2001-06-26
ISS002-E-7814 (26 June 2001) --- James S. Voss, Expedition Two flight engineer, sets up the Human Research Facility's (HRF) Dosimetric Mapping (DOSMAP) Power Distribution Unit (PDU) in Destiny. The image was taken with a digital still camera.
NASA Astrophysics Data System (ADS)
Gustafsson, C.; Nordström, F.; Persson, E.; Brynolfsson, J.; Olsson, L. E.
2017-04-01
Dosimetric errors in a magnetic resonance imaging (MRI) only radiotherapy workflow may be caused by system specific geometric distortion from MRI. The aim of this study was to evaluate the impact on planned dose distribution and delineated structures for prostate patients, originating from this distortion. A method was developed, in which computer tomography (CT) images were distorted using the MRI distortion field. The displacement map for an optimized MRI treatment planning sequence was measured using a dedicated phantom in a 3 T MRI system. To simulate the distortion aspects of a synthetic CT (electron density derived from MR images), the displacement map was applied to CT images, referred to as distorted CT images. A volumetric modulated arc prostate treatment plan was applied to the original CT and the distorted CT, creating a reference and a distorted CT dose distribution. By applying the inverse of the displacement map to the distorted CT dose distribution, a dose distribution in the same geometry as the original CT images was created. For 10 prostate cancer patients, the dose difference between the reference dose distribution and inverse distorted CT dose distribution was analyzed in isodose level bins. The mean magnitude of the geometric distortion was 1.97 mm for the radial distance of 200-250 mm from isocenter. The mean percentage dose differences for all isodose level bins, were ⩽0.02% and the radiotherapy structure mean volume deviations were <0.2%. The method developed can quantify the dosimetric effects of MRI system specific distortion in a prostate MRI only radiotherapy workflow, separated from dosimetric effects originating from synthetic CT generation. No clinically relevant dose difference or structure deformation was found when 3D distortion correction and high acquisition bandwidth was used. The method could be used for any MRI sequence together with any anatomy of interest.
Gustafsson, C; Nordström, F; Persson, E; Brynolfsson, J; Olsson, L E
2017-04-21
Dosimetric errors in a magnetic resonance imaging (MRI) only radiotherapy workflow may be caused by system specific geometric distortion from MRI. The aim of this study was to evaluate the impact on planned dose distribution and delineated structures for prostate patients, originating from this distortion. A method was developed, in which computer tomography (CT) images were distorted using the MRI distortion field. The displacement map for an optimized MRI treatment planning sequence was measured using a dedicated phantom in a 3 T MRI system. To simulate the distortion aspects of a synthetic CT (electron density derived from MR images), the displacement map was applied to CT images, referred to as distorted CT images. A volumetric modulated arc prostate treatment plan was applied to the original CT and the distorted CT, creating a reference and a distorted CT dose distribution. By applying the inverse of the displacement map to the distorted CT dose distribution, a dose distribution in the same geometry as the original CT images was created. For 10 prostate cancer patients, the dose difference between the reference dose distribution and inverse distorted CT dose distribution was analyzed in isodose level bins. The mean magnitude of the geometric distortion was 1.97 mm for the radial distance of 200-250 mm from isocenter. The mean percentage dose differences for all isodose level bins, were ⩽0.02% and the radiotherapy structure mean volume deviations were <0.2%. The method developed can quantify the dosimetric effects of MRI system specific distortion in a prostate MRI only radiotherapy workflow, separated from dosimetric effects originating from synthetic CT generation. No clinically relevant dose difference or structure deformation was found when 3D distortion correction and high acquisition bandwidth was used. The method could be used for any MRI sequence together with any anatomy of interest.
Comparison of dose accuracy between 2D array detectors and Epid for IMRT of nasopharynx cancer
NASA Astrophysics Data System (ADS)
Altiparmak, Duygu; Coban, Yasin; Merih, Adil; Avci, Gulhan Guler; Yigitoglu, Ibrahim
2017-02-01
The aim of this study is to perform the dosimetric controls of nasopharynx cancer patient's intensity modulated radiation therapy (IMRT) treatment plans that generated by treatment planing system (TPS) with using two different equipments and also to make comparison in terms of their reliability and practicability. This study has been performed at Radiation Oncology Department, Medicine Faculty in Gaziosmanpasa University by using the VARIAN CLINAC DHX linear accelerator which is operated in the range of 6 MV. Selected 10 nasopharynx patients planned in TPS (Eclipce V13.0) and approved for treatment by medical physicists and radiation oncologists. These plans recalculated on EPID and mapcheck which are 2D dosimetric equipments to obtain dose maps. To compare these two dosimetric equipments gamma analysis method has been preferred. Achieved data is presented and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harpool, K; De La Fuente Herman, T; Ahmad, S
Purpose: To evaluate the performance of a two-dimensional (2D) array-diode- detector for geometric and dosimetric quality assurance (QA) tests of high-dose-rate (HDR) brachytherapy with an Ir-192-source. Methods: A phantom setup was designed that encapsulated a two-dimensional (2D) array-diode-detector (MapCheck2) and a catheter for the HDR brachytherapy Ir-192 source. This setup was used to perform both geometric and dosimetric quality assurance for the HDR-Ir192 source. The geometric tests included: (a) measurement of the position of the source and (b) spacing between different dwell positions. The dosimteric tests include: (a) linearity of output with time, (b) end effect and (c) relative dosemore » verification. The 2D-dose distribution measured with MapCheck2 was used to perform the previous tests. The results of MapCheck2 were compared with the corresponding quality assurance testes performed with Gafchromic-film and well-ionization-chamber. Results: The position of the source and the spacing between different dwell-positions were reproducible within 1 mm accuracy by measuring the position of maximal dose using MapCheck2 in contrast to the film which showed a blurred image of the dwell positions due to limited film sensitivity to irradiation. The linearity of the dose with dwell times measured from MapCheck2 was superior to the linearity measured with ionization chamber due to higher signal-to-noise ratio of the diode readings. MapCheck2 provided more accurate measurement of the end effect with uncertainty < 1.5% in comparison with the ionization chamber uncertainty of 3%. Although MapCheck2 did not provide absolute calibration dosimeter for the activity of the source, it provided accurate tool for relative dose verification in HDR-brachytherapy. Conclusion: The 2D-array-diode-detector provides a practical, compact and accurate tool to perform quality assurance for HDR-brachytherapy with an Ir-192 source. The diodes in MapCheck2 have high radiation sensitivity and linearity that is superior to Gafchromic-films and ionization chamber used for geometric and dosimetric QA in HDR-brachytherapy, respectively.« less
2D dose distribution images of a hybrid low field MRI-γ detector
NASA Astrophysics Data System (ADS)
Abril, A.; Agulles-Pedrós, L.
2016-07-01
The proposed hybrid system is a combination of a low field MRI and dosimetric gel as a γ detector. The readout system is based on the polymerization process induced by the gel radiation. A gel dose map is obtained which represents the functional part of hybrid image alongside with the anatomical MRI one. Both images should be taken while the patient with a radiopharmaceutical is located inside the MRI system with a gel detector matrix. A relevant aspect of this proposal is that the dosimetric gel has never been used to acquire medical images. The results presented show the interaction of the 99mTc source with the dosimetric gel simulated in Geant4. The purpose was to obtain the planar γ 2D-image. The different source configurations are studied to explore the ability of the gel as radiation detector through the following parameters; resolution, shape definition and radio-pharmaceutical concentration.
NASA Astrophysics Data System (ADS)
Waghorn, Ben J.; Shah, Amish P.; Ngwa, Wilfred; Meeks, Sanford L.; Moore, Joseph A.; Siebers, Jeffrey V.; Langen, Katja M.
2010-07-01
Intra-fraction organ motion during intensity-modulated radiation therapy (IMRT) treatment can cause differences between the planned and the delivered dose distribution. To investigate the extent of these dosimetric changes, a computational model was developed and validated. The computational method allows for calculation of the rigid motion perturbed three-dimensional dose distribution in the CT volume and therefore a dose volume histogram-based assessment of the dosimetric impact of intra-fraction motion on a rigidly moving body. The method was developed and validated for both step-and-shoot IMRT and solid compensator IMRT treatment plans. For each segment (or beam), fluence maps were exported from the treatment planning system. Fluence maps were shifted according to the target position deduced from a motion track. These shifted, motion-encoded fluence maps were then re-imported into the treatment planning system and were used to calculate the motion-encoded dose distribution. To validate the accuracy of the motion-encoded dose distribution the treatment plan was delivered to a moving cylindrical phantom using a programmed four-dimensional motion phantom. Extended dose response (EDR-2) film was used to measure a planar dose distribution for comparison with the calculated motion-encoded distribution using a gamma index analysis (3% dose difference, 3 mm distance-to-agreement). A series of motion tracks incorporating both inter-beam step-function shifts and continuous sinusoidal motion were tested. The method was shown to accurately predict the film's dose distribution for all of the tested motion tracks, both for the step-and-shoot IMRT and compensator plans. The average gamma analysis pass rate for the measured dose distribution with respect to the calculated motion-encoded distribution was 98.3 ± 0.7%. For static delivery the average film-to-calculation pass rate was 98.7 ± 0.2%. In summary, a computational technique has been developed to calculate the dosimetric effect of intra-fraction motion. This technique has the potential to evaluate a given plan's sensitivity to anticipated organ motion. With knowledge of the organ's motion it can also be used as a tool to assess the impact of measured intra-fraction motion after dose delivery.
2002-08-05
The Bonner Ball Neutron Detector measures neutron radiation. Neutrons are uncharged atomic particles that have the ability to penetrate living tissues, harming human beings in space. The Bonner Ball Neutron Detector is one of three radiation experiments during Expedition Two. The others are the Phantom Torso and Dosimetric Mapping.
NASA Technical Reports Server (NTRS)
2002-01-01
The Bonner Ball Neutron Detector measures neutron radiation. Neutrons are uncharged atomic particles that have the ability to penetrate living tissues, harming human beings in space. The Bonner Ball Neutron Detector is one of three radiation experiments during Expedition Two. The others are the Phantom Torso and Dosimetric Mapping.
Frelin, A M; Fontbonne, J M; Ban, G; Colin, J; Labalme, M; Batalla, A; Vela, A; Boher, P; Braud, M; Leroux, T
2008-05-01
New radiation therapy techniques such as IMRT present significant efficiency due to their highly conformal dose distributions. A consequence of the complexity of their dose distributions (high gradients, small irradiation fields, low dose distribution, ...) is the requirement for better precision quality assurance than in classical radiotherapy in order to compare the conformation of the delivered dose with the planned dose distribution and to guarantee the quality of the treatment. Currently this control is mostly performed by matrices of ionization chambers, diode detectors, dosimetric films, portal imaging, or dosimetric gels. Another approach is scintillation dosimetry, which has been developed in the last 15 years mainly through scintillating fiber devices. Despite having many advantages over other methods it is still at an experimental level for routine dosimetry because the Cerenkov radiation produced under irradiation represents an important stem effect. A new 2D water equivalent scintillating dosimeter, the DosiMap, and two different Cerenkov discrimination methods were developed with the collaboration of the Laboratoire de Physique Corpusculaire of Caen, the Comprehensive Cancer Center François Baclesse, and the ELDIM Co., in the frame of the MAESTRO European project. The DosiMap consists of a plastic scintillating sheet placed inside a transparent polystyrene phantom. The light distribution produced under irradiation is recorded by a CCD camera. Our first Cerenkov discrimination technique is subtractive. It uses a chessboard pattern placed in front of the scintillator, which provides a background signal containing only Cerenkov light. Our second discrimination technique is colorimetric. It performs a spectral analysis of the light signal, which allows the unfolding of the Cerenkov radiation and the scintillation. Tests were carried out with our DosiMap prototype and the performances of the two discrimination methods were assessed. The comparison of the dose measurements performed with the DosiMap and with dosimetric films for three different irradiation configurations showed discrepancies smaller than 3.5% for a 2 mm spatial resolution. Two innovative discrimination solutions were demonstrated to separate the scintillation from the Cerenkov radiation. It was also shown that the DosiMap, which is water equivalent, fast, and user friendly, is a very promising tool for radiotherapy quality assurance.
2003-02-09
The Phantom Torso is a tissue-muscle plastic anatomical model of a torso and head. It contains over 350 radiation measuring devices to calculate the radiation that penetrates internal organs in space travel. The Phantom Torso is one of three radiation experiments in Expedition Two including the Borner Ball Neutron Detector and Dosimetric Mapping.
NASA Astrophysics Data System (ADS)
Butler, D. J.; Stevenson, A. W.; Wright, T. E.; Harty, P. D.; Lehmann, J.; Livingstone, J.; Crosbie, J. C.
2015-11-01
Small circular beams of synchrotron radiation (0.1 mm and 0.4 mm in diameter) were used to irradiate ionization chambers of the types commonly used in radiotherapy. By scanning the chamber through the beam and measuring the ionization current, a spatial map of the dosimetric response of the chamber was recorded. The technique is able to distinguish contributions to the large-field ionization current from the chamber walls, central electrode and chamber stem. Scans were recorded for the NE 2571 Farmer chamber, the PTW 30013, IBA FC65-G Farmer-type chambers, the NE 2611A and IBA CC13 thimble chambers, the PTW 31006 and 31014 pinpoint chambers, the PTW Roos and Advanced Markus plane-parallel chambers, and the PTW 23342 thin-window soft x-ray chamber. In all cases, large contributions to the response arise from areas where the incident beam grazes the cavity surfaces. Quantitative as well as qualitative information about the relative chamber response was extracted from the maps, including the relative contribution of the central electrode. Line scans using monochromatic beams show the effect of the photon energy on the chamber response. For Farmer-type chambers, a simple Monte Carlo model was in good agreement with the measured response.
Li, Haisen S; Zhong, Hualiang; Kim, Jinkoo; Glide-Hurst, Carri; Gulam, Misbah; Nurushev, Teamour S; Chetty, Indrin J
2014-01-06
The direct dose mapping (DDM) and energy/mass transfer (EMT) mapping are two essential algorithms for accumulating the dose from different anatomic phases to the reference phase when there is organ motion or tumor/tissue deformation during the delivery of radiation therapy. DDM is based on interpolation of the dose values from one dose grid to another and thus lacks rigor in defining the dose when there are multiple dose values mapped to one dose voxel in the reference phase due to tissue/tumor deformation. On the other hand, EMT counts the total energy and mass transferred to each voxel in the reference phase and calculates the dose by dividing the energy by mass. Therefore it is based on fundamentally sound physics principles. In this study, we implemented the two algorithms and integrated them within the Eclipse treatment planning system. We then compared the clinical dosimetric difference between the two algorithms for ten lung cancer patients receiving stereotactic radiosurgery treatment, by accumulating the delivered dose to the end-of-exhale (EE) phase. Specifically, the respiratory period was divided into ten phases and the dose to each phase was calculated and mapped to the EE phase and then accumulated. The displacement vector field generated by Demons-based registration of the source and reference images was used to transfer the dose and energy. The DDM and EMT algorithms produced noticeably different cumulative dose in the regions with sharp mass density variations and/or high dose gradients. For the planning target volume (PTV) and internal target volume (ITV) minimum dose, the difference was up to 11% and 4% respectively. This suggests that DDM might not be adequate for obtaining an accurate dose distribution of the cumulative plan, instead, EMT should be considered.
NASA Astrophysics Data System (ADS)
Li, Haisen S.; Zhong, Hualiang; Kim, Jinkoo; Glide-Hurst, Carri; Gulam, Misbah; Nurushev, Teamour S.; Chetty, Indrin J.
2014-01-01
The direct dose mapping (DDM) and energy/mass transfer (EMT) mapping are two essential algorithms for accumulating the dose from different anatomic phases to the reference phase when there is organ motion or tumor/tissue deformation during the delivery of radiation therapy. DDM is based on interpolation of the dose values from one dose grid to another and thus lacks rigor in defining the dose when there are multiple dose values mapped to one dose voxel in the reference phase due to tissue/tumor deformation. On the other hand, EMT counts the total energy and mass transferred to each voxel in the reference phase and calculates the dose by dividing the energy by mass. Therefore it is based on fundamentally sound physics principles. In this study, we implemented the two algorithms and integrated them within the Eclipse treatment planning system. We then compared the clinical dosimetric difference between the two algorithms for ten lung cancer patients receiving stereotactic radiosurgery treatment, by accumulating the delivered dose to the end-of-exhale (EE) phase. Specifically, the respiratory period was divided into ten phases and the dose to each phase was calculated and mapped to the EE phase and then accumulated. The displacement vector field generated by Demons-based registration of the source and reference images was used to transfer the dose and energy. The DDM and EMT algorithms produced noticeably different cumulative dose in the regions with sharp mass density variations and/or high dose gradients. For the planning target volume (PTV) and internal target volume (ITV) minimum dose, the difference was up to 11% and 4% respectively. This suggests that DDM might not be adequate for obtaining an accurate dose distribution of the cumulative plan, instead, EMT should be considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heilemann, G., E-mail: gerd.heilemann@meduniwien.ac.at; Kostiukhina, N.; Nesvacil, N.
2015-10-15
Purpose: The purpose of this study was to establish a method to perform multidimensional radiochromic film measurements of {sup 106}Ru plaques and to benchmark the resulting dose distributions against Monte Carlo simulations (MC), microdiamond, and diode measurements. Methods: Absolute dose rates and relative dose distributions in multiple planes were determined for three different plaque models (CCB, CCA, and COB), and three different plaques per model, using EBT3 films in an in-house developed polystyrene phantom and the MCNP6 MC code. Dose difference maps were generated to analyze interplaque variations for a specific type, and for comparing measurements against MC simulations. Furthermore,more » dose distributions were validated against values specified by the manufacturer (BEBIG) and microdiamond and diode measurements in a water scanning phantom. Radial profiles were assessed and used to estimate dosimetric margins for a given combination of representative tumor geometry and plaque size. Results: Absolute dose rates at a reference depth of 2 mm on the central axis of the plaque show an agreement better than 5% (10%) when comparing film measurements (MCNP6) to the manufacturer’s data. The reproducibility of depth-dose profile measurements was <7% (2 SD) for all investigated detectors and plaque types. Dose difference maps revealed minor interplaque deviations for a specific plaque type due to inhomogeneities of the active layer. The evaluation of dosimetric margins showed that for a majority of the investigated cases, the tumor was not completely covered by the 100% isodose prescribed to the tumor apex if the difference between geometrical plaque size and tumor base ≤4 mm. Conclusions: EBT3 film dosimetry in an in-house developed phantom was successfully used to characterize the dosimetric properties of different {sup 106}Ru plaque models. The film measurements were validated against MC calculations and other experimental methods and showed a good agreement with data from BEBIG well within published tolerances. The dosimetric information as well as interplaque comparison can be used for comprehensive quality assurance and for considerations in the treatment planning of ophthalmic brachytherapy.« less
Summary of ionizing radiation analysis on the Long Duration Exposure Facility
NASA Technical Reports Server (NTRS)
Parnell, T. A.
1992-01-01
The ionizing radiation measurements flown on the Long Duration Exposure Facility (LDEF) were contained in 15 experiments which utilized passive detectors to pursue objectives in astrophysics and to measure the radiation environment and dosimetric quantities. The spacecraft structure became sufficiently radioactive to permit additional important studies. The induced activity allows extensive radiation mapping in the structure, and independent comparison with experiment dosimetric techniques, and significant studies of secondary effects. The long exposure time, attitude stability, and number and types of measurements produced a unique and critical set of data for low Earth orbit that will not be duplicated for more than a decade. The data allow an unprecedented test, and improvement if required, of models of the radiation environment and the radiation transport methods that are used to calculate the internal radiation and its effects in spacecraft. Results of measurements in the experiments, as well as from radioactivity in the structure, have clearly shown effects from the directional properties of the radiation environment, and progress was made in the dosimetric mapping of LDEF. These measurements have already influenced some Space Station Freedom design requirements. Preliminary results from experiments, reported at this symposium and in earlier papers, show that the 5.8 years exposure considerably enhanced the scientific return of the radiation measurements. The early results give confidence that the experiments will make significant advances in the knowledge of ultra heavy cosmic rays, anomalous cosmic rays, and heavy ions trapped in the radiation belts. Unexpected phenomena were observed, which require explanation. These include stopping iron group ions between the energy ranges anticipated for anomalous and galactic cosmic rays in the LDEF orbit. A surprising concentration of the Be-7 nuclide was discovered on the 'front' surface of LDEF, apparently transported up from the stratosphere with exceptional efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duffy, Olivia; Forde, Elizabeth; Leech, Michelle, E-mail: leechm@tcd.ie
With margin reduction common in head and neck radiotherapy, it is critical that the dosimetric effects of setup deviations are quantified. With past studies focusing on the quantification of positional and volumetric changes of organs at risk (OARs), this study aimed to measure the dose delivered to these the parotid gland (PG) and pharyngeal constrictor muscles (PCMs) using cone beam computed tomography (CBCT). Furthermore, this investigation sought to establish a potential time trend of change in dose delivered to target volumes secondary to ascertaining the need for daily image guidance (IG) to reduce the dose burden to these important OARs.more » Intensity modulated radiotherapy (IMRT) plans for 5 locally advanced head and neck patients' plans were created and mapped to weekly CBCTs. Each plan was recalculated without heterogeneity correction allowing for dosimetric comparison. Dosimetric endpoints recorded to assess the effect of positional variation were as per ICRU 83 and included D{sub 95} and D{sub 98} for the target volumes, mean dose (MD) and V{sub 30} {sub Gy} for the PGs, and V{sub 50} {sub Gy} and MD for the PCMs. Results were deemed statistically significant if p < 0.05. No significant time trends were established for these OARs. A significant decrease in V{sub 50} {sub Gy} was observed for all PCMs (p < 0.001) on all CBCTs relative to the original plan. Regarding target volumes, a highly significant decrease in MD (MD = 20 Gy, CI: −20.310 to −19.820) in D{sub 98} of the high-dose planning target volume (PTV [70 Gy]; PTVD{sub 98%} = 70 Gy) for case 3 was found (p ≤ 0.001). A nonpredictable, yet significant dosimetric effect was found. A clinically acceptable balance must be achieved between OAR dosimetry and target coverage as can be achieved by frequent IG.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, J; Tian, Z; Gu, X
Purpose: To investigate the dosimetric benefit of adaptive re-planning for lung stereotactic body radiotherapy(SBRT). Methods: Five lung cancer patients with SBRT treatment were retrospectively investigated. Our in-house supercomputing online re-planning environment (SCORE) was used to realize the re-planning process. First a deformable image registration was carried out to transfer contours from treatment planning CT to each treatment CBCT. Then an automatic re-planning using original plan DVH guided fluence-map optimization is performed to get a new plan for the up-to-date patient geometry. We compared the re-optimized plan to the original plan projected on the up-to-date patient geometry in critical dosimetric parameters,more » such as PTV coverage, spinal cord maximum and volumetric constraint dose, esophagus maximum and volumetric constraint dose. Results: The average volume of PTV covered by prescription dose for all patients was improved by 7.56% after the adaptive re-planning. The volume of the spinal cord receiving 14.5Gy and 23Gy (V14.5, V23) decreased by 1.48% and 0.68%, respectively. For the esophagus, the volume receiving 19.5Gy (V19.5) reduced by 1.37%. Meanwhile, the maximum dose dropped off by 2.87% for spinal cord and 4.80% for esophagus. Conclusion: Our experimental results demonstrate that adaptive re-planning for lung SBRT has the potential to minimize the dosimetric effect of inter-fraction deformation and thus improve target coverage while reducing the risk of toxicity to nearby normal tissues.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Labby, Zacariah E., E-mail: zelabby@humonc.wisc.edu; Chaudhary, Neeraj; Gemmete, Joseph J.
2015-04-15
Purpose: The therapeutic regimen for cranial arteriovenous malformations often involves both stereotactic radiosurgery and endovascular embolization. Embolization agents may contain tantalum or other contrast agents to assist the neurointerventionalists, leading to concerns regarding the dosimetric effects of these agents. This study investigated dosimetric properties of n-butyl cyanoacrylate (n-BCA) plus lipiodol with and without tantalum powder. Methods: The embolization agents were provided cured from the manufacturer with and without added tantalum. Attenuation measurements were made for the samples and compared to the attenuation of a solid water substitute using a 6 MV photon beam. Effective linear attenuation coefficients (ELAC) were derivedmore » from attenuation measurements made using a portal imager and derived sample thickness maps projected in an identical geometry. Probable dosimetric errors for calculations in which the embolized regions are overridden with the properties of water were calculated using the ELAC values. Interface effects were investigated using a parallel plate ion chamber placed at set distances below fixed samples. Finally, Hounsfield units (HU) were measured using a stereotactic radiosurgery CT protocol, and more appropriate HU values were derived from the ELAC results and the CT scanner’s HU calibration curve. Results: The ELAC was 0.0516 ± 0.0063 cm{sup −1} and 0.0580 ± 0.0091 cm{sup −1} for n-BCA without and with tantalum, respectively, compared to 0.0487 ± 0.0009 cm{sup −1} for the water substitute. Dose calculations with the embolized region set to be water equivalent in the treatment planning system would result in errors of −0.29% and −0.93% per cm thickness of n-BCA without and with tantalum, respectively. Interface effects compared to water were small in magnitude and limited in distance for both embolization materials. CT values at 120 kVp were 2082 and 2358 HU for n-BCA without and with tantalum, respectively; dosimetrically appropriate HU values were estimated to be 79 and 199 HU, respectively. Conclusions: The dosimetric properties of the embolization agents are very close to those of water for a 6 MV beam. Therefore, treating the entire intracranial space as uniform in composition will result in less than 1% dosimetric error for n-BCA emboli smaller than 3.4 cm without added tantalum and n-BCA emboli smaller than 1.1 cm with added tantalum. Furthermore, when effective embolization can be achieved by the neurointerventionalist using n-BCA without tantalum, the dosimetric impact of overriding material properties will be lessened. However, due to the high attenuation of embolization agents with and without added tantalum for diagnostic energies, artifacts may occur that necessitate additional imaging to accurately identify the spatial extent of the region to be treated.« less
Inter-patient image registration algorithms to disentangle regional dose bioeffects.
Monti, Serena; Pacelli, Roberto; Cella, Laura; Palma, Giuseppe
2018-03-20
Radiation therapy (RT) technological advances call for a comprehensive reconsideration of the definition of dose features leading to radiation induced morbidity (RIM). In this context, the voxel-based approach (VBA) to dose distribution analysis in RT offers a radically new philosophy to evaluate local dose response patterns, as an alternative to dose-volume-histograms for identifying dose sensitive regions of normal tissue. The VBA relies on mapping patient dose distributions into a single reference case anatomy which serves as anchor for local dosimetric evaluations. The inter-patient elastic image registrations (EIRs) of the planning CTs provide the deformation fields necessary for the actual warp of dose distributions. In this study we assessed the impact of EIR on the VBA results in thoracic patients by identifying two state-of-the-art EIR algorithms (Demons and B-Spline). Our analysis demonstrated that both the EIR algorithms may be successfully used to highlight subregions with dose differences associated with RIM that substantially overlap. Furthermore, the inclusion for the first time of covariates within a dosimetric statistical model that faces the multiple comparison problem expands the potential of VBA, thus paving the way to a reliable voxel-based analysis of RIM in datasets with strong correlation of the outcome with non-dosimetric variables.
Plan averaging for multicriteria navigation of sliding window IMRT and VMAT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craft, David, E-mail: dcraft@partners.org; Papp, Dávid; Unkelbach, Jan
2014-02-15
Purpose: To describe a method for combining sliding window plans [intensity modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT)] for use in treatment plan averaging, which is needed for Pareto surface navigation based multicriteria treatment planning. Methods: The authors show that by taking an appropriately defined average of leaf trajectories of sliding window plans, the authors obtain a sliding window plan whose fluence map is the exact average of the fluence maps corresponding to the initial plans. In the case of static-beam IMRT, this also implies that the dose distribution of the averaged plan is the exact dosimetricmore » average of the initial plans. In VMAT delivery, the dose distribution of the averaged plan is a close approximation of the dosimetric average of the initial plans. Results: The authors demonstrate the method on three Pareto optimal VMAT plans created for a demanding paraspinal case, where the tumor surrounds the spinal cord. The results show that the leaf averaged plans yield dose distributions that approximate the dosimetric averages of the precomputed Pareto optimal plans well. Conclusions: The proposed method enables the navigation of deliverable Pareto optimal plans directly, i.e., interactive multicriteria exploration of deliverable sliding window IMRT and VMAT plans, eliminating the need for a sequencing step after navigation and hence the dose degradation that is caused by such a sequencing step.« less
McKenzie, Elizabeth M.; Balter, Peter A.; Stingo, Francesco C.; Jones, Jimmy; Followill, David S.; Kry, Stephen F.
2014-01-01
Purpose: The authors investigated the performance of several patient-specific intensity-modulated radiation therapy (IMRT) quality assurance (QA) dosimeters in terms of their ability to correctly identify dosimetrically acceptable and unacceptable IMRT patient plans, as determined by an in-house-designed multiple ion chamber phantom used as the gold standard. A further goal was to examine optimal threshold criteria that were consistent and based on the same criteria among the various dosimeters. Methods: The authors used receiver operating characteristic (ROC) curves to determine the sensitivity and specificity of (1) a 2D diode array undergoing anterior irradiation with field-by-field evaluation, (2) a 2D diode array undergoing anterior irradiation with composite evaluation, (3) a 2D diode array using planned irradiation angles with composite evaluation, (4) a helical diode array, (5) radiographic film, and (6) an ion chamber. This was done with a variety of evaluation criteria for a set of 15 dosimetrically unacceptable and 9 acceptable clinical IMRT patient plans, where acceptability was defined on the basis of multiple ion chamber measurements using independent ion chambers and a phantom. The area under the curve (AUC) on the ROC curves was used to compare dosimeter performance across all thresholds. Optimal threshold values were obtained from the ROC curves while incorporating considerations for cost and prevalence of unacceptable plans. Results: Using common clinical acceptance thresholds, most devices performed very poorly in terms of identifying unacceptable plans. Grouping the detector performance based on AUC showed two significantly different groups. The ion chamber, radiographic film, helical diode array, and anterior-delivered composite 2D diode array were in the better-performing group, whereas the anterior-delivered field-by-field and planned gantry angle delivery using the 2D diode array performed less well. Additionally, based on the AUCs, there was no significant difference in the performance of any device between gamma criteria of 2%/2 mm, 3%/3 mm, and 5%/3 mm. Finally, optimal cutoffs (e.g., percent of pixels passing gamma) were determined for each device and while clinical practice commonly uses a threshold of 90% of pixels passing for most cases, these results showed variability in the optimal cutoff among devices. Conclusions: IMRT QA devices have differences in their ability to accurately detect dosimetrically acceptable and unacceptable plans. Field-by-field analysis with a MapCheck device and use of the MapCheck with a MapPhan phantom while delivering at planned rotational gantry angles resulted in a significantly poorer ability to accurately sort acceptable and unacceptable plans compared with the other techniques examined. Patient-specific IMRT QA techniques in general should be thoroughly evaluated for their ability to correctly differentiate acceptable and unacceptable plans. Additionally, optimal agreement thresholds should be identified and used as common clinical thresholds typically worked very poorly to identify unacceptable plans. PMID:25471949
McKenzie, Elizabeth M; Balter, Peter A; Stingo, Francesco C; Jones, Jimmy; Followill, David S; Kry, Stephen F
2014-12-01
The authors investigated the performance of several patient-specific intensity-modulated radiation therapy (IMRT) quality assurance (QA) dosimeters in terms of their ability to correctly identify dosimetrically acceptable and unacceptable IMRT patient plans, as determined by an in-house-designed multiple ion chamber phantom used as the gold standard. A further goal was to examine optimal threshold criteria that were consistent and based on the same criteria among the various dosimeters. The authors used receiver operating characteristic (ROC) curves to determine the sensitivity and specificity of (1) a 2D diode array undergoing anterior irradiation with field-by-field evaluation, (2) a 2D diode array undergoing anterior irradiation with composite evaluation, (3) a 2D diode array using planned irradiation angles with composite evaluation, (4) a helical diode array, (5) radiographic film, and (6) an ion chamber. This was done with a variety of evaluation criteria for a set of 15 dosimetrically unacceptable and 9 acceptable clinical IMRT patient plans, where acceptability was defined on the basis of multiple ion chamber measurements using independent ion chambers and a phantom. The area under the curve (AUC) on the ROC curves was used to compare dosimeter performance across all thresholds. Optimal threshold values were obtained from the ROC curves while incorporating considerations for cost and prevalence of unacceptable plans. Using common clinical acceptance thresholds, most devices performed very poorly in terms of identifying unacceptable plans. Grouping the detector performance based on AUC showed two significantly different groups. The ion chamber, radiographic film, helical diode array, and anterior-delivered composite 2D diode array were in the better-performing group, whereas the anterior-delivered field-by-field and planned gantry angle delivery using the 2D diode array performed less well. Additionally, based on the AUCs, there was no significant difference in the performance of any device between gamma criteria of 2%/2 mm, 3%/3 mm, and 5%/3 mm. Finally, optimal cutoffs (e.g., percent of pixels passing gamma) were determined for each device and while clinical practice commonly uses a threshold of 90% of pixels passing for most cases, these results showed variability in the optimal cutoff among devices. IMRT QA devices have differences in their ability to accurately detect dosimetrically acceptable and unacceptable plans. Field-by-field analysis with a MapCheck device and use of the MapCheck with a MapPhan phantom while delivering at planned rotational gantry angles resulted in a significantly poorer ability to accurately sort acceptable and unacceptable plans compared with the other techniques examined. Patient-specific IMRT QA techniques in general should be thoroughly evaluated for their ability to correctly differentiate acceptable and unacceptable plans. Additionally, optimal agreement thresholds should be identified and used as common clinical thresholds typically worked very poorly to identify unacceptable plans.
Preliminary analyses of space radiation protection for lunar base surface systems
NASA Technical Reports Server (NTRS)
Nealy, John E.; Wilson, John W.; Townsend, Lawrence W.
1989-01-01
Radiation shielding analyses are performed for candidate lunar base habitation modules. The study primarily addresses potential hazards due to contributions from the galactic cosmic rays. The NASA Langley Research Center's high energy nucleon and heavy ion transport codes are used to compute propagation of radiation through conventional and regolith shield materials. Computed values of linear energy transfer are converted to biological dose-equivalent using quality factors established by the International Commision of Radiological Protection. Special fluxes of heavy charged particles and corresponding dosimetric quantities are computed for a series of thicknesses in various shield media and are used as an input data base for algorithms pertaining to specific shielded geometries. Dosimetric results are presented as isodose contour maps of shielded configuration interiors. The dose predictions indicate that shielding requirements are substantial, and an abbreviated uncertainty analysis shows that better definition of the space radiation environment as well as improvement in nuclear interaction cross-section data can greatly increase the accuracy of shield requirement predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jiahua; Penfold, Scott N., E-mail: scott.penfold@adelaide.edu.au
Purpose: The accuracy of proton dose calculation is dependent on the ability to correctly characterize patient tissues with medical imaging. The most common method is to correlate computed tomography (CT) numbers obtained via single-energy CT (SECT) with proton stopping power ratio (SPR). CT numbers, however, cannot discriminate between a change in mass density and change in chemical composition of patient tissues. This limitation can have consequences on SPR calibration accuracy. Dual-energy CT (DECT) is receiving increasing interest as an alternative imaging modality for proton therapy treatment planning due to its ability to discriminate between changes in patient density and chemicalmore » composition. In the current work we use a phantom of known composition to demonstrate the dosimetric advantages of proton therapy treatment planning with DECT over SECT. Methods: A phantom of known composition was scanned with a clinical SECT radiotherapy CT-simulator. The phantom was rescanned at a lower X-ray tube potential to generate a complimentary DECT image set. A set of reference materials similar in composition to the phantom was used to perform a stoichiometric calibration of SECT CT number to proton SPRs. The same set of reference materials was used to perform a DECT stoichiometric calibration based on effective atomic number. The known composition of the phantom was used to assess the accuracy of SPR calibration with SECT and DECT. Intensity modulated proton therapy (IMPT) treatment plans were generated with the SECT and DECT image sets to assess the dosimetric effect of the imaging modality. Isodose difference maps and root mean square (RMS) error calculations were used to assess dose calculation accuracy. Results: SPR calculation accuracy was found to be superior, on average, with DECT relative to SECT. Maximum errors of 12.8% and 2.2% were found for SECT and DECT, respectively. Qualitative examination of dose difference maps clearly showed the dosimetric advantages of DECT imaging, compared to SECT imaging for IMPT dose calculation for the case investigated. Quantitatively, the maximum dose calculation error in the SECT plan was 7.8%, compared to a value of 1.4% in the DECT plan. When considering the high dose target region, the root mean square (RMS) error in dose calculation was 2.1% and 0.4% for SECT and DECT, respectively. Conclusions: DECT-based proton treatment planning in a commercial treatment planning system was successfully demonstrated for the first time. DECT is an attractive imaging modality for proton therapy treatment planning owing to its ability to characterize density and chemical composition of patient tissues. SECT and DECT scans of a phantom of known composition have been used to demonstrate the dosimetric advantages obtainable in proton therapy treatment planning with DECT over the current approach based on SECT.« less
Pixel response-based EPID dosimetry for patient specific QA.
Han, Bin; Ding, Aiping; Lu, Minghui; Xing, Lei
2017-01-01
Increasing use of high dose rate, flattening filter free (FFF), and/or small-sized field beams presents a significant challenge to the medical physics community. In this work, we develop a strategy of using a high spatial resolution and high frame rate amorphous silicon flat panel electronic portal imaging device (EPID) for dosimetric measurements of these challenging cases, as well as for conventional external beam therapy. To convert a series of raw EPID-measured radiation field images into water-based dose distribution, a pixel-to-pixel dose-response function of the EPID specific to the linac is essential. The response function was obtained by using a Monte Carlo simulation of the photon transport in the EPID with a comprehensive calibration. After the raw image was converted into the primary incident photon fluence, the fluence was further convolved into a water-based dose distribution of the dynamic field by using a pregenerated pencil-beam kernel. The EPID-based dosimetric measurement technique was validated using beams with and without flattening filter of all energies available in Varian TrueBeam STx™. Both regularly and irregularly shaped fields measured using a PTW 729 ion chamber array in plastic water phantom. The technique was also applied to measure the distribution for a total of 23 treatment plans of different energies to evaluate the accuracy of the proposed approach. The EPID measurements of square fields of 4 × 4 cm 2 to 20 × 20 cm 2 , circular fields of 2-15 cm diameters, rectangular fields of various sizes, and irregular MLC fields were in accordance with measurements using a Farmer chamber and/or ion chamber array. The 2D absolute dose maps generated from EPID raw images agreed with ion chamber measurements to within 1.5% for all fields. For the 23 patient cases examined in this work, the average γ-index passing rate were found to be 99.2 ± 0.6%, 97.4 ± 2.4%, and 72.6 ± 8.4%, respectively, for criterions of 3 mm/3%, 2 mm/2%, and 1 mm/1%. The high spatial resolution and high frame rate EPID provides an accurate and efficient dosimetric tool for QA of modern radiation therapy. Accurate absolute 2D dose maps can be generated from the system for an independent dosimetric verification of treatment delivery. © 2016 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Calculations of dose distributions using a neural network model
NASA Astrophysics Data System (ADS)
Mathieu, R.; Martin, E.; Gschwind, R.; Makovicka, L.; Contassot-Vivier, S.; Bahi, J.
2005-03-01
The main goal of external beam radiotherapy is the treatment of tumours, while sparing, as much as possible, surrounding healthy tissues. In order to master and optimize the dose distribution within the patient, dosimetric planning has to be carried out. Thus, for determining the most accurate dose distribution during treatment planning, a compromise must be found between the precision and the speed of calculation. Current techniques, using analytic methods, models and databases, are rapid but lack precision. Enhanced precision can be achieved by using calculation codes based, for example, on Monte Carlo methods. However, in spite of all efforts to optimize speed (methods and computer improvements), Monte Carlo based methods remain painfully slow. A newer way to handle all of these problems is to use a new approach in dosimetric calculation by employing neural networks. Neural networks (Wu and Zhu 2000 Phys. Med. Biol. 45 913-22) provide the advantages of those various approaches while avoiding their main inconveniences, i.e., time-consumption calculations. This permits us to obtain quick and accurate results during clinical treatment planning. Currently, results obtained for a single depth-dose calculation using a Monte Carlo based code (such as BEAM (Rogers et al 2003 NRCC Report PIRS-0509(A) rev G)) require hours of computing. By contrast, the practical use of neural networks (Mathieu et al 2003 Proceedings Journées Scientifiques Francophones, SFRP) provides almost instant results and quite low errors (less than 2%) for a two-dimensional dosimetric map.
Calculations of dose distributions using a neural network model.
Mathieu, R; Martin, E; Gschwind, R; Makovicka, L; Contassot-Vivier, S; Bahi, J
2005-03-07
The main goal of external beam radiotherapy is the treatment of tumours, while sparing, as much as possible, surrounding healthy tissues. In order to master and optimize the dose distribution within the patient, dosimetric planning has to be carried out. Thus, for determining the most accurate dose distribution during treatment planning, a compromise must be found between the precision and the speed of calculation. Current techniques, using analytic methods, models and databases, are rapid but lack precision. Enhanced precision can be achieved by using calculation codes based, for example, on Monte Carlo methods. However, in spite of all efforts to optimize speed (methods and computer improvements), Monte Carlo based methods remain painfully slow. A newer way to handle all of these problems is to use a new approach in dosimetric calculation by employing neural networks. Neural networks (Wu and Zhu 2000 Phys. Med. Biol. 45 913-22) provide the advantages of those various approaches while avoiding their main inconveniences, i.e., time-consumption calculations. This permits us to obtain quick and accurate results during clinical treatment planning. Currently, results obtained for a single depth-dose calculation using a Monte Carlo based code (such as BEAM (Rogers et al 2003 NRCC Report PIRS-0509(A) rev G)) require hours of computing. By contrast, the practical use of neural networks (Mathieu et al 2003 Proceedings Journees Scientifiques Francophones, SFRP) provides almost instant results and quite low errors (less than 2%) for a two-dimensional dosimetric map.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coates, J; Jeyaseelan, K; Ybarra, N
2014-06-15
Purpose: It has been realized that inter-patient radiation sensitivity variability is a multifactorial process involving dosimetric, clinical, and genetic factors. Therefore, we explore a new framework to integrate physical, clinical, and biological data denoted as radiogenomic modeling. In demonstrating the feasibility of this work, we investigate the association of genetic variants (copy number variations [CNVs] and single nucleotide polymorphisms [SNPs]) with radiation induced rectal bleeding (RB) and erectile dysfunction (ED) while taking into account dosimetric and clinical variables in prostate cancer patients treated with curative irradiation. Methods: A cohort of 62 prostate cancer patients who underwent hypofractionated radiotherapy (66 Gymore » in 22 fractions) was retrospectively genotyped for CNV and SNP rs25489 in the xrcc1 DNA repair gene. Dosevolume metrics were extracted from treatment plans of 54 patients who had complete dosimetric profiles. Treatment outcomes were considered to be a Result of functional mapping of radiogenomic input variables according to a logit transformation. Model orders were estimated using resampling by leave-one out cross-validation (LOO-CV). Radiogenomic model performance was evaluated using area under the ROC curve (AUC) and LOO-CV. For continuous univariate dosimetric and clinical variables, Spearmans rank coefficients were calculated and p-values reported accordingly. In the case of binary variables, Chi-squared statistics and contingency table calculations were used. Results: Ten patients were found to have three copies of xrcc1 CNV (RB: χ2=14.6 [p<0.001] and ED: χ2=4.88[p=0.0272]) and twelve had heterozygous rs25489 SNP (RB: χ2=0.278[p=0.599] and ED: χ2=0.112[p=0.732]). LOO-CV identified penile bulb D60 as the only significant QUANTEC predictor (rs=0.312 [p=0.0145]) for ED. Radiogenomic modeling yielded statistically significant, cross-validated NTCP models for RB (rs=0.243[p=0.0443], AUC=0.665) and ED (rs=0.276[p=0.0217], AUC=0.754). Conclusion: The radiogenomic modeling approach presented herein has been shown to identify NTCP models which have increased predictive power. Furthermore, CNVs appears to be useful genetic variants when added to dosimetric NTCP models. This work was partially supported by CIHR grant MOP-114910.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, P; Gang, Y; Qin, S
2016-06-15
Purpose: Many patients with technically unresectable or medically inoperable hepatocellular carcinoma (HCC) had hepatic dosimetric variations as a result of inter-fraction anatomical deformation. This study was conducted to assess the hepatic dosimetric consequences via reconstructing weekly dose in HCC patients receiving three dimensional conformal radiation therapy. Methods: Twenty-one HCC patients with 21 planning CT (pCT) scans and 63 weekly Cone-beam CT (CBCT) scans were enrolled in this investigation. Among them, six patients had been diagnosed of radiation induced liver disease (RILD) and the other fifteen patients had good prognosis after treatment. And each patient had three weekly CBCT before re-planning.more » In reconstructing CBCT-based weekly dose, we registered pCT to CBCT to provide the correct Hounsfield units for the CBCT using gradient-based deformable image registration (DIR), and this modified CBCT (mCBCT) were introduced to enable dose calculation.To obtain the weekly dosimetric consequences, the initial plan beam configurations and dose constraints were re-applied to mCBCT for performing dose calculation, and the mCBCT were extrapolated to 25 fractions. Besides, the manually delineated contour was propagated automatically onto the mCBCT of the new patient by exploiting the deformation vectors field, and the reconstructed weekly dose was mapped back to pCT to understand the dose distribution difference. Also, weekly dosimetric variations were compared with the hepatic radiation tolerance in terms of D50 and Dmean. Results: Among the twenty-one patients, the three weekly D50 increased by 0.7Gy, 5.1Gy and 6.1Gy, respectively, and Dmean increased by 0.9%, 4.7% and 5.5%, respectively. For patients with RILD, the average values of the third weekly D50 and Dmean were both high than hepatic radiation tolerance, while the values of patients without RILD were below. Conclusion: The planned dose on pCT was not a real dose to the liver, and the liver overdose increased the risk of RILD. The author would like to express great thanks to Lei Xing, Daniel S Kapp and Yong Yang in the Stanford University School of Medicine for their valuable suggestions to this work. This work is supported by NSFC(61471226), China Postdoctoral Science Foundation (2015T80739,2014M551949) and research funding from Shandong Province (JQ201516).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, X; Dalah, E; Prior, P
Purpose: Apparent diffusion coefficient (ADC) map may help to delineate the gross tumor volume (GTV) in prostate gland. Dose painting with external beam radiotherapy for GTV might increase the local tumor control. The purpose of this study is to explore the maximum boosting dose on GTV using VMAT without sacrificing sparing of organs at risk (OARs) in MRI based planning. Methods: VMAT plans for 5 prostate patients were generated following the commonly used dose volume (DV) criteria based on structures contoured on T2 weighted MRI with bulk electron density assignment using electron densities derived from ICRU46. GTV for each patientmore » was manually delineated based on ADC maps and fused to T2-weighted image set for planning study. A research planning system with Monte Carlo dose engine (Monaco, Elekta) was used to generate the VMAT plans with boosting dose on GTV gradually increased from 85Gy to 100Gy. DV parameters, including V(boosting-dose) (volume covered by boosting dose) for GTV, V75.6Gy for PTV, V45Gy, V70Gy, V72Gy and D1cc (Maximum dose to 1cc volume) for rectum and bladder, were used to measure plan quality. Results: All cases achieve at least 99.0% coverage of V(boosting-dose) on GTV and 95% coverage of V75.6Gy to the PTV. All the DV criteria, V45Gy≤50% and V70Gy≤15% for bladder and rectum, D1cc ≤77Gy (Rectum) and ≤80Gy (Bladder), V72Gy≤5% (rectum and bladder) were maintained when boosting GTV to 95Gy for all cases studied. Except for two patients, all the criteria were also met when the boosting dose goes to 100Gy. Conclusion: It is dosimetrically feasible safe to boost the dose to at least 95Gy to ADC defined GTV in prostate cancer using MRI guided VMAT delivery. Conclusion: It is dosimetrically feasible safe to boost the dose to at least 95Gy to ADC defined GTV in prostate cancer using MRI guided VMAT delivery. This research is partially supported by Elekta Inc.« less
Zhu, Jinhan; Chen, Lixin; Chen, Along; Luo, Guangwen; Deng, Xiaowu; Liu, Xiaowei
2015-04-11
To use a graphic processing unit (GPU) calculation engine to implement a fast 3D pre-treatment dosimetric verification procedure based on an electronic portal imaging device (EPID). The GPU algorithm includes the deconvolution and convolution method for the fluence-map calculations, the collapsed-cone convolution/superposition (CCCS) algorithm for the 3D dose calculations and the 3D gamma evaluation calculations. The results of the GPU-based CCCS algorithm were compared to those of Monte Carlo simulations. The planned and EPID-based reconstructed dose distributions in overridden-to-water phantoms and the original patients were compared for 6 MV and 10 MV photon beams in intensity-modulated radiation therapy (IMRT) treatment plans based on dose differences and gamma analysis. The total single-field dose computation time was less than 8 s, and the gamma evaluation for a 0.1-cm grid resolution was completed in approximately 1 s. The results of the GPU-based CCCS algorithm exhibited good agreement with those of the Monte Carlo simulations. The gamma analysis indicated good agreement between the planned and reconstructed dose distributions for the treatment plans. For the target volume, the differences in the mean dose were less than 1.8%, and the differences in the maximum dose were less than 2.5%. For the critical organs, minor differences were observed between the reconstructed and planned doses. The GPU calculation engine was used to boost the speed of 3D dose and gamma evaluation calculations, thus offering the possibility of true real-time 3D dosimetric verification.
Radiation response and basic dosimetric characterisation of the ‘Magic Plate’
NASA Astrophysics Data System (ADS)
Alrowaili, Z. A.; Lerch, M.; Petasecca, M.; Carolan, M.; Rosenfeld, A.
2017-02-01
Two Dimensional (2D) silicon diode arrays are often implemented in radiation therapy quality assurance (QA) applications due to their advantages such as: real-time operation (compared to the films), large dynamic range and small size (compared to ionization chambers). The Centre for Medical Radiation Physics, University of Wollongong has developed a multifunctional 2D silicon diode array known as the Magic Plate (MP) for real-time applications and is suitable as a transmission detector for photon flunce mapping (MPTM) or for in phantom dose mapping (MPDM). The paper focusses on the characterisation of the MPDM in terms of output factor and square field beam profiling in 6 MV, 10 MV and 18 MV clinical photon fields. We have found excellent agreement with three different ion chambers for all measured parameters with output factors agreeing within 1.2% and field profiles agreeing within 3% and/or 3mm. This work has important implications for the development of the MP when operating in transmission mapping mode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S; Zheng, Y; Albani, D
Purpose: To reduce internal target volume (ITV), respiratory management is a must in imaging and treatment for lung, liver, and breast cancers. We investigated the dosimetric accuracy of VMAT treatment delivery with a Response™ gating system linked to linear accelerator. Methods: The Response™ gating module designed to directly control radiation beam by breath-holding with a ABC system (Elekta AB, Stockholm, Sweden) was tested for VMAT treatments. Seven VMAT plans including three conventional and four stereotactic body radiotherapy (SBRT) cases were evaluated. Each plan was composed of two or four arcs of 6MV radiation beam with prescribed dose ranged from 1.8more » to 9 Gy per fraction. Each plan was delivered continuously without gating and delivered with multiple interruptions by the ResponseTM gating module with a 20 or 30 second breath-holding period. MapCheck2 and Gafchromic EBT3 films sandwiched in MapPHAN were used to measure the delivered dose with and without gating. Films were scanned on a flatbed color scanner, and red channel was extracted for film dosimetry. Gamma analysis was performed to analyze the dosimetrical accuracy of the radiation delivery with gating. Results: The measured doses with gating remarkably agree with the planned dose distributions in the results of gamma index passing rate (within 20% isodose; >98% for 3%/3mm and >92% for 2%/2mm in MapCheck2, and >91% for 3%/3mm criteria in EBT3 film except one case which was for large target and highly modulated). No significant difference (student t-test: p-value < 0.0005) was shown between the doses delivered with and without gating. There was no indication of radiation gap or overlapping during deliver interruption in film dosimetry. Conclusion: The Response™ gating system can be safely used during VMAT treatment. The accurate performance of the gating system linked to ABC can contribute to ITV reduction for SBRT using VMAT.« less
Paradis, Eric; Cao, Yue; Lawrence, Theodore S; Tsien, Christina; Feng, Mary; Vineberg, Karen; Balter, James M
2015-12-01
The purpose of this study was to assess the dosimetric accuracy of synthetic CT (MRCT) volumes generated from magnetic resonance imaging (MRI) data for focal brain radiation therapy. A study was conducted in 12 patients with gliomas who underwent both MR and CT imaging as part of their simulation for external beam treatment planning. MRCT volumes were generated from MR images. Patients' clinical treatment planning directives were used to create 12 individual volumetric modulated arc therapy (VMAT) plans, which were then optimized 10 times on each of their respective CT and MRCT-derived electron density maps. Dose metrics derived from optimization criteria, as well as monitor units and gamma analyses, were evaluated to quantify differences between the imaging modalities. Mean differences between planning target volume (PTV) doses on MRCT and CT plans across all patients were 0.0% (range: -0.1 to 0.2%) for D(95%); 0.0% (-0.7 to 0.6%) for D(5%); and -0.2% (-1.0 to 0.2%) for D(max). MRCT plans showed no significant changes in monitor units (-0.4%) compared to CT plans. Organs at risk (OARs) had average D(max) differences of 0.0 Gy (-2.2 to 1.9 Gy) over 85 structures across all 12 patients, with no significant differences when calculated doses approached planning constraints. Focal brain VMAT plans optimized on MRCT images show excellent dosimetric agreement with standard CT-optimized plans. PTVs show equivalent coverage, and OARs do not show any overdose. These results indicate that MRI-derived synthetic CT volumes can be used to support treatment planning of most patients treated for intracranial lesions. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paradis, Eric, E-mail: eparadis@umich.edu; Cao, Yue; Department of Radiology, University of Michigan Hospital and Health Systems, Ann Arbor, Michigan
2015-12-01
Purpose: The purpose of this study was to assess the dosimetric accuracy of synthetic CT (MRCT) volumes generated from magnetic resonance imaging (MRI) data for focal brain radiation therapy. Methods and Materials: A study was conducted in 12 patients with gliomas who underwent both MR and CT imaging as part of their simulation for external beam treatment planning. MRCT volumes were generated from MR images. Patients' clinical treatment planning directives were used to create 12 individual volumetric modulated arc therapy (VMAT) plans, which were then optimized 10 times on each of their respective CT and MRCT-derived electron density maps. Dosemore » metrics derived from optimization criteria, as well as monitor units and gamma analyses, were evaluated to quantify differences between the imaging modalities. Results: Mean differences between planning target volume (PTV) doses on MRCT and CT plans across all patients were 0.0% (range: −0.1 to 0.2%) for D{sub 95%}; 0.0% (−0.7 to 0.6%) for D{sub 5%}; and −0.2% (−1.0 to 0.2%) for D{sub max}. MRCT plans showed no significant changes in monitor units (−0.4%) compared to CT plans. Organs at risk (OARs) had average D{sub max} differences of 0.0 Gy (−2.2 to 1.9 Gy) over 85 structures across all 12 patients, with no significant differences when calculated doses approached planning constraints. Conclusions: Focal brain VMAT plans optimized on MRCT images show excellent dosimetric agreement with standard CT-optimized plans. PTVs show equivalent coverage, and OARs do not show any overdose. These results indicate that MRI-derived synthetic CT volumes can be used to support treatment planning of most patients treated for intracranial lesions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Y; Yuan, J; Geis, P
2016-06-15
Purpose: To verify the similarity of the dosimetric characteristics between two Elekta linear accelerators (linacs) in order to treat patients interchangeably on these two machines without re-planning. Methods: To investigate the viability of matching the 6 MV flattened beam on an existing linac (Elekta Synergy with Agility head) with a recently installed new linca (Elekta Versa HD), percent depth doses (PDD), flatness and symmetry output factors were compared for both machines. To validate the beam matching among machines, we carried out two approaches to cross-check the dosimetrical equivalence: 1) the prior treatment plans were re-computed based on the newly builtmore » Versa HD treatment planning system (TPS) model without changing the beam control points; 2) The same plans were delivered on both machines and the radiation dose measurements on a MapCheck2 were compared with TPS calculations. Three VMAT plans (Head and neck, lung, and prostate) were used in the study. Results: The difference between the PDDs for 10×10 cm{sup 2} field at all depths was less than 0.8%. The difference of flatness and symmetry for 30×30 cm{sup 2} field was less than 0.8%, and the measured output factors varies by less than 1% for each field size ranging from 2×2 cm2 to 40×40 cm{sup 2}. For the same plans, the maximum difference of the two calculated dose distributions is 2% of prescription. For the QA measurements, the gamma index passing rates were above 99% for 3%/3mm criteria with 10% threshold for all three clinical plans. Conclusion: A beam modality matching between two Elekta linacs is demonstrated with a cross-checking approach.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chuanben; Fei, Zhaodong; Chen, Lisha
This study aimed to quantify dosimetric effects of weight loss for nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiation therapy (IMRT). Overall, 25 patients with NPC treated with IMRT were enrolled. We simulated weight loss during IMRT on the computer. Weight loss model was based on the planning computed tomography (CT) images. The original external contour of head and neck was labeled plan 0, and its volume was regarded as pretreatment normal weight. We shrank the external contour with different margins (2, 3, and 5 mm) and generated new external contours of head and neck. The volumes of reconstructed external contoursmore » were regarded as weight during radiotherapy. After recontouring outlines, the initial treatment plan was mapped to the redefined CT scans with the same beam configurations, yielding new plans. The computer model represented a theoretical proportional weight loss of 3.4% to 13.7% during the course of IMRT. The dose delivered to the planning target volume (PTV) of primary gross tumor volume and clinical target volume significantly increased by 1.9% to 2.9% and 1.8% to 2.9% because of weight loss, respectively. The dose to the PTV of gross tumor volume of lymph nodes fluctuated from −2.0% to 1.0%. The dose to the brain stem and the spinal cord was increased (p < 0.001), whereas the dose to the parotid gland was decreased (p < 0.001). Weight loss may lead to significant dosimetric change during IMRT. Repeated scanning and replanning for patients with NPC with an obvious weight loss may be necessary.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Z; Koyfman, S; Xia, P
2015-06-15
Purpose: To evaluate geometric and dosimetric uncertainties of CT-CBCT deformable image registration (DIR) algorithms using digital phantoms generated from real patients. Methods: We selected ten H&N cancer patients with adaptive IMRT. For each patient, a planning CT (CT1), a replanning CT (CT2), and a pretreatment CBCT (CBCT1) were used as the basis for digital phantom creation. Manually adjusted meshes were created for selected ROIs (e.g. PTVs, brainstem, spinal cord, mandible, and parotids) on CT1 and CT2. The mesh vertices were input into a thin-plate spline algorithm to generate a reference displacement vector field (DVF). The reference DVF was applied tomore » CBCT1 to create a simulated mid-treatment CBCT (CBCT2). The CT-CBCT digital phantom consisted of CT1 and CBCT2, which were linked by the reference DVF. Three DIR algorithms (Demons, B-Spline, and intensity-based) were applied to these ten digital phantoms. The images, ROIs, and volumetric doses were mapped from CT1 to CBCT2 using the DVFs computed by these three DIRs and compared to those mapped using the reference DVF. Results: The average Dice coefficients for selected ROIs were from 0.83 to 0.94 for Demons, from 0.82 to 0.95 for B-Spline, and from 0.67 to 0.89 for intensity-based DIR. The average Hausdorff distances for selected ROIs were from 2.4 to 6.2 mm for Demons, from 1.8 to 5.9 mm for B-Spline, and from 2.8 to 11.2 mm for intensity-based DIR. The average absolute dose errors for selected ROIs were from 0.7 to 2.1 Gy for Demons, from 0.7 to 2.9 Gy for B- Spline, and from 1.3 to 4.5 Gy for intensity-based DIR. Conclusion: Using clinically realistic CT-CBCT digital phantoms, Demons and B-Spline were shown to have similar geometric and dosimetric uncertainties while intensity-based DIR had the worst uncertainties. CT-CBCT DIR has the potential to provide accurate CBCT-based dose verification for H&N adaptive radiotherapy. Z Shen: None; K Bzdusek: an employee of Philips Healthcare; S Koyfman: None; P Xia: received research grants from Philips Healthcare and Siemens Healthcare.« less
Arthur, Douglas W; Vicini, Frank A; Todor, Dorin A; Julian, Thomas B; Cuttino, Laurie W; Mukhopadhyay, Nitai D
2013-06-01
Final dosimetric findings of a completed, multi-institutional phase 4 registry trial using the Contura Multi-Lumen Balloon (MLB) breast brachytherapy catheter to deliver accelerated partial breast irradiation (APBI) in patients with early-stage breast cancer are presented. Three dosimetric plans with identical target coverage were generated for each patient for comparison: multilumen multidwell (MLMD); central-lumen multidwell (CLMD); and central-lumen single-dwell (CLSD) loading of the Contura catheter. For this study, a successful treatment plan achieved ideal dosimetric goals and included the following: ≥ 95% of the prescribed dose (PD) covering ≥ 95% of the target volume (TV); maximum skin dose ≤ 125% of the PD; maximum rib dose ≤ 145% of the PD; and V150 ≤50 cc and V200 ≤ 10 cc. Between January 2008 and February 2011, 23 institutions participated. A total of 318 patients were available for dosimetric review. Using the Contura MLB, all dosimetric criteria were met in 78.93% of cases planned with MLMD versus 55.38% with the CLMD versus 37.66% with the CLSD (P ≤.0001). Evaluating all patients with the full range of skin to balloon distance represented, median maximum skin dose was reduced by 12% and median maximum rib dose by 13.9% when using MLMD-based dosimetric plans compared to CLSD. The dosimetric benefit of MLMD was further demonstrated in the subgroup of patients where skin thickness was <5 mm, where MLMD use allowed a 38% reduction in median maximum skin dose over CLSD. For patients with rib distance <5 mm, the median maximum rib dose reduction was 27%. Use of the Contura MLB catheter produced statistically significant improvements in dosimetric capabilities between CLSD and CLMD treatments. This device approach demonstrates the ability not only to overcome the barriers of limited skin thickness and close rib proximity, but to consistently achieve a higher standard of dosimetric planning goals. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arthur, Douglas W., E-mail: darthur@mcvh-vcu.edu; Vicini, Frank A.; Todor, Dorin A.
2013-06-01
Purpose: Final dosimetric findings of a completed, multi-institutional phase 4 registry trial using the Contura Multi-Lumen Balloon (MLB) breast brachytherapy catheter to deliver accelerated partial breast irradiation (APBI) in patients with early-stage breast cancer are presented. Methods and Materials: Three dosimetric plans with identical target coverage were generated for each patient for comparison: multilumen multidwell (MLMD); central-lumen multidwell (CLMD); and central-lumen single-dwell (CLSD) loading of the Contura catheter. For this study, a successful treatment plan achieved ideal dosimetric goals and included the following: ≥95% of the prescribed dose (PD) covering ≥95% of the target volume (TV); maximum skin dose ≤125%more » of the PD; maximum rib dose ≤145% of the PD; and V150 ≤50 cc and V200 ≤10 cc. Results: Between January 2008 and February 2011, 23 institutions participated. A total of 318 patients were available for dosimetric review. Using the Contura MLB, all dosimetric criteria were met in 78.93% of cases planned with MLMD versus 55.38% with the CLMD versus 37.66% with the CLSD (P≤.0001). Evaluating all patients with the full range of skin to balloon distance represented, median maximum skin dose was reduced by 12% and median maximum rib dose by 13.9% when using MLMD-based dosimetric plans compared to CLSD. The dosimetric benefit of MLMD was further demonstrated in the subgroup of patients where skin thickness was <5 mm, where MLMD use allowed a 38% reduction in median maximum skin dose over CLSD. For patients with rib distance <5 mm, the median maximum rib dose reduction was 27%. Conclusions: Use of the Contura MLB catheter produced statistically significant improvements in dosimetric capabilities between CLSD and CLMD treatments. This device approach demonstrates the ability not only to overcome the barriers of limited skin thickness and close rib proximity, but to consistently achieve a higher standard of dosimetric planning goals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teng, C; Janssens, G; Ainsley, C
Purpose: Proton dose distribution is sensitive to tumor regression and tissue and normal anatomy changes. Replanning is sometimes necessary during treatment to ensure continue tumor coverage or avoid overtreatment of organs at risk (OARs). We investigated action thresholds for replanning and identified both dosimetric and non-dosimetric metrics that would predict a need for replan. Methods: All consecutive lung cancer patients (n = 188) who received definitive proton radiotherapy and had more than two evaluation CT scans at the Roberts Proton Therapy Center (Philadelphia, USA) from 2011 to 2015 were included in this study. The cohort included a variety of tumormore » sizes, locations, histology, beam angles, as well as radiation-induced tumor and lung change. Dosimetric changes during therapy were characterized by changes in the dose volume distribution of PTV, ITV, and OARs (heart, cord, esophagus, brachial plexus and lungs). Tumor and lung change were characterized by changes in sizes, and in the distribution of Hounsfield numbers and water equivalent thickness (WET) along the beam path. We applied machine learning tools to identify both dosimetric and non-dosimetric metrics that predicted a replan. Results: Preliminary data showed that clinical indicators (n = 54) were highly correlated; thus, a simple indicator may be derived to guide the action threshold for replanning. Additionally, tumor regression alone could not predict dosimetric changes in OARs; it required further information about beam angles and tumor locations. Conclusion: Both dosimetric and non-dosimetric factors are predictive of the need for replanning during proton treatment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gräfe, James; Khan, Rao; Meyer, Tyler
2014-08-15
In this study we investigate the deliverability of dosimetric plans generated by the irregular surface compensator (ISCOMP) algorithm for 6 MV photon beams in Eclipse (Varian Medical System, CA). In contrast to physical tissue compensation, the electronic ISCOMP uses MLCs to dynamically modulate the fluence of a photon beam in order to deliver a uniform dose at a user defined plane in tissue. This method can be used to shield critical organs that are located within the treatment portal or improve dose uniformity by tissue compensation in inhomogeneous regions. Three site specific plans and a set of test fields weremore » evaluated using the γ-metric of 3%/ 3 mm on Varian EPID, MapCHECK, and Gafchromic EBT3 film with a clinical tolerance of >95% passing rates. Point dose measurements with an NRCC calibrated ionization chamber were also performed to verify the absolute dose delivered. In all cases the MapCHECK measured plans met the gamma criteria. The mean passing rate for the six EBT3 film field measurements was 96.2%, with only two fields at 93.4 and 94.0% passing rates. The EPID plans passed for fields encompassing the central ∼10 × 10 cm{sup 2} region of the detector; however for larger fields and greater off-axis distances discrepancies were observed and attributed to the profile corrections and modeling of backscatter in the portal dose calculation. The magnitude of the average percentage difference for 21 ion chamber point dose measurements and 17 different fields was 1.4 ± 0.9%, and the maximum percentage difference was −3.3%. These measurements qualify the algorithm for routine clinical use subject to the same pre-treatment patient specific QA as IMRT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Olive; Chan, Biu; Moseley, Joanne
Purpose: We have developed a semi-automated dose accumulation workflow for Head and Neck Cancer (HNC) patients to evaluate volumetric and dosimetric changes that take place during radiotherapy. This work will be used to assess how dosimetric changes affect both toxicity and disease control, hence inform the feasibility and design of a prospective HNC adaptive trial. Methods: RayStation 4.5.2 features deformable image registration (DIR), where structures already defined on the planning CT image set can be deformably mapped onto cone-beam computed tomography (CBCT) images, accounting for daily treatment set-up shifts and changes in patient anatomy. The daily delivered dose can bemore » calculated on each CBCT and mapped back to the planning CT to allow dose accumulation. The process is partially automated using Python scripts developed in collaboration with RaySearch. Results: To date we have performed dose accumulation on 18 HNC patients treated at our institution during 2013–2015 under REB approval. Our semi-automated process establishes clinical feasibility. Generally, dose accumulation for the entire treatment course of one case takes 60–120 minutes: importing all CBCTs requires 20–30 minutes as each patient has 30 to 40 treated fractions; image registration and dose accumulation require 60–90 minutes. This is in contrast to the process without automated scripts where dose accumulation alone would take 3–5 hours. Conclusions: We have developed a reliable workflow for retrospective dose tracking in HNC using RayStation. The process has been validated for HNC patients treated on both Elekta and Varian linacs with CBCTs acquired on XVI and OBI platforms respectively.« less
Hot pixel generation in active pixel sensors: dosimetric and micro-dosimetric response
NASA Technical Reports Server (NTRS)
Scheick, Leif; Novak, Frank
2003-01-01
The dosimetric response of an active pixel sensor is analyzed. heavy ions are seen to damage the pixel in much the same way as gamma radiation. The probability of a hot pixel is seen to exhibit behavior that is not typical with other microdose effects.
Dosimetric Verification of IMRT Treatment Plans Using an Electronic Portal Imaging Device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruszyna, Marta
This paper presents the procedures and results of dosimetric verification using an Electronic Portal Imaging Device as a tool for pre-treatment dosimetry in IMRT technique at the Greater Poland Cancer Centre in Poznan, Poland. The evaluation of dosimetric verification for various organ, during a 2 year period is given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arthur, Douglas W., E-mail: darthur@mcvh-vcu.ed; Vicini, Frank A.; Todor, Dorin A.
2011-01-01
Purpose: Dosimetric findings in patients treated with the Contura multilumen balloon (MLB) breast brachytherapy catheter to deliver accelerated partial breast irradiation (APBI) on a multi-institutional Phase IV registry trial are presented. Methods and Materials: Computed tomography-based three-dimensional planning with dose optimization was performed. For the trial, new ideal dosimetric goals included (1) {>=}95% of the prescribed dose (PD) covering {>=}90% of the target volume, (2) a maximum skin dose {<=}125% of the PD, (3) maximum rib dose {<=}145% of the PD, and (4) the V150 {<=}50 cc and V200 {<=}10 cc. The ability to concurrently achieve these dosimetric goals usingmore » the Contura MLB was analyzed. Results: 144 cases were available for review. Using the MLB, all dosimetric criteria were met in 76% of cases. Evaluating dosimetric criteria individually, 92% and 89% of cases met skin and rib dose criteria, respectively. In 93% of cases, ideal target volume coverage goals were met, and in 99%, dose homogeneity criteria (V150 and V200) were satisfied. When skin thickness was {>=}5 mm to <7 mm, the median skin dose was limited to 120.1% of the PD, and when skin thickness was <5 mm, the median skin dose was 124.2%. When rib distance was <5 mm, median rib dose was reduced to 136.5% of the PD. When skin thickness was <7 mm and distance to rib was <5 mm, median skin and rib doses were jointly limited to 120.6% and 142.1% of the PD, respectively. Conclusion: The Contura MLB catheter provided the means of achieving the imposed higher standard of dosimetric goals in the majority of clinical scenarios encountered.« less
Practical simplifications for radioimmunotherapy dosimetric models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, S.; DeNardo, G.L.; O`Donnell, R.T.
1999-01-01
Radiation dosimetry is potentially useful for assessment and prediction of efficacy and toxicity for radionuclide therapy. The usefulness of these dose estimates relies on the establishment of a dose-response model using accurate pharmacokinetic data and a radiation dosimetric model. Due to the complexity in radiation dose estimation, many practical simplifications have been introduced in the dosimetric modeling for clinical trials of radioimmunotherapy. Although research efforts are generally needed to improve the simplifications used at each stage of model development, practical simplifications are often possible for specific applications without significant consequences to the dose-response model. In the development of dosimetric methodsmore » for radioimmunotherapy, practical simplifications in the dosimetric models were introduced. This study evaluated the magnitude of uncertainty associated with practical simplifications for: (1) organ mass of the MIRD phantom; (2) radiation contribution from target alone; (3) interpolation of S value; (4) macroscopic tumor uniformity; and (5) fit of tumor pharmacokinetic data.« less
Implementation of tetrahedral-mesh geometry in Monte Carlo radiation transport code PHITS
NASA Astrophysics Data System (ADS)
Furuta, Takuya; Sato, Tatsuhiko; Han, Min Cheol; Yeom, Yeon Soo; Kim, Chan Hyeong; Brown, Justin L.; Bolch, Wesley E.
2017-06-01
A new function to treat tetrahedral-mesh geometry was implemented in the particle and heavy ion transport code systems. To accelerate the computational speed in the transport process, an original algorithm was introduced to initially prepare decomposition maps for the container box of the tetrahedral-mesh geometry. The computational performance was tested by conducting radiation transport simulations of 100 MeV protons and 1 MeV photons in a water phantom represented by tetrahedral mesh. The simulation was repeated with varying number of meshes and the required computational times were then compared with those of the conventional voxel representation. Our results show that the computational costs for each boundary crossing of the region mesh are essentially equivalent for both representations. This study suggests that the tetrahedral-mesh representation offers not only a flexible description of the transport geometry but also improvement of computational efficiency for the radiation transport. Due to the adaptability of tetrahedrons in both size and shape, dosimetrically equivalent objects can be represented by tetrahedrons with a much fewer number of meshes as compared its voxelized representation. Our study additionally included dosimetric calculations using a computational human phantom. A significant acceleration of the computational speed, about 4 times, was confirmed by the adoption of a tetrahedral mesh over the traditional voxel mesh geometry.
Implementation of tetrahedral-mesh geometry in Monte Carlo radiation transport code PHITS.
Furuta, Takuya; Sato, Tatsuhiko; Han, Min Cheol; Yeom, Yeon Soo; Kim, Chan Hyeong; Brown, Justin L; Bolch, Wesley E
2017-06-21
A new function to treat tetrahedral-mesh geometry was implemented in the particle and heavy ion transport code systems. To accelerate the computational speed in the transport process, an original algorithm was introduced to initially prepare decomposition maps for the container box of the tetrahedral-mesh geometry. The computational performance was tested by conducting radiation transport simulations of 100 MeV protons and 1 MeV photons in a water phantom represented by tetrahedral mesh. The simulation was repeated with varying number of meshes and the required computational times were then compared with those of the conventional voxel representation. Our results show that the computational costs for each boundary crossing of the region mesh are essentially equivalent for both representations. This study suggests that the tetrahedral-mesh representation offers not only a flexible description of the transport geometry but also improvement of computational efficiency for the radiation transport. Due to the adaptability of tetrahedrons in both size and shape, dosimetrically equivalent objects can be represented by tetrahedrons with a much fewer number of meshes as compared its voxelized representation. Our study additionally included dosimetric calculations using a computational human phantom. A significant acceleration of the computational speed, about 4 times, was confirmed by the adoption of a tetrahedral mesh over the traditional voxel mesh geometry.
Direct aperture optimization using an inverse form of back-projection.
Zhu, Xiaofeng; Cullip, Timothy; Tracton, Gregg; Tang, Xiaoli; Lian, Jun; Dooley, John; Chang, Sha X
2014-03-06
Direct aperture optimization (DAO) has been used to produce high dosimetric quality intensity-modulated radiotherapy (IMRT) treatment plans with fast treatment delivery by directly modeling the multileaf collimator segment shapes and weights. To improve plan quality and reduce treatment time for our in-house treatment planning system, we implemented a new DAO approach without using a global objective function (GFO). An index concept is introduced as an inverse form of back-projection used in the CT multiplicative algebraic reconstruction technique (MART). The index, introduced for IMRT optimization in this work, is analogous to the multiplicand in MART. The index is defined as the ratio of the optima over the current. It is assigned to each voxel and beamlet to optimize the fluence map. The indices for beamlets and segments are used to optimize multileaf collimator (MLC) segment shapes and segment weights, respectively. Preliminary data show that without sacrificing dosimetric quality, the implementation of the DAO reduced average IMRT treatment time from 13 min to 8 min for the prostate, and from 15 min to 9 min for the head and neck using our in-house treatment planning system PlanUNC. The DAO approach has also shown promise in optimizing rotational IMRT with burst mode in a head and neck test case.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atari, N.A.; Svensson, G.K.
1986-05-01
A high-resolution digital dosimetric system has been developed for the spatial characterization of radiation fields. The system comprises the following: 0.5-mm-thick, 25-mm-diam CaF/sub 2/:Dy thermoluminescent crystal; intensified charge coupled device video camera; video cassette recorder; and a computerized image processing subsystem. The optically flat single crystal is used as a radiation imaging device and the subsequent thermally stimulated phosphorescence is viewed by the intensified camera for further processing and analysis. Parameters governing the performance characteristics of the system were measured. A spatial resolution limit of 31 +- 2 ..mu..m (1sigma) corresponding to 16 +- 1 line pair/mm measured at themore » 4% level of the modulation transfer function has been achieved. The full width at half maximum of the line spread function measured independently by the slit method or derived from the edge response function was found to be 69 +- 4 ..mu..m (1sigma). The high resolving power, speed of readout, good precision, wide dynamic range, and the large image storage capacity make the system suitable for the digital mapping of the relative distribution of absorbed doses for various small radiation fields and the edges of larger fields.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atari, N.A.; Svensson, G.K.
1986-05-01
A high-resolution digital dosimetric system has been developed for the spatial characterization of radiation fields. The system comprises the following: 0.5-mm-thick, 25-mm-diam CaF2:Dy thermoluminescent crystal; intensified charge coupled device video camera; video cassette recorder; and a computerized image processing subsystem. The optically flat single crystal is used as a radiation imaging device and the subsequent thermally stimulated phosphorescence is viewed by the intensified camera for further processing and analysis. Parameters governing the performance characteristics of the system were measured. A spatial resolution limit of 31 +/- 2 microns (1 sigma) corresponding to 16 +/- 1 line pairs/mm measured at themore » 4% level of the modulation transfer function has been achieved. The full width at half maximum of the line spread function measured independently by the slit method or derived from the edge response function was found to be 69 +/- 4 microns (1 sigma). The high resolving power, speed of readout, good precision, wide dynamic range, and the large image storage capacity make the system suitable for the digital mapping of the relative distribution of absorbed doses for various small radiation fields and the edges of larger fields.« less
NASA Astrophysics Data System (ADS)
Marrale, Maurizio; Collura, Giorgio; Gallo, Salvatore; Nici, Stefania; Tranchina, Luigi; Abbate, Boris Federico; Marineo, Sandra; Caracappa, Santo; d'Errico, Francesco
2017-04-01
This work focused on the analysis of the temporal diffusion of ferric ions through PVA-GTA gel dosimeters. PVA-GTA gel samples, partly exposed with 6 MV X-rays in order to create an initial steep gradient, were mapped using magnetic resonance imaging on a 7T MRI scanner for small animals. Multiple images of the gels were acquired over several hours after irradiation and were analyzed to quantitatively extract the signal profile. The spatial resolution achieved is 200 μm and this makes this technique particularly suitable for the analysis of steep gradients of ferric ion concentration. The results obtained with PVA-GTA gels were compared with those achieved with agarose gels, which is a standard dosimetric gel formulation. The analysis showed that the diffusion process is much slower (more than five times) for PVA-GTA gels than for agarose ones. Furthermore, it is noteworthy that the diffusion coefficient value obtained through MRI analysis is significantly consistent with that obtained in separate study Marini et al. (Submitted for publication) using a totally independent method such as spectrophotometry. This is a valuable result highlighting that the good dosimetric features of this gel matrix not only can be reproduced but also can be measured through independent experimental techniques based on different physical principles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baly, L.; Otazo, M. R.; Molina, D.
2006-09-08
A study of the phototransference of charges from deep to dosimetric traps in GR-200 material is presented and its convenience for dose re-estimation in the dose range between 2 and 100mSv is also analyzed. The recovering coefficient (RC) defined as the ratio between the phototransferred thermoluminescence (PTTL) and the original thermoluminescence (TL) of the dosimetric trap was used to evaluate the ratio of phototransferred charges from deep traps and the original charges in the dosimetric traps. The results show the convenience of this method for dose re-estimation for this material in the selected range of doses.
Dosimetric audit in brachytherapy
Bradley, D A; Nisbet, A
2014-01-01
Dosimetric audit is required for the improvement of patient safety in radiotherapy and to aid optimization of treatment. The reassurance that treatment is being delivered in line with accepted standards, that delivered doses are as prescribed and that quality improvement is enabled is as essential for brachytherapy as it is for the more commonly audited external beam radiotherapy. Dose measurement in brachytherapy is challenging owing to steep dose gradients and small scales, especially in the context of an audit. Several different approaches have been taken for audit measurement to date: thimble and well-type ionization chambers, thermoluminescent detectors, optically stimulated luminescence detectors, radiochromic film and alanine. In this work, we review all of the dosimetric brachytherapy audits that have been conducted in recent years, look at current audits in progress and propose required directions for brachytherapy dosimetric audit in the future. The concern over accurate source strength measurement may be essentially resolved with modern equipment and calibration methods, but brachytherapy is a rapidly developing field and dosimetric audit must keep pace. PMID:24807068
Revision of the dosimetric parameters of the CSM11 LDR Cs-137 source.
Otal, Antonio; Martínez-Fernández, Juan Manuel; Granero, Domingo
2011-03-01
The clinical use of brachytherapy sources requires the existence of dosimetric data with enough of quality for the proper application of treatments in clinical practice. It has been found that the published data for the low dose rate CSM11 Cs-137 source lacks of smoothness in some regions because the data are too noisy. The purpose of this study was to calculate the dosimetric data for this source in order to provide quality dosimetric improvement of the existing dosimetric data of Ballester et al . [1]. In order to obtain the dose rate distributions Monte Carlo simulations were done using the GEANT4 code. A spherical phantom 40 cm in radius with the Cs-137 source located at the centre of the phantom was used. The results from Monte Carlo simulations were applied to derive AAPM Task Group 43 dosimetric parameters: anisotropy function, radial dose function, air kerma strength and dose rate constant. The dose rate constant obtained was 1.094 ± 0.002 cGy h -1 U -1 . The new calculated data agrees within experimental uncertainties with the existing data of Ballester et al . but without the statistical noise of that study. The obtained data presently fulfills all the requirements of the TG-43U1 update and thus it can be used in clinical practice.
Arthur, Douglas W; Vicini, Frank A; Todor, Dorin A; Julian, Thomas B; Lyden, Maureen R
2011-01-01
Dosimetric findings in patients treated with the Contura multilumen balloon (MLB) breast brachytherapy catheter to deliver accelerated partial breast irradiation (APBI) on a multi-institutional Phase IV registry trial are presented. Computed tomography-based three-dimensional planning with dose optimization was performed. For the trial, new ideal dosimetric goals included (1) ≥95% of the prescribed dose (PD) covering ≥90% of the target volume, (2) a maximum skin dose ≤125% of the PD, (3) maximum rib dose ≤145% of the PD, and (4) the V150 ≤50 cc and V200 ≤10 cc. The ability to concurrently achieve these dosimetric goals using the Contura MLB was analyzed. 144 cases were available for review. Using the MLB, all dosimetric criteria were met in 76% of cases. Evaluating dosimetric criteria individually, 92% and 89% of cases met skin and rib dose criteria, respectively. In 93% of cases, ideal target volume coverage goals were met, and in 99%, dose homogeneity criteria (V150 and V200) were satisfied. When skin thickness was ≥5 mm to <7 mm, the median skin dose was limited to 120.1% of the PD, and when skin thickness was <5 mm, the median skin dose was 124.2%. When rib distance was <5 mm, median rib dose was reduced to 136.5% of the PD. When skin thickness was <7 mm and distance to rib was <5 mm, median skin and rib doses were jointly limited to 120.6% and 142.1% of the PD, respectively. The Contura MLB catheter provided the means of achieving the imposed higher standard of dosimetric goals in the majority of clinical scenarios encountered. Copyright © 2011 Elsevier Inc. All rights reserved.
TU-CD-BRB-01: Normal Lung CT Texture Features Improve Predictive Models for Radiation Pneumonitis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krafft, S; The University of Texas Graduate School of Biomedical Sciences, Houston, TX; Briere, T
2015-06-15
Purpose: Existing normal tissue complication probability (NTCP) models for radiation pneumonitis (RP) traditionally rely on dosimetric and clinical data but are limited in terms of performance and generalizability. Extraction of pre-treatment image features provides a potential new category of data that can improve NTCP models for RP. We consider quantitative measures of total lung CT intensity and texture in a framework for prediction of RP. Methods: Available clinical and dosimetric data was collected for 198 NSCLC patients treated with definitive radiotherapy. Intensity- and texture-based image features were extracted from the T50 phase of the 4D-CT acquired for treatment planning. Amore » total of 3888 features (15 clinical, 175 dosimetric, and 3698 image features) were gathered and considered candidate predictors for modeling of RP grade≥3. A baseline logistic regression model with mean lung dose (MLD) was first considered. Additionally, a least absolute shrinkage and selection operator (LASSO) logistic regression was applied to the set of clinical and dosimetric features, and subsequently to the full set of clinical, dosimetric, and image features. Model performance was assessed by comparing area under the curve (AUC). Results: A simple logistic fit of MLD was an inadequate model of the data (AUC∼0.5). Including clinical and dosimetric parameters within the framework of the LASSO resulted in improved performance (AUC=0.648). Analysis of the full cohort of clinical, dosimetric, and image features provided further and significant improvement in model performance (AUC=0.727). Conclusions: To achieve significant gains in predictive modeling of RP, new categories of data should be considered in addition to clinical and dosimetric features. We have successfully incorporated CT image features into a framework for modeling RP and have demonstrated improved predictive performance. Validation and further investigation of CT image features in the context of RP NTCP modeling is warranted. This work was supported by the Rosalie B. Hite Fellowship in Cancer research awarded to SPK.« less
Combined online and offline adaptive radiation therapy: a dosimetric feasibility study.
Yang, Chengliang; Liu, Feng; Ahunbay, Ergun; Chang, Yu-Wen; Lawton, Colleen; Schultz, Christopher; Wang, Dian; Firat, Selim; Erickson, Beth; Li, X Allen
2014-01-01
The purpose of this work is to explore a new adaptive radiation therapy (ART) strategy, combined "online and offline" ART, that can fully account for interfraction variations similar to the existing online ART but with substantially reduced online effort. The concept for the combined ART is to perform online ART only for the fractions with obvious interfraction variations and to deliver the ART plan for that online fraction as well as the subsequent fractions until the next online fraction needs to be adapted. To demonstrate the idea, the daily computed tomographic (CT) data acquired during image guided radiation therapy (IGRT) with an in-room CT (CTVision, Siemens Healthcare, Amarillo, TX) for 6 representative patients (including 2 prostate, 1 head-and-neck, and 1 pancreatic cancer, 1 adrenal carcinoma, and 1 craniopharyngioma patients) were analyzed. Three types of plans were generated based on the following selected daily CTs: (1) IGRT repositioning plan, generated by applying the repositioning shifts to the original plan (representing the current IGRT practice); (2) Re-Opt plan, generated with full-scope optimization; and (3) ART plan, either online ART plan generated with an online ART tool (RealArt, Prowess Inc, Concord, CA) or offline ART plan generated with shifts from the online ART plan. Various dose-volume parameters were compared with measure dosimetric benefits of the ART plans based on daily dose distributions and the cumulative dose maps obtained with deformable image registration. In general, for all the cases studied, the ART (with 3-5 online ART) and Re-Opt plans provide comparable plan quality and offer significantly better target coverage and normal tissue sparing when compared with the repositioning plans. This improvement is statistically significant. The combined online and offline ART is dosimetrically equivalent to the online ART but with substantially reduced online effort, and enables immediate delivery of the adaptive plan when an obvious anatomic change is observed. Copyright © 2014 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
Petersen, Nick; Perrin, David; Newhauser, Wayne; Zhang, Rui
2017-01-01
The purpose of this study was to evaluate the impact of selected configuration parameters that govern multileaf collimator (MLC) transmission and rounded leaf offset in a commercial treatment planning system (TPS) (Pinnacle 3 , Philips Medical Systems, Andover, MA, USA) on the accuracy of intensity-modulated radiation therapy (IMRT) dose calculation. The MLC leaf transmission factor was modified based on measurements made with ionization chambers. The table of parameters containing rounded-leaf-end offset values was modified by measuring the radiation field edge as a function of leaf bank position with an ionization chamber in a scanning water-tank dosimetry system and comparing the locations to those predicted by the TPS. The modified parameter values were validated by performing IMRT quality assurance (QA) measurements on 19 gantry-static IMRT plans. Planar dose measurements were performed with radiographic film and a diode array (MapCHECK2) and compared to TPS calculated dose distributions using default and modified configuration parameters. Based on measurements, the leaf transmission factor was changed from a default value of 0.001 to 0.005. Surprisingly, this modification resulted in a small but statistically significant worsening of IMRT QA gamma-index passing rate, which revealed that the overall dosimetric accuracy of the TPS depends on multiple configuration parameters in a manner that is coupled and not intuitive because of the commissioning protocol used in our clinic. The rounded leaf offset table had little room for improvement, with the average difference between the default and modified offset values being -0.2 ± 0.7 mm. While our results depend on the current clinical protocols, treatment unit and TPS used, the methodology used in this study is generally applicable. Different clinics could potentially obtain different results and improve their dosimetric accuracy using our approach.
SU-F-T-513: Dosimetric Validation of Spatially Fractionated Radiotherapy Using Gel Dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papanikolaou, P; Watts, L; Kirby, N
2016-06-15
Purpose: Spatially fractionated radiation therapy, also known as GRID therapy, is used to treat large solid tumors by irradiating the target to a single dose of 10–20Gy through spatially distributed beamlets. We have investigated the use of a 3D gel for dosimetric characterization of GRID therapy. Methods: GRID therapy is an external beam analog of volumetric brachytherapy, whereby we produce a distribution of hot and cold dose columns inside the tumor volume. Such distribution can be produced with a block or by using a checker-like pattern with MLC. We have studied both types of GRID delivery. A cube shaped acrylicmore » phantom was filled with polymer gel and served as a 3D dosimeter. The phantom was scanned and the CT images were used to produce two plans in Pinnacle, one with the grid block and one with the MLC defined grid. A 6MV beam was used for the plan with a prescription of 1500cGy at dmax. The irradiated phantom was scanned in a 3T MRI scanner. Results: 3D dose maps were derived from the MR scans of the gel dosimeter and were found to be in good agreement with the predicted dose distribution from the RTP system. Gamma analysis showed a passing rate of 93% for 5% dose and 2mm DTA scoring criteria. Both relative and absolute dose profiles are in good agreement, except in the peripheral beamlets where the gel measured slightly higher dose, possibly because of the changing head scatter conditions that the RTP is not fully accounting for. Our results have also been benchmarked against ionization chamber measurements. Conclusion: We have investigated the use of a polymer gel for the 3D dosimetric characterization and evaluation of GRID therapy. Our results demonstrated that the planning system can predict fairly accurately the dose distribution for GRID type therapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samuvel, K; Yadav, G; Bhushan, M
2016-06-15
Purpose: To quantify the dosimetric accuracy of junction dose in double isocenter flattened and flatten filter free(FFF) intensity modulated radiation therapy(IMRT) and volumetric modulated arc therapy(VMAT) plan delivery using pelvis phantom. Methods: Five large field pelvis patients were selected for this study. Double isocenter IMRT and VMAT treatment plans were generated in Eclipse Treatment planning System (V.11.0) using 6MV FB and FFF beams. For all the plans same distance 17.0cm was kept between one isocenter to another isocenter. IMRT Plans were made with 7 coplanar fields and VMAT plans were made with full double arcs. Dose calculation was performed usingmore » AAA algorithms with dose grid size of 0.25 cm. Verification plans were calculated on Scanditronix Wellhofer pelvis slab phantom. Measurement point was selected and calculated, where two isocenter plan fields are overlapping, this measurement point was kept at distance 8.5cm from both isocenter. The plans were delivered using Varian TrueBeamTM machine on pelvis slab phantom. Point dose measurements was carried out using CC13 ion chamber volume of 0.13cm3. Results: The measured junction point dose are compared with TPS calculated dose. The mean difference observed was 4.5%, 6.0%, 4.0% and 7.0% for IMRT-FB,IMRT-FFF, VMAT-FB and VMAT-FFF respectively. The measured dose results shows closer agreement with calculated dose in Flatten beam planning in both IMRT and VMAT, whereas in FFF beam plan dose difference are more compared with flatten beam plan. Conclusion: Dosimetry accuracy of Large Field junction dose difference was found less in Flatten beam compared with FFF beam plan delivery. Even though more dosimetric studies are required to analyse junction dose for FFF beam planning using multiple point dose measurements and fluence map verification in field junction area.« less
NASA Astrophysics Data System (ADS)
Boissonnat, Guillaume; Fontbonne, Jean-Marc; Balanzat, Emmanuel; Boumard, Frederic; Carniol, Benjamin; Cassimi, Amine; Colin, Jean; Cussol, Daniel; Etasse, David; Fontbonne, Cathy; Frelin, Anne-Marie; Hommet, Jean; Salvador, Samuel
2017-06-01
Currently, radiobiology experiments using heavy ions at GANIL (Grand Accélérateur National d‧Ions Lourds) are conducted under the supervision of the CIMAP (Center for research on Ions, MAterials and Photonics). In this context, a new beam monitoring equipment named DOSION has been developed. It allows to perform measurements of accurate fluence and dose maps in near real time for each biological sample irradiated. In this paper, we present the detection system, its design, performances, calibration protocol and measurements performed during radiobiology experiments. This setup is currently available for any radiobiology experiments if one wishes to correlate one's own sample analysis to state-of-the-art dosimetric references.
Dosimetric assessment of the PRESAGE dosimeter for a proton pencil beam
NASA Astrophysics Data System (ADS)
Wuu, C.-S.; Xu, Y.; Qian, X.; Adamovics, J.; Cascio, E.; Lu, H.-M.
2013-06-01
The objective of this study is to assess the feasibility of using PRESAGE dosimeters for proton pencil beam dosimetry. Two different formulations of phantom materials were tested for their suitability in characterizing a single proton pencil beam. The dosimetric response of PRESAGE was found to be linear up to 4Gy. First-generation optical CT scanner, OCTOPUSTM was used to implement dose distributions for proton pencil beams since it provides most accurate readout. Percentage depth dose curves and beam profiles for two proton energy, 110 MeV, and 93 MeV, were used to evaluate the dosimetric performance of two PRESAGE phantom formulas. The findings from this study show that the dosimetric properties of the phantom materials match with basic physics of proton beams.
Dosimetric study of GZP6 60 Co high dose rate brachytherapy source.
Lei, Qin; Xu, Anjian; Gou, Chengjun; Wen, Yumei; He, Donglin; Wu, Junxiang; Hou, Qing; Wu, Zhangwen
2018-05-28
The purpose of this study was to obtain dosimetric parameters of GZP6 60 Co brachytherapy source number 3. The Geant4 MC code has been used to obtain the dose rate distribution following the American Association of Physicists in Medicine (AAPM) TG-43U1 dosimetric formalism. In the simulation, the source was centered in a 50 cm radius water phantom. The cylindrical ring voxels were 0.1 mm thick for r ≤ 1 cm, 0.5 mm for 1 cm < r ≤ 5 cm, and 1 mm for r > 5 cm. The kerma-dose approximation was performed for r > 0.75 cm to increase the simulation efficiency. Based on the numerical results, the dosimetric datasets were obtained. These results were compared with the available data of the similar 60 Co high dose rate sources and the detailed dosimetric characterization was discussed. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Kim, Hojin; Li, Ruijiang; Lee, Rena; Xing, Lei
2015-03-01
Conventional VMAT optimizes aperture shapes and weights at uniformly sampled stations, which is a generalization of the concept of a control point. Recently, rotational station parameter optimized radiation therapy (SPORT) has been proposed to improve the plan quality by inserting beams to the regions that demand additional intensity modulations, thus formulating non-uniform beam sampling. This work presents a new rotational SPORT planning strategy based on reweighted total-variation (TV) minimization (min.), using beam’s-eye-view dosimetrics (BEVD) guided beam selection. The convex programming based reweighted TV min. assures the simplified fluence-map, which facilitates single-aperture selection at each station for single-arc delivery. For the rotational arc treatment planning and non-uniform beam angle setting, the mathematical model needs to be modified by additional penalty term describing the fluence-map similarity and by determination of appropriate angular weighting factors. The proposed algorithm with additional penalty term is capable of achieving more efficient and deliverable plans adaptive to the conventional VMAT and SPORT planning schemes by reducing the dose delivery time about 5 to 10 s in three clinical cases (one prostate and two head-and-neck (HN) cases with a single and multiple targets). The BEVD guided beam selection provides effective and yet easy calculating methodology to select angles for denser, non-uniform angular sampling in SPORT planning. Our BEVD guided SPORT treatment schemes improve the dose sparing to femoral heads in the prostate and brainstem, parotid glands and oral cavity in the two HN cases, where the mean dose reduction of those organs ranges from 0.5 to 2.5 Gy. Also, it increases the conformation number assessing the dose conformity to the target from 0.84, 0.75 and 0.74 to 0.86, 0.79 and 0.80 in the prostate and two HN cases, while preserving the delivery efficiency, relative to conventional single-arc VMAT plans.
Long, David E; Tann, Mark; Huang, Ke Colin; Bartlett, Gregory; Galle, James O; Furukawa, Yukie; Maluccio, Mary; Cox, John A; Kong, Feng-Ming Spring; Ellsworth, Susannah G
2018-05-01
Hepatobiliary iminodiacetic acid (HIDA) scans provide global and regional assessments of liver function that can serve as a road map for functional avoidance in stereotactic body radiation therapy (SBRT) planning. Functional liver image guided hepatic therapy (FLIGHT), an innovative planning technique, is described and compared with standard planning using functional dose-volume histograms. Thresholds predicting for decompensation during follow up are evaluated. We studied 17 patients who underwent HIDA scans before SBRT. All SBRT cases were replanned using FLIGHT. The following dosimetric endpoints were compared for FLIGHT versus standard SBRT planning: functional residual capacity <15 Gy (FRC 15 HIDA), mean liver dose (MLD), equivalent uniform dose (EUD), and functional EUD (FEUD). Receiver operating characteristics curves were used to evaluate whether baseline HIDA values, standard cirrhosis scoring, and/or dosimetric data predicted clinical decompensation. Compared with standard planning, FLIGHT significantly improved FRC 15 HIDA (mean improvement: 5.3%) as well as MLD, EUD, and FEUD (P < .05). Considerable interindividual variations in the extent of benefit were noted. Decompensation during follow-up was associated with baseline global HIDA <2.915%/min/m 2 , FRC 15 HIDA <2.11%/min/m 2 , and MELD ≥11 (P < .05). FLIGHT with HIDA-based parameters may complement blood chemistry-based assessments of liver function and facilitate individualized, adaptive liver SBRT planning. Copyright © 2018. Published by Elsevier Inc.
Assessment of thunderstorm neutron radiation environment at altitudes of aviation flights
NASA Astrophysics Data System (ADS)
Drozdov, A.; Grigoriev, A.; Malyshkin, Y.
2013-02-01
High-energy radiation emitted from thunderclouds supposes generation of neutrons in photonuclear reactions of the gamma photons with air. This observation is supported by registration of neutrons during thunderstorm activity in a number of experiments, most of which established correlation with lightning. In this work we perform a modeling of the neutron generation and propagation processes at low atmospheric altitudes using current knowledge of the TGF source properties. On this basis we obtain dosimetric maps of thunderstorm neutron radiation and investigate possible radiation threat for aircraft flights. We estimate the maximal effective neutron dose that potentially can be received on board an aircraft in close proximity to the gamma source, to be of the order of 0.54 mSv over a time less than 0.1 s. This dose is considerably less than estimations obtained earlier for the associated electron and gamma radiation; nevertheless, this value is quite large by itself and under some circumstances the neutron component seems to be the most important for the dosimetric effect. Due to wide distribution in space, the thunderstorm neutrons are thought to also provide a convenient means for experimental investigation of gamma emissions from thunderclouds. To register neutrons from powerful gamma flashes that occur at the tops of thunderclouds, however, in the most favorable case one has to take a location above the 2 km level that is appropriate to mountains or aircraft facilities.
NASA Astrophysics Data System (ADS)
Chang, Jina; Tian, Zhen; Lu, Weiguo; Gu, Xuejun; Chen, Mingli; Jiang, Steve B.
2017-05-01
Multi-atlas segmentation (MAS) has been widely used to automate the delineation of organs at risk (OARs) for radiotherapy. Label fusion is a crucial step in MAS to cope with the segmentation variabilities among multiple atlases. However, most existing label fusion methods do not consider the potential dosimetric impact of the segmentation result. In this proof-of-concept study, we propose a novel geometry-dosimetry label fusion method for MAS-based OAR auto-contouring, which evaluates the segmentation performance in terms of both geometric accuracy and the dosimetric impact of the segmentation accuracy on the resulting treatment plan. Differently from the original selective and iterative method for performance level estimation (SIMPLE), we evaluated and rejected the atlases based on both Dice similarity coefficient and the predicted error of the dosimetric endpoints. The dosimetric error was predicted using our previously developed geometry-dosimetry model. We tested our method in MAS-based rectum auto-contouring on 20 prostate cancer patients. The accuracy in the rectum sub-volume close to the planning tumor volume (PTV), which was found to be a dosimetric sensitive region of the rectum, was greatly improved. The mean absolute distance between the obtained contour and the physician-drawn contour in the rectum sub-volume 2 mm away from PTV was reduced from 3.96 mm to 3.36 mm on average for the 20 patients, with the maximum decrease found to be from 9.22 mm to 3.75 mm. We also compared the dosimetric endpoints predicted for the obtained contours with those predicted for the physician-drawn contours. Our method led to smaller dosimetric endpoint errors than the SIMPLE method in 15 patients, comparable errors in 2 patients, and slightly larger errors in 3 patients. These results indicated the efficacy of our method in terms of considering both geometric accuracy and dosimetric impact during label fusion. Our algorithm can be applied to different tumor sites and radiation treatments, given a specifically trained geometry-dosimetry model.
Chang, Jina; Tian, Zhen; Lu, Weiguo; Gu, Xuejun; Chen, Mingli; Jiang, Steve B
2017-05-07
Multi-atlas segmentation (MAS) has been widely used to automate the delineation of organs at risk (OARs) for radiotherapy. Label fusion is a crucial step in MAS to cope with the segmentation variabilities among multiple atlases. However, most existing label fusion methods do not consider the potential dosimetric impact of the segmentation result. In this proof-of-concept study, we propose a novel geometry-dosimetry label fusion method for MAS-based OAR auto-contouring, which evaluates the segmentation performance in terms of both geometric accuracy and the dosimetric impact of the segmentation accuracy on the resulting treatment plan. Differently from the original selective and iterative method for performance level estimation (SIMPLE), we evaluated and rejected the atlases based on both Dice similarity coefficient and the predicted error of the dosimetric endpoints. The dosimetric error was predicted using our previously developed geometry-dosimetry model. We tested our method in MAS-based rectum auto-contouring on 20 prostate cancer patients. The accuracy in the rectum sub-volume close to the planning tumor volume (PTV), which was found to be a dosimetric sensitive region of the rectum, was greatly improved. The mean absolute distance between the obtained contour and the physician-drawn contour in the rectum sub-volume 2 mm away from PTV was reduced from 3.96 mm to 3.36 mm on average for the 20 patients, with the maximum decrease found to be from 9.22 mm to 3.75 mm. We also compared the dosimetric endpoints predicted for the obtained contours with those predicted for the physician-drawn contours. Our method led to smaller dosimetric endpoint errors than the SIMPLE method in 15 patients, comparable errors in 2 patients, and slightly larger errors in 3 patients. These results indicated the efficacy of our method in terms of considering both geometric accuracy and dosimetric impact during label fusion. Our algorithm can be applied to different tumor sites and radiation treatments, given a specifically trained geometry-dosimetry model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, Y; Ge, Y; Yuan, L
Purpose: To investigate the impact of outliers on knowledge modeling in radiation therapy, and develop a systematic workflow for identifying and analyzing geometric and dosimetric outliers using pelvic cases. Methods: Four groups (G1-G4) of pelvic plans were included: G1 (37 prostate cases), G2 (37 prostate plus lymph node cases), and G3 (37 prostate bed cases) are all clinical IMRT cases. G4 are 10 plans outside G1 re-planned with dynamic-arc to simulate dosimetric outliers. The workflow involves 2 steps: 1. identify geometric outliers, assess impact and clean up; 2. identify dosimetric outliers, assess impact and clean up.1. A baseline model wasmore » trained with all G1 cases. G2/G3 cases were then individually added to the baseline model as geometric outliers. The impact on the model was assessed by comparing leverage statistic of inliers (G1) and outliers (G2/G3). Receiver-operating-characteristics (ROC) analysis was performed to determine optimal threshold. 2. A separate baseline model was trained with 32 G1 cases. Each G4 case (dosimetric outliers) was then progressively added to perturb this model. DVH predictions were performed using these perturbed models for remaining 5 G1 cases. Normal tissue complication probability (NTCP) calculated from predicted DVH were used to evaluate dosimetric outliers’ impact. Results: The leverage of inliers and outliers was significantly different. The Area-Under-Curve (AUC) for differentiating G2 from G1 was 0.94 (threshold: 0.22) for bladder; and 0.80 (threshold: 0.10) for rectum. For differentiating G3 from G1, the AUC (threshold) was 0.68 (0.09) for bladder, 0.76 (0.08) for rectum. Significant increase in NTCP started from models with 4 dosimetric outliers for bladder (p<0.05), and with only 1 dosimetric outlier for rectum (p<0.05). Conclusion: We established a systematic workflow for identifying and analyzing geometric and dosimetric outliers, and investigated statistical metrics for detecting. Results validated the necessity for outlier detection and clean-up to enhance model quality in clinical practice. Research Grant: Varian master research grant.« less
Huet, C; Lemosquet, A; Clairand, I; Rioual, J B; Franck, D; de Carlan, L; Aubineau-Lanièce, I; Bottollier-Depois, J F
2009-01-01
Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. This dose distribution can be assessed by physical dosimetric reconstruction methods. Physical dosimetric reconstruction can be achieved using experimental or numerical techniques. This article presents the laboratory-developed SESAME--Simulation of External Source Accident with MEdical images--tool specific to dosimetric reconstruction of radiological accidents through numerical simulations which combine voxel geometry and the radiation-material interaction MCNP(X) Monte Carlo computer code. The experimental validation of the tool using a photon field and its application to a radiological accident in Chile in December 2005 are also described.
Dosimetric effects of patient rotational setup errors on prostate IMRT treatments
NASA Astrophysics Data System (ADS)
Fu, Weihua; Yang, Yong; Li, Xiang; Heron, Dwight E.; Saiful Huq, M.; Yue, Ning J.
2006-10-01
The purpose of this work is to determine dose delivery errors that could result from systematic rotational setup errors (ΔΦ) for prostate cancer patients treated with three-phase sequential boost IMRT. In order to implement this, different rotational setup errors around three Cartesian axes were simulated for five prostate patients and dosimetric indices, such as dose-volume histogram (DVH), tumour control probability (TCP), normal tissue complication probability (NTCP) and equivalent uniform dose (EUD), were employed to evaluate the corresponding dosimetric influences. Rotational setup errors were simulated by adjusting the gantry, collimator and horizontal couch angles of treatment beams and the dosimetric effects were evaluated by recomputing the dose distributions in the treatment planning system. Our results indicated that, for prostate cancer treatment with the three-phase sequential boost IMRT technique, the rotational setup errors do not have significant dosimetric impacts on the cumulative plan. Even in the worst-case scenario with ΔΦ = 3°, the prostate EUD varied within 1.5% and TCP decreased about 1%. For seminal vesicle, slightly larger influences were observed. However, EUD and TCP changes were still within 2%. The influence on sensitive structures, such as rectum and bladder, is also negligible. This study demonstrates that the rotational setup error degrades the dosimetric coverage of target volume in prostate cancer treatment to a certain degree. However, the degradation was not significant for the three-phase sequential boost prostate IMRT technique and for the margin sizes used in our institution.
NASA Astrophysics Data System (ADS)
Kang, Sang-Won; Suh, Tae-Suk; Chung, Jin-Beom; Eom, Keun-Yong; Song, Changhoon; Kim, In-Ah; Kim, Jae-Sung; Lee, Jeong-Woo; Cho, Woong
2017-02-01
The purpose of this study was to evaluate the impact of dosimetric and radiobiological parameters on treatment plans by using different dose-calculation algorithms and delivery-beam modes for prostate stereotactic body radiation therapy using an endorectal balloon. For 20 patients with prostate cancer, stereotactic body radiation therapy (SBRT) plans were generated by using a 10-MV photon beam with flattening filter (FF) and flattening-filter-free (FFF) modes. The total treatment dose prescribed was 42.7 Gy in 7 fractions to cover at least 95% of the planning target volume (PTV) with 95% of the prescribed dose. The dose computation was initially performed using an anisotropic analytical algorithm (AAA) in the Eclipse treatment planning system (Varian Medical Systems, Palo Alto, CA) and was then re-calculated using Acuros XB (AXB V. 11.0.34) with the same monitor units and multileaf collimator files. The dosimetric and the radiobiological parameters for the PTV and organs at risk (OARs) were analyzed from the dose-volume histogram. An obvious difference in dosimetric parameters between the AAA and the AXB plans was observed in the PTV and rectum. Doses to the PTV, excluding the maximum dose, were always higher in the AAA plans than in the AXB plans. However, doses to the other OARs were similar in both algorithm plans. In addition, no difference was observed in the dosimetric parameters for different delivery-beam modes when using the same algorithm to generate plans. As a result of the dosimetric parameters, the radiobiological parameters for the two algorithm plans presented an apparent difference in the PTV and the rectum. The average tumor control probability of the AAA plans was higher than that of the AXB plans. The average normal tissue complication probability (NTCP) to rectum was lower in the AXB plans than in the AAA plans. The AAA and the AXB plans yielded very similar NTCPs for the other OARs. In plans using the same algorithms, the NTCPs for delivery-beam modes showed no differences. This study demonstrated that the dosimetric and the radiobiological parameters for the PTV and the rectum affected the dose-calculation algorithms for prostate SBRT using an endorectal balloon. However, the dosimetric and the radiobiological parameters in the AAA and the AXB plans for other OARs were similar. Furthermore, difference between the dosimetric and the radiobiological parameters for different delivery-beam modes were not found when the same algorithm was used to generate the treatment plan.
Xin, Yong; Wang, Jia-Yang; Li, Liang; Tang, Tian-You; Liu, Gui-Hong; Wang, Jian-She; Xu, Yu-Mei; Chen, Yong; Zhang, Long-Zhen
2012-01-01
To make sure the feasibility with (18F)FDG PET/CT to guided dynamic intensity-modulated radiation therapy (IMRT) for nasopharyngeal carcinoma patients, by dosimetric verification before treatment. Chose 11 patients in III~IVA nasopharyngeal carcinoma treated with functional image-guided IMRT and absolute and relative dosimetric verification by Varian 23EX LA, ionization chamber, 2DICA of I'mRT Matrixx and IBA detachable phantom. Drawing outline and making treatment plan were by different imaging techniques (CT and (18F)FDG PET/CT). The dose distributions of the various regional were realized by SMART. The absolute mean errors of interest area were 2.39%±0.66 using 0.6 cc ice chamber. Results using DTA method, the average relative dose measurements within our protocol (3%, 3 mm) were 87.64% at 300 MU/min in all filed. Dosimetric verification before IMRT is obligatory and necessary. Ionization chamber and 2DICA of I'mRT Matrixx was the effective dosimetric verification tool for primary focal hyper metabolism in functional image-guided dynamic IMRT for nasopharyngeal carcinoma. Our preliminary evidence indicates that functional image-guided dynamic IMRT is feasible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yun; Catalano, Suzanne; Kelsey, Chris R.
2014-04-01
To quantitatively evaluate dosimetric effects of rotational offsets in stereotactic body radiation therapy (SBRT) for lung cancer. Overall, 11 lung SBRT patients (8 female and 3 male; mean age: 75.0 years) with medially located tumors were included. Treatment plans with simulated rotational offsets of 1°, 3°, and 5° in roll, yaw, and pitch were generated and compared with the original plans. Both clockwise and counterclockwise rotations were investigated. The following dosimetric metrics were quantitatively evaluated: planning target volume coverage (PTV V{sub 100%}), max PTV dose (PTV D{sub max}), percentage prescription dose to 0.35 cc of cord (cord D{sub 0.35} {submore » cc}), percentage prescription dose to 0.35 cc and 5 cc of esophagus (esophagus D{sub 0.35} {sub cc} and D{sub 5} {sub cc}), and volume of the lungs receiving at least 20 Gy (lung V{sub 20}). Statistical significance was tested using Wilcoxon signed rank test at the significance level of 0.05. Overall, small differences were found in all dosimetric matrices at all rotational offsets: 95.6% of differences were < 1% or < 1 Gy. Of all rotational offsets, largest change in PTV V{sub 100%}, PTV D{sub max}, cord D{sub 0.35} {sub cc}, esophagus D{sub 0.35} {sub cc}, esophagus D{sub 5} {sub cc}, and lung V{sub 20} was − 8.36%, − 6.06%, 11.96%, 8.66%, 6.02%, and − 0.69%, respectively. No significant correlation was found between any dosimetric change and tumor-to-cord/esophagus distances (R{sup 2} range: 0 to 0.44). Larger dosimetric changes and intersubject variations were observed at larger rotational offsets. Small dosimetric differences were found owing to rotational offsets up to 5° in lung SBRT for medially located tumors. Larger intersubject variations were observed at larger rotational offsets.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saminathan, S; Godson, H; Ponmalar, R
2016-06-15
Purpose: To evaluate the dosimetric characteristics of newly developed well type ionization chamber and to validate the results with the commercially available calibrated well chambers that are being used for the calibration of brachytherapy sources. Methods: The newly developed well type ionization chamber (BDS 1000) has been designed for the convenient use in brachytherapy which is open to atmospheric condition. The chamber has a volume of 240 cm3 and weight of 2.5 Kg. The calibration of the radioactive source with activities from 0.01 mCi to 20 Ci can be carried out using this chamber. The dosimetric parameters such as leakagemore » current, stability, scattering effect, ion collection efficiency, reference air kerma rate and nominal response with energy were carried out with the BDS 1000 well type ion chamber. The evaluated dosimetric characteristics of BDS1000 well chamber were validated with two other commercially available well chambers (HDR 1000 plus and BTC/3007). Results: The measured leakage current observed was negligible for the newly developed BDS 1000 well type ion chamber. The ion collection efficiency was close to 1 and the response of the chamber was found to be very stable. The determined sweet spot was at 42 mm from bottom of the chamber insert. The reference air kerma rate was found to be 4.634 × 105 Gym2hr-1A-1 for the BDS 1000 well chamber. The overall dosimetric characteristics of BDS 1000 well chamber was in good agreement with the dosimetric properties of other two well chambers. Conclusion: The dosimetric study shows that the newly developed BDS 1000 well type ionization chamber is high sensitive and reliable chamber for reference air kerma strength calibration. The results obtained confirm that this chamber can be used for the calibration of HDR and LDR brachytherapy sources.« less
Catarinucci, L; Tarricone, L
2009-12-01
With the next transposition of the 2004/40/EC Directive, employers will become responsible for the electromagnetic field level at the workplace. To make this task easier, the scientific community is compiling practical guidelines to be followed. This work aims at enriching such guidelines, especially for the dosimetric issues. More specifically, some critical aspects related to the application of numerical dosimetric techniques for the verification of the safety limit compliance have been highlighted. In particular, three different aspects have been considered: the dosimetric parameter dependence on the shape and the inner characterisation of the exposed subject as well as on the numerical algorithm used, and the correlation between reference limits and basic restriction. Results and discussions demonstrate how, even by using sophisticated numerical techniques, in some cases a complex interpretation of the result is mandatory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gökçe, M., E-mail: mgokce@adu.edu.tr; Uslu, D. Koçyiğit; Ertunç, C.
The aim of this study is to compare Intensity Modulated Radiation Therapy (IMRT) plan of prostate cancer patients with different dose verification systems in dosimetric aspects and to compare these systems with each other in terms of reliability, applicability and application time. Dosimetric control processes of IMRT plan of three prostate cancer patients were carried out using thermoluminescent dosimeter (TLD), ion chamber (IC) and 2D Array detector systems. The difference between the dose values obtained from the dosimetric systems and treatment planning system (TPS) were found to be about % 5. For the measured (TLD) and calculated (TPS) doses %3more » percentage differences were obtained for the points close to center while percentage differences increased at the field edges. It was found that TLD and IC measurements will increase the precision and reliability of the results of 2D Array.« less
CyberArc: a non-coplanar-arc optimization algorithm for CyberKnife
NASA Astrophysics Data System (ADS)
Kearney, Vasant; Cheung, Joey P.; McGuinness, Christopher; Solberg, Timothy D.
2017-07-01
The goal of this study is to demonstrate the feasibility of a novel non-coplanar-arc optimization algorithm (CyberArc). This method aims to reduce the delivery time of conventional CyberKnife treatments by allowing for continuous beam delivery. CyberArc uses a 4 step optimization strategy, in which nodes, beams, and collimator sizes are determined, source trajectories are calculated, intermediate radiation models are generated, and final monitor units are calculated, for the continuous radiation source model. The dosimetric results as well as the time reduction factors for CyberArc are presented for 7 prostate and 2 brain cases. The dosimetric quality of the CyberArc plans are evaluated using conformity index, heterogeneity index, local confined normalized-mutual-information, and various clinically relevant dosimetric parameters. The results indicate that the CyberArc algorithm dramatically reduces the treatment time of CyberKnife plans while simultaneously preserving the dosimetric quality of the original plans.
CyberArc: a non-coplanar-arc optimization algorithm for CyberKnife.
Kearney, Vasant; Cheung, Joey P; McGuinness, Christopher; Solberg, Timothy D
2017-06-26
The goal of this study is to demonstrate the feasibility of a novel non-coplanar-arc optimization algorithm (CyberArc). This method aims to reduce the delivery time of conventional CyberKnife treatments by allowing for continuous beam delivery. CyberArc uses a 4 step optimization strategy, in which nodes, beams, and collimator sizes are determined, source trajectories are calculated, intermediate radiation models are generated, and final monitor units are calculated, for the continuous radiation source model. The dosimetric results as well as the time reduction factors for CyberArc are presented for 7 prostate and 2 brain cases. The dosimetric quality of the CyberArc plans are evaluated using conformity index, heterogeneity index, local confined normalized-mutual-information, and various clinically relevant dosimetric parameters. The results indicate that the CyberArc algorithm dramatically reduces the treatment time of CyberKnife plans while simultaneously preserving the dosimetric quality of the original plans.
Errors in radiation oncology: A study in pathways and dosimetric impact
Drzymala, Robert E.; Purdy, James A.; Michalski, Jeff
2005-01-01
As complexity for treating patients increases, so does the risk of error. Some publications have suggested that record and verify (R&V) systems may contribute in propagating errors. Direct data transfer has the potential to eliminate most, but not all, errors. And although the dosimetric consequences may be obvious in some cases, a detailed study does not exist. In this effort, we examined potential errors in terms of scenarios, pathways of occurrence, and dosimetry. Our goal was to prioritize error prevention according to likelihood of event and dosimetric impact. For conventional photon treatments, we investigated errors of incorrect source‐to‐surface distance (SSD), energy, omitted wedge (physical, dynamic, or universal) or compensating filter, incorrect wedge or compensating filter orientation, improper rotational rate for arc therapy, and geometrical misses due to incorrect gantry, collimator or table angle, reversed field settings, and setup errors. For electron beam therapy, errors investigated included incorrect energy, incorrect SSD, along with geometric misses. For special procedures we examined errors for total body irradiation (TBI, incorrect field size, dose rate, treatment distance) and LINAC radiosurgery (incorrect collimation setting, incorrect rotational parameters). Likelihood of error was determined and subsequently rated according to our history of detecting such errors. Dosimetric evaluation was conducted by using dosimetric data, treatment plans, or measurements. We found geometric misses to have the highest error probability. They most often occurred due to improper setup via coordinate shift errors or incorrect field shaping. The dosimetric impact is unique for each case and depends on the proportion of fields in error and volume mistreated. These errors were short‐lived due to rapid detection via port films. The most significant dosimetric error was related to a reversed wedge direction. This may occur due to incorrect collimator angle or wedge orientation. For parallel‐opposed 60° wedge fields, this error could be as high as 80% to a point off‐axis. Other examples of dosimetric impact included the following: SSD, ~2%/cm for photons or electrons; photon energy (6 MV vs. 18 MV), on average 16% depending on depth, electron energy, ~0.5cm of depth coverage per MeV (mega‐electron volt). Of these examples, incorrect distances were most likely but rapidly detected by in vivo dosimetry. Errors were categorized by occurrence rate, methods and timing of detection, longevity, and dosimetric impact. Solutions were devised according to these criteria. To date, no one has studied the dosimetric impact of global errors in radiation oncology. Although there is heightened awareness that with increased use of ancillary devices and automation, there must be a parallel increase in quality check systems and processes, errors do and will continue to occur. This study has helped us identify and prioritize potential errors in our clinic according to frequency and dosimetric impact. For example, to reduce the use of an incorrect wedge direction, our clinic employs off‐axis in vivo dosimetry. To avoid a treatment distance setup error, we use both vertical table settings and optical distance indicator (ODI) values to properly set up fields. As R&V systems become more automated, more accurate and efficient data transfer will occur. This will require further analysis. Finally, we have begun examining potential intensity‐modulated radiation therapy (IMRT) errors according to the same criteria. PACS numbers: 87.53.Xd, 87.53.St PMID:16143793
Miller, J; Fuller, M; Vinod, S; Suchowerska, N; Holloway, L
2009-06-01
A Clinician's discrimination between radiation therapy treatment plans is traditionally a subjective process, based on experience and existing protocols. A more objective and quantitative approach to distinguish between treatment plans is to use radiobiological or dosimetric objective functions, based on radiobiological or dosimetric models. The efficacy of models is not well understood, nor is the correlation of the rank of plans resulting from the use of models compared to the traditional subjective approach. One such radiobiological model is the Normal Tissue Complication Probability (NTCP). Dosimetric models or indicators are more accepted in clinical practice. In this study, three radiobiological models, Lyman NTCP, critical volume NTCP and relative seriality NTCP, and three dosimetric models, Mean Lung Dose (MLD) and the Lung volumes irradiated at 10Gy (V10) and 20Gy (V20), were used to rank a series of treatment plans using, harm to normal (Lung) tissue as the objective criterion. None of the models considered in this study showed consistent correlation with the Radiation Oncologists plan ranking. If radiobiological or dosimetric models are to be used in objective functions for lung treatments, based on this study it is recommended that the Lyman NTCP model be used because it will provide most consistency with traditional clinician ranking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vedam, S.; Docef, A.; Fix, M.
2005-06-15
The synchronization of dynamic multileaf collimator (DMLC) response with respiratory motion is critical to ensure the accuracy of DMLC-based four dimensional (4D) radiation delivery. In practice, however, a finite time delay (response time) between the acquisition of tumor position and multileaf collimator response necessitates predictive models of respiratory tumor motion to synchronize radiation delivery. Predicting a complex process such as respiratory motion introduces geometric errors, which have been reported in several publications. However, the dosimetric effect of such errors on 4D radiation delivery has not yet been investigated. Thus, our aim in this work was to quantify the dosimetric effectsmore » of geometric error due to prediction under several different conditions. Conformal and intensity modulated radiation therapy (IMRT) plans for a lung patient were generated for anterior-posterior/posterior-anterior (AP/PA) beam arrangements at 6 and 18 MV energies to provide planned dose distributions. Respiratory motion data was obtained from 60 diaphragm-motion fluoroscopy recordings from five patients. A linear adaptive filter was employed to predict the tumor position. The geometric error of prediction was defined as the absolute difference between predicted and actual positions at each diaphragm position. Distributions of geometric error of prediction were obtained for all of the respiratory motion data. Planned dose distributions were then convolved with distributions for the geometric error of prediction to obtain convolved dose distributions. The dosimetric effect of such geometric errors was determined as a function of several variables: response time (0-0.6 s), beam energy (6/18 MV), treatment delivery (3D/4D), treatment type (conformal/IMRT), beam direction (AP/PA), and breathing training type (free breathing/audio instruction/visual feedback). Dose difference and distance-to-agreement analysis was employed to quantify results. Based on our data, the dosimetric impact of prediction (a) increased with response time, (b) was larger for 3D radiation therapy as compared with 4D radiation therapy, (c) was relatively insensitive to change in beam energy and beam direction, (d) was greater for IMRT distributions as compared with conformal distributions, (e) was smaller than the dosimetric impact of latency, and (f) was greatest for respiration motion with audio instructions, followed by visual feedback and free breathing. Geometric errors of prediction that occur during 4D radiation delivery introduce dosimetric errors that are dependent on several factors, such as response time, treatment-delivery type, and beam energy. Even for relatively small response times of 0.6 s into the future, dosimetric errors due to prediction could approach delivery errors when respiratory motion is not accounted for at all. To reduce the dosimetric impact, better predictive models and/or shorter response times are required.« less
Chow, James C.L.; Grigorov, Grigor N.; Yazdani, Nuri
2006-01-01
A custom‐made computer program, SWIMRT, to construct “multileaf collimator (MLC) machine” file for intensity‐modulated radiotherapy (IMRT) fluence maps was developed using MATLAB® and the sliding window algorithm. The user can either import a fluence map with a graphical file format created by an external treatment‐planning system such as Pinnacle3 or create his or her own fluence map using the matrix editor in the program. Through comprehensive calibrations of the dose and the dimension of the imported fluence field, the user can use associated image‐processing tools such as field resizing and edge trimming to modify the imported map. When the processed fluence map is suitable, a “MLC machine” file is generated for our Varian 21 EX linear accelerator with a 120‐leaf Millennium MLC. This machine file is transferred to the MLC console of the LINAC to control the continuous motions of the leaves during beam irradiation. An IMRT field is then irradiated with the 2D intensity profiles, and the irradiated profiles are compared to the imported or modified fluence map. This program was verified and tested using film dosimetry to address the following uncertainties: (1) the mechanical limitation due to the leaf width and maximum traveling speed, and (2) the dosimetric limitation due to the leaf leakage/transmission and penumbra effect. Because the fluence map can be edited, resized, and processed according to the requirement of a study, SWIMRT is essential in studying and investigating the IMRT technique using the sliding window algorithm. Using this program, future work on the algorithm may include redistributing the time space between segmental fields to enhance the fluence resolution, and readjusting the timing of each leaf during delivery to avoid small fields. Possible clinical utilities and examples for SWIMRT are given in this paper. PACS numbers: 87.53.Kn, 87.53.St, 87.53.Uv PMID:17533330
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barraclough, B; Park, J; Li, F
2016-06-15
Purpose: To report the development and characterization of the first in-house gating system implemented with an optical tracking system (OTS) and the Elekta Response™ interface. Methods: The Response™ connects a patient tracking system with a linac, enabling the tracking system to control radiation delivery. The developed system uses an in-house OTS to monitor patient breathing. The OTS consists of two infrared-based cameras, tracking markers affixed on patient. It achieves gated or breath-held (BH) treatment by calling beam ON/OFF functions in the Response™ dynamic-link library (DLL). A 4D motion phantom was used to evaluate its dosimetric and time delay characteristics. Twomore » FF- and two FFF-IMRT beams were delivered in non-gated, BH and gated mode. The sinusoidal gating signal had a 6 sec period and 15 mm amplitude. The duty cycle included 10%, 20%, 30% and 50%. The BH signal was adapted from the sinusoidal wave by inserting 15 sec BHs. Each delivery was measured with a 2D diode array (MapCHECK™) and compared with the non-gated delivery using gamma analysis (3%). The beam ON/OFF time was captured using the service graphing utility of the linac. Results: The gated treatments were successfully delivered except the 10% duty cycle. The BH delivery had perfect agreement (100%) with non-gated delivery; the agreement of gated delivery decreased from 99% to 88% as duty cycle reduced from 50% to 20%. The beam on/off delay was on average 0.25/0.06 sec. The delivery time for the 50%, 30% and 20% duty cycle increased by 29%, 71% and 139%, respectively. No dosimetric or time delay difference was noticed between FF- and FFF-IMRT beams. Conclusion: The in-house gating system was successfully developed with dosimetric and time delay characteristics in line with published results for commercial systems. It will be an important platform for further research and clinical development of gated treatment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piron, O; Varfalvy, N; Archambault, L
2015-06-15
Purpose: One of the side effects of radiotherapy for head and neck (H&N) cancer is the patient’s anatomical changes. The changes can strongly affect the planned dose distribution. In this work, our goal is to demonstrate that relative analysis of EPID images is a fast and simple method to detect anatomical changes that can have a strong dosimetric impact on the treatment plan for H&N patients. Methods: EPID images were recorded at every beam and all fractions for 50 H&N patients. Of these, five patients that showed important anatomical changes were selected to evaluate dosimetric impacts of these changes andmore » to correlate them with a 2D relative gamma analysis of EPID images. The planning CT and original contours were deformed onto CBCTs (one mid treatment and one at the end of treatment). By using deformable image registration, it was possible to map accurate CT numbers from the planning CT to the anatomy of the day obtained with CBCTs. Clinical treatment plan were then copied on the deformed dataset and dose was re-computed. In parallel, EPID images were analysed using the gamma index (3%3mm) relative to the first image. Results: It was possible to divide patients in two distinct, statistically different (p<0.001) categories using an average gamma index of 0.5 as a threshold. Below this threshold no significant dosimetric degradation of the plan are observed. Above this threshold two types of plan deterioration were seen: (1) target dose increases, but coverage remains adequate while dose to at least one OAR increases beyond tolerances; (2) the OAR doses remain low, but the target dose is reduced and coverage becomes inadequate. Conclusion: Relative analysis gamma of EPID images could indeed be a fast and simple method to detect anatomical changes that can potentially deteriorates treatment plan for H&N patients. This work was supported in part by Varian Medical System.« less
NASA Astrophysics Data System (ADS)
McGeachy, Philip David
Over 50% of cancer patients require radiation therapy (RT). RT is an optimization problem requiring maximization of the radiation damage to the tumor while minimizing the harm to the healthy tissues. This dissertation focuses on two main RT optimization problems: 1) brachytherapy and 2) intensity modulated radiation therapy (IMRT). The brachytherapy research involved solving a non-convex optimization problem by creating an open-source genetic algorithm optimizer to determine the optimal radioactive seed distribution for a given set of patient volumes and constraints, both dosimetric- and implant-based. The optimizer was tested for a set of 45 prostate brachytherapy patients. While all solutions met the clinical standards, they also benchmarked favorably with those generated by a standard commercial solver. Compared to its compatriot, the salient features of the generated solutions were: slightly reduced prostate coverage, lower dose to the urethra and rectum, and a smaller number of needles required for an implant. Historically, IMRT requires modulation of fluence while keeping the photon beam energy fixed. The IMRT-related investigation in this thesis aimed at broadening the solution space by varying photon energy. The problem therefore involved simultaneous optimization of photon beamlet energy and fluence, denoted by XMRT. Formulating the problem as convex, linear programming was applied to obtain solutions for optimal energy-dependent fluences, while achieving all clinical objectives and constraints imposed. Dosimetric advantages of XMRT over single-energy IMRT in the improved sparing of organs at risk (OARs) was demonstrated in simplified phantom studies. The XMRT algorithm was improved to include clinical dose-volume constraints and clinical studies for prostate and head and neck cancer patients were investigated. Compared to IMRT, XMRT provided improved dosimetric benefit in the prostate case, particularly within intermediate- to low-dose regions (≤ 40 Gy) for OARs. For head and neck cases, XMRT solutions showed no significant disadvantage or advantage over IMRT. The deliverability concerns for the fluence maps generated from XMRT were addressed by incorporating smoothing constraints during the optimization and through successful generation of treatment machine files. Further research is needed to explore the full potential of the XMRT approach to RT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinogradskiy, Y; Miyasaka, Y; Kadoya, N
Purpose: CT-ventilation is an exciting new imaging modality that uses 4DCTs to calculate lung ventilation. Studies have proposed to use 4DCT-ventilation imaging for functional avoidance radiotherapy which implies designing treatment plans to spare functional portions of the lung. Although retrospective studies have been performed to evaluate the dosimetric gains to functional lung; no work has been done to translate the dosimetric gains to an improvement in pulmonary toxicity. The purpose of our work was to evaluate the potential reduction in toxicity for 4DCT-ventilation based functional avoidance. Methods: 70 lung cancer patients with 4DCT imaging were used for the study. CT-ventilationmore » maps were calculated using the patient’s 4DCT, deformable image registrations, and a density-change-based algorithm. Radiation pneumonitis was graded using imaging and clinical information. Log-likelihood methods were used to fit a normal-tissue-complication-probability (NTCP) model predicting grade 2+ radiation pneumonitis as a function of doses (mean and V20) to functional lung (>15% ventilation). For 20 patients a functional plan was generated that reduced dose to functional lung while meeting RTOG 0617-based constraints. The NTCP model was applied to the functional plan to determine the reduction in toxicity with functional planning Results: The mean dose to functional lung was 16.8 and 17.7 Gy with the functional and clinical plans respectively. The corresponding grade 2+ pneumonitis probability was 26.9% with the clinically-used plan and 24.6% with the functional plan (8.5% reduction). The V20-based grade 2+ pneumonitis probability was 23.7% with the clinically-used plan and reduced to 19.6% with the functional plan (20.9% reduction). Conclusion: Our results revealed a reduction of 9–20% in complication probability with functional planning. To our knowledge this is the first study to apply complication probability to convert dosimetric results to toxicity improvement. The results presented in the current work provide seminal data for prospective clinical trials in functional avoidance. YV discloses funding from State of Colorado. TY discloses National Lung Cancer Partnership; Young Investigator Research grant.« less
Dose uncertainties associated with a set density override of unknown hip prosthetic composition.
Rijken, James D; Colyer, Christopher J
2017-09-01
The dosimetric uncertainties associated with radiotherapy through hip prostheses while overriding the implant to a set density within the TPS has not yet been reported. In this study, the uncertainty in dose within a PTV resulting from this planning choice was investigated. A set of metallic hip prosthetics (stainless steel, titanium, and two different Co-Cr-Mo alloys) were CT scanned in a water bath. Within the TPS, the prosthetic pieces were overridden to densities between 3 and 10 g/cm 3 and irradiated on a linear accelerator. Measured dose maps were compared to the TPS to determine which density was most appropriate to override each metal. This was shown to be in disagreement with the reported literature values of density which was attributed to the TPS dose calculation algorithm and total mass attenuation coefficient differences in water and metal. The dose difference was then calculated for a set density override of 6 g/cm 3 in the TPS and used to estimate the dose uncertainty beyond the prosthesis. For beams passing through an implant, the dosimetric uncertainty in regions of the PTV may be as high as 10% if the implant composition remains unknown and a set density override is used. These results highlight limitations of such assumptions and the need for careful consideration by radiation oncologist, therapist, and physics staff. © 2017 Adelaide Radiotherapy Centre. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Poster - 52: Smoothing constraints in Modulated Photon Radiotherapy (XMRT) fluence map optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGeachy, Philip; Villarreal-Barajas, Jose Eduardo
Purpose: Modulated Photon Radiotherapy (XMRT), which simultaneously optimizes photon beamlet energy (6 and 18 MV) and fluence, has recently shown dosimetric improvement in comparison to conventional IMRT. That said, the degree of smoothness of resulting fluence maps (FMs) has yet to be investigated and could impact the deliverability of XMRT. This study looks at investigating FM smoothness and imposing smoothing constraint in the fluence map optimization. Methods: Smoothing constraints were modeled in the XMRT algorithm with the sum of positive gradient (SPG) technique. XMRT solutions, with and without SPG constraints, were generated for a clinical prostate scan using standard dosimetricmore » prescriptions, constraints, and a seven coplanar beam arrangement. The smoothness, with and without SPG constraints, was assessed by looking at the absolute and relative maximum SPG scores for each fluence map. Dose volume histograms were utilized when evaluating impact on the dose distribution. Results: Imposing SPG constraints reduced the absolute and relative maximum SPG values by factors of up to 5 and 2, respectively, when compared with their non-SPG constrained counterparts. This leads to a more seamless conversion of FMS to their respective MLC sequences. This improved smoothness resulted in an increase to organ at risk (OAR) dose, however the increase is not clinically significant. Conclusions: For a clinical prostate case, there was a noticeable improvement in the smoothness of the XMRT FMs when SPG constraints were applied with a minor increase in dose to OARs. This increase in OAR dose is not clinically meaningful.« less
Almansa, Julio F; Guerrero, Rafael; Torres, Javier; Lallena, Antonio M
60 Co sources have been commercialized as an alternative to 192 Ir sources for high-dose-rate (HDR) brachytherapy. One of them is the Flexisource Co-60 HDR source manufactured by Elekta. The only available dosimetric characterization of this source is that of Vijande et al. [J Contemp Brachytherapy 2012; 4:34-44], whose results were not included in the AAPM/ESTRO consensus document. In that work, the dosimetric quantities were calculated as averages of the results obtained with the Geant4 and PENELOPE Monte Carlo (MC) codes, though for other sources, significant differences have been quoted between the values obtained with these two codes. The aim of this work is to perform the dosimetric characterization of the Flexisource Co-60 HDR source using PENELOPE. The MC simulation code PENELOPE (v. 2014) has been used. Following the recommendations of the AAPM/ESTRO report, the radial dose function, the anisotropy function, the air-kerma strength, the dose rate constant, and the absorbed dose rate in water have been calculated. The results we have obtained exceed those of Vijande et al. In particular, the absorbed dose rate constant is ∼0.85% larger. A similar difference is also found in the other dosimetric quantities. The effect of the electrons emitted in the decay of 60 Co, usually neglected in this kind of simulations, is significant up to the distances of 0.25 cm from the source. The systematic and significant differences we have found between PENELOPE results and the average values found by Vijande et al. point out that the dosimetric characterizations carried out with the various MC codes should be provided independently. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Tianyuan; Ishihara, Takeaki; Kono, Atsushi; Yoshida, Naoki; Akasaka, Hiroaki; Mukumoto, Naritoshi; Yada, Ryuichi; Ejima, Yasuo; Yoshida, Kenji; Miyawaki, Daisuke; Kakutani, Kenichiro; Nishida, Kotaro; Negi, Noriyuki; Minami, Toshiaki; Aoyama, Yuuichi; Takahashi, Satoru; Sasaki, Ryohei
2017-08-01
The objective of the present study was the determination of the potential dosimetric benefits of using metal-artefact-suppressed dual-energy computed tomography (DECT) images for cases involving pedicle screw implants in spinal sites. A heterogeneous spinal phantom was designed for the investigation of the dosimetric effect of the pedicle-screw-related artefacts. The dosimetric comparisons were first performed using a conventional two-directional opposed (AP-PA) plan, and then a volumetric modulated arc therapy (VMAT) plan, which are both used for the treatment of spinal metastases in our institution. The results of Acuros® XB dose-to-medium (Dm) and dose-to-water (Dw) calculations using different imaging options were compared with experimental measurements including the chamber and film dosimetries in the spinal phantom. A dual-energy composition image with a weight factor of -0.2 and a dual-energy monochromatic image (DEMI) with an energy level of 180 keV were found to have superior abilities for artefact suppression. The Dm calculations revealed greater dosimetric effects of the pedicle screw-related artefacts compared to the Dw calculations. The results of conventional single-energy computed tomography showed that, although the pedicle screws were made from low-Z titanium alloy, the metal artefacts still have dosimetric effects, namely, an average (maximum) Dm error of 4.4% (5.6%) inside the spinal cord for a complex VMAT treatment plan. Our findings indicate that metal-artefact suppression using the proposed DECT (DEMI) approach is promising for improving the dosimetric accuracy near the implants and inside the spinal cord (average (maximum) Dm error of 1.1% (2.0%)).
Dosimetric evaluation of Plastic Water Diagnostic-Therapy.
Ramaseshan, Ramani; Kohli, Kirpal; Cao, Fred; Heaton, Robert K
2008-04-29
High-precision radiotherapy planning and quality assurance require accurate dosimetric and geometric phantom measurements. Phantom design requires materials with mechanical strength and resilience, and dosimetric properties close to those of water over diagnostic and therapeutic ranges. Plastic Water Diagnostic Therapy (PWDT: CIRS, Norfolk, VA) is a phantom material designed for water equivalence in photon beams from 0.04 MeV to 100 MeV; the material has also good mechanical properties. The present article reports the results of computed tomography (CT) imaging and dosimetric studies of PWDT to evaluate the suitability of the material in CT and therapy energy ranges. We characterized the water equivalence of PWDT in a series of experiments in which the basic dosimetric properties of the material were determined for photon energies of 80 kVp, 100 kVp, 250 kVp, 4 MV, 6 MV, 10 MV, and 18 MV. Measured properties included the buildup and percentage depth dose curves for several field sizes, and relative dose factors as a function of field size. In addition, the PWDT phantom underwent CT imaging at beam qualities ranging from 80 kVp to 140 kVp to determine the water equivalence of the phantom in the diagnostic energy range. The dosimetric quantities measured with PWDT agreed within 1.5% of those determined in water and Solid Water (Gammex rmi, Middleton, WI). Computed tomography imaging of the phantom was found to generate Hounsfield numbers within 0.8% of those generated using water. The results suggest that PWDT material is suitable both for regular radiotherapy quality assurance measurements and for intensity-modulated radiation therapy (IMRT) verification work. Sample IMRT verification results are presented.
Patient feature based dosimetric Pareto front prediction in esophageal cancer radiotherapy.
Wang, Jiazhou; Jin, Xiance; Zhao, Kuaike; Peng, Jiayuan; Xie, Jiang; Chen, Junchao; Zhang, Zhen; Studenski, Matthew; Hu, Weigang
2015-02-01
To investigate the feasibility of the dosimetric Pareto front (PF) prediction based on patient's anatomic and dosimetric parameters for esophageal cancer patients. Eighty esophagus patients in the authors' institution were enrolled in this study. A total of 2928 intensity-modulated radiotherapy plans were obtained and used to generate PF for each patient. On average, each patient had 36.6 plans. The anatomic and dosimetric features were extracted from these plans. The mean lung dose (MLD), mean heart dose (MHD), spinal cord max dose, and PTV homogeneity index were recorded for each plan. Principal component analysis was used to extract overlap volume histogram (OVH) features between PTV and other organs at risk. The full dataset was separated into two parts; a training dataset and a validation dataset. The prediction outcomes were the MHD and MLD. The spearman's rank correlation coefficient was used to evaluate the correlation between the anatomical features and dosimetric features. The stepwise multiple regression method was used to fit the PF. The cross validation method was used to evaluate the model. With 1000 repetitions, the mean prediction error of the MHD was 469 cGy. The most correlated factor was the first principal components of the OVH between heart and PTV and the overlap between heart and PTV in Z-axis. The mean prediction error of the MLD was 284 cGy. The most correlated factors were the first principal components of the OVH between heart and PTV and the overlap between lung and PTV in Z-axis. It is feasible to use patients' anatomic and dosimetric features to generate a predicted Pareto front. Additional samples and further studies are required improve the prediction model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J; Zhao, K; Peng, J
2014-06-15
Purpose: The purpose of this study is to study the feasibility of the dosimetric pareto front (PF) prediction based on patient anatomic and dosimetric parameters for esophagus cancer patients. Methods: Sixty esophagus patients in our institution were enrolled in this study. A total 2920 IMRT plans were created to generated PF for each patient. On average, each patient had 48 plans. The anatomic and dosimetric features were extracted from those plans. The mean lung dose (MLD), mean heart dose (MHD), spinal cord max dose and PTV homogeneous index (PTVHI) were recorded for each plan. The principal component analysis (PCA) wasmore » used to extract overlap volume histogram (OVH) features between PTV and other critical organs. The full dataset was separated into two parts include the training dataset and the validation dataset. The prediction outcomes were the MHD and MLD for the current study. The spearman rank correlation coefficient was used to evaluate the correlation between the anatomical features and dosimetric features. The PF was fit by the the stepwise multiple regression method. The cross-validation method was used to evaluation the model. Results: The mean prediction error of the MHD was 465 cGy with 100 repetitions. The most correlated factors were the first principal components of the OVH between heart and PTV, and the overlap between heart and PTV in Z-axis. The mean prediction error of the MLD was 195 cGy. The most correlated factors were the first principal components of the OVH between lung and PTV, and the overlap between lung and PTV in Z-axis. Conclusion: It is feasible to use patients anatomic and dosimetric features to generate a predicted PF. Additional samples and further studies were required to get a better prediction model.« less
Patient feature based dosimetric Pareto front prediction in esophageal cancer radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jiazhou; Zhao, Kuaike; Peng, Jiayuan
2015-02-15
Purpose: To investigate the feasibility of the dosimetric Pareto front (PF) prediction based on patient’s anatomic and dosimetric parameters for esophageal cancer patients. Methods: Eighty esophagus patients in the authors’ institution were enrolled in this study. A total of 2928 intensity-modulated radiotherapy plans were obtained and used to generate PF for each patient. On average, each patient had 36.6 plans. The anatomic and dosimetric features were extracted from these plans. The mean lung dose (MLD), mean heart dose (MHD), spinal cord max dose, and PTV homogeneity index were recorded for each plan. Principal component analysis was used to extract overlapmore » volume histogram (OVH) features between PTV and other organs at risk. The full dataset was separated into two parts; a training dataset and a validation dataset. The prediction outcomes were the MHD and MLD. The spearman’s rank correlation coefficient was used to evaluate the correlation between the anatomical features and dosimetric features. The stepwise multiple regression method was used to fit the PF. The cross validation method was used to evaluate the model. Results: With 1000 repetitions, the mean prediction error of the MHD was 469 cGy. The most correlated factor was the first principal components of the OVH between heart and PTV and the overlap between heart and PTV in Z-axis. The mean prediction error of the MLD was 284 cGy. The most correlated factors were the first principal components of the OVH between heart and PTV and the overlap between lung and PTV in Z-axis. Conclusions: It is feasible to use patients’ anatomic and dosimetric features to generate a predicted Pareto front. Additional samples and further studies are required improve the prediction model.« less
NASA Astrophysics Data System (ADS)
Kim, Jae-Sung; Chung, Jin-Beom; Kim, In-Ah; Eom, Keun-Yong
2013-10-01
We used an endorectal balloon (ERB) for prostate immobilization during intensity-modulated radiotherapy (IMRT) for prostate cancer treatment. To investigate the dosimetric effects of ERB-filling materials, we changed the ERB Hounsfield unit (HU) from 0 to 1000 HU in 200-HU intervals to simulate the various ERB fillings; 0 HU simulated a water-filled ERB, and 1000 HU simulated the densest material-filled ERB. Dosimetric data (coverage, homogeneity, conformity, maximal dose, and typical volume dose) for the tumor and the organs at risk (OARs) were evaluated in prostate IMRT treatment plans with 6-MV and 15-MV beams. The tumor coverage appeared to differ by approximately 1%, except for the clinical target volume (CTV) V100% and the planning target volume (PTV) V100%. The largest difference for the various ERB fillings was observed in the PTV V100%. In spite of increasing HU, the prostate IMRT plans at both energies had relatively low dosimetric effects on the PTV and the CTV. However, the maximal and the typical volume doses (D25%, D30%, and D50%) to the rectal wall and the bladder increased with increasing HU. For an air-filled ERB, the maximal doses to the rectal wall and the monitor units were lower than the corresponding values for the water-filled and the densest material-filled ERBs. An air-filled ERB spared the rectal wall because of its dosimetric effect. Thus, we conclude that the use of an air-filled ERB provides a dosimetric benefit to the rectal wall without a loss of target coverage and is an effective option for prostate IMRT treatment.
Gamma dosimetric parameters in some skeletal muscle relaxants
NASA Astrophysics Data System (ADS)
Manjunatha, H. C.
2017-09-01
We have studied the attenuation of gamma radiation of energy ranging from 84 keV to 1330 keV (^{170}Tm, ^{22}Na,^{137}Cs, and ^{60}Co) in some commonly used skeletal muscle relaxants such as tubocurarine chloride, gallamine triethiodide, pancuronium bromide, suxamethonium bromide and mephenesin. The mass attenuation coefficient is measured from the attenuation experiment. In the present work, we have also proposed the direct relation between mass attenuation coefficient (μ /ρ ) and mass energy absorption coefficient (μ _{en}/ρ ) based on the nonlinear fitting procedure. The gamma dosimetric parameters such as mass energy absorption coefficient (μ _{en}/ρ ), effective atomic number (Z_{eff}), effective electron density (N_{el}), specific γ-ray constant, air kerma strength and dose rate are evaluated from the measured mass attentuation coefficient. These measured gamma dosimetric parameters are compared with the theoretical values. The measured values agree with the theoretical values. The studied gamma dosimetric values for the relaxants are useful in medical physics and radiation medicine.
SU-G-TeP3-11: Radiobiological-Cum-Dosimetric Quality Assurance of Complex Radiotherapy Plans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paudel, N; Narayanasamy, G; Zhang, X
2016-06-15
Purpose: Dosimetric gamma-analysis used for QA of complex radiotherapy plans tests the dosimetric equivalence of a delivered plan with the treatment planning system (TPS) optimized plan. It does not examine whether a dosimetric difference results in any radiobiological difference. This study introduces a method to test the radiobiological and dosimetric equivalence between a delivered and the TPS optimized plan. Methods: Six head and neck and seven lung cancer VMAT or IMRT plans optimized for patient treatment were calculated and delivered to an ArcCheck phantom. ArcCheck measured dose distributions were compared with the TPS calculated dose distributions using a 2-D gamma-analysis.more » Dose volume histograms (DVHs) for various patient structures were obtained by using measured data in 3DVH software and compared against the TPS calculated DVHs using 3-D gamma analysis. DVH data were used in the Poisson model to calculate tumor control probability (TCP) for the treatment targets and in the sigmoid dose response model to calculate normal tissue complication probability (NTCP) for the normal structures. Results: Two-D and three-D gamma passing rates among six H&N patient plans differed by 0 to 2.7% and among seven lung plans by 0.1 to 4.5%. Average ± SD TCPs based on measurement and TPS were 0.665±0.018 and 0.674±0.044 for H&N, and 0.791±0.027 and 0.733±0.031 for lung plans, respectively. Differences in NTCPs were usually negligible. The differences in dosimetric results, TCPs and NTCPs were insignificant. Conclusion: The 2-D and 3-D gamma-analysis based agreement between measured and planned dose distributions may indicate their dosimetric equivalence. Small and insignificant differences in TCPs and NTCPs based on measured and planned dose distributions indicate the radiobiological equivalence between the measured and optimized plans. However, patient plans showing larger differences between 2-D and 3-D gamma-analysis can help us make a more definite conclusion through our ongoing research with a larger number of patients.« less
SU-F-T-460: Dosimetric Matching Between Trilogy Tx and TrueBeam STx
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Y; Kwak, J; Jeong, C
Purpose: To compare the commissioned beam data for one flattening filter photon mode (6 MV) and two flattening filter-free (FFF) photon modes (6 and 10 MV-FFF) between Trilogy Tx and TrueBeam STx and evaluate the possibility of dosimetric matching Methods: Dosimetric characteristics of the new Trilogy Tx including percent depth doses (PDDs), profiles, and output factors were measured for commissioning. Linear diode array detector and ion chambers were used to measure dosimetric data. The depth of dose maximum (dmax) and PDD at 10 cm (PDD10) were evaluated: 3×3 cm{sup 2}, 10×10 cm{sup 2}, and 40×40 cm{sup 2}. The beam profilesmore » were compared and then penumbras were evaluated. As a further test of the dosimetric matching, the same VMAT plans were delivered, measured with film, and compared with TPS calculation. Results: All the measured PDDs matched well across the two units. PDD10 showed less than 0.5% variation and dmax were within 1.5 mm at the field sizes evaluated. Within the central 80% of transverse axis, profile data were almost identical. TrueBeam data resulted in a slightly greater penumbra width (up to 1.9 mm). The greatest differences of output factors were found at 40 × 40 cm{sup 2}: 2.40%, 2.03%, and 2.22% for 6 MV, 6 MV-FFF, and 10 MV-FFF, respectively. For smaller field sizes, less than 1% differences were observed. The film measurements demonstrated over 97.3% pixels passing-gamma analysis (2%/2mm). The results showed excellent agreement between measurements of two machines. Conclusion: The differences between Trilogy Tx and TrueBeam STx found could possibly affect small field and also very large field sizes in dosimetric matching considerations. These differences encountered are mostly related with the changes in the head design of the TrueBeam. Although it cannot guarantee full interchangeability of two machines, dosimetric matching by field size of 25 × 25 cm{sup 2} might be clinically acceptable.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larraga-Gutierrez, J. M.; Ballesteros-Zebadua, P.; Garcia-Garduno, O. A.
2008-08-11
Radiation transmission, leakage and beam penumbra are essential dosimetric parameters related to the commissioning of a multileaf collimation system. This work shows a comparative analysis of commonly used film detectors: X-OMAT V2 and EDR2 radiographic films, and GafChromic EBT registered radiochromic film. The results show that X-OMAT over-estimates radiation leakage and 80-20% beam penumbra. However, according to the reference values reported by the manufacturer for these dosimetric parameters, all three films are adequate for MLC dosimetric characterization, but special care must be taken when X-OMAT V2 film is used due to its low energy photon dependence.
Likhtarov, I A; Kovgan, L M; Masiuk, S V; Ivanova, O M; Chepurny, M I; Boyko, Z N; Gerasymenko, V B
2015-12-01
The purpose of the review is to demonstrate the results of dosimetric passportization (performed in 1991-2014) for the settlements of Ukraine which suffered from radioactive contamination caused by the Chornobyl accident. The dosimetric passportization played a key role in the National program on the liquidation of aftermath of the Chornobyl accident directed on recovery through all stages of the current radiation situation control and decision support touching upon various types of interventions and social benefits to the population of radioactively contaminated areas. The works being performed under dosimetric passportization did not have analogues among the researches which took place after other large-scale industrial and municipal accidents as well their scales as the duration of both radio-ecological and dosimetric monitoring.The new methodological approaches to the assessment of so-called passport doses of a settlement as well as to the definition of the concept of annual dose being the dose used to make decisions for providing both direct and indirect emergency countermeasures for the settlements of Ukraine became pioneering ones. During all the post-accident period there were issued sixteen collections of general dosimetric passportization data which accumulate the results of hundreds of thousands spectrometric, radiochemical and radiation levels measurements and WBC measurements carried out in 1991-2014.The annual passport doses calculated on the basis of these measurements (including their components) are unique information that quantifies the level and time dynamics of the radiation situation for each of the 2161 settlements of 74 raions in 12 oblasts during all the post-accident period. Thanks to the works of dosimetric passportization of the settlements of Ukraine there were created databases to be unique in their structure and content with quantitative characteristics of the territorial and temporal distribution, the dynamics of changes of a number of important radiological parameters, namely over 500 thousands of measurements of concentration of 137Cs and 90Sr in the local foodstuff (milk and potatoes); there are more than 1.3 million of measurements of the cesium content in the body of residents of the settlements of Ukraine; there are 100 thousands of dose estimates (both internal and external ones were measured separately) of inhabitants living on the radioactively contaminated areas. The results of the dosimetric passportization served as one of the main exposure criteria for generalized aftermath of the Chornobyl accident represented in the National reports for the first 15, 20 and 25 years after the accident. I. A. Likhtarov, L. M. Kovgan, S. V. Masiuk, O. M. Ivanova, M. I. Chepurny.
Yahya, Noorazrul; Chua, Xin-Jane; Manan, Hanani A; Ismail, Fuad
2018-05-17
This systematic review evaluates the completeness of dosimetric features and their inclusion as covariates in genetic-toxicity association studies. Original research studies associating genetic features and normal tissue complications following radiotherapy were identified from PubMed. The use of dosimetric data was determined by mining the statement of prescription dose, dose fractionation, target volume selection or arrangement and dose distribution. The consideration of the dosimetric data as covariates was based on the statement mentioned in the statistical analysis section. The significance of these covariates was extracted from the results section. Descriptive analyses were performed to determine their completeness and inclusion as covariates. A total of 174 studies were found to satisfy the inclusion criteria. Studies published ≥2010 showed increased use of dose distribution information (p = 0.07). 33% of studies did not include any dose features in the analysis of gene-toxicity associations. Only 29% included dose distribution features as covariates and reported the results. 59% of studies which included dose distribution features found significant associations to toxicity. A large proportion of studies on the correlation of genetic markers with radiotherapy-related side effects considered no dosimetric parameters. Significance of dose distribution features was found in more than half of the studies including these features, emphasizing their importance. Completeness of radiation-specific clinical data may have increased in recent years which may improve gene-toxicity association studies.
NASA Astrophysics Data System (ADS)
Ahmed, M. F.; Shrestha, N.; Schnell, E.; Ahmad, S.; Akselrod, M. S.; Yukihara, E. G.
2016-11-01
This work evaluates the dosimetric properties of newly developed optically stimulated luminescence (OSL) films, fabricated with either Al2O3:C or Al2O3:C,Mg, using a prototype laser scanning reader, a developed image reconstruction algorithm, and a 6 MV therapeutic photon beam. Packages containing OSL films (Al2O3:C and Al2O3:C,Mg) and a radiochromic film (Gafchromic EBT3) were irradiated using a 6 MV photon beam using different doses, field sizes, with and without wedge filter. Dependence on film orientation of the OSL system was also tested. Diode-array (MapCHECK) and ionization chamber measurements were performed for comparison. The OSLD film doses agreed with the MapCHECK and ionization chamber data within the experimental uncertainties (<2% at 1.5 Gy). The system background and minimum detectable dose (MDD) were <0.5 mGy, and the dose response was approximately linear from the MDD up to a few grays (the linearity correction was <10% up to ~2-4 Gy), with no saturation up to 30 Gy. The dose profiles agreed with those obtained using EBT3 films (analyzed using the triple channel method) in the high dose regions of the images. In the low dose regions, the dose profiles from the OSLD films were more reproducible than those from the EBT3 films. We also demonstrated that the OSL film data are independent on scan orientation and field size over the investigated range. The results demonstrate the potential of OSLD films for 2D dosimetry, particularly for the characterization of small fields, due to their wide dynamic range, linear response, resolution and dosimetric properties. The negligible background and potential simple calibration make these OSLD films suitable for remote audits. The characterization presented here may motivate further commercial development of a 2D dosimetry system based on the OSL from Al2O3:C or Al2O3:C,Mg.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, G; LoSasso, T; Saleh, Z
2015-06-15
Purpose: Due to saturation, high density materials Result in an apparent density of 3.2 g/cm{sup 3} in CT images. The true density of traditional titanium stabilization rods (∼4.4 g/cm{sup 3}) is typically ignored in treatment planning. This may not be acceptable for new cobalt-chrome rods with a density of 8.5 g/cm{sup 3}. This study reports the dosimetric impact of cobalt-chrome rods in paraspinal radiotherapy. Methods: For titanium and cobalt-chrome rods, two planning studies were done for both IMRT and VMAT in Varian Eclipse using AAA. 1) The effect of planning without assigning the true rod density was assessed by comparingmore » plans generated with the apparent density and recalculated with the true density for titanium and cobalt-chrome. 2) To test if TPS can compensate for high density rods during optimization. Furthermore, TPS calculation accuracy was verified using MapCheck for a single 20 x 10 cm{sup 2} field. The MapCheck was incrementally shifted to achieve measurement resolution of 1 mm. Results: PTV coverage was ∼0.3% and ∼4.7% lower in plans that were recalculated with the true rod density of titanium and cobalt-chrome, respectively. PTV coverage can be maintained if the correct density is used in optimization. Measurements showed that TPS overestimated the dose locally by up to 11% for cobalt-chrome rods and up to 4% for titanium rods if the density is incorrect. With density corrected, maximum local differences of 6% and 3% were seen for cobalt-chrome and titanium rods, respectively. At 2 cm beneath a rod, electrons scattered from the side of the rod increased the lateral dose and diminished as depth increases. TPS was not able to account for this effect properly even with the true rod density assigned. Conclusion: Neglecting the true density of cobalt-chrome rods can cause under coverage to the PTV. Assigning the correct density during treatment planning can minimize unexpected decrease in PTV dose.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Z; Greskovich, J; Xia, P
Purpose: To generate virtual phantoms with clinically relevant deformation and use them to objectively evaluate geometric and dosimetric uncertainties of deformable image registration (DIR) algorithms. Methods: Ten lung cancer patients undergoing adaptive 3DCRT planning were selected. For each patient, a pair of planning CT (pCT) and replanning CT (rCT) were used as the basis for virtual phantom generation. Manually adjusted meshes were created for selected ROIs (e.g. PTV, lungs, spinal cord, esophagus, and heart) on pCT and rCT. The mesh vertices were input into a thin-plate spline algorithm to generate a reference displacement vector field (DVF). The reference DVF wasmore » used to deform pCT to generate a simulated replanning CT (srCT) that was closely matched to rCT. Three DIR algorithms (Demons, B-Spline, and intensity-based) were applied to these ten virtual phantoms. The images, ROIs, and doses were mapped from pCT to srCT using the DVFs computed by these three DIRs and compared to those mapped using the reference DVF. Results: The average Dice coefficients for selected ROIs were from 0.85 to 0.96 for Demons, from 0.86 to 0.97 for intensity-based, and from 0.76 to 0.95 for B-Spline. The average Hausdorff distances for selected ROIs were from 2.2 to 5.4 mm for Demons, from 2.3 to 6.8 mm for intensity-based, and from 2.4 to 11.4 mm for B-Spline. The average absolute dose errors for selected ROIs were from 0.2 to 0.6 Gy for Demons, from 0.1 to 0.5 Gy for intensity-based, and from 0.5 to 1.5 Gy for B-Spline. Conclusion: Virtual phantoms were modeled after patients with lung cancer and were clinically relevant for adaptive radiotherapy treatment replanning. Virtual phantoms with known DVFs serve as references and can provide a fair comparison when evaluating different DIRs. Demons and intensity-based DIRs were shown to have smaller geometric and dosimetric uncertainties than B-Spline. Z Shen: None; K Bzdusek: an employee of Philips Healthcare; J Greskovich: None; P Xia: received research grants from Philips Healthcare and Siemens Healthcare.« less
NASA Astrophysics Data System (ADS)
Tyagi, Neelam; Fontenla, Sandra; Zhang, Jing; Cloutier, Michelle; Kadbi, Mo; Mechalakos, Jim; Zelefsky, Michael; Deasy, Joe; Hunt, Margie
2017-04-01
To evaluate a commercial synthetic CT (syn-CT) software for use in prostate radiotherapy. Twenty-five prostate patients underwent CT and MR simulation scans in treatment position on a 3T MR scanner. A commercially available MR protocol was used that included a T2w turbo spin-echo sequence for soft-tissue contrast and a dual echo 3D mDIXON fast field echo (FFE) sequence for generating syn-CT. A dual-echo 3D FFE B 0 map was used for patient-induced susceptibility distortion analysis and a new 3D balanced-FFE sequence was evaluated for identification of implanted gold fiducial markers and subsequent image-guidance during radiotherapy delivery. Tissues were classified as air, adipose, water, trabecular/spongy bone and compact/cortical bone and assigned bulk HU values. The accuracy of syn-CT for treatment planning was analyzed by transferring the structures and plan from planning CT to syn-CT and recalculating the dose. Accuracy of localization at the treatment machine was evaluated by comparing registration of kV radiographs to either digitally reconstructed radiographs (DRRs) generated from syn-CT or traditional DRRs generated from the planning CT. Similarly, accuracy of setup using CBCT and syn-CT was compared to that using the planning CT. Finally, a MR-only simulation workflow was established and end-to-end testing was completed on five patients undergoing MR-only simulation. Dosimetric comparison between the original CT and syn-CT plans was within 0.5% on average for all structures. The de-novo optimized plans on the syn-CT met institutional clinical objectives for target and normal structures. Patient-induced susceptibility distortion based on B 0 maps was within 1 mm and 0.5 mm in the body and prostate respectively. DRR and CBCT localization based on MR-localized fiducials showed a standard deviation of <1 mm. End-to-end testing and MR simulation workflow was successfully validated. MRI derived synthetic CT can be successfully used for a MR-only planning and treatment for prostate radiotherapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Y; Cho, B; Kwak, J
2014-06-01
Purpose: We implemented the Gafchromic film-based patient specific QA of volumetric modulated arc therapy (VMAT) with flattening-filter free (FFF) beams for spine metastases and validated the accuracy of fast arc delivery. Methods: EBT3 films and a homemade cylindrical QA phantom were employed for dosimetric verification of VMATs. For 14 FFF VMAT plans (10 with 10-MV FFF beams and 4 with 6-MV FFF beams), the doses were recalculated on the phantom and delivered by a TrueBeam STx accelerator equipped with a high-definition 120 leaf MLC. The EBT3 films were scanned using an Epson 10000XL scanner through the FilmQA Pro software. Allmore » the irradiated film images were converted to dose map using a calibration response curve. The resulting dose map of film measurement was compared with treatment plan and evaluated using gamma analysis with dose tolerance of 2% within 2 mm. In addition, the point-dose measurement in the phantom using an ion chamber was evaluated as a reference in a ratio of measured and planned doses. Results: The gamma pass rates averaged over all FFF plans for composite-field measurements were 96.0 ± 3.6% (88.9%–99.5%). When adopting a tolerance level of 3% - 3 mm, the gamma pass rates were improved with the ranges from 98% to 100%. In addition, dose profiles and dose distributions showed that spinal cord was protected by the rapid dose fall-off and by delivering the treatment with high precision. In point-dose measurements, the average differences between the measured and planned doses were 0.5% ± 1.0% of the prescription dose. Conclusion: We demonstrated that Gafchromic EBT3 film would be an effective patient-specific QA tool, especially for VMAT of spine SBRT with treatment of small fields and highly gradient dose distributions. The results of film QA verified that the dosimetric accuracy of spine SBRT utilizing RapidArc with FFF beams in our institution is reliable.« less
NASA Astrophysics Data System (ADS)
Flynn, Brendan P.; DSouza, Alisha V.; Kanick, Stephen C.; Davis, Scott C.; Pogue, Brian W.
2013-04-01
Subsurface fluorescence imaging is desirable for medical applications, including protoporphyrin-IX (PpIX)-based skin tumor diagnosis, surgical guidance, and dosimetry in photodynamic therapy. While tissue optical properties and heterogeneities make true subsurface fluorescence mapping an ill-posed problem, ultrasound-guided fluorescence-tomography (USFT) provides regional fluorescence mapping. Here USFT is implemented with spectroscopic decoupling of fluorescence signals (auto-fluorescence, PpIX, photoproducts), and white light spectroscopy-determined bulk optical properties. Segmented US images provide a priori spatial information for fluorescence reconstruction using region-based, diffuse FT. The method was tested in simulations, tissue homogeneous and inclusion phantoms, and an injected-inclusion animal model. Reconstructed fluorescence yield was linear with PpIX concentration, including the lowest concentration used, 0.025 μg/ml. White light spectroscopy informed optical properties, which improved fluorescence reconstruction accuracy compared to the use of fixed, literature-based optical properties, reduced reconstruction error and reconstructed fluorescence standard deviation by factors of 8.9 and 2.0, respectively. Recovered contrast-to-background error was 25% and 74% for inclusion phantoms without and with a 2-mm skin-like layer, respectively. Preliminary mouse-model imaging demonstrated system feasibility for subsurface fluorescence measurement in vivo. These data suggest that this implementation of USFT is capable of regional PpIX mapping in human skin tumors during photodynamic therapy, to be used in dosimetric evaluations.
Neutron spectrometry for radiation protection purposes
NASA Astrophysics Data System (ADS)
McDonald, J. C.; Siebert, B. R. L.; Alberts, W. G.
2002-01-01
Determination of the dose equivalent is required for radiation protection purposes, however such a determination is quite difficult for neutron radiation. In order to perform accurate dosimetric determinations, it is advantageous to acquire information about the neutron fluence spectrum in the workplace as well as the reference radiations used to calibrate dosimetric instruments. This information can then be used to select the appropriate dosimetric instrument, the optimum calibration condition or to establish correction factors that account for the differences in calibration and workplace conditions. For quite some time, neutron spectrometry has been used for these purposes. A brief review of the applications of spectrometers in radiation protection and some recommendations for further development are given here.
Effective atomic numbers and electron density of dosimetric material
Kaginelli, S. B.; Rajeshwari, T.; Sharanabasappa; Kerur, B. R.; Kumar, Anil S.
2009-01-01
A novel method for determination of mass attenuation coefficient of x-rays employing NaI (Tl) detector system and radioactive sources is described.in this paper. A rigid geometry arrangement and gating of the spectrometer at FWHM position and selection of absorber foils are all done following detailed investigation, to minimize the effect of small angle scattering and multiple scattering on the mass attenuation coefficient, μ/ρ, value. Firstly, for standardization purposes the mass attenuation coefficients of elemental foils such as Aluminum, Copper, Molybdenum, Tantalum and Lead are measured and then, this method is utilized for dosimetric interested material (sulfates). The experimental mass attenuation coefficient values are compared with the theoretical values to find good agreement between the theory and experiment within one to two per cent. The effective atomic numbers of the biological substitute material are calculated by sum rule and from the graph. The electron density of dosimetric material is calculated using the effective atomic number. The study has discussed in detail the attenuation coefficient, effective atomic number and electron density of dosimetric material/biological substitutes. PMID:20098566
Dosimetric characteristics of Novalis Tx system with high definition multileaf collimator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang Zheng; Wang Zhiheng; Wu, Q. Jackie
A new Novalis Tx system equipped with a high definition multileaf collimator (HDMLC) recently became available to perform both image-guided radiosurgery and conventional radiotherapy. It is capable of delivering a highly conformal radiation dose with three energy modes: 6 MV photon energy, 15 MV photon energy, and 6 MV photon energy in a stereotactic radiosurgery mode with 1000 MU/min dose rate. Dosimetric characteristics of the new Novalis Tx treatment unit with the HDMLC are systematically measured for commissioning. A high resolution diode detector and miniion-chamber detector are used to measure dosimetric data for a range of field sizes from 4x4more » mm to 400x400 mm. The commissioned Novalis Tx system has passed the RPC stereotactic radiosurgery head phantom irradiation test. The Novalis Tx system not only expands its capabilities with three energy modes, but also achieves better beam conformity and sharer beam penumbra with HDMLC. Since there is little beam data information available for the new Novalis Tx system, we present in this work the dosimetric data of the new modality for reference and comparison.« less
Bucciolini, M; Russo, S; Banci Buonamici, F; Pini, S; Silli, P
2002-07-01
A 6 MV photon beam from Linac SL75-5 has been collimated with a new micromultileaf device that is able to shape the field in the two orthogonal directions with four banks of leaves. This is the first clinical installation of the collimator and in this paper the dosimetric characterization of the system is reported. The dosimetric parameters required by the treatment planning system used for the dose calculation in the patient are: tissue maximum ratios, output factors, transmission and leakage of the leaves, penumbra values. Ionization chambers, silicon diode, radiographic films, and LiF thermoluminescent dosimeters have been employed for measurements of absolute dose and beam dosimetric data. Measurements with different dosimeters supply results in reasonable agreement among them and consistent with data available in literature for other models of micromultileaf collimator; that permits the use of the measured parameters for clinical applications. The discrepancies between results obtained with the different detectors (around 2%) for the analyzed parameters can be considered an indication of the accuracy that can be reached by current stereotactic dosimetry.
Baghani, Hamid Reza; Lohrabian, Vahid; Aghamiri, Mahmoud Reza; Robatjazi, Mostafa
2016-03-01
(125)I is one of the important sources frequently used in brachytherapy. Up to now, several different commercial models of this source type have been introduced to the clinical radiation oncology applications. Recently, a new source model, IrSeed-125, has been added to this list. The aim of the present study is to determine the dosimetric parameters of this new source model based on the recommendations of TG-43 (U1) protocol using Monte Carlo simulation. The dosimetric characteristics of Ir-125 including dose rate constant, radial dose function, 2D anisotropy function and 1D anisotropy function were determined inside liquid water using MCNPX code and compared to those of other commercially available iodine sources. The dose rate constant of this new source was found to be 0.983+0.015 cGyh-1U-1 that was in good agreement with the TLD measured data (0.965 cGyh-1U-1). The 1D anisotropy function at 3, 5, and 7 cm radial distances were obtained as 0.954, 0.953 and 0.959, respectively. The results of this study showed that the dosimetric characteristics of this new brachytherapy source are comparable with those of other commercially available sources. Furthermore, the simulated parameters were in accordance with the previously measured ones. Therefore, the Monte Carlo calculated dosimetric parameters could be employed to obtain the dose distribution around this new brachytherapy source based on TG-43 (U1) protocol.
NASA Astrophysics Data System (ADS)
McCurdy, B. M. C.
2013-06-01
An overview is provided of the use of amorphous silicon electronic portal imaging devices (EPIDs) for dosimetric purposes in radiation therapy, focusing on 3D patient dose estimation. EPIDs were originally developed to provide on-treatment radiological imaging to assist with patient setup, but there has also been a natural interest in using them as dosimeters since they use the megavoltage therapy beam to form images. The current generation of clinically available EPID technology, amorphous-silicon (a-Si) flat panel imagers, possess many characteristics that make them much better suited to dosimetric applications than earlier EPID technologies. Features such as linearity with dose/dose rate, high spatial resolution, realtime capability, minimal optical glare, and digital operation combine with the convenience of a compact, retractable detector system directly mounted on the linear accelerator to provide a system that is well-suited to dosimetric applications. This review will discuss clinically available a-Si EPID systems, highlighting dosimetric characteristics and remaining limitations. Methods for using EPIDs in dosimetry applications will be discussed. Dosimetric applications using a-Si EPIDs to estimate three-dimensional dose in the patient during treatment will be overviewed. Clinics throughout the world are implementing increasingly complex treatments such as dynamic intensity modulated radiation therapy and volumetric modulated arc therapy, as well as specialized treatment techniques using large doses per fraction and short treatment courses (ie. hypofractionation and stereotactic radiosurgery). These factors drive the continued strong interest in using EPIDs as dosimeters for patient treatment verification.
Dosimetric and clinical predictors for radiation-induced esophageal injury.
Ahn, Sung-Ja; Kahn, Daniel; Zhou, Sumin; Yu, Xiaoli; Hollis, Donna; Shafman, Timothy D; Marks, Lawrence B
2005-02-01
To evaluate the clinical and three-dimensional dosimetric parameters associated with esophageal injury after radiotherapy (RT) for non-small-cell lung cancer. The records of 254 patients treated for non-small-cell lung cancer between 1992 and 2001 were reviewed. A variety of metrics describing the esophageal dose were extracted. The Radiation Therapy Oncology Group toxicity criteria for grading of esophageal injury were used. The median follow-up time for all patients was 43 months (range, 0.5-120 months). Logistic regression analysis, contingency table analyses, and Fisher's exact tests were used for statistical analysis. Acute toxicity occurred in 199 (78%) of 254 patients. For acute toxicity of Grade 2 or worse, twice-daily RT, age, nodal stage of N2 or worse, and most dosimetric parameters were predictive. Late toxicity occurred in 17 (7%) of 238 patients. The median and maximal time to the onset of late toxicity was 5 and 40 months after RT, respectively. Late toxicity occurred in 2%, 3%, 17%, 26%, and 100% of patients with acute Grade 0, 1, 2, 3, and 4 toxicity, respectively. For late toxicity, the severity of acute toxicity was most predictive. A variety of dosimetric parameters are predictive of acute and late esophageal injury. A strong correlation between the dosimetric parameters prevented a comparison between the predictive abilities of these metrics. The presence of acute injury was the most predictive factor for the development of late injury. Additional studies to define better the predictors of RT-induced esophageal injury are needed.
Potential benefits of dosimetric VMAT tracking verified with 3D film measurements.
Crijns, Wouter; Defraene, Gilles; Van Herck, Hans; Depuydt, Tom; Haustermans, Karin; Maes, Frederik; Van den Heuvel, Frank
2016-05-01
To evaluate three different plan adaptation strategies using 3D film-stack dose measurements of both focal boost and hypofractionated prostate VMAT treatments. The adaptation strategies (a couch shift, geometric tracking, and dosimetric tracking) were applied for three realistic intrafraction prostate motions. A focal boost (35 × 2.2 and 35 × 2.7 Gy) and a hypofractionated (5 × 7.25 Gy) prostate VMAT plan were created for a heterogeneous phantom that allows for internal prostate motion. For these plans geometric tracking and dosimetric tracking were evaluated by ionization chamber (IC) point dose measurements (zero-D) and measurements using a stack of EBT3 films (3D). The geometric tracking applied translations, rotations, and scaling of the MLC aperture in response to realistic prostate motions. The dosimetric tracking additionally corrected the monitor units to resolve variations due to difference in depth, tissue heterogeneity, and MLC-aperture. The tracking was based on the positions of four fiducial points only. The film measurements were compared to the gold standard (i.e., IC measurements) and the planned dose distribution. Additionally, the 3D measurements were converted to dose volume histograms, tumor control probability, and normal tissue complication probability parameters (DVH/TCP/NTCP) as a direct estimate of clinical relevance of the proposed tracking. Compared to the planned dose distribution, measurements without prostate motion and tracking showed already a reduced homogeneity of the dose distribution. Adding prostate motion further blurs the DVHs for all treatment approaches. The clinical practice (no tracking) delivered the dose distribution inside the PTV but off target (CTV), resulting in boost dose errors up to 10%. The geometric and dosimetric tracking corrected the dose distribution's position. Moreover, the dosimetric tracking could achieve the planned boost DVH, but not the DVH of the more homogeneously irradiated prostate. A drawback of both the geometric and dosimetric tracking was a reduced MLC blocking caused by the rotational component of the MLC aperture corrections. Because of the used CTV to PTV margins and the high doses in the considered fractionation schemes, the TCP differed less than 0.02 from the planned value for all targets and all correction methods. The rectal NTCP constraints, however, could not be realized using any of these methods. The geometric and dosimetric tracking use only a limited input, but they deposit the dose distribution with higher geometric accuracy than the clinical practice. The latter case has boost dose errors up to 10%. The increased accuracy has a modest impact [Δ(NT)CP < 0.02] because of the applied margins and the high dose levels used. To allow further margin reduction tracking methods are vital. The proposed methodology could further be improved by implementing a rotational correction using collimator rotations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mutaf, Yildirim D.; Yi, Byong Yong; Prado, Karl
Purpose: A dedicated stereotactic gamma irradiation device, the GammaPod Trade-Mark-Sign from Xcision Medical Systems, was developed specifically to treat small breast cancers. This study presents the first evaluation of dosimetric and geometric characteristics from the initial prototype installed at University of Maryland Radiation Oncology Department. Methods: The GammaPod Trade-Mark-Sign stereotactic radiotherapy device is an assembly of a hemi-spherical source carrier containing 36 {sup 60}Co sources, a tungsten collimator, a dynamically controlled patient support table, and the breast immobilization system which also functions as a stereotactic frame. The source carrier contains the sources in six columns spaced longitudinally at 60 Degree-Signmore » intervals and it rotates together with the variable-size collimator to form 36 noncoplanar, concentric arcs focused at the isocenter. The patient support table enables motion in three dimensions to position the patient tumor at the focal point of the irradiation. The table moves continuously in three cardinal dimensions during treatment to provide dynamic shaping of the dose distribution. The breast is immobilized using a breast cup applying a small negative pressure, where the immobilization cup is embedded with fiducials also functioning as the stereotactic frame for the breast. Geometric and dosimetric evaluations of the system as well as a protocol for absorbed dose calibration are provided. Dosimetric verifications of dynamically delivered patient plans are performed for seven patients using radiochromic films in hypothetical preop, postop, and target-in-target treatment scenarios. Results: Loaded with 36 {sup 60}Co sources with cumulative activity of 4320 Ci, the prototype GammaPod Trade-Mark-Sign unit delivers 5.31 Gy/min at the isocenter using the largest 2.5 cm diameter collimator. Due to the noncoplanar beam arrangement and dynamic dose shaping features, the GammaPod Trade-Mark-Sign device is found to deliver uniform doses to targets with good conformity. The spatial accuracy of the device to locate the radiation isocenter is determined to be less than 1 mm. Single shot profiles with 2.5 cm collimator are measured with radiochromic film and found to be in good agreement with respect to the Monte Carlo based calculations (congruence of FWHM less than 1 mm). Dosimetric verifications corresponding to all hypothetical treatment plans corresponding to three target scenarios for each of the seven patients demonstrated good agreement with gamma index pass rates of better than 97% (99.0%{+-} 0.7%). Conclusions: Dosimetric evaluation of the first GammaPod Trade-Mark-Sign stereotactic breast radiotherapy unit was performed and the dosimetric and spatial accuracy of this novel technology is found to be feasible with respect to clinical radiotherapy standards. The observed level of agreement between the treatment planning system calculations and dosimetric measurements has confirmed that the system can deliver highly complex treatment plans with remarkable geometric and dosimetric accuracy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, M; Knutson, N; University of Rhode Island, Kingston, RI
2016-06-15
Purpose: Development of an in-house program facilitates a workflow that allows Electronic Portal Imaging Device (EPID) patient specific quality assurance (QA) measurements to be acquired and analyzed in the Portal Dosimetry Application (Varian Medical Systems, Palo Alto, CA) using a non-Aria Record and Verify (R&V) system (MOSAIQ, Elekta, Crawley, UK) to deliver beams in standard clinical treatment mode. Methods: Initial calibration of an in-house software tool includes characterization of EPID dosimetry parameters by importing DICOM images of varying delivered MUs to determine linear mapping factors in order to convert image pixel values to Varian-defined Calibrated Units (CU). Using this information,more » the Portal Dose Image Prediction (PDIP) algorithm was commissioned by converting images of various field sizes to output factors using the Eclipse Scripting Application Programming Interface (ESAPI) and converting a delivered configuration fluence to absolute dose units. To verify the algorithm configuration, an integrated image was acquired, exported directly from the R&V client, automatically converted to a compatible, calibrated dosimetric image, and compared to a PDIP calculated image using Varian’s Portal Dosimetry Application. Results: For two C-Series and one TrueBeam Varian linear accelerators, gamma comparisons (global 3% / 3mm) of PDIP algorithm predicted dosimetric images and images converted via the inhouse system demonstrated agreement for ≥99% of all pixels, exceeding vendor-recommended commissioning guidelines. Conclusion: Combinations of a programmatic image conversion tool and ESAPI allow for an efficient and accurate method of patient IMRT QA incorporating a 3rd party R&V system.« less
Mapping cavitation activity around dental ultrasonic tips.
Walmsley, A Damien; Lea, Simon C; Felver, Bernhard; King, David C; Price, Gareth J
2013-05-01
Cavitation arising within the water around the oscillating ultrasonic scaler tip is an area that may lead to advances in enhancing biofilm removal. The aim of this study is to map the occurrence of cavitation around scaler tips under loaded conditions. Two designs of piezoelectric ultrasonic scaling probes were evaluated with a scanning laser vibrometer and luminol dosimetric system under loaded (100 g/200 g) and unloaded conditions. Loads were applied to the probe tips via teeth mounted in a load-measuring apparatus. There was a positive correlation between probe displacement amplitude and cavitation production for ultrasonic probes. The position of cavitation at the tip of each probe was greater under loaded conditions than unloaded and for the longer P probe towards the tip. Whilst increasing vibration displacement amplitude of ultrasonic scalers increases the occurrence of cavitation, factors such as the length of the probe influence the amount of cavitation activity generated. The application of load affects the production of cavitation at the most clinically relevant area-the tip. Loading and the design of ultrasonic scalers lead to maximising the occurrence of the cavitation at the tip and enhance the cleaning efficiency of the scaler.
DOSIMETRIC CHARACTERISTICS OF GAMMA-TRON-2 (in Russian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krongauz, A.N.; Pavlova, T.G.; Frolova, A.V.
1963-01-01
Dosimetric characteristics of the Gammatron-2 during operation in a static regimen are presented. The air dose and the distribution of doses along the central ray of the beam and on the sides were determined. The protective properties of Gammatron-2 were studied. On the basis of the measurements, charts of isodoses were elaborated. (P.C.H.)
SU-F-T-165: Daily QA Analysis for Spot Scanning Beamline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poenisch, F; Gillin, M; Sahoo, N
2016-06-15
Purpose: The dosimetric results of our daily quality assurance over the last 8 years for discrete pencil beam scanning proton therapy will be presented. Methods: To perform the dosimetric checks, a multi-ion chamber detector is used, which consists of an array of 5 single parallel plate ion chambers that are aligned as a cross separated by 10cm each. The Tracker is snapped into a jig, which is placed on the tabletop. Different amounts of Solid Water buildup are added to shift the dose distribution. The dosimetric checks consist of 3 parts: position check, range check and volume dose check. Results:more » The average deviation of all position-check data were 0.2±1.3%. For the range check, the average deviation was 0.1%±1.2%, which also corresponds to a range stability of better than 1 mm over all measurements. The volumetric dose output readings were all within ±1% with the exception of 2 occasions when the cable to the dose monitor was being repaired. Conclusion: Morning QA using the Tracker device gives very stable dosimetric readings but is also sensitive to mechanical and output changes in the proton therapy delivery system.« less
Flühs, Dirk; Flühs, Andrea; Ebenau, Melanie; Eichmann, Marion
2015-09-01
Dosimetric measurements in small radiation fields with large gradients, such as eye plaque dosimetry with β or low-energy photon emitters, require dosimetrically almost water-equivalent detectors with volumes of <1 mm(3) and linear responses over several orders of magnitude. Polyvinyltoluene-based scintillators fulfil these conditions. Hence, they are a standard for such applications. However, they show disadvantages with regard to certain material properties and their dosimetric behaviour towards low-energy photons. Polyethylene naphthalate, recently recognized as a scintillator, offers chemical, physical and basic dosimetric properties superior to polyvinyltoluene. Its general applicability as a clinical dosimeter, however, has not been shown yet. To prove this applicability, extensive measurements at several clinical photon and electron radiation sources, ranging from ophthalmic plaques to a linear accelerator, were performed. For all radiation qualities under investigation, covering a wide range of dose rates, a linearity of the detector response to the dose was shown. Polyethylene naphthalate proved to be a suitable detector material for the dosimetry of ophthalmic plaques, including low-energy photon emitters and other small radiation fields. Due to superior properties, it has the potential to replace polyvinyltoluene as the standard scintillator for such applications.
Dosimetric property of mineral extracted from calamari and exposed to gamma rays
NASA Astrophysics Data System (ADS)
Cruz-Zaragoza, E.; Roman-Lopez, J.; Cruz, L. Pérez; Furetta, C.; Chiaravalle, E.; Mangiacotti, M.; Marchesani, G.
2013-07-01
Dosimetric property of polymineral fraction, quartz mainly, obtained from calamari was investigated. The commercial calamari samples from China and Sud Africa were collected in the markets of Italy. All polymineral debris were extracted and isolated from the whole body of calamari. The surface of the polymineral samples was analyzed by using the Scanning Electron Microscopy (SEM) and their chemical composition was determined using Energy Dispersive Spectroscopy (EDS). The polymineral was exposed to gamma rays (60Co) at different doses (0.5-80 Gy) to determine dosimetric property. Thermoluminescent (TL) glow curves showed two peaks centered at around 98-100 °C and 128-138 °C temperature range. The glow curves have been analyzed by using a deconvolution program. A linear dose response between 0.5 to 20 Gy was observed. The TL response of the samples as a function of the time storage, fading, presented a reduction of about 36-40 % at the end of 24 h. The reproducibility of the TL response after ten cycles of irradiation-readout showed an acceptable standard deviation in dosimetry. The polimineral fraction obtained from calamari shows an interesting dosimetric property and it may be useful for dosimetry in gamma radiation field.
Winkler, Peter; Zurl, Brigitte; Guss, Helmuth; Kindl, Peter; Stuecklschweiger, Georg
2005-02-21
A system for dosimetric verification of intensity-modulated radiotherapy (IMRT) treatment plans using absolute calibrated radiographic films is presented. At our institution this verification procedure is performed for all IMRT treatment plans prior to patient irradiation. Therefore clinical treatment plans are transferred to a phantom and recalculated. Composite treatment plans are irradiated to a single film. Film density to absolute dose conversion is performed automatically based on a single calibration film. A software application encompassing film calibration, 2D registration of measurement and calculated distributions, image fusion, and a number of visual and quantitative evaluation utilities was developed. The main topic of this paper is a performance analysis for this quality assurance procedure, with regard to the specification of tolerance levels for quantitative evaluations. Spatial and dosimetric precision and accuracy were determined for the entire procedure, comprising all possible sources of error. The overall dosimetric and spatial measurement uncertainties obtained thereby were 1.9% and 0.8 mm respectively. Based on these results, we specified 5% dose difference and 3 mm distance-to-agreement as our tolerance levels for patient-specific quality assurance for IMRT treatments.
Uysal, Bora; Beyzadeoğlu, Murat; Sager, Ömer; Dinçoğlan, Ferrat; Demiral, Selçuk; Gamsız, Hakan; Sürenkök, Serdar; Oysul, Kaan
2013-01-01
Objective: The purpose of this dosimetric study is the targeted dose homogeneity and critical organ dose comparison of 7-field Intensity Modulated Radiotherapy (IMRT) and 3-D 4-field conformal radiotherapy. Study Design: Cross sectional study. Material and Methods: Twenty patients with low and moderate risk prostate cancer treated at Gülhane Military Medical School Radiation Oncology Department between January 2009 and December 2009 are included in this study. Two seperate dosimetric plans both for 7-field IMRT and 3D-CRT have been generated for each patient to comparatively evaluate the dosimetric status of both techniques and all the patients received 7-field IMRT. Results: Dose-comparative evaluation of two techniques revealed the superiority of IMRT technique with statistically significantly lower femoral head doses along with reduced critical organ dose-volume parameters of bladder V60 (the volume receiving 60 Gy) and rectal V40 (the volume receiving 40 Gy) and V60. Conclusion: It can be concluded that IMRT is an effective definitive management tool for prostate cancer with improved critical organ sparing and excellent dose homogenization in target organs of prostate and seminal vesicles. PMID:25207069
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, V; Tran, A; Nguyen, D
Purpose: To demonstrate significant organ-at-risk (OAR) sparing achievable with 4π non-coplanar radiotherapy on spine SBRT and SRS patients. Methods: Twenty-five stereotactic spine cases previously treated with VMAT (n = 23) or IMRT (n = 2) were included in this study. A computer-aided-design model of a Linac with a 3D-scanned human surface was utilized to determine the feasible beam space throughout the 4π steradian and beam specific source-to-target-distances (STD) required for collision avoidance. 4π radiotherapy plans integrating beam orientation and fluence map optimization were then created using a column-generation algorithm. Twenty optimal beams were selected for each case. To evaluate themore » tradeoff between dosimetric benefit and treatment complexity, 4π plans including only isocentrically deliverable beams were also created. Beam angles of all standard and isocentric 4π plans were imported into Eclipse to recalculate the dose using the same calculation engine as the clinical plans for unbiased comparison. OAR and PTV dose statistics for the clinical, standard-4π, and isocentric-4π plans were compared. Results: Comparing standard-4π to clinical plans, particularly significant average percent reduction in the [mean, maximum] dose of the cord and esophagus of [41%, 21.7%], and [38.7%, 36.4%] was observed, along with global decrease in all other OAR dose statistics. The average cord volume receiving more than 50% prescription dose was substantially decreased by 76%. In addition, improved PTV coverage was demonstrated with a maximum dose reduction of 0.93% and 1.66% increase in homogeneity index (D95/D5). All isocentric-4π plans achieved dosimetric performance equivalent to that of the standard-4π plans with higher delivery complexity. Conclusion: 4π radiotherapy significantly improves stereotactic spine treatment dosimetry. With the substantial OAR dose sparing, PTV dose escalation is considerably safer. Isocentric-4π is sufficient to achieve the dosimetric gain. The successful implementation of 4π using an FDA approved planning system paves the way for a prospective clinical trial. Varian Medical Systems, NIH R43CA183390 and R01CA188300, NSF graduate research fellowship DGE-1144087.« less
Aguirre, Erik; Iturri, Peio Lopez; Azpilicueta, Leire; de Miguel-Bilbao, Silvia; Ramos, Victoria; Gárate, Uxue; Falcone, Francisco
2015-03-01
A high number of wireless technologies can be found operating in vehicular environments with the aim of offering different services. The dosimetric evaluation of this kind of scenarios must be performed in order to assess their compatibility with current exposure limits. In this work, a dosimetric evaluation inside a conventional car is performed, with the aid of an in-house 3D Ray Launching computational code, which has been compared with measurement results of wireless sensor networks located inside the vehicle. These results can aid in an adequate assessment of human exposure to non-ionizing radiofrequency fields, taking into account the impact of the morphology and the topology of the vehicle for current as well as for future exposure limits.
Popoca, R; Ureña-Núñez, F
2009-06-01
This work reports the possibility of using lithium carbonate as a dosimetric material for gamma-radiation measurements. Carboxi-radical ions, CO(2)(-) and CO(3)(-), arise from the gamma irradiation of Li(2)CO(3), and these radical ions can be quantified by electron paramagnetic resonance (EPR) spectrometry. The EPR-signal response of gamma-irradiated lithium carbonate has been investigated to determine some dosimetric characteristics such as: peak-to-peak signal intensity versus gamma dose received, zero-dose response, signal fading, signal repeatability, batch homogeneity, dose rate effect and stability at different environmental conditions. Using the conventional peak-to-peak method of stable ion radicals, it is concluded that lithium carbonate could be used as a gamma dosemeter in the range of 3-100 Gy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watkins, W.T.; Siebers, J.V.
Purpose: To introduce quasi-constrained Multi-Criteria Optimization (qcMCO) for unsupervised radiation therapy optimization which generates alternative patient-specific plans emphasizing dosimetric tradeoffs and conformance to clinical constraints for multiple delivery techniques. Methods: For N Organs At Risk (OARs) and M delivery techniques, qcMCO generates M(N+1) alternative treatment plans per patient. Objective weight variations for OARs and targets are used to generate alternative qcMCO plans. For 30 locally advanced lung cancer patients, qcMCO plans were generated for dosimetric tradeoffs to four OARs: each lung, heart, and esophagus (N=4) and 4 delivery techniques (simple 4-field arrangements, 9-field coplanar IMRT, 27-field non-coplanar IMRT, and non-coplanarmore » Arc IMRT). Quasi-constrained objectives included target prescription isodose to 95% (PTV-D95), maximum PTV dose (PTV-Dmax)< 110% of prescription, and spinal cord Dmax<45 Gy. The algorithm’s ability to meet these constraints while simultaneously revealing dosimetric tradeoffs was investigated. Statistically significant dosimetric tradeoffs were defined such that the coefficient of determination between dosimetric indices which varied by at least 5 Gy between different plans was >0.8. Results: The qcMCO plans varied mean dose by >5 Gy to ipsilateral lung for 24/30 patients, contralateral lung for 29/30 patients, esophagus for 29/30 patients, and heart for 19/30 patients. In the 600 plans computed without human interaction, average PTV-D95=67.4±3.3 Gy, PTV-Dmax=79.2±5.3 Gy, and spinal cord Dmax was >45 Gy in 93 plans (>50 Gy in 2/600 plans). Statistically significant dosimetric tradeoffs were evident in 19/30 plans, including multiple tradeoffs of at least 5 Gy between multiple OARs in 7/30 cases. The most common statistically significant tradeoff was increasing PTV-Dmax to reduce OAR dose (15/30 patients). Conclusion: The qcMCO method can conform to quasi-constrained objectives while revealing significant variations in OAR doses including mean dose reductions >5 Gy. Clinical implementation will facilitate patient-specific decision making based on achievable dosimetry as opposed to accept/reject models based on population derived objectives.« less
Preliminary study for small animal preclinical hadrontherapy facility
NASA Astrophysics Data System (ADS)
Russo, G.; Pisciotta, P.; Cirrone, G. A. P.; Romano, F.; Cammarata, F.; Marchese, V.; Forte, G. I.; Lamia, D.; Minafra, L.; Bravatá, V.; Acquaviva, R.; Gilardi, M. C.; Cuttone, G.
2017-02-01
Aim of this work is the study of the preliminary steps to perform a particle treatment of cancer cells inoculated in small animals and to realize a preclinical hadrontherapy facility. A well-defined dosimetric protocol was developed to explicate the steps needed in order to perform a precise proton irradiation in small animals and achieve a highly conformal dose into the target. A precise homemade positioning and holding system for small animals was designed and developed at INFN-LNS in Catania (Italy), where an accurate Monte Carlo simulation was developed, using Geant4 code to simulate the treatment in order to choose the best animal position and perform accurately all the necessary dosimetric evaluations. The Geant4 application can also be used to realize dosimetric studies and its peculiarity consists in the possibility to introduce the real target composition in the simulation using the DICOM micro-CT image. This application was fully validated comparing the results with the experimental measurements. The latter ones were performed at the CATANA (Centro di AdroTerapia e Applicazioni Nucleari Avanzate) facility at INFN-LNS by irradiating both PMMA and water solid phantom. Dosimetric measurements were performed using previously calibrated EBT3 Gafchromic films as a detector and the results were compared with the Geant4 simulation ones. In particular, two different types of dosimetric studies were performed: the first one involved irradiation of a phantom made up of water solid slabs where a layer of EBT3 was alternated with two different slabs in a sandwich configuration, in order to validate the dosimetric distribution. The second one involved irradiation of a PMMA phantom made up of a half hemisphere and some PMMA slabs in order to simulate a subcutaneous tumour configuration, normally used in preclinical studies. In order to evaluate the accordance between experimental and simulation results, two different statistical tests were made: Kolmogorov test and gamma index test. This work represents the first step towards the realization of a preclinical hadrontherapy facility at INFN-LNS in Catania for the future in vivo studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chera, B; Price, A; Kostich, M
Purpose: To compare the correlations between different dosimetric indices derived from the pharyngeal constrictor muscles and proximal esophagus with patient-reported difficulty in swallowing 6 months post radiotherapy using a novel patient reported outcome version of CTCAE (PRO-CTCAE). Methods: Forty-three patients with oropharyngeal squamous cell carcinoma were treated on a prospective multi-institutional study. All patients received de-intensified 60 Gy intensity modulated radiotherapy. We investigated correlations of individual patient dosimetric data of the superior (SPC), middle (MPC), inferior (IPC) pharyngeal constrictor muscles, the superior esophagus (SES), and the inferior esophagus (IES) to their self-reported 6 month post-treatment swallowing difficulty responses. Mild (≥more » Grade 1) swallowing difficulty responses were used as the clinical endpoint indicating response. The predictive efficacy of Dmean and dose-volume (VD) points were assessed through the area under the Receiver Operating Characteristic curve (ROC) and Odds Ratio (OR). Results: The SES and SPC had more favorable area under the curves (AUC) for the Dmean (0.62 and 0.70) while the Dmean to the IPC, MPC, and IES produced suboptimal AUCs (0.42, 0.48, and 0.52). Additionally, over the range of VD, the V54 and V55 for the SES and SPC demonstrated the highest AUCs: AUC(SES) = 0.76–0.73 and AUC(SPC) = 0.72–0.69, respectively. The IES, IPC, and MPC had worse AUC results over the range of VD. An optimal OR can be found when V54 = 96% for the SPC, where OR = 3.96 (1.07–14.62). Conclusion: The V45 and V55 of the SES and SPC had the highest correlation to the clinical endpoint compared to the commonly used dosimetric index, Dmean for both the esophagus and constrictor muscles. The reported dosimetric data demonstrates that new dosimetric indices may need to be considered in the setting of dose de-escalation and self-reported outcomes.« less
Hirano, Yasuhiro; Onozawa, Masakatsu; Hojo, Hidehiro; Motegi, Atsushi; Zenda, Sadatomo; Hotta, Kenji; Moriya, Shunsuke; Tachibana, Hidenobu; Nakamura, Naoki; Kojima, Takashi; Akimoto, Tetsuo
2018-02-09
The purpose of this study was to perform a dosimetric comparison between proton beam therapy (PBT) and photon radiation therapy in patients with locally advanced esophageal squamous cell carcinoma (ESCC) who were treated with PBT in our institution. In addition, we evaluated the correlation between toxicities and dosimetric parameters, especially the doses to normal lung or heart tissue, to clarify the clinical advantage of PBT over photon radiation therapy. A total of 37 consecutive patients with Stage III thoracic ESCC who had received PBT with or without concurrent chemotherapy between October 2012 and December 2015 were evaluated in this study. The dose distributions of PBT were compared with those of dummy 3-dimensional conformal radiation therapy (3DCRT) and Intensity Modulated Radiation Therapy (IMRT), focusing especially on the doses to organs at risk, such as normal lung and heart tissue. Of the 37 patients, the data from 27 patients were analyzed. Among these 27 patients, four patients (15%) developed grade 2 pericardial effusion as a late toxicity. None of the patients developed grade 3 or worse acute or late pulmonary and cardiac toxicities. When the dosimetric parameters between PBT and planned 3DCRT were compared, all the PBT domestic variables for the lung dose except for lung V10 GyE and V15 GyE were significantly lower than those for the dummy 3DCRT plans, and the PBT domestic variables for the heart dose were also significantly lower than those for the dummy 3DCRT plans. When the PBT and IMRT plans were compared, all the PBT domestic variables for the doses to the lung and heart were significantly lower than those for the dummy IMRT plans. Regarding the correlation between the grades of toxicities and the dosimetric parameters, no significant correlation was seen between the occurrence of grade 2 pericardial effusion and the dose to the heart. When the dosimetric parameters of the dose distributions for the treatment of patients with locally advanced stage III ESCC were compared between PBT and 3DCRT or IMRT, PBT enabled a significant reduction in the dose to the lung and heart, compared with 3DCRT or IMRT.
Placidi, Lorenzo; Azario, Luigi; Mattiucci, Gian Carlo; Greco, Francesca; Damiani, Andrea; Mantini, Giovanna; Frascino, Vincenzo; Piermattei, Angelo; Valentini, Vincenzo; Balducci, Mario
2015-01-01
The purpose of this study was to investigate the magnitude and dosimetric relevance of translational and rotational shifts on IGRT prostate volumetric‐modulated arc therapy (VMAT) using Protura six degrees of freedom (DOF) Robotic Patient Positioning System. Patients with cT3aN0M0 prostate cancer, treated with VMAT simultaneous integrated boost (VMAT‐SIB), were enrolled. PTV2 was obtained adding 0.7 cm margin to seminal vesicles base (CTV2), while PTV1 adding to prostate (CTV1) 0.7 cm margin in all directions, except 1.2 cm, as caudal margin. A daily CBCT was acquired before dose delivery. The translational and rotational displacements were corrected through Protura Robotic Couch, collected and applied to the simulation CT to obtain a translated CT (tCT) and a rototranslated CT (rtCT) on which we recalculated the initial treatment plan (TP). We analyzed the correlation between dosimetric coverage, organs at risk (OAR) sparing, and translational or rotational displacements. The dosimetric impact of a rototranslational correction was calculated. From October 2012 to September 2013, a total of 263 CBCT scans from 12 patients were collected. Translational shifts were <5mm in 81% of patients and the rotational shifts were <2∘ in 93% of patient scans. The dosimetric analysis was performed on 172 CBCT scans and calculating 344 VMAT‐TP. Two significant linear correlations were observed between yaw and the V20 femoral heads and between pitch rotation and V50 rectum (p<0.001); rototranslational correction seems to impact more on PTV2 than on PTV1, especially when margins are reduced. Rotational errors are of dosimetric significance in sparing OAR and in target coverage. This is relevant for femoral heads and rectum because of major distance from isocenter, and for seminal vesicles because of irregular shape. No correlation was observed between translational and rotational errors. A study considering the intrafractional error and the deformable registration is ongoing. PACS number: 87.55.de PMID:26699314
Jabbari, Keyvan; Pashaei, Fakhereh; Ay, Mohammad R.; Amouheidari, Alireza; Tavakoli, Mohammad B.
2018-01-01
Background: MapCHECK2 is a two-dimensional diode arrays planar dosimetry verification system. Dosimetric results are evaluated with gamma index. This study aims to provide comprehensive information on the impact of various factors on the gamma index values of MapCHECK2, which is mostly used for IMRT dose verification. Methods: Seven fields were planned for 6 and 18 MV photons. The azimuthal angle is defined as any rotation of collimators or the MapCHECK2 around the central axis, which was varied from 5 to −5°. The gantry angle was changed from −8 to 8°. Isodose sampling resolution was studied in the range of 0.5 to 4 mm. The effects of additional buildup on gamma index in three cases were also assessed. Gamma test acceptance criteria were 3%/3 mm. Results: The change of azimuthal angle in 5° interval reduced gamma index value by about 9%. The results of putting buildups of various thicknesses on the MapCHECK2 surface showed that gamma index was generally improved in thicker buildup, especially for 18 MV. Changing the sampling resolution from 4 to 2 mm resulted in an increase in gamma index by about 3.7%. The deviation of the gantry in 8° intervals in either directions changed the gamma index only by about 1.6% for 6 MV and 2.1% for 18 MV. Conclusion: Among the studied parameters, the azimuthal angle is one of the most effective factors on gamma index value. The gantry angle deviation and sampling resolution are less effective on gamma index value reduction. PMID:29535922
Dosimetric treatment course simulation based on a statistical model of deformable organ motion
NASA Astrophysics Data System (ADS)
Söhn, M.; Sobotta, B.; Alber, M.
2012-06-01
We present a method of modeling dosimetric consequences of organ deformation and correlated motion of adjacent organ structures in radiotherapy. Based on a few organ geometry samples and the respective deformation fields as determined by deformable registration, principal component analysis (PCA) is used to create a low-dimensional parametric statistical organ deformation model (Söhn et al 2005 Phys. Med. Biol. 50 5893-908). PCA determines the most important geometric variability in terms of eigenmodes, which represent 3D vector fields of correlated organ deformations around the mean geometry. Weighted sums of a few dominating eigenmodes can be used to simulate synthetic geometries, which are statistically meaningful inter- and extrapolations of the input geometries, and predict their probability of occurrence. We present the use of PCA as a versatile treatment simulation tool, which allows comprehensive dosimetric assessment of the detrimental effects that deformable geometric uncertainties can have on a planned dose distribution. For this, a set of random synthetic geometries is generated by a PCA model for each simulated treatment course, and the dose of a given treatment plan is accumulated in the moving tissue elements via dose warping. This enables the calculation of average voxel doses, local dose variability, dose-volume histogram uncertainties, marginal as well as joint probability distributions of organ equivalent uniform doses and thus of TCP and NTCP, and other dosimetric and biologic endpoints. The method is applied to the example of deformable motion of prostate/bladder/rectum in prostate IMRT. Applications include dosimetric assessment of the adequacy of margin recipes, adaptation schemes, etc, as well as prospective ‘virtual’ evaluation of the possible benefits of new radiotherapy schemes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ronald C.; Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
2012-07-15
Purpose: Research on patient-reported outcomes (PROs) in rectal cancer is limited. We examined whether dose-volume parameters of the small bowel and large bowel were associated with patient-reported gastrointestinal (GI) symptoms during 5-fluorouracil (5-FU)-based chemoradiation treatment for rectal cancer. Methods and Materials: 66 patients treated at the Brigham and Women's Hospital or Massachusetts General Hospital between 2006 and 2008 were included. Weekly during treatment, patients completed a questionnaire assessing severity of diarrhea, urgency, pain, cramping, mucus, and tenesmus. The association between dosimetric parameters and changes in overall GI symptoms from baseline through treatment was examined by using Spearman's correlation. Potential associationsmore » between these parameters and individual GI symptoms were also explored. Results: The amount of small bowel receiving at least 15 Gy (V15) was significantly associated with acute symptoms (p = 0.01), and other dosimetric parameters ranging from V5 to V45 also trended toward association. For the large bowel, correlations between dosimetric parameters and overall GI symptoms at the higher dose levels from V25 to V45 did not reach statistical significance (p = 0.1), and a significant association was seen with rectal pain from V15 to V45 (p < 0.01). Other individual symptoms did not correlate with small bowel or large bowel dosimetric parameters. Conclusions: The results of this study using PROs are consistent with prior studies with physician-assessed acute toxicity, and they identify small bowel V15 as an important predictor of acute GI symptoms during 5-FU-based chemoradiation treatment. A better understanding of the relationship between radiation dosimetric parameters and PROs may allow physicians to improve radiation planning to optimize patient outcomes.« less
Dos Santos-Goncalvez, Ana Maria; Beun, Sébastien; Leprince, Julian G.; Leloup, Gaëtane; Gallez, Bernard
2013-01-01
In case of radiological accident, retrospective dosimetry is needed to reconstruct the absorbed dose of overexposed individuals not wearing personal dosimeters at the onset of the incident. In such a situation, emergency mass triage will be required. In this context, it has been shown that Electron Paramagnetic Resonance (EPR) spectroscopy would be a rapid and sensitive method, on the field deployable system, allowing dose evaluation of a great number of people in a short time period. This methodology uses tooth enamel as a natural dosimeter. Ionising radiations create stable free radicals in the enamel, in a dose dependent manner, which can be detected by EPR directly in the mouth with an appropriate resonator. Teeth are often subject to restorations, currently made of synthetic dimethacrylate-based photopolymerizable composites. It is known that some dental composites give an EPR signal which is likely to interfere with the dosimetric signal from the enamel. So far, no information was available about the occurrence of this signal in the various composites available on the market, the magnitude of the signal compared to the dosimetric signal, nor its evolution with time. In this study, we conducted a systematic characterization of the signal (intensity, kinetics, interference with dosimetric signal) on 19 most widely used composites for tooth restoration, and on 14 experimental resins made with the most characteristic monomers found in commercial composites. Although a strong EPR signal was observed in every material, a rapid decay of the signal was noted. Six months after the polymerization, the signal was negligible in most composites compared to a 3 Gy dosimetric signal in a tooth. In some cases, a stable atypical signal was observed, which was still interfering with the dosimetric signal. PMID:23704875
The use of megavoltage CT (MVCT) images for dose recomputations
NASA Astrophysics Data System (ADS)
Langen, K. M.; Meeks, S. L.; Poole, D. O.; Wagner, T. H.; Willoughby, T. R.; Kupelian, P. A.; Ruchala, K. J.; Haimerl, J.; Olivera, G. H.
2005-09-01
Megavoltage CT (MVCT) images of patients are acquired daily on a helical tomotherapy unit (TomoTherapy, Inc., Madison, WI). While these images are used primarily for patient alignment, they can also be used to recalculate the treatment plan for the patient anatomy of the day. The use of MVCT images for dose computations requires a reliable CT number to electron density calibration curve. In this work, we tested the stability of the MVCT numbers by determining the variation of this calibration with spatial arrangement of the phantom, time and MVCT acquisition parameters. The two calibration curves that represent the largest variations were applied to six clinical MVCT images for recalculations to test for dosimetric uncertainties. Among the six cases tested, the largest difference in any of the dosimetric endpoints was 3.1% but more typically the dosimetric endpoints varied by less than 2%. Using an average CT to electron density calibration and a thorax phantom, a series of end-to-end tests were run. Using a rigid phantom, recalculated dose volume histograms (DVHs) were compared with plan DVHs. Using a deformed phantom, recalculated point dose variations were compared with measurements. The MVCT field of view is limited and the image space outside this field of view can be filled in with information from the planning kVCT. This merging technique was tested for a rigid phantom. Finally, the influence of the MVCT slice thickness on the dose recalculation was investigated. The dosimetric differences observed in all phantom tests were within the range of dosimetric uncertainties observed due to variations in the calibration curve. The use of MVCT images allows the assessment of daily dose distributions with an accuracy that is similar to that of the initial kVCT dose calculation.
Dosimetric treatment course simulation based on a statistical model of deformable organ motion.
Söhn, M; Sobotta, B; Alber, M
2012-06-21
We present a method of modeling dosimetric consequences of organ deformation and correlated motion of adjacent organ structures in radiotherapy. Based on a few organ geometry samples and the respective deformation fields as determined by deformable registration, principal component analysis (PCA) is used to create a low-dimensional parametric statistical organ deformation model (Söhn et al 2005 Phys. Med. Biol. 50 5893-908). PCA determines the most important geometric variability in terms of eigenmodes, which represent 3D vector fields of correlated organ deformations around the mean geometry. Weighted sums of a few dominating eigenmodes can be used to simulate synthetic geometries, which are statistically meaningful inter- and extrapolations of the input geometries, and predict their probability of occurrence. We present the use of PCA as a versatile treatment simulation tool, which allows comprehensive dosimetric assessment of the detrimental effects that deformable geometric uncertainties can have on a planned dose distribution. For this, a set of random synthetic geometries is generated by a PCA model for each simulated treatment course, and the dose of a given treatment plan is accumulated in the moving tissue elements via dose warping. This enables the calculation of average voxel doses, local dose variability, dose-volume histogram uncertainties, marginal as well as joint probability distributions of organ equivalent uniform doses and thus of TCP and NTCP, and other dosimetric and biologic endpoints. The method is applied to the example of deformable motion of prostate/bladder/rectum in prostate IMRT. Applications include dosimetric assessment of the adequacy of margin recipes, adaptation schemes, etc, as well as prospective 'virtual' evaluation of the possible benefits of new radiotherapy schemes.
Walston, Steve; Quick, Allison M; Kuhn, Karla; Rong, Yi
2017-02-01
To present our clinical workflow of incorporating AlignRT for left breast deep inspiration breath-hold treatments and the dosimetric considerations with the deep inspiration breath-hold protocol. Patients with stage I to III left-sided breast cancer who underwent lumpectomy or mastectomy were considered candidates for deep inspiration breath-hold technique for their external beam radiation therapy. Treatment plans were created on both free-breathing and deep inspiration breath-hold computed tomography for each patient to determine whether deep inspiration breath-hold was beneficial based on dosimetric comparison. The AlignRT system was used for patient setup and monitoring. Dosimetric measurements and their correlation with chest wall excursion and increase in left lung volume were studied for free-breathing and deep inspiration breath-hold plans. Deep inspiration breath-hold plans had significantly increased chest wall excursion when compared with free breathing. This change in geometry resulted in reduced mean and maximum heart dose but did not impact lung V 20 or mean dose. The correlation between chest wall excursion and absolute reduction in heart or lung dose was found to be nonsignificant, but correlation between left lung volume and heart dose showed a linear association. It was also identified that higher levels of chest wall excursion may paradoxically increase heart or lung dose. Reduction in heart dose can be achieved for many left-sided breast and chest wall patients using deep inspiration breath-hold. Chest wall excursion as well as left lung volume did not correlate with reduction in heart dose, and it remains to be determined what metric will provide the most optimal and reliable dosimetric advantage.
Subungual squamous cell carcinoma: A case study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neill, Cory J., E-mail: coryjneill@gmail.com
The purpose of this case study is to describe a dosimetric delivery of radiation to a superficial disease process involving the skin and bone of the distal finger. A 76-year-old male patient presented with a subungual squamous cell carcinoma (SCC) of the left distal index finger with bony involvement. The patient refused conventional surgical treatment but agreed to external beam radiation therapy (EBRT). There is a gap in the current literature describing how to successfully immobilize fingers and which EBRT modality is dosimetrically advantageous in treating them. The construction of a simple immobilization method with the patient in a reproduciblemore » position is described. The use of photons and electrons were compared ultimately showing photons to be dosimetrically advantageous. Long-term efficacy of the treatment was not evaluated because of patient noncompliance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Begovich, C.L.; Eckerman, K.F.; Schlatter, E.C.
1981-08-01
The DARTAB computer code combines radionuclide environmental exposure data with dosimetric and health effects data to generate tabulations of the predicted impact of radioactive airborne effluents. DARTAB is independent of the environmental transport code used to generate the environmental exposure data and the codes used to produce the dosimetric and health effects data. Therefore human dose and risk calculations need not be added to every environmental transport code. Options are included in DARTAB to permit the user to request tabulations by various topics (e.g., cancer site, exposure pathway, etc.) to facilitate characterization of the human health impacts of the effluents.more » The DARTAB code was written at ORNL for the US Environmental Protection Agency, Office of Radiation Programs.« less
Catching errors with patient-specific pretreatment machine log file analysis.
Rangaraj, Dharanipathy; Zhu, Mingyao; Yang, Deshan; Palaniswaamy, Geethpriya; Yaddanapudi, Sridhar; Wooten, Omar H; Brame, Scott; Mutic, Sasa
2013-01-01
A robust, efficient, and reliable quality assurance (QA) process is highly desired for modern external beam radiation therapy treatments. Here, we report the results of a semiautomatic, pretreatment, patient-specific QA process based on dynamic machine log file analysis clinically implemented for intensity modulated radiation therapy (IMRT) treatments delivered by high energy linear accelerators (Varian 2100/2300 EX, Trilogy, iX-D, Varian Medical Systems Inc, Palo Alto, CA). The multileaf collimator machine (MLC) log files are called Dynalog by Varian. Using an in-house developed computer program called "Dynalog QA," we automatically compare the beam delivery parameters in the log files that are generated during pretreatment point dose verification measurements, with the treatment plan to determine any discrepancies in IMRT deliveries. Fluence maps are constructed and compared between the delivered and planned beams. Since clinical introduction in June 2009, 912 machine log file analyses QA were performed by the end of 2010. Among these, 14 errors causing dosimetric deviation were detected and required further investigation and intervention. These errors were the result of human operating mistakes, flawed treatment planning, and data modification during plan file transfer. Minor errors were also reported in 174 other log file analyses, some of which stemmed from false positives and unreliable results; the origins of these are discussed herein. It has been demonstrated that the machine log file analysis is a robust, efficient, and reliable QA process capable of detecting errors originating from human mistakes, flawed planning, and data transfer problems. The possibility of detecting these errors is low using point and planar dosimetric measurements. Copyright © 2013 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Stemkens, Bjorn; Glitzner, Markus; Kontaxis, Charis; de Senneville, Baudouin Denis; Prins, Fieke M.; Crijns, Sjoerd P. M.; Kerkmeijer, Linda G. W.; Lagendijk, Jan J. W.; van den Berg, Cornelis A. T.; Tijssen, Rob H. N.
2017-09-01
Stereotactic body radiation therapy (SBRT) has shown great promise in increasing local control rates for renal-cell carcinoma (RCC). Characterized by steep dose gradients and high fraction doses, these hypo-fractionated treatments are, however, prone to dosimetric errors as a result of variations in intra-fraction respiratory-induced motion, such as drifts and amplitude alterations. This may lead to significant variations in the deposited dose. This study aims to develop a method for calculating the accumulated dose for MRI-guided SBRT of RCC in the presence of intra-fraction respiratory variations and determine the effect of such variations on the deposited dose. For this, RCC SBRT treatments were simulated while the underlying anatomy was moving, based on motion information from three motion models with increasing complexity: (1) STATIC, in which static anatomy was assumed, (2) AVG-RESP, in which 4D-MRI phase-volumes were time-weighted, and (3) PCA, a method that generates 3D volumes with sufficient spatio-temporal resolution to capture respiration and intra-fraction variations. Five RCC patients and two volunteers were included and treatments delivery was simulated, using motion derived from subject-specific MR imaging. Motion was most accurately estimated using the PCA method with root-mean-squared errors of 2.7, 2.4, 1.0 mm for STATIC, AVG-RESP and PCA, respectively. The heterogeneous patient group demonstrated relatively large dosimetric differences between the STATIC and AVG-RESP, and the PCA reconstructed dose maps, with hotspots up to 40% of the D99 and an underdosed GTV in three out of the five patients. This shows the potential importance of including intra-fraction motion variations in dose calculations.
Dosimetric variations due to interfraction organ deformation in cervical cancer brachytherapy.
Kobayashi, Kazuma; Murakami, Naoya; Wakita, Akihisa; Nakamura, Satoshi; Okamoto, Hiroyuki; Umezawa, Rei; Takahashi, Kana; Inaba, Koji; Igaki, Hiroshi; Ito, Yoshinori; Shigematsu, Naoyuki; Itami, Jun
2015-12-01
We quantitatively estimated dosimetric variations due to interfraction organ deformation in multi-fractionated high-dose-rate brachytherapy (HDRBT) for cervical cancer using a novel surface-based non-rigid deformable registration. As the number of consecutive HDRBT fractions increased, simple addition of dose-volume histogram parameters significantly overestimated the dose, compared with distribution-based dose addition. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Dosimetric property of mineral extracted from calamari and exposed to gamma rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cruz-Zaragoza, E.; Roman-Lopez, J.; Cruz, L. Perez
2013-07-03
Dosimetric property of polymineral fraction, quartz mainly, obtained from calamari was investigated. The commercial calamari samples from China and Sud Africa were collected in the markets of Italy. All polymineral debris were extracted and isolated from the whole body of calamari. The surface of the polymineral samples was analyzed by using the Scanning Electron Microscopy (SEM) and their chemical composition was determined using Energy Dispersive Spectroscopy (EDS). The polymineral was exposed to gamma rays ({sup 60}Co) at different doses (0.5-80 Gy) to determine dosimetric property. Thermoluminescent (TL) glow curves showed two peaks centered at around 98-100 Degree-Sign C and 128-138more » Degree-Sign C temperature range. The glow curves have been analyzed by using a deconvolution program. A linear dose response between 0.5 to 20 Gy was observed. The TL response of the samples as a function of the time storage, fading, presented a reduction of about 36-40 % at the end of 24 h. The reproducibility of the TL response after ten cycles of irradiation-readout showed an acceptable standard deviation in dosimetry. The polimineral fraction obtained from calamari shows an interesting dosimetric property and it may be useful for dosimetry in gamma radiation field.« less
Flühs, Dirk; Flühs, Andrea; Ebenau, Melanie; Eichmann, Marion
2015-01-01
Background Dosimetric measurements in small radiation fields with large gradients, such as eye plaque dosimetry with β or low-energy photon emitters, require dosimetrically almost water-equivalent detectors with volumes of <1 mm3 and linear responses over several orders of magnitude. Polyvinyltoluene-based scintillators fulfil these conditions. Hence, they are a standard for such applications. However, they show disadvantages with regard to certain material properties and their dosimetric behaviour towards low-energy photons. Purpose, Materials and Methods Polyethylene naphthalate, recently recognized as a scintillator, offers chemical, physical and basic dosimetric properties superior to polyvinyltoluene. Its general applicability as a clinical dosimeter, however, has not been shown yet. To prove this applicability, extensive measurements at several clinical photon and electron radiation sources, ranging from ophthalmic plaques to a linear accelerator, were performed. Results For all radiation qualities under investigation, covering a wide range of dose rates, a linearity of the detector response to the dose was shown. Conclusion Polyethylene naphthalate proved to be a suitable detector material for the dosimetry of ophthalmic plaques, including low-energy photon emitters and other small radiation fields. Due to superior properties, it has the potential to replace polyvinyltoluene as the standard scintillator for such applications. PMID:27171681
NASA Astrophysics Data System (ADS)
Chiavassa, S.; Aubineau-Lanièce, I.; Bitar, A.; Lisbona, A.; Barbet, J.; Franck, D.; Jourdain, J. R.; Bardiès, M.
2006-02-01
Dosimetric studies are necessary for all patients treated with targeted radiotherapy. In order to attain the precision required, we have developed Oedipe, a dosimetric tool based on the MCNPX Monte Carlo code. The anatomy of each patient is considered in the form of a voxel-based geometry created using computed tomography (CT) images or magnetic resonance imaging (MRI). Oedipe enables dosimetry studies to be carried out at the voxel scale. Validation of the results obtained by comparison with existing methods is complex because there are multiple sources of variation: calculation methods (different Monte Carlo codes, point kernel), patient representations (model or specific) and geometry definitions (mathematical or voxel-based). In this paper, we validate Oedipe by taking each of these parameters into account independently. Monte Carlo methodology requires long calculation times, particularly in the case of voxel-based geometries, and this is one of the limits of personalized dosimetric methods. However, our results show that the use of voxel-based geometry as opposed to a mathematically defined geometry decreases the calculation time two-fold, due to an optimization of the MCNPX2.5e code. It is therefore possible to envisage the use of Oedipe for personalized dosimetry in the clinical context of targeted radiotherapy.
Thrapsanioti, Zoi; Karanasiou, Irene; Platoni, Kalliopi; Efstathopoulos, Efstathios P.; Matsopoulos, George; Dilvoi, Maria; Patatoukas, George; Chaldeopoulos, Demetrios; Kelekis, Nikolaos; Kouloulias, Vassilis
2013-01-01
Purpose. The purpose of this study was to transform DVHs from physical to radiobiological ones as well as to evaluate their reliability by correlations of dosimetric and clinical parameters for 50 patients with prostate cancer and 50 patients with breast cancer, who were submitted to Hypofractionated Radiotherapy. Methods and Materials. To achieve this transformation, we used both the linear-quadratic model (LQ model) and the Niemierko model. The outcome of radiobiological DVHs was correlated with acute toxicity score according to EORTC/RTOG criteria. Results. Concerning the prostate radiotherapy, there was a significant correlation between RTOG acute rectal toxicity and D 50 (P < 0.001) and V 60 (P = 0.001) dosimetric parameters, calculated for α/β = 10 Gy. Moreover, concerning the breast radiotherapy there was a significant correlation between RTOG skin toxicity and V ≥60 dosimetric parameter, calculated for both α/β = 2.3 Gy (P < 0.001) and α/β = 10 Gy (P < 0.001). The new tool seems reliable and user-friendly. Conclusions. Our proposed model seems user-friendly. Its reliability in terms of agreement with the presented acute radiation induced toxicity was satisfactory. However, more patients are needed to extract safe conclusions. PMID:24348743
Radiation-induced complications in prostate cancer patients treated with radiotherapy
NASA Astrophysics Data System (ADS)
Azuddin, A. Yusof; Rahman, I. Abdul; Siah, N. J.; Mohamed, F.; Saadc, M.; Ismail, F.
2014-09-01
The purpose of the study is to determine the relationship between radiation-induced complications with dosimetric and radiobiological parameters for prostate cancer patients that underwent the conformal radiotherapy treatment. 17 prostate cancer patients that have been treated with conformal radiotherapy were retrospectively analysed. The dosimetric data was retrieved in the form of dose-volume histogram (DVH) from Radiotherapy Treatment Planning System. The DVH was utilised to derived Normal Tissue Complication Probability (NTCP) in radiobiological data. Follow-up data from medical records were used to grade the occurrence of acute gastrointestinal (GI) and genitourinary (GU) complications using Radiation Therapy Oncology Group (RTOG) scoring system. The chi-square test was used to determine the relationship between radiation-induced complication with dosimetric and radiobiological parameters. 8 (47%) and 7 (41%) patients were having acute GI and GU complications respectively. The acute GI complication can be associated with V60rectum, rectal mean dose and NTCPrectum with p-value of 0.016, 0.038 and 0.049 respectively. There are no significant relationships of acute GU complication with dosimetric and radiobiological variables. Further study can be done by increase the sample size and follow up duration for deeper understanding of the factors that effecting the GU and GI complication in prostate cancer radiotherapy.
Spatial variation of dosimetric leaf gap and its impact on dose delivery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumaraswamy, Lalith K., E-mail: Lalith.Kumaraswamy@roswellpark.org; Schmitt, Jonathan D.; Bailey, Daniel W.
Purpose: During dose calculation, the Eclipse treatment planning system (TPS) retracts the multileaf collimator (MLC) leaf positions by half of the dosimetric leaf gap (DLG) value (measured at central axis) for all leaf positions in a dynamic MLC plan to accurately model the rounded leaf ends. The aim of this study is to map the variation of DLG along the travel path of each MLC leaf pair and quantify how this variation impacts delivered dose. Methods: 6 MV DLG values were measured for all MLC leaf pairs in increments of 1.0 cm (from the line intersecting the CAX and perpendicularmore » to MLC motion) to 13.0 cm off axis distance at dmax. The measurements were performed on two Varian linear accelerators, both employing the Millennium 120-leaf MLCs. The measurements were performed at several locations in the beam with both a Sun Nuclear MapCHECK device and a PTW pinpoint ion chamber. Results: The measured DLGs for the middle 40 MLC leaf pairs (each 0.5 cm width) at positions along a line through the CAX and perpendicular to MLC leaf travel direction were very similar, varying maximally by only 0.2 mm. The outer 20 MLC leaf pairs (each 1.0 cm width) have much lower DLG values, about 0.3–0.5 mm lower than the central MLC leaf pair, at their respective central line position. Overall, the mean and the maximum variation between the 0.5 cm width leaves and the 1.0 cm width leaf pairs are 0.32 and 0.65 mm, respectively. Conclusions: The spatial variation in DLG is caused by the variation of intraleaf transmission through MLC leaves. Fluences centered on the CAX would not be affected since DLG does not vary; but any fluences residing significantly off axis with narrow sweeping leaves may exhibit significant dose differences. This is due to the fact that there are differences in DLG between the true DLG exhibited by the 1.0 cm width outer leaves and the constant DLG value utilized by the TPS for dose calculation. Since there are large differences in DLG between the 0.5 cm width leaf pairs and 1.0 cm width leaf pairs, there is a need to correct the TPS plans, especially those with high modulation (narrow dynamic MLC gap), with 2D variation of DLG.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyagi, N; Zhang, J; Happersett, L
2016-06-15
Purpose: evaluate a commercial synthetic CT (syn-CT) software for use in prostate radiotherapy Methods: Twenty prostate patients underwent CT and MR simulation scans in treatment position on a 3T Philips scanner. The MR protocol consisted of a T2w turbo spin-echo for soft tissue contrast, a 2D balanced-fast field echo (b-FFE) for fiducial identification, a dual-echo 3D FFE B0 map for distortion analysis and a 3D mDIXON FFE sequence to generate syn-CT. Two echoes are acquired during mDIXON scan, allowing water, fat, and in-phase images to be derived using the frequency shift of the fat and water protons. Tissues were classifiedmore » as: air, adipose, water, trabecular/spongy bone and compact/cortical bone and assigned specific bulk HU values. Bone structures are segmented based on a pelvis bone atlas. Accuracy of syn-CT for patient treatment planning was analyzed by transferring the original plan and structures from the CT to syn-CT via rigid registration and recalculating dose. In addition, new IMRT plans were generated on the syn-CT using structures contoured on MR and transferred to the syn-CT. Accuracy of fiducial-based localization at the treatment machine performed using syn-CT or DRRs generated from syn-CT was assessed by comparing to orthogonal kV radiographs or CBCT. Results: Dosimetric comparison between CT and syn-CT was within 0.5% for all structures. The de-novo optimized plans generated on the syn-CT met our institutional clinical objectives for target and normal structures. Patient-induced susceptibility distortion based on B0 maps was within 1mm and 0.4 mm in the body and prostate. The rectal and bladder outlines on the syn-CT were deemed sufficient for assessing rectal and bladder filling on the CBCT at the time of treatment. CBCT localization showed a median error of < ±1 mm in LR, AP and SI direction. Conclusion: MRI derived syn-CT can be used clinically in MR-alone planning and treatment process for prostate. Drs. Deasy, Hunt and Tyagi have Master research agreement with Philips healthcare.« less
SU-E-T-478: Sliding Window Multi-Criteria IMRT Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craft, D; Papp, D; Unkelbach, J
2014-06-01
Purpose: To demonstrate a method for what-you-see-is-what-you-get multi-criteria Pareto surface navigation for step and shoot IMRT treatment planning. Methods: We show mathematically how multiple sliding window treatment plans can be averaged to yield a single plan whose dose distribution is the dosimetric average of the averaged plans. This is incorporated into the Pareto surface navigation based approach to treatment planning in such a way that as the user navigates the surface, the plans he/she is viewing are ready to be delivered (i.e. there is no extra ‘segment the plans’ step that often leads to unacceptable plan degradation in step andmore » shoot Pareto surface navigation). We also describe how the technique can be applied to VMAT. Briefly, sliding window VMAT plans are created such that MLC leaves paint out fluence maps every 15 degrees or so. These fluence map leaf trajectories are averaged in the same way the static beam IMRT ones are. Results: We show mathematically that fluence maps are exactly averaged using our leaf sweep averaging algorithm. Leaf transmission and output factor corrections effects, which are ignored in this work, can lead to small errors in terms of the dose distributions not being exactly averaged even though the fluence maps are. However, our demonstrations show that the dose distributions are almost exactly averaged as well. We demonstrate the technique both for IMRT and VMAT. Conclusions: By turning to sliding window delivery, we show that the problem of losing plan fidelity during the conversion of an idealized fluence map plan into a deliverable plan is remedied. This will allow for multicriteria optimization that avoids the pitfall that the planning has to be redone after the conversion into MLC segments due to plan quality decline. David Craft partially funded by RaySearch Laboratories.« less
SU-E-J-193: Application of Surface Mapping in Detecting Swallowing for Head-&-Neck Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, D; Xie, X; Mehta, V
2015-06-15
Purpose: Recent evidence is emerging that long term swallowing function may be improved after radiotherapy for head-&-neck cancer if doses are limited to certain swallowing structures. Immobilization of patients with head-&-neck cancer is typically done with a mask. This mask, however, doesn’t limit patient swallowing. Patient voluntary or involuntary swallowing may introduce significant tumor motion, which can lead to suboptimal delivery. In this study, we have examined the feasibility of using surface mapping technology to detect patient swallowing during treatment and evaluated its magnitude. Methods: The C-RAD Catalyst system was used to detect the patient surface map. A volunteer lyingmore » on the couch was used to simulate the patient under treatment. A virtual marker was placed near the throat and was used to monitor the swallowing action. The target motion calculated by the Catalyst system through deformable registration was also collected. Two treatment isocenters, one placed close to the throat and the other placed posterior to the base-of-tongue, were used to check the sensitivity of surface mapping technique. Results: When the patient’s throat is not in the shadow of the patient’s chest, the Catalyst system can clearly identify the swallowing motion. In our tests, the vertical motion of the skin can reach to about 5mm. The calculated target motion can reach up to 1 cm. The magnitude of this calculated target motion is more dramatic when the plan isocenter is closer to the skin surface, which suggests that the Catalyst motion tracking technique is more sensitive to the swallowing motion with a shallower isocenter. Conclusion: Surface mapping can clearly identify patient swallowing during radiation treatment. This information can be used to evaluate the dosimetric impact of the involuntary swallowing. It may also be used to potentially gate head-&-neck radiation treatments. A prospective IRB approved study is currently enrolling patients in our institution. Research was funded through an Elekta grant.« less
X-Ray Attenuation and Absorption for Materials of Dosimetric Interest
National Institute of Standards and Technology Data Gateway
SRD 126 X-Ray Attenuation and Absorption for Materials of Dosimetric Interest (Web, free access) Tables and graphs of the photon mass attenuation coefficient and the mass energy-absorption coefficient are presented for all of the elements Z = 1 to 92, and for 48 compounds and mixtures of radiological interest. The tables cover energies of the photon (x-ray, gamma ray, bremsstrahlung) from 1 keV to 20 MeV.
NASA Astrophysics Data System (ADS)
Yeo, U. J.; Taylor, M. L.; Kron, T.; Pham, D.; Siva, S.; Franich, R. D.
2013-06-01
Respiratory motion induces dosimetric uncertainties for thoracic and abdominal cancer radiotherapy (RT) due to deforming and moving anatomy. This study investigates the extent of dosimetric differences between conventional 3D treatment planning and path-integrated 4D treatment planning in liver stereotactic body radiotherapy (SBRT). Respiratory-correlated 4DCT image sets with 10 phases were acquired for patients with liver tumours. Path-integrated 4D dose accumulation was performed using dose-warping techniques based on deformable image registration. Dose-volume histogram analysis demonstrated that the 3D planning approach overestimated doses to targets by up to 24% and underestimated dose to normal liver by ~4.5%, compared to the 4D planning methodology. Therefore, 4D planning has the potential to quantify such issues of under- and/or over-dosage and improve treatment accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eckerman, K.F.
Committee 2 of the International Commission on Radiological Protection (ICRP) has had efforts underway to provide the radiation protection community with age-dependent dose coefficients, i.e.g, the dose per unit intake. The Task Group on Dose Calculations, chaired by the author, is responsible for the computation of these coefficients. The Task Group, formed in 1974 to produce ICRP Publication 30, is now international in its membership and its work load has been distributed among the institutions represented on the task group. This paper discusses: (1) recent advances in biokinetic modeling; (2) the recent changes in the dosimetric methodology; (3) the novelmore » computational problems with some of the ICRP quantities; and (4) quality assurance issues which the Task Group has encountered. Potential future developments of the dosimetric framework which might strengthen the relationships with the emerging understanding of radiation risk will also be discussed.« less
Kieselmann, Jennifer Petra; Kamerling, Cornelis Philippus; Burgos, Ninon; Menten, Martin J; Fuller, Clifton David; Nill, Simeon; Cardoso, M Jorge; Oelfke, Uwe
2018-06-08
Owing to its excellent soft-tissue contrast, magnetic resonance (MR) imaging has found an increased application in radiation therapy (RT). Harnessing these properties for treatment planning, automated segmentation methods can alleviate the manual workload burden to the clinical workflow. We investigated atlas-based segmentation methods of organs at risk (OARs) in the head and neck (H&N) region: one approach selecting the most similar atlas from a library of segmented images and two multi-atlas approaches. The latter were based on weighted majority voting and an iterative atlas-fusion approach called STEPS. We built the atlas library from pre-treatment T1-weighted MR images of 12 patients with manual contours of the parotids, spinal cord and mandible, delineated by a clinician. Following a leave-one-out cross-validation strategy, we measured geometric accuracy calculating Dice similarity coefficients (DSC), standard and 95% Hausdorff distances (HD and HD95), as well as the mean surface distance (MSD), whereby the manual contours served as the gold standard. To benchmark the algorithm, we determined the inter-expert variability (IEV) between three experts. To investigate the dosimetric effect of segmentation inaccuracies, we implemented an auto-planning strategy within the treatment planning system Monaco (Elekta AB, Stockholm, Sweden). For each set of auto-segmented volumes of interest (VOIs), we generated a plan for a 9-beam step and shoot intensity modulated RT treatment, designed according to our institution's clinical H\\&N protocol. Superimposing the dose distributions on the gold standard VOIs, we calculated dose differences to OARs caused by contouring differences between auto-segmented and gold standard VOIs. We investigated the correlation between geometric and dosimetric differences. The mean DSC was larger than 0.8 and the mean MSD smaller than 2mm for the multi-atlas approaches, resulting in a geometric accuracy comparable to previously published results and within the range of the IEV. While dosimetric differences could be as large as 23% of the clinical goal, treatment plans fulfilled all imposed clinical goals for the gold standard OARs. Correlations between geometric and dosimetric measures were low with R<sup>2</sup><0.5. The geometric accuracy and ability to achieve clinically acceptable treatment plans indicate the suitability of using atlas-based contours for RT treatment planning purposes. The low correlations between geometric and dosimetric measures indicate that geometric measures alone are not sufficient to predict the dosimetric impact of segmentation inaccuracies on treatment planning for the data utilised in this study. Creative Commons Attribution license.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crijns, Wouter, E-mail: wouter.crijns@uzleuven.be; Depuydt, Tom; Haustermans, Karin
Purpose: To evaluate three different plan adaptation strategies using 3D film-stack dose measurements of both focal boost and hypofractionated prostate VMAT treatments. The adaptation strategies (a couch shift, geometric tracking, and dosimetric tracking) were applied for three realistic intrafraction prostate motions. Methods: A focal boost (35 × 2.2 and 35 × 2.7 Gy) and a hypofractionated (5 × 7.25 Gy) prostate VMAT plan were created for a heterogeneous phantom that allows for internal prostate motion. For these plans geometric tracking and dosimetric tracking were evaluated by ionization chamber (IC) point dose measurements (zero-D) and measurements using a stack of EBT3more » films (3D). The geometric tracking applied translations, rotations, and scaling of the MLC aperture in response to realistic prostate motions. The dosimetric tracking additionally corrected the monitor units to resolve variations due to difference in depth, tissue heterogeneity, and MLC-aperture. The tracking was based on the positions of four fiducial points only. The film measurements were compared to the gold standard (i.e., IC measurements) and the planned dose distribution. Additionally, the 3D measurements were converted to dose volume histograms, tumor control probability, and normal tissue complication probability parameters (DVH/TCP/NTCP) as a direct estimate of clinical relevance of the proposed tracking. Results: Compared to the planned dose distribution, measurements without prostate motion and tracking showed already a reduced homogeneity of the dose distribution. Adding prostate motion further blurs the DVHs for all treatment approaches. The clinical practice (no tracking) delivered the dose distribution inside the PTV but off target (CTV), resulting in boost dose errors up to 10%. The geometric and dosimetric tracking corrected the dose distribution’s position. Moreover, the dosimetric tracking could achieve the planned boost DVH, but not the DVH of the more homogeneously irradiated prostate. A drawback of both the geometric and dosimetric tracking was a reduced MLC blocking caused by the rotational component of the MLC aperture corrections. Because of the used CTV to PTV margins and the high doses in the considered fractionation schemes, the TCP differed less than 0.02 from the planned value for all targets and all correction methods. The rectal NTCP constraints, however, could not be realized using any of these methods. Conclusions: The geometric and dosimetric tracking use only a limited input, but they deposit the dose distribution with higher geometric accuracy than the clinical practice. The latter case has boost dose errors up to 10%. The increased accuracy has a modest impact [Δ(NT)CP < 0.02] because of the applied margins and the high dose levels used. To allow further margin reduction tracking methods are vital. The proposed methodology could further be improved by implementing a rotational correction using collimator rotations.« less
NASA Astrophysics Data System (ADS)
Liu, Hongcheng; Dong, Peng; Xing, Lei
2017-08-01
Traditional inverse planning relies on the use of weighting factors to balance the conflicting requirements of different structures. Manual trial-and-error determination of weighting factors has long been recognized as a time-consuming part of treatment planning. The purpose of this work is to develop an inverse planning framework that parameterizes the dosimetric tradeoff among the structures with physically meaningful quantities to simplify the search for clinically sensible plans. In this formalism, instead of using weighting factors, the permissible variation range of the prescription dose or dose volume histogram (DVH) of the involved structures are used to characterize the ‘importance’ of the structures. The inverse planning is then formulated into a convex feasibility problem, called the dosimetric variation-controlled model (DVCM), whose goal is to generate plans with dosimetric or DVH variations of the structures consistent with the pre-specified values. For simplicity, the dosimetric variation range for a structure is extracted from a library of previous cases which possess similar anatomy and prescription. A two-phase procedure (TPP) is designed to solve the model. The first phase identifies a physically feasible plan to satisfy the prescribed dosimetric variation, and the second phase automatically improves the plan in case there is room for further improvement. The proposed technique is applied to plan two prostate cases and two head-and-neck cases and the results are compared with those obtained using a conventional CVaR approach and with a moment-based optimization scheme. Our results show that the strategy is able to generate clinically sensible plans with little trial and error. In all cases, the TPP generates a very competitive plan as compared to those obtained using the alternative approaches. Particularly, in the planning of one of the head-and-neck cases, the TPP leads to a non-trivial improvement in the resultant dose distribution—the fractional volumes receiving a dose above 20 Gy for the spinal cord are reduced by more than 40% when compared to the alternative schemes, while maintaining the same PTV coverage. With physically more meaningful modeling of the inter-structural tradeoff, the reported technique enables us to substantially reduce the need for trial-and-error adjustment of the model parameters. The new formalism also opens new opportunities for incorporating prior knowledge to facilitate the treatment planning process.
Trofimov, Alexei; Unkelbach, Jan; DeLaney, Thomas F; Bortfeld, Thomas
2012-01-01
Dose-volume histograms (DVH) are the most common tool used in the appraisal of the quality of a clinical treatment plan. However, when delivery uncertainties are present, the DVH may not always accurately describe the dose distribution actually delivered to the patient. We present a method, based on DVH formalism, to visualize the variability in the expected dosimetric outcome of a treatment plan. For a case of chordoma of the cervical spine, we compared 2 intensity modulated proton therapy plans. Treatment plan A was optimized based on dosimetric objectives alone (ie, desired target coverage, normal tissue tolerance). Plan B was created employing a published probabilistic optimization method that considered the uncertainties in patient setup and proton range in tissue. Dose distributions and DVH for both plans were calculated for the nominal delivery scenario, as well as for scenarios representing deviations from the nominal setup, and a systematic error in the estimate of range in tissue. The histograms from various scenarios were combined to create DVH bands to illustrate possible deviations from the nominal plan for the expected magnitude of setup and range errors. In the nominal scenario, the DVH from plan A showed superior dose coverage, higher dose homogeneity within the target, and improved sparing of the adjacent critical structure. However, when the dose distributions and DVH from plans A and B were recalculated for different error scenarios (eg, proton range underestimation by 3 mm), the plan quality, reflected by DVH, deteriorated significantly for plan A, while plan B was only minimally affected. In the DVH-band representation, plan A produced wider bands, reflecting its higher vulnerability to delivery errors, and uncertainty in the dosimetric outcome. The results illustrate that comparison of DVH for the nominal scenario alone does not provide any information about the relative sensitivity of dosimetric outcome to delivery uncertainties. Thus, such comparison may be misleading and may result in the selection of an inferior plan for delivery to a patient. A better-informed decision can be made if additional information about possible dosimetric variability is presented; for example, in the form of DVH bands. Copyright © 2012 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
Effect of photon energy spectrum on dosimetric parameters of brachytherapy sources.
Ghorbani, Mahdi; Mehrpouyan, Mohammad; Davenport, David; Ahmadi Moghaddas, Toktam
2016-06-01
The aim of this study is to quantify the influence of the photon energy spectrum of brachytherapy sources on task group No. 43 (TG-43) dosimetric parameters. Different photon spectra are used for a specific radionuclide in Monte Carlo simulations of brachytherapy sources. MCNPX code was used to simulate 125I, 103Pd, 169Yb, and 192Ir brachytherapy sources. Air kerma strength per activity, dose rate constant, radial dose function, and two dimensional (2D) anisotropy functions were calculated and isodose curves were plotted for three different photon energy spectra. The references for photon energy spectra were: published papers, Lawrence Berkeley National Laboratory (LBNL), and National Nuclear Data Center (NNDC). The data calculated by these photon energy spectra were compared. Dose rate constant values showed a maximum difference of 24.07% for 103Pd source with different photon energy spectra. Radial dose function values based on different spectra were relatively the same. 2D anisotropy function values showed minor differences in most of distances and angles. There was not any detectable difference between the isodose contours. Dosimetric parameters obtained with different photon spectra were relatively the same, however it is suggested that more accurate and updated photon energy spectra be used in Monte Carlo simulations. This would allow for calculation of reliable dosimetric data for source modeling and calculation in brachytherapy treatment planning systems.
Effect of photon energy spectrum on dosimetric parameters of brachytherapy sources
Ghorbani, Mahdi; Davenport, David
2016-01-01
Abstract Aim The aim of this study is to quantify the influence of the photon energy spectrum of brachytherapy sources on task group No. 43 (TG-43) dosimetric parameters. Background Different photon spectra are used for a specific radionuclide in Monte Carlo simulations of brachytherapy sources. Materials and methods MCNPX code was used to simulate 125I, 103Pd, 169Yb, and 192Ir brachytherapy sources. Air kerma strength per activity, dose rate constant, radial dose function, and two dimensional (2D) anisotropy functions were calculated and isodose curves were plotted for three different photon energy spectra. The references for photon energy spectra were: published papers, Lawrence Berkeley National Laboratory (LBNL), and National Nuclear Data Center (NNDC). The data calculated by these photon energy spectra were compared. Results Dose rate constant values showed a maximum difference of 24.07% for 103Pd source with different photon energy spectra. Radial dose function values based on different spectra were relatively the same. 2D anisotropy function values showed minor differences in most of distances and angles. There was not any detectable difference between the isodose contours. Conclusions Dosimetric parameters obtained with different photon spectra were relatively the same, however it is suggested that more accurate and updated photon energy spectra be used in Monte Carlo simulations. This would allow for calculation of reliable dosimetric data for source modeling and calculation in brachytherapy treatment planning systems. PMID:27247558
Lee, Jung Ae; Kim, Chul Yong; Yang, Dae Sik; Yoon, Won Sup; Park, Young Je; Lee, Suk; Kim, Young Bum
2014-01-01
To investigate the effectiveness of respiratory guidance system in 4-dimensional computed tomography (4 DCT) based respiratory-gated radiation therapy (RGRT) by comparing respiratory signals and dosimetric analysis of treatment plans. The respiratory amplitude and period of the free, the audio device-guided, and the complex system-guided breathing were evaluated in eleven patients with lung or liver cancers. The dosimetric parameters were assessed by comparing free breathing CT plan and 4 DCT-based 30-70% maximal intensity projection (MIP) plan. The use of complex system-guided breathing showed significantly less variation in respiratory amplitude and period compared to the free or audio-guided breathing regarding the root mean square errors (RMSE) of full inspiration (P = 0.031), full expiration (P = 0.007), and period (P = 0.007). The dosimetric parameters including V(5 Gy), V(10 Gy), V(20 Gy), V(30 Gy), V(40 Gy), and V(50 Gy) of normal liver or lung in 4 DCT MIP plan were superior over free breathing CT plan. The reproducibility and regularity of respiratory amplitude and period were significantly improved with the complex system-guided breathing compared to the free or the audio-guided breathing. In addition, the treatment plan based on the 4D CT-based MIP images acquired with the complex system guided breathing showed better normal tissue sparing than that on the free breathing CT.
Dosimetric verification of gated delivery of electron beams using a 2D ion chamber array
Yoganathan, S. A.; Das, K. J. Maria; Raj, D. Gowtham; Kumar, Shaleen
2015-01-01
The purpose of this study was to compare the dosimetric characteristics; such as beam output, symmetry and flatness between gated and non-gated electron beams. Dosimetric verification of gated delivery was carried for all electron beams available on Varian CL 2100CD medical linear accelerator. Measurements were conducted for three dose rates (100 MU/min, 300 MU/min and 600 MU/min) and two respiratory motions (breathing period of 4s and 8s). Real-time position management (RPM) system was used for the gated deliveries. Flatness and symmetry values were measured using Imatrixx 2D ion chamber array device and the beam output was measured using plane parallel ion chamber. These detector systems were placed over QUASAR motion platform which was programmed to simulate the respiratory motion of target. The dosimetric characteristics of gated deliveries were compared with non-gated deliveries. The flatness and symmetry of all the evaluated electron energies did not differ by more than 0.7 % with respect to corresponding non-gated deliveries. The beam output variation of gated electron beam was less than 0.6 % for all electron energies except for 16 MeV (1.4 %). Based on the results of this study, it can be concluded that Varian CL2100 CD is well suitable for gated delivery of non-dynamic electron beams. PMID:26170552
Patient-specific dosimetric endpoints based treatment plan quality control in radiotherapy.
Song, Ting; Staub, David; Chen, Mingli; Lu, Weiguo; Tian, Zhen; Jia, Xun; Li, Yongbao; Zhou, Linghong; Jiang, Steve B; Gu, Xuejun
2015-11-07
In intensity modulated radiotherapy (IMRT), the optimal plan for each patient is specific due to unique patient anatomy. To achieve such a plan, patient-specific dosimetric goals reflecting each patient's unique anatomy should be defined and adopted in the treatment planning procedure for plan quality control. This study is to develop such a personalized treatment plan quality control tool by predicting patient-specific dosimetric endpoints (DEs). The incorporation of patient specific DEs is realized by a multi-OAR geometry-dosimetry model, capable of predicting optimal DEs based on the individual patient's geometry. The overall quality of a treatment plan is then judged with a numerical treatment plan quality indicator and characterized as optimal or suboptimal. Taking advantage of clinically available prostate volumetric modulated arc therapy (VMAT) treatment plans, we built and evaluated our proposed plan quality control tool. Using our developed tool, six of twenty evaluated plans were identified as sub-optimal plans. After plan re-optimization, these suboptimal plans achieved better OAR dose sparing without sacrificing the PTV coverage, and the dosimetric endpoints of the re-optimized plans agreed well with the model predicted values, which validate the predictability of the proposed tool. In conclusion, the developed tool is able to accurately predict optimally achievable DEs of multiple OARs, identify suboptimal plans, and guide plan optimization. It is a useful tool for achieving patient-specific treatment plan quality control.
NASA Astrophysics Data System (ADS)
Oh, Dongryul; Hong, Chae-Seon; Ju, Sang Gyu; Kim, Minkyu; Koo, Bum Yong; Choi, Sungback; Park, Hee Chul; Choi, Doo Ho; Pyo, Hongryull
2017-01-01
A new technique for manufacturing a patient-specific dosimetric phantom using three-dimensional printing (PSDP_3DP) was developed, and its geometrical and dosimetric accuracy was analyzed. External body contours and structures of the spine and metallic fixation screws (MFS) were delineated from CT images of a patient with MFS who underwent stereotactic body radiation therapy for spine metastasis. Contours were converted into a STereoLithography file format using in-house program. A hollow, four-section PSDP was designed and manufactured using three types of 3DP to allow filling with a muscle-equivalent liquid and insertion of dosimeters. To evaluate the geometrical accuracy of PSDP_3DP, CT images were obtained and compared with patient CT data for volume, mean density, and Dice similarity coefficient for contours. The dose distribution in the PSDP_3DP was calculated by applying the same beam parameters as for the patient, and the dosimetric characteristics of the PSDP_3DP were compared with the patient plan. The registered CT of the PSDP_3DP was well matched with that of the real patient CT in the axial, coronal, and sagittal planes. The physical accuracy and dosimetric characteristics of PSDP_3DP were comparable to those of a real patient. The ability to manufacture a PSDP representing an extreme patient condition was demonstrated.
Zhang, Ji-Bin; Zhao, Li-Rong; Cui, Tian-Xiang; Chen, Xie-Wan; Yang, Qiao; Zhou, Yi-Bing; Chen, Zheng-Tang; Zhang, Shao-Xiang; Sun, Jian-Guo
2018-01-01
The aim of the present study was to investigate the optimal strategy and dosimetric measurement of thoracic radiotherapy based on three-dimensional (3D) modeling of mediastinal lymph nodes (MLNs). A 3D model of MLNs was constructed from a Chinese Visible Human female dataset. Image registration and fusion between reconstructed MLNs and original chest computed tomography (CT) images was conducted in the Eclipse™ treatment planning system (TPS). There were three plans, including 3D conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT), which were designed based on 10 cases of simulated lung lesions (SLLs) and MLNs. The quality of these plans was evaluated via examining indexes, including conformity index (CI), homogeneity index and clinical target volume (CTV) coverage. Dose-volume histogram analysis was performed on SLL, MLNs and organs at risk (OARs). A Chengdu Dosimetric Phantom (CDP) was then drilled at specific MLNs according to 20 patients with thoracic tumors and of a medium-build. These plans were repeated on fused MLNs and CDP CT images in the Eclipse™ TPS. Radiation doses at the SLLs and MLNs of the CDP were measured and compared with calculated doses. The established 3D MLN model demonstrated the spatial location of MLNs and adjacent structures. Precise image registration and fusion were conducted between reconstructed MLNs and the original chest CT or CDP CT images. IMRT demonstrated greater values in CI, CTV coverage and OAR (lungs and spinal cord) protection, compared with 3D-CRT and VMAT (P<0.05). The deviation between the measured and calculated doses was within ± 10% at SLL, and at the 2R and 7th MLN stations. In conclusion, the 3D MLN model can benefit plan optimization and dosimetric measurement of thoracic radiotherapy, and when combined with CDP, it may provide a tool for clinical dosimetric monitoring. PMID:29556300
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thiyagarajan, Rajesh; Vikraman, S; Maragathaveni, S
2015-06-15
Purpose: To quantify the dosimetric accuracy of respiratory gated stereotactic body radiation therapy delivery using dynamic thorax phantom. Methods: Three patients with mobile target (2 lung, 1liver) were chosen. Retrospective 4DCT image sets were acquired for using Varian RPM system. An in-house MATLAB program was designed for MIP, MinIP and AvgIP generation. ITV was contoured on MIP image set for lung patients and on MinIP for liver patient. Dynamic IMRT plans were generated on selected phase bin image set in Eclipse (v10.0) planning system. CIRS dynamic thorax phantom was used to perform the dosimetric quality assurance. Patient breathing pattern filemore » from RPM system was converted to phantom compatible file by an in-house MATLAB program. This respiratory pattern fed to the CIRS dynamic thorax phantom. 4DCT image set was acquired for this phantom using patient breathing pattern. Verification plans were generated using patient gating window and delivered on the phantom. Measurements were carried out using with ion chamber and EBT2 film. Exposed films were analyzed and evaluated in FilmQA software. Results: The stability of gated output in comparison with un-gated output was within 0.5%. The Ion chamber measured and TPS calculated dose compared for all the patients. The difference observed was 0.45%, −0.52% and −0.54 for Patient 1, Patient2 and Patient 3 respectively.Gamma value evaluated from EBT film shows pass rates from 92.41% to 99.93% for 3% dose difference and 3mm distance to agreement criteria. Conclusion: Dosimetric accuracy of respiratory gated SBRT delivery for lung and liver was dosimetrically acceptable. The Ion chamber measured dose was within 0.203±0.5659% of the expected dose. Gamma pass rates were within 96.63±3.84% of the expected dose.« less
Shirey, Robert J; Wu, Hsinshun Terry
2018-01-01
This study quantifies the dosimetric accuracy of a commercial treatment planning system as functions of treatment depth, air gap, and range shifter thickness for superficial pencil beam scanning proton therapy treatments. The RayStation 6 pencil beam and Monte Carlo dose engines were each used to calculate the dose distributions for a single treatment plan with varying range shifter air gaps. Central axis dose values extracted from each of the calculated plans were compared to dose values measured with a calibrated PTW Markus chamber at various depths in RW3 solid water. Dose was measured at 12 depths, ranging from the surface to 5 cm, for each of the 18 different air gaps, which ranged from 0.5 to 28 cm. TPS dosimetric accuracy, defined as the ratio of calculated dose relative to the measured dose, was plotted as functions of depth and air gap for the pencil beam and Monte Carlo dose algorithms. The accuracy of the TPS pencil beam dose algorithm was found to be clinically unacceptable at depths shallower than 3 cm with air gaps wider than 10 cm, and increased range shifter thickness only added to the dosimetric inaccuracy of the pencil beam algorithm. Each configuration calculated with Monte Carlo was determined to be clinically acceptable. Further comparisons of the Monte Carlo dose algorithm to the measured spread-out Bragg Peaks of multiple fields used during machine commissioning verified the dosimetric accuracy of Monte Carlo in a variety of beam energies and field sizes. Discrepancies between measured and TPS calculated dose values can mainly be attributed to the ability (or lack thereof) of the TPS pencil beam dose algorithm to properly model secondary proton scatter generated in the range shifter. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Ryan; Han Gang; Sarangkasiri, Siriporn
2013-01-01
Purpose: To report clinical and dosimetric factors predictive of radiation pneumonitis (RP) in patients receiving lung stereotactic body radiation therapy (SBRT) from a series of 240 patients. Methods and Materials: Of the 297 isocenters treating 263 patients, 240 patients (n=263 isocenters) had evaluable information regarding RP. Age, gender, current smoking status and pack-years, O{sub 2} use, Charlson Comorbidity Index, prior lung radiation therapy (yes/no), dose/fractionation, V{sub 5}, V{sub 13}, V{sub 20}, V{sub prescription}, mean lung dose, planning target volume (PTV), total lung volume, and PTV/lung volume ratio were recorded. Results: Twenty-nine patients (11.0%) developed symptomatic pneumonitis (26 grade 2, 3more » grade 3). The mean V{sub 20} was 6.5% (range, 0.4%-20.2%), and the average mean lung dose was 5.03 Gy (0.547-12.2 Gy). In univariable analysis female gender (P=.0257) and Charlson Comorbidity index (P=.0366) were significantly predictive of RP. Among dosimetric parameters, V{sub 5} (P=.0186), V{sub 13} (P=.0438), and V{sub prescription} (where dose = 60 Gy) (P=.0128) were significant. There was only a trend toward significance for V{sub 20} (P=.0610). Planning target volume/normal lung volume ratio was highly significant (P=.0024). In multivariable analysis the clinical factors of female gender, pack-years smoking, and larger gross internal tumor volume and PTV were predictive (P=.0094, .0312, .0364, and .052, respectively), but no dosimetric factors were significant. Conclusions: Rate of symptomatic RP was 11%. Our mean lung dose was <600 cGy in most cases and V20 <10%. In univariable analysis, dosimetric factors were predictive, while tumor size (or tumor/lung volume ratio) played a role in multivariable and univariable and analysis, respectively.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, J; Gu, X; Lu, W
Purpose: A novel distance-dose weighting method for label fusion was developed to increase segmentation accuracy in dosimetrically important regions for prostate radiation therapy. Methods: Label fusion as implemented in the original SIMPLE (OS) for multi-atlas segmentation relies iteratively on the majority vote to generate an estimated ground truth and DICE similarity measure to screen candidates. The proposed distance-dose weighting puts more values on dosimetrically important regions when calculating similarity measure. Specifically, we introduced distance-to-dose error (DDE), which converts distance to dosimetric importance, in performance evaluation. The DDE calculates an estimated DE error derived from surface distance differences between the candidatemore » and estimated ground truth label by multiplying a regression coefficient. To determine the coefficient at each simulation point on the rectum, we fitted DE error with respect to simulated voxel shift. The DEs were calculated by the multi-OAR geometry-dosimetry training model previously developed in our research group. Results: For both the OS and the distance-dose weighted SIMPLE (WS) results, the evaluation metrics for twenty patients were calculated using the ground truth segmentation. The mean difference of DICE, Hausdorff distance, and mean absolute distance (MAD) between OS and WS have shown 0, 0.10, and 0.11, respectively. In partial MAD of WS which calculates MAD within a certain PTV expansion voxel distance, the lower MADs were observed at the closer distances from 1 to 8 than those of OS. The DE results showed that the segmentation from WS produced more accurate results than OS. The mean DE error of V75, V70, V65, and V60 were decreased by 1.16%, 1.17%, 1.14%, and 1.12%, respectively. Conclusion: We have demonstrated that the method can increase the segmentation accuracy in rectum regions adjacent to PTV. As a result, segmentation using WS have shown improved dosimetric accuracy than OS. The WS will provide dosimetrically important label selection strategy in multi-atlas segmentation. CPRIT grant RP150485.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Rachana; Al-Hallaq, Hania; Pelizzari, Charles A.
2003-12-31
The purpose of this study was to compare conventional low-dose-rate prostate brachytherapy dosimetric quality parameters with their biological effective dose (BED) counterparts. To validate a model for transformation from conventional dose to BED, the postimplant plans of 31 prostate brachytherapy patients were evaluated using conventional dose-volume histogram (DVH) quality endpoints and analogous BED-DVH endpoints. Based on CT scans obtained 4 weeks after implantation, DVHs were computed and standard dosimetric endpoints V100 (volume receiving 100% of the prescribed dose), V150, V200, HI (1-[V150/V100]), and D90 (dose that 90% of the target volume received) were obtained for quality analysis. Using known andmore » reported transformations, dose grids were transformed to BED-early ({alpha}/{beta} = 10 Gy) and BED-late ({alpha}/{beta} = 3 Gy) grids, and the same dosimetric endpoints were analyzed. For conventional, BED-early and BED-late DVHs, no differences in V100 were seen (0.896, 0.893, and 0.894, respectively). However, V150 and V200 were significantly higher for both BED-early (0.582 and 0.316) and BED-late (0.595 and 0.337), compared with the conventional (0.539 and 0.255) DVHs. D90 was significantly lower for the BED-early (103.1 Gy) and BED-late transformations (106.9 Gy) as compared with the conventional (119.5 Gy) DVHs. The conventional prescription parameter V100 is the same for the corresponding BED-early and BED-late transformed DVHs. The toxicity parameters V150 and V200 are slightly higher using the BED transformations, suggesting that the BED doses are somewhat higher than predicted using conventional DVHs. The prescription/quality parameter D90 is slightly lower, implying that target coverage is lower than predicted using conventional DVHs. This methodology can be applied to analyze BED dosimetric endpoints to improve clinical outcome and reduce complications of prostate brachytherapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, A; Han, B; Bush, K
Purpose: Dosimetric verification of VMAT/SBRT is currently performed on one or two planes in a phantom with either film or array detectors. A robust and easy-to-use 3D dosimetric tool has been sought since the advent of conformal radiation therapy. Here we present such a strategy for independent 3D VMAT/SBRT plan verification system by a combined use of EPID and cloud-based Monte Carlo (MC) dose calculation. Methods: The 3D dosimetric verification proceeds in two steps. First, the plan was delivered with a high resolution portable EPID mounted on the gantry, and the EPID-captured gantry-angle-resolved VMAT/SBRT field images were converted into fluencemore » by using the EPID pixel response function derived from MC simulations. The fluence was resampled and used as the input for an in-house developed Amazon cloud-based MC software to reconstruct the 3D dose distribution. The accuracy of the developed 3D dosimetric tool was assessed using a Delta4 phantom with various field sizes (square, circular, rectangular, and irregular MLC fields) and different patient cases. The method was applied to validate VMAT/SBRT plans using WFF and FFF photon beams (Varian TrueBeam STX). Results: It was found that the proposed method yielded results consistent with the Delta4 measurements. For points on the two detector planes, a good agreement within 1.5% were found for all the testing fields. Patient VMAT/SBRT plan studies revealed similar level of accuracy: an average γ-index passing rate of 99.2± 0.6% (3mm/3%), 97.4± 2.4% (2mm/2%), and 72.6± 8.4 % ( 1mm/1%). Conclusion: A valuable 3D dosimetric verification strategy has been developed for VMAT/SBRT plan validation. The technique provides a viable solution for a number of intractable dosimetry problems, such as small fields and plans with high dose gradient.« less
Sung, KiHoon; Choi, Young Eun; Lee, Kyu Chan
2017-06-01
This is a dosimetric study to identify a simple geometric indicator to discriminate patients who meet the selection criterion for heart-sparing radiotherapy (RT). The authors proposed a cardiac risk index (CRI), directly measurable from the CT images at the time of scanning. Treatment plans were regenerated using the CT data of 312 consecutive patients with left-sided breast cancer. Dosimetric analysis was performed to estimate the risk of cardiac mortality using cardiac dosimetric parameters, such as the relative heart volumes receiving ≥25 Gy (heart V 25 ). For each CT data set, in-field heart depth (HD) and in-field heart width (HW) were measured to generate the geometric parameters, including maximum HW (HW max ) and maximum HD (HD max ). Seven geometric parameters were evaluated as candidates for CRI. Receiver operating characteristic (ROC) curve analyses were used to examine the overall discriminatory power of the geometric parameters to select high-risk patients (heart V 25 ≥ 10%). Seventy-one high-risk (22.8%) and 241 low-risk patients (77.2%) were identified by dosimetric analysis. The geometric and dosimetric parameters were significantly higher in the high-risk group. Heart V 25 showed the strong positive correlations with all geometric parameters examined (r > 0.8, p < 0.001). The product of HD max and HW max (CRI) revealed the largest area under the curve (AUC) value (0.969) and maintained 100% sensitivity and 88% specificity at the optimal cut-off value of 14.58 cm 2 . Cardiac risk index proposed as a simple geometric indicator to select high-risk patients provides useful guidance for clinicians considering optimal implementation of heart-sparing RT. © 2016 The Royal Australian and New Zealand College of Radiologists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeWerd, Larry A.; Ibbott, Geoffrey S.; Meigooni, Ali S.
2011-02-15
This report addresses uncertainties pertaining to brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) and the National Institute of Standards and Technology (NIST) Technical Note 1297 are taken as reference standards for uncertainty formalism. Uncertainties in using detectors to measure or utilizing Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. Uncertainties provided are based on published observations and cited when available. The uncertainty propagation from the primary calibration standard through transfer to the clinicmore » for air-kerma strength is covered first. Uncertainties in each of the brachytherapy dosimetry parameters of the TG-43 formalism are then explored, ending with transfer to the clinic and recommended approaches. Dosimetric uncertainties during treatment delivery are considered briefly but are not included in the detailed analysis. For low- and high-energy brachytherapy sources of low dose rate and high dose rate, a combined dosimetric uncertainty <5% (k=1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and source and treatment planning system manufacturers. These recommendations include the use of the GUM and NIST reports, a requirement of constancy of manufacturer source design, dosimetry investigator guidelines, provision of the lowest uncertainty for patient treatment dosimetry, and the establishment of an action level based on dosimetric uncertainty. These recommendations reflect the guidance of the American Association of Physicists in Medicine (AAPM) and the Groupe Europeen de Curietherapie-European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) for their members and may also be used as guidance to manufacturers and regulatory agencies in developing good manufacturing practices for sources used in routine clinical treatments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, L; Allan, E; Putten, M Van
Purpose: To investigate the dose contributions of scattered electrons from dental amalgams during head and neck radiotherapy, and to evaluate the protective role of dosimetric dental stents during treatment to prevent oral mucositis. Methods: A phantom was produced to accurately simulate the oral cavity and head. The oral cavity consisted of a tissue equivalent upper and lower jaw and complete set of teeth. A set of 4 mm ethylene copolymer dosimetric stents was made for the upper and lower teeth. Five removable gold caps were fitted to apposing right molars, and the phantom was crafted to accomodate horizontal and verticalmore » film for 2D dosimetry and NanoDot dosimeter for recording point doses. The head was simulated using a small cylindrical glass water bath. CT simulation was performed on the phantom with and without metal fittings and, in each case, with and without the dental stent. The CT image sets were imported into Eclipse treatment planning system for contouring and treatment planning, and a 9-field IMRT treatment plan was developed for each scenario. These plans were delivered using a Varian TrueBeam linear accelerator. Doses were recorded using GafChromic EBT2 films and NanoDot dosimeters. Results: The measurements revealed a 43% relative increase in dose measured adjacent to the metal fixtures in the horizontal plane without the use of the dental stent. This equates to a total dose of 100 Gy to the oral mucosa during a standard course of definitive radiotherapy. To our knowledge, this is the first dosimetric analysis of dental stents using an anatomically realistic phantom and modern beam arrangement. Conclusion: These results support the use of dosimetric dental stents in head and neck radiotherapy for patients with metallic dental fixtures as a way to effectively reduce dose to nearby mucosal surfaces and, hence, reduce the risk and severity of mucositis.« less
Ponmalar, Retna; Manickam, Ravikumar; Ganesh, K M; Saminathan, Sathiyan; Raman, Arun; Godson, Henry Finlay
2017-01-01
The modern radiotherapy techniques impose new challenges for dosimetry systems with high precision and accuracy in in vivo and in phantom dosimetric measurements. The knowledge of the basic characterization of a dosimetric system before patient dose verification is crucial. This incites the investigation of the potential use of nanoDot optically stimulated luminescence dosimeter (OSLD) for application in radiotherapy with therapeutic photon beams. Measurements were carried out with nanoDot OSLDs to evaluate the dosimetric characteristics such as dose linearity, dependency on field size, dose rate, energy and source-to-surface distance (SSD), reproducibility, fading effect, reader stability, and signal depletion per read out with cobalt-60 (60 Co) beam, 6 and 18 MV therapeutic photon beams. The data acquired with OSLDs were validated with ionization chamber data where applicable. Good dose linearity was observed for doses up to 300 cGy and above which supralinear behavior. The standard uncertainty with field size observed was 1.10% ± 0.4%, 1.09% ± 0.34%, and 1.2% ± 0.26% for 6 MV, 18 MV, and 60 Co beam, respectively. The maximum difference with dose rate was 1.3% ± 0.4% for 6 MV and 1.4% ± 0.4% for 18 MV photon beams. The largest variation in SSD was 1.5% ± 1.2% for 60 Co, 1.5% ± 0.9% for 6 MV, and 1.5% ± 1.3% for 18 MV photon beams. The energy dependence of OSL response at 18 MV and 60 Co with 6 MV beam was 1.5% ± 0.7% and 1.7% ± 0.6%, respectively. In addition, good reproducibility, stability after the decay of transient signal, and predictable fading were observed. The results obtained in this study indicate the efficacy and suitability of nanoDot OSLD for dosimetric measurements in clinical radiotherapy.
Jin, X; Yan, H; Han, C; Zhou, Y; Yi, J; Xie, C
2015-03-01
To investigate comparatively the percentage gamma passing rate (%GP) of two-dimensional (2D) and three-dimensional (3D) pre-treatment volumetric modulated arc therapy (VMAT) dosimetric verification and their correlation and sensitivity with percentage dosimetric errors (%DE). %GP of 2D and 3D pre-treatment VMAT quality assurance (QA) with different acceptance criteria was obtained by ArcCHECK® (Sun Nuclear Corporation, Melbourne, FL) for 20 patients with nasopharyngeal cancer (NPC) and 20 patients with oesophageal cancer. %DE were calculated from planned dose-volume histogram (DVH) and patients' predicted DVH calculated by 3DVH® software (Sun Nuclear Corporation). Correlation and sensitivity between %GP and %DE were investigated using Pearson's correlation coefficient (r) and receiver operating characteristics (ROCs). Relatively higher %DE on some DVH-based metrics were observed for both patients with NPC and oesophageal cancer. Except for 2%/2 mm criterion, the average %GPs for all patients undergoing VMAT were acceptable with average rates of 97.11% ± 1.54% and 97.39% ± 1.37% for 2D and 3D 3%/3 mm criteria, respectively. The number of correlations for 3D was higher than that for 2D (21 vs 8). However, the general correlation was still poor for all the analysed metrics (9 out of 26 for 3D 3%/3 mm criterion). The average area under the curve (AUC) of ROCs was 0.66 ± 0.12 and 0.71 ± 0.21 for 2D and 3D evaluations, respectively. There is a lack of correlation between %GP and %DE for both 2D and 3D pre-treatment VMAT dosimetric evaluation. DVH-based dose metrics evaluation obtained from 3DVH will provide more useful analysis. Correlation and sensitivity of %GP with %DE for VMAT QA were studied for the first time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, H; Dong, P; Xing, L
Purpose: Traditional radiotherapy inverse planning relies on the weighting factors to phenomenologically balance the conflicting criteria for different structures. The resulting manual trial-and-error determination of the weights has long been recognized as the most time-consuming part of treatment planning. The purpose of this work is to develop an inverse planning framework that parameterizes the inter-structural dosimetric tradeoff among with physically more meaningful quantities to simplify the search for a clinically sensible plan. Methods: A permissible dosimetric uncertainty is introduced for each of the structures to balance their conflicting dosimetric requirements. The inverse planning is then formulated as a convex feasibilitymore » problem, which aims to generate plans with acceptable dosimetric uncertainties. A sequential procedure (SP) is derived to decompose the model into three submodels to constrain the uncertainty in the planning target volume (PTV), the critical structures, and all other structures to spare, sequentially. The proposed technique is applied to plan a liver case and a head-and-neck case and compared with a conventional approach. Results: Our results show that the strategy is able to generate clinically sensible plans with little trial-and-error. In the case of liver IMRT, the fractional volumes to liver and heart above 20Gy are found to be 22% and 10%, respectively, which are 15.1% and 33.3% lower than that of the counterpart conventional plan while maintaining the same PTV coverage. The planning of the head and neck IMRT show the same level of success, with the DVHs for all organs at risk and PTV very competitive to a counterpart plan. Conclusion: A new inverse planning framework has been established. With physically more meaningful modeling of the inter-structural tradeoff, the technique enables us to substantially reduce the need for trial-and-error adjustment of the model parameters and opens new opportunities of incorporating prior knowledge to facilitate the treatment planning process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haddad, K; Alopoor, H
Purpose: Recently, the multileaf collimators (MLC) have become an important part of any LINAC collimation systems because they reduce the treatment planning time and improves the conformity. Important factors that affects the MLCs collimation performance are leaves material composition and their thickness. In this study, we investigate the main dosimetric parameters of 120-leaf Millennium MLC including dose in the buildup point, physical penumbra as well as average and end leaf leakages. Effects of the leaves geometry and density on these parameters are evaluated Methods: From EGSnrc Monte Carlo code, BEAMnrc and DOSXYZnrc modules are used to evaluate the dosimetric parametersmore » of a water phantom exposed to a Varian xi for 100cm SSD. Using IAEA phasespace data just above MLC (Z=46cm) and BEAMnrc, for the modified 120-leaf Millennium MLC a new phase space data at Z=52cm is produces. The MLC is modified both in leaf thickness and material composition. EGSgui code generates 521ICRU library for tungsten alloys. DOSXYZnrc with the new phase space evaluates the dose distribution in a water phantom of 60×60×20 cm3 with voxel size of 4×4×2 mm3. Using DOSXYZnrc dose distributions for open beam and closed beam as well as the leakages definition, end leakage, average leakage and physical penumbra are evaluated. Results: A new MLC with improved dosimetric parameters is proposed. The physical penumbra for proposed MLC is 4.7mm compared to 5.16 mm for Millennium. Average leakage in our design is reduced to 1.16% compared to 1.73% for Millennium, the end leaf leakage suggested design is also reduced to 4.86% compared to 7.26% of Millennium. Conclusion: The results show that the proposed MLC with enhanced dosimetric parameters could improve the conformity of treatment planning.« less
Koh, Vicky Y; Buhari, Shaik A; Tan, Poh Wee; Tan, Yun Inn; Leong, Yuh Fun; Earnest, Arul; Tang, Johann I
2014-06-01
Currently, there are two described methods of catheter insertion for women undergoing multicatheter interstitial accelerated partial breast irradiation (APBI). These are a volume based template approach (template) and a non-template ultrasound guidance freehand approach (non-template). We aim to compare dosimetric endpoints between the template and non-template approach. Twenty patients, who received adjuvant multicatheter interstitial APBI between August 2008 to March 2010 formed the study cohort. Dosimetric planning was based on the RTOG 04-13 protocol. For standardization, the planning target volume evaluation (PTV-Eval) and organs at risk were contoured with the assistance of the attending surgeon. Dosimetric endpoints include D90 of the PTV-Eval, Dose Homogeneity Index (DHI), V200, maximum skin dose (MSD), and maximum chest wall dose (MCD). A median of 18 catheters was used per patient. The dose prescribed was 34 Gy in 10 fractions BID over 5 days. The average breast volume was 846 cm(3) (526-1384) for the entire cohort and there was no difference between the two groups (p = 0.6). Insertion time was significantly longer for the non-template approach (mean 150 minutes) compared to the template approach (mean: 90 minutes) (p = 0.02). The planning time was also significantly longer for the non-template approach (mean: 240 minutes) compared to the template approach (mean: 150 minutes) (p < 0.01). The template approach yielded a higher D90 (mean: 95%) compared to the non-template approach (mean: 92%) (p < 0.01). There were no differences in DHI (p = 0.14), V200 (p = 0.21), MSD (p = 0.7), and MCD (p = 0.8). Compared to the non-template approach, the template approach offered significant shorter insertion and planning times with significantly improved dosimetric PTV-Eval coverage without significantly compromising organs at risk dosimetrically.
DeWerd, Larry A.; Ibbott, Geoffrey S.; Meigooni, Ali S.; Mitch, Michael G.; Rivard, Mark J.; Stump, Kurt E.; Thomadsen, Bruce R.; Venselaar, Jack L. M.
2011-01-01
This report addresses uncertainties pertaining to brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) and the National Institute of Standards and Technology (NIST) Technical Note 1297 are taken as reference standards for uncertainty formalism. Uncertainties in using detectors to measure or utilizing Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. Uncertainties provided are based on published observations and cited when available. The uncertainty propagation from the primary calibration standard through transfer to the clinic for air-kerma strength is covered first. Uncertainties in each of the brachytherapy dosimetry parameters of the TG-43 formalism are then explored, ending with transfer to the clinic and recommended approaches. Dosimetric uncertainties during treatment delivery are considered briefly but are not included in the detailed analysis. For low- and high-energy brachytherapy sources of low dose rate and high dose rate, a combined dosimetric uncertainty <5% (k=1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and source and treatment planning system manufacturers. These recommendations include the use of the GUM and NIST reports, a requirement of constancy of manufacturer source design, dosimetry investigator guidelines, provision of the lowest uncertainty for patient treatment dosimetry, and the establishment of an action level based on dosimetric uncertainty. These recommendations reflect the guidance of the American Association of Physicists in Medicine (AAPM) and the Groupe Européen de Curiethérapie–European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) for their members and may also be used as guidance to manufacturers and regulatory agencies in developing good manufacturing practices for sources used in routine clinical treatments. PMID:21452716
Dickey, Mike; Roa, Wilson; Drodge, Suzanne; Ghosh, Sunita; Murray, Brad; Scrimger, Rufus; Gabos, Zsolt
2015-01-01
The primary objective of this study was to compare dosimetric variables as well as treatment times of multiple static fields (MSFs), conformal arcs (CAs), and volumetric modulated arc therapy (VMAT) techniques for the treatment of early stage lung cancer using stereotactic body radiotherapy (SBRT). Treatments of 23 patients previously treated with MSF of 48Gy to 95% of the planning target volume (PTV) in 4 fractions were replanned using CA and VMAT techniques. Dosimetric parameters of the Radiation Therapy Oncology Group (RTOG) 0915 trial were evaluated, along with the van׳t Riet conformation number (CN), monitor units (MUs), and actual and calculated treatment times. Paired t-tests for noninferiority were used to compare the 3 techniques. CA had significant dosimetric improvements over MSF for the ratio of the prescription isodose volume to PTV (R100%, p < 0.0001), the maximum dose 2cm away from the PTV (D2cm, p = 0.005), and van׳t Riet CN (p < 0.0001). CA was not statistically inferior to MSF for the 50% prescription isodose volume to PTV (R50%, p = 0.05). VMAT was significantly better than CA for R100% (p < 0.0001), R50% (p < 0.0001), D2cm (p = 0.006), and CN (p < 0.0001). CA plans had significantly shorter treatment times than those of VMAT (p < 0.0001). Both CA and VMAT planning showed significant dosimetric improvements and shorter treatment times over those of MSF. VMAT showed the most favorable dosimetry of all 3 techniques; however, the dosimetric effect of tumor motion was not evaluated. CA plans were significantly faster to treat, and minimize the interplay of tumor motion and dynamic multileaf collimator (MLC) motion effects. Given these results, CA has become the treatment technique of choice at our facility. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Jin, X; Yan, H; Han, C; Zhou, Y; Yi, J
2015-01-01
Objective: To investigate comparatively the percentage gamma passing rate (%GP) of two-dimensional (2D) and three-dimensional (3D) pre-treatment volumetric modulated arc therapy (VMAT) dosimetric verification and their correlation and sensitivity with percentage dosimetric errors (%DE). Methods: %GP of 2D and 3D pre-treatment VMAT quality assurance (QA) with different acceptance criteria was obtained by ArcCHECK® (Sun Nuclear Corporation, Melbourne, FL) for 20 patients with nasopharyngeal cancer (NPC) and 20 patients with oesophageal cancer. %DE were calculated from planned dose–volume histogram (DVH) and patients' predicted DVH calculated by 3DVH® software (Sun Nuclear Corporation). Correlation and sensitivity between %GP and %DE were investigated using Pearson's correlation coefficient (r) and receiver operating characteristics (ROCs). Results: Relatively higher %DE on some DVH-based metrics were observed for both patients with NPC and oesophageal cancer. Except for 2%/2 mm criterion, the average %GPs for all patients undergoing VMAT were acceptable with average rates of 97.11% ± 1.54% and 97.39% ± 1.37% for 2D and 3D 3%/3 mm criteria, respectively. The number of correlations for 3D was higher than that for 2D (21 vs 8). However, the general correlation was still poor for all the analysed metrics (9 out of 26 for 3D 3%/3 mm criterion). The average area under the curve (AUC) of ROCs was 0.66 ± 0.12 and 0.71 ± 0.21 for 2D and 3D evaluations, respectively. Conclusions: There is a lack of correlation between %GP and %DE for both 2D and 3D pre-treatment VMAT dosimetric evaluation. DVH-based dose metrics evaluation obtained from 3DVH will provide more useful analysis. Advances in knowledge: Correlation and sensitivity of %GP with %DE for VMAT QA were studied for the first time. PMID:25494412
DeWerd, Larry A; Ibbott, Geoffrey S; Meigooni, Ali S; Mitch, Michael G; Rivard, Mark J; Stump, Kurt E; Thomadsen, Bruce R; Venselaar, Jack L M
2011-02-01
This report addresses uncertainties pertaining to brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) and the National Institute of Standards and Technology (NIST) Technical Note 1297 are taken as reference standards for uncertainty formalism. Uncertainties in using detectors to measure or utilizing Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. Uncertainties provided are based on published observations and cited when available. The uncertainty propagation from the primary calibration standard through transfer to the clinic for air-kerma strength is covered first. Uncertainties in each of the brachytherapy dosimetry parameters of the TG-43 formalism are then explored, ending with transfer to the clinic and recommended approaches. Dosimetric uncertainties during treatment delivery are considered briefly but are not included in the detailed analysis. For low- and high-energy brachytherapy sources of low dose rate and high dose rate, a combined dosimetric uncertainty <5% (k=1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and source and treatment planning system manufacturers. These recommendations include the use of the GUM and NIST reports, a requirement of constancy of manufacturer source design, dosimetry investigator guidelines, provision of the lowest uncertainty for patient treatment dosimetry, and the establishment of an action level based on dosimetric uncertainty. These recommendations reflect the guidance of the American Association of Physicists in Medicine (AAPM) and the Groupe Européen de Curiethérapie-European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) for their members and may also be used as guidance to manufacturers and regulatory agencies in developing good manufacturing practices for sources used in routine clinical treatments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumarasiri, A; Siddiqui, F; Liu, C
2015-06-15
Purpose: To evaluate the anatomical changes and associated dosimetric consequences to the pharyngeal constrictor (PC) that occurs during head and neck radiotherapy (H&N RT). Methods: A cohort of 13 oro-pharyngeal cancer patients, who had daily CBCT’s for localization, was retrospectively studied. On every 5th CBCT, PC was manually delineated by a radiation oncologist. The anterior-posterior PC thickness was measured at the C3 level. Delivered dose to PC was estimated by calculating daily doses on CBCT’s, and accumulating to corresponding planning CT images. For accumulation, a parameter-optimized B- spline-based deformable image registration algorithm (Elastix) was used, in conjunction with an energy-massmore » mapping dose transfer algorithm. Mean and maximum dose (Dmean, Dmax) to PC was determined and compared with corresponding planned quantities. Results: The mean (±standard deviation) volume increase (ΔV) and thickness increase (Δt) over the course of 35 total fractions were 54±33% (11.9±7.6 cc), and 63±39% (2.9±1.9 mm), respectively. The resultant cumulative mean dose increase from planned dose to PC (ΔDmean) was 1.4±1.3% (0.9±0.8 Gy), while the maximum dose increase (ΔDmax) was 0.0±1.6% (0.0±1.1 Gy). Patients with adaptive replanning (n=6) showed a smaller mean dose increase than those without (n=7); 0.5±0.2% (0.3±0.1 Gy) vs. 2.2±1.4% (1.4±0.9 Gy). There was a statistically significant (p<0.0001) strong correlation between ΔDmean and Δt (Pearson coefficient r=0.78), and a moderate-to-strong correlation (r=0.52) between ΔDmean and ΔV. Correlation between ΔDmean and weight loss ΔW (r=0.1), as well as ΔV and ΔW (r=0.2) were negligible. Conclusion: Patients were found to undergo considerable anatomical changes to pharyngeal constrictor during H&N RT, resulting in non-negligible dose deviations from intended dose. Results are indicative that pharyngeal constrictor thickness, measured at C3 level, is a good predictor for the dose change to the organ. Daily deformable registration and dose accumulation provide a reliable means to assess important anatomical and dosimetric changes to pharyngeal constrictor occurring during treatment. This work was supported in part by a research grant from Varian Medical Systems, Palo Alto, CA.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rankine, Leith J., E-mail: Leith_Rankine@med.unc.edu; Department of Radiation Oncology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Mein, Stewart
Purpose: To validate the dosimetric accuracy of a commercially available magnetic resonance guided intensity modulated radiation therapy (MRgIMRT) system using a hybrid approach: 3-dimensional (3D) measurements and Monte Carlo calculations. Methods and Materials: We used PRESAGE radiochromic plastic dosimeters with remote optical computed tomography readout to perform 3D high-resolution measurements, following a novel remote dosimetry protocol. We followed the intensity modulated radiation therapy commissioning recommendations of American Association of Physicists in Medicine Task Group 119, adapted to incorporate 3D data. Preliminary tests (“AP” and “3D-Bands”) were delivered to 9.5-cm usable diameter cylindrical PRESAGE dosimeters to validate the treatment planning systemmore » (TPS) for nonmodulated deliveries; assess the sensitivity, uniformity, and rotational symmetry of the PRESAGE dosimeters; and test the robustness of the remote dosimetry protocol. Following this, 4 clinical MRgIMRT plans (“MultiTarget,” “Prostate,” “Head/Neck,” and “C-Shape”) were measured using 13-cm usable diameter PRESAGE dosimeters. For all plans, 3D-γ (3% or 3 mm global, 10% threshold) passing rates were calculated and 3D-γ maps were examined. Point doses were measured with an IBA-CC01 ionization chamber for validation of absolute dose. Finally, by use of an in-house-developed, GPU-accelerated Monte Carlo algorithm (gPENELOPE), we independently calculated dose for all 6 Task Group 119 plans and compared against the TPS. Results: For PRESAGE measurements, 3D-γ analysis yielded passing rates of 98.7%, 99.2%, 98.5%, 98.0%, 99.2%, and 90.7% for AP, 3D-Bands, MultiTarget, Prostate, Head/Neck, and C-Shape, respectively. Ion chamber measurements were within an average of 0.5% (±1.1%) from the TPS dose. Monte Carlo calculations demonstrated good agreement with the TPS, with a mean 3D-γ passing rate of 98.5% ± 1.9% using a stricter 2%/2-mm criterion. Conclusions: We have validated the dosimetric accuracy of a commercial MRgIMRT system using high-resolution 3D techniques. We have demonstrated for the first time that hybrid 3D remote dosimetry is a comprehensive and feasible approach to commissioning MRgIMRT. This may provide better sensitivity in error detection compared with standard 2-dimensional measurements and could be used when implementing complex new magnetic resonance guided radiation therapy technologies.« less
FLUKA simulation studies on in-phantom dosimetric parameters of a LINAC-based BNCT
NASA Astrophysics Data System (ADS)
Ghal-Eh, N.; Goudarzi, H.; Rahmani, F.
2017-12-01
The Monte Carlo simulation code, FLUKA version 2011.2c.5, has been used to estimate the in-phantom dosimetric parameters for use in BNCT studies. The in-phantom parameters of a typical Snyder head, which are necessary information prior to any clinical treatment, have been calculated with both FLUKA and MCNPX codes, which exhibit a promising agreement. The results confirm that FLUKA can be regarded as a good alternative for the MCNPX in BNCT dosimetry simulations.
Ovejero, M C; Pérez Vega-Leal, A; Gallardo, M I; Espino, J M; Selva, A; Cortés-Giraldo, M A; Arráns, R
2017-02-01
The aim of this work is to present a new data acquisition, control, and analysis software system written in LabVIEW. This system has been designed to obtain the dosimetry of a silicon strip detector in polyethylene. It allows the full automation of the experiments and data analysis required for the dosimetric characterization of silicon detectors. It becomes a useful tool that can be applied in the daily routine check of a beam accelerator.
Synthesis and characterization of CaF2:Dy nanophosphor for dosimetric application
NASA Astrophysics Data System (ADS)
Bhadane, Mahesh S.; Patil, B. J.; Dahiwale, S. S.; Kulkarni, M. S.; Bhatt, B. C.; Bhoraskar, V. N.; Dhole, S. D.
2015-06-01
In this work, nanoparticles (NPs) of dysprosium doped calcium fluoride (CaF2:Dy) 1 mol % has been prepared using simple chemical co-precipitation method and its thermoluminescence (TL) dosimetric properties were studied. The synthesized nanoparticle sample was characterized by X-ray diffraction (XRD) and the particle size of face centered cubic phase NPs was found around 30 nm. The shape, morphology and size were also observed by scanning electron microscopy (SEM). From gamma irradiated CaF2:Dy TL curves, it was observed that the total areas of all the glow peak intensities are dramatically changed with increase in annealing temperature. Further, TL glow curve of the CaF2:Dy at 183 °C annealed at 400 °C, showed very sharp linear response in the dose range from 1 Gy to 750 Gy. This linear response of CaF2:Dy nanophosphor as a function of gamma dose is very useful from radiation dosimetric point of view.
Determination of dosimetric quantities in pediatric abdominal computed tomography scans*
Jornada, Tiago da Silva; da Silva, Teógenes Augusto
2014-01-01
Objective Aiming at contributing to the knowledge on doses in computed tomography (CT), this study has the objective of determining dosimetric quantities associated with pediatric abdominal CT scans, comparing the data with diagnostic reference levels (DRL). Materials and methods The study was developed with a Toshiba Asteion single-slice CT scanner and a GE BrightSpeed multi-slice CT unit in two hospitals. Measurements were performed with a pencil-type ionization chamber and a 16 cm-diameter polymethylmethacrylate trunk phantom. Results No significant difference was observed in the values for weighted air kerma index (CW), but the differences were relevant in values for volumetric air kerma index (CVOL), air kerma-length product (PKL,CT) and effective dose. Conclusion Only the CW values were lower than the DRL, suggesting that dose optimization might not be necessary. However, PKL,CT and effective dose values stressed that there still is room for reducing pediatric radiation doses. The present study emphasizes the importance of determining all dosimetric quantities associated with CT scans. PMID:25741103
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okladnikova, N.; Pesternikova, V.; Sumina, M.
1998-12-01
Phase 1 of Project 2.3, a short-term collaborative Feasibility Study, was funded for 12 months starting on 1 February 1996. The overall aim of the study was to determine the practical feasibility of using the dosimetric and clinical data on the MAYAK worker population to study the deterministic effects of exposure to external gamma radiation and to internal alpha radiation from inhaled plutonium. Phase 1 efforts were limited to the period of greatest worker exposure (1948--1954) and focused on collaboratively: assessing the comprehensiveness, availability, quality, and suitability of the Russian clinical and dosimetric data for the study of deterministic effects;more » creating an electronic data base containing complete clinical and dosimetric data on a small, representative sample of MAYAK workers; developing computer software for the testing of a currently used health risk model of hematopoietic effects; and familiarizing the US team with the Russian diagnostic criteria and techniques used in the identification of Chronic Radiation Sickness.« less
Dosimetric properties of high energy current (HEC) detector in keV x-ray beams.
Zygmanski, Piotr; Shrestha, Suman; Elshahat, Bassem; Karellas, Andrew; Sajo, Erno
2015-04-07
We introduce a new x-ray radiation detector. The detector employs high-energy current (HEC) formed by secondary electrons consisting predominantly of photoelectrons and Auger electrons, to directly convert x-ray energy to detector signal without externally applied power and without amplification. The HEC detector is a multilayer structure composed of thin conducting layers separated by dielectric layers with an overall thickness of less than a millimeter. It can be cut to any size and shape, formed into curvilinear surfaces, and thus can be designed for a variety of QA applications. We present basic dosimetric properties of the detector as function of x-ray energy, depth in the medium, area and aspect ratio of the detector, as well as other parameters. The prototype detectors show similar dosimetric properties to those of a thimble ionization chamber, which operates at high voltage. The initial results obtained for kilovoltage x-rays merit further research and development towards specific medical applications.
Ding, Aiping; Xing, Lei; Han, Bin
2015-07-01
To develop an efficient and robust tool for output measurement and absolute dose verification of electron beam therapy by using a high spatial-resolution and high frame-rate amorphous silicon flat panel electronic portal imaging device (EPID). The dosimetric characteristics of the EPID, including saturation, linearity, and ghosting effect, were first investigated on a Varian Clinac 21EX accelerator. The response kernels of the individual pixels of the EPID to all available electron energies (6, 9, 12, 16, and 20 MeV) were calculated by using Monte Carlo (MC) simulations, which formed the basis to deconvolve an EPID raw images to the incident electron fluence map. The two-dimensional (2D) dose distribution at reference depths in water was obtained by using the constructed fluence map with a MC simulated pencil beam kernel with consideration of the geometric and structural information of the EPID. Output factor measurements were carried out with the EPID at a nominal source-surface distance of 100 cm for 2 × 2, 3 × 3, 6 × 6, 10 × 10, and 15 × 15 cm(2) fields for all available electron energies, and the results were compared with that measured in a solid water phantom using film and a Farmer-type ion chamber. The dose distributions at a reference depth specific to each energy and the flatness and symmetry of the 10 × 10 cm(2) electron beam were also measured using EPID, and the results were compared with ion chamber array and water scan measurements. Finally, three patient cases with various field sizes and irregular cutout shapes were also investigated. EPID-measured dose changed linearly with the monitor units and showed little ghosting effect for dose rate up to 600 MU/min. The flatness and symmetry measured with the EPID were found to be consistent with ion chamber array and water scan measurements. The EPID-measured output factors for standard square fields of 2 × 2, 3 × 3, 6 × 6, 10 × 10, 15 × 15 cm(2) agreed with film and ion chamber measurements. The average discrepancy between EPID and ion chamber/film measurements was 0.81% ± 0.60% (SD) and 1.34% ± 0.75%, respectively. For the three clinical cases, the difference in output between the EPID- and ion chamber array measured values was found to be 1.13% ± 0.11%, 0.54% ± 0.10%, and 0.74% ± 0.11%, respectively. Furthermore, the γ-index analysis showed an excellent agreement between the EPID- and ion chamber array measured dose distributions: 100% of the pixels passed the criteria of 3%/3 mm. When the γ-index was set to be 2%/2 mm, the pass rate was found to be 99.0% ± 0.07%, 98.2% ± 0.14%, and 100% for the three cases. The EPID dosimetry system developed in this work provides an accurate and reliable tool for routine output measurement and dosimetric verification of electron beam therapy. Coupled with its portability and ease of use, the proposed system promises to replace the current film-based approach for fast and reliable assessment of small and irregular electron field dosimetry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Sen; Li, Guangjun; Wang, Maojie
The purpose of this study was to investigate the effect of multileaf collimator (MLC) leaf position, collimator rotation angle, and accelerator gantry rotation angle errors on intensity-modulated radiotherapy plans for nasopharyngeal carcinoma. To compare dosimetric differences between the simulating plans and the clinical plans with evaluation parameters, 6 patients with nasopharyngeal carcinoma were selected for simulation of systematic and random MLC leaf position errors, collimator rotation angle errors, and accelerator gantry rotation angle errors. There was a high sensitivity to dose distribution for systematic MLC leaf position errors in response to field size. When the systematic MLC position errors weremore » 0.5, 1, and 2 mm, respectively, the maximum values of the mean dose deviation, observed in parotid glands, were 4.63%, 8.69%, and 18.32%, respectively. The dosimetric effect was comparatively small for systematic MLC shift errors. For random MLC errors up to 2 mm and collimator and gantry rotation angle errors up to 0.5°, the dosimetric effect was negligible. We suggest that quality control be regularly conducted for MLC leaves, so as to ensure that systematic MLC leaf position errors are within 0.5 mm. Because the dosimetric effect of 0.5° collimator and gantry rotation angle errors is negligible, it can be concluded that setting a proper threshold for allowed errors of collimator and gantry rotation angle may increase treatment efficacy and reduce treatment time.« less
LiMgPO 4:Tb,B - A new sensitive OSL phosphor for dosimetry
NASA Astrophysics Data System (ADS)
Dhabekar, Bhushan; Menon, S. N.; Alagu Raja, E.; Bakshi, A. K.; Singh, A. K.; Chougaonkar, M. P.; Mayya, Y. S.
2011-08-01
Optically Stimulated Luminescence (OSL) technique has emerged as a serious competitor to Thermally Stimulated Luminescence (TSL) technique in various dosimetric applications, especially after the development of crystalline alumina (Al 2O 3:C) doped with carbon. Since then, several attempts are being made to develop other possible materials for OSL based dosimetric applications. Efforts conducted in our laboratory in this direction have led to the development of a new phosphor, Lithium Magnesium Phosphate doped with terbium and boron (LiMgPO 4:Tb,B). This phosphor is prepared by solid-state diffusion method involving conventional air furnaces with operating temperature 1000 °C and easily amenable to large scale production without compromising primary dosimetric advantages. In this work we present some of the dosimetric OSL characteristics of this phosphor. The phosphor exhibits a main TSL peak at 250 °C. The phosphor also emits OSL, when the irradiated phosphor is stimulated with 470 nm light with the OSL sensitivity 1.3 times that of commercially available Al 2O 3:C. Photoluminescence (PL) emission spectrum consists of sharp lines characteristics of Tb 3+ emission. The OSL discs made out of this phosphor are reusable up to at least 50 cycles, the phosphor exhibits dose linearity up to 1 kGy. Minimum detectable dose is found to be 20 μGy and fading of the OSL signal is found to be about 16% in four days, after which the OSL signal stabilizes.
Livingston, Gareth C; Last, Andrew J; Shakespeare, Thomas P; Dwyer, Patrick M; Westhuyzen, Justin; McKay, Michael J; Connors, Lisa; Leader, Stephanie; Greenham, Stuart
2016-09-01
For patients receiving radiotherapy for locally advance non-small cell lung cancer (NSCLC), the probability of experiencing severe radiation pneumonitis (RP) appears to rise with an increase in radiation received by the lungs. Intensity modulated radiotherapy (IMRT) provides the ability to reduce planned doses to healthy organs at risk (OAR) and can potentially reduce treatment-related side effects. This study reports toxicity outcomes and provides a dosimetric comparison with three-dimensional conformal radiotherapy (3DCRT). Thirty curative NSCLC patients received radiotherapy using four-dimensional computed tomography and five-field IMRT. All were assessed for early and late toxicity using common terminology criteria for adverse events. All plans were subsequently re-planned using 3DCRT to the same standard as the clinical plans. Dosimetric parameters for lungs, oesophagus, heart and conformity were recorded for comparison between the two techniques. IMRT plans achieved improved high-dose conformity and reduced OAR doses including lung volumes irradiated to 5-20 Gy. One case each of oesophagitis and erythema (3%) were the only Grade 3 toxicities. Rates of Grade 2 oesophagitis were 40%. No cases of Grade 3 RP were recorded and Grade 2 RP rates were as low as 3%. IMRT provides a dosimetric benefit when compared to 3DCRT. While the clinical benefit appears to increase with increasing target size and increasing complexity, IMRT appears preferential to 3DCRT in the treatment of NSCLC.
Crowe, Scott B; Kairn, Tanya; Middlebrook, Nigel; Hill, Brendan; Christie, David R H; Knight, Richard T; Kenny, John; Langton, Christian M; Trapp, Jamie V
2013-01-01
Introduction This study examines and compares the dosimetric quality of radiotherapy treatment plans for prostate carcinoma across a cohort of 163 patients treated across five centres: 83 treated with three-dimensional conformal radiotherapy (3DCRT), 33 treated with intensity modulated radiotherapy (IMRT) and 47 treated with volumetric modulated arc therapy (VMAT). Methods Treatment plan quality was evaluated in terms of target dose homogeneity and organs at risk (OAR), through the use of a set of dose metrics. These included the mean, maximum and minimum doses; the homogeneity and conformity indices for the target volumes; and a selection of dose coverage values that were relevant to each OAR. Statistical significance was evaluated using two-tailed Welch's T-tests. The Monte Carlo DICOM ToolKit software was adapted to permit the evaluation of dose metrics from DICOM data exported from a commercial radiotherapy treatment planning system. Results The 3DCRT treatment plans offered greater planning target volume dose homogeneity than the other two treatment modalities. The IMRT and VMAT plans offered greater dose reduction in the OAR: with increased compliance with recommended OAR dose constraints, compared to conventional 3DCRT treatments. When compared to each other, IMRT and VMAT did not provide significantly different treatment plan quality for like-sized tumour volumes. Conclusions This study indicates that IMRT and VMAT have provided similar dosimetric quality, which is superior to the dosimetric quality achieved with 3DCRT. PMID:26229621
Resolving the limitations of using glycine as EPR dosimeter in the intermediate level of gamma dose
NASA Astrophysics Data System (ADS)
Aboelezz, E.; Hassan, G. M.
2018-04-01
The dosimetric properties of the simplest amino acid "glycine"- using EPR technique- were investigated in comparison to reference standard alanine dosimeter. The EPR spectrum of glycine at room temperature is complex, but immediately after irradiation, it appears as a triplet hyperfine structure probably due to the dominant contribution of the (•CH2COO-) radical. The dosimetric peak of glycine is at g-factor 2.0026 ± 0.0015 and its line width is 9 G at large modulation amplitude (7 G). The optimum microwave was studied and was found to be as alanine 8 mW; the post-irradiation as well as the dose rate effects were discussed. Dosimetric peak intensity of glycine fades rapidly to be about one quarter of its original value during 20 days for dried samples and it stabilizes after that. The dose response study in an intermediate range (2-1000 Gy) reveals that the glycine SNR is about 2 times more than that of alanine pellets when measured immediately after irradiation and 4 times more than that of glycine itself after 22 days of irradiation. The effect of energy dependence was studied and interpreted theoretically by calculation of mass energy absorption coefficient. The calculated combined uncertainties for glycine and alanine are nearly the same and were found to be 2.42% and 2.33%, respectively. Glycine shows interesting dosimetric properties in the range of ionizing radiation doses investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katsuta, Y; Tohoku University Graduate School of Medicine, Sendal, Miyagi; Kadoya, N
Purpose: In this study, we developed a system to calculate three dimensional (3D) dose that reflects dosimetric error caused by leaf miscalibration for head and neck and prostate volumetric modulated arc therapy (VMAT) without additional treatment planning system calculation on real time. Methods: An original system called clarkson dose calculation based dosimetric error calculation to calculate dosimetric error caused by leaf miscalibration was developed by MATLAB (Math Works, Natick, MA). Our program, first, calculates point doses at isocenter for baseline and modified VMAT plan, which generated by inducing MLC errors that enlarged aperture size of 1.0 mm with clarkson dosemore » calculation. Second, error incuced 3D dose was generated with transforming TPS baseline 3D dose using calculated point doses. Results: Mean computing time was less than 5 seconds. For seven head and neck and prostate plans, between our method and TPS calculated error incuced 3D dose, the 3D gamma passing rates (0.5%/2 mm, global) are 97.6±0.6% and 98.0±0.4%. The dose percentage change with dose volume histogram parameter of mean dose on target volume were 0.1±0.5% and 0.4±0.3%, and with generalized equivalent uniform dose on target volume were −0.2±0.5% and 0.2±0.3%. Conclusion: The erroneous 3D dose calculated by our method is useful to check dosimetric error caused by leaf miscalibration before pre treatment patient QA dosimetry checks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Tsair-Fwu, E-mail: tflee@cc.kuas.edu.t; Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan; Chao, Pei-Ju
2011-04-01
The dosimetric results of stereotactic radiosurgery (SRS) for vestibular schwannoma (VS) performed using dynamic conformal arc therapy (DCAT) with the Novalis system and helical TomoTherapy (HT) were compared using plan quality indices. The HT plans were created for 10 consecutive patients with VS previously treated with SRS using the Novalis system. The dosimetric indices used to compare the techniques included the conformity index (CI) and homogeneity index (HI) for the planned target volume (PTV), the comprehensive quality index (CQI) for nine organs at risk (OARs), gradient score index (GSI) for the dose drop-off outside the PTV, and plan quality indexmore » (PQI), which was verified using the plan quality discerning power (PQDP) to incorporate 3 plan indices, to evaluate the rival plans. The PTV ranged from 0.27-19.99 cm{sup 3} (median 3.39 cm{sup 3}), with minimum required PTV prescribed doses of 10-16 Gy (median 12 Gy). Both systems satisfied the minimum required PTV prescription doses. HT conformed better to the PTV (CI: 1.51 {+-} 0.23 vs. 1.94 {+-} 0.34; p < 0.01), but had a worse drop-off outside the PTV (GSI: 40.3 {+-} 10.9 vs. 64.9 {+-} 13.6; p < 0.01) compared with DCAT. No significant difference in PTV homogeneity was observed (HI: 1.08 {+-} 0.03 vs. 1.09 {+-} 0.02; p = 0.20). HT had a significantly lower maximum dose in 4 OARs and significant lower mean dose in 1 OAR; by contrast, DCAT had a significantly lower maximum dose in 1 OAR and significant lower mean dose in 2 OARs, with the CQI of the 9 OARs = 0.92 {+-} 0.45. Plan analysis using PQI (HT 0.37 {+-} 0.12 vs. DCAT 0.65 {+-} 0.08; p < 0.01), and verified using the PQDP, confirmed the dosimetric advantage of HT. However, the HT system had a longer beam-on time (33.2 {+-} 7.4 vs. 4.6 {+-} 0.9 min; p < 0.01) and consumed more monitor units (16772 {+-} 3803 vs. 1776 {+-} 356.3; p < 0.01). HT had a better dose conformity and similar dose homogeneity but worse dose gradient than DCAT. Plan analysis confirmed the dosimetric advantage of HT, although not all indices revealed a better outcome for HT. Whether this dosimetric advantage translates into a clinical benefit deserves further investigation.« less
The internal dosimetry code PLEIADES.
Fell, T P; Phipps, A W; Smith, T J
2007-01-01
The International Commission on Radiological Protection (ICRP) has published dose coefficients for the ingestion or inhalation of radionuclides in a series of reports covering intakes by workers and members of the public, including children and pregnant or lactating women. The calculation of these coefficients divides naturally into two distinct parts-the biokinetic and dosimetric. This paper describes in detail the methods used to solve the biokinetic problem in the generation of dose coefficients on behalf of the ICRP, as implemented in the Health Protection Agency's internal dosimetry code PLEIADES. A summary of the dosimetric treatment is included.
The spectral applications of Beer-Lambert law for some biological and dosimetric materials
NASA Astrophysics Data System (ADS)
Içelli, Orhan; Yalçin, Zeynel; Karakaya, Vatan; Ilgaz, Işıl P.
2014-08-01
The aim of this study is to conduct quantitative and qualitative analysis of biological and dosimetric materials which contain organic and inorganic materials and to make the determination by using the spectral theorem Beer-Lambert law. Beer-Lambert law is a system of linear equations for the spectral theory. It is possible to solve linear equations with a non-zero coefficient matrix determinant forming linear equations. Characteristic matrix of the linear equation with zero determinant is called point spectrum at the spectral theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, N; Lu, S; Qin, Y
Purpose: To evaluate the dosimetric uncertainty associated with Gafchromic (EBT3) films and establish an absolute dosimetry protocol for Stereotactic Radiosurgery (SRS) and Stereotactic Body Radiotherapy (SBRT). Methods: EBT3 films were irradiated at each of seven different dose levels between 1 and 15 Gy with open fields, and standard deviations of dose maps were calculated at each color channel for evaluation. A scanner non-uniform response correction map was built by registering and comparing film doses to the reference diode array-based dose map delivered with the same doses. To determine the temporal dependence of EBT3 films, the average correction factors of differentmore » dose levels as a function of time were evaluated up to four days after irradiation. An integrated film dosimetry protocol was developed for dose calibration, calibration curve fitting, dose mapping, and profile/gamma analysis. Patient specific quality assurance (PSQA) was performed for 93 SRS/SBRT treatment plans. Results: The scanner response varied within 1% for the field sizes less than 5 × 5 cm{sup 2}, and up to 5% for the field sizes of 10 × 10 cm{sup 2}. The scanner correction method was able to remove visually evident, irregular detector responses found for larger field sizes. The dose response of the film changed rapidly (∼10%) in the first two hours and plateaued afterwards, ∼3% change between 2 and 24 hours. The mean uncertainties (mean of the standard deviations) were <0.5% over the dose range 1∼15Gy for all color channels for the OD response curves. The percentage of points passing the 3%/1mm gamma criteria based on absolute dose analysis, averaged over all tests, was 95.0 ± 4.2. Conclusion: We have developed an absolute film dose dosimetry protocol using EBT3 films. The overall uncertainty has been established to be approximately 1% for SRS and SBRT PSQA. The work was supported by a Research Scholar Grant, RSG-15-137-01-CCE from the American Cancer Society.« less
Dosimetric characterization of a new directional low-dose rate brachytherapy source.
Aima, Manik; DeWerd, Larry A; Mitch, Michael G; Hammer, Clifford G; Culberson, Wesley S
2018-05-24
CivaTech Oncology Inc. (Durham, NC) has developed a novel low-dose rate (LDR) brachytherapy source called the CivaSheet. TM The source is a planar array of discrete elements ("CivaDots") which are directional in nature. The CivaDot geometry and design are considerably different than conventional LDR cylindrically symmetric sources. Thus, a thorough investigation is required to ascertain the dosimetric characteristics of the source. This work investigates the repeatability and reproducibility of a primary source strength standard for the CivaDot and characterizes the CivaDot dose distribution by performing in-phantom measurements and Monte Carlo (MC) simulations. Existing dosimetric formalisms were adapted to accommodate a directional source, and other distinguishing characteristics including the presence of gold shield x-ray fluorescence were addressed in this investigation. Primary air-kerma strength (S K ) measurements of the CivaDots were performed using two free-air chambers namely, the Variable-Aperture Free-Air Chamber (VAFAC) at the University of Wisconsin Medical Radiation Research Center (UWMRRC) and the National Institute of Standards and Technology (NIST) Wide-Angle Free-Air Chamber (WAFAC). An intercomparison of the two free-air chamber measurements was performed along with a comparison of the different assumed CivaDot energy spectra and associated correction factors. Dose distribution measurements of the source were performed in a custom polymethylmethacrylate (PMMA) phantom using Gafchromic TM EBT3 film and thermoluminescent dosimeter (TLD) microcubes. Monte Carlo simulations of the source and the measurement setup were performed using MCNP6 radiation transport code. The CivaDot S K was determined using the two free-air chambers for eight sources with an agreement of better than 1.1% for all sources. The NIST measured CivaDot energy spectrum intensity peaks were within 1.8% of the MC-predicted spectrum intensity peaks. The difference in the net source-specific correction factor determined for the CivaDot free-air chamber measurements for the NIST WAFAC and UW VAFAC was 0.7%. The dose-rate constant analog was determined to be 0.555 cGy h -1 U -1 . The average difference observed in the estimated CivaDot dose-rate constant analog using measurements and MCNP6-predicted value (0.558 cGy h -1 U -1 ) was 0.6% ± 2.3% for eight CivaDot sources using EBT3 film, and -2.6% ± 1.7% using TLD microcube measurements. The CivaDot two-dimensional dose-to-water distribution measured in phantom was compared to the corresponding MC predictions at six depths. The observed difference using a pixel-by-pixel subtraction map of the measured and the predicted dose-to-water distribution was generally within 2-3%, with maximum differences up to 5% of the dose prescribed at the depth of 1 cm. Primary S K measurements of the CivaDot demonstrated good repeatability and reproducibility of the free-air chamber measurements. Measurements of the CivaDot dose distribution using the EBT3 film stack phantom and its subsequent comparison to Monte Carlo-predicted dose distributions were encouraging, given the overall uncertainties. This work will aid in the eventual realization of a clinically viable dosimetric framework for the CivaSheet based on the CivaDot dose distribution. © 2018 American Association of Physicists in Medicine.
A fast optimization approach for treatment planning of volumetric modulated arc therapy.
Yan, Hui; Dai, Jian-Rong; Li, Ye-Xiong
2018-05-30
Volumetric modulated arc therapy (VMAT) is widely used in clinical practice. It not only significantly reduces treatment time, but also produces high-quality treatment plans. Current optimization approaches heavily rely on stochastic algorithms which are time-consuming and less repeatable. In this study, a novel approach is proposed to provide a high-efficient optimization algorithm for VMAT treatment planning. A progressive sampling strategy is employed for beam arrangement of VMAT planning. The initial beams with equal-space are added to the plan in a coarse sampling resolution. Fluence-map optimization and leaf-sequencing are performed for these beams. Then, the coefficients of fluence-maps optimization algorithm are adjusted according to the known fluence maps of these beams. In the next round the sampling resolution is doubled and more beams are added. This process continues until the total number of beams arrived. The performance of VMAT optimization algorithm was evaluated using three clinical cases and compared to those of a commercial planning system. The dosimetric quality of VMAT plans is equal to or better than the corresponding IMRT plans for three clinical cases. The maximum dose to critical organs is reduced considerably for VMAT plans comparing to those of IMRT plans, especially in the head and neck case. The total number of segments and monitor units are reduced for VMAT plans. For three clinical cases, VMAT optimization takes < 5 min accomplished using proposed approach and is 3-4 times less than that of the commercial system. The proposed VMAT optimization algorithm is able to produce high-quality VMAT plans efficiently and consistently. It presents a new way to accelerate current optimization process of VMAT planning.
Modeling of a multileaf collimator
NASA Astrophysics Data System (ADS)
Kim, Siyong
A comprehensive physics model of a multileaf collimator (MLC) field for treatment planning was developed. Specifically, an MLC user interface module that includes a geometric optimization tool and a general method of in- air output factor calculation were developed. An automatic tool for optimization of MLC conformation is needed to realize the potential benefits of MLC. It is also necessary that a radiation therapy treatment planning (RTTP) system is capable of modeling MLC completely. An MLC geometric optimization and user interface module was developed. The planning time has been reduced significantly by incorporating the MLC module into the main RTTP system, Radiation Oncology Computer System (ROCS). The dosimetric parameter that has the most profound effect on the accuracy of the dose delivered with an MLC is the change in the in-air output factor that occurs with field shaping. It has been reported that the conventional method of calculating an in-air output factor cannot be used for MLC shaped fields accurately. Therefore, it is necessary to develop algorithms that allow accurate calculation of the in-air output factor. A generalized solution for an in-air output factor calculation was developed. Three major contributors of scatter to the in-air output-flattening filter, wedge, and tertiary collimator-were considered separately. By virtue of a field mapping method, in which a source plane field determined by detector's eye view is mapped into a detector plane field, no additional dosimetric data acquisition other than the standard data set for a range of square fields is required for the calculation of head scatter. Comparisons of in-air output factors between calculated and measured values show a good agreement for both open and wedge fields. For rectangular fields, a simple equivalent square formula was derived based on the configuration of a linear accelerator treatment head. This method predicts in-air output to within 1% accuracy. A two-effective-source algorithm was developed to account for the effect of source to detector distance on in-air output for wedge fields. Two effective sources, one for head scatter and the other for wedge scatter, were dealt with independently. Calculations provided less than 1% difference of in-air output factors from measurements. This approach offers the best comprehensive accuracy in radiation delivery with field shapes defined using MLC. This generalized model works equally well with fields shaped by any type of tertiary collimator and have the necessary framework to extend its application to intensity modulated radiation therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittauer, K; Deraniyagala, R; Li, J
2014-06-01
Purpose: Different breath-hold (BH) maneuvers (abdominal breathing vs. chest breathing) during CT simulation and treatment can lead to chest wall positional variation. The purpose of this study is to quantify the variation of active breathing control (ABC)-assisted BH and estimate its dosimetric impact for left-sided whole-breast radiotherapy with a real-time optical tracking system (OTS). Methods: Seven breast cancer patients were included. An in-house OTS tracked an infrared (IR) marker affixed over the xiphoid process of the patient at CT simulation and throughout the treatment course to measure BH variations. Correlation between the IR marker and the breast was studied formore » dosimetric purposes. The positional variations of 860 BHs were retrospectively incorporated into treatment plans to assess their dosimetric impact on breast and cardiac organs (heart and left anterior descending artery [LAD]). Results: The mean intrafraction variations were 2.8 mm, 2.7 mm, and 1.6 mm in the anteroposterior (AP), craniocaudal (CC), and mediolateral (ML) directions, respectively. Mean stability in any direction was within 1.5 mm. A general trend of BH undershoot at treatment relative to CT simulation was observed with an average of 4.4 mm, 3.6 mm, and 0.1 mm in the AP, CC, and ML directions, respectively. Undershoot up to 12.6 mm was observed for individual patients. The difference between the planned and delivered dose to breast targets was negligible. The average planned/delivered mean heart doses, mean LAD doses, and max LAD doses were 1.4/2.1, 7.4/15.7, and 18.6/31.0 Gy, respectively. Conclusion: Systematic undershoot was observed in ABC-assisted BHs from CT simulation to treatment. Its dosimetric impact on breast coverage was minimized with image guidance, but the benefits of cardiac organ sparing were degraded. A real-time tracking system can be used in junction with the ABC device to improve BH reproducibility.« less
Al-Jundi, J; Li, W B; Abusini, M; Tschiersch, J; Hoeschen, C; Oeh, U
2011-06-01
High indoor radon concentrations in Jordan result in internal exposures of the residents due to the inhalation of radon and its short-lived progeny. It is therefore important to quantify the annual effective dose and further the radiation risk to the radon exposure. This study describes the methodology and the biokinetic and dosimetric models used for calculation of the inhalation doses exposed to radon progeny. The regional depositions of aerosol particles in the human respiratory tract were firstly calculated. For the attached progeny, the activity median aerodynamic diameters of 50 nm, 230 nm and 2500 nm were chosen to represent the nucleation, accumulation and coarse modes of the aerosol particles, respectively. For the unattached progeny, the activity median thermodynamic diameter of 1 nm was chosen to represent the free progeny nuclide in the room air. The biokinetic models developed by the International Commission on Radiological Protection (ICRP) were used to calculate the nuclear transformations of radon progeny in the human body, and then the dosimetric model was applied to estimate the organ equivalent doses and the effective doses with the specific effective energies derived from the mathematical anthropomorphic phantoms. The dose conversion coefficient estimated in this study was 15 mSv WLM(-1) which was in the range of the values of 6-20 mSv WLM(-1) reported by other investigators. Implementing the average indoor radon concentration in Jordan, the annual effective doses were calculated to be 4.1 mSv y(-1) and 0.08 mSv y(-1) due to the inhalation of radon progeny and radon gas, respectively. The total annual effective dose estimated for Jordanian population was 4.2 mSv y(-1). This high annual effective dose calculated by the dosimetric approach using ICRP biokinetic and dosimetric models resulted in an increase of a factor of two in comparison to the value by epidemiological study. This phenomenon was presented by the ICRP in its new published statement on radon. Copyright © 2011 Elsevier Ltd. All rights reserved.
SU-E-T-467: Monte Carlo Dosimetric Study of the New Flexisource Co-60 High Dose Rate Source.
Vijande, J; Granero, D; Perez-Calatayud, J; Ballester, F
2012-06-01
Recently, a new HDR 60Co brachytherapy source, Flexisource Co-60, has been developed (Nucletron B.V.). This study aims to obtain quality dosimetric data for this source for its use in clinical practice as required by AAPM and ESTRO. Penelope2008 and GEANT4 Monte Carlo codes were used to dosimetrically characterize this source. Water composition and mass density was that recommended by AAPM. Due to the high energy of the 60Co, dose for small distances cannot be approximated by collisional kerma. Therefore, we have considered absorbed dose to water for r<0.75 cm and collisional kerma from 0.75
Zhang, Hualin; Gopalakrishnan, Mahesh; Lee, Plato; Kang, Zhuang; Sathiaseelan, Vythialingam
2016-09-08
The purpose of this study was to evaluate the dosimetric impact of cylinder size in high-dose-rate (HDR) vaginal cuff brachytherapy (VCBT). Sample plans of HDR VCBT in a list of cylinders ranging from 2.5 to 4 cm in diameter at 0.5 cm incre-ment were created and analyzed. The doses were prescribed either at the 0.5cm depth with 5.5 Gy for 4 fractions or at the cylinder surface with 8.8 Gy for 4 frac-tions, in various treatment lengths. A 0.5 cm shell volume called PTV_Eval was contoured for each plan and served as the target volume for dosimetric evaluation. The cumulative and differential dose volume histograms (c-DVH and d-DVH), mean doses (D-mean) and the doses covering 90% (D90), 10% (D10), and 5% (D5) of PTV_Eval were calculated. In the 0.5 cm depth regimen, the DVH curves were found to have shifted toward the lower dose zone when a larger cylinder was used, but in the surface regimen the DVH curves shifted toward the higher dose zone as the cylinder size increased. The D-means of the both regimens were between 6.9 and 7.8 Gy and dependent on the cylinder size but independent of the treatment length. A 0.5 cm variation of diameter could result in a 4% change of D-mean. Average D90s were 5.7 (ranging from 5.6 to 5.8 Gy) and 6.1 Gy (from 5.7 to 6.4 Gy), respectively, for the 0.5 cm and surface regimens. Average D10 and D5 were 9.2 and 11 Gy, respectively, for the 0.5 cm depth regimen, and 8.9 and 9.7 Gy, respectively, for the surface regimen. D-mean, D90, D10, and D5 for other prescription doses could be calculated from the lookup tables of this study. Results indicated that the cylinder size has moderate dosimetric impact, and that both regimens are comparable in dosimetric quality. © 2016 The Authors.
Dosimetric challenges of small animal irradiation with a commercial X-ray unit.
Kuess, Peter; Bozsaky, Eva; Hopfgartner, Johannes; Seifritz, Gerhard; Dörr, Wolfgang; Georg, Dietmar
2014-12-01
A commercial X-ray unit was recently installed at the Medical University Vienna for partial and whole body irradiation of small experimental animals. For 200 kV X-rays the dose deviations with respect to the reference dose measured in the geometrical center of the potential available field size was investigated for various experimental setup plates used for mouse irradiations. Furthermore, the HVL was measured in mm Al and mm Cu at 200 kV for two types of filtration. Three different setup constructions for small animal irradiation were dosimetrically characterized, covering field sizes from 9×20 mm2 to 210×200 mm2. Different types of detectors were investigated. Additionally LiF:MG,Ti TLD chips were used for mouse in-vivo dosimetry. The use of an additional 0.5 mm Cu filter reduced the deviation of the dose between each irradiation position on the setup plates. Multiple animals were irradiated at the same time using an individual setup plate for each experimental purpose. The dose deviations of each irradiation position to the center was measured to be ±4% or better. The depth dose curve measured in a solid water phantom was more pronounced for smaller field sizes. The comparison between estimated dose and measured dose in a PMMA phantom regarding the dose decline yielded in a difference of 3.9% at 20 mm depth. In-vivo measurements in a mouse snouts irradiation model confirmed the reference dosimetry, accomplished in PMMA phantoms, in terms of administered dose and deviation within different points of measurement. The outlined experiments dealt with a wide variety of dosimetric challenges during the installation of a new X-ray unit in the laboratory. The depth dose profiles measured for different field sizes were in good agreement with literature data. Different field sizes and spatial arrangement of the animals (depending on each purpose) provide additional challenges for the dosimetric measurements. Thorough dosimetric commissioning has to be performed before a new experimental setup is approved for biological experiments. Copyright © 2014. Published by Elsevier GmbH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, Jonathan; Sulman, Erik P.; Jhingran, Anuja
Purpose: To determine the incidence of duodenal toxicity in patients receiving intensity modulated radiation therapy (IMRT) for treatment of para-aortic nodes and to identify dosimetric parameters predictive of late duodenal toxicity. Methods and Materials: We identified 105 eligible patients with gynecologic malignancies who were treated with IMRT for gross metastatic disease in the para-aortic nodes from January 1, 2005, through December 31, 2009. Patients were treated to a nodal clinical target volume to 45 to 50.4 Gy with a boost to 60 to 66 Gy. The duodenum was contoured, and dosimetric data were exported for analysis. Duodenal toxicity was scoredmore » according to Radiation Therapy Oncology Group criteria. Univariate Cox proportional hazards analysis and recursive partitioning analysis were used to determine associations between dosimetric variables and time to toxicity and to identify the optimal threshold that separated patients according to risk of toxicity. Results: Nine of the 105 patients experienced grade 2 to grade 5 duodenal toxicity, confirmed by endoscopy in all cases. The 3-year actuarial rate of any duodenal toxicity was 11.7%. A larger volume of the duodenum receiving 55 Gy (V55) was associated with higher rates of duodenal toxicity. The 3-year actuarial rates of duodenal toxicity with V55 above and below 15 cm{sup 3} were 48.6% and 7.4%, respectively (P<.01). In Cox univariate analysis of dosimetric variables, V55 was associated with duodenal toxicity (P=.029). In recursive partitioning analysis, V55 less than 13.94% segregated all patients with duodenal toxicity. Conclusions: Dose-escalated IMRT can safely and effectively treat para-aortic nodal disease in gynecologic malignancies, provided that care is taken to limit the dose to the duodenum to reduce the risk of late duodenal toxicity. Limiting V55 to below 15 cm{sup 3} may reduce the risk of duodenal complications. In cases where the treatment cannot be delivered within these constraints, consideration should be given to other treatment approaches such as resection or initial chemotherapy.« less
SU-F-E-06: Dosimetric Characterization of Small Photons Beams of a Novel Linear Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almonte, A; Polanco, G; Sanchez, E
2016-06-15
Purpose: The aim of the present contribution was to measure the main dosimetric quantities of small fields produced by UNIQUE and evaluate its matching with the corresponding dosimetric data of one 21EX conventional linear accelerator (Varian) in operation at the same center. The second step was to evaluate comparative performance of the EDGE diode detector and the PinPoint micro-ionization chamber for dosimetry of small fields. Methods: UNIQUE is configured with MLC (120 leaves with 0.5 cm leaf width) and a single low photon energy of 6 MV. Beam data were measured with scanning EDGE diode detector (volume of 0.019 mm{supmore » 3}), a PinPoint micro-ionization chamber (PTW) and for larger fields (≥ 4×4cm{sup 2}) a PTW Semi flex chamber (0.125 cm{sup 3}) was used. The scanning system used was the 3D cylindrical tank manufactured by Sun Nuclear, Inc. The measurement of PDD and profiles were done at 100 cm SSD and 1.5 depth; the relative output factors were measured at 10 cm depth. Results: PDD and the profile data showed less than 1% variation between the two linear accelerators for fields size between 2×2 cm{sup 2} and 5×5cm{sup 2}. Output factor differences was less than 1% for field sizes between 3×3 cm{sup 2} and 10×10 cm{sup 2} and less of 1.5 % for fields of 1.5×1.5 cm{sup 2} and 2×2 cm{sup 2} respectively. The dmax value of the EDGE diode detector, measured from the PDD, was 8.347 mm for 0.5×0,5cm{sup 2} for UNIQUE. The performance of EDGE diode detector was comparable for all measurements in small fields. Conclusion: UNIQUE linear accelerator show similar dosimetrics characteristics as conventional 21EX Varian linear accelerator for small, medium and large field sizes.EDGE detector show good performance by measuring dosimetrics quantities in small fields typically used in IMRT and radiosurgery treatments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chera, B; Price, A; Kostich, M
Purpose: To investigate the correlation between different dosimetric indices of salivary glands (as separate or combined structures) to patient-reported dry mouth 6 months post radiotherapy using the novel patient reported outcome version of the CTCAE (PRO-CTCAE). Methods: Forty-three patients with oropharyngeal squamous cell carcinoma were treated on a prospective multi-institutional study. All patients received de-intensified 60 Gy intensity modulated radiotherapy. Dosimetric constraints were used for the salivary glands (e.g. mean dose to the contralateral-parotid < 26 Gy). We investigated correlations of individual patient dosimetric data of the parotid and submandibular glands (as separate or combined structures) to their self-reported 6more » month post-treatment dry mouth responses. Moderate dry mouth responses were most prevalent and were used as the clinical endpoint indicating response. The correlation of Dmean, Dmax and a range of dosevolume (VD) points were assessed through the area under the Receiver Operating Characteristic curve (ROC) and Odds Ratios (OR). Results: Patients reporting non/mild dry mouth response (N=22) had average Dmean = 19.6 ± 6.2Gy to the contralateral-parotid compared to an average Dmean = 28.0 ± 8.3Gy and an AUC = 0.758 for the patients reporting moderate/severe/very severe dry mouth (N=21). Analysis of the range of VD’s for patients who had reported dry mouth showed that for the contralateral-parotid the indices V18 through V22 had the highest area under the curves (AUC) (0.762 – 0.772) compared to a more traditional dosimetric index V30, which had an AUC = 0.732. The highest AUC was observed for the combination of contralateral parotid and contralateral submandibular glands, for which V16 through V28 had AUC = 0.801 – 0.834. Conclusion: Patients who report moderate/severe/very severe dry mouth 6 months post radiotherapy had on average higher Dmean. The V16-V28 of the combination of the contralateral glands showed the highest correlation with the clinical endpoint.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pursley, Jennifer, E-mail: jpursley@mgh.harvard.edu; Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA; Damato, Antonio L.
The purpose of this study was to investigate class solutions using RapidArc volumetric-modulated arc therapy (VMAT) planning for ipsilateral and bilateral head and neck (H&N) irradiation, and to compare dosimetric results with intensity-modulated radiotherapy (IMRT) plans. A total of 14 patients who received ipsilateral and 10 patients who received bilateral head and neck irradiation were retrospectively replanned with several volumetric-modulated arc therapy techniques. For ipsilateral neck irradiation, the volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the contralateral parotid, two 260° or 270° arcs, and two 210° arcs. For bilateral neck irradiation, themore » volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the shoulders, and 3 arcs. All patients had a sliding-window-delivery intensity-modulated radiotherapy plan that was used as the benchmark for dosimetric comparison. For ipsilateral neck irradiation, a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid was dosimetrically comparable to intensity-modulated radiotherapy, with improved conformity (conformity index = 1.22 vs 1.36, p < 0.04) and lower contralateral parotid mean dose (5.6 vs 6.8 Gy, p < 0.03). For bilateral neck irradiation, 3-arc volumetric-modulated arc therapy techniques were dosimetrically comparable to intensity-modulated radiotherapy while also avoiding irradiation through the shoulders. All volumetric-modulated arc therapy techniques required fewer monitor units than sliding-window intensity-modulated radiotherapy to deliver treatment, with an average reduction of 35% for ipsilateral plans and 67% for bilateral plans. Thus, for ipsilateral head and neck irradiation a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid is recommended. For bilateral neck irradiation, 2- or 3-arc techniques are dosimetrically comparable to intensity-modulated radiotherapy, but more work is needed to determine the optimal approaches by disease site.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mooney, K; Altman, M; Garcia-Ramirez, J
Purpose: Treatment planning guidelines for accelerated partial breast irradiation (ABPI) using the strut-adjusted volume implant (SAVI) are inconsistent between the manufacturer and NSABP B-39/RTOG 0413 protocol. Furthermore neither set of guidelines accounts for different applicator sizes. The purpose of this work is to establish guidelines specific to the SAVI that are based on clinically achievable dose distributions. Methods: Sixty-two consecutive patients were implanted with a SAVI and prescribed to receive 34 Gy in 10 fractions twice daily using high dose-rate (HDR) Ir-192 brachytherapy. The target (PTV-EVAL) was defined per NSABP. The treatments were planned and evaluated using a combination ofmore » dosimetric planning goals provided by the NSABP, the manufacturer, and our prior clinical experience. Parameters evaluated included maximum doses to skin and ribs, and volumes of PTV-EVAL receiving 90%, 95%, 100%, 150%, and 200% of the prescription (V90, etc). All target parameters were evaluated for correlation with device size using the Pearson correlation coefficient. Revised dosimetric guidelines for target coverage and heterogeneity were determined from this population. Results: Revised guidelines for minimum target coverage (ideal in parentheses): V90≥95%(97%), V95≥90%(95%), V100≥88%(91%). The only dosimetric parameters that were significantly correlated (p<0.05) with device size were V150 and V200. Heterogeneity criteria were revised for the 6–1 Mini/6-1 applicators to V150≤30cc and V200≤15cc, and unchanged for the other sizes. Re-evaluation of patient plans showed 90% (56/62) met the revised minimum guidelines and 76% (47/62) met the ideal guidelines. All and 56/62 patients met our institutional guidelines for maximum skin and rib dose, respectively. Conclusions: We have optimized dosimetric guidelines for the SAVI applicators, and found that implementation of these revised guidelines for SAVI treatment planning yielded target coverage exceeding that required by existing guidelines while preserving heterogeneity constraints and minimizing dose to organs at risk.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, S
2015-06-15
Purpose: To quantify the dosimetric variations of misaligned beams for a linear accelerator by using Monte Carlo (MC) simulations. Method and Materials: Misaligned beams of a Varian 21EX Clinac were simulated to estimate the dosimetric effects. All the linac head components for a 6 MV photon beam were implemented in BEAMnrc/EGSnrc system. For incident electron beam parameters, 6 MeV with 0.1 cm full-width-half-max Gaussian beam was used. A phase space file was obtained below the jaw per each misalignment condition of the incident electron beam: (1) The incident electron beams were tilted by 0.5, 1.0 and 1.5 degrees on themore » x-axis from the central axis. (2) The center of the incident electron beam was off-axially moved toward +x-axis by 0.1, 0.2, and 0.3 cm away from the central axis. Lateral profiles for each misaligned beam condition were acquired at dmax = 1.5 cm and 10 cm depth in a rectangular water phantom. Beam flatness and symmetry were calculated by using the lateral profile data. Results: The lateral profiles were found to be skewed opposite to the angle of the incident beam for the tilted beams. For the displaced beams, similar skewed lateral profiles were obtained with small shifts of penumbra on the +x-axis. The variations of beam flatness were 3.89–11.18% and 4.12–42.57% for the tilted beam and the translated beam, respectively. The beam symmetry was separately found to be 2.95 −9.93% and 2.55–38.06% separately. It was found that the percent increase of the flatness and the symmetry values are approximated 2 to 3% per 0.5 degree tilt or per 1 mm displacement. Conclusion: This study quantified the dosimetric effects of misaligned beams using MC simulations. The results would be useful to understand the magnitude of the dosimetric deviations for the misaligned beams.« less
Pursley, Jennifer; Damato, Antonio L; Czerminska, Maria A; Margalit, Danielle N; Sher, David J; Tishler, Roy B
2017-01-01
The purpose of this study was to investigate class solutions using RapidArc volumetric-modulated arc therapy (VMAT) planning for ipsilateral and bilateral head and neck (H&N) irradiation, and to compare dosimetric results with intensity-modulated radiotherapy (IMRT) plans. A total of 14 patients who received ipsilateral and 10 patients who received bilateral head and neck irradiation were retrospectively replanned with several volumetric-modulated arc therapy techniques. For ipsilateral neck irradiation, the volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the contralateral parotid, two 260° or 270° arcs, and two 210° arcs. For bilateral neck irradiation, the volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the shoulders, and 3 arcs. All patients had a sliding-window-delivery intensity-modulated radiotherapy plan that was used as the benchmark for dosimetric comparison. For ipsilateral neck irradiation, a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid was dosimetrically comparable to intensity-modulated radiotherapy, with improved conformity (conformity index = 1.22 vs 1.36, p < 0.04) and lower contralateral parotid mean dose (5.6 vs 6.8Gy, p < 0.03). For bilateral neck irradiation, 3-arc volumetric-modulated arc therapy techniques were dosimetrically comparable to intensity-modulated radiotherapy while also avoiding irradiation through the shoulders. All volumetric-modulated arc therapy techniques required fewer monitor units than sliding-window intensity-modulated radiotherapy to deliver treatment, with an average reduction of 35% for ipsilateral plans and 67% for bilateral plans. Thus, for ipsilateral head and neck irradiation a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid is recommended. For bilateral neck irradiation, 2- or 3-arc techniques are dosimetrically comparable to intensity-modulated radiotherapy, but more work is needed to determine the optimal approaches by disease site. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Ghandour, Sarah; Matzinger, Oscar
2015-01-01
The purpose of this work is to evaluate the volumetric‐modulated arc therapy (VMAT) multicriteria optimization (MCO) algorithm clinically available in the RayStation treatment planning system (TPS) and its ability to reduce treatment planning time while providing high dosimetric plan quality. Nine patients with localized prostate cancer who were previously treated with 78 Gy in 39 fractions using VMAT plans and rayArc system based on the direct machine parameter optimization (DMPO) algorithm were selected and replanned using the VMAT‐MCO system. First, the dosimetric quality of the plans was evaluated using multiple conformity metrics that account for target coverage and sparing of healthy tissue, used in our departmental clinical protocols. The conformity and homogeneity index, number of monitor units, and treatment planning time for both modalities were assessed. Next, the effects of the technical plan parameters, such as constraint leaf motion CLM (cm/°) and maximum arc delivery time T (s), on the accuracy of delivered dose were evaluated using quality assurance passing rates (QAs) measured using the Delta4 phantom from ScandiDos. For the dosimetric plan's quality analysis, the results show that the VMAT‐MCO system provides plans comparable to the rayArc system with no statistical difference for V95% (p<0.01), D1% (p<0.01), CI (p<0.01), and HI (p<0.01) of the PTV, bladder (p<0.01), and rectum (p<0.01) constraints, except for the femoral heads and healthy tissues, for which a dose reduction was observed using MCO compared with rayArc (p<0.01). The technical parameter study showed that a combination of CLM equal to 0.5 cm/degree and a maximum delivery time of 72 s allowed the accurate delivery of the VMAT‐MCO plan on the Elekta Versa HD linear accelerator. Planning evaluation and dosimetric measurements showed that VMAT‐MCO can be used clinically with the advantage of enhanced planning process efficiency by reducing the treatment planning time without impairing dosimetric quality. PACS numbers: 87.55.D, 87.55.de, 87.55.Qr PMID:26103500
Brodecki, Marcin; Domienik, Joanna U; Zmyślony, Marek
2012-01-01
The current system of dosimetric quantities has been defined by the International Commission on Radiological Protection (ICRP) and the International Commission on Radiation Units and Measurements (ICRU). Complexity of the system implies the physical nature of ionizing radiation, resulting from the presence of different types of radiation of different ionization capabilities, as well as the individual radiation sensitivity of biological material exposed. According to the latest recommendations, there are three types of dosimeter quantities relevant to radiation protection and radiological assessment of occupational exposure. These are the basic quantities, safety quantities and operational quantities. Dose limits for occupational exposure relate directly to the protection quantities, i.e. the equivalent dose and effective dose, while these quantities are practically unmeasurable in real measurement conditions. For this reason, in the system of dosimetric quantities directly measurable operating volumes were defined. They represent equivalents of the protection quantities that allow for a reliable assessment of equivalent and effective dose by conducting routine monitoring of occupational exposure. This paper presents the characteristics of these quantities, their relationships and importance in assessing individual effects of radiation. Also the methods for their implementation in personal and environmental dosimetry were showcased. The material contained in the article is a compendium of essential information about dosimetric quantities with reference to the contemporary requirements of the law, including the changed annual occupational exposure limit for the lens of the eye. The material is especially addressed to those responsible for dosimetry monitoring in the workplace, radiation protection inspectors and occupational health physicians.
Kim, Eun Seok; Yeo, Seung-Gu
2014-06-01
Previous studies on advanced radiotherapy (RT) techniques for early stage glottic cancer have focused on sparing the carotid artery. However, the aim of the present study was to evaluate the dosimetric advantages of volumetric modulated arc therapy (VMAT) in terms of sparing the thyroid gland in early-stage glottic cancer patients. In total, 15 cT1N0M0 glottic cancer patients treated with definitive RT using VMAT were selected, and for dosimetric comparison, a conventional RT plan comprising opposed-lateral wedged fields was generated for each patient. The carotid artery, thyroid gland and spinal cord were considered organs at risk. The prescription dose was 63 Gy at 2.25 Gy per fraction. For the thyroid gland and carotid artery, all compared parameters were significantly lower with VMAT compared with conventional RT. For the thyroid gland, the median reduction rates of the mean dose (D mean ), the volume receiving ≥30% of the prescription dose (V 30 ) and the V 50 were 32.6, 40.9 and 46.0%, respectively. The D mean was 14.7±2.6 Gy when using VMAT compared with 22.2±3.9 Gy when using conventional RT. The differences between the techniques in terms of planning target volume coverage and dose homogeneity were not significant. When considering a recent normal tissue complication probability model, which indicated the mean thyroid gland dose as the most significant predictor of radiation-induced hypothyroidism, the dosimetric advantage shown in this study may be valuable in reducing hypothyroidism following RT for early stage glottic cancer patients.
Katsuta, Yoshiyuki; Kadoya, Noriyuki; Fujita, Yukio; Shimizu, Eiji; Matsunaga, Kenichi; Matsushita, Haruo; Majima, Kazuhiro; Jingu, Keiichi
2017-10-01
A log file-based method cannot detect dosimetric changes due to linac component miscalibration because log files are insensitive to miscalibration. Herein, clinical impacts of dosimetric changes on a log file-based method were determined. Five head-and-neck and five prostate plans were applied. Miscalibration-simulated log files were generated by inducing a linac component miscalibration into the log file. Miscalibration magnitudes for leaf, gantry, and collimator at the general tolerance level were ±0.5mm, ±1°, and ±1°, respectively, and at a tighter tolerance level achievable on current linac were ±0.3mm, ±0.5°, and ±0.5°, respectively. Re-calculations were performed on patient anatomy using log file data. Changes in tumor control probability/normal tissue complication probability from treatment planning system dose to re-calculated dose at the general tolerance level was 1.8% on planning target volume (PTV) and 2.4% on organs at risk (OARs) in both plans. These changes at the tighter tolerance level were improved to 1.0% on PTV and to 1.5% on OARs, with a statistically significant difference. We determined the clinical impacts of dosimetric changes on a log file-based method using a general tolerance level and a tighter tolerance level for linac miscalibration and found that a tighter tolerance level significantly improved the accuracy of the log file-based method. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Dosimetric effects of polyethylene glycol surface coatings on gold nanoparticle radiosensitization
NASA Astrophysics Data System (ADS)
Koger, B.; Kirkby, C.
2017-11-01
One of the main appeals of using gold nanoparticles (GNPs) as radiosensitizers is that their surface coatings can be altered to manipulate their pharmacokinetic properties. However, Monte Carlo studies of GNP dosimetry tend to neglect these coatings, potentially changing the dosimetric results. This study quantifies the dosimetric effects of including a polyethylene glycol (PEG) surface coating on GNPs over both nanoscopic and microscopic ranges. Two dosimetric scales were explored using PENELOPE Monte Carlo simulations. In microscopic simulations, 500-1000 GNPs, with and without coatings, were placed in cavities of side lengths 0.8-4 µm, and the reduction of dose deposited to surrounding medium within these volumes due to the coating was quantified. Including PEG surface coatings of up to 20 nm thickness resulted in reductions of up to 7.5%, 4.0%, and 2.0% for GNP diameters of 10, 20, and 50 nm, respectively. Nanoscopic simulations observed the dose falloff in the first 500 nm surrounding a single GNP both with and without surface coatings of various thicknesses. Over the first 500 nm surrounding a single GNP, the presence of a PEG surface coating reduced dose by 5-26%, 8-28%, 8-30%, and 8-34% for 2, 10, 20, and 50 nm diameter GNPs, respectively, for various energies and coating thicknesses. Reductions in dose enhancement due to the inclusion of a GNP surface coating are non-negligible and should be taken into consideration when investigating GNP dose enhancement. Further studies should be carried out to investigate the biological effects of these coatings.
Dosimetric and clinical predictors of radiation-induced lung toxicity in esophageal carcinoma.
Zhu, Shu-Chai; Shen, Wen-Bin; Liu, Zhi-Kun; Li, Juan; Su, Jing-Wei; Wang, Yu-Xiang
2011-01-01
Radiation-induced lung toxicity occurs frequently in patients with esophageal carcinoma. This study aims to evaluate the clinical and three-dimensional dosimetric parameters associated with lung toxicity after radiotherapy for esophageal carcinoma. The records of 56 patients treated for esophageal carcinoma were reviewed. The Radiation Therapy Oncology Group criteria for grading of lung toxicity were followed. Spearman's correlation test, the chi-square test and logistic regression analyses were used for statistical analysis. Ten of the 56 patients developed acute toxicity. The toxicity grades were grade 2 in 7 patients and grade 3 in 3 patients; none of the patients developed grade 4 or worse toxicity. One case of toxicity occurred during radiotherapy and 9 occurred 2 weeks to 3 months after radiotherapy. The median time was 2.0 months after radiotherapy. Fourteen patients developed late irradiated lung injury, 3 after 3.5 months, 7 after 9 months, and 4 after 14 months. Radiographic imaging demonstrated patchy consolidation (n = 5), atelectasis with parenchymal distortion (n = 6), and solid consolidation (n = 3). For acute toxicity, the irradiated esophageal volume, number of fields, and most dosimetric parameters were predictive. For late toxicity, chemotherapy combined with radiotherapy and other dosimetric parameters were predictive. No obvious association between the occurrence of acute and late injury was observed. The percent of lung tissue receiving at least 25 Gy (V25), the number of fields, and the irradiated length of the esophagus can be used as predictors of the risk of acute toxicity. Lungs V30, as well as chemotherapy combined with radiotherapy, are predictive of late lung injury.
Snider, James W; Mutaf, Yildirim; Nichols, Elizabeth; Hall, Andrea; Vadnais, Patrick; Regine, William F; Feigenberg, Steven J
2017-01-01
Accelerated partial breast irradiation has caused higher than expected rates of poor cosmesis. At our institution, a novel breast stereotactic radiotherapy device has demonstrated dosimetric distributions similar to those in brachytherapy. This study analyzed comparative dose distributions achieved with the device and intensity-modulated radiation therapy accelerated partial breast irradiation. Nine patients underwent computed tomography simulation in the prone position using device-specific immobilization on an institutional review board-approved protocol. Accelerated partial breast irradiation target volumes (planning target volume_10mm) were created per the National Surgical Adjuvant Breast and Bowel Project B-39 protocol. Additional breast stereotactic radiotherapy volumes using smaller margins (planning target volume_3mm) were created based on improved immobilization. Intensity-modulated radiation therapy and breast stereotactic radiotherapy accelerated partial breast irradiation plans were separately generated for appropriate volumes. Plans were evaluated based on established dosimetric surrogates of poor cosmetic outcomes. Wilcoxon rank sum tests were utilized to contrast volumes of critical structures receiving a percentage of total dose ( Vx). The breast stereotactic radiotherapy device consistently reduced dose to all normal structures with equivalent target coverage. The ipsilateral breast V20-100 was significantly reduced ( P < .05) using planning target volume_10mm, with substantial further reductions when targeting planning target volume_3mm. Doses to the chest wall, ipsilateral lung, and breast skin were also significantly lessened. The breast stereotactic radiotherapy device's uniform dosimetric improvements over intensity-modulated accelerated partial breast irradiation in this series indicate a potential to improve outcomes. Clinical trials investigating this benefit have begun accrual.
Monte Carlo simulations to replace film dosimetry in IMRT verification.
Goetzfried, Thomas; Rickhey, Mark; Treutwein, Marius; Koelbl, Oliver; Bogner, Ludwig
2011-01-01
Patient-specific verification of intensity-modulated radiation therapy (IMRT) plans can be done by dosimetric measurements or by independent dose or monitor unit calculations. The aim of this study was the clinical evaluation of IMRT verification based on a fast Monte Carlo (MC) program with regard to possible benefits compared to commonly used film dosimetry. 25 head-and-neck IMRT plans were recalculated by a pencil beam based treatment planning system (TPS) using an appropriate quality assurance (QA) phantom. All plans were verified both by film and diode dosimetry and compared to MC simulations. The irradiated films, the results of diode measurements and the computed dose distributions were evaluated, and the data were compared on the basis of gamma maps and dose-difference histograms. Average deviations in the high-dose region between diode measurements and point dose calculations performed with the TPS and MC program were 0.7 ± 2.7% and 1.2 ± 3.1%, respectively. For film measurements, the mean gamma values with 3% dose difference and 3mm distance-to-agreement were 0.74 ± 0.28 (TPS as reference) with dose deviations up to 10%. Corresponding values were significantly reduced to 0.34 ± 0.09 for MC dose calculation. The total time needed for both verification procedures is comparable, however, by far less labor intensive in the case of MC simulations. The presented study showed that independent dose calculation verification of IMRT plans with a fast MC program has the potential to eclipse film dosimetry more and more in the near future. Thus, the linac-specific QA part will necessarily become more important. In combination with MC simulations and due to the simple set-up, point-dose measurements for dosimetric plausibility checks are recommended at least in the IMRT introduction phase. Copyright © 2010. Published by Elsevier GmbH.
NASA Astrophysics Data System (ADS)
Baptista, M.; Teles, P.; Cardoso, G.; Vaz, P.
2014-11-01
Over the last decade, there was a substantial increase in the number of interventional cardiology procedures worldwide, and the corresponding ionizing radiation doses for both the medical staff and patients became a subject of concern. Interventional procedures in cardiology are normally very complex, resulting in long exposure times. Also, these interventions require the operator to work near the patient and, consequently, close to the primary X-ray beam. Moreover, due to the scattered radiation from the patient and the equipment, the medical staff is also exposed to a non-uniform radiation field that can lead to a significant exposure of sensitive body organs and tissues, such as the eye lens, the thyroid and the extremities. In order to better understand the spatial variation of the dose and dose rate distributions during an interventional cardiology procedure, the dose distribution around a C-arm fluoroscopic system, in operation in a cardiac cath lab at Portuguese Hospital, was estimated using both Monte Carlo (MC) simulations and dosimetric measurements. To model and simulate the cardiac cath lab, including the fluoroscopic equipment used to execute interventional procedures, the state-of-the-art MC radiation transport code MCNPX 2.7.0 was used. Subsequently, Thermo-Luminescent Detector (TLD) measurements were performed, in order to validate and support the simulation results obtained for the cath lab model. The preliminary results presented in this study reveal that the cardiac cath lab model was successfully validated, taking into account the good agreement between MC calculations and TLD measurements. The simulated results for the isodose curves related to the C-arm fluoroscopic system are also consistent with the dosimetric information provided by the equipment manufacturer (Siemens). The adequacy of the implemented computational model used to simulate complex procedures and map dose distributions around the operator and the medical staff is discussed, in view of the optimization principle (and the associated ALARA objective), one of the pillars of the international system of radiological protection.
SU-C-213-03: Custom 3D Printed Boluses for Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, B; Yang, M; Yan, Y
2015-06-15
Purpose: To develop a clinical workflow and to commission the process of creating custom 3d printed boluses for radiation therapy. Methods: We designed a workflow to create custom boluses using a commercial 3D printer. Contours of several patients were deformably mapped to phantoms where the test bolus contours were designed. Treatment plans were created on the phantoms following our institutional planning guideline. The DICOM file of the bolus contours were then converted to stereoLithography (stl) file for the 3d printer. The boluses were printed on a commercial 3D printer using polylactic acid (PLA) material. Custom printing parameters were optimized inmore » order to meet the requirement of bolus composition. The workflow was tested on multiple anatomical sites such as skull, nose and chest wall. The size of boluses varies from 6×9cm2 to 12×25cm2. To commission the process, basic CT and dose properties of the printing materials were measured in photon and electron beams and compared against water and soft superflab bolus. Phantoms were then scanned to confirm the placement of custom boluses. Finally dose distributions with rescanned CTs were compared with those computer-generated boluses. Results: The relative electron density(1.08±0.006) of the printed boluses resemble those of liquid tap water(1.04±0.004). The dosimetric properties resemble those of liquid tap water(1.04±0.004). The dosimetric properties were measured at dmax with an ion chamber in electron and photon open beams. Compared with solid water and soft bolus, the output difference was within 1% for the 3D printer material. The printed boluses fit well to the phantom surfaces on CT scans. The dose distribution and DVH based on the printed boluses match well with those based on TPS generated boluses. Conclusion: 3d printing provides a cost effective and convenient solution for patient-specific boluses in radiation therapy.« less
NASA Astrophysics Data System (ADS)
Bottollier-Depois, Jean-François; Allain, E.; Baumont, G.; Berthelot, N.; Clairand, I.; Couvez, C.; Darley, G.; Henry, B.; Jolivet, T.; Laroche, P.; Lebau-Livé, A.; Lejeune, V.; Miss, J.; Monange, W.; Quéinnec, F.; Richet, Y.; Simon, C.; Trompier, F.; Vayron, F.
2017-09-01
After the Fukushima accident, initiatives emerged from the public to carry out themselves measurements of the radioactivity in the environment with various devices, among which smartphones, and to share data and experiences through collaborative tools and social networks. Such measurements have two major interests, on the one hand, to enable each individual of the public to assess his own risk regarding the radioactivity and, on the other hand, to provide "real time" data from the field at various locations, especially in the early phase of an emergency situation, which could be very useful for the emergency management. The objective of the OPENRADIATION project is to offer to the public the opportunity to be an actor for measurements of the radioactivity in the environment using connected dosimetric applications on smartphones. The challenge is to operate such a system on a sustainable basis in peaceful time and be useful in case of emergency. In "peaceful situation", this project is based on a collaborative approach with the aim to get complementary data to the existing ones, to consolidate the radiation background, to generate alerts in case of problem and to provide education & training and enhanced pedagogical approaches for a clear understanding of measures for the public. In case of emergency situation, data will be available "spontaneously" from the field in "real time" providing an opportunity for the emergency management and the communication with the public. … The practical objective is i) to develop a website centralising data from various systems/dosimeters, providing dose maps with raw and filtered data and creating dedicated areas for specific initiatives and exchanges of data and ii) to develop a data acquisition protocol and a dosimetric application using a connected dosimeter with a bluetooth connection. This project is conducted within a partnership between organisms' representative of the scientific community and associations to create links with the public.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dufreneix, S.; Ostrowsky, A.; Rapp, B.
Purpose: Graphite calorimeters with a core diameter larger than the beam can be used to establish dosimetric references in small fields. The dose-area product (DAP) measured can theoretically be linked to an absorbed dose at a point by the determination of a profile correction. This study aims at comparing the DAP-based protocol to the usual absorbed dose at a point protocol in a 2 cm diameter field for which both references exist. Methods: Two calorimeters were used, respectively, with a sensitive volume of 0.6 cm (for the absorbed dose at a point measurement) and 3 cm diameter (for the DAPmore » measurement). Profile correction was calculated from a 2D dose mapping using three detectors: a PinPoint chamber, a synthetic diamond, and EBT3 films. A specific protocol to read EBT3 films was implemented and the dose-rate and energy dependences were studied to assure a precise measurement, especially in the penumbra and out-of-field regions. Results: EBT3 films were found independent on dose rates over the range studied but showed a strong under-response (18%) at low energies. Depending on the dosimeter used for calculating the profile correction, a deviation of 0.8% (PinPoint chamber), 0.9% (diamond), or 1.9% (EBT3 films) was observed between the calibration coefficient derived from DAP measurements and the one directly established in terms of absorbed dose to water at a point. Conclusions: The DAP method can currently be linked to the classical dosimetric reference system based in an absorbed dose at a point only with a confidence interval of 95% (k = 2). None of the detectors studied can be used to determine an absorbed dose to water at a point from a DAP measurement with an uncertainty smaller than 1.2%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, W; Wu, Q; Yuan, L
Purpose: To improve the robustness of a knowledge based automatic lung IMRT planning method and to further validate the reliability of this algorithm by utilizing for the planning of clinical cases with non-coplanar beams. Methods: A lung IMRT planning method which automatically determines both plan optimization objectives and beam configurations with non-coplanar beams has been reported previously. A beam efficiency index map is constructed to guide beam angle selection in this algorithm. This index takes into account both the dose contributions from individual beams and the combined effect of multiple beams which is represented by a beam separation score. Wemore » studied the effect of this beam separation score on plan quality and determined the optimal weight for this score.14 clinical plans were re-planned with the knowledge-based algorithm. Significant dosimetric metrics for the PTV and OARs in the automatic plans are compared with those in the clinical plans by the two-sample t-test. In addition, a composite dosimetric quality index was defined to obtain the relationship between the plan quality and the beam separation score. Results: On average, we observed more than 15% reduction on conformity index and homogeneity index for PTV and V{sub 40}, V{sub 60} for heart while an 8% and 3% increase on V{sub 5}, V{sub 20} for lungs, respectively. The variation curve of the composite index as a function of angle spread score shows that 0.6 is the best value for the weight of the beam separation score. Conclusion: Optimal value for beam angle spread score in automatic lung IMRT planning is obtained. With this value, model can result in statistically the “best” achievable plans. This method can potentially improve the quality and planning efficiency for IMRT plans with no-coplanar angles.« less
Wang, Iris Z.; Kumaraswamy, Lalith K.; Podgorsak, Matthew B.
2016-01-01
Background This study is to report 1) the sensitivity of intensity modulated radiation therapy (IMRT) QA method for clinical volumetric modulated arc therapy (VMAT) plans with multi-leaf collimator (MLC) leaf errors that will not trigger MLC interlock during beam delivery; 2) the effect of non-beam-hold MLC leaf errors on the quality of VMAT plan dose delivery. Materials and methods. Eleven VMAT plans were selected and modified using an in-house developed software. For each control point of a VMAT arc, MLC leaves with the highest speed (1.87-1.95 cm/s) were set to move at the maximal allowable speed (2.3 cm/s), which resulted in a leaf position difference of less than 2 mm. The modified plans were considered as ‘standard’ plans, and the original plans were treated as the ‘slowing MLC’ plans for simulating ‘standard’ plans with leaves moving at relatively lower speed. The measurement of each ‘slowing MLC’ plan using MapCHECK®2 was compared with calculated planar dose of the ‘standard’ plan with respect to absolute dose Van Dyk distance-to-agreement (DTA) comparisons using 3%/3 mm and 2%/2 mm criteria. Results All ‘slowing MLC’ plans passed the 90% pass rate threshold using 3%/3 mm criteria while one brain and three anal VMAT cases were below 90% with 2%/2 mm criteria. For ten out of eleven cases, DVH comparisons between ‘standard’ and ‘slowing MLC’ plans demonstrated minimal dosimetric changes in targets and organs-at-risk. Conclusions For highly modulated VMAT plans, pass rate threshold (90%) using 3%/3mm criteria is not sensitive in detecting MLC leaf errors that will not trigger the MLC leaf interlock. However, the consequential effects of non-beam hold MLC errors on target and OAR doses are negligible, which supports the reliability of current patient-specific IMRT quality assurance (QA) method for VMAT plans. PMID:27069458
Dosimetric calculations for uranium miners for epidemiological studies.
Marsh, J W; Blanchardon, E; Gregoratto, D; Hofmann, W; Karcher, K; Nosske, D; Tomásek, L
2012-05-01
Epidemiological studies on uranium miners are being carried out to quantify the risk of cancer based on organ dose calculations. Mathematical models have been applied to calculate the annual absorbed doses to regions of the lung, red bone marrow, liver, kidney and stomach for each individual miner arising from exposure to radon gas, radon progeny and long-lived radionuclides (LLR) present in the uranium ore dust and to external gamma radiation. The methodology and dosimetric models used to calculate these organ doses are described and the resulting doses for unit exposure to each source (radon gas, radon progeny and LLR) are presented. The results of dosimetric calculations for a typical German miner are also given. For this miner, the absorbed dose to the central regions of the lung is dominated by the dose arising from exposure to radon progeny, whereas the absorbed dose to the red bone marrow is dominated by the external gamma dose. The uncertainties in the absorbed dose to regions of the lung arising from unit exposure to radon progeny are also discussed. These dose estimates are being used in epidemiological studies of cancer in uranium miners.
Photon small-field measurements with a CMOS active pixel sensor.
Spang, F Jiménez; Rosenberg, I; Hedin, E; Royle, G
2015-06-07
In this work the dosimetric performance of CMOS active pixel sensors for the measurement of small photon beams is presented. The detector used consisted of an array of 520 × 520 pixels on a 25 µm pitch. Dosimetric parameters measured with this sensor were compared with data collected with an ionization chamber, a film detector and GEANT4 Monte Carlo simulations. The sensor performance for beam profiles measurements was evaluated for field sizes of 0.5 × 0.5 cm(2). The high spatial resolution achieved with this sensor allowed the accurate measurement of profiles, beam penumbrae and field size under lateral electronic disequilibrium. Field size and penumbrae agreed within 5.4% and 2.2% respectively with film measurements. Agreements with ionization chambers better than 1.0% were obtained when measuring tissue-phantom ratios. Output factor measurements were in good agreement with ionization chamber and Monte Carlo simulation. The data obtained from this imaging sensor can be easily analyzed to extract dosimetric information. The results presented in this work are promising for the development and implementation of CMOS active pixel sensors for dosimetry applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Haley; BC Cancer Agency, Surrey, B.C.; BC Cancer Agency, Vancouver, B.C.
2014-08-15
Many have speculated about the future of computational technology in clinical radiation oncology. It has been advocated that the next generation of computational infrastructure will improve on the current generation by incorporating richer aspects of automation, more heavily and seamlessly featuring distributed and parallel computation, and providing more flexibility toward aggregate data analysis. In this report we describe how a recently created — but currently existing — analysis framework (DICOMautomaton) incorporates these aspects. DICOMautomaton supports a variety of use cases but is especially suited for dosimetric outcomes correlation analysis, investigation and comparison of radiotherapy treatment efficacy, and dose-volume computation. Wemore » describe: how it overcomes computational bottlenecks by distributing workload across a network of machines; how modern, asynchronous computational techniques are used to reduce blocking and avoid unnecessary computation; and how issues of out-of-date data are addressed using reactive programming techniques and data dependency chains. We describe internal architecture of the software and give a detailed demonstration of how DICOMautomaton could be used to search for correlations between dosimetric and outcomes data.« less
Robatjazi, Mostafa; Baghani, Hamid Reza; Mahdavic, Seied Rabi; Felici, Giuseppe
2018-05-01
A shielding disk is used for IOERT procedures to absorb radiation behind the target and protect underlying healthy tissues. Setup variation of shielding disk can affect the corresponding in-vivo dose distribution. In this study, the changes of dosimetric parameters due to the disk setup variations is evaluated using EGSnrc Monte Carlo (MC) code. The results can help treatment team to decide about the level of accuracy in the setup procedure and delivered dose to the target volume during IOERT. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrison, Hali, E-mail: hamorris@ualberta.ca; Meno
Purpose: To estimate the total dosimetric uncertainty at the tumor apex for ocular brachytherapy treatments delivered using 16 mm Collaborative Ocular Melanoma Study (COMS) and Super9 plaques loaded with {sup 125}I seeds in order to determine the size of the apex margin that would be required to ensure adequate dosimetric coverage of the tumor. Methods: The total dosimetric uncertainty was assessed for three reference tumor heights: 3, 5, and 10 mm, using the Guide to the expression of Uncertainty in Measurement/National Institute of Standards and Technology approach. Uncertainties pertaining to seed construction, source strength, plaque assembly, treatment planning calculations, tumormore » height measurement, plaque placement, and plaque tilt for a simple dome-shaped tumor were investigated and quantified to estimate the total dosimetric uncertainty at the tumor apex. Uncertainties in seed construction were determined using EBT3 Gafchromic film measurements around single seeds, plaque assembly uncertainties were determined using high resolution microCT scanning of loaded plaques to measure seed positions in the plaques, and all other uncertainties were determined from the previously published studies and recommended values. All dose calculations were performed using PLAQUESIMULATOR v5.7.6 ophthalmic treatment planning system with the inclusion of plaque heterogeneity corrections. Results: The total dosimetric uncertainties at 3, 5, and 10 mm tumor heights for the 16 mm COMS plaque were 17.3%, 16.1%, and 14.2%, respectively, and for the Super9 plaque were 18.2%, 14.4%, and 13.1%, respectively (all values with coverage factor k = 2). The apex margins at 3, 5, and 10 mm tumor heights required to adequately account for these uncertainties were 1.3, 1.3, and 1.4 mm, respectively, for the 16 mm COMS plaque, and 1.8, 1.4, and 1.2 mm, respectively, for the Super9 plaque. These uncertainties and associated margins are dependent on the dose gradient at the given prescription depth, thus resulting in the changing uncertainties and margins with depth. Conclusions: The margins determined in this work can be used as a guide for determining an appropriate apex margin for a given treatment, which can be chosen based on the tumor height. The required margin may need to be increased for more complex scenarios (mushroom shaped tumors, tumors close to the optic nerve, oblique muscle related tilt, etc.) than the simple dome-shaped tumor examined and should be chosen on a case-by-case basis. The sources of uncertainty contributing most significantly to the total dosimetric uncertainty are seed placement within the plaques, treatment planning calculations, tumor height measurement, and plaque tilt. This work presents an uncertainty-based, rational approach to estimating an appropriate apex margin.« less
Thanh, Minh‐Tri Ho; Munro, John J.
2015-01-01
The Source Production & Equipment Co. (SPEC) model M−15 is a new Iridium−192 brachytherapy source model intended for use as a temporary high‐dose‐rate (HDR) brachytherapy source for the Nucletron microSelectron Classic afterloading system. The purpose of this study is to characterize this HDR source for clinical application by obtaining a complete set of Monte Carlo calculated dosimetric parameters for the M‐15, as recommended by AAPM and ESTRO, for isotopes with average energies greater than 50 keV. This was accomplished by using the MCNP6 Monte Carlo code to simulate the resulting source dosimetry at various points within a pseudoinfinite water phantom. These dosimetric values next were converted into the AAPM and ESTRO dosimetry parameters and the respective statistical uncertainty in each parameter also calculated and presented. The M−15 source was modeled in an MCNP6 Monte Carlo environment using the physical source specifications provided by the manufacturer. Iridium−192 photons were uniformly generated inside the iridium core of the model M−15 with photon and secondary electron transport replicated using photoatomic cross‐sectional tables supplied with MCNP6. Simulations were performed for both water and air/vacuum computer models with a total of 4×109 sources photon history for each simulation and the in‐air photon spectrum filtered to remove low‐energy photons below δ=10%keV. Dosimetric data, including D(r,θ),gL(r),F(r,θ),Φan(r), and φ¯an, and their statistical uncertainty were calculated from the output of an MCNP model consisting of an M−15 source placed at the center of a spherical water phantom of 100 cm diameter. The air kerma strength in free space, SK, and dose rate constant, Λ, also was computed from a MCNP model with M−15 Iridium−192 source, was centered at the origin of an evacuated phantom in which a critical volume containing air at STP was added 100 cm from the source center. The reference dose rate, D˙(r0,θ0)≡D˙(1cm,π/2), is found to be 4.038±0.064 cGy mCi−1 h−1. The air kerma strength, SK, is reported to be 3.632±0.086 cGy cm2 mCi−1 g−1, and the dose rate constant, Λ, is calculated to be 1.112±0.029 cGy h−1 U−1. The normalized dose rate, radial dose function, and anisotropy function with their uncertainties were computed and are represented in both tabular and graphical format in the report. A dosimetric study was performed of the new M−15 Iridium−192 HDR brachytherapy source using the MCNP6 radiation transport code. Dosimetric parameters, including the dose‐rate constant, radial dose function, and anisotropy function, were calculated in accordance with the updated AAPM and ESTRO dosimetric parameters for brachytherapy sources of average energy greater than 50 keV. These data therefore may be applied toward the development of a treatment planning program and for clinical use of the source. PACS numbers: 87.56.bg, 87.53.Jw PMID:26103489
Coates, James; Jeyaseelan, Asha K; Ybarra, Norma; David, Marc; Faria, Sergio; Souhami, Luis; Cury, Fabio; Duclos, Marie; El Naqa, Issam
2015-04-01
We explore analytical and data-driven approaches to investigate the integration of genetic variations (single nucleotide polymorphisms [SNPs] and copy number variations [CNVs]) with dosimetric and clinical variables in modeling radiation-induced rectal bleeding (RB) and erectile dysfunction (ED) in prostate cancer patients. Sixty-two patients who underwent curative hypofractionated radiotherapy (66 Gy in 22 fractions) between 2002 and 2010 were retrospectively genotyped for CNV and SNP rs5489 in the xrcc1 DNA repair gene. Fifty-four patients had full dosimetric profiles. Two parallel modeling approaches were compared to assess the risk of severe RB (Grade⩾3) and ED (Grade⩾1); Maximum likelihood estimated generalized Lyman-Kutcher-Burman (LKB) and logistic regression. Statistical resampling based on cross-validation was used to evaluate model predictive power and generalizability to unseen data. Integration of biological variables xrcc1 CNV and SNP improved the fit of the RB and ED analytical and data-driven models. Cross-validation of the generalized LKB models yielded increases in classification performance of 27.4% for RB and 14.6% for ED when xrcc1 CNV and SNP were included, respectively. Biological variables added to logistic regression modeling improved classification performance over standard dosimetric models by 33.5% for RB and 21.2% for ED models. As a proof-of-concept, we demonstrated that the combination of genetic and dosimetric variables can provide significant improvement in NTCP prediction using analytical and data-driven approaches. The improvement in prediction performance was more pronounced in the data driven approaches. Moreover, we have shown that CNVs, in addition to SNPs, may be useful structural genetic variants in predicting radiation toxicities. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerns, James R.; Followill, David S.; Imaging and Radiation Oncology Core-Houston, The University of Texas Health Science Center-Houston, Houston, Texas
Purpose: To compare radiation machine measurement data collected by the Imaging and Radiation Oncology Core at Houston (IROC-H) with institutional treatment planning system (TPS) values, to identify parameters with large differences in agreement; the findings will help institutions focus their efforts to improve the accuracy of their TPS models. Methods and Materials: Between 2000 and 2014, IROC-H visited more than 250 institutions and conducted independent measurements of machine dosimetric data points, including percentage depth dose, output factors, off-axis factors, multileaf collimator small fields, and wedge data. We compared these data with the institutional TPS values for the same points bymore » energy, class, and parameter to identify differences and similarities using criteria involving both the medians and standard deviations for Varian linear accelerators. Distributions of differences between machine measurements and institutional TPS values were generated for basic dosimetric parameters. Results: On average, intensity modulated radiation therapy–style and stereotactic body radiation therapy–style output factors and upper physical wedge output factors were the most problematic. Percentage depth dose, jaw output factors, and enhanced dynamic wedge output factors agreed best between the IROC-H measurements and the TPS values. Although small differences were shown between 2 common TPS systems, neither was superior to the other. Parameter agreement was constant over time from 2000 to 2014. Conclusions: Differences in basic dosimetric parameters between machine measurements and TPS values vary widely depending on the parameter, although agreement does not seem to vary by TPS and has not changed over time. Intensity modulated radiation therapy–style output factors, stereotactic body radiation therapy–style output factors, and upper physical wedge output factors had the largest disagreement and should be carefully modeled to ensure accuracy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cartier, Lysian; Auberdiac, Pierre; Khodri, Mustapha
The purpose of this study was to analyze and revisit toxicity related to chest chemoradiotherapy and to correlate these side effects with dosimetric parameters obtained using analytical anisotropic algorithm (AAA) in locally unresectable advanced lung cancer. We retrospectively analyzed data from 47 lung cancer patients between 2005 and 2008. All received conformal 3D radiotherapy using high-energy linear accelerator plus concomitant chemotherapy. All treatment planning data were transferred into Eclipse 8.05 (Varian Medical Systems, Palo Alto, CA) and dosimetric calculations were performed using AAA. Thirty-three patients (70.2%) developed acute pneumopathy after radiotherapy (grades 1 and 2). One patient (2.1%) presented withmore » grade 3 pneumopathy. Thirty-one (66%) presented with grades 1-2 lung fibrosis, and 1 patient presented with grade 3 lung fibrosis. Thirty-four patients (72.3%) developed grade 1-2 acute oesophagic toxicity. Four patients (8.5%) presented with grades 3 and 4 dysphagia, necessitating prolonged parenteral nutrition. Median prescribed dose was 64 Gy (range 50-74) with conventional fractionation (2 Gy per fraction). Dose-volume constraints were respected with a median V20 of 23.5% (maximum 34%) and a median V30 of 17% (maximum 25%). The median dose delivered to healthy contralateral lung was 13.1 Gy (maximum 18.1 Gy). At univariate analysis, larger planning target volume and V20 were significantly associated with the probability of grade {>=}2 radiation-induced pneumopathy (p = 0.022 and p = 0.017, respectively). No relation between oesophagic toxicity and clinical/dosimetric parameters could be established. Using AAA, the present results confirm the predictive value of the V20 for lung toxicity as already demonstrated with the conventional pencil beam convolution approach.« less
Adibzadeh, Fatemeh; Bakker, Jurriaan F; Paulides, Margarethus M; Verhaart, René F; van Rhoon, Gerard C
2015-01-01
Among various possible health effects of mobile phone radiation, the risk of inducing cancer has the strongest interest of laymen and health organizations. Recently, the Interphone epidemiological study investigated the association between the estimated Radio Frequency (RF) dose from mobile phones and the risk of developing a brain tumor. Their dosimetric analysis included over 100 phone models but only two homogeneous head phantoms. So, the potential impact of individual morphological features on global and local RF absorption in the brain was not investigated. In this study, we performed detailed dosimetric simulations for 20 head models and quantified the variation of RF dose in different brain regions as a function of head morphology. Head models were exposed to RF fields from generic mobile phones at 835 and 1900 MHz in the "tilted" and "cheek" positions. To evaluate the local RF dose variation, we used and compared two different post-processing methods, that is, averaging specific absorption rate (SAR) over Talairach regions and over sixteen predefined 1 cm(3) cube-shaped field-sensors. The results show that the variation in the averaged SAR among the heads can reach up to 16.4 dB at a 1 cm(3) cube inside the brain (field-sensor method) and alternatively up to 15.8 dB in the medulla region (Talairach method). In conclusion, we show head morphology as an important uncertainty source for dosimetric studies of mobile phones. Therefore, any dosimetric analysis dealing with RF dose at a specific region in the brain (e.g., tumor risk analysis) should be based upon real morphology. © 2014 Wiley Periodicals, Inc.
CURRENT STATUS OF INDIVIDUAL DOSIMETRIC MONITORING IN UKRAINE.
Chumak, V; Deniachenko, N; Makarovska, O; Mihailescu, L-C; Prykhodko, A; Voloskyi, V; Vanhavere, F
2016-09-01
About 50 000 workers are being occupationally exposed to radiation in Ukraine. Individual dosimetric monitoring (IDM) is provided by 77 dosimetry services and laboratories of very different scale with a number of monitored workers ranging from several persons to ∼9000. In the present work, the current status of personal dosimetry in Ukraine was studied. The First National Intercomparison (FNI) of the IDM labs was accompanied by a survey of the laboratory operation in terms of coverage, types of dosimetry provided, instrumentation and methodologies used, metrological support, data recording, etc. Totally, 34 laboratories responded to the FNI call, and 18 services with 19 different personal dosimetry systems took part in the intercomparison exercise providing 24 dosimeters each for blind irradiation to photons of 6 different qualities (ISO N-series X-rays, S-Cs and S-Co sources) in a dose range of 5-60 mSv. Performance of the dosimetry labs was evaluated according to ISO 14146 criteria of matching trumpet curves with H0 = 0.2 mSv. The test revealed that 8 of the 19 systems meet ISO 14146 criteria in full, 5 other labs show marginal performance and 6 laboratories demonstrated catastrophic quality of dosimetric results. Altogether, 18 participating labs provide dosimetric monitoring to 37 477 workers (about three-fourths of all occupationally exposed workers), usually on monthly (nuclear industry) or quarterly (rest of applications) basis. Of this number, 20 664 persons (55 %) receive completely adequate individual monitoring, and the number of personnel receiving IDM of inadequate quality counts 3054 persons. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Todor, Dorin A; Anscher, Mitchell S; Karlin, Jeremy D; Hagan, Michael P
2014-01-01
This is a retrospective study in which we define multiple metrics for similarity and then inquire on the relationship between similarity and currently used dosimetric quantities describing preimplant and postimplant plans. We analyzed a unique cohort of 94 consecutively performed prostate seed implant patients, associated with excellent dosimetric and clinical outcomes. For each patient, an ultrasound (US) preimplant and two CT postimplant (Day 0 and Day 30) studies were available. Measures for similarity were created and computed using feature vectors based on two classes of moments: first, invariant to rotation and translation, and the second polar-radius moments invariant to rotation, translation, and scaling. Both similarity measures were calibrated using controlled perturbations (random and systematic) of seed positions and contours in different size implants, thus producing meaningful numerical threshold values used in the clinical analysis. An important finding is that similarity, for both seed distributions and contours, improves significantly when scaling invariance is added to translation and rotation. No correlation between seed and contours similarity was found. In the setting of preplanned prostate seed implants using preloaded needles, based on our data, similarity between preimplant and postimplant plans does not correlate with either minimum dose to 90% of the volume of the prostate or analogous similarity metrics for prostate contours. We have developed novel tools and metrics, which will allow practitioners to better understand the relationship between preimplant and postimplant plans. Geometrical similarity between a preplan and an actual implant, although useful, does not seem to be necessary to achieve minimum dose to 90% of the volume of the prostate-good dosimetric implants. Copyright © 2014 American Brachytherapy Society. All rights reserved.
Sevillano, David; Mínguez, Cristina; Sánchez, Alicia; Sánchez-Reyes, Alberto
2016-01-01
To obtain specific margin recipes that take into account the dosimetric characteristics of the treatment plans used in a single institution. We obtained dose-population histograms (DPHs) of 20 helical tomotherapy treatment plans for prostate cancer by simulating the effects of different systematic errors (Σ) and random errors (σ) on these plans. We obtained dosimetric margins and margin reductions due to random errors (random margins) by fitting the theoretical results of coverages for Gaussian distributions with coverages of the planned D99% obtained from the DPHs. The dosimetric margins obtained for helical tomotherapy prostate treatments were 3.3 mm, 3 mm, and 1 mm in the lateral (Lat), anterior-posterior (AP), and superior-inferior (SI) directions. Random margins showed parabolic dependencies, yielding expressions of 0.16σ(2), 0.13σ(2), and 0.15σ(2) for the Lat, AP, and SI directions, respectively. When focusing on values up to σ = 5 mm, random margins could be fitted considering Gaussian penumbras with standard deviations (σp) equal to 4.5 mm Lat, 6 mm AP, and 5.5 mm SI. Despite complex dose distributions in helical tomotherapy treatment plans, we were able to simplify the behaviour of our plans against treatment errors to single values of dosimetric and random margins for each direction. These margins allowed us to develop specific margin recipes for the respective treatment technique. The method is general and could be used for any treatment technique provided that DPHs can be obtained. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Guo, Bing; Li, Jianbin; Wang, Wei; Li, Fengxiang; Guo, Yanluan; Li, Yankang; Liu, Tonghai
2015-01-01
This study sought to evaluate the dosimetric impact of tumor bed delineation variability (based on clips, seroma or both clips and seroma) during external-beam partial breast irradiation (EB-PBI) planned utilizing four-dimensional computed tomography (4DCT) scans. 4DCT scans of 20 patients with a seroma clarity score (SCS) 3~5 and ≥5 surgical clips were included in this study. The combined volume of the tumor bed formed using clips, seroma, or both clips and seroma on the 10 phases of 4DCT was defined as the internal gross target volume (termed IGTVC, IGTVS and IGTVC+S, respectively). A 1.5-cm margin was added by defining the planning target volume (termed PTVC, PTVS and PTVC+S, respectively). Three treatment plans were established using the 4DCT images (termed EB-PBIC, EB-PBIS, EB-PBIC+S, respectively). The results showed that the volume of IGTVC+S was significantly larger than that of IGTVCand IGTVS. Similarly, the volume of PTVC+S was markedly larger than that of PTVC and PTVS. However, the PTV coverage for EB-PBIC+S was similar to that of EB-PBIC and EB-PBIS, and there were no significant differences in the homogeneity index or conformity index between the three treatment plans (P=0.878, 0.086). The EB-PBIS plan resulted in the lowest ipsilateral normal breast and ipsilateral lung doses compared with the EB-PBIC and EB-PBIC+S plans. To conclude, the volume variability delineated based on clips, seroma or both clips and seroma resulted in dosimetric variability for organs at risk, but did not show a marked influence on the dosimetric distribution.
Guo, Bing; Li, Jianbin; Wang, Wei; Li, Fengxiang; Guo, Yanluan; Li, Yankang; Liu, Tonghai
2015-01-01
This study sought to evaluate the dosimetric impact of tumor bed delineation variability (based on clips, seroma or both clips and seroma) during external-beam partial breast irradiation (EB-PBI) planned utilizing four-dimensional computed tomography (4DCT) scans. 4DCT scans of 20 patients with a seroma clarity score (SCS) 3~5 and ≥5 surgical clips were included in this study. The combined volume of the tumor bed formed using clips, seroma, or both clips and seroma on the 10 phases of 4DCT was defined as the internal gross target volume (termed IGTVC, IGTVS and IGTVC+S, respectively). A 1.5-cm margin was added by defining the planning target volume (termed PTVC, PTVS and PTVC+S, respectively). Three treatment plans were established using the 4DCT images (termed EB-PBIC, EB-PBIS, EB-PBIC+S, respectively). The results showed that the volume of IGTVC+S was significantly larger than that of IGTVCand IGTVS. Similarly, the volume of PTVC+S was markedly larger than that of PTVC and PTVS. However, the PTV coverage for EB-PBIC+S was similar to that of EB-PBIC and EB-PBIS, and there were no significant differences in the homogeneity index or conformity index between the three treatment plans (P=0.878, 0.086). The EB-PBIS plan resulted in the lowest ipsilateral normal breast and ipsilateral lung doses compared with the EB-PBIC and EB-PBIC+S plans. To conclude, the volume variability delineated based on clips, seroma or both clips and seroma resulted in dosimetric variability for organs at risk, but did not show a marked influence on the dosimetric distribution. PMID:26885108
NASA Astrophysics Data System (ADS)
Tessonnier, T.; Böhlen, T. T.; Ceruti, F.; Ferrari, A.; Sala, P.; Brons, S.; Haberer, T.; Debus, J.; Parodi, K.; Mairani, A.
2017-08-01
The introduction of ‘new’ ion species in particle therapy needs to be supported by a thorough assessment of their dosimetric properties and by treatment planning comparisons with clinically used proton and carbon ion beams. In addition to the latter two ions, helium and oxygen ion beams are foreseen at the Heidelberg Ion Beam Therapy Center (HIT) as potential assets for improving clinical outcomes in the near future. We present in this study a dosimetric validation of a FLUKA-based Monte Carlo treatment planning tool (MCTP) for protons, helium, carbon and oxygen ions for spread-out Bragg peaks in water. The comparisons between the ions show the dosimetric advantages of helium and heavier ion beams in terms of their distal and lateral fall-offs with respect to protons, reducing the lateral size of the region receiving 50% of the planned dose up to 12 mm. However, carbon and oxygen ions showed significant doses beyond the target due to the higher fragmentation tail compared to lighter ions (p and He), up to 25%. The Monte Carlo predictions were found to be in excellent geometrical agreement with the measurements, with deviations below 1 mm for all parameters investigated such as target and lateral size as well as distal fall-offs. Measured and simulated absolute dose values agreed within about 2.5% on the overall dose distributions. The MCTP tool, which supports the usage of multiple state-of-the-art relative biological effectiveness models, will provide a solid engine for treatment planning comparisons at HIT.
Dosimetric parameters of three new solid core I‐125 brachytherapy sources
Solberg, Timothy D.; DeMarco, John J.; Hugo, Geoffrey; Wallace, Robert E.
2002-01-01
Monte Carlo calculations and TLD measurements have been performed for the purpose of characterizing dosimetric properties of new commercially available brachytherapy sources. All sources tested consisted of a solid core, upon which a thin layer of I125 has been adsorbed, encased within a titanium housing. The PharmaSeed BT‐125 source manufactured by Syncor is available in silver or palladium core configurations while the ADVANTAGE source from IsoAid has silver only. Dosimetric properties, including the dose rate constant, radial dose function, and anisotropy characteristics were determined according to the TG‐43 protocol. Additionally, the geometry function was calculated exactly using Monte Carlo and compared with both the point and line source approximations. The 1999 NIST standard was followed in determining air kerma strength. Dose rate constants were calculated to be 0.955±0.005,0.967±0.005, and 0.962±0.005 cGyh−1U−1 for the PharmaSeed BT‐125‐1, BT‐125‐2, and ADVANTAGE sources, respectively. TLD measurements were in excellent agreement with Monte Carlo calculations. Radial dose function, g(r), calculated to a distance of 10 cm, and anisotropy function F(r, θ), calculated for radii from 0.5 to 7.0 cm, were similar among all source configurations. Anisotropy constants, ϕ¯an, were calculated to be 0.941, 0.944, and 0.960 for the three sources, respectively. All dosimetric parameters were found to be in close agreement with previously published data for similar source configurations. The MCNP Monte Carlo code appears to be ideally suited to low energy dosimetry applications. PACS number(s): 87.53.–j PMID:11958652
Chen, Ting; Kim, Leonard H.; Nelson, Carl; Gabel, Molly; Narra, Venkat; Haffty, Bruce; Yue, Ning J.
2013-01-01
Purpose To investigate the dosimetric difference due to the different point A definitions in cervical cancer low-dose-rate (LDR) intracavitary brachytherapy. Material and methods Twenty CT-based LDR brachytherapy plans of 11 cervical patients were retrospectively reviewed. Two plans with point As following the modified Manchester system which defines point A being 2 cm superior to the cervical os along the tandem and 2 cm lateral (Aos), and the American Brachytherapy Society (ABS) guideline definition in which the point A is 2 cm superior to the vaginal fornices instead of os (Aovoid) were generated. Using the same source strength, two plans prescribed the same dose to Aos and Aovoid. Dosimetric differences between plans including point A dose rate, treatment volume encompassed by the prescription isodose line (TV), and dose rate of 2 cc of the rectum and bladder to the prescription dose were measured. Results On average Aovoid was 8.9 mm superior to Aos along the tandem direction with a standard deviation of 5.4 mm. With the same source strength and arrangement, Aos dose rate was 19% higher than Aovoid dose rate. The average TV(Aovoid) was 118.0 cc, which was 30% more than the average TV(Aos) of 93.0 cc. D2cc/D(Aprescribe) increased from 51% to 60% for rectum, and increased from 89% and 106% for bladder, if the prescription point changed from Aos to Aovoid. Conclusions Different point A definitions lead to significant dose differences. Careful consideration should be given when changing practice from one point A definition to another, to ensure dosimetric and clinical equivalency from the previous clinical experiences. PMID:24474971
Dosimetric impact of an air passage on intraluminal brachytherapy for bronchus cancer
Okamoto, Hiroyuki; Wakita, Akihisa; Nakamura, Satoshi; Nishioka, Shie; Aikawa, Ako; Kato, Toru; Abe, Yoshihisa; Kobayashi, Kazuma; Inaba, Koji; Murakami, Naoya; Itami, Jun
2016-01-01
The brachytherapy dose calculations used in treatment planning systems (TPSs) have conventionally been performed assuming homogeneous water. Using measurements and a Monte Carlo simulation, we evaluated the dosimetric impact of an air passage on brachytherapy for bronchus cancer. To obtain the geometrical characteristics of an air passage, we analyzed the anatomical information from CT images of patients who underwent intraluminal brachytherapy using a high-dose-rate 192Ir source (MicroSelectron V2r®, Nucletron). Using an ionization chamber, we developed a measurement system capable of measuring the peripheral dose with or without an air cavity surrounding the catheter. Air cavities of five different radii (0.3, 0.5, 0.75, 1.25 and 1.5 cm) were modeled by cylindrical tubes surrounding the catheter. A Monte Carlo code (GEANT4) was also used to evaluate the dosimetric impact of the air cavity. Compared with dose calculations in homogeneous water, the measurements and GEANT4 indicated a maximum overdose of 5–8% near the surface of the air cavity (with the maximum radius of 1.5 cm). Conversely, they indicated a minimum overdose of ~1% in the region 3–5 cm from the cavity surface for the smallest radius of 0.3 cm. The dosimetric impact depended on the size and the distance of the air passage, as well as the length of the treatment region. Based on dose calculations in water, the TPS for intraluminal brachytherapy for bronchus cancer had an unexpected overdose of 3–5% for a mean radius of 0.75 cm. This study indicates the need for improvement in dose calculation accuracy with respect to intraluminal brachytherapy for bronchus cancer. PMID:27605630
Hayashi, Naoki; Malmin, Ryan L; Watanabe, Yoichi
2014-05-01
Several tools are used for the dosimetric verification of intensity-modulated arc therapy (IMAT) treatment delivery. However, limited information is available for composite on-line evaluation of these tools. The purpose of this study was to evaluate the dosimetric verification of IMAT treatment plans using a 2D diode array detector (2D array), radiochromic film (RCF) and radiosensitive polymer gel dosimeter (RPGD). The specific verification plans were created for IMAT for two prostate cancer patients by use of the clinical treatment plans. Accordingly, the IMAT deliveries were performed with the 2D array on a gantry-mounting device, RCF in a cylindrical acrylic phantom, and the RPGD in two cylindrical phantoms. After the irradiation, the planar dose distributions from the 2D array and the RCFs, and the 3D dose distributions from the RPGD measurements were compared with the calculated dose distributions using the gamma analysis method (3% dose difference and 3-mm distance-to-agreement criterion), dose-dependent dose difference diagrams, dose difference histograms, and isodose distributions. The gamma passing rates of 2D array, RCFs and RPGD for one patient were 99.5%, 96.5% and 93.7%, respectively; the corresponding values for the second patient were 97.5%, 92.6% and 92.9%. Mean percentage differences between the RPGD measured and calculated doses in 3D volumes containing PTVs were -0.29 ± 7.1% and 0.97 ± 7.6% for the two patients, respectively. In conclusion, IMAT prostate plans can be delivered with high accuracy, although the 3D measurements indicated less satisfactory agreement with the treatment plans, mainly due to the dosimetric inaccuracy in low-dose regions of the RPGD measurements.
2013-01-01
Objective To investigate the anatomic and dosimetric variations of volumetric modulated arc therapy (VMAT) in the treatment of nasopharyngeal cancer (NPC) patients based on weekly cone beam CT (CBCT). Materials and methods Ten NPC patients treated by VMAT with weekly CBCT for setup corrections were reviewed retrospectively. Deformed volumes of targets and organs at risk (OARs) in the CBCT were compared with those in the planning CT. Delivered doses were recalculated based on weekly CBCT and compared with the planned doses. Results No significant volumetric changes on targets, brainstem, and spinal cord were observed. The average volumes of right and left parotid measured from the fifth CBCT were about 4.4 and 4.5 cm3 less than those from the first CBCT, respectively. There were no significant dose differences between average planned and delivered doses for targets, brainstem and spinal cord. For right parotid, the delivered mean dose was 10.5 cGy higher (p = 0.004) than the planned value per fraction, and the V26 and V32 increased by 7.5% (p = 0.002) and 7.4% (p = 0.01), respectively. For the left parotid, the D50 (dose to the 50% volume) was 8.8 cGy higher (p = 0.03) than the planned values per fraction, and the V26 increased by 8.8% (p = 0.002). Conclusion Weekly CBCTs were applied directly to study the continuous volume changes and resulting dosimetric variations of targets and OARs for NPC patients undergoing VMAT. Significant volumetric and dosimetric variations were observed for parotids. Replanning after 30 Gy will benefit the protection on parotids. PMID:24289312
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quirk, S; Conroy, L; Smith, WL
Partial breast irradiation (PBI) following breast-conserving surgery is emerging as an effective means to achieve local control and reduce irradiated breast volume. Patients are planned on a static CT image; however, treatment is delivered while the patient is free-breathing. Respiratory motion can degrade plan quality by reducing target coverage and/or dose homogeneity. A variety of methods can be used to determine the required margin for respiratory motion in PBI. We derive geometric and dosimetric respiratory 1D margin. We also verify the adequacy of the typical 5 mm respiratory margin in 3D by evaluating plan quality for increasing respiratory amplitudes (2–20more » mm). Ten PBI plans were used for dosimetric evaluation. A database of volunteer respiratory data, with similar characteristics to breast cancer patients, was used for this study. We derived a geometric 95%-margin of 3 mm from the population respiratory data. We derived a dosimetric 95%-margin of 2 mm by convolving 1D dose profiles with respiratory probability density functions. The 5 mm respiratory margin is possibly too large when 1D coverage is assessed and could lead to unnecessary normal tissue irradiation. Assessing margins only for coverage may be insufficient; 3D dosimetric assessment revealed degradation in dose homogeneity is the limiting factor, not target coverage. Hotspots increased even for the smallest respiratory amplitudes, while target coverage only degraded at amplitudes greater than 10 mm. The 5 mm respiratory margin is adequate for coverage, but due to plan quality degradation, respiratory management is recommended for patients with respiratory amplitudes greater than 10 mm.« less
Bair, W J
1989-01-01
In 1984, the International Commission on Radiological Protection (ICRP) appointed a task group of Committee 2 to review and revise, as necessary, the ICRP Dosimetric Model for the Respiratory System. The model was originally published in 1966, modified slightly in Publication No. 19, and again in Publication No. 30 (in 1979). The task group concluded that research during the past 20 y suggested certain deficiencies in the ICRP Dosimetric Model for the Respiratory System. Research has also provided sufficient information for a revision of the model. The task group's approach has been to review, in depth, morphology and physiology of the respiratory tract; deposition of inhaled particles in the respiratory tract; clearance of deposited materials; and the nature and specific sites of damage to the respiratory tract caused by inhaled radioactive substances. This review has led to a redefinition of the regions of the respiratory tract for dosimetric purposes. The redefinition has a morphologic and physiological basis and is consistent with observed deposition and clearance of particles and with resultant pathology. Regions, as revised, are the extrathoracic (E-T) region, comprising the nasal and oral regions, the pharynx, larynx, and upper part of the trachea; the fast-clearing thoracic region (T[f]), comprising the remainder of the trachea and bronchi; and the slow-clearing thoracic region (T[s]), comprising the bronchioles, alveoli, and thoracic lymph nodes. A task group report will include models for calculating radiation doses to these regions of the respiratory tract following inhalation of representative alpha-, beta-, and gamma-emitting particulate and gaseous radionuclides. The models may be implemented as a package of computer codes available to a wide range of users. This should facilitate application of the revised human respiratory tract model to worldwide radiation protection needs.
Dosimetric impact of a change in breathing period on VMAT stereotactic ablative body radiotherapy
NASA Astrophysics Data System (ADS)
Olding, T.; Alexander, KM
2017-05-01
The dosimetric impact of a change in breathing period during treatment was assessed for a volumetric modulated arc therapy (VMAT) stereotactic ablative radiotherapy (SABR) lung plan optimized according to our centre’s planning protocol. Plan delivery was evaluated at three breathing rates ranging from 7 to 23 breaths-per-minute (BPM) against the planning anatomy (15 BPM) calculated dose. Dynamic ion chamber, EBT3 film and Fricke-xylenol orange-gelatin (FXG) gel measurements were acquired using a motion phantom with appropriate inserts for each dosimeter. The results show good agreement between measured and calculated plan dose within the internal gross tumour volume (IGTV) target.
Dosimetric characteristics of LKB:Cu,P solid TL detector
NASA Astrophysics Data System (ADS)
Hashim, S.; Alajerami, Y. S. M.; Ghoshal, S. K.; Saleh, M. A.; Saripan, M. I.; Kadir, A. B. A.; Bradley, D. A.; Alzimami, K.
2014-11-01
The dosimetric characteristics of newly developed borate glass dosimeter modified with lithium and potassium carbonate (LKB) and co-doped with CuO and NH4H2PO4 are reported. Broad peaks in the absence of any sharp peak confirms the amorphous nature of the prepared glass. A simple glow curve of Cu doped sample is observed with a single prominent peak (Tm) at 220 °C. The TL intensity response shows an enhancement of ~100 times due to the addition of CuO (0.1 mol%) to LKB compound. A further enhancement of the intensity by a factor of 3 from the addition of 0.25 mol% NH4H2PO4 as a co-dopant impurity is attributed to the creation of extra electron traps with consequent increase in energy transfer of radiation recombination centers. The TL yield performance of LKB:Cu,P with Zeff ≈8.92 is approximately seventeen times less sensitive compared to LiF:Mg,Ti (TLD-100). The proposed dosimeter shows good linearity up to 103 Gy, minimal fading and photon energy independence. These attractive features offered by our dosimeter is expected to pave the way towards dosimetric applications.
Del Lama, Lucas Sacchini; de Góes, Evamberto Garcia; Petchevist, Paulo César Dias; Moretto, Edson Lara; Borges, José Carlos; Covas, Dimas Tadeu; de Almeida, Adelaide
2013-01-01
Irradiation of whole blood and blood components before transfusion is currently the only accepted method to prevent Transfusion-Associated Graft-Versus-Host-Disease (TA-GVHD). However, choosing the appropriate technique to determine the dosimetric parameters associated with blood irradiation remains an issue. We propose a dosimetric system based on the standard Fricke Xylenol Gel (FXG) dosimeter and an appropriate phantom. The modified dosimeter was previously calibrated using a 60Co teletherapy unit and its validation was accomplished with a 137Cs blood irradiator. An ionization chamber, standard FXG, radiochromic film and thermoluminescent dosimeters (TLDs) were used as reference dosimeters to determine the dose response and dose rate of the 60Co unit. The dose distributions in a blood irradiator were determined with the modified FXG, the radiochromic film, and measurements by TLD dosimeters. A linear response for absorbed doses up to 54 Gy was obtained with our system. Additionally, the dose rate uncertainties carried out with gel dosimetry were lower than 5% and differences lower than 4% were noted when the absorbed dose responses were compared with ionization chamber, film and TLDs. PMID:23762345
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omar, R. S., E-mail: ratnasuffhiyanni@gmail.com; Wagiran, H., E-mail: husin@utm.my; Saeed, M. A.
Thermoluminescence (TL) dosimetric properties of dysprosium doped calcium magnesium borate (CMB:Dy) glass are presented. This study is deemed to understand the application of calcium as the modifier in magnesium borate glass with the presence of dysprosium as the activator to be performed as TL dosimeter (TLD). The study provides fundamental knowledge of a glass system that may lead to perform new TL glass dosimetry application in future research. Calcium magnesium borate glass systems of (70-y) B{sub 2}O{sub 3} − 20 CaO – 10 MgO-(y) Dy{sub 2}O{sub 3} with 0.05 mol % ≤ y ≤ 0.7 mol % of dyprosium weremore » prepared by melt-quenching technique. The amorphous structure and TL properties of the prepared samples were determined using powder X-ray diffraction (XRD) and TL reader; model Harshaw 4500 respectively. The samples were irradiated to Co-60 gamma source at a dose of 50 Gy. Dosimetric properties such as annealing procedure, time temperature profile (TTP) setting, optimization of Dy{sub 2}O{sub 3} concentration of 0.5 mol % were determined for thermoluminescence dosimeter (TLD) reader used.« less
Bradley, David; Nisbet, Andrew
2012-01-01
This study provides a review of recent publications on the physics-aspects of dosimetric accuracy in high dose rate (HDR) brachytherapy. The discussion of accuracy is primarily concerned with uncertainties, but methods to improve dose conformation to the prescribed intended dose distribution are also noted. The main aim of the paper is to review current practical techniques and methods employed for HDR brachytherapy dosimetry. This includes work on the determination of dose rate fields around brachytherapy sources, the capability of treatment planning systems, the performance of treatment units and methods to verify dose delivery. This work highlights the determinants of accuracy in HDR dosimetry and treatment delivery and presents a selection of papers, focusing on articles from the last five years, to reflect active areas of research and development. Apart from Monte Carlo modelling of source dosimetry, there is no clear consensus on the optimum techniques to be used to assure dosimetric accuracy through all the processes involved in HDR brachytherapy treatment. With the exception of the ESTRO mailed dosimetry service, there is little dosimetric audit activity reported in the literature, when compared with external beam radiotherapy verification. PMID:23349649
Dosimetric characteristics of fabricated silica fibre for postal radiotherapy dose audits
NASA Astrophysics Data System (ADS)
Fadzil, M. S. Ahmad; Ramli, N. N. H.; Jusoh, M. A.; Kadni, T.; Bradley, D. A.; Ung, N. M.; Suhairul, H.; Mohd Noor, N.
2014-11-01
Present investigation aims to establish the dosimetric characteristics of a novel fabricated flat fibre TLD system for postal radiotherapy dose audits. Various thermoluminescence (TL) properties have been investigated for five sizes of 6 mol% Ge-doped optical fibres. Key dosimetric characteristics including reproducibility, linearity, fading and energy dependence have been established. Irradiations were carried out using a linear accelerator (linac) and a Cobalt-60 machine. For doses from 0.5 Gy up to 10 Gy, Ge-doped flat fibres exhibit linearity between TL yield and dose, reproducible to better than 8% standard deviation (SD) following repeat measurements (n = 3). For photons generated at potentials from 1.25 MeV to 10 MV an energy-dependent response is noted, with a coefficient of variation (CV) of less than 40% over the range of energies investigated. For 6.0 mm length flat fibres 100 μm thick × 350 pm wide, the TL fading loss following 30 days of storage at room temperature was < 8%. The Ge-doped flat fibre system represents a viable basis for use in postal radiotherapy dose audits, corrections being made for the various factors influencing the TL yield.
First biological and dosimetric results of the free flyer biostack experiment AO015 on LDEF
NASA Technical Reports Server (NTRS)
Reitz, G.; Buecker, H.; Facius, R.; Horneck, G.; Schaeffer, M.; Schott, J. U.; Bayonove, J.; Beaujean, R.; Benton, E. V.; Delpoux, M.
1991-01-01
The main objectives of the Biostack Experiment are to study the effectiveness of the structured components of the cosmic radiation to bacterial spores, plant seeds, and animal cysts for a long duration spaceflight and to get dosimetric data such as particle fluences and spectra and total doses for the Long Duration Exposure Facility orbit. The configuration of the experiment packages allows the localization of the trajectory of the particles in each biological layer and to correlate the potential biological impairment or injury with the physical characteristics of the responsible particle. Although the Biostack Experiment was designed for a long duration flight of only nine months, most of the biological systems show a high hatching or germination rate. Some of the first observations are an increase of the mutation rate of embryonic lethals in the second generation of Arabidopsis seeds, somatic mutations, and a reduction of growth rates of corn plants and a reduction of life span of Artemia salina shrimps. The different passive detector systems are also in a good shape and give access to a proper dosimetric analysis. The results are summarized, and some aspects of future analysis are shown.
Dosimetric evaluation of a MOSFET detector for clinical application in photon therapy.
Kohno, Ryosuke; Hirano, Eriko; Nishio, Teiji; Miyagishi, Tomoko; Goka, Tomonori; Kawashima, Mitsuhiko; Ogino, Takashi
2008-01-01
Dosimetric characteristics of a metal oxide-silicon semiconductor field effect transistor (MOSFET) detector are studied with megavoltage photon beams for patient dose verification. The major advantages of this detector are its size, which makes it a point dosimeter, and its ease of use. In order to use the MOSFET detector for dose verification of intensity-modulated radiation therapy (IMRT) and in-vivo dosimetry for radiation therapy, we need to evaluate the dosimetric properties of the MOSFET detector. Therefore, we investigated the reproducibility, dose-rate effect, accumulated-dose effect, angular dependence, and accuracy in tissue-maximum ratio measurements. Then, as it takes about 20 min in actual IMRT for the patient, we evaluated fading effect of MOSFET response. When the MOSFETs were read-out 20 min after irradiation, we observed a fading effect of 0.9% with 0.9% standard error of the mean. Further, we applied the MOSFET to the measurement of small field total scatter factor. The MOSFET for dose measurements of small field sizes was better than the reference pinpoint chamber with vertical direction. In conclusion, we assessed the accuracy, reliability, and usefulness of the MOSFET detector in clinical applications such as pinpoint absolute dosimetry for small fields.
Recent advances in intensity modulated radiotherapy and proton therapy for esophageal cancer.
Xi, Mian; Lin, Steven H
2017-07-01
Radiotherapy is an important component of the standard of care for esophageal cancer. In the past decades, significant improvements in the planning and delivery of radiation techniques have led to better dose conformity to the target volume and improved normal tissue sparing. Areas covered: This review focuses on the advances in radiotherapy techniques and summarizes the availably dosimetric and clinical outcomes of intensity-modulated radiation therapy (IMRT), volumetric modulated arc therapy, proton therapy, and four-dimensional radiotherapy for esophageal cancer, and discusses the challenges and future development of proton therapy. Expert commentary: Although three-dimensional conformal radiotherapy is the standard radiotherapy technique in esophageal cancer, the retrospectively comparative studies strongly suggest that the dosimetric advantage of IMRT over three-dimensional conformal radiotherapy can translate into improved clinical outcomes, despite the lack of prospective randomized evidence. As a novel form of conventional IMRT technique, volumetric modulated arc therapy can produce equivalent or superior dosimetric quality with significantly higher treatment efficiency in esophageal cancer. Compared with photon therapy, proton therapy has the potential to achieve further clinical improvement due to their physical properties; however, prospective clinical data, long-term results, and cost-effectiveness are needed.
Palmer, Antony; Bradley, David; Nisbet, Andrew
2012-06-01
This study provides a review of recent publications on the physics-aspects of dosimetric accuracy in high dose rate (HDR) brachytherapy. The discussion of accuracy is primarily concerned with uncertainties, but methods to improve dose conformation to the prescribed intended dose distribution are also noted. The main aim of the paper is to review current practical techniques and methods employed for HDR brachytherapy dosimetry. This includes work on the determination of dose rate fields around brachytherapy sources, the capability of treatment planning systems, the performance of treatment units and methods to verify dose delivery. This work highlights the determinants of accuracy in HDR dosimetry and treatment delivery and presents a selection of papers, focusing on articles from the last five years, to reflect active areas of research and development. Apart from Monte Carlo modelling of source dosimetry, there is no clear consensus on the optimum techniques to be used to assure dosimetric accuracy through all the processes involved in HDR brachytherapy treatment. With the exception of the ESTRO mailed dosimetry service, there is little dosimetric audit activity reported in the literature, when compared with external beam radiotherapy verification.
Mandapaka, A K; Ghebremedhin, A; Patyal, B; Marinelli, Marco; Prestopino, G; Verona, C; Verona-Rinati, G
2013-12-01
To investigate the dosimetric properties of a synthetic single crystal diamond Schottky diode for accurate relative dose measurements in large and small field high-energy clinical proton beams. The dosimetric properties of a synthetic single crystal diamond detector were assessed by comparison with a reference Markus parallel plate ionization chamber, an Exradin A16 microionization chamber, and Exradin T1a ion chamber. The diamond detector was operated at zero bias voltage at all times. Comparative dose distribution measurements were performed by means of Fractional depth dose curves and lateral beam profiles in clinical proton beams of energies 155 and 250 MeV for a 14 cm square cerrobend aperture and 126 MeV for 3, 2, and 1 cm diameter circular brass collimators. ICRU Report No. 78 recommended beam parameters were used to compare fractional depth dose curves and beam profiles obtained using the diamond detector and the reference ionization chamber. Warm-up∕stability of the detector response and linearity with dose were evaluated in a 250 MeV proton beam and dose rate dependence was evaluated in a 126 MeV proton beam. Stem effect and the azimuthal angle dependence of the diode response were also evaluated. A maximum deviation in diamond detector signal from the average reading of less than 0.5% was found during the warm-up irradiation procedure. The detector response showed a good linear behavior as a function of dose with observed deviations below 0.5% over a dose range from 50 to 500 cGy. The detector response was dose rate independent, with deviations below 0.5% in the investigated dose rates ranging from 85 to 300 cGy∕min. Stem effect and azimuthal angle dependence of the diode signal were within 0.5%. Fractional depth dose curves and lateral beam profiles obtained with the diamond detector were in good agreement with those measured using reference dosimeters. The observed dosimetric properties of the synthetic single crystal diamond detector indicate that its behavior is proton energy independent and dose rate independent in the investigated energy and dose rate range and it is suitable for accurate relative dosimetric measurements in large as well as in small field high energy clinical proton beams.
A voxel-based investigation for MRI-only radiotherapy of the brain using ultra short echo times
NASA Astrophysics Data System (ADS)
Edmund, Jens M.; Kjer, Hans M.; Van Leemput, Koen; Hansen, Rasmus H.; Andersen, Jon AL; Andreasen, Daniel
2014-12-01
Radiotherapy (RT) based on magnetic resonance imaging (MRI) as the only modality, so-called MRI-only RT, would remove the systematic registration error between MR and computed tomography (CT), and provide co-registered MRI for assessment of treatment response and adaptive RT. Electron densities, however, need to be assigned to the MRI images for dose calculation and patient setup based on digitally reconstructed radiographs (DRRs). Here, we investigate the geometric and dosimetric performance for a number of popular voxel-based methods to generate a so-called pseudo CT (pCT). Five patients receiving cranial irradiation, each containing a co-registered MRI and CT scan, were included. An ultra short echo time MRI sequence for bone visualization was used. Six methods were investigated for three popular types of voxel-based approaches; (1) threshold-based segmentation, (2) Bayesian segmentation and (3) statistical regression. Each approach contained two methods. Approach 1 used bulk density assignment of MRI voxels into air, soft tissue and bone based on logical masks and the transverse relaxation time T2 of the bone. Approach 2 used similar bulk density assignments with Bayesian statistics including or excluding additional spatial information. Approach 3 used a statistical regression correlating MRI voxels with their corresponding CT voxels. A similar photon and proton treatment plan was generated for a target positioned between the nasal cavity and the brainstem for all patients. The CT agreement with the pCT of each method was quantified and compared with the other methods geometrically and dosimetrically using both a number of reported metrics and introducing some novel metrics. The best geometrical agreement with CT was obtained with the statistical regression methods which performed significantly better than the threshold and Bayesian segmentation methods (excluding spatial information). All methods agreed significantly better with CT than a reference water MRI comparison. The mean dosimetric deviation for photons and protons compared to the CT was about 2% and highest in the gradient dose region of the brainstem. Both the threshold based method and the statistical regression methods showed the highest dosimetrical agreement. Generation of pCTs using statistical regression seems to be the most promising candidate for MRI-only RT of the brain. Further, the total amount of different tissues needs to be taken into account for dosimetric considerations regardless of their correct geometrical position.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, X. Sharon, E-mail: xqi@mednet.ucla.edu; Ruan, Dan; Lee, Steve P.
2015-03-15
Purpose: To develop a practical workflow for retrospectively analyzing target and normal tissue dose–volume endpoints for various intensity modulated radiation therapy (IMRT) delivery techniques; to develop technique-specific planning goals to improve plan consistency and quality when feasible. Methods and Materials: A total of 165 consecutive head-and-neck patients from our patient registry were selected and retrospectively analyzed. All IMRT plans were generated using the same dose–volume guidelines for TomoTherapy (Tomo, Accuray), TrueBeam (TB, Varian) using fixed-field IMRT (TB-IMRT) or RAPIDARC (TB-RAPIDARC), or Siemens Oncor (Siemens-IMRT, Siemens). A MATLAB-based dose–volume extraction and analysis tool was developed to export dosimetric endpoints for eachmore » patient. With a fair stratification of patient cohort, the variation of achieved dosimetric endpoints was analyzed among different treatment techniques. Upon identification of statistically significant variations, technique-specific planning goals were derived from dynamically accumulated institutional data. Results: Retrospective analysis showed that although all techniques yielded comparable target coverage, the doses to the critical structures differed. The maximum cord doses were 34.1 ± 2.6, 42.7 ± 2.1, 43.3 ± 2.0, and 45.1 ± 1.6 Gy for Tomo, TB-IMRT, TB-RAPIDARC, and Siemens-IMRT plans, respectively. Analyses of variance showed significant differences for the maximum cord doses but no significant differences for other selected structures among the investigated IMRT delivery techniques. Subsequently, a refined technique-specific dose–volume guideline for maximum cord dose was derived at a confidence level of 95%. The dosimetric plans that failed the refined technique-specific planning goals were reoptimized according to the refined constraints. We observed better cord sparing with minimal variations for the target coverage and other organ at risk sparing for the Tomo cases, and higher parotid doses for C-arm linear accelerator–based IMRT and RAPIDARC plans. Conclusion: Patient registry–based processes allowed easy and systematic dosimetric assessment of treatment plan quality and consistency. Our analysis revealed the dependence of certain dosimetric endpoints on the treatment techniques. Technique-specific refinement of planning goals may lead to improvement in plan consistency and plan quality.« less
Yoon, Jai-Woong; Sawant, Amit; Suh, Yelin; Cho, Byung-Chul; Suh, Tae-Suk; Keall, Paul
2011-07-01
In dynamic multileaf collimator (MLC) motion tracking with complex intensity-modulated radiation therapy (IMRT) fields, target motion perpendicular to the MLC leaf travel direction can cause beam holds, which increase beam delivery time by up to a factor of 4. As a means to balance delivery efficiency and accuracy, a moving average algorithm was incorporated into a dynamic MLC motion tracking system (i.e., moving average tracking) to account for target motion perpendicular to the MLC leaf travel direction. The experimental investigation of the moving average algorithm compared with real-time tracking and no compensation beam delivery is described. The properties of the moving average algorithm were measured and compared with those of real-time tracking (dynamic MLC motion tracking accounting for both target motion parallel and perpendicular to the leaf travel direction) and no compensation beam delivery. The algorithm was investigated using a synthetic motion trace with a baseline drift and four patient-measured 3D tumor motion traces representing regular and irregular motions with varying baseline drifts. Each motion trace was reproduced by a moving platform. The delivery efficiency, geometric accuracy, and dosimetric accuracy were evaluated for conformal, step-and-shoot IMRT, and dynamic sliding window IMRT treatment plans using the synthetic and patient motion traces. The dosimetric accuracy was quantified via a tgamma-test with a 3%/3 mm criterion. The delivery efficiency ranged from 89 to 100% for moving average tracking, 26%-100% for real-time tracking, and 100% (by definition) for no compensation. The root-mean-square geometric error ranged from 3.2 to 4.0 mm for moving average tracking, 0.7-1.1 mm for real-time tracking, and 3.7-7.2 mm for no compensation. The percentage of dosimetric points failing the gamma-test ranged from 4 to 30% for moving average tracking, 0%-23% for real-time tracking, and 10%-47% for no compensation. The delivery efficiency of moving average tracking was up to four times higher than that of real-time tracking and approached the efficiency of no compensation for all cases. The geometric accuracy and dosimetric accuracy of the moving average algorithm was between real-time tracking and no compensation, approximately half the percentage of dosimetric points failing the gamma-test compared with no compensation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostou, T; Papadimitroulas, P; Kagadis, GC
2014-06-15
Purpose: Commonly used radiopharmaceuticals were tested to define the most important dosimetric factors in preclinical studies. Dosimetric calculations were applied in two different whole-body mouse models, with varying organ size, so as to determine their impact on absorbed doses and S-values. Organ mass influence was evaluated with computational models and Monte Carlo(MC) simulations. Methods: MC simulations were executed on GATE to determine dose distribution in the 4D digital MOBY mouse phantom. Two mouse models, 28 and 34 g respectively, were constructed based on realistic preclinical exams to calculate the absorbed doses and S-values of five commonly used radionuclides in SPECT/PETmore » studies (18F, 68Ga, 177Lu, 111In and 99mTc).Radionuclide biodistributions were obtained from literature. Realistic statistics (uncertainty lower than 4.5%) were acquired using the standard physical model in Geant4. Comparisons of the dosimetric calculations on the two different phantoms for each radiopharmaceutical are presented. Results: Dose per organ in mGy was calculated for all radiopharmaceuticals. The two models introduced a difference of 0.69% in their brain masses, while the largest differences were observed in the marrow 18.98% and in the thyroid 18.65% masses.Furthermore, S-values of the most important target-organs were calculated for each isotope. Source-organ was selected to be the whole mouse body.Differences on the S-factors were observed in the 6.0–30.0% range. Tables with all the calculations as reference dosimetric data were developed. Conclusion: Accurate dose per organ and the most appropriate S-values are derived for specific preclinical studies. The impact of the mouse model size is rather high (up to 30% for a 17.65% difference in the total mass), and thus accurate definition of the organ mass is a crucial parameter for self-absorbed S values calculation.Our goal is to extent the study for accurate estimations in small animal imaging, whereas it is known that there is a large variety in the anatomy of the organs.« less
MO-A-BRC-00: TG167: Clinical Recommendations for Innovative Brachytherapy Devices and Applicators
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Although a multicenter, Phase III, prospective, randomized trial is the gold standard for evidence-based medicine, it is rarely used to evaluate innovative radiotherapy devices because of many practical and ethical reasons. It is usually sufficient to compare the dose distributions and dose rates for determining equivalence of the innovative device to an existing one. Thus, quantitative evaluation of the dosimetric characteristics of an innovative brachytherapy device or application is a critical part in which physicists are actively involved. The physicist’s role, along with physician colleagues, in this process is highlighted for innovative products or applications and includes evaluation of 1)more » dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use, 2) risks and benefits from regulatory and safety perspectives, and 3) resource assessment and preparedness. Further, calibration methods should be traceable to a primary standards dosimetry laboratory such as NIST in the U.S. or to other primary standards dosimetry laboratory located elsewhere. Clinical users should follow standards as approved by their country’s regulatory agencies that approved such a brachytherapy device. Integration of this system into the medical source calibration infrastructure of secondary standard dosimetry laboratories such as the ADCLs is encouraged before a source is introduced into widespread routine clinical use. The AAPM and GEC-ESTRO have developed guidelines for the safe and consistent application of brachytherapy using innovative brachytherapy devices and applications. The current report covers regulatory approvals, calibration, dose calculations, radiobiological issues, and overall safety concerns that should be addressed during the commissioning stage preceding clinical use. These guidelines are based on review of requirements of the U.S. NRC, FDA, Department of Transportation, International Electrotechnical Commission Medical Electrical Equipment Standard 60601, European Commission for CE Marking, and institutional review boards and radiation safety committees. Learning Objectives: Understand the necessary dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use. Evaluate risks and benefits from regulatory and safety perspectives. Identify necessary resources and create a plan for clinical introduction of innovative brachytherapy device or applications. Consultant for Theragenics Corp.; R. Nath, Consultant to Theragenics Corp.« less
MO-A-BRC-02: TG167 Report - Detailed Description
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivard, M.
Although a multicenter, Phase III, prospective, randomized trial is the gold standard for evidence-based medicine, it is rarely used to evaluate innovative radiotherapy devices because of many practical and ethical reasons. It is usually sufficient to compare the dose distributions and dose rates for determining equivalence of the innovative device to an existing one. Thus, quantitative evaluation of the dosimetric characteristics of an innovative brachytherapy device or application is a critical part in which physicists are actively involved. The physicist’s role, along with physician colleagues, in this process is highlighted for innovative products or applications and includes evaluation of 1)more » dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use, 2) risks and benefits from regulatory and safety perspectives, and 3) resource assessment and preparedness. Further, calibration methods should be traceable to a primary standards dosimetry laboratory such as NIST in the U.S. or to other primary standards dosimetry laboratory located elsewhere. Clinical users should follow standards as approved by their country’s regulatory agencies that approved such a brachytherapy device. Integration of this system into the medical source calibration infrastructure of secondary standard dosimetry laboratories such as the ADCLs is encouraged before a source is introduced into widespread routine clinical use. The AAPM and GEC-ESTRO have developed guidelines for the safe and consistent application of brachytherapy using innovative brachytherapy devices and applications. The current report covers regulatory approvals, calibration, dose calculations, radiobiological issues, and overall safety concerns that should be addressed during the commissioning stage preceding clinical use. These guidelines are based on review of requirements of the U.S. NRC, FDA, Department of Transportation, International Electrotechnical Commission Medical Electrical Equipment Standard 60601, European Commission for CE Marking, and institutional review boards and radiation safety committees. Learning Objectives: Understand the necessary dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use. Evaluate risks and benefits from regulatory and safety perspectives. Identify necessary resources and create a plan for clinical introduction of innovative brachytherapy device or applications. Consultant for Theragenics Corp.; R. Nath, Consultant to Theragenics Corp.« less
MO-A-BRC-01: TG167 Report - Introduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nath, R.
Although a multicenter, Phase III, prospective, randomized trial is the gold standard for evidence-based medicine, it is rarely used to evaluate innovative radiotherapy devices because of many practical and ethical reasons. It is usually sufficient to compare the dose distributions and dose rates for determining equivalence of the innovative device to an existing one. Thus, quantitative evaluation of the dosimetric characteristics of an innovative brachytherapy device or application is a critical part in which physicists are actively involved. The physicist’s role, along with physician colleagues, in this process is highlighted for innovative products or applications and includes evaluation of 1)more » dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use, 2) risks and benefits from regulatory and safety perspectives, and 3) resource assessment and preparedness. Further, calibration methods should be traceable to a primary standards dosimetry laboratory such as NIST in the U.S. or to other primary standards dosimetry laboratory located elsewhere. Clinical users should follow standards as approved by their country’s regulatory agencies that approved such a brachytherapy device. Integration of this system into the medical source calibration infrastructure of secondary standard dosimetry laboratories such as the ADCLs is encouraged before a source is introduced into widespread routine clinical use. The AAPM and GEC-ESTRO have developed guidelines for the safe and consistent application of brachytherapy using innovative brachytherapy devices and applications. The current report covers regulatory approvals, calibration, dose calculations, radiobiological issues, and overall safety concerns that should be addressed during the commissioning stage preceding clinical use. These guidelines are based on review of requirements of the U.S. NRC, FDA, Department of Transportation, International Electrotechnical Commission Medical Electrical Equipment Standard 60601, European Commission for CE Marking, and institutional review boards and radiation safety committees. Learning Objectives: Understand the necessary dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use. Evaluate risks and benefits from regulatory and safety perspectives. Identify necessary resources and create a plan for clinical introduction of innovative brachytherapy device or applications. Consultant for Theragenics Corp.; R. Nath, Consultant to Theragenics Corp.« less
NASA Astrophysics Data System (ADS)
Petric, Martin Peter
This thesis describes the development and implementation of a novel method for the dosimetric verification of intensity modulated radiation therapy (IMRT) fields with several advantages over current techniques. Through the use of a tissue equivalent plastic scintillator sheet viewed by a charge-coupled device (CCD) camera, this method provides a truly tissue equivalent dosimetry system capable of efficiently and accurately performing field-by-field verification of IMRT plans. This work was motivated by an initial study comparing two IMRT treatment planning systems. The clinical functionality of BrainLAB's BrainSCAN and Varian's Helios IMRT treatment planning systems were compared in terms of implementation and commissioning, dose optimization, and plan assessment. Implementation and commissioning revealed differences in the beam data required to characterize the beam prior to use with the BrainSCAN system requiring higher resolution data compared to Helios. This difference was found to impact on the ability of the systems to accurately calculate dose for highly modulated fields, with BrainSCAN being more successful than Helios. The dose optimization and plan assessment comparisons revealed that while both systems use considerably different optimization algorithms and user-control interfaces, they are both capable of producing substantially equivalent dose plans. The extensive use of dosimetric verification techniques in the IMRT treatment planning comparison study motivated the development and implementation of a novel IMRT dosimetric verification system. The system consists of a water-filled phantom with a tissue equivalent plastic scintillator sheet built into the top surface. Scintillation light is reflected by a plastic mirror within the phantom towards a viewing window where it is captured using a CCD camera. Optical photon spread is removed using a micro-louvre optical collimator and by deconvolving a glare kernel from the raw images. Characterization of this new dosimetric verification system indicates excellent dose response and spatial linearity, high spatial resolution, and good signal uniformity and reproducibility. Dosimetric results from square fields, dynamic wedged fields, and a 7-field head and neck IMRT treatment plan indicate good agreement with film dosimetry distributions. Efficiency analysis of the system reveals a 50% reduction in time requirements for field-by-field verification of a 7-field IMRT treatment plan compared to film dosimetry.
NASA Astrophysics Data System (ADS)
Burmeister, Soenke; Berger, Thomas; Reitz, Guenther; Beaujean, Rudolf; Boehme, Matthias; Haumann, Lutz; Labrenz, Johannes; Kortmann, Onno
2012-07-01
Besides the effects of the microgravity environment, and the psychological and psychosocial problems experienced in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones present on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station ISS is therefore needed. For the investigation of the spatial and temporal distribution of the radiation field inside the European COLUMBUS module the experiment DOSIS (Dose Distribution Inside the ISS) under the lead of DLR was launched on July 15th 2009 with STS-127 to the ISS. The experimental package was transferred from the Space Shuttle into COLUMBUS on July 18th. It consists of a combination of passive detector packages (PDP) distributed at 11 locations inside the European Columbus Laboratory and two active radiation detectors (DOSTELs) with a DDPU (DOSTEL Data and Power Unit) in a nomex pouch (DOSIS MAIN BOX) mounted at a fixed location beneath the European Physiology Module rack (EPM) inside COLUMBUS. The DOSTELs measured during the lowest solar minimum conditions in the space age from July 18th 2009 to June 16th 2011. In July 2011 the active hardware was transferred to ground for refurbishment and preparation for the DOSIS-3D experiment. The hardware will be launched with the Soyuz 30S flight to the ISS on May 15th 2012 and activated approximately ten days later. Data will be transferred from the DOSTEL units to ground via the EPM rack which is activated approximately every four weeks for this action. First Results for the active DOSIS-3D measurements such as count rate profiles, dose rates and LET spectra will be presented in comparison to the data of the DOSIS experiment as well as the DOSMAP experiment which has been performed during solar maximum in 2001.
Mukumoto, Nobutaka; Nakamura, Mitsuhiro; Yamada, Masahiro; Takahashi, Kunio; Akimoto, Mami; Miyabe, Yuki; Yokota, Kenji; Kaneko, Shuji; Nakamura, Akira; Itasaka, Satoshi; Matsuo, Yukinori; Mizowaki, Takashi; Kokubo, Masaki; Hiraoka, Masahiro
2016-12-01
The purposes of this study were two-fold: first, to develop a four-axis moving phantom for patient-specific quality assurance (QA) in surrogate signal-based dynamic tumor-tracking intensity-modulated radiotherapy (DTT-IMRT), and second, to evaluate the accuracy of the moving phantom and perform patient-specific dosimetric QA of the surrogate signal-based DTT-IMRT. The four-axis moving phantom comprised three orthogonal linear actuators for target motion and a fourth one for surrogate motion. The positional accuracy was verified using four laser displacement gauges under static conditions (±40 mm displacements along each axis) and moving conditions [eight regular sinusoidal and fourth-power-of-sinusoidal patterns with peak-to-peak motion ranges (H) of 10-80 mm and a breathing period (T) of 4 s, and three irregular respiratory patterns with H of 1.4-2.5 mm in the left-right, 7.7-11.6 mm in the superior-inferior, and 3.1-4.2 mm in the anterior-posterior directions for the target motion, and 4.8-14.5 mm in the anterior-posterior direction for the surrogate motion, and T of 3.9-4.9 s]. Furthermore, perpendicularity, defined as the vector angle between any two axes, was measured using an optical measurement system. The reproducibility of the uncertainties in DTT-IMRT was then evaluated. Respiratory motions from 20 patients acquired in advance were reproduced and compared three-dimensionally with the originals. Furthermore, patient-specific dosimetric QAs of DTT-IMRT were performed for ten pancreatic cancer patients. The doses delivered to Gafchromic films under tracking and moving conditions were compared with those delivered under static conditions without dose normalization. Positional errors of the moving phantom under static and moving conditions were within 0.05 mm. The perpendicularity of the moving phantom was within 0.2° of 90°. The differences in prediction errors between the original and reproduced respiratory motions were -0.1 ± 0.1 mm for the lateral direction, -0.1 ± 0.2 mm for the superior-inferior direction, and -0.1 ± 0.1 mm for the anterior-posterior direction. The dosimetric accuracy showed significant improvements, of 92.9% ± 4.0% with tracking versus 69.8% ± 7.4% without tracking, in the passing rates of γ with the criterion of 3%/1 mm (p < 0.001). Although the dosimetric accuracy of IMRT without tracking showed a significant negative correlation with the 3D motion range of the target (r = - 0.59, p < 0.05), there was no significant correlation for DTT-IMRT (r = 0.03, p = 0.464). The developed four-axis moving phantom had sufficient accuracy to reproduce patient respiratory motions, allowing patient-specific QA of the surrogate signal-based DTT-IMRT under realistic conditions. Although IMRT without tracking decreased the dosimetric accuracy as the target motion increased, the DTT-IMRT achieved high dosimetric accuracy.
Novel methodology to characterize electromagnetic exposure of the brain
NASA Astrophysics Data System (ADS)
Crespo-Valero, Pedro; Christopoulou, Maria; Zefferer, Marcel; Christ, Andreas; Achermann, Peter; Nikita, Konstantina S.; Kuster, Niels
2011-01-01
Due to the greatly non-uniform field distribution induced in brain tissues by radio frequency electromagnetic sources, the exposure of anatomical and functional regions of the brain may be a key issue in interpreting laboratory findings and epidemiological studies concerning endpoints related to the central nervous system. This paper introduces the Talairach atlas in characterization of the electromagnetic exposure of the brain. A hierarchical labeling scheme is mapped onto high-resolution human models. This procedure is fully automatic and allows identification of over a thousand different sites all over the brain. The electromagnetic absorption can then be extracted and interpreted in every region or combination of regions in the brain, depending on the characterization goals. The application examples show how this methodology enhances the dosimetry assessment of the brain based on results obtained by either finite difference time domain simulations or measurements delivered by test compliance dosimetry systems. Applications include, among others, the detailed dosimetric analysis of the exposure of the brain during cell phone use, improved design of exposure setups for human studies or medical diagnostic and therapeutic devices using electromagnetic fields or ultrasound.
MAGIC polymer gel for dosimetric verification in boron neutron capture therapy
Heikkinen, Sami; Kotiluoto, Petri; Serén, Tom; Seppälä, Tiina; Auterinen, Iiro; Savolainen, Sauli
2007-01-01
Radiation‐sensitive polymer gels are among the most promising three‐dimensional dose verification tools developed to date. We tested the normoxic polymer gel dosimeter known by the acronym MAGIC (methacrylic and ascorbic acid in gelatin initiated by copper) to evaluate its use in boron neutron capture therapy (BNCT) dosimetry. We irradiated a large cylindrical gel phantom (diameter: 10 cm; length: 20 cm) in the epithermal neutron beam of the Finnish BNCT facility at the FiR 1 nuclear reactor. Neutron irradiation was simulated with a Monte Carlo radiation transport code MCNP. To compare dose–response, gel samples from the same production batch were also irradiated with 6 MV photons from a medical linear accelerator. Irradiated gel phantoms then underwent magnetic resonance imaging to determine their R2 relaxation rate maps. The measured and normalized dose distribution in the epithermal neutron beam was compared with the dose distribution calculated by computer simulation. The results support the feasibility of using MAGIC gel in BNCT dosimetry. PACS numbers: 87.53.Qc, 87.53.Wz, 87.66.Ff PMID:17592463
NASA Astrophysics Data System (ADS)
Tuner, H.
2013-01-01
Effects of gamma radiation on solid calcium ascorbate dihydrate were studied using electron spin resonance (ESR) spectroscopy. Irradiated samples were found to present two specific ESR lines with shoulder at low and high magnetic field sides. Structural and kinetic features of the radicalic species responsible for experimental ESR spectrum were explored through the variations of the signal intensities with applied microwave power, variable temperature, high-temperature annealing and room temperature storage time studies. Dosimetric potential of the sample was also determined using spectrum area and measured signal intensity measurements. It was concluded that three radicals with different spectroscopic and kinetic features were produced upon gamma irradiation.
Dosimetric and clinical experience in eye proton treatment at INFN-LNS
NASA Astrophysics Data System (ADS)
Cirrone, G. A. P.; Cuttone, G.; Di Rosa, F.; Lojacono, P.; Mongelli, V.; Lo Nigro, S.; Ott, J.; Patti, I. V.; Pittera, S.; Privitera, G.; Raffaele, L.; Reibaldi, A.; Russo, G.; Salamone, V.; Sabini, M. G.; Spatola, C.; Valastro, L. M.
2009-05-01
After six years of activity 155 patients have been treated inside the CATANA (Centro di AdroTerapia ed Applicazioni Nucleari Avanzate) facility. CATANA is the first and unique proton therapy facility in which the 62 MeV proton beams, accelerated by a Superconducting Cyclotron, are used for the radio-therapeutic treatments of choroidal and iris melanomas. Inside CATANA new absolute and relative dosimetric techniques have been developed in order to achieve the best results in terms of treatment precision and dose release accuracy. The follow-up results for 42 patients demonstrated the efficacy of high energy protons in the radiotherapeutic field and encouraged us in our activity in the battle against cancer
The dose-response of Harshaw TLD-700H.
Velbeck, K J; Luo, L Z; Ramlo, M J; Rotunda, J E
2006-01-01
Harshaw TLD-700H (7LiF:Mg,Cu,P) was previously characterised for low- to high-dose ranges from 1 microGy to 20 Gy. This paper describes the studies and results of dose-response and linearity at much higher doses. TLD-700H is a near perfect dosimetric material with near tissue equivalence, flat energy response, and the ability to measure beta, gamma and X rays. These new results extend the applicability of Harshaw TLD-700H into more dosimetric measurement environments. The simple glow curve structure provides insignificant fade, eliminating special oven preparation methods experienced by other materials. The work presented in this paper quantifies the performance of Harshaw TLD-700H in extended ranges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O’Connor, D; Nguyen, D; Voronenko, Y
Purpose: Integrated beam orientation and fluence map optimization is expected to be the foundation of robust automated planning but existing heuristic methods do not promise global optimality. We aim to develop a new method for beam angle selection in 4π non-coplanar IMRT systems based on solving (globally) a single convex optimization problem, and to demonstrate the effectiveness of the method by comparison with a state of the art column generation method for 4π beam angle selection. Methods: The beam angle selection problem is formulated as a large scale convex fluence map optimization problem with an additional group sparsity term thatmore » encourages most candidate beams to be inactive. The optimization problem is solved using an accelerated first-order method, the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA). The beam angle selection and fluence map optimization algorithm is used to create non-coplanar 4π treatment plans for several cases (including head and neck, lung, and prostate cases) and the resulting treatment plans are compared with 4π treatment plans created using the column generation algorithm. Results: In our experiments the treatment plans created using the group sparsity method meet or exceed the dosimetric quality of plans created using the column generation algorithm, which was shown superior to clinical plans. Moreover, the group sparsity approach converges in about 3 minutes in these cases, as compared with runtimes of a few hours for the column generation method. Conclusion: This work demonstrates the first non-greedy approach to non-coplanar beam angle selection, based on convex optimization, for 4π IMRT systems. The method given here improves both treatment plan quality and runtime as compared with a state of the art column generation algorithm. When the group sparsity term is set to zero, we obtain an excellent method for fluence map optimization, useful when beam angles have already been selected. NIH R43CA183390, NIH R01CA188300, Varian Medical Systems; Part of this research took place while D. O’Connor was a summer intern at RefleXion Medical.« less
Uranium mining industry views on ICRP statement on radon.
Takala, J
2012-01-01
In 2009, the International Commission on Radiological Protection issued a statement on radon which stated that the dose conversion factor for radon progeny would likely double, and the calculation of risk from radon should move to a dosimetric approach, rather than the longstanding epidemiological approach. Through the World Nuclear Association, whose members represent over 90% of the world's uranium production, industry has been examining this issue with a goal of offering expertise and knowledge to assist with the practical implementation of these evolutionary changes to evaluating the risk from radon progeny. Industry supports the continuing use of the most current epidemiological data as a basis for risk calculation, but believes that further examination of these results is needed to better understand the level of conservatism in the potential epidemiological-based risk models. With regard to adoption of the dosimetric approach, industry believes that further work is needed before this is a practical option. In particular, this work should include a clear demonstration of the validation of the dosimetric model which includes how smoking is handled, the establishment of a practical measurement protocol, and the collection of relevant data for modern workplaces. Industry is actively working to address the latter two items. Copyright © 2012. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galván de la Cruz, Olga Olinca; Lárraga-Gutiérrez, José Manuel, E-mail: jlarraga@innn.edu.mx; Laboratorio de Física Médica, Instituto Nacional de Neurología y Neurocirugía
2013-07-01
It is reported in the literature that the material used in an embolization of an arteriovenous malformation (AVM) can attenuate the radiation beams used in stereotactic radiosurgery (SRS) up to 10% to 15%. The purpose of this work is to assess the dosimetric impact of this attenuating material in the SRS treatment of embolized AVMs, using Monte Carlo simulations assuming clinical conditions. A commercial Monte Carlo dose calculation engine was used to recalculate the dose distribution of 20 AVMs previously planned with a pencil beam dose calculation algorithm. Dose distributions were compared using the following metrics: average, minimal and maximummore » dose of AVM, and 2D gamma index. The effect in the obliteration rate was investigated using radiobiological models. It was found that the dosimetric impact of the embolization material is less than 1.0 Gy in the prescription dose to the AVM for the 20 cases studied. The impact in the obliteration rate is less than 4.0%. There is reported evidence in the literature that embolized AVMs treated with SRS have low obliteration rates. This work shows that there are dosimetric implications that should be considered in the final treatment decisions for embolized AVMs.« less
Can reduction of uncertainties in cervix cancer brachytherapy potentially improve clinical outcome?
Nesvacil, Nicole; Tanderup, Kari; Lindegaard, Jacob C; Pötter, Richard; Kirisits, Christian
2016-09-01
The aim of this study was to quantify the impact of different types and magnitudes of dosimetric uncertainties in cervix cancer brachytherapy (BT) on tumour control probability (TCP) and normal tissue complication probability (NTCP) curves. A dose-response simulation study was based on systematic and random dose uncertainties and TCP/NTCP models for CTV and rectum. Large patient cohorts were simulated assuming different levels of dosimetric uncertainties. TCP and NTCP were computed, based on the planned doses, the simulated dose uncertainty, and an underlying TCP/NTCP model. Systematic uncertainties of 3-20% and random uncertainties with a 5-30% standard deviation per BT fraction were analysed. Systematic dose uncertainties of 5% lead to a 1% decrease/increase of TCP/NTCP, while random uncertainties of 10% had negligible impact on the dose-response curve at clinically relevant dose levels for target and OAR. Random OAR dose uncertainties of 30% resulted in an NTCP increase of 3-4% for planned doses of 70-80Gy EQD2. TCP is robust to dosimetric uncertainties when dose prescription is in the more flat region of the dose-response curve at doses >75Gy. For OARs, improved clinical outcome is expected by reduction of uncertainties via sophisticated dose delivery and treatment verification. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Al-Hallaq, H. A.; Reft, C. S.; Roeske, J. C.
2006-03-01
The dosimetric effects of bone and air heterogeneities in head and neck IMRT treatments were quantified. An anthropomorphic RANDO phantom was CT-scanned with 16 thermoluminescent dosimeter (TLD) chips placed in and around the target volume. A standard IMRT plan generated with CORVUS was used to irradiate the phantom five times. On average, measured dose was 5.1% higher than calculated dose. Measurements were higher by 7.1% near the heterogeneities and by 2.6% in tissue. The dose difference between measurement and calculation was outside the 95% measurement confidence interval for six TLDs. Using CORVUS' heterogeneity correction algorithm, the average difference between measured and calculated doses decreased by 1.8% near the heterogeneities and by 0.7% in tissue. Furthermore, dose differences lying outside the 95% confidence interval were eliminated for five of the six TLDs. TLD doses recalculated by Pinnacle3's convolution/superposition algorithm were consistently higher than CORVUS doses, a trend that matched our measured results. These results indicate that the dosimetric effects of air cavities are larger than those of bone heterogeneities, thereby leading to a higher delivered dose compared to CORVUS calculations. More sophisticated algorithms such as convolution/superposition or Monte Carlo should be used for accurate tailoring of IMRT dose in head and neck tumours.
Cosmic radiation dose measurements from the RaD-X flight campaign
NASA Astrophysics Data System (ADS)
Mertens, Christopher J.; Gronoff, Guillaume P.; Norman, Ryan B.; Hayes, Bryan M.; Lusby, Terry C.; Straume, Tore; Tobiska, W. Kent; Hands, Alex; Ryden, Keith; Benton, Eric; Wiley, Scott; Gersey, Brad; Wilkins, Richard; Xu, Xiaojing
2016-10-01
The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission obtained measurements for improving the understanding of cosmic radiation transport in the atmosphere and human exposure to this ionizing radiation field in the aircraft environment. The value of dosimetric measurements from the balloon platform is that they can be used to characterize cosmic ray primaries, the ultimate source of aviation radiation exposure. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. The RaD-X balloon was successfully launched from Fort Sumner, New Mexico (34.5°N, 104.2°W) on 25 September 2015. Over 18 h of flight data were obtained from each of the four different science instruments at altitudes above 20 km. The RaD-X balloon flight was supplemented by contemporaneous aircraft measurements. Flight-averaged dosimetric quantities are reported at seven altitudes to provide benchmark measurements for improving aviation radiation models. The altitude range of the flight data extends from commercial aircraft altitudes to above the Pfotzer maximum where the dosimetric quantities are influenced by cosmic ray primaries. The RaD-X balloon flight observed an absence of the Pfotzer maximum in the measurements of dose equivalent rate.
NASA Astrophysics Data System (ADS)
Talamonti, C.; Bucciolini, M.; Marrazzo, L.; Menichelli, D.; Bruzzi, M.; Cirrone, G. A. P.; Cuttone, G.; LoJacono, P.
2008-10-01
Due to the features of the modern radiotherapy techniques, namely intensity modulated radiation therapy and proton therapy, where high spatial dose gradients are often present, detectors to be employed for 2D dose verifications have to satisfy very narrow requirements. In particular they have to show high spatial resolution. In the framework of the European Integrated Project—Methods and Advanced Equipment for Simulation and Treatment in Radio-Oncology (MAESTRO, no. LSHC-CT-2004-503564), a dosimetric detector adequate for 2D pre-treatment dose verifications was developed. It is a modular detector, based on a monolithic silicon-segmented sensor, with an n-type implantation on an epitaxial p-type layer. Each pixel element is 2×2 mm 2 and the distance center-to-center is 3 mm. The sensor is composed of 21×21 pixels. In this paper, we report the dosimetric characterization of the system with a proton beam. The sensor was irradiated with 62 MeV protons for clinical treatments at INFN-Laboratori Nazionali del Sud (LNS) Catania. The studied parameters were repeatability of a same pixel, response linearity versus absorbed dose, and dose rate and dependence on field size. The obtained results are promising since the performances are within the project specifications.
Yahyaabadi, Akram; Torkzadeh, Falamarz; Rezaei Ochbelagh, Dariush; Hosseini Pooya, Seyed Mahdi
2018-04-24
LiF:Mg,Cu,Ag is a new dosimetry material that is similar to LiF:Mg,Cu,P in terms of dosimetric properties. The effect of the annealing temperature in the range of 200 to 350°C on the thermoluminescence (TL) sensitivity and the glow curve structure of this material at different concentrations of silver (Ag) was investigated. It has been demonstrated that the optimum values of the annealing temperature and the Ag concentration are 240°C and 0.1 mol% for better sensitivity, respectively. The TL intensity decreases at annealing temperatures lower than 240°C or higher than 240°C, reaching a minimum at 300°C and then again increases for various Ag concentrations. It was observed that the glow curve structure altered and the area under the low temperature peak as well as the area under the main dosimetric peak decreased with increasing annealing temperature. The position of the main dosimetric peak moved in the direction of higher temperatures, but at 320 and 350°C annealing temperatures, it shifted to lower temperatures. It was also observed that the TL sensitivity could partially be recovered by a combined annealing procedure. Copyright © 2018 John Wiley & Sons, Ltd.
Stereotactic multibeam radiation therapy system in a PACS environment
NASA Astrophysics Data System (ADS)
Fresne, Francoise; Le Gall, G.; Barillot, Christian; Gibaud, Bernard; Manens, Jean-Pierre; Toumoulin, Christine; Lemoine, Didier; Chenal, C.; Scarabin, Jean-Marie
1991-05-01
A Multibeam radiation therapy treatment is a non-invasive technique devoted to treat a lesion within the cerebral medium by focusing photon-beams on the same target from a high number of entrance points. We present here a computer assisted dosimetric planning procedure which includes: (1) an analysis module to define the target volume by using 2D and 3D displays, (2) a planing module to issue a treatment strategy including the dosimetric simulations and (3) a treatment module setting up the parameters to order the robotized treatment system (i.e. chair- framework, radiation unit machine). Another important feature of this system is its connection to the PACS system SIRENE settled in the University hospital of Rennes which makes possible the archiving and the communication of the multimodal images (CT, MRI, Angiography) used by this application. The corporate use of stereotactic methods and the multimodality imagery ensures spatial coherence and makes the target definition and the cognition of the structures environment more accurate. The dosimetric planning suited to the spatial reference (i.e. the stereotactic frame) guarantees an optimal distribution of the dose computed by an original 3D volumetric algorithm. The robotic approach of the treatment stage has consisted to design a computer driven chair-framework cluster to position the target volume at the radiation unit isocenter.
Trnková, Petra; Baltas, Dimos; Karabis, Andreas; Stock, Markus; Dimopoulos, Johannes; Georg, Dietmar; Pötter, Richard; Kirisits, Christian
2010-12-01
The purpose of this study was to compare two inverse planning algorithms for cervical cancer brachytherapy and a conventional manual treatment planning according to the MUW (Medical University of Vienna) protocol. For 20 patients, manually optimized, and, inversely optimized treatment plans with Hybrid Inverse treatment Planning and Optimization (HIPO) and with Inverse Planning Simulated Annealing (IPSA) were created. Dosimetric parameters, absolute volumes of normal tissue receiving reference doses, absolute loading times of tandem, ring and interstitial needles, Paddick and COIN conformity indices were evaluated. HIPO was able to achieve a similar dose distribution to manual planning with the restriction of high dose regions. It reduced the loading time of needles and the overall treatment time. The values of both conformity indices were the lowest. IPSA was able to achieve acceptable dosimetric results. However, it overloaded the needles. This resulted in high dose regions located in the normal tissue. The Paddick index for the volume of two times prescribed dose was outstandingly low. HIPO can produce clinically acceptable treatment plans with the elimination of high dose regions in normal tissue. Compared to IPSA, it is an inverse optimization method which takes into account current clinical experience gained from manual treatment planning.
Baltas, Dimos; Karabis, Andreas; Stock, Markus; Dimopoulos, Johannes; Georg, Dietmar; Pötter, Richard; Kirisits, Christian
2011-01-01
Purpose The purpose of this study was to compare two inverse planning algorithms for cervical cancer brachytherapy and a conventional manual treatment planning according to the MUW (Medical University of Vienna) protocol. Material and methods For 20 patients, manually optimized, and, inversely optimized treatment plans with Hybrid Inverse treatment Planning and Optimization (HIPO) and with Inverse Planning Simulated Annealing (IPSA) were created. Dosimetric parameters, absolute volumes of normal tissue receiving reference doses, absolute loading times of tandem, ring and interstitial needles, Paddick and COIN conformity indices were evaluated. Results HIPO was able to achieve a similar dose distribution to manual planning with the restriction of high dose regions. It reduced the loading time of needles and the overall treatment time. The values of both conformity indices were the lowest. IPSA was able to achieve acceptable dosimetric results. However, it overloaded the needles. This resulted in high dose regions located in the normal tissue. The Paddick index for the volume of two times prescribed dose was outstandingly low. Conclusions HIPO can produce clinically acceptable treatment plans with the elimination of high dose regions in normal tissue. Compared to IPSA, it is an inverse optimization method which takes into account current clinical experience gained from manual treatment planning. PMID:27853479
Cook, Taylor
2014-01-01
Purpose. To evaluate our community-based institutional experience with plaque brachytherapy for uveal melanomas with a focus on local control rates, factors impacting disease progression, and dosimetric parameters impacting treatment toxicity. Methods and Materials. Our institution was retrospectively reviewed from 1996 to 2011; all patients who underwent plaque brachytherapy for uveal melanoma were included. Follow-up data were collected regarding local control, distant metastases, and side effects from treatment. Analysis was performed on factors impacting treatment outcomes and treatment toxicity. Results. A total of 107 patients underwent plaque brachytherapy, of which 88 had follow-up data available. Local control at 10 years was 94%. Freedom from progression (FFP) and overall survival at 10 years were 83% and 79%, respectively. On univariate analysis, there were no tumor or dosimetric treatment characteristics that were found to have a prognostic impact on FFP. Brachytherapy treatment was well tolerated, with clinically useful vision (>20/200) maintained in 64% of patients. Statistically significant dosimetric relationships were established with cataract, glaucoma, and retinopathy development (greatest P = 0.05). Conclusions. Treatment with plaque brachytherapy demonstrates excellent outcomes in a community-based setting. It is well tolerated and should remain a standard of care for COMS medium sized tumors. PMID:24734198
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massager, Nicolas; Nissim, Ouzi; Delbrouck, Carine
2006-04-01
Purpose: To analyze the relationship between hearing preservation after gamma knife radiosurgery (GKR) for vestibular schwannoma (VS) and some volumetric and dosimetric parameters of the intracanalicular components of VS. Methods and Materials: This study included 82 patients with a VS treated by GKR; all patients had no NF2 disease, a Gardner-Robertson hearing class 1-4 before treatment, a marginal dose of 12 Gy, and a radiologic and audiologic follow-up {>=}1 year post-GKR. The volume of both the entire tumor and the intracanalicular part of the tumor and the mean and integrated dose of these two volumes were correlated to the auditorymore » outcomes of patients. Results: At last hearing follow-up, 52 patients had no hearing worsening, and 30 patients had an increase of {>=}1 class on Gardner-Robertson classification. We found that hearing preservation after GKR is significantly correlated with the intracanalicular tumor volume, as well as with the integrated dose delivered to the intracanalicular tumor volume. Conclusions: Some volumetric and dosimetric parameters of the intracanalicular part of the tumor influence hearing preservation after GKR of VS. Consequently, we advise the direct treatment of patients with preserved functional hearing and a VS including a small intracanalicular volume.« less
Cosmic Radiation Dose Measurements from the RaD-X Flight Campaign
NASA Technical Reports Server (NTRS)
Mertens, Christopher J.; Gronoff, Guillaume P.; Norman, Ryan B.; Hayes, Bryan M.; Lusby, Terry C.; Straume, Tore; Tobiska, W. Kent; Hands, Alex; Ryden, Keith; Benton, Eric;
2016-01-01
The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission obtained measurements for improving the understanding of cosmic radiation transport in the atmosphere and human exposure to this ionizing radiation field in the aircraft environment. The value of dosimetric measurements from the balloon platform is that they can be used to characterize cosmic ray primaries, the ultimate source of aviation radiation exposure. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. The RaD-X balloon was successfully launched from Fort Sumner, New Mexico (34.5 degrees North, 104.2 degrees West) on 25 September 2015. Over 18 hours of flight data were obtained from each of the four different science instruments at altitudes above 20 kilometers. The RaD-X balloon flight was supplemented by contemporaneous aircraft measurements. Flight-averaged dosimetric quantities are reported at seven altitudes to provide benchmark measurements for improving aviation radiation models. The altitude range of the flight data extends from commercial aircraft altitudes to above the Pfotzer maximum where the dosimetric quantities are influenced by cosmic ray primaries. The RaD-X balloon flight observed an absence of the Pfotzer maximum in the measurements of dose equivalent rate.
Van Parijs, Hilde; Reynders, Truus; Heuninckx, Karina; Verellen, Dirk; Storme, Guy; De Ridder, Mark
2014-01-01
Breast conserving surgery followed by whole breast irradiation is widely accepted as standard of care for early breast cancer. Addition of a boost dose to the initial tumor area further reduces local recurrences. We investigated the dosimetric benefits of a simultaneously integrated boost (SIB) compared to a sequential boost to hypofractionate the boost volume, while maintaining normofractionation on the breast. For 10 patients 4 treatment plans were deployed, 1 with a sequential photon boost, and 3 with different SIB techniques: on a conventional linear accelerator, helical TomoTherapy, and static TomoDirect. Dosimetric comparison was performed. PTV-coverage was good in all techniques. Conformity was better with all SIB techniques compared to sequential boost (P = 0.0001). There was less dose spilling to the ipsilateral breast outside the PTVboost (P = 0.04). The dose to the organs at risk (OAR) was not influenced by SIB compared to sequential boost. Helical TomoTherapy showed a higher mean dose to the contralateral breast, but less than 5 Gy for each patient. SIB showed less dose spilling within the breast and equal dose to OAR compared to sequential boost. Both helical TomoTherapy and the conventional technique delivered acceptable dosimetry. SIB seems a safe alternative and can be implemented in clinical routine.
Impact of organ shape variations on margin concepts for cervix cancer ART.
Seppenwoolde, Yvette; Stock, Markus; Buschmann, Martin; Georg, Dietmar; Bauer-Novotny, Kwei-Yuang; Pötter, Richard; Georg, Petra
2016-09-01
Target and organ movement motivate adaptive radiotherapy for cervix cancer patients. We investigated the dosimetric impact of margin concepts with different levels of complexity on both organ at risk (OAR) sparing and PTV coverage. Weekly CT and daily CBCT scans were delineated for 10 patients. The dosimetric impact of organ shape variations were evaluated for four (isotropic) margin concepts: two static PTVs (PTV 6mm and PTV 15mm ), a PTV based on ITV of the planning CT and CBCTs of the first treatment week (PTV ART ITV ) and an adaptive PTV based on a library approach (PTV ART Library ). Using static concepts, OAR doses increased with large margins, while smaller margins compromised target coverage. ART PTVs resulted in comparable target coverage and better sparing of bladder (V40Gy: 15% and 7% less), rectum (V40Gy: 18 and 6cc less) and bowel (V40Gy: 106 and 15cc less) compared to PTV 15mm . Target coverage evaluation showed that for elective fields a static 5mm margin sufficed. PTV ART Library achieved the best dosimetric results. However when weighing clinical benefit against workload, ITV margins based on repetitive movement evaluation during the first week also provide improvements over static margin concepts. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
An alternative method for immediate dose estimation using CaSO4:Dy based TLD badges
NASA Astrophysics Data System (ADS)
Singh, A. K.; Menon, S. N.; Dhabekar, Bhushan; Kadam, Sonal; Chougaonkar, M. P.; Babu, D. A. R.
2014-11-01
CaSO4:Dy based Thermoluminescence dosimeters (TLDs) are being used in country wide personnel monitoring program in India. The TL glow curve of CaSO4:Dy consists of a dosimetric peak at 220 °C and a low temperature peak at 120 °C which is unstable at room temperature. The TL integral counts in CaSO4:Dy reduces by 15% in seven days after irradiation due to the thermal fading of 120 °C TL peak. As the dosimetric procedure involves total integrated counts for dose conversion, the dosimeters are typically read about a week after receiving. However in the event of a suspected over exposure, where urgent processing is expected, this poses limitation. Post irradiation annealing treatment is used in such cases of immediate readout of cards. In this paper we report a new and easier to use technique based on optical bleaching for the urgent processing of TLD cards. Optical bleaching with green LED (∼555 nm photons) of 25,000 lux for one and half hour removes the low temperature TL peak without affecting the dosimetric peak. This method can be used for immediate dose estimation using CaSO4:Dy based TLD badges.
Reynders, Truus; Heuninckx, Karina; Verellen, Dirk; Storme, Guy; De Ridder, Mark
2014-01-01
Background. Breast conserving surgery followed by whole breast irradiation is widely accepted as standard of care for early breast cancer. Addition of a boost dose to the initial tumor area further reduces local recurrences. We investigated the dosimetric benefits of a simultaneously integrated boost (SIB) compared to a sequential boost to hypofractionate the boost volume, while maintaining normofractionation on the breast. Methods. For 10 patients 4 treatment plans were deployed, 1 with a sequential photon boost, and 3 with different SIB techniques: on a conventional linear accelerator, helical TomoTherapy, and static TomoDirect. Dosimetric comparison was performed. Results. PTV-coverage was good in all techniques. Conformity was better with all SIB techniques compared to sequential boost (P = 0.0001). There was less dose spilling to the ipsilateral breast outside the PTVboost (P = 0.04). The dose to the organs at risk (OAR) was not influenced by SIB compared to sequential boost. Helical TomoTherapy showed a higher mean dose to the contralateral breast, but less than 5 Gy for each patient. Conclusions. SIB showed less dose spilling within the breast and equal dose to OAR compared to sequential boost. Both helical TomoTherapy and the conventional technique delivered acceptable dosimetry. SIB seems a safe alternative and can be implemented in clinical routine. PMID:25162031
Vandendorpe, B; Guilbert, P; Champagne, C; Antoni, T; Nguyen, T D; Gaillot-Petit, N; Servagi Vernat, S
2017-12-01
To evaluate the dosimetric contribution of helical tomotherapy for breast cancers compared with conformal radiotherapy in mono-isocentric technique. For 23 patients, the dosimetric results in mono-isocentric 3D conformational radiotherapy did not satisfy the constraints either of target volumes nor organs at risk. A prospective dosimetric comparison between mono-isocentric 3D conformational radiotherapy and helical tomotherapy was therefore carried out. The use of helical tomotherapy showed a benefit in these 23 patients, with either an improvement in the conformity index or homogeneity, but with an increase in low doses. Of the 23 patients, two had pectus excavatum, five had past thoracic irradiation and two required bilateral irradiation. The other 14 patients had a combination of morphology and/or indication of lymph node irradiation. For these patients, helical tomotherapy was therefore preferred to mono-isocentric 3D conformational radiotherapy. Tomotherapy appears to provide better homogeneity and tumour coverage. This technique of irradiation may be justified in the case of morphological situations such as pectus exavatum and in complex clinical situations. In other cases, conformal radiotherapy in mono-isocentric technique remains to be favoured. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.
New Technique for Developing a Proton Range Compensator With Use of a 3-Dimensional Printer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ju, Sang Gyu, E-mail: sg.ju@samsung.com; Kim, Min Kyu; Hong, Chae-Seon
2014-02-01
Purpose: A new system for manufacturing a proton range compensator (RC) was developed by using a 3-dimensional printer (3DP). The physical accuracy and dosimetric characteristics of the new RC manufactured by 3DP (RC{sub 3}DP) were compared with those of a conventional RC (RC{sub C}MM) manufactured by a computerized milling machine (CMM). Methods and Materials: An RC for brain tumor treatment with a scattered proton beam was calculated with a treatment planning system, and the resulting data were converted into a new format for 3DP using in-house software. The RC{sub 3}DP was printed with ultraviolet curable acrylic plastic, and an RC{submore » C}MM was milled into polymethylmethacrylate using a CMM. The inner shape of both RCs was scanned by using a 3D scanner and compared with TPS data by applying composite analysis (CA; with 1-mm depth difference and 1 mm distance-to-agreement criteria) to verify their geometric accuracy. The position and distal penumbra of distal dose falloff at the central axis and field width of the dose profile at the midline depth of spread-out Bragg peak were measured for the 2 RCs to evaluate their dosimetric characteristics. Both RCs were imaged on a computed tomography scanner to evaluate uniformity of internal density. The manufacturing times for both RCs were compared to evaluate the production efficiency. Results: The pass rates for the CA test were 99.5% and 92.5% for RC{sub 3}DP and RC{sub C}MM, respectively. There was no significant difference in dosimetric characteristics and uniformity of internal density between the 2 RCs. The net fabrication times of RC{sub 3}DP and RC{sub C}MM were about 18 and 3 hours, respectively. Conclusions: The physical accuracy and dosimetric characteristics of RC{sub 3}DP were comparable with those of the conventional RC{sub C}MM, and significant system minimization was provided.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hussain, A
Purpose: Novel linac machines, TrueBeam (TB) and Elekta Versa have updated head designing and software control system, include flattening-filter-free (FFF) photon and electron beams. Later on FFF beams were also introduced on C-Series machines. In this work FFF beams for same energy 6MV but from different machine versions were studied with reference to beam data parameters. Methods: The 6MV-FFF percent depth doses, profile symmetry and flatness, dose rate tables, and multi-leaf collimator (MLC) transmission factors were measured during commissioning process of both C-series and Truebeam machines. The scanning and dosimetric data for 6MV-FFF beam from Truebeam and C-Series linacs wasmore » compared. A correlation of 6MV-FFF beam from Elekta Versa with that of Varian linacs was also found. Results: The scanning files were plotted for both qualitative and quantitative analysis. The dosimetric leaf gap (DLG) for C-Series 6MV-FFF beam is 1.1 mm. Published values for Truebeam dosimetric leaf gap is 1.16 mm. 6MV MLC transmission factor varies between 1.3 % and 1.4 % in two separate measurements and measured DLG values vary between 1.32 mm and 1.33 mm on C-Series machine. MLC transmission factor from C-Series machine varies between 1.5 % and 1.6 %. Some of the measured data values from C-Series FFF beam are compared with Truebeam representative data. 6MV-FFF beam parameter values like dmax, OP factors, beam symmetry and flatness and additional parameters for C-Series and Truebeam liancs will be presented and compared in graphical form and tabular data form if selected. Conclusion: The 6MV flattening filter (FF) beam data from C-Series & Truebeam and 6MV-FFF beam data from Truebeam has already presented. This particular analysis to compare 6MV-FFF beam from C-Series and Truebeam provides opportunity to better elaborate FFF mode on novel machines. It was found that C-Series and Truebeam 6MV-FFF dosimetric and beam data was quite similar.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, M; Yu, N; Joshi, N
Purpose: To dosimetrically evaluate the importance of timely reviewing daily CBCTs for patients with head and neck cancer. Methods: After each fraction daily cone-beam CT (CBCT) for head and neck patients are reviewed by physicians prior to next treatment. Physician rejected image registrations of CBCT were identified and analyzed for 17 patients. These CBCT images were rigidly fused with planning CT images and the contours from the planning CT were transferred to CBCTs. Because of limited extension in the superior-inferior dimension contours with partial volumes in CBCTs were discarded. The treatment isocenter was placed by applying the clinically recorded shiftsmore » to the volume isocenter of the CBCT. Dose was recalculated at the shifted isocenter using a homogeneous dose calculation algorithm. Dosimetrically relevant changes defined as greater than 5% deviation from the clinically accepted plans but with homogeneous dose calculation were evaluated for the high dose (HD), intermediate dose (ID), and low dose (LD) CTVs, spinal cord, larynx, oropharynx, parotids, and submandibular glands. Results: Among seventeen rejected CBCTS, HD-CTVs, ID-CTVs, and LD-CTVs were completely included in the CBCTs for 17, 1, and 15 patients, respectively. The prescription doses to the HD-CTV, ID-CTV, and LD-CTV were received by < 95% of the CTV volumes in 5/17, 1/1, and 5/15 patients respectively. For the spinal cord, the maximum doses (D0.03cc) were increased > 5% in 13 of 17 patients. For the oropharynx, larynx, parotid, and submandibular glands, the mean dose of these organs at risk was increased > 5% in 7/17, 8/12, 11/16 and 6/16 patients, respectively. Conclusion: Timely review daily CBCTs for head and neck patients under daily CBCT guidance is important, and uncorrected setup errors can translate to dosimetrically relevant dose increases in organsat- risk and dose decreases in the clinical target volumes.« less
Desmet, Céline M.; Djurkin, Andrej; Dos Santos-Goncalvez, Ana Maria; Dong, Ruhong; Kmiec, Maciej M.; Kobayashi, Kyo; Rychert, Kevin; Beun, Sébastien; Leprince, Julian G.; Leloup, Gaëtane; Levêque, Philippe; Gallez, Bernard
2015-01-01
In the aftermath of a major radiological accident, the medical management of overexposed individuals will rely on the determination of the dose of ionizing radiations absorbed by the victims. Because people in the general population do not possess conventional dosimeters, after the fact dose reconstruction methods are needed. Free radicals are induced by radiations in the tooth enamel of victims, in direct proportion to dose, and can be quantified using Electron Paramagnetic Resonance (EPR) spectrometry, a technique that was demonstrated to be very appropriate for mass triage. The presence of dimethacrylate based restorations on teeth can interfere with the dosimetric signal from the enamel, as free radicals could also be induced in the various composites used. The aim of the present study was to screen irradiated composites for a possible radiation-induced EPR signal, to characterize it, and evaluate a possible interference with the dosimetric signal of the enamel. We investigated the most common commercial composites, and experimental compositions, for a possible class effect. The effect of the dose was studied between 10 Gy and 100 Gy using high sensitivity X-band spectrometer. The influence of this radiation-induced signal from the composite on the dosimetric signal of the enamel was also investigated using a clinical L-Band EPR spectrometer, specifically developed in the EPR center at Dartmouth College. In X-band, a radiation-induced signal was observed for high doses (25-100 Gy); it was rapidly decaying, and not detected after only 24h post irradiation. At 10 Gy, the signal was in most cases not measurable in the commercial composites tested, with the exception of 3 composites showing a significant intensity. In L-band study, only one irradiated commercial composite influenced significantly the dosimetric signal of the tooth, with an overestimation about 30%. In conclusion, the presence of the radiation-induced signal from dental composites should not significantly influence the dosimetry for early dose assessment. PMID:26125565
Dosimetric impact of an air passage on intraluminal brachytherapy for bronchus cancer.
Okamoto, Hiroyuki; Wakita, Akihisa; Nakamura, Satoshi; Nishioka, Shie; Aikawa, Ako; Kato, Toru; Abe, Yoshihisa; Kobayashi, Kazuma; Inaba, Koji; Murakami, Naoya; Itami, Jun
2016-11-01
The brachytherapy dose calculations used in treatment planning systems (TPSs) have conventionally been performed assuming homogeneous water. Using measurements and a Monte Carlo simulation, we evaluated the dosimetric impact of an air passage on brachytherapy for bronchus cancer. To obtain the geometrical characteristics of an air passage, we analyzed the anatomical information from CT images of patients who underwent intraluminal brachytherapy using a high-dose-rate 192 Ir source (MicroSelectron V2r®, Nucletron). Using an ionization chamber, we developed a measurement system capable of measuring the peripheral dose with or without an air cavity surrounding the catheter. Air cavities of five different radii (0.3, 0.5, 0.75, 1.25 and 1.5 cm) were modeled by cylindrical tubes surrounding the catheter. A Monte Carlo code (GEANT4) was also used to evaluate the dosimetric impact of the air cavity. Compared with dose calculations in homogeneous water, the measurements and GEANT4 indicated a maximum overdose of 5-8% near the surface of the air cavity (with the maximum radius of 1.5 cm). Conversely, they indicated a minimum overdose of ~1% in the region 3-5 cm from the cavity surface for the smallest radius of 0.3 cm. The dosimetric impact depended on the size and the distance of the air passage, as well as the length of the treatment region. Based on dose calculations in water, the TPS for intraluminal brachytherapy for bronchus cancer had an unexpected overdose of 3-5% for a mean radius of 0.75 cm. This study indicates the need for improvement in dose calculation accuracy with respect to intraluminal brachytherapy for bronchus cancer. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
A novel approach to EPID-based 3D volumetric dosimetry for IMRT and VMAT QA
NASA Astrophysics Data System (ADS)
Alhazmi, Abdulaziz; Gianoli, Chiara; Neppl, Sebastian; Martins, Juliana; Veloza, Stella; Podesta, Mark; Verhaegen, Frank; Reiner, Michael; Belka, Claus; Parodi, Katia
2018-06-01
Intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) are relatively complex treatment delivery techniques and require quality assurance (QA) procedures. Pre-treatment dosimetric verification represents a fundamental QA procedure in daily clinical routine in radiation therapy. The purpose of this study is to develop an EPID-based approach to reconstruct a 3D dose distribution as imparted to a virtual cylindrical water phantom to be used for plan-specific pre-treatment dosimetric verification for IMRT and VMAT plans. For each depth, the planar 2D dose distributions acquired in air were back-projected and convolved by depth-specific scatter and attenuation kernels. The kernels were obtained by making use of scatter and attenuation models to iteratively estimate the parameters from a set of reference measurements. The derived parameters served as a look-up table for reconstruction of arbitrary measurements. The summation of the reconstructed 3D dose distributions resulted in the integrated 3D dose distribution of the treatment delivery. The accuracy of the proposed approach was validated in clinical IMRT and VMAT plans by means of gamma evaluation, comparing the reconstructed 3D dose distributions with Octavius measurement. The comparison was carried out using (3%, 3 mm) criteria scoring 99% and 96% passing rates for IMRT and VMAT, respectively. An accuracy comparable to the one of the commercial device for 3D volumetric dosimetry was demonstrated. In addition, five IMRT and five VMAT were validated against the 3D dose calculation performed by the TPS in a water phantom using the same passing rate criteria. The median passing rates within the ten treatment plans was 97.3%, whereas the lowest was 95%. Besides, the reconstructed 3D distribution is obtained without predictions relying on forward dose calculation and without external phantom or dosimetric devices. Thus, the approach provides a fully automated, fast and easy QA procedure for plan-specific pre-treatment dosimetric verification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Studenski, M; Stoyanova, R; Abramowitz, M
2015-06-15
Purpose: Previous research has demonstrated that following radiation therapy for prostate cancer, there is a relative increase in positive biopsies in the apex versus the rest of the prostate. The increase could be due to: 1) Inter-fraction apex motion or deformation, 2) Intra-fraction apex motion or deformation, 3) Suboptimal dose coverage in the apex, 4) Tissue composition in the apex and/or 5) Prostate size. In this initial study, the potential for suboptimal dose coverage in the apex was assessed by splitting the prostate planning target volume into the apex (inferior third) and remainder. Methods: 69 patients were selected from 303more » patients treated on a clinical radiotherapy trial for prostate cancer. These patients were selected as they had both a localized (sextant template) 2-year post-treatment biopsy and 3D dose information. Of these patients, 10 had positive biopsies in the apex, 8 in the remainder and 11 in both locations. For all patients, the following dosimetric data was acquired from the apex dose volume histogram: Dmean, Dmax, Dmin, D95% and V100%. Unpaired, one-tailed t-tests were used to test for statistical significance (p < 0.05) between all dosimetric parameters for patients with positive versus negative apical biopsies. Additionally, D95% for the apex was plotted against D95% of the remainder. Results: There was no statistical difference for the selected apical dosimetric parameters for patients with positive versus negative biopsies (p-values > 0.05). No correlation was found between D95% (normalized to the prescription dose) for the apex and remainder (R{sup 2} = 0.0116). Conclusion: No correlation was found between positive apical biopsy and suboptimal dosimetric coverage. Current research is looking into inter-fraction apex motion and deformation as a potential source of the increased apical failure using daily CBCT images.« less
The dosimetric impact of gadolinium-based contrast media in GBM brain patient plans for a MRI-Linac
NASA Astrophysics Data System (ADS)
Bilal Ahmad, Syed; Paudel, Moti Raj; Sarfehnia, Arman; Kim, Anthony; Pang, Geordi; Ruschin, Mark; Sahgal, Arjun; Keller, Brian M.
2017-08-01
Dosimetric effects of gadolinium based contrast media (Gadovist) were evaluated for the Elekta MRI linear accelerator using the research version of the Monaco treatment planning system (TPS). In order to represent a gadolinium uptake, the contrast was manually assigned to a phantom as well as to the gross tumour volume (GTV) of 6 glioblastoma multiforme (GBM) patients. A preliminary estimate of the dose enhancement, due to gadolinium, was performed using the phantom irradiated with a single beam. A more complicated assessment was performed for the GBM patients using a 7 field IMRT technique. The material table in Monaco was modified in order to identify the presence of a non-biological material. The dose distribution was modelled using GPUMCD (MC algorithm in Monaco) for an unmodified (or default) material table (DMT) as well as for a modified (or custom) material table (CMT) for both the phantom and patients. Various concentrations ranging between 8 and 157 mg ml-1 were used to represent the gadolinium uptake in the patient’s GTV. It was assumed that the gadolinium concentration remained the same for the entire course of radiation treatment. Results showed that at the tissue-Gadovist interface, inside the phantom, dose scored using the DMT was 7% lower compared to that using the CMT for 157 mg ml-1 concentration of gadolinium. Dosimetric differences in the case of the patient study were measured using the DVH parameters. D 50% was higher by 6% when the DMT was used compared to the CMT for dose modelling for a gadolinium concentration of 157 mg ml-1. This difference decreased gradually with decreasing concentration of gadolinium. It was concluded that dosimetric differences can be quantified in Monaco if the tumour-gadolinium concentration is more than 23 mg ml-1. If the gadolinium concentration is lower than 23 mg ml-1, then a correction for the presence of gadolinium may not be necessary in the TPS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, L; Huang, B; Rowedder, B
Purpose: The Smart leaf motion calculator (SLMC) in Eclipse treatment planning system is an advanced fluence delivery modeling algorithm as it takes into account fine MLC features including inter-leaf leakage, rounded leaf tips, non-uniform leaf thickness, and the spindle cavity etc. In this study, SLMC and traditional Varian LMC (VLMC) algorithms were investigated, for the first time, in dosimetric characteristics and delivery accuracy of sliding window (SW) IMRT. Methods: The SW IMRT plans of 51 cancer cases were included to evaluate dosimetric characteristics and dose delivery accuracy from leaf motion calculated by SLMC and VLMC, respectively. All plans were deliveredmore » using a Varian TrueBeam Linac. The DVH and MUs of the plans were analyzed. Three patient specific QA tools - independent dose calculation software IMSure, Delta4 phantom, and EPID portal dosimetry were also used to measure the delivered dose distribution. Results: Significant differences in the MUs were observed between the two LMCs (p≤0.001).Gamma analysis shows an excellent agreement between the planned dose distribution calculated by both LMC algorithms and delivered dose distribution measured by three QA tools in all plans at 3%/3 mm, leading to a mean pass rate exceeding 97%. The mean fraction of pixels with gamma < 1 of SLMC is slightly lower than that of VLMC in the IMSure and Delta4 results, but higher in portal dosimetry (the highest spatial resolution), especially in complex cases such as nasopharynx. Conclusion: The study suggests that the two LMCs generates the similar target coverage and sparing patterns of critical structures. However, SLMC is modestly more accurate than VLMC in modeling advanced MLC features, which may lead to a more accurate dose delivery in SW IMRT. Current clinical QA tools might not be specific enough to differentiate the dosimetric discrepancies at the millimeter level calculated by these two LMC algorithms. NIH/NIGMS grant U54 GM104944, Lincy Endowed Assistant Professorship.« less
Yip, C; Thomas, C; Michaelidou, A; James, D; Lynn, R; Lei, M
2014-01-01
Objective: To investigate if cone beam CT (CBCT) can be used to estimate the delivered dose in head and neck intensity-modulated radiotherapy (IMRT). Methods: 15 patients (10 without replan and 5 with replan) were identified retrospectively. Weekly CBCT was co-registered with original planning CT. Original high-dose clinical target volume (CTV1), low-dose CTV (CTV2), brainstem, spinal cord, parotids and external body contours were copied to each CBCT and modified to account for anatomical changes. Corresponding planning target volumes (PTVs) and planning organ-at-risk volumes were created. The original plan was applied and calculated using modified per-treatment volumes on the original CT. Percentage volumetric, cumulative (planned dose delivered prior to CBCT + adaptive dose delivered after CBCT) and actual delivered (summation of weekly adaptive doses) dosimetric differences between each per-treatment and original plan were calculated. Results: There was greater volumetric change in the parotids with an average weekly difference of between −4.1% and −27.0% compared with the CTVs/PTVs (−1.8% to −5.0%). The average weekly cumulative dosimetric differences were as follows: CTV/PTV (range, −3.0% to 2.2%), ipsilateral parotid volume receiving ≥26 Gy (V26) (range, 0.5–3.2%) and contralateral V26 (range, 1.9–6.3%). In patients who required replan, the average volumetric reductions were greater: CTV1 (−2.5%), CTV2 (−6.9%), PTV1 (−4.7%), PTV2 (−11.5%), ipsilateral (−10.4%) and contralateral parotids (−12.1%), but did not result in significant dosimetric changes. Conclusion: The dosimetric changes during head and neck simultaneous integrated boost IMRT do not necessitate adaptive radiotherapy in most patients. Advances in knowledge: Our study shows that CBCT could be used for dose estimation during head and neck IMRT. PMID:24288402
Bahreyni Toossi, Mohammad Taghi; Ghorbani, Mahdi; Mowlavi, Ali Asghar; Meigooni, Ali Soleimani
2012-01-01
Background Dosimetric characteristics of a high dose rate (HDR) GZP6 Co-60 brachytherapy source have been evaluated following American Association of Physicists in MedicineTask Group 43U1 (AAPM TG-43U1) recommendations for their clinical applications. Materials and methods MCNP-4C and MCNPX Monte Carlo codes were utilized to calculate dose rate constant, two dimensional (2D) dose distribution, radial dose function and 2D anisotropy function of the source. These parameters of this source are compared with the available data for Ralstron 60Co and microSelectron192Ir sources. Besides, a superimposition method was developed to extend the obtained results for the GZP6 source No. 3 to other GZP6 sources. Results The simulated value for dose rate constant for GZP6 source was 1.104±0.03 cGyh-1U-1. The graphical and tabulated radial dose function and 2D anisotropy function of this source are presented here. The results of these investigations show that the dosimetric parameters of GZP6 source are comparable to those for the Ralstron source. While dose rate constant for the two 60Co sources are similar to that for the microSelectron192Ir source, there are differences between radial dose function and anisotropy functions. Radial dose function of the 192Ir source is less steep than both 60Co source models. In addition, the 60Co sources are showing more isotropic dose distribution than the 192Ir source. Conclusions The superimposition method is applicable to produce dose distributions for other source arrangements from the dose distribution of a single source. The calculated dosimetric quantities of this new source can be introduced as input data to the GZP6 treatment planning system (TPS) and to validate the performance of the TPS. PMID:23077455
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mínguez, Pablo, E-mail: pablo.minguezgabina@osakidetza.net; Flux, Glenn; Genollá, José
2015-07-15
Purpose: The aim was to investigate whole-body and red marrow absorbed doses in treatments of neuroblastoma (NB) and adult neuroendocrine tumors (NETs) with {sup 131}I-metaiodobenzylguanidine and to propose a simple method for determining the activity to administer when dosimetric data for the individual patient are not available. Methods: Nine NB patients and six NET patients were included, giving in total 19 treatments as four patients were treated twice. Whole-body absorbed doses were determined from dose-rate measurements and planar gamma-camera imaging. For six NB and five NET treatments, red marrow absorbed doses were also determined using the blood-based method. Results: Dosimetricmore » data from repeated administrations in the same patient were consistent. In groups of NB and NET patients, similar whole-body residence times were obtained, implying that whole-body absorbed dose per unit of administered activity could be reasonably well described as a power function of the patient mass. For NB, this functional form was found to be consistent with dosimetric data from previously published studies. The whole-body to red marrow absorbed dose ratio was similar among patients, with values of 1.4 ± 0.6–1.7 ± 0.7 (1 standard deviation) in NB treatments and between 1.5 ± 0.6 and 1.7 ± 0.7 (1 standard deviation) in NET treatments. Conclusions: The consistency of dosimetric results between administrations for the same patient supports prescription of the activity based on dosimetry performed in pretreatment studies, or during the first administration in a fractionated schedule. The expressions obtained for whole-body absorbed doses per unit of administered activity as a function of patient mass for NB and NET treatments are believed to be a useful tool to estimate the activity to administer at the stage when the individual patient biokinetics has not yet been measured.« less
WE-G-BRA-04: Common Errors and Deficiencies in Radiation Oncology Practice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kry, S; Dromgoole, L; Alvarez, P
Purpose: Dosimetric errors in radiotherapy dose delivery lead to suboptimal treatments and outcomes. This work reviews the frequency and severity of dosimetric and programmatic errors identified by on-site audits performed by the IROC Houston QA center. Methods: IROC Houston on-site audits evaluate absolute beam calibration, relative dosimetry data compared to the treatment planning system data, and processes such as machine QA. Audits conducted from 2000-present were abstracted for recommendations, including type of recommendation and magnitude of error when applicable. Dosimetric recommendations corresponded to absolute dose errors >3% and relative dosimetry errors >2%. On-site audits of 1020 accelerators at 409 institutionsmore » were reviewed. Results: A total of 1280 recommendations were made (average 3.1/institution). The most common recommendation was for inadequate QA procedures per TG-40 and/or TG-142 (82% of institutions) with the most commonly noted deficiency being x-ray and electron off-axis constancy versus gantry angle. Dosimetrically, the most common errors in relative dosimetry were in small-field output factors (59% of institutions), wedge factors (33% of institutions), off-axis factors (21% of institutions), and photon PDD (18% of institutions). Errors in calibration were also problematic: 20% of institutions had an error in electron beam calibration, 8% had an error in photon beam calibration, and 7% had an error in brachytherapy source calibration. Almost all types of data reviewed included errors up to 7% although 20 institutions had errors in excess of 10%, and 5 had errors in excess of 20%. The frequency of electron calibration errors decreased significantly with time, but all other errors show non-significant changes. Conclusion: There are many common and often serious errors made during the establishment and maintenance of a radiotherapy program that can be identified through independent peer review. Physicists should be cautious, particularly in areas highlighted herein that show a tendency for errors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krema, Hatem, E-mail: htmkrm19@yahoo.com; Heydarian, Mostafa; Beiki-Ardakani, Akbar
2013-07-01
Purpose: To compare the dose distributions and late radiation toxicities for {sup 125}I brachytherapy (IBT) and stereotactic radiation therapy (SRT) in the treatment of juxtapapillary choroidal melanoma. Methods: Ninety-four consecutive patients with juxtapapillary melanoma were reviewed: 30 have been treated with IBT and 64 with SRT. Iodine-125 brachytherapy cases were modeled with plaque simulator software for dosimetric analysis. The SRT dosimetric data were obtained from the Radionics XKnife RT3 software. Mean doses at predetermined intraocular points were calculated. Kaplan-Meier estimates determined the actuarial rates of late toxicities, and the log–rank test compared the estimates. Results: The median follow-up was 46more » months in both cohorts. The 2 cohorts were balanced with respect to pretreatment clinical and tumor characteristics. Comparisons of radiation toxicity rates between the IBT and SRT cohorts yielded actuarial rates at 50 months for cataracts of 62% and 75% (P=.1), for neovascular glaucoma 8% and 47% (P=.002), for radiation retinopathy 59% and 89% (P=.0001), and for radiation papillopathy 39% and 74% (P=.003), respectively. Dosimetric comparisons between the IBT and SRT cohorts yielded mean doses of 12.8 and 14.1 Gy (P=.56) for the lens center, 17.6 and 19.7 Gy (P=.44) for the lens posterior pole, 13.9 and 10.8 Gy (P=.30) for the ciliary body, 61.9 and 69.7 Gy (P=.03) for optic disc center, and 48.9 and 60.1 Gy (P<.0001) for retina at 5-mm distance from tumor margin, respectively. Conclusions: Late radiation-induced toxicities were greater with SRT, which is secondary to the high-dose exposure inherent to the technique as compared with IBT. When technically feasible, IBT is preferred to treat juxtapapillary choroidal melanoma.« less
The dosimetric impact of gadolinium-based contrast media in GBM brain patient plans for a MRI-Linac.
Ahmad, Syed Bilal; Paudel, Moti Raj; Sarfehnia, Arman; Kim, Anthony; Pang, Geordi; Ruschin, Mark; Sahgal, Arjun; Keller, Brian M
2017-08-01
Dosimetric effects of gadolinium based contrast media (Gadovist) were evaluated for the Elekta MRI linear accelerator using the research version of the Monaco treatment planning system (TPS). In order to represent a gadolinium uptake, the contrast was manually assigned to a phantom as well as to the gross tumour volume (GTV) of 6 glioblastoma multiforme (GBM) patients. A preliminary estimate of the dose enhancement, due to gadolinium, was performed using the phantom irradiated with a single beam. A more complicated assessment was performed for the GBM patients using a 7 field IMRT technique. The material table in Monaco was modified in order to identify the presence of a non-biological material. The dose distribution was modelled using GPUMCD (MC algorithm in Monaco) for an unmodified (or default) material table (DMT) as well as for a modified (or custom) material table (CMT) for both the phantom and patients. Various concentrations ranging between 8 and 157 mg ml -1 were used to represent the gadolinium uptake in the patient's GTV. It was assumed that the gadolinium concentration remained the same for the entire course of radiation treatment. Results showed that at the tissue-Gadovist interface, inside the phantom, dose scored using the DMT was 7% lower compared to that using the CMT for 157 mg ml -1 concentration of gadolinium. Dosimetric differences in the case of the patient study were measured using the DVH parameters. D 50% was higher by 6% when the DMT was used compared to the CMT for dose modelling for a gadolinium concentration of 157 mg ml -1 . This difference decreased gradually with decreasing concentration of gadolinium. It was concluded that dosimetric differences can be quantified in Monaco if the tumour-gadolinium concentration is more than 23 mg ml -1 . If the gadolinium concentration is lower than 23 mg ml -1 , then a correction for the presence of gadolinium may not be necessary in the TPS.
The impact of emphysema on dosimetric parameters for stereotactic body radiotherapy of the lung
Ochiai, Satoru; Nomoto, Yoshihito; Yamashita, Yasufumi; Inoue, Tomoki; Murashima, Shuuichi; Hasegawa, Daisuke; Kurita, Yoshie; Watanabe, Yui; Toyomasu, Yutaka; Kawamura, Tomoko; Takada, Akinori; Noriko; Kobayashi, Shigeki; Sakuma, Hajime
2016-01-01
The purpose of this study was to evaluate the impact of emphysematous changes in lung on dosimetric parameters in stereotactic body radiation therapy (SBRT) for lung tumor. A total of 72 treatment plans were reviewed, and dosimetric factors [including homogeneity index (HI) and conformity index (CI)] were evaluated. Emphysematous changes in lung were observed in 43 patients (60%). Patients were divided into three groups according to the severity of emphysema: no emphysema (n = 29), mild emphysema (n = 22) and moderate to severe emphysema groups (n = 21). The HI (P < 0.001) and the CI (P = 0.029) were significantly different in accordance with the severity of emphysema in one-way analysis of variance (ANOVA). The HI value was significantly higher in the moderate to severe emphysema group compared with in the no emphysema (Tukey, P < 0.001) and mild emphysema groups (P = 0.002). The CI value was significantly higher in the moderate to severe emphysema group compared with in the no emphysema group (P = 0.044). In multiple linear regression analysis, the severity of emphysema (P < 0.001) and the mean material density of the lung within the PTV (P < 0.001) were significant factors for HI, and the mean density of the lung within the PTV (P = 0.005) was the only significant factor for CI. The mean density of the lung within the PTV was significantly different in accordance with the severity of emphysema (one-way ANOVA, P = 0.008) and the severity of emphysema (P < 0.001) was one of the significant factors for the density of the lung within the PTV in multiple linear regression analysis. Our results suggest that emphysematous changes in the lung significantly impact on several dosimetric parameters in SBRT, and they should be carefully evaluated before treatment planning. PMID:27380802
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Z; Kennedy, A; Larsen, E
2015-06-15
Purpose: The aim of this study was to investigate the dosimetric impact of the combination of photon energy and treatment technique on radiotherapy of localized prostate cancer when knowledge based planning was used. Methods: A total of 16 patients with localized prostate cancer were retrospectively retrieved from database and used for this study. For each patient, four types of treatment plans with different combinations of photon energy (6X and 10X) and treatment techniques (7-field IMRT and 2-arc VMAT) were created using a prostate DVH estimation model in RapidPlan™ and Eclipse treatment planning system (Varian Medical System). For any beam arrangement,more » DVH objectives and weighting priorities were generated based on the geometric relationship between the OAR and PTV. Photon optimization algorithm was used for plan optimization and AAA algorithm was used for final dose calculation. Plans were evaluated in terms of the pre-defined dosimetric endpoints for PTV, rectum, bladder, penile bulb, and femur heads. A Student’s paired t-test was used for statistical analysis and p > 0.05 was considered statistically significant. Results: For PTV, V95 was statistically similar among all four types of plans, though the mean dose of 10X plans was higher than that of 6X plans. VMAT plans showed higher heterogeneity index than IMRT plans. No statistically significant difference in dosimetry metrics was observed for rectum, bladder, and penile bulb among plan types. For left and right femur, VMAT plans had a higher mean dose than IMRT plans regardless of photon energy, whereas the maximum dose was similar. Conclusion: Overall, the dosimetric endpoints were similar regardless of photon energy and treatment techniques when knowledge based auto planning was used. Given the similarity in dosimetry metrics of rectum, bladder, and penile bulb, the genitourinary and gastrointestinal toxicities should be comparable among the selections of photon energy and treatment techniques.« less
Chaikh, Abdulhamid; Balosso, Jacques
2016-12-01
To apply the statistical bootstrap analysis and dosimetric criteria's to assess the change of prescribed dose (PD) for lung cancer to maintain the same clinical results when using new generations of dose calculation algorithms. Nine lung cancer cases were studied. For each patient, three treatment plans were generated using exactly the same beams arrangements. In plan 1, the dose was calculated using pencil beam convolution (PBC) algorithm turning on heterogeneity correction with modified batho (PBC-MB). In plan 2, the dose was calculated using anisotropic analytical algorithm (AAA) and the same PD, as plan 1. In plan 3, the dose was calculated using AAA with monitor units (MUs) obtained from PBC-MB, as input. The dosimetric criteria's include MUs, delivered dose at isocentre (Diso) and calculated dose to 95% of the target volume (D95). The bootstrap method was used to assess the significance of the dose differences and to accurately estimate the 95% confidence interval (95% CI). Wilcoxon and Spearman's rank tests were used to calculate P values and the correlation coefficient (ρ). Statistically significant for dose difference was found using point kernel model. A good correlation was observed between both algorithms types, with ρ>0.9. Using AAA instead of PBC-MB, an adjustment of the PD in the isocentre is suggested. For a given set of patients, we assessed the need to readjust the PD for lung cancer using dosimetric indices and bootstrap statistical method. Thus, if the goal is to keep on with the same clinical results, the PD for lung tumors has to be adjusted with AAA. According to our simulation we suggest to readjust the PD by 5% and an optimization for beam arrangements to better protect the organs at risks (OARs).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehler, E; Higgins, P; Dusenbery, K
2014-06-15
Purpose: To validate a method to create per patient phantoms for dosimetric verification measurements. Methods: Using a RANDO phantom as a substitute for an actual patient, a model of the external features of the head and neck region of the phantom was created. A phantom was used instead of a human for two reasons: to allow for dosimetric measurements that would not be possible in-vivo and to avoid patient privacy issues. Using acrylonitrile butadiene styrene thermoplastic as the building material, a hollow replica was created using the 3D printer filled with a custom tissue equivalent mixture of paraffin wax, magnesiummore » oxide, and calcium carbonate. A traditional parallel-opposed head and neck plan was constructed. Measurements were performed with thermoluminescent dosimeters in both the RANDO phantom and in the 3D printed phantom. Calculated and measured dose was compared at 17 points phantoms including regions in high and low dose regions and at the field edges. On-board cone beam CT was used to localize both phantoms within 1mm and 1° prior to radiation. Results: The maximum difference in calculated dose between phantoms was 1.8% of the planned dose (180 cGy). The mean difference between calculated and measured dose in the anthropomorphic phantom and the 3D printed phantom was 1.9% ± 2.8% and −0.1% ± 4.9%, respectively. The difference between measured and calculated dose was determined in the RANDO and 3D printed phantoms. The differences between measured and calculated dose in each respective phantom was within 2% for 12 of 17 points. The overlap of the RANDO and 3D printed phantom was 0.956 (Jaccard Index). Conclusion: A custom phantom was created using a 3D printer. Dosimetric calculations and measurements showed good agreement between the dose in the RANDO phantom (patient substitute) and the 3D printed phantom.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winkel, D; Bol, GH; Asselen, B van
Purpose: To develop an automated radiotherapy treatment planning and optimization workflow for prostate cancer in order to generate clinical treatment plans. Methods: A fully automated radiotherapy treatment planning and optimization workflow was developed based on the treatment planning system Monaco (Elekta AB, Stockholm, Sweden). To evaluate our method, a retrospective planning study (n=100) was performed on patients treated for prostate cancer with 5 field intensity modulated radiotherapy, receiving a dose of 35×2Gy to the prostate and vesicles and a simultaneous integrated boost of 35×0.2Gy to the prostate only. A comparison was made between the dosimetric values of the automatically andmore » manually generated plans. Operator time to generate a plan and plan efficiency was measured. Results: A comparison of the dosimetric values show that automatically generated plans yield more beneficial dosimetric values. In automatic plans reductions of 43% in the V72Gy of the rectum and 13% in the V72Gy of the bladder are observed when compared to the manually generated plans. Smaller variance in dosimetric values is seen, i.e. the intra- and interplanner variability is decreased. For 97% of the automatically generated plans and 86% of the clinical plans all criteria for target coverage and organs at risk constraints are met. The amount of plan segments and monitor units is reduced by 13% and 9% respectively. Automated planning requires less than one minute of operator time compared to over an hour for manual planning. Conclusion: The automatically generated plans are highly suitable for clinical use. The plans have less variance and a large gain in time efficiency has been achieved. Currently, a pilot study is performed, comparing the preference of the clinician and clinical physicist for the automatic versus manual plan. Future work will include expanding our automated treatment planning method to other tumor sites and develop other automated radiotherapy workflows.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uchida, T; Osanai, M; Homma, N
2016-06-15
Purpose: Dynamic tumor tracking radiation therapy can potentially reduce internal margin without prolongation of irradiation time. However, dynamic tumor tracking technique requires an extra margin (tracking margin, TM) for the uncertainty of tumor localization, prediction, and beam repositioning. The purpose of this study was to evaluate a dosimetric impact caused by TM. Methods: We used 4D XCAT to create 9 digital phantom datasets of different tumor size and motion range: tumor diameter TD=(1, 3, 5) cm and motion range MR=(1, 2, 3) cm. For each dataset, respiratory gating (30%–70% phase) and tumor tracking treatment plans were created using 8-field 3D-CRTmore » by 4D dose calculation implemented in RayStation. The dose constraint was based on RTOG0618. For the tracking plan, TMs of (0, 2.5, 5) mm were considered by surrounding a normal setup margin: SM=5 mm. We calculated V20 of normal lung to evaluate the dosimetric impact for each case, and estimated an equivalent TM that affects the same impact on V20 obtained by the gated plan. Results: The equivalent TMs for (TD=1 cm, MR=2 cm), (TD=1 cm, MR=3 cm), (TD=5 cm, MR=2 cm), and (TD=5 cm, MR=3 cm) were estimated as 1.47 mm, 3.95 mm, 1.04 mm, and 2.13 mm, respectively. The larger the tumor size, the equivalent TM became smaller. On the other hand, the larger the motion range, the equivalent TM was found to be increased. Conclusion: Our results showed the equivalent TM changes depending on tumor size and motion range. The tracking plan with TM less than the equivalent TM achieves a dosimetric impact better than the gated plan in less treatment time. This study was partially supported by JSPS Kakenhi and Varian Medical Systems.« less
Dosimetric Implications of Residual Tracking Errors During Robotic SBRT of Liver Metastases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Mark; Tuen Mun Hospital, Hong Kong; Grehn, Melanie
Purpose: Although the metric precision of robotic stereotactic body radiation therapy in the presence of breathing motion is widely known, we investigated the dosimetric implications of breathing phase–related residual tracking errors. Methods and Materials: In 24 patients (28 liver metastases) treated with the CyberKnife, we recorded the residual correlation, prediction, and rotational tracking errors from 90 fractions and binned them into 10 breathing phases. The average breathing phase errors were used to shift and rotate the clinical tumor volume (CTV) and planning target volume (PTV) for each phase to calculate a pseudo 4-dimensional error dose distribution for comparison with themore » original planned dose distribution. Results: The median systematic directional correlation, prediction, and absolute aggregate rotation errors were 0.3 mm (range, 0.1-1.3 mm), 0.01 mm (range, 0.00-0.05 mm), and 1.5° (range, 0.4°-2.7°), respectively. Dosimetrically, 44%, 81%, and 92% of all voxels differed by less than 1%, 3%, and 5% of the planned local dose, respectively. The median coverage reduction for the PTV was 1.1% (range in coverage difference, −7.8% to +0.8%), significantly depending on correlation (P=.026) and rotational (P=.005) error. With a 3-mm PTV margin, the median coverage change for the CTV was 0.0% (range, −1.0% to +5.4%), not significantly depending on any investigated parameter. In 42% of patients, the 3-mm margin did not fully compensate for the residual tracking errors, resulting in a CTV coverage reduction of 0.1% to 1.0%. Conclusions: For liver tumors treated with robotic stereotactic body radiation therapy, a safety margin of 3 mm is not always sufficient to cover all residual tracking errors. Dosimetrically, this translates into only small CTV coverage reductions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Germain, Francois; Beaulieu, Luc; Fortin, Andre
2008-04-01
In conformal radiotherapy planning for lung cancer, respiratory movements are not taken into account when a single computed tomography (CT) scan is performed. This study examines tumor movements to design individualized margins to account for these movements and evaluates their dosimetric impacts on planning volume. Fifteen patients undergoing CT-based planning for radical radiotherapy for localized lung cancer formed the study cohort. A reference plan was constructed based on reference gross, clinical, and planning target volumes (rGTV, rCTV, and rPTV, respectively). The reference plans were compared with individualized plans using individualized margins obtained by using 5 serial CT scans to generatemore » individualized target volumes (iGTV, iCTV, and iPTV). Three-dimensional conformal radiation therapy was used for plan generation using 6- and 23-MV photon beams. Ten plans for each patient were generated and dose-volume histograms (DVHs) were calculated. Comparisons of volumetric and dosimetric parameters were performed using paired Student t-tests. Relative to the rGTV, the total volume occupied by the superimposed GTVs increased progressively with each additional CT scans. With the use of all 5 scans, the average increase in GTV was 52.1%. For the plans with closest dosimetric coverage, target volume was smaller (iPTV/rPTV ratio 0.808) but lung irradiation was only slightly decreased. Reduction in the proportion of lung tissue that received 20 Gy or more outside the PTV (V20) was observed both for 6-MV plans (-0.73%) and 23-MV plans (-0.65%), with p = 0.02 and p = 0.04, respectively. In conformal RT planning for the treatment of lung cancer, the use of serial CT scans to evaluate respiratory motion and to generate individualized margins to account for these motions produced only a limited lung sparing advantage.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, M; Sura, S
Purpose: To evaluate dosimetric impact of two axillary nodes (AX) boost techniques: (1) posterior-oblique optimized field boost (POB), (2) traditional posterior-anterior boost (PAB) with field optimization (O-PAB), for a postmastectomy breast patient with positive axillary lymph nodes. Methods: Five patients, 3 left and 2 right chest walls, were included in this study. All patients were simulated in 5mm CT slice thickness. Supraclavicular (SC) and level I/II/III AX were contoured based on the RTOG atlas guideline. Five treatment plans, (1) tangential chest wall, (2) oblique SC including AX, (3) PAB, O-PAB and POB, were created for each patient. Three plan sumsmore » (PS) were generated by sum one of (3) plan with plan (1) and (2). The field optimization was done through PS dose distribution, which included a field adjustment, a fractional dose, a calculation location and a gantry angle selection for POB. A dosimetric impact was evaluated by comparing a SC and AX coverage, a PS maximum dose, an irradiated area percentage volume received dose over 105% prescription dose (V105), an ipsi-laterial mean lung dose (MLD), an ipsi-laterial mean humeral head dose (MHHD), a mean heart dose (MHD) (for left case only) and their DVH amount these three technique. Results: O-PAB, POB and PAB dosimetric results showed that there was no significant different on SC and AX coverage (p>0.43) and MHD (p>0.16). The benefit of sparing lung irradiation from PAB to O-PAB to POB was significant (p<0.004). PAB showed a highest PS maximum dose (p<0.005), V105 (p<0.023) and MLD (compared with OPAB, p=0.055). MHHD showed very sensitive to the patient arm positioning and anatomy. O-PAB convinced a lower MHHD than PAB (p=0.03). Conclusion: 3D CT contouring plays main role in accuracy radiotherapy. Dosimetric advantage of POB and O-PAB was observed for a better normal tissue irradiation sparing.« less
Melchert, Corinna; Kovács, György
2016-01-01
Purpose This study aims to compare the dosimetric data of local tumor's bed dose escalation (boost) with photon beams (external beam radiation therapy – EBRT) versus high-dose-rate interstitial brachytherapy (HDR-BT) after breast-conserving treatment in women with early-stage breast cancer. Material and methods We analyzed the treatment planning data of 136 irradiated patients, treated between 2006 and 2013, who underwent breast-conserving surgery and adjuvant whole breast irradiation (WBI; 50.4 Gy) and boost (HDR-BT: 10 Gy in one fraction [n = 36]; EBRT: 10 Gy in five fractions [n = 100]). Organs at risk (OAR; heart, ipsilateral lung, skin, most exposed rib segment) were delineated. Dosimetric parameters were calculated with the aid of dose-volume histograms (DVH). A non-parametric test was performed to compare the two different boost forms. Results There was no difference for left-sided cancers regarding the maximum dose to the heart (HDR-BT 29.8% vs. EBRT 29.95%, p = 0.34). The maximum doses to the other OAR were significantly lower for HDR-BT (Dmax lung 47.12% vs. 87.7%, p < 0.01; rib 61.17% vs. 98.5%, p < 0.01; skin 57.1% vs. 94.75%, p < 0.01; in the case of right-sided breast irradiation, dose of the heart 6.00% vs. 16.75%, p < 0.01). Conclusions Compared to EBRT, local dose escalation with HDR-BT presented a significant dose reduction to the investigated OAR. Only left-sided irradiation showed no difference regarding the maximum dose to the heart. Reducing irradiation exposure to OAR could result in a reduction of long-term side effects. Therefore, from a dosimetric point of view, an interstitial boost complementary to WBI via EBRT seems to be more advantageous in the adjuvant radiotherapy of breast cancer. PMID:27648082
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mell, Loren K.; Kochanski, Joel D.; Department of Radiation and Cellular Oncology, University of Illinois at Chicago, Chicago, IL
Purpose: To identify dosimetric parameters associated with acute hematologic toxicity (HT) and chemotherapy delivery in cervical cancer patients undergoing concurrent chemotherapy and intensity-modulated pelvic radiotherapy. Methods and Materials: We analyzed 37 cervical cancer patients receiving concurrent cisplatin (40 mg/m{sup 2}/wk) and intensity-modulated pelvic radiotherapy. Pelvic bone marrow (BM) was contoured for each patient and divided into three subsites: lumbosacral spine, ilium, and lower pelvis. The volume of each region receiving 10, 20, 30, and {>=}40 Gy (V{sub 1}, V{sub 2}, V{sub 3}, and V{sub 4}, respectively) was calculated. HT was graded according to Radiation Therapy Oncology Group system. Multivariate regressionmore » models were used to test associations between dosimetric parameters and HT and chemotherapy delivery. Results: Increased pelvic BM V{sub 1} (BM-V{sub 1}) was associated with an increased Grade 2 or worse leukopenia and neutropenia (odds ratio [OR], 2.09; 95% confidence interval [CI], 1.24-3.53; p = 0.006; and OR, 1.41; 95% CI, 1.02-1.94; p = 0.037, respectively). Patients with BM-V{sub 1} {>=}90% had higher rates of Grade 2 or worse leukopenia and neutropenia than did patients with BM-V{sub 1} <90% (11.1% vs. 73.7%, p < 0.01; and 5.6% vs. 31.6%, p = 0.09) and were more likely to have chemotherapy held on univariate (16.7% vs. 47.4%, p = 0.08) and multivariate (OR, 32.2; 95% CI, 1.67-622; p = 0.02) analysis. No associations between HT and V{sub 3} and V{sub 4} were observed. Dosimetric parameters involving the lumbosacral spine and lower pelvis had stronger associations with HT than did those involving the ilium. Conclusion: The volume of pelvic BM receiving low-dose radiation is associated with HT and chemotherapy delivery in cervical cancer patients undergoing concurrent chemoradiotherapy.« less
Automation of a Linear Accelerator Dosimetric Quality Assurance Program
NASA Astrophysics Data System (ADS)
Lebron Gonzalez, Sharon H.
According to the American Society of Radiation Oncology, two-thirds of all cancer patients will receive radiation therapy during their illness with the majority of the treatments been delivered by a linear accelerator (linac). Therefore, quality assurance (QA) procedures must be enforced in order to deliver treatments with a machine in proper conditions. The overall goal of this project is to automate the linac's dosimetric QA procedures by analyzing and accomplishing various tasks. First, the photon beam dosimetry (i.e. total scatter correction factor, infinite percentage depth dose (PDD) and profiles) were parameterized. Parameterization consists of defining the parameters necessary for the specification of a dosimetric quantity model creating a data set that is portable and easy to implement for different applications including: beam modeling data input into a treatment planning system (TPS), comparing measured and TPS modelled data, the QA of a linac's beam characteristics, and the establishment of a standard data set for comparison with other data, etcetera. Second, this parameterization model was used to develop a universal method to determine the radiation field size of flattened (FF), flattening-filter-free (FFF) and wedge beams which we termed the parameterized gradient method (PGM). Third, the parameterized model was also used to develop a profile-based method for assessing the beam quality of photon FF and FFF beams using an ionization chamber array. The PDD and PDD change was also predicted from the measured profile. Lastly, methods were created to automate the multileaf collimator (MLC) calibration and QA procedures as well as the acquisition of the parameters included in monthly and annual photon dosimetric QA. A two field technique was used for the calculation of the MLC leaf relative offsets using an electronic portal imaging device (EPID). A step-and-shoot technique was used to accurately acquire the radiation field size, flatness, symmetry, output and beam quality specifiers in a single delivery to an ionization chamber array for FF and FFF beams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbiero, Sara; Specialty School in Medical Physics, University of Pisa, Pisa; Rink, Alexandra
2016-01-01
Purpose: To report on single-fraction stereotactic body radiotherapy (RT) (SBRT) with flattening filter (FF)–free (FFF) volumetric modulated arc therapy (VMAT) for lung cancer and to compare dosimetric results with VMAT with FF. Methods and materials: Overall, 25 patients were treated with 6-MV FFF VMAT (Varian TrueBeam STx LINAC) to a prescribed dose of 24 Gy in a single fraction. Treatment plans were recreated using FF VMAT. Dose-volume indices, monitor units (MU), and treatment times were compared between FFF and FF VMAT techniques. Results: Dose constraints to PTV, spinal cord, and lungs were reached in FFF and FF plans. In FFFmore » plans, average conformity index was 1.13 (95% CI: 1.07 to1.38). Maximum doses to spinal cord, heart, esophagus, and trachea were 2.9 Gy (95% CI: 0.4 to 6.7 Gy), 0.8 Gy (95% CI: 0 to 3.6 Gy), 3.3 Gy (95% CI: 0.02 to 13.9 Gy), and 1.5 Gy (95% CI: 0 to 4.9 Gy), respectively. Average V7 Gy, V7.4 Gy, and mean dose to the healthy lung were 126.5 cc (95% CI: 41.3 to 248.9 cc), 107.3 cc (95% CI: 18.7 to 232.8 cc), and 1.1 Gy (95% CI: 0.3 to 2.2 Gy), respectively. No statistically significant differences were found in dosimetric results and MU between FF and FFF treatments. Treatment time was reduced by an average factor of 2.31 (95% CI: 2.15 to 2.43) from FF treatments to FFF, and the difference was statistically significant. Conclusions: FFF VMAT for lung SBRT provides equivalent dosimetric results to the target and organs at risk as FF VMAT while significantly reducing treatment time.« less
A new metric for assessing IMRT modulation complexity and plan deliverability.
McNiven, Andrea L; Sharpe, Michael B; Purdie, Thomas G
2010-02-01
To evaluate the utility of a new complexity metric, the modulation complexity score (MCS), in the treatment planning and quality assurance processes and to evaluate the relationship of the metric with deliverability. A multisite (breast, rectum, prostate, prostate bed, lung, and head and neck) and site-specific (lung) dosimetric evaluation has been completed. The MCS was calculated for each beam and the overall treatment plan. A 2D diode array (MapCHECK, Sun Nuclear, Melbourne, FL) was used to acquire measurements for each beam. The measured and planned dose (PINNACLE3, Phillips, Madison, WI) was evaluated using different percent differences and distance to agreement (DTA) criteria (3%/ 3 mm and 2%/ 1 mm) and the relationship between the dosimetric results and complexity (as measured by the MCS or simple beam parameters) assessed. For the multisite analysis (243 plans total), the mean MCS scores for each treatment site were breast (0.92), rectum (0.858), prostate (0.837), prostate bed (0.652), lung (0.631), and head and neck (0.356). The MCS allowed for compilation of treatment site-specific statistics, which is useful for comparing different techniques, as well as for comparison of individual treatment plans with the typical complexity levels. For the six plans selected for dosimetry, the average diode percent pass rate was 98.7% (minimum of 96%) for 3%/3 mm evaluation criteria. The average difference in absolute dose measurement between the planned and measured dose was 1.7 cGy. The detailed lung analysis also showed excellent agreement between the measured and planned dose, as all beams had a diode percentage pass rate for 3%/3 mm criteria of greater than 95.9%, with an average pass rate of 99.0%. The average absolute maximum dose difference for the lung plans was 0.7 cGy. There was no direct correlation between the MCS and simple beam parameters which could be used as a surrogate for complexity level (i.e., number of segments or MU). An evaluation criterion of 2%/ 1 mm reliably allowed for the identification of beams that are dosimetrically robust. In this study we defined a robust beam or plan as one that maintained a diode percentage pass rate greater than 90% at 2%/ 1 mm, indicating delivery that was deemed accurate when compared to the planned dose, even under stricter evaluation criterion. MCS and MU threshold criteria were determined by defining a required specificity of 1.0. A MCS threshold of 0.8 allowed for identification of robust deliverability with a sensitivity of 0.36. In contrast, MU had a lower sensitivity of 0.23 for a threshold of 50 MU. The MCS allows for a quantitative assessment of plan complexity, on a fixed scale, that can be applied to all treatment sites and can provide more information related to dose delivery than simple beam parameters. This could prove useful throughout the entire treatment planning and QA process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, J; Yoon, M; Nam, T
2014-06-01
Purpose: The dose distributions within the real volumes of tumor targets and critical organs during internal target volume-based intensity-modulated radiation therapy (ITV-IMRT) for liver cancer were recalculated by applying the effects of actual respiratory organ motion, and the dosimetric features were analyzed through comparison with gating IMRT (Gate-IMRT) plan results. Methods: The 4DCT data for 10 patients who had been treated with Gate-IMRT for liver cancer were selected to create ITV-IMRT plans. The ITV was created using MIM software, and a moving phantom was used to simulate respiratory motion. The period and range of respiratory motion were recorded in allmore » patients from 4DCT-generated movie data, and the same period and range were applied when operating the dynamic phantom to realize coincident respiratory conditions in each patient. The doses were recalculated with a 3 dose-volume histogram (3DVH) program based on the per-field data measured with a MapCHECK2 2-dimensional diode detector array and compared with the DVHs calculated for the Gate-IMRT plan. Results: Although a sufficient prescription dose covered the PTV during ITV-IMRT delivery, the dose homogeneity in the PTV was inferior to that with the Gate-IMRT plan. We confirmed that there were higher doses to the organs-at-risk (OARs) with ITV-IMRT, as expected when using an enlarged field, but the increased dose to the spinal cord was not significant and the increased doses to the liver and kidney could be considered as minor when the reinforced constraints were applied during IMRT plan optimization. Conclusion: Because Gate-IMRT cannot always be considered an ideal method with which to correct the respiratory motional effect, given the dosimetric variations in the gating system application and the increased treatment time, a prior analysis for optimal IMRT method selection should be performed while considering the patient's respiratory condition and IMRT plan results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferreyra, M; Salinas Aranda, F; Dodat, D
Purpose: To use end-to-end testing to validate a 6 MV high dose rate photon beam, configured for Eclipse AAA algorithm using Golden Beam Data (GBD), for SBRT treatments using RapidArc. Methods: Beam data was configured for Varian Eclipse AAA algorithm using the GBD provided by the vendor. Transverse and diagonals dose profiles, PDDs and output factors down to a field size of 2×2 cm2 were measured on a Varian Trilogy Linac and compared with GBD library using 2% 2mm 1D gamma analysis. The MLC transmission factor and dosimetric leaf gap were determined to characterize the MLC in Eclipse. Mechanical andmore » dosimetric tests were performed combining different gantry rotation speeds, dose rates and leaf speeds to evaluate the delivery system performance according to VMAT accuracy requirements. An end-to-end test was implemented planning several SBRT RapidArc treatments on a CIRS 002LFC IMRT Thorax Phantom. The CT scanner calibration curve was acquired and loaded in Eclipse. PTW 31013 ionization chamber was used with Keithley 35617EBS electrometer for absolute point dose measurements in water and lung equivalent inserts. TPS calculated planar dose distributions were compared to those measured using EPID and MapCheck, as an independent verification method. Results were evaluated with gamma criteria of 2% dose difference and 2mm DTA for 95% of points. Results: GBD set vs. measured data passed 2% 2mm 1D gamma analysis even for small fields. Machine performance tests show results are independent of machine delivery configuration, as expected. Absolute point dosimetry comparison resulted within 4% for the worst case scenario in lung. Over 97% of the points evaluated in dose distributions passed gamma index analysis. Conclusion: Eclipse AAA algorithm configuration of the 6 MV high dose rate photon beam using GBD proved efficient. End-to-end test dose calculation results indicate it can be used clinically for SBRT using RapidArc.« less
Impact of temporal probability in 4D dose calculation for lung tumors.
Rouabhi, Ouided; Ma, Mingyu; Bayouth, John; Xia, Junyi
2015-11-08
The purpose of this study was to evaluate the dosimetric uncertainty in 4D dose calculation using three temporal probability distributions: uniform distribution, sinusoidal distribution, and patient-specific distribution derived from the patient respiratory trace. Temporal probability, defined as the fraction of time a patient spends in each respiratory amplitude, was evaluated in nine lung cancer patients. Four-dimensional computed tomography (4D CT), along with deformable image registration, was used to compute 4D dose incorporating the patient's respiratory motion. First, the dose of each of 10 phase CTs was computed using the same planning parameters as those used in 3D treatment planning based on the breath-hold CT. Next, deformable image registration was used to deform the dose of each phase CT to the breath-hold CT using the deformation map between the phase CT and the breath-hold CT. Finally, the 4D dose was computed by summing the deformed phase doses using their corresponding temporal probabilities. In this study, 4D dose calculated from the patient-specific temporal probability distribution was used as the ground truth. The dosimetric evaluation matrix included: 1) 3D gamma analysis, 2) mean tumor dose (MTD), 3) mean lung dose (MLD), and 4) lung V20. For seven out of nine patients, both uniform and sinusoidal temporal probability dose distributions were found to have an average gamma passing rate > 95% for both the lung and PTV regions. Compared with 4D dose calculated using the patient respiratory trace, doses using uniform and sinusoidal distribution showed a percentage difference on average of -0.1% ± 0.6% and -0.2% ± 0.4% in MTD, -0.2% ± 1.9% and -0.2% ± 1.3% in MLD, 0.09% ± 2.8% and -0.07% ± 1.8% in lung V20, -0.1% ± 2.0% and 0.08% ± 1.34% in lung V10, 0.47% ± 1.8% and 0.19% ± 1.3% in lung V5, respectively. We concluded that four-dimensional dose computed using either a uniform or sinusoidal temporal probability distribution can approximate four-dimensional dose computed using the patient-specific respiratory trace.
Dynamic simulation of motion effects in IMAT lung SBRT.
Zou, Wei; Yin, Lingshu; Shen, Jiajian; Corradetti, Michael N; Kirk, Maura; Munbodh, Reshma; Fang, Penny; Jabbour, Salma K; Simone, Charles B; Yue, Ning J; Rengan, Ramesh; Teo, Boon-Keng Kevin
2014-11-01
Intensity modulated arc therapy (IMAT) has been widely adopted for Stereotactic Body Radiotherapy (SBRT) for lung cancer. While treatment dose is optimized and calculated on a static Computed Tomography (CT) image, the effect of the interplay between the target and linac multi-leaf collimator (MLC) motion is not well described and may result in deviations between delivered and planned dose. In this study, we investigated the dosimetric consequences of the inter-play effect on target and organs at risk (OAR) by simulating dynamic dose delivery using dynamic CT datasets. Fifteen stage I non-small cell lung cancer (NSCLC) patients with greater than 10 mm tumor motion treated with SBRT in 4 fractions to a dose of 50 Gy were retrospectively analyzed for this study. Each IMAT plan was initially optimized using two arcs. Simulated dynamic delivery was performed by associating the MLC leaf position, gantry angle and delivered beam monitor units (MUs) for each control point with different respiratory phases of the 4D-CT using machine delivery log files containing time stamps of the control points. Dose maps associated with each phase of the 4D-CT dose were calculated in the treatment planning system and accumulated using deformable image registration onto the exhale phase of the 4D-CT. The original IMAT plans were recalculated on the exhale phase of the CT for comparison with the dynamic simulation. The dose coverage of the PTV showed negligible variation between the static and dynamic simulation. There was less than 1.5% difference in PTV V95% and V90%. The average inter-fraction and cumulative dosimetric effects among all the patients were less than 0.5% for PTV V95% and V90% coverage and 0.8 Gy for the OARs. However, in patients where target is close to the organs, large variations were observed on great vessels and bronchus for as much as 4.9 Gy and 7.8 Gy. Limited variation in target dose coverage and OAR constraints were seen for each SBRT fraction as well as over all four fractions. Large dose variations were observed on critical organs in patients where these organs were closer to the target.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Z; Shi, F; Gu, X
2016-06-15
Purpose: This proof-of-concept study is to develop a real-time Monte Carlo (MC) based treatment-dose reconstruction and monitoring system for radiotherapy, especially for the treatments with complicated delivery, to catch treatment delivery errors at the earliest possible opportunity and interrupt the treatment only when an unacceptable dosimetric deviation from our expectation occurs. Methods: First an offline scheme is launched to pre-calculate the expected dose from the treatment plan, used as ground truth for real-time monitoring later. Then an online scheme with three concurrent threads is launched while treatment delivering, to reconstruct and monitor the patient dose in a temporally resolved fashionmore » in real-time. Thread T1 acquires machine status every 20 ms to calculate and accumulate fluence map (FM). Once our accumulation threshold is reached, T1 transfers the FM to T2 for dose reconstruction ad starts to accumulate a new FM. A GPU-based MC dose calculation is performed on T2 when MC dose engine is ready and a new FM is available. The reconstructed instantaneous dose is directed to T3 for dose accumulation and real-time visualization. Multiple dose metrics (e.g. maximum and mean dose for targets and organs) are calculated from the current accumulated dose and compared with the pre-calculated expected values. Once the discrepancies go beyond our tolerance, an error message will be send to interrupt the treatment delivery. Results: A VMAT Head-and-neck patient case was used to test the performance of our system. Real-time machine status acquisition was simulated here. The differences between the actual dose metrics and the expected ones were 0.06%–0.36%, indicating an accurate delivery. ∼10Hz frequency of dose reconstruction and monitoring was achieved, with 287.94s online computation time compared to 287.84s treatment delivery time. Conclusion: Our study has demonstrated the feasibility of computing a dose distribution in a temporally resolved fashion in real-time and quantitatively and dosimetrically monitoring the treatment delivery.« less
Direct aperture optimization: a turnkey solution for step-and-shoot IMRT.
Shepard, D M; Earl, M A; Li, X A; Naqvi, S; Yu, C
2002-06-01
IMRT treatment plans for step-and-shoot delivery have traditionally been produced through the optimization of intensity distributions (or maps) for each beam angle. The optimization step is followed by the application of a leaf-sequencing algorithm that translates each intensity map into a set of deliverable aperture shapes. In this article, we introduce an automated planning system in which we bypass the traditional intensity optimization, and instead directly optimize the shapes and the weights of the apertures. We call this approach "direct aperture optimization." This technique allows the user to specify the maximum number of apertures per beam direction, and hence provides significant control over the complexity of the treatment delivery. This is possible because the machine dependent delivery constraints imposed by the MLC are enforced within the aperture optimization algorithm rather than in a separate leaf-sequencing step. The leaf settings and the aperture intensities are optimized simultaneously using a simulated annealing algorithm. We have tested direct aperture optimization on a variety of patient cases using the EGS4/BEAM Monte Carlo package for our dose calculation engine. The results demonstrate that direct aperture optimization can produce highly conformal step-and-shoot treatment plans using only three to five apertures per beam direction. As compared with traditional optimization strategies, our studies demonstrate that direct aperture optimization can result in a significant reduction in both the number of beam segments and the number of monitor units. Direct aperture optimization therefore produces highly efficient treatment deliveries that maintain the full dosimetric benefits of IMRT.
First BNCT treatment of a skin melanoma in Argentina: dosimetric analysis and clinical outcome.
González, S J; Bonomi, M R; Santa Cruz, G A; Blaumann, H R; Calzetta Larrieu, O A; Menéndez, P; Jiménez Rebagliati, R; Longhino, J; Feld, D B; Dagrosa, M A; Argerich, C; Castiglia, S G; Batistoni, D A; Liberman, S J; Roth, B M C
2004-11-01
A Phase I/II protocol for treating cutaneuos melanomas with BNCT was designed in Argentina by the Comisión Nacional de Energía Atómica and the medical center Instituto Roffo. The first of a cohort of thirty planned patients was treated on October 9, 2003. This article depicts the protocol-based procedure and describes the first clinical case, treatment regime and planning, patient irradiation, retrospective dosimetric analysis and clinical outcome. Considering the low acute skin toxicity and the complete response in 21 of the 25 subcutaneous melanoma nodules treated, a second irradiation was performed in a different location of the extremity of the same patient. The corresponding clinical outcome is still under evaluation.
Ionizing radiation fluxes and dose measurements during the Kosmos 1887 satellite flight.
Charvat, J; Spurny, F; Kopecka, B; Votockova, I
1990-01-01
The results of dosimetric experiments performed during the flight of Kosmos 1887 biosatellite are presented. Two kinds of measurements were performed on the external surface of the satellite. First, the fluences and spectra of low energy charged particles were established. It was found that most of the particles registered by means of solid state nuclear track detectors are helium nuclei. Tracks of oxygen nuclei and some heavier charged particles were also observed. Thermoluminescent detectors were used to establish absorbed doses in open space on the satellite's surface and behind thin shielding. It was found that these doses were rather high; nevertheless, their decrease with shielding thickness is very rapid. Dosimetric and other consequences of the results obtained are analyzed and discussed.
ESR detection of irradiated carob pods (Ceratoniasiliqua L) and its dosimetric feature
NASA Astrophysics Data System (ADS)
Tuner, Hasan; Polat, Mustafa
2017-12-01
Un-irradiated carob powder exhibited a weak ESR singlet at g = 2.0041 ± 0.0006 with peak-to-peak linewidth (ΔHpp) of 0.33 ± 0.01 mT. Irradiated carob powder exhibited an ESR spectrum consisting many resonance lines and similar to ESR spectrum of sugar in all aspects. A linear function of the absorbed radiation dose was found to describe best the dose-response curves of the ESR signal intensity Ipp. It is concluded that due to the similarity of carob powder ESR spectrum to the irradiated sugar and the fact that it is widely consumed, carob powder has the potential to be used as a retrospective and/or accidental dosimetric material.
Jornet, Núria; Carrasco, Pablo; Beltrán, Mercè; Calvo, Juan Francisco; Escudé, Lluís; Hernández, Victor; Quera, Jaume; Sáez, Jordi
2014-09-01
We performed a multicentre intercomparison of IMRT optimisation and dose planning and IMRT pre-treatment verification methods and results. The aims were to check consistency between dose plans and to validate whether in-house pre-treatment verification results agreed with those of an external audit. Participating centres used two mock cases (prostate and head and neck) for the intercomparison and audit. Compliance to dosimetric goals and total number of MU per plan were collected. A simple quality index to compare the different plans was proposed. We compared gamma index pass rates using the centre's equipment and methodology to those of an external audit. While for the prostate case, all centres fulfilled the dosimetric goals and plan quality was homogeneous, that was not the case for the head and neck case. The number of MU did not correlate with the plan quality index. Pre-treatment verifications results of the external audit did not agree with those of the in-house measurements for two centres: being within tolerance for in-house measurements and unacceptable for the audit or the other way round. Although all plans fulfilled dosimetric constraints, plan quality is highly dependent on the planner expertise. External audits are an excellent tool to detect errors in IMRT implementation and cannot be replaced by intercomparison using results obtained by centres. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Jaberi, Ramin; Siavashpour, Zahra; Aghamiri, Mahmoud Reza; Kirisits, Christian; Ghaderi, Reza
2017-12-01
Intra-fractional organs at risk (OARs) deformations can lead to dose variation during image-guided adaptive brachytherapy (IGABT). The aim of this study was to modify the final accepted brachytherapy treatment plan to dosimetrically compensate for these intra-fractional organs-applicators position variations and, at the same time, fulfilling the dosimetric criteria. Thirty patients with locally advanced cervical cancer, after external beam radiotherapy (EBRT) of 45-50 Gy over five to six weeks with concomitant weekly chemotherapy, and qualified for intracavitary high-dose-rate (HDR) brachytherapy with tandem-ovoid applicators were selected for this study. Second computed tomography scan was done for each patient after finishing brachytherapy treatment with applicators in situ. Artificial neural networks (ANNs) based models were used to predict intra-fractional OARs dose-volume histogram parameters variations and propose a new final plan. A model was developed to estimate the intra-fractional organs dose variations during gynaecological intracavitary brachytherapy. Also, ANNs were used to modify the final brachytherapy treatment plan to compensate dosimetrically for changes in 'organs-applicators', while maintaining target dose at the original level. There are semi-automatic and fast responding models that can be used in the routine clinical workflow to reduce individually IGABT uncertainties. These models can be more validated by more patients' plans to be able to serve as a clinical tool.
Green synthesis of silver nanoparticles aimed at improving theranostics
NASA Astrophysics Data System (ADS)
Vedelago, José; Gomez, Cesar G.; Valente, Mauro; Mattea, Facundo
2018-05-01
Nowadays, the combination of diagnosis and therapy, known as theranostics, is one of the keys for an optimal treatment for cancer diseases. Theranostics can be significantly improved by incorporating metallic nanoparticles that are specifically delivered and accumulated in cancerous tissue. In this context, precise knowledge about dosimetric effects in nanoparticle-infused tissues as well as the detection and processing of emerging radiation are extremely important issues. In the last years the first studies on theranostic nanomaterials in gel dosimetry have been presented but there is still a broad field of study to explore. Most of gel dosimetric materials are extremely sensible to modifications in their composition, the addition of enhancers, metallic or inorganic charges can alter their stability and dosimetric properties; therefore, thorough studies must be made before the incorporation of any type of modifier. In this work, the synthesis of metallic nanoparticles suitable for gel dosimetry for x-ray applications is presented. A green synthesis process of silver nanoparticles coated with porcine skin gelatin by thermal reduction of silver nitrate is presented. Nanoparticles were obtained and purified for their application in gel dosimetry. Also, nanoparticles size distribution, reaction yield and the preliminar application as theranostic agents were tested in Fricke gel dosimetry in the keV range. The obtained nanoparticles were successfully used in theranostic applications acting as fluorescent agents and dose enhancers in X-ray beam irradiation simultaneously.
Prevention of Radiochemotherapy-Induced Esophagitis With Glutamine: Results of a Pilot Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Algara, Manuel; Universitat Pompeu Fabra, Barcelona; Rodriguez, Nuria
2007-10-01
Purpose: To assess the usefulness of oral glutamine to prevent radiochemotherapy-induced esophagitis in patients with lung cancer, and to determine the dosimetric parameter predictive of esophagitis. Methods and Materials: Seventy-five patients were enrolled; 34.7% received sequential radiochemotherapy, and 65.3% received concomitant radiochemotherapy. Every patient received prophylactic glutamine powder in doses of 10 g/8 h. Prescribed radiation doses were 45-50 Gy to planning target volume (PTV)1 (gross tumor volume plus wide margins) and 65-70 Gy to PTV2 (reduced margins). The primary endpoint was the incidence of Grade 2 or greater acute esophagitis. Results: No patient experienced glutamine intolerance or glutamine-related toxicity.more » Seventy-three percent of patients who received sequential chemotherapy and 49% of those who received concomitant chemotherapy did not present any form of esophagitis. V50 was the dosimetric parameter with better correlation between esophagitis and its duration. A V50 of {<=}30% had a 22% risk of esophagitis Grade {>=}2, which increased to 71% with a V50 of >30% (p = 0.0009). Conclusions: The use of oral glutamine may have an important role in the prevention of esophageal complications of concomitant radiochemotherapy in lung cancer patients. However, randomized trials are needed to corroborate that effect. V50 is the dosimetric parameter with better correlation with esophagitis grade and duration.« less
Ebert, M A; Harrison, K M; Cornes, D; Howlett, S J; Joseph, D J; Kron, T; Hamilton, C S; Denham, J W
2009-02-01
The present paper describes the logistics of the 2004-2008 Australasian Level III Dosimetry Intercomparison. Dosimetric intercomparisons (or 'audits') can be used in radiotherapy to evaluate the accuracy and quality of radiation delivery. An intercomparison was undertaken in New Zealand and Australia to evaluate the feasibility and logistics of ongoing dosimetric intercomparisons that evaluate all steps in the radiotherapy treatment process, known as a 'Level III' intercomparison. The study commenced in 2002 with the establishment of a study team, definition of the study protocol, acquisition of appropriate equipment and recruitment of participating radiotherapy centres. Measurements were undertaken between October 2004 and March 2008, and included collation of data on time, costs and logistics of the study. Forty independent Australian and New Zealand radiotherapy centres agreed to participate. Measurement visits were made to 37 of these centres. Data is presented on the costs of the study and the level of support required. The study involved the participation of 16 staff at the study centre who invested over 4000 hours in the study, and of over 200 professionals at participating centres. Recommendations are provided for future phantom-based intercomparisons. It is hoped that the present paper will be of benefit to any centres or groups contemplating similar activities by identifying the processes involved in establishing the study, the potential hazards and pitfalls, and expected resource requirements.
Modern dosimetric tools for 60Co irradiation at high containment laboratories
Twardoski, Barri; Feldmann, Heinz; Bloom, Marshall E.; Ward, Joe
2011-01-01
Purpose To evaluate an innovative photo-fluorescent film as a routine dosimetric tool during 60Co irradiations at a high containment biological research laboratory, and to investigate whether manufacturer-provided chamber exposure rates can be used to accurately administer a prescribed dose to biological specimens. Materials and methods Photo-fluorescent, lithium fluoride film dosimeters and National Institutes of Standards and Technology (NIST) transfer dosimeters were co-located in a self-shielded 60Co irradiator and exposed to γ-radiation with doses ranging from 5–85 kGy. Film dose-response relationships were developed for varying temperatures simulating conditions present when irradiating infectious biological specimens. Dose measurement results from NIST transfer dosimeters were compared to doses predicted using manufacturer-provided irradiator chamber exposure rates. Results The film dosimeter exhibited a photo-fluorescent response signal that was consistent and nearly linear in relationship to γ-radiation exposure over a wide dose range. The dosimeter response also showed negligible effects from dose fractionization and humidity. Significant disparities existed between manufacturer-provided chamber exposure rates and actual doses administered. Conclusion This study demonstrates the merit of utilizing dosimetric tools to validate the process of exposing dangerous and exotic biological agents to γ-radiation at high containment laboratories. The film dosimeter used in this study can be utilized to eliminate potential for improperly administering γ-radiation doses. PMID:21961968
A dosimetric comparison of {sup 169}Yb versus {sup 192}Ir for HDR prostate brachytherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lymperopoulou, G.; Papagiannis, P.; Sakelliou, L.
2005-12-15
For the purpose of evaluating the use of {sup 169}Yb for prostate High Dose Rate brachytherapy (HDR), a hypothetical {sup 169}Yb source is assumed with the exact same design of the new microSelectron source replacing the {sup 192}Ir active core by pure {sup 169}Yb metal. Monte Carlo simulation is employed for the full dosimetric characterization of both sources and results are compared following the AAPM TG-43 dosimetric formalism. Monte Carlo calculated dosimetry results are incorporated in a commercially available treatment planning system (SWIFT{sup TM}), which features an inverse treatment planning option based on a multiobjective dose optimization engine. The qualitymore » of prostate HDR brachytherapy using the real {sup 192}Ir and hypothetical {sup 169}Yb source is compared in a comprehensive analysis of different prostate implants in terms of the multiobjective dose optimization solutions as well as treatment quality indices such as Dose Volume Histograms (DVH) and the Conformal Index (COIN). Given that scattering overcompensates for absorption in intermediate photon energies and distances in the range of interest to prostate HDR brachytherapy, {sup 169}Yb proves at least equivalent to {sup 192}Ir irrespective of prostate volume. This has to be evaluated in view of the shielding requirements for the {sup 169}Yb energies that are minimal relative to that for {sup 192}Ir.« less
Batista, W O; Navarro, M V T; Maia, A F
2013-12-01
Basically, all modalities of diagnostic radiology require phantoms suitable for dosimetric evaluations. New technologies frequently arise unaccompanied of tools for dosimetric evaluations and quality control. In this study, a low-cost phantom and a consequent proposed methodology for dosimetric evaluations in cone beam computed tomography (CBCT) were presented. The developed phantom has typical dimensions of the human face, was built in polymethyl methacrylate and filled with water. Three devices with different technological concepts were evaluated and a proposed index, kerma index-height product (PKIH), was defined as an option to the use of air kerma-area product. The results of this study show relatively uniform kerma profiles for scanners with field of views (FOVs) of large diameters and non-uniform for FOVs of small diameters. With regard to the values obtained for the kerma indexes, much higher values were found for the equipment FOVs with small diameter compared with the values of the two other equipment that have larger diameters. The results indicate that (1) there is a need for special phantoms for use in CBCT, (2) the use of P(KA) in the evaluation of protocols on different equipment can lead to false interpretations and (3) the new index is a suitable alternative for the use of P(KA) in CBCT.
Comparison of four commercial devices for RapidArc and sliding window IMRT QA
Chandraraj, Varatharaj; Manickam, Ravikumar; Esquivel, Carlos; Supe, Sanjay S.; Papanikolaou, Nikos
2011-01-01
For intensity‐modulated radiation therapy, evaluation of the measured dose against the treatment planning calculated dose is essential in the context of patient‐specific quality assurance. The complexity of volumetric arc radiotherapy delivery attributed to its dynamic and synchronization nature require new methods and potentially new tools for the quality assurance of such techniques. In the present study, we evaluated and compared the dosimetric performance of EDR2 film and three other commercially available quality assurance devices: IBA I'MatriXX array, PTW Seven29 array and the Delta 4 array. The evaluation of these dosimetric systems was performed for RapidArc and IMRT deliveries using a Varian NovalisTX linear accelerator. The plans were generated using the Varian Eclipse treatment planning system. Our results showed that all four QA techniques yield equivalent results. All patient QAs passed our institutional clinical criteria of gamma index based on a 3% dose difference and 3 mm distance to agreement. In addition, the Bland‐Altman analysis was performed which showed that all the calculated gamma values of all three QA devices were within 5% from those of the film. The results showed that the four QA systems used in this patient‐specific IMRT QA analysis are equivalent. We concluded that the dosimetric systems under investigation can be used interchangeably for routine patient specific QA. PACS numbers: 87.55.Qr, 87.56.Fc
Field size dependent mapping of medical linear accelerator radiation leakage
NASA Astrophysics Data System (ADS)
Vũ Bezin, Jérémi; Veres, Attila; Lefkopoulos, Dimitri; Chavaudra, Jean; Deutsch, Eric; de Vathaire, Florent; Diallo, Ibrahima
2015-03-01
The purpose of this study was to investigate the suitability of a graphics library based model for the assessment of linear accelerator radiation leakage. Transmission through the shielding elements was evaluated using the build-up factor corrected exponential attenuation law and the contribution from the electron guide was estimated using the approximation of a linear isotropic radioactive source. Model parameters were estimated by a fitting series of thermoluminescent dosimeter leakage measurements, achieved up to 100 cm from the beam central axis along three directions. The distribution of leakage data at the patient plane reflected the architecture of the shielding elements. Thus, the maximum leakage dose was found under the collimator when only one jaw shielded the primary beam and was about 0.08% of the dose at isocentre. Overall, we observe that the main contributor to leakage dose according to our model was the electron beam guide. Concerning the discrepancies between the measurements used to calibrate the model and the calculations from the model, the average difference was about 7%. Finally, graphics library modelling is a readily and suitable way to estimate leakage dose distribution on a personal computer. Such data could be useful for dosimetric evaluations in late effect studies.
Wang, Shu-lian; Liao, Zhongxing; Vaporciyan, Ara A; Tucker, Susan L; Liu, Helen; Wei, Xiong; Swisher, Stephen; Ajani, Jaffer A; Cox, James D; Komaki, Ritsuko
2006-03-01
To assess the association of clinical and especially dosimetric factors with the incidence of postoperative pulmonary complications among esophageal cancer patients treated with concurrent chemoradiation therapy followed by surgery. Data from 110 esophageal cancer patients treated between January 1998 and December 2003 were analyzed retrospectively. All patients received concurrent chemoradiotherapy followed by surgery; 72 patients also received irinotecan-based induction chemotherapy. Concurrent chemotherapy was 5-fluorouracil-based and in 97 cases included taxanes. Radiotherapy was delivered to a total dose of 41.4-50.4 Gy at 1.8-2.0 Gy per fraction with a three-dimensional conformal technique. Surgery (three-field, Ivor-Lewis, or transhiatal esophagectomy) was performed 27-123 days (median, 45 days) after completion of radiotherapy. The following dosimetric parameters were generated from the dose-volume histogram (DVH) for total lung: lung volume, mean dose to lung, relative and absolute volumes of lung receiving more than a threshold dose (relative V(dose) and absolute V(dose)), and absolute volume of lung receiving less than a threshold dose (volume spared, or VS(dose)). Occurrence of postoperative pulmonary complications, defined as pneumonia or acute respiratory distress syndrome (ARDS) within 30 days after surgery, was the endpoint for all analyses. Fisher's exact test was used to investigate the relationship between categorical factors and incidence of postoperative pulmonary complications. Logistic analysis was used to analyze the relationship between continuous factors (e.g., V(dose) or VS(dose)) and complication rate. Logistic regression with forward stepwise inclusion of factors was used to perform multivariate analysis of those factors having univariate significance (p < 0.05). The Mann-Whitney test was used to compare length of hospital stay in patients with and without lung complications and to compare lung volumes, VS5 values, and absolute and relative V5 values in male vs. female patients. Pearson correlation analysis was used to determine correlations between dosimetric factors. Eighteen (16.4%) of the 110 patients developed postoperative pulmonary complications. Two of these died of progressive pneumonia. Hospitalizations were significantly longer for patients with postoperative pulmonary complications than for those without (median, 15 days vs. 11 days, p = 0.003). On univariate analysis, female gender (p = 0.017), higher mean lung dose (p = 0.036), higher relative volume of lung receiving > or = 5 Gy (V5) (p = 0.023), and smaller volumes of lung spared from doses > or = 5-35 Gy (VS5-VS35) (p < 0.05) were all significantly associated with an increased incidence of postoperative pulmonary complications. No other clinical factors were significantly associated with the incidence of postoperative pulmonary complications in this cohort. On multivariate analysis, the volume of lung spared from doses > or = 5 Gy (VS5) was the only significant independent factor associated with postoperative pulmonary complications (p = 0.005). Dosimetric factors but not clinical factors were found to be strongly associated with the incidence of postoperative pulmonary complications in this cohort of esophageal cancer patients treated with concurrent chemoradiation plus surgery. The volume of the lung spared from doses of > or = 5 Gy was the only independent dosimetric factor in multivariate analysis. This suggests that ensuring an adequate volume of lung unexposed to radiation might reduce the incidence of postoperative pulmonary complications.
NASA Astrophysics Data System (ADS)
Li, X. Allen; Wang, Jian Z.; Stewart, Robert D.; Di Biase, Steven J.
2003-09-01
No prospective dose escalation study for prostate brachytherapy (PB) with permanent implants has been reported. In this work, we have performed a dosimetric and biological analysis to explore the implications of dose escalation in PB using 125I and 103Pd implants. The concept of equivalent uniform dose (EUD), proposed originally for external-beam radiotherapy (EBRT), is applied to low dose rate brachytherapy. For a given 125I or 103Pd PB, the EUD for tumour that corresponds to a dose distribution delivered by EBRT is calculated based on the linear quadratic model. The EUD calculation is based on the dose volume histogram (DVH) obtained retrospectively from representative actual patient data. Tumour control probabilities (TCPs) are also determined in order to compare the relative effectiveness of different dose levels. The EUD for normal tissue is computed using the Lyman model. A commercial inverse treatment planning algorithm is used to investigate the feasibility of escalating the dose to prostate with acceptable dose increases in the rectum and urethra. The dosimetric calculation is performed for five representative patients with different prostate sizes. A series of PB dose levels are considered for each patient using 125I and 103Pd seeds. It is found that the PB prescribed doses (minimum peripheral dose) that give an equivalent EBRT dose of 64.8, 70.2, 75.6 and 81 Gy with a fraction size of 1.8 Gy are 129, 139, 150 and 161 Gy for 125I and 103, 112, 122 and 132 Gy for 103Pd implants, respectively. Estimates of the EUD and TCP for a series of possible prescribed dose levels (e.g., 145, 160, 170 and 180 Gy for 125I and 125, 135, 145 and 155 for 103Pd implants) are tabulated. The EUD calculation was found to depend strongly on DVHs and radiobiological parameters. The dosimetric calculations suggest that the dose to prostate can be escalated without a substantial increase in both rectal and urethral dose. For example, increasing the PB prescribed dose from 145 to 180 Gy increases EUD for the rectum by only 3%. Our studies indicate that the dose to urethra can be kept within 100-120% of the prescription dose for all the dose levels studied. In conclusion, dose escalation in permanent implant for localized prostate cancer may be advantageous. It is dosimetrically possible to increase dose to prostate without a substantial increase in the dose to the rectum and urethra. Based on the results of our studies, a prospective dose escalation trial for prostate permanent implants has been initiated at our institution.
Barry, Aisling; Rock, Kathy; Sole, Claudio; Rahman, Mohammad; Pintilie, Melania; Lee, Grace; Fyles, Anthony; Koch, C Anne
The purpose of this study was to evaluate the impact of the active breathing control (ABC) technique on IMN coverage and organs at risk in patients planned for postmastectomy radiation therapy (PMRT), with the inclusion of the internal mammary lymph nodes (IMNs). The effect of body mass index (BMI) on recorded dosimetric parameters was examined in the same patient cohort. Fifty left-sided postmastectomy patients with breast cancer who underwent free-breathing (FB) and ABC-Elekta CT simulation scans were selected at random from an institutional breast cancer database between 2008 and 2014. The ABC plans were directly compared with FB plans from the same patient. The IMN planning target volume coverage met dosimetric criteria for coverage of receiving more than 90% of the prescribed dose (V90) >90%, although it decreased with ABC compared with FB (94.5% vs 98%, P < .001). Overall, ABC significantly reduced doses to all measured heart and left anterior descending coronary artery parameters, ipsilateral lung V20, and mean lung dose compared with FB (P < .001). There was no difference seen between the ABC and FB plans with respect to the dose to contralateral lung or contralateral breast. There was no correlation identified between BMI and any of the dosimetric parameters recorded from the ABC and FB plans. Our results suggest that ABC reduces IMN coverage in left-sided breast cancer patients planned for PMRT; however, dosimetric criteria for IMN coverage were still met, suggesting that this is not likely to be clinically significant. ABC led to significant sparing of organs at risk compared with FB conditions and was not affected by BMI. Collectively, the results support the use of ABC for breast cancer patients undergoing left-sided PMRT requiring regional nodal irradiation that includes the IMNs. Further prospective clinical studies are required to determine the impact of these results on late normal tissue effects. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freund, D; Ding, X; Zhang, J
Purpose: In prostate proton radiotherapy, three fiducial markers are used for patient daily alignment. However fiducial alignment can change beamline heterogeneity in proton therapy. The purpose of this study is to determine the difference in fiducial and boney anatomy alignment for patient treatment. Methods and materials: Prostate cancer patients who received proton treatment were included in this study. 3 fiducial markers were implanted before the initial CT. All the patients were re-CT’d every 2 weeks to check the fiducial marker position reproducibility as well as dosimetric consistence of target coverage. In geometry study, re-CT were fused to the initial CTmore » base on the boney anatomy and the average fiducial marker displacement was measured the centers of the fiducials. Dosimetrically, the initial plan was recalculated directly to re-CT image set based on the boney alignment and fiducial alignment to determine the difference from daily treatment. Prostate coverage and hotspots were evaluated using the dose to 98% of the CTV (D98) and dose to 2% (D2), respectively. Results: The shift from the initial 6 patient CT image sets resulted in an average change in the fiducial location of 5.70 +/− 3 mm. Dosimetric comparison from a single patient revealed that differences from the planned dose resulted from both boney and fiducial alignment. Planned clinical treatment volume coverage resulted in a D98 of 70.44Gy and D2 of 70.84Gy compared to a D98 of 70.13Gy and D2 70.94Gy for boney alignment and a D98 of 70.08Gy and D2 71.18Gy for fiducial alignment respectively. Conclusion: This study demonstrates that with boney anatomy alignment there is little change to CTV coverage and only slightly worse CTV coverage and hotspot production with fiducial alignment. An increase patient cohort and further investigation is necessary to determine the whether boney alignment can help better control dose heterogeneity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoon Jung, Sang; Min Yoon, Sang; Ho Park, Sung
2013-01-15
Purpose: In order to evaluate the dosimetric impact of respiratory motion on the dose delivered to the target volume and critical organs during free-breathing radiotherapy, a four-dimensional dose was evaluated using deformable image registration (DIR). Methods: Four-dimensional computed tomography (4DCT) images were acquired for 11 patients who were treated for liver cancer. Internal target volume-based treatment planning and dose calculation (3D dose) were performed using the end-exhalation phase images. The four-dimensional dose (4D dose) was calculated based on DIR of all phase images from 4DCT to the planned image. Dosimetric parameters from the 4D dose, were calculated and compared withmore » those from the 3D dose. Results: There was no significant change of the dosimetric parameters for gross tumor volume (p > 0.05). The increase D{sub mean} and generalized equivalent uniform dose (gEUD) for liver were by 3.1%{+-} 3.3% (p= 0.003) and 2.8%{+-} 3.3% (p= 0.008), respectively, and for duodenum, they were decreased by 15.7%{+-} 11.2% (p= 0.003) and 15.1%{+-} 11.0% (p= 0.003), respectively. The D{sub max} and gEUD for stomach was decreased by 5.3%{+-} 5.8% (p= 0.003) and 9.7%{+-} 8.7% (p= 0.003), respectively. The D{sub max} and gEUD for right kidney was decreased by 11.2%{+-} 16.2% (p= 0.003) and 14.9%{+-} 16.8% (p= 0.005), respectively. For left kidney, D{sub max} and gEUD were decreased by 11.4%{+-} 11.0% (p= 0.003) and 12.8%{+-} 12.1% (p= 0.005), respectively. The NTCP values for duodenum and stomach were decreased by 8.4%{+-} 5.8% (p= 0.003) and 17.2%{+-} 13.7% (p= 0.003), respectively. Conclusions: The four-dimensional dose with a more realistic dose calculation accounting for respiratory motion revealed no significant difference in target coverage and potentially significant change in the physical and biological dosimetric parameters in normal organs during free-breathing treatment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lafata, K; Ren, L; Wu, Q
Purpose: To develop a data-mining methodology based on quantum clustering and machine learning to predict expected dosimetric endpoints for lung SBRT applications based on patient-specific anatomic features. Methods: Ninety-three patients who received lung SBRT at our clinic from 2011–2013 were retrospectively identified. Planning information was acquired for each patient, from which various features were extracted using in-house semi-automatic software. Anatomic features included tumor-to-OAR distances, tumor location, total-lung-volume, GTV and ITV. Dosimetric endpoints were adopted from RTOG-0195 recommendations, and consisted of various OAR-specific partial-volume doses and maximum point-doses. First, PCA analysis and unsupervised quantum-clustering was used to explore the feature-space tomore » identify potentially strong classifiers. Secondly, a multi-class logistic regression algorithm was developed and trained to predict dose-volume endpoints based on patient-specific anatomic features. Classes were defined by discretizing the dose-volume data, and the feature-space was zero-mean normalized. Fitting parameters were determined by minimizing a regularized cost function, and optimization was performed via gradient descent. As a pilot study, the model was tested on two esophageal dosimetric planning endpoints (maximum point-dose, dose-to-5cc), and its generalizability was evaluated with leave-one-out cross-validation. Results: Quantum-Clustering demonstrated a strong separation of feature-space at 15Gy across the first-and-second Principle Components of the data when the dosimetric endpoints were retrospectively identified. Maximum point dose prediction to the esophagus demonstrated a cross-validation accuracy of 87%, and the maximum dose to 5cc demonstrated a respective value of 79%. The largest optimized weighting factor was placed on GTV-to-esophagus distance (a factor of 10 greater than the second largest weighting factor), indicating an intuitively strong correlation between this feature and both endpoints. Conclusion: This pilot study shows that it is feasible to predict dose-volume endpoints based on patient-specific anatomic features. The developed methodology can potentially help to identify patients at risk for higher OAR doses, thus improving the efficiency of treatment planning. R01-184173.« less
Dosimetric comparison between model 9011 and 6711 sources in prostate implants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hualin, E-mail: zhang248@iupui.edu; Arizona Oncology Services, Phoenix, AZ; Beyer, David
2013-07-01
The purpose of this work is to evaluate the model 9011 iodine-125 ({sup 125}I) in prostate implants by comparing dosimetric coverage provided by the 6711 vs 9011 source implants. Postimplant dosimetry was performed in 18 consecutively implanted patients with prostate cancer. Two were implanted with the 9011 source and 16 with the 6711 source. For purposes of comparison, each implant was then recalculated assuming use of the other source. The same commercially available planning system was used and the specific source data for both 6711 and 9011 products were entered. The results of these calculations are compared side by sidemore » in the terms of the isodose values covering 100% (D100) and 90% (D90) of prostate volume, and the percentages of volumes of prostate, bladder, rectum, and urethra covered by 200% (V200), 150% (V150), 100% (V100), 50% (V50), and 20% (V20) of the prescribed dose as well. The 6711 source data overestimate coverage by 6.4% (ranging from 4.9% to 6.9%; median 6.6%) at D100 and by 6.6% (ranging from 6.2% to 6.8%; median 6.6%) at D90 compared with actual 9011 data. Greater discrepancies of up to 67% are seen at higher dose levels: average reduction for V100 is 2.7% (ranging from 0.6% to 7.7%; median 2.3%), for V150 is 14.6% (ranging from 6.1% to 20.5%; median 15.3%), for V200 is 14.9% (ranging from 4.8% to 19.1%; median 16%); similarly seen in bladder, rectal, and urethral coverage. This work demonstrates a clear difference in dosimetric behavior between the 9011 and 6711 sources. Using the 6711 source data for 9011 source implants would create a pronounced error in dose calculation. This study provides evidence that the 9011 source can provide the same dosimetric quality as the 6711 source, if properly used; however, the 6711 source data should not be considered as a surrogate for the 9011 source implants.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, C; Lee, P; Jiang, S
2015-06-15
Purpose: To compare dosimetric data of patients treated for early-stage larynx cancer on Cyberknife and Linac IMRT. Methods: Nine patients were treated with Cyberknife to a dose of 45 Gy in 10 fractions of the involved hemilarynx. The prescription dose provided at least 95% of PTV coverage. After Cyberknife treatment, the CT images and contours were sent to Pinnacle treatment planning system for IMRT planning on a regular SBRT linac with same dose prescription and constrains. Dose to target and normal tissue, including the arytenoids, cord, carotid arteries, thyroid, and skin, were analyzed using dose volume histograms. Results: For Cyberknifemore » plan, the conformity indices are within 1.11–1.33. The average dose to the contralateral arytenoids for Cyberknife plans was 28.9±6.5Gy), which is lower than the same mean dose for IMRT plans (34.0±5.2 Gy). The average maximum dose to the ipsilateral and contralateral carotid artery were 20.6 ±9.1 Gy and 10.2±6.0 Gy respectively for Cybeknife comparing with 22.1±8.0 Gy and 12.0±5.1 Gy for IMRT. The mean dose to the thyroid was 3.6±2.2 Gy for Cyberknife and 3.4±2.4 Gy for IMRT. As shown in DVH, the Cyberknife can deliver less dose to the normal tissue which is close to target area comparing with IMRT Plans. However, IMRT plan’s can give more sparing for the critical organs which is far away from the target area. Conclusion: We have compared the dosimetric parameters of Cyberknife and linac IMRT plans for patients with early-stage larynx cancer. Both Cyberknife and IMRT plans can achieve conformal dose distribution to the target area. Cyberknife was able to reduce normal tissue dose in high doses region while IMRT plans can reduce the dose of the normal tissue at the low dose region. These dosimetric parameters can be used to guide future prospective protocols using SBRT for larynx cancer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, S; Kim, D; Kim, T
2015-06-15
Purpose: Respiratory motion in thoracic and abdominal region could lead to significant underdosing of target and increased dose to healthy tissues. The aim of this study is to evaluate the dosimetric effect of respiratory motion in conventional 3D dose by comparing 4D deformable dose in liver stereotactic body radiotherapy (SBRT). Methods: Five patients who had previously treated liver SBRT were included in this study. Four-dimensional computed tomography (4DCT) images with 10 phases for all patients were acquired on multi-slice CT scanner (Siemens, Somatom definition). Conventional 3D planning was performed using the average intensity projection (AIP) images. 4D dose accumulation wasmore » calculated by summation of dose distribution for all phase images of 4DCT using deformable image registration (DIR) . The target volume and normal organs dose were evaluated with the 4D dose and compared with those from 3D dose. And also, Index of achievement (IOA) which assesses the consistency between planned dose and prescription dose was used to compare target dose distribution between 3D and 4D dose. Results: Although the 3D dose calculation considered the moving target coverage, significant differences of various dosimetric parameters between 4D and 3D dose were observed in normal organs and PTV. The conventional 3D dose overestimated dose to PTV, however, there was no significant difference for GTV. The average difference of IOA which become ‘1’ in an ideal case was 3.2% in PTV. The average difference of liver and duodenum was 5% and 16% respectively. Conclusion: 4D dose accumulation which can provide dosimetric effect of respiratory motion has a possibility to predict the more accurate delivered dose to target and normal organs and improve treatment accuracy. This work was supported by the Radiation Technology R&D program (No. 2013M2A2A7043498) and the Mid-career Researcher Program (2014R1A2A1A10050270) through the National Research Foundation of Korea funded by the Ministry of Science, ICT&Future Planning (MSIP) of Korea.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S; Ellis, R; Traughber, B
Purpose: Treating gynecological cancers with interstitial high-dose-rate (HDR) brachytherapy requires precise reconstruction of catheter positions to obtain accurate dosimetric plans. In this study, we investigated the degree of reproducibility of dosimetric plans for Syed HDR brachytherapy. Methods: We randomly selected five patients having cervix-vaginal cancer who were recently treated in our clinic with interstitial HDR brachytherapy with a prescription dose of 25–30 Gy in five fractions. Interstitial needles/catheters were placed under fluoroscopic guidance and intra-operative 3T MRI scan was performed to confirm the desired catheter placement for adequate target volume coverage. A CT scan was performed and fused with themore » MRI for delineating high-risk CTV (HR-CTV), intermediate-risk CTV (IR-CTV) and OARs. HDR treatment plans were generated using Oncentra planning software. A single plan was used for all five fractions of treatment for each patient. For this study, we took the original clinical plan and removed all the reconstructed catheters from the plan keeping the original contours unchanged. Then, we manually reconstructed all the catheters and entered the same dwell time from the first original clinical plan. The dosimetric parameters studied were: D90 for HR-CTV and IR-CV, and D2cc for bladder, rectum, sigmoid and bowel. Results: The mean of absolute differences in dosimetric coverage (D90) were (range): 1.3% (1.0–2.0%) and 2.0% (0.9–3.6%) for HR-CTV and IR-CTV, respectively. In case of OARs, the mean of absolute variations in D2cc were (range): 4.7% (0.7–8.9%) for bladder, 1.60% (0.3–3.2%) for rectum, 1.6% (0–3.9%) for sigmoid, and 1.8% (0–5.1%) for bowel. Conclusion: Overall, the reproducibility of interstitial HDR plans was within clinically acceptable limit. Observed maximum variation in D2cc for bladder. If number of catchers and dwell points were relatively low or any one catheter was heavily loaded, then reproducibility of the plan was more sensitive to the accuracy of catheter reconstruction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Kean Fatt, E-mail: hokeanfatt@hotmail.com; Marchant, Tom; Moore, Chris
2012-03-01
Purpose: Parotid-sparing head-and-neck intensity-modulated radiotherapy (IMRT) can reduce long-term xerostomia. However, patients frequently experience weight loss and tumor shrinkage during treatment. We evaluate the use of kilovoltage (kV) cone beam computed tomography (CBCT) for dose monitoring and examine if the dosimetric impact of such changes on the parotid and critical neural structures warrants replanning during treatment. Methods and materials: Ten patients with locally advanced oropharyngeal cancer were treated with contralateral parotid-sparing IMRT concurrently with platinum-based chemotherapy. Mean doses of 65 Gy and 54 Gy were delivered to clinical target volume (CTV)1 and CTV2, respectively, in 30 daily fractions. CBCT wasmore » prospectively acquired weekly. Each CBCT was coregistered with the planned isocenter. The spinal cord, brainstem, parotids, larynx, and oral cavity were outlined on each CBCT. Dose distributions were recalculated on the CBCT after correcting the gray scale to provide accurate Hounsfield calibration, using the original IMRT plan configuration. Results: Planned contralateral parotid mean doses were not significantly different to those delivered during treatment (p > 0.1). Ipsilateral and contralateral parotids showed a mean reduction in volume of 29.7% and 28.4%, respectively. There was no significant difference between planned and delivered maximum dose to the brainstem (p = 0.6) or spinal cord (p = 0.2), mean dose to larynx (p = 0.5) and oral cavity (p = 0.8). End-of-treatment mean weight loss was 7.5 kg (8.8% of baseline weight). Despite a {>=}10% weight loss in 5 patients, there was no significant dosimetric change affecting the contralateral parotid and neural structures. Conclusions: Although patient weight loss and parotid volume shrinkage was observed, overall, there was no significant excess dose to the organs at risk. No replanning was felt necessary for this patient cohort, but a larger patient sample will be investigated to further confirm these results. Nevertheless, kilovoltage CBCT is a valuable tool for patient setup verification and monitoring of dosimetric variation during radiotherapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhen, H; Wu, Z; Bluemenfeld, P
Purpose Daily setup for definitive prostatic radiotherapy is challenged by suboptimal visibility of the prostate boundary and daily variation of rectum shape and position. For patients with improved bowel preparation, we conducted a dosimetric comparison between prostate implanted marker (IM)-based daily setup and anterior rectal wall (ARW)-based setup, with the hypothesis that the former leads to adequate target coverage with better rectal sparing. Methods Five IMRT/VMAT prostate cases with implanted markers were selected for analysis. Daily CBCT showed improvement of the rectal volume compared to planning CT. For each patient, the prostate and rectum were contoured on three CBCT imagesmore » (fraction 5/15/25) with subsequent physician review. The CBCTs were then registered to a planning CT using IM-based registration. The deviation of ARW positions from planning CT to CBCT were analyzed at various sup-inf levels (−1.8 cm to 1.8 cm from level of prostate center). To estimate the potential dosimetric impact from ARW-based setup, the treatment plans were recalculated using A-P shifts ranging from −1mm to +6mm. Clinically important rectum DVH values including Dmax, D3cc and Dmean were computed. Results For the studied patients, we observed on average 32% rectum volume reduction from planning CT to CBCT. As a Results, the ARW on average shifts posteriorly by −1mm to +5mm, depending on the sup-inf level of observation, with larger shifts observed at more superior levels. Recalculation shows that when ARW shifts 1mm posteriorly, ARW-based CBCT setup leads to a 1.0%, 4.2%, and 3.2% increase in rectum Dmax, D3cc, and Dmean, respectively, compared to IM-based setup. The dosimetric deviations increase to 4.7%, 25.8% and 24.7% when ARW shifts 6mm posteriorly. No significant prostate-only dose difference was observed. Conclusion For patients with improved bowel preparation, IM-based CBCT setup leads to accurate prostate coverage along with significantly lower rectal dose, compared to ARW-based setup.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harry, Taylor; Department of Radiation Medicine, Oregon Health and Science University, Portland, OR; Department of Nuclear Engineering and Radiation Health Physics, Oregon State University, Corvallis, OR
There is a reduction in cardiac dose for left-sided breast radiotherapy during treatment with deep inspiration breath-hold (DIBH) when compared with treatment with free breathing (FB). Various levels of DIBH may occur for different treatment fractions. Dosimetric effects due to this and other motions are a major component of uncertainty in radiotherapy in this setting. Recent developments in deformable registration techniques allow displacement vectors between various temporal and spatial patient representations to be digitally quantified. We propose a method to evaluate the dosimetric effect to the heart from variable reproducibility of DIBH by using deformable registration to create new anatomicalmore » computed tomography (CT) scans. From deformable registration, 3-dimensional deformation vectors are generated with FB and DIBH. The obtained deformation vectors are scaled to 75%, 90%, and 110% and are applied to the reference image to create new CT scans at these inspirational levels. The scans are then imported into the treatment planning system and dose calculations are performed. The average mean dose to the heart was 2.5 Gy (0.7 to 9.6 Gy) at FB, 1.2 Gy (0.6 to 3.8 Gy, p < 0.001) at 75% inspiration, 1.1 Gy (0.6 to 3.1 Gy, p = 0.004) at 90% inspiration, 1.0 Gy (0.6 to 3.0 Gy) at 100% inspiration or DIBH, and 1.0 Gy (0.6 to 2.8 Gy, p = 0.019) at 110% inspiration. The average mean dose to the left anterior descending artery (LAD) was 19.9 Gy (2.4 to 46.4 Gy), 8.6 Gy (2.0 to 43.8 Gy, p < 0.001), 7.2 Gy (1.9 to 40.1 Gy, p = 0.035), 6.5 Gy (1.8 to 34.7 Gy), and 5.3 Gy (1.5 to 31.5 Gy, p < 0.001), correspondingly. This novel method enables numerous anatomical situations to be mimicked and quantifies the dosimetric effect they have on a treatment plan.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, G
2016-06-15
Purpose: Recently a new 2.5 megavoltage imaging beam has become available in a TrueBeam linear accelerator for image guidance. There is limited information available related to the beam characteristics. Commissioning dosimetric data of the new imaging is necessary for configuration of the beam in a treatment planning system in order to calculate imaging doses to patients resulting from this new imaging beam. The purpose of this study is to provide measured commissioning data recommended for a beam configuration in a treatment planning system. Methods: A recently installed TrueBeam linear accelerator is equipped with a new low energy photon beam withmore » a nominal energy of 2.5 MV which provides better image quality in addition to other therapeutic megavoltage beams. Dosimetric characteristics of the 2.5 MV are measured for commissioning. An ionization chamber was used to measure dosimetric data including depth-dose curves and dose profiles at different depths for field sizes ranging from 5×5 cm{sup 2} to 40×40 cm{sup 2}. Results: Although the new 2.5 MV beam is a flattening-filter-free (FFF) beam, its dose profiles are much flatter compared to a 6 MV FFF beam. The dose decrease at 20 cm away from the central axis is less than 30% for a 40×40 cm{sup 2} field. This moderately lower dose at off-axis distances benefits the imaging quality. The values of percentage depth-dose (PDD) curves are 53% and 63% for 10×10 cm{sup 2} and 40×40 cm{sup 2} fields respectively. The measured beam output is 0.85 cGy/MU for a reference field size at depth 5 cm obtained according to the AAPM TG-51 protocol. Conclusion: This systematically measured commissioning data is useful for configuring the new imaging beam in a treatment planning system for patient imaging dose calculations resulting from the application of this 2.5 MV beam which is commonly set as a default in imaging procedures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinnix, Chelsea C., E-mail: ccpinnix@mdanderson.org; Smith, Grace L.; Milgrom, Sarah
Purpose: Few studies to date have evaluated factors associated with the development of radiation pneumonitis (RP) in patients with Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL), especially in patients treated with contemporary radiation techniques. These patients represent a unique group owing to the often large radiation target volumes within the mediastinum and to the potential to receive several lines of chemotherapy that add to pulmonary toxicity for relapsed or refractory disease. Our objective was to determine the incidence and clinical and dosimetric risk factors associated with RP in lymphoma patients treated with intensity modulated radiation therapy (IMRT) at a singlemore » institution. Methods and Materials: We retrospectively reviewed clinical charts and radiation records of 150 consecutive patients who received mediastinal IMRT for HL and NHL from 2009 through 2013. Clinical and dosimetric predictors associated with RP according to Radiation Therapy Oncology Group (RTOG) acute toxicity criteria were identified in univariate analysis using the Pearson χ{sup 2} test and logistic multivariate regression. Results: Mediastinal radiation was administered as consolidation therapy in 110 patients with newly diagnosed HL or NHL and in 40 patients with relapsed or refractory disease. The overall incidence of RP (RTOG grades 1-3) was 14% in the entire cohort. Risk of RP was increased for patients who received radiation for relapsed or refractory disease (25%) versus those who received consolidation therapy (10%, P=.019). Several dosimetric parameters predicted RP, including mean lung dose of >13.5 Gy, V{sub 20} of >30%, V{sub 15} of >35%, V{sub 10} of >40%, and V{sub 5} of >55%. The likelihood ratio χ{sup 2} value was highest for V{sub 5} >55% (χ{sup 2} = 19.37). Conclusions: In using IMRT to treat mediastinal lymphoma, all dosimetric parameters predicted RP, although small doses to large volumes of lung had the greatest influence. Patients with relapsed or refractory lymphoma who received salvage chemotherapy and hematopoietic stem cell transplantation were at higher risk for symptomatic RP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, T; Yan, Y; Ramirez, E
2015-06-15
Purpose: Accelerated partial breast irradiation (APBI) is an effective treatment for early stage breast-cancer. Irradiation in a prone position can mitigate breast motion and spare heart and lung. In this study, a comprehensive study is performed to evaluate various treatment techniques for prone APBI treatment including: 3D-CRT, IMRT, co-planar and non-coplanar partial arcs treatment. Methods: In this treatment planning study, a left breast patient treated in prone position in our clinic was imported into Varian Eclipse TPS. Six beams tangential to chest wall were used in both 3D-CRT and IMRT plans. These six beams were coplanar in a transactional planemore » achieved by both gantry and couch rotation. A 60-beam IMRT plan was also created to explore the maximum benefit of co-planar IMRT. Within deliverable couch rotation range (±30°), partial arc treatment plans with one and up to ten couch positions were generated for comparison. For each plan, 30Gy in 6 fractions was prescribed to 95% PTV volume. Critical dosimetric parameters, such as conformity index, mean, maximum, and volume dose of organ at risk, are evaluated. Results: The conformity indexes (CI) are 3.53, 3.17, 2.21 and 1.08 respectively to 3D-CRT, 6-beam IMRT, 60-beam IMRT, and two-partial-arcs coplanar plans. However, arc plans increase heart dose. CI for non-coplanar arc plans decreases from 1.19 to 1.10 when increases couch positions. Maximum dose in ipsilateral lung (1.98 to 1.13 Gy), and heart (0.62 to 0.43 Gy) are steadily decreased with the increased number of non-coplanar arcs. Conclusions: The dosimetric evaluation results show that partial arc plans have improved CIs compared to conventional 3D-CRT and IMRT plans. Increasing number of partial arcs decreases lung and heart dose. The dosimetric benefit obtained from non-coplanar arcs should be considered with treatment delivery time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimura, Tomoki, E-mail: tkkimura@hiroshima-u.ac.jp; Doi, Yoshiko; Nakashima, Takeo
2015-11-15
Purpose: The purpose of this study was to prospectively investigate clinical correlations between dosimetric parameters associated with radiation pneumonitis (RP) and functional lung imaging. Methods and Materials: Functional lung imaging was performed using four-dimensional computed tomography (4D-CT) for ventilation imaging, single-photon emission computed tomography (SPECT) for perfusion imaging, or both (V/Q-matched region). Using 4D-CT, ventilation imaging was derived from a low attenuation area according to CT numbers below different thresholds (vent-860 and -910). Perfusion imaging at the 10th, 30th, 50th, and 70th percentile perfusion levels (F10-F70) were defined as the top 10%, 30%, 50%, and 70% hyperperfused normal lung, respectively.more » All imaging data were incorporated into a 3D planning system to evaluate correlations between RP dosimetric parameters (where fV20 is the percentage of functional lung volume irradiated with >20 Gy, or fMLD, the mean dose administered to functional lung) and the percentage of functional lung volume. Radiation pneumonitis was evaluated using Common Terminology Criteria for Adverse Events version 4.0. Statistical significance was defined as a P value of <.05. Results: Sixty patients who underwent curative radiation therapy were enrolled (48 patients for non-small cell lung cancer, and 12 patients for small cell lung cancer). Grades 1, 2, and ≥3 RP were observed in 16, 44, and 6 patients, respectively. Significant correlations were observed between the percentage of functional lung volume and fV20 (r=0.4475 in vent-860 and 0.3508 in F30) or fMLD (r=0.4701 in vent-860 and 0.3128 in F30) in patients with grade ≥2 RP. F30∩vent-860 results exhibited stronger correlations with fV20 and fMLD in patients with grade ≥2 (r=0.5509 in fV20 and 0.5320 in fMLD) and grade ≥3 RP (r=0.8770 in fV20 and 0.8518 in fMLD). Conclusions: RP dosimetric parameters correlated significantly with functional lung imaging.« less
Song, Ting; Li, Nan; Zarepisheh, Masoud; Li, Yongbao; Gautier, Quentin; Zhou, Linghong; Mell, Loren; Jiang, Steve; Cerviño, Laura
2016-01-01
Intensity-modulated radiation therapy (IMRT) currently plays an important role in radiotherapy, but its treatment plan quality can vary significantly among institutions and planners. Treatment plan quality control (QC) is a necessary component for individual clinics to ensure that patients receive treatments with high therapeutic gain ratios. The voxel-weighting factor-based plan re-optimization mechanism has been proved able to explore a larger Pareto surface (solution domain) and therefore increase the possibility of finding an optimal treatment plan. In this study, we incorporated additional modules into an in-house developed voxel weighting factor-based re-optimization algorithm, which was enhanced as a highly automated and accurate IMRT plan QC tool (TPS-QC tool). After importing an under-assessment plan, the TPS-QC tool was able to generate a QC report within 2 minutes. This QC report contains the plan quality determination as well as information supporting the determination. Finally, the IMRT plan quality can be controlled by approving quality-passed plans and replacing quality-failed plans using the TPS-QC tool. The feasibility and accuracy of the proposed TPS-QC tool were evaluated using 25 clinically approved cervical cancer patient IMRT plans and 5 manually created poor-quality IMRT plans. The results showed high consistency between the QC report quality determinations and the actual plan quality. In the 25 clinically approved cases that the TPS-QC tool identified as passed, a greater difference could be observed for dosimetric endpoints for organs at risk (OAR) than for planning target volume (PTV), implying that better dose sparing could be achieved in OAR than in PTV. In addition, the dose-volume histogram (DVH) curves of the TPS-QC tool re-optimized plans satisfied the dosimetric criteria more frequently than did the under-assessment plans. In addition, the criteria for unsatisfied dosimetric endpoints in the 5 poor-quality plans could typically be satisfied when the TPS-QC tool generated re-optimized plans without sacrificing other dosimetric endpoints. In addition to its feasibility and accuracy, the proposed TPS-QC tool is also user-friendly and easy to operate, both of which are necessary characteristics for clinical use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patwe, P; Mhatre, V; Dandekar, P
Purpose: Indigenous Farmer type chamber FAR 65 GB is a reference class 0.6 cc ion chamber. It can be used for dosimetric evaluation of photon and high energy electron beams. We studied dosimetric characteristics of the chamber for 6MV and 10MV Flattening filter free FFF photon beams available on trueBEAM STx Linac. Methods: The study was carried out on trueBEAM STx Linac having 6 and 10 MV FFF photon beam with maximum dose rate 1400 and 2400 MU per min respectively. The dosimetric device to be evaluated is Rosalina Instruments FAR 65-GB Ion Chamber with active volume 0.65 cc, totalmore » active length 23.1cm, inner diameter of cylinder 6.2mm, wall thickness 0.4mm, inner electrode diameter 1mm. Inner and outer electrodes are made from Aluminium 2.7 gm per cc and graphite 1.82 gm per cc respectively. The ion chamber was placed along central axis of beam at 10cm depth and irradiated for 10cm × 10cm field size at SAD of 100 cm in plastic phantom. We studied Precision, Dose Linearity, Dose Rate dependence, directional dependence, Recombination effect. Recombination effect was determined using standard two-voltage method. Results: 1. Measurements were reproducible std deviation of 0.0105 and type A uncertainty 0.003265 under same set of reference conditions 2. Chamber exhibit dose linearity over a wider dose range. 3. Chamber shows dose rate independence for all available dose rate range. 4. Response of chamber with the angle of incidence of radiation is constant. 5. Recombination correction factors were 1.01848 and 1.02537 for dose rate 1400 and 2400 MU per min resp. Conclusion: Our study reveals that the chamber is prone to saturation effect at dose rate of 2400 MU per min. FAR 65-GB can be used for reference dosimetry of FFF MV photon beam with proper calculation of recombination effect.« less
NASA Astrophysics Data System (ADS)
Ödén, Jakob; Toma-Dasu, Iuliana; Yu, Cedric X.; Feigenberg, Steven J.; Regine, William F.; Mutaf, Yildirim D.
2013-07-01
The GammaPod™ device, manufactured by Xcision Medical Systems, is a novel stereotactic breast irradiation device. It consists of a hemispherical source carrier containing 36 Cobalt-60 sources, a tungsten collimator with two built-in collimation sizes, a dynamically controlled patient support table and a breast immobilization cup also functioning as the stereotactic frame for the patient. The dosimetric output of the GammaPod™ was modelled using a Monte Carlo based treatment planning system. For the comparison, three-dimensional (3D) models of commonly used intra-cavitary breast brachytherapy techniques utilizing single lumen and multi-lumen balloon as well as peripheral catheter multi-lumen implant devices were created and corresponding 3D dose calculations were performed using the American Association of Physicists in Medicine Task Group-43 formalism. Dose distributions for clinically relevant target volumes were optimized using dosimetric goals set forth in the National Surgical Adjuvant Breast and Bowel Project Protocol B-39. For clinical scenarios assuming similar target sizes and proximity to critical organs, dose coverage, dose fall-off profiles beyond the target and skin doses at given distances beyond the target were calculated for GammaPod™ and compared with the doses achievable by the brachytherapy techniques. The dosimetric goals within the protocol guidelines were fulfilled for all target sizes and irradiation techniques. For central targets, at small distances from the target edge (up to approximately 1 cm) the brachytherapy techniques generally have a steeper dose fall-off gradient compared to GammaPod™ and at longer distances (more than about 1 cm) the relation is generally observed to be opposite. For targets close to the skin, the relative skin doses were considerably lower for GammaPod™ than for any of the brachytherapy techniques. In conclusion, GammaPod™ allows adequate and more uniform dose coverage to centrally and peripherally located targets with an acceptable dose fall-off and lower relative skin dose than the brachytherapy techniques considered in this study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, T; Zhou, L; Li, Y
Purpose: For intensity modulated radiotherapy, the plan optimization is time consuming with difficulties of selecting objectives and constraints, and their relative weights. A fast and automatic multi-objective optimization algorithm with abilities to predict optimal constraints and manager their trade-offs can help to solve this problem. Our purpose is to develop such a framework and algorithm for a general inverse planning. Methods: There are three main components contained in this proposed multi-objective optimization framework: prediction of initial dosimetric constraints, further adjustment of constraints and plan optimization. We firstly use our previously developed in-house geometry-dosimetry correlation model to predict the optimal patient-specificmore » dosimetric endpoints, and treat them as initial dosimetric constraints. Secondly, we build an endpoint(organ) priority list and a constraint adjustment rule to repeatedly tune these constraints from their initial values, until every single endpoint has no room for further improvement. Lastly, we implement a voxel-independent based FMO algorithm for optimization. During the optimization, a model for tuning these voxel weighting factors respecting to constraints is created. For framework and algorithm evaluation, we randomly selected 20 IMRT prostate cases from the clinic and compared them with our automatic generated plans, in both the efficiency and plan quality. Results: For each evaluated plan, the proposed multi-objective framework could run fluently and automatically. The voxel weighting factor iteration time varied from 10 to 30 under an updated constraint, and the constraint tuning time varied from 20 to 30 for every case until no more stricter constraint is allowed. The average total costing time for the whole optimization procedure is ∼30mins. By comparing the DVHs, better OAR dose sparing could be observed in automatic generated plan, for 13 out of the 20 cases, while others are with competitive results. Conclusion: We have successfully developed a fast and automatic multi-objective optimization for intensity modulated radiotherapy. This work is supported by the National Natural Science Foundation of China (No: 81571771)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallardo, N; Maneru, F; Fuentemilla, N
2015-06-15
Purpose: dosimetric comparison of 3DCRT and IMRT in 9 esophageal cancer. The aim of this paper is to know which of these two techniques is dosimetrically more favorable dosimetrically at both the CTV coverage and dose obtained in the relevant organs at risk, in this case, lungs and heart, as the spinal cord received in all cases below 45 Gy. Methods: we chose 9 patients from our center (CHN) with the same type of esophageal cancer and in which the prescribed dose was the same, 54 Gy. For these treatments we have used the same fields and the same anglesmore » (AP (0 °), OPD (225°–240°) and OPI (125°–135°)).All plans have been implemented using Eclipse (version 11.0) with AAA( Analytical Anisotropic Algorithm )(Version 11.0.31). Results: To analyze the coverage of the CTV, we have evaluated the D99% and found that the average dose received by 99% of CTV with IMRT is 53.8 ± 0.4 Gy (99.6% of the prescribed dose) and the mean value obtained with 3DCRT is 52.3 ± 0.6 Gy (96.8% of the prescribed dose).The last data analyzed was the D2% of PTV, a fact that gives us information on the maximum dose received by our PTV. D2% of the PTV for IMRT planning is 55.4 ± 0.4 Gy (102.6% of the prescribed dose) and with 3DCRT is 56.8 ± 0.7 Gy (105.2% of the prescribed dose).All parameters analyzed at risk organs (V30, V40, V45 and V50 for the case of heart and V5, V10, V15 and V20 for the case of the lungs) provide us irradiated volume percentages lower in IMRT than 3DCRT. Conclusion: IMRT provides a considerable improvement in the coverage of the CTV and the doses to organs at risk.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C; Badal, A
Purpose: Computational voxel phantom provides realistic anatomy but the voxel structure may result in dosimetric error compared to real anatomy composed of perfect surface. We analyzed the dosimetric error caused from the voxel structure in hybrid computational phantoms by comparing the voxel-based doses at different resolutions with triangle mesh-based doses. Methods: We incorporated the existing adult male UF/NCI hybrid phantom in mesh format into a Monte Carlo transport code, penMesh that supports triangle meshes. We calculated energy deposition to selected organs of interest for parallel photon beams with three mono energies (0.1, 1, and 10 MeV) in antero-posterior geometry. Wemore » also calculated organ energy deposition using three voxel phantoms with different voxel resolutions (1, 5, and 10 mm) using MCNPX2.7. Results: Comparison of organ energy deposition between the two methods showed that agreement overall improved for higher voxel resolution, but for many organs the differences were small. Difference in the energy deposition for 1 MeV, for example, decreased from 11.5% to 1.7% in muscle but only from 0.6% to 0.3% in liver as voxel resolution increased from 10 mm to 1 mm. The differences were smaller at higher energies. The number of photon histories processed per second in voxels were 6.4×10{sup 4}, 3.3×10{sup 4}, and 1.3×10{sup 4}, for 10, 5, and 1 mm resolutions at 10 MeV, respectively, while meshes ran at 4.0×10{sup 4} histories/sec. Conclusion: The combination of hybrid mesh phantom and penMesh was proved to be accurate and of similar speed compared to the voxel phantom and MCNPX. The lowest voxel resolution caused a maximum dosimetric error of 12.6% at 0.1 MeV and 6.8% at 10 MeV but the error was insignificant in some organs. We will apply the tool to calculate dose to very thin layer tissues (e.g., radiosensitive layer in gastro intestines) which cannot be modeled by voxel phantoms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, T; Zhang, M; Hanft, S
2015-06-15
Purpose: Metal rods are frequently used to stabilize the spine in patients with metastatic disease. The high Z material causes imaging artifacts in the surrounding tissue in CT scans, which introduces dosimetric uncertainty when inhomogeneity correction is enabled for radiation treatment planning. The purpose of this study is to quantify the dosimetric deviations caused by the imaging artifacts and to evaluate the effectiveness of using Hounsfield units (HU) overwriting to reduce dosimetric uncertainties. Methods: We retrospectively reviewed treatment plans for 4 patients with metal implants who received stereotactic ablative radiation therapy (SABR) for metastatic disease to the spine on Tomotherapymore » HiArt. For all four patients, the region of imaging artifact surrounding the metal implants was contoured and the pixel HU’s were overwritten to be water equivalent. We then generated adaptive treatment plans for these patients using the MVCT pretreatment set up images and batched beamlets in the original treatment plans. The dosimetry deviation between the adaptive and original plans were compared and quantitatively analyzed. Results: For three out of four patient, the major OAR (spinal cord) dose (0.35cc or 10% according to protocols and fractionation) increased (2.7%, 5.5%, 0%, 3.9%, mean=3.0±2.3%, p=0.04), and the PTV dose (D90 or D95 as per prescription) increased for all four patients ( 2%, 5%, 0.7%, 3.6%, mean=2.8±1.9%, p=0.03) in the adaptive plan with HU overwriting. The average point dose deviation of the Tomotherapy DQA for the same patients was −1.0±1.0%. For plans without HU overwriting, the dose deviation from the treatment plan will increase. Conclusion: The metal implant and the imaging artifacts may cause a significant dosimetric impact on radiation treatment plans for spinal disease. The dose to the PTV and the spinal cord was under-calculated in treatment plans without considering the imaging artifacts. HU overwriting can reduce the dosimetry un-certainty.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, A; Foster, J; Chu, W
2015-06-15
Purpose: Many cancer centers treat colorectal patients in the prone position on a belly board to minimize dose to the small bowel. That may potentially Result in patient setup instability with corresponding impact on dose delivery accuracy for highly conformal techniques such as IMRT/VMAT. Two aims of this work are 1) to investigate setup accuracy of rectum patients treated in the prone position on a belly board using CBCT and 2) to evaluate dosimetric impact on bladder and small bowel of treating rectum patients in supine vs. prone position. Methods: For the setup accuracy study, 10 patients were selected. Weeklymore » CBCTs were acquired and matched to bone. The CBCT-determined shifts were recorded. For the dosimetric study, 7 prone-setup patients and 7 supine-setup patients were randomly selected from our clinical database. Various clinically relevant dose volume histogram values were recorded for the small bowel and bladder. Results: The CBCT-determined rotational shifts had a wide variation. For the dataset acquired at the time of this writing, the ranges of rotational setup errors for pitch, roll, and yaw were [−3.6° 4.7°], [−4.3° 3.2°], and [−1.4° 1.4°]. For the dosimetric study: the small bowel V(45Gy) and mean dose for the prone position was 5.6±12.1% and 18.4±6.2Gy (ranges indicate standard deviations); for the supine position the corresponding dose values were 12.9±15.8% and 24.7±8.8Gy. For the bladder, the V(30Gy) and mean dose for prone position were 68.7±12.7% and 38.4±3.3Gy; for supine position these dose values were 77.1±13.7% and 40.7±3.1Gy. Conclusion: There is evidence of significant rotational instability in the prone position. The OAR dosimetry study indicates that there are some patients that may still benefit from the prone position, though many patients can be safely treated supine.« less
SU-E-T-119: Dosimetric and Mechanical Characteristics of Elekta Infinity LINAC with Agility MLC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J; Xu, Q; Xue, J
2014-06-01
Purpose: Elekta Infinity is the one of the latest generation LINAC with unique features. Two Infinity LINACs are recently commissioned at our institution. The dosimetric and mechanical characteristics of the machines are presented. Methods: Both Infinity LINACs with Agility MLC (160 leaves with 0.5 cm leaf width) are configured with five electron energies (6, 9, 12, 15, and 18 MeV) and two photon energies (6 and 15 MV). One machine has additional photon energy (10 MV). The commissioning was performed by following the manufacturer's specifications and AAPM TG recommendations. Beam data of both electron and photon beams are measured withmore » scanning ion chambers and linear diode array. Machines are adjusted to have the dosimetrically equivalent characteristics. Results: The commissioning of mechanical and imaging system meets the tolerances by TG recommendations. The PDD{sub 10} of various field sizes for 6 and 15 MV shows < 0.5% difference between two machines. For each electron beams, R{sub 80} matches with < 0.4 mm difference. The symmetry and flatness agree within 0.8% and 0.9% differences for photon beams, respectively. For electron beams, the differences of the symmetry and flatness are within 1.2% and 0.8%, respectively. The mean inline penumbras for 6, 10, and 15 MV are respectively 5.1±0.24, 5.6±0.07, and 5.9±0.10 mm for 10x10 cm at 10 cm depth. The crossline penumbras are larger than inline penumbras by 2.2, 1.4, and 1.0 mm, respectively. The MLC transmission factor with interleaf leakage is 0.5 % for all photon energies. Conclusion: The dosimetric and mechanical characteristics of two Infinity LINACs show good agreements between them. Although the Elekta Infinity has been used in many institutions, the detailed characteristics of the machine have not been reported. This study provides invaluable information to understand the Infinity LINAC and to compare the quality of commissioning data for other LINACs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, S; Neylon, J; Chen, A
2014-06-01
Purposes: To systematically monitor anatomic variations and their dosimetric consequences during head-and-neck (H'N) radiation therapy using a GPU-based deformable image registration (DIR) framework. Methods: Eleven H'N IMRT patients comprised the subject population. The daily megavoltage CT and weekly kVCT scans were acquired for each patient. The pre-treatment CTs were automatically registered with their corresponding planning CT through an in-house GPU-based DIR framework. The deformation of each contoured structure was computed to account for non-rigid change in the patient setup. The Jacobian determinant for the PTVs and critical structures was used to quantify anatomical volume changes. Dose accumulation was performed tomore » determine the actual delivered dose and dose accumulation. A landmark tool was developed to determine the uncertainty in the dose distribution due to registration error. Results: Dramatic interfraction anatomic changes leading to dosimetric variations were observed. During the treatment courses of 6–7 weeks, the parotid gland volumes changed up to 34.7%, the center-of-mass displacement of the two parotids varied in the range of 0.9–8.8mm. Mean doses were within 5% and 3% of the planned mean doses for all PTVs and CTVs, respectively. The cumulative minimum/mean/EUD doses were lower than the planned doses by 18%, 2%, and 7%, respectively for the PTV1. The ratio of the averaged cumulative cord maximum doses to the plan was 1.06±0.15. The cumulative mean doses assessed by the weekly kVCTs were significantly higher than the planned dose for the left-parotid (p=0.03) and right-parotid gland (p=0.006). The computation time was nearly real-time (∼ 45 seconds) for registering each pre-treatment CT to the planning CT and dose accumulation with registration accuracy (for kVCT) at sub-voxel level (<1.5mm). Conclusions: Real-time assessment of anatomic and dosimetric variations is feasible using the GPU-based DIR framework. Clinical implementation of this technology may enable timely plan adaption and potentially lead to improved outcome.« less
Analysis Techniques for Microwave Dosimetric Data.
1985-10-01
the number of steps in the frequency list . 0062 C ----------------------------------------------------------------------- 0063 CALL FILE2() 0064...starting frequency, 0061 C the step size, and the number of steps in the frequency list . 0062 C
Dankers, Frank; Wijsman, Robin; Troost, Esther G C; Monshouwer, René; Bussink, Johan; Hoffmann, Aswin L
2017-05-07
In our previous work, a multivariable normal-tissue complication probability (NTCP) model for acute esophageal toxicity (AET) Grade ⩾2 after highly conformal (chemo-)radiotherapy for non-small cell lung cancer (NSCLC) was developed using multivariable logistic regression analysis incorporating clinical parameters and mean esophageal dose (MED). Since the esophagus is a tubular organ, spatial information of the esophageal wall dose distribution may be important in predicting AET. We investigated whether the incorporation of esophageal wall dose-surface data with spatial information improves the predictive power of our established NTCP model. For 149 NSCLC patients treated with highly conformal radiation therapy esophageal wall dose-surface histograms (DSHs) and polar dose-surface maps (DSMs) were generated. DSMs were used to generate new DSHs and dose-length-histograms that incorporate spatial information of the dose-surface distribution. From these histograms dose parameters were derived and univariate logistic regression analysis showed that they correlated significantly with AET. Following our previous work, new multivariable NTCP models were developed using the most significant dose histogram parameters based on univariate analysis (19 in total). However, the 19 new models incorporating esophageal wall dose-surface data with spatial information did not show improved predictive performance (area under the curve, AUC range 0.79-0.84) over the established multivariable NTCP model based on conventional dose-volume data (AUC = 0.84). For prediction of AET, based on the proposed multivariable statistical approach, spatial information of the esophageal wall dose distribution is of no added value and it is sufficient to only consider MED as a predictive dosimetric parameter.
Mohamed, Abdallah S R; Cardenas, Carlos E; Garden, Adam S; Awan, Musaddiq J; Rock, Crosby D; Westergaard, Sarah A; Brandon Gunn, G; Belal, Abdelaziz M; El-Gowily, Ahmed G; Lai, Stephen Y; Rosenthal, David I; Fuller, Clifton D; Aristophanous, Michalis
2017-08-01
To identify the radio-resistant subvolumes in pretreatment FDG-PET by mapping the spatial location of the origin of tumor recurrence after IMRT for head-and-neck squamous cell cancer to the pretreatment FDG-PET/CT. Patients with local/regional recurrence after IMRT with available FDG-PET/CT and post-failure CT were included. For each patient, both pre-therapy PET/CT and recurrence CT were co-registered with the planning CT (pCT). A 4-mm radius was added to the centroid of mapped recurrence growth target volumes (rGTV's) to create recurrence nidus-volumes (NVs). The overlap between boost-tumor-volumes (BTV) representing different SUV thresholds/margins combinations and NVs was measured. Forty-seven patients were eligible. Forty-two (89.4%) had type A central high dose failure. Twenty-six (48%) of type A rGTVs were at the primary site and 28 (52%) were at the nodal site. The mean dose of type A rGTVs was 71Gy. BTV consisting of 50% of the maximum SUV plus 10mm margin was the best subvolume for dose boosting due to high coverage of primary site NVs (92.3%), low average relative volume to CTV1 (41%), and least average percent voxels outside CTV1 (19%). The majority of loco-regional recurrences originate in the regions of central-high-dose. When correlated with pretreatment FDG-PET, the majority of recurrences originated in an area that would be covered by additional 10mm margin on the volume of 50% of the maximum FDG uptake. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dankers, Frank; Wijsman, Robin; Troost, Esther G. C.; Monshouwer, René; Bussink, Johan; Hoffmann, Aswin L.
2017-05-01
In our previous work, a multivariable normal-tissue complication probability (NTCP) model for acute esophageal toxicity (AET) Grade ⩾2 after highly conformal (chemo-)radiotherapy for non-small cell lung cancer (NSCLC) was developed using multivariable logistic regression analysis incorporating clinical parameters and mean esophageal dose (MED). Since the esophagus is a tubular organ, spatial information of the esophageal wall dose distribution may be important in predicting AET. We investigated whether the incorporation of esophageal wall dose-surface data with spatial information improves the predictive power of our established NTCP model. For 149 NSCLC patients treated with highly conformal radiation therapy esophageal wall dose-surface histograms (DSHs) and polar dose-surface maps (DSMs) were generated. DSMs were used to generate new DSHs and dose-length-histograms that incorporate spatial information of the dose-surface distribution. From these histograms dose parameters were derived and univariate logistic regression analysis showed that they correlated significantly with AET. Following our previous work, new multivariable NTCP models were developed using the most significant dose histogram parameters based on univariate analysis (19 in total). However, the 19 new models incorporating esophageal wall dose-surface data with spatial information did not show improved predictive performance (area under the curve, AUC range 0.79-0.84) over the established multivariable NTCP model based on conventional dose-volume data (AUC = 0.84). For prediction of AET, based on the proposed multivariable statistical approach, spatial information of the esophageal wall dose distribution is of no added value and it is sufficient to only consider MED as a predictive dosimetric parameter.
Nikiforov, S V; Kortov, V S
2014-11-01
The main thermoluminescent (TL) and dosimetric properties of the detectors based on anion-defective crystalline and nanostructured aluminium oxide after exposure to a high-current pulse electron beam are studied. TL peaks associated with deep-trapping centres are registered. It is shown that the use of deep-trap TL at 200-600°С allows registering absorbed doses up to 750 kGy for single-crystalline detectors and those up to 6 kGy for nanostructured ones. A wide range of the doses registered, high reproducibility of the TL signal and low fading contribute to a possibility of using single-crystalline and nanostructured aluminium oxide for the dosimetry of high-current pulse electron beams. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purwaningsih, Anik
Dosimetric data for a brachytherapy source should be known before it used for clinical treatment. Iridium-192 source type H01 was manufactured by PRR-BATAN aimed to brachytherapy is not yet known its dosimetric data. Radial dose function and anisotropic dose distribution are some primary keys in brachytherapy source. Dose distribution for Iridium-192 source type H01 was obtained from the dose calculation formalism recommended in the AAPM TG-43U1 report using MCNPX 2.6.0 Monte Carlo simulation code. To know the effect of cavity on Iridium-192 type H01 caused by manufacturing process, also calculated on Iridium-192 type H01 if without cavity. The result ofmore » calculation of radial dose function and anisotropic dose distribution for Iridium-192 source type H01 were compared with another model of Iridium-192 source.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei Xiong; Liu, H. Helen; Tucker, Susan L.
Purpose: To identify clinical and dosimetric factors influencing the risk of pericardial effusion (PCE) in patients with inoperable esophageal cancer treated with definitive concurrent chemotherapy and radiation therapy (RT). Methods and Materials: Data for 101 patients with inoperable esophageal cancer treated with concurrent chemotherapy and RT from 2000 to 2003 at our institution were analyzed. The PCE was confirmed from follow-up chest computed tomography scans and radiologic reports, with freedom from PCE computed from the end of RT. Log-rank tests were used to identify clinical and dosimetric factors influencing freedom from PCE. Dosimetric factors were calculated from the dose-volume histogrammore » for the whole heart and pericardium. Results: The crude rate of PCE was 27.7% (28 of 101). Median time to onset of PCE was 5.3 months (range, 1.0-16.7 months) after RT. None of the clinical factors investigated was found to significantly influence the risk of PCE. In univariate analysis, a wide range of dose-volume histogram parameters of the pericardium and heart were associated with risk of PCE, including mean dose to the pericardium, volume of pericardium receiving a dose greater than 3 Gy (V3) to greater than 50 Gy (V50), and heart volume treated to greater than 32-38 Gy. Multivariate analysis selected V30 as the only parameter significantly associated with risk of PCE. Conclusions: High-dose radiation to the pericardium may strongly increase the risk of PCE. Such a risk may be reduced by minimizing the dose-volume of the irradiated pericardium and heart.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazan, Jose G.; Luxton, Gary; Kozak, Margaret M.
Purpose: To determine how chemotherapy agents affect radiation dose parameters that correlate with acute hematologic toxicity (HT) in patients treated with pelvic intensity modulated radiation therapy (P-IMRT) and concurrent chemotherapy. Methods and Materials: We assessed HT in 141 patients who received P-IMRT for anal, gynecologic, rectal, or prostate cancers, 95 of whom received concurrent chemotherapy. Patients were separated into 4 groups: mitomycin (MMC) + 5-fluorouracil (5FU, 37 of 141), platinum ± 5FU (Cis, 32 of 141), 5FU (26 of 141), and P-IMRT alone (46 of 141). The pelvic bone was contoured as a surrogate for pelvic bone marrow (PBM) andmore » divided into subsites: ilium, lower pelvis, and lumbosacral spine (LSS). The volumes of each region receiving 5-40 Gy were calculated. The endpoint for HT was grade ≥3 (HT3+) leukopenia, neutropenia or thrombocytopenia. Normal tissue complication probability was calculated using the Lyman-Kutcher-Burman model. Logistic regression was used to analyze association between HT3+ and dosimetric parameters. Results: Twenty-six patients experienced HT3+: 10 of 37 (27%) MMC, 14 of 32 (44%) Cis, 2 of 26 (8%) 5FU, and 0 of 46 P-IMRT. PBM dosimetric parameters were correlated with HT3+ in the MMC group but not in the Cis group. LSS dosimetric parameters were well correlated with HT3+ in both the MMC and Cis groups. Constrained optimization (0« less
Multi-centre audit of VMAT planning and pre-treatment verification.
Jurado-Bruggeman, Diego; Hernández, Victor; Sáez, Jordi; Navarro, David; Pino, Francisco; Martínez, Tatiana; Alayrach, Maria-Elena; Ailleres, Norbert; Melero, Alejandro; Jornet, Núria
2017-08-01
We performed a multi-centre intercomparison of VMAT dose planning and pre-treatment verification. The aims were to analyse the dose plans in terms of dosimetric quality and deliverability, and to validate whether in-house pre-treatment verification results agreed with those of an external audit. The nine participating centres encompassed different machines, equipment, and methodologies. Two mock cases (prostate and head and neck) were planned using one and two arcs. A plan quality index was defined to compare the plans and different complexity indices were calculated to check their deliverability. We compared gamma index pass rates using the centre's equipment and methodology to those of an external audit (global 3D gamma, absolute dose differences, 10% of maximum dose threshold). Log-file analysis was performed to look for delivery errors. All centres fulfilled the dosimetric goals but plan quality and delivery complexity were heterogeneous and uncorrelated, depending on the manufacturer and the planner's methodology. Pre-treatment verifications results were within tolerance in all cases for gamma 3%-3mm evaluation. Nevertheless, differences between the external audit and in-house measurements arose due to different equipment or methodology, especially for 2%-2mm criteria with differences up to 20%. No correlation was found between complexity indices and verification results amongst centres. All plans fulfilled dosimetric constraints, but plan quality and complexity did not correlate and were strongly dependent on the planner and the vendor. In-house measurements cannot completely replace external audits for credentialing. Copyright © 2017 Elsevier B.V. All rights reserved.
WE-D-BRD-01: Innovation in Radiation Therapy Delivery: Advanced Digital Linac Features
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing, L; Wong, J; Li, R
2014-06-15
Last few years has witnessed significant advances in linac technology and therapeutic dose delivery method. Digital linacs equipped with high dose rate FFF beams have been clinically implemented in a number of hospitals. Gated VMAT is becoming increasingly popular in treating tumors affected by respiratory motion. This session is devoted to update the audience with these technical advances and to present our experience in clinically implementing the new linacs and dose delivery methods. Topics to be covered include, technical features of new generation of linacs from different vendors, dosimetric characteristics and clinical need for FFF-beam based IMRT and VMAT, respiration-gatedmore » VMAT, the concept and implementation of station parameter optimized radiation therapy (SPORT), beam level imaging and onboard image guidance tools. Emphasis will be on providing fundamental understanding of the new treatment delivery and image guidance strategies, control systems, and the associated dosimetric characteristics. Commissioning and acceptance experience on these new treatment delivery technologies will be reported. Clinical experience and challenges encountered during the process of implementation of the new treatment techniques and future applications of the systems will also be highlighted. Learning Objectives: Present background knowledge of emerging digital linacs and summarize their key geometric and dosimetric features. SPORT as an emerging radiation therapy modality specifically designed to take advantage of digital linacs. Discuss issues related to the acceptance and commissioning of the digital linacs and FFF beams. Describe clinical utility of the new generation of digital linacs and their future applications.« less
Jaberi, Ramin; Aghamiri, Mahmoud Reza; Kirisits, Christian; Ghaderi, Reza
2017-01-01
Purpose Intra-fractional organs at risk (OARs) deformations can lead to dose variation during image-guided adaptive brachytherapy (IGABT). The aim of this study was to modify the final accepted brachytherapy treatment plan to dosimetrically compensate for these intra-fractional organs-applicators position variations and, at the same time, fulfilling the dosimetric criteria. Material and methods Thirty patients with locally advanced cervical cancer, after external beam radiotherapy (EBRT) of 45-50 Gy over five to six weeks with concomitant weekly chemotherapy, and qualified for intracavitary high-dose-rate (HDR) brachytherapy with tandem-ovoid applicators were selected for this study. Second computed tomography scan was done for each patient after finishing brachytherapy treatment with applicators in situ. Artificial neural networks (ANNs) based models were used to predict intra-fractional OARs dose-volume histogram parameters variations and propose a new final plan. Results A model was developed to estimate the intra-fractional organs dose variations during gynaecological intracavitary brachytherapy. Also, ANNs were used to modify the final brachytherapy treatment plan to compensate dosimetrically for changes in ‘organs-applicators’, while maintaining target dose at the original level. Conclusions There are semi-automatic and fast responding models that can be used in the routine clinical workflow to reduce individually IGABT uncertainties. These models can be more validated by more patients’ plans to be able to serve as a clinical tool. PMID:29441094
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, X; Sun, T; Liu, T
2014-06-01
Purpose: To evaluate the dosimetric characteristics of intensity-modulated radiotherapy (IMRT) treatment plan with beam angle optimization. Methods: Ten post-operation patients with cervical cancer were included in this analysis. Two IMRT plans using seven beams were designed in each patient. A standard coplanar equi-space beam angles were used in the first plan (plan 1), whereas the selection of beam angle was optimized by beam angle optimization algorithm in Varian Eclipse treatment planning system for the same number of beams in the second plan (plan 2). Two plans were designed for each patient with the same dose-volume constraints and prescription dose. Allmore » plans were normalized to the mean dose to PTV. The dose distribution in the target, the dose to the organs at risk and total MU were compared. Results: For conformity and homogeneity in PTV, no statistically differences were observed in the two plans. For the mean dose in bladder, plan 2 were significantly lower than plan 1(p<0.05). No statistically significant differences were observed between two plans for the mean doses in rectum, left and right femur heads. Compared with plan1, the average monitor units reduced 16% in plan 2. Conclusion: The IMRT plan based on beam angle optimization for cervical cancer could reduce the dose delivered to bladder and also reduce MU. Therefore there were some dosimetric advantages in the IMRT plan with beam angle optimization for cervical cancer.« less
NASA Astrophysics Data System (ADS)
Kurudirek, Murat
2014-09-01
Effective atomic numbers, Zeff, and electron densities, neff, are convenient parameters used to characterise the radiation response of a multi-element material in many technical and medical applications. Accurate values of these physical parameters provide essential data in medical physics. In the present study, the effective atomic numbers and electron densities have been calculated for some human tissues and dosimetric materials such as Adipose Tissue (ICRU-44), Bone Cortical (ICRU-44), Brain Grey/White Matter (ICRU-44), Breast Tissue (ICRU-44), Lung Tissue (ICRU-44), Soft Tissue (ICRU-44), LiF TLD-100H, TLD-100, Water, Borosilicate Glass, PAG (Gel Dosimeter), Fricke (Gel Dosimeter) and OSL (Aluminium Oxide) using mean photon energies, Em, of various radiation sources. The used radiation sources are Pd-103, Tc-99, Ra-226, I-131, Ir-192, Co-60, 30 kVp, 40 kVp, 50 kVp (Intrabeam, Carl Zeiss Meditec) and 6 MV (Mohan-6 MV) sources. The Em values were then used to calculate Zeff and neff of the tissues and dosimetric materials for various radiation sources. Different calculation methods for Zeff such as the direct method, the interpolation method and Auto-Zeff computer program were used and agreements and disagreements between the used methods have been presented and discussed. It has been observed that at higher Em values agreement is quite satisfactory (Dif.<5%) between the adopted methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Andrew, E-mail: aojones@geisinger.edu; Treas, Jared; Yavoich, Brian
2014-01-01
The aim of the study was to investigate the differences between intraoperative and postoperative dosimetry for transrectal ultrasound–guided transperineal prostate implants using cesium-131 ({sup 131}Cs). Between 2006 and 2010, 166 patients implanted with {sup 131}Cs had both intraoperative and postoperative dosimetry studies. All cases were monotherapy and doses of 115 were prescribed to the prostate. The dosimetric properties (D{sub 90}, V{sub 150}, and V{sub 100} for the prostate) of the studies were compared. Two conformity indices were also calculated and compared. Finally, the prostate was automatically sectioned into 6 sectors (anterior and posterior sectors at the base, midgland, and apex)more » and the intraoperative and postoperative dosimetry was compared in each individual sector. Postoperative dosimetry showed statistically significant changes (p < 0.01) in every dosimetric value except V{sub 150}. In each significant case, the postoperative plans showed lower dose coverage. The conformity indexes also showed a bimodal frequency distribution with the index indicating poorer dose conformity in the postoperative plans. Sector analysis revealed less dose coverage postoperatively in the base and apex sectors with an increase in dose to the posterior midgland sector. Postoperative dosimetry overall and in specific sectors of the prostate differs significantly from intraoperative planning. Care must be taken during the intraoperative planning stage to ensure complete dose coverage of the prostate with the understanding that the final postoperative dosimetry will show less dose coverage.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakayama, Masao, E-mail: naka2008@med.kobe-u.ac.jp; Yoshida, Kenji; Nishimura, Hideki
2014-04-01
The present study aimed to investigate the effect of heterogeneity correction (HC) on dosimetric parameters in 3-dimensional conformal radiotherapy planning for patients with thoracic esophageal cancer. We retrospectively analyzed 20 patients. Two treatment plans were generated for each patient using a superposition algorithm on the Xio radiotherapy planning system. The first plan was calculated without HC. The second was a new plan calculated with HC, using identical beam geometries and maintaining the same number of monitor units as the first. With regard to the planning target volume (PTV), the overall mean differences in the prescription dose, maximum dose, mean dose,more » and dose that covers 95% of the PTV between the first and second plans were 1.10 Gy (1.8%), 1.35 Gy (2.2%), 1.10 Gy (1.9%), and 0.56 Gy (1.0%), respectively. With regard to parameters related to the organs at risk (OARs), the mean differences in the absolute percentages of lung volume receiving greater than 5, 10, 20, and 30 Gy (lung V{sub 5}, V{sub 10}, V{sub 20}, and V{sub 30}) between the first and second plans were 7.1%, 2.7%, 0.4%, and 0.5%, respectively. These results suggest that HC might have a more pronounced effect on the percentages of lung volume receiving lower doses (e.g., V{sub 5} and V{sub 10}) than on the dosimetric parameters related to the PTV and other OARs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yong-Gang; Qi, Shu-Nan; Wang, Shu-Lian
Purpose: To assess the dosimetric benefit, prognosis, and toxicity of intensity modulated radiation therapy (IMRT) for early-stage, diffuse large B-cell lymphoma of Waldeyer ring (WR-DLBCL). Methods and Materials: Sixty-one patients with early-stage WR-DLBCL who received chemotherapy followed by IMRT were retrospectively reviewed. Dosimetric parameters for the target volume and critical normal structures were evaluated, and survival was calculated. Linear regression analysis was used to assess the effect of the mean dose (D{sub mean}) to the parotid glands on xerostomia. Results: The median conformity index and homogeneity index of the planning target volume (PTV) were 0.83 and 0.90, respectively, demonstrating verymore » good coverage of the target volume. The mean dose to the parotid glands was 24.9 Gy. The 5-year overall survival (OS), progression-free survival (PFS), and locoregional control (LRC) were 94.7%, 93.1%, and 98.3%, respectively. Early and late toxicities were mild, and no patient experienced late grade ≥3 toxicities. The D{sub mean} to the parotid glands had a linear correlation with late grade ≥2 xerostomia. Conclusions: IMRT after chemotherapy can provide excellent dose conformity and achieve favorable survival and LRC with mild toxicities in patients with early-stage WR-DLBCL. Dose constraints for the parotid glands should be limited to <24 Gy for early-stage WR-DLBCL.« less
Xiao, Lin-Lin; Yang, Guoren; Chen, Jinhu; Wang, Xiaohui; Wu, Qingwei; Huo, Zongwei; Yu, Qingxi; Yu, Jinming; Yuan, Shuanghu
2017-03-15
This study aimed to find a better dosimetric parameter in predicting of radiation-induced lung toxicity (RILT) in patients with non-small cell lung cancer (NSCLC) individually: ventilation(V), perfusion (Q) or computerized tomography (CT) based. V/Q single-photon emission computerized tomography (SPECT) was performed within 1 week prior to radiotherapy (RT). All V/Q imaging data was integrated into RT planning system, generating functional parameters based on V/Q SPECT. Fifty-seven NSCLC patients were enrolled in this prospective study. Fifteen (26.3%) patients underwent grade ≥2 RILT, the remaining forty-two (73.7%) patients didn't. Q-MLD, Q-V20, V-MLD, V-V20 of functional parameters correlated more significantly with the occurrence of RILT compared to V20, MLD of anatomical parameters (r = 0.630; r = 0.644; r = 0.617; r = 0.651 vs. r = 0.424; r = 0.520 p < 0.05, respectively). In patients with chronic obstructive pulmonary diseases (COPD), V functional parameters reflected significant advantage in predicting RILT; while in patients without COPD, Q functional parameters reflected significant advantage. Analogous results were existed in fractimal analysis of global pulmonary function test (PFT). In patients with central-type NSCLC, V parameters were better than Q parameters; while in patients with peripheral-type NSCLC, the results were inverse. Therefore, this study demonstrated that choosing a suitable dosimetric parameter individually can help us predict RILT accurately.
Characterization of the a-Si EPID in the unity MR-linac for dosimetric applications.
Torres-Xirau, I; Olaciregui-Ruiz, I; Baldvinsson, G; Mijnheer, B J; van der Heide, U A; Mans, A
2018-01-09
Electronic portal imaging devices (EPIDs) are frequently used in external beam radiation therapy for dose verification purposes. The aim of this study was to investigate the dose-response characteristics of the EPID in the Unity MR-linac (Elekta AB, Stockholm, Sweden) relevant for dosimetric applications under clinical conditions. EPID images and ionization chamber (IC) measurements were used to study the effects of the magnetic field, the scatter generated in the MR housing reaching the EPID, and inhomogeneous attenuation from the MR housing. Dose linearity and dose rate dependencies were also determined. The magnetic field strength at EPID level did not exceed 10 mT, and dose linearity and dose rate dependencies proved to be comparable to that on a conventional linac. Profiles of fields, delivered with and without the magnetic field, were indistinguishable. The EPID center had an offset of 5.6 cm in the longitudinal direction, compared to the beam central axis, meaning that large fields in this direction will partially fall outside the detector area and not be suitable for verification. Beam attenuation by the MRI scanner and the table is gantry angle dependent, presenting a minimum attenuation of 67% relative to the 90° measurement. Repeatability, observed over two months, was within 0.5% (1 SD). In order to use the EPID for dosimetric applications in the MR-linac, challenges related to the EPID position, scatter from the MR housing, and the inhomogeneous, gantry angle-dependent attenuation of the beam will need to be solved.
Zhao, Yaqin; Chen, Lu; Zhang, Shu; Wu, Qiang; Jiang, Xiaoqin; Zhu, Hong; Wang, Jin; Li, Zhiping; Xu, Yong; Zhang, Ying Jie; Bai, Sen; Xu, Feng
2015-01-01
Radiation pneumonitis (RP) is a common side reaction in radiotherapy for esophageal cancer. There are few reports about RP in esophageal cancer patients receiving postoperative intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT). This study aims to analyze clinical or dosimetric factors associated with RP, and provides data for radiotherapy planning. We reviewed 68 postoperative esophageal cancer patients who were treated with radiotherapy at the West China Hospital from October 2010 to November 2012 to identify any correlation between the clinical or dosimetric parameters and acute radiation pneumonitis (ARP) or severe acute radiation pneumonitis (SARP) by t-test, chi-square test, and logistic regression analysis. Of the 68 patients, 33 patients (48.5%) developed ARP, 13 of which (19.1%) developed SARP. Of these 33 patients, 8 (11.8%), 12 (17.6%), 11 (16.2%), and 2 (2.9%) patients were grade 1, 2, 3, and 4 ARP, respectively. Univariate analysis showed that lung infection during radiotherapy, use of VMAT, mean lung dose (MLD), and dosimetric parameters (e.g. V20, V30) are significantly correlated with RP. Multivariate analysis found that lung infection during radiotherapy, MLD ≥ 12 Gy, and V30 ≥ 13% are significantly correlated with an increased risk of RP. Lung infection during radiotherapy and low radiation dose volume distribution were predictive factors associated with RP and should be accounted for during radiation planning.
NASA Astrophysics Data System (ADS)
Yong, J. S.; Ung, N. M.; Jamalludin, Z.; Malik, R. A.; Wong, J. H. D.; Liew, Y. M.; Ng, K. H.
2016-02-01
We investigated the dosimetric impact of applicator displacement on dose specification during high dose rate (HDR) Cobalt-60 (Co-60) brachytherapy for cervical cancer through a planning study. Eighteen randomly selected HDR full insertion plans were restrospectively studied. The tandem and ovoids were virtually shifted translationally and rotationally in the x-, y- and z-axis directions on the treatment planning system. Doses to reference points and volumes of interest in the plans with shifted applicators were compared with the original plans. The impact of dose displacement on 2D (point-based) and 3D (volume-based) treatment planning techniques was also assessed. A ±2 mm translational y-axis applicator shift and ±4° rotational x-axis applicator shift resulted in dosimetric changes of more than 5% to organs at risk (OAR) reference points. Changes to the maximum doses to 2 cc of the organ (D2cc) in 3D planning were statistically significant and higher than the reference points in 2D planning for both the rectum and bladder (p<0.05). Rectal D2cc was observed to be the most sensitive to applicator displacement among all dose metrics. Applicator displacement that is greater than ±2 mm translational y-axis and ±4° rotational x-axis resulted in significant dose changes to the OAR. Thus, steps must be taken to minimize the possibility of applicator displacement during brachytherapy.
Characterization of the a-Si EPID in the unity MR-linac for dosimetric applications
NASA Astrophysics Data System (ADS)
Torres-Xirau, I.; Olaciregui-Ruiz, I.; Baldvinsson, G.; Mijnheer, B. J.; van der Heide, U. A.; Mans, A.
2018-01-01
Electronic portal imaging devices (EPIDs) are frequently used in external beam radiation therapy for dose verification purposes. The aim of this study was to investigate the dose-response characteristics of the EPID in the Unity MR-linac (Elekta AB, Stockholm, Sweden) relevant for dosimetric applications under clinical conditions. EPID images and ionization chamber (IC) measurements were used to study the effects of the magnetic field, the scatter generated in the MR housing reaching the EPID, and inhomogeneous attenuation from the MR housing. Dose linearity and dose rate dependencies were also determined. The magnetic field strength at EPID level did not exceed 10 mT, and dose linearity and dose rate dependencies proved to be comparable to that on a conventional linac. Profiles of fields, delivered with and without the magnetic field, were indistinguishable. The EPID center had an offset of 5.6 cm in the longitudinal direction, compared to the beam central axis, meaning that large fields in this direction will partially fall outside the detector area and not be suitable for verification. Beam attenuation by the MRI scanner and the table is gantry angle dependent, presenting a minimum attenuation of 67% relative to the 90° measurement. Repeatability, observed over two months, was within 0.5% (1 SD). In order to use the EPID for dosimetric applications in the MR-linac, challenges related to the EPID position, scatter from the MR housing, and the inhomogeneous, gantry angle-dependent attenuation of the beam will need to be solved.
Pasler, Marlies; Kaas, Jochem; Perik, Thijs; Geuze, Job; Dreindl, Ralf; Künzler, Thomas; Wittkamper, Frits; Georg, Dietmar
2015-12-01
To systematically evaluate machine specific quality assurance (QA) for volumetric modulated arc therapy (VMAT) based on log files by applying a dynamic benchmark plan. A VMAT benchmark plan was created and tested on 18 Elekta linacs (13 MLCi or MLCi2, 5 Agility) at 4 different institutions. Linac log files were analyzed and a delivery robustness index was introduced. For dosimetric measurements an ionization chamber array was used. Relative dose deviations were assessed by mean gamma for each control point and compared to the log file evaluation. Fourteen linacs delivered the VMAT benchmark plan, while 4 linacs failed by consistently terminating the delivery. The mean leaf error (±1SD) was 0.3±0.2 mm for all linacs. Large MLC maximum errors up to 6.5 mm were observed at reversal positions. Delivery robustness index accounting for MLC position correction (0.8-1.0) correlated with delivery time (80-128 s) and depended on dose rate performance. Dosimetric evaluation indicated in general accurate plan reproducibility with γ(mean)(±1 SD)=0.4±0.2 for 1 mm/1%. However single control point analysis revealed larger deviations and attributed well to log file analysis. The designed benchmark plan helped identify linac related malfunctions in dynamic mode for VMAT. Log files serve as an important additional QA measure to understand and visualize dynamic linac parameters. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Pencil Beam Scanning Proton Therapy for Rhabdomyosarcoma of the Biliary Tract.
Pater, Luke; Turpin, Brian; Mascia, Anthony
2017-10-05
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood with 250-350 cases diagnosed annually in the United States. Biliary tract rhabdomyosarcoma is rare, representing <1% of the RMS cases. Due to its location, resection is clinically challenging, and functional complications exist and persist from biliary obstruction. The anatomical location of this tumor presents both opportunities and challenges for pencil beam scanning proton therapy. Proton therapy offers a dosimetric and clinical advantage by sparing the healthy liver, stomach, contra-lateral kidney and bowel. Motion management and anatomical variations, such as intestinal filling or weight loss, requiring routine dosimetric evaluation and possible adaptive treatment planning, present challenges for the use of proton therapy. By taking advantage of the superior dose distribution of proton radiation, assessing the impact of tumor and anatomy motion, and performing regular dose evaluations, biliary tract RMS is an ideal diagnosis for pencil beam scanning proton therapy.
Investigation of 3D diamond detector dosimetric characteristics
NASA Astrophysics Data System (ADS)
Kanxheri, K.; Alunni Solestizi, L.; Biasini, M.; Caprai, M.; Dipilato, A. C.; Iacco, M.; Ionica, M.; Lagomarsino, S.; Menichelli, M.; Morozzi, A.; Passeri, D.; Sciortino, S.; Talamonti, C.; Zucchetti, C.; Servoli, L.
2018-06-01
Recently, a polycrystalline chemical vapor deposited (pCVD) 3D diamond detector with graphitic in bulk electrodes, fabricated using a pulsed laser technique has been evaluated for photon beam radiation dosimetry during in-air exposure. The same 3D diamond detector, has now been investigated to evaluate its performance under clinically relevant conditions putting the detector inside a Polymethylmethacrylate (PMMA) phantom, to obtain higher precision dosimetric measurements. The detector leakage current was of the order of ± 25 pA or less for bias voltages up to ‑100 V. The 3D detector was tested for time stability and repeatability showing excellent performance with less than 0.6% signal variation. It also showed a linear response for low dose rates with a deviation from linearity of 2%. It was also possible to verify the detector response as a function of the depth in PMMA up to 18 cm.
Space charge dosimeters for extremely low power measurements of radiation in shipping containers
Britton, Jr., Charles L.; Buckner, Mark A [Oak Ridge, TN; Hanson, Gregory R [Clinton, TN; Bryan, William L [Knoxville, TN
2011-05-03
Methods and apparatus are described for space charge dosimeters for extremely low power measurements of radiation in shipping containers. A method includes insitu polling a suite of passive integrating ionizing radiation sensors including reading-out dosimetric data from a first passive integrating ionizing radiation sensor and a second passive integrating ionizing radiation sensor, where the first passive integrating ionizing radiation sensor and the second passive integrating ionizing radiation sensor remain situated where the dosimetric data was integrated while reading-out. Another method includes arranging a plurality of ionizing radiation sensors in a spatially dispersed array; determining a relative position of each of the plurality of ionizing radiation sensors to define a volume of interest; collecting ionizing radiation data from at least a subset of the plurality of ionizing radiation sensors; and triggering an alarm condition when a dose level of an ionizing radiation source is calculated to exceed a threshold.
Space charge dosimeters for extremely low power measurements of radiation in shipping containers
Britton, Jr; Charles, L [Alcoa, TN; Buckner, Mark A [Oak Ridge, TN; Hanson, Gregory R [Clinton, TN; Bryan, William L [Knoxville, TN
2011-04-26
Methods and apparatus are described for space charge dosimeters for extremely low power measurements of radiation in shipping containers. A method includes in situ polling a suite of passive integrating ionizing radiation sensors including reading-out dosimetric data from a first passive integrating ionizing radiation sensor and a second passive integrating ionizing radiation sensor, where the first passive integrating ionizing radiation sensor and the second passive integrating ionizing radiation sensor remain situated where the dosimetric data was integrated while reading-out. Another method includes arranging a plurality of ionizing radiation sensors in a spatially dispersed array; determining a relative position of each of the plurality of ionizing radiation sensors to define a volume of interest; collecting ionizing radiation data from at least a subset of the plurality of ionizing radiation sensors; and triggering an alarm condition when a dose level of an ionizing radiation source is calculated to exceed a threshold.
Aguirre, Erik; Arpón, Javier; Azpilicueta, Leire; López, Peio; de Miguel, Silvia; Ramos, Victoria; Falcone, Francisco
2014-12-01
In this article, the impact of topology as well as morphology of a complex indoor environment such as a commercial aircraft in the estimation of dosimetric assessment is presented. By means of an in-house developed deterministic 3D ray-launching code, estimation of electric field amplitude as a function of position for the complete volume of a commercial passenger airplane is obtained. Estimation of electromagnetic field exposure in this environment is challenging, due to the complexity and size of the scenario, as well as to the large metallic content, giving rise to strong multipath components. By performing the calculation with a deterministic technique, the complete scenario can be considered with an optimized balance between accuracy and computational cost. The proposed method can aid in the assessment of electromagnetic dosimetry in the future deployment of embarked wireless systems in commercial aircraft.
NASA Astrophysics Data System (ADS)
Ermis, Elif Ebru
2017-02-01
The photon mass attenuation coefficients of LiF, BaSO4, CaCO3 and CaSO4 thermoluminescent dosimetric compounds at 100; 300; 500; 600; 800; 1,000; 1,500; 2,000; 3,000 and 5,000 keV gamma-ray energies were calculated. For this purpose, FLUKA Monte Carlo (MC) program which is one of the well-known MC codes was used in this study. Furthermore, obtained results were analyzed by means of ROOT program. National Institute of Standards and Technology (NIST) values were also used to compare the obtained theoretical values because the mass attenuation values of the used compounds could not found in the literature. Calculated mass attenuation coefficients were highly in accordance with the NIST values. As a consequence, FLUKA was successful in calculating the mass attenuation coefficients of the most used thermoluminescent compound.
LETTER TO THE EDITOR: Response to 'Patient dose measurements in radiological practices'
NASA Astrophysics Data System (ADS)
Zoetelief, J.; Wambersie, A.
2006-06-01
A lack of suitable dosimetric quantities for application in diagnostic radiology is noted by Dr Moores. It is concluded by Dr Moores that it is not possible to adhere to the basic principles of the International Commission on Radiation Units and Measurements (ICRU) regarding patient dosimetry in diagnostic radiology due to the extremely wide variety of quantities and units employed. The conclusion of the ICRU on similar observations, however, was that there is a need for harmonization of quantities and terminology for dosimetry in diagnostic and interventional radiology and they established a Report Committee with the aim of formulating an ICRU report on 'dosimetric procedures in diagnostic radiology'. The report produced by this committee entitled 'Patient dosimetry for x rays used in medical imaging' was accepted for publication in December 2005 and is currently at press, and may serve to improve the current situation with regard to patient dose measurement in diagnostic and interventional radiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J; Research Institute of Biomedical Engineering, The Catholic University of Korea, Seoul; Park, H
Purpose: Dosimetric effect and discrepancy according to the rectum definition methods and dose perturbation by air cavity in an endo-rectal balloon (ERB) were verified using rectal-wall (Rwall) dose maps considering systematic errors in dose optimization and calculation accuracy in intensity-modulated radiation treatment (IMRT) for prostate cancer patients. Methods: When the inflated ERB having average diameter of 4.5 cm and air volume of 100 cc is used for patient, Rwall doses were predicted by pencil-beam convolution (PBC), anisotropic analytic algorithm (AAA), and AcurosXB (AXB) with material assignment function. The errors of dose optimization and calculation by separating air cavity from themore » whole rectum (Rwhole) were verified with measured rectal doses. The Rwall doses affected by the dose perturbation of air cavity were evaluated using a featured rectal phantom allowing insert of rolled-up gafchromic films and glass rod detectors placed along the rectum perimeter. Inner and outer Rwall doses were verified with reconstructed predicted rectal wall dose maps. Dose errors and extent at dose levels were evaluated with estimated rectal toxicity. Results: While AXB showed insignificant difference of target dose coverage, Rwall doses underestimated by up to 20% in dose optimization for the Rwhole than Rwall at all dose range except for the maximum dose. As dose optimization for Rwall was applied, the Rwall doses presented dose error less than 3% between dose calculation algorithm except for overestimation of maximum rectal dose up to 5% in PBC. Dose optimization for Rwhole caused dose difference of Rwall especially at intermediate doses. Conclusion: Dose optimization for Rwall could be suggested for more accurate prediction of rectal wall dose prediction and dose perturbation effect by air cavity in IMRT for prostate cancer. This research was supported by the Leading Foreign Research Institute Recruitment Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (MSIP) (Grant No. 200900420)« less
Wang, Hesheng; Chandarana, Hersh; Block, Kai Tobias; Vahle, Thomas; Fenchel, Matthias; Das, Indra J
2017-06-26
Interest in MR-only treatment planning for radiation therapy is growing rapidly with the emergence of integrated MRI/linear accelerator technology. The purpose of this study was to evaluate the feasibility of using synthetic CT images generated from conventional Dixon-based MRI scans for radiation treatment planning of lung cancer. Eleven patients who underwent whole-body PET/MR imaging following a PET/CT exam were randomly selected from an ongoing prospective IRB-approved study. Attenuation maps derived from the Dixon MR Images and atlas-based method was used to create CT data (synCT). Treatment planning for radiation treatment of lung cancer was optimized on the synCT and subsequently copied to the registered CT (planCT) for dose calculation. Planning target volumes (PTVs) with three sizes and four different locations in the lung were planned for irradiation. The dose-volume metrics comparison and 3D gamma analysis were performed to assess agreement between the synCT and CT calculated dose distributions. Mean differences between PTV doses on synCT and CT across all the plans were -0.1% ± 0.4%, 0.1% ± 0.5%, and 0.4% ± 0.5% for D95, D98 and D100, respectively. Difference in dose between the two datasets for organs at risk (OARs) had average differences of -0.14 ± 0.07 Gy, 0.0% ± 0.1%, and -0.1% ± 0.2% for maximum spinal cord, lung V20, and heart V40 respectively. In patient groups based on tumor size and location, no significant differences were observed in the PTV and OARs dose-volume metrics (p > 0.05), except for the maximum spinal-cord dose when the target volumes were located at the lung apex (p = 0.001). Gamma analysis revealed a pass rate of 99.3% ± 1.1% for 2%/2 mm (dose difference/distance to agreement) acceptance criteria in every plan. The synCT generated from Dixon-based MRI allows for dose calculation of comparable accuracy to the standard CT for lung cancer treatment planning. The dosimetric agreement between synCT and CT calculated doses warrants further development of a MR-only workflow for radiotherapy of lung cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Z; Xia, P; Djemil, T
Purpose: To evaluate the impact of a commercial orthopedic metal artifact reduction (O-MAR) algorithm on CT image quality and dose calculation for patients with spinal prostheses near spinal tumors. Methods: A CT electron density phantom was scanned twice: with tissue-simulating inserts only, and with a titanium insert replacing solid water. A patient plan was mapped to the phantom images in two ways: with the titanium inside or outside of the spinal tumor. Pinnacle and Eclipse were used to evaluate the dosimetric effects of O-MAR on 12-bit and 16-bit CT data, respectively. CT images from five patients with spinal prostheses weremore » reconstructed with and without O-MAR. Two observers assessed the image quality improvement from O-MAR. Both pencil beam and Monte Carlo dose calculation in iPlan were used for the patient study. The percentage differences between non-OMAR and O-MAR datasets were calculated for PTV-min, PTV-max, PTV-mean, PTV-V100, PTV-D90, OAR-V10Gy, OAR-max, and OAR-D0.1cc. Results: O-MAR improved image quality but did not significantly affect the dose distributions and DVHs for both 12-bit and 16- bit CT phantom data. All five patient cases demonstrated some degree of image quality improvement from O-MAR, ranging from small to large metal artifact reduction. For pencil beam, the largest discrepancy was observed for OARV-10Gy at 5.4%, while the other seven parameters were ≤0.6%. For Monte Carlo, the differences between non-O-MAR and O-MAR datasets were ≤3.0%. Conclusion: Both phantom and patient studies indicated that O-MAR can substantially reduce metal artifacts on CT images, allowing better visualization of the anatomical structures and metal objects. The dosimetric impact of O-MAR was insignificant regardless of the metal location, image bit-depth, and dose calculation algorithm. O-MAR corrected images are recommended for radiation treatment planning on patients with spinal prostheses because of the improved image quality and no need to modify current dose constraints. This work was supported by a research grant from Philips Healthcare. Paul Klahr is an employee of Philips Healthcare.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, S; Le, Q; Mutaf, Y
2015-06-15
Purpose: To assess dose calculation accuracy of cone-beam CT (CBCT) based treatment plans using a patient-specific stepwise CT-density conversion table in comparison to conventional CT-based treatment plans. Methods: Unlike CT-based treatment planning which use fixed CT-density table, this study used patient-specific CT-density table to minimize the errors in reconstructed mass densities due to the effects of CBCT Hounsfield unit (HU) uncertainties. The patient-specific CT-density table was a stepwise function which maps HUs to only 6 classes of materials with different mass densities: air (0.00121g/cm3), lung (0.26g/cm3), adipose (0.95g/cm3), tissue (1.05 g/cm3), cartilage/bone (1.6g/cm3), and other (3g/cm3). HU thresholds to definemore » different materials were adjusted for each CBCT via best match with the known tissue types in these images. Dose distributions were compared between CT-based plans and CBCT-based plans (IMRT/VMAT) for four types of treatment sites: head and neck (HN), lung, pancreas, and pelvis. For dosimetric comparison, PTV mean dose in both plans were compared. A gamma analysis was also performed to directly compare dosimetry in the two plans. Results: Compared to CT-based plans, the differences for PTV mean dose were 0.1% for pelvis, 1.1% for pancreas, 1.8% for lung, and −2.5% for HN in CBCT-based plans. The gamma passing rate was 99.8% for pelvis, 99.6% for pancreas, and 99.3% for lung with 3%/3mm criteria, and 80.5% for head and neck with 5%/3mm criteria. Different dosimetry accuracy level was observed: 1% for pelvis, 3% for lung and pancreas, and 5% for head and neck. Conclusion: By converting CBCT data to 6 classes of materials for dose calculation, 3% of dose calculation accuracy can be achieved for anatomical sites studied here, except HN which had a 5% accuracy. CBCT-based treatment planning using a patient-specific stepwise CT-density table can facilitate the evaluation of dosimetry changes resulting from variation in patient anatomy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozak, Kevin R.; Adams, Judith; Krejcarek, Stephanie J.
Purpose: We compared tumor and normal tissue dosimetry of proton radiation therapy with intensity-modulated radiation therapy (IMRT) for pediatric parameningeal rhabdomyosarcomas (PRMS). Methods and Materials: To quantify dosimetric differences between contemporary proton and photon treatment for pediatric PRMS, proton beam plans were compared with IMRT plans. Ten patients treated with proton radiation therapy at Massachusetts General Hospital had IMRT plans generated. To facilitate dosimetric comparisons, clinical target volumes and normal tissue volumes were held constant. Plans were optimized for target volume coverage and normal tissue sparing. Results: Proton and IMRT plans provided acceptable and comparable target volume coverage, with atmore » least 99% of the CTV receiving 95% of the prescribed dose in all cases. Improved dose conformality provided by proton therapy resulted in significant sparing of all examined normal tissues except for ipsilateral cochlea and mastoid; ipsilateral parotid gland sparing was of borderline statistical significance (p = 0.05). More profound sparing of contralateral structures by protons resulted in greater dose asymmetry between ipsilateral and contralateral retina, optic nerves, cochlea, and mastoids; dose asymmetry between ipsilateral and contralateral parotids was of borderline statistical significance (p = 0.05). Conclusions: For pediatric PRMS, superior normal tissue sparing is achieved with proton radiation therapy compared with IMRT. Because of enhanced conformality, proton plans also demonstrate greater normal tissue dose distribution asymmetry. Longitudinal studies assessing the impact of proton radiotherapy and IMRT on normal tissue function and growth symmetry are necessary to define the clinical consequences of these differences.« less
WE-A-BRD-01: Innovation in Radiation Therapy Planning I: Knowledge Guided Treatment Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Q; Olsen, L
2014-06-15
Intensity modulated radiation therapy (IMRT) and Volumetric Modulated Arc Therapy (VMAT) offer the capability of normal tissues and organs sparing. However, the exact amount of sparing is often unknown until the plan is complete. This lack of prior guidance has led to the iterative, trial and-error approach in current planning practice. Even with this effort the search for patient-specific optimal organ sparing is still strongly influenced by planner's experience. While experience generally helps in maximizing the dosimetric advantages of IMRT/VMAT, there have been several reports showing unnecessarily high degree of plan quality variability at individual institutions and amongst different institutions,more » even with a large amount of experience and the best available tools. Further, when physician and physicist evaluate a plan, the dosimetric quality of the plan is often compared with a standard protocol that ignores individual patient anatomy and tumor characteristic variations. In recent years, developments of knowledge models for clinical IMRT/VMAT planning guidance have shown promising clinical potentials. These knowledge models extract past expert clinical experience into mathematical models that predict dose sparing references at patient-specific level. For physicians and planners, these references provide objective values that reflect best achievable dosimetric constraints. For quality assurance, applying patient-specific dosimetry requirements will enable more quantitative and objective assessment of protocol compliance for complex IMRT planning. Learning Objectives: Modeling and representation of knowledge for knowledge-guided treatment planning. Demonstrations of knowledge-guided treatment planning with a few clinical caanatomical sites. Validation and evaluation of knowledge models for cost and quality effective standardization of plan optimization.« less
Feasibility of 3D printed air slab diode caps for small field dosimetry.
Perrett, Benjamin; Charles, Paul; Markwell, Tim; Kairn, Tanya; Crowe, Scott
2017-09-01
Commercial diode detectors used for small field dosimetry introduce a field-size-dependent over-response relative to an ideal, water-equivalent dosimeter due to high density components in the body of the detector. An air gap above the detector introduces a field-size-dependent under-response, and can be used to offset the field-size-dependent detector over-response. Other groups have reported experimental validation of caps containing air gaps for use with several types of diodes in small fields. This paper examines two designs for 3D printed diode air caps for the stereotactic field diode (SFD)-a cap containing a sealed air cavity, and a cap with an air cavity at the face of the SFD. Monte Carlo simulations of both designs were performed to determine dimensions for an air cavity to introduce the desired dosimetric correction. Various parameter changes were also simulated to estimate the dosimetric uncertainties introduced by 3D printing. Cap layer dimensions, cap density changes due to 3D printing, and unwanted air gaps were considered. For the sealed design the optimal air gap size for water-equivalent cap material was 0.6 mm, which increased to 1.0 mm when acrylonitrile butadiene styrene in the cap was simulated. The unsealed design had less variation, a 0.4 mm air gap is optimal in both situations. Unwanted air pockets in the bore of the cap and density changes introduced by the 3D printing process can potentially introduce significant dosimetric effects. These effects may be limited by using fine print resolutions and minimising the volume of cap material.
Gamma Knife irradiation method based on dosimetric controls to target small areas in rat brains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Constanzo, Julie; Paquette, Benoit; Charest, Gabriel
2015-05-15
Purpose: Targeted and whole-brain irradiation in humans can result in significant side effects causing decreased patient quality of life. To adequately investigate structural and functional alterations after stereotactic radiosurgery, preclinical studies are needed. The purpose of this work is to establish a robust standardized method of targeted irradiation on small regions of the rat brain. Methods: Euthanized male Fischer rats were imaged in a stereotactic bed, by computed tomography (CT), to estimate positioning variations relative to the bregma skull reference point. Using a rat brain atlas and the stereotactic bregma coordinates obtained from CT images, different regions of the brainmore » were delimited and a treatment plan was generated. A single isocenter treatment plan delivering ≥100 Gy in 100% of the target volume was produced by Leksell GammaPlan using the 4 mm diameter collimator of sectors 4, 5, 7, and 8 of the Gamma Knife unit. Impact of positioning deviations of the rat brain on dose deposition was simulated by GammaPlan and validated with dosimetric measurements. Results: The authors’ results showed that 90% of the target volume received 100 ± 8 Gy and the maximum of deposited dose was 125 ± 0.7 Gy, which corresponds to an excellent relative standard deviation of 0.6%. This dose deposition calculated with GammaPlan was validated with dosimetric films resulting in a dose-profile agreement within 5%, both in X- and Z-axes. Conclusions: The authors’ results demonstrate the feasibility of standardizing the irradiation procedure of a small volume in the rat brain using a Gamma Knife.« less
Jang, H; Baek, J G; Yoo, S-J
2015-06-01
Patients with asymptomatic haemorrhoids are known to be less tolerant of radiation doses lower than known tolerance doses. In the present study, the authors sought to identify the risk factors of acute haemorrhoid aggravation after whole pelvic radiotherapy (WPRT). The records of 33 patients with cervical, rectal or prostate cancer with asymptomatic haemorrhoids, which were confirmed by colonoscopy before the start of radiotherapy (RT), were reviewed. Acute anal symptoms, such as anal pain and bleeding, were observed up to 1 month after RT completion. Dosimetric and patient factors were analysed, and subgroup analyses were performed. The median induction dose for acute anal symptoms was 34.1 Gy (range, 28.8-50.4 Gy). Post-operative treatment intent showed more acute anal toxicity of patient factors (p = 0.04). In subgroup analysis, post-operative treatment intent and concurrent chemoradiotherapy were found to be related to acute anal symptoms (p < 0.01). Of the dosimetric factors, V10 tended to be related to acute anal symptoms (p = 0.08). This study indicates that asymptomatic haemorrhoid may deteriorate after low-dose radiation and that patient factors, such as treatment intent and concurrent chemotherapy, probably influence anal toxicity. In patients with asymptomatic haemorrhoids, WPRT requires careful dosimetry and clinical attention. The tolerance of anal canal tends to be ignored in patients with pelvic cancer who are undergoing WPRT. However, patients with asymptomatic haemorrhoids may be troubled by low radiation doses, and further studies are required.
Penjweini, Rozhin; Kim, Michele M; Liu, Baochang; Zhu, Timothy C
2016-12-01
Photodynamic therapy (PDT) is known as a non-invasive treatment modality that is based on photochemical reactions between oxygen, photosensitizer, and a special wavelength of light. However, a dosimetric predictor for PDT outcome is still elusive because current dosimetric quantities do not account for the differences in the PDT oxygen consumption rate for different fluence rates. In this study, we evaluate several dose metrics, total fluence, photobleaching ratio, PDT dose, and mean reacted singlet oxygen (mean [ 1 O 2 ] rx ) for predicting the PDT outcome and a clinically relevant tumor re-growth endpoint. For this reason, radiation-induced fibrosarcoma (RIF) mice tumors are treated with 2-(1-Hexyloxyethyl)-2-devinyl pyropheophorbide (HPPH) and different in-air fluences (30 J/cm 2 , 50 J/cm 2 , 135 J/cm 2 , 250 J/cm 2 , and 350 J/cm 2 ) and in-air fluence rates (20, 50, 75, 150 mW/cm 2 ). Explicit measurements of HPPH and oxygen concentration as well as tissue optical properties are performed pre- and post-treatment. Then, this information is incorporated into a macroscopic model to calculate the photobleaching, PDT dose, and mean [ 1 O 2 ] rx . Changes in tumor volume are tracked following the treatment and compared with the dose metrics. The correlation demonstrates that mean [ 1 O 2 ] rx serves as a better dosimetric quantity for predicting treatment outcome and a clinically relevant tumor re-growth endpoint. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Propagation of registration uncertainty during multi-fraction cervical cancer brachytherapy
NASA Astrophysics Data System (ADS)
Amir-Khalili, A.; Hamarneh, G.; Zakariaee, R.; Spadinger, I.; Abugharbieh, R.
2017-10-01
Multi-fraction cervical cancer brachytherapy is a form of image-guided radiotherapy that heavily relies on 3D imaging during treatment planning, delivery, and quality control. In this context, deformable image registration can increase the accuracy of dosimetric evaluations, provided that one can account for the uncertainties associated with the registration process. To enable such capability, we propose a mathematical framework that first estimates the registration uncertainty and subsequently propagates the effects of the computed uncertainties from the registration stage through to the visualizations, organ segmentations, and dosimetric evaluations. To ensure the practicality of our proposed framework in real world image-guided radiotherapy contexts, we implemented our technique via a computationally efficient and generalizable algorithm that is compatible with existing deformable image registration software. In our clinical context of fractionated cervical cancer brachytherapy, we perform a retrospective analysis on 37 patients and present evidence that our proposed methodology for computing and propagating registration uncertainties may be beneficial during therapy planning and quality control. Specifically, we quantify and visualize the influence of registration uncertainty on dosimetric analysis during the computation of the total accumulated radiation dose on the bladder wall. We further show how registration uncertainty may be leveraged into enhanced visualizations that depict the quality of the registration and highlight potential deviations from the treatment plan prior to the delivery of radiation treatment. Finally, we show that we can improve the transfer of delineated volumetric organ segmentation labels from one fraction to the next by encoding the computed registration uncertainties into the segmentation labels.
The conversion of exposures due to radon into the effective dose: the epidemiological approach.
Beck, T R
2017-11-01
The risks and dose conversion coefficients for residential and occupational exposures due to radon were determined with applying the epidemiological risk models to ICRP representative populations. The dose conversion coefficient for residential radon was estimated with a value of 1.6 mSv year -1 per 100 Bq m -3 (3.6 mSv per WLM), which is significantly lower than the corresponding value derived from the biokinetic and dosimetric models. The dose conversion coefficient for occupational exposures with applying the risk models for miners was estimated with a value of 14 mSv per WLM, which is in good accordance with the results of the dosimetric models. To resolve the discrepancy regarding residential radon, the ICRP approaches for the determination of risks and doses were reviewed. It could be shown that ICRP overestimates the risk for lung cancer caused by residential radon. This can be attributed to a wrong population weighting of the radon-induced risks in its epidemiological approach. With the approach in this work, the average risks for lung cancer were determined, taking into account the age-specific risk contributions of all individuals in the population. As a result, a lower risk coefficient for residential radon was obtained. The results from the ICRP biokinetic and dosimetric models for both, the occupationally exposed working age population and the whole population exposed to residential radon, can be brought in better accordance with the corresponding results of the epidemiological approach, if the respective relative radiation detriments and a radiation-weighting factor for alpha particles of about ten are used.
Zaker, Neda; Zehtabian, Mehdi; Sina, Sedigheh; Koontz, Craig; Meigooni, Ali S
2016-03-08
Monte Carlo simulations are widely used for calculation of the dosimetric parameters of brachytherapy sources. MCNP4C2, MCNP5, MCNPX, EGS4, EGSnrc, PTRAN, and GEANT4 are among the most commonly used codes in this field. Each of these codes utilizes a cross-sectional library for the purpose of simulating different elements and materials with complex chemical compositions. The accuracies of the final outcomes of these simulations are very sensitive to the accuracies of the cross-sectional libraries. Several investigators have shown that inaccuracies of some of the cross section files have led to errors in 125I and 103Pd parameters. The purpose of this study is to compare the dosimetric parameters of sample brachytherapy sources, calculated with three different versions of the MCNP code - MCNP4C, MCNP5, and MCNPX. In these simulations for each source type, the source and phantom geometries, as well as the number of the photons, were kept identical, thus eliminating the possible uncertainties. The results of these investigations indicate that for low-energy sources such as 125I and 103Pd there are discrepancies in gL(r) values. Discrepancies up to 21.7% and 28% are observed between MCNP4C and other codes at a distance of 6 cm for 103Pd and 10 cm for 125I from the source, respectively. However, for higher energy sources, the discrepancies in gL(r) values are less than 1.1% for 192Ir and less than 1.2% for 137Cs between the three codes.
SU-C-213-06: Dosimetric Verification of 3D Printed Electron Bolus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasmussen, K; Corbett, M; Pelletier, C
2015-06-15
Purpose: To determine the dosimetric effect of 3D printed bolus in an anthropomorphic phantom. Methods: Conformable bolus material was generated for an anthropomorphic phantom from a DICOM volume. The bolus generated was a uniform expansion of 5mm applied to the nose region of the phantom, as this is a difficult area to uniformly apply bolus clinically. A Printrbot metal 3D Printer using PLA plastic generated the bolus. A 9MeV anterior beam with a 5cm cone was used to deliver dose to the nose of the phantom. TLD measurements were compared to predicted values at the phantom surface. Film planes weremore » analyzed for the printed bolus, a standard 5mm bolus sheet placed on the phantom, and the phantom with no bolus applied to determine depth and dose distributions. Results: TLDs measured within 2.5% of predicted value for the 3D bolus. Film demonstrated a more uniform dose distribution in the nostril region for the 3d printed bolus than the standard bolus. This difference is caused by the air gap created around the nostrils by the standard bolus, creating a secondary build-up region. Both demonstrated a 50% central axis dose shift of 5mm relative to the no bolus film. HU for the bolus calculated the PLA electron density to be ∼1.1g/cc. Physical density was measured to be 1.3g/cc overall. Conclusion: 3D printed PLA bolus demonstrates improved dosimetric performance to standard bolus for electron beams with complex phantom geometry.« less
Nakayama, Masao; Yoshida, Kenji; Nishimura, Hideki; Miyawaki, Daisuke; Uehara, Kazuyuki; Okamoto, Yoshiaki; Okayama, Takanobu; Sasaki, Ryohei
2014-01-01
The present study aimed to investigate the effect of heterogeneity correction (HC) on dosimetric parameters in 3-dimensional conformal radiotherapy planning for patients with thoracic esophageal cancer. We retrospectively analyzed 20 patients. Two treatment plans were generated for each patient using a superposition algorithm on the Xio radiotherapy planning system. The first plan was calculated without HC. The second was a new plan calculated with HC, using identical beam geometries and maintaining the same number of monitor units as the first. With regard to the planning target volume (PTV), the overall mean differences in the prescription dose, maximum dose, mean dose, and dose that covers 95% of the PTV between the first and second plans were 1.10Gy (1.8%), 1.35Gy (2.2%), 1.10Gy (1.9%), and 0.56Gy (1.0%), respectively. With regard to parameters related to the organs at risk (OARs), the mean differences in the absolute percentages of lung volume receiving greater than 5, 10, 20, and 30Gy (lung V5, V10, V20, and V30) between the first and second plans were 7.1%, 2.7%, 0.4%, and 0.5%, respectively. These results suggest that HC might have a more pronounced effect on the percentages of lung volume receiving lower doses (e.g., V5 and V10) than on the dosimetric parameters related to the PTV and other OARs. © 2013 Published by American Association of Medical Dosimetrists on behalf of American Association of Medical Dosimetrists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadeghi, Mahdi; Taghdiri, Fatemeh; Hamed Hosseini, S.
Purpose: The formalism recommended by Task Group 60 (TG-60) of the American Association of Physicists in Medicine (AAPM) is applicable for {beta} sources. Radioactive biocompatible and biodegradable {sup 153}Sm glass seed without encapsulation is a {beta}{sup -} emitter radionuclide with a short half-life and delivers a high dose rate to the tumor in the millimeter range. This study presents the results of Monte Carlo calculations of the dosimetric parameters for the {sup 153}Sm brachytherapy source. Methods: Version 5 of the (MCNP) Monte Carlo radiation transport code was used to calculate two-dimensional dose distributions around the source. The dosimetric parameters ofmore » AAPM TG-60 recommendations including the reference dose rate, the radial dose function, the anisotropy function, and the one-dimensional anisotropy function were obtained. Results: The dose rate value at the reference point was estimated to be 9.21{+-}0.6 cGy h{sup -1} {mu}Ci{sup -1}. Due to the low energy beta emitted from {sup 153}Sm sources, the dose fall-off profile is sharper than the other beta emitter sources. The calculated dosimetric parameters in this study are compared to several beta and photon emitting seeds. Conclusions: The results show the advantage of the {sup 153}Sm source in comparison with the other sources because of the rapid dose fall-off of beta ray and high dose rate at the short distances of the seed. The results would be helpful in the development of the radioactive implants using {sup 153}Sm seeds for the brachytherapy treatment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caudell, Jimmy J.; Schaner, Philip E.; Desmond, Renee A.
2010-02-01
Purpose: Intensification of radiotherapy and chemotherapy for head-and-neck cancer may lead to increased rates of dysphagia. Dosimetric predictors of objective findings of long-term dysphagia were sought. Methods and Materials: From an institutional database, 83 patients were identified who underwent definitive intensity-modulated radiotherapy for squamous cell carcinoma of the head and neck, after exclusion of those who were treated for a second or recurrent head-and-neck primary lesion, had locoregional recurrence at any time, had less than 12 months of follow-up, or had postoperative radiotherapy. Dosimetric parameters were analyzed relative to three objective endpoints as a surrogate for severe long-term dysphagia: percutaneousmore » endoscopic gastrostomy (PEG) tube dependence at 12 months, aspiration on modified barium swallow, or pharyngoesophageal stricture requiring dilation. Results: Mean dose greater than 41 Gy and volume receiving 60 Gy (V{sub 60}) greater than 24% to the larynx were significantly associated with PEG tube dependence and aspiration. V{sub 60} greater than 12% to the inferior pharyngeal constrictor was also significantly associated with increased PEG tube dependence and aspiration. V{sub 65} greater than 33% to the superior pharyngeal constrictor or greater than 75% to the middle pharyngeal constrictor was associated with pharyngoesophageal stricture requiring dilation. Conclusions: Doses to the larynx and pharyngeal constrictors predicted long-term swallowing complications, even when controlled for other clinical factors. The addition of these structures to intensity-modulated radiotherapy optimization may reduce the incidence of dysphagia, although cautious clinical validation is necessary.« less
Evaluation of a Proposed Biodegradable 188Re Source for Brachytherapy Application
Khorshidi, Abdollah; Ahmadinejad, Marjan; Hamed Hosseini, S.
2015-01-01
Abstract This study aimed to evaluate dosimetric characteristics based on Monte Carlo (MC) simulations for a proposed beta emitter bioglass 188Re seed for internal radiotherapy applications. The bioactive glass seed has been developed using the sol-gel technique. The simulations were performed for the seed using MC radiation transport code to investigate the dosimetric factors recommended by the AAPM Task Group 60 (TG-60). Dose distributions due to the beta and photon radiation were predicted at different radial distances surrounding the source. The dose rate in water at the reference point was calculated to be 7.43 ± 0.5 cGy/h/μCi. The dosimetric factors consisting of the reference point dose rate, D(r0,θ0), the radial dose function, g(r), the 2-dimensional anisotropy function, F(r,θ), the 1-dimensional anisotropy function, φan(r), and the R90 quantity were estimated and compared with several available beta-emitting sources. The element 188Re incorporated in bioactive glasses produced by the sol-gel technique provides a suitable solution for producing new materials for seed implants applied to brachytherapy applications in prostate and liver cancers treatment. Dose distribution of 188Re seed was greater isotropic than other commercially attainable encapsulated seeds, since it has no end weld to attenuate radiation. The beta radiation-emitting 188Re source provides high doses of local radiation to the tumor tissue and the short range of the beta particles limit damage to the adjacent normal tissue. PMID:26181543
Dosimetry applications in GATE Monte Carlo toolkit.
Papadimitroulas, Panagiotis
2017-09-01
Monte Carlo (MC) simulations are a well-established method for studying physical processes in medical physics. The purpose of this review is to present GATE dosimetry applications on diagnostic and therapeutic simulated protocols. There is a significant need for accurate quantification of the absorbed dose in several specific applications such as preclinical and pediatric studies. GATE is an open-source MC toolkit for simulating imaging, radiotherapy (RT) and dosimetry applications in a user-friendly environment, which is well validated and widely accepted by the scientific community. In RT applications, during treatment planning, it is essential to accurately assess the deposited energy and the absorbed dose per tissue/organ of interest, as well as the local statistical uncertainty. Several types of realistic dosimetric applications are described including: molecular imaging, radio-immunotherapy, radiotherapy and brachytherapy. GATE has been efficiently used in several applications, such as Dose Point Kernels, S-values, Brachytherapy parameters, and has been compared against various MC codes which are considered as standard tools for decades. Furthermore, the presented studies show reliable modeling of particle beams when comparing experimental with simulated data. Examples of different dosimetric protocols are reported for individualized dosimetry and simulations combining imaging and therapy dose monitoring, with the use of modern computational phantoms. Personalization of medical protocols can be achieved by combining GATE MC simulations with anthropomorphic computational models and clinical anatomical data. This is a review study, covering several dosimetric applications of GATE, and the different tools used for modeling realistic clinical acquisitions with accurate dose assessment. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Aghamiri, Seyyed Mahmoud Reza; Najarian, Siamak; Jaberi, Ramin
2010-01-01
High dose rate (HDR) brachytherapy is one of the accepted treatment modalities in gastro‐intestinal tract and bladder carcinomas. Considering the shortcoming of contact brachytherapy routinely used in gastrointestinal tract in treatment of big tumors or invasive method of bladder treatment, an intraluminal applicator with the capability of insertion into the tumor depth seems to be useful. This study presents some dosimetric evaluations to introduce this applicator to the clinical use. The radiation attenuation characteristics of the applicator were evaluated by means of two dosimetric methods including well‐type chamber and radiochromic film. The proposed 110 cm long applicator has a flexible structure made of stainless steel for easy passage through lumens and a needle tip to drill into big tumors. The 2 mm diameter of the applicator is thick enough for source transition, while easy passage through any narrow lumen such as endoscope or cystoscope working channel is ensured. Well‐chamber results showed an acceptably low attenuation of this steel springy applicator. Performing absolute dosimetry resulted in a correlation coefficient of R=0.9916(p‐value≈10−7) between standard interstitial applicator and the one proposed in this article. This study not only introduces a novel applicator with acceptable attenuation but also proves the response independency of the GAFCHROMIC EBT films to energy. By applying the dose response of the applicator in the treatment planning software, it can be used as a new intraluminal / interstitial applicator. PACS number: 87.53.Bn, 87.53.Jw, 29.40.Cs
Dosimetric predictors of radiation-induced pericardial effusion in esophageal cancer.
Ogino, Ichiro; Watanabe, Shigenobu; Sakamaki, Kentaro; Ogino, Yuka; Kunisaki, Chikara; Kimura, Kazuo
2017-07-01
To evaluate the dose-volume parameters of the pericardium and heart in order to reduce the risk of radiation-induced pericardial effusion (PE) and symptomatic PE (SPE) in esophageal cancer patients treated with concurrent chemoradiotherapy. In 86 of 303 esophageal cancer patients, follow-up CT was obtained at least 24 months after concurrent chemoradiotherapy. Correlations between clinical factors, including risk factors for cardiac disease, dosimetric factors, and the incidence of PE and SPE after radiotherapy were analyzed using Cox proportional hazard regression analysis. Significant dosimetric factors with the highest hazard ratios were investigated using zones separated according to their distance from esophagus. PE developed in 49 patients. Univariate analysis showed the mean heart dose, heart V 5 -V 55 , mean pericardium dose, and pericardium V 5 -V 50 to all significantly affect the incidence of PE. Additionally, body surface area was correlated with the incidence of PE in multivariate analysis. Grade 3 and 4 SPE developed in 5 patients. The pericardium V 50 and pericardium D 10 significantly affected the incidence of SPE. The pericardium V 50 in patients with SPE ranged from 17.1 to 21.7%. Factors affecting the incidence of SPE were the V 50 of the pericardium zones within 3 cm and 4 cm of the esophagus. A wide range of radiation doses to the heart and pericardium were related to the incidence of PE. A pericardium V 50 ≤ 17% is important to avoid symptomatic PE in esophageal cancer patients treated with concurrent chemoradiotherapy.
Wu, V W C; Sham, J S T; Kwong, D L W
2004-07-01
The aim of this study is to demonstrate the use of inverse planning in three-dimensional conformal radiation therapy (3DCRT) of oesophageal cancer patients and to evaluate its dosimetric results by comparing them with forward planning of 3DCRT and inverse planning of intensity-modulated radiotherapy (IMRT). For each of the 15 oesophageal cancer patients in this study, the forward 3DCRT, inverse 3DCRT and inverse IMRT plans were produced using the FOCUS treatment planning system. The dosimetric results and the planner's time associated with each of the treatment plans were recorded for comparison. The inverse 3DCRT plans showed similar dosimetric results to the forward plans in the planning target volume (PTV) and organs at risk (OARs). However, they were inferior to that of the IMRT plans in terms of tumour control probability and target dose conformity. Furthermore, the inverse 3DCRT plans were less effective in reducing the percentage lung volume receiving a dose below 25 Gy when compared with the IMRT plans. The inverse 3DCRT plans delivered a similar heart dose as in the forward plans, but higher dose than the IMRT plans. The inverse 3DCRT plans significantly reduced the operator's time by 2.5 fold relative to the forward plans. In conclusion, inverse planning for 3DCRT is a reasonable alternative to the forward planning for oesophageal cancer patients with reduction of the operator's time. However, IMRT has the better potential to allow further dose escalation and improvement of tumour control.
Dosimetric Effects of Air Pockets Around High-Dose Rate Brachytherapy Vaginal Cylinders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson, Susan, E-mail: srichardson@radonc.wustl.ed; Palaniswaamy, Geethpriya; Grigsby, Perry W.
2010-09-01
Purpose: Most physicians use a single-channel vaginal cylinder for postoperative endometrial cancer brachytherapy. Recent published data have identified air pockets between the vaginal cylinders and the vaginal mucosa. The purpose of this research was to evaluate the incidence, size, and dosimetric effects of these air pockets. Methods and Materials: 25 patients receiving postoperative vaginal cuff brachytherapy with a high-dose rate vaginal cylinders were enrolled in this prospective data collection study. Patients were treated with 6 fractions of 200 to 400 cGy per fraction prescribed at 5 mm depth. Computed tomography simulation for brachytherapy treatment planning was performed for each fraction.more » The quantity, volume, and dosimetric impact of the air pockets surrounding the cylinder were quantified. Results: In 25 patients, a total of 90 air pockets were present in 150 procedures (60%). Five patients had no air pockets present during any of their treatments. The average number of air pockets per patient was 3.6, with the average total air pocket volume being 0.34 cm{sup 3} (range, 0.01-1.32 cm{sup 3}). The average dose reduction to the vaginal mucosa at the air pocket was 27% (range, 9-58%). Ten patients had no air pockets on their first fraction but air pockets occurred in subsequent fractions. Conclusion: Air pockets between high-dose rate vaginal cylinder applicators and the vaginal mucosa are present in the majority of fractions of therapy, and their presence varies from patient to patient and fraction to fraction. The existence of air pockets results in reduced radiation dose to the vaginal mucosa.« less
Kontogeorgakos, Dimitrios K; Dimitriou, Panagiotis A; Limouris, Georgios S; Vlahos, Lambros J
2006-09-01
The aim of the study was to provide dosimetric data on intrahepatic (111)In-diethylenetriaminepentaacetic acid (DTPA)-D-Phe(1)-octreotide therapy for neuroendocrine tumors with overexpression of somatostatin receptors. A dosimetric protocol was designed to estimate the absorbed dose to the tumor and healthy tissue in a course of 48 treatments for 12 patients, who received a mean activity of 5.4 +/- 1.7 GBq per session. The patient-specific dosimetry calculations, based on quantitative biplanar whole-body scintigrams, were performed using a Monte Carlo simulation program for 3 male and 3 female mathematic models of different anatomic sizes. Thirty minutes and 2, 6, 24, and 48 h after the radionuclide infusion, blood-sample data were collected for estimation of the red marrow radiation burden. The mean absorbed doses per administered activity (mGy/MBq) by the critical organs liver, spleen, kidneys, bladder wall, and bone marrow were 0.14 +/- 0.04, 1.4 +/- 0.6, 0.41 +/- 0.08, 0.094 +/- 0.013, and (3.5 +/- 0.8) x 10(-3), respectively; the tumor absorbed dose ranged from 2.2 to 19.6 mGy/MBq, strongly depending on the lesion size and tissue type. The results of the present study quantitatively confirm the therapeutic efficacy of transhepatic administration; the tumor-to-healthy-tissue uptake ratio was enhanced, compared with the results after antecubital infusions. Planning of treatment was also optimized by use of the patient-specific dosimetric protocol.
Patterns of care for brachytherapy in Europe: updated results for Spain.
Guedea, Ferran; López-Torrecilla, José; Londres, Bradley; Ventura, Montse; Bilbao, Pedro; Borràs, Josep M
2012-01-01
The aim of this follow-up pattern of care study was to evaluate current clinical practices, staffing and equipment, and to compare these results to a study performed 5 years previously. This descriptive, pattern of care study was carried out via an online questionnaire. The survey was sent to a total of 95 cancer care centres in Spain. Seventy-three centres (76.8%) responded to the survey. More than half (57.5%) of responding centres offered brachytherapy (BT). A mean of 120 patients/centre were treated by BT in 2007. The most common localisations were the endometrium (29.6% of cases), prostate (29.6%), cervix uteri (14.6%), breast (12.6%), head and neck (3.6%) and vagina (2.5%). Other sites accounted for less than 2% of cases each. Most centres that offered BT (33/40 = 82.5%) were equipped with a dedicated BT operating room. The most commonly reported dosimetric method was CT dosimetry (31 of 40 centres = 77.5%), followed by plain film (30/40 = 75%), ultrasound (26/40 = 65%), MRI (8/40 = 20%), in vivo (7/40 = 17.5%) and PET-CT (5/40 = 12.5%) dosimetry. The three most common treatment sites (gynaecological, breast and prostate) remain unchanged from 2002, with prostate treatments showing large increase. Advanced dosimetric techniques (MRI, PET-CT and CT-dosimetry) continue to gain adherents. Some centres treat small numbers of patients, a finding that deserves more attention in terms of cost and quality of care. Although BT remains strong in Spain, it could be further strengthened by making modern dosimetric techniques and treatments more widely available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flores-M, E.; Gamboa de Buen, I.; Buenfil, A. E.
Computed Tomography (CT) is a high dose X ray imaging procedure and its use has rapidly increased in the last two decades fueled by the development of helical CT. The aim of this study is to present values of the dosimetric quantities for CT paediatric examinations of thoracic and abdominal regions. The protocols studied were those of chest, lung-mediastine, chest-abdomen, pulmonary high resolution and mediastine-abdomen, which are the more common examinations performed at ''Hospital Infantil de Mexico Federico Gomez'' in the thoracic-abdominal region. The measurements were performed on a Siemens SOMATOM Sensation 16 CT Scanner and the equipment used wasmore » a CT pencil ionization chamber, connected to an electrometer. This system was calibrated for RQT9 CT beam quality. A PMMA head phantom with diameter of 16 cm and length of 15 cm was also used. The dosimetric quantities measured were the weighted air kerma index (C{sub w}), the volumetric dose index (C{sub vol}) and the CT air kerma-length product. It was found that the pulmonary high resolution examination presented the highest values for the C{sub w}(31.1 mGy) and C{sub vol}(11.1 mGy). The examination with the lowest values of these two quantities was the chest-abdomen protocol with 10.5 mGy for C{sub w} and 5.5 mGy for C{sub vol}. However, this protocol presented the highest value for P{sub KL,CT}(282.2 mGy cm) when considering the average clinical length of the examinations.« less
Westendorp, Hendrik; Surmann, Kathrin; van de Pol, Sandrine M G; Hoekstra, Carel J; Kattevilder, Robert A J; Nuver, Tonnis T; Moerland, Marinus A; Slump, Cornelis H; Minken, André W
The quality of permanent prostate brachytherapy can be increased by addition of imaging modalities in the intraoperative procedure. This addition involves image registration, which inherently has inter- and intraobserver variabilities. We sought to quantify the inter- and intraobserver variabilities in geometry and dosimetry for contouring and image registration and analyze the results for our dynamic 125 I brachytherapy procedure. Five observers contoured 11 transrectal ultrasound (TRUS) data sets three times and 11 CT data sets one time. The observers registered 11 TRUS and MRI data sets to cone beam CT (CBCT) using fiducial gold markers. Geometrical and dosimetrical inter- and intraobserver variabilities were assessed. For the contouring study, structures were subdivided into three parts along the craniocaudal axis. We analyzed 165 observations. Interobserver geometrical variability for prostate was 1.1 mm, resulting in a dosimetric variability of 1.6% for V 100 and 9.3% for D 90 . The geometric intraobserver variability was 0.6 mm with a V 100 of 0.7% and D 90 of 1.1%. TRUS-CBCT registration showed an interobserver variability in V 100 of 2.0% and D 90 of 3.1%. Intraobserver variabilities were 0.9% and 1.6%, respectively. For MRI-CBCT registration, V 100 and D 90 were 1.3% and 2.1%. Intraobserver variabilities were 0.7% and 1.1% for the same. Prostate dosimetry is affected by interobserver contouring and registration variability. The observed variability is smaller than underdosages that are adapted during our dynamic brachytherapy procedure. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
Usmani, Nawaid; Leong, Nelson; Martell, Kevin; Lan, Lanna; Ghosh, Sunita; Pervez, Nadeem; Pedersen, John; Yee, Don; Murtha, Albert; Amanie, John; Sloboda, Ron; Murray, David; Parliament, Matthew
2014-01-01
To identify clinical, dosimetric, and genetic factors that are associated with late urinary toxicity after a (125)I prostate brachytherapy implant. Genomic DNA from 296 men treated with (125)I prostate brachytherapy monotherapy was extracted from saliva samples for this study. A retrospective database was compiled including clinical, dosimetric, and toxicity data for this cohort of patients. Fourteen candidate single-nucleotide polymorphism (SNPs) from 13 genes (TP53, ERCC2, GSTP1, NOS, TGFβ1, MSH6, RAD51, ATM, LIG4, XRCC1, XRCC3, GSTA1, and SOD2) were tested in this cohort for correlations with toxicity. This study identified 217 men with at least 2 years of followup. Of these, 39 patients developed Grade ≥2 late urinary complications with a transurethral resection of prostate, urethral stricture, gross hematuria, or a sustained increase in their International Prostate Symptom Score. The only clinical or dosimetric factor that was associated with late urinary toxicity was age (p = 0.02). None of the 14 SNPs tested in this study were associated with late urinary toxicity in the univariate analysis. This study identified age as the only variable being associated with late urinary toxicity. However, the small sample size and the candidate gene approach used in this study mean that further investigations are essential. Genome-wide association studies are emerging as the preferred approach for future radiogenomic studies to overcome the limitations from a candidate gene approach. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Na, Y; Qian, X; Wuu, C
Purpose: To verify the dosimetric characteristics of a small animal image-guided irradiator using a high-resolution of optical CT imaging of 3D dosimeters. Methods: PRESAEGE 3D dosimeters were used to determine dosimetric characteristics of a small animal image-guided irradiator and compared with EBT2 films. Cylindrical PRESAGE dosimeters with 7cm height and 6cm diameter were placed along the central axis of the beam. The films were positioned between 6×6cm{sup 2} cubed plastic water phantoms perpendicular to the beam direction with multiple depths. PRESAGE dosimeters and EBT2 films were then irradiated with the irradiator beams at 220kVp and 13mA. Each of irradiated PRESAGEmore » dosimeters named PA1, PA2, PB1, and PB2, was independently scanned using a high-resolution single laser beam optical CT scanner. The transverse images were reconstructed with a 0.1mm high-resolution pixel. A commercial Epson Expression 10000XL flatbed scanner was used for readout of irradiated EBT2 films at a 0.4mm pixel resolution. PDD curves and beam profiles were measured for the irradiated PRESAGE dosimeters and EBT2 films. Results: The PDD agreements between the irradiated PRESAGE dosimeter PA1, PA2, PB1, PB2 and the EB2 films were 1.7, 2.3, 1.9, and 1.9% for the multiple depths at 1, 5, 10, 15, 20, 30, 40 and 50mm, respectively. The FWHM measurements for each PRESAEGE dosimeter and film agreed with 0.5, 1.1, 0.4, and 1.7%, respectively, at 30mm depth. Both PDD and FWHM measurements for the PRESAGE dosimeters and the films agreed overall within 2%. The 20%–80% penumbral widths of each PRESAGE dosimeter and the film at a given depth were respectively found to be 0.97, 0.91, 0.79, 0.88, and 0.37mm. Conclusion: Dosimetric characteristics of a small animal image-guided irradiator have been demonstrated with the measurements of PRESAGE dosimeter and EB2 film. With the high resolution and accuracy obtained from this 3D dosimetry system, precise targeting small animal irradiation can be achieved.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Akira; Shibuya, Keiko, E-mail: kei@kuhp.kyoto-u.ac.jp; Matsuo, Yukinori
2012-10-01
Purpose: To identify the dosimetric parameters associated with gastrointestinal (GI) toxicity in patients with locally advanced pancreatic cancer (LAPC) treated with gemcitabine-based chemoradiotherapy. Methods and Materials: The data from 40 patients were analyzed retrospectively. Chemoradiotherapy consisted of conventional fractionated three-dimensional radiotherapy and weekly gemcitabine. Treatment-related acute GI toxicity and upper GI bleeding (UGB) were graded according to the Common Toxicity Criteria Adverse Events, version 4.0. The dosimetric parameters (mean dose, maximal absolute dose which covers 2 cm{sup 3} of the organ, and absolute volume receiving 10-50 Gy [V{sub 10-50}]) of the stomach, duodenum, small intestine, and a composite structure ofmore » the stomach and duodenum (StoDuo) were obtained. The planning target volume was also obtained. Univariate analyses were performed to identify the predictive factors for the risk of grade 2 or greater acute GI toxicity and grade 3 or greater UGB, respectively. Results: The median follow-up period was 15.7 months (range, 4-37). The actual incidence of acute GI toxicity was 33%. The estimated incidence of UGB at 1 year was 20%. Regarding acute GI toxicity, a V{sub 50} of {>=}16 cm{sup 3} of the stomach was the best predictor, and the actual incidence in patients with V{sub 50} <16 cm{sup 3} of the stomach vs. those with V{sub 50} of {>=}16 cm{sup 3} was 9% vs. 61%, respectively (p = 0.001). Regarding UGB, V{sub 50} of {>=}33 cm{sup 3} of the StoDuo was the best predictor, and the estimated incidence at 1 year in patients with V{sub 50} <33 cm{sup 3} of the StoDuo vs. those with V{sub 50} {>=}33 cm{sup 3} was 0% vs. 44%, respectively (p = 0.002). The dosimetric parameters correlated highly with one another. Conclusion: The irradiated absolute volume of the stomach and duodenum are important for the risk of acute GI toxicity and UGB. These results could be helpful in escalating the radiation doses using novel techniques, such as intensity-modulated radiotherapy, for the treatment of pancreatic cancer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Maso, L; Forbang, R Teboh; Zhang, Y
Purpose: To explore the dosimetric consequences of uncorrected rotational setup errors during SBRT for pancreatic cancer patients. Methods: This was a retrospective study utilizing data from ten (n=10) previously treated SBRT pancreas patients. For each original planning CT, we applied rotational transformations to derive additional CT images representative of possible rotational setup errors. This resulted in 6 different sets of rotational combinations, creating a total of 60 CT planning images. The patients’ clinical dosimetric plans were then applied to their corresponding rotated CT images. The 6 rotation sets encompassed a 3, 2 and 1-degree rotation in each rotational direction andmore » a 3-degree in just the pitch, a 3-degree in just the yaw and a 3-degree in just the roll. After the dosimetric plan was applied to the rotated CT images, the resulting plan was then evaluated and compared with the clinical plan for tumor coverage and normal tissue sparing. Results: PTV coverage, defined here by V33 throughout all of the patients’ clinical plans, ranged from 92–98%. After an n degree rotation in each rotational direction that range decreased to 68–87%, 85–92%, and 88– 94% for n=3, 2 and 1 respectively. Normal tissue sparing defined here by the proximal stomach V15 throughout all of the patients’ clinical plans ranged from 0–8.9 cc. After an n degree rotation in each rotational direction that range increased to 0–17 cc, 0–12 cc, and 0–10 cc for n=3, 2, and 1 respectively. Conclusion: For pancreatic SBRT, small rotational setup errors in the pitch, yaw and roll direction on average caused under dosage to PTV and over dosage to proximal normal tissue. The 1-degree rotation was on average the least detrimental to the normal tissue and the coverage of the PTV. The 3-degree yaw created on average the lowest increase in volume coverage to normal tissue. This research was sponsored by the AAPM Education Council through the AAPM Education and Research Fund for the AAPM Summer Undergraduate Fellowship Program.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittauer, K; Rosenberg, S; Geurts, M
Purpose: Dose limiting structures, such as the duodenum, render the treatment of pancreatic cancer challenging. In this multi-institutional study, we assess dosimetric differences caused by interfraction pancreas-to-duodenum motion using MR-IGRT to determine the potential impact of adaptive replanning. Methods: Ten patients from two institutions undergoing MRI-guided radiotherapy with conventional fractionation (n=5) or SBRT (n=5) for pancreatic cancer were included. Initial plans were limited by duodenal dose constraints of 50 Gy (0.5 cc)/31 Gy (0.1 cc) for conventional/SBRT with prescriptions of 30 Gy/5 fractions (SBRT) and 40–50 Gy/25 fractions (conventional). Daily volumetric MR images were acquired under treatment conditions on amore » clinical MR-IGRT system. The correlation was assessed between interfractional GTV-to-duodenum positional variation and daily recalculations of duodenal dose metrics. Positional variation was quantified as the interfraction difference in Hausdorff distance from simulation baseline (ΔHD) between the GTV and proximal duodenal surface, or volume overlap between GTV and duodenum for cases with HD{sub 0}=0 (GTV abutting duodenum). Adaptation was considered indicated when daily positional variations enabled dose escalation to the target while maintaining duodenal constraints. Results: For fractions with ΔHD>0 (n=14, SBRT only), the mean interfraction duodenum dose decrease from simulation to treatment was 44±53 cGy (maximum 136 cGy). A correlation was found between ΔHD and dosimetric difference (R{sup 2}=0.82). No correlation was found between volume of overlap and dosimetric difference (R{sup 2}=0.31). For 89% of fractions, the duodenum remained overlapped with the target and the duodenal dose difference was negligible. The maximum observed indication for adaptation was for interfraction ΔHD=11.6 mm with potential for adaptive dose escalation of 136 cGy. Conclusion: This assessment showed that Hausdorff distance was a reasonable metric to use to determine the indication for adaptation. Adaptation was potentially indicated in 11% of the treatments (fractions where GTV-to-duodenum distance increased from simulation), with a feasible average dose escalation of 7.0%. MB, LH, JO, RK, PP: research and/or travel funding from ViewRay Inc. PP: research grant from Varian Medical Systems and Philips Healthcare.« less
Developing and implementing a high precision setup system
NASA Astrophysics Data System (ADS)
Peng, Lee-Cheng
The demand for high-precision radiotherapy (HPRT) was first implemented in stereotactic radiosurgery using a rigid, invasive stereotactic head frame. Fractionated stereotactic radiotherapy (SRT) with a frameless device was developed along a growing interest in sophisticated treatment with a tight margin and high-dose gradient. This dissertation establishes the complete management for HPRT in the process of frameless SRT, including image-guided localization, immobilization, and dose evaluation. The most ideal and precise positioning system can allow for ease of relocation, real-time patient movement assessment, high accuracy, and no additional dose in daily use. A new image-guided stereotactic positioning system (IGSPS), the Align RT3C 3D surface camera system (ART, VisionRT), which combines 3D surface images and uses a real-time tracking technique, was developed to ensure accurate positioning at the first place. The uncertainties of current optical tracking system, which causes patient discomfort due to additional bite plates using the dental impression technique and external markers, are found. The accuracy and feasibility of ART is validated by comparisons with the optical tracking and cone-beam computed tomography (CBCT) systems. Additionally, an effective daily quality assurance (QA) program for the linear accelerator and multiple IGSPSs is the most important factor to ensure system performance in daily use. Currently, systematic errors from the phantom variety and long measurement time caused by switching phantoms were discovered. We investigated the use of a commercially available daily QA device to improve the efficiency and thoroughness. Reasonable action level has been established by considering dosimetric relevance and clinic flow. As for intricate treatments, the effect of dose deviation caused by setup errors remains uncertain on tumor coverage and toxicity on OARs. The lack of adequate dosimetric simulations based on the true treatment coordinates from the treatment planning system (TPS) has limited adaptive treatments. A reliable and accurate dosimetric simulation using TPS and in-house software in uncorrected errors has been developed. In SRT, the calculated dose deviation is compared to the original treatment dose with the dose-volume histogram to investigate the dose effect of rotational errors. In summary, this work performed a quality assessment to investigate the overall accuracy of current setup systems. To reach the ideal HPRT, the reliable dosimetric simulation, an effective daily QA program and effective, precise setup systems were developed and validated.
Boughalia, A; Marcie, S; Fellah, M; Chami, S; Mekki, F
2015-06-01
The aim of this study is to assess and quantify patients' set-up errors using an electronic portal imaging device and to evaluate their dosimetric and biological impact in terms of generalized equivalent uniform dose (gEUD) on predictive models, such as the tumour control probability (TCP) and the normal tissue complication probability (NTCP). 20 patients treated for nasopharyngeal cancer were enrolled in the radiotherapy-oncology department of HCA. Systematic and random errors were quantified. The dosimetric and biological impact of these set-up errors on the target volume and the organ at risk (OARs) coverage were assessed using calculation of dose-volume histogram, gEUD, TCP and NTCP. For this purpose, an in-house software was developed and used. The standard deviations (1SDs) of the systematic set-up and random set-up errors were calculated for the lateral and subclavicular fields and gave the following results: ∑ = 0.63 ± (0.42) mm and σ = 3.75 ± (0.79) mm, respectively. Thus a planning organ at risk volume (PRV) margin of 3 mm was defined around the OARs, and a 5-mm margin used around the clinical target volume. The gEUD, TCP and NTCP calculations obtained with and without set-up errors have shown increased values for tumour, where ΔgEUD (tumour) = 1.94% Gy (p = 0.00721) and ΔTCP = 2.03%. The toxicity of OARs was quantified using gEUD and NTCP. The values of ΔgEUD (OARs) vary from 0.78% to 5.95% in the case of the brainstem and the optic chiasm, respectively. The corresponding ΔNTCP varies from 0.15% to 0.53%, respectively. The quantification of set-up errors has a dosimetric and biological impact on the tumour and on the OARs. The developed in-house software using the concept of gEUD, TCP and NTCP biological models has been successfully used in this study. It can be used also to optimize the treatment plan established for our patients. The gEUD, TCP and NTCP may be more suitable tools to assess the treatment plans before treating the patients.
Kielar, Kayla N; Mok, Ed; Hsu, Annie; Wang, Lei; Luxton, Gary
2012-10-01
The dosimetric leaf gap (DLG) in the Varian Eclipse treatment planning system is determined during commissioning and is used to model the effect of the rounded leaf-end of the multileaf collimator (MLC). This parameter attempts to model the physical difference between the radiation and light field and account for inherent leakage between leaf tips. With the increased use of single fraction high dose treatments requiring larger monitor units comes an enhanced concern in the accuracy of leakage calculations, as it accounts for much of the patient dose. This study serves to verify the dosimetric accuracy of the algorithm used to model the rounded leaf effect for the TrueBeam STx, and describes a methodology for determining best-practice parameter values, given the novel capabilities of the linear accelerator such as flattening filter free (FFF) treatments and a high definition MLC (HDMLC). During commissioning, the nominal MLC position was verified and the DLG parameter was determined using MLC-defined field sizes and moving gap tests, as is common in clinical testing. Treatment plans were created, and the DLG was optimized to achieve less than 1% difference between measured and calculated dose. The DLG value found was tested on treatment plans for all energies (6 MV, 10 MV, 15 MV, 6 MV FFF, 10 MV FFF) and modalities (3D conventional, IMRT, conformal arc, VMAT) available on the TrueBeam STx. The DLG parameter found during the initial MLC testing did not match the leaf gap modeling parameter that provided the most accurate dose delivery in clinical treatment plans. Using the physical leaf gap size as the DLG for the HDMLC can lead to 5% differences in measured and calculated doses. Separate optimization of the DLG parameter using end-to-end tests must be performed to ensure dosimetric accuracy in the modeling of the rounded leaf ends for the Eclipse treatment planning system. The difference in leaf gap modeling versus physical leaf gap dimensions is more pronounced in the more recent versions of Eclipse for both the HDMLC and the Millennium MLC. Once properly commissioned and tested using a methodology based on treatment plan verification, Eclipse is able to accurately model radiation dose delivered for SBRT treatments using the TrueBeam STx.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKenzie, E; Yang, W; Burnison, M
2014-06-15
Purpose: Patients undergoing radiotherapy (RT) for left-sided breast cancer have increased risk of coronary artery disease. Deep Inhalation Breath Hold assisted RT (DIBH-RT) is shown to increase the geometric separation of the target area and heart, reducing cardiac radiation dose. The purposes of this study are to use Cine MV portal images to determine the stability of spirometer-guided DIBH-RT and examine the dosimetric cardiopulmonary impact of this technique. Methods: Twenty consecutive patients with left-sided breast cancer were recruited to the IRB-approved study. Free-breathing (FB) and DIBH-CT's were acquired at simulation. Rigid registration of the FB-CT and DIBH-CT was performed usingmore » primarily breast tissue. Treatment plans were created for each FB-CT and DIBH-CT using identical paired tangent fields with field-in-field or electronic compensation techniques. Dosimetric evaluation included mean and maximum (Dmax) doses for the left anterior descending artery (LAD), mean heart dose, and left lung V20. Cine MV portal images were acquired for medial and lateral fields during treatment. Analysis of Cine images involved chest wall segmentation using an algorithm developed in-house. Intra- and inter-fractional chest wall motion were determined through affine registration to the first frame of each Cine. Results: Dose to each cardiac structure evaluated was significantly (p<0.001) reduced with the DIBH plans. Mean heart dose decreased from 2.9(0.9–6.6) to 1.6(0.6–5.3) Gy; mean LAD dose from 16.6(3–43.6) to 7.4(1.7–32.7) Gy; and LAD Dmax from 35.4 (6.1–53) to 18.4(2.5–51.2) Gy. No statistically significant reduction was found for the left lung V20. Average AP and SI median chest wall motion (intrafractional) was 0.1 (SD=0.9) and 0.5 (SD=1.1) mm, respectively. Average AP inter-fractional chest wall motion was 2.0 (SD=1.4) mm. Conclusion: Spirometer-based DIBH treatments of the left breast are reproducible both inter- and intra-fractionally, and provide a statistically and potentially clinically useful dosimetric advantage to cardiac structures.« less
Dosimetric advantages of IMPT over IMRT for laser-accelerated proton beams
NASA Astrophysics Data System (ADS)
Luo, W.; Li, J.; Fourkal, E.; Fan, J.; Xu, X.; Chen, Z.; Jin, L.; Price, R.; Ma, C.-M.
2008-12-01
As a clinical application of an exciting scientific breakthrough, a compact and cost-efficient proton therapy unit using high-power laser acceleration is being developed at Fox Chase Cancer Center. The significance of this application depends on whether or not it can yield dosimetric superiority over intensity-modulated radiation therapy (IMRT). The goal of this study is to show how laser-accelerated proton beams with broad energy spreads can be optimally used for proton therapy including intensity-modulated proton therapy (IMPT) and achieve dosimetric superiority over IMRT for prostate cancer. Desired energies and spreads with a varying δE/E were selected with the particle selection device and used to generate spread-out Bragg peaks (SOBPs). Proton plans were generated on an in-house Monte Carlo-based inverse-planning system. Fifteen prostate IMRT plans previously used for patient treatment have been included for comparison. Identical dose prescriptions, beam arrangement and consistent dose constrains were used for IMRT and IMPT plans to show the dosimetric differences that were caused only by the different physical characteristics of proton and photon beams. Different optimization constrains and beam arrangements were also used to find optimal IMPT. The results show that conventional proton therapy (CPT) plans without intensity modulation were not superior to IMRT, but IMPT can generate better proton plans if appropriate beam setup and optimization are used. Compared to IMRT, IMPT can reduce the target dose heterogeneity ((D5-D95)/D95) by up to 56%. The volume receiving 65 Gy and higher (V65) for the bladder and the rectum can be reduced by up to 45% and 88%, respectively, while the volume receiving 40 Gy and higher (V40) for the bladder and the rectum can be reduced by up to 49% and 68%, respectively. IMPT can also reduce the whole body non-target tissue dose by up to 61% or a factor 2.5. This study has shown that the laser accelerator under development has a potential to generate high-quality proton beams for cancer treatment. Significant improvement in target dose uniformity and normal tissue sparing as well as in reduction of whole body dose can be achieved by IMPT with appropriate optimization and beam setup.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, C; Giaddui, T; Den, R
2014-06-15
Purpose: To investigate the adherence of treatment plans of prostate cancer patients with the dosimetric compliance criteria of the new in house phase I trial of high dose rate (HDR) brachytherapy combined with stereotactic body radiotherapy (SBRT) for intermediate risk prostate cancer patients. Methods: Ten prostate cancer patients were treated using this trial. They received one fraction of HDR to 15Gy, followed by external beam(EB) boost of 3.2Gy(Level 1, five patients) or 3.94Gy(level 2, five patients) per fraction for 10 or 7 fractions, respectively, both equivalent to EB treatments of 113.5Gy in 2Gy fractions. The EB plans were either IMRTmore » or VMAT plans. DVH analysis was performed to verify the adherence of treatment plans to the dosimetric criteria of the trial. Results: For Level 1 patients, target coverage were adequate, with CTV V32Gy(%) of 99.0±1.0 (mean ± 1 standard deviation), and PTV V31Gy(%) of 99.6±0.3. PTV V32.9Gy(%) is 1.4±3.1 and PTVmax is 32.9±0.2Gy. Rectum, bladder and femoral heads sparing were well within protocol criteria. For Level 2 patients, CTV V27.6Gy(%) is 98.7±1.8; PTV V26.7Gy(%) is 99.0±1.4. PTV V28.4Gy(%) is 1.3±1.4, with three patients having minor deviation from protocol. Again critical structures were spared compliant to the protocol. The analysis of HDR plans show similar results, with adequate dose coverage to the prostate and sparing of critical structures including urethra and rectum. V100(%) and V90(%) of prostate are 96.0±1.1 and 98.9±0.5. Urethra D10(%) is 113.1±2.9. Rectum V80(cc) is 1.4±0.5. Hotspot in prostate is substantially higher than what the protocol specifies. But the criteria for hotspot are only guidelines, serving to lower the dose to urethra . Conclusion: This new high biological equivalent dose prostate trial has been carried out successfully for ten patients. Based on dosimetric analysis, all HDR and external plans were compliant to the protocol criteria, with only minor deviations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fargier-Voiron, M; Sarrut, D; Guillet, L
2015-06-15
Purpose: We report our clinical experience using a non-invasive transperineal (TP) ultrasound (US) probe dedicated to pre-positioning and monitoring of prostate cancer patients. The accuracy of pre-treatment positioning was compared to CBCT for prostate and post-prostatectomy patients. Intrafraction motions were recorded for both localizations. The dosimetric impact of these displacements was finally investigated on prostate patients. Methods: Differences between CBCT/CT and TP-US/TP-US registrations were analyzed on 427 and 453 sessions for 13 prostate and 14 post-prostatectomy patients, respectively. Ten prostate patients’ dosimetries were retrospectively planned using 2 different protocols: 80Gy in 40 fractions and 36.25Gy in 5 fractions with amore » 5mm CTV- to- PTV margin. The delivery time was measured in order to analyze ranges of intrafraction motions related to each protocol. Mean prostate displacements were calculated for each patient and applied to the treatment isocenter coordinates to evaluate the dosimetric impact of these motions. Results: CBCT and TP-US shifts agreements at ±5mm were 76.6%, 95.1%, 96.3% and 90.3%, 85.0%, 97.6% in anterior- posterior, superior- inferior and left-right directions, for prostate and post-prostatectomy patients, respectively. Intrafraction motions were analyzed considering delivery times of 140 and 290s with an additional time of 120s for patient installation for doses of 2 and 7.25Gy, respectively. Intrafraction motions were patient-dependent and were larger as the irradiation time increased. Larger displacements were observed for prostate compared to post-prostatectomy localizations. Shifts above 3mm were observed on 17.6% and 4.5% of the 2Gy sessions against 30.6% and 7.3% of the 7.25Gy sessions in the anterior-posterior direction for prostate and post-prostatectomy localizations, respectively. Preliminary dosimetric results showed that intrafraction motions mainly impact the PTV coverage. Conclusion: 4D TP-US modality is a promising alternative to irradiating and/or invasive IGRT modalities for both inter and intrafraction motions management. Preliminary dosimetric results show that intrafraction monitoring is mandatory especially for hypofractionated treatments. M Fargier-Voiron was supported by a PhD grant from Elekta.« less
NASA Astrophysics Data System (ADS)
Besemer, Abigail E.
Targeted radionuclide therapy is emerging as an attractive treatment option for a broad spectrum of tumor types because it has the potential to simultaneously eradicate both the primary tumor site as well as the metastatic disease throughout the body. Patient-specific absorbed dose calculations for radionuclide therapies are important for reducing the risk of normal tissue complications and optimizing tumor response. However, the only FDA approved software for internal dosimetry calculates doses based on the MIRD methodology which estimates mean organ doses using activity-to-dose scaling factors tabulated from standard phantom geometries. Despite the improved dosimetric accuracy afforded by direct Monte Carlo dosimetry methods these methods are not widely used in routine clinical practice because of the complexity of implementation, lack of relevant standard protocols, and longer dose calculation times. The main goal of this work was to develop a Monte Carlo internal dosimetry platform in order to (1) calculate patient-specific voxelized dose distributions in a clinically feasible time frame, (2) examine and quantify the dosimetric impact of various parameters and methodologies used in 3D internal dosimetry methods, and (3) develop a multi-criteria treatment planning optimization framework for multi-radiopharmaceutical combination therapies. This platform utilizes serial PET/CT or SPECT/CT images to calculate voxelized 3D internal dose distributions with the Monte Carlo code Geant4. Dosimetry can be computed for any diagnostic or therapeutic radiopharmaceutical and for both pre-clinical and clinical applications. In this work, the platform's dosimetry calculations were successfully validated against previously published reference doses values calculated in standard phantoms for a variety of radionuclides, over a wide range of photon and electron energies, and for many different organs and tumor sizes. Retrospective dosimetry was also calculated for various pre-clinical and clinical patients and large dosimetric differences resulted when using conventional organ-level methods and the patient-specific voxelized methods described in this work. The dosimetric impact of various steps in the 3D voxelized dosimetry process were evaluated including quantitative imaging acquisition, image coregistration, voxel resampling, ROI contouring, CT-based material segmentation, and pharmacokinetic fitting. Finally, a multi-objective treatment planning optimization framework was developed for multi-radiopharmaceutical combination therapies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Lilie L., E-mail: lin@xrt.upenn.edu; Kirk, Maura; Scholey, Jessica
2016-05-01
Purpose: To report the acute toxicities associated with pencil beam scanning proton beam radiation therapy (PBS) for whole pelvis radiation therapy in women with gynecologic cancers and the results of a dosimetric comparison of PBS versus intensity modulated radiation therapy (IMRT) plans. Methods and Materials: Eleven patients with posthysterectomy gynecologic cancer received PBS to the whole pelvis. The patients received a dose of 45 to 50.4 Gy relative biological effectiveness (RBE) in 1.8 Gy (RBE) daily fractions. Acute toxicity was scored according to the Common Terminology Criteria for Adverse Events, version 4. A dosimetric comparison between a 2-field posterior oblique beam PBSmore » and an IMRT plan was conducted. The Wilcoxon signed rank test was used to assess the potential dosimetric differences between the 2 plans and PBS target coverage robustness relative to setup uncertainties. Results: The median patient age was 55 years (range 23-76). The primary site was cervical in 7, vaginal in 1, and endometrial in 3. Of the 11 patients, 7 received concurrent cisplatin, 1 each received sandwich carboplatin and paclitaxel chemotherapy, both sandwich and concurrent chemotherapy, and concurrent and adjuvant chemotherapy, and 1 received no chemotherapy. All patients completed treatment. Of the 9 patients who received concurrent chemotherapy, the rate of grade 2 and 3 hematologic toxicities was 33% and 11%, respectively. One patient (9%) developed grade 3 acute gastrointestinal toxicity; no patient developed grade ≥3 genitourinary toxicity. The volume of pelvic bone marrow, bladder, and small bowel receiving 10 to 30 Gy was significantly lower with PBS than with intensity modulated radiation therapy (P<.001). The target coverage for all PBS plans was robust relative to the setup uncertainties (P>.05) with the clinical target volume mean dose percentage received by 95% and 98% of the target volume coverage changes within 2% for the individual plans. Conclusions: Our results have demonstrated the clinical feasibility of PBS and the dosimetric advantages, especially for the low-dose sparing of normal tissues in the pelvis with the target robustness maintained relative to the setup uncertainties. Future studies with larger patient numbers are planned to further validate our preliminary findings.« less
Song, Ting; Li, Nan; Zarepisheh, Masoud; Li, Yongbao; Gautier, Quentin; Zhou, Linghong; Mell, Loren; Jiang, Steve; Cerviño, Laura
2016-01-01
Intensity-modulated radiation therapy (IMRT) currently plays an important role in radiotherapy, but its treatment plan quality can vary significantly among institutions and planners. Treatment plan quality control (QC) is a necessary component for individual clinics to ensure that patients receive treatments with high therapeutic gain ratios. The voxel-weighting factor-based plan re-optimization mechanism has been proved able to explore a larger Pareto surface (solution domain) and therefore increase the possibility of finding an optimal treatment plan. In this study, we incorporated additional modules into an in-house developed voxel weighting factor-based re-optimization algorithm, which was enhanced as a highly automated and accurate IMRT plan QC tool (TPS-QC tool). After importing an under-assessment plan, the TPS-QC tool was able to generate a QC report within 2 minutes. This QC report contains the plan quality determination as well as information supporting the determination. Finally, the IMRT plan quality can be controlled by approving quality-passed plans and replacing quality-failed plans using the TPS-QC tool. The feasibility and accuracy of the proposed TPS-QC tool were evaluated using 25 clinically approved cervical cancer patient IMRT plans and 5 manually created poor-quality IMRT plans. The results showed high consistency between the QC report quality determinations and the actual plan quality. In the 25 clinically approved cases that the TPS-QC tool identified as passed, a greater difference could be observed for dosimetric endpoints for organs at risk (OAR) than for planning target volume (PTV), implying that better dose sparing could be achieved in OAR than in PTV. In addition, the dose-volume histogram (DVH) curves of the TPS-QC tool re-optimized plans satisfied the dosimetric criteria more frequently than did the under-assessment plans. In addition, the criteria for unsatisfied dosimetric endpoints in the 5 poor-quality plans could typically be satisfied when the TPS-QC tool generated re-optimized plans without sacrificing other dosimetric endpoints. In addition to its feasibility and accuracy, the proposed TPS-QC tool is also user-friendly and easy to operate, both of which are necessary characteristics for clinical use. PMID:26930204
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delaney, Alexander R., E-mail: a.delaney@vumc.nl; Tol, Jim P.; Dahele, Max
Purpose: RapidPlan, a commercial knowledge-based planning solution, uses a model library containing the geometry and associated dosimetry of existing plans. This model predicts achievable dosimetry for prospective patients that can be used to guide plan optimization. However, it is unknown how suboptimal model plans (outliers) influence the predictions or resulting plans. We investigated the effect of, first, removing outliers from the model (cleaning it) and subsequently adding deliberate dosimetric outliers. Methods and Materials: Clinical plans from 70 head and neck cancer patients comprised the uncleaned (UC) Model{sub UC}, from which outliers were cleaned (C) to create Model{sub C}. The lastmore » 5 to 40 patients of Model{sub C} were replanned with no attempt to spare the salivary glands. These substantial dosimetric outliers were reintroduced to the model in increments of 5, creating Model{sub 5} to Model{sub 40} (Model{sub 5-40}). These models were used to create plans for a 10-patient evaluation group. Plans from Model{sub UC} and Model{sub C}, and Model{sub C} and Model{sub 5-40} were compared on the basis of boost (B) and elective (E) target volume homogeneity indexes (HI{sub B}/HI{sub E}) and mean doses to oral cavity, composite salivary glands (comp{sub sal}) and swallowing (comp{sub swal}) structures. Results: On average, outlier removal (Model{sub C} vs Model{sub UC}) had minimal effects on HI{sub B}/HI{sub E} (0%-0.4%) and sparing of organs at risk (mean dose difference to oral cavity and comp{sub sal}/comp{sub swal} were ≤0.4 Gy). Model{sub 5-10} marginally improved comp{sub sal} sparing, whereas adding a larger number of outliers (Model{sub 20-40}) led to deteriorations in comp{sub sal} up to 3.9 Gy, on average. These increases are modest compared to the 14.9 Gy dose increases in the added outlier plans, due to the placement of optimization objectives below the inferior boundary of the dose-volume histogram-predicted range. Conclusions: Overall, dosimetric outlier removal from or addition of 5 to 10 outliers to a 70-patient model had marginal effects on resulting plan quality. Although the addition of >20 outliers deteriorated plan quality, the effect was modest. In this study, RapidPlan demonstrated robustness for moderate proportions of salivary gland dosimetric outliers.« less
Ramey, Stephen James; Padgett, Kyle R; Lamichhane, Narottam; Neboori, Hanmath J; Kwon, Deukwoo; Mellon, Eric A; Brown, Karen; Duffy, Melissa; Victoria, James; Dogan, Nesrin; Portelance, Lorraine
2018-03-01
This study aims to perform a dosimetric comparison of 2 magnetic resonance (MR)-guided radiation therapy systems capable of performing online adaptive radiation therapy versus a conventional radiation therapy system for pancreas stereotactic body radiation therapy. Ten cases of patients with pancreatic adenocarcinoma previously treated in our institution were used for this analysis. MR-guided tri-cobalt 60 therapy (MR-cobalt) and MR-LINAC plans were generated and compared with conventional LINAC (volumetric modulated arc therapy) plans. The prescription dose was 40 Gy in 5 fractions covering 95% of the planning tumor volume for the 30 plans. The same organs at risk (OARs) dose constraints were used in all plans. Dose-volume-based indices were used to compare PTV coverage and OAR sparing. The conformity index of 40 Gy in 5 fractions covering 95% of the planning tumor volume demonstrated higher conformity in both LINAC-based plans compared with MR-cobalt plans. Although there was no difference in mean conformity index between LINAC and MR-LINAC plans (1.08 in both), there was a large difference between LINAC and MR-cobalt plans (1.08 vs 1.52). Overall, 79%, 72%, and 78% of critical structure dosimetric constraints were met with LINAC, MR-cobalt, and MR-LINAC plans, respectively. The MR-cobalt plans delivered more doses to all OARs compared with the LINAC plans. In contrast, the doses to the OARs of the MR-LINAC plans were similar to LINAC plans except in 2 cases: liver mean dose (MR-LINAC, 2 .8 Gy vs LINAC, 2.1 Gy) and volume of duodenum receiving at least 15 Gy (MR-LINAC, 13.2 mL vs LINAC, 15.4 mL). Both differences are likely not clinically significant. This study demonstrates that dosimetrically similar plans were achieved with conventional LINAC and MR-LINAC, whereas doses to OARs were statistically higher for MR-cobalt compared with conventional LINAC plans because of low-dose spillage. Given the improved tumor-tracking capabilities of MR-LINAC, further studies should evaluate potential benefits of adaptive radiation therapy-capable MR-guided LINAC treatment. Copyright © 2018. Published by Elsevier Inc.
Realistic respiratory motion margins for external beam partial breast irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conroy, Leigh; Quirk, Sarah; Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4
Purpose: Respiratory margins for partial breast irradiation (PBI) have been largely based on geometric observations, which may overestimate the margin required for dosimetric coverage. In this study, dosimetric population-based respiratory margins and margin formulas for external beam partial breast irradiation are determined. Methods: Volunteer respiratory data and anterior–posterior (AP) dose profiles from clinical treatment plans of 28 3D conformal radiotherapy (3DCRT) PBI patient plans were used to determine population-based respiratory margins. The peak-to-peak amplitudes (A) of realistic respiratory motion data from healthy volunteers were scaled from A = 1 to 10 mm to create respiratory motion probability density functions. Dosemore » profiles were convolved with the respiratory probability density functions to produce blurred dose profiles accounting for respiratory motion. The required margins were found by measuring the distance between the simulated treatment and original dose profiles at the 95% isodose level. Results: The symmetric dosimetric respiratory margins to cover 90%, 95%, and 100% of the simulated treatment population were 1.5, 2, and 4 mm, respectively. With patient set up at end exhale, the required margins were larger in the anterior direction than the posterior. For respiratory amplitudes less than 5 mm, the population-based margins can be expressed as a fraction of the extent of respiratory motion. The derived formulas in the anterior/posterior directions for 90%, 95%, and 100% simulated population coverage were 0.45A/0.25A, 0.50A/0.30A, and 0.70A/0.40A. The differences in formulas for different population coverage criteria demonstrate that respiratory trace shape and baseline drift characteristics affect individual respiratory margins even for the same average peak-to-peak amplitude. Conclusions: A methodology for determining population-based respiratory margins using real respiratory motion patterns and dose profiles in the AP direction was described. It was found that the currently used respiratory margin of 5 mm in partial breast irradiation may be overly conservative for many 3DCRT PBI patients. Amplitude alone was found to be insufficient to determine patient-specific margins: individual respiratory trace shape and baseline drift both contributed to the dosimetric target coverage. With respiratory coaching, individualized respiratory margins smaller than the full extent of motion could reduce planning target volumes while ensuring adequate coverage under respiratory motion.« less
Impacts of gantry angle dependent scanning beam properties on proton PBS treatment
NASA Astrophysics Data System (ADS)
Lin, Yuting; Clasie, Benjamin; Lu, Hsiao-Ming; Flanz, Jacob; Shen, Tim; Jee, Kyung-Wook
2017-01-01
While proton beam models in treatment planning systems are generally assumed invariant with respect to the beam deliveries at different gantry angles. Physical properties of scanning pencil beams can change. The gantry angle dependent properties include the delivered charge to the monitor unit chamber, the spot position and the spot shape. The aim of this study is to investigate the extent of the changes and their dosimetric impacts using historical pencil beam scanning (PBS) treatment data. Online beam delivery records at the time of the patient-specific qualify assurance were retrospectively collected for a total of 34 PBS fields from 28 patients treated at our institution. For each field, proton beam properties at two different gantry angles (the planned and zero gantry angles) were extracted by a newly-developed machine log analysis method and used to reconstruct the delivered dose distributions in the cubic water phantom geometry. The reconstructed doses at the two different angles and a planar dose measurement by a 2D ion-chamber array were compared and the dosimetric impacts of the gantry angle dependency were accessed by a 3D γ-index analysis. In addition, the pencil beam spot size was independently characterized as a function of the gantry angle and the beam energy. The dosimetric effects of the perturbed beam shape were also investigated. Comparisons of spot-by-spot beam positions between both gantry angles show a mean deviation of 0.4 and 0.7 mm and a standard deviation of 0.3 and 0.6 mm for x and y directions, respectively. The delivered giga-protons per spot show a percent mean difference and a standard deviation of 0.01% and 0.3%, respectively, from each planned spot weight. These small deviations lead to an excellent agreement in dose comparisons with an average γ passing rate of 99.1%. When each calculation for both planned and zero gantry angles was compared to the measurement, a high correlation in γ values was also observed, also indicating the dosimetric differences are small when a field is delivered at different gantry angles. Utilizing the online beam delivery records, the gantry angle dependencies of the PBS beam delivery were assessed and quantified. The study confirms the variations of the physical properties to be sufficiently small within the clinical tolerances without taking into account the gantry angle variation.
Progress on thermobrachytherapy surface applicator for superficial tissue disease
NASA Astrophysics Data System (ADS)
Arunachalam, Kavitha; Craciunescu, Oana I.; Maccarini, Paolo F.; Schlorff, Jaime L.; Markowitz, Edward; Stauffer, Paul R.
2009-02-01
This work reports the ongoing development of a combination applicator for simultaneous heating of superficial tissue disease using a 915 MHz DCC (dual concentric conductor) array and High Dose Rate (HDR) brachytherapy delivered via an integrated conformal catheter array. The progress includes engineering design changes in the waterbolus, DCC configurations and fabrication techniques of the conformal multilayer applicator. The dosimetric impact of the thin copper DCC array is also assessed. Steady state fluid dynamics of the new waterbolus bag indicates nearly uniform flow with less than 1°C variation across a large (19×32cm) bolus. Thermometry data of the torso phantom acquired with computer controlled movement of fiberoptic temperature probes inside thermal mapping catheters indicate feasibility of real time feedback control for the DCC array. MR (magnetic resonance) scans of a torso phantom indicate that the waterbolus thickness across the treatment area is controlled by the pressure applied by the surrounding inflatable airbladder and applicator securing straps. The attenuation coefficient of the DCC array was measured as 3+/- 0.001% and 2.95+/-0.03 % using an ion chamber and OneDose dosimeters respectively. The performance of the combination applicator on patient phantoms provides valuable feedback to optimize the applicator prior use in the patient clinic.
NASA Astrophysics Data System (ADS)
Magro, G.; Molinelli, S.; Mairani, A.; Mirandola, A.; Panizza, D.; Russo, S.; Ferrari, A.; Valvo, F.; Fossati, P.; Ciocca, M.
2015-09-01
This study was performed to evaluate the accuracy of a commercial treatment planning system (TPS), in optimising proton pencil beam dose distributions for small targets of different sizes (5-30 mm side) located at increasing depths in water. The TPS analytical algorithm was benchmarked against experimental data and the FLUKA Monte Carlo (MC) code, previously validated for the selected beam-line. We tested the Siemens syngo® TPS plan optimisation module for water cubes fixing the configurable parameters at clinical standards, with homogeneous target coverage to a 2 Gy (RBE) dose prescription as unique goal. Plans were delivered and the dose at each volume centre was measured in water with a calibrated PTW Advanced Markus® chamber. An EBT3® film was also positioned at the phantom entrance window for the acquisition of 2D dose maps. Discrepancies between TPS calculated and MC simulated values were mainly due to the different lateral spread modeling and resulted in being related to the field-to-spot size ratio. The accuracy of the TPS was proved to be clinically acceptable in all cases but very small and shallow volumes. In this contest, the use of MC to validate TPS results proved to be a reliable procedure for pre-treatment plan verification.
Magro, G; Molinelli, S; Mairani, A; Mirandola, A; Panizza, D; Russo, S; Ferrari, A; Valvo, F; Fossati, P; Ciocca, M
2015-09-07
This study was performed to evaluate the accuracy of a commercial treatment planning system (TPS), in optimising proton pencil beam dose distributions for small targets of different sizes (5-30 mm side) located at increasing depths in water. The TPS analytical algorithm was benchmarked against experimental data and the FLUKA Monte Carlo (MC) code, previously validated for the selected beam-line. We tested the Siemens syngo(®) TPS plan optimisation module for water cubes fixing the configurable parameters at clinical standards, with homogeneous target coverage to a 2 Gy (RBE) dose prescription as unique goal. Plans were delivered and the dose at each volume centre was measured in water with a calibrated PTW Advanced Markus(®) chamber. An EBT3(®) film was also positioned at the phantom entrance window for the acquisition of 2D dose maps. Discrepancies between TPS calculated and MC simulated values were mainly due to the different lateral spread modeling and resulted in being related to the field-to-spot size ratio. The accuracy of the TPS was proved to be clinically acceptable in all cases but very small and shallow volumes. In this contest, the use of MC to validate TPS results proved to be a reliable procedure for pre-treatment plan verification.
Anatomy-corresponding method of IMRT verification.
Winiecki, Janusz; Zurawski, Zbigniew; Drzewiecka, Barbara; Slosarek, Krzysztof
2010-01-01
During a proper execution of dMLC plans, there occurs an undesired but frequent effect of the dose locally accumulated by tissue being significantly different than expected. The conventional dosimetric QA procedures give only a partial picture of the quality of IMRT treatment, because their solely quantitative outcomes usually correspond more to the total area of the detector than the actually irradiated volume. The aim of this investigation was to develop a procedure of dynamic plans verification which would be able to visualize the potential anomalies of dose distribution and specify which tissue they exactly refer to. The paper presents a method discovered and clinically examined in our department. It is based on a Gamma Evaluation concept and allows accurate localization of deviations between predicted and acquired dose distributions, which were registered by portal as well as film dosimetry. All the calculations were performed on the self-made software GammaEval, the γ-images (2-dimensional distribution of γ-values) and γ-histograms were created as quantitative outcomes of verification. Over 150 maps of dose distribution have been analyzed and the cross-examination of the gamma images with DRRs was performed. It seems, that the complex monitoring of treatment would be possible owing to the images obtained as a cross-examination of γ-images and corresponding DRRs.
NASA Astrophysics Data System (ADS)
Yan, Yue; Yang, Jinzhong; Beddar, Sam; Ibbott, Geoffrey; Wen, Zhifei; Court, Laurence E.; Hwang, Ken-Pin; Kadbi, Mo; Krishnan, Sunil; Fuller, Clifton D.; Frank, Steven J.; Yang, James; Balter, Peter; Kudchadker, Rajat J.; Wang, Jihong
2018-04-01
We developed a novel technique to study the impact of geometric distortion of magnetic resonance imaging (MRI) on intensity-modulated radiation therapy treatment planning. The measured 3D datasets of residual geometric distortion (a 1.5 T MRI component of an MRI linear accelerator system) was fitted with a second-order polynomial model to map the spatial dependence of geometric distortions. Then the geometric distortion model was applied to computed tomography (CT) image and structure data to simulate the distortion of MRI data and structures. Fourteen CT-based treatment plans were selected from patients treated for gastrointestinal, genitourinary, thoracic, head and neck, or spinal tumors. Plans based on the distorted CT and structure data were generated (as the distorted plans). Dose deviations of the distorted plans were calculated and compared with the original plans to study the dosimetric impact of MRI distortion. The MRI geometric distortion led to notable dose deviations in five of the 14 patients, causing loss of target coverage of up to 3.68% and dose deviations to organs at risk in three patients, increasing the mean dose to the chest wall by up to 6.19 Gy in a gastrointestinal patient, and increases the maximum dose to the lung by 5.17 Gy in a thoracic patient.
Dosimetric considerations in dental applications
NASA Technical Reports Server (NTRS)
Goble, J. C.
1978-01-01
The integration of the Lixiscope into dental procedures was studied and compared with conventional dental radiographic techniques. It was found that through the use of intraoral sealed sources in conjunction with microchannel plate technology, the Lixiscope gives increased diagnostic information with decreased radiation dosage.
Biology Division Habrobracon Experiment P-1079
NASA Technical Reports Server (NTRS)
1968-01-01
Dosimetric analyses accumulated during the five-year period of the biosatellite program are summarized. These data are from a unique source placed in a unique optical bench, the biosatellite. Thus the multitudinous array of dosimeters was mandatory to give confidence in the experiment.
Streamlined approaches that use in vitro experimental data to predict chemical toxicokinetics (TK) are increasingly being used to perform risk-based prioritization based upon dosimetric adjustment of high-throughput screening (HTS) data across thousands of chemicals. However, ass...
Acceptance and commissioning of a treatment planning system based on Monte Carlo calculations.
Lopez-Tarjuelo, J; Garcia-Molla, R; Juan-Senabre, X J; Quiros-Higueras, J D; Santos-Serra, A; de Marco-Blancas, N; Calzada-Feliu, S
2014-04-01
The Monaco Treatment Planning System (TPS), based on a virtual energy fluence model of the photon beam head components of the linac and a dose computation engine made with Monte Carlo (MC) algorithm X-Ray Voxel MC (XVMC), has been tested before being put into clinical use. An Elekta Synergy with 6 MV was characterized using routine equipment. After the machine's model was installed, a set of functionality, geometric, dosimetric and data transfer tests were performed. The dosimetric tests included dose calculations in water, heterogeneous phantoms and Intensity Modulated Radiation Therapy (IMRT) verifications. Data transfer tests were run for every imaging device, TPS and the electronic medical record linked to Monaco. Functionality and geometric tests were run properly. Dose calculations in water were in accordance with measurements so that, in 95% of cases, differences were up to 1.9%. Dose calculation in heterogeneous media showed expected results found in the literature. IMRT verification results with an ionization chamber led to dose differences lower than 2.5% for points inside a standard gradient. When an 2-D array was used, all the fields passed the g (3%, 3 mm) test with a percentage of succeeding points between 90% and 95%, of which the majority of the mentioned fields had a percentage of succeeding points between 95% and 100%. Data transfer caused problems that had to be solved by means of changing our workflow. In general, tests led to satisfactory results. Monaco performance complied with published international recommendations and scored highly in the dosimetric ambit. However, the problems detected when the TPS was put to work together with our current equipment showed that this kind of product must be completely commissioned, without neglecting data workflow, before treating the first patient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kung, Shiris Wai Sum; Wu, Vincent Wing Cheung; Kam, Michael Koon Ming, E-mail: kamkm@yahoo.co
2011-01-01
Purpose: Locally recurrent nasopharyngeal carcinoma (NPC) patients can be salvaged by reirradiation with a substantial degree of radiation-related complications. Stereotactic radiotherapy (SRT) is widely used in this regard because of its rapid dose falloff and high geometric precision. The aim of this study was to examine whether the newly developed intensity-modulated stereotactic radiotherapy (IMSRT) has any dosimetric advantages over three other stereotactic techniques, including circular arc (CARC), static conformal beam (SmMLC), and dynamic conformal arc (mARC), in treating locally recurrent NPC. Methods and Materials: Computed tomography images of 32 patients with locally recurrent NPC, previously treated with SRT, were retrievedmore » from the stereotactic planning system for contouring and computing treatment plans. Treatment planning of each patient was performed for the four treatment techniques: CARC, SmMLC, mARC, and IMSRT. The conformity index (CI) and homogeneity index (HI) of the planning target volume (PTV) and doses to the organs at risk (OARs) and normal tissue were compared. Results: All four techniques delivered adequate doses to the PTV. IMSRT, SmMLC, and mARC delivered reasonably conformal and homogenous dose to the PTV (CI <1.47, HI <0.53), but not for CARC (p < 0.05). IMSRT presented with the smallest CI (1.37) and HI (0.40). Among the four techniques, IMSRT spared the greatest number of OARs, namely brainstem, temporal lobes, optic chiasm, and optic nerve, and had the smallest normal tissue volume in the low-dose region. Conclusion: Based on the dosimetric comparison, IMSRT was optimal for locally recurrent NPC by delivering a conformal and homogenous dose to the PTV while sparing OARs.« less
A novel dose-based positioning method for CT image-guided proton therapy
Cheung, Joey P.; Park, Peter C.; Court, Laurence E.; Ronald Zhu, X.; Kudchadker, Rajat J.; Frank, Steven J.; Dong, Lei
2013-01-01
Purpose: Proton dose distributions can potentially be altered by anatomical changes in the beam path despite perfect target alignment using traditional image guidance methods. In this simulation study, the authors explored the use of dosimetric factors instead of only anatomy to set up patients for proton therapy using in-room volumetric computed tomographic (CT) images. Methods: To simulate patient anatomy in a free-breathing treatment condition, weekly time-averaged four-dimensional CT data near the end of treatment for 15 lung cancer patients were used in this study for a dose-based isocenter shift method to correct dosimetric deviations without replanning. The isocenter shift was obtained using the traditional anatomy-based image guidance method as the starting position. Subsequent isocenter shifts were established based on dosimetric criteria using a fast dose approximation method. For each isocenter shift, doses were calculated every 2 mm up to ±8 mm in each direction. The optimal dose alignment was obtained by imposing a target coverage constraint that at least 99% of the target would receive at least 95% of the prescribed dose and by minimizing the mean dose to the ipsilateral lung. Results: The authors found that 7 of 15 plans did not meet the target coverage constraint when using only the anatomy-based alignment. After the authors applied dose-based alignment, all met the target coverage constraint. For all but one case in which the target dose was met using both anatomy-based and dose-based alignment, the latter method was able to improve normal tissue sparing. Conclusions: The authors demonstrated that a dose-based adjustment to the isocenter can improve target coverage and/or reduce dose to nearby normal tissue. PMID:23635262
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishiyama, Hiromichi, E-mail: hishiyam@kitasato-u.ac.jp; Satoh, Takefumi; Kawakami, Shogo
Purpose: To compare dosimetric parameters, seed migration rates, operation times, and acute toxicities of intraoperatively built custom-linked (IBCL) seeds with those of loose seeds for prostate brachytherapy. Methods and Materials: Participants were 140 patients with low or intermediate prostate cancer prospectively allocated to an IBCL seed group (n=74) or a loose seed group (n=66), using quasirandomization (allocated by week of the month). All patients underwent prostate brachytherapy using an interactive plan technique. Computed tomography and plain radiography were performed the next day and 1 month after brachytherapy. The primary endpoint was detection of a 5% difference in dose to 90% ofmore » prostate volume on postimplant computed tomography 1 month after treatment. Seed migration was defined as a seed position >1 cm from the cluster of other seeds on radiography. A seed dropped into the seminal vesicle was also defined as a migrated seed. Results: Dosimetric parameters including the primary endpoint did not differ significantly between groups, but seed migration rate was significantly lower in the IBCL seed group (0%) than in the loose seed group (55%; P<.001). Mean operation time was slightly but significantly longer in the IBCL seed group (57 min) than in the loose seed group (50 min; P<.001). No significant differences in acute toxicities were seen between groups (median follow-up, 9 months). Conclusions: This prospective quasirandomized control trial showed no dosimetric differences between IBCL seed and loose seed groups. However, a strong trend toward decreased postimplant seed migration was shown in the IBCL seed group.« less
SU-F-T-431: Dosimetric Validation of Acuros XB Algorithm for Photon Dose Calculation in Water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, L; Yadav, G; Kishore, V
2016-06-15
Purpose: To validate the Acuros XB algorithm implemented in Eclipse Treatment planning system version 11 (Varian Medical System, Inc., Palo Alto, CA, USA) for photon dose calculation. Methods: Acuros XB is a Linear Boltzmann transport equation (LBTE) solver that solves LBTE equation explicitly and gives result equivalent to Monte Carlo. 6MV photon beam from Varian Clinac-iX (2300CD) was used for dosimetric validation of Acuros XB. Percentage depth dose (PDD) and profiles (at dmax, 5, 10, 20 and 30 cm) measurements were performed in water for field size ranging from 2×2,4×4, 6×6, 10×10, 20×20, 30×30 and 40×40 cm{sup 2}. Acuros XBmore » results were compared against measurements and anisotropic analytical algorithm (AAA) algorithm. Results: Acuros XB result shows good agreement with measurements, and were comparable to AAA algorithm. Result for PDD and profiles shows less than one percent difference from measurements, and from calculated PDD and profiles by AAA algorithm for all field size. TPS calculated Gamma error histogram values, average gamma errors in PDD curves before dmax and after dmax were 0.28, 0.15 for Acuros XB and 0.24, 0.17 for AAA respectively, average gamma error in profile curves in central region, penumbra region and outside field region were 0.17, 0.21, 0.42 for Acuros XB and 0.10, 0.22, 0.35 for AAA respectively. Conclusion: The dosimetric validation of Acuros XB algorithms in water medium was satisfactory. Acuros XB algorithm has potential to perform photon dose calculation with high accuracy, which is more desirable for modern radiotherapy environment.« less
Huang, Qijie; Jabbour, Salma K; Xiao, Zhiyan; Yue, Ning; Wang, Xiao; Cao, Hongbin; Kuang, Yu; Zhang, Yin; Nie, Ke
2018-04-25
The principle aim of this study is to incorporate 4DCT ventilation imaging into functional treatment planning that preserves high-functioning lung with both double scattering and scanning beam techniques in proton therapy. Eight patients with locally advanced non-small-cell lung cancer were included in this study. Deformable image registration was performed for each patient on their planning 4DCTs and the resultant displacement vector field with Jacobian analysis was used to identify the high-, medium- and low-functional lung regions. Five plans were designed for each patient: a regular photon IMRT vs. anatomic proton plans without consideration of functional ventilation information using double scattering proton therapy (DSPT) and intensity modulated proton therapy (IMPT) vs. functional proton plans with avoidance of high-functional lung using both DSPT and IMPT. Dosimetric parameters were compared in terms of tumor coverage, plan heterogeneity, and avoidance of normal tissues. Our results showed that both DSPT and IMPT plans gave superior dose advantage to photon IMRTs in sparing low dose regions of the total lung in terms of V5 (volume receiving 5Gy). The functional DSPT only showed marginal benefit in sparing high-functioning lung in terms of V5 or V20 (volume receiving 20Gy) compared to anatomical plans. Yet, the functional planning in IMPT delivery, can further reduce the low dose in high-functioning lung without degrading the PTV dosimetric coverages, compared to anatomical proton planning. Although the doses to some critical organs might increase during functional planning, the necessary constraints were all met. Incorporating 4DCT ventilation imaging into functional proton therapy is feasible. The functional proton plans, in intensity modulated proton delivery, are effective to further preserve high-functioning lung regions without degrading the PTV coverage.
NASA Astrophysics Data System (ADS)
Lee, Suk; Cao, Yuan Jie; Chang, Kyung Hwan; Shim, Jang Bo; Kim, Kwang Hyeon; Lee, Nam Kwon; Park, Young Je; Kim, Chul Yong; Cho, Sam Ju; Lee, Sang Hoon; Min, Chul Kee; Kim, Woo Chul; Cho, Kwang Hwan; Huh, Hyun Do; Lim, Sangwook; Shin, Dongho
2015-07-01
The purpose of this study was to use various dosimetrical indices to determine the best intensitymodulated radiation therapy (IMRT) modality - for treating patients with prostate cancer. Ten patients with prostate cancer were included in this study. IMRT plans were designed to include different modalities, including the linac step and shoot, tomotherapy, RapidArc, and proton systems. Various dosimetrical indices, like the prescription isodose to target volume (PITV) ratio, conformity index (CI), homogeneity index (HI), target coverage index (TCI), modified dose homogeneity index (MHI), conformation number (CN), critical organ scoring index (COSI), and quality factor (QF), were determined to compare the different treatment plans. Biological indices, such as the generalized equivalent uniform dose (gEUD) based the tumor control probability (TCP), and the normal tissue complication probability (NTCP), were also calculated and used to compare the treatment plans. The RapidArc plan attained better PTV coverage, as evidenced by its superior PITV, CI, TCI, MHI, and CN values. Regarding organ at risks (OARs), proton therapy exhibited superior dose sparing for the rectum and the bowel in low dose volumes, whereas the tomotherapy and RapidArc plans achieved better dose sparing in high dose volumes. The QF scores showed no significant difference among these plans (p = 0.701). The average TCPs for prostate tumors in the RapidArc, linac and proton plans were higher than the average TCP for Tomotherapy (98.79%, 98.76%, and 98.75% vs. 98.70%, respectively). Regarding the rectum NTCP, RapidArc showed the most favorable result (0.09%) whereas linac resulted in the best bladder NTCP (0.08%).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cassidy, R.J., E-mail: richardjcassidy@emory.edu; Yang, X.; Liu, T.
Purpose: Sexual dysfunction after radiotherapy for prostate cancer remains an important late adverse toxicity. The neurovascular bundles (NVB) that lie posterolaterally to the prostate are typically spared during prostatectomy, but in traditional radiotherapy planning they are not contoured as an organ-at-risk with dose constraints. Our goal was to determine the dosimetric feasibility of “NVB-sparing” prostate radiotherapy while still delivering adequate dose to the prostate. Methods: Twenty-five consecutive patients with prostate cancer (with no extraprostatic disease on pelvic magnetic resonance imaging [MRI]) who that were treated with external beam radiotherapy, with the same primary planning target volume margins, to a dosemore » of 79.2 Gy were evaluated. Pelvic MRI and simulation computed tomography scans were registered using dedicated software to allow for bilateral NVB target delineation on T2-weighted MRI. A volumetric modulated arc therapy plan was generated using the NVB bilaterally with 2 mm margin as an organ to spare and compared to the patient’s previously delivered plan. Dose-volume histogram endpoints for NVB, rectum, bladder, and planning target volume 79.2 were compared between the 2 plans using a 2-tailed paired t-test. Results: The V70 for the NVB was significantly lower on the NVB-sparing plan (p <0.01), while rectum and bladder endpoints were similar. Target V100% was similar but V{sub 105%} was higher for the NVB-sparing plans (p <0.01). Conclusions: “NVB-sparing” radiotherapy is dosimetrically feasible using CT-MRI registration, and for volumetric modulated arc therapy technology — target coverage is acceptable without increased dose to other normal structures, but with higher target dose inhomogeneity. The clinical impact of “NVB-sparing” radiotherapy is currently under study at our institution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Y; Giebeler, A; Mascia, A
Purpose: To quantitatively evaluate dosimetric consequence of spot size variations and validate beam-matching criteria for commissioning a pencil beam model for multiple treatment rooms. Methods: A planning study was first conducted by simulating spot size variations to systematically evaluate dosimetric impact of spot size variations in selected cases, which was used to establish the in-air spot size tolerance for beam matching specifications. A beam model in treatment planning system was created using in-air spot profiles acquired in one treatment room. These spot profiles were also acquired from another treatment room for assessing the actual spot size variations between the twomore » treatment rooms. We created twenty five test plans with targets of different sizes at different depths, and performed dose measurement along the entrance, proximal and distal target regions. The absolute doses at those locations were measured using ionization chambers at both treatment rooms, and were compared against the calculated doses by the beam model. Fifteen additional patient plans were also measured and included in our validation. Results: The beam model is relatively insensitive to spot size variations. With an average of less than 15% measured in-air spot size variations between two treatment rooms, the average dose difference was −0.15% with a standard deviation of 0.40% for 55 measurement points within target region; but the differences increased to 1.4%±1.1% in the entrance regions, which are more affected by in-air spot size variations. Overall, our single-room based beam model in the treatment planning system agreed with measurements in both rooms < 0.5% within the target region. For fifteen patient cases, the agreement was within 1%. Conclusion: We have demonstrated that dosimetrically equivalent machines can be established when in-air spot size variations are within 15% between the two treatment rooms.« less
Jamema, S V; Upreti, R R; Sharma, S; Deshpande, D D
2008-09-01
The purpose of this work is to report the results of commissioning and to establish a quality assurance (QA) program for commercial 3D treatment planning system (TPS) based on IAEA Technical Report Series 430. Eclipse v 7.3.10, (Varian Medical Systems, Palo Alto, CA, U.S.A.) TPS was commissioned for a Clinac 6EX (Varian Medical Systems, Palo Alto, CA, USA) linear accelerator. CT images of a phantom with various known in-homogeneities were acquired. The images were transferred to TPS and tested for various parameters related to patient data acquisition, anatomical modeling, plan evaluation and dose calculation. Dosimetric parameters including open, asymmetric and wedged shaped fields, oblique incidence, buildup region behavior and SSD dependence were evaluated. Representative clinical cases were tested for MU calculation and point doses. The maximum variation between the measured and the known CT numbers was 20 +/- 11.7 HU (1 SD). The results of all non-dosimetric tests were found within tolerance, however expansion at the sharp corners was found distorted. The accuracy of the DVH calculations depends on the grid size. TPS calculations of all the dosimetric parameters were in good agreement with the measured values, however for asymmetric open and wedged fields, few points were found out of tolerance. Smaller grid size calculation showed better agreement of dose calculation in the build-up region. Independent tests for MU calculation showed a variation within +/-2% (relative to planning system), meanwhile variation of 3.0% was observed when the central axis was blocked. The test results were in agreement with the tolerance specified by IAEA TRS 430. A subset of the commissioning tests has been identified as a baseline data for an ongoing QA program.
Sachdev, Sean; Refaat, Tamer; Bacchus, Ian D; Sathiaseelan, Vythialinga; Mittal, Bharat B
2017-08-01
Radiation-induced hypothyroidism affects a significant number of patients with head-and-neck squamous cell cancer (HNSCC). We examined detailed dosimetric and clinical parameters to better determine the risk of hypothyroidism in euthyroid HNSCC patients treated with intensity-modulated radiation therapy (IMRT). From 2006 to 2010, 75 clinically euthyroid patients with HNSCC were treated with sequential IMRT. The cohort included 59 men and 16 females with a median age of 55 years (range, 30 to 89 y) who were treated to a median dose of 70 Gy (range, 60 to 75 Gy) with concurrent chemotherapy in nearly all (95%) cases. Detailed thyroid dosimetric parameters including maximum dose, mean dose, and other parameters (eg, V50-percent volume receiving at least 50 Gy) were obtained. Freedom from hypothyroidism was evaluated using the Kaplan-Meier method. Univariate and multivariate analyses were conducted using Cox regression. After a median follow-up period of 50 months, 25 patients (33%) became hypothyroid. On univariate analysis, thyroid V50 was highly correlated with developing hypothyroidism (P=0.035). Other dosimetric paramaters including mean thyroid dose (P=0.11) and maximum thyroid dose (P=0.39) did not reach statistical significance. On multivariate analysis incorporating patient, tumor, and treatment variables, V50 remained highly statistically significant (P=0.037). Regardless of other factors, for V50>60%, the odds ratio of developing hypothyroidism was 6.76 (P=0.002). In HNSCC patients treated with IMRT, thyroid V50 highly predicts the risk of developing hypothyroidism. V50>60% puts patients at a significantly higher risk of becoming hypothyroid. This can be a useful dose constraint to consider during treatment planning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Sherif, O; Xhaferllari, I; Patrick, J
2014-08-15
Introduction: Long-term cardiac side effects in left-sided breast cancer patients (BREL) after post-operative radiotherapy has become one of the most debated issues in radiation oncology. Through breathing-adapted radiotherapy the volume of the heart exposed to radiation can be significantly reduced by delivering the radiation only at the end of inspiration phase of the respiratory cycle, this is referred to as inspiration gating (IG). The purpose of this study is to quantify the potential reduction in cardiac exposure during IG compared to conventional BREL radiotherapy and to assess the dosimetric impact of cardiac motion due to natural breathing. Methods: 24 BRELmore » patients treated with tangential parallel opposed photon beams were included in this study. All patients received a standard fast helical planning CT (FH-CT) and a 4D-CT. Treatment plans were created on the FH-CT using a clinical treatment planning system. The original treatment plan was then superimposed onto the end of inspiration CT and all 10 phases of the 4D-CT to quantify the dosimetric impact of respiratory motion and IG through 4D dose accumulation. Results: Through IG the mean dose to the heart, left ventricle, and left anterior descending artery (LAD) can be reduced in comparison to the clinical standard BREL treatment by as much as 8.39%, 10.11%, and 13.71% respectively (p < 0.05). Conclusion: Failure to account for respiratory motion can lead to under or overestimation in the calculated DVH for the heart, and it's sub-structures. IG can reduce cardiac exposure especially to the LAD during BREL radiotherapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pena, E; Caprile, P; Sanchez-Nieto, B
Purpose: The thermoluminiscense dosimeters (TLDs) are widely used in personal and clinical dosimetry due to its small size, good sensitivity and tissue equivalence, among other advantages. This study presents the characterization of Lithium Fluoride based TLDs, in terms of their absorbed dose response to successive irradiation cycles in a broad range of beam energies, measured under reference conditions. Methods: Four types of Harshaw TLD chips were used: TLD-100, TLD-600 TLD-700 and 100-H. They were irradiated with 10 photon beams of different energy spectrums, from 28 kVp to 18MV (in 30 consecutive cycles for 6 and 18 MV). Results: It wasmore » found that the response of the dosimetric system was stabilized (less than ±3%) after 10 cycles for TLD-600 and TLD-700. In the case of TLD-100 and TLD-100H this dependence was not observed. A decreased response to increasing beam energy in terms of absorbed dose to water was observed, as expected, except for TLD-100H which showed the opposite behavior. The less energy dependent detector was the TLD-100H exhibiting a maximum deviation of 12%. The highest variation observed was 33% for TLD-100. The study allowed the determination of calibration factors in absorbed dose for a wide range of energies and materials for different dosimetric applications, such as in-vivo dosimetry during imaging and radiotherapy. Conclusion: The study allowed the determination of calibration factors in absorbed dose for a wide range of energies and materials for different dosimetric applications, such as in-vivo dosimetry during imaging and radiotherapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J; Li, X; Liu, G
Purpose: We compare and investigate the dosimetric impacts on pencil beam scanning (PBS) proton treatment plans generated with CT calibration curves from four different CT scanners and one averaged ‘global’ CT calibration curve. Methods: The four CT scanners are located at three different hospital locations within the same health system. CT density calibration curves were collected from these scanners using the same CT calibration phantom and acquisition parameters. Mass density to HU value tables were then commissioned in a commercial treatment planning system. Five disease sites were chosen for dosimetric comparisons at brain, lung, head and neck, adrenal, and prostate.more » Three types of PBS plans were generated at each treatment site using SFUD, IMPT, and robustness optimized IMPT techniques. 3D dose differences were investigated using 3D Gamma analysis. Results: The CT calibration curves for all four scanners display very similar shapes. Large HU differences were observed at both the high HU and low HU regions of the curves. Large dose differences were generally observed at the distal edges of the beams and they are beam angle dependent. Out of the five treatment sites, lung plans exhibits the most overall range uncertainties and prostate plans have the greatest dose discrepancy. There are no significant differences between the SFUD, IMPT, and the RO-IMPT methods. 3D gamma analysis with 3%, 3 mm criteria showed all plans with greater than 95% passing rate. Two of the scanners with close HU values have negligible dose difference except for lung. Conclusion: Our study shows that there are more than 5% dosimetric differences between different CT calibration curves. PBS treatment plans generated with SFUD, IMPT, and the robustness optimized IMPT has similar sensitivity to the CT density uncertainty. More patient data and tighter gamma criteria based on structure location and size will be used for further investigation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Allen M., E-mail: allen.chen@ucdmc.ucdavis.ed; Li Baoqing; Farwell, D. Gregory
2011-03-01
Purpose: To compare differences in dosimetric, clinical, and quality-of-life endpoints among a cohort of patients treated by intensity-modulated radiotherapy (IMRT) and conventional radiotherapy (CRT) for head-and-neck cancer of unknown primary origin. Methods and Materials: The medical records of 51 patients treated by radiation therapy for squamous cell carcinoma of the head and neck presenting as cervical lymph node metastasis of occult primary origin were reviewed. Twenty-four patients (47%) were treated using CRT, and 27 (53%) were treated using IMRT. The proportions of patients receiving concurrent chemotherapy were 54% and 63%, respectively. Results: The 2-year estimates of overall survival, local-regional control,more » and disease-specific survival for the entire patient population were 86%, 89%, and84%, respectively. There were no significant differences in any of these endpoints with respect to radiation therapy technique (p > 0.05 for all). Dosimetric analysis revealed that the use of IMRT resulted in significant improvements with respect to mean dose and V30 to the contralateral (spared) parotid gland. In addition, mean doses to the ipsilateral inner and middle ear structures were significantly reduced with IMRT (p < 0.05 for all). The incidence of severe xerostomia in the late setting was 58% and 11% among patients treated by CRT and IMRT, respectively (p < 0.001). The percentages of patients who were G-tube dependent at 6 months after treatment were 42% and 11%, respectively (p < 0.001). Conclusions: IMRT results in significant improvements in the therapeutic ratio among patients treated by radiation therapy for head-and-neck cancer of unknown primary origin.« less
Schmid, Gernot; Bolz, Thomas; Uberbacher, Richard; Escorihuela-Navarro, Ana; Bahr, Achim; Dorn, Hans; Sauter, Cornelia; Eggert, Torsten; Danker-Hopfe, Heidi
2012-10-01
A new head exposure system for double-blind provocation studies investigating possible effects of terrestrial trunked radio (TETRA)-like exposure (385 MHz) on central nervous processes was developed and dosimetrically analyzed. The exposure system allows localized exposure in the temporal brain, similar to the case of operating a TETRA handset at the ear. The system and antenna concept enables exposure during wake and sleep states while an electroencephalogram (EEG) is recorded. The dosimetric assessment and uncertainty analysis yield high efficiency of 14 W/kg per Watt of accepted antenna input power due to an optimized antenna directly worn on the subject's head. Beside sham exposure, high and low exposure at 6 and 1.5 W/kg (in terms of maxSAR10g in the head) were implemented. Double-blind control and monitoring of exposure is enabled by easy-to-use control software. Exposure uncertainty was rigorously evaluated using finite-difference time-domain (FDTD)-based computations, taking into account anatomical differences of the head, the physiological range of the dielectric tissue properties including effects of sweating on the antenna, possible influences of the EEG electrodes and cables, variations in antenna input reflection coefficients, and effects on the specific absorption rate (SAR) distribution due to unavoidable small variations in the antenna position. This analysis yielded a reasonable uncertainty of <±45% (max to min ratio of 4.2 dB) in terms of maxSAR10g in the head and a variability of <±60% (max to min ratio of 6 dB) in terms of mass-averaged SAR in different brain regions, as demonstrated by a brain region-specific absorption analysis. Copyright © 2012 Wiley Periodicals, Inc.
Smith, Wade P; Kim, Minsun; Holdsworth, Clay; Liao, Jay; Phillips, Mark H
2016-03-11
To build a new treatment planning approach that extends beyond radiation transport and IMRT optimization by modeling the radiation therapy process and prognostic indicators for more outcome-focused decision making. An in-house treatment planning system was modified to include multiobjective inverse planning, a probabilistic outcome model, and a multi-attribute decision aid. A genetic algorithm generated a set of plans embodying trade-offs between the separate objectives. An influence diagram network modeled the radiation therapy process of prostate cancer using expert opinion, results of clinical trials, and published research. A Markov model calculated a quality adjusted life expectancy (QALE), which was the endpoint for ranking plans. The Multiobjective Evolutionary Algorithm (MOEA) was designed to produce an approximation of the Pareto Front representing optimal tradeoffs for IMRT plans. Prognostic information from the dosimetrics of the plans, and from patient-specific clinical variables were combined by the influence diagram. QALEs were calculated for each plan for each set of patient characteristics. Sensitivity analyses were conducted to explore changes in outcomes for variations in patient characteristics and dosimetric variables. The model calculated life expectancies that were in agreement with an independent clinical study. The radiation therapy model proposed has integrated a number of different physical, biological and clinical models into a more comprehensive model. It illustrates a number of the critical aspects of treatment planning that can be improved and represents a more detailed description of the therapy process. A Markov model was implemented to provide a stronger connection between dosimetric variables and clinical outcomes and could provide a practical, quantitative method for making difficult clinical decisions.
Management of three-dimensional intrafraction motion through real-time DMLC tracking.
Sawant, Amit; Venkat, Raghu; Srivastava, Vikram; Carlson, David; Povzner, Sergey; Cattell, Herb; Keall, Paul
2008-05-01
Tumor tracking using a dynamic multileaf collimator (DMLC) represents a promising approach for intrafraction motion management in thoracic and abdominal cancer radiotherapy. In this work, we develop, empirically demonstrate, and characterize a novel 3D tracking algorithm for real-time, conformal, intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT)-based radiation delivery to targets moving in three dimensions. The algorithm obtains real-time information of target location from an independent position monitoring system and dynamically calculates MLC leaf positions to account for changes in target position. Initial studies were performed to evaluate the geometric accuracy of DMLC tracking of 3D target motion. In addition, dosimetric studies were performed on a clinical linac to evaluate the impact of real-time DMLC tracking for conformal, step-and-shoot (S-IMRT), dynamic (D-IMRT), and VMAT deliveries to a moving target. The efficiency of conformal and IMRT delivery in the presence of tracking was determined. Results show that submillimeter geometric accuracy in all three dimensions is achievable with DMLC tracking. Significant dosimetric improvements were observed in the presence of tracking for conformal and IMRT deliveries to moving targets. A gamma index evaluation with a 3%-3 mm criterion showed that deliveries without DMLC tracking exhibit between 1.7 (S-IMRT) and 4.8 (D-IMRT) times more dose points that fail the evaluation compared to corresponding deliveries with tracking. The efficiency of IMRT delivery, as measured in the lab, was observed to be significantly lower in case of tracking target motion perpendicular to MLC leaf travel compared to motion parallel to leaf travel. Nevertheless, these early results indicate that accurate, real-time DMLC tracking of 3D tumor motion is feasible and can potentially result in significant geometric and dosimetric advantages leading to more effective management of intrafraction motion.
Zaker, Neda; Sina, Sedigheh; Koontz, Craig; Meigooni1, Ali S.
2016-01-01
Monte Carlo simulations are widely used for calculation of the dosimetric parameters of brachytherapy sources. MCNP4C2, MCNP5, MCNPX, EGS4, EGSnrc, PTRAN, and GEANT4 are among the most commonly used codes in this field. Each of these codes utilizes a cross‐sectional library for the purpose of simulating different elements and materials with complex chemical compositions. The accuracies of the final outcomes of these simulations are very sensitive to the accuracies of the cross‐sectional libraries. Several investigators have shown that inaccuracies of some of the cross section files have led to errors in 125I and 103Pd parameters. The purpose of this study is to compare the dosimetric parameters of sample brachytherapy sources, calculated with three different versions of the MCNP code — MCNP4C, MCNP5, and MCNPX. In these simulations for each source type, the source and phantom geometries, as well as the number of the photons, were kept identical, thus eliminating the possible uncertainties. The results of these investigations indicate that for low‐energy sources such as 125I and 103Pd there are discrepancies in gL(r) values. Discrepancies up to 21.7% and 28% are observed between MCNP4C and other codes at a distance of 6 cm for 103Pd and 10 cm for 125I from the source, respectively. However, for higher energy sources, the discrepancies in gL(r) values are less than 1.1% for 192Ir and less than 1.2% for 137Cs between the three codes. PACS number(s): 87.56.bg PMID:27074460
Köhn, J; Licher, J; Mielke, M; Loutfi-Krauss, B; Blümer, N; Heine, B; Rödel, C; Scherf, C; Ramm, U
2017-02-01
The use of Electronic Portal Imaging Devices (EPIDs) to acquire dosimetric information, especially for 3D-back-projection, has been increasingly extended. For a precise back-projection, the accurate knowledge of the movement characteristics of the EPID during gantry rotation is an essential requirement. Measurements were conducted with different alignments of steel balls, which were mounted on the treatment table to avoid secondary effects such as the mechanical sag of gantry or jaws. The image movement of the EPID was determined by comparing the predicted projections of the phantoms with the EPID acquired image. Effects on dosimetric verifications were evaluated by γ-evaluation. The measurement results showed that the shift of the EPID image is larger in Y direction than in X direction. A maximum rotation of 0.3° and nodding of 2.4° of the detector was calculated. Changes in SDD were found up to 10mm. The angles of nodding are overall higher at discrete gantry angles in comparison to images detected for continuous rotation. Using these results we were able to correct the EPID images used for verification measurements. γ-evaluation revealed a significantly improved agreement between planned and measured EPID signal values. The measurement methods and algorithms introduced in this study are simple and comprehensive. Using these methods and algorithms we were able to quantify the major effects on geometrical and dosimetric characteristics. This allows the correction of EPID signal measurements for these effects related to the gantry angle, leading to an improved γ-evaluation for treatment plans. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
γTools: A modular multifunction phantom for quality assurance in GammaKnife treatments.
Calusi, Silvia; Noferini, Linhsia; Marrazzo, Livia; Casati, Marta; Arilli, Chiara; Compagnucci, Antonella; Talamonti, Cinzia; Scoccianti, Silvia; Greto, Daniela; Bordi, Lorenzo; Livi, Lorenzo; Pallotta, Stefania
2017-11-01
We present the γTools, a new phantom designed to assess geometric and dosimetric accuracy in Gamma Knife treatments, together with first tests and results of applications. The phantom is composed of two modules: the imaging module, a regular grid of 1660 control points to evaluate image distortions and image registration result and the dosimetry module for delivered dose distribution measurements. The phantom is accompanied by a MatLab routine for image distortions quantification. Dose measurement are performed with Gafchromic films fixed between two inserts and placed in various positions and orientations inside the dosimetry module thus covering a volume comparable to the full volume of a head. Tests performed to assess the accuracy and precision of the imaging module demonstrated sub-millimetric values. As an example of possible applications, the phantom was employed to measure image distortions of two MRI scanners and to perform dosimetric studies of single shots delivered to homogeneous and heterogeneous materials. Due to the phantom material, the measured absolute dose do not correspond to the planned dose; doses comparisons are thus carried out between normalized dose distributions. Finally, an end-to-end test was carried out in the treatment of a neuroma-like target which resulted in a 100% gamma passing rate (2% local, 2 mm) and a distance between the real target perimeter and the prescription isodose centroids of about 1 mm. The tests demonstrate that the proposed phantom is suitable to assess both the geometrical and relative dosimetric accuracy of Gamma Knife radiosurgery treatments. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
SU-E-T-314: Dosimetric Effect of Smooth Drilling On Proton Compensators in Prostate Patients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reyhan, M; Yue, N; Zou, J
2015-06-15
Purpose: To evaluate the dosimetric effect of smooth drilling of proton compensators in proton prostate plans when compared to typical plunge drilling settings. Methods: Twelve prostate patients were planned in Eclipse treatment planning system using three different drill settings Smooth, Plunge drill A, and Plunge drill B. The differences between A and B were: spacing X[cm]: 0.4(A), 0.1(B), spacing Y[cm]: 0.35(A), 0.1(B), row offset [cm]: 0.2(A), 0(B). Planning parameters were kept consistent between the different plans, which utilized two opposed lateral beams arrangement. Mean differences absolute dosimetry in OAR constraints are presented. Results: The smooth drilled compensator based plans yieldedmore » equivalent target coverage to the plans generated with drill settings A and B. Overall, the smooth compensators reduced dose to the majority of organs at risk compared to settings A and B. Constraints were reduced for the following OAR: Rectal V75 by 2.12 and 2.48%, V70 by 2.45 and 2.91%, V65 by 2.85 and 3.37%, V50 by 2.3 and 5.1%, Bladder V65 by 4.49 and 3.67%, Penial Bulb mean by 3.7 and 4.2Gy, and the maximum plan dose 5.3 and 7.4Gy for option A vs smooth and option B vs smooth respectively. The femoral head constraint (V50<5%) was met by all plans, but it was not consistently lower for the smooth drilling plan. Conclusion: Smooth drilled compensators provide equivalent target coverage and overall slightly cooler plans to the majority of organs at risk; it also minimizes the potential dosimetric impacts caused by patient positioning uncertainty.« less
Anagnostopoulos, Georgios; Andrássy, Michael; Baltas, Dimos
To determine the relative dose rate distribution in water for the Bebig 20 mm and 30 mm skin applicators and report results in a form suitable for potential clinical use. Results for both skin applicators are also provided in the form of a hybrid Task Group 43 (TG-43) dosimetry technique. Furthermore, the radiation leakage around both skin applicators from the radiation protection point of view and the impact of the geometrical source position uncertainties are studied and reported. Monte Carlo simulations were performed using the MCNP 6.1 general purpose code, which was benchmarked against published dosimetry data for the Bebig Ir2.A85-2 high-dose-rate iridium-192 source, as well as the dosimetry data for the two Elekta skin applicators. Both Bebig skin applicators were modeled, and the dose rate distributions in a water phantom were calculated. The dosimetric quantities derived according to a hybrid TG-43 dosimetry technique are provided with their corresponding uncertainty values. The air kerma rate in air was simulated in the vicinity of each skin applicator to assess the radiation leakage. Results from the Monte Carlo simulations of both skin applicators are presented in the form of figures and relative dose rate tables, and additionally with the aid of the quantities defined in the hybrid TG-43 dosimetry technique and their corresponding uncertainty values. Their output factors, flatness, and penumbra values were found comparable to the Elekta skin applicators. The radiation shielding was evaluated to be adequate. The effect of potential uncertainties in source positioning on dosimetry should be investigated as part of applicator commissioning. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tabibian, Art A., E-mail: art.tabibian@gmail.com; Powers, Adam; Dolormente, Keith
In proton therapy, passive scattered proton plans use compensators to conform the dose to the distal surface of the planning volume. These devices are custom made from acrylic or wax for each treatment field using either a plunge-drilled or smooth-milled compensator design. The purpose of this study was to investigate if there is a clinical benefit of generating passive scattered proton radiation treatment plans with the smooth compensator design. We generated 4 plans with different techniques using the smooth compensators. We chose 5 sites and 5 patients for each site for the range of dosimetric effects to show adequate sample.more » The plans were compared and evaluated using multicriteria (MCA) plan quality metrics for plan assessment and comparison using the Quality Reports [EMR] technology by Canis Lupus LLC. The average absolute difference for dosimetric metrics from the plunged-depth plan ranged from −4.7 to +3.0 and the average absolute performance results ranged from −6.6% to +3%. The manually edited smooth compensator plan yielded the best dosimetric metric, +3.0, and performance, + 3.0% compared to the plunged-depth plan. It was also superior to the other smooth compensator plans. Our results indicate that there are multiple approaches to achieve plans with smooth compensators similar to the plunged-depth plans. The smooth compensators with manual compensator edits yielded equal or better target coverage and normal tissue (NT) doses compared with the other smooth compensator techniques. Further studies are under investigation to evaluate the robustness of the smooth compensator design.« less
Toesca, Diego A S; Osmundson, Evan C; von Eyben, Rie; Shaffer, Jenny L; Koong, Albert C; Chang, Daniel T
This study aims to determine how the albumin-bilirubin (ALBI) score compares with the Child-Pugh (CP) score for assessing liver function following stereotactic body radiation therapy (SBRT). In total, 60 patients, 40 with hepatocellular carcinoma (HCC) and 20 with cholangiocarcinoma (CCA), were treated with SBRT. Liver function panels were obtained before and at 1, 3, 6, and 12 months after SBRT. Laboratory values were censored after locoregional recurrence, further liver-directed therapies, or liver transplant. A significant decline in hepatic function occurred after SBRT for HCC patients only (P = .001 by ALBI score; P < .0001 by CP score). By converting radiation doses to biologically equivalent doses by using a standard linear quadratic model using α/β of 10, the strongest dosimetric predictor of liver function decline for HCC was the volume of normal liver irradiated by a dose of 40 Gy when assessing liver function by the ALBI score (P = .07), and the volume of normal liver irradiated by a dose of 20 Gy by using the CP score (P= .0009). For CCA patients, the volume of normal liver irradiated by a dose of 40 Gy remained the strongest dosimetric predictor when using the ALBI score (P = .002), but no dosimetric predictor was significant using the CP score. Hepatic function decline correlated with worse overall survival for HCC (by ALBI, P = .0005; by CP, P < .0001) and for CCA (by ALBI, P = NS; by CP, P = .008). ALBI score was similarly able to predict hepatic function decline compared with CP score, and both systems correlated with survival. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zakjevskii, V; Knill, C; Rakowski, J
2014-06-01
Purpose: To develop a comprehensive end-to-end test for Varian's TrueBeam linear accelerator for head and neck IMRT using a custom phantom designed to utilize multiple dosimetry devices. Methods: The initial end-to-end test and custom H and N phantom were designed to yield maximum information in anatomical regions significant to H and N plans with respect to: i) geometric accuracy, ii) dosimetric accuracy, and iii) treatment reproducibility. The phantom was designed in collaboration with Integrated Medical Technologies. A CT image was taken with a 1mm slice thickness. The CT was imported into Varian's Eclipse treatment planning system, where OARs and themore » PTV were contoured. A clinical template was used to create an eight field static gantry angle IMRT plan. After optimization, dose was calculated using the Analytic Anisotropic Algorithm with inhomogeneity correction. Plans were delivered with a TrueBeam equipped with a high definition MLC. Preliminary end-to-end results were measured using film and ion chambers. Ion chamber dose measurements were compared to the TPS. Films were analyzed with FilmQAPro using composite gamma index. Results: Film analysis for the initial end-to-end plan with a geometrically simple PTV showed average gamma pass rates >99% with a passing criterion of 3% / 3mm. Film analysis of a plan with a more realistic, ie. complex, PTV yielded pass rates >99% in clinically important regions containing the PTV, spinal cord and parotid glands. Ion chamber measurements were on average within 1.21% of calculated dose for both plans. Conclusion: trials have demonstrated that our end-to-end testing methods provide baseline values for the dosimetric and geometric accuracy of Varian's TrueBeam system.« less
NASA Astrophysics Data System (ADS)
Nyirenda, A. N.; Chithambo, M. L.
2017-04-01
It is known that when α-Al2O3:C is exposed to excessive amounts of ionising radiation, defects are induced within its matrix. We report the influence of radiation-induced defects on the thermoluminescence (TL) and optically stimulated luminescence (OSL) measured from α-Al2O3:C after irradiation to 1000 Gy. These radiation-induced defects are thermally unstable in the region 450-650 °C and result in TL peaks in this range when the TL is measured at 1 °C/s. Heating a sample to 700 °C obliterates the radiation-induced defects, that is, the TL peaks corresponding to the radiation induced defects are no longer observed in the subsequent TL measurements when moderate irradiation doses below 10 Gy are used. The charge traps associated with these radiation-induced defects are more stable than the dosimetric trap when the sample is exposed to either sunlight or 470-nm blue light from LEDs. TL glow curves measured following the defect-inducing irradiation produce a dosimetric peak that is broader and positioned at a higher temperature than observed in glow curves obtained before the heavy irradiation. In addition, sample sensitization/desensitization occurs due to the presence of these radiation-induced defects. Furthermore, both the activation energy and the kinetic order of the dosimetric peak evaluated when the radiation-induced defects are present in the sample are significantly lower in value than those obtained when these defects are absent. The radiation-induced defects also affect the shape and total light sum of the OSL signal as well as the position and width of the resultant residual phototransferred thermoluminescence main peak.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Depauw, N; Patel, S; MacDonald, S
Purpose: Deep inspiration breath-hold techniques (DIBH) have been shown to carry significant dosimetric advantages in conventional radiotherapy of left-sided breast cancer. The purpose of this study is to evaluate the use of DIBH techniques for post-mastectomy radiation therapy (PMRT) using proton pencil beam scanning (PBS). Method: Ten PMRT patients, with or without breast implant, underwent two helical CT scans: one with free breathing and the other with deep inspiration breath-hold. A prescription of 50.4 Gy(RBE) to the whole chest wall and lymphatics (axillary, supraclavicular, and intramammary nodes) was considered. PBS plans were generated for each patient’s CT scan using Astroid,more » an in-house treatment planning system, with the institution conventional clinical PMRT parameters; that is, using a single en-face field with a spot size varying from 8 mm to 14 mm as a function of energy. Similar optimization parameters were used in both plans in order to ensure appropriate comparison. Results: Regardless of the technique (free breathing or DIBH), the generated plans were well within clinical acceptability. DIBH allowed for higher target coverage with better sparing of the cardiac structures. The lung doses were also slightly improved. While the use of DIBH techniques might be of interest, it is technically challenging as it would require a fast PBS delivery, as well as the synchronization of the beam delivery with a gating system, both of which are not currently available at the institution. Conclusion: DIBH techniques display some dosimetric advantages over free breathing treatment for PBS PMRT patients, which warrants further investigation. Plans will also be generated with smaller spot sizes (2.5 mm to 5.5 mm and 5 mm to 9 mm), corresponding to new generation machines, in order to further quantify the dosimetric advantages of DIBH as a function of spot size.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Register, Steven; Takita, Cristiane; Reis, Isildinha
To identify anatomic and treatment characteristics that correlate with organ-at-risk (OAR) sparing with deep inspiration breath-hold (DIBH) technique to guide patient selection for this technique. Anatomic and treatment characteristics and radiation doses to OARs were compared between free-breathing and DIBH plans. Linear regression analysis was used to identify factors independently predicting for cardiac sparing. We identified 64 patients: 44 with intact breast and 20 postmastectomy. For changes measured directly on treatment planning scans, DIBH plans decreased heart-chest wall length (6.5 vs 5.0 cm, p < 0.001), and increased lung volume (1074.4 vs 1881.3 cm{sup 3}, p < 0.001), and formore » changes measured after fields are set, they decreased maximum heart depth (1.1 vs 0.3 cm, p < 0.001) and heart volume in field (HVIF) (9.1 vs 0.9 cm{sup 3}, p < 0.001). DIBH reduced the mean heart dose (3.4 vs 1.8 Gy, p < 0.001) and lung V{sub 20} (19.6% vs 15.3%, p < 0.001). Regression analysis found that only change in HVIF independently predicted for cardiac sparing. We identified patients in the bottom quartile of the dosimetric benefits seen with DIBH and categorized the cause of this “minimal benefit.” Overall, 29% of patients satisfied these criteria for minimal benefit with DIBH and the most common cause was favorable baseline anatomy. Only the reduction in HVIF predicted for reductions in mean heart dose; no specific anatomic surrogate for the dosimetric benefits of DIBH technique could be identified. Most patients have significant dosimetric benefit with DIBH, and this technique should be planned and evaluated for all patients receiving left-sided breast/chest wall radiation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanli, E; Mabhouti, H; Cebe, M
Purpose: Brain stereotactic radiosurgery (SRS) involves the use of precisely directed, single session radiation to create a desired radiobiologic response within the brain target with acceptable minimal effects on surrounding structures or tissues. In this study, the dosimetric comparison of GammaKnife perfection and Cyberknife M6 treatment plans were made. Methods: Treatment plannings were done for GammaKnife perfection unit using Gammaplan treatment planning system (TPS) on the CT scan of head and neck randophantom simulating the treatment of sterotactic treatments for one brain metastasis. The dose distribution were calculated using TMR 10 algorithm. The treatment planning for the same target weremore » also done for Cyberknife M6 machine using Multiplan (TPS) with Monte Carlo algorithm. Using the same film batch, the net OD to dose calibration curve was obtained using both machine by delivering 0- 800 cGy. Films were scanned 48 hours after irradiation using an Epson 1000XL flatbed scanner. Dose distribution were measured using EBT3 film dosimeter. The measured and calculated doses were compared. Results: The dose distribution in the target and 2 cm beyond the target edge were calculated on TPSs and measured using EBT3 film. For cyberknife treatment plans, the gamma analysis passing rates between measured and calculated dose distributions were 99.2% and 96.7% for target and peripheral region of target respectively. For gammaknife treatment plans, the gamma analysis passing rates were 98.9% and 93.2% for target and peripheral region of target respectively. Conclusion: The study shows that dosimetrically comparable plans are achievable with Cyberknife and GammaKnife. Although TMR 10 algorithm predicts the target dose.« less
A continuous arc delivery optimization algorithm for CyberKnife m6.
Kearney, Vasant; Descovich, Martina; Sudhyadhom, Atchar; Cheung, Joey P; McGuinness, Christopher; Solberg, Timothy D
2018-06-01
This study aims to reduce the delivery time of CyberKnife m6 treatments by allowing for noncoplanar continuous arc delivery. To achieve this, a novel noncoplanar continuous arc delivery optimization algorithm was developed for the CyberKnife m6 treatment system (CyberArc-m6). CyberArc-m6 uses a five-step overarching strategy, in which an initial set of beam geometries is determined, the robotic delivery path is calculated, direct aperture optimization is conducted, intermediate MLC configurations are extracted, and the final beam weights are computed for the continuous arc radiation source model. This algorithm was implemented on five prostate and three brain patients, previously planned using a conventional step-and-shoot CyberKnife m6 delivery technique. The dosimetric quality of the CyberArc-m6 plans was assessed using locally confined mutual information (LCMI), conformity index (CI), heterogeneity index (HI), and a variety of common clinical dosimetric objectives. Using conservative optimization tuning parameters, CyberArc-m6 plans were able to achieve an average CI difference of 0.036 ± 0.025, an average HI difference of 0.046 ± 0.038, and an average LCMI of 0.920 ± 0.030 compared with the original CyberKnife m6 plans. Including a 5 s per minute image alignment time and a 5-min setup time, conservative CyberArc-m6 plans achieved an average treatment delivery speed up of 1.545x ± 0.305x compared with step-and-shoot plans. The CyberArc-m6 algorithm was able to achieve dosimetrically similar plans compared to their step-and-shoot CyberKnife m6 counterparts, while simultaneously reducing treatment delivery times. © 2018 American Association of Physicists in Medicine.
Vinod, Shalini K; Lim, Karen; Bell, Lauren; Veera, Jacqueline; Ohanessian, Lucy; Juresic, Ewa; Borok, Nira; Chan, Phillip; Chee, Raphael; Do, Viet; Govindarajulu, Geetha; Sridharan, Swetha; Johnson, Carol; Moses, Daniel; Van Dyk, Sylvia; Holloway, Lois
2017-02-01
Image-based brachytherapy for cervical cancer using MRI has been implemented in Australia and New Zealand. The aims of this study were to measure variability in High-risk CTV (HR-CTV) delineation and evaluate dosimetric consequences of this. Nine radiation oncologists, one radiation therapist and two radiologists contoured HR-CTV on 3T MRI datasets from ten consecutive patients undergoing cervical brachytherapy at a single institution. Contour comparisons were performed using the Dice Similarity Coefficient (DSC) and Mean Absolute Surface Distance (MASD). Two reference contours were created for brachytherapy planning: a Simultaneous Truth and Performance Level Estimation (STAPLE) and a consensus contour (CONSENSUS). Optimized plans (8 Gy) for both these contours were applied to individual participant's contours to assess D90 and D100 coverage of HR CTV. To compare variability in dosimetry, relative standard deviation (rSD) was calculated. Good concordance (mean DSC≥0.7, MASD≤5 mm) was achieved in 8/10 cases when compared to the STAPLE reference and 6/10 cases when compared to the CONSENSUS reference. Greatest variation was visually seen in the cranio-caudal direction. The average mean rSD across all patients was 27% and 34% for the STAPLE HR-CTV D90 and D100, respectively, and 28% and 35% for the CONSENSUS HR-CTV D90 and D100. Delineation uncertainty resulted in an average dosimetric uncertainty of ±1.5-1.6 Gy per fraction based on an 8 Gy prescribed fraction. Delineation of HR-CTV for cervical cancer brachytherapy was consistent amongst observers, suggesting similar interpretation of GEC-ESTRO guidelines. Despite the good concordance, there was dosimetric variation noted, which could be clinically significant. © 2016 The Royal Australian and New Zealand College of Radiologists.
Nishio, Teiji; Shirato, Hiroki; Ishikawa, Masayori; Miyabe, Yuki; Kito, Satoshi; Narita, Yuichirou; Onimaru, Rikiya; Ishikura, Satoshi; Ito, Yoshinori; Hiraoka, Masahiro
2014-05-01
A domestic multicenter phase I study of stereotactic body radiotherapy (SBRT) for T2N0M0 non-small cell lung cancer in inoperable patients or elderly patients who refused surgery was initiated as the Japan Clinical Oncology Group trial (JCOG0702) in Japan. Prior to the clinical study, the accuracy of dose calculation in radiation treatment-planning systems was surveyed in participating institutions, and differences in the irradiating dose between the institutions were investigated. We developed a water tank-type lung phantom appropriate for verification of the exposure dose in lung SBRT. Using this water tank-type lung phantom, the dose calculated in the radiation treatment-planning system and the measured dose using a free air ionization chamber and dosimetric film were compared in a visiting survey of the seven institutions participating in the clinical study. In all participating institutions, differences between the calculated and the measured dose in the irradiation plan were as follows: the accuracy of the absolute dose in the center of the simulated tumor measured using a free air ionization chamber was within 2%, the mean gamma value was ≤ 0.47 on gamma analysis following the local dose criteria, and the pass rate was >87% for 3%/3 mm from measurement of dose distribution with dosimetric film. These findings confirmed the accuracy of delivery doses in the institutions participating in the clinical study, so that a study with integration of the institutions could be initiated.
SU-F-P-31: Dosimetric Effects of Roll and Pitch Corrections Using Robotic Table
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamalui, M; Su, Z; Flampouri, S
Purpose: To quantify the dosimetric effect of roll and pitch corrections being performed by two types of robotic tables available at our institution: BrainLabTM 5DOF robotic table installed at VERO (BrainLab&MHI) dedicated SBRT linear accelerator and 6DOF robotic couch by IBA Proton Therapy with QFixTM couch top. Methods: Planning study used a thorax phantom (CIRSTM), scanned at 4DCT protocol; targets (IGTV, PTV) were determined according to the institutional lung site-specific standards. 12 CT sets were generated with Pitch and Roll angles ranging from −4 to +4 degrees each. 2 table tops were placed onto the scans according to the modality-specificmore » patient treatment workflows. The pitched/rolled CT sets were fused to the original CT scan and the verification treatment plans were generated (12 photon SBRT plans and 12 proton conventional fractionation lung plans). Then the CT sets were fused again to simulate the effect of patient roll/pitch corrections by the robotic table. DVH sets were evaluated for all cases. Results: The effect of not correcting the phantom position for roll/pitch in photon SBRT cases was reducing the target coverage by 2% as maximum; correcting the positional errors by robotic table varied the target coverage within 0.7%. in case of proton treatment, not correcting the phantom position led to the coverage loss up to 4%, applying the corrections using robotic table reduced the coverage variation to less than 2% for PTV and within 1% for IGTV. Conclusion: correcting the patient position by using robotic tables is highly preferable, despite the small dosimetric changes introduced by the devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Feng-Ming, E-mail: fengkong@med.umich.edu; Ritter, Timothy; Quint, Douglas J.
2011-12-01
Purpose: To review the dose limits and standardize the three-dimenional (3D) radiographic definition for the organs at risk (OARs) for thoracic radiotherapy (RT), including the lung, proximal bronchial tree, esophagus, spinal cord, ribs, and brachial plexus. Methods and Materials: The present study was performed by representatives from the Radiation Therapy Oncology Group, European Organization for Research and Treatment of Cancer, and Soutwestern Oncology Group lung cancer committees. The dosimetric constraints of major multicenter trials of 3D-conformal RT and stereotactic body RT were reviewed and the challenges of 3D delineation of these OARs described. Using knowledge of the human anatomy andmore » 3D radiographic correlation, draft atlases were generated by a radiation oncologist, medical physicist, dosimetrist, and radiologist from the United States and reviewed by a radiation oncologist and medical physicist from Europe. The atlases were then critically reviewed, discussed, and edited by another 10 radiation oncologists. Results: Three-dimensional descriptions of the lung, proximal bronchial tree, esophagus, spinal cord, ribs, and brachial plexus are presented. Two computed tomography atlases were developed: one for the middle and lower thoracic OARs (except for the heart) and one focusing on the brachial plexus for a patient positioned supine with their arms up for thoracic RT. The dosimetric limits of the key OARs are discussed. Conclusions: We believe these atlases will allow us to define OARs with less variation and generate dosimetric data in a more consistent manner. This could help us study the effect of radiation on these OARs and guide high-quality clinical trials and individualized practice in 3D-conformal RT and stereotactic body RT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, J; Tian, Z; Gu, X
2014-06-15
Purpose: We studied dosimetric effects of inter-fraction deformation in lung stereotactic body radiotherapy (SBRT), in order to investigate the necessity of adaptive re-planning for lung SBRT treatments. Methods: Six lung cancer patients with different treatment fractions were retrospectively investigated. All the patients were immobilized and localized with a stereotactic body frame and were treated under cone-beam CT (CBCT) image guidance at each fraction. We calculated the actual delivered dose of the treatment plan using the up-to-date patient geometry of each fraction, and compared the dose with the intended plan dose to investigate the dosimetric effects of the inter-fraction deformation. Deformablemore » registration was carried out between the treatment planning CT and the CBCT of each fraction to obtain deformed planning CT for more accurate dose calculations of the delivered dose. The extent of the inter-fraction deformation was also evaluated by calculating the dice similarity coefficient between the delineated structures on the planning CT and those on the deformed planning CT. Results: The average dice coefficients for PTV, spinal cord, esophagus were 0.87, 0.83 and 0.69, respectively. The volume of PTV covered by prescription dose was decreased by 23.78% on average for all fractions and all patients. For spinal cord and esophagus, the volumes covered by the constraint dose were increased by 4.57% and 3.83%. The maximum dose was also increased by 4.11% for spinal cord and 4.29% for esophagus. Conclusion: Due to inter-fraction deformation, large deterioration was found in both PTV coverage and OAR sparing, which demonstrated the needs for adaptive re-planning of lung SBRT cases to improve target coverage while reducing radiation dose to nearby normal tissues.« less
Raghavan, Govind; Kishan, Amar U; Cao, Minsong; Chen, Allen M
2016-11-01
Prior studies have relied on CT to assess alterations in anatomy among patients undergoing radiation for head and neck cancer. We sought to determine the feasibility of using MRI-based image-guided radiotherapy to quantify these changes and to ascertain their potential dosimetric implications. 6 patients with head and neck cancer were treated with intensity-modulated radiotherapy (IMRT) on a novel tri- 60 Co teletherapy system equipped with a 0.35-T MRI (VR, ViewRay Incorporated, Oakwood Village, OH) to 66-70 Gy in 33 fractions (fx). Pre-treatment MRIs on Fx 1, 5, 10, 15, 20, 25, 30 and 33 were imported into a contouring interface, where the primary gross tumour volume (GTV) and parotid glands were delineated. The centre of mass (COM) shifts for these structures were assessed relative to Day 1. Dosimetric data were co-registered with the MRIs, and doses to the GTV and parotid glands were assessed. Primary GTVs decreased significantly over the course of IMRT (median % volume loss, 38.7%; range, 29.5-72.0%; p < 0.05) at a median rate of 1.2%/fx (range, 0.92-2.2%/fx). Both the ipsilateral and contralateral parotid glands experienced significant volume loss (p < 0.05, for all) and shifted medially during IMRT. Weight loss correlated significantly with parotid gland volume loss and medial COM shift (p < 0.05). Integrated on-board MRI can be used to accurately contour and analyze primary GTVs and parotid glands over the course of IMRT. COM shifts and significant volume reductions were observed, confirming the results of prior CT-based exercises. Advances in knowledge: The superior resolution of on-board MRI may facilitate online adaptive replanning in the future.