractive index as possible while avoiding rotation-induced Schlieren effects. This led to a refractive index mismatch of 6% between liquid and dosimeters. Optical CT scans were performed with a fan-beam scanning-laser optical CT system with a large area detector to capture most of the refracted rays. A fiducial marker placed on the wall of a cylindrical sample occludes a given light ray twice. With knowledge of the rotation angle and the radius of the cylindrical object, the actual internal path of each ray through the dosimeter can be calculated. Scans were performed with 1024 projections of 512 data samples each, and rays were rebinned to form 512 parallel-beam projections. Reconstructions were performed on a 512 × 512 grid using 100 iterations of the SIRT iterative CT algorithm. Proof of concept was demonstrated with a uniformly attenuating solution phantom. PRESAGE® dosimeters (11 cm diameter) were irradiated with Cobalt-60 irradiator to achieve either a uniform dose or a 2-level "step-dose" pattern. With 6% refractive index mismatching, a circular field of view of 85% of the diameter of a cylindrical sample can be reconstructed accurately. Reconstructed images of the test solution phantom were uniform (within 3%) inside this radius. However, the dose responses of the PRESAGE® samples were not spatially uniform, with variations of at least 5% in sensitivity. The variation appears as a "cupping" artifact with less sensitivity in the middle than at the periphery of the PRESAGE® cylinder. Polarization effects were also detected for these samples. The fiducial-based ray path measurement scheme, coupled with an iterative reconstruction algorithm, enabled optical CT scanning of PRESAGE® dosimeters immersed in mismatched refractive index solutions. However, improvements to PRESAGE® dose response uniformity are required.

  16. Angular dependence of the response of the nanoDot OSLD system for measurements at depth in clinical megavoltage beams.

    PubMed

    Lehmann, Joerg; Dunn, Leon; Lye, Jessica E; Kenny, John W; Alves, Andrew D C; Cole, Andrew; Asena, Andre; Kron, Tomas; Williams, Ivan M

    2014-06-01

    The purpose of this investigation was to assess the angular dependence of a commercial optically stimulated luminescence dosimeter (OSLD) dosimetry system in MV x-ray beams at depths beyond d(max) and to find ways to mitigate this dependence for measurements in phantoms. Two special holders were designed which allow a dosimeter to be rotated around the center of its sensitive volume. The dosimeter's sensitive volume is a disk, 5 mm in diameter and 0.2 mm thick. The first holder rotates the disk in the traditional way. It positions the disk perpendicular to the beam (gantry pointing to the floor) in the initial position (0°). When the holder is rotated the angle of the disk towards the beam increases until the disk is parallel with the beam ("edge on," 90°). This is referred to as Setup 1. The second holder offers a new, alternative measurement position. It positions the disk parallel to the beam for all angles while rotating around its center (Setup 2). Measurements with five to ten dosimeters per point were carried out for 6 MV at 3 and 10 cm depth. Monte Carlo simulations using GEANT4 were performed to simulate the response of the active detector material for several angles. Detector and housing were simulated in detail based on microCT data and communications with the manufacturer. Various material compositions and an all-water geometry were considered. For the traditional Setup 1 the response of the OSLD dropped on average by 1.4% ± 0.7% (measurement) and 2.1% ± 0.3% (Monte Carlo simulation) for the 90° orientation compared to 0°. Monte Carlo simulations also showed a strong dependence of the effect on the composition of the sensitive layer. Assuming the layer to completely consist of the active material (Al2O3) results in a 7% drop in response for 90° compared to 0°. Assuming the layer to be completely water, results in a flat response within the simulation uncertainty of about 1%. For the new Setup 2, measurements and Monte Carlo simulations found the angular dependence of the dosimeter to be below 1% and within the measurement uncertainty. The dosimeter system exhibits a small angular dependence of approximately 2% which needs to be considered for measurements involving other than normal incident beams angles. This applies in particular to clinical in vivo measurements where the orientation of the dosimeter is dictated by clinical circumstances and cannot be optimized as otherwise suggested here. When measuring in a phantom, the proposed new setup should be considered. It changes the orientation of the dosimeter so that a coplanar beam arrangement always hits the disk shaped detector material from the thin side and thereby reduces the angular dependence of the response to within the measurement uncertainty of about 1%. This improvement makes the dosimeter more attractive for clinical measurements with multiple coplanar beams in phantoms, as the overall measurement uncertainty is reduced. Similarly, phantom based postal audits can transition from the traditional TLD to the more accurate and convenient OSLD.

  17. LATENT IMAGE FADING IN DOSIMETER FILM EMULSIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musialowicz, T.; Wysopolski, J.

    Latent image fading in film emulsions produced by Foton for dosimeter purposes is investigated with regard to the influence of time. The decrease of density caused by latent image fading in normal conditions of storing and relative humidity of 50 to 80% does not exceed 10% during a year. This corresponds to the dose reading error up to 20%. (auth)

  18. Method and apparatus for passive optical dosimeter comprising caged dye molecules

    DOEpatents

    Sandison, David R.

    2001-07-03

    A new class of ultraviolet dosimeters is made possible by exposing caged dye molecules, which generate a dye molecule on exposure to ultraviolet radiation, to an exterior environment. Applications include sunburn monitors, characterizing the UV exposure history of UV-sensitive materials, especially including structural plastics, and use in disposable `one-use` optical equipment, especially medical devices.

  19. Miniature personal UV solar dosimeter

    NASA Technical Reports Server (NTRS)

    Adams, R. R.; Macconochie, I. O.; Poole, B. D., Jr.

    1981-01-01

    Small light-powered meter measures accumulated radiation in ultraviolet or other selected regions. Practical advantages are device's low cost, small size, accuracy, and adaptability to specific wave-band measurements. Medical applications include detection of skin cancer, vitamin D production, and jaundice. Dosimeter also measures sunlight for solar energy designs, agriculture and meteorology, and monitors stability of materials and environmental and occupational lighting.

  20. Calculation of response matrix of CaSO 4:Dy based neutron dosimeter using Monte Carlo code FLUKA and measurement of 241Am-Be spectra

    NASA Astrophysics Data System (ADS)

    Chatterjee, S.; Bakshi, A. K.; Tripathy, S. P.

    2010-09-01

    Response matrix for CaSO 4:Dy based neutron dosimeter was generated using Monte Carlo code FLUKA in the energy range thermal to 20 MeV for a set of eight Bonner spheres of diameter 3-12″ including the bare one. Response of the neutron dosimeter was measured for the above set of spheres for 241Am-Be neutron source covered with 2 mm lead. An analytical expression for the response function was devised as a function of sphere mass. Using Frascati Unfolding Iteration Tool (FRUIT) unfolding code, the neutron spectrum of 241Am-Be was unfolded and compared with standard IAEA spectrum for the same.

  1. A SiPM based real time dosimeter for radiotherapic beams

    NASA Astrophysics Data System (ADS)

    Berra, A.; Conti, V.; Lietti, D.; Milan, L.; Novati, C.; Ostinelli, A.; Prest, M.; Romanó, C.; Vallazza, E.

    2015-02-01

    This paper describes the development of a scintillator dosimeter prototype for radiotherapic applications based on plastic scintillating fibers readout by Silicon PhotoMultipliers. The dosimeter, whose probes are water equivalent, could be used for quality control measurements, beam characterization and in vivo dosimetry, allowing a real time measurement of the dose spatial distribution. This paper describes the preliminary percentual depth dose scan performed with clinical 6 and 18 MV photon beams, comparing the results with a reference curve. The measurements were performed using a Varian Clinac iX linear accelerator at the Radiotherapy Department of the St. Anna Hospital in Como (IT). The prototype has given promising results, allowing real time measurements of relative dose without applying any correction factors.

  2. On the feasibility of utilizing active personal dosimeters worn on the chest to estimate occupational eye lens dose in x-ray angiography.

    PubMed

    Omar, Artur; Marteinsdottir, Maria; Kadesjö, Nils; Fransson, Annette

    2015-06-01

    The International Commission on Radiological Protection (ICRP) has recommended that the occupational dose limit to the eye lens be substantially reduced. To ensure compliance with these recommendations, monitoring of the occupational eye lens dose is essential in certain hospital work environments. For assessment of the eye lens dose it is recommended to use a supplementary dosimeter placed at a position adjacent to the eye(s). Wearing a dosimeter at eye level can, however, be impractical and distributing and managing additional dosimeters over long periods of time is cumbersome and costly for large clinical sites. An attractive alternative is to utilize active personal dosimeters (APDs), which are routinely used by clinical staff for real-time monitoring of the personal dose equivalent rate (H(p)(10)). In this work, a formalism for the determination of eye lens dose from the response of such APD's worn on the chest is proposed and evaluated. The evaluation is based on both phantom and clinical measurements performed in an x-ray angiography suite for interventional cardiology. The main results show that the eye lens dose to the primary operator and to the assisting clinical staff can be conservatively estimated from the APD response as D(eye)(conductor) = 2.0 APD chest and D(eye)(assisting) = 1.0 APD chest, respectively. However, care should be exercised for particularly short assisting staff and if radiation protection shields are misused. These concerns can be greatly mitigated if the clinical staff are provided with adequate radiation protection training.

  3. Radiological properties of normoxic polymer gel dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venning, A.J.; Nitschke, K.N.; Keall, P.J.

    2005-04-01

    The radiological properties of the normoxic polymer gel dosimeters MAGIC, MAGAS, and MAGAT [methacrylic and ascorbic acid in gelatin initiated by copper; methacrylic acid gelatine gel with ascorbic acid; and methacrylic acid gelatine and tetrakis (hydroxymethyl) phosphonium chloride, respectively] have been investigated. The radiological water equivalence was determined by comparing the polymer gel macroscopic photon and electron interaction cross sections over the energy range from 10 keV to 20 MeV and by Monte Carlo modeling of depth doses. Normoxic polymer gel dosimeters have a high gelatine and monomer concentration and therefore mass density (kg m{sup -3}) up to 3.8% highermore » than water. This results in differences between the cross-section ratios of the normoxic polymer gels and water of up to 3% for the attenuation, energy absorption, and collision stopping power coefficient ratios through the Compton dominant energy range. The mass cross-section ratios were within 2% of water except for the mass attenuation and energy absorption coefficients ratios, which showed differences with water of up to 6% for energies less than 100 keV. Monte Carlo modeling was undertaken for the polymer gel dosimeters to model the electron and photon transport resulting from a 6 MV photon beam. The absolute percentage differences between gel and water were within 1% and the relative percentage differences were within 3.5%. The results show that the MAGAT gel formulation is the most radiological water equivalent of the normoxic polymer gel dosimeters investigated due to its lower mass density measurement compared with MAGAS and MAGIC gels.« less

  4. Feasibility study of a lead(II) iodide-based dosimeter for quality assurance in therapeutic radiology

    NASA Astrophysics Data System (ADS)

    Heo, Y. J.; Kim, K. T.; Oh, K. M.; Lee, Y. K.; Ahn, K. J.; Cho, H. L.; Kim, J. Y.; Min, B. I.; Mun, C. W.; Park, S. K.

    2017-09-01

    The most widely used form of radiotherapy to treat tumors uses a linear accelerator, and the apparatus requires regular quality assurance (QA). QA for a linear accelerator demands accuracy throughout, from mock treatment and treatment planning, up to treatment itself. Therefore, verifying a radiation dose is essential to ensure that the radiation is being applied as planned. In current clinical practice, ionization chambers and diodes are used for QA. However, using conventional gaseous ionization chambers presents drawbacks such as complex analytical procedures, difficult measurement procedures, and slow response time. In this study, we discuss the potential of a lead(II) iodide (PbI2)-based radiation dosimeter for radiotherapy QA. PbI2 is a semiconductor material suited to measurements of X-rays and gamma rays, because of its excellent response properties to radiation signals. Our results show that the PbI2-based dosimeter offers outstanding linearity and reproducibility, as well as dose-independent characteristics. In addition, percentage depth dose (PDD) measurements indicate that the error at a fixed reference depth Dmax was 0.3%, very similar to the measurement results obtained using ionization chambers. Based on these results, we confirm that the PbI2-based dosimeter has all the properties required for radiotherapy: stable dose detection, dose linearity, and rapid response time. Based on the evidence of this experimental verification, we believe that the PbI2-based dosimeter could be used commercially in various fields for precise measurements of radiation doses in the human body and for measuring the dose required for stereotactic radiosurgery or localized radiosurgery.

  5. Best fit refractive index of matching liquid for 3D NIPAM gel dosimeters using optical CT

    NASA Astrophysics Data System (ADS)

    Chen, Chin-Hsing; Wu, Jay; Hsieh, Bor-Tsung; Chen, De-Shiou; Wang, Tzu-Hwei; Chien, Sou-Hsin; Chang, Yuan-Jen

    2014-11-01

    The accuracy of an optical computed tomography (CT)-based dosimeter is significantly affected by the refractive index (RI) of the matching liquid. Mismatched RI induces reflection and refraction as the laser beam passes through the gel phantom. Moreover, the unwanted light rays collected by the photodetector produce image artifacts after image reconstruction from the collected data. To obtain the best image quality, this study investigates the best-fit RI of the matching liquid for a 3D NIPAM gel dosimeter. The three recipes of NIPAM polymer gel used in this study consisted of 5% gelatin, 5% NIPAM and 3% N,N'-methylene bisacrylamide, which were combined with three compositions (5, 10, and 20 mM) of Tetrakis (hydroxymethyl) phosphonium chloride. Results were evaluated using a quantitative evaluation method of the gamma evaluation technique. Results showed that the best-fit RI for the non-irradiated NIPAM gel ranges from 1.340 to 1.346 for various NIPAM recipes with sensitivities ranging from 0.0113 to 0.0227. The greatest pass rate of 88.00% is achieved using best-fit RI=1.346 of the matching liquid. The adoption of mismatching RI decreases the gamma pass rate by 2.63% to 16.75% for all three recipes of NIPAM gel dosimeters. In addition, the maximum average deviation is less than 0.1% for the red and transparent matching liquids. Thus, the color of the matching liquid does not affect the measurement accuracy of the NIPAM gel dosimeter, as measured by optical CT.

  6. Feasibility of using two‐dimensional array dosimeter for in vivo dose reconstruction via transit dosimetry

    PubMed Central

    Li, Jonathan; Samant, Sanjiv

    2011-01-01

    Two‐dimensional array dosimeters are commonly used to perform pretreatment quality assurance procedures, which makes them highly desirable for measuring transit fluences for in vivo dose reconstruction. The purpose of this study was to determine if an in vivo dose reconstruction via transit dosimetry using a 2D array dosimeter was possible. To test the accuracy of measuring transit dose distribution using a 2D array dosimeter, we evaluated it against the measurements made using ionization chamber and radiochromic film (RCF) profiles for various air gap distances (distance from the exit side of the solid water slabs to the detector distance; 0 cm, 30 cm, 40 cm, 50 cm, and 60 cm) and solid water slab thicknesses (10 cm and 20 cm). The backprojection dose reconstruction algorithm was described and evaluated. The agreement between the ionization chamber and RCF profiles for the transit dose distribution measurements ranged from ‐0.2%~ 4.0% (average 1.79%). Using the backprojection dose reconstruction algorithm, we found that, of the six conformal fields, four had a 100% gamma index passing rate (3%/3 mm gamma index criteria), and two had gamma index passing rates of 99.4% and 99.6%. Of the five IMRT fields, three had a 100% gamma index passing rate, and two had gamma index passing rates of 99.6% and 98.8%. It was found that a 2D array dosimeter could be used for backprojection dose reconstruction for in vivo dosimetry. PACS number: 87.55.N‐

  7. Performance characteristics of mobile MOSFET dosimeter for kilovoltage X-rays used in image guided radiotherapy

    PubMed Central

    Kumar, A. Sathish; Singh, I. Rabi Raja; Sharma, S. D.; Ravindran, B. Paul

    2015-01-01

    The main objective of this study was to investigate the characteristics of metal oxide semiconductor field effect transistor (MOSFET) dosimeter for kilovoltage (kV) X-ray beams in order to perform the in vivo dosimetry during image guidance in radiotherapy. The performance characteristics of high sensitivity MOSFET dosimeters were investigated for 80, 90, 100, 110, 120, and 125 kV X-ray beams used for imaging in radiotherapy. This study was performed using Clinac 2100 C/D medical electron linear accelerator with on-board imaging and kV cone beam computed tomography system. The characteristics studied in this work include energy dependence, angular dependence, and linearity. The X-ray beam outputs were measured as per American Association of Physicists in Medicine (AAPM) TG 61 recommendations using PTW parallel plate (PP) ionization chamber, which was calibrated in terms of air kerma (Nk) by the National Standard Laboratory. The MOSFET dosimeters were calibrated against the PP ionization chamber for all the kV X-ray beams and the calibration coefficient was found to be 0.11 cGy/mV with a standard deviation of about ±1%. The response of MOSFET was found to be energy independent for the kV X-ray energies used in this study. The response of the MOSFET dosimeter was also found independent of angle of incidence for the gantry angles in the range of 0° to 360° in-air as well as at 3 cm depth in tissue equivalent phantom. PMID:26500397

  8. Solar ultraviolet and the occupational radiant exposure of Queensland school teachers: A comparative study between teaching classifications and behavior patterns.

    PubMed

    Downs, Nathan J; Harrison, Simone L; Chavez, Daniel R Garzon; Parisi, Alfio V

    2016-05-01

    Classroom teachers located in Queensland, Australia are exposed to high levels of ambient solar ultraviolet as part of the occupational requirement to provide supervision of children during lunch and break times. We investigated the relationship between periods of outdoor occupational radiant exposure and available ambient solar radiation across different teaching classifications and schools relative to the daily occupational solar ultraviolet radiation (HICNIRP) protection standard of 30J/m(2). Self-reported daily sun exposure habits (n=480) and personal radiant exposures were monitored using calibrated polysulphone dosimeters (n=474) in 57 teaching staff from 6 different schools located in tropical north and southern Queensland. Daily radiant exposure patterns among teaching groups were compared to the ambient UV-Index. Personal sun exposures were stratified among teaching classifications, school location, school ownership (government vs non-government), and type (primary vs secondary). Median daily radiant exposures were 15J/m(2) and 5J/m(2)HICNIRP for schools located in northern and southern Queensland respectively. Of the 474 analyzed dosimeter-days, 23.0% were found to exceed the solar radiation protection standard, with the highest prevalence found among physical education teachers (57.4% dosimeter-days), followed by teacher aides (22.6% dosimeter-days) and classroom teachers (18.1% dosimeter-days). In Queensland, peak outdoor exposure times of teaching staff correspond with periods of extreme UV-Index. The daily occupational HICNIRP radiant exposure standard was exceeded in all schools and in all teaching classifications. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. The radiation dosimeter on-board the FY-4 Satellite

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Sun, Y.; Zhang, S.; Zhang, X.; Sun, Y.; Jing, T.

    2017-12-01

    The total radiation dose effect can lead to a decrease in the performance of satellite devices or materials. Accurately obtaining the total radiation dose during satellite operation could help to analyze the abnormality of payloads in orbit and optimize the design of radiation shielding. The radiation dosimeter is one of the space environmental monitoring devices on the "FY-4" satellite, which is a new generation of geostationary meteorological satellite. The dosimeter consists of 8 detectors, which are installed in different locations of the satellite, to obtain the total radiation dose with different shielding thickness and different orientations. To measure a total radiation dose up to 2000krad(Si), 100nm ion implantation RADFET was used. To improve the sensitivity of the dosimeter, the bias voltage of RADFET is set to 15V, and a 10V, 15-bit A/D is adopted to digitalize the RADFET's threshold voltage, which is increased as the total radiation dose grows. In addition, the temperature effect of RADFET is corrected from the measured temperature on orbit. The preliminary monitoring results show that the radiation dose is less than 35rad (Si) per day at 0.87 mm shielding thickness of equivalent aluminum in the geostationary orbit, and the dose in Y direction of the satellite is less than those in the X and Z directions. The radiation dose at the thickness of 3.87 mm equivalent aluminum is less than 1rad(Si)/day. It is found that the daily total dose measured by the dosimeter has a strong correlation with the flux of high energy electrons.

  10. Potential of a New Technique for Remote Sensing of Hydrocarbon Accumulations and Blind Uranium Deposits: Buried Lif Thermoluminescence Dosimeters

    NASA Technical Reports Server (NTRS)

    Siegel, F. R.; Vaz, J. E.; Lindholm, R. C.

    1982-01-01

    Buried thermoluminescence dosimeters may be useful in remote sensing of petroleum and natural gas accumulations and blind uranium deposits. They act as integrating detectors that smooth out the effects of environmental variations that affect other measuring systems and result in irregularities and poor repeatability in measurements made during gas and radiometric surveys.

  11. A combined TLD/emulsion method of sampling dosimetry applied to Apollo missions

    NASA Technical Reports Server (NTRS)

    Schaefer, H. J.

    1979-01-01

    A system which simplifies the complex monitoring methods used to measure the astronaut's radiation exposure in space is proposed. The excess dose equivalents of trapped protons and secondary neutrons, protons, and alpha particles from local nuclear interactions are determined and a combined thermoluminescent dosimeter (TLD)/nuclear emulsion method which measures the absorbed dose with thermoluminescent dosimeter chips is presented.

  12. FX-25 and FX-100 Propagation Experiments.

    DTIC Science & Technology

    1982-07-01

    Radiochromic Foil Dosimetry Blue cellophane is one of the most widely used radiochromic film dosimeters.6 Blue cellophane exposed to an intense electron ...shown in Fig. 18, Appendix B. Thermoluminescent Dosimetry Lithium flouride thermoluminescent dosimeters ( TLDs ) were on a limited number of shots to...corroboration of the current distribution included radiochromic-film dosimetry , TLD arrays, and openshutter photography. Because of our discovery of the

  13. Thin film tritium dosimetry

    DOEpatents

    Moran, Paul R.

    1976-01-01

    The present invention provides a method for tritium dosimetry. A dosimeter comprising a thin film of a material having relatively sensitive RITAC-RITAP dosimetry properties is exposed to radiation from tritium, and after the dosimeter has been removed from the source of the radiation, the low energy electron dose deposited in the thin film is determined by radiation-induced, thermally-activated polarization dosimetry techniques.

  14. Further evaluation of neutron skyshine dose in vicinity of the K1200 superconducting cyclotron of the NSCL using bubble dosimeters

    NASA Astrophysics Data System (ADS)

    Mukherjee, Bhaskar; Ronningen, Reginald M.; Grivins, Peter; Rossi, Paul

    2001-12-01

    The air-scattered radiation (Skyshine) is commonly a primary contributor to the public radiation exposure at distant locations form a high-energy particle accelerator facility. We have reported the results of the first series of measurement of skyshine from neutrons, using superheated bubble dosimeters. We have continued our measurements of skyshine, produced during "typical" operational condition at the National Superconducting Cyclotron Laboratory (NSCL). The measurements were carried out using the BD-100R Bubble Dosimeters with sensitivities of 470 nSv and 220 nSv per bubble at 20 °C, with an accuracy of ±20% when calibrated using the 241AmBe neutron spectrum. The dosimeters were placed at 25 and 50 meters from a point on the shielding roof of the NSCL's Analysis Hall, and 75, 100, and 115 meters from this point but about one to two meters above the floor of the NSCL facility at these distances. The skyshine neutron dose equivalents were measured for the 4He2+, 13C+4, and 20Ne6+ beams at the energy of 140 MeV/A, 100 MeV/A and 100 MeV/A respectively.

  15. A study on the reproducibility and spatial uniformity of N-isopropylacrylamide polymer gel dosimetry using a commercial 10X fast optical-computed tomography scanner

    NASA Astrophysics Data System (ADS)

    Chang, Y. J.; Lin, J. Q.; Hsieh, B. T.; Chen, C. H.

    2013-06-01

    This study investigated the reproducibility and spatial uniformity of N-isopropylacrylamide (NIPAM) polymer gel as well as the reproducibility of a NIPAM polymer gel dosimeter. A commercial 10X fast optical computed tomography scanner (OCTOPUS-10X, MGS Research, Inc., Madison, CT, USA) was used as the readout tool of the NIPAM polymer gel dosimeter. A cylindrical NIPAM gel phantom measuring 10 cm (diameter) by 10 cm (height) by 3 mm (thickness) was irradiated by the four-field box treatment with a field size of 3 cm × 3 cm. The dose profiles were found to be consistent at the depths of 2.0 cm to 5.0 cm for two independent gel phantom batches, and the average uncertainty was less than 2%. The gamma pass rates were calculated to be between 94% and 95% at depths of 40 mm for two independent gel phantom batches using 4% dose difference and 4 mm distance-to-agreement criterion. The NIPAM polymer gel dosimeter was highly reproducible and spatially uniform. The results highlighted the potential of the NIPAM polymer gel dosimeter in radiotherapy.

  16. Performance evaluation of an improved optical computed tomography polymer gel dosimeter system for 3D dose verification of static and dynamic phantom deliveries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopatiuk-Tirpak, O.; Langen, K. M.; Meeks, S. L.

    2008-09-15

    The performance of a next-generation optical computed tomography scanner (OCTOPUS-5X) is characterized in the context of three-dimensional gel dosimetry. Large-volume (2.2 L), muscle-equivalent, radiation-sensitive polymer gel dosimeters (BANG-3) were used. Improvements in scanner design leading to shorter acquisition times are discussed. The spatial resolution, detectable absorbance range, and reproducibility are assessed. An efficient method for calibrating gel dosimeters using the depth-dose relationship is applied, with photon- and electron-based deliveries yielding equivalent results. A procedure involving a preirradiation scan was used to reduce the edge artifacts in reconstructed images, thereby increasing the useful cross-sectional area of the dosimeter by nearly amore » factor of 2. Dose distributions derived from optical density measurements using the calibration coefficient show good agreement with the treatment planning system simulations and radiographic film measurements. The feasibility of use for motion (four-dimensional) dosimetry is demonstrated on an example comparing dose distributions from static and dynamic delivery of a single-field photon plan. The capability to visualize three-dimensional dose distributions is also illustrated.« less

  17. The feasibility assessment of radiation dose of movement 3D NIPAM gel by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Hsieh, Chih-Ming; Leung, Joseph Hang; Ng, Yu-Bun; Cheng, Chih-Wu; Sun, Jung-Chang; Lin, Ping-Chin; Hsieh, Bor-Tsung

    2015-11-01

    NIPAM dosimeter is widely accepted and recommended for its 3D distribution and accuracy in dose absorption. Up to the moment, most research works on dose measurement are based on a fixed irradiation target without the consideration of the effect from physiological motion. We present a study to construct a respiratory motion simulating patient anatomical and dosimetry model for the study of dosimetic effect of organ motion. The dose on fixed and motion targets was measured by MRI after a dose adminstration of 1, 2, 5, 8, and 10 Gy from linear accelerator. Comparison of two situations is made. The average sensitivity of fixed NIPAM was 0.1356 s-1/Gy with linearity R2=0.998. The average sensitivity of movement NIPAM was 0.1366 s-1/Gy with linearity R2=0.998 both having only 0.001 of the sensitivity difference. The difference between the two based on dose rate dependency, position and depth was not significant. There was thus no apparent impact on NIPAM dosimeter from physiological motion. The high sensitivity, linearity and stability of NIPAM dosimeter proved to be an ideal apparatus in the dose measurement in these circumstances.

  18. Determining the mechanical properties of a radiochromic silicone-based 3D dosimeter

    NASA Astrophysics Data System (ADS)

    Kaplan, L. P.; Høye, E. M.; Balling, P.; Muren, L. P.; Petersen, J. B. B.; Poulsen, P. R.; Yates, E. S.; Skyt, P. S.

    2017-07-01

    New treatment modalities in radiotherapy (RT) enable delivery of highly conformal dose distributions in patients. This creates a need for precise dose verification in three dimensions (3D). A radiochromic silicone-based 3D dosimetry system has recently been developed. Such a dosimeter can be used for dose verification in deformed geometries, which requires knowledge of the dosimeter’s mechanical properties. In this study we have characterized the dosimeter’s elastic behaviour under tensile and compressive stress. In addition, the dose response under strain was determined. It was found that the dosimeter behaved as an incompressible hyperelastic material with a non-linear stress/strain curve and with no observable hysteresis or plastic deformation even at high strains. The volume was found to be constant within a 2% margin at deformations up to 60%. Furthermore, it was observed that the dosimeter returned to its original geometry within a 2% margin when irradiated under stress, and that the change in optical density per centimeter was constant regardless of the strain during irradiation. In conclusion, we have shown that this radiochromic silicone-based dosimeter’s mechanical properties make it a viable candidate for dose verification in deformable 3D geometries.

  19. The IROC Houston Quality Assurance Program: Potential benefits of 3D dosimetry

    NASA Astrophysics Data System (ADS)

    Followill, D. S.; Molineu, H. A.; Lafratta, R.; Ibbott, G. S.

    2017-05-01

    The IROC Houston QA Center has provided QA core support for NCI clinical trials by ensuring that radiation doses delivered to trial patients are accurate and comparable between participating institutions. Within its QA program, IROC Houston uses anthropomorphic QA phantoms to credential sites. It is these phantoms that have the highest potential to benefit from the use of 3D dosimeters. Credentialing is performed to verify that institutions that are using advanced technologies to deliver complex treatment plans that conform to targets. This makes it increasingly difficult to assure the intended calculated dose is being delivered correctly using current techniques that are 2D-based. A 3D dosimeter such as PRESAGE® is able to provide a complete 3D measured dosimetry dataset with one treatment plan delivery. In our preliminary studies, the 3D dosimeters in our H&N and spine phantoms were found to be appropriate for remote dosimetry for relative dose measurements. To implement 3D dosimetry in IROC Houston’s phantoms, the benefit of this significant change to its current infrastructure would have to be assessed and further work would be needed before bringing 3D dosimeters into the phantom dosimetry program.

  20. Radiotherapy Measurements with a Deoxyribonucleic Acid Doublestrand-Break Dosimeter

    NASA Astrophysics Data System (ADS)

    Obeidat, Mohammad Ali

    Many types of dosimeters are used in the clinic to measure radiation dose for therapy but none of them directly measures the biological effect of this dose. The overall purpose of this work was to develop a dosimeter that measures biological damage in the form of double-strand breaks to deoxyribonucleic acid. This dosimeter could provide a more biologically relevant measure of radiation damage than the currently utilized dosimeters. A pair of oligonucleotides was designed to fabricate this dosimeter. One is labeled with a 5'-end biotin and the other with a 5'-end 6 Fluorescein amidite (fluorescent dye excited at 495?nanometer, with a peak emission at 520 nanometer). These were designed to adhere to certain locations on the pRS316 vector and serve as the primers for polymerase chain reactions. The end product of this reaction is a 4 kilo-base pair double strands deoxyribonucleic acid fragment with biotin on one end and 6 Fluorescein amidite oligonucleotide on the other attached to streptavidin beads. The biotin end connects the double strands deoxyribonucleic acid to the streptavidin bead. These bead-connected double strands deoxyribonucleic acid were suspended in 50 microliter of phosphate-buffered saline and placed into a tube for irradiation. Following irradiation of the deoxyribonucleic acid dosimeter, we take advantage of the magnetic properties of the streptavidin bead by placing our sample microtube against a magnet. The magnetic field pulls the streptavidin beads against the side of the tube. If a double-strand-break has occurred for a double strands deoxyribonucleic acid, the fluorescein end of the double strands deoxyribonucleic acid becomes free and is no longer attached to the bead or held against the side of the microtube. The free fluorescein following a double-strand-break in double strands deoxyribonucleic acid is referred to here as supernatant. The supernatant is extracted and placed in another microtube, while the unbroken double strands deoxyribonucleic acid remain attached to the beads and stay in the microtube (Fig. 4). Those beads were re-suspended with 50 microliter of phosphate-buffered saline again (called beads), then we placed both supernatant and beads in a reader microplate and we read the fluorescence signal for both with a fluorescence reader (BioTek Synergy 2). These beads and supernatant fluorescence signals are denoted by B and S, respectively. The relative amount of supernatant fluorescence counts is proportional to the probability of a double-strand-break. The probability of double-strand-break was calculated with the following equation: (S-BG)/(S+B-2BG) (1). where S was the supernatant fluorescence intensity (related to the number of double strands deoxyribonucleic acid with double-strand breaks), B was the re-suspended beads fluorescence intensity (related to the number of double strands deoxyribonucleic acid without double-strand breaks), and BG was the phosphate-buffered saline fluorescence intensity (related to the background signal). There are two advantages that this type of dosimeter has over the gel separation technique. First, it is important to irradiate deoxyribonucleic acid in a solution that has similar osmolarity and ion concentrations to that in a human, such as phosphate-buffered saline. A gel dosimeter would require a transfer to gel to separate deoxyribonucleic acid, whereas our dosimeter can be separated in this solution. Currently, we use pipettes to manually perform this separation, but this step could be automated. Second, the magnetic deoxyribonucleic acid separation technique is much faster than that for gel electrophoresis. Calibration of radiotherapy equipment isn't something that happens in national science laboratories, with only world-leading experts. This is something that happens locally at every cancer clinic, with physicists that do not have the luxury of focusing solely on this one measurement. For this reason, ease of use is critical for this type of technology. (Abstract shortened by ProQuest.).

  1. Preliminary study of MAGAT polymer gel dosimetry for boron-neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Hayashi, Shin-ichiro; Sakurai, Yoshinori; Uchida, Ryohei; Suzuki, Minoru; Usui, Shuji; Tominaga, Takahiro

    2015-01-01

    MAGAT gel dosimeter with boron is irradiated in Heavy Water Neutron Irradiation Facility (HWNIF) of Kyoto University Research Reactor (KUR). The cylindrical gel phantoms are exposed to neutron beams of three different energy spectra (thermal neutron rich, epithermal and fast neutron rich and the mixed modes) in air. Preliminary results corresponding to depth-dose responses are obtained as the transverse relaxation rate (R2=1/T2) from magnetic resonance imaging data. As the results MAGAT gel dosimeter has the higher sensitivity on thermal neutron than on epi-thermal and fast neutron, and the gel with boron showed an enhancement and a change in the depth-R2 response explicitly. From these results, it is suggested that MAGAT gel dosimeter can be an effective tool in BNCT dosimetry.

  2. RCT: Module 2.04, Dosimetry, Course 8769

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillmer, Kurt T.

    This course will introduce the types of instruments used to measure external and internal radiation to people. Dosimetry is the quantitative assessment of radiation received by the human body. Several types of dosimeters are used worldwide. This information is valuable to all radiological control personnel because dosimeters are the only direct method to measure and document personnel radiation exposure and ensure regulatory compliance with applicable limits. This course will cover dosimetry terms, Department of Energy (DOE) limits, Los Alamos National Laboratory (LANL) administrative guidelines, thermoluminescent dosimeters (TLDs), LANL dosimetry, and bioassay assessment methods. This course will prepare the student withmore » the skills necessary for radiological control technician (RCT) qualification by passing quizzes, tests, and the RCT Comprehensive Phase 1, Unit 2 Examination (TEST 27566) and providing in-thefield skills.« less

  3. The specifics of dosimetry for food irradiation applications

    NASA Astrophysics Data System (ADS)

    Kuntz, Florent; Strasser, Alain

    2016-12-01

    Dose measurement applied to food irradiation is obviously a very important and critical aspect of this process. It is described in many standards and guides. The application of appropriate dosimetry tools is explained. This helps to ensure traceability of this measurement and number of dosimeters available on the market are well studied even though theirs response should be characterized while used in routine processing conditions. When employed in low energy radiation fields, these dosimeters may exhibit specific response compared to the usual Cobalt 60 source irradiation. Traceable calibration or correction factor assessment of this energy dependency is mandatory. It is to mention that the absorbed dose is measured in the dosimeter itself and unfortunately not in/on the food product. However, existing dosimetry systems fulfill all relevant requirements.

  4. Dose response characteristics of polymethacrylic acid gel (PMAAG) for a polymerization-based dosimeter using NMR.

    PubMed

    Iskandar, S M; Elias, S; Jumiah, H; Asri, M T M; Masrianis, A; Ab Rahman, M Z; Taiman, K; Abdul Rashid, M Y

    2004-05-01

    The radiation-response characteristics of polymetharylic acid gel dosimeter prepared with different concentrations of monomer and cross-linker is described in these studies. The dosimeters were prepared under the hypoxic condition in a glove box and were then irradiated with gamma-rays produced by Co-60 radionuclide that was generated at 1.25MeV energy. The irradiation took place at different doses ranged from 0Gy to 19Gy. Due to the radiation activities, chain-reaction polymerisation processes had taken place in the formation of polymethacrylic acid (PMAA) gel, which cause the dose response mechanism increased in the NMR relaxation rates of protons. It has been observed that for higher concentration of monomer and cross-linker, the polymerization rate was increased.

  5. A comparative study of the thermoluminescent response to beta irradiation of CVD diamond and LiF dosimeters

    NASA Astrophysics Data System (ADS)

    Bogani, F.; Borchi, E.; Bruzzi, M.; Leroy, C.; Sciortino, S.

    1997-02-01

    The thermoluminescent (TL) response of Chemical Vapour Deposited (CVD) diamond films to beta irradiation has been investigated. A numerical curve-fitting procedure, calibrated by means of a set of LiF TLD100 experimental spectra, has been developed to deconvolute the complex structured TL glow curves. The values of the activation energy and of the frequency factor related to each of the TL peaks involved have been determined. The TL response of the CVD diamond films to beta irradiation has been compared with the TL response of a set of LiF TLD100 and TLD700 dosimeters. The results have been discussed and compared in view of an assessment of the efficiency of CVD diamond films in future applications as in vivo dosimeters.

  6. Angular dependence of the response of the nanoDot OSLD system for measurements at depth in clinical megavoltage beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann, Joerg, E-mail: Joerg.Lehmann@sydney.edu.au; Institute of Medical Physics, University of Sydney, Physics Road A28, Sydney, NSW 2006; School of Applied Sciences, Royal Melbourne Institute of Technology

    Purpose: The purpose of this investigation was to assess the angular dependence of a commercial optically stimulated luminescence dosimeter (OSLD) dosimetry system in MV x-ray beams at depths beyondd{sub max} and to find ways to mitigate this dependence for measurements in phantoms. Methods: Two special holders were designed which allow a dosimeter to be rotated around the center of its sensitive volume. The dosimeter's sensitive volume is a disk, 5 mm in diameter and 0.2 mm thick. The first holder rotates the disk in the traditional way. It positions the disk perpendicular to the beam (gantry pointing to the floor)more » in the initial position (0°). When the holder is rotated the angle of the disk towards the beam increases until the disk is parallel with the beam (“edge on,” 90°). This is referred to as Setup 1. The second holder offers a new, alternative measurement position. It positions the disk parallel to the beam for all angles while rotating around its center (Setup 2). Measurements with five to ten dosimeters per point were carried out for 6 MV at 3 and 10 cm depth. Monte Carlo simulations using GEANT4 were performed to simulate the response of the active detector material for several angles. Detector and housing were simulated in detail based on microCT data and communications with the manufacturer. Various material compositions and an all-water geometry were considered. Results: For the traditional Setup 1 the response of the OSLD dropped on average by 1.4% ± 0.7% (measurement) and 2.1% ± 0.3% (Monte Carlo simulation) for the 90° orientation compared to 0°. Monte Carlo simulations also showed a strong dependence of the effect on the composition of the sensitive layer. Assuming the layer to completely consist of the active material (Al{sub 2}O{sub 3}) results in a 7% drop in response for 90° compared to 0°. Assuming the layer to be completely water, results in a flat response within the simulation uncertainty of about 1%. For the new Setup 2, measurements and Monte Carlo simulations found the angular dependence of the dosimeter to be below 1% and within the measurement uncertainty. Conclusions: The dosimeter system exhibits a small angular dependence of approximately 2% which needs to be considered for measurements involving other than normal incident beams angles. This applies in particular to clinicalin vivo measurements where the orientation of the dosimeter is dictated by clinical circumstances and cannot be optimized as otherwise suggested here. When measuring in a phantom, the proposed new setup should be considered. It changes the orientation of the dosimeter so that a coplanar beam arrangement always hits the disk shaped detector material from the thin side and thereby reduces the angular dependence of the response to within the measurement uncertainty of about 1%. This improvement makes the dosimeter more attractive for clinical measurements with multiple coplanar beams in phantoms, as the overall measurement uncertainty is reduced. Similarly, phantom based postal audits can transition from the traditional TLD to the more accurate and convenient OSLD.« less

  7. Optical CT imaging of solid radiochromic dosimeters in mismatched refractive index solutions using a scanning laser and large area detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dekker, Kurtis H., E-mail: kdekker2@uwo.ca

    Purpose: The practical use of the PRESAGE® solid plastic dosimeter is limited by the inconvenience of immersing it in high-viscosity oils to achieve refractive index matching for optical computed tomography (CT) scanning. The oils are slow to mix and difficult to clean from surfaces, and the dosimeter rotation can generate dynamic Schlieren inhomogeneity patterns in the reference liquid, limiting the rotational and overall scan speed. Therefore, it would be beneficial if lower-viscosity, water-based solutions with slightly unmatched refractive index could be used instead. The purpose of this work is to demonstrate the feasibility of allowing mismatched conditions when using amore » scanning laser system with a large acceptance angle detector. A fiducial-based ray path measurement technique is combined with an iterative CT reconstruction algorithm to reconstruct images. Methods: A water based surrounding liquid with a low viscosity was selected for imaging PRESAGE® solid dosimeters. Liquid selection was optimized to achieve as high a refractive index as possible while avoiding rotation-induced Schlieren effects. This led to a refractive index mismatch of 6% between liquid and dosimeters. Optical CT scans were performed with a fan-beam scanning-laser optical CT system with a large area detector to capture most of the refracted rays. A fiducial marker placed on the wall of a cylindrical sample occludes a given light ray twice. With knowledge of the rotation angle and the radius of the cylindrical object, the actual internal path of each ray through the dosimeter can be calculated. Scans were performed with 1024 projections of 512 data samples each, and rays were rebinned to form 512 parallel-beam projections. Reconstructions were performed on a 512 × 512 grid using 100 iterations of the SIRT iterative CT algorithm. Proof of concept was demonstrated with a uniformly attenuating solution phantom. PRESAGE® dosimeters (11 cm diameter) were irradiated with Cobalt-60 irradiator to achieve either a uniform dose or a 2-level “step-dose” pattern. Results: With 6% refractive index mismatching, a circular field of view of 85% of the diameter of a cylindrical sample can be reconstructed accurately. Reconstructed images of the test solution phantom were uniform (within 3%) inside this radius. However, the dose responses of the PRESAGE® samples were not spatially uniform, with variations of at least 5% in sensitivity. The variation appears as a “cupping” artifact with less sensitivity in the middle than at the periphery of the PRESAGE® cylinder. Polarization effects were also detected for these samples. Conclusions: The fiducial-based ray path measurement scheme, coupled with an iterative reconstruction algorithm, enabled optical CT scanning of PRESAGE® dosimeters immersed in mismatched refractive index solutions. However, improvements to PRESAGE® dose response uniformity are required.« less

  8. Deployment Health

    DTIC Science & Technology

    2006-08-11

    thermo luminescent dosimeter ( TLD badge)) are required for performing specific tasks in a safe manner while deployed, personnel must be trained on the...monitoring devices (e.g., thermo luminescent dosimeter ( TLD badge)) as required by occupational specialty of personnel. (E4.A1.1.5.) 5.5.8 X X...assigned, attached, on temporary duty, or temporary additional duty to deployed units. Report the data electronically to the DMDC (at the SECRET level

  9. Some Radiation Techniques Used in the GU-3 Gamma Irradiator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodbiba, Andon; Ylli, Ariana; Stamo, Iliriana

    2007-04-23

    Different radiation techniques, measurement of dose and its distibution throughout the irradiated materials are the main problems treated in this paper. The oscillometry method combined with the ionization chamber, as an absolute dosimeter, is used for calibration of routine ECB dosimeters. The dose uniformity, for the used radiation techniques in our GU-3 Gamma Irradiator with Cs-137, is from 93% up to 99%.

  10. Operation CASTLE. Radiological Safety

    DTIC Science & Technology

    1981-04-01

    Electronic Section . . . .. 42 5.3 Photodosimetry and Records Section . . . . . . . 43 5.3.1 Film Packet . . . . . . . . . . 43 5.3.2 Dosimeters ...Accuracy of Du Pont Film Packet 559 as a Personnel Dosimeter . . . 61 A.2 Relative Sensitivity of Films Behind Lead Filters . 61 A.3 Variations of...project and Holmes and Narver (H&N) supervisory personnel as radiological- safety monitors. Three schools were conducted: osle at the Nevada Proving

  11. Thermal and Optical Characteristics of Defect Centers in Irradiated TLD-100 Dosimeters.

    NASA Astrophysics Data System (ADS)

    Sadeghi-Zamani, Hossein

    Sensitivity loss of a sensitized LiF:Mg,Ti,Al (TLD-100) dosimeter subject to repeated standard 673 K thermal treatments has been a major problem in radiation dosimetry. The cause for this loss in radiation response of the dosimeters has not been understood. If a used TLD is not annealed at an elevated temperature prior to reuse, there are residual deep electron trap centers still present in the dosimeter. These defect centers will interact with new incoming radiation and produce thermoluminescent trap centers. This will introduce a significant error in low dose measurements. In this research, first, thermal and optical characteristics of various defect centers produced in an irradiated TLD-100 single crystal were investigated and then an improved pre-irradiation isothermal/optical treatment process was introduced to bleach the TLD dosimeters prior to reuse and reduce the loss of sensitivity of sensitized dosimeter. Thermoluminescent materials were irradiated by gamma-rays from Co-60 source to produce sufficient concentration of various defect centers, then the crystals were heated or exposed to UV light at different temperature to change the concentration of various defect centers. The change in concentration of each trap center was determined by measuring the change in absorbance of light at a fixed photon energy as a function of temperature. The thermal activation energy and the frequency factor for each trap center were evaluated assuming a first order kinetic model over a specified temperature range. The value of activation energy and the frequency factor for Z_2 ^', Z_2, Z_3, and F trap centers in TLD-100 single crystals were found to be 1.49 +/- 0.04 eV, 4.76 times 10 ^{15} sec^{ -1}, 2.23 +/- 0.02 eV, 1.65 times 10^{23 } sec^{-1}; 3.01 +/- 0.02 eV, 2.90 times 10^{17} sec ^{-1}; and 2.81 +/- 0.08 eV, 5.43 times 10 ^{17} sec^{ -1}; respectively. After a correlation was made between the trap centers and TL glow peaks, kinetic parameters obtained from absorption spectrum analysis were used to obtain a mathematical model describing different glow peaks.

  12. A novel algorithm for the reconstruction of an entrance beam fluence from treatment exit patient portal dosimetry images

    NASA Astrophysics Data System (ADS)

    Sperling, Nicholas Niven

    The problem of determining the in vivo dosimetry for patients undergoing radiation treatment has been an area of interest since the development of the field. Most methods which have found clinical acceptance work by use of a proxy dosimeter, e.g.: glass rods, using radiophotoluminescence; thermoluminescent dosimeters (TLD), typically CaF or LiF; Metal Oxide Silicon Field Effect Transistor (MOSFET) dosimeters, using threshold voltage shift; Optically Stimulated Luminescent Dosimeters (OSLD), composed of Carbon doped Aluminum Dioxide crystals; RadioChromic film, using leuko-dye polymers; Silicon Diode dosimeters, typically p-type; and ion chambers. More recent methods employ Electronic Portal Image Devices (EPID), or dosimeter arrays, for entrance or exit beam fluence determination. The difficulty with the proxy in vivo dosimetery methods is the requirement that they be placed at the particular location where the dose is to be determined. This precludes measurements across the entire patient volume. These methods are best suited where the dose at a particular location is required. The more recent methods of in vivo dosimetry make use of detector arrays and reconstruction techniques to determine dose throughout the patient volume. One method uses an array of ion chambers located upstream of the patient. This requires a special hardware device and places an additional attenuator in the beam path, which may not be desirable. A final approach is to use the existing EPID, which is part of most modern linear accelerators, to image the patient using the treatment beam. Methods exist to deconvolve the detector function of the EPID using a series of weighted exponentials. Additionally, this method has been extended to determine in vivo dosimetry. The method developed here employs the use of EPID images and an iterative deconvolution algorithm to reconstruct the impinging primary beam fluence on the patient. This primary fluence may then be employed to determine dose through the entire patient volume. The method requires patient specific information, including a CT for deconvolution/dose reconstruction. With the large-scale adoption of Cone Beam CT (CBCT) systems on modern linear accelerators, a treatment time CT is readily available for use in this deconvolution and in dose representation.

  13. SU-E-T-608: Perturbation Corrections for Alanine Dosimeters in Different Phantom Materials in High-Energy Photon Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voigts-Rhetz, P von; Czarnecki, D; Anton, M

    Purpose: Alanine dosimeters are often used for in-vivo dosimetry purposes in radiation therapy. In a Monte Carlo study the influence of 20 different surrounding/phantom materials for alanine dosimeters was investigated. The investigations were performed in high-energy photon beams, covering the whole range from {sup 60}Co up to 25 MV-X. The aim of the study is the introduction of a perturbation correction k{sub env} for alanine dosimeters accounting for the environmental material. Methods: The influence of different surrounding materials on the response of alanine dosimeters was investigated with Monte Carlo simulations using the EGSnrc code. The photon source was adapted withmore » BEAMnrc to a {sup 60}Co unit and an Elekta (E{sub nom}=6, 10, 25 MV-X) linear accelerator. Different tissue-equivalent materials ranging from cortical bone to lung were investigated. In addition to available phantom materials, some material compositions were taken and scaled to different electron densities. The depth of the alanine detectors within the different phantom materials corresponds to 5 cm depth in water, i.e. the depth is scaled according to the electron density (n{sub e}/n{sub e,w}) of the corresponding phantom material. The dose was scored within the detector volume once for an alanine/paraffin mixture and once for a liquid water voxel. The relative response, the ratio of the absorbed dose to alanine to the absorbed dose to water, was calculated and compared to the corresponding ratio under reference conditions. Results: For each beam quality the relative response r and the correction factor for the environment kenv was calculated. k{sub env}=0.9991+0.0049 *((n{sub e}/n{sub e,w})−0.7659){sup 3} Conclusion: A perturbation correction factor k{sub env} accounting for the phantom environment has been introduced. The response of the alanine dosimeter can be considered independent of the surrounding material for relative electron densities (n{sub e}/n{sub e,w}) between 1 and 1.4. For denser materials such as bone or much less dense surroundings such as lung, a small correction would be appropriate.« less

  14. Estimating dose to implantable cardioverter-defibrillator outside the treatment fields using a skin QED diode, optically stimulated luminescent dosimeters, and LiF thermoluminescent dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Maria F., E-mail: chanm@mskcc.org; Song, Yulin; Dauer, Lawrence T.

    2012-10-01

    The purpose of this work was to determine the relative sensitivity of skin QED diodes, optically stimulated luminescent dosimeters (OSLDs) (microStar Trade-Mark-Sign DOT, Landauer), and LiF thermoluminescent dosimeters (TLDs) as a function of distance from a photon beam field edge when applied to measure dose at out-of-field points. These detectors have been used to estimate radiation dose to patients' implantable cardioverter-defibrillators (ICDs) located outside the treatment field. The ICDs have a thin outer case made of 0.4- to 0.6-mm-thick titanium ({approx}2.4-mm tissue equivalent). A 5-mm bolus, being the equivalent depth of the devices under the patient's skin, was placed overmore » the ICDs. Response per unit absorbed dose-to-water was measured for each of the dosimeters with and without bolus on the beam central axis (CAX) and at a distance up to 20 cm from the CAX. Doses were measured with an ionization chamber at various depths for 6- and 15-MV x-rays on a Varian Clinac-iX linear accelerator. Relative sensitivity of the detectors was determined as the ratio of the sensitivity at each off-axis distance to that at the CAX. The detector sensitivity as a function of the distance from the field edge changed by {+-} 3% (1-11%) for LiF TLD-700, decreased by 10% (5-21%) for OSLD, and increased by 16% (11-19%) for the skin QED diode (Sun Nuclear Corp.) at the equivalent depth of 5 mm for 6- or 15-MV photon energies. Our results showed that the use of bolus with proper thickness (i.e., {approx}d{sub max} of the photon energy) on the top of the ICD would reduce the scattered dose to a lower level. Dosimeters should be calibrated out-of-field and preferably with bolus equal in thickness to the depth of interest. This can be readily performed in clinic.« less

  15. MO-F-CAMPUS-T-02: Dosimetric Accuracy of the CrystalBallâ„¢: New Reusable Radiochromic Polymer Gel Dosimeter for Patient QA in Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avery, S; Kraus, J; Lin, L

    2015-06-15

    Purpose: To evaluate the accuracy of monoexponential normalization in a new class of commercial, reusable, human-soft-tissue-equivalent, radiochromic polymer gel dosimeters for patient-specific QA in proton therapy. Methods: Eight formulations of the dosimeter (sealed in glass spheres of 166 mm OD), were exposed to a 150 MeV proton beam (5 cm x 5 cm square field, range 15 cm, modulation10 cm), with max dose ranging from 2.5 Gy to 20 Gy, depending on formulation. Exposed dosimeters were promptly placed in the commercial OCTOPUS™ laser CT scanner which was programmed to scan the central slice every 5 minutes for 20 hours (15more » seconds per slice scan). This procedure was repeated several times. Reconstructed data were analyzed using the log-lin scale to determine the time range over which a monoexponential relaxation model could be applied. Next, a simple test plan was devised and delivered to each dosimeter. The OCTOPUS™ was programmed to rescan the central slice at the end of each volume scan, for signal relaxation reference. Monoexponential normalization was applied to sinograms before FBP reconstruction. Dose calibration was based on a volume-lookup table built within the central spherical volume of 12 cm diameter. 3D gamma and sigma passing rates were measured at 3%/3mm criteria down to 50% isodose. Results: Approximately monoexponential signal relaxation time ranges from 25 minutes to 3.5 hours, depending on formulation, followed by a slower-relaxation component. Noise in reconstructed OD/cm images is less than 0.5%. Dose calibration accuracy is better than 99%. Measured proton PDDs demonstrate absence of Bragg-peak quenching. Estimated number of useful cycles is at least 20, with a theoretical limit above 100. 3D gamma and sigma passing rates exceed 95%. Conclusion: Monoexponential normalization was found to yield adequate dosimetric accuracy in the new class of commercial radiochromic polymer gel dosimeters for patient QA in proton therapy.« less

  16. SU-E-T-130: Dosimetric Evaluation of Tissue Equivalent Gel Dosimeter Using Saccharide in Radiotherapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Y; Lee, D; Jung, H

    2014-06-01

    Purpose: In this study, the dose responses of the MAGIC gel with various concentrations and type of saccharide are examined to clarify the roles of mono and disaccharide in the polymerization process. Then we focused on the tissue equivalence and dose sensitivity of MAGIC gel dosimeters. Methods: The gel is composed of HPLC, 8% gelatin, 2 × 10-3 M L-ascorbic acid, 1.8 × 10-2 M hydroquinone, 8 × 10-5 M copper(II)sulfate and 9% methacrylic acid, new polymer gels are synthesized by adding glucose(monosaccharide), sucrose(disaccharide) and urea in the concentration range of 5∼35%. For irradiation of the gel, cesium-137 gamma-ray irradiatormore » was used, radiation dose was delivered from 5∼50 Gy. MRI images of the gel were acquired by using a 3.0 T MRI system. Results: When saccharide and urea were added, the O/C, O/N and C/N ratios agreed with those of soft tissue with 1.7%. The dose-response of glucose and sucrose gel have slope-to-intercept ratio of 0.044 and 0.283 respectively. The slope-to-ratio is one important determinant of gel sensitivity. R-square values of glucose and sucrose gel dosimeters were 0.984 and 0.994 respectively. Moreover when urea were added, the slope-to-intercept ratio is 0.044 and 0.073 respectively. R-square values of mono and disaccharide gel were 0.973 and 0.989 respectively. When a saccharide is added into the MAGIC gel dosimeter, dose sensitivity is increased. However when urea were added, dose sensitivity is slightly decreased. Conclusion: In this study, it was possible to obtain the following conclusions by looking at the dose response characteristics after adding mono-, di-saccharide and urea to a MAGIC gel dosimeter. Saccharide was a tendency of increasing dose sensitivity with disaccharide. Sa.ccharide is cost effective, safe, soft tissue equivalent, and can be used under various experimental conditions, making it a suitable dosimeter for some radiotherapy applications.« less

  17. SU-E-T-391: Assessment and Elimination of the Angular Dependence of the Response of the NanoDot OSLD System in MV Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann, J; University of Sydney, Sydney; RMIT University, Melbourne

    2014-06-01

    Purpose: Assess the angular dependence of the nanoDot OSLD system in MV X-ray beams at depths and mitigate this dependence for measurements in phantoms. Methods: Measurements for 6 MV photons at 3 cm and 10 cm depth and Monte Carlo simulations were performed. Two special holders were designed which allow a nanoDot dosimeter to be rotated around the center of its sensitive volume (5 mm diameter disk). The first holder positions the dosimeter disk perpendicular to the beam (en-face). It then rotates until the disk is parallel with the beam (edge on). This is referred to as Setup 1. Themore » second holder positions the disk parallel to the beam (edge on) for all angles (Setup 2). Monte Carlo simulations using GEANT4 considered detector and housing in detail based on microCT data. Results: An average drop in response by 1.4±0.7% (measurement) and 2.1±0.3% (Monte Carlo) for the 90° orientation compared to 0° was found for Setup 1. Monte Carlo simulations also showed a strong dependence of the effect on the composition of the sensitive layer. Assuming 100% active material (Al??O??) results in a 7% drop in response for 90° compared to 0°. Assuming the layer to be completely water, results in a flat response (within simulation uncertainty of about 1%). For Setup 2, measurements and Monte Carlo simulations found the angular dependence of the dosimeter to be below 1% and within the measurement uncertainty. Conclusion: The nanoDot dosimeter system exhibits a small angular dependence off approximately 2%. Changing the orientation of the dosimeter so that a coplanar beam arrangement always hits the detector material edge on reduces the angular dependence to within the measurement uncertainty of about 1%. This makes the dosimeter more attractive for phantom based clinical measurements and audits with multiple coplanar beams. The Australian Clinical Dosimetry Service is a joint initiative between the Australian Department of Health and the Australian Radiation Protection and Nuclear Safety Agency.« less

  18. Using Smart Devices to Measure Intermittent Noise in the Workplace

    PubMed Central

    Roberts, Benjamin; Neitzel, Richard Lee

    2017-01-01

    Purpose: To determine the accuracy of smart devices (iPods) to measure intermittent noise and integrate a noise dose in the workplace. Materials and Methods: In experiment 1, four iPods were each paired with a Larson Davis Spark dosimeter and exposed to randomly fluctuating pink noise in a reverberant sound chamber. Descriptive statistics and the mean difference between the iPod and its paired dosimeter were calculated for the 1-s data logged measurements. The calculated time weighted average (TWA) was also compared between the devices. In experiment 2, 15 maintenance workers and 14 office workers wore an iPod and dosimeter during their work-shift for a maximum of five workdays. A mixed effects linear regression model was used to control for repeated measures and to determine the effect of the device type on the projected 8-h TWA. Results: In experiment 1, a total of 315,306 1-s data logged measurements were made. The interquartile range of the mean difference fell within ±2.0 A-weighted decibels (dBA), which is the standard used by the American National Standards Institute to classify a type 2 sound level meter. The mean difference of the calculated TWA was within ±0.5 dBA except for one outlier. In experiment 2, the results of the mixed effects model found that, on average, iPods measured an 8-h TWA 1.7 dBA higher than their paired dosimeters. Conclusion: This study shows that iPods have the ability to make reasonably accurate noise measurements in the workplace, but they are not as accurate as traditional noise dosimeters. PMID:29192614

  19. ESR dosimeter material properties of phenols compound exposed to radiotherapeutic electron beams

    NASA Astrophysics Data System (ADS)

    Gallo, Salvatore; Iacoviello, Giuseppina; Bartolotta, Antonio; Dondi, Daniele; Panzeca, Salvatore; Marrale, Maurizio

    2017-09-01

    There is a need for a sensitive dosimeter using Electron Spin Resonance spectroscopy for use in medical applications, since non-destructive read-out and dose archival could be achieved with this method. This work reports a systematic ESR investigation of IRGANOX ® 1076 exposed to clinical electron beams produced by a LINAC used for radiation therapy treatments. Recently, dosimetric features of this material were investigated for irradiation with 60Co γ -photons and neutrons in both pellet and film shape and have been found promising thanks to their high efficiency of radiation-matter energy transfer and radical stability at room temperature. Here the analysis of the dosimetric features of these ESR dosimeters exposed to clinical electron beams at energies of 7, 10 and 14 MeV, is described in terms of dependence on microwave power and modulation amplitude, response on dose, dependence on beam type, detection limits, and signal stability after irradiation. The analysis of the ESR signal as function of absorbed dose highlights that the response of this material is linear in the dose range investigated (1-13 Gy) and is independent of the beam energy. The minimum detectable dose is found to be smaller than 1 Gy. Comparison of electron stopping power values of these dosimeters with those of water and soft tissue highlights equivalence of the response to electron beams in the energy range considered. The signal intensity was monitored for 40 days after irradiation and for all energies considered and it shows negligible variations in the first 500 h after irradiation whereas after 1100 h the signal decay is only of about 4%. In conclusion, it is found that phenolic compounds possess good dosimetric features which make it useful as a sensitive dosimeter for medical applications.

  20. Water-equivalence of gel dosimeters for radiology medical imaging.

    PubMed

    Valente, M; Vedelago, J; Chacón, D; Mattea, F; Velásquez, J; Pérez, P

    2018-03-08

    International dosimetry protocols are based on determinations of absorbed dose to water. Ideally, the phantom material should be water equivalent; that is, it should have the same absorption and scatter properties as water. This study presents theoretical, experimental and Monte Carlo modeling of water-equivalence of Fricke and polymer (NIPAM, PAGAT and itaconic acid ITABIS) gel dosimeters. Mass and electronic densities along with effective atomic number were calculated by means of theoretical approaches. Samples were scanned by standard computed tomography. Photon mass attenuation coefficients and electron stopping powers were examined. Theoretical, Monte Carlo and experimental results confirmed good water-equivalence for all gel dosimeters. Overall variations with respect to water in the low energy radiology range (up to 130 kVp) were found to be less than 3% in average. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. FBX aqueous chemical dosimeter for measurement of virtual wedge profiles.

    PubMed

    Semwal, Manoj K; Bansal, Anil K; Thakur, Pradeep K; Vidyasagar, Pandit B

    2008-10-24

    We investigated the ferrous sulfate-benzoic acid-xylenol orange (FBX) aqueous chemical dosimeter for measurement of virtual (dynamic) wedge profiles on a linear accelerator. The layout for irradiation of the FBX-filled tubes mimicked a conventional linear detector array geometry. A comparison of the resulting measurements with film-measured profiles showed that, in the main beam region, the difference between the FBX system and the film system was within +/-2% and that, in the penumbra region, the difference varied from +/-1 mm to +/-2.5 mm in terms of positional equivalence, depending on the size of the dosimeter tubes. We thus believe that the energy-independent FBX dosimetry system can measure virtual wedge profiles with reasonable accuracy at reasonable cost. However, efficiency improvement is required before this dosimetry system can be accepted into routine practice.

  2. RADIATION DOSIMETER AND DOSIMETRIC METHODS

    DOEpatents

    Taplin, G.V.

    1958-10-28

    The determination of ionizing radiation by means of single fluid phase chemical dosimeters of the colorimetric type is presented. A single fluid composition is used consisting of a chlorinated hydrocarbon, an acidimetric dye, a normalizer and water. Suitable chlorinated hydrocarbons are carbon tetrachloride, chloroform, trichloroethylene, trichlorethane, ethylene dichioride and tetracbloroethylene. Suitable acidimetric indicator dyes are phenol red, bromcresol purple, and creosol red. Suitable normallzers are resorcinol, geraniol, meta cresol, alpha -tocopberol, and alpha -naphthol.

  3. Real time radiation dosimeters based on vertically aligned multiwall carbon nanotubes and graphene.

    PubMed

    Funaro, Maria; Sarno, Maria; Ciambelli, Paolo; Altavilla, Claudia; Proto, Antonio

    2013-02-22

    Measurements of the absorbed dose and quality assurance programs play an important role in radiotherapy. Ionization chambers (CIs) are considered the most important dosimeters for their high accuracy, practicality and reliability, allowing absolute dose measurements. However, they have a relative large physical size, which limits their spatial resolution, and require a high bias voltage to achieve an acceptable collection of charges, excluding their use for in vivo dosimetry. In this paper, we propose new real time radiation detectors with electrodes based on graphene or vertically aligned multiwall carbon nanotubes (MWCNTs). We have investigated their charge collection efficiency and compared their performance with electrodes made of a conventional material. Moreover, in order to highlight the effect of nanocarbons, reference radiation detectors were also tested. The proposed dosimeters display an excellent linear response to dose and collect more charge than reference ones at a standard bias voltage, permitting the construction of miniaturized CIs. Moreover, an MWCNT based CI gives the best charge collection efficiency and it enables working also to lower bias voltages and zero volts, allowing in vivo applications. Graphene based CIs show better performance with respect to reference dosimeters at a standard bias voltage. However, at decreasing bias voltage the charge collection efficiency becomes worse if compared to a reference detector, likely due to graphene's semiconducting behavior.

  4. Solar UV exposure of primary schoolchildren in Valencia, Spain.

    PubMed

    Serrano, María-Antonia; Cañada, Javier; Moreno, Juan Carlos

    2011-04-01

    To quantify schoolchildren's exposure to ultraviolet erythemal radiation (UVER), personal dosimeters (VioSpor) were used to measure biologically effective ultraviolet (UV) radiation received in the course of their daily school activities. The study took place in two primary schools in Valencia (39°28'N), Spain, for several weeks from March 2008 until May 2009, with two age groups (6-8 years and 10-11 years) and involved about 47 schoolchildren. The median daily UV exposure values for all age groups and solar height intervals considered in the study ranged from 1.31 to 2.11 standard erythemal doses (SEDs). Individual UV exposure was analyzed as a function of age, gender and dosimeter position. Significant statistical differences were found between different age groups, with the younger age group receiving higher statistically significant UVER exposure. It was also found that boys received significantly higher UVER exposure than girls. It was also noted that shoulder dosimeters registered higher readings than wrist dosimeters. Exposure ratio (ER) is defined as the ratio between the personal dose on a selected anatomical site and the corresponding ambient dose on a horizontal plane. The median ER for all age groups and solar height intervals in the study range from 4.5% to 10.7%, with higher values at lower solar heights.

  5. Response of optically stimulated luminescence dosimeters subjected to X-rays in diagnostic energy range

    NASA Astrophysics Data System (ADS)

    Musa, Y.; Hashim, S.; Karim, M. K. A.; Bakar, K. A.; Ang, W. C.; Salehhon, N.

    2017-05-01

    The use of optically stimulated luminescence (OSL) for dosimetry applications has recently increased considerably due to availability of commercial OSL dosimeters (nanoDots) for clinical use. The OSL dosimeter has a great potential to be used in clinical dosimetry because of its prevailing advantages in both handling and application. However, utilising nanoDot OSLDs for dose measurement in diagnostic radiology can only be guaranteed when the performance and characteristics of the dosimeters are apposite. In the present work, we examined the response of commercially available nanoDot OSLD (Al2O3:C) subjected to X-rays in general radiography. The nanoDots response with respect to reproducibility, dose linearity and signal depletion were analysed using microStar reader (Landauer, Inc., Glenwood, IL). Irradiations were performed free-in-air using 70, 80 and 120 kV tube voltages and tube currents ranging from 10 - 100 mAs. The results showed that the nanoDots exhibit good linearity and reproducibility when subjected to diagnostic X-rays, with coefficient of variations (CV) ranging between 2.3% to 3.5% representing a good reproducibility. The results also indicated average of 1% signal reduction per readout. Hence, the nanoDots showed a promising potential for dose measurement in general X-ray procedure.

  6. Dose measurement using Al2O3 dosimeter in comparison to LiF:Mg,Ti dosimeter and ionization chamber at low and high energy x-ray

    NASA Astrophysics Data System (ADS)

    Yusof, Mohd Fahmi Mohd; Yahya, Muhammad Hadzmi; Rosnan, Muhammad Syazwan; Abdullah, Reduan; Kadir, Ahmad Bazlie Abdul

    2017-01-01

    The dose measurement using Al2O3 OSL dosimeter (OSLD) was carried out at low and high energy x-ray. The dose at low energy x-ray was measured at 40, 71 and 125 kVp x-ray energies. The dose ar high energy x-ray was measured at 6 and 10 MV x-ray energies measured at the depth of maximum dose (Zmax). The results were compared to that in ionization chamber and LiF: Mg,Ti thermoluminescent dosimeters (TLD100). The results showed that the dose of OSLD were less in agreement to ionization chamber compared to that in TLD100. The dose of OSLD however was in good agreement to that in ionization chamber at high energy x-ray. The dose measured using OSLD were found to be more consistence at high energy x-ray shown by the standard deviation of the readings. The measurement of x2 showed that the readings of OSLD were close to that in ionization chamber with values of 2.21 and 4.63 for 6 and 10 MV respectively. The results indicated that OSLD is more suitable for dose measurement at high energy x-ray.

  7. Is a quasi-3D dosimeter better than a 2D dosimeter for Tomotherapy delivery quality assurance?

    NASA Astrophysics Data System (ADS)

    Xing, Aitang; Deshpande, Shrikant; Arumugam, Sankar; George, Armia; Holloway, Lois; Vial, Philip; Goozee, Gary

    2015-01-01

    Delivery quality assurance (DQA) has been performed for each Tomotherapy patient either using ArcCHECK or MatriXX Evolution in our clinic since 2012. ArcCHECK is a quasi-3D dosimeter whereas MatriXX is a 2D detector. A review of DQA results was performed for all patients in the last three years, a total of 221 DQA plans. These DQA plans came from 215 patients with a variety of treatment sites including head-neck, pelvis, and chest wall. The acceptable Gamma pass rate in our clinic is over 95% using 3mm and 3% of maximum planned dose with 10% dose threshold. The mean value and standard deviation of Gamma pass rates were 98.2% ± 1.98(1SD) for MatriXX and 98.5%±1.88 (1SD) for ArcCHECK. A paired t-test was also performed for the groups of patients whose DQA was performed with both the ArcCHECK and MatriXX. No statistical dependence was found in terms of the Gamma pass rate for ArcCHECK and MatriXX. The considered 3D and 2D dosimeters have achieved similar results in performing routine patient-specific DQA for patients treated on a TomoTherapy unit.

  8. Dosimeter-Type NOx Sensing Properties of KMnO4 and Its Electrical Conductivity during Temperature Programmed Desorption

    PubMed Central

    Groβ, Andrea; Kremling, Michael; Marr, Isabella; Kubinski, David J.; Visser, Jacobus H.; Tuller, Harry L.; Moos, Ralf

    2013-01-01

    An impedimetric NOx dosimeter based on the NOx sorption material KMnO4 is proposed. In addition to its application as a low level NOx dosimeter, KMnO4 shows potential as a precious metal free lean NOx trap material (LNT) for NOx storage catalysts (NSC) enabling electrical in-situ diagnostics. With this dosimeter, low levels of NO and NO2 exposure can be detected electrically as instantaneous values at 380 °C by progressive NOx accumulation in the KMnO4 based sensitive layer. The linear NOx sensing characteristics are recovered periodically by heating to 650 °C or switching to rich atmospheres. Further insight into the NOx sorption-dependent conductivity of the KMnO4-based material is obtained by the novel eTPD method that combines electrical characterization with classical temperature programmed desorption (TPD). The NOx loading amount increases proportionally to the NOx exposure time at sorption temperature. The cumulated NOx exposure, as well as the corresponding NOx loading state, can be detected linearly by electrical means in two modes: (1) time-continuously during the sorption interval including NOx concentration information from the signal derivative or (2) during the short-term thermal NOx release. PMID:23549366

  9. Feasibility of Nanoparticle-Guided Radiation Therapy (NGRT) Using a Conventional CT Scanner

    DTIC Science & Technology

    2010-10-01

    deliverability of plan on CT scanner 2c. Calibrate dosimeters ( TLDs ) in phantom material 2d. Deliver dose distribution to phantom with TLDs in...phantom (SOW 2a). Next, small thermoluminescent dosimeters ( TLDs ) are placed within the tumor cavity. The TLDs are irradiated both with and without...nuclear data files. Electron interaction data is taken from the RSICC-EL03 library. The tumor volume was simulated as a small cavity containing

  10. Intense Relativistic Electron Beam Investigations

    DTIC Science & Technology

    1979-04-01

    facility early it. the second year of the contract. An extensive X-ray radiation survey using TLD dosimeters indicated the need for some additional... Dosimeter for 105 to 107 Roentgen Range," Analytical Chemistry 28(10), 1580-2 (1956). 9. "Search and Discovery -- Update on free- electron lasers and...AFOSR-TR-7-3t f FINAL REPORT TO THE AIR FORCE OFFICE OF SCIENTIFIC RESEARCH 00• on INTENSE RELATIVISTIC ELECTRON BEAM INVESTIGAZIONS AFOSR Contract

  11. Monte Carlo simulation of depth-dose distributions in TLD-100 under 90Sr-90Y irradiation.

    PubMed

    Rodríguez-Villafuerte, M; Gamboa-deBuen, I; Brandan, M E

    1997-04-01

    In this work the depth-dose distribution in TLD-100 dosimeters under beta irradiation from a 90Sr-90Y source was investigated using the Monte Carlo method. Comparisons between the simulated data and experimental results showed that the depth-dose distribution is strongly affected by the different components of both the source and dosimeter holders due to the large number of electron scattering events.

  12. Dosimeter Badge Detects Hydrazines

    NASA Technical Reports Server (NTRS)

    Young, Rebecca C.; Travis, Joshua C.; Moore, Gerald; Rose-Pehrsson, Susan; Carver, Patricia; Brenner, Karen

    1993-01-01

    Disposable dosimeter badge indicates approximate cumulative exposure to hydrazine or monomethyl hydrazine in air. Indication is change in colors of both paper tapes; one coated with para-N, N-dimethylaminobenzaldehyde. Colors of exposed tapes compared with colors on two preprinted color wheels to obtain estimate of exposure. Badges help minimize risks associated with exposure of personnel to hydrazine or monomethyl hydrazine, or suspected carcinogens. Also used as stationary monitors by taping them on walls or equipment at strategic locations.

  13. ON THE CALIBRATION OF DK-02 AND KID DOSIMETERS (in Estonian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehvaert, H.

    1963-01-01

    For the periodic calibration of the DK-02 and WD dosimeters, the rotating stand method which is more advantageous than the usual method is recommended. The calibration can be accomplished in a strong gamma field, reducing considerably the time necessary for calibration. Using a point source, the dose becomes a simple function of time and geometrical parameters. The experimental values are in good agreement with theoretical values. (tr-auth)

  14. Radiation measurement in the environment of FLASH using passive dosimeters

    NASA Astrophysics Data System (ADS)

    Mukherjee, B.; Rybka, D.; Makowski, D.; Lipka, T.; Simrock, S.

    2007-08-01

    Sophisticated electronic devices comprising sensitive microelectronic components have been installed in the close proximity of the 720 MeV superconducting electron linear accelerator (linac) driving the FLASH (Free Electron Laser in Hamburg), presently in operation at DESY in Hamburg. Microelectronic chips are inherently vulnerable to ionizing radiation, usually generated during routine operation of high-energy particle accelerator facilities like the FLASH. Hence, in order to assess the radiation effect on microelectronic chips and to develop suitable mitigation strategy, it becomes imperative to characterize the radiation field in the FLASH environment. We have evaluated the neutron and gamma energy (spectra) and dose distributions at critical locations in the FLASH tunnel using superheated emulsion (bubble) detectors, GaAs light emitting diodes (LED), LiF-thermoluminescence dosimeters (TLD) and radiochromic (Gafchromic EBT) films. This paper highlights the application of passive dosimeters for an accurate analysis of the radiation field produced by high-energy electron linear accelerators.

  15. Energy deposition evaluation for ultra-low energy electron beam irradiation systems using calibrated thin radiochromic film and Monte Carlo simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsui, S., E-mail: smatsui@gpi.ac.jp; Mori, Y.; Nonaka, T.

    2016-05-15

    For evaluation of on-site dosimetry and process design in industrial use of ultra-low energy electron beam (ULEB) processes, we evaluate the energy deposition using a thin radiochromic film and a Monte Carlo simulation. The response of film dosimeter was calibrated using a high energy electron beam with an acceleration voltage of 2 MV and alanine dosimeters with uncertainty of 11% at coverage factor 2. Using this response function, the results of absorbed dose measurements for ULEB were evaluated from 10 kGy to 100 kGy as a relative dose. The deviation between the responses of deposit energy on the films andmore » Monte Carlo simulations was within 15%. As far as this limitation, relative dose estimation using thin film dosimeters with response function obtained by high energy electron irradiation and simulation results is effective for ULEB irradiation processes management.« less

  16. Energy deposition evaluation for ultra-low energy electron beam irradiation systems using calibrated thin radiochromic film and Monte Carlo simulations.

    PubMed

    Matsui, S; Mori, Y; Nonaka, T; Hattori, T; Kasamatsu, Y; Haraguchi, D; Watanabe, Y; Uchiyama, K; Ishikawa, M

    2016-05-01

    For evaluation of on-site dosimetry and process design in industrial use of ultra-low energy electron beam (ULEB) processes, we evaluate the energy deposition using a thin radiochromic film and a Monte Carlo simulation. The response of film dosimeter was calibrated using a high energy electron beam with an acceleration voltage of 2 MV and alanine dosimeters with uncertainty of 11% at coverage factor 2. Using this response function, the results of absorbed dose measurements for ULEB were evaluated from 10 kGy to 100 kGy as a relative dose. The deviation between the responses of deposit energy on the films and Monte Carlo simulations was within 15%. As far as this limitation, relative dose estimation using thin film dosimeters with response function obtained by high energy electron irradiation and simulation results is effective for ULEB irradiation processes management.

  17. Results of nDOSE and HiDOSE Experiments for Dosimetric Evaluation During STS-134 Mission

    NASA Astrophysics Data System (ADS)

    Pugliese, M.; Loffredo, F.; Quarto, M.; Roca, V.; Mattone, C.; Borla, O.; Zanini, A.

    2014-07-01

    HiDOSE (Heavy ion DOSimetry Experiment) and nDOSE (neutron DOSimetry Experiment) experiments conducted as a part of BIOKIS (Biokon in Space) payload were designed to measure the dose equivalent due to charged particles and to neutron field, on the entire energy range, during STS-134 mission. Given the complexity of the radiation field in space environment, dose measurements should be considered an asset of any space mission, and for this reason HiDOSE and nDOSE experiments represent an important contribution to the radiation environment assessment during this mission, a short duration flight. The results of these experiments, obtained using Thermo Luminescence Dosimeters (TLDs) to evaluate the charged particles dosimetry and neutron bubbles dosimeters and stack bismuth track dosimeters for neutron dosimetry, indicate that the dose equivalent rate due to space radiation exposure during the STS-134 mission is in accordance with the results obtained from long duration flights.

  18. The use of hydrogenous material for sensitizing pMOS dosimeters to neutrons

    NASA Astrophysics Data System (ADS)

    Kronenberg, S.; Brucker, G. J.

    1995-02-01

    This paper is concerned with the application of pMOS dosimeters to measuring neutron dose by the use of hydrogenous materials to convert incident neutron flux to recoil protons. These latter charged particles can generate electron-hole pairs, and consequently, charge trapping takes place at the MOS interfaces, and threshold voltage shifts are produced. The use of pMOS devices for measuring gamma doses has been described extensively in the literature. Clearly, if measurable voltage shifts could be generated in a MOS device by neutrons, then a radiation detection instrument containing two MOS devices, back to back, with hydrogenous shields, and one MOS dosimeter without a converter would allow 4/spl pi/ measurements of neutron and gamma doses to be made. The results obtained in this study indicate that paraffin or polyethylene will convert incident, 2.82 MeV neutrons to recoil protons, which subsequently cause measurable voltage shifts.

  19. Dose equivalent neutron dosimeter

    DOEpatents

    Griffith, Richard V.; Hankins, Dale E.; Tomasino, Luigi; Gomaa, Mohamed A. M.

    1983-01-01

    A neutron dosimeter is disclosed which provides a single measurements indicating the amount of potential biological damage resulting from the neutron exposure of the wearer, for a wide range of neutron energies. The dosimeter includes a detecting sheet of track etch detecting material such as a carbonate plastic, for detecting higher energy neutrons, and a radiator layer containing conversion material such as .sup.6 Li and .sup.10 B lying adjacent to the detecting sheet for converting moderate energy neutrons to alpha particles that produce tracks in the adjacent detecting sheet. The density of conversion material in the radiator layer is of an amount which is chosen so that the density of tracks produced in the detecting sheet is proportional to the biological damage done by neutrons, regardless of whether the tracks are produced as the result of moderate energy neutrons striking the radiator layer or as the result of higher energy neutrons striking the sheet of track etch material.

  20. TH-CD-BRA-11: Implementation and Evaluation of a New 3D Dosimetry Protocol for Validating MRI Guided Radiation Therapy Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mein, S; Rankine, L; Department of Radiation Oncology, Washington University School of Medicine

    Purpose: To develop, evaluate and apply a novel high-resolution 3D remote dosimetry protocol for validation of MRI guided radiation therapy treatments (MRIdian by ViewRay™). We demonstrate the first application of the protocol (including two small but required new correction terms) utilizing radiochromic 3D plastic PRESAGE™ with optical-CT readout. Methods: A detailed study of PRESAGE™ dosimeters (2kg) was conducted to investigate the temporal and spatial stability of radiation induced optical density change (ΔOD) over 8 days. Temporal stability was investigated on 3 dosimeters irradiated with four equally-spaced square 6MV fields delivering doses between 10cGy and 300cGy. Doses were imaged (read-out) bymore » optical-CT at multiple intervals. Spatial stability of ΔOD response was investigated on 3 other dosimeters irradiated uniformly with 15MV extended-SSD fields with doses of 15cGy, 30cGy and 60cGy. Temporal and spatial (radial) changes were investigated using CERR and MATLAB’s Curve Fitting Tool-box. A protocol was developed to extrapolate measured ΔOD readings at t=48hr (the typical shipment time in remote dosimetry) to time t=1hr. Results: All dosimeters were observed to gradually darken with time (<5% per day). Consistent intra-batch sensitivity (0.0930±0.002 ΔOD/cm/Gy) and linearity (R2=0.9996) was observed at t=1hr. A small radial effect (<3%) was observed, attributed to curing thermodynamics during manufacture. The refined remote dosimetry protocol (including polynomial correction terms for temporal and spatial effects, CT and CR) was then applied to independent dosimeters irradiated with MR-IGRT treatments. Excellent line profile agreement and 3D-gamma results for 3%/3mm, 10% threshold were observed, with an average passing rate 96.5%± 3.43%. Conclusion: A novel 3D remote dosimetry protocol is presented capable of validation of advanced radiation treatments (including MR-IGRT). The protocol uses 2kg radiochromic plastic dosimeters read-out by optical-CT within a week of treatment. The protocol requires small corrections for temporal and spatially-dependent behaviors observed between irradiation and readout.« less

  1. Verification on the Dose Profile Variation of a 3-D—NIPAM Polymer Gel Dosimeter

    NASA Astrophysics Data System (ADS)

    Hsieh, Bor-Tsung; Wu, Jay; Chang, Yuan-Jen

    2013-04-01

    A gel dosimeter is a three-dimensional (3-D) device that is used in radiotherapy. It is more efficient than traditional one-dimensional and two-dimensional dosimeters because it can be used in complicated radiation therapy applications. However, the achievement of temporal and spatial stabilities for gel dosimeters remains challenging in clinical applications because the fabrication process affects the polymerization reaction during irradiation. This study investigated the dose profile variation of an N-isopropyl acrylamide (NIPAM) polymer gel dosimeter by using the 3-D optical computed tomography scanner OCTOPUSTM 10X (MGS Research Inc.). Two acrylic containers (diameter=10, height=10, and diameter=15, height=15cm ) filled with polymer gel (gelatin: 5%, NIPAM: 5%, Bis: 3%, THPC: 5 mM) were irradiated by using intensity-modulated radiotherapy (SIEMENS Oncor Impression, 6 MV Photo beam). The treatment field was a 3 cm 3 cm square field, and the prescribed dose was 5 Gy. The results of the reconstruction line profile showed that the uncertainty of non-irradiated gel is less than 1.3% when a container with 10 cm diameters cooled in a refrigerator with a water bath. The maximum uncertainties of the irradiated gel at 24 h, 48 h, and 72 h post-irradiation were 2.9%, 2.9%, and 3.1%, respectively. However, the maximum uncertainty of the non-irradiated gel dosimeter increased to 3% when a container with 15 cm diameter was cooled in the same refrigerator. After irradiation, the maximum uncertainties of the irradiated gel at 24 h, 48 h, and 72 h post-irradiation were 13.1%, 13.7%, and 12.95%, respectively. The uncertainty differences for gels at different container sizes were attributed to the different cooling rates that were applied to the gels. The time required for large gel containers to cool in the refrigerator was more than 10 h, whereas the cooling process only took 4.2 h for gels in a small container. The time difference produced different temperature histories for gels and may result in changes in gel sensitivity. Given the thermally induced pre-radiation polymerization, the time difference resulted in a deviation in dose profiles. This study reports that thermal control during gel preparation should be carefully performed for clinical applications to achieve a more accurate dose distribution in 3-D image reconstruction.

  2. Quantitative megavoltage radiation therapy dosimetry using the storage phosphor KCl:Eu2+

    PubMed Central

    Han, Zhaohui; Driewer, Joseph P.; Zheng, Yuanshui; Low, Daniel A.; Li, H. Harold

    2009-01-01

    This work, for the first time, reports the use of europium doped potassium chloride (KCl:Eu2+) storage phosphor for quantitative megavoltage radiation therapy dosimetry. In principle, KCl:Eu2+ functions using the same photostimulatated luminescence (PSL) mechanism as commercially available BaFBr0.85I0.15:Eu2+ material that is used for computed radiography (CR) but features a significantly smaller effective atomic number—18 versus 49—making it a potentially useful material for nearly tissue-equivalent radiation dosimetry. Cylindrical KCl:Eu2+ dosimeters, 7 mm in diameter and 1 mm thick, were fabricated in-house. Dosimetric properties, including radiation hardness, response linearity, signal fading, dose rate sensitivity, and energy dependence, were studied with a laboratory optical reader after irradiation by a linear accelerator. The overall experimental uncertainty was estimated to be within ±2.5%. The findings were (1) KCl:Eu2+ showed satisfactory radiation hardness. There was no significant change in the stimulation spectra after irradiation up to 200 Gy when compared to a fresh dosimeter, indicating that this material could be reused at least 100 times if 2 Gy per use was assumed, e.g., for patient-specific IMRT QA. (2) KCl:Eu2+ exhibited supralinear response to dose after irradiation from 0 to 800 cGy. (3) After x ray irradiation, the PSL signal faded with time and eventually reached a fading rate of about 0.1%∕h after 12 h. (4) The sensitivity of the dosimeter was independent of the dose rate ranging from 15 to 1000 cGy∕min. (5) The sensitivity showed no beam energy dependence for either open x ray or megavoltage electron fields. (6) Over-response to low-energy scattered photons was comparable to radiographic film, e.g., Kodak EDR2 film. By sandwiching dosimeters between low-energy photon filters (0.3 mm thick lead foils) during irradiation, the over-response was reduced. The authors have demonstrated that KCl:Eu2+ dosimeters have many desirable dosimetric characteristics that make the material conducive to radiation therapy dosimetry. In the future, a large-area KCl:Eu2+-based CR plate with a thickness of the order of a few microns, created using modern thin film techniques, could provide a reusable, quantitative, high-resolution two-dimensional dosimeter with minimal energy dependence. PMID:19746808

  3. Monte Carlo simulation of MOSFET dosimeter for electron backscatter using the GEANT4 code.

    PubMed

    Chow, James C L; Leung, Michael K K

    2008-06-01

    The aim of this study is to investigate the influence of the body of the metal-oxide-semiconductor field effect transistor (MOSFET) dosimeter in measuring the electron backscatter from lead. The electron backscatter factor (EBF), which is defined as the ratio of dose at the tissue-lead interface to the dose at the same point without the presence of backscatter, was calculated by the Monte Carlo simulation using the GEANT4 code. Electron beams with energies of 4, 6, 9, and 12 MeV were used in the simulation. It was found that in the presence of the MOSFET body, the EBFs were underestimated by about 2%-0.9% for electron beam energies of 4-12 MeV, respectively. The trend of the decrease of EBF with an increase of electron energy can be explained by the small MOSFET dosimeter, mainly made of epoxy and silicon, not only attenuated the electron fluence of the electron beam from upstream, but also the electron backscatter generated by the lead underneath the dosimeter. However, this variation of the EBF underestimation is within the same order of the statistical uncertainties as the Monte Carlo simulations, which ranged from 1.3% to 0.8% for the electron energies of 4-12 MeV, due to the small dosimetric volume. Such small EBF deviation is therefore insignificant when the uncertainty of the Monte Carlo simulation is taken into account. Corresponding measurements were carried out and uncertainties compared to Monte Carlo results were within +/- 2%. Spectra of energy deposited by the backscattered electrons in dosimetric volumes with and without the lead and MOSFET were determined by Monte Carlo simulations. It was found that in both cases, when the MOSFET body is either present or absent in the simulation, deviations of electron energy spectra with and without the lead decrease with an increase of the electron beam energy. Moreover, the softer spectrum of the backscattered electron when lead is present can result in a reduction of the MOSFET response due to stronger recombination in the SiO2 gate. It is concluded that the MOSFET dosimeter performed well for measuring the electron backscatter from lead using electron beams. The uncertainty of EBF determined by comparing the results of Monte Carlo simulations and measurements is well within the accuracy of the MOSFET dosimeter (< +/- 4.2%) provided by the manufacturer.

  4. Photon energy readings in OSL dosimeter filters: an application to retrospective dose estimation for nuclear medicine workers.

    PubMed

    Villoing, Daphnée; Kitahara, Cari M; Passmore, Christopher; Simon, Steven L; Yoder, R Craig

    2018-06-19

    This work investigates the applicability of using data from personal monitoring dosimeters to assess photon energies to which medical workers were exposed. Such determinations would be important for retrospective assessments of organ doses to be used in occupational radiation epidemiology studies, particularly in the absence of work history or other information regarding the energy of the radiation source. Monthly personal dose equivalents and filter ratios under two different metallic filters contained in the Luxel+® dosimeter were collected from Landauer, Inc. from 19 nuclear medicine (NM) technologists employed by three medical institutions, the institution A only performing traditional NM imaging (primarily using <sup>99m</sup>Tc) and institutions B and C also performing positron emission tomography (PET, using <sup>18</sup>F). Calibration data of the Luxel+® dosimeter for various X-ray spectra were used to establish ranges of filter ratios from 1.1 to 1.6 for <sup>99m</sup>Tc and below 1.1 for <sup>18</sup>F. Median filter ratios were 1.33 (Interquartile range (IQR), 0.15) for institution A, 1.08 (IQR, 0.16) for institution B, and 1.08 (IQR, 0.14) for institution C. The distributions of these filter ratios were statistically-significantly different between the institution A only performing traditional NM imaging and institutions B and C also performing PET imaging. In this proof-of-concept study, filter ratios from personal dosimeters were used to assess differences in photon energies to which NM technologists were exposed. Dosimeters from technologists only performing traditional NM procedures mostly showed Al/Cu filter ratios above 1.2, those likely performing only PET in a particular month had filter ratios below 1.1, and those which showed filter ratios between 1.1 and 1.2 likely came from technologists rotating between traditional NM and PET imaging in the same month. These results suggest that it is possible to distinguish technologists who only worked with higher-energy procedures versus those who only worked with other types of NM procedures. © 2018 IOP Publishing Ltd.

  5. On the feasibility of comprehensive high-resolution 3D remote dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juang, Titania; Grant, Ryan; Adamovics, John

    2014-07-15

    Purpose: This study investigates the feasibility of remote high-resolution 3D dosimetry with the PRESAGE®/Optical-CT system. In remote dosimetry, dosimeters are shipped out from a central base institution to a remote institution for irradiation, then shipped back to the base institution for subsequent readout and analysis. Methods: Two nominally identical optical-CT scanners for 3D dosimetry were constructed and placed at the base (Duke University) and remote (Radiological Physics Center) institutions. Two formulations of PRESAGE® (SS1, SS2) radiochromic dosimeters were investigated. Higher sensitivity was expected in SS1, which had higher initiator content (0.25% bromotrichloromethane), while greater temporal stability was expected in SS2.more » Four unirradiated PRESAGE® dosimeters (two per formulation, cylindrical dimensions 11 cm diameter, 8.5–9.5 cm length) were imaged at the base institution, then shipped to the remote institution for planning and irradiation. Each dosimeter was irradiated with the same simple treatment plan: an isocentric 3-field “cross” arrangement of 4 × 4 cm open 6 MV beams configured as parallel opposed laterals with an anterior beam. This simple plan was amenable to accurate and repeatable setup, as well as accurate dose modeling by a commissioned treatment planning system (Pinnacle). After irradiation and subsequent (within 1 h) optical-CT readout at the remote institution, the dosimeters were shipped back to the base institution for remote dosimetry readout 3 days postirradiation. Measured on-site and remote relative 3D dose distributions were registered to the Pinnacle dose calculation, which served as the reference distribution for 3D gamma calculations with passing criteria of 5%/2 mm, 3%/3 mm, and 3%/2 mm with a 10% dose threshold. Gamma passing rates, dose profiles, and color-maps were all used to assess and compare the performance of both PRESAGE® formulations for remote dosimetry. Results: The best agreements between the Pinnacle plan and dosimeter readout were observed in PRESAGE® formulation SS2. Under 3%/3 mm 3D gamma passing criteria, passing rates were 91.5% ± 3.6% (SS1) and 97.4% ± 2.2% (SS2) for immediate on-site dosimetry, 96.7% ± 2.4% (SS1) and 97.6% ± 0.6% (SS2) for remote dosimetry. These passing rates are well within TG119 recommendations (88%–90% passing). Under the more stringent criteria of 3%/2 mm, there is a pronounced difference [8.0 percentage points (pp)] between SS1 formulation passing rates for immediate and remote dosimetry while the SS2 formulation maintains both higher passing rates and consistency between immediate and remote results (differences ≤ 1.2 pp) at all metrics. Both PRESAGE® formulations under study maintained high linearity of dose response (R{sup 2} > 0.996) for 1–8 Gy over 14 days with response slope consistency within 4.9% (SS1) and 6.6% (SS2), and a relative dose distribution that remained stable over time was demonstrated in the SS2 dosimeters. Conclusions: Remote 3D dosimetry was shown to be feasible with a PRESAGE® dosimeter formulation (SS2) that exhibited relative temporal stability and high accuracy when read off-site 3 days postirradiation. Characterization of the SS2 dose response demonstrated linearity (R{sup 2} > 0.998) over 14 days and suggests accurate readout over longer periods of time would be possible. This result provides a foundation for future investigations using remote dosimetry to study the accuracy of advanced radiation treatments. Further work is planned to characterize dosimeter reproducibility and dose response over longer periods of time.« less

  6. Development of a 3D remote dosimetry protocol compatible with MRgIMRT.

    PubMed

    Mein, Stewart; Rankine, Leith; Adamovics, John; Li, Harold; Oldham, Mark

    2017-11-01

    To develop a novel remote 3D dosimetry protocol to verify Magnetic Resonance-guided Radiation Therapy (MRgRT) treatments. The protocol was applied to investigate the accuracy of TG-119 IMRT irradiations delivered by the MRIdian ® system (ViewRay ® , Oakwood Village, OH, USA) allowing for a 48-hour delay between irradiation at a field institution and subsequent readout at a base institution. The 3D dosimetry protocol utilizes a novel formulation of PRESAGE ® radiochromic dosimeters developed for high postirradiation stability and compatibility with optical-CT readout. Optical-CT readout was performed with an in-house system utilizing telecentric lenses affording high-resolution scanning. The protocol was developed from preparatory experiments to characterize PRESAGE ® response in relevant conditions. First, linearity and sensitivity of PRESAGE ® dose-response in the presence of a magnetic field was evaluated in a small volume study (4 ml cuvettes) conducted under MRgRT conditions and irradiated with doses 0-15 Gy. Temporal and spatial stability of the dose-response were investigated in large volume studies utilizing large field-of-view (FOV) 2 kg cylindrical PRESAGE ® dosimeters. Dosimeters were imaged at t = 1 hr and t = 48 hrs enabling the development of correction terms to model any observed spatial and temporal changes postirradiation. Polynomial correction factors for temporal and spatial changes in PRESAGE ® dosimeters (C T and C R respectively) were obtained by numerical fitting to time-point data acquired in six irradiated dosimeters. A remote dosimetry protocol was developed where PRESAGE ® change in optical-density (ΔOD) readings at time t = X (the irradiation to return shipment time interval) were corrected back to a convenient standard time t = 1 hr using the C T and C R corrections. This refined protocol was then applied to TG-119 (American Association of Physicists in Medicine, Task Group 119) plan deliveries on the MRIdian ® system to evaluate the accuracy of MRgRT in these conditions. In the small volume study, in the presence of a 0.35 T magnetic field, PRESAGE ® was observed to respond linearly (R 2  = 0.9996) to Co-60 irradiation at t = 48 hrs postirradiation, within the dose ranges of 0 to 15 Gy, with a sensitivity of 0.0305(±0.003) ΔOD cm -1  Gy -1 . In the large volume studies, at t = 1 hr postirradiation, consistent linear response was observed, with average sensitivity of 0.0930 ± 0.002 ΔOD cm -1  Gy -1 . However, dosimeters gradually darkened with time (OD< 5% per day). A small radial dependence to the dosimeter sensitivity was measured (< 3% of maximum dose), which is attributed to a spherically symmetric dosimeter artifact arising from exothermic heating legacy in the PRESAGE ® polyurethane substrate during curing. When applied to the TG-119 IMRT irradiations, the remote dosimetry protocol (including correction terms) yielded excellent line-profile and 3D gamma agreement for 3%/3 mm, 10% threshold (mean passing rate = 96.6% ± 4.0%). A novel 3D remote dosimetry protocol is introduced for validating off-site dosimetrically complex radiotherapy systems, including MRgRT. The protocol involves correcting for temporal and spatially dependent changes in PRESAGE ® radiochromic dosimeters readout by optical-CT. Application of the protocol to TG-119 irradiations enabled verification of MRgRT dose distributions with high resolution. © 2017 American Association of Physicists in Medicine.

  7. Dosimetry of laser emission

    NASA Astrophysics Data System (ADS)

    Kirillov, A. I.; Morskov, V. F.; Ustinov, N. D.

    The basic criteria for dosimetric standards on photon, microwave, and ultraviolet emissions are reviewed. Attention is given to the biophysical effects of laser radiation, approaches to the evaluation of optical radiation hazard, and the effect of laser beams on the human eye. The fundamentals of the optical design of dosimeters are discussed, and an eye model is developed for a laser radiation meter. The discussion also covers the design of the electronic circuit of dosimeters and an evaluation of measurement errors.

  8. USAF Dental Service Mercury Hygiene Report, Calendar Year 1980.

    DTIC Science & Technology

    1981-12-01

    the floor. Mercury Vapor Analyzer Used No. calibration No. of clinics Percent reported MV2 - Bacharach 81 67.5 14 Hopcalite tubes 8 6.7 Jerome model...instruments which could determine TWA: hopcalite tubes (8), Jerome with dosimeter coils (5), and 3M monitor (3). All 16 of these surveys showed mercury...vapor levels. This quantification requires sampling using the Jerome with a dosimeter coil, hopcalite tubes, or the 3M monitor. The USAF Occupational

  9. Calorimetry of electron beams and the calibration of dosimeters at high doses

    NASA Astrophysics Data System (ADS)

    Humphreys, J. C.; McLaughlin, W. L.

    Graphite or metal calorimeters are used to make absolute dosimetric measurements of high-energy electron beams. These calibrated beams are then used to calibrate several types of dosimeters for high-dose applications such as medical-product sterilization, polymer modification, food processing, or electronic-device hardness testing. The electron beams are produced either as continuous high-power beams at approximately 4.5 MeV by d.c. type accelerators or in the energy range of approximately 8 to 50 MeV using pulsed microwave linear accelerators (linacs). The continuous beams are generally magnetically scanned to produce a broad, uniform radiation environment for the processing of materials of extended lateral dimensions. The higher-energy pulsed beams may also be scanned for processing applications or may be used in an unscanned, tightly-focused mode to produce maximum absorbed dose rates such as may be required for electronic-device radiation hardness testing. The calorimeters are used over an absorbed dose range of 10 2 to 10 4 Gy. Intercomparison studies are reported between National Institute of Standards and Technology (NIST) and UK National Physical Laboratory (NPL) graphite disk calorimeters at high doses, using the NPL 10-MeV linac, and agreement was found within 1.5%. It was also shown that the electron-beam responses of radiochromic film dosimeters and alanine pellet dosimeters can be accurately calibrated by comparison with calorimeter readings.

  10. Evaluation of the Energy Distribution of Unknown Photon Radiation Fields by Interpreting the Responses of Tld's and Modification of Burlin Cavity Theory.

    NASA Astrophysics Data System (ADS)

    Abdulhay, Ibrahim Shakib

    1995-01-01

    The thermoluminescent dosimeter (TLD) response (integrated light output per unit exposure) of a high Z material increases more rapidly with decreasing photon energy and with energy above the pair production threshold than that of lower Z materials. The ratio of the responses obtained when two thermoluminescent dosimeter (TLD) materials are simultaneously exposed to gamma or x-rays could be used to obtain information about the incident photon energies. In addition, the responses are affected by the presence of the material surrounding the dosimeters. Two TLD's, LiF and CaSO_4, with respective effective atomic number of 8.2 and 15.3, have been chosen to be sandwiched between different absorber materials (Al, Cu, and Pb) and irradiated at selected distances from gamma radiation sources. The photon energies used in this investigation were 60 keV, 142 keV, 662 keV, 1.25 MeV, and 6.129 MeV. Fit equations of the responses of the dosimeters to different energies have been obtained and used to evaluate the energy distributions of unknown ionizing radiation fields. In addition, the electron mass attenuation coefficient beta used in Burlin and Burlin-Horowitz Cavity Theory has been modified to produce better agreement with experimental data at low photon energies and at high energies.

  11. Energy response of CaSO4:Dy teflon TLD disk dosimeters to photons and electrons.

    PubMed

    Sharada, K S

    1983-01-01

    The photon energy response of CaSO4:Dy teflon disk dosimeters used widely in radiation dosimetry is computed using the energy absorption coefficient values for calcium, sulfur, oxygen, and carbon taken from J. H. Hubbell's tables. For fluorine, the energy absorption coefficients were obtained from the values given by F. H. Attix for CaF2 and Ca. The energy response of the radiation-monitoring disk for the range of 10 keV to 10 MeV, relative to air, is computed and plotted. The response is maximum between 20 and 30 keV and then gradually falls to a constant at 200 keV to 10 MeV. This computed response for different energies is compared with the experimental TL response of the dosimeter. The electron energy response of these TLD disks is computed using the stopping-power values for the different component elements. The electron stopping power for sulfur and calcium from 10 keV to 10 MeV is computed using the Bethe-Bloch formula. Those for oxygen and carbon are taken from the tables given by M. J. Berger and S. M. Seltzer. For fluorine, the values are computed from those for Li and LiF given in the same tables. This calculated response is compared with the experimental beta response of the TL dosimeter.

  12. Measurement of radiation dose with BeO dosimeters using optically stimulated luminescence technique in radiotherapy applications.

    PubMed

    Şahin, Serdar; Güneş Tanır, A; Meriç, Niyazi; Aydınkarahaliloğlu, Ercan

    2015-09-01

    The radiation dose delivered to the target by using different radiotherapy applications has been measured with the help of beryllium oxide (BeO) dosimeters to be placed inside the rando phantom. Three-Dimensional Conformal Radiotherapy (3DCRT), Intensity-Modulated Radiotherapy (IMRT) and Intensity-Modulated Arc Therapy (IMAT) have been used as radiotherapy application. Individual treatment plans have been made for the three radiotherapy applications of rando phantom. The section 4 on the phantom was selected as target and 200 cGy doses were delivered. After the dosimeters placed on section 4 (target) and the sections 2 and 6 (non-target) were irradiated, the result was read through the OSL technique on the Risø TL/OSL system. This procedure was repeated three times for each radiotherapy application. The doses delivered to the target and the non-target sections as a result of the 3DCRT, IMRT and IMAT plans were analyzed. The doses received by the target were measured as 204.71 cGy, 204.76 cGy and 205.65 cGy, respectively. The dose values obtained from treatment planning system (TPS) were compared to the dose values obtained using the OSL technique. It has been concluded that, the radiation dose can be measured with the OSL technique by using BeO dosimeters in medical practices. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Dose profiles for lung and breast regions at prospective and retrospective CT coronary angiography using optically stimulated luminescence dosimeters on a 64-detector CT scanner.

    PubMed

    Funama, Yoshinori; Taguchi, Katsuyuki; Utsunomiya, Daisuke; Oda, Seitaro; Murasaki, Hiroo; Yamashita, Yasuyuki; Awai, Kazuo

    2012-01-01

    The purpose of our study was to acquire dose profiles at critical organs of lung and breast regions using optically stimulated luminescence (OSL) dosimeters; assess the actual radiation dose delivered at retrospective and prospective computed tomography coronary angiography (CTCA). Using a chest CT phantom we applied a prospectively-gated step-and-shoot- and a retrospectively-gated helical mode on a 64-detector row CT scanner. Retrospective scan mode was used with and without electrocardiogram (ECG) based tube current modulation. OSL dosimeters were used to measure dose profiles. In the both scan modes we acquired dose profiles and determined the mean and maximum dose in left lung and in left breast regions. In prospective mode, the mean dose was 21.53 mGy in left lung- and 23.59 mGy in left breast region. With respect to the retrospective mode, the mean dose with tube current modulation was 38.63 mGy for left lung- and 46.02 mGy for left breast region, i.e. 0.56 and 0.55 times lower than the mean dose without modulation. The OSL dosimeter is useful for measurement of the actual radiation dose along z-axis at lung and breast regions in the prospective and the retrospective CTCA. Copyright © 2011 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  14. Technical Note: Out‐of‐field dose measurement at near surface with plastic scintillator detector

    PubMed Central

    Bourgouin, Alexandra; Varfalvy, Nicolas

    2016-01-01

    Out‐of‐field dose depends on multiple factors, making peripheral dosimetry complex. Only a few dosimeters have the required features for measuring peripheral dose. Plastic scintillator dosimeters (PSDs) offer numerous dosimetric advantages as required for out‐of‐field dosimetry. The purpose of this study is to determine the potential of using PSD as a surface peripheral dosimeter. Measurements were performed with a parallel‐plate ion chamber, a small volume ion chamber, and with a PSD. Lateral‐dose measurements (LDM) at 0.5 cm depth and depth‐dose curve (PDD) were made and compared to the dose calculation provided by a treatment planning system (TPS). This study shows that a PSD can measure a dose as low as 0.51±0.17cGy for photon beam and 0.58±0.20cGy for electron beam with a difference of 0.2 and 0.1 cGy compared to a parallel‐plate ion chamber. This study demonstrates the potential of using PSD as an out‐of‐field dosimeter since measurements with PSD avoid averaging over a too‐large depth, at 1 mm diameter, and can make precise measurement at very low dose. Also, electronic equilibrium is easier to reach with PSD due to its small sensitive volume and its water equivalence. PACS number(s): 87.55.N, 87.55.km PMID:27685131

  15. Conceptual design of the SMART dosimeter

    NASA Astrophysics Data System (ADS)

    Johnson, Erik B.; Vogel, Sam; Frank, Rebecca; Stoddard, Graham; Vera, Alonzo; Alexander, David; Christian, James

    2017-08-01

    Active dosimeters for astronauts and space weather monitors are critical tools for mitigating radiation induced health issues or system failure on capital equipment. Commercial spaceflight, deep space flight, and satellites require smarter, smaller, and lower power dosimeters. There are a number of instruments with flight heritage, yet as identified in NASA's roadmaps, these technologies do not lend themselves to a viable solution for active dosimetry for an astronaut, particularly for deep space missions. For future missions, nano- and micro-satellites will require compact instruments that will accurately assess the radiation hazard without consuming major resources on the spacecraft. RMD has developed the methods for growing an advanced scintillation material called phenylcarbazole, which provides pulse shape discrimination between protons and electrons. When used in combination with an anti-coincidence detector system, an assessment of the dose from charged ions and neutral particles can be determined. This is valuable as damage on a system (such as silicon or tissue) is dependent on the particle species. Using this crystal with readout electronics developed in partnership with COSMIAC at the University of New Mexico, the design of the Small Mixed field Autonomous Radiation Tracker (SMART) Dosimeter consists of a low-power analog to digital conversion scheme with low-power digital signal processing algorithms, which are to be implemented within a compact system on a chip, such as the Xilinx Zynq series. A review of the conceptual design is presented.

  16. Structural Technology and Analysis Program (STAP) Delivery Order 0004: Durability Patch

    NASA Astrophysics Data System (ADS)

    Ikegami, Roy; Haugse, Eric; Trego, Angela; Rogers, Lynn; Maly, Joe

    2001-06-01

    Structural cracks in secondary structure, resulting from a high cycle fatigue (HCF) environment, are often referred to as nuisance cracks. This type of damage can result in costly inspections and repair. The repairs often do not last long because the repaired structure continues to respond in a resonant fashion to the environment. Although the use of materials for passive damping applications is well understood, there are few applications to high-cycle fatigue problems. This is because design information characterization temperature, resonant response frequency and strain levels are difficult to determine. The Durability Patch and Damage Dosimeter Program addressed these problems by: (1) Developing a damped repair design process which includes a methodology for designing the material and application characteristics required to optimally damp the repair. (2) Designing and developing a rugged, small, and lightweight data acquisition unit called the damage dosimeter. This is a battery operated, single board computer, capable of collecting three channels of strain and one channel of temperature, processing this data by user developed algorithms written in the C programming language, and storing the processed data in resident memory. The dosimeter is used to provide flight data needed to characterize the vibration environment. The vibration environment is then used to design the damping material characteristics and repair. The repair design methodology and dosimeter were demonstrated on B-52, C-130, and F-15 aircraft applications.

  17. Molecular structure effects on the post irradiation diffusion in polymer gel dosimeters.

    PubMed

    Mattea, Facundo; Romero, Marcelo R; Vedelago, José; Quiroga, Andrés; Valente, Mauro; Strumia, Miriam C

    2015-06-01

    Polymer gel dosimeters have specific advantages for recording 3D radiation dose distribution in diagnostic and therapeutic medical applications. But, even in systems where the 3D structure is usually maintained for long periods of time after irradiation, it is still not possible to eliminate the diffusion of the different species in the regions of dose gradients within the gel. As a consequence, information of the dose loses quality over time. In the pursuit of a solution and to improve the understanding of this phenomenon a novel system based on itaconic acid and N-N'-methylene-bisacrylamide (BIS) is hereby proposed. Effects of changes in the chemical structure of the monomers over the dosimetric sensitivity and over the post-irradiation diffusion of species was studied. In this study, one of the carboxylic groups of the itaconic acid molecule was modified with aniline to obtain molecules with similar reactivity but different molecular sizes. Then, dosimeters based on these modified species and on the original ITA molecules were irradiated in an X-ray tomography apparatus at different doses up to 173Gy. Afterwards, the resulting dosimeters were characterized by Raman spectroscopy and optical absorbance in order to study their feasibility and capabilities as dosimetric systems, and by optical-CT to analyze the post irradiation diffusion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Dosimetric evaluation of the OneDoseTM MOSFET for measuring kilovoltage imaging dose from image-guided radiotherapy procedures.

    PubMed

    Ding, George X; Coffey, Charles W

    2010-09-01

    The purpose of this study is to investigate the feasibility of using a single-use dosimeter, OneDose MOSFET designed for in vivo patient dosimetry, for measuring the radiation dose from kilovoltage (kV) x rays resulting from image-guided procedures. The OneDose MOSFET dosimeters were precalibrated by the manufacturer using Co-60 beams. Their energy response and characteristics for kV x rays were investigated by using an ionization chamber, in which the air-kerma calibration factors were obtained from an Accredited Dosimetry Calibration Laboratory (ADCL). The dosimetric properties have been tested for typical kV beams used in image-guided radiation therapy (IGRT). The direct dose reading from the OneDose system needs to be multiplied by a correction factor ranging from 0.30 to 0.35 for kilovoltage x rays ranging from 50 to 125 kVp, respectively. In addition to energy response, the OneDose dosimeter has up to a 20% reduced sensitivity for beams (70-125 kVp) incident from the back of the OneDose detector. The uncertainty in measuring dose resulting from a kilovoltage beam used in IGRT is approximately 20%; this uncertainty is mainly due to the sensitivity dependence of the incident beam direction relative to the OneDose detector. The ease of use may allow the dosimeter to be suitable for estimating the dose resulting from image-guided procedures.

  19. SU-E-I-57: Estimating the Occupational Eye Lens Dose in Interventional Radiology Using Active Personal Dosimeters Worn On the Chest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omar, A; Marteinsdottir, M; Kadesjo, N

    Purpose: To provide a general formalism for determination of occupational eye lens dose based on the response of an active personal dosimeter (APD) worn at chest level above the radiation protection apron. Methods: The formalism consists of three factors: (1) APD conversion factor converting the reading at chest level (APDchest) to the corresponding personal dose equivalent at eye level, (2) Dose conversion factor transferring the measured dose quantity, Hp(10), into a dose quantity relevant for the eye lens dose, (3) Correction factor accounting for differences in exposure of the eye(s) compared to the exposure at chest level (e.g., due tomore » protective lead glasses).The different factors were investigated and evaluated based on phantom and clinical measurements performed in an x-ray angiography suite for interventional cardiology. Results: The eye lens dose can be conservatively estimated by assigning an appropriate numerical value to each factor entering the formalism that in most circumstances overestimates the dose. Doing so, the eye lens dose to the primary operator and assisting staff was estimated in this work as D-eye,primary = 2.0 APDchest and D-eye,assisting = 1.0 APDchest, respectively.The annual eye lens dose to three nurses and one cardiologist was estimated to be 2, 2, 2, and 13 mSv (Hp(0.07)), respectively, using a TLD dosimeter worn at eye level. In comparison, using the formalism and APDchest measurements, the respective doses were 2, 2, 2, and 16 mSv (Hp(3)). Conclusion: The formalism outlined in this work can be used to estimate the occupational eye lens dose from the response of an APD worn on the chest. The formalism is general and could be applied also to other types of dosimeters. However, the numerical value of the different factors may differ from those obtained with the APD’s used in this work due to differences in dosimeter properties.« less

  20. SU-E-T-84: Comparison of Three Different Systems for Patient-Specific Quality Assurance: Cranial Stereotactic Radiosurgery Using VMAT with Multiple Non Coplanar Arcs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fusella, M; Fiandra, C; Giglioli, F

    2014-06-01

    Purpose: Patient-specific quality assurance in volumetric modulated arc therapy (VMAT) brain stereotactic radiosurgery raises specific issues on dosimetric procedures, mainly represented by the small radiation fields associated with the lack of lateral electronic equilibrium, the need of small detectors and the high dose delivered. The purpose of the study is to compare three different dosimeters for pre-treatment QA. Methods: Nineteen patients (affected by neurinomas, brain metastases, and by meningiomas) were treated with VMAT plans computed on a Monte Carlo based TPS. Gafchromic films inside a slab phantom (GF), 3-D cylindrical phantom with two orthogonal diodes array (DA), and 3-D cylindricalmore » phantom with a single rotating ionization chambers array (ICA), have been evaluated. The dosimeters are, respectively, characterized by a spatial resolution of: 0.4 (in our method), 5 and 2.5 mm. For GF we used a double channel method for calibration and reading protocol; for DA and ICA we used the 3-D dose distributions reconstructed by the two software sold with the dosimeters. With the need of a common system for analyze different measuring approaches, we used an in-house software that analyze a single coronal plane in the middle of the phantoms and Gamma values (2% / 2 mm and 3% / 3 mm) were computed for all patients and dosimeters. Results: The percentage of points with gamma values less than one was: 95.7% for GF, 96.8% for DA and 95% for ICA, using 3%/3mm criteria, and 90.1% for GF, 92.4% for DA and 92% for ICA, using 2% / 2mm gamma criteria. Tstudent test p-values obtained by comparing the three datasets were not statistically significant for both gamma criteria. Conclusion: Gamma index analysis is not affected by different spatial resolution of the three dosimeters.« less

  1. Evaluation of an X-Ray Dose Profile Derived from an Optically Stimulated Luminescent Dosimeter during Computed Tomographic Fluoroscopy.

    PubMed

    Hasegawa, Hiroaki; Sato, Masanori; Tanaka, Hiroshi

    2015-01-01

    The purpose of this study was to evaluate scatter radiation dose to the subject surface during X-ray computed tomography (CT) fluoroscopy using the integrated dose ratio (IDR) of an X-ray dose profile derived from an optically stimulated luminescent (OSL) dosimeter. We aimed to obtain quantitative evidence supporting the radiation protection methods used during previous CT fluoroscopy. A multislice CT scanner was used to perform this study. OSL dosimeters were placed on the top and the lateral side of the chest phantom so that the longitudinal direction of dosimeters was parallel to the orthogonal axis-to-slice plane for measurement of dose profiles in CT fluoroscopy. Measurement of fluoroscopic conditions was performed at 120 kVp and 80 kVp. Scatter radiation dose was evaluated by calculating the integrated dose determined by OSL dosimetry. The overall percent difference of the integrated doses between OSL dosimeters and ionization chamber was 5.92%. The ratio of the integrated dose of a 100-mm length area to its tails (-50 to -6 mm, 50 to 6 mm) was the lowest on the lateral side at 80 kVp and the highest on the top at 120 kVp. The IDRs for different measurement positions were larger at 120 kVp than at 80 kVp. Similarly, the IDRs for the tube voltage between the primary X-ray beam and scatter radiation was larger on the lateral side than on the top of the phantom. IDR evaluation suggested that the scatter radiation dose has a high dependence on the position and a low dependence on tube voltage relative to the primary X-ray beam for constant dose rate fluoroscopic conditions. These results provided quantitative evidence supporting the radiation protection methods used during CT fluoroscopy in previous studies.

  2. Evaluation of an X-Ray Dose Profile Derived from an Optically Stimulated Luminescent Dosimeter during Computed Tomographic Fluoroscopy

    PubMed Central

    Hasegawa, Hiroaki; Sato, Masanori; Tanaka, Hiroshi

    2015-01-01

    The purpose of this study was to evaluate scatter radiation dose to the subject surface during X-ray computed tomography (CT) fluoroscopy using the integrated dose ratio (IDR) of an X-ray dose profile derived from an optically stimulated luminescent (OSL) dosimeter. We aimed to obtain quantitative evidence supporting the radiation protection methods used during previous CT fluoroscopy. A multislice CT scanner was used to perform this study. OSL dosimeters were placed on the top and the lateral side of the chest phantom so that the longitudinal direction of dosimeters was parallel to the orthogonal axis-to-slice plane for measurement of dose profiles in CT fluoroscopy. Measurement of fluoroscopic conditions was performed at 120 kVp and 80 kVp. Scatter radiation dose was evaluated by calculating the integrated dose determined by OSL dosimetry. The overall percent difference of the integrated doses between OSL dosimeters and ionization chamber was 5.92%. The ratio of the integrated dose of a 100-mm length area to its tails (−50 to −6 mm, 50 to 6 mm) was the lowest on the lateral side at 80 kVp and the highest on the top at 120 kVp. The IDRs for different measurement positions were larger at 120 kVp than at 80 kVp. Similarly, the IDRs for the tube voltage between the primary X-ray beam and scatter radiation was larger on the lateral side than on the top of the phantom. IDR evaluation suggested that the scatter radiation dose has a high dependence on the position and a low dependence on tube voltage relative to the primary X-ray beam for constant dose rate fluoroscopic conditions. These results provided quantitative evidence supporting the radiation protection methods used during CT fluoroscopy in previous studies. PMID:26151914

  3. SU-F-T-10: Validation of ELP Dosimetry Using PRESAGE Dosimeter: Feasibility Test and Practical Considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambson, K; Lafata, K; Miles, D

    Purpose: To validate the use of a PRESAGE dosimeter as a method to quantitatively measure dose distributions of injectable brachytherapy based on elastin-like polypeptide (ELP) nanoparticles. PRESAGE is a solid, transparent polyurethane-based dosimeter whose dose is proportional to a change in optical density, making it useful for visualizing the dose from a radionuclide-tagged-ELP injection. Methods: A PRESAGE dosimeter was designed to simulate an ELP injection. To calibrate, cuvette samples from the batch of PRESAGE were exposed to varying levels of radiation from 0–35.9Gy applied via a linear accelerator, then placed into a spectrophotometer to obtain the optical density change asmore » a function of dose. A pre-optical-CT scan was acquired of the phantom to obtain a baseline tomographic optical density. A 1cc saline solution of I-125 tagged-ELP with and activity concentration of 1mCi/cc was injected into the phantom and left for five days. After five days, the ELP was removed and the cavity cleaned of all remaining radioactive material. Post tomographic optical images were acquired to obtain a differential optical density dataset. Results: Initial results after the 5-day exposure revealed an opaque white film that resembled the volume of the ELP solution injected into the phantom. We think this is possibly due to the saline solution diffusing into the PRESAGE and causing a change in the index of refraction at this shallow depth. Therefore, initially the optical scanner yielded inconclusive results. After several more days, the saline seemed to have evaporated out of the injection site and the ELP dose distribution was visible via color change in the dosimeter. Conclusion: We have created the first experimental design to measure the dose distribution of I-125-tagged-ELP. The PRESAGE formulation proves to be a feasible option for such measurements. Future experimental measurements need to be obtained to further characterize ELP dosimetry.« less

  4. Introduction of a deformable x-ray CT polymer gel dosimetry system

    NASA Astrophysics Data System (ADS)

    Maynard, E.; Heath, E.; Hilts, M.; Jirasek, A.

    2018-04-01

    This study introduces the first 3D deformable dosimetry system based on x-ray computed tomography (CT) polymer gel dosimetry and establishes the setup reproducibility, deformation characteristics and dose response of the system. A N-isopropylacrylamide (NIPAM)-based gel formulation optimized for x-ray CT gel dosimetry was used, with a latex balloon serving as the deformable container and low-density polyethylene and polyvinyl alcohol providing additional oxygen barrier. Deformable gels were irradiated with a 6 MV calibration pattern to determine dosimetric response and a dosimetrically uniform plan to determine the spatial uniformity of the response. Wax beads were added to each gel as fiducial markers to track the deformation and setup of the gel dosimeters. From positions of the beads on CT images the setup reproducibility and the limits and reproducibility of gel deformation were determined. Comparison of gel measurements with Monte Carlo dose calculations found excellent dosimetric accuracy, comparable to that of an established non-deformable dosimetry system, with a mean dose discrepancy of 1.5% in the low-dose gradient region and a gamma pass rate of 97.9% using a 3%/3 mm criterion. The deformable dosimeter also showed good overall spatial dose uniformity throughout the dosimeter with some discrepancies within 20 mm of the edge of the container. Tracking of the beads within the dosimeter found that sub-millimetre setup accuracy is achievable with this system. The dosimeter was able to deform and relax when externally compressed by up to 30 mm without sustaining any permanent damage. Internal deformations in 3D produced average marker movements of up to 12 mm along the direction of compression. These deformations were also shown to be reproducible over 100 consecutive deformations. This work has established several important characteristics of a new deformable dosimetry system which shows promise for future clinical applications, including the validation of deformable dose accumulation algorithms.

  5. SU-E-T-243: MonteCarlo Simulation Study of Polymer and Radiochromic Gel for Three-Dimensional Proton Dose Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, M; Jung, H; Kim, G

    2014-06-01

    Purpose: To estimate the three dimensional dose distributions in a polymer gel and a radiochromic gel by comparing with the virtual water phantom exposed to proton beams by applying Monte Carlo simulation. Methods: The polymer gel dosimeter is the compositeness material of gelatin, methacrylic acid, hydroquinone, tetrakis, and distilled water. The radiochromic gel is PRESAGE product. The densities of polymer and radiochromic gel were 1.040 and 1.0005 g/cm3, respectively. The shape of water phantom was a hexahedron with the size of 13 × 13 × 15 cm3. The proton beam energies of 72 and 116 MeV were used in themore » simulation. Proton beam was directed to the top of the phantom with Z-axis and the shape of beam was quadrangle with 10 × 10 cm2 dimension. The Percent depth dose and the dose distribution were evaluated for estimating the dose distribution of proton particle in two gel dosimeters, and compared with the virtual water phantom. Results: The Bragg-peak for proton particles in two gel dosimeters was similar to the virtual water phantom. Bragg-peak regions of polymer gel, radiochromic gel, and virtual water phantom were represented in the identical region (4.3 cm) for 72 MeV proton beam. For 116 MeV proton beam, the Bragg-peak regions of polymer gel, radiochromic gel, and virtual water phantom were represented in 9.9, 9.9 and 9.7 cm, respectively. The dose distribution of proton particles in polymer gel, radiochromic gel, and virtual water phantom was approximately identical in the case of 72 and 116 MeV energies. The errors for the simulation were under 10%. Conclusion: This work indicates the evaluation of three dimensional dose distributions by exposing proton particles to polymer and radiochromic gel dosimeter by comparing with the water phantom. The polymer gel and the radiochromic gel dosimeter show similar dose distributions for the proton beams.« less

  6. Portable neutron spectrometer and dosimeter

    DOEpatents

    Waechter, D.A.; Erkkila, B.H.; Vasilik, D.G.

    The disclosure relates to a battery operated neutron spectrometer/dosimeter utilizing a microprocessor, a built-in tissue equivalent LET neutron detector, and a 128-channel pulse height analyzer with integral liquid crystal display. The apparatus calculates doses and dose rates from neutrons incident on the detector and displays a spectrum of rad or rem as a function of keV per micron of equivalent tissue and also calculates and displays accumulated dose in millirads and millirem as well as neutron dose rates in millirads per hour and millirem per hour.

  7. Neutron Fading Characteristics of Copper Doped Lithium Fluoride (LiF: MCP) Thermoluminescent Dosimeters (TLDs)

    DTIC Science & Technology

    2008-05-21

    Albedo Dosimetry TLDs that are used for neutron or neutron-photon personnel dosimetry are albedo dosimeters. The word albedo simply means the proportion... dosimetry . When LiF: MCP is exposed to thermal neutron irradiation, there is no obvious change in the glow curve shape. In the case of TLD -100, the...LiF: MCP undergoes compared to TLD -100. Therefore, LET results in significant variations in TL output for LiF: MCP. Limitations of Albedo Dosimetry

  8. Atlas of nuclear emulsion micrographs from personnel dosimeters of manned space missions

    NASA Technical Reports Server (NTRS)

    Schaefer, H. J.; Sullivan, J. J.

    1976-01-01

    A collection of micrographs is presented taken from nuclear emulsions of personnel dosimeter packs carried by the astronauts on near-earth orbital and lunar missions. It is intended as a pictorial record and illustration of the radiation environment in space and as a supplement to earlier reports and publications of the laboratory in which the emulsion findings have been presented in detail for individual missions. A complete list of those earlier accounts precedes the picture sections.

  9. Variation of concentration of tetrakis and hydroquinone with post-irradiation times in PAGAT polymer gel dosimeter

    NASA Astrophysics Data System (ADS)

    Venning, Anthony J.; Hill, Brendan; Baldock, Clive

    2006-12-01

    Following on from the investigation of the normoxic PAGAT polymer gel dosimeter by Venning A J, Hill B, Brindha S, Healy B J and Baldock C 2005 Phys. Med. Biol. 50 3875-3888 this paper examines the change in transverse relaxation rate R2 with time for different concentrations of tetrakis (hydroxymethyl) phosphonium chloride and hydroquinone for fixed concentrations of N,N-methylene-bis-acrylamide, acrylamide, gelatine and H2M/O.

  10. METHOD AND APPARATUS FOR MEASURING RADIATION

    DOEpatents

    Reeder, S.D.

    1962-04-17

    A chemical dosimeter for measuring the progress of a radiation-induced oxidation-reduction reaction is described. The dosimeter comprises a container filled with an aqueous chemical oxidation-reduction system which reacts quantitatively to the radiation. An anode of the group consisting of antimony and tungsten and a cathode of the group consisting of gold and platnium are inserted into the system. Means are provided to stir the system and a potential sensing device is connected across the anode and cathode to detect voltage changes. (AEC)

  11. Ionization chamber dosimeter

    DOEpatents

    Renner, Tim R.; Nyman, Mark A.; Stradtner, Ronald

    1991-01-01

    A method for fabricating an ion chamber dosimeter collecting array of the type utilizing plural discrete elements formed on a uniform collecting surface which includes forming a thin insulating layer over an aperture in a frame having surfaces, forming a predetermined pattern of through holes in the layer, plating both surfaces of the layer and simultaneously tilting and rotating the frame for uniform plate-through of the holes between surfaces. Aligned masking and patterned etching of the surfaces provides interconnects between the through holes and copper leads provided to external circuitry.

  12. Feasibility of Epidemiologic Research on Nonauditory Health Effects of Residential Aircraft Noise Exposure. Volume 3. Summary of Literature on Cardiovascular Effects on Noise Exposure

    DTIC Science & Technology

    1989-12-01

    analyser epinephrine, dopamine, Cigala, F.; shop and sorting, and General Rodo cortisol measured Ricco, M.; matched for age, exposed personal dosimeters ...old sured by calibrated person- BP with semi-automatic de Vries, F. F.; duction depart- 31% 25-34 yrs.; al dosimeters with a short Waterpik...with without noise strain, history of hyper- tension excluded. 84 Table 3-23: continued. Suammuy of Epid oSl c Sades - contnud Bias and Potential

  13. Determination of transmission factors for beta radiation using Al 2O 3:C commercial OSL dosimeters

    NASA Astrophysics Data System (ADS)

    Pinto, T. N. O.; Caldas, L. V. E.

    2010-07-01

    In recent years, the optically stimulated luminescence (OSL) technique has been used in personal dosimetry, and aluminum oxide (Al 2O 3:C) has become a very useful material for this technique. The objective of this work was the determination of the transmission factors for beta radiation using Al 2O 3:C commercial dosimeters and the OSL method. The obtained results were similar to the transmission factors reported in the beta source calibration certificates.

  14. AFRRI (Armed Forces Radiobiology Research Institute) Annual Research Report 1 October 1981-30 September 1982.

    DTIC Science & Technology

    1982-09-30

    inseiw @, I, M, ,5 oSL -T- UNCLASNYR SECUIRI1’I CLAWFICAIss 00 T0111 0"t 59Mea-.40 - --.---------------------- A CONTENTS Introduction 3 Behavioral...urinary histamine as a biological dosimeter . This study reports the techniques we have developed to determine the levels of authentic histamine in rat urine...Studies of biological indicators in the assessment of radiation damage, with particular interest to developing a biological dosimeter using red blood cell

  15. Relocation of the 146th Tactical Airlift Wing of the California Air National Guard. Appendices

    DTIC Science & Technology

    1984-12-01

    or Afu~rmydsr osl ama~ asserted that the Secretary is required to tose they assist would convert *’ .*resge’lo a developer for construction report...1%Woreinento were recorded with a claibrated noise dosimeter according to e da!cati’ Ong inI Camarillo Ordinance Section 10.34.070. Ambient noise...sound levels associated. i1fth t. Mugu overflights over a 5-day period from 19-23 June, 1984. pssuremergx wereIrecorded with a claibrated noise dosimeter

  16. Portable neutron spectrometer and dosimeter

    DOEpatents

    Waechter, David A.; Erkkila, Bruce H.; Vasilik, Dennis G.

    1985-01-01

    The disclosure relates to a battery operated neutron spectrometer/dosimeter utilizing a microprocessor, a built-in tissue equivalent LET neutron detector, and a 128-channel pulse height analyzer with integral liquid crystal display. The apparatus calculates doses and dose rates from neutrons incident on the detector and displays a spectrum of rad or rem as a function of keV per micron of equivalent tissue and also calculates and displays accumulated dose in millirads and millirem as well as neutron dose rates in millirads per hour and millirem per hour.

  17. Real time chemical exposure and risk monitor

    DOEpatents

    Thrall, Karla D.; Kenny, Donald V.; Endres, George W. R.; Sisk, Daniel R.

    1997-01-01

    The apparatus of the present invention is a combination of a breath interface and an external exposure dosimeter interface to a chemical analysis device, all controlled by an electronic processor for quantitatively analyzing chemical analysis data from both the breath interface and the external exposure dosimeter for determining internal tissue dose. The method of the present invention is a combination of steps of measuring an external dose, measuring breath content, then analyzing the external dose and breath content and determining internal tissue dose.

  18. Real time chemical exposure and risk monitor

    DOEpatents

    Thrall, K.D.; Kenny, D.V.; Endres, G.W.R.; Sisk, D.R.

    1997-07-08

    The apparatus of the present invention is a combination of a breath interface and an external exposure dosimeter interface to a chemical analysis device, all controlled by an electronic processor for quantitatively analyzing chemical analysis data from both the breath interface and the external exposure dosimeter for determining internal tissue dose. The method of the present invention is a combination of steps of measuring an external dose, measuring breath content, then analyzing the external dose and breath content and determining internal tissue dose. 7 figs.

  19. Comparison between Monte Carlo simulation and measurement with a 3D polymer gel dosimeter for dose distributions in biological samples

    NASA Astrophysics Data System (ADS)

    Furuta, T.; Maeyama, T.; Ishikawa, K. L.; Fukunishi, N.; Fukasaku, K.; Takagi, S.; Noda, S.; Himeno, R.; Hayashi, S.

    2015-08-01

    In this research, we used a 135 MeV/nucleon carbon-ion beam to irradiate a biological sample composed of fresh chicken meat and bones, which was placed in front of a PAGAT gel dosimeter, and compared the measured and simulated transverse-relaxation-rate (R2) distributions in the gel dosimeter. We experimentally measured the three-dimensional R2 distribution, which records the dose induced by particles penetrating the sample, by using magnetic resonance imaging. The obtained R2 distribution reflected the heterogeneity of the biological sample. We also conducted Monte Carlo simulations using the PHITS code by reconstructing the elemental composition of the biological sample from its computed tomography images while taking into account the dependence of the gel response on the linear energy transfer. The simulation reproduced the experimental distal edge structure of the R2 distribution with an accuracy under about 2 mm, which is approximately the same as the voxel size currently used in treatment planning.

  20. Comparison between Monte Carlo simulation and measurement with a 3D polymer gel dosimeter for dose distributions in biological samples.

    PubMed

    Furuta, T; Maeyama, T; Ishikawa, K L; Fukunishi, N; Fukasaku, K; Takagi, S; Noda, S; Himeno, R; Hayashi, S

    2015-08-21

    In this research, we used a 135 MeV/nucleon carbon-ion beam to irradiate a biological sample composed of fresh chicken meat and bones, which was placed in front of a PAGAT gel dosimeter, and compared the measured and simulated transverse-relaxation-rate (R2) distributions in the gel dosimeter. We experimentally measured the three-dimensional R2 distribution, which records the dose induced by particles penetrating the sample, by using magnetic resonance imaging. The obtained R2 distribution reflected the heterogeneity of the biological sample. We also conducted Monte Carlo simulations using the PHITS code by reconstructing the elemental composition of the biological sample from its computed tomography images while taking into account the dependence of the gel response on the linear energy transfer. The simulation reproduced the experimental distal edge structure of the R2 distribution with an accuracy under about 2 mm, which is approximately the same as the voxel size currently used in treatment planning.

  1. Integration of Fricke gel dosimetry with Ag nanoparticles for experimental dose enhancement determination in theranostics.

    PubMed

    Vedelago, J; Mattea, F; Valente, M

    2018-03-01

    The use and implementation of nanoparticles in medicine has grown exponentially in the last twenty years. Their main applications include drug delivery, theranostics, tissue engineering and magneto function. Dosimetry techniques can take advantage of inorganic nanoparticles properties and their combination with gel dosimetry techniques could be used as a first step for their later inclusion in radio-diagnostics or radiotherapy treatments. The present study presents preliminary results of properly synthesized and purified silver nanoparticles integration with Fricke gel dosimeters. Used nanoparticles presented mean sizes ranging from 2 to 20 nm, with a lognormal distribution. Xylenol orange concentration in Fricke gel dosimeter was adjust in order to allow sample's optical readout, accounting nanoparticles plasmon. Dose enhancement was assessed irradiating dosimeters setting X-ray beams energies below and above silver K-edge. Monte Carlo simulations were used to estimate the dose enhancement in the experiments and compare with the trend obtained in the experimental results. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Fricke-gel dosimetry in epithermal or thermal neutron beams of a research reactor

    NASA Astrophysics Data System (ADS)

    Gambarini, G.; Artuso, E.; Giove, D.; Volpe, L.; Agosteo, S.; Barcaglioni, L.; Campi, F.; Garlati, L.; Pola, A.; Durisi, E.; Borroni, M.; Carrara, M.; Klupak, V.; Marek, M.; Viererbl, L.; Vins, M.; d'Errico, F.

    2015-11-01

    Fricke-xylenol-orange gel has shown noticeable potentiality for in-phantom dosimetry in epithermal or thermal neutron fields with very high fluence rate, as those characteristic of nuclear research reactors. Fricke gels in form of layers give the possibility of achieving spatial distribution of gamma dose, fast neutron dose and dose due to charged particles generated by thermal neutron reactions. The thermal neutron fluence has been deduced from the dose coming from the charge particles emitted by neutron reactions with the isotope 10B. Some measurements have been performed for improving the information on the relative sensitivity of Fricke gel dosimeters to the particles produced by 10B reactions, because at present the precision of dose evaluations is limited by the scanty knowledge about the dependence of the dosimeter sensitivity on the radiation LET. For in-air measurements, the dosimeter material can produce an enhancement of thermal neutron fluence. Measurements and Monte Carlo calculations have been developed to investigate the importance of this effect.

  3. Objective Measurement of Vocal Fatigue in Classically Trained Singers: A Pilot Study of Vocal Dosimetry Data

    PubMed Central

    Carroll, Thomas; Nix, John; Hunter, Eric; Titze, Ingo; Abaza, Mona

    2016-01-01

    Objectives To evaluate vocal fatigue by using objective and subjective measurements of dose recorded by the National Center for Voice and Speech (NCVS) Dosimeter™ (Dosimeter). Study Design and Setting Seven subjects completed a two-week study period. The Dosimeter recorded vocal load, soft phonation tasks and subjective soft voice ratings. Three vocal doses (time, distance, and cycle) were measured in classical singers' larynges during an intensive practice period. Results Spikes in vocal load are reflected as harsher subjective ratings on the same day as well as 24–72 hours later. When at least 48 hours of vocal rest occurred before a vocal load, improved subjective evaluations were seen after the load. Conclusions The NCVS Dosimeter appears to be an effective tool for data collection on prolonged use of the voice. Significance This is the first multi-day study comparing objective and subjective data on vocal fatigue in a group of professional singers. PMID:17011424

  4. TLD and OSLD dosimetry systems for remote audits of radiotherapy external beam calibration.

    PubMed

    Alvarez, P; Kry, S F; Stingo, F; Followill, D

    2017-11-01

    The Imaging and Radiation Oncology Core QA Center in Houston (IROC-H) performs remote dosimetry audits of more than 20,000 megavoltage photon and electron beams each year. Both a thermoluminescent dosimeter (TLD-100) and optically stimulated luminescent dosimeter (OSLD; nanoDot) system are commissioned for this task, with the OSLD system being predominant due to the more time-efficient read-out process. The measurement apparatus includes 3 TLD or 2 OSLD in an acrylic mini-phantom, which are irradiated by the institution under reference geometry. Dosimetry systems are calibrated based on the signal-to-dose conversion established with reference dosimeters irradiated in a Co-60 beam, using a reference dose of 300 cGy for TLD and 100 cGy for OSLD. The uncertainty in the dose determination is 1.3% for TLD and 1.6% for OSLD at the one sigma level. This accuracy allows for a tolerance of ±5% to be used.

  5. Response of thermoluminescent lithium fluoride (TLD-100) to photon beams of 275, 400, 500, 600, 730, 900, 1200, 1500, and 2500 eV.

    PubMed

    Carrillo, R E; Pearson, D W; DeLuca, P M; MacKay, J F; Lagally, M G

    1994-11-01

    LiF:Mg,Ti (TLD-100) extruded ribbons and cleaved crystals were exposed to monoenergetic photons of 275-2550 eV energy to determine their potential usefulness as radiation dosimeters for radiobiology experiments at these energies. The radiation source was synchrotron radiation from the 1 GeV electron storage ring, Aladdin. The authors report TLD response and glow curves for He- and air-annealed dosimeters. The undesirable effects of air annealing increase with decreasing photon penetration in the dosimeter. Under certain experimental conditions, UV radiation produced anomalous bleaching of high-temperature traps. The crystals and the chips presented a supralinear response, Supralinearity factors were determined to be of the order of 1.5 for crystals, and 1.7 for the chips. The authors' results indicate that TLDs are a reliable means to monitor the total energy deposited in irradiated cells and are now used routinely for radiobiology cell irradiations.

  6. TL and OSL dose response of LiF:Mg,Ti and Al2O3:C dosimeters using a PMMA phantom for IMRT technique quality assurance.

    PubMed

    Matsushima, Luciana C; Veneziani, Glauco R; Sakuraba, Roberto K; Cruz, José C; Campos, Letícia L

    2015-06-01

    The principle of IMRT is to treat a patient from a number of different directions (or continuous arcs) with beams of nonuniform fluences, which have been optimized to deliver a high dose to the target volume and an acceptably low dose to the surrounding normal structures (Khan, 2010). This study intends to provide information to the physicist regarding the application of different dosimeters type, phantoms and analysis technique for Intensity Modulated Radiation Therapy (IMRT) dose distributions evaluation. The measures were performed using dosimeters of LiF:Mg,Ti and Al2O3:C evaluated by techniques of thermoluminescent (TL) and Optically Stimulated Luminescence (OSL). A polymethylmethacrylate (PMMA) phantom with five cavities, two principal target volumes considered like tumours to be treated and other three cavities to measure the scattered radiation dose was developed to carried out the measures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. EXPERIMENTAL AND RESEARCH WORK IN NEUTRON DOSIMETRY. Final Summary Report for the Period May 15, 1959-June 15, 1960

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorton, H.C.; Mengali, O.J.; Zacaroli, A.R.

    A practical, prototype silicon p-n junction fast-neutron dosimeter, sensitive in the same range as human tissue, was developed, together with sn associated read-out circuit to facilitate the accurate measurement of accumulated dose. From both theoretical and experimental considerations, it was demonstrated that the dosimeter is essentially insensitive to the gamma and thermal components of a uranium fission spectrum. It was shown that accumulated damage effects appear to be environmentally stable up to an ambient temperature of 100 C. A rather raarked reversible temperature dependence of the read-out parameters requires either control of the read-out temperature or temperature compensation in themore » read-out device. A high degree of reproducibility of dosimeter characteristics from one device to another was not achieved. The lack of reproducibility was attributed to uncontrolled variables in the bulk silicon from which the devices are fabricated, and in the production procedure. (auth)« less

  8. The role of hydrogels in the radical production of the Fricke-gel-dosimeter

    NASA Astrophysics Data System (ADS)

    Lazzaroni, S.; Liosi, G. M.; D'Agostino, G.; Marconi, R. P.; Mariani, M.; Buttafava, A.; Dondi, D.

    2018-01-01

    The radiolysis mechanism of the Fricke-gel-dosimeters has been investigated in order to evaluate the role of hydrogels in the radical production. For this purpose, electron paramagnetic resonance (EPR) spectra were acquired for samples frozen and irradiated at 77 K. The analysis was performed by increasing stepwise the temperature and acquiring the EPR spectra at 120 K in order to follow the radical reaction mechanism. The comparison between aqueous- and gel- dosimeters were performed. Both gelatin from porcine skin and PVA (polyvinyl alcohol) were investigated as gel matrix. Different radical species were identified and qualitatively compared. For gel matrix, peroxyl radicals, stemming from the hydrogel, play an important role in the survival of radicals at higher temperature. Moreover, the Fe3+ EPR signal has been studied and compared with the radicals concentration. From this comparison, it is evident the increase of Fe3+ concentration is shifted toward higher temperatures with respect to the radical decay. To explain this phenomenon, the intervention of EPR silent species like peroxides is supposed.

  9. A prototype optical-CT system for PRESAGE 3D dosimeter readout

    NASA Astrophysics Data System (ADS)

    Miles, Devin; Yoon, Paul; Kodra, Jacob; Adamovics, John; Oldham, Mark

    2017-05-01

    This work introduces the Duke Integrated-lens Optical Scanner (DIOS), a prototype optical-CT system designed for convenient and low-cost readout of PRESAGE 3D dosimeters. A key novelty of the DIOS is the incorporation of a multi-purpose light-collimating tank (the LC-tank). The LC-tank collimates light from a point source, maintains parallel ray geometry through a dosimeter mounted inside the tank, and refocuses emergent light onto a CCD detector. A second purpose is to dramatically reduce the amount of refractive matched fluid required in prior optical-CT scanners. This is achieved by substituting large quantities of refractive-matched fluid with solid RI-matched polyurethane. The advantages of DIOS include eliminating the need for expensive telecentric lenses, and eliminating the impracticality of large volumes of RI matched fluid. The DIOS is potentially more susceptible to stray-light artifacts. Preliminary phantom testing shows promising agreement between PRESAGE/DIOS readout and prior commissioned optical-CT scanners, as well as with Eclipse dose calculations.

  10. Monitoring of fetal radiation exposure during pregnancy.

    PubMed

    Chandra, Venita; Dorsey, Chelsea; Reed, Amy B; Shaw, Palma; Banghart, Dawn; Zhou, Wei

    2013-09-01

    One unique concern of vascular surgeons and trainees is radiation exposure associated with increased endovascular practice. The safety of childbearing is a particular worry for current and future women in vascular surgery. Little is known regarding actual fetal radiation exposure. This multi-institutional study aimed to evaluate the radiation dosages recorded on fetal dosimeter badges and compare them to external badges worn by the same cohort of women. All women who declared pregnancy with potential radiation exposure were required to wear two radiation monitors at each institution, one outside and the other inside the lead apron. Maternal (external) and fetal monitor dosimeter readings were analyzed. Maternal radiation exposures prior to, during, and postpregnancy were also assessed to determine any associated behavior modification. Eighty-one women declared pregnancy from 2008 to 2011 and 32 had regular radiation exposure during pregnancy. Maternal whole-body exposures ranged from 21-731 mrem. The average fetal dosimeter recordings for the cohort rounded to zero. Only two women had positive fetal dosimeter recordings; one had a single recording of 3 mrem and the other had a single recording of 7 mrem. There was no significant difference between maternal exposures prior to, during, and postpregnancy. Lack of knowledge of fetal radiation exposure has concerned many vascular surgeons, prompting them to wear double lead aprons during pregnancy, and perhaps prevented numerous other women from entering the field. Our study showed negligible radiation exposure on fetal monitoring suggesting that with the appropriate safety precautions, these concerns may be unwarranted. Published by Mosby, Inc.

  11. Scintillating fiber optic dosimeters for breast and prostate brachytherapy

    NASA Astrophysics Data System (ADS)

    Moutinho, L. M.; Castro, I. F.; Freitas, H.; Melo, J.; Silva, P.; Gonçalves, A.; Peralta, L.; Rachinhas, P. J.; Simões, P. C. P. S.; Pinto, S.; Pereira, A.; Santos, J. A. M.; Costa, M.; Veloso, J. F. C. A.

    2017-02-01

    Brachytherapy is a radiotherapy modality where the radioactive material is placed close to the tumor, being a common treatment for skin, breast, gynecological and prostate cancers. These treatments can be of low-dose-rate, using isotopes with mean energy of 30 keV, or high-dose-rate, using isotopes such as 192Ir with a mean energy of 380 keV. Currently these treatments are performed in most cases without in-vivo dosimetry for quality control and quality assurance. We developed a dosimeter using small diameter probes that can be inserted into the patient's body using standard brachytherapy needles. By performing real-time dosimetry in breast and prostate brachytherapy it will be possible to perform real-time dose correction when deviations from the treatment plan are observed. The dosimeter presented in this work was evaluated in-vitro. The studies consisted in the characterization of the dosimeter with 500 μm diameter sensitive probes (with a BCF-12 scintillating optical fiber) using an inhouse made gelatin breast phantom with a volume of 566 cm3. A breast brachytherapy treatment was simulated considering a tumor volume of 27 cm3 and a prescribed absolute dose of 5 Gy. The dose distribution was determined by the Inverse Planning Simulated Annealing (IPSA) optimization algorithm (ELEKTA). The dwell times estimated from the experimental measurements are in agreement with the prescribed dwell times, with relative error below 3%. The measured signal-to-noise ratio (SNR) including the stem-effect contribution is below 3%.

  12. Dosimetry of high-energy electron linac produced photoneutrons and the bremsstrahlung gamma-rays using TLD-500 and TLD-700 dosimeter pairs

    NASA Astrophysics Data System (ADS)

    Mukherjee, Bhaskar; Makowski, Dariusz; Simrock, Stefan

    2005-06-01

    The neutron and gamma doses are crucial to interpreting the radiation effects in microelectronic devices operating in a high-energy accelerator environment. This report highlights a method for an accurate estimation of photoneutron and the accompanying bremsstrahlung (gamma) doses produced by a 450 MeV electron linear accelerator (linac) operating in pulsed mode. The principle is based on the analysis of thermoluminescence glow-curves of TLD-500 (Aluminium Oxide) and TLD-700 (Lithium Fluoride) dosimeter pairs. The gamma and fast neutron response of the TLD-500 and TLD-700 dosimeter pairs were calibrated with a 60Co (gamma) and a 241Am-Be (α, n) neutron standard-source, respectively. The Kinetic Energy Released in Materials (kerma) conversion factor for photoneutrons was evaluated by folding the neutron kerma (dose) distribution in 7LiF (the main component of the TLD-700 dosimeter) with the energy spectra of the 241Am-Be (α, n) neutrons and electron accelerator produced photoneutrons. The neutron kerma conversion factors for 241Am-Be neutrons and photoneutrons were calculated to be 2.52×10 -3 and 1.37×10 -3 μGy/a.u. respectively. The bremsstrahlung (gamma) dose conversion factor was evaluated to be 7.32×10 -4 μGy/a.u. The above method has been successfully utilised to assess the photoneutron and bremsstrahlung doses from a 450 MeV electron linac operating at DESY Research Centre in Hamburg, Germany.

  13. MO-A-BRB-01: TG191: Clinical Use of Luminescent Dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kry, S.

    This presentation will highlight the upcoming TG-191 report: Clinical Use of Luminescent Dosimeters. Luminescent dosimetry based on TLD and OSLD is a practical, accurate, and precise technique for point dosimetry in medical physics applications. The charges of Task Group 191 were to detail the methodologies for practical and optimal luminescent dosimetry in a clinical setting. This includes (1) To review the variety of TLD/OSL materials available, including features and limitations of each. (2) To outline the optimal steps to achieve accurate and precise dosimetry with luminescent detectors and to evaluate the uncertainty induced when less rigorous procedures are used. (3)more » To develop consensus guidelines on the optimal use of luminescent dosimeters for clinical practice. (4) To develop guidelines for special medically relevant uses of TLDs/OSLs (e.g., mixed field i.e. photon/neutron dosimetry, particle beam dosimetry, skin dosimetry). While this report provides general guidelines for arbitrary TLD and OSLD processes, the report, and therefore this presentation, provide specific guidance for TLD-100 (LiF:Ti,Mg) and nanoDot (Al2O3:C) dosimeters because of their prevalence in clinical practice. Learning Objectives: Understand the available dosimetry systems, and basic theory of their operation Understand the range of dose determination methodologies and the uncertainties associated with them Become familiar with special considerations for TLD/OSLD relevant for special clinical situations Learn recommended commissioning and QA procedures for these dosimetry systems.« less

  14. Measurement of skin dose from cone-beam computed tomography imaging.

    PubMed

    Akyalcin, Sercan; English, Jeryl D; Abramovitch, Kenneth M; Rong, Xiujiang J

    2013-10-09

    To measure surface skin dose from various cone-beam computed tomography (CBCT) scanners using point-dosimeters. A head anthropomorphic phantom was used with nanoDOT optically stimulated luminescence (OSL) dosimeters (Landauer Corp., Glenwood, IL) attached to various anatomic landmarks. The phantom was scanned using multiple exposure protocols for craniofacial evaluations in three different CBCT units and a conventional x-ray imaging system. The dosimeters were calibrated for each of the scan protocols on the different imaging systems. Peak skin dose and surface doses at the eye lens, thyroid, submandibular and parotid gland levels were measured. The measured skin doses ranged from 0.09 to 4.62 mGy depending on dosimeter positions and imaging systems. The average surface doses to the lens locations were ~4.0 mGy, well below the threshold for cataractogenesis (500 mGy). The results changed accordingly with x-ray tube output (mAs and kV) and also were sensitive to scan field of view (SFOV). As compared to the conventional panoramic and cephalometric imaging system, doses from all three CBCT systems were at least an order of magnitude higher. Peak skin dose and surface doses at the eye lens, thyroid, and salivary gland levels measured from the CBCT imaging systems were lower than the thresholds to induce deterministic effects. However, our findings do not justify the routine use of CBCT imaging in orthodontics considering the lifetime-attributable risk to the individual.

  15. MO-A-BRB-00: TG191: Clinical Use of Luminescent Dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This presentation will highlight the upcoming TG-191 report: Clinical Use of Luminescent Dosimeters. Luminescent dosimetry based on TLD and OSLD is a practical, accurate, and precise technique for point dosimetry in medical physics applications. The charges of Task Group 191 were to detail the methodologies for practical and optimal luminescent dosimetry in a clinical setting. This includes (1) To review the variety of TLD/OSL materials available, including features and limitations of each. (2) To outline the optimal steps to achieve accurate and precise dosimetry with luminescent detectors and to evaluate the uncertainty induced when less rigorous procedures are used. (3)more » To develop consensus guidelines on the optimal use of luminescent dosimeters for clinical practice. (4) To develop guidelines for special medically relevant uses of TLDs/OSLs (e.g., mixed field i.e. photon/neutron dosimetry, particle beam dosimetry, skin dosimetry). While this report provides general guidelines for arbitrary TLD and OSLD processes, the report, and therefore this presentation, provide specific guidance for TLD-100 (LiF:Ti,Mg) and nanoDot (Al2O3:C) dosimeters because of their prevalence in clinical practice. Learning Objectives: Understand the available dosimetry systems, and basic theory of their operation Understand the range of dose determination methodologies and the uncertainties associated with them Become familiar with special considerations for TLD/OSLD relevant for special clinical situations Learn recommended commissioning and QA procedures for these dosimetry systems.« less

  16. Measurement of skin dose from cone-beam computed tomography imaging

    PubMed Central

    2013-01-01

    Objective To measure surface skin dose from various cone-beam computed tomography (CBCT) scanners using point-dosimeters. Materials & methods A head anthropomorphic phantom was used with nanoDOT optically stimulated luminescence (OSL) dosimeters (Landauer Corp., Glenwood, IL) attached to various anatomic landmarks. The phantom was scanned using multiple exposure protocols for craniofacial evaluations in three different CBCT units and a conventional x-ray imaging system. The dosimeters were calibrated for each of the scan protocols on the different imaging systems. Peak skin dose and surface doses at the eye lens, thyroid, submandibular and parotid gland levels were measured. Results The measured skin doses ranged from 0.09 to 4.62 mGy depending on dosimeter positions and imaging systems. The average surface doses to the lens locations were ~4.0 mGy, well below the threshold for cataractogenesis (500 mGy). The results changed accordingly with x-ray tube output (mAs and kV) and also were sensitive to scan field of view (SFOV). As compared to the conventional panoramic and cephalometric imaging system, doses from all three CBCT systems were at least an order of magnitude higher. Conclusions Peak skin dose and surface doses at the eye lens, thyroid, and salivary gland levels measured from the CBCT imaging systems were lower than the thresholds to induce deterministic effects. However, our findings do not justify the routine use of CBCT imaging in orthodontics considering the lifetime-attributable risk to the individual. PMID:24192155

  17. Radiation exposure--do urologists take it seriously in Turkey?

    PubMed

    Söylemez, Haluk; Altunoluk, Bülent; Bozkurt, Yaşar; Sancaktutar, Ahmet Ali; Penbegül, Necmettin; Atar, Murat

    2012-04-01

    A questionnaire was administered to urologists to evaluate attitudes and behaviors about protection from radiation exposure during fluoroscopy guided endourological procedures. The questionnaire was e-mailed to 1,482 urologists, including urology residents, specialists and urologists holding all levels of academic degrees, between May and June 2011. The questionnaire administered to study participants was composed of demographic questions, and questions on radiation exposure frequency, and the use of dosimeters and flexible protective clothes. If a respondent reported not using dosimeters or protective clothes, additional questions asked for the reason. Of the 1,482 questionnaires 394 (26.58%) were returned, of which 363 had completed answers. A total of 307 physicians (84.58%) were exposed to ionizing radiation, of whom 79.61% stated that they perform percutaneous nephrolithotomy at the clinic. Fluoroscopy guidance was the initial choice of 96.19% of urologists during percutaneous nephrolithotomy. Despite the common use of lead aprons (75.24%) most urologists did not use dosimeters (73.94%), eyeglasses (76.95%) or gloves (66.67%) while 46.44% always used thyroid shields during fluoroscopy. When asked why they did not use protective clothing, the most common answers were that protective clothes are not ergonomic and not practical. Results clearly highlight the lack of use of ionizing radiation protection devices and dosimeters during commonly performed fluoroscopy guided endourological procedures among urologists in Turkey. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  18. TH-CD-BRA-08: Novel Iron-Based Radiation Reporting Systems as 4D Dosimeters for MR-Guided Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, H; Alqathami, M; Wang, J

    Purpose: To compare novel radiation reporting systems utilizing ferric ion (Fe{sup 3+}) reduction versus ferrous ion (Fe{sup 2+}) oxidation in gelatin matrixes for 3D and 4D (3D+time) MR-guided radiation therapy dosimetry. Methods: Dosimeters were irradiated using an integrated 1.5T MRI and 7MV linear accelerator (MR-Linac). Dosimeters were read-out with both a spectrophotometer and the MRI component of the MR-Linac immediately after irradiation. Changes in optical density (OD) were measured using a spectrophotometer; changes in MR signal intensity due to the paramagnetic differences in the iron ions were measured using the MR-Linac in real-time during irradiation (balanced-FFE sequences) and immediately aftermore » irradiation (T{sub 1}-weighted and inversion recovery sequences). Results: Irradiation of Fe{sup 3+} reduction dosimeters resulted in a stable red color with an absorbance peak at 512 nm. The change in OD relative to dose exhibited a linear response up to 100 Gy (R{sup 2}=1.00). T{sub 1}-weighted-MR signal intensity (SI) changed minimally after irradiation with increases of 8.0% for 17 Gy and 9.7% after escalation to 35 Gy compared to the un-irradiated region. Irradiation of Fe{sup 2+} oxidation dosimeters resulted in a stable purple color with absorbance peaks at 440 and 585 nm. The changes in OD, T{sub 1}-weighted-MR SI, and R{sub 1} relative to dose exhibited a linear response up to at least 8 Gy (R{sup 2}=1.00, 0.98, and 0.99) with OD saturation above 40 Gy. The T{sub 1}-weighted-MR SI increased 50.3% for 17 Gy compared to the un-irradiated region. The change in SI was observed in both 2D+time and 4D (3D+time) acquisitions post-irradiation and in real-time during irradiation with a linear increase with respect to dose (R{sup 2}>0.93). Conclusion: The Fe{sup 2+} oxidation-based system was superior as 4D dosimeters for MR-guided radiation therapy due to its higher sensitivity in both optical and MR signal readout and feasibility for real-time 4D dose readout. The Fe{sup 3+} reduction system is recommended for high dose applications. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. LH-102SPS.« less

  19. Red emission phosphor for real-time skin dosimeter for fluoroscopy and interventional radiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Masaaki, E-mail: QYJ05476@nifty.com; Chida, Koichi; Zuguchi, Masayuki

    2014-10-15

    Purpose: There are no effective real-time direct skin dosimeters for interventional radiology. Such a scintillation dosimeter would be available if there was a suitable red emission phosphor in the medical x-ray range, since the silicon photodiode is a highly efficient device for red light. However, it is unknown whether there is a suitable red emission phosphor. The purpose of this study is to find a suitable red emission phosphor that can be used in x-ray dosimeters. Methods: Five kinds of phosphors which emit red light when irradiated with electron beams or ultraviolet rays in practical devices were chosen. For themore » brightness measurement, phosphor was put into transparent plastic cells or coated onto plastic sheets. The phosphors were irradiated with medical range x-rays [60–120 kV(peak), maximum dose rate of 160 mGy min{sup −1}], and the emission was measured by a luminance meter. Several characteristics, such as brightness, dose rate dependence, tube voltage dependence, and brightness stability, were investigated. Results: The luminescence of Y V O{sub 4}:Eu, (Y,Gd,Eu) BO{sub 3}, and Y{sub 2}O{sub 3}:Eu significantly deteriorated by 5%–10% when irradiated with continuous 2 Gy x-rays. The 0.5MgF{sub 2}⋅3.5MgO⋅GeO{sub 2}:Mn phosphor did not emit enough. Only the Y{sub 2}O{sub 2}S:Eu,Sm phosphor had hardly any brightness deterioration, and it had a linear relationship so that the x-ray dose rate could be determined from the brightness with sufficient accuracy. For the tube voltage dependence of the Y{sub 2}O{sub 2}S:Eu,Sm phosphor, the brightness per unit dose rate with 120 kV(peak) x-rays was 30% higher than that with 60 kV(peak) x-rays. Conclusions: Five kinds of phosphors were chosen as an x-ray scintillator for a real-time direct skin dosimeter. The Y V O{sub 4}:Eu, (Y,Gd,Eu)BO{sub 3}, and Y{sub 2}O{sub 3}:Eu phosphors had brightness deterioration caused by the x-rays. Only the Y{sub 2}O{sub 2}S:Eu,Sm phosphor had hardly any brightness deterioration, and it is a candidate for an x-ray scintillator for such a skin dosimeter.« less

  20. Space Radiation Dosimeter SSJ* for the Block 5D/Flight 7 DMSP (Defense Meteorological Satellite Program) Satellite: Calibration & Data Presentation.

    DTIC Science & Technology

    1986-03-20

    a thermal plasma analyzer, a fluxgate magnetometer , and a space radiation dosimeter. Together, ’these provide a strong tool for analyzing the high...the SSJ/4 auroral electron and ion detectors (Hardy et al ). the SSIE and SSIES thermal plasma experiments (Smiddy et al2 ), the SSM magnetometer (Rich...1978) The Topside Ionosphere Plasma Monitor (SSIE) for the Block 5D/Flight 2 DMSP Satellite, AFGL-TR-78-007 1, AD A058503. 3. Rich. F.J. (1984) Fluxgate

  1. BETA-GAMMA PERSONNEL DOSIMETER

    DOEpatents

    Davis, D.M.; Gupton, E.D.; Hart, J.C.; Hull, A.P.

    1961-01-17

    A personnel dosimeter is offered which is sensitive to both gamma and soft beta radiations from all directions within a hemisphere. The device is in the shape of a small pill box which is worn on a worker-s wrist. The top and sides of the device are provided with 50 per cent void areas to give 50 per cent response to the beta rays and complete response to the gamma rays. The device is so constructed as to have a response which will approximate the dose received by the basal layer of the human epidermis.

  2. Relationship between Patient Acuity and Critical Care Noise

    DTIC Science & Technology

    1997-05-01

    universal dosimeter , an integrating/averaging and true peak sound level meter and a time history monitor. As shown in Figure 2, it was housed in a rugged...noise dosimeter at the patient’s bedside, was obtained from the institution from which the sample was selected. Exemption status was granted from...4^ USD H CO K H " -J 1 o • <• * Z • • • • UJ CO ♦ ■n oj !* 3 5°l ov Ui * i CO ~ i 5 S u. 1 ~ OS OS osl s o

  3. Navy Occupational Health Information Management System (NOHIMS). System/Functional Manager’s Guide

    DTIC Science & Technology

    1987-04-01

    6g1111018 U0sl0 ETtlt FILE SVIIVT TEST 344 ISN P ?I So DUPLICATE %ON 9NI IULIPLE EaTsIf r Vi0 SIC saa4iSl reft" @4r AirM UNITPL l l~~ ( Of MIN INVAID OSl ...I . . ... I I I . . Noise Source: A-5 . I ! I I I .! I .,I ! . 1 I Calibration Information: Dosimeter Pre Calibration...department to identify their records uniquely in the Materials Management System. DoD - Department of Defense. Dosimeter - A device for measuring

  4. Analysis of Systems Hardware Flown on LDEF-Results of the Systems Special Investigation Group

    DTIC Science & Technology

    1992-04-01

    applied, should bring calculations and data into closer agreement. A few dosimeters were placed on LDEF at shallow enough shielding locations to...SHIELDING THICKNESS (g/cm2) Radiation absorbed dose (RAD) measurements with thermoluminescent dosimeters (TLD) from leading and trailing sides of LDEF...oxide In^ OsL aluminum oxide, Au plated Al [2024-T351], Au plated Al [6003] Au on Si02, Ir on Si02, Nb on Si02, Os on Si02, Pt on Si02, Cu on Si02, Ag

  5. Floating Gate sensor for in-vivo dosimetry in radiation therapies. Design and first characterization.

    NASA Astrophysics Data System (ADS)

    Faigon, A.; Martinez Vazquez, I.; Carbonetto, S.; García Inza, M.; G

    2017-01-01

    A floating gate dosimeter was designed and fabricated in a standard CMOS technology. The design guides and characterization are presented. The characterization included the controlled charging by tunneling of the floating gate, and its discharging under irradiation while measuring the transistor drain current whose change is the measure of the absorbed dose. The resolution of the obtained device is close to 1 cGy satisfying the requirements for most radiation therapies dosimetry. Pending statistical proofs, the dosimeter is a potential candidate for wide in-vivo control of radiotherapy treatments.

  6. Study of Fricke-gel dosimeter calibration for attaining precise measurements of the absorbed dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liosi, Giulia Maria; Benedini, Sara; Giacobbo, Francesca

    2015-07-01

    A method has been studied for attaining, with good precision, absolute measurements of the spatial distribution of the absorbed dose by means of the Fricke gelatin Xylenol Orange dosimetric system. With this aim, the dose response to subsequent irradiations was analyzed. In fact, the proposed modality is based on a pre-irradiation of each single dosimeter in a uniform field with a known dose, in order to extrapolate a calibration image for a subsequent non-uniform irradiation with an un-known dose to be measured. (authors)

  7. Radiation-induced refraction artifacts in the optical CT readout of polymer gel dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Warren G.; Jirasek, Andrew, E-mail: jirasek@uvic.ca; Wells, Derek M.

    2014-11-01

    Purpose: The objective of this work is to demonstrate imaging artifacts that can occur during the optical computed tomography (CT) scanning of polymer gel dosimeters due to radiation-induced refractive index (RI) changes in polyacrylamide gels. Methods: A 1 L cylindrical polyacrylamide gel dosimeter was irradiated with 3 × 3 cm{sup 2} square beams of 6 MV photons. A prototype fan-beam optical CT scanner was used to image the dosimeter. Investigative optical CT scans were performed to examine two types of rayline bending: (i) bending within the plane of the fan-beam and (ii) bending out the plane of the fan-beam. Tomore » address structured errors, an iterative Savitzky–Golay (ISG) filtering routine was designed to filter 2D projections in sinogram space. For comparison, 2D projections were alternatively filtered using an adaptive-mean (AM) filter. Results: In-plane rayline bending was most notably observed in optical CT projections where rays of the fan-beam confronted a sustained dose gradient that was perpendicular to their trajectory but within the fan-beam plane. These errors caused distinct streaking artifacts in image reconstructions due to the refraction of higher intensity rays toward more opaque regions of the dosimeter. Out-of-plane rayline bending was observed in slices of the dosimeter that featured dose gradients perpendicular to the plane of the fan-beam. These errors caused widespread, severe overestimations of dose in image reconstructions due to the higher-than-actual opacity that is perceived by the scanner when light is bent off of the detector array. The ISG filtering routine outperformed AM filtering for both in-plane and out-of-plane rayline errors caused by radiation-induced RI changes. For in-plane rayline errors, streaks in an irradiated region (>7 Gy) were as high as 49% for unfiltered data, 14% for AM, and 6% for ISG. For out-of-plane rayline errors, overestimations of dose in a low-dose region (∼50 cGy) were as high as 13 Gy for unfiltered data, 10 Gy for AM, and 3.1 Gy for ISG. The ISG routine also addressed unrelated artifacts that previously needed to be manually removed in sinogram space. However, the ISG routine blurred reconstructions, causing losses in spatial resolution of ∼5 mm in the plane of the fan-beam and ∼8 mm perpendicular to the fan-beam. Conclusions: This paper reveals a new category of imaging artifacts that can affect the optical CT readout of polyacrylamide gel dosimeters. Investigative scans show that radiation-induced RI changes can cause significant rayline errors when rays confront a prolonged dose gradient that runs perpendicular to their trajectory. In fan-beam optical CT, these errors manifested in two ways: (1) distinct streaking artifacts caused by in-plane rayline bending and (2) severe overestimations of opacity caused by rays bending out of the fan-beam plane and missing the detector array. Although the ISG filtering routine mitigated these errors better than an adaptive-mean filtering routine, it caused unacceptable losses in spatial resolution.« less

  8. Radiation-induced refraction artifacts in the optical CT readout of polymer gel dosimeters.

    PubMed

    Campbell, Warren G; Wells, Derek M; Jirasek, Andrew

    2014-11-01

    The objective of this work is to demonstrate imaging artifacts that can occur during the optical computed tomography (CT) scanning of polymer gel dosimeters due to radiation-induced refractive index (RI) changes in polyacrylamide gels. A 1 L cylindrical polyacrylamide gel dosimeter was irradiated with 3 × 3 cm(2) square beams of 6 MV photons. A prototype fan-beam optical CT scanner was used to image the dosimeter. Investigative optical CT scans were performed to examine two types of rayline bending: (i) bending within the plane of the fan-beam and (ii) bending out the plane of the fan-beam. To address structured errors, an iterative Savitzky-Golay (ISG) filtering routine was designed to filter 2D projections in sinogram space. For comparison, 2D projections were alternatively filtered using an adaptive-mean (AM) filter. In-plane rayline bending was most notably observed in optical CT projections where rays of the fan-beam confronted a sustained dose gradient that was perpendicular to their trajectory but within the fan-beam plane. These errors caused distinct streaking artifacts in image reconstructions due to the refraction of higher intensity rays toward more opaque regions of the dosimeter. Out-of-plane rayline bending was observed in slices of the dosimeter that featured dose gradients perpendicular to the plane of the fan-beam. These errors caused widespread, severe overestimations of dose in image reconstructions due to the higher-than-actual opacity that is perceived by the scanner when light is bent off of the detector array. The ISG filtering routine outperformed AM filtering for both in-plane and out-of-plane rayline errors caused by radiation-induced RI changes. For in-plane rayline errors, streaks in an irradiated region (>7 Gy) were as high as 49% for unfiltered data, 14% for AM, and 6% for ISG. For out-of-plane rayline errors, overestimations of dose in a low-dose region (∼50 cGy) were as high as 13 Gy for unfiltered data, 10 Gy for AM, and 3.1 Gy for ISG. The ISG routine also addressed unrelated artifacts that previously needed to be manually removed in sinogram space. However, the ISG routine blurred reconstructions, causing losses in spatial resolution of ∼5 mm in the plane of the fan-beam and ∼8 mm perpendicular to the fan-beam. This paper reveals a new category of imaging artifacts that can affect the optical CT readout of polyacrylamide gel dosimeters. Investigative scans show that radiation-induced RI changes can cause significant rayline errors when rays confront a prolonged dose gradient that runs perpendicular to their trajectory. In fan-beam optical CT, these errors manifested in two ways: (1) distinct streaking artifacts caused by in-plane rayline bending and (2) severe overestimations of opacity caused by rays bending out of the fan-beam plane and missing the detector array. Although the ISG filtering routine mitigated these errors better than an adaptive-mean filtering routine, it caused unacceptable losses in spatial resolution.

  9. TU-H-CAMPUS-TeP2-03: High Sensitivity and High Resolution Fiber Based Micro-Detector for Sub-Millimeter Preclinical Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izaguirre, E; Pokhrel, S; Knewtson, T

    2016-06-15

    Purpose: Current precision of small animal and cell micro-irradiators has continuously increased during the past years. Currently, preclinical irradiators can deliver sub-millimeter fields with micrometric precision but there are no water equivalent dosimeters to determine small field profiles and dose in the orthovoltage range of energies with micrometric resolution and precision. We have developed a fiber based micro-dosimeter with the resolution and dosimetric accuracy required for radiobiological research. Methods: We constructed two prototypes of micro-dosimeters based on different compositions of fiber scintillators to study the spatial resolution and dosimetric precision of small animal and cell micro-irradiators. The first has greenmore » output and the second has blue output. The blue output dosimeter has the highest sensitivity because it matches the spectral sensitivity of silicon photomultipliers. A blue detector with 500um cross section was built and tested respect to a CC01 ion chamber, film, and the 1500um green output detector. Orthovoltage fields from 1×1mm2 to 5×5mm2 were used for detector characteristics comparison. Results: The blue fiber dosimeter shows great agreement with films and matches dose measurements with the gold-standard ion chamber for 5×5mm2 fields. The detector has the appropriate sensitivity to measure fields from 1×1mm2 to larger sizes with a 1% dosimetric accuracy. The spatial resolution is in the sub-millimeter range and the spectral matching with the photomultiplier allows reducing the sensor cross section even further than the presented prototype. These results suggest that scintillating fibers combined with silicon photomultipliers is the appropriate technology to pursue micro-dosimetry for small animals and disperse cell samples. Conclusion: The constructed detectors establish a new landmark for the resolution and sensitivity of fiber based microdetectors. The validation of the detector in our small animal and cell irradiator shows that they are appropriate for preclinical and micro single cell irradiation quality assurance and dosimetry.« less

  10. Development of a patient-specific 3D dose evaluation program for QA in radiation therapy

    NASA Astrophysics Data System (ADS)

    Lee, Suk; Chang, Kyung Hwan; Cao, Yuan Jie; Shim, Jang Bo; Yang, Dae Sik; Park, Young Je; Yoon, Won Sup; Kim, Chul Yong

    2015-03-01

    We present preliminary results for a 3-dimensional dose evaluation software system ( P DRESS, patient-specific 3-dimensional dose real evaluation system). Scanned computed tomography (CT) images obtained by using dosimetry were transferred to the radiation treatment planning system (ECLIPSE, VARIAN, Palo Alto, CA) where the intensity modulated radiation therapy (IMRT) nasopharynx plan was designed. We used a 10 MV photon beam (CLiX, VARIAN, Palo Alto, CA) to deliver the nasopharynx treatment plan. After irradiation, the TENOMAG dosimeter was scanned using a VISTA ™ scanner. The scanned data were reconstructed using VistaRecon software to obtain a 3D dose distribution of the optical density. An optical-CT scanner was used to readout the dose distribution in the gel dosimeter. Moreover, we developed the P DRESS by using Flatform, which were developed by our group, to display the 3D dose distribution by loading the DICOM RT data which are exported from the radiotherapy treatment plan (RTP) and the optical-CT reconstructed VFF file, into the independent P DRESS with an ioniz ation chamber and EBT film was used to compare the dose distribution calculated from the RTP with that measured by using a gel dosimeter. The agreement between the normalized EBT, the gel dosimeter and RTP data was evaluated using both qualitative and quantitative methods, such as the isodose distribution, dose difference, point value, and profile. The profiles showed good agreement between the RTP data and the gel dosimeter data, and the precision of the dose distribution was within ±3%. The results from this study showed significantly discrepancies between the dose distribution calculated from the treatment plan and the dose distribution measured by a TENOMAG gel and by scanning with an optical CT scanner. The 3D dose evaluation software system ( P DRESS, patient specific dose real evaluation system), which were developed in this study evaluates the accuracies of the three-dimensional dose distributions. Further applications of the system utility are expected to result from future studies.

  11. An RF dosimeter for independent SAR measurement in MRI scanners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Di; Bottomley, Paul A.; El-Sharkawy, AbdEl-Monem M.

    2013-12-15

    Purpose: The monitoring and management of radio frequency (RF) exposure is critical for ensuring magnetic resonance imaging (MRI) safety. Commercial MRI scanners can overestimate specific absorption rates (SAR) and improperly restrict clinical MRI scans or the application of new MRI sequences, while underestimation of SAR can lead to tissue heating and thermal injury. Accurate scanner-independent RF dosimetry is essential for measuring actual exposure when SAR is critical for ensuring regulatory compliance and MRI safety, for establishing RF exposure while evaluating interventional leads and devices, and for routine MRI quality assessment by medical physicists. However, at present there are no scanner-independentmore » SAR dosimeters. Methods: An SAR dosimeter with an RF transducer comprises two orthogonal, rectangular copper loops and a spherical MRI phantom. The transducer is placed in the magnet bore and calibrated to approximate the resistive loading of the scanner's whole-body birdcage RF coil for human subjects in Philips, GE and Siemens 3 tesla (3T) MRI scanners. The transducer loop reactances are adjusted to minimize interference with the transmit RF field (B{sub 1}) at the MRI frequency. Power from the RF transducer is sampled with a high dynamic range power monitor and recorded on a computer. The deposited power is calibrated and tested on eight different MRI scanners. Whole-body absorbed power vs weight and body mass index (BMI) is measured directly on 26 subjects. Results: A single linear calibration curve sufficed for RF dosimetry at 127.8 MHz on three different Philips and three GE 3T MRI scanners. An RF dosimeter operating at 123.2 MHz on two Siemens 3T scanners required a separate transducer and a slightly different calibration curve. Measurement accuracy was ∼3%. With the torso landmarked at the xiphoid, human adult whole‑body absorbed power varied approximately linearly with patient weight and BMI. This indicates that whole-body torso SAR is on average independent of the imaging subject, albeit with fluctuations. Conclusions: Our 3T RF dosimeter and transducers accurately measure RF exposure in body-equivalent loads and provide scanner-independent assessments of whole-body RF power deposition for establishing safety compliance useful for MRI sequence and device testing.« less

  12. Variations in photon energy spectra of a 6 MV beam and their impact on TLD response

    PubMed Central

    Scarboro, Sarah B.; Followill, David S.; Howell, Rebecca M.; Kry, Stephen F.

    2011-01-01

    Purpose: Measurement of the absorbed dose from radiotherapy beams is an essential component of providing safe and reproducible treatment. For an energy-dependent dosimeter such as thermoluminescent dosimeters (TLDs), it is generally assumed that the energy spectrum is constant throughout the treatment field and is unperturbed by field size, depth, field modulation, or heterogeneities. However, this does not reflect reality and introduces error into clinical dose measurements. The purpose of this study was to evaluate the variability in the energy spectrum of a Varian 6 MV beam and to evaluate the impact of these variations in photon energy spectra on the response of a common energy-dependent dosimeter, TLD. Methods: Using Monte Carlo methods, we calculated variations in the photon energy spectra of a 6 MV beam as a result of variations of treatment parameters, including field size, measurement location, the presence of heterogeneities, and field modulation. The impact of these spectral variations on the response of the TLD is largely based on increased photoelectric effect in the dosimeter, and this impact was calculated using Burlin cavity theory. Measurements of the energy response were also made to determine the additional energy response due to all intrinsic and secondary effects. Results: For most in-field measurements, regardless of treatment parameter, the dosimeter response was not significantly affected by the spectral variations (<1% effect). For measurement points outside of the treatment field, where the spectrum is softer, the TLD over-responded by up to 12% due to an increased probability of photoelectric effect in the TLD material as well as inherent ionization density effects that play a role at low photon energies. Conclusions: It is generally acceptable to ignore the impact of variations in the photon spectrum on the measured dose for locations within the treatment field. However, outside the treatment field, the spectra are much softer, and a correction factor is generally appropriate. The results of this work have determined values for this factor, which range from 0.88 to 0.99 depending on the specific irradiation conditions. PMID:21776799

  13. SU-E-T-799: Verification of a Simultaneous Treatment of Multiple Brain Metastases Using VMAT Technique by a Composite Alanine-Gel Dosimeter Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavoni, J; Silveira, M; Filho, O Baffa

    Purpose: This work presents an end-to-end test using a Gel-Alanine phantom to validate the three-dimensional (3D) dose distribution (DD) delivered by a single isocenter VMAT technique on the simultaneous treatment of multiple brain metastases. Methods: Three cylindrical phantons containing MAGIC-f gel dosimeter were used to measure the 3D DD of a VMAT treatment, the first two were filled with the gel dosimeter (Gel 1 and 2) and the third one was filled with gel and 12 alanine dosimeters distributed along it (Gel 3). Gels 1 and 3 were irradiated and gel 2 was used to map the magnetic resonance imagemore » (MRI) scanner field inomogeneities. A CT scan of gel 3 was used for the VMAT treatment planning and 5 alanine pellets were chosen as lesions, around them a PTV was grown and different dose prescriptions were assigned for each one, varying from 5 to 9Gy. Before treatment, the plan was approved in a QA based on an ionization chamber absolute dose measurement, a radiochromic film planar dose measurement and a portal dosimetry per field verification; and also the phantons positioning were verified by ExacTrac 6D correction and OBI kV Cone Beam CT. The gels were irradiated, the MRIs were acquired 24 hours after irradiation and finally, the alanine dosimeters were analysed in a X-band Electron Spin Resonance spectrometer. Results: The association of the two detectors enabled the 3D dose evaluation by gel and punctually inside target volumes by alanine. In the gamma analyses (3%/3mm) comparing the 5 PTVs’ central images DD with TPS expected DD more than 95% of the points were approved. The alanine absolute dose measurements were in agreement with TPS by less than 5%. Conclusion: The gel-alanine phantom enabled the dosimetric validation of multiple brain metastases treatment using VMAT, being an almost ideal tool for this application. This work is partially supported by FAPESP.« less

  14. Radiation damage and sensitization effects on thermoluminescence of LiF:Mg,Ti (TLD-700)

    NASA Astrophysics Data System (ADS)

    Farag, M. A.; Sadek, A. M.; Shousha, Hany. A.; El-Hagg, A. A.; Atta, M. R.; Kitis, G.

    2017-09-01

    The radiation damage effects and enhancement the thermoluminescence (TL) efficiency of LiF:Mg,Ti (TLD-700)dosimeters via sensitization method were discussed. Attempts to eliminate the effects of damage and sensitization were made using different types of annealing processes. The results showed that after irradiating the dosimeters with dose > 250 Gy of 60Co gamma source, damage effects were observed. The sensitivity of the total area under the curve was decreased by a factor of ∼0.5 after irradiation at a pre-test dose of 2 kGy. However, the effects of radiation damage on each glow-peak are different. The glow-peak 2 was the only peak that was not affected by the high-dose irradiation. It has been shown that the degree of the radiation damage effect is related to the maximum dose-response function, f(D)max of the glow-peak. In general, significant radiation damage effects were observed for the glow-peaks of high f(D)max . Post-irradiation anneal at 280 °C for 30 min causes dramatic effects on the shape of the glow-curve and as well as on the sensitivity of the dosimeters. An increasing by a factor of ∼35 in the sensitivity of the total area under the curve was observed at a pre-test dose of 2 kGy. Improving the sensitivity of peak 7 by a factor of∼22 was the dominant factor in increasing the sensitivity of the dosimeters. On the other hand, an increasing by factors of ∼2.5 and ∼4 was found for peaks 2 and 5 respectively. On the other hand, a decreasing by a factor ∼0.5 was observed for peaks 3 and 4. At pre-test dose levels >250 Gy, a very strange and high intensity tail was observed in the high-temperature region of the glow-curves. The readout anneal was not enough to remove this tail. While, the furnace anneal could eliminate the sensitization effects but not the radiation damage effects on the sensitivity of the dosimeters.

  15. Recent developments of optically stimulated luminescence materials and techniques for radiation dosimetry and clinical applications.

    PubMed

    Pradhan, A S; Lee, J I; Kim, J L

    2008-07-01

    During the last 10 years, optically stimulated luminescence (OSL) has emerged as a formidable competitor not only to thermoluminescence dosimetry (TLD) but also to several other dosimetry systems. Though a large number of materials have been synthesized and studied for OSL, Al(2)O(3):C continues to dominate the dosimetric applications. Re-investigations of OSL in BeOindicate that this material might provide an alternative to Al(2)O(3):C. Study of OSL of electronic components of mobile phones and ID cards appears to have opened up a feasibility of dosimetry and dose reconstruction using the electronic components of gadgets of everyday use in the events of unforeseen situations of radiological accidents, including the event of a dirty bomb by terrorist groups. Among the newly reported materials, a very recent development of NaMgF(3):Eu(2+) appears fascinating because of its high OSL sensitivity and tolerable tissue equivalence. In clinical dosimetry, an OSL as a passive dosimeter could do all that TLD can do, much faster with a better or at least the same efficiency; and in addition, it provides a possibility of repeated readout unlike TLD, in which all the dose information is lost in a single readout. Of late, OSL has also emerged as a practical real-time dosimeter for in vivo measurements in radiation therapy (for both external beams and brachytherapy) and in various diagnostic radiological examinations including mammography and CT dosimetry. For in vivo measurements, a probe of Al(2)O(3):C of size of a fraction of a millimeter provides the information on both the dose rate and the total dose from the readout of radioluminescence and OSL signals respectively, from the same probe. The availability of OSL dosimeters in various sizes and shapes and their performance characteristics as compared to established dosimeters such as plastic scintillation dosimeters, diode detectors, MOSFET detectors, radiochromic films, etc., shows that OSL may soon become the first choice for point dose measurements in clinical applications. A brief review of the recent developments is presented.

  16. Recent developments of optically stimulated luminescence materials and techniques for radiation dosimetry and clinical applications

    PubMed Central

    Pradhan, A. S.; Lee, J. I.; Kim, J. L.

    2008-01-01

    During the last 10 years, optically stimulated luminescence (OSL) has emerged as a formidable competitor not only to thermoluminescence dosimetry (TLD) but also to several other dosimetry systems. Though a large number of materials have been synthesized and studied for OSL, Al2O3:C continues to dominate the dosimetric applications. Re-investigations of OSL in BeOindicate that this material might provide an alternative to Al2O3:C. Study of OSL of electronic components of mobile phones and ID cards appears to have opened up a feasibility of dosimetry and dose reconstruction using the electronic components of gadgets of everyday use in the events of unforeseen situations of radiological accidents, including the event of a dirty bomb by terrorist groups. Among the newly reported materials, a very recent development of NaMgF3:Eu2+ appears fascinating because of its high OSL sensitivity and tolerable tissue equivalence. In clinical dosimetry, an OSL as a passive dosimeter could do all that TLD can do, much faster with a better or at least the same efficiency; and in addition, it provides a possibility of repeated readout unlike TLD, in which all the dose information is lost in a single readout. Of late, OSL has also emerged as a practical real-time dosimeter for in vivo measurements in radiation therapy (for both external beams and brachytherapy) and in various diagnostic radiological examinations including mammography and CT dosimetry. For in vivo measurements, a probe of Al2O3:C of size of a fraction of a millimeter provides the information on both the dose rate and the total dose from the readout of radioluminescence and OSL signals respectively, from the same probe. The availability of OSL dosimeters in various sizes and shapes and their performance characteristics as compared to established dosimeters such as plastic scintillation dosimeters, diode detectors, MOSFET detectors, radiochromic films, etc., shows that OSL may soon become the first choice for point dose measurements in clinical applications. A brief review of the recent developments is presented. PMID:19893698

  17. Technical Note: Precision and accuracy of a commercially available CT optically stimulated luminescent dosimetry system for the measurement of CT dose index

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vrieze, Thomas J.; Sturchio, Glenn M.; McCollough, Cynthia H.

    Purpose: To determine the precision and accuracy of CTDI{sub 100} measurements made using commercially available optically stimulated luminescent (OSL) dosimeters (Landaur, Inc.) as beam width, tube potential, and attenuating material were varied. Methods: One hundred forty OSL dosimeters were individually exposed to a single axial CT scan, either in air, a 16-cm (head), or 32-cm (body) CTDI phantom at both center and peripheral positions. Scans were performed using nominal total beam widths of 3.6, 6, 19.2, and 28.8 mm at 120 kV and 28.8 mm at 80 kV. Five measurements were made for each of 28 parameter combinations. Measurements weremore » made under the same conditions using a 100-mm long CTDI ion chamber. Exposed OSL dosimeters were returned to the manufacturer, who reported dose to air (in mGy) as a function of distance along the probe, integrated dose, and CTDI{sub 100}. Results: The mean precision averaged over 28 datasets containing five measurements each was 1.4%{+-} 0.6%, range = 0.6%-2.7% for OSL and 0.08%{+-} 0.06%, range = 0.02%-0.3% for ion chamber. The root mean square (RMS) percent differences between OSL and ion chamber CTDI{sub 100} values were 13.8%, 6.4%, and 8.7% for in-air, head, and body measurements, respectively, with an overall RMS percent difference of 10.1%. OSL underestimated CTDI{sub 100} relative to the ion chamber 21/28 times (75%). After manual correction of the 80 kV measurements, the RMS percent differences between OSL and ion chamber measurements were 9.9% and 10.0% for 80 and 120 kV, respectively. Conclusions: Measurements of CTDI{sub 100} with commercially available CT OSL dosimeters had a percent standard deviation of 1.4%. After energy-dependent correction factors were applied, the RMS percent difference in the measured CTDI{sub 100} values was about 10%, with a tendency of OSL to underestimate CTDI relative to the ion chamber. Unlike ion chamber methods, however, OSL dosimeters allow measurement of the radiation dose profile.« less

  18. Technical Note: Precision and accuracy of a commercially available CT optically stimulated luminescent dosimetry system for the measurement of CT dose index

    PubMed Central

    Vrieze, Thomas J.; Sturchio, Glenn M.; McCollough, Cynthia H.

    2012-01-01

    Purpose: To determine the precision and accuracy of CTDI100 measurements made using commercially available optically stimulated luminescent (OSL) dosimeters (Landaur, Inc.) as beam width, tube potential, and attenuating material were varied. Methods: One hundred forty OSL dosimeters were individually exposed to a single axial CT scan, either in air, a 16-cm (head), or 32-cm (body) CTDI phantom at both center and peripheral positions. Scans were performed using nominal total beam widths of 3.6, 6, 19.2, and 28.8 mm at 120 kV and 28.8 mm at 80 kV. Five measurements were made for each of 28 parameter combinations. Measurements were made under the same conditions using a 100-mm long CTDI ion chamber. Exposed OSL dosimeters were returned to the manufacturer, who reported dose to air (in mGy) as a function of distance along the probe, integrated dose, and CTDI100. Results: The mean precision averaged over 28 datasets containing five measurements each was 1.4% ± 0.6%, range = 0.6%–2.7% for OSL and 0.08% ± 0.06%, range = 0.02%–0.3% for ion chamber. The root mean square (RMS) percent differences between OSL and ion chamber CTDI100 values were 13.8%, 6.4%, and 8.7% for in-air, head, and body measurements, respectively, with an overall RMS percent difference of 10.1%. OSL underestimated CTDI100 relative to the ion chamber 21/28 times (75%). After manual correction of the 80 kV measurements, the RMS percent differences between OSL and ion chamber measurements were 9.9% and 10.0% for 80 and 120 kV, respectively. Conclusions: Measurements of CTDI100 with commercially available CT OSL dosimeters had a percent standard deviation of 1.4%. After energy-dependent correction factors were applied, the RMS percent difference in the measured CTDI100 values was about 10%, with a tendency of OSL to underestimate CTDI relative to the ion chamber. Unlike ion chamber methods, however, OSL dosimeters allow measurement of the radiation dose profile. PMID:23127052

  19. Technical note: precision and accuracy of a commercially available CT optically stimulated luminescent dosimetry system for the measurement of CT dose index.

    PubMed

    Vrieze, Thomas J; Sturchio, Glenn M; McCollough, Cynthia H

    2012-11-01

    To determine the precision and accuracy of CTDI(100) measurements made using commercially available optically stimulated luminescent (OSL) dosimeters (Landaur, Inc.) as beam width, tube potential, and attenuating material were varied. One hundred forty OSL dosimeters were individually exposed to a single axial CT scan, either in air, a 16-cm (head), or 32-cm (body) CTDI phantom at both center and peripheral positions. Scans were performed using nominal total beam widths of 3.6, 6, 19.2, and 28.8 mm at 120 kV and 28.8 mm at 80 kV. Five measurements were made for each of 28 parameter combinations. Measurements were made under the same conditions using a 100-mm long CTDI ion chamber. Exposed OSL dosimeters were returned to the manufacturer, who reported dose to air (in mGy) as a function of distance along the probe, integrated dose, and CTDI(100). The mean precision averaged over 28 datasets containing five measurements each was 1.4% ± 0.6%, range = 0.6%-2.7% for OSL and 0.08% ± 0.06%, range = 0.02%-0.3% for ion chamber. The root mean square (RMS) percent differences between OSL and ion chamber CTDI(100) values were 13.8%, 6.4%, and 8.7% for in-air, head, and body measurements, respectively, with an overall RMS percent difference of 10.1%. OSL underestimated CTDI(100) relative to the ion chamber 21∕28 times (75%). After manual correction of the 80 kV measurements, the RMS percent differences between OSL and ion chamber measurements were 9.9% and 10.0% for 80 and 120 kV, respectively. Measurements of CTDI(100) with commercially available CT OSL dosimeters had a percent standard deviation of 1.4%. After energy-dependent correction factors were applied, the RMS percent difference in the measured CTDI(100) values was about 10%, with a tendency of OSL to underestimate CTDI relative to the ion chamber. Unlike ion chamber methods, however, OSL dosimeters allow measurement of the radiation dose profile.

  20. SU-C-201-02: Dosimetric Verification of SBRT with FFF-VMAT Using a 3-D Radiochromic/Optical-CT Dosimetry System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Na, Y; Black, P; Wuu, C

    2016-06-15

    Purpose: With an increasing use of small field size and high dose rate irradiation in the advances of radiotherapy techniques, such as stereotactic body radiotherapy (SBRT) and stereotactic radiosurgery (SRS), an in-depth quality assurance (QA) system is required. The purpose of this study is to investigate a high resolution optical CT-based 3D radiochromic dosimetry system for SBRT with intensity modulated radiotherapy (IMRT) and flattening filter free (FFF) volumetric modulated arc therapy (VMAT). Methods: Cylindrical PRESAGE radiochromic dosimeters of 10cm height and 11cm diameter were used to validate SBRT. Four external landmarks were placed on the surface of each dosimeter tomore » define the isocenter of target. SBRT plans were delivered using a Varian TrueBeam™ linear accelerator (LINAC). Three validation plans, SBRT with IMRT (6MV 600MU/min), FFF-VMAT (10MV 2400MU/min), and mixed FFF-VMAT (6MV 1400MU/min, 10MV 2400MU/min), were delivered to the PRESAGE dosimeters. Each irradiated PRESAGE dosimeter was scanned using a single laser beam optical CT scanner and reconstructed with a 1mm × 1mm high spatial resolution. The comparison of measured dose distributions of irradiated PRESAGE dosimeters to those calculated by Pinnacle{sup 3} treatment planning system (TPS) were performed with a 10% dose threshold, 3% dose difference (DD), and 3mm distance-to-agreement (DTA) Gamma criteria. Results: The average pass rates for the gamma comparisons between PRESAGE and Pinnacle{sup 3} in the transverse, sagittal, coronal planes were 94.6%, 95.9%, and 96.4% for SBRT with IMRT, FFF-VMAT, and mixed FFF-VMAT plans, respectively. A good agreement of the isodose distributions of those comparisons were shown at the isodose lines 50%, 70%, 80%, 90% and 98%. Conclusion: This study demonstrates the feasibility of the high resolution optical CT-based 3D radiochromic dosimetry system for validation of SBRT with IMRT and FFF-VMAT. This dosimetry system offers higher precision QA with 3D dose information for small beams compared to what is currently available.« less

Top